
Enterprise COBOL for z/OS
6.4

Migration Guide

IBM

GC27-8715-03

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 351.

Fourth edition (26 February 2024 update)

This edition applies to Version 6.4 of IBM® Enterprise COBOL for z/OS® (program number 5655-EC6) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using the
correct edition for the level of the product.

You can view or download softcopy publications free of charge in the Enterprise COBOL for z/OS library. Because
Enterprise COBOL for z/OS supports the continuous delivery (CD) model and publications are updated to document the
features delivered under the CD model, it is a good idea to check for updates once every two months.

It is our intention to update the product documentation for this release periodically, without updating the order number.
If you need to uniquely refer to the version of your product documentation, refer to the order number with the date of
update.
© Copyright International Business Machines Corporation 1991, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/support/docview.wss?uid=swg27036733

Contents

Tables.. xi

Preface..xv
About this information..xv

Terminology clarification.. xv
COBOL compilers by name and version.. xvi
How to use examples... xviii
Acknowledgement..xviii
Related publications.. xix

Summary of changes to this information...xx
Changes in GC27-8715-03 (February 2024)... xx
Changes in GC27-8715-02 (September 2023).. xxi
Changes in GC27-8715-01 (December 2021)..xxiii
Changes in GC27-8715-00 (February 2021).. xxvi
Changes in GC14-7383-03 (March 2019)...xxix
Changes in GC14-7383-02 (March 2019)...xxxi
Changes in GC14-7383-00 (June 2013)..xxxii
Changes in GC23-8527-01 (August 2009).. xxxii
Changes in GC23-8527-00 (December 2007).. xxxiii
Changes in GC27-1409-05 (November 2006)..xxxiii
Changes in GC27-1409-04 (March 2006)...xxxiii
Changes in GC27-1409-03 (July 2005).. xxxiii
Changes in GC27-1409-02 (December 2003).. xxxiii
Changes in GC27-1409-01 (September 2002)...xxxiv
Changes in GC27-1409-00 (November 2001).. xxxiv
Changes in GC26-4764-05 (September 2000)...xxxiv

Summary of changes to the COBOL compilers.. xxxv
Changes in IBM Enterprise COBOL for z/OS 6.4 with PTFs installed...xxxv
Changes in IBM Enterprise COBOL for z/OS 6.4..xxxvi
Changes in IBM Enterprise COBOL for z/OS 6.3 with PTFs installed...xxxvii
Changes in IBM Enterprise COBOL for z/OS 6.3..xxxix
Changes in IBM Enterprise COBOL for z/OS 6.2 with PTFs installed... xl
Changes in IBM Enterprise COBOL for z/OS 6.2... xlii
Changes in IBM Enterprise COBOL for z/OS 6.1 with PTFs installed...xliv
Changes in IBM Enterprise COBOL for z/OS 6.1... xlv
Changes in IBM Enterprise COBOL for z/OS 5.2 with PTFs installed...xlvi
Changes in IBM Enterprise COBOL for z/OS 5.2...xlvi
Changes in IBM Enterprise COBOL for z/OS 5.1.1.. xlvii
Changes in IBM Enterprise COBOL for z/OS 5.1...xlviii
Changes in IBM Enterprise COBOL for z/OS 4.2... lii
Changes in IBM Enterprise COBOL for z/OS 4.1... lii
Changes in IBM Enterprise COBOL for z/OS 3.4 with PTFs installed.. liii
Changes in IBM Enterprise COBOL for z/OS 3.4.. liii
Changes in IBM Enterprise COBOL for z/OS 3.3.. liv
Changes in IBM Enterprise COBOL for z/OS and OS/390 3.2...lv
Changes in IBM Enterprise COBOL for z/OS and OS/390 3.1...lv
Changes in COBOL for OS/390 & VM 2.2..lvi
Changes in COBOL for OS/390 & VM 2.1.2..lvii
Changes in COBOL for OS/390 & VM 2.1.1..lvii
Changes in COBOL for OS/390 & VM 2.1...lvii

 iii

How to send your comments...lvii

Part 1. Overview..1

Chapter 1. Introducing the new compiler and run time..3
Product relationships: compiler, runtime library, debug...4
Comparison of COBOL compilers...5
Language Environment's runtime support for different compilers... 6
Advantages of the new compiler and run time.. 6
Changes with the new compiler and run time... 13

CMPR2 compiler option.. 13
FLAGMIG compiler option.. 13
FLAGMIG4 compiler option.. 14
SOM-based object-oriented COBOL...14
Integrated Db2 coprocessor...14
Integrated CICS translator... 14
Performance of decimal overflows...14

General migration tasks... 15
Planning your strategy.. 15
Upgrading your source to Enterprise COBOL... 15
Adding Enterprise COBOL programs to existing applications... 17

Chapter 2. Do I need to recompile?.. 19
Migration basics..19

Runtime migration.. 19
Compiler migration... 20

Service support for OS/VS COBOL and VS COBOL II programs..20
Changing OS/VS COBOL programs...20

Interoperability with older levels of IBM COBOL programs..21

Part 2. Migration strategies.. 23

Chapter 3. Compiler upgrade checklist...25

Chapter 4. Migration recommendations to Enterprise COBOL 6..27

Chapter 5. Planning to upgrade source programs.. 29
Preparing to upgrade your source..29

Installing Enterprise COBOL...29
Deciding which conversion tools to use and install them..29
Educating your programmers on new compiler features.. 30

Taking an inventory of your applications... 30
Taking an inventory of vendor tools, packages, and products.. 31
Taking an inventory of COBOL applications... 31

Prioritizing your applications..32
Assigning complexity ratings..32
Determining conversion priority... 34

Setting up a conversion procedure.. 35
Programs without CICS or Report Writer... 36
Programs with CICS.. 37
Programs with Report Writer statements to be discarded.. 37
Programs with Report Writer statements to be retained...38

Making application program updates.. 39

Part 3. Upgrading programs... 43

Chapter 6. Upgrading OS/VS COBOL source programs.. 45

iv

Comparing OS/VS COBOL to Enterprise COBOL..45
Language elements that require change (quick reference)...45

Converting to 85 COBOL Standard...53
COBOL Conversion Tool (CCCA)..53
OS/VS COBOL MIGR compiler option...53

Language elements that require other products for support..53
Report Writer...53

Language elements that are not implemented... 54
ISAM file handling...55
BDAM file handling..55
Communication feature.. 55

Language elements that are not supported.. 56
SEARCH ALL statements.. 61
Undocumented OS/VS COBOL extensions that are not supported.. 61
Language elements that changed from OS/VS COBOL... 69

Chapter 7. Compiling converted OS/VS COBOL programs... 85
Compiler options for converted programs...85
Unsupported OS/VS COBOL compiler options.. 86
Prolog format changes... 87

Chapter 8. Upgrading VS COBOL II source programs...89
Upgrading VS COBOL II programs compiled with the CMPR2 compiler option................................. 89
85 COBOL Standard interpretation changes... 89

REPLACE and comment lines... 89
Precedence of USE procedures.. 90
Reference modification of a variable-length group receiver... 90

ACCEPT statement... 91
New reserved words...91

New reserved words... 91
Undocumented VS COBOL II extensions...92
SEARCH ALL statements.. 92
Upgrading programs that use SIMVRD support.. 92

Chapter 9. Compiling VS COBOL II programs... 95
Compiler options for VS COBOL II programs...95

Compiling with Enterprise COBOL..95
Compiler options not supported in Enterprise COBOL.. 96

Prolog format changes... 97

Chapter 10. Upgrading IBM COBOL source programs..99
Determining which programs require upgrade before you compile with Enterprise COBOL.............99
Upgrading programs that have SEARCH ALL statements... 99
Upgrading programs that use SIMVRD support.. 101
Language Environment runtime considerations... 102
New reserved words in Enterprise COBOL.. 103

New reserved words...103
SEARCH ALL statements..104
Migrating from the CMPR2 compiler option to NOCMPR2..104

Upgrading programs compiled with the CMPR2 compiler option...104
Upgrading SOM-based object-oriented (OO) COBOL programs...136

SOM-based OO COBOL language elements that are not supported...136
SOM-based OO COBOL language elements that are changed.. 137

Chapter 11. Compiling IBM COBOL programs.. 139
Default compiler options for IBM COBOL programs... 139
Compiler options for IBM COBOL programs..139
Compiler options not available in Enterprise COBOL..140

 v

Chapter 12. Upgrading programs from Enterprise COBOL 3..143
SEARCH ALL statements..143

Upgrading programs that have SEARCH ALL statements..143
Upgrading Enterprise COBOL 3 programs that have XML PARSE statements................................. 145

COMPAT XML parser considerations..146
Upgrading Enterprise COBOL programs that have XML GENERATE statements............................. 148
Converting programs that use new reserved words... 148
Upgrading programs that use SIMVRD support.. 149

Chapter 13. Compiling Enterprise COBOL 3 programs...151
Compiler option changes from IBM Enterprise COBOL for z/OS 3... 151
Differences in the TEST compiler option... 152
Debug information changes with Enterprise COBOL 5 and 6... 153

Chapter 14. Upgrading from Enterprise COBOL 4.. 155
Upgrading Enterprise COBOL 4 programs that have XML PARSE statements................................. 155

COMPAT XML parser considerations..156
Upgrading Enterprise COBOL 4.1 programs that have XML PARSE statements and that use

the XMLPARSE(XMLSS) compiler option.. 158
Converting programs that use new reserved words... 159
Changes in millennium language extensions in IBM Enterprise COBOL for z/OS 5 and 6...............159

Chapter 15. Compiling Enterprise COBOL 4 programs...161
Compiler option changes from IBM Enterprise COBOL for z/OS 4... 161
Debug information changes with Enterprise COBOL 5 and 6... 162

Part 4. What is new and different with Enterprise COBOL 5 and 6?...................... 165

Chapter 16. Changes with Enterprise COBOL 6..167
Prerequisite software level changes for Enterprise COBOL 6...167
COBOL source code differences in Enterprise COBOL 6...168
Compiler option changes in Enterprise COBOL 6..169
Changes in compiling with Enterprise COBOL 6..173
Changes at run time with Enterprise COBOL 6..175
Changes with Enterprise COBOL 6 that might affect vendor tools...175

WORKING-STORAGE SECTION changes... 176

Chapter 17. Changes with Enterprise COBOL 5 and 6..183
Prerequisite software and service for Enterprise COBOL 5 and 6.. 183
COBOL source code differences in Enterprise COBOL 5 and 6...185
Compiler option changes in Enterprise COBOL 5 and 6..188
Changes in compiling with Enterprise COBOL 5 and 6... 196

Compiler output to uninitialized data sets not supported...197
JCL and packaging changes for Enterprise COBOL 5 and 6.. 198
Compilation restrictions for user-written condition handlers with Enterprise COBOL 5 and 6. 199

Binding (link-editing) changes with Enterprise COBOL 5 and 6... 200
Changes at run time with Enterprise COBOL 5 and 6... 200

Language Environment option changes... 203
Restrictions for AMODE.. 203
Variable length records - wrong length READ..204
Error behavior changes for incorrect programs...205
Using object oriented COBOL or interoperating with C programs...207
ILBOABN0 considerations..207
Using DFSORT option NOBLKSET.. 208

Debug information changes with Enterprise COBOL 5 and 6... 208
WORKING-STORAGE SECTION changes... 209

vi

Chapter 18. Adding Enterprise COBOL 5 or 6 programs to existing COBOL applications.....................215
AMODE and RMODE considerations.. 217

Part 5. Enterprise COBOL migration and other IBM products............................... 219

Chapter 19. IBM z/OS Debugger... 221
Initiating z/OS Debugger..221
Debug information changes with Enterprise COBOL 5 and 6... 221
z/OS Debugger changes with Enterprise COBOL 5 and 6... 223

Full-screen mode changes with Enterprise COBOL 5 and 6... 226
Remote mode changes with Enterprise COBOL 5 and 6... 226

Chapter 20. CICS conversion considerations... 229
DFHRPL setup differences with Enterprise COBOL 5 and 6... 229
CSD setup differences with Enterprise COBOL 5 and 6.. 229
Compiler options for programs that run under CICS.. 230
Migrating from the separate CICS translator to the integrated translator....................................... 232

Integrated CICS translator... 232
Static calls from COBOL 5 or 6 programs to VS COBOL II programs under CICS............................ 234

Chapter 21. Db2 coprocessor conversion considerations..235
Db2 coprocessor integration... 235
Differences between the Db2 precompiler and the integrated Db2 coprocessor........................... 237
Code-page conversion... 239

Chapter 22. Moving IMS programs to Enterprise COBOL 5 or 6.. 241
Compiling and linking for running under IMS..241
LLA-managed load libraries for performance... 242

Appendix A. Frequently asked questions (FAQ) and answers............................... 243
Before migration.. 243
Compatibility..246
Compiling with Enterprise COBOL...249
Binding (link-editing) Enterprise COBOL programs ... 251
Language Environment runtime options...252
Subsystems..253
z/OS..254
Performance.. 254
Service..255
Object-oriented syntax, and Java 6 or later SDKs.. 255

Appendix B. COBOL reserved word comparison.. 257

Appendix C. Conversion tools for source programs..281
MIGR compiler option... 281

Language differences...281
Statements supported with enhanced accuracy...282
LANGLVL(1) statements not supported...283
LANGLVL(1) and LANGLVL(2) statements not supported...283

FLAGMIG compiler option... 285
FLAGMIG4 compiler option...285
Other programs that aid conversion... 285

IBM Application Discovery and Delivery Intelligence...285
COBOL and CICS Command Level Conversion Aid for z/OS (CCCA)... 286
COBOL Report Writer Precompiler.. 289
File Manager View Load Module.. 290

 vii

Free and open source COBOL Analyzer...290

Appendix D. Applications with COBOL and assembler... 291
Called assembler programs...291
SVC LINK and COBOL run-unit boundary..291
Runtime support for assembler COBOL calls under non-CICS.. 291
Runtime support for assembler COBOL calls under CICS..293
Converting programs that change the program mask.. 294
Upgrading applications that use an assembler driver.. 294

Convert the assembler driver.. 294
Modify the assembler driver.. 295
Use an unmodified assembler driver...295

Assembler programs that load and BALR to MAIN COBOL programs... 295
Assembler programs that load and delete COBOL programs.. 295
Saving and restoring the high halves of General Purpose Registers in assembler programs............... 296
Finding the program name and compile time stamp in Enterprise COBOL 5 or 6 programs................ 296
Finding the name of the program that called the current COBOL 5 or 6 program.................................296

Appendix E. Option comparison... 297

Appendix F. Compiler limit comparison.. 321

Appendix G. Preventing file status 39 for QSAM files...327
Processing existing files.. 327

Defining variable-length records... 327
Defining fixed-length records.. 327
Converting existing files that do not match the COBOL record.. 328

Processing new files.. 328
Processing files dynamically created by COBOL...329

Appendix H. Overriding binder (linkage-editor) defaults..................................... 331
How to override the defaults...331

Appendix I. TSO considerations... 333
Using REXX execs.. 333

Appendix J. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS)..............335

Appendix K. Controlling the suppression of the OS/VS COBOL warning messages
(IGZ2OPT)... 343

Appendix L. Requesting QSAM buffers above the line (IGZ3OPT).........................345

Appendix M. Controlling initialization of QSAM buffer (IGZ4OPT)........................ 347

Appendix N. Accessibility features for Enterprise COBOL for z/OS....................... 349

Notices..351
Programming interface information..353
Trademarks.. 353

Glossary.. 355
List of resources.. 399

Enterprise COBOL for z/OS..399
Related publications..399

viii

Index.. 403

 ix

x

Tables

1. COBOL compiler name, version, release, product numbers, GA and EOS dates...................................... xvi

2. The Enterprise COBOL for z/OS publications... xix

3. The Language Environment element of z/OS publications..xix

4. Comparison of COBOL compilers..5

5. Advantages of Enterprise COBOL and Language Environment.. 7

6. Complexity ratings for program attribute conversions.. 32

7. Assigning program conversion priorities.. 34

8. Language element differences between OS/VS COBOL and Enterprise COBOL.......................................46

9. Rules for VSAM file definitions..59

10. Status key values: QSAM files...73

11. Status key values: VSAM files... 74

12. USE FOR DEBUGGING declarative: valid operands... 80

13. Compiler options for converted OS/VS COBOL programs... 85

14. OS/VS COBOL compiler options not supported by Enterprise COBOL.. 86

15. New reserved words by compilers... 92

16. Steps for using variable-length RRDS.. 93

17. Key Enterprise COBOL compiler options for VS COBOL II programs.. 95

18. Compiler options not supported in Enterprise COBOL.. 96

19. Steps for using variable-length RRDS.. 101

20. New reserved words by compilers... 103

21. Language elements different between CMPR2 and NOCMPR2.. 105

22. QSAM and VSAM file status codes with CMPR2 and NOCMPR2... 113

23. Rules for VSAM file definitions... 117

 xi

24. Compiler options for IBM COBOL programs.. 139

25. Compiler options not available in Enterprise COBOL.. 141

26. Steps for using variable-length RRDS.. 149

27. Compiler options not available in Enterprise COBOL 5... 151

28. Compiler option not available in Enterprise COBOL 6... 151

29. The removed TEST suboptions...152

30. Compiler options not available in Enterprise COBOL 5... 161

31. Compiler option not available in Enterprise COBOL 6... 161

32. Compiler options new with Enterprise COBOL 6... 169

33. Compiler option changed with Enterprise COBOL 6.. 171

34. Compiler option not available in Enterprise COBOL 6... 172

35. Area where WORKING-STORAGE is located..178

36. How to find the PPA4, NORENT static area, LE’s WSA, RENT static area, and program static area
in a dump?.. 179

37. Heap Storage Address Table.. 180

38. WORKING-STORAGE SECTION summary..180

39. Compiler options new with Enterprise COBOL 5 and 6... 188

40. Compiler options changed with Enterprise COBOL 5 and 6.. 191

41. Compiler options not available in Enterprise COBOL 5 and 6... 194

42. Runtime option changes with Enterprise COBOL 5 and 6... 203

43. Area where WORKING-STORAGE is located..211

44. How to find the PPA4, NORENT static area, LE’s WSA, RENT static area, and program static area
in a dump?.. 212

45. Heap Storage Address Table.. 214

46. WORKING-STORAGE SECTION summary..214

47. Compiler options for programs that run under CICS... 231

48. Key compiler options for the integrated CICS translator...233

xii

49. Recommended compiler options for applications with mixed COBOL programs.................................242

50. Reserved word comparison.. 257

51. COBOL statements dealing with primary BLLs.. 289

52. Language Environment supported calls between COBOL programs and assembler programs
under non-CICS; Yes indicates that a call is supported..292

53. Language Environment supported calls between COBOL programs and assembler programs that
run under CICS; Yes indicates that a call is supported...293

54. Option comparison..297

55. The predefined entity references... 341

 xiii

xiv

Preface

About this information
This information provides topics to help you move to IBM Enterprise COBOL 5 or 6.

Throughout this information, "COBOL" or "Enterprise COBOL" refers to "IBM Enterprise COBOL for z/OS"
or "IBM Enterprise COBOL Value Unit Edition for z/OS".

Because the changes required during migration from COBOL 5 to COBOL 6 are small, this document
assumes that you are migrating from COBOL 4 or earlier versions to COBOL 5 or 6.

This information also assumes that you have completed your runtime migration to Language
Environment®.

Terminology clarification
In this information, we use the term Enterprise COBOL as a general reference to:

• IBM Enterprise COBOL for z/OS and OS/390® 3.1
• IBM Enterprise COBOL for z/OS and OS/390 3.2
• IBM Enterprise COBOL for z/OS 3.3
• IBM Enterprise COBOL for z/OS 3.4
• IBM Enterprise COBOL for z/OS 4.1
• IBM Enterprise COBOL for z/OS 4.2
• IBM Enterprise COBOL for z/OS 5.1
• IBM Enterprise COBOL for z/OS 5.2
• IBM Enterprise COBOL Value Unit Edition for z/OS 5.2
• IBM Enterprise COBOL for z/OS 6.1
• IBM Enterprise COBOL Value Unit Edition for z/OS 6.1
• IBM Enterprise COBOL for z/OS 6.2
• IBM Enterprise COBOL Value Unit Edition for z/OS 6.2
• IBM Enterprise COBOL for z/OS 6.3
• IBM Enterprise COBOL Value Unit Edition for z/OS 6.3
• IBM Enterprise COBOL for z/OS 6.4
• IBM Enterprise COBOL Value Unit Edition for z/OS 6.4

Note: Enterprise COBOL Value Unit Edition for z/OS is the same as Enterprise COBOL for z/OS made
available under a different product number and pricing metric.

In this information, we use the term IBM COBOL as a general reference to:

• COBOL/370 1.1
• COBOL for MVS™ & VM 1.2
• COBOL for OS/390 & VM 2.1
• COBOL for OS/390 & VM 2.2

See “Summary of changes to the COBOL compilers” on page xxxv for further details.

© Copyright IBM Corp. 1991, 2024 xv

COBOL compilers by name and version
Table 1. COBOL compiler name, version, release, product numbers, GA and EOS dates

Compiler

Version, release,
and modification
level Product

number

General availability
(GA) date

(Year-Month-Day)

End of support
(EOS) date

(Year-Month-Day)

OS/VS COBOL 1.2.3 5740-CB1 1974-09-23 1999-12-31

OS/VS COBOL 1.2.4 5740-CB1 1976-09-23 1999-12-31

VS COBOL II 1.3 5668-958 1988-12-16 1996-06-30

VS COBOL II 1.4 5668-958 1993-03-12 2001-03-31

COBOL/370 1.1 5688-197 1991-12-20 1997-09-30

COBOL for MVS &
VM

1.2 5688-197 1995-10-27 2001-12-31

COBOL for OS/390
& VM

2.1 5648-A25 1997-05-23 2004-12-31

COBOL for OS/390
& VM

2.2 5648-A25 2000-09-29 2004-12-31

Enterprise COBOL
for z/OS

3.1 5655-G53 2001-11-30 2004-04-04

Enterprise COBOL
for z/OS

3.2 5655-G53 2002-09-27 2005-10-03

Enterprise COBOL
for z/OS

3.3 5655-G53 2004-02-27 2007-04-30

Enterprise COBOL
for z/OS

3.4 5655-G53 2005-07-01 2015-04-30

Enterprise COBOL
for z/OS

4.1 5655-S71 2007-12-14 2014-04-30

Enterprise COBOL
for z/OS

4.2 5655-S71 2009-08-28 2022-04-30

Enterprise COBOL
for z/OS

5.1 5655-W32 2013-06-21 2020-04-30

Enterprise COBOL
for z/OS

5.2 5655-W32 2015-02-27 2020-04-30

xvi Preface

Table 1. COBOL compiler name, version, release, product numbers, GA and EOS dates (continued)

Compiler

Version, release,
and modification
level Product

number

General availability
(GA) date

(Year-Month-Day)

End of support
(EOS) date

(Year-Month-Day)

Enterprise COBOL
Value Unit Edition
for z/OS1

5.2 5697-ECV 2015-10-06 2020-04-30

Enterprise COBOL
for z/OS

6.1 5655-EC6 2016-03-18 2022-09-30

Enterprise COBOL
Value Unit Edition
for z/OS1

6.1 5697-V61 2016-03-18 2022-09-30

Enterprise COBOL
for z/OS

6.2 5655-EC6 2017-09-08 2024-09-30

Enterprise COBOL
Value Unit Edition
for z/OS1

6.2 5697-V61 2017-09-08 2024-09-30

Enterprise COBOL
for z/OS

6.3 5655-EC6 2019-09-06 Not announced yet

Enterprise COBOL
Value Unit Edition
for z/OS1

6.3 5697-V61 2019-09-06 Not announced yet

Enterprise COBOL
for z/OS

6.4 5655-EC6 2022-05-27 Not announced yet

Enterprise COBOL
Value Unit Edition
for z/OS1

6.4 5697-V61 2022-05-27 Not announced yet

Note:

1. Enterprise COBOL Value Unit Edition for z/OS is the same as Enterprise COBOL for z/OS made
available under a different product number and pricing metric.

To check lifecycle details (lifecycle dates, announcement letters, and other information) for Enterprise
COBOL for z/OS products, visit the lifecycle website.

To aid in moving your runtime library to Language Environment, you can find information on how to run
existing VS COBOL II and OS/VS COBOL load modules under Language Environment, including link-edit
requirements for support and recommended runtime options for compatible behavior in the Enterprise
COBOL 4.2 Compiler and Runtime Migration Guide.

To aid in moving from your older COBOL compiler to Enterprise COBOL, this information provides
descriptions of the language differences between older COBOL compilers and Enterprise COBOL and
describes the IBM conversion tools available to aid in converting your source programs to Enterprise

Preface xvii

https://www.ibm.com/support/lifecycle/details?q45=R109684Z50598F65
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

COBOL programs. It also describes other differences that might require changes in your application
development process in order to use Enterprise COBOL.

The following deliverables are also available to aid you in assessing the effort of moving from your older
COBOL compiler to Enterprise COBOL:

• IBM Enterprise COBOL for z/OS Migration Assistant.

You can use the COBOL Migration Assistant to navigate through the compiler migration process from
Enterprise COBOL 4 or earlier versions to Enterprise COBOL 6.

• IBM Enterprise COBOL for z/OS Migration Portal.

Check case studies, COBOL experts interview videos, the cloud-based COBOL Migration Assistant,
no-charge COBOL Migration and Performance Tuning Webinars, FAQs, other IBM products to support
your migration, and many other resources to help ease your migration efforts from Enterprise COBOL 4
or earlier versions to Enterprise COBOL 6.

Use IBM Automatic Binary Optimizer for z/OS (ABO) to reduce your COBOL
migration effort
IBM Automatic Binary Optimizer for z/OS (ABO) enables you to improve the performance of already
compiled IBM COBOL programs without the need for recompilation. When optimizing modules that are
produced by earlier COBOL 4.2 and earlier compilers, ABO can achieve comparable performance to the
latest build compilers. Therefore, ABO can also help reduce your migration effort to Enterprise COBOL 6.
You need to only migrate source being actively developed and then use ABO to improve the performance
of all the other modules that do not have a recompilation plan.

To learn more about the relationship between COBOL and ABO, see Using ABO and Enterprise COBOL
together in the IBM Automatic Binary Optimizer for z/OS User's Guide. To learn more about ABO, see the
ABO product page.

How to use examples
This information shows numerous examples of sample COBOL statements, program fragments, and small
programs to illustrate the coding techniques being described. The examples of program code are written
in lowercase, uppercase, or mixed case to demonstrate that you can write your programs in any of these
ways.

To more clearly separate some examples from the explanatory text, they are presented in a monospace
font.

COBOL keywords and compiler options that appear in text are generally shown in SMALL UPPERCASE.
Other terms such as program variable names are sometimes shown in an italic font for clarity.

If you copy and paste examples from the PDF format documentation, make sure that the spaces in the
examples (if any) are in place; you might need to manually add some missing spaces to ensure that
COBOL source text aligns to the required columns per the COBOL reference format in the Enterprise
COBOL for z/OS Language Reference. Alternatively, you can copy and paste examples from the HTML
format documentation and the spaces should be already in place.

Acknowledgement
IBM would like to acknowledge the assistance of the GUIDE COBOL Migration Task Force in the
preparation of the OS/VS COBOL to VS COBOL II Migration Guide. The task force provided ideas,
experience-derived information, and perceptive comments on the subject of OS/VS COBOL to VS COBOL
II conversion.

The information received from this previous conversion experience, as well as input from many
experienced OS/VS COBOL and VS COBOL II IBM customers, aided in the development of this Migration
Guide. Without such assistance, this information would have been much more difficult to develop.

xviii Preface

https://cobol-migration-assistant.ibm.com/
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=SS6SG3_6.3.0/migration-portal.html
https://www.ibm.com/docs/en/abo/latest?topic=overview-using-abo-enterprise-cobol-together
https://www.ibm.com/docs/en/abo/latest?topic=overview-using-abo-enterprise-cobol-together
https://www.ibm.com/products/automatic-binary-optimizer-zos

Related publications
The information provided with Enterprise COBOL and Language Environment is designed to help you
install and customize Enterprise COBOL and create COBOL applications for z/OS.

Enterprise COBOL for z/OS publications

Table 2. The Enterprise COBOL for z/OS publications

Task Information

Understand warranty information Licensed Program Specifications

Install the compiler under z/OS Program Directory for Enterprise
COBOL

Understand product changes and upgrade source to the latest version of
Enterprise COBOL for z/OS

Migration Guide

Upgrade run time environment to Language Environment Note: If you have not yet
migrated your runtime library to
Language Environment, consult the
Enterprise COBOL 4.2 Compiler
and Runtime Migration Guide
at http://publibfp.dhe.ibm.com/
epubs/pdf/igy3mg50.pdf for help.

Customize Enterprise COBOL for z/OS Enterprise COBOL for z/OS
Customization Guide

Prepare and test your programs and get details about compiler options Enterprise COBOL for z/OS
Programming Guide

Get details about COBOL syntax and specifications of language elements Enterprise COBOL for z/OS Language
Reference

Know key performance benefits and tuning considerations when using
Enterprise COBOL for z/OS

Enterprise COBOL for z/OS
Performance Tuning Guide

Understand COBOL compiler messages and return codes to diagnose
problems

Enterprise COBOL for z/OS Messages
and Codes

Get an overview of new functions in the latest COBOL compiler Enterprise COBOL for z/OS What's
New

Language Environment element of z/OS publications

Table 3. The Language Environment element of z/OS publications

Task Information

Evaluate the product Language Environment Concepts
Guide

Install Language Environment z/OS Program Directory

Understand Language Environment program models and concepts Language Environment
Programming Guide

Find syntax for Language Environment runtime options and callable services Language Environment
Programming Reference

Preface xix

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Table 3. The Language Environment element of z/OS publications (continued)

Task Information

Debug applications that run with Language Environment, get details about
runtime messages, and diagnose problems with Language Environment

Language Environment
Debugging Guide and Run-Time
Messages

Migrate applications from one release of Language Environment to another. Language Environment Run-Time
Migration Guide

Develop interlanguage communication (ILC) applications Language Environment Writing
Interlanguage Communication
Applications

Learn about the concepts and use of Common Debug Architecture (CDA) Common Debug Architecture
User’s Guide

Get details about APIs in the Debug Data Program Information library
(llibddpi).

Common Debug Architecture
Library Reference

Get details about the IBM extensions to the DWARF and ELF APIs in the
DWARF 4 standard.

DWARF/ELF Extensions Library
Reference

Summary of changes to this information
This section lists the major changes that have been made to each edition of this migration guide since
IBM COBOL for OS/390 & VM 2.1. The latest technical changes are marked within >| and |< in the HTML
version, or marked by vertical bars (|) in the left margin in the PDF version.

Changes in GC27-8715-03 (February 2024)
This topic lists the major changes that have been made to this document since Enterprise COBOL for z/OS
6.4.

For a complete list of new and improved features in Enterprise COBOL for z/OS 6.4 and COBOL 6.4 with
PTFs installed, see What is new in Enterprise COBOL for z/OS 6.4 and COBOL 6.4 with PTFs installed in
the Enterprise COBOL for z/OS What's New.

Changes in GC27-8715-03 (February 2024)
• Added the End of support (EOS) dates for Enterprise COBOL for z/OS 6.2 and Enterprise COBOL Value

Unit Edition for z/OS 6.2. (“COBOL compilers by name and version” on page xvi)
• Clarified the solutions to fix an unexpected ABEND due to an older version of ILBOABN0. (“ILBOABN0

considerations” on page 207)
• Added comparison of Db2 precompiler and the integrated Db2 coprocessor for Host variables defined in

the FILE SECTION and made the title more corresponds to the content. (“Differences between the Db2
precompiler and the integrated Db2 coprocessor” on page 237)

Changes in GC27-8715-03 (October 2023)
• Added the information about how to use the Zero Address Detection (ZAD) feature of z/OS to identify

and fix zero address problems that cause invalid data. (Chapter 4, “Migration recommendations to
Enterprise COBOL 6,” on page 27)

Changes in GC27-8715-03 (August 2023)
• For compiling under z/OS UNIX, a new cob2 -M compiler option is introduced to generate a make

dependency file, file.u. This file contains entries for each copybook file that resides in a z/OS UNIX

xx Preface

file system and is referenced in your COBOL source file. This change is introduced in Enterprise COBOL
Version 6 Release 4 with PTF for APAR PH56142 installed. (“Changes in compiling with Enterprise
COBOL 6” on page 173)

• An optional alternate logic path is introduced for VSAM files that use the ACCESS IS DYNAMIC mode.
The alternate logic path uses a direct read-by-key request instead of a point to a record by key. This
change is introduced in Enterprise COBOL Version 6 Release 4 with PTF for APAR PH56036 (AMODE 31)
or PH56037 (AMODE 64) installed. (“Changes at run time with Enterprise COBOL 6” on page 175)

Changes in GC27-8715-03 (October 2022)
• The new CONDCOMP compiler option is introduced to control how conditional code will be displayed in

the listing. For details, see “Compiler option changes in Enterprise COBOL 5 and 6” on page 188. This
change is introduced in Enterprise COBOL Version 6 Release 4 with PTF for APAR PH50296 installed.

• Added a new cjbuild command reference section to address various usability and stability issues
relating to the non-OO Java™/COBOL interoperability feature. This change is introduced in Enterprise
COBOL Version 6 Release 4 with PTF for APAR PH49715 installed.

• Updated the NUMCHECK compiler option to avoid generating runtime checking code of zoned-
decimal senders in MOVE statements when the receiver is an alphanumeric data item and
NUMCHECK(ZON(LAX)) is in effect. This change is introduced in Enterprise COBOL Version 6 Release 4
with PTF for APAR PH50925 installed.

Changes in GC27-8715-03 (August 2022)
• Added an FAQ about COBOL 6 compatibility with earlier versions. (“Compatibility” on page 246)
• Added an FAQ about whether old COBOL compilers support the latest IBM hardware and operating

systems. (“Compatibility” on page 246)
• Added a recommendation about how to specify TEST suboptions for users who are using the IBM Debug

Tool. (“Debug information changes with Enterprise COBOL 5 and 6” on page 153)

Changes in GC27-8715-03 (May 2022)
• Added information about Enterprise COBOL 6.4 changes to the chapter Chapter 16, “Changes with

Enterprise COBOL 6,” on page 167, and the changes mainly fall into the following topics:

– Prerequisite software level changes
– Compiler option changes
– “Changes in compiling with Enterprise COBOL 6” on page 173

Changes in GC27-8715-02 (September 2023)
This topic lists the major changes that have been made to this document since Enterprise COBOL for z/OS
6.3.

For a complete list of new and improved features in Enterprise COBOL for z/OS 6.3 and COBOL 6.3 with
PTFs installed, see What is new in Enterprise COBOL for z/OS 6.3 and COBOL 6.3 with PTFs installed in
the Enterprise COBOL for z/OS What's New.

Changes in GC27-8715-02 (September 2023)
• An optional alternate logic path is introduced for VSAM files that use the ACCESS IS DYNAMIC mode.

The alternate logic path uses a direct read-by-key request instead of a point to a record by key. This
change is introduced in Enterprise COBOL Version 6 Release 3 with PTF for APAR PH56036 (AMODE 31)
or PH56037 (AMODE 64) installed. (“Changes at run time with Enterprise COBOL 6” on page 175)

Preface xxi

Changes in GC27-8715-02 (November 2022)
• Updated the NUMCHECK compiler option to avoid generating runtime checking code of zoned-

decimal senders in MOVE statements when the receiver is an alphanumeric data item and
NUMCHECK(ZON(LAX)) is in effect. This change is introduced in Enterprise COBOL Version 6 Release 3
with PTF for APAR PH49715 installed.

Changes in GC27-8715-02 (September 2022)
• The new CONDCOMP compiler option is introduced to control how conditional code will be displayed in

the listing. For details, see “Compiler option changes in Enterprise COBOL 5 and 6” on page 188. This
change is introduced in Enterprise COBOL Version 6 Release 3 with PTF for APAR PH49504 installed.

Changes in GC27-8715-02 (May 2021)
• New suboptions DEC | HEX are added to the SOURCE option to control whether the generated

sequence numbers for the listing of the source are in decimal or hexadecimal format. For details, see
“Compiler option changes in Enterprise COBOL 5 and 6” on page 188. This change is introduced in
Enterprise COBOL Version 6 Release 3 with PTF for APAR PH35643 installed.

• The new INVDATA option replaces the deprecated ZONEDATA compiler option and provides users with
fine-grained control over how the compiler generates code to handle USAGE DISPLAY and USAGE
PACKED-DECIMAL data items that contain invalid data. For details, see “Compiler option changes in
Enterprise COBOL 5 and 6” on page 188. This change is introduced in Enterprise COBOL Version 6
Release 3 with PTF for APAR PH37328 installed.

Changes in GC27-8715-02 (March 2021)
• A new TUNE option is added that allows you to specify the architecture for which the executable

program will be optimized. For details, see “Compiler option changes in Enterprise COBOL 5 and 6”
on page 188. This change is introduced in Enterprise COBOL Version 6 Release 3 with PTF for APAR
PH34804 installed.

Changes in GC27-8715-02 (January 2021)
• Added General Availability (GA) and End of Support (EOS) dates for each COBOL compiler version in

“COBOL compilers by name and version” on page xvi.

Changes in GC27-8715-02 (November 2020)
• Clarified that TRAP(ON) must be in effect when messages IGZ0268W and IGZ0269W have been issued

in “Taking an inventory of your applications” on page 30.

Changes in GC27-8715-02 (July 2020)
• A new option QSAMBUFFINITCHAR is added to the IGZUOPT module that allows you to control

the initial character used for QSAM buffer initialization. For details, see Appendix M, “Controlling
initialization of QSAM buffer (IGZ4OPT),” on page 347. This support can be obtained in Enterprise
COBOL Version 6 Release 3 with runtime LE PTF for APAR PH25917 installed.

• Updated the references to PPA4 layout and WORKING-STORAGE location in “WORKING-STORAGE
SECTION changes” on page 176.

• Clarified the background of IBM Report Writer, and added support details and version requirement in
“COBOL Report Writer Precompiler” on page 289.

Changes in GC27-8715-02 (May 2020)
• New suboptions LAX | STRICT are added to the INITCHECK option to control whether the compiler

will issue warning messages for data items unless they are initialized on at least one, or on all, logical

xxii Preface

paths to a statement. For details, see “Compiler option changes in Enterprise COBOL 5 and 6” on page
188. This change is introduced in Enterprise COBOL Version 6 Release 3 with PTF for APAR PH22581
installed.

• Clarified INSPECT...TALLYING behavior changes in “COBOL source code differences in Enterprise
COBOL 5 and 6” on page 185.

• Provided details about migrating from PDS data sets to PDSE data sets in Chapter 3, “Compiler upgrade
checklist,” on page 25.

• Clarified that programs compiled with TEST(...,NOSEPARATE) under CICS® require read access to
DFHRPL libraries in “DFHRPL setup differences with Enterprise COBOL 5 and 6” on page 229.

• Added a link to the COBOL Migration Information Portal, where you can find information about COBOL
migration all in one place. For details, see “COBOL compilers by name and version” on page xvi.

• Updated "IBM Developer for z Systems®" to "IBM Developer for z/OS" in Appendix N, “Accessibility
features for Enterprise COBOL for z/OS,” on page 349.

Changes in GC27-8715-02 (January 2020)
• The support for NOBLKSET and the conventional merge method for Enterprise COBOL V5 or later

versions is obtained with runtime LE PTFs UI67483(V2R2)/UI67485(V2R3)/UI67486(V2R4) installed.
For details, see “Using DFSORT option NOBLKSET” on page 208.

• The use of passing a file-name to a subprogram with the USING phrase of the CALL statement is
restored with PTF for APAR PH20724 installed. For details, see “Use of file-name in CALL ... USING
statement” on page 174.

• Added questions frequently asked before migration and their answers in FAQs before migration.

Changes in GC27-8715-02 (September 2019)
• Added information about Enterprise COBOL V6.3 changes to the chapter Chapter 16, “Changes with

Enterprise COBOL 6,” on page 167, and the changes mainly fall into the following topics:

– Prerequisite software level changes
– Compiler option changes
– Compiler behavior changes (listing changes, cataloged procedures changes, compiler phases in

shared storage changes, CALL ... USING file-name changes)
– Changes that might affect vendor tools (PPA1 changes)

Changes in GC27-8715-01 (December 2021)
This topic lists the major changes that have been made to this document since Enterprise COBOL for z/OS
6.2.

For a complete list of new and improved features in Enterprise COBOL for z/OS 6.2 and COBOL 6.2 with
PTFs installed, see What is new in Enterprise COBOL for z/OS 6.2 and COBOL 6.2 with PTFs installed in
the Enterprise COBOL for z/OS What's New.

Changes in GC27-8715-01 (December 2021)
• Clarified the performance impact of decimal overflows in “Performance of decimal overflows” on page

14.

Changes in GC27-8715-01 (February 2021)
• The installation customization for placing compiler phases into shared storage is removed.
• Added General Availability (GA) and End of Support (EOS) dates for each COBOL compiler version in

“COBOL compilers by name and version” on page xvi.

Preface xxiii

Changes in GC27-8715-01 (December 2020)
• Clarified that TRAP(ON) must be in effect when messages IGZ0268W and IGZ0269W have been issued

in “Taking an inventory of your applications” on page 30.

Changes in GC27-8715-01 (August 2020)
• Updated the INSPECT...TALLYING behavior example in “COBOL source code differences in

Enterprise COBOL 5 and 6” on page 185.
• Added frequently asked questions (FAQs) and their answers in “Compatibility” on page 246, “Compiling

with Enterprise COBOL” on page 249, “Subsystems” on page 253, and “Performance” on page 254.

Changes in GC27-8715-01 (June 2020)
• A new option QSAMBUFFINITCHAR is added to the IGZUOPT module that allows you to control

the initial character used for QSAM buffer initialization. For details, see Appendix M, “Controlling
initialization of QSAM buffer (IGZ4OPT),” on page 347. This support can be obtained in Enterprise
COBOL Version 6 Release 2 with runtime LE PTF for APAR PH25917 installed.

• Updated the references to PPA4 layout and WORKING-STORAGE location in “WORKING-STORAGE
SECTION changes” on page 176.

• Clarified the background of IBM Report Writer, and added support details and version requirement in
“COBOL Report Writer Precompiler” on page 289.

Changes in GC27-8715-01 (April 2020)
• New suboptions LAX | STRICT are added to the INITCHECK option to control whether the compiler

will issue warning messages for data items unless they are initialized on at least one, or on all, logical
paths to a statement. For details, see “Compiler option changes in Enterprise COBOL 5 and 6” on page
188. This change is introduced in Enterprise COBOL Version 6 Release 2 with PTF for APAR PH24413
installed.

• Clarified INSPECT...TALLYING behavior changes in “COBOL source code differences in Enterprise
COBOL 5 and 6” on page 185.

• Provided details about migrating from PDS data sets to PDSE data sets in Chapter 3, “Compiler upgrade
checklist,” on page 25.

• Clarified that programs compiled with TEST(...,NOSEPARATE) under CICS require read access to
DFHRPL libraries in “DFHRPL setup differences with Enterprise COBOL 5 and 6” on page 229.

• Added a link to the COBOL Migration Information Portal, where you can find information about COBOL
migration all in one place. For details, see “COBOL compilers by name and version” on page xvi.

• Updated "IBM Developer for z Systems" to "IBM Developer for z/OS" in Appendix N, “Accessibility
features for Enterprise COBOL for z/OS,” on page 349.

Changes in GC27-8715-01 (February 2020)
• The support for NOBLKSET and the conventional merge method for Enterprise COBOL V5 or later

versions is obtained with runtime LE PTFs UI67483(V2R2)/UI67485(V2R3)/UI67486(V2R4) installed.
For details, see “Using DFSORT option NOBLKSET” on page 208.

• Added questions frequently asked before migration and their answers in FAQs before migration.

Changes in GC27-8715-01 (March 2019)
• Added information about the new INITIAL compiler option in “Compiler option changes in Enterprise

COBOL 5 and 6” on page 188. The changes are introduced in Enterprise COBOL Version 6 Release 2
with PTF for APAR PH05855 installed.

• Added an FAQ and answer about the changes in compiler generated symbols between Enterprise
COBOL V4 and V5 or V6 in “Binding (link-editing) Enterprise COBOL programs ” on page 251.

xxiv Preface

• Added a support page link where lists the Enterprise COBOL V4 PTFs to support the migration to
Enterprise COBOL 5 or 6. For details, see Chapter 14, “Upgrading from Enterprise COBOL 4,” on page
155.

Changes in GC27-8715-01 (September 2018)
• Updated and further clarified how to find WORKING-STORAGE SECTION in Enterprise COBOL 5 and 6.

For details, see “WORKING-STORAGE SECTION changes” on page 176.

Changes in GC27-8715-01 (July 2018)
• Added information about two new suboptions ALPHNUM and NOALPHNUM of the NUMCHECK(ZON)

compiler option, which control whether the compiler will generate code for an implicit numeric
class test for zoned decimal data items that are being compared with an alphanumeric data item,
alphanumeric literal or alphanumeric figurative constant. The changes are introduced in Enterprise
COBOL Version 6 Release 2 with PTF for APAR PI98480 installed.

• Replaced the Edge Portfolio Analyzer with a free and open source COBOL Analyzer. For details, see
“Free and open source COBOL Analyzer” on page 290.

• Clarified that compiler migration is required for OS/VS COBOL programs and VS COBOL II programs
compiled with NORES in “Compiler migration” on page 20.

• Corrected the description of offset X'2C' in the PPA4 layout in “WORKING-STORAGE SECTION changes”
on page 176.

Changes in GC27-8715-01 (May 2018)
• Updated information in “CSD setup differences with Enterprise COBOL 5 and 6” on page 229 because

certain CICS TS versions provide the system autoinstall capability for LE programs and CICS will create
the program definition automatically when the programs are first loaded.

• Clarified that the separate CICS translator is still shipped with current CICS products but is no longer
being enhanced in “Migrating from the separate CICS translator to the integrated translator” on page
232.

Changes in GC27-8715-01 (March 2018)
• Removed OMVS segment requirements from “Prerequisite software and service for Enterprise COBOL 5

and 6” on page 183.

Changes in GC27-8715-01 (January 2018)
• Added information about the new COPYLOC compiler option in “Compiler option changes in Enterprise

COBOL 5 and 6” on page 188. The changes are introduced in Enterprise COBOL Version 6 Release 2
with PTF for APAR PI91584 installed.

• Added information about new suboptions in the RULES compiler option in “Compiler option changes in
Enterprise COBOL 5 and 6” on page 188. The changes are introduced in Enterprise COBOL Version 6
Release 2 with PTFs for APAR PI91585 and PI91586 installed.

Changes in GC27-8715-01 (November 2017)
• Updated behaviour of the ZONEDATA compiler option in “Compiler option changes in Enterprise COBOL

5 and 6” on page 188. This change is introduced in Enterprise COBOL Version 6 Release 2 with PTF for
APAR PI90571 installed.

• Clarified the IGZEBST requirements in Chapter 1, “Introducing the new compiler and run time,” on page
3 and several other topics.

Preface xxv

Changes in GC27-8715-01 (September 2017)
• Added information about Enterprise COBOL V6.2 changes to the chapter Chapter 16, “Changes with

Enterprise COBOL 6,” on page 167, and the changes mainly fall into the following topics:

– Prerequisite software level changes
– COBOL source code differences
– Compiler option changes
– Listing changes

• Updated information about the z/OS MEMLIMIT changes in Enterprise COBOL V6. (“Changes in
compiling with Enterprise COBOL 5 and 6” on page 196)

• Updated information about how to locate the WORKING-STORAGE SECTION. (“WORKING-STORAGE
SECTION changes” on page 176)

Changes in GC27-8715-00 (February 2021)

Changes in GC27-8715-00 (February 2021)
• The installation customization for placing compiler phases into shared storage is removed.
• Added General Availability (GA) and End of Support (EOS) dates for each COBOL compiler version in

“COBOL compilers by name and version” on page xvi.

Changes in GC27-8715-00 (December 2020)
• Clarified that TRAP(ON) must be in effect when messages IGZ0268W and IGZ0269W have been issued

in “Taking an inventory of your applications” on page 30.

Changes in GC27-8715-00 (August 2020)
• Updated the INSPECT...TALLYING behavior example in “COBOL source code differences in Enterprise

COBOL 5 and 6” on page 185.
• Added frequently asked questions (FAQs) and their answers in “Compatibility” on page 246, “Compiling

with Enterprise COBOL” on page 249, “Subsystems” on page 253, and “Performance” on page 254.

Changes in GC27-8715-00 (June 2020)
• A new option QSAMBUFFINITCHAR is added to the IGZUOPT module that allows you to control

the initial character used for QSAM buffer initialization. For details, see Appendix M, “Controlling
initialization of QSAM buffer (IGZ4OPT),” on page 347. This support can be obtained in Enterprise
COBOL 6.1 with runtime LE PTF for APAR PH25917 installed.

• Updated the references to PPA4 layout and WORKING-STORAGE location in “WORKING-STORAGE
SECTION changes” on page 176.

• Clarified the background of IBM Report Writer, and added support details and version requirement in
“COBOL Report Writer Precompiler” on page 289.

Changes in GC27-8715-00 (April 2020)
• New suboptions LAX | STRICT are added to the INITCHECK option to control whether the compiler

will issue warning messages for data items unless they are initialized on at least one, or on all, logical
paths to a statement. For details, see “Compiler option changes in Enterprise COBOL 5 and 6” on page
188. This change is introduced in Enterprise COBOL 6.1 with PTF for APAR PH24414 installed.

• Clarified INSPECT...TALLYING behavior changes in “COBOL source code differences in Enterprise
COBOL 5 and 6” on page 185.

xxvi Preface

• Provided details about migrating from PDS data sets to PDSE data sets in Chapter 3, “Compiler upgrade
checklist,” on page 25.

• Clarified that programs compiled with TEST(...,NOSEPARATE) under CICS require read access to
DFHRPL libraries in “DFHRPL setup differences with Enterprise COBOL 5 and 6” on page 229.

• Added a link to the COBOL Migration Information Portal, where you can find information about COBOL
migration all in one place. For details, see “COBOL compilers by name and version” on page xvi.

• Updated "IBM Developer for z Systems" to "IBM Developer for z/OS" in Appendix N, “Accessibility
features for Enterprise COBOL for z/OS,” on page 349.

Changes in GC27-8715-00 (February 2020)
• The support for NOBLKSET and the conventional merge method for Enterprise COBOL 5 or later versions

is obtained with runtime LE PTFs UI67483(z/OS 2.2)/UI67485(z/OS 2.3)/UI67486(z/OS 2.4) installed.
For details, see “Using DFSORT option NOBLKSET” on page 208.

• Added questions frequently asked before migration and their answers in FAQs before migration.

Changes in GC27-8715-00 (March 2019)
• Added an FAQ and answer about the changes in compiler generated symbols between Enterprise

COBOL 4 and COBOL 5 or 6 in “Binding (link-editing) Enterprise COBOL programs ” on page 251.
• Added a support page link where lists the Enterprise COBOL 4 PTFs to support the migration to

Enterprise COBOL 5 or 6. For details, see Chapter 14, “Upgrading from Enterprise COBOL 4,” on page
155.

Changes in GC27-8715-00 (September 2018)
• Added information about two new suboptions ALPHNUM and NOALPHNUM of the NUMCHECK(ZON)

compiler option, which control whether the compiler will generate code for an implicit numeric
class test for zoned decimal data items that are being compared with an alphanumeric data item,
alphanumeric literal or alphanumeric figurative constant. The changes are introduced in Enterprise
COBOL 6.1 with PTF for APAR PH01251 installed.

• Updated and further clarified how to find WORKING-STORAGE SECTION in Enterprise COBOL 5 and 6.
For details, see “WORKING-STORAGE SECTION changes” on page 176.

Changes in GC27-8715-00 (July 2018)
• Replaced the Edge Portfolio Analyzer with a free and open source COBOL Analyzer. For details, see

“Free and open source COBOL Analyzer” on page 290.
• Clarified that compiler migration is required for OS/VS COBOL programs and VS COBOL II programs

compiled with NORES in “Compiler migration” on page 20.

Changes in GC27-8715-00 (May 2018)
• Added information about the new COPYLOC compiler option in "“Compiler option changes in Enterprise

COBOL 5 and 6” on page 188". The changes are introduced in Enterprise COBOL 6.1 with PTF for APAR
PI96231 installed.

• Updated information in “CSD setup differences with Enterprise COBOL 5 and 6” on page 229 because
certain CICS TS versions provide the system autoinstall capability for LE programs and CICS will create
the program definition automatically when the programs are first loaded.

• Clarified that the separate CICS translator is still shipped with current CICS products but is no longer
being enhanced in “Migrating from the separate CICS translator to the integrated translator” on page
232.

Preface xxvii

Changes in GC27-8715-00 (March 2018)
• Removed OMVS segment requirements from "“Prerequisite software and service for Enterprise COBOL

5 and 6” on page 183".

Changes in GC27-8715-00 (November 2017)
• Updated behaviour of the ZONEDATA compiler option in "“Compiler option changes in Enterprise COBOL

5 and 6” on page 188". This change is introduced in Enterprise COBOL 6.1 with PTF for APAR PI88271
installed.

• Clarified the IGZEBST requirements in Chapter 1, “Introducing the new compiler and run time,” on page
3 and several other topics.

Changes in GC27-8715-00 (June 2017)
• Updated behaviour of the NOSTGOPT compiler option in "“Compiler options for converted programs” on

page 85". This change is introduced in Enterprise COBOL 6.1 with PTF for APAR PI81838 installed.

Changes in GC27-8715-00 (April 2017)
• Added information about a new PARMCHECK compiler option that can discover parameter mismatches,

that is, if programs pass arguments to subprograms that are then misused as parameters. The
PARMCHECK option can help with your migration to Enterprise COBOL 6 and check for good
programming practices. The PARMCHECK option is introduced in Enterprise COBOL 6.1 with PTF for
APAR PI78089 installed.

• Added information about a new INLNE compiler option that controls whether the inlining of procedures
(paragraphs or sections) referenced by PERFORM statements in the source program is allowed. The
INLINE option is introduced in Enterprise COBOL 6.1 with PTF for APAR PI77981 installed.

• Added information about the interprocess communication (IPC) message queues in "“Debug
information changes with Enterprise COBOL 5 and 6” on page 153".

• Updated the code sample and further clarified the behavior changes in Enterprise COBOL 5 and 6 for
programs with parameter length mismatches in "“Error behavior changes for incorrect programs” on
page 205".

• Added information that in COBOL 4, when a COMP-5 data-item value (signed or unsigned) is moved into
a PIC X(n) data item, an incorrect value will be moved. This is corrected in Enterprise COBOL 5 and 6.
See "“COBOL source code differences in Enterprise COBOL 5 and 6” on page 185".

• Updated information about calling a ILBOABN0 callable service with Enterprise COBOL 5 and later
versions in "“Changes at run time with Enterprise COBOL 5 and 6” on page 200".

• Added information about using the XML System Services parser to transforms some characters or
character combinations to x'15' when parsing EBCDIC documents in "Appendix J, “Migrating from
XMLPARSE(COMPAT) to XMLPARSE(XMLSS),” on page 335".

Changes in GC27-8715-00 (February 2017)
• Added information about a new NUMCHECK compiler option that controls whether to generate extra

code to validate data items when they are used as sending data items. The NUMCHECK option is
introduced in Enterprise COBOL 6.1 with PTF for APAR PI71625 installed.

• Added information about a new warning message that will be issued when a call to ILBOABN0 callable
service is encountered in the source program in "“Changes at run time with Enterprise COBOL 5 and 6”
on page 200".

• Added two new suboptions MSG and ABD to the SSRANGE compiler option to control the runtime
behavior of the COBOL program when a range check fails.

xxviii Preface

Changes in GC27-8715-00 (September 2016)
• Added information to highlight the Enterprise COBOL 6 changes in "Chapter 16, “Changes with

Enterprise COBOL 6,” on page 167".
• Added information about a new INITCHECK compiler option that controls whether to check for

uninitialized data items and issue warning messages when they are used without being initialized. The
INITCHECK option is introduced in Enterprise COBOL 6.1 with PTF for APAR PI68226 installed.

Changes in GC27-8715-00 (March 2016)
• Added information about Enterprise COBOL 6 changes in "Part 4, “What is new and different with

Enterprise COBOL 5 and 6?,” on page 165", and the COBOL 6 changes mainly fall into the following
topics:

– Prerequisite software level changes
– COBOL source code differences
– Compiler option changes
– Dependence on system MEMLIMIT setting for large programs
– Runtime changes
– Changes that might affect vendor tools

• Added new reserved words:

– ALLOCATE
– DEFAULT
– END-JSON
– FREE
– JSON
– JSON-CODE

• Added a topic of "Chapter 4, “Migration recommendations to Enterprise COBOL 6,” on page 27",
including special considerations when migrating from earlier versions to Enterprise COBOL 5 and 6.

Changes in GC14-7383-03 (March 2019)

Changes in GC14-7383-03 (March 2019)
• Added a support page link that lists the Enterprise COBOL 4 PTFs to support the migration to Enterprise

COBOL 5 or 6. For details, see Chapter 14, “Upgrading from Enterprise COBOL 4,” on page 155.

Changes in GC14-7383-03 (September 2018)
• Added information about two new suboptions ALPHNUM and NOALPHNUM of the NUMCHECK(ZON)

compiler option, which control whether the compiler will generate code for an implicit numeric
class test for zoned decimal data items that are being compared with an alphanumeric data item,
alphanumeric literal or alphanumeric figurative constant. The changes are introduced in Enterprise
COBOL 5.2 with PTF for APAR PH01241 installed.

• Added information about how to find WORKING-STORAGE SECTION in Enterprise COBOL 5. For details,
see “WORKING-STORAGE SECTION changes” on page 176.

Changes in GC14-7383-03 (July 2018)
• Replaced the Edge Portfolio Analyzer with a free and open source COBOL Analyzer. For details, see

“Free and open source COBOL Analyzer” on page 290.
• Clarified that compiler migration is required for OS/VS COBOL programs and VS COBOL II programs

compiled with NORES in “Compiler migration” on page 20.

Preface xxix

Changes in GC14-7383-03 (May 2018)
• Updated information in “CSD setup differences with Enterprise COBOL 5 and 6” on page 229 because

certain CICS TS versions provide the system autoinstall capability for LE programs and CICS will create
the program definition automatically when the programs are first loaded.

• Clarified that the separate CICS translator is still shipped with current CICS products but is no longer
being enhanced in “Migrating from the separate CICS translator to the integrated translator” on page
232.

Changes in GC14-7383-03 (November 2017)
• Updated behavior of the ZONEDATA compiler option in “Compiler option changes in Enterprise COBOL

5 and 6” on page 188. This change is introduced in Enterprise COBOL 5.2 with PTF for APAR PI90458
installed.

• Clarified the IGZEBST requirements in Chapter 1, “Introducing the new compiler and run time,” on page
3 and several other topics.

Changes in GC14-7383-03 (September 2017)
• Added information about a new VSAMOPENFS compiler option that affects the user file status reported

from successful VSAM OPEN statements that require verified file integrity check. The VSAMOPENFS
option is introduced in Enterprise COBOL 5.2 with PTF for APAR PI85868 installed.

• Added information about two new suboptions MSG and ABD of the SSRANGE compiler option, which
control the runtime behavior of the COBOL program when a range check fails. MSG and ABD are
introduced in Enterprise COBOL 5.2 with PTF for APAR PI86343 installed.

Changes in GC14-7383-03 (June 2017)
• Added information about a new NUMCHECK compiler option that controls whether to generate extra

code to validate data items when they are used as sending data items. The NUMCHECK option is
introduced in Enterprise COBOL 5.2 with PTF for APAR PI81006 installed.

Changes in GC14-7383-03 (April 2017)
• Updated the code sample and further clarified the behavior changes in Enterprise COBOL 5 and 6 for

programs with parameter length mismatches. See "“Error behavior changes for incorrect programs” on
page 205".

• Added information that in COBOL 4, when a COMP-5 data-item value (signed or unsigned) is moved into
a PIC X(n) data item, an incorrect value will be moved. This is corrected in Enterprise COBOL 5 and 6.
See "“COBOL source code differences in Enterprise COBOL 5 and 6” on page 185".

• Updated information about calling a ILBOABN0 callable service with Enterprise COBOL 5 and later
versions in "“Changes at run time with Enterprise COBOL 5 and 6” on page 200".

• Added information about using the XML System Services parser to transforms some characters or
character combinations to x'15' when parsing EBCDIC documents in "Appendix J, “Migrating from
XMLPARSE(COMPAT) to XMLPARSE(XMLSS),” on page 335".

Changes in GC14-7383-03 (January 2017)
• Added information about a new warning message that will be issued when a call to ILBOABN0 callable

service is encountered in the source program in "“Changes at run time with Enterprise COBOL 5 and 6”
on page 200".

xxx Preface

Changes in GC14-7383-03 (September 2016)
• Added information about a new INITCHECK compiler option that controls whether to check for

uninitialized data items and issue warning messages when they are used without being initialized. The
INITCHECK option is introduced in Enterprise COBOL 5.2 with PTF for APAR PI69197 installed.

Changes in GC14-7383-03 (July 2015)
Added information about compiler option changes:

• New option: ZONECHECK(MSG|ABD)
• Modified option: ZONEDATA. New suboption of NOPFD is added to the ZONEDATA compiler option.
ZONEDATA(NOPFD) lets the compiler generate code that performs comparisons of zoned decimal data
in the same manner as COBOL 4 does when using NUMPROC(NOPFD|PFD) with COBOL 4.

Changes in GC14-7383-03 (February 2015)
• Added information about Enterprise COBOL 5.2 changes to the chapter "What is new and different with

Enterprise COBOL 5", and the changes mainly fall into the following topics:

– Source code differences
– Compiler options changes
– Compilation restrictions for user-written condition handlers
– Variable length records - wrong length READ
– Using object oriented COBOL or interoperating with C programs

• Added information about upgrading Enterprise COBOL 3 or 4 programs that have XML PARSE
statements

• Added information about accessing VSAM data sets with the extended addressability attribute,
including for existing COBOL programs compiled with earlier versions than Enterprise COBOL for z/OS
5.2.

• Added information to appendix on how to save and restore the high halves of General Purpose Registers
(GPRs) in assembler programs that will call or be called by Enterprise COBOL 5.

Changes in GC14-7383-02 (March 2019)

Changes in GC14-7383-02 (March 2019)
• Added a support page link that lists the Enterprise COBOL 4 PTFs to support the migration to Enterprise

COBOL 5 or 6. For details, see Chapter 14, “Upgrading from Enterprise COBOL 4,” on page 155.

Changes in GC14-7383-02 (September 2018)
• Added information about how to find WORKING-STORAGE SECTION in Enterprise COBOL 5. For details,

see “WORKING-STORAGE SECTION changes” on page 176.

Changes in GC14-7383-02 (May 2018)
• Updated information in “CSD setup differences with Enterprise COBOL 5 and 6” on page 229 because

certain CICS TS versions provide the system autoinstall capability for LE programs and CICS will create
the program definition automatically when the programs are first loaded.

• Clarified that the separate CICS translator is still shipped with current CICS products but is no longer
being enhanced in “Migrating from the separate CICS translator to the integrated translator” on page
232.

Preface xxxi

Changes in GC14-7383-02 (April 2017)
• Updated information about calling a ILBOABN0 callable service with Enterprise COBOL 5 and later

versions in “Changes at run time with Enterprise COBOL 5 and 6” on page 200.

Changes in GC14-7383-02 (February 2017)
• Added information about a new warning message that will be issued when a call to ILBOABN0 callable

service is encountered in the source program in “Changes at run time with Enterprise COBOL 5 and 6”
on page 200.

Changes in GC14-7383-02 (March 2014)
Added back the support for AMODE 24 execution of COBOL programs, except for a few exception cases.
Many programs that are compiled by Enterprise COBOL 5.1.1 execute in either AMODE 31 or AMODE 24.

Changes in GC14-7383-00 (June 2013)
This migration guide has been reorganized for Enterprise COBOL 5.1. If you have not yet completed your
runtime migration to Language Environment, please refer to the previous version of this information. You
can use the Enterprise COBOL 4.2 Compiler and Runtime Migration Guide at http://publibfp.dhe.ibm.com/
epubs/pdf/igy3mg50.pdf for help in completing your runtime migration.

Primarily, the following changes have been made to this Migration Guide:

• Removal of the information related to Language Environment
• Addition of specific chapters for migrating from Enterprise COBOL 3 and Enterprise COBOL 4
• Addition of a section on Enterprise COBOL 5
• Addition of a section on upgrading your COBOL compiler along with other IBM products. That includes

information about Debug Tool, CICS, and Db2®. Please see Part 5, “Enterprise COBOL migration and
other IBM products,” on page 219 for more information.

There is a lot of information in this guide but most of it is not needed by most customers. For example,
if you are moving from Enterprise COBOL 4 and you have completed your runtime migration for all
applications, you only need to look at a few sections. For details, see Chapter 14, “Upgrading from
Enterprise COBOL 4,” on page 155, Chapter 15, “Compiling Enterprise COBOL 4 programs,” on page 161,
and Chapter 17, “Changes with Enterprise COBOL 5 and 6,” on page 183.

Changes in GC23-8527-01 (August 2009)

Compiler
• Added information about integrated Db2 coprocessor
• Updated information about migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS), for example,

changes in the handling of several XML events
• Updated information about the differences in parsing behavior when you compile using

XMLPARSE(XMLSS)
• Added new reserved words
• Added new compiler options
• Added information to appendix on commonly asked questions and answers:

– Information about COBOL program calls
– Information about running existing COBOL applications with Java 5 or Java 6

Run time
• Updated information about region-wide defaults

xxxii Preface

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

• Updated information about TEST option
• Updated information about Language Environment STORAGE(00) option

Information about CICS has been corrected.

Miscellaneous maintenance and editorial changes have been made; for example, Appendix B, “COBOL
reserved word comparison,” on page 257 and Appendix F, “Compiler limit comparison,” on page 321 have
been updated.

Changes in GC23-8527-00 (December 2007)

Compiler
• Added section on migrating XML PARSE from Enterprise COBOL 3 to Enterprise COBOL 4 (Migrating

from XMLPARSE(COMPAT) to XMLPARSE(XMLSS)).
• Added information about the new TEST suboptions of Enterprise COBOL 4
• Added new reserved words
• Added information to section on migrating from CMPR2 to NOCMPR2:

– Fixed file attributes and DCB= parameters of JCL
– OPEN statement failing for QSAM files (FILE STATUS 39)
– OPEN statement failing for VSAM files (FILE STATUS 39)

• Added information to appendix on Db2 coprocessor integration

– Additional differences from separate precompiler

Run time
• Added information about removal of SIMVRD runtime option support for Enterprise COBOL 4.1

programs.

Changes in GC27-1409-05 (November 2006)
• Updated the documentation of differences between Db2 precompiler and coprocessor.
• Added compiler option SQLCCSID.

Changes in GC27-1409-04 (March 2006)
• Added to the documentation of differences between Db2 precompiler and coprocessor.
• Added a section on migrating SEARCH ALL statements to COBOL 3.4.

Changes in GC27-1409-03 (July 2005)
• Added compiler option MDECK.
• Added new reserved words.
• Added SQL code differences between Db2 precompiler and coprocessor.
• Changes to data-item sizes.

Changes in GC27-1409-02 (December 2003)
• Applied service updates to the information

Preface xxxiii

Changes in GC27-1409-01 (September 2002)

Compiler
• Added information about the use of the SEPARATE suboption with the TEST(. . .,SYM,. . .) compiler

option.

Run time
• Clarified the information about file handling for COBOL programs with RECORDING MODE U under

OS/390 2.10.
• Added information about the change in the amount of space that is used for an output file that is
defined as RECFM=U under OS/390 2.10.

• Added information about dynamic calls to assembler programs under Language Environment for z/OS
1.2 and later.

Changes in GC27-1409-00 (November 2001)

Compiler
• Removed various compiler options, including the CMPR2 compiler option
• Added new reserved words
• Added information about the new integrated CICS translator
• Removed OO COBOL syntax and programming model based on SOM
• Added information about migrating to the Enterprise COBOL compiler

Run time
• Added information about the change in behavior for DATA(31) programs
• Added information about CEEDUMP absent from applications with assembler programs that use the

DUMP macro
• Added information about the change in file handling for COBOL programs with RECORDING MODE U
• Added information about calling between assembler and COBOL

Changes in GC26-4764-05 (September 2000)

Compiler
• Added newly discovered undocumented extensions and improved many existing entries in Chapter 6,

“Upgrading OS/VS COBOL source programs,” on page 45
• Added new reserved words
• Added information about migrating to the COBOL 2.2 compiler

Run time
• Added description of the new default for runtime option ABTERMENC (ABEND for Language

Environment for OS/390 2.9 and later) and the new suboptions for TERMTHDACT available in Language
Environment for OS/390 2.7 and later

• Added information about Language Environment region-wide runtime options
• Updated the virtual storage requirements
• Updated the CICS considerations:

– Performance

xxxiv Preface

– SORT interface change
– DISPLAY statement

• Updated information about upgrading Language Environment release levels

Miscellaneous maintenance and editorial changes have been made.

Summary of changes to the COBOL compilers
This section lists the main changes that have been made to the COBOL compilers.

Changes in IBM Enterprise COBOL for z/OS 6.4 with PTFs installed

Enhanced UTF-8 support
• PH48667: A problem is fixed for using figurative constant HIGH-VALUES with fixed byte-length UTF-8

data items of a length not a multiple of 4 bytes.
• PH57297: You can use UTF-8 (PIC U) data items as the arguments to the STRING and UNSTRING

statements.

Note: COBOL Runtime LE APAR PH57264 (for AMODE 31) or APAR PH57265 (for AMODE 64) must also
be applied on all systems where programs that make use of this new feature are linked or run.

• PH57400: You can use dynamic-length and UTF-8 (PIC U) data items as the arguments to the JSON
GENERATE and JSON PARSE statements.

Note: COBOL Runtime LE APAR PH57152 must also be applied on all systems where programs that
make use of this new feature are linked or run.

JSON support
• PH57398: You can use the ENCODING phrase of the JSON GENERATE and JSON PARSE statements to

specify the encoding of the JSON document.

Note: COBOL Runtime LE APAR PH57152 must also be applied on all systems where programs that
make use of this new feature are linked or run.

• PH58384: You can use the NAME IS OMITTED phrase to parse an anonymous JSON array in addition to
an anonymous JSON object.

• PH59733: You can generate and parse JSON null values by using the JSON GENERATE and JSON
PARSE statements.

COBOL/Java interoperability enhancement
• PH48453: New sample files demonstrating a COBOL/Java interoperable application and how to build it

are provided in the demo subdirectory of your COBOL install directory in the z/OS UNIX file system.
• PH49967: A new cjbuild command reference section is added to address various usability and stability

issues relating to the non-OO Java/COBOL interoperability feature.
• PH51752: A new sample JCL is provided to demonstrate how a non-OO COBOL/Java interoperable

application can be built and run entirely using JCL.
• PH53631: Enhanced the ON EXCEPTION phrase support to deal with exceptions in the non-OO COBOL/

Java interoperability framework.

New and changed compiler options
• PH50925: NUMCHECK: The NUMCHECK compiler option is updated to avoid generating runtime checking

code of zoned-decimal senders in MOVE statements when the receiver is an alphanumeric data item and
NUMCHECK(ZON(LAX)) is in effect.

Preface xxxv

• PH50296: CONDCOMP: The new CONDCOMP compiler option is introduced to control how conditional
code will be displayed in the listing.

Runtime changes
• PH56036 and PH56037: An optional alternate logic path is introduced for VSAM files that use the
ACCESS IS DYNAMIC mode. The alternate logic path uses a direct read-by-key request instead of a
point to a record by key. The VSAM dynamic access read option VSAMDYNAMICDIR and the COBOL
runtime options report disabling option DISABLEUOPTREPORT are added.

Usability enhancement
PH56142: When compiling under z/OS UNIX, you can use the cob2 -M option to generate a make
dependency file, file.u. This file contains entries for each copybook file that resides in a z/OS UNIX file
system and is referenced in your COBOL source file.

Function prototypes support
PH57397: With a function prototype, you can define the function name, parameters, and returning value
of a user-defined function or other non-COBOL external functions such as C functions and invoke these
functions. This is part of the 2014 COBOL Standard.

Changes in IBM Enterprise COBOL for z/OS 6.4

Compiler option changes
• The following compiler options are new:

– SMARTBIN: Use SMARTBIN to instruct the compiler to generate modules containing additional binary
metadata that enables them to be optimized by IBM Automatic Binary Optimizer (ABO) for z/OS 2.2.

– JAVAIOP: Use JAVAIOP to control the behavior of COBOL programs that interoperate with Java
though the JAVA-CALLABLE or JAVA-SHAREABLE directives or by calling Java static methods using
the CALL statement.

• The following compiler options are modified:

– ARCH: ARCH(8) and ARCH(9) are no longer accepted. A new higher level of ARCH(14) is accepted.
ARCH(10) is the default.

– RULES: If there are multiple RULES specifications for a compilation, the suboptions are additive,
which means they are accumulated.

– TUNE: TUNE(8) and TUNE(9) are no longer accepted. A new higher level of TUNE(14) is accepted.
TUNE(10) is the default if ARCH is not specified.

Improved COBOL/Java interoperability
Interoperability between your COBOL and Java applications is simplified and improved so that you can
easily extend your COBOL applications with Java.

Interoperability between AMODE 31 (31-bit) and AMODE 64 (64-bit) COBOL
programs
AMODE 64 (64-bit) COBOL applications can interoperate with your existing AMODE 31 (31-bit) COBOL
applications. Dynamic call is supported in a mixed AMODE 31/AMODE 64 environment.

xxxvi Preface

User-defined function support
You can define your own functions by specifying a FUNCTION-ID paragraph in the IDENTIFICATION
DIVISION and invoke them by using a reference to a function identifier. This is part of the 2002 COBOL
Standard.

Improved integration with IBM Automatic Binary Optimizer for z/OS (ABO)
COBOL modules that you compile today can be easily optimized in the future by ABO to utilize future IBM
Z® hardware enhancements, without having to be recompiled.

• ABO (sold separately) improves the performance of already-compiled COBOL program modules without
recompiling, source code migration, or performance tuning.

• With the new SMARTBIN compiler option in effect, COBOL compiler generates binary metadata that is
designed to allow modules compiled with COBOL 6.4 to be easily optimized in the future by ABO.

• Use the latest version of Enterprise COBOL for new development, modernization, and maintenance.
Use ABO to improve the performance of COBOL modules that are stable and do not need any source
changes.

For details about ABO, visit the ABO product page.

PERFORM … UNTIL EXIT support
You can specify EXIT in place of a condition in a PERFORM statement. If the UNTIL phrase with the EXIT
reserved word is specified, execution proceeds exactly as if the same PERFORM statement were coded
with condition-1 specified, except that condition-1 never evaluates as true.

Debugging enhancement
You can use ddname IGZPROUT at the run step of your JCL to generate a report of all dynamically called
programs that are compiled with Enterprise COBOL 5 or later.

Changes in IBM Enterprise COBOL for z/OS 6.3 with PTFs installed

Changed statements
• Runtime APARs PH20569(z/OS 2.2) and PH21261(z/OS 2.3/2.4): A new runtime option (IGZCOMPAT)

for MERGE statement is introduced to obtain support for DFSORT option NOBLKSET and the
conventional merge method for Enterprise COBOL 5 or later versions. (“Using DFSORT option
NOBLKSET” on page 208)

• PH18641: A new "NAME is OMITTED" phrase is added to the JSON GENERATE statement to allow
generation of an anonymous JSON object, whose top-level parent name is not generated.

• PH20724: The use of passing a file-name to a subprogram with the USING phrase of the CALL
statement is restored. (“Use of file-name in CALL ... USING statement” on page 174)

• PH26789: A new "CONVERTING" phrase is added to the JSON GENERATE and JSON PARSE statements
so that you can generate and parse JSON boolean values.

Note: COBOL Runtime LE APAR PH26698 must also be applied on all systems where programs that
make use of this new feature are linked or run.

• PH30975: New "when-phrase" and "generic-suppression-phrase" are added to the JSON GENERATE
statement so that you can conditionally suppress data items during JSON GENERATE.

Note: COBOL Runtime LE APAR PH31172 must also be applied on all systems where programs that
make use of this new feature are linked or run.

Preface xxxvii

https://www.ibm.com/products/automatic-binary-optimizer-zos

Changed intrinsic functions
• PH20997: The UUID4 intrinsic function is introduced.

Note: COBOL Runtime LE PTF UI66560(z/OS 2.2)/UI66555(z/OS 2.3)/UI66557(z/OS 2.4) must also be
applied on all systems where programs that make use of this new feature are linked or run.

• PH31047: New date and time intrinsic functions are introduced that support encoding and decoding of
date and time information to and from formats specified in ISO 8601, and that support encoding and
decoding date and time information to and from integers that are suitable for arithmetic.

Note: COBOL Runtime LE APAR PH31133 must also be applied on all systems where programs that
make use of these new date and time intrinsic functions are linked or run.

The following intrinsic functions are added as part of the 2002 COBOL Standard:

– TEST-DATE-YYYYMMDD: The TEST-DATE-YYYYMMDD function tests whether a date in standard date
form (YYYYMMDD) is a valid date in the Gregorian calendar.

– TEST-DAY-YYYYDDD: The TEST-DAY-YYYYDDD function tests whether a date in Julian date form
(YYYYDDD) is a valid date in the Gregorian calendar.

The following intrinsic functions are added as part of the 2014 COBOL Standard:

– COMBINED-DATETIME: The COMBINED-DATETIME function combines a date in integer date form
and a time in standard numeric time form into a single numeric item from which both date and time
components can be derived.

– FORMATTED-CURRENT-DATE: The FORMATTED-CURRENT-DATE function returns a character string
that represents the current date and time provided by the system on which the function is evaluated.

– FORMATTED-DATE: The FORMATTED-DATE function converts a date from its integer date form to the
requested format.

– FORMATTED-DATETIME: The FORMATTED-DATETIME function uses a combined time and date
format to convert and combine a date in the integer date form and a numeric time expressed as
seconds past midnight to a formatted date and time representation according to that combined date
and time format.

– FORMATTED-TIME: The FORMATTED-TIME function uses a format to convert a value that represents
seconds past midnight to a formatted time of day in the requested format.

– INTEGER-OF-FORMATTED-DATE: The INTEGER-OF-FORMATTED-DATE function converts a date that
is in a specified format to an integer date form.

– SECONDS-FROM-FORMATTED-TIME: The SECONDS-FROM-FORMATTED-TIME function converts a
time that is in a specified format to a numeric value that represents the number of seconds after
midnight.

– SECONDS-PAST-MIDNIGHT: The SECONDS-PAST-MIDNIGHT function returns a value in standard
numeric time form that represents the current local time of day provided by the system on which the
function is evaluated.

– TEST-FORMATTED-DATETIME: The TEST-FORMATTED-DATETIME function tests whether a data item
that represents a date, a time, or a combined date and time is valid according to the specified format.

• PH34885: The UUID4 randomness and UUID4 intrinsic function requires significant CPU usage.

New and changed compiler options
• PH22581: INITCHECK: New suboptions LAX | STRICT are added to the INITCHECK option to control

whether the compiler will issue warning messages for data items unless they are initialized on at least
one, or on all, logical paths to a statement.

• PH27536: NUMCHECK(ZON): New suboptions LAXREDEF | STRICTREDEF are added to the
NUMCHECK(ZON) option to control whether the compiler will check and issue warning messages for
redefined items.

xxxviii Preface

• PH29542: NUMCHECK(BIN): New suboptions TRUNCBIN | NOTRUNCBIN are added to the
NUMCHECK(BIN) option to control whether the compiler will generate the checking code for binary
data items.

• PTF UI71591 (no APAR number): New functionality is added to NUMCHECK to check alphanumeric
senders whose contents are being moved to a numeric receiver. For alphanumeric senders whose
contents are being moved to a numeric receiver, the compiler treats the sender as a numeric integer so
NUMCHECK generates an implicit numeric class test for each alphanumeric sender.

• Runtime APARs PH29755(z/OS 2.3/2.4) and PH30338(z/OS 2.3/2.4 AMODE 64): TEST: New support is
added for LLA/VLF managed programs where DWARF diagnostic information is included.

• PH33122: RULES: New suboptions LAXREDEF | NOLAXREDEF are added to the RULES option to
inform users of redefined items with mismatched lengths.

• PH34804: TUNE: The new TUNE option specifies the architecture for which the executable program will
be optimized.

• PH35643: SOURCE: New suboptions DEC | HEX are added to the SOURCE option to control whether
the generated sequence numbers for the listing of the source are in decimal or hexadecimal format.

• PH35652: OFFSET: The behaviour of OFFSET is improved. If multiple blocks of instructions are for a
single line of COBOL code, there will be multiple entries in the offset table for a given COBOL statement.

• PH37328: INVDATA: The new INVDATA compiler option replaces the deprecated ZONEDATA compiler
option and provides users fine-grained control over how the compiler generates code to handle USAGE
DISPLAY and USAGE PACKED-DECIMAL data items that contain invalid data.

• PH40356: NUMCHECK(ZON): LAXREDEF|STRICTREDEF is deprecated but is tolerated for compatibility,
and it is replaced by the LAX|STRICT option.

• PH50296: CONDCOMP: The new CONDCOMP compiler option is introduced to control how conditional
code will be displayed in the listing.

Migration assistance
• Runtime APAR PH25917: A new option QSAMBUFFINITCHAR is added to the IGZUOPT module that

allows you to control the initial character used for QSAM buffer initialization. (Appendix M, “Controlling
initialization of QSAM buffer (IGZ4OPT),” on page 347)

Installation customization changes
• PH37331: Adds support for diagnosing miscoded options or options coded as OPTION() instead of
OPTION= in the COBOL customization macro.

Changes in IBM Enterprise COBOL for z/OS 6.3

Compiler option changes
• The following compiler option is new:

– LP: The new LP compiler option can be used to indicate whether an AMODE 31 (31-bit) or AMODE
64 (64-bit) program should be generated with the related language features enabled. LP(32) is the
default.

• The following compiler options are modified:

– ARCH: ARCH(7) is no longer accepted. A new higher level of ARCH(13) is accepted. ARCH(8) is the
default.

– NUMCHECK: Regardless of whether NUMCHECK(MSG) or NUMCHECK(ABD) is in effect, invalid data
found at compile time will produce a compile-time error message and the check will be removed.

Preface xxxix

AMODE 64 support
You can use Enterprise COBOL to develop AMODE 31 (31-bit) or AMODE 64 (64-bit) applications. Adapt
your code as appropriate for your applications to support the 64-bit environment.

Language element changes
• A DYNAMIC LENGTH clause is supported to specify a dynamic-length elementary item. A dynamic-

length elementary item is a data item whose length might change at run time. This is part of the 2014
COBOL Standard.

• A UTF-8 phrase is added to the USAGE clause to indicate a new UTF-8 data type. A picture symbol 'U'
that indicates UTF-8 character data is also added. The new USAGE indicates a new class of data (UTF-8)
and a new category of data (UTF-8).

• A POINTER-32 phrase is added to the USAGE clause, which can be used to define pointer data items
or data-pointers. The POINTER-32 data item is a 4-byte elementary data item regardless of the LP,
compiler option setting, and can be used in both LP(32) and LP(64).

• The REPOSITORY paragraph FUNCTION specifier INTRINSIC allows declaration of intrinsic function
names that may be used without specifying the word FUNCTION. This is part of the 2002 COBOL
Standard.

Listing changes
Listing terminologies change as follows:

• Static map is changed to initial heap storage map.
• Writeable static area (WSA) is changed to storage.
• WSA24 is changed to below the line storage.
• Automatic map is changed to stack storage map.

Compiler phases in shared storage changes
• The installation customization for placing compiler phases into shared storage is removed.

Use of file-name in CALL ... USING statement
Programs can no longer pass a file-name to a subprogram with the USING phrase of the CALL statement.

Changes in IBM Enterprise COBOL for z/OS 6.2 with PTFs installed

New and changed compiler options
• The following compiler option is new:

– PI91584: COPYLOC: The new COPYLOC compiler option can be used to add either a PDSE (or PDS)
dataset or z/OS UNIX directory as an additional location to be searched for copy members during the
library phase.

– PH05855: INITIAL: The new INITIAL compiler option allows you to get a program that has initial
values in data items each time the program is called, without having to add the IS INITIAL clause
to the PROGRAM-ID paragraph, and without having to use dynamic CALL and CANCEL statements.

– PH37328: INVDATA: The new INVDATA compiler option replaces the now-deprecated ZONEDATA
compiler option and provides users fine-grained control over how the compiler generates code to
handle USAGE DISPLAY and USAGE PACKED-DECIMAL data items containing invalid data.

• The following compiler options are modified:

xl Preface

– PI90571: ZONEDATA: The ZONEDATA option is updated to affect the behaviour of MOVE statements,
comparisons, and computations for USAGE DISPLAY or PACKED-DECIMAL data items that could
contain invalid digits, an invalid sign code, or invalid zone bits.

– PI91585: RULES: New suboptions OMITODOMIN | NOOMITODOMIN are added to the RULES option
to control whether the compiler will issue warning messages for any OCCURS DEPENDING ON
clauses that are specified without integer-1 (the minimum number of occurrences).

– PI91586: RULES: New suboptions UNREF | NOUNREFALL | NOUNREFSOURCE are added to the
RULES option to control whether the compiler will report unreferenced data items, and to control
whether the reporting is done only for data items not declared in a copy member (NOUNREFSOURCE)
or all data items (NOUNREFALL).

– PI96135: NUMCHECK(PAC): For packed decimal (COMP-3) data items that have an even number of
digits, the unused bits are checked for zeros.

– PI98480: NUMCHECK(ZON): New suboptions ALPHNUM | NOALPHNUM are added to the
NUMCHECK(ZON) option to control whether the compiler will generate code for an implicit numeric
class test for zoned decimal data items that are being compared with an alphanumeric data item,
alphanumeric literal or alphanumeric figurative constant.

– PH04369: RULES(NOEVENPACK) will not issue messages for even-digit PACKED-DECIMAL data
items whose names start with DFH, DSN, EYU or SQL, that is, data items generated for/by CICS
and Db2.

– PH04485: TEST： New suboptions DSNAME | NODSNAME are added to the TEST|
NOTEST(SEPARATE) option to control whether the external file name, which is the SYSDEBUG
dataset name used during compilation, will or will not be stored in the object program.

– PH08642: NUMCHECK: Redundant checks previously added by the NUMCHECK option have been
removed, improving performance, and some checks can be done at compile time. Specifying
NUMCHECK may also cause the compiler to produce some messages at compile time instead of at
runtime.

– PH09225: INITCHECK: The INITCHECK option can be specified with OPTIMIZE(0).
– PH11667: NUMCHECK(BIN): NUMCHECK(BIN) will check for binary data items (COMP, COMP-4, and
USAGE BINARY) even when TRUNC(BIN) is in effect.

– PH24340: NUMCHECK(ZON): New suboptions LAXREDEF | STRICTREDEF are added to the
NUMCHECK(ZON) option to control whether the compiler will check and issue warning messages
for redefined items.

– PH24413: INITCHECK: New suboptions LAX | STRICT are added to the INITCHECK option to
control whether the compiler will issue warning messages for data items unless they are initialized on
at least one, or on all, logical paths to a statement.

– PH26794: NUMCHECK(BIN): New suboptions TRUNCBIN | NOTRUNCBIN are added to the
NUMCHECK(BIN) option to control whether the compiler will generate the checking code for binary
data items.

– Runtime APAR PH20569(z/OS 2.2/2.3/2.4): The included DWARF diagnostic information when
TEST(NOSEPARATE) is effect can be extracted from the LLA/VLF managed programs.

• The following compiler option is deprecated:

– PH7328: ZONEDATA: This compiler option is deprecated but tolerated and is automatically mapped
to an equivalent form of the new INVDATA compiler option.

New and changed statements
• PI91584: As the new compiler option COPYLOC is introduced, the COPY statement is updated.
• PI95081: A new LOC(24|31) phrase is added to the ALLOCATE statement to control the location of

dynamic storage that is acquired, which overrides the influence of the DATA compiler option when
determining the location of dynamic storage that is acquired.

• PI97160: SET TO FALSE and WHEN SET TO FALSE are introduced as defined in the 2002 COBOL
Standard, which allows you to avoid explicit references to invalid values in the PROCEDURE DIVISION.

Preface xli

• Runtime APARs PH20569(z/OS 2.2) and PH21261(z/OS 2.3/2.4): A new runtime option (IGZCOMPAT)
for MERGE statement is introduced to obtain support for DFSORT option NOBLKSET and the
conventional merge method for Enterprise COBOL 5 or later versions.

• PH28546: A new "CONVERTING" phrase is added to the JSON GENERATE and JSON PARSE statements
so that you can generate and parse JSON boolean values.
Note that COBOL Runtime LE APAR PH26698 must also be applied on all systems where programs that
make use of this new feature are linked or run.

IBM-supplied CICS reserved-word table changes
• PI91589: New COBOL words are added to the IBM-supplied CICS reserved-word table.

Intrinsic function enhancements
• PI97434: Add support for processing national data items with the following intrinsic functions:

– REVERSE
– ULENGTH
– UPOS
– USUBSTR
– UWIDTH

This PTF pre-reqs the PTF(s) for Language Environment (LE) APAR PI97224 (z/OS 2.1/2.2) and APAR
PI97712 (z/OS 2.3). Make sure that the PTF(s) for APAR PI97224 or APAR PI97712 are installed on
Language Environment (LE) on all systems where COBOL programs will be run before using the compiler
with the PTF for PI97434 installed.

Migration assistance
• Runtime APAR PH25917: A new option QSAMBUFFINITCHAR is added to the IGZUOPT module that

allows you to control the initial character used for QSAM buffer initialization. (Appendix M, “Controlling
initialization of QSAM buffer (IGZ4OPT),” on page 347)

Changes in IBM Enterprise COBOL for z/OS 6.2

New, changed, and removed compiler options
• The following compiler options are new:

– DEFINE
– INITCHECK
– INLINE
– NUMCHECK
– PARMCHECK

• The following compiler options are modified:

– AFP: The default value is changed to AFP(NOVOLATILE).
– ARCH: A new higher level of ARCH(12) is accepted. ARCH(7) is still the default.
– MAXPCF: The default value is changed to MAXPCF(100000) to reflect the increased capacity of the

COBOL 6 compiler.
– NOSTGOPT: In earlier versions, data items can get optimized with OPT(2) even when NOSTGOPT was

in effect. NOSTGOPT was changed in this version so that no optimization of storage or data items
occurs even with OPT(2). This is especially helpful for WORKING-STORAGE eye-catchers.

– SSRANGE: New suboptions MSG | ABD and ZLEN | NOZLEN are added to the SSRANGE compiler
option to allow, respectively:

xlii Preface

- A message instead of an abend and continued processing for additional reporting of out-of-range
conditions in a single run.

- A reference modification of zero length to proceed without a message or abend.
– TEST: New suboptions SEPARATE and NOSEPARATE are added to the TEST compiler option

to control program object size on disk while retaining debugging capability. In addition, new
combinations of suboptions are supported in both the TEST and NOTEST compiler options, including
TEST(NODWARF), TEST (SEPARATE), and NOTEST(DWARF,SOURCE).

• The following compiler option is removed:

– ZONECHECK is deprecated but is tolerated for compatibility, and it is replaced by NUMCHECK(ZON).

New statements
• The new JSON PARSE statement converts JSON text to COBOL data formats.

New and changed special registers
• The new JSON-STATUS special register is used to indicate either that a JSON PARSE statement

executed successfully or that a nonexception condition occurred.
• The JSON-CODE special register is also used to indicate either that a JSON PARSE statement executed

successfully or that an exception condition occurred.

New directives
• The following new compiler directives are added to support conditional compilation as defined in the

2002 COBOL Standard:

– The DEFINE directive defines or undefines a compilation variable.
– The EVALUATE directive provides a multi-branch method of choosing the source lines to include in a

compilation group.
– The IF directive provides for a one-way or two-way conditional compilation.

• The new INLINE directive allows the compiler to decide whether to inline procedures referenced by
PERFORM statements in the source program.

Debugging changes
• TEST(SEPARATE) supports generating the debug information into side files to control module size while

retaining debugging capability.

Listing changes
• Compiler diagnostic messages now appear at the end of the listing, as was the case in COBOL compilers

before Enterprise COBOL 5.
• Addition of MD5 signature to program objects and debug data to allow matching of debug data with

executables even if a program is recompiled.
• Three new fields are added at the end of PPA4:

– Offset of the first user-defined data item in WORKING-STORAGE.
– Total length of user-defined data items in WORKING-STORAGE.
– Bit to indicate whether there are EXTERNAL data items.

Preface xliii

Changes in IBM Enterprise COBOL for z/OS 6.1 with PTFs installed

New, changed, and removed compiler options
• The following compiler options are new:

– PI68226: INITCHECK
– PI71625: NUMCHECK
– PI78089: PARMCHECK
– PI77981: INLINE
– PI96231: COPYLOC

• The following compiler options are modified:

– PI68023 and PI81838: NOSTGOPT: The default behaviour of the NOSTGOPT compiler option has been
changed.

– PI74933: SSRANGE: New suboptions MSG and ABD are added to the SSRANGE compiler option to
control how the compiler checks reference modification lengths.

– PI98996: NUMCHECK(PAC): For packed decimal (COMP-3) data items that have an even number of
digits, the unused bits are checked for zeros.

– PH01251: NUMCHECK(ZON): New suboptions ALPHNUM | NOALPHNUM are added to the
NUMCHECK(ZON) option to control whether the compiler will generate code for an implicit numeric
class test for zoned decimal data items that are being compared with an alphanumeric data item,
alphanumeric literal or alphanumeric figurative constant.

– PH13943: NUMCHECK(BIN): NUMCHECK(BIN) will check for binary data items (COMP, COMP-4, and
USAGE BINARY) even when TRUNC(BIN) is in effect.

– PH24414: INITCHECK: New suboptions LAX | STRICT are added to the INITCHECK option to
control whether the compiler will issue warning messages for data items unless they are initialized on
at least one, or on all, logical paths to a statement.

– Runtime APAR PH20569(z/OS 2.2/2.3/2.4): The included DWARF diagnostic information when
TEST(NOSEPARATE) is effect can be extracted from the LLA/VLF managed programs.

• The following compiler option is removed:

– PI71625: ZONECHECK is deprecated but is tolerated for compatibility, and it is replaced by
NUMCHECK(ZON).

New and changed statements
• PI71621: The JSON GENERATE statement is redesigned and improved.
• PI92944: A new LOC(24|31) phrase is added to the ALLOCATE statement to control the location of

dynamic storage that is acquired, which overrides the influence of the DATA compiler option when
determining the location of dynamic storage that is acquired.

• PI96231: As the new compiler option COPYLOC is introduced, the COPY statement is updated.
• Runtime APARs PH20569(z/OS 2.2) and PH21261(z/OS 2.3/2.4): A new runtime option (IGZCOMPAT)

for MERGE statement is introduced to obtain support for DFSORT option NOBLKSET and the
conventional merge method for Enterprise COBOL 5 or later versions.

Migration assistance
• Runtime APAR PH25917: A new option QSAMBUFFINITCHAR is added to the IGZUOPT module that

allows you to control the initial character used for QSAM buffer initialization. (Appendix M, “Controlling
initialization of QSAM buffer (IGZ4OPT),” on page 347)

xliv Preface

Changes in IBM Enterprise COBOL for z/OS 6.1

New and changed options
• The following compiler options are new:

– SUPPRESS
– VSAMOPENFS
– ZONECHECK

• The following compiler options are modified:

– LANGUAGE
– SSRANGE

Removed options
The LVLINFO installation option is removed. The build level information is put where LVLINFO used to be,
and the SERVICE compiler option can be used for user service level information in place of LVLINFO.

New and changed statements
• The new ALLOCATE statement obtains dynamic storage, while the new FREE statement releases

dynamic storage that was previously obtained with an ALLOCATE statement. Both statements are part
of the 2002 COBOL Standard.

• Enhancements are made to the INITIALIZE statement as part of the 2002 COBOL Standard:

– A new FILLER phrase is added so that FILLER data items can be initialized with the INITIALIZE
statement.

– A new VALUE phrase is added so that elementary data items can be initialized to the literal specified
in the VALUE clause.

• The new JSON GENERATE statement converts data to JSON format.

Compiler behavior changes
In Enterprise COBOL 6, the compiler starts using storage above the 2 GB BAR to compile programs,
even those that are not large. This means that the z/OS MEMLIMIT parameter would have to be set to a
nonzero value. The z/OS default for MEMLIMIT is 2 GB, but if you compile a program and your z/OS setting
for MEMLIMIT is not high enough, you could get this compiler message: IGYCB7145-U Insufficient
memory in the compiler to continue compilation. If you encounter this error message, set
REGION=0M and MEMLIMIT=3G on the job card and recompile your programs. If it is successful, consider
changing the system MEMLIMIT default that was set in IEFUSI, SMFPRMxx, or SMFLIMxx to no less than
2 GB.

Note: The SMFLIMxx PARMLIB member is only available in z/OS 2.2 and later versions.

Debugging changes
The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise
COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to locate
the starting address of the WORKING-STORAGE SECTION might be affected.

JCL changes
To specify the language of compiler messages, you must use the LANGUAGE compiler option and also set
the Language Environment runtime option NATLANG at compile time. We recommend using CEEOPTS DD
in the compile JCL.

Preface xlv

Changes in IBM Enterprise COBOL for z/OS 5.2 with PTFs installed

New, changed, and removed compiler options
• The following compiler options are new:

– PI40822: ZONECHECK
– PI69197: INITCHECK
– PI81006: NUMCHECK
– PI85868: VSAMOPENFS

• The following compiler options are modified:

– PI40853: ZONEDATA: New suboption of NOPFD is added to the ZONEDATA compiler option.
ZONEDATA=NOPFD lets the compiler generate code that performs comparisons of zoned decimal
data in the same manner as COBOL 4 does when using NUMPROC=NOPFD|PFD with COBOL 4.

– PI53044: SSRANGE: New suboptions ZLEN and NOZLEN are added to the SSRANGE compiler option to
control how the compiler checks reference modification lengths.

– PI86343: SSRANGE: New suboptions MSG and ABD are added to the SSRANGE compiler option to
control how the compiler checks reference modification lengths.

– PI90458: ZONEDATA: The ZONEDATA option is updated to affect the behavior of MOVE statements,
comparisons, and computations for USAGE DISPLAY or PACKED-DECIMAL data items that could
contain invalid digits, an invalid sign code, or invalid zone bits.

– PI97835: NUMCHECK(PAC): For packed decimal (COMP-3) data items that have an even number of
digits, the unused bits are checked for zeros.

– PH01241: NUMCHECK(ZON): New suboptions ALPHNUM | NOALPHNUM are added to the
NUMCHECK(ZON) option to control whether the compiler will generate code for an implicit numeric
class test for zoned decimal data items that are being compared with an alphanumeric data item,
alphanumeric literal or alphanumeric figurative constant.

• The following compiler option is removed:

– PI81006: ZONECHECK is deprecated and can no longer be specified in IGYCDOPT. NUMCHECK=(ZON)
gives the same results as ZONECHECK used to.

Changes in IBM Enterprise COBOL for z/OS 5.2

New and changed options
• The following compiler options are new:

– COPYRIGHT
– QUALIFY(COMPAT|EXTEND)
– SERVICE
– SQLIMS
– VLR(COMPAT|STANDARD)
– XMLPARSE(XMLSS|COMPAT)
– ZONEDATA(PFD|MIG)

• The following compiler options are modified:

– ARCH: ARCH(6) is no longer accepted. A new higher level of ARCH(11) is accepted, and ARCH(7) is
the default.

– MAP: New suboptions HEX and DEC are added to the MAP compiler option to control whether
hexadecimal or decimal offsets are shown for MAP output in the compiler listing. It eases your

xlvi Preface

migration to Enterprise COBOL 5.2 if your programs are compiled with Enterprise COBOL 4 or earlier
versions.

• The following compiler option is removed:

– SIZE

New and changed functions
• The compatibility-mode COBOL XML parser from the COBOL library is supported. You can specify the
XMLPARSE(XMLSS|COMPAT) compiler option to choose between parsing with the z/OS XML System
Services parser, or with the compatibility-mode COBOL XML parser. This feature can ease the migration
to the Enterprise COBOL 5 compiler for programs with XML PARSE statements that were compiled with
Enterprise COBOL 3, or with COBOL 4 compiler with the XMLPARSE(COMPAT) compiler option.

• Enterprise COBOL applications that use object-oriented syntax for Java interoperability are now
supported with Java 6, Java 7 and Java 8. Java SDK 1.4.2 and Java 5 are no longer supported.

New and changed statements
• The new CALLINTERFACE directive specifies the interface convention for CALL and SET statements.

The convention specified stays in effect until another CALLINTERFACE directive is encountered in the
source. The CALLINTERFACE directive has three suboptions: DLL, DYNAMIC, and STATIC.

• The EXIT statement includes the following new formats, which provide a structured way to exit without
using a GO TO statement. The new formats are part of the 2002 COBOL Standard.

– EXIT PERFORM for exiting from an inline PERFORM statement
– EXIT PARAGRAPH for exiting from the middle of a paragraph
– EXIT SECTION for exiting from a section

• A new format of the SORT statement, the table SORT statement, arranges table elements in a user-
specified sequence. It is part of the 2002 COBOL Standard.

• New keywords LEADING and TRAILING are added to the REPLACING phrase of the COPY statement
and the REPLACE statement to improve partial-word replacement operations. The new keywords are
part of the 2002 COBOL Standard.

• A new keyword VOLATILE is added to the format 1 data description entry. The VOLATILE clause
indicates that a data item's value can be modified or referenced in ways that the compiler cannot
detect, such as by a Language Environment (LE) condition handler routine or by some other
asynchronous process or thread. Thus, optimization is restricted for the data item.

• New syntaxes are introduced to the XML GENERATE statement. The WHEN phrase from the explicit
form of the SUPPRESS phrase can be omitted to unconditionally suppress identifier-8 in the output of
the XML Generate statement. If the WHEN phrase is omitted, identifier-8 can be a group data item.
In addition, the generic-suppression-phrase of the XML GENERATE statement provides a convenient
way to exclude entire classes and categories of data items from the generated XML output based on
suppression criteria. The data items to which the suppression specifications apply and that meet the
criteria at run time will be excluded. CONTENT is treated as a distinct type for suppression.

Changes in IBM Enterprise COBOL for z/OS 5.1.1
• Except for a few exception cases, AMODE 24 execution of COBOL programs is supported. Many

programs compiled by IBM Enterprise COBOL for z/OS 5.1.1 will execute in AMODE 31 or AMODE
24.

• A new compiler option, SQLIMS, enables the new IMS SQL coprocessor (called SQL statement
coprocessor by IMS). The new coprocessor handles your source programs that contain embedded
SQLIMS statements.

• New fatal and warning exception codes are added for XML PARSE exceptions.

Preface xlvii

• The LIST option output in the compiler listing contains a new Special Register Table that provides the
location information for all the COBOL Special Register variables.

With current service applied, Enterprise COBOL 5.1.0 appears to be 5.1.1 and has the following new
compiler options:

• SQLIMS
• VLR(COMPAT|STANDARD)
• XMLPARSE(XMLSS|COMPAT)
• New suboptions HEX and DEC are added to the MAP compiler option to control whether hexadecimal or

decimal offsets are shown for MAP output in the compiler listing.

Changes in IBM Enterprise COBOL for z/OS 5.1

New and changed COBOL function
The XML function supported by IBM Enterprise COBOL for z/OS has been enhanced:

• The XML GENERATE statement has been extended with new syntax that gives the programmer more
flexibility and control over the form of the XML document that is generated:

– The NAME phrase has been added to allow user-supplied element and attribute names.
– The TYPE phrase has been added to give the user control of attribute and element generation.
– The SUPPRESS phrase has been added to allow suppression of empty attributes and elements.

• XML parsing support has been enhanced with a special register, XML-INFORMATION, to easily
determine whether the XML content delivered for an XML event is complete or will be continued on
the next event.

• The compatibility-mode COBOL XML parser from the COBOL library is no longer supported for use
by Enterprise COBOL 5 programs. XML PARSE statements in COBOL 5 programs always use the XML
parser in z/OS XML System Services.

New support for UNBOUNDED tables and groups enables top-down mapping of data structures between
XML and COBOL applications

Unicode support has been enhanced in this release with the addition of 6 new intrinsic function:

• ULENGTH
• UPOS
• USUBSTR
• USUPPLEMENTERY
• UVALID
• UWIDTH

A new inline comment indicator (the character string '*>') can be coded to indicate that the ensuing text
on a line is a comment.

Enterprise COBOL 5.1 corrects READ statement processing of wrong-length records.

The Millennium Language Extensions are no longer supported, and the removed elements are:

• DATEVAL intrinsic function
• UNDATE intrinsic function
• YEARWINDOW intrinsic function
• DATEPROC compiler option
• YEARWINDOW compiler option

xlviii Preface

To be compatible with the convention used by C and C++, the linkage convention for returning a
doubleword binary item specified in the RETURNING phrase PROCEDURE DIVISION header and the CALL
statement is changed. If a COBOL program returns a doubleword binary item via a PROCEDURE DIVISION
RETURNING header to a calling COBOL program with a CALL ... RETURNING statement, an issue occurs
if only one of the programs is recompiled with Enterprise COBOL 5. Both the called and calling programs
must be recompiled with Enterprise COBOL 5 together, so that the linkage convention for the RETURNING
item is consistent.

Format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and the syntax: GO TO MORE-
LABELS are no longer supported.

Option changes
• The following compiler options are new:

– AFP(VOLATILE | NOVOLATILE)
– ARCH(n)
– DISPSIGN(SEP | COMPAT)
– HGPR(PRESERVE | NOPRESERVE)
– MAXPCF(nnn)
– STGOPT | NOSTGOPT

• The following compiler options are modified:

– The MDECK option no longer has a dependency on the LIB option, as the compiler behaves as though
the LIB option is always enabled.

– The MIG suboption of the NUMPROC compiler option is no longer supported
– The compiled-in range checks cannot be disabled at run time using the runtime option CHECK(OFF).
– Execution of NORENT programs above the 16 MB line is not supported.
– The HOOK | NOHOOK and SEPARATE | NOSEPARATE suboptions of the TEST compiler option are no

longer supported. Those suboptions continue to be tolerated to ease migration. New suboptions
SOURCE and NOSOURCE are added to the TEST compiler option.

– The NOTEST option is enhanced to include the suboptions DWARF and NODWARF.
– The EXIT compiler option is no longer mutually exclusive with the DUMP compiler option, and the

compiler exits rules are updated.
– The OPTIMIZE option is modified to allow several level of optimization. The previous OPTIMIZE

option format is deprecated but is tolerated for compatibility.
– The format and contents of listing generated from the LIST option are new
– The format and contents of the listing output generated from the MAP option are changed

• Support for the following compiler options has been removed:

– DATEPROC
– LIB
– SIZE(MAX)
– YEARWINDOW
– XMLPARSE

Compiler behavior changes
There have been a number of changes to Enterprise COBOL 5.1 that result in different behaviors.

• AMODE 24 execution of programs compiled with Enterprise COBOL 5.1.0 is no longer supported.
Enterprise COBOL 5.1.0 executable modules must be AMODE 31.

Preface xlix

• The IGZERRE and ILBOSTP0 interfaces for managing a reusable COBOL environment are not supported
for applications containing programs compiled with Enterprise COBOL 5.

• The IGZBRDGE macro, for converting static calls to dynamic calls, is not supported for programs
compiled with Enterprise COBOL 5.

• The compatibility-mode COBOL XML parser from the COBOL library, the old parser from Enterprise
COBOL 3, is no longer supported for use by Enterprise COBOL 5 programs. XML PARSE statements in
COBOL 5 programs always use the z/OS System Services XML parser (XMLSS).

• Enterprise COBOL 5 now requires Language Environment at compilation time. If the Language
Environment data sets SCEERUN and SCEERUN2 are not installed in the MVS LNKLST or LPALST, they
must be included in the STEPLIB or JOBLIB concatenation for the compilation.

• Enterprise COBOL 5.1 has a new Language Environment member ID, 4. Prior versions of COBOL use ID
5.

• Enterprise COBOL 5 programs have some restrictions with interoperability with older versions of
COBOL. For details see, “Interoperability with older levels of IBM COBOL programs” on page 21.

• COBOL programs with the following characteristics may behave differently with Enterprise COBOL 5
than with prior versions:

– Programs that use unsupported COBOL language syntax.
– Programs referencing data items that, at run time, contain values not conforming to the PICTURE

clause on the data description entry. For example:

- a fullword binary item with picture S9(6) USAGE BINARY, containing an oversize value of
+123456789 (unless the TRUNC(BIN) option was specified)

- a two-byte PACKED-DECIMAL item with picture S99, containing an oversize value of 123 (such as,
123C in hexadecimal).

- a packed decimal or zoned decimal item containing an invalid or non-preferred sign, that does not
conform to the sign requirements of the data description entry and the NUMPROC(PFD) compiler
option setting in effect.

– Programs with undiagnosed subscript range errors (when the SSRANGE compiler option was not
specified), that reference storage outside the storage allocation for the base data item.

– Applications with low-level dependencies on specific generated code sequences, register
conventions, or internal IBM control blocks may behave differently with Enterprise COBOL 5 than
with prior versions.

– It is illegal to specify a value greater than integer-2 for the object of an OCCURS DEPENDING ON
clause, and thus the behavior is undefined. However, Enterprise COBOL 5.1 behaves differently than
prior versions when it occurs.

• VSAM record areas for reentrant COBOL programs are allocated above 16 MB if DATA(31) is enabled.
Programs that pass data in VSAM file records as CALL … USING BY REFERENCE parameters to AMODE
24 subprograms may be impacted. Such programs can be recompiled with the DATA(24) compiler
option, or the Language Environment HEAP(BELOW) option can be used, to ensure that the records are
addressable by the AMODE 24 programs.

• Compile-time storage requirements are substantially increased, compared to prior versions of
Enterprise COBOL. See the discussion of the SIZE option. This is particularly true at higher optimization
levels, that is, programs compiled with the OPT(1) or OPT(2) compiler option.

• Compile-time CPU time requirements are substantially increased, compared to prior versions of
Enterprise COBOL.

• Compile time and run time diagnostic messages may differ, and may be generated at different times or
locations.

– Presence or absence of informational and warning level diagnostics may differ
– Diagnostics for programs that define excessive and unsupported amounts of storage may be

diagnosed either by the binder at bind time, or by Language Environment at run time, instead of
by the compiler at compilation time.

l Preface

• Compiler listing format and contents differ from prior versions of Enterprise COBOL.

Application performance changes
The OPTIMIZE option has been changed to support several levels of performance optimization for your
application. The suboptions have also been changed. The previous OPTIMIZE option format is deprecated
but is tolerated for compatibility.

Note: Although OPT(0) is equivalent to the old NOOPTIMIZE option in most ways, OPT(0) removes some
unreachable code that was not previously removed with NOOPTIMIZE.

Debugging changes
When the TEST option is specified, DWARF debugging information is included in the application module.

With NOLOAD debug segments in the program object, Enterprise COBOL 5 debug data always matches
the executable file, and is always available without giving lists of data sets to search, and does not
increase the size of the loaded program.

If you specify the TEST(SOURCE) option, the DWARF debug information includes the expanded source
code, and the compiler listing is not needed by IBM Debug Tool. When the TEST(NOSOURCE) is specified,
the generated DWARF debugging information does not include the expanded source code.

You can use the NOTEST(DWARF) option to include basic DWARF diagnostic information in the application
module. This enables application failure analysis tools, such as CEEDUMP and IBM Fault Analyzer.

Packaging and JCL changes
There have been a number of changes to the packaging, installation and JCL with Enterprise COBOL 5.1.

The SIGYCOMP data set is now a PDSE, rather than a PDS data set as in prior versions.

Enterprise COBOL 5.1 requires additional data sets

• When compiling under z/OS TSO or batch, the COBOL compiler now requires 15 utility data sets,
SYSUT1 to SYSUT15

• The SYSMDECK data set is now required for all compilations. SYSMDECK may be specified as a utility
(temporary) data set if the NOMDECK option is specified. When MDECK(...) is specified, the SYSMDECK
DD allocation must specify a permanent data set.

• The alternate DDNAME list parameter used when the COBOL compiler is invoked from an assembly
language program has been expanded with entries for the additional work data sets.

The catalogued procedures that ship with Enterprise COBOL 5.1 have been modified.

• IGYWC
• IGYWCL
• IGYWCLG

The following JCL catalogued procedures are no longer supported. Because they all use the Language
Environment Prelinker or the DFSMS Loader, which are no longer supported.

• IGYWCG
• IGYWCPG
• IGYWCPL
• IGYWCPLG
• IGYWPL

Restrictions
If you use COBOL for IMS exit routines, Enterprise COBOL 5.1 can compile programs only when the exit
is an assembler program in a PDS data set that LOADs and calls a COBOL 5.1 program in a PDSE. For

Preface li

workarounds to handle the restriction, see Chapter 22, “Moving IMS programs to Enterprise COBOL 5 or
6,” on page 241.

Changes in IBM Enterprise COBOL for z/OS 4.2
• New and enhanced XML PARSE capabilities are available when you use the z/OS System Services XML

parser:

– You can parse documents with validation against an XML schema when you use the VALIDATING
phrase of the XML PARSE statement.

– The performance of nonvalidating parsing with the XMLPARSE(XMLSS) compiler option is improved
compared to the performance of nonvalidating parsing with the XMLPARSE(XMLSS) compiler option
in Enterprise COBOL 4.1.

– Character processing is enhanced for any XML document that contains a reference to a character that
is not included in the single-byte EBCDIC code page of the document.

• A facility for customizing compiler messages (changing their severity or suppressing them), including
FIPS (FLAGSTD) messages, is made possible by a new suboption, MSGEXIT, of the EXIT compiler
option.

• A new compiler option, BLOCK0, activates an implicit BLOCK CONTAINS 0 clause for all eligible QSAM
files in your program.

• The underscore character (_) is now supported in user-defined words such as data-names and
program-names. Underscores are also supported in the literal form of program-names.

• If you use the integrated CICS translator, the compiler listing will now show the CICS options that are in
effect.

• Enterprise COBOL applications that use object-oriented syntax for Java interoperability are now
supported with Java 5 and Java 6 in addition to the Java SDK 1.4.2.

Changes in IBM Enterprise COBOL for z/OS 4.1
• The XML GENERATE statement has been extended with new syntax that gives the programmer more

flexibility and control over the form of the XML document that is generated:

– The WITH ATTRIBUTES phrase, which causes eligible items in the XML document to be generated as
XML attributes instead of as elements.

– The WITH ENCODING phrase, which allows the user to specify the encoding of the generated
document.

– The WITH XML-DECLARATION phrase, which causes the version and encoding information to be
generated in the document.

– The NAMESPACE and NAMESPACE-PREFIX phrases, which allow generation of XML documents that
use XML namespaces.

– The XML GENERATE statement now supports generation of XML documents encoded in UTF-8
Unicode.

• XML PARSE support has been enhanced:

– The z/OS System Services XML parser is now supported as an alternative to the existing XML parser
that is part of the COBOL library

– The z/OS System Services XML parser provides the following benefits:

- Availability of the latest IBM parsing technology for COBOL users.
- Offloading of COBOL XML parsing to zAAP specialty processors.
- Improved support for parsing XML documents that use XML namespaces.
- Direct support for parsing XML documents that are encoded in UTF-8 Unicode.
- Support for parsing very large XML documents, a buffer at a time.

lii Preface

– Four new special registers are introduced for namespace processing during execution of XML PARSE
statements.

– The XML PARSE statement has been extended with new syntax. The new WITH ENCODING and
RETURNING NATIONAL phrases give the programmer control over the assumed encoding of input
XML documents, to facilitate parsing in Unicode.

– A new compiler option, XMLPARSE, has been created to control whether the z/OS System
Services parser or the existing COBOL parser is used for XML PARSE statements. With the
XMLPARSE(COMPAT) option, XML parsing is fully compatible with Enterprise COBOL 3. With the
default XMLPARSE(XMLSS) option, the z/OS System Services parser is used and new XML parsing
capabilities are enabled.

• Performance of COBOL application programs has been enhanced by exploitation of new IBM z/
Architecture® instructions. The performance of COBOL Unicode support (USAGE NATIONAL data) has
been significantly improved.

• Db2 support has been enhanced in this release, including DB2® 9 exploitation and improvements in
coprocessor integration and usability:

– Support for new SQL data types and new SQL syntax provided by DB2 9
– Db2 precompiler options are shown in the compiler listing (DB2 9 only)
– SQLCA and SQLDA control blocks are expanded in the compiler listing (all Db2 releases)
– A new compiler option SQLCCSID is provided to coordinate the coded character set id (CCSID)

between COBOL and Db2
• Support for DFSMS large-format data sets
• Debugging enhancements:

– Debug Tool 8 enablement, new debugging commands
– GOTO/JUMPTO in optimized code, new TEST suboption EJPD

• Compiler options can be specified in a data set (OPTFILE option)
• Cross-reference of COPY statements, libraries, and data sets in compiler listing

Changes in IBM Enterprise COBOL for z/OS 3.4 with PTFs installed
• PK31411: A new compiler option, SQLCCSID, which works in conjunction with the Db2 coprocessor,

determines whether the CODEPAGE compiler option influences the processing of SQL statements in
COBOL programs. SQLCCSID was added via APAR PK31411.

• PK16765: Corrections to the behavior of the SEARCH ALL statement have been made.

With current service applied, specifically the PTF for APAR PK16765, new compiler diagnostic
messages and runtime diagnostic messages have been added to assist in identifying programs
and SEARCH ALL statements that are potentially impacted by these corrections and may require
modification in order to migrate to COBOL 3.4. If you have this PTF on your compiler, the listing header
and object program will show Version 3 Release 4 Modification 1.

Changes in IBM Enterprise COBOL for z/OS 3.4
• Several limits on COBOL data-item size have been significantly raised, for example:

– The maximum data-item size has been raised from 16 MB to 128 MB.
– The maximum PICTURE symbol replication has been raised to 134,217,727.
– The maximum OCCURS integer has been raised to 134,217,727.

(For full details about changed compiler limits, see the Enterprise COBOL for z/OS Language Reference.)
This support facilitates programming with large amounts of data, for example:

– Db2/COBOL applications that use Db2 BLOB and CLOB data types
– COBOL XML applications that parse or generate large XML documents

Preface liii

• Support for national (Unicode UTF-16) data has been enhanced. Several additional kinds of data items
can now be described implicitly or explicitly as USAGE NATIONAL:

– External decimal (national decimal) items
– External floating-point (national floating-point) items
– Numeric-edited items
– National-edited items
– Group (national group) items, supported by the GROUP-USAGE NATIONAL clause

• Many COBOL language elements support the new kinds of UTF-16 data, or newly support the
processing of national data:

– Numeric data with USAGE NATIONAL (national decimal and national floating point) can be used in
arithmetic operations and in any language constructs that support numeric operands .

– Edited data with USAGE NATIONAL is supported in the same language constructs as any existing
edited type, including editing and de-editing operations associated with moves.

– Group items that contain all national data can be defined with the GROUP-USAGE NATIONAL clause,
which results in the group behaving as an elementary item in most language constructs. This support
facilitates use of national groups in statements such as STRING, UNSTRING, and INSPECT.

– The XML GENERATE statement supports national groups as receiving data items, and national-edited,
numeric-edited of USAGE NATIONAL, national decimal, national floating-point, and national group
items as sending data items.

– The NUMVAL and NUMVAL-C intrinsic functions can take a national literal or national data item as an
argument.

Using these new national data capabilities, it is now practical to develop COBOL programs that
exclusively use Unicode for all application data.

• The REDEFINES clause has been enhanced such that for data items that are not level 01, the subject of
the entry can be larger than the data item being redefined.

• A new compiler option, MDECK, causes the output from library-processing statements to be written to a
file .

• Db2 coprocessor support has been enhanced: XREF is improved.
• The literal in a VALUE clause for a data item of class national can be alphanumeric .

These terminology changes were also made in this release:

• The term alphanumeric group is introduced to refer specifically to groups other than national groups.
• The term group means both alphanumeric groups and national groups except when used in a context

that obviously refers to only an alphanumeric group or only a national group.
• The term external decimal refers to both zoned decimal items and national decimal items.
• The term alphanumeric floating point is introduced to refer to an external floating-point item that has

USAGE DISPLAY.
• The term external floating point refers to both alphanumeric floating-point items and national floating-

point items.

Changes in IBM Enterprise COBOL for z/OS 3.3
• XML support has been enhanced. A new statement, XML GENERATE, converts the content of COBOL

data records to XML format. XML GENERATE creates XML documents encoded in Unicode UTF-16 or in
one of several single-byte EBCDIC code pages.

• There are new and improved features of the Debug Tool:

– Performance is improved when you use COBOL SYSDEBUG files.
– You can more easily debug programs that use national data: When you display national data in a

formatted dump or by using the Debug Tool LIST command, the data is automatically converted to

liv Preface

EBCDIC representation using the code page specified in the CODEPAGE compiler option. You can use
the Debug Tool MOVE command to assign values to national data items, and you can move national
data items to or from group data items. You can use national data as a comparand in Debug Tool
conditional commands such as IF or EVALUATE.

– You can debug mixed COBOL-Java applications, COBOL class definitions, and COBOL programs that
contain object-oriented syntax.

For further details about these enhancements to debugging support, see the Debug Tool User's Guide.
• DB2 8 SQL features are supported when you use the integrated Db2 coprocessor.
• The syntax for specifying options in the COBJVMINITOPTIONS environment variable has changed.

Changes in IBM Enterprise COBOL for z/OS and OS/390 3.2
• The compiler has been enhanced to support new features of Debug Tool:

– Playback support lets you record and replay application execution paths and data values.
– Automonitor support displays the values of variables that are referenced in the current statement

during debugging.
– Programs that have been compiled with the OPTIMIZE and TEST(NONE,SYM,. . .) options are

supported for debugging.
– The Debug Tool GOTO command is enabled for programs that have been compiled with the

NOOPTIMIZE option and TEST option with any of its suboptions. (In earlier releases, the GOTO
command was not supported for programs compiled with TEST(NONE, . . .).)

For further details about these enhancements to debugging support, see the Debug Tool User's Guide.
• Extending Java interoperability to IMS : Object-oriented COBOL programs can run in an IMS Java

dependent region. The object-oriented COBOL and Java languages can be mixed in a single application.
• Enhanced support for Java interoperability:

– The OPTIMIZE compiler option is fully supported for programs that contain OO syntax for Java
interoperability.

– Object references of type jobjectArray are supported for interoperation between COBOL and Java.
– OO applications that begin with a COBOL main factory method can be invoked with the java

command.
– A new environment variable, COBJVMINITOPTIONS, is provided for initializing the Java virtual

machine for OO applications that start with a COBOL program.
– OO applications that begin with a COBOL program can, with some limitations, be bound as modules in

a PDSE and run using batch JCL.
• Unicode enhancement for working with Db2: The code pages for host variables are handled implicitly

when you use the Db2 integrated coprocessor. SQL DECLARE statements are necessary only for
variables described with USAGE DISPLAY or USAGE DISPLAY-1 when COBOL and Db2 code pages do
not match.

Changes in IBM Enterprise COBOL for z/OS and OS/390 3.1
• Multithreading support: toleration of POSIX threads and signals, permitting applications with COBOL

programs to run on multiple threads within a process
• Interoperation of COBOL and Java by means of object-oriented syntax, permitting COBOL programs

to instantiate Java classes, invoke methods on Java objects, and define Java classes that can be
instantiated in Java or COBOL and whose methods can be invoked in Java or COBOL

• Ability to call services provided by the Java Native Interface (JNI) to obtain additional Java capabilities,
with a copybook JNI.cpy and special register JNIENVPTR to facilitate access

Preface lv

• Basic support for Unicode provided by NATIONAL data type and national (N, NX) literals, intrinsic
functions DISPLAY-OF and NATIONAL-OF for character conversions, and compiler options NSYMBOL
and CODEPAGE

– Compiler option CODEPAGE to specify the code page used for encoding national literals, and
alphanumeric and DBCS data items and literals

– Compiler option NSYMBOL to control whether national or DBCS processing should be in effect for
literals and data items that use the N symbol

• Basic XML support, including a high-speed XML parser that allows programs to consume inbound XML
messages, verify that they are well formed, and transform their contents into COBOL data structures;
with support for XML documents encoded in Unicode UTF-16 or several single-byte EBCDIC code pages

• Support for compilation of programs that contain CICS statements, without the need for a separate
translation step

– Compiler option CICS, enabling integrated CICS translation and specification of CICS options
• VALUE clauses for BINARY data items that permit numeric literals to have a value of magnitude up to

the capacity of the native binary representation, rather than being limited to the value implied by the
number of 9s in the PICTURE clause

• A 4-byte FUNCTION-POINTER data item that can contain the address of a COBOL or non-COBOL entry
point, providing easier interoperability with C function pointers

• The following support is no longer provided (as documented in this Migration Guide):

– SOM-based object-oriented syntax and services
– Compiler options CMPR2, ANALYZE, FLAGMIG, TYPECHK, and IDLGEN

• Changed default values for the following compiler options: DBCS, FLAG(I,I), RENT, and XREF(FULL).

Changes in COBOL for OS/390 & VM 2.2
• Enhanced support for decimal data, raising the maximum number of decimal digits from 18 to 31 and

providing an extended-precision mode for arithmetic calculations
• Enhanced production debugging using overlay hooks rather than compiled in hooks, with symbolic

debugging information optionally in a separate file
• Support for compiling, linking, and running in the OS/390 UNIX System Services environment, with

COBOL files able to reside in the hierarchical file system (HFS)
• Toleration of fork(), exec(), and spawn(); and the ability to call UNIX/POSIX functions
• Enhanced input-output function, permitting dynamic file allocation by means of an environment variable

named in SELECT. . . ASSIGN, and the accessing of sequentially organized HFS files including by means
of ACCEPT and DISPLAY

• Support for line-sequential file organization for accessing HFS files that contain text data, with records
delimited by the new-line character

• COMP-5 data type, new to host COBOL, allowing values of magnitude up to the capacity of the native
binary representation

• Significant performance improvement in processing binary data with the TRUNC(BIN) compiler option
• Support for linking of COBOL applications using the OS/390 DFSMS binder alone, with the prelinker

required only in exceptional cases under CICS
• Diagnosis of moves (implicit or explicit) that result in numeric truncation enabled through compiler

option DIAGTRUNC
• System-determined block size for the listing data set available by specifying BLKSIZE=0
• Limit on block size of QSAM tape files raised to 2 GB
• Support under CICS for DISPLAY to the system logical output device and ACCEPT for obtaining date and

time

lvi Preface

• Support for the Db2 coprocessor enabled through the SQL compiler option, eliminating the need for a
separate precompile step and permitting SQL statements in nested programs and copybooks

• Support for the millennium language extensions now included in the base COBOL product

Changes in COBOL for OS/390 & VM 2.1.2
• New compiler option ANALYZE to check the syntax of embedded SQL and CICS statements
• Extension of the ACCEPT statement to cover the recommendation in the Working Draft for Proposed

Revision of ISO 1989:1985 Programming Language COBOL
• New intrinsic date functions to convert to dates with a four-digit year
• The millennium language extensions, enabling compiler-assisted date processing for dates containing

two-digit and four-digit years

Requires IBM VisualAge® Millennium Language Extensions for OS/390 & VM (program number 5648-MLE)
to be installed with your compiler.

Changes in COBOL for OS/390 & VM 2.1.1
• Extensions to currency support for displaying financial data, including:

– Support for currency signs of more than one character
– Support for more than one type of currency sign in the same program
– Support for the euro currency sign, as defined by the Economic and Monetary Union (EMU)

Changes in COBOL for OS/390 & VM 2.1
• Support has been added for dynamic link libraries (DLLs)
• Due to changes in the SOMobjects product that is delivered with OS/390 1.3, changes in the JCL for

building object-oriented COBOL applications were required.
• The INTDATE compiler option is no longer an installation option only. It can now be specified as an

option when invoking the compiler.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this information or any other Enterprise COBOL documentation, send your comments to:
compinfo@cn.ibm.com.

Be sure to include the name of the documentation, the publication number of the documentation, the
version of Enterprise COBOL, and, if applicable, the specific location (for example, page number) of the
text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

Preface lvii

mailto:compinfo@cn.ibm.com

lviii Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Part 1. Overview

© Copyright IBM Corp. 1991, 2024 1

2 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 1. Introducing the new compiler and run
time

This section provides an overview of the Enterprise COBOL compiler (IBM Enterprise COBOL for z/
OS), and the common run time (Language Environment) and introduces you to the terminology used
throughout this information.

Enterprise COBOL 5 or 6 executables are Program Objects and can reside only in PDSE data sets. If your
COBOL load libraries are in PDS data sets, copy the member to PDSE data sets and use PDSE data sets
for your load libraries. IBM recommends that you allocate your PDSE load library data sets with RECFM=U,
DSNTYPE=LIBRARY, and VERSION=2, and leave all the other attributes blank, like this in ISPF:

Record format U
Record length
Block size
Data set name type LIBRARY
Data set version . : 2

This manual assumes that you have completed your runtime migration to Language Environment. What
does this mean? Briefly these are the conditions to be met before a COBOL runtime migration is complete:

• The Language Environment data set SCEERUN is installed in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or JOBLIB statements or in

CICS startup JCL.
• All statically bound runtime library routines for programs that are compiled with NORES have been

REPLACEd with routines from Language Environment.
• IGZEBST bootstrap modules for VS COBOL II programs that are compiled with RES were either linked

with the VS COBOL II runtime version of IGZEBST that has APAR PN74000 applied, or IGZEBST was
REPLACEd with IGZEBST from Language Environment.

If you understand these conditions, but your shop has not completed its runtime library migration, you
must complete that migration before using this book. You can use the Enterprise COBOL 4.2 Compiler and
Runtime Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf for help in completing
your migration to Language Environment.

Using Language Environment with Enterprise COBOL 5 or 6 and VS COBOL II
programs
When running a mixture of VS COBOL II programs and Enterprise COBOL 5 or 6 programs:

• A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace IGZEBST in applications with VS
COBOL II programs with the IGZEBST from LE with the PTFs for APAR PI33330 installed.

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can also be used with any COBOL
programs VS COBOL II and later without COBOL 5 or 6 programs.

– For dynamically CALLed CICS programs, you just need to install the PTFs for APAR PI25079 on
SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be better if you replace IGZEBST
in applications with VS COBOL II programs with the IGZEBST from LE with the PTFs for APAR
PI33330 installed. It is not required. There is no issue with IGZEBST for dynamically called programs
in non-CICS for calling VS COBOL II programs from COBOL 5 or 6 programs.

© Copyright IBM Corp. 1991, 2024 3

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

• A current version of CEEBETBL, the Language Environment externals table, is required. If you are
including object code bound some time ago with your new COBOL 5 or 6 object code, you might be
indirectly including an old version of CEEBETBL.

If the length of CEEBETBL you bind is less than x'28' (or the length of the CEEBETBL in the current
SCEELKED library), it is old and needs to be replaced, or you will encounter runtime abends or a
terminating runtime message.

If you rebind older object code with COBOL 5 or 6 as part of your migration, it is recommended that
you specifically INCLUDE a current copy of CEEBETBL prior to INCLUDEs of the older object code, taking
care that you do not inadvertently make CEEBETBL the entry point.

If you understand these conditions, and meet them all, you can skip to Chapter 5, “Planning to upgrade
source programs,” on page 29.

If you do not understand these conditions, then please continue reading these overview chapters. If you
then discover that your shop has not completed its runtime library migration, use the Enterprise COBOL
4.2 Compiler and Runtime Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf for
help in completing your runtime library migration.

This section provides an overview of the Enterprise COBOL compiler (IBM Enterprise COBOL for z/
OS), and the common run time (Language Environment) and introduces you to the terminology used
throughout this information. This section includes the following information:

• Product relationships: compiler, run time, debug
• Comparison of COBOL compilers
• Language Environment's runtime support for different compilers
• Advantages of the new compiler and run time
• Changes with the new compiler and run time
• General conversion tasks

See “Summary of changes to the COBOL compilers” on page xxxv for further details.

Product relationships: compiler, runtime library, debug
IBM Enterprise COBOL for z/OS is IBM's strategic COBOL compiler for the IBM Z platform. Enterprise
COBOL is comprised of features from IBM COBOL, VS COBOL II, and OS/VS COBOL with additional
features such as multithread enablement, Unicode, XML and JSON capabilities, object-oriented COBOL
syntax for Java interoperability, integrated CICS translator, and integrated Db2 coprocessor. Enterprise
COBOL, as well as IBM COBOL and VS COBOL II, supports the 85 COBOL Standard. Some features such
as the CMPR2 compiler option and SOM-based object-oriented COBOL syntax that IBM COBOL supported
are not available with Enterprise COBOL.

Language Environment provides a single language runtime library for COBOL, PL/I, C/C++, and FORTRAN.
In addition to support for existing applications, Language Environment also provides common condition
handling, improved interlanguage communication (ILC), reusable libraries, and more efficient application
development. Application development is simplified by the use of common conventions, common runtime
facilities, and a set of shared callable services. Language Environment is required to run Enterprise COBOL
programs.

Debugging capabilities are provided by z/OS Debugger. z/OS Debugger provides significantly improved
debugging function over previous COBOL debugging tools, and can be used to debug Enterprise COBOL
programs, IBM COBOL programs, VS COBOL II programs running under Language Environment, and other
programs including assembler, PL/I, and C/C++.

With OS/VS COBOL and VS COBOL II, the runtime library was included with the compiler. In addition, the
debug component was also an optional part of a single COBOL product. In Enterprise COBOL 3, Debug
Tool was included with the full-function version of the compiler.

4 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

With Enterprise COBOL 5 and 6, the compiler, the debugging component, and the runtime library are all
separate, although the runtime library (Language Environment) is included with the z/OS operating system
and does not need to be purchased separately.

Comparison of COBOL compilers
Table 4 on page 5 gives an overview of the functions available with the latest releases of OS/VS COBOL,
VS COBOL II, COBOL for MVS & VM, COBOL for OS/390 & VM, and shows the new functions available with
the Enterprise COBOL compiler.

Table 4. Comparison of COBOL compilers

OS/VS COBOL VS COBOL II COBOL for MVS & VM
COBOL for OS/390 &
VM

Enterprise COBOL
for z/OS

Support for:
XML,
Java interoperability,
OO,
integrated CICS
translator,
multithreading,
Unicode,
JSON

Support for:
DLLs,
31 digits,
Db2 coprocessor,
OS/390 UNIX,
Enhanced support for
Debug Tool

Support for:
DLLs,
31 digits,
Db2 coprocessor,
OS/390 UNIX,
Enhanced support
for Debug Tool

Extensions for:
Object-oriented
COBOL,
C interoperability,
Intrinsic functions,
Amendment to
 '85 Std,
Support for:
Language
Environment
Debug Tool

Extensions for:
Object-oriented
COBOL,
C interoperability,
Intrinsic functions,
Amendment to
 '85 Std,
Support for:
Language
Environment
Debug Tool

Extensions for:
C interoperability,
Intrinsic functions,
Amendment to
85 COBOL Standard,
Support for:
Language
Environment
Debug Tool

Chapter 1. Introducing the new compiler and run time 5

Table 4. Comparison of COBOL compilers (continued)

OS/VS COBOL VS COBOL II COBOL for MVS & VM
COBOL for OS/390 &
VM

Enterprise COBOL
for z/OS

85 COBOL
Standard, No
intrinsic functions,
Structured
programming,
DBCS National
language, Improved
CICS interface,
31-bit addressing,
Reentrancy, Fast
Sort Optimizer,
Interactive
debugging (full-
screen mode)

85 COBOL
Standard, Structured
programming,
DBCS National
language, Improved
CICS interface,
31-bit addressing,
Reentrancy, Fast
Sort Optimizer,
Interactive debugging
(full-screen mode)

85 COBOL
Standard, Structured
programming,
DBCS National
language, Improved
CICS interface,
31-bit addressing,
Reentrancy, Fast
Sort Optimizer,
Interactive debugging
(full-screen mode)

85 COBOL Standard
and select features
from 2002 COBOL
Standard and
2014 COBOL
Standard, Structured
programming,
DBCS National
language, Improved
CICS interface,
31-bit addressing,
Reentrancy, Fast
Sort Optimizer,
Interactive
debugging (full-
screen mode)

74 COBOL
Standard, 74 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive
debugging (line
mode)

COBOL 74
compatibility, 85
STD FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive
debugging

COBOL 74
compatibility, 85
STD FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

COBOL 74
compatibility, 85
STD FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive
debugging

For a complete list of host versions and releases, see the Licensed Program Specifications for Language
Environment and for the compiler that you are using.

Language Environment's runtime support for different compilers
The OS/VS COBOL runtime library provided support for only OS/VS COBOL programs. Assembler
programs could be included, but not VS COBOL II programs.

The VS COBOL II runtime library provided support for both OS/VS COBOL and VS COBOL II programs.
Assembler programs could also be included.

Language Environment provides support for OS/VS COBOL programs, and VS COBOL II programs, as well
as IBM COBOL and Enterprise COBOL programs. In addition, Language Environment provides support for
other high-level languages, including PL/I, C/C++ and Fortran. Like its predecessors, assembler programs
can be included in applications that run under Language Environment

Different versions of Enterprise COBOL have different minimum release level requirements for Language
Environment. For example, Enterprise COBOL for z/OS 4.2 required a minimum level of z/OS 1.9;
Enterprise COBOL for z/OS 5.1 and 5.2 requires a minimum level of z/OS 1.13; Enterprise COBOL for z/OS
6.1 and 6.2 requires a minimum level of z/OS 2.1. Enterprise COBOL for z/OS 6.3 requires a minimum
level of z/OS 2.2. Enterprise COBOL for z/OS 6.4 requires a minimum level of z/OS 2.3.

Advantages of the new compiler and run time
The Enterprise COBOL compiler and Language Environment run time provide additional functions over
OS/VS COBOL, VS COBOL II, and IBM COBOL. Table 5 on page 7 lists the advantages of the new
compiler and run time and indicates whether they apply to VS COBOL II, OS/VS COBOL, IBM COBOL, or all
three.

6 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment

Advantage Notes Advantage over

OS/VS
COBOL

VS
COBOL

II

IBM
COBOL

XML support Enterprise COBOL provides new statements for
parsing and generating XML documents. These
statements allow programs to transform XML
content into COBOL data structures and COBOL data
structures into XML documents.

X X X

Java interoperation Enterprise COBOL includes object-oriented COBOL
syntax that enables COBOL to interoperate with
Java. This Java interoperation is also supported
under IMS.

X X X

Support to run in
multiple threads

Enterprise COBOL has a toleration level of support
for POSIX threads and signals. With Enterprise
COBOL, an application can contain COBOL programs
running on multiple threads within a process.

X X X

Support for Unicode The COBOL Unicode support uses the product z/OS
Support for Unicode.

X X X

Improved Db2
function

Enterprise COBOL includes support for Db2 stored
procedures.

X X

Support for the Db2 coprocessor X X *

Improved CICS
function

Enterprise COBOL includes CALL statement support
(for faster CICS performance than when using EXEC
CICS LINK) and eliminates the need for user-coded
BLL cells.

X

Increased WORKING-STORAGE space for DATA(24)
and DATA(31) programs. For DATA(31), the limit is
2 GB. For DATA(24), the limit is the available space
below the 16-MB line.

X X X

Support for the Integrated CICS translator X X *

JSON support In Enterprise COBOL 6.1, support for generation of
JSON texts

Starting in Enterprise COBOL 6.2, support for both
generation and parsing of JSON texts

X X X

Usability
enhancements

These enhancements include:

• Large literals in VALUE clauses on COMP-5 items
or BINARY items with TRUNC(BIN)

• Function-pointer data type
• Arguments specifying ADDRESS OF

X X X

COBOL language
improvements

Ability to perform math and financial functions
in COBOL, using Intrinsic Functions. You can
replace current routines written in FORTRAN or
C with native COBOL code, thus simplifying your
application logic.

X X

Chapter 1. Introducing the new compiler and run time 7

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes Advantage over

OS/VS
COBOL

VS
COBOL

II

IBM
COBOL

Above-the-line
support

Virtual Storage Constraint Relief (VSCR) allows your
programs to reside, compile, and access programs
below or above the 16-MB line.

X

QSAM buffers can be above the 16-MB line for
optimal support of DFSMS and data striping.

X X

COBOL EXTERNAL data can now be above the line. N/A X

31-digit support Enterprise COBOL added support for numbers up to
31 digits when the ARITH(EXTEND) option is used.

X X *

z/OS UNIX system
services support

The cob2 command can be used to compile and
link COBOL programs in the z/OS UNIX shell. COBOL
programs can call most of the C language functions
defined in the POSIX standard.

X X

Error recovery options Programmers now have the ability to
have application-specific error-handling routines
intercept program interrupts, abends, and other
software-generated conditions for error recovery.
This is done using Enterprise COBOL programs with
Language Environment callable services to register
the user-written condition handlers. Language
Environment handles all condition management.

X X

High-precision math
routines

Using Language Environment callable services, your
programs can return the most accurate results.

X X

Support for multiple
MVS tasks

RES applications can now execute independently
under multiple MVS tasks. (For example, running
two Enterprise COBOL programs at the same time
from ISPF split screens.)

X X

Performance Faster arithmetic computations X

Faster dynamic and static CALL statements X

Improved performance of variable-length MOVEs X

Faster CICS performance if using the Language
Environment CBLPSHPOP runtime option to prevent
PUSH HANDLE and POP HANDLE for CALL
statements.

X

Improved performance for programs compiled with
TRUNC(BIN). COBOL for OS/390 & VM 2.2 added
support to generate more efficient code when the
TRUNC(BIN) compiler option is used.

N/A X

8 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes Advantage over

OS/VS
COBOL

VS
COBOL

II

IBM
COBOL

Improved ILC With the common Language Environment library, ILC
is improved between COBOL and other Language
Environment-conforming languages. For example,
interlanguage calls between COBOL and other
languages are faster under Language Environment,
because there is significantly less overhead for each
CALL statement. Additionally, under CICS, you can
use the CALL statement to call PL/I or C programs in
place of EXEC CICS LINK.

X X

Character
manipulation

Improved bit and character manipulation using
hex literals. Improved flexibility with character
manipulation using reference modification

X

Top-down modular
program development

Support for top-down modular program
development through nesting of programs and
improved CALL and COPY functions

X

Structured
Programming Support

Support for structured programming coding
through:

• Inline PERFORM statements
• The CONTINUE place-holder statement
• The EVALUATE statement
• Explicit scope terminators (for example: END-IF,

END-PERFORM, END-READ)

X

85 COBOL Standard
conformance

Support for 85 COBOL Standard X

Support for Amendment 1 (Intrinsic Functions
Module) of 85 COBOL Standard

X X

Subsystem support Improved support for IMS, ISPF, DFSORT, Db2, WAS X

Support for reentrancy All OS/VS COBOL programs are nonreentrant. Only
reentrant programs can be loaded into shared
storage (LPA or Shared Segments).

X

Chapter 1. Introducing the new compiler and run time 9

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes Advantage over

OS/VS
COBOL

VS
COBOL

II

IBM
COBOL

Support for Debug Tool Debug Tool provides the following benefits:

• Interactive debugging of CICS and non-CICS
applications

• Interactive debugging of batch applications
• Full-screen debugging for CICS and non-CICS

applications
• Debugging of mixed languages in the same debug

session
• Ability to debug programs that run on the host
• Working in conjunction with IBM Developer for

z/OS, the ability to debug host programs from the
workstation using a graphical user interface

X X

For COBOL for OS/390 & VM and later programs
only:

• Dynamic Debug feature which allows COBOL
programs compiled without hooks to be
debugged.

X X

For Enterprise COBOL 4 or later programs:

• Compiler TEST suboption EJPD enables
predictable GOTO/JUMPTO in programs also
compiled with a non-zero OPTIMIZE level.

Note: Unpredictable GOTO/JUMPTO in programs
compiled with a non-zero OPTIMIZE level and
TEST(NOJEPD) is available with the Debug Tool
SET WARNING OFF command.

X X X

Runtime options ABTERMENC and TERMTHDACT- allow you to
control error behavior.

X X

CBLQDA - allows you to control dynamic allocation
of QSAM files.

X

LANGUAGE - allows you to change language of
runtime error messages.

X

RPTSTG - allows you to obtain storage usage
reports.

X

Storage options - allow you to control where storage
is obtained and the amount of storage used.

X X

Compiler options for
Enterprise COBOL 5
and 6

There have been many changes to compiler options
and suboptions for Enterprise COBOL 5 and 6. For
details about those changes, see “Compiler option
changes in Enterprise COBOL 5 and 6” on page 188.

X X X

10 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes Advantage over

OS/VS
COBOL

VS
COBOL

II

IBM
COBOL

Compiler options for
Enterprise COBOL 5
and 6 (continued)

• The SQLIMS and VLR options are available in
Enterprise COBOL 5.1 with the service PTFs,
COBOL 5.2, and COBOL 6.

• The SUPPRESS and VSAMOPENFS options are
available in Enterprise COBOL 6.1 and 6.2.

• The XMLPARSE option was originally removed in
Enterprise COBOL 5.1, but was restored to COBOL
5.1 via service and is included in COBOL 5.2 and 6.

• The ZONECHECK option is available in Enterprise
COBOL 5.1 with the service PTFs and COBOL 5.2
with the service PTFs. ZONECHECK is deprecated
in COBOL 6.1 with the PTF for APAR PI71625
installed, and is replaced by NUMCHECK.

• The ZONEDATA options is available in Enterprise
COBOL 5.1 with the service PTFs, COBOL 5.2 with
the service PTFs, and COBOL 6.

X X X

Compiler options for
Enterprise COBOL 4

The following compiler options are available to
Enterprise COBOL 4 programs and later programs
only:

• XMLPARSE - controls whether the z/OS XML
System Services parser or the existing COBOL
parser is used for XML PARSE statements. With
the XMLPARSE(COMPAT) option, XML parsing is
compatible with Enterprise COBOL 3. With the
XMLPARSE(XMLSS) options, the z/OS System
Services parser is used and new XML parsing
capabilities are enabled.

Note: The XMLPARSE option was originally
removed in Enterprise COBOL 5.1, but was
restored to COBOL 5.1 via service and is included
in COBOL 5.2 and 6.

• OPTFILE - controls whether compiler options are
read from a data set specified in a SYSOPTF DD
statement.

• SQLCCSID - controls coordination of the coded
character set ID (CCSID) between COBOL and
Db2.

• BLOCK0 - activates an implicit BLOCK CONTAINS
0 clause for all eligible QSAM files in a program.

• MSGEXIT - The MSGEXIT suboption of the EXIT
compiler option provides a facility for customizing
compiler messages (changing their severity or
suppressing them), including FIPS (FLAGSTD)
messages.

X X X

Chapter 1. Introducing the new compiler and run time 11

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes Advantage over

OS/VS
COBOL

VS
COBOL

II

IBM
COBOL

Compiler options for
Enterprise COBOL 3

The following compiler options are available to
Enterprise COBOL 3 and later programs only:

• CICS - enables the integrated CICS translator
capability and specifies CICS options. NOCICS is
the default.

• CODEPAGE - specifies the code page used for
encoding contents of alphanumeric and DBCS
data items at run time as well as alphanumeric,
national, and DBCS literals in a COBOL source
program.

• MDECK(COMPILE, NOCOMPILE) - controls
whether output from library processing is
written to a file and whether compilation
continues normally after library processing and
the generation of the output file.

• NSYMBOL(NATIONAL, DBCS) - controls the
interpretation of the "N" symbol used in literals
and picture clauses, indicating whether national or
DBCS processing is assumed.

• THREAD - indicates that the COBOL program
is to be enabled for execution in a Language
Environment enclave with multiple POSIX threads
or PL/I tasks. The default is NOTHREAD.

X X X

Compiler options for
COBOL for OS/390 &
VM

The following compiler options are available to
COBOL for OS/390 & VM and later programs only:

• DLL - enables the compiler to generate an object
module that is enabled for Dynamic Link Library
(DLL) support.

• EXPORTALL - instructs the compiler to
automatically export certain symbols when the
object deck is link-edited to form a DLL.

X X

12 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes Advantage over

OS/VS
COBOL

VS
COBOL

II

IBM
COBOL

Compiler options for
COBOL for MVS & VM

The following compiler options are available to
COBOL for MVS & VM and later programs:

• CURRENCY - allows you to define a default
currency symbol for COBOL programs.

• OPTIMIZE(FULL) - OPTIMIZE with the new
suboption of FULL optimizes object programs and
provides improved runtime performance over both
the OS/VS COBOL and VS COBOL II OPTIMIZE
options. The compiler discards unused data items
and does not generate code for any VALUE clauses
for the discarded data items.

• PGMNAME(COMPAT,LONGUPPER,LONGMIXED)
controls the handling of program names in relation
to length and case.

• RMODE(AUTO,24,ANY) - allows NORENT
programs to reside above the 16-MB line.

X X

* The integrated Db2 coprocessor, integrated CICS translator, and 31-digit support were added as new features
to COBOL for OS/390 & VM 2.2.

Changes with the new compiler and run time
With Enterprise COBOL, you may find that recompiling existing COBOL applications is affected by several
areas such as the removal of compiler options, different default compiler options, unsupported SOM-
based OO COBOL, and an integrated Db2 coprocessor, and an integrated CICS translator. The following
information is a brief description of the removed or improved element and the actions required to ensure
compatibility.

CMPR2 compiler option
Enterprise COBOL does not provide the CMPR2 compiler option. Existing programs compiled with CMPR2
must be converted to NOCMPR2 (85 COBOL Standard) in order to compile them with Enterprise COBOL.

For additional details, see:

• Chapter 6, “Upgrading OS/VS COBOL source programs,” on page 45
• Chapter 8, “Upgrading VS COBOL II source programs,” on page 89
• Chapter 10, “Upgrading IBM COBOL source programs,” on page 99

FLAGMIG compiler option
The FLAGMIG option helps identify source statements that need to be converted to compile under
Enterprise COBOL. FLAGMIG is available in compilers prior to Enterprise COBOL that support the CMPR2
option. If you are already using Enterprise COBOL 4.2, it is recommended that you use the FLAGMIG4
option (available in Enterprise COBOL 4.2 with current service applied) to help you migrate to Enterprise
COBOL 5 or 6.

To get similar migration flagging, use “COBOL and CICS Command Level Conversion Aid for z/OS (CCCA)”
on page 286, this Migration Guide, or a compiler released prior to Enterprise COBOL to compile programs
that use FLAGMIG.

Chapter 1. Introducing the new compiler and run time 13

For details about using the FLAGMIG and CMPR2 options to aid you with migration to Enterprise COBOL,
see “Upgrading programs compiled with the CMPR2 compiler option” on page 104.

If you are already using Enterprise COBOL 4.2 and want to migrate to Enterprise COBOL 5 or 6, use the
FLAGMIG4 option to flag source code syntax-related changes required to move to Enterprise COBOL 5 or
6. For details, see “FLAGMIG4 compiler option” on page 14.

FLAGMIG4 compiler option
The FLAGMIG4 option helps you migrate to Enterprise COBOL 5 or 6. FLAGMIG4 is available in Enterprise
COBOL 4.2 with PTF for APAR PM93450 installed. It is also recommended that you install PTFs for APARs
PI12240, PI26838, and PI58762 as these contain updates to the FLAGMIG4 option.

The FLAGMIG4 option identifies language elements in Enterprise COBOL 4 programs that are not
supported, or that are supported differently in Enterprise COBOL 5 or 6. The compiler generates a warning
diagnostic message for all such language elements.

Note: The source code changes for COBOL 5 and 6 are rarely used COBOL language features and do not
affect 99% of COBOL users.

SOM-based object-oriented COBOL
Enterprise COBOL does not support SOM-based OO COBOL; however, Enterprise COBOL provides OO
syntax to facilitate the interoperation of COBOL and Java programs. The removal of SOM-based OO
COBOL from Enterprise COBOL included the removal of the compiler options TYPECHK and IDLGEN
because they require SOM to run. Applications utilizing SOM-based OO COBOL must be redesigned to
upgrade to Java-based OO COBOL syntax or redesigned as procedural (non-OO) COBOL.

For additional details and compatibility considerations, see “Upgrading SOM-based object-oriented (OO)
COBOL programs” on page 136.

Integrated Db2 coprocessor
Enterprise COBOL provides an integrated Db2 coprocessor that allows the Enterprise COBOL compiler
to handle both native COBOL statements and embedded SQL statements in a source program. You can
choose to migrate from the separate Db2 precompiler to the integrated Db2 coprocessor, or you can
choose to continue using the separate Db2 precompiler.

The SQL compiler option must be specified to enable the Db2 coprocessor to process a COBOL source
program that contains SQL statements.

For additional details and compatibility considerations, see Chapter 21, “Db2 coprocessor conversion
considerations,” on page 235.

Integrated CICS translator
Enterprise COBOL provides an integrated CICS translator that allows the Enterprise COBOL compiler to
handle both native COBOL statements and embedded CICS statements in a source program. You can
choose to migrate from the separate CICS translator to the integrated CICS translator, or to continue
using the separate CICS translator.

The CICS compiler option must be specified to enable the integrated CICS translator to process a COBOL
source program that contains CICS statements.

For additional details and compatibility considerations, see Chapter 20, “CICS conversion
considerations,” on page 229.

Performance of decimal overflows
The optimizer in Enterprise COBOL 6 was designed to truncate values at the earliest opportunity, provided
that early truncation would not remove digits that would affect the remainder of a computation. This
sometimes allowed the code generator to use smaller data types or avoid generating instructions that

14 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

would not have any impact on the final result. Truncating in the middle of a computation is often done
with packed-decimal instructions on the hardware, which can generate decimal overflows.

Normally, Enterprise COBOL programs do not set or alter the hardware's overflow mask. Without the
overflow mask being set, an overflow is suppressed at the hardware level. However, certain COBOL
features or other languages in an Interlanguage communication (ILC) application may set the overflow
mask so that a hardware exception is not suppressed when an overflow occurs. For details, see Decimal
overflow implications in ILC Applications in the Enterprise COBOL Performance Tuning Guide. When the
unsuppressed overflow exception occurs in a COBOL program, the LE condition handler is invoked, and
consequently the exception is ignored, as COBOL programs should not overflow. But the time taken to
invoke LE and transfer control back to the COBOL program decreases performance.

In addition, for ARCH(10) and ARCH(11) with the availability of the decimal floating point (DFP) facility,
and ARCH(12) with the vector decimal facility, the compiler uses the truncation capabilities of these
facilities to further improve performance. However, this can lead to more potential overflows than
previous architecture levels (of COBOL 4.2 and earlier compilers), and thus lead to performance issues
as described above. The changes in COBOL 6 to truncate earlier and using different instructions do not
change the behavior of Enterprise COBOL 6 programs compared to Enterprise COBOL 4. The only impact
is the possible performance issues, and those only affect ILC applications.

Starting with ARCH(13) in COBOL 6.3, the compiler uses the vector decimal Instruction Overflow Mask
(IOM) to suppress decimal overflows at the instruction level independently of the program mask setting.
Therefore, COBOL performance is unaffected by overflows, even in ILC applications.

General migration tasks
Depending on your shop's programming environment, you will likely have to complete one or more
migration tasks to move to the new compiler and run time.

These tasks include:

• Planning your strategy
• Upgrading your source to Enterprise COBOL
• Adding Enterprise COBOL programs to existing applications

Planning your strategy
Before upgrading your source programs to Enterprise COBOL, develop a conversion strategy. For help
in completing your runtime library migration to Language Environment, see the Enterprise COBOL 4.2
Compiler and Runtime Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Your migration strategy might be to gradually recompile applications one program at a time as you make
program changes, or you might recompile entire existing applications with Enterprise COBOL at once. You
may also decide to use a little bit of both strategies.

Upgrading your source to Enterprise COBOL
The effort required to upgrade your source programs is dependent on the compiler used and the language
level used for those programs.

OS/VS COBOL
OS/VS COBOL programs compiled with either LANGLVL(1) or LANGLVL(2) can contain either 68 COBOL
Standard or 74 COBOL Standard elements. Conversion is required in order for these programs to compile
with Enterprise COBOL. You should use conversion tools to aid in this conversion. For details, see
“Converting to 85 COBOL Standard” on page 53.

Chapter 1. Introducing the new compiler and run time 15

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

VS COBOL II
From a conversion standpoint, VS COBOL II and Enterprise COBOL 5 or 6 have the following language
differences:

• Removal of CMPR2 support
• Behavior of some SEARCH ALL statements
• New reserved words
• Simplified TEST compiler option
• Removal of runtime support for SIMVRD
• Removal of support for the format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and the

syntax: GO TO MORE-LABELS.

A complete list of reserved words, including those reserved for object-oriented COBOL is included in
Appendix B, “COBOL reserved word comparison,” on page 257.

If upgrading from VS COBOL II 1.3, there are also three minor language differences due to ANSI
interpretation changes. Aside from these small differences, you can compile with Enterprise COBOL
without change and receive the same results. For details, see Chapter 8, “Upgrading VS COBOL II source
programs,” on page 89.

VS COBOL II 1.2 programs are coded to the 74 COBOL Standard as are VS COBOL II programs compiled
with the CMPR2 compiler option. The CMPR2 compiler option is not supported by Enterprise COBOL,
requiring source conversion for all VS COBOL II 1.1 or 1.2 programs as well as any VS COBOL II 1.3 or 1.4
programs that were compiled with CMPR2. Conversion tools can help you upgrade your source programs
to 85 COBOL Standard. Details of language differences between CMPR2 and NOCMPR2 are included in
“Migrating from the CMPR2 compiler option to NOCMPR2” on page 104.

For details about the conversion tools available to upgrade source programs, see Appendix C, “Conversion
tools for source programs,” on page 281.

IBM COBOL
Many IBM COBOL programs will compile without change under Enterprise COBOL.

The following programs, however, will need to be upgraded before compiling with Enterprise COBOL:

• Programs compiled with the CMPR2 compiler option
• Programs that have SOM-based object-oriented COBOL syntax
• Programs that use words which are now reserved in Enterprise COBOL
• Programs that have undocumented IBM COBOL extensions
• Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and

optionally the syntax: GO TO MORE-LABELS.

For details, see Chapter 10, “Upgrading IBM COBOL source programs,” on page 99.

Enterprise COBOL 3
Most Enterprise COBOL 3 programs will compile without change under Enterprise COBOL 5 or 6.

The following programs, however, will need to be upgraded:

• Programs that use words which are now reserved in Enterprise COBOL
• Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and the

syntax: GO TO MORE-LABELS.

For details, see Chapter 12, “Upgrading programs from Enterprise COBOL 3,” on page 143.

16 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Enterprise COBOL 4
Most Enterprise COBOL 4 programs will compile without change under Enterprise COBOL 5 or 6.

The following programs, however, will need to be upgraded:

• Programs that use words which are now reserved in Enterprise COBOL
• Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and the

syntax: GO TO MORE-LABELS.

For details, see Chapter 14, “Upgrading from Enterprise COBOL 4,” on page 155.

Adding Enterprise COBOL programs to existing applications
You can create new Enterprise COBOL programs (or recompile existing programs with Enterprise COBOL)
and run them with existing applications under Language Environment.

Note: You should use this Migration Guide only if you have completed the runtime migration to Language
Environment. This means that the following conditions have been met:

• The Language Environment data set SCEERUN is installed in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or JOBLIB statements or in

CICS startup JCL.
• All statically bound runtime library routines for programs that are compiled with NORES have been

REPLACEd with routines from Language Environment.
• IGZEBST bootstrap modules for VS COBOL II programs that are compiled with RES were either linked

with the VS COBOL II runtime version of IGZEBST that has APAR PN74000 applied, or IGZEBST was
REPLACEd with IGZEBST from Language Environment.

If these steps have not been completed, please first complete all runtime migration activities in the
Enterprise COBOL 4.2 Compiler and Runtime Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/
igy3mg50.pdf prior to following the steps here.

When running a mixture of VS COBOL II programs and Enterprise COBOL 5 or 6 programs:

• A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace IGZEBST in applications with VS
COBOL II programs with the IGZEBST from LE with the PTFs for APAR PI33330 installed.

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can also be used with any COBOL
programs VS COBOL II and later without COBOL 5 or 6 programs.

– For dynamically CALLed CICS programs, you just need to install the PTFs for APAR PI25079 on
SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be better if you replace IGZEBST
in applications with VS COBOL II programs with the IGZEBST from LE with the PTFs for APAR
PI33330 installed. It is not required. There is no issue with IGZEBST for dynamically called programs
in non-CICS for calling VS COBOL II programs from COBOL 5 or 6 programs.

• A current version of CEEBETBL, the Language Environment externals table, is required. If you are
including object code bound some time ago with your new COBOL 5 or 6 object code, you might be
indirectly including an old version of CEEBETBL.

If the length of CEEBETBL you bind is less than x'28' (or the length of the CEEBETBL in the current
SCEELKED library), it is old and needs to be replaced, or you will encounter runtime abends or a
terminating runtime message.

If you rebind older object code with COBOL 5 or 6 as part of your migration, it is recommended that
you specifically INCLUDE a current copy of CEEBETBL prior to INCLUDEs of the older object code, taking
care that you do not inadvertently make CEEBETBL the entry point.

Chapter 1. Introducing the new compiler and run time 17

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

When adding Enterprise COBOL programs to existing applications, you must be aware of the following
items:

• Restrictions of running programs with certain old COBOL programs
• Acquiring WORKING-STORAGE both above and below the 16-MB line
• Effect of compiler option changes
• Reserved word changes
• Other behavior differences with Enterprise COBOL 5 and 6

For details, see Chapter 18, “Adding Enterprise COBOL 5 or 6 programs to existing COBOL applications,”
on page 215.

Restriction: You cannot mix Enterprise COBOL 5 or 6 programs with:

• OS/VS COBOL programs. You must migrate them to Enterprise COBOL.
• VS COBOL II NORES programs. You must migrate them to Enterprise COBOL.

18 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 2. Do I need to recompile?

Ideally, programs should be compiled with a supported compiler (currently only IBM Enterprise COBOL
for z/OS is supported) and run with a supported runtime library (Language Environment for a supported
version of z/OS). You can migrate programs gradually, in two stages:

• Stage 1: Runtime migration. You can use the Enterprise COBOL 4.2 Compiler and Runtime Migration
Guide at http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf for help in completing your runtime
library migration.

• Stage 2: Compiler migration (you may compile only one or many programs in existing applications)

The remainder of this section explains when and why you might want to migrate your applications (run
time or source).

Migration basics
The migration process involves compiler migration (recompiling source programs with the new compiler)
and might involve a runtime migration (moving your applications to a new runtime library) as well. As part
of the migration process, you will also need to do inventory assessment and testing. As stated previously,
you are not required to do your recompilation and runtime migration concurrently.

For more details about the migration process, see “General migration tasks” on page 15.

Runtime migration
Every COBOL program requires runtime library routines to execute. With the older compilers OS/VS
COBOL and VS COBOL II, there was an option to have the runtime routines statically linked to the load
modules (the NORES compiler option) or dynamically accessed at run time (the RES compiler option).
Since COBOL/370 1.1 in 1991, all COBOL compilers default to the RES behavior.

Moving to Language Environment
If you are starting with load modules consisting of programs that are compiled with the NORES option and
link-edited with the OS/VS COBOL runtime library or the VS COBOL II runtime library, then you will need
to use REPLACE linkage-editor control statements to replace the existing runtime library routines with
the Language Environment versions. If you start with object programs (non-linked), then you just need to
link-edit with Language Environment.

Note: If your IGZEBST bootstrap routine from VS COBOL II has PN74000 installed, you do not need to
REPLACE this IGZEBST with the Language Environment version of IGZEBST.

If the programs are compiled with the RES option, make the Language Environment library routines
available at run time in place of the OS/VS COBOL or VS COBOL II library routines by using LNKLST,
LPALST, JOBLIB, or STEPLIB.

Do not make more than one COBOL runtime library available to your applications at run time. For
example, there should be one and only one COBOL runtime library, such as SCEERUN for Language
Environment, in LNKLST. If you have more than one, you will either get hard-to-find errors or you will have
an unused load library in your concatenation. In addition, if you have more than one runtime library in
your concatenation, then you have an invalid configuration that is not supported by IBM.

If you have not yet completed your runtime library migration, you must complete that migration before
using this book. You can use the Enterprise COBOL 4.2 Compiler and Runtime Migration Guide at http://
publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf for help in completing your runtime library migration.

© Copyright IBM Corp. 1991, 2024 19

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Compiler migration
Compiler migration is not required for most programs and can occur after you have moved your OS/VS
COBOL or VS COBOL II programs to run with Language Environment. Compiler migration is required for
OS/VS COBOL programs and VS COBOL II programs compiled with NORES.

Source code changes are not required for most programs when recompiling with Enterprise COBOL 5 or
6. Although we recommend recompiling all programs in each application as you migrate to Enterprise
COBOL 5 or 6, it is not required. Source code changes will be required for programs that were compiled
with OS/VS COBOL or were compiled with a later compiler using the old CMPR2 compiler option.

Compiler migration and recompilation is required for OS/VS COBOL programs and VS COBOL II NORES
programs if they are to be called by (or need to call) Enterprise COBOL 5 or 6 programs. Enterprise COBOL
5 and 6 programs can dynamically call (and be dynamically called by) VS COBOL II RES programs.

Compiler migration usually consists of upgrading the source language level that is used (such as from 74
Standard COBOL supported by OS/VS COBOL to 85 Standard COBOL supported by Enterprise COBOL).
Compiler migration is also required in a few instances to enable your applications to run under Language
Environment.

Many conversion tools exist to aid in upgrading your source code. For details, see Appendix C,
“Conversion tools for source programs,” on page 281.

Service support for OS/VS COBOL and VS COBOL II programs
In some cases IBM will continue to provide support for OS/VS COBOL and VS COBOL II programs that run
under Language Environment.

IBM will continue to provide service support for the running of programs compiled with the OS/VS COBOL
1.2 and VS COBOL II 1.3 and higher compilers when these programs use the Language Environment
runtime library versions of the COBOL library routines with the following exceptions:

• OS/VS COBOL programs running under CICS Transaction Server
• OS/VS COBOL programs interoperating with Enterprise COBOL 5 or 6 programs
• VS COBOL II programs compiled with the NORES option interoperating with Enterprise COBOL 5 or 6

programs

For example, the library routines for OS/VS COBOL programs exist in the OS/VS COBOL, the VS COBOL II,
and the Language Environment runtime libraries. OS/VS COBOL programs running with the OS/VS COBOL
runtime library or the VS COBOL II runtime library are not supported by IBM Service. If your OS/VS
COBOL programs are running using a supported release of the Language Environment runtime library,
your programs are supported by IBM Service but they cannot interoperate with Enterprise COBOL 5 or 6
programs. .

In CICS TS (Transaction Server), you can no longer run OS/VS COBOL programs.

Changing OS/VS COBOL programs
Although the OS/VS COBOL compiler is no longer supported, the programs that were generated by it are
supported if they are running under Language Environment and not interoperating with Enterprise COBOL
5 or 6 programs. Once you have migrated your runtime library to Language Environment, you can run your
source code through a source conversion tool, such as the COBOL and CICS Command Level Conversion
Aid (CCCA) and then compile using the Enterprise COBOL compiler.

For more information about CCCA, see Appendix C, “Conversion tools for source programs,” on page 281.

20 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Interoperability with older levels of IBM COBOL programs
There are some restrictions for Enterprise COBOL 5 and 6 programs to call or be called by (interoperate
with) programs compiled with earlier versions of COBOL.

Enterprise COBOL 5 and 6 programs interoperability
Enterprise COBOL 5 and 6 programs cannot interoperate with OS/VS COBOL or VS COBOL II NORES
programs in a single application. A COBOL run unit (Language Environment enclave) that contains an
Enterprise COBOL 5 or 6 compiled program must not contain any OS/VS COBOL or VS COBOL II NORES
programs.

Note: Run units that contain only COBOL programs compiled with Enterprise COBOL 4 or earlier versions
can interoperate with OS/VS COBOL and VS COBOL II NORES programs.

Programs compiled with Enterprise COBOL 5 or 6 can interoperate with programs compiled with VS
COBOL II or later, based on the following conditions and CALL types:

• Static calls. Enterprise COBOL 5 or 6 compiled programs can be bound (link-edited) with the following
object modules or programs to form a single program object. The programs within the program object
can specify static calls to and from each other.

– Programs that are compiled with VS COBOL II with the RES compiler option
– Programs that are compiled with any IBM COBOL compiler versions subsequent to VS COBOL II
– Programs that are compiled with Enterprise COBOL 3 or 4

Note: Programs that were compiled with VS COBOL II with the NORES compiler option in effect cannot
interoperate with programs compiled with Enterprise COBOL 5 or 6.

• Dynamic calls. Program modules that contain programs compiled with VS COBOL II with the RES option,
or subsequent versions of COBOL can also interoperate with Enterprise COBOL 5 or 6 program objects
by using dynamic CALL statements.

• DLL calls. Program modules that are compiled with earlier versions of COBOL that supported DLL
linkage can interoperate with Enterprise COBOL 5 or 6 program objects by using DLL linkage.

How to find if you have OS/VS COBOL programs
To find if you have OS/VS COBOL programs, you can:

• Use the File Manager View Load Module to scan load libraries for OS/VS COBOL programs.
• Use the free COBOL Analyzer from http://cbttape.org/cbtdowns.htm to scan load libraries for OS/VS

COBOL programs. It is named as File # 321 COBOL Analyzer from Roland Schiradin & post processor on
that web page.

• Install the fix for APAR PM86742 to your Language Environment and look for a warning message about
detected OS/VS COBOL programs at run time.

Chapter 2. Do I need to recompile? 21

http://cbttape.org/cbtdowns.htm

22 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Part 2. Migration strategies

© Copyright IBM Corp. 1991, 2024 23

24 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 3. Compiler upgrade checklist

To upgrade your programs to Enterprise COBOL, use the following checklist.

Do these tasks:

1. If your COBOL executables (load modules or program objects) are in PDS data sets (also known
as load libraries), copy the members to PDSE data sets and use PDSE data sets for your load
libraries. IBM recommends that you allocate your PDSE load library data sets with RECFM=U,
DSNTYPE=LIBRARY, and VERSION=2, and leave all the other attributes blank, like this in ISPF:

Record format U
Record length
Block size
Data set name type LIBRARY
Data set version . : 2

2. Complete your runtime migration, which means:

• The Language Environment data set SCEERUN is installed in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or JOBLIB statements or

in CICS startup JCL.
• All statically bound runtime library routines for programs that are compiled with NORES have been

REPLACEd with routines from Language Environment.
• IGZEBST bootstrap modules for VS COBOL II programs that are compiled with RES were either

linked with the VS COBOL II runtime version of IGZEBST that has APAR PN74000 applied, or
IGZEBST was REPLACEd with IGZEBST from Language Environment.

When running a mixture of VS COBOL II programs and Enterprise COBOL 5 or 6 programs:

• A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace IGZEBST in applications with VS
COBOL II programs with the IGZEBST from LE with the PTFs for APAR PI33330 installed.

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can also be used with any
COBOL programs VS COBOL II and later without COBOL 5 or 6 programs.

– For dynamically CALLed CICS programs, you just need to install the PTFs for APAR PI25079 on
SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be better if you replace
IGZEBST in applications with VS COBOL II programs with the IGZEBST from LE with the PTFs for
APAR PI33330 installed. It is not required. There is no issue with IGZEBST for dynamically called
programs in non-CICS for calling VS COBOL II programs from COBOL 5 or 6 programs.

• A current version of CEEBETBL, the Language Environment externals table, is required. If you are
including object code bound some time ago with your new COBOL 5 or 6 object code, you might be
indirectly including an old version of CEEBETBL.

If the length of CEEBETBL you bind is less than x'28' (or the length of the CEEBETBL in the current
SCEELKED library), it is old and needs to be replaced, or you will encounter runtime abends or a
terminating runtime message.

If you rebind older object code with COBOL 5 or 6 as part of your migration, it is recommended that
you specifically INCLUDE a current copy of CEEBETBL prior to INCLUDEs of the older object code,
taking care that you do not inadvertently make CEEBETBL the entry point.

3. Ensure that all software and hardware prerequisites as defined in IBM Software Product
Compatibility Reports are satisfied.

© Copyright IBM Corp. 1991, 2024 25

https://www.ibm.com/software/reports/compatibility/clarity/index.html
https://www.ibm.com/software/reports/compatibility/clarity/index.html

4. Install prerequisite PTFs for the Language Environment runtime library on all systems where COBOL
programs might be compiled or run, including on all production systems. To find the required PTFs
for COBOL 5 and 6, use the FIXCAT feature of SMP/E. See “Prerequisite software and service for
Enterprise COBOL 5 and 6” on page 183.

5. Ensure that all systems on which COBOL will run, and all software that needs to work with COBOL (for
example z/OS, Debug Tool, Fault Analyzer, and Db2), are ready for programs compiled with the new
COBOL compiler. For CICS, to make CSD setup and DFHRPL setup changes, see Chapter 20, “CICS
conversion considerations,” on page 229. For a list of APARs, see “Prerequisite software and service
for Enterprise COBOL 5 and 6” on page 183.

6. Save the old COBOL compiler for emergency use.
7. Purchase and install the new Enterprise COBOL compiler.
8. Set up the default compiler options and your library control system options for the new compiler to

be compatible with the old compiler. For future reuse, document any customization or set up that you
do.

9. Depending on which COBOL compiler you are migrating from, you might need to make COBOL
source-code changes. For details, see the topic in the Upgrading programs section of this information
which applies to your current compiler.

10. The recommended migration strategy for Enterprise COBOL 6 is to compile each application
(group of programs) with COBOL 6 using SSRANGE, NUMCHECK, PARMCHECK, INITCHECK, and
OPT(0), and regression test the application alongside the same application in its current form
(that is, compiled with Enterprise COBOL 4 or earlier compilers). If you do not get any SSRANGE,
NUMCHECK, PARMCHECK, or INITCHECK errors, and you are sure that you get the same results
with the new compiler as with the earlier compilers, recompile with NOSSRANGE, NONUMCHECK,
NOPARMCHECK, and OPT(2); then run a final test and move the application into production. The
reason for testing with SSRANGE, NUMCHECK, and PARMCHECK is that some customers have found
that they have invalid COBOL data that gets different results with COBOL 6. INITCHECK can find (at
compile time) cases of uninitialized data which could also cause migration problems.

If, after a while, you have not found any SSRANGE, NUMCHECK, PARMCHECK, or INITCHECK errors,
then you might consider skipping this step for future migrations. You might not have any invalid data
usage. In addition, this step is only recommended for the first time that a program is compiled with
6. Once you have compiled a program with COBOL 6, you can skip regression testing with SSRANGE,
NUMCHECK, PARMCHECK, or INITCHECK for future compiles.

11. After all programs have been compiled with the new compiler, uninstall the old compiler.

26 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 4. Migration recommendations to Enterprise
COBOL 6

Migration to Enterprise COBOL 5 and 6 is more difficult than earlier COBOL compiler migrations (except
for the OS/VS COBOL to Enterprise COBOL migration), and it is recommended that you read this section
before you migrate to Enterprise COBOL 5 or 6.

Regression tests
The recommended migration strategy for Enterprise COBOL 6 is to compile each application (group
of programs) with COBOL 6 using SSRANGE, NUMCHECK, PARMCHECK, INITCHECK, and OPT(0), and
regression test the application alongside the same application in its current form (that is, compiled with
Enterprise COBOL 4 or earlier compilers). If you do not get any SSRANGE, NUMCHECK, PARMCHECK, or
INITCHECK errors, and you are sure that you get the same results with the new compiler as with the
earlier compilers, recompile with NOSSRANGE, NONUMCHECK, NOPARMCHECK, and OPT(2); then run a
final test and move the application into production. The reason for testing with SSRANGE, NUMCHECK,
and PARMCHECK is that some customers have found that they have invalid COBOL data that gets different
results with COBOL 6. INITCHECK can find (at compile time) cases of uninitialized data which could also
cause migration problems.

Note: You do not have to do this extra testing for programs that have already been compiled with
Enterprise COBOL 5 or 6.

Another type of invalid data is zero addresses, wherein an instruction uses an address of zero to access
memory. Programs that do this may run fine for years, but when moving to a new level of z/OS, they may
begin producing incorrect results. Such occurrences have been seen when customers move to z/OS 2.5
from earlier z/OS levels. To identify and fix this problem, use the Zero Address Detection (ZAD) feature of
z/OS.

SLIP Zero Address Detection (ZAD) is a z/OS feature that detects and documents execution of an
instruction that accesses (stores or fetches) storage by using an operand address that was formed from
a general register containing zero. This detection feature allows the owner of an application to identify
programming errors where an assembler instruction is inadvertently accessing data within the Prefixed
Save Area (PSA) control block, which resides at virtual address zero, due to incorrect register content of
zero.

For details about how to generate and read a z/OS SLIP Zero Address Detection (ZAD) report, see the
technote.

Best practices
Instead of treating Enterprise COBOL 5 and 6 like business as usual, consider having a team identified
to migrate each application completely, rather than migrating one or two programs at a time. In this way,
all programs in an application will be migrated, so that future updates or fixes will not also involve a
migration. You can save costs in the long run because more programs can take advantage of the 'million
instructions per second (MIPS)' savings with Enterprise COBOL 5 and 6.

Common problems and solutions
Some customers have reported problems caused by 'invalid COBOL data' that cannot be detected by
inspecting source code when they migrate to Enterprise COBOL 5 or 6, and the most common problems
are as follows:

• Invalid data in numeric USAGE DISPLAY data items
• Parameter/argument size mismatches

© Copyright IBM Corp. 1991, 2024 27

https://www.ibm.com/support/pages/node/6602085

• Overpopulated binary data items, with values that have more digits than are defined in the data
definitions in programs compiled with TRUNC(STD) or TRUNC(OPT)

• Uninitialized data items, or data items that are used without first being set

To identify these problems more easily, consider the following solutions:

• Always compile with RULES(NOEVENPACK) and DIAGTRUNC.
• Use the "Scanning COBOL programs for compatibility" feature of IBM Developer for z/OS to check

parameters and arguments. For details, see Scanning COBOL programs for compatibility.
• Compile with SSRANGE, NUMCHECK, PARMCHECK, INITCHECK, and OPT(0) for initial code changes

and unit tests.
• Recompile with NOSSRANGE, NONUMCHECK, NOPARMCHECK, and OPT(2), for quality assurance tests

and production.

28 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.etools.zide.cmn.doc/topics/t_scan_cobol_compat.html?sc=SSQ2R2_latest

Chapter 5. Planning to upgrade source programs
You can follow a general strategy for upgrading source programs to Enterprise COBOL.

For programs that were compiled with OS/VS COBOL or with VS COBOL II through IBM COBOL with the
CMPR2 compiler option, source changes will be necessary before recompiling with Enterprise COBOL 5
or 6. If you have such programs, you can follow a general strategy for upgrading source programs to
Enterprise COBOL.

Note: If your programs were compiled with NOCMPR2 or with Enterprise COBOL 3 or 4, no source
changes will be necessary (in most cases) to compile with Enterprise COBOL 5 or 6. Go to the appropriate
chapters in the "Part 3, “Upgrading programs,” on page 43" part of this manual.

The following tasks are necessary, and should be performed in roughly the following order:

1. Preparing to upgrade your source
2. Taking an inventory of your applications
3. Prioritizing your applications
4. Setting up a conversion procedure
5. Making application program updates

Because of the loss of service support for older COBOL compilers, you should eventually upgrade all of
your COBOL source programs. Although this is not an immediate requirement, at some future date the
older compilers and any supported fixes will not be available. At that point, you will be forced to do a
'quick' migration, and this might be at a very inconvenient time.

Preparing to upgrade your source
In preparing to upgrade your source to Enterprise COBOL, you need to perform the following tasks, which
can be done concurrently:

• Installing Enterprise COBOL
• Deciding which conversion tools to use
• Educating your programmers on new compiler features

Installing Enterprise COBOL
If you haven't already done so, install the compiler; see the Program Directory for Enterprise COBOL. (Get
the Program Directory for Enterprise COBOL from the Enterprise COBOL for z/OS library.)

Be sure to customize the Enterprise COBOL default compiler options prior to using the new compiler,
based on the default options of your prior compiler version. For instructions, see Planning to customize
Enterprise COBOL in the Enterprise COBOL for z/OS Customization Guide.

Deciding which conversion tools to use and install them
If you use the available conversion tools, you will find that upgrading can be a very simple procedure. The
following conversion tools can help in upgrading your source programs to Enterprise COBOL programs:

COBOL Conversion Tool (CCCA)
The COBOL and CICS Command Level Conversion Aid (CCCA) automatically converts your old COBOL
source programs, either OS/VS COBOL, VS COBOL II, or IBM COBOL with CMPR2, into 85 COBOL
Standard code that you can compile with Enterprise COBOL. It also provides you with reports of the
statements that were changed. CCCA is included with the Debug Tool.

For more information about CCCA, see Appendix C, “Conversion tools for source programs,” on page
281.

© Copyright IBM Corp. 1991, 2024 29

http://www.ibm.com/support/docview.wss?uid=swg27036733

OS/VS COBOL MIGR compiler option
The MIGR option identifies source statements that need to be converted to compile under Enterprise
COBOL.

CMPR2, FLAGMIG, and NOCOMPILE compiler options

The COBOL CMPR2, FLAGMIG, and NOCOMPILE options identify source statements that need to be
converted to compile under Enterprise COBOL. The CMPR2 and FLAGMIG options are not available in
Enterprise COBOL, but you can use your older compilers with these options to flag the statements that
need to be changed in order to compile with Enterprise COBOL.

Enterprise COBOL 4.2 FLAGMIG4 compiler option
A new compiler option, FLAGMIG4, is available with APAR PM93450 for Enterprise COBOL 4.2 to help
you migrate to Enterprise COBOL 5 or 6. It is also recommended that you install PTFs for APARs
PI12240, PI26838, and PI58762 as these contain updates to the FLAGMIG4 option.

The FLAGMIG4 option identifies language elements in Enterprise COBOL 4 programs that are not
supported, or that are supported differently in Enterprise COBOL 5 or 6. The compiler generates a
warning diagnostic message for all such language elements.

Note: The source code changes for COBOL 5 and 6 are rarely used COBOL language features and do
not affect 99% of COBOL users.

Another conversion tool you might want to use is COBOL Report Writer Precompiler. It enables you to
either continue using Report Writer code or convert your Report Writer code to non-Report Writer code.
The Report Writer Precompiler is product number 5798-DYR.

These conversion tools are fully described in Appendix C, “Conversion tools for source programs,” on page
281.

If you plan to use CCCA or COBOL Report Writer Precompiler, install it at this time. For installation
instructions, see the documentation for the conversion tool(s) you plan to use.

Educating your programmers on new compiler features
Early in the conversion effort, ensure that your application programmers are familiar with the features
of Enterprise COBOL and the relationship and interdependencies between Enterprise COBOL, Language
Environment, and Debug Tool and any other application productivity tools your shop uses.

In addition to source language differences between Standard COBOL 68, Standard COBOL 74, and
Standard COBOL 85, your programmers will need to be familiar with Language Environment condition
handling and Language Environment callable services.

For information about Enterprise COBOL and Language Environment education available through IBM,
you can call 1-800-IBM-TEACH (1-800-426-8322). You can also get information directly from Language
Environment publications or technical conferences such as SHARE, www.share.org.

After your programmers are familiar with Enterprise COBOL features, they can assist you in taking the
inventory of programs as described in “Taking an inventory of your applications” on page 30.

Taking an inventory of your applications
In planning the upgrade to Enterprise COBOL, you need to take a comprehensive inventory of applications
in which you have programs that you intend to compile with Enterprise COBOL.

The File Manager View Load Module can determine the language translator that was used for each object
in your program objects. See “File Manager View Load Module” on page 290 for more information.

The free and open source COBOL Analyzer can provide assistance in taking an inventory of your existing
program objects by reporting the compiler, compiler release, and compiler options used. See “Free and
open source COBOL Analyzer” on page 290 for more information.

30 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Language Environment can help you find out whether you are ever running OS/VS COBOL programs from
your inventory. Install the fix for APAR PM86742 to your Language Environment and look for one of these
warning messages about detected OS/VS COBOL programs at run time:

Note: For your programs to continue running after the following warning messages have been issued,
you must be running with the TRAP(ON) runtime option. For details, see TRAP in the z/OS Language
Environment Programming Reference.

IGZ0268W
An invocation was made of OS/VS COBOL program "program-name".

IGZ0269W
"program-lang" version "program-version" program "program-name" made a call to OS/V/S COBOL
program "program-name".

IBM Application Discovery and Delivery Intelligence and IBM Rational® Asset Analyzer for System z® can
aid by analyzing the impact of a code change for an application. See “IBM Application Discovery and
Delivery Intelligence” on page 285 for more information.

Taking an inventory of vendor tools, packages, and products
Before you can begin upgrading your source, you must know whether your vendor tools, packages, and
products are designed to work with Enterprise COBOL. Verify:

• COBOL code generators generate 85 COBOL Standard programs that can be compiled with Enterprise
COBOL.

• COBOL packages are written in 85 COBOL Standard language that can be compiled with Enterprise
COBOL.

• Third-party tools such as debuggers and databases support Enterprise COBOL.

Taking an inventory of COBOL applications
For each program in your COBOL applications, include at least the following information in your inventory:

For all previous versions of COBOL:

• Programmer responsible
• COBOL Standard level of source program (68, 74, 85)
• Compiler used (ANS COBOL 4, OS/VS COBOL, VS COBOL II, IBM COBOL, Enterprise COBOL 3, Enterprise

COBOL 4)
• Compiler options used, especially CMPR2, NORES, XMLPARSE
• Precompiler options used
• Postprocessing options used
• COBOL modules
• COPY library members used in COBOL programs
• Called subprograms
• Calling programs
• Frequency of execution
• Test cases required and available
• Programs containing Report Writer statements
• Use of SIMVRDS, SOM-based OO, Millennium Language Extensions, or LABEL declaratives

This information is useful to you in the next step of your planning task, “Prioritizing your applications” on
page 32.

Chapter 5. Planning to upgrade source programs 31

https://www.ibm.com/docs/en/zos/latest?topic=options-trap

Prioritizing your applications
Using the complete inventory, you can now prioritize the conversion effort as described below.

1. Assign complexity ratings to each item in your completed inventory and determine each program or
application's resulting overall complexity rating.

2. Determine the conversion priority of each program or application.

Assigning complexity ratings
Complexity ratings are defined based on the effort required to convert, test, and coordinate a construct or
program. The ratings used in Table 6 on page 32 are defined as:

Complexity rating Requirement

0 All code converted by CCCA without error; code compiles correctly under
Enterprise COBOL

1-3 Requires moderate testing
Requires moderate coordination
Most code converted without error by CCCA

4 Requires CCCA and possible manual conversion
Requires special testing considerations

5-6 Requires moderate to high degree of coordination
Requires moderate to high degree of testing for functional equivalence
Requires conversion in addition to CCCA
(manual or automated)

7-8 Requires high degree of coordination
Requires high degree of testing for functional equivalence

9 Requires very high degree of coordination
Requires very high degree of testing for functional equivalence

10 Requires rewrite of module

Based on the complexity ratings shown above (or your own defined complexity ratings), you can now
assign a complexity rating to each attribute within a program. Use the highest complexity rating listed as
the overall rating for that program. For an application, the highest complexity rating that you assign for
any program within the application is the complexity rating for the entire application.

Table 6 on page 32 shows estimated complexity ratings for conversions of specific program attributes.

Table 6. Complexity ratings for program attribute conversions

Program attribute Description of attribute
Complexity
rating

Lines of source code 1000 or less 0

5000 to 10,000 3

10,000 to 20,000 + 5

Fixed file attribute mismatch (FS 39)1 4

VS COBOL II or later compiled with
CMPR2

Compiler option CMPR2 not supported 1 C

32 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 6. Complexity ratings for program attribute conversions (continued)

Program attribute Description of attribute
Complexity
rating

74 COBOL Standard COPY library
members

 1 M C

ANS COBOL 4 COPY library members 1 to 10 2 M C

10 to 20 5 M C

20 + 6 M C

Stability Program with no plans for changes 0

Program changes twice a year 3

Program changes every month or more often 8+

Files accessed 1 to 3 1 M C

3 to 5 2 M C

6 + 3 M C

No source code for module Module needs rewrite 102

Module does not need to be upgraded 6

CICS macro level program 10

Compiled by Full ANS COBOL 4 compiler
(pre- compiler)

 4 C

Compiled by OS/VS COBOL 1.2 compiler LANGLVL(2) no manual changes 1 M C

LANGLVL(1) no manual changes 1 M C

LANGLVL(2) manual changes 4 M C

LANGLVL(1) manual changes 4 M C

Uses language with changed results Complex OCCURS DEPENDING ON 4 C

Combined abbreviated relation conditions 6 M

Floating-point arithmetic 6 M

Exponentiation 6 M

Signed data 2

Binary data 2

Numeric USAGE DISPLAY 5

Access methods used ISAM3 10 M C

BDAM 10 C4

TCAM 10

Uses Report Writer language (if not using
Report Writer Precompiler)

 6 M C

Uses Report Writer language (if using
Report Writer Precompiler)

 0

CICS 4

Chapter 5. Planning to upgrade source programs 33

Table 6. Complexity ratings for program attribute conversions (continued)

Program attribute Description of attribute
Complexity
rating

SIMVRD 3

SOM-based OO 8

LABEL declaratives 3

1. For additional information, see Appendix G, “Preventing file status 39 for QSAM files,” on page 327.
2. Non-IBM vendors can recreate COBOL source code from object code.
3. Support for ISAM was removed with z/OS 1.7.
4. This is a partial conversion.

On categories marked M you can gather information using the OS/VS COBOL MIGR option. On categories
marked C you can gather information using the COBOL conversion tool (CCCA).

Determining conversion priority
After you have determined the complexity rating for each program in your inventory, you can make
informed decisions about the programs that you want to upgrade, and the order in which you want to
upgrade them.

Table 7 on page 34 shows one method of relating program complexity ratings to conversion priorities.
(The highest priority is “1” and the lowest priority is “6”.)

Table 7. Assigning program conversion priorities

Conversion
priority Complexity rating Other considerations

1 0 to 3 Great importance to your organization
Low conversion effort using conversion tools

2 4 to 6 Great importance to your organization
Medium conversion effort using conversion tools

0 to 3 Medium importance to your organization
Low conversion effort using conversion tools

3 7 to 8 Great importance to your organization
High conversion effort using conversion tools

3 to 6 Medium importance to your organization
Medium conversion effort using conversion tools

0 to 3 Small importance to your organization
Low conversion effort using conversion tools

34 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 7. Assigning program conversion priorities (continued)

Conversion
priority Complexity rating Other considerations

4 9 to 10 Great importance to your organization
Very high conversion effort

7 to 8 Medium importance to your organization
High conversion effort using conversion tools

3 to 6 Small importance to your organization
Medium conversion effort using conversion tools

5 9 to 10 Medium importance to your organization
Very high conversion effort

7 to 8 Small importance to your organization
High conversion effort using conversion tools

6 9 to 10 Small importance to your organization
Very high conversion effort

Consider the following situations when deciding on conversion priorities:

• If your application is at the limits of the storage available below the 16-MB line, it is a prime candidate
for conversion to Enterprise COBOL. With z/OS architecture you can obtain virtual storage constraint
relief.

After you determine the priority of each program that you need to upgrade and the effort required to
upgrade those programs, you can decide the order in which you want to convert your applications and
programs.

There might be some programs that you do not want to convert at all, such as:

• Programs for which you have no source code, that will never need recompilation, and that run correctly
under Language Environment

• Programs of low importance to your organization that run correctly under Language Environment and
that would take a very high conversion effort

• Programs that are being phased out of production

Note, however, that there might be restrictions on running existing modules mixed with upgraded
programs. See Chapter 18, “Adding Enterprise COBOL 5 or 6 programs to existing COBOL applications,”
on page 215.

Setting up a conversion procedure
The summaries and diagrams on the following pages outline the steps required to upgrade five types of
programs:

• Programs without CICS or Report Writer
• Programs converted to structured programming code
• Programs with CICS
• Programs with Report Writer statements to be discarded
• Programs with Report Writer statements to be retained

Chapter 5. Planning to upgrade source programs 35

In the following flowcharts, you are directed to manually upgrade your programs if you are not using
CCCA. If you do not want to use CCCA, you should consider using a non-IBM vendor's conversion tool
before attempting a manual conversion.

Programs without CICS or Report Writer
To convert an OS/VS COBOL program that contains neither CICS commands nor Report Writer statements
to an Enterprise COBOL program, do the steps shown in the flowchart below.

Figure 1. Steps for converting an OS/VS COBOL program to an Enterprise COBOL program

36 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Programs with CICS
To convert an OS/VS COBOL program that contains CICS commands to an Enterprise COBOL program, do
the steps shown in the flowchart below.

Figure 2. Steps for converting an OS/VS COBOL program containing CICS commands

Programs with Report Writer statements to be discarded
To convert an OS/VS COBOL program with Report Writer statements to Enterprise COBOL, and remove
Report Writer statements, perform the steps shown in the flowchart below.

Chapter 5. Planning to upgrade source programs 37

Figure 3. Steps for converting an OS/VS COBOL program and discarding Report Writer statements

Programs with Report Writer statements to be retained
To convert an OS/VS COBOL program that contains Report Writer statements to an Enterprise COBOL
program, and retain the Report Writer statements in the source code, do the steps shown in the flowchart
below.

38 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Figure 4. Steps for converting an OS/VS COBOL program and retaining Report Writer statements

Making application program updates
The following application programming tasks are necessary when upgrading your source. They should be
performed in roughly the following order:

Save the existing source as a backup (a benchmark to compare to and a version to which to recover if the
converted modules have problems).

1. Update the job and module documentation.

It is extremely important that all updates be properly documented. COBOL itself is reasonably self-
documenting. However, keep a log of the compiler options you specify and the reasons for specifying
them. Also document any special system considerations. This is an iterative process and should be
performed throughout the conversion programming task.

Chapter 5. Planning to upgrade source programs 39

2. Update the available source code.

Whenever possible, use the conversion tools described in Appendix C, “Conversion tools for source
programs,” on page 281. Otherwise, update the source code manually.

3. Compile, bind (link-edit), and run.

It is recommended that you compile and test two times. The first time, compile with SSRANGE,
NUMCHECK, PARMCHECK, INITCHECK, and OPT(0); and then after a successful test, recompile with
NOSSRANGE, NONUMCHECK, NOPARMCHECK, and OPT(2), for production.

It is also recommended that you recompile all programs in an application as you upgrade. This way
you will shake out all possible problems and also get the maximum performance benefit of Enterprise
COBOL 5 or 6.

After the source has been updated, you can process the program as you would a newly written
Enterprise COBOL program.

4. Debug.

Analyze program output and, if the results are not correct, use Debug Tool or Language Environment
dump output to uncover any errors.

5. Test the converted programs.

Compare results of the newly recompiled version of the application with the existing version of the
application to make sure that the results are the same. Some customers have used the code coverage
feature of Debug Tool to make sure that their programs have the same behavior with COBOL 5 or 6 as
they did with previous COBOL compilers, as well as comparing output of the programs.

After upgrading your source to Enterprise COBOL, set up a procedure for regression testing. Regression
testing will help to identify:

• Fixed file attribute mismatches (file status 39 problems). Verify that your COBOL record descriptions,
JCL DD statements, and physical file attributes match. For more information, see Appendix G,
“Preventing file status 39 for QSAM files,” on page 327.

• Performance differences.
• Sign handling problems—S0C7 abends. The data's sign must match the signs allowed by the

NUMPROC compiler option suboption that you specify.
• DATA(24) issues. Do not mix AMODE 24 programs with 31-bit data.

After you have established a regression testing procedure, and after your programs run correctly, test
them against a variety of data:

• Locally: Each program separately
• Globally: Programs in a run unit in interaction with each other

In this way, you can exercise all the program processing features to help ensure that there are no
unexpected execution differences.

6. Repeat when necessary.

Make any further corrections that you need, and then recompile, relink, rerun, and, if necessary,
continue to debug.

7. Cut over to production mode.

When your testing shows that the entire application receives the expected results, you can move the
entire unit over to production mode. (This assumes you have completed your migration to Language
Environment.)

In case of unexpected errors, be prepared for instant recovery:

• Under z/OS, run the old version as a substitute from the latest productivity checkpoint.
• Under Db2 and IMS return to the last commit point and then continue processing from that point

using the unmigrated COBOL program. (For Db2, use an SQL ROLLBACK WORK statement.)

40 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• For non-CICS applications, use your shop's backup and restore facilities to recover.
8. Run in production mode.

After cut over, monitor the application for a short time to ensure that you are getting the results
expected. After that, your source conversion task is completed.

Chapter 5. Planning to upgrade source programs 41

42 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Part 3. Upgrading programs

© Copyright IBM Corp. 1991, 2024 43

44 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 6. Upgrading OS/VS COBOL source programs
There are differences between OS/VS COBOL language and Enterprise COBOL language that might require
that you upgrade your programs.

This information will help you upgrade your OS/VS COBOL programs to Enterprise COBOL.

Besides the specific topics listed in this section, there has also been a change in tape user Label support.
Support for the format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and optionally the
syntax: GO TO MORE-LABELS was removed in Enterprise COBOL 5.

Also consider changes in reserved words as described in Appendix B, “COBOL reserved word
comparison,” on page 257.

Enterprise COBOL provides 85 COBOL Standard support. When upgrading your OS/VS COBOL programs to
Enterprise COBOL, you must convert them to 85 COBOL Standard programs in order to compile them with
Enterprise COBOL.

This section is not intended to be a syntax guide. You can find complete descriptions and coding rules for
the relevant COBOL language elements in:

• VS COBOL for OS/VS Reference, GC26-3857-04
• Enterprise COBOL Language Reference, SC27-8713

Tips:

1. VS COBOL for OS/VS Reference is no longer available from IBM.
2. There are special considerations related to CICS. OS/VS COBOL programs no longer run under CICS.

Any OS/VS programs to be run under CICS must be upgraded to Enterprise COBOL.
3. In the following sections, any reference to 68 COBOL Standard is a reference to the COBOL language

supported by IBM Full American National Standard COBOL 4 (Program 5734-CB2), or to LANGLVL(1) of
OS/VS COBOL (Program 5740-CB1).

4. Information throughout this Migration Guide about OS/VS COBOL applies to OS/VS COBOL 1.2.4, with
the latest service updates applied.

Comparing OS/VS COBOL to Enterprise COBOL
OS/VS COBOL supported the 68 COBOL Standard (LANGLVL(1)) and the 74 COBOL Standard
(LANGLVL(2)). Enterprise COBOL supports the 85 COBOL Standard. In addition to the language
differences between the 74 COBOL Standard and Enterprise COBOL, your OS/VS COBOL programs might
contain undocumented OS/VS COBOL extensions.

Language elements that require change (quick reference)
Table 8 on page 46 lists the language elements different in OS/VS COBOL and Enterprise COBOL. This
table also lists conversion tools, if any, available to automate the conversion.

The language items listed below are described in detail throughout this section, and are classified and
ordered according to the following categories:

• OS/VS COBOL language elements requiring other products
• OS/VS COBOL language elements not supported
• OS/VS COBOL language elements implemented differently
• Undocumented OS/VS COBOL extensions not supported

© Copyright IBM Corp. 1991, 2024 45

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL

Language element Conversion tool Page

Abbreviated combined relation conditions “Abbreviated
combined relation
conditions and use
of parentheses” on
page 61

ACCEPT statement “ACCEPT
statement” on page
62

ALPHABETIC class changes CCCA “ALPHABETIC class
changes” on page
69

ALPHABET clause changes—ALPHABET key word CCCA “ALPHABET-NAME
clause changes:
ALPHABET
keyword ” on page
69

Area A, periods in CCCA “Periods in Area A ”
on page 65

Arithmetic statement changes “Arithmetic
statement
changes ” on page
69

ASSIGN . . . OR CCCA “ASSIGN . . . OR” on
page 56

ASSIGN TO integer system-name CCCA “ASSIGN . . . OR” on
page 56

ASSIGN . . . FOR MULTIPLE REEL /UNIT CCCA “ASSIGN . . . FOR
MULTIPLE REEL/
UNIT ” on page 56

ASSIGN clause changes—assignment-name forms CCCA “ASSIGN clause
changes” on page
69

B symbol in PICTURE clause—changes in evaluation “B symbol in
PICTURE clause:
changes in
evaluation ” on page
69

BDAM file handling CCCA* “#unique_175/
unique_175_Conne
ct_42_BDAMfile” on
page 55

BLANK WHEN ZERO clause and asterisk (*) override “BLANK WHEN
ZERO clause
and asterisk (*)
override” on page
62

CALL identifier statement—B symbol in PICTURE clause “B symbol in
PICTURE clause:
changes in
evaluation ” on page
69

CALL statement changes—procedure names and file names in USING phrase “CALL statement
changes ” on page
70

CANCEL statement—B symbol in PICTURE clause “B symbol in
PICTURE clause:
changes in
evaluation ” on page
69

CLOSE . . . FOR REMOVAL statement “CLOSE . . .
FOR REMOVAL
statement” on page
62

46 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

CLOSE statement—WITH POSITIONING, DISP phrases CCCA “CLOSE
statement: WITH
POSITIONING,
DISP phrases ” on
page 56

Combined abbreviated relation condition changes CCCA “Combined
abbreviated relation
condition changes”
on page 70

Comparing group to numeric packed-decimal item “Comparing group
to numeric packed-
decimal item” on
page 62

COPY statement with associated names CCCA “COPY statement
with associated
names ” on page
72

Communication feature “#unique_176/
unique_176_Conne
ct_42_comfeature”
on page 55

CURRENCY-SIGN clause changes—'/', '=', and 'L' characters “CURRENCY-SIGN
clause changes:
'/', '=', and 'L'
characters” on page
72

CURRENT-DATE special register CCCA “CURRENT-DATE
special register ” on
page 56

DIVIDE . . . ON SIZE ERROR—change in intermediate results “ON SIZE ERROR
phrase: changes
in intermediate
results ” on page
77

Dynamic CALL statements to programs with alternate entry points without an intervening CANCEL “Dynamic CALL
statements to
ENTRY points ” on
page 72

EXAMINE statement CCCA “EXAMINE
statement ” on page
57

EXHIBIT statement CCCA “Corrective action
for EXHIBIT
NAMED” on page
57

EXIT PROGRAM/GOBACK statement changes “EXIT PROGRAM/
GOBACK statement
changes ” on page
72

FILE STATUS clause changes CCCA “FILE STATUS
clause changes ” on
page 72

FILE-LIMIT clause of the FILE-CONTROL paragraph CCCA “FILE-LIMIT clause
of the
FILE-CONTROL
paragraph ” on page
58

Flow of control, no terminating statement “Flow of control,
no terminating
statement” on page
62

FOR MULTIPLE REEL/UNIT CCCA “ASSIGN . . . FOR
MULTIPLE REEL/
UNIT ” on page 56

Chapter 6. Upgrading OS/VS COBOL source programs 47

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

GIVING phrase of USE AFTER STANDARD ERROR declarative CCCA “GIVING phrase
of USE AFTER
STANDARD ERROR
declarative ” on
page 58

IF . . . OTHERWISE statement changes CCCA “IF . . . OTHERWISE
statement
changes ” on page
75

Index names—nonunique “Index names” on
page 63

INSPECT statement—PROGRAM COLLATING SEQUENCE clause “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
78

IS as an optional word “Optional word IS ”
on page 77

ISAM file handling CCCA “#unique_177/
unique_177_Conne
ct_42_isam” on
page 55

JUSTIFIED clause changes CCCA “JUSTIFIED clause
changes ” on page
75

LABEL declaratives “LABEL
declaratives” on
page 58

LABEL RECORDS clause with TOTALING/TOTALED AREA CCCA “LABEL RECORDS
clause with
TOTALING/TOTALED
AREA phrases ” on
page 58

LABEL RECORD IS statement “LABEL RECORD IS
statement” on page
63

MOVE statement—binary value and DISPLAY value “MOVE statement
- binary value and
DISPLAY value” on
page 63

MOVE statements and comparisons—scaling changes “MOVE statements
and comparisons:
scaling changes ” on
page 75

MOVE CORRESPONDING statement CCCA “MOVE
CORRESPONDING
statement” on page
63

MOVE statement—multiple TO specification “MOVE statement
- multiple TO
specification” on
page 64

MOVE ALL—TO PIC 99 “MOVE ALL - TO PIC
99” on page 64

MOVE statement—warning message for numeric truncation “MOVE statement
- warning message
for numeric
truncation” on page
64

MULTIPLY ... ON SIZE ERROR—change in intermediate results “ON SIZE ERROR
phrase: changes
in intermediate
results ” on page
77

48 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

Nonunique program-ID names CCCA “PROGRAM-ID
names, nonunique ”
on page 66

NOTE statement CCCA “NOTE statement ”
on page 58

Numeric class test on group items “Numeric class test
on group items” on
page 76

Numeric data changes “Numeric data
changes” on page
76

Numeric-editing changes (PICTURE clause) “PICTURE string ”
on page 65

OCCURS clause (order of phrases) “OCCURS clause”
on page 64

OCCURS DEPENDING ON—
ASCENDING and DESCENDING KEY phrases

“OCCURS
DEPENDING ON
clause: ASCENDING
and DESCENDING
KEY phrase” on
page 76

OCCURS DEPENDING ON—value for receiving items changed CCCA “OCCURS
DEPENDING ON
clause: value for
receiving items
changed ” on page
76

ON statement CCCA “ON statement ” on
page 58

ON SIZE ERROR phrase—changes in intermediate results “ON SIZE ERROR
phrase: changes
in intermediate
results ” on page
77

OPEN statement failing for QSAM files (file status 39) “OPEN statement
failing for VSAM files
(file status 39)” on
page 59

OPEN statement failing for VSAM files (file status 39) “OPEN statement
failing for QSAM
files (file status 39)”
on page 59

OPEN statement with LEAVE, REREAD, and DISP phrases CCCA “OPEN statement
with the LEAVE,
REREAD, and DISP
phrases ” on page
59

OPEN REVERSED statement “OPEN REVERSED
statement” on page
65

OTHERWISE clause changes “IF . . . OTHERWISE
statement
changes ” on page
75

Paragraph names not allowed as parameters “CALL statement
changes ” on page
70

PERFORM statement—changes in the VARYING and AFTER phrases “PERFORM
statement: changes
in the VARYING/
AFTER phrases ” on
page 78

Chapter 6. Upgrading OS/VS COBOL source programs 49

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

PERFORM statement—second UNTIL “PERFORM
statement - second
UNTIL” on page 65

Periods, consecutive in any division “Periods,
consecutive in any
division ” on page
65

Periods in Area A CCCA “Periods in Area A ”
on page 65

Periods missing on paragraphs CCCA “Periods missing
on paragraphs ” on
page 65

Periods missing at the end of SD, FD, or RD “Periods missing at
the end of SD, FD, or
RD ” on page 65

PICTURE clause (numeric-editing changes) “PICTURE string ”
on page 65

PROGRAM COLLATING SEQUENCE clause changes “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
78

Program-ID names, nonunique CCCA “PROGRAM-ID
names, nonunique ”
on page 66

Qualification - using the same phrase repeatedly “Qualification -
using the same
phrase repeatedly ”
on page 66

READ statement - redefined record keys in the KEY phrase “READ statement
- redefined record
keys in the KEY
phrase” on page
66

READ and RETURN statement changes—INTO phrase “READ and RETURN
statement changes:
INTO phrase ” on
page 78

READY TRACE and RESET TRACE statements CCCA “READY TRACE
and RESET TRACE
statements ” on
page 59

RECORD CONTAINS n CHARACTERS clause “RECORD
CONTAINS n
CHARACTERS
clause ” on page
66

RECORD KEY phrase and ALTERNATE RECORD KEY phrase “RECORD KEY
phrase and
ALTERNATE
RECORD KEY
phrase” on page
66

REDEFINES clause in SD or FD entries CCCA “REDEFINES clause
in SD or FD entries”
on page 66

REDEFINES clause with tables “REDEFINES clause
with tables” on page
67

Relation conditions CCCA “Relation
conditions” on page
67

50 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

REMARKS paragraph CCCA “REMARKS
paragraph ” on page
60

RENAMES clause—nonunique, nonqualified data names “RENAMES clause
- nonunique,
nonqualified data
names ” on page
67

Report Writer statements Report Writer
Precompiler

“#unique_178/
unique_178_Conne
ct_42_reportwr” on
page 53

RERUN clause changes “RERUN clause
changes ” on page
78

RESERVE clause changes CCCA “RESERVE clause
changes ” on page
78

Reserved word list changes CCCA “Reserved word list
changes” on page
79

SEARCH statement changes CCCA “SEARCH statement
changes ” on page
79

Segmentation changes—PERFORM statement in independent segments “Segmentation
changes: PERFORM
statement in
independent
segments ” on page
79

SELECT statement without a corresponding FD “SELECT statement
without a
corresponding FD”
on page 67

SELECT OPTIONAL clause changes CCCA “SELECT OPTIONAL
clause changes ” on
page 79

SORT special registers “SORT special
registers ” on page
80

SORT statement “SORT statement”
on page 67

SORT or MERGE “SORT or MERGE”
on page 68

Source language debugging changes “Source language
debugging
changes ” on page
80

START . . . USING KEY statement CCCA “START . . . USING
KEY statement ” on
page 60

STRING statement—PROGRAM COLLATING SEQUENCE clause “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
78

STRING statement—sending field identifier “STRING statement
- sending field
identifier ” on page
68

Subscripts out of range—flagged at compile-time “Subscripts out of
range flagged at
compile time ” on
page 80

Chapter 6. Upgrading OS/VS COBOL source programs 51

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

THEN as a statement connector CCCA “THEN as
a statement
connector ” on page
60

TIME-OF-DAY special register CCCA “TIME-OF-DAY
special register ” on
page 60

TOTALING/TOTALED AREA phrases in LABEL RECORDS clause CCCA “LABEL RECORDS
clause with
TOTALING/TOTALED
AREA phrases ” on
page 58

TRANSFORM statement CCCA “TRANSFORM
statement ” on page
61

UNSTRING statement—PROGRAM COLLATING SEQUENCE clause “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
78

UNSTRING statement—coding with 'OR', 'IS', or a numeric edited item CCCA “UNSTRING
statement - coding
with 'OR', 'IS', or
a numeric edited
item ” on page 68

UNSTRING statement—multiple INTO phrases “UNSTRING
statement - multiple
INTO phrases ” on
page 68

UNSTRING statements—subscript evaluation changes “UNSTRING
statements:
subscript evaluation
changes ” on page
80

UPSI switches CCCA “UPSI switches ” on
page 81

USE AFTER STANDARD ERROR—GIVING phrase CCCA “GIVING phrase
of USE AFTER
STANDARD ERROR
declarative ” on
page 58

USE BEFORE STANDARD LABEL statement CCCA “USE BEFORE
STANDARD LABEL ”
on page 61

VALUE clause—signed value in relation to the PICTURE clause CCCA “VALUE clause -
signed value in
relation to the
PICTURE clause ”
on page 68

VALUE clause—condition names CCCA “VALUE clause
condition names ”
on page 82

WHEN-COMPILED special register CCCA “WHEN-COMPILED
special register ” on
page 82

WRITE AFTER POSITIONING statement CCCA “WRITE AFTER
POSITIONING
statement” on page
82

* This is a partial conversion for handling BDAM files.

52 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Converting to 85 COBOL Standard
To help you make the needed changes when upgrading to Enterprise COBOL, you can use any of several
means, including the information provided elsewhere in this Migration Guide.

A brief description of two of the helpful mechanisms (CCCA and the MIGR option) follows. For additional
information, see Appendix C, “Conversion tools for source programs,” on page 281.

Tip: Non-IBM tools are also available to help automate the conversion to the 85 COBOL Standard.

COBOL Conversion Tool (CCCA)
The COBOL and CICS Command Level Conversion Aid for z/OS (CCCA) is not for CICS only; it converts any
old COBOL to Enterprise COBOL. The CCCA provides you with either a report of the statements that need
to be changed or the actual converted program itself.

For details, see “COBOL and CICS Command Level Conversion Aid for z/OS (CCCA)” on page 286.

OS/VS COBOL MIGR compiler option
The OS/VS COBOL MIGR compiler option flags most statements in an OS/VS COBOL program that are
not supported or are changed in Enterprise COBOL. The MIGR compiler option allows you to analyze
the conversion effort, and helps you identify required changes, without purchasing any conversion tools.
Thus, for each of your programs, even before conversion, you can get a good idea of how much conversion
effort will be required.

“MIGR compiler option” on page 281 lists the items flagged by MIGR. A complete description of MIGR-
flagged items is included in Appendix H of IBM VS COBOL for OS/VS.

Language elements that require other products for support
Although some OS/VS COBOL language elements are not supported in Enterprise COBOL, you can get
equivalent function by using other products.

Report Writer
The Report Writer feature is supported through use of the Report Writer Precompiler. In order for existing
Report Writer code to work with Enterprise COBOL, you have the following considerations:

• “Keep existing Report Writer code and use the Report Writer Precompiler” on page 53
• “Convert existing Report Writer code using the Report Writer Precompiler” on page 54
• “Run existing OS/VS COBOL-compiled Report Writer programs under Language Environment” on page

54
• “Report Writer language items affected” on page 54

Note: Starting with Enterprise COBOL 5.1, COBOL Report Writer Precompiler 1.6.01 or later is required
due to changes to the compiler architecture. Updates to the COBOL Report Writer must be obtained from
SPC Systems subject to an SPC Systems support contract. For program services and technical support
(including Q&A), contact SPC Systems at https://www.spc-systems.com.

For more information about the COBOL Report Writer Precompiler product, see “COBOL Report Writer
Precompiler” on page 289.

Keep existing Report Writer code and use the Report Writer Precompiler
When you recompile existing Report Writer applications (or newly written applications) with the Report
Writer Precompiler, and use the output as input to the Enterprise COBOL compiler, your Report Writer
applications can run above the 16-MB line. Through Enterprise COBOL, you can also extend their
processing capabilities.

This method requires the use of both the Report Writer Precompiler and the Enterprise COBOL compiler.

Chapter 6. Upgrading OS/VS COBOL source programs 53

https://www.spc-systems.com/

You can run Report Writer Precompiler as a separate precompiler, or incorporate it into the COBOL
compilation by using the EXIT compiler option.

Convert existing Report Writer code using the Report Writer Precompiler
If you permanently convert Report Writer code to non-Report Writer code, you can stop using the Report
Writer Precompiler and just use the Enterprise COBOL compiler. However, this might produce hard-to-
maintain COBOL code.

When converting Report Writer code to non-Report Writer code, the Precompiler generates variable
names and paragraph names. These names might not be meaningful, and thus hard to identify when
attempting to make changes to the program after the conversion. You can change the names to be
meaningful, but this might be difficult and time consuming.

Run existing OS/VS COBOL-compiled Report Writer programs under Language
Environment
You can run existing OS/VS COBOL Report Writer applications using Language Environment without
compiling with Enterprise COBOL but they cannot be mixed with Enterprise COBOL 5 or 6. If you want to
mix Enterprise COBOL 5 or 6 programs with OS/VS COBOL Report Writer programs, you must convert all
of the programs to use Enterprise COBOL 5 or 6, and use the Report Writer Precompiler.

OS/VS COBOL Report Writer programs will not run above the 16-MB line.

Report Writer language items affected
The following Report Writer language items are accepted by Enterprise COBOL only when the Report
Writer precompiler is installed:

GENERATE statement
INITIATE statement
LINE-COUNTER special register
Alphanumeric literal IS mnemonic-name
PAGE-COUNTER special register
PRINT-SWITCH special register
REPORT clause of FD entry
REPORT SECTION
TERMINATE statement
USE BEFORE REPORTING declarative

The Report Writer Precompiler is described in Appendix C, “Conversion tools for source programs,” on
page 281

Language elements that are not implemented
The following OS/VS COBOL language elements are not supported by Enterprise COBOL:

• ISAM file handling
• BDAM file handling
• Communication feature

With Enterprise COBOL, support for most of the 68 COBOL Standard language elements has been
removed. There are also miscellaneous OS/VS COBOL language items that are not implemented in
Enterprise COBOL.

The language elements affected and the conversion actions that you can perform are documented in
the following sections. There is a brief description of each item, plus conversion suggestions and, where
helpful, coding examples.

54 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

ISAM file handling
Enterprise COBOL does not support the processing of ISAM files, nor does z/OS 1.7 and later releases.
You must convert ISAM files to VSAM/KSDS files before you move to z/OS 1.7 or later.

ISAM file handling language items affected
The following ISAM language items are not accepted by Enterprise COBOL:

APPLY CORE-INDEX
APPLY REORG-CRITERIA
File declarations for ISAM files
NOMINAL KEY clause
Organization parameter I
TRACK-AREA clause
USING KEY clause of START statement

Conversion options
Two conversion tools can help you convert ISAM files to VSAM/KSDS files. You can use either IDCAMS
REPRO or CCCA. The IDCAMS REPRO facility will perform the conversion unless the file has a hardware
dependency. IDCAMS repro will only work for ISAM files on z/OS 1.6 or earlier. You must migrate ISAM to
VSAM/KSDS before moving to z/OS 1.7 or later.

The COBOL conversion tool (CCCA) can automatically convert the file definition and I/O statements from
your ISAM COBOL language to VSAM/KSDS COBOL language. The CCCA conversion tool is described in
Appendix C, “Conversion tools for source programs,” on page 281.

BDAM file handling
Enterprise COBOL does not support the processing of BDAM files. Convert any BDAM files to virtual
storage access method/relative record data set (VSAM/RRDS) files.

BDAM file handling language items affected
The following BDAM language items are not accepted by Enterprise COBOL:

ACTUAL KEY clause
APPLY RECORD-OVERFLOW
File declarations for BDAM files
Organization parameters D, R, W
SEEK statement
TRACK-LIMIT clause

Automated conversion options
The COBOL conversion tool (CCCA) can automatically convert your BDAM COBOL language to VSAM/RRDS
COBOL language, however, you must provide the key algorithm. The CCCA conversion tool is described in
Appendix C, “Conversion tools for source programs,” on page 281.

Communication feature
The Communication feature is not supported by Enterprise COBOL.

Communication language items affected
The following communication language items are not accepted by Enterprise COBOL:

ACCEPT MESSAGE COUNT statement
COMMUNICATION SECTION

Chapter 6. Upgrading OS/VS COBOL source programs 55

DISABLE statement
ENABLE statement
RECEIVE statement
SEND statement

Communication conversion actions
Existing TCAM applications that use the OS/VS COBOL SEND and RECEIVE statements run under
Language Environment with one exception: the QUEUE runtime option of OS/VS COBOL is not supported.
(The QUEUE runtime option is used only in an OS/VS COBOL program with a RECEIVE statement in a
CD . . . FOR INITIAL INPUT.)

For more information, see the IBM VS COBOL for OS/VS, and the IBM OS/VS COBOL Compiler and Library
Programmer's Guide.

Language elements that are not supported
Enterprise COBOL does not support the following OS/VS COBOL language elements. When upgrading to
Enterprise COBOL, you must either remove or alter these items as indicated in the following descriptions:
ASSIGN . . . OR

OS/VS COBOL accepted the ASSIGN ... OR clause. To use this clause under Enterprise COBOL, you
must remove the OR.

ASSIGN TO integer system-name
OS/VS COBOL accepted the ASSIGN TO integer system-name clause. To use this clause under
Enterprise COBOL, you must remove the integer.

ASSIGN . . . FOR MULTIPLE REEL/UNIT
OS/VS COBOL accepted the ASSIGN ... FOR MULTIPLE REEL/UNIT phrase, and treated it as
documentation. Enterprise COBOL does not support this phrase.

CLOSE statement: WITH POSITIONING, DISP phrases
OS/VS COBOL accepted the WITH POSITIONING and DISP phrases of the CLOSE statement provided
as IBM extensions in OS/VS COBOL. In Enterprise COBOL, these phrases are not accepted.

CURRENT-DATE special register
OS/VS COBOL accepted the CURRENT-DATE special register. It is valid only as the sending field in a
MOVE statement. CURRENT-DATE has the 8-byte alphanumeric format:

MM/DD/YY (month, day, year)

Enterprise COBOL supports the DATE special register. It is valid only as the sending field in an ACCEPT
statement. DATE has the 6-byte alphanumeric format:

YYMMDD (year, month, day)

Therefore, you must change an OS/VS COBOL program with statements similar to the following one:

77 DATE-IN-PROGRAM PICTURE X(8).
 . . .
 MOVE CURRENT-DATE TO DATE-IN-PROGRAM.

An example of one way to change it, keeping the two-digit year format, is as follows:

01 DATE-IN-PROGRAM.
 02 MONTH-OF-YEAR PIC X(02).
 02 FILLER PIC X(01) VALUE "/".
 02 DAY-OF-MONTH PIC X(02).
 02 FILLER PIC X(01) VALUE "/".
 02 YEAR PIC X(02).

01 ACCEPT-DATE.
 02 YEAR PIC X(02).
 02 MONTH-OF-YEAR PIC X(02).
 02 DAY-OF-MONTH PIC X(02).

56 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

 . . .
 ACCEPT ACCEPT-DATE FROM DATE.
 MOVE CORRESPONDING ACCEPT-DATE TO DATE-IN-PROGRAM.

An example of how to change it and specify a four-digit year is as follows:

01 DATE-IN-PROGRAM.
 02 MONTH-OF-YEAR PIC X(02).
 02 FILLER PIC X(01) VALUE "/".
 02 DAY-OF-MONTH PIC X(02).
 02 FILLER PIC X(01) VALUE "/".
 02 YEAR PIC X(04).

01 CURRENT-DATE.
 02 YEAR PIC X(04).
 02 MONTH-OF-YEAR PIC X(02).
 02 DAY-OF-MONTH PIC X(02).
 . . .
 MOVE FUNCTION CURRENT-DATE(1:8) TO CURRENT-DATE.
 MOVE CORRESPONDING CURRENT-DATE TO DATE-IN-PROGRAM.

EXAMINE statement
OS/VS COBOL accepted the EXAMINE statement; Enterprise COBOL does not.

Therefore, if your OS/VS COBOL program contains coding similar to the following one:

EXAMINE DATA-LENGTH TALLYING UNTIL FIRST " "

Replace it in Enterprise COBOL with:

MOVE 0 TO TALLY
INSPECT DATA-LENGTH TALLYING TALLY FOR CHARACTERS BEFORE " "

You can continue to use the TALLY special register wherever you can specify a WORKING-STORAGE
elementary data item of integer value.

EXHIBIT statement
OS/VS COBOL accepted the EXHIBIT statement; Enterprise COBOL does not.

With Enterprise COBOL, you can use DISPLAY statements to replace EXHIBIT statements. However,
the DISPLAY statement does not perform all the functions of the EXHIBIT statement.

Corrective action for EXHIBIT NAMED
You can replace the EXHIBIT NAMED statement directly with a DISPLAY statement:

 OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

 EXHIBIT NAMED DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1
 "DAT-2 = " DAT-2

Corrective action for EXHIBIT CHANGED
You can replace the EXHIBIT CHANGED statement with IF and DISPLAY statements, as follows:

1. Specify an IF statement to discover if the new value of the data item is different from the old.
2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new value is different from the old:

 OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).
 77 DAT1-CMP PIC X(8).
 77 DAT2-CMP PIC X(8).

 EXHIBIT CHANGED DAT-1 DAT-2 IF DAT-1 NOT EQUAL TO DAT1-CMP
 DISPLAY DAT-1

Chapter 6. Upgrading OS/VS COBOL source programs 57

 END-IF
 IF DAT-2 NOT EQUAL TO DAT2-CMP
 DISPLAY DAT-2
 END-IF
 MOVE DAT-1 TO DAT1-CMP
 MOVE DAT-2 TO DAT2-CMP

Corrective action for EXHIBIT CHANGED NAMED
You can replace the EXHIBIT CHANGED NAMED statement with IF and DISPLAY statements, as
follows:

1. Specify an IF statement to discover if the new value of the data item is different from the old.
2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new value is different from the old:

 OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).
 77 DAT1-CMP PIC X(8).
 77 DAT2-CMP PIC X(8).

 EXHIBIT CHANGED NAMED IF DAT-1 NOT EQUAL TO DAT1-CMP
 DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1
 END-IF
 IF DAT-2 NOT EQUAL TO DAT2-CMP
 DISPLAY "DAT-2 = " DAT-2
 END-IF
 MOVE DAT-1 TO DAT1-CMP
 MOVE DAT-2 TO DAT2-CMP

FILE-LIMIT clause of the FILE-CONTROL paragraph
OS/VS COBOL accepted the FILE-LIMIT clause and treats it as a comment; Enterprise COBOL does
not. Therefore, you must remove any occurrences of the FILE-LIMIT clause.

GIVING phrase of USE AFTER STANDARD ERROR declarative
In OS/VS COBOL, you could specify the GIVING phrase of the USE AFTER STANDARD ERROR
declarative. Enterprise COBOL does not support this phrase. Therefore, you must remove any
occurrences of the GIVING phrase of the USE AFTER STANDARD ERROR declarative.

Use the FILE-CONTROL FILE STATUS clause to replace the GIVING phrase. The FILE STATUS clause
gives you information after each I/O request, rather than only after an error occurs.

LABEL declaratives
Beginning with Enterprise COBOL 5, LABEL declaratives are no longer supported:

• Format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE... is no longer supported.
• The syntax: GO TO MORE-LABELS is no longer supported.

If your programs have any of these language elements, they must be removed before you can compile
and run these programs with Enterprise COBOL 5 and 6.

LABEL RECORDS clause with TOTALING/TOTALED AREA phrases
OS/VS COBOL allowed the TOTALING and TOTALED phrases of the LABEL RECORDS clause.

Enterprise COBOL does not support these phrases. Therefore, you must remove any occurrences
of the TOTALING/TOTALED phrases from the LABEL RECORDS clause. Also check the variables
associated with these phrases.

NOTE statement
OS/VS COBOL accepted the NOTE statement. Enterprise COBOL does not accept the NOTE statement.
Therefore, for Enterprise COBOL delete all NOTE statements and use comment lines instead for the
entire NOTE paragraph.

ON statement
OS/VS COBOL accepted the ON statement. Enterprise COBOL does not accept the ON statement.

58 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

The ON statement allows selective execution of statements it contains. Similar functions are provided
in Enterprise COBOL by the EVALUATE statement and the IF statement.

OPEN statement failing for QSAM files (file status 39)
In OS/VS COBOL, the fixed file attributes for QSAM files did not need to match your COBOL program
or JCL for a successful OPEN. In Enterprise COBOL, if the following conditions do not match, an OPEN
statement in your program might not run successfully:

• The fixed file attributes specified in the DD statement or the data set label for a file
• The attributes specified for that file in the SELECT and FD statements of your COBOL program

Mismatches in the attributes for file organization, record format (fixed or variable), the code set, or
record length result in a file status code 39, and the OPEN statement fails.

To prevent common file status 39 problems, see Appendix G, “Preventing file status 39 for QSAM
files,” on page 327.

OPEN statement failing for VSAM files (file status 39)
In OS/VS COBOL, the RECORDSIZE defined in your VSAM files associated with IDCAMS was not
required to match your COBOL program for a successful OPEN. In Enterprise COBOL they must match.
The following rules apply to VSAM ESDS, KSDS, and RRDS file definitions:

Table 9. Rules for VSAM file definitions

File type Rules

ESDS and
KSDS VSAM

RECORDSIZE(avg,m) is specified where avg is the average size of the COBOL
records, and is strictly less than m; m is greater than or equal to the maximum
size of a COBOL record.

RRDS VSAM RECORDSIZE(n,n) is specified where n is greater than or equal to the
maximum size of a COBOL record.

OPEN statement with the LEAVE, REREAD, and DISP phrases
OS/VS COBOL allowed the OPEN statement with the LEAVE, REREAD and DISP phrases. Enterprise
COBOL does not allow these phrases.

To replace the REREAD function, define a copy of your input records in the WORKING-STORAGE
SECTION and move each record into WORKING-STORAGE after it is read or use READ INTO.

READY TRACE and RESET TRACE statements
OS/VS COBOL allowed the READY TRACE and RESET TRACE statements. Enterprise COBOL does not
support these statements.

To get function similar to the READY TRACE statement, you can use either Debug Tool, or the COBOL
language available in the Enterprise COBOL compiler.

If you use Debug Tool, compile your program with the TEST option and use the following Debug Tool
command:

"AT GLOBAL LABEL PERFORM;
 LIST LINES %LINE; GO; END-PERFORM;"

If you use the COBOL language, the Enterprise COBOL USE FOR DEBUGGING ON ALL PROCEDURES
declarative can perform functions similar to READY TRACE and RESET TRACE.

For example:

ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-370 WITH DEBUGGING MODE.
 . . .
DATA DIVISION.
 . . .
 WORKING-STORAGE SECTION.
 01 TRACE-SWITCH PIC 9 VALUE 0.

Chapter 6. Upgrading OS/VS COBOL source programs 59

 88 READY-TRACE VALUE 1.
 88 RESET-TRACE VALUE 0.
 . . .
PROCEDURE DIVISION.
 DECLARATIVES.
 COBOL-II-DEBUG SECTION.
 USE FOR DEBUGGING ON ALL PROCEDURES.
 COBOL-II-DEBUG-PARA.
 IF READY-TRACE THEN
 DISPLAY DEBUG-NAME
 END-IF.
 END DECLARATIVES.
 MAIN-PROCESSING SECTION.
 . . .
 PARAGRAPH-3.
 . . .
 SET READY-TRACE TO TRUE.
 PARAGRAPH-4.
 . . .
 PARAGRAPH-6.
 . . .
 SET RESET-TRACE TO TRUE.
 PARAGRAPH-7.

where DEBUG-NAME is a field of the DEBUG-ITEM special register that displays the procedure-name
causing execution of the debugging procedure. (In this example, the object program displays the
names of procedures PARAGRAPH-4 through PARAGRAPH-6 as control reaches each procedure
within the range.)

At run time, you must specify PARM=/DEBUG in your EXEC statement to activate this debugging
procedure. In this way, you have no need to recompile the program to activate or deactivate the
debugging declarative.

REMARKS paragraph
OS/VS COBOL accepted the REMARKS paragraph.

Enterprise COBOL does not accept the REMARKS paragraph. As a replacement, use comment lines
beginning with an * in column 7 or use the floating comment indicator *>.

START . . . USING KEY statement
OS/VS COBOL allowed the START statement with the USING KEY phrase; Enterprise COBOL does not.
In Enterprise COBOL, you can specify the START statement with the KEY IS phrase.

THEN as a statement connector
OS/VS COBOL accepted the use of THEN as a statement connector.

The following example shows the OS/VS COBOL usage:

MOVE A TO B THEN ADD C TO D

Enterprise COBOL does not support the use of THEN as a statement connector. Therefore, in
Enterprise COBOL change it to:

MOVE A TO B
ADD C TO D

TIME-OF-DAY special register
OS/VS COBOL supported the TIME-OF-DAY special register. It was valid only as the sending field in a
MOVE statement. TIME-OF-DAY had the following 6-byte external decimal format:

HHMMSS (hour, minute, second)

Enterprise COBOL does not support the TIME-OF-DAY special register.

Therefore, you must change an OS/VS COBOL program with statements similar to the following one:

77 TIME-IN-PROGRAM PICTURE X(6).
. . .
 MOVE TIME-OF-DAY TO TIME-IN-PROGRAM.

60 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

An example of one way to change it is as follows:

MOVE FUNCTION CURRENT-DATE (9:6) TO TIME-IN-PROGRAM

TRANSFORM statement
OS/VS COBOL supported the TRANSFORM statement. Enterprise COBOL does not support the
TRANSFORM statement, but it does support the INSPECT statement. Therefore, any TRANSFORM
statements in your OS/VS COBOL program must be replaced by INSPECT CONVERTING statements.

For example, in the following OS/VS COBOL TRANSFORM statement:

77 DATA-T PICTURE X(9) VALUE "ABCXYZCCC"
 . . .
 TRANSFORM DATA-T FROM "ABC" TO "CAT"

TRANSFORM evaluates each character, changing each A to C, each B to A, and each C to T.

After the TRANSFORM statement is executed. DATA-T contains "CATXYZTTT".

For example, in the following INSPECT CONVERTING statement (valid only in Enterprise COBOL):

77 DATA-T PICTURE X(9) VALUE "ABCXYZCCC"
 . . .
 INSPECT DATA-T
 CONVERTING "ABC" TO "CAT"

INSPECT CONVERTING evaluates each character just as TRANSFORM does, changing each A to C,
each B to A, and each C to T.

After the INSPECT CONVERTING statement is executed. DATA-T contains "CATXYZTTT:.

USE BEFORE STANDARD LABEL
OS/VS COBOL accepted the USE BEFORE STANDARD LABEL statement; Enterprise COBOL does not.

Therefore, you must remove any occurrences of the USE BEFORE STANDARD LABEL statement.
Enterprise COBOL does not support nonstandard labels, so you cannot process nonstandard labeled
files with Enterprise COBOL.

SEARCH ALL statements
If you have programs that contain SEARCH ALL statements and that were compiled with OS/VS COBOL,
you may need to make some changes due to changes in the behavior of the SEARCH ALL statement

The new behavior for the SEARCH ALL statement is described in “Upgrading programs that have SEARCH
ALL statements” on page 99.

Undocumented OS/VS COBOL extensions that are not supported
This section consists primarily of COBOL statements that are not flagged by the MIGR option. These
statements were accepted by the OS/VS COBOL compiler; some are not accepted by Enterprise COBOL.

Because these language elements are undocumented extensions to OS/VS COBOL, they are not
considered to be valid OS/VS COBOL code. This list might not contain all undocumented extensions; it
includes all of the undocumented extensions of which we are aware.
Abbreviated combined relation conditions and use of parentheses

OS/VS COBOL accepted the use of parentheses within an abbreviated combined relation condition.

Enterprise COBOL supports most parenthesis usage as IBM extensions. However, there are two
differences:

• Within the scope of an abbreviated combined relation condition, Enterprise COBOL does not support
relational operators inside parentheses. For example:

A = B AND (< C OR D)

Chapter 6. Upgrading OS/VS COBOL source programs 61

• Some incorrect usages of parentheses in relation conditions were accepted by OS/VS COBOL, but
are not by Enterprise COBOL. For example:

(A = 0 AND B) = 0

ACCEPT statement
OS/VS COBOL accepted the ACCEPT statement without the keyword FROM between the identifier and
the mnemonic or function name.

Enterprise COBOL does not accept such an ACCEPT statement.

BLANK WHEN ZERO clause and asterisk (*) override
In OS/VS COBOL, if you specified the BLANK WHEN ZERO clause and the asterisk (*) as a zero
suppression symbol for the same entry, zero suppression would override BLANK WHEN ZERO.

Enterprise COBOL does not accept these two language elements when they are specified for the same
data description entry. Thus Enterprise COBOL must not contain instances of both the clause and the
symbol in one data description entry.

If you have specified both the BLANK WHEN ZERO clause and the asterisk as a zero suppression
symbol in your OS/VS COBOL programs, to get the same behavior in Enterprise COBOL, remove the
BLANK WHEN ZERO clause.

CLOSE . . . FOR REMOVAL statement
OS/VS COBOL allowed the FOR REMOVAL clause for sequential files, and it had an effect on the
execution of the program. Enterprise COBOL syntax-checks the statement but it has no effect on the
execution of the program.

Comparing group to numeric packed-decimal item
OS/VS COBOL allowed a comparison between a group and a numeric packed-decimal item, but
generated code that produced an incorrect result.

For example, the result of the comparison below is the message

"1 IS NOT > 0"

and is not the numerically correct

"1 > 0"

 05 COMP-TABLE.
 10 COMP-PAY PIC 9(4).
 10 COMP-HRS PIC 9(3).
 05 COMP-ITEM PIC S9(7) COMP-3.

PROCEDURE DIVISION.
 MOVE 0 TO COMP-PAY COMP-HRS.
 MOVE 1 TO COMP-ITEM.
 IF COMP-ITEM > COMP-TABLE
 DISPLAY '1 > 0'
 ELSE
 DISPLAY '1 IS NOT > 0'.

Enterprise COBOL does not allow such a comparison.

Flow of control, no terminating statement
In OS/VS COBOL, it would be possible to link-edit an assembler program to the end of an OS/VS
COBOL program and have the flow of control go from the end of the COBOL program to the assembler
program.

In Enterprise COBOL, if you do not code a terminating statement at the end of your program (STOP
RUN or GOBACK), the program will terminate with an implicit GOBACK. The flow of control cannot go
beyond the end of the COBOL program.

If you have programs that rely on 'falling through the end' into another program, change the code to a
CALL interface to the other program.

62 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Index names
OS/VS COBOL allowed the use of qualified index names.

Enterprise COBOL does not allow qualified index names; index names must be unique if referenced.

LABEL RECORD IS statement
OS/VS COBOL accepted a LABEL RECORD clause without the word RECORD. You could have LABEL IS
OMITTED instead of LABEL RECORD IS OMITTED.

Enterprise COBOL does not accept such a LABEL RECORD clause.

MOVE statement - binary value and DISPLAY value
Although the Enterprise COBOL TRUNC(OPT) compiler option is recommended for compatibility with
the OS/VS COBOL NOTRUNC compiler option, you might receive different results involving moves of
fullword binary items (USAGE COMP with Picture 9(5) through Picture 9(9)).

For example:

WORKING-STORAGE SECTION.
 01 WK1 USAGE COMP-4 PIC S9(9).

PROCEDURE DIVISION.

 MOVE 1234567890 to WK1
 DISPLAY WK1.
 GOBACK.

This example actually shows COBOL coding that is not valid, since 10 digits are being moved into a
9-digit item.

For example, the results are as follows when compiled with the following compiler options:

 OS/VS COBOL NOTRUNC Enterprise COBOL TRUNC(OPT)

Binary value x'499602D2' x'0DFB38D2'

DISPLAY value 234567890 234567890

For OS/VS COBOL, the binary value contained in the binary data item is not the same as the DISPLAY
value. The DISPLAY value is based on the number of digits in the PICTURE clause and the binary value
is based on the size of the binary data item, in this case, 4 bytes. The actual value of the binary data
item in decimal digits is 1234567890.

For Enterprise COBOL, the binary value and the DISPLAY value are equal because the truncation that
occurred was based on the number of digits in the PICTURE clause.

This situation is flagged by MIGR in OS/VS COBOL and by Enterprise COBOL when compiled with
TRUNC(OPT).

MOVE CORRESPONDING statement

• OS/VS COBOL allowed more than one receiver with MOVE CORRESPONDING; Enterprise COBOL
does not. Therefore, you must change the following OS/VS COBOL statement:

MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B GROUP-ITEM-C

to two Enterprise COBOL MOVE CORRESPONDING statements:

MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-C

• Releases prior to OS/VS COBOL 1.2.4 accepted nonunique subordinate data items in the receiver of
a MOVE CORRESPONDING statement; Enterprise COBOL does not. For example:

01 KANCFUNC.
 03 CL PIC XX.
 03 KX9 PIC XX.
 03 CC PIC XX.

Chapter 6. Upgrading OS/VS COBOL source programs 63

01 HEAD1-AREA.
 03 CL PIC XX.
 03 KX9 PIC XX.
 03 CC PIC XX.
 03 KX9 PIC XX.
.
.
.
 MOVE CORR KANCFUNC to HEAD1-AREA.

For Enterprise COBOL, change the data items in the receiver to have unique names.

MOVE statement - multiple TO specification
OS/VS COBOL allowed the reserved word TO to precede each receiver in a MOVE statement. For
example:

MOVE aa TO bb TO cc

In Enterprise COBOL, the above statement must be changed to:

MOVE aa TO bb cc

MOVE ALL - TO PIC 99
OS/VS COBOL allowed group moves into a fixed numeric receiving field. For example:

MOVE ALL ' ' TO num1

where, num1 is PIC 99.

Enterprise COBOL does not allow the above case. In Enterprise COBOL, you can change the example
to the following statement and it would be accepted:

MOVE ALL ' ' TO num1(1:)

MOVE statement - warning message for numeric truncation
OS/VS COBOL issued a warning message for a MOVE statement with a numeric receiver that would
result in a loss of digits. For example:

77 A PIC 999.
77 B PIC 99.
.
.
.
 MOVE A TO B.

You can get the same behavior with Enterprise COBOL if the compiler option DIAGTRUNC is in effect.

OCCURS clause
OS/VS COBOL allowed a nonstandard order for phrases following the OCCURS clause; Enterprise
COBOL does not.

For example, the following code sequence would be allowed in OS/VS COBOL:

01 D PIC 999.
01 A.
 02 B OCCURS 1 TO 200 TIMES
 ASCENDING KEY C
 DEPENDING ON D
 INDEXED BY H.
 02 C PIC 99.

In Enterprise COBOL, the above example must be changed to the following code sequence:

01 D PIC 999.
01 A.
 02 B OCCURS 1 TO 200 TIMES
 DEPENDING ON D
 ASCENDING KEY C

64 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

 INDEXED BY H.
 02 C PIC 99.

OPEN REVERSED statement
OS/VS COBOL accepted the REVERSED phrase for multireel files; Enterprise COBOL does not.

PERFORM statement - second UNTIL
OS/VS COBOL allowed a second UNTIL in a PERFORM statement, as in the following example:

PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT
 UNTIL PARM-COUNT = 7
 OR UNTIL SSREJADV-EOF.

Enterprise COBOL does not allow a second UNTIL statement. It must be removed as shown in the
following example:

PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT
 UNTIL PARM-COUNT = 7
 OR SSREJADV-EOF.

Periods in Area A
OS/VS COBOL allowed you to code a period in Area A following an Area-A item (or no item) that was
not valid. With Enterprise COBOL, a period in Area A must be preceded by a valid Area-A item.

Periods, consecutive in any division
OS/VS COBOL allowed you to code two consecutive periods in any division.

Enterprise COBOL issues a warning message (RC = 4) if two periods in a row are found in the
PROCEDURE DIVISION, and a severe message (RC = 12) if two periods in a row are found in either the
ENVIRONMENT DIVISION or the DATA DIVISION.

The following code would be accepted by OS/VS COBOL, but would receive a severe (RC = 12) error
and a warning (RC = 4) under Enterprise COBOL:

WORKING-STORAGE SECTION.
01 A PIC 9..
.
.
.
 MOVE 1 TO A..
.
.
 GOBACK.

Periods missing at the end of SD, FD, or RD
A period is required at the end of a sort, file, or report description, preceding the 01-level indicator.

OS/VS COBOL diagnosed the missing period with a warning message (RC = 4).

Enterprise COBOL issues an error message (RC = 8).

Periods missing on paragraphs
Releases prior to OS/VS COBOL 1.2.4 accepted paragraph names not followed by a period. OS/VS
COBOL 1.2.4 issued a warning message (RC = 4) whereas Enterprise COBOL issues an error message
(RC = 8) .

PICTURE string
OS/VS COBOL accepted a PICTURE string with all Z's to the left of the implied decimal point, a Z
immediately to the right of the implied decimal point, but ending with a 9 or 9-. For example:

05 WEIRD-NUMERIC-EDITED PIC Z(11)VZ9.

Enterprise COBOL does not accept statements such as the statements in the example above. You
must change the Z9 to either ZZ or 99.

Chapter 6. Upgrading OS/VS COBOL source programs 65

PROGRAM-ID names, nonunique
OS/VS COBOL allowed a data-name or paragraph-name to be the same as the PROGRAM-ID name.
Enterprise COBOL requires the PROGRAM-ID name to be unique.

Qualification - using the same phrase repeatedly

A of B of B

OS/VS COBOL allowed repeating of phrases; Enterprise COBOL does not.

READ statement - redefined record keys in the KEY phrase
OS/VS COBOL accepted implicitly or explicitly redefined record keys in the KEY phrase of the READ
statement.

Enterprise COBOL accepts only the names of the data items that are specified as record keys in the
SELECT clause for the file being read.

RECORD CONTAINS n CHARACTERS clause
In variation with the 74 COBOL Standard, the RECORD CONTAINS n CHARACTERS clause of an OS/VS
COBOL program was overridden if an OCCURS DEPENDING ON clause was specified in the FD, and
produced a file containing variable-length records instead of fixed-length records.

Under Enterprise COBOL, the RECORD CONTAINS n CHARACTERS clause produces a file containing
fixed-length records.

RECORD KEY phrase and ALTERNATE RECORD KEY phrase
OS/VS COBOL allowed the leftmost character position of the ALTERNATE RECORD KEY data-name-4
to be the same as the leftmost character position of the RECORD KEY or of any other ALTERNATE
RECORD KEY phrases.

Enterprise COBOL does not allow this.

Record length, obtaining from QSAM RDW
In OS/VS COBOL, you can obtain the record length for files that have variable-length records from the
RDW by using invalid negative subscripts.

In Enterprise COBOL, the RDW for variable files in the area preceding the record content is not
available. To migrate from previous COBOL products, use the Format 3 RECORD clause in FD entries to
set or obtain the length of variable records when the information is not in the record itself. The syntax
contains RECORD IS VARYING DEPENDING ON data-name-1. data-name-1 is defined in WORKING-
STORAGE. After the compiler reads a variable record, the length of the data read is automatically
stored at data-name-1. For example:

FILE SECTION.
 FD THE-FILE RECORD IS VARYING DEPENDING ON REC-LENGTH.
 01 THE-RECORD PICTURE X(5000) .
 WORKING-STORAGE SECTION.
 01 REC-LENGTH PICTURE 9(5) COMPUTATIONAL.
 01 SAVED-RECORD PICTURE X(5000).
 PROCEDURE DIVISION.
* Read a record of unknown length.
 READ THE-FILE.
 DISPLAY REC-LENGTH.
* or use REC-LENGTH to access the right amount of data:
 MOVE THE-RECORD (1:REC-LENGTH) TO SAVED-RECORD.

For more information about the RECORD clause, see the Enterprise COBOL for z/OS Language
Reference.

REDEFINES clause in SD or FD entries
Releases prior to OS/VS COBOL 1.2.4 accepted a REDEFINES clause in a level-01 SD or FD; Enterprise
COBOL and OS/VS COBOL 1.2.4 do not.

For example, the following code sequence is not valid:

SD ...
01 SORT-REC-HEADER.

66 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

 05 SORT-KEY PIC X(20).
 05 SORT-HEADER-INFO PIC X(40).
 05 FILLER PIC X(20).
01 SORT-REC-DETAIL REDEFINES SORT-REC-HEADER.
 05 FILLER PIC X(20).
 05 SORT-DETAIL-INFO PIC X(60).

To get similar function in Enterprise COBOL, delete the REDEFINES clause.

REDEFINES clause with tables
OS/VS COBOL allowed you to specify tables within the REDEFINES clause. For example, OS/VS COBOL
would issue a warning message (RC = 4) for the following example:

01 E.
 03 F OCCURS 10.
 05 G PIC X.
 03 I REDEFINES F PIC X.

Enterprise COBOL does not allow tables to be redefined, and issues a severe (RC = 12) message for
the example above.

Relation conditions
Releases prior to OS/VS COBOL 1.2.4 accepted operators in relation conditions that are not valid.
The following table lists the operators accepted by OS/VS COBOL 1.2.3 that are not accepted by
Enterprise COBOL. It also shows the valid coding for Enterprise COBOL programs.

OS/VS COBOL 1.2.3 Enterprise COBOL

= TO = or EQUAL TO

> THAN > or GREATER THAN

< THAN < or LESS THAN

RENAMES clause - nonunique, nonqualified data names
No MIGR message is issued if the RENAMES clause in your OS/VS COBOL program references
a nonunique, nonqualified data name. However, Enterprise COBOL does not support the use of
nonunique, nonqualified data names.

SELECT statement without a corresponding FD
OS/VS COBOL accepted a SELECT statement that does not have a corresponding FD entry; Enterprise
COBOL does not.

SORT statement
At early maintenance levels, the OS/VS COBOL compiler accepted the UNTIL and TIMES phrases in
the SORT statement, for example:

SORT FILE-1
 ON ASCENDING KEY AKEY-1
 INPUT PROCEDURE IPROC-1
 OUTPUT PROCEDURE OPROC-1
 UNTIL AKEY-1 = 99.

SORT FILE-2
 ON ASCENDING KEY AKEY-2
 INPUT PROCEDURE IPROC-2
 OUTPUT PROCEDURE OPROC-2
 10 TIMES.

Enterprise COBOL does not accept statements such as the statements in the example above.

In a SORT statement, the correct syntax allows ASCENDING KEY or DESCENDING KEY followed by a
data-name which is the sort key. The word KEY is optional.

Chapter 6. Upgrading OS/VS COBOL source programs 67

OS/VS COBOL accepted IS if used following ASCENDING KEY. Enterprise COBOL does not accept IS in
this context. For example:

SORT SORT-FILE
 ASCENDING KEY IS SD-NAME-FIELD
 USING INPUT-FILE
 GIVING SORTED-FILE.

SORT or MERGE
With OS/VS COBOL, a MOVE to the SD buffer before the first RETURN in a SORT or MERGE output
PROCEDURE did not overlay the data of the first record.

In Enterprise COBOL such a MOVE would overlay the data of the first record. During a SORT or MERGE
operation, the SD data item is used. You must not use it in the OUTPUT PROCEDURE before the
first RETURN statement executes. If data is moved into this record area before the first RETURN
statement, the first record to be returned will be overwritten.

STRING statement - sending field identifier
OS/VS COBOL allowed a numeric sending field identifier that is not an integer. Under Enterprise
COBOL, a numeric sending field identifier must be an integer.

UNSTRING statement - coding with 'OR', 'IS', or a numeric edited item
OS/VS COBOL would not issue a diagnostic error message for UNSTRING statements containing any of
the following instances of coding that is not valid:

1. Lack of the required word "OR" between literal-1 and literal-2, as in:

UNSTRING A-FIELD DELIMITED BY '-' ','
 INTO RECV-FIELD-1
 POINTER PTR-FIELD.

2. Presence of the extraneous word "IS" in specifying a pointer, as in:

UNSTRING A-FIELD DELIMITED BY '-' OR ','
 INTO RECV-FIELD-2
 POINTER IS PTR-FIELD.

3. Use of a numeric edited item as the source of an UNSTRING statement, as in:

01 NUM-ED-ITEM PIC $$9.99+
.
.
.
 UNSTRING NUM-ED-ITEM DELIMITED BY '$'
 INTO RECV-FIELD-1
 POINTER PTR-FIELD

Enterprise COBOL allows only nonnumeric data items as senders in the UNSTRING statement.

Enterprise COBOL issues a message if an UNSTRING statement containing any of these errors is
encountered.

UNSTRING statement - multiple INTO phrases
OS/VS COBOL issued a warning (RC = 4) message when multiple INTO phrases were coded. For
example:

UNSTRING ID-SEND DELIMITED BY ALL "*"
 INTO ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1
 INTO ID-R2 DELIMITER IN ID-D2 COUNT IN ID-C2
 INTO ID-R2 DELIMITER IN ID-D3 COUNT IN ID-C3

Enterprise COBOL does not allow multiple INTO phrases in an UNSTRING statement.

VALUE clause - signed value in relation to the PICTURE clause
In OS/VS COBOL, the VALUE clause literal could be signed if the PICTURE clause was unsigned.

In Enterprise COBOL, the VALUE clause literal must match the PICTURE clause and the sign must be
removed.

68 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Language elements that changed from OS/VS COBOL
Several OS/VS COBOL language elements are changed in Enterprise COBOL in order to conform to 85
COBOL Standard.

For some elements, the syntax of the language is different. For others, the language syntax is unchanged,
but the execution results can be different because semantics changed.

For each element listed, there is a brief description pointing out the differences in results and what
actions to take. Clarifying coding examples are also given as needed.
ALPHABETIC class changes

In OS/VS COBOL, only uppercase letters and the space character were considered to be ALPHABETIC.

In Enterprise COBOL, uppercase letters, lowercase letters, and the space character are considered to
be ALPHABETIC.

If your OS/VS COBOL program uses the ALPHABETIC class test, and the data tested consists of mixed
uppercase and lowercase letters, there can be differences in execution results. In such cases, you can
ensure identical results by substituting the Enterprise COBOL ALPHABETIC-UPPER class test for the
OS/VS COBOL ALPHABETIC test.

ALPHABET-NAME clause changes: ALPHABET keyword
In OS/VS COBOL, the keyword ALPHABET was not allowed in the ALPHABET-NAMES clause.

In Enterprise COBOL, there is a keyword ALPHABET and it is required.

Arithmetic statement changes
Enterprise COBOL supports the following arithmetic items with enhanced accuracy:

• Use of floating-point data items
• Use of floating-point literals
• Use of fractional exponentiation

Therefore, for arithmetic statements that contain these items, Enterprise COBOL might provide more
accurate results than OS/VS COBOL. You will need to test your applications to verify that these
changes do not have a negative impact on them.

ASSIGN clause changes
Enterprise COBOL supports only the following format of the ASSIGN clause:

ASSIGN TO assignment-name

Where assignment-name can have the following forms:
QSAM files

[comments-][S-]name
VSAM sequential files

[comments-][AS-]name
VSAM indexed or relative files

[comments-]name
LINE SEQUENTIAL files

[comments-]name

If your OS/VS COBOL program uses other formats of the ASSIGN clause, or other forms of the
assignment-name, you must change it to conform to the format supported by Enterprise COBOL.

B symbol in PICTURE clause: changes in evaluation
OS/VS COBOL accepted the PICTURE symbols A and B in definitions for alphabetic items.

Enterprise COBOL accepts only the PICTURE symbol A. (A PICTURE that contains both symbols A and
B defines an alphanumeric edited item.)

Chapter 6. Upgrading OS/VS COBOL source programs 69

This change can cause execution differences between OS/VS COBOL and Enterprise COBOL for
evaluations of the:

• CANCEL statement
• CALL statement
• Class test
• STRING statement

CALL statement changes
OS/VS COBOL accepted paragraph names, section names, and file names in the USING phrase of the
CALL statement.

Enterprise COBOL CALL statements do not accept procedure names and accept only QSAM file names
in the USING phrase. Therefore, you must remove the procedure names and make sure that file
names used in the USING phrase of the CALL statement name QSAM physical sequential files.

To convert OS/VS COBOL programs that call assembler programs and pass procedure names, you
need to rewrite the assembler routines. In OS/VS COBOL programs, assembler routines can be written
to receive an address or a list of addresses from the paragraph name that was passed as a parameter.
The assembler routines can then use this address to return to an alternative place in the main
program, if an error occurs.

In Enterprise COBOL, code your assembler routines so that they return to the point of origin with an
assigned number. If an error occurs in the assembler program, this number can then be used to go to
alternative places in the calling routine.

For example, this assembler routine in OS/VS COBOL is not valid in Enterprise COBOL :

CALL "ASMMOD" USING PARAMETER-1,
 PARAGRAPH-1,
 PARAGRAPH-2,
NEXT STATEMENT.
 . . .
PARAGRAPH-1.
 . . .
PARAGRAPH-2.

The sample code above should be rewritten as shown in the following example in order to compile
with Enterprise COBOL:

CALL "ASMMOD" USING PARAMETER-1,
 PARAMETER-2.
IF PARAMETER-2 NOT = 0
 GOTO PARAGRAPH-1,
 PARAGRAPH-2,
 DEPENDING ON PARAMETER-2.

In this example, you would modify the assembler program (ASMMOD) so that it does not branch to
an alternative location. Instead, it will pass back the number zero to the calling routine if there are no
errors, and a nonzero return value if an error occurred. The nonzero value would be used to determine
which paragraph in the COBOL program would handle the error condition.

Many COBOL programmers code assembler programs that use the 390 SPIE mechanism to get control
when there is an error or condition. These routines can pass control to a COBOL program at a
paragraph whose name was passed to the SPIE routine. Applications that use these user-written SPIE
routines should be converted to use Language Environment condition handling.

Combined abbreviated relation condition changes
Three considerations affect combined abbreviated relation conditions:

• NOT and logical operator/relational operator evaluation
• Parenthesis evaluation
• Optional word IS

All are described in the following sections.

70 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

NOT and logical operator/relational operator evaluation: OS/VS COBOL with LANGLVL(1) accepted
the use of NOT in combined abbreviated relation conditions as follows:

• When only the subject of the relation condition is implied, NOT is considered a logical operator. For
example:

A = B AND NOT LESS THAN C OR D

is equivalent to:

((A = B) AND NOT (A < C) OR (A < D))

• When both the subject and the relational operator are implied, NOT is considered to be part of the
relational operator.

For example:

A > B AND NOT C

is equivalent to:

A > B AND A NOT > C

OS/VS COBOL with LANGLVL(2) and Enterprise COBOL in combined abbreviated relation conditions
consider NOT to be:

• Part of the relational operator in the forms NOT GREATER THAN, NOT >, NOT LESS THAN, NOT <,
NOT EQUAL TO, and NOT =. For example:

A = B AND NOT LESS THAN C OR D

is equivalent to:

((A = B) AND (A NOT < C) OR (A NOT < D))

• NOT in any other position is considered to be a logical operator (and thus results in a negated
relation condition). For example:

A > B AND NOT C

is equivalent to:

A > B AND NOT A > C

To ensure that you get the execution results that you want when moving from OS/VS COBOL with
LANGLVL(1), you should expand all abbreviated combined conditions to their full unabbreviated
forms.

Parenthesis evaluation: OS/VS COBOL accepted the use of parentheses within an abbreviated
combined relational condition.

Enterprise COBOL supports most parentheses usage as IBM extensions. However, there are some
differences:

• Within the scope of an abbreviated combined relation condition, Enterprise COBOL does not support
relational operators inside parentheses. For example:

A = B AND (< C OR D)

• Some incorrect usages of parentheses in relation conditions were accepted by OS/VS COBOL, but
are not accepted by Enterprise COBOL. For example:

(A = 0 AND B) = 0

Chapter 6. Upgrading OS/VS COBOL source programs 71

Optional word IS: OS/VS COBOL accepted the optional word IS immediately preceding objects within
an abbreviated combined relation condition. For example:

A = B OR IS C AND IS D

Enterprise COBOL does not accept this use of the optional word IS. In Enterprise COBOL, delete the
word IS when used in this manner.

Enterprise COBOL does permit the use of the optional word IS as part of the relational operator in
abbreviated combined relational conditions. For example:

A = B OR IS = C AND IS = D

COPY statement with associated names
OS/VS COBOL with LANGLVL(1) allowed COPY statements to be preceded by an 01-level indicator,
which would result in the 01-level name replacing the 01-level name in the COPY member. For
example, with the following contents of COPY member MBR-A:

01 RECORD-A.
 05 FIELD-A...
 05 FIELD-B...

and a COPY statement like this:

01 RECORD1 COPY MBR-A.

the resultant source would look like this:

01 RECORD1.
 05 FIELD-A...
 05 FIELD-B...

Enterprise COBOL does not accept this COPY statement. To compile with Enterprise COBOL, use the
following statement:

01 RECORD1.
 COPY MBR-A REPLACING ==01 RECORD-A.== BY == ==.

CURRENCY-SIGN clause changes: '/', '=', and 'L' characters
OS/VS COBOL with LANGLVL(1), accepted the '/' (slash) character, the 'L' character, and the '=' (equal)
sign in the CURRENCY-SIGN clause.

Enterprise COBOL does not accept these characters as valid.

If these characters are present, you must remove them from the CURRENCY SIGN clause.

Dynamic CALL statements to ENTRY points
OS/VS COBOL allowed dynamic CALL statements to alternate entry points of subprograms without an
intervening CANCEL, in some cases.

Enterprise COBOL always requires an intervening CANCEL. When converting these programs, add
an intervening CANCEL between dynamic CALL statements referencing alternate ENTRY points of
subprograms.

EXIT PROGRAM/GOBACK statement changes
In OS/VS COBOL, when an EXIT PROGRAM or GOBACK statement was executed, if the end of range
of a PERFORM statement within it had not been reached, the PERFORM statement remained in its
uncompleted state.

In Enterprise COBOL, when an EXIT PROGRAM or GOBACK statement is executed, the end of range of
every PERFORM statement within it is considered to have been reached.

FILE STATUS clause changes
In Enterprise COBOL, status key values have been changed from those received from OS/VS COBOL:

• For QSAM files, see Table 10 on page 73.

72 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• For VSAM files, see Table 11 on page 74.

If your OS/VS COBOL program uses status key values to determine the course of execution, you must
modify the program to use the new status key values. For complete information about Enterprise
COBOL file status codes, see the Enterprise COBOL for z/OS Language Reference.

Table 10. Status key values: QSAM files

OS/VS Enterprise COBOL Meaning

(undefined
)

04 Wrong length record; successful completion

(undefined
)

05 Optional file not available; successful completion

(undefined
)

07 NO REWIND/REEL/UNIT/FOR REMOVAL specified for
OPEN or CLOSE, but file not on a reel/unit medium;
successful completion

00 00 Successful completion

10 10 At END (no next logical record); successful completion

30 30 Permanent error

34 34 Permanent error file boundary violation

90 90 Other errors with no further information

90 35 Nonoptional file not available

90 37 Device type conflict

90 39 Conflict of fixed file attributes; OPEN fails

90 96 No file identification (no DD statement for the file)

92 38 OPEN attempted for file closed WITH LOCK

92 41 OPEN attempted for a file in OPEN mode

92 42 CLOSE attempted for a file not in OPEN mode

92 43 REWRITE attempted when last I/O statement was not
READ

92 44 Attempt to rewrite a sequential file record with a record
of a different size

92 46 Sequential READ attempted with no valid next record

92 47 READ attempted when file not in OPEN INPUT or I-O
mode

92 48 WRITE attempted when file not in OPEN OUTPUT, I-O, or
EXTEND mode

00 48 WRITE attempted when file in OPEN I-O mode

92 49 DELETE or REWRITE attempted when file not in OPEN
I-O mode

92 92 Logic error

Chapter 6. Upgrading OS/VS COBOL source programs 73

Table 11. Status key values: VSAM files

OS/VS Enterprise COBOL Meaning

(undefined
)

14 On sequential READ for relative file, size of relative
record number too large for relative key

00 00 Successful completion

00 04 Wrong length record; successful completion

00 05 Optional file not available; successful completion

00 35 Nonoptional file not available. Can occur when the file is
empty.

02 02 Duplicate key, and DUPLICATES specified; successful
completion

10 10 At END (no next logical record); successful completion

21 21 Key not valid for a VSAM indexed or relative file;
sequence error

22 22 Key not valid for a VSAM indexed or relative file;
duplicate key and duplicates not allowed

23 23 Key not valid for a VSAM indexed or relative file; no
record found

24 24 Key not valid for a VSAM indexed or relative file; attempt
to write beyond file boundaries

Enterprise COBOL: for a WRITE to a relative file, size of
relative record number too large for relative key

30 30 Permanent error

90 37 Attempt to open a file not on a mass storage device

90 90 Other errors with no further information

91 91 VSAM password failure

92 41 OPEN attempted for a file in OPEN mode

92 42 CLOSE attempted for a file not in OPEN mode

92 43 REWRITE attempted when last I/O statement was not
READ or DELETE

92 47 READ attempted when file not in OPEN INPUT or I-O
mode

92 48 WRITE attempted when file not in OPEN OUTPUT, I-O, or
EXTEND mode

92 49 DELETE or REWRITE attempted when file not in OPEN
I-O mode

93 93 VSAM resource not available

93 96 35 Nonoptional file not available

94 46 Sequential READ attempted with no valid next record

95 39 Conflict of fixed file attributes; OPEN fails

74 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 11. Status key values: VSAM files (continued)

OS/VS Enterprise COBOL Meaning

95 95 Not valid or incomplete VSAM file information

96 96 No file identification (no DD statement for this VSAM file)

97 97 (when
VSAMOPENFS(COMPAT), the
default, is in effect)

OPEN statement execution successful; file integrity
verified

00 (when
VSAMOPENFS(SUCC) is in
effect)

OPEN statement execution successful; file integrity
verified

IF . . . OTHERWISE statement changes
OS/VS COBOL allowed IF statements of the nonstandard format:

IF condition THEN statement-1 OTHERWISE statement-2

Enterprise COBOL allows only IF statements having the standard format:

IF condition THEN statement-1 ELSE statement-2

Therefore, OS/VS COBOL programs containing nonstandard IF . . . OTHERWISE statements must be
changed to standard IF . . . ELSE statements.

JUSTIFIED clause changes
Under OS/VS COBOL with LANGLVL(1), if a JUSTIFIED clause is specified together with a VALUE
clause for a data description entry, the initial data is right-justified. For example:

77 DATA-1 PIC X(9) JUSTIFIED VALUE "FIRST".

results in "FIRST" occupying the five rightmost character positions of DATA-1:

bbbbFIRST

In Enterprise COBOL, the JUSTIFIED clause does not affect the initial placement of the data within
the data item. If a VALUE and JUSTIFIED clause are both specified for an alphabetic or alphanumeric
item, the initial value is left-justified within the data item. For example:

77 DATA-1 PIC X(9) JUSTIFIED VALUE "FIRST".

results in "FIRST" occupying the five leftmost character positions of DATA-1:

FIRSTbbbb

To achieve unchanged results in Enterprise COBOL, you can specify the literal value as occupying all
nine character positions of DATA-1. For example:

77 DATA-1 PIC X(9) JUSTIFIED VALUE " FIRST".

which right-justifies the value in DATA-1:

bbbbFIRST

MOVE statements and comparisons: scaling changes
In OS/VS COBOL with LANGLVL(1), if either the sending field in a MOVE statement or a field in a
comparison is a scaled integer (that is, if the rightmost PICTURE symbols are the letter P) and the
receiving field (or the field to be compared) is alphanumeric or numeric-edited, the trailing zeros (0)
are truncated.

For example, after the following MOVE statement is executed:

Chapter 6. Upgrading OS/VS COBOL source programs 75

05 SEND-FIELD PICTURE 999PPP VALUE 123000.
05 RECEIVE-FIELD PICTURE XXXXXX.
 . . .
 MOVE SEND-FIELD TO RECEIVE-FIELD.

RECEIVE-FIELD contains the value 123bbb (left-justified), where 'b' represents a blank.

With Enterprise COBOL, a MOVE statement transfers the trailing zeros, and a comparison includes
them.

For example, after the following MOVE statement is executed:

05 SEND-FIELD PICTURE 999PPP VALUE 123000.
05 RECEIVE-FIELD PICTURE XXXXXX.
 . . .
 MOVE SEND-FIELD TO RECEIVE-FIELD.

RECEIVE-FIELD contains the value 123000.

Numeric class test on group items
OS/VS COBOL allowed the IF NUMERIC class test to be used with group items that contained one or
more signed elementary items.

For example, IF grp1 IS NUMERIC, when grp1 is a group item:

01 grp1.
 03 yy PIC S99.
 03 mm PIC S99.
 03 dd PIC S99.

Enterprise COBOL issues an S-level message when the IF NUMERIC class test is used for GROUP
items whose subordinates are signed.

Numeric data changes
Enterprise COBOL uses the NUMPROC compiler option to alter the code generated for decimal data.
While NUMPROC(NOPFD) will cause processing more similar to OS/VS COBOL than NUMPROC(PFD),
results are not the same in all cases. The results of MOVE statements, comparisons, and arithmetic
statements might differ from OS/VS COBOL, particularly when the fields have not been initialized.

Programs that rely on data exceptions to either identify contents of decimal data items that are not
valid or to terminate abnormally might need to be changed to use the class test to validate data in
decimal data items.

Since Enterprise COBOL 5.2, you can use the ZONEDATA(MIG) (replaced by
INVDATA(FORCENUMCMP) in Enterprise COBOL 6.2 with PTFs for APAR PH31500 installed) to ease
your migration to COBOL 5 or 6. When the INVDATA(FORCENUMCMP) option is in effect, the compiler
generates instructions to do numeric comparisons that ignore the zone bits of each digit in zoned
decimal data items. The compiler will also avoid performing known optimizations that might produce
a different result than COBOL 4 when a zoned decimal data item has invalid zone bits. For more
information, see INVDATA.

OCCURS DEPENDING ON clause: ASCENDING and DESCENDING KEY phrase
OS/VS COBOL accepted a variable-length key in the ASCENDING and DESCENDING KEY phrases of
the OCCURS DEPENDING ON clauses as an IBM extension.

In Enterprise COBOL, you cannot specify a variable-length key in the ASCENDING or DESCENDING
KEY phrase.

OCCURS DEPENDING ON clause: value for receiving items changed
In OS/VS COBOL, the current value of the OCCURS DEPENDING ON (ODO) object is always used for
both sending and receiving items.

In Enterprise COBOL, for sending items, the current value of the ODO object is used. For receiving
items:

• If a group item contains both the subject and object of an ODO, and is not followed in the same
record by a nonsubordinate data item, the maximum length of the item is used.

76 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• If a group item contains both the subject and object of an ODO and is followed in the same record by
a nonsubordinate data item, the actual length of the receiving item is used.

• If a group item contains the subject, but not the object of an ODO, the actual length of the item is
used.

When the maximum length is used, it is not necessary to initialize the ODO object before the table
receives data. For items whose location depends on the value of the ODO object, you need to set
the object of the OCCURS DEPENDING ON clause before using them in the using phrase of a CALL
statement. Under Enterprise COBOL, for any variable-length group that is not variably located, you do
not need to set the object for the item when it is used in the USING BY REFERENCE phrase of the
CALL statement. This is true even if the group is described by the second bullet above.

For example:

01 TABLE-GROUP-1
 05 ODO-KEY-1 PIC 99.
 05 TABLE-1 PIC X(9)
 OCCURS 1 TO 50 TIMES DEPENDING ON ODO-KEY-1.
01 ANOTHER-GROUP.
 05 TABLE-GROUP-2.
 10 ODO-KEY-2 PIC 99.
 10 TABLE-2 PIC X(9)
 OCCURS 1 to 50 TIMES DEPENDING ON ODO-KEY-2.
 05 VARIABLY-LOCATED-ITEM PIC X(200).
 . . .
PROCEDURE DIVISION.
 . . .
 MOVE SEND-ITEM-1 TO TABLE-GROUP-1
 . . .
 MOVE ODO-KEY-X TO ODO-KEY-2
 MOVE SEND-ITEM-2 TO TABLE-GROUP-2.

When TABLE-GROUP-1 is a receiving item, Enterprise COBOL moves the maximum number of
character positions for it (450 bytes for TABLE-1 plus two bytes for ODO-KEY-1). Therefore, you need
not initialize the length of TABLE-1 before moving the SEND-ITEM-1 data into the table.

However, a nonsubordinate VARIABLY-LOCATED-ITEM follows TABLE-GROUP-2 in the record
description. In this case, Enterprise COBOL uses the actual value in ODO-KEY-2 to calculate the
length of TABLE-GROUP-2, and you must set ODO-KEY-2 to its valid current length before moving the
SEND-ITEM-2 data into the group receiving item.

ON SIZE ERROR phrase: changes in intermediate results
For OS/VS COBOL, the SIZE ERROR phrase for the DIVIDE and MULTIPLY statements applied to both
intermediate and final results.

For Enterprise COBOL, the SIZE ERROR phrase for the DIVIDE and MULTIPLY statements applies only
to final results. This is a change between the 74 COBOL Standard and the 85 COBOL Standard. This
change might or might not affect your programs.

Therefore, if your OS/VS COBOL program depends upon SIZE ERROR detection for intermediate
results, you might need to change it.

Optional word IS
For OS/VS COBOL programs, no MIGR message would be issued if the optional word IS immediately
preceded objects within an abbreviated combined relation condition. For example:

A = B OR IS C AND IS D

Enterprise COBOL does not accept this use of the optional word IS. In Enterprise COBOL, delete the
word IS when used in this manner.

Enterprise COBOL does permit the use of the optional word IS as part of the relational operator in
abbreviated combined relational conditions. For example:

A = B OR IS = C AND IS = D

Chapter 6. Upgrading OS/VS COBOL source programs 77

PERFORM statement: changes in the VARYING/AFTER phrases
In OS/VS COBOL, in a PERFORM statement with the VARYING/AFTER phrases, two actions take place
when an inner condition tests as TRUE:

1. The identifier/index associated with the inner condition is set to its current FROM value.
2. The identifier/index associated with the outer condition is augmented by its current BY value.

In Enterprise COBOL in such a PERFORM statement, the following results take place when an inner
condition tests as TRUE:

1. The identifier/index associated with the outer condition is augmented by its current BY value.
2. The identifier/index associated with the inner condition is set to its current FROM value.

The following example illustrates the differences in results:

PERFORM ABC VARYING X FROM 1 BY 1 UNTIL X > 3
 AFTER Y FROM X BY 1 UNTIL Y > 3

In OS/VS COBOL, ABC is executed 8 times with the following values:

X: 1 1 1 2 2 2 3 3
Y: 1 2 3 1 2 3 2 3

In Enterprise COBOL, ABC is executed 6 times with the following values:

X: 1 1 1 2 2 3
Y: 1 2 3 2 3 3

By using nested PERFORM statements, you could achieve the same processing results as in OS/VS
COBOL, as follows:

MOVE 1 TO X, Y, Z
PERFORM EX-1 VARYING X FROM 1 BY 1 UNTIL X > 3
. . .
EX-1.
 PERFORM ABC VARYING Y FROM Z BY 1 UNTIL Y > 3.
 MOVE X TO Z.
ABC.

PROGRAM COLLATING SEQUENCE clause changes
In OS/VS COBOL, the collating sequence specified in the alphabet-name of the PROGRAM COLLATING
SEQUENCE clause is applied to comparisons implicitly performed during execution of INSPECT,
STRING, and UNSTRING statements.

In Enterprise COBOL, the collating sequence specified in alphabet-name is not used for these implicit
comparisons.

READ and RETURN statement changes: INTO phrase
When the sending field is chosen for the move associated with a READ or RETURN . . . INTO identifier
statement, OS/VS COBOL and Enterprise COBOL can select different records from under the FD or SD
to use as the sending field. This only affects implicit elementary MOVE statements, when the record
description has a PICTURE clause.

RERUN clause changes
When the RERUN clause is specified, OS/VS COBOL takes a checkpoint on the first record; Enterprise
COBOL does not.

RESERVE clause changes
OS/VS COBOL supported the following formats of the FILE CONTROL paragraph RESERVE clause:

RESERVE NO ALTERNATE AREA
RESERVE NO ALTERNATE AREAS
RESERVE integer ALTERNATE AREA
RESERVE integer ALTERNATE AREAS
RESERVE integer AREA
RESERVE integer AREAS

78 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Enterprise COBOL supports only the following forms of the RESERVE clause:

RESERVE integer AREA
RESERVE integer AREAS

If your OS/VS COBOL program uses either the RESERVE integer ALTERNATE AREA or the RESERVE
integer ALTERNATE AREAS format, you must specify the RESERVE clause with integer + 1 areas to
get equivalent processing under Enterprise COBOL. That is, the OS/VS COBOL phrase RESERVE 2
ALTERNATE AREAS is equivalent to RESERVE 3 AREASA in Enterprise COBOL.

Under OS/VS COBOL with LANGLVL(1), the interpretation of the RESERVE integer AREAS format
differed from the interpretation of this format using Enterprise COBOL.

With LANGLVL(1), using the RESERVE integer AREA or RESERVE integer AREAS format, you must
specify the RESERVE clause with integer + 1 areas to get equivalent processing under Enterprise
COBOL.

Reserved word list changes
Differences exist between the reserved word list for Enterprise COBOL and OS/VS COBOL. Appendix
B, “COBOL reserved word comparison,” on page 257 contains a complete listing of reserved words.

SEARCH statement changes
In OS/VS COBOL, the ASCENDING and DESCENDING KEY data items could be specified either as the
subject or as the object of the WHEN relation-condition of the SEARCH statement.

In Enterprise COBOL, the WHEN phrase data-name (the subject of the WHEN relation-condition) must
be an ASCENDING or a DESCENDING KEY data item in this table element, and identifier-2 (the object
of the WHEN relation-condition) must not be an ASCENDING or DESCENDING key data item for this
table element.

OS/VS COBOL accepted the following statement; Enterprise COBOL does not:

WHEN VAL = KEY-1 (INDEX-NAME-1)
 DISPLAY "TABLE RECORDS OK".

The following SEARCH example will execute under both Enterprise COBOL and OS/VS COBOL:

01 VAL PIC X.
01 TABLE-01.
 05 TABLE-ENTRY
 OCCURS 100 TIMES
 ASCENDING KEY IS KEY-1
 INDEXED BY INDEX-NAME-1.
 10 FILLER PIC X.
 10 KEY-1 PIC X.
 SEARCH ALL TABLE-ENTRY
 AT END DISPLAY "ERROR"
 WHEN KEY-1 (INDEX-NAME-1) = VAL
 DISPLAY "TABLE RECORDS OK".

Segmentation changes: PERFORM statement in independent segments
In OS/VS COBOL with LANGLVL(1), if a PERFORM statement in an independent segment refers to
a permanent segment, the independent segment is initialized upon each exit from the performed
procedures.

In OS/VS COBOL with LANGLVL(2), for a PERFORM statement in an independent segment that refers
to a permanent segment, control is passed to the performed procedures only once for each execution
of the PERFORM statement.

In Enterprise COBOL, the compiler does not perform overlay; therefore, the rules given above do not
apply.

If your program logic depends upon either of the OS/VS COBOL implementations of these
segmentation rules, you must rewrite the program.

SELECT OPTIONAL clause changes
In OS/VS COBOL with LANGLVL(1), if the SELECT OPTIONAL clause is specified in the file control
entry, the program will fail if the file is not available. In Enterprise COBOL, if the SELECT OPTIONAL

Chapter 6. Upgrading OS/VS COBOL source programs 79

clause is specified in the file control entry, the program will not fail if the file is not available and a
file status code of 05 is returned. A USERMOD can influence this behavior for VSAM. For details, see:
Language Environment Installation and Customization.

SORT special registers
The SORT-CORE-SIZE, SORT-FILE-SIZE, SORT-MESSAGE, and SORT-MODE-SIZE special registers are
supported under Enterprise COBOL, and they will be used in the SORT interface when they have
nondefault values. However, at run time, individual SORT special registers will be overridden by the
corresponding parameters on control statements that are included in the SORT-CONTROL file, and a
message will be issued. In addition, a compiler warning message (W-level) will be issued for each
SORT special register that was set in the program.

In OS/VS COBOL, the SORT-RETURN special register can contain codes for successful SORT
completion (RC=0), OPEN or I/O errors concerning the USING or GIVING files (RC=2 through RC=12),
and unsuccessful SORT completion (RC=16). In Enterprise COBOL, the SORT-RETURN register only
contains codes for successful (RC=0) and unsuccessful (RC=16) SORT completion.

Source language debugging changes
With Enterprise COBOL and OS/VS COBOL, you can debug source language with the USE FOR
DEBUGGING declarative. Valid operands are shown in Table 12 on page 80. Operands that are
not valid in Enterprise COBOL must be removed from the OS/VS COBOL program. Use Debug Tool to
achieve the same debugging results.

Table 12. USE FOR DEBUGGING declarative: valid operands

Debugging operands Procedures are executed
immediately:OS/VS COBOL Enterprise COBOL

procedure-name-1 procedure-name-1 Before each execution of the named
procedure.

After execution of an ALTER statement
referring to the named procedure.

ALL PROCEDURES ALL PROCEDURES Before execution of every
nondebugging procedure in the
outermost program

After execution of every ALTER
statement in the outermost program
(except ALTER statements in
declarative procedures).

file-name-n (none) See the IBM VS COBOL for OS/VS for a
description.

ALL REFERENCES OF
identifier-n

(none) See the IBM VS COBOL for OS/VS for a
description.

cd-name-1 (none) See the IBM VS COBOL for OS/VS for a
description.

Subscripts out of range flagged at compile time
Enterprise COBOL issues an error (RC = 8) message if a literal subscript or index value is coded that
is greater than the allowed maximum, or less than one. This message is generated whether or not the
SSRANGE option is specified.

OS/VS COBOL did not issue an equivalent error message.

UNSTRING statements: subscript evaluation changes
In the UNSTRING statements for OS/VS COBOL, any associated subscripting, indexing, or length
calculation would be evaluated immediately before the transfer of data into the receiving item for the
DELIMITED BY, INTO, DELIMITER IN, and COUNT IN fields.

80 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

For these fields, in the Enterprise COBOL UNSTRING statement, any associated subscripting,
indexing, or length calculation is evaluated once: immediately before the examination of the delimiter
sending fields. For example:

01 ABC PIC X(30).
01 IND.
 02 IND-1 PIC 9.
01 TAB.
 02 TAB-1 PIC X OCCURS 10 TIMES.
01 ZZ PIC X(30).
 . . .
 UNSTRING ABC DELIMITED BY TAB-1 (IND-1) INTO IND ZZ.

In OS/VS COBOL, subscript IND-1 would be reevaluated before the second receiver ZZ was filled.

In Enterprise COBOL, the subscript IND-1 is evaluated only once at the beginning of the execution of
the UNSTRING statement.

In OS/VS COBOL with LANGLVL(1), when the DELIMITED BY ALL phrase of UNSTRING is specified,
two or more contiguous occurrences of any delimiter are treated as if they were only one occurrence.
As much of the first occurrence as will fit is moved into the current delimiter receiving field (if
specified). Each additional occurrence is moved only if the complete occurrence will fit. For more
information about the behavior of this phrase in OS/VS COBOL, see the IBM VS COBOL for OS/VS.

In Enterprise COBOL, one or more contiguous occurrences of any delimiters are treated as if they are
only one occurrence, and this one occurrence is moved to the delimiter receiving field (if specified).

For example, if ID-SEND contains 123**45678**90AB:

UNSTRING ID-SEND DELIMITED BY ALL "*"
 INTO ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1
 ID-R2 DELIMITER IN ID-D2 COUNT IN ID-C2
 ID-R3 DELIMITER IN ID-D3 COUNT IN ID-C3

OS/VS COBOL with LANGLVL(1), will produce this result:

ID-R1 123 1D-D1 ** ID-C1 3
ID-R2 45678 1D-D2 ** ID-C2 5
ID-R3 90AB 1D-D3 ID-C3 4

OS/VS COBOL with LANGLVL(2) and Enterprise COBOL will produce this result:

ID-R1 123 1D-D1 * ID-C1 3
ID-R2 45678 1D-D2 * ID-C2 5
ID-R3 90AB 1D-D3 ID-C3 4

UPSI switches
OS/VS COBOL allowed references to UPSI switches and mnemonic names associated with UPSI.
Enterprise COBOL allows condition-names only.

For example, if a condition-name is defined in the SPECIAL-NAMES paragraph, the following code
examples have the same effect:

OS/VS COBOL Enterprise COBOL

SPECIAL-NAMES. SPECIAL-NAMES.
 UPSI-0 IS MNUPO UPSI-0 IS MNUPO
 ON STATUS IS UPSI-0-ON
 OFF STATUS IS UPSI-0-OFF

PROCEDURE DIVISION PROCEDURE DIVISION

 IF UPSI-0 = 1 ... IF UPSI-0-ON ...
 IF MNUPO = 0 ... IF UPSI-0-OFF ...

Chapter 6. Upgrading OS/VS COBOL source programs 81

VALUE clause condition names
For VALUE clause condition names, releases prior to of OS/VS COBOL 2.4 allowed the initialization of
an alphanumeric field with a numeric value. For example:

01 FIELD-A.
 02 LAST-YEAR PIC XX VALUE 87.
 02 THIS-YEAR PIC XX VALUE 88.
 02 NEXT-YEAR PIC XX VALUE 89.

Enterprise COBOL does not accept this language extension. Therefore, to correct the above example,
you should code alphanumeric values in the VALUE clauses, as in the following example:

01 FIELD-A.
 02 LAST-YEAR PIC XX VALUE "87".
 02 THIS-YEAR PIC XX VALUE "88".
 02 NEXT-YEAR PIC XX VALUE "89".

WHEN-COMPILED special register
Enterprise COBOL and OS/VS COBOL support the use of the WHEN-COMPILED special register. The
rules for use of the special register are the same for both compilers. However, the format of the data
differs.

In OS/VS COBOL the format is:

hh.mm.ssMMM DD, YYYY (hour.minute.secondMONTH DAY, YEAR)

In Enterprise COBOL the format is:

MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

WRITE AFTER POSITIONING statement
OS/VS COBOL supported the WRITE statement with the AFTER POSITIONING phrase; Enterprise
COBOL does not.

In Enterprise COBOL, you can use the WRITE . . . AFTER ADVANCING statement to obtain behavior
similar to WRITE . . . AFTER POSITIONING. The following two examples show OS/VS COBOL
POSITIONING phrases and the equivalent Enterprise COBOL phrases.

When using WRITE . . . AFTER ADVANCING with literals:

 OS/VS COBOL Enterprise COBOL

AFTER POSITIONING 0 AFTER ADVANCING PAGE
AFTER POSITIONING 1 AFTER ADVANCING 1 LINE
AFTER POSITIONING 2 AFTER ADVANCING 2 LINES
AFTER POSITIONING 3 AFTER ADVANCING 3 LINES

When using WRITE...AFTER ADVANCING with nonliterals:

WRITE OUTPUT-REC AFTER POSITIONING SKIP-CC.

 OS/VS COBOL Enterprise COBOL
 SKIP-CC

AFTER POSITIONING SKIP-CC 1 AFTER ADVANCING PAGE
AFTER POSITIONING SKIP-CC ' ' AFTER ADVANCING 1 LINE
AFTER POSITIONING SKIP-CC 0 AFTER ADVANCING 2 LINES
AFTER POSITIONING SKIP-CC - AFTER ADVANCING 3 LINES

Restriction: With Enterprise COBOL, channel skipping is only supported with references to SPECIAL-
NAMES.

CCCA can automatically convert WRITE . . . AFTER POSITIONING statements. For example, given the
following statement:

WRITE OUTPUT-REC AFTER POSITIONING n.

82 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

If n is a literal, CCCA would change the above example to WRITE...AFTER ADVANCING n LINES. If
n is an identifier, SPECIAL-NAMES are generated and a section is added at the end of the program.

Chapter 6. Upgrading OS/VS COBOL source programs 83

84 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 7. Compiling converted OS/VS COBOL
programs

This section contains information about the following topics:

• Compiler options for converted programs
• Unsupported OS/VS COBOL compiler options
• Prolog format changes

Information specific to OS/VS COBOL or Enterprise COBOL is noted.

Compiler options for converted programs
Table 13 on page 85 lists the compiler options that have special relevance to converted programs.

Table 13. Compiler options for converted OS/VS COBOL programs

Compiler option Comments

BUFSIZE In OS/VS COBOL, the BUF option value specifies the total number of bytes
reserved for buffers. In Enterprise COBOL, BUFSIZE specifies the amount of
buffer storage reserved for each compiler work data set. The default is 4096.

If your OS/VS COBOL program uses the BUF option, you must adjust the amount
requested in your Enterprise COBOL BUFSIZE option.

DATA(24) Use DATA(24) for Enterprise COBOL programs that are compiled with RENT and
mixed with AMODE 24 assembler programs.

DIAGTRUNC Use DIAGTRUNC to get numeric truncation flagging for MOVE statements. This is
similar to the flagging in OS/VS COBOL.

NOSTGOPT Use NOSTGOPT if you have unreferenced data items as eye-catchers or time/
version stamps in WORKING-STORAGE. Use STGOPT only if you do not need
unused data items, or the unused data items are defined with the VOLATILE
clause.

NUMPROC Use NUMPROC(NOPFD) plus the installation option NUMCLS(ALT) if you were
using the USERMOD shipped with OS/VS COBOL. With the USERMOD, characters
A, B, and E (as well as C, D, and F) are considered valid numeric signs in the
COBOL numeric class test. For other alternatives for sign representation, see the
Enterprise COBOL for z/OS Programming Guide.

OUTDD(ddname) Use this option to override the default ddname (SYSOUT) for SYSOUT output that
goes to the system logic output unit. If the ddname is the same as the Language
Environment MSGFILE ddname, the output is routed to the ddname designated
for MSGFILE. If the ddname is not the same as the Language Environment
MSGFILE ddname, the output from the DISPLAY statement is directed to the
OUTDD ddname destination. If the ddname is not present at first reference,
dynamic allocation will take place with the default name and attributes that are
specified by Language Environment.

PGMNAME(COMPAT) Use PGMNAME(COMPAT) to ensure that program names are processed in a
manner compatible with OS/VS COBOL.

© Copyright IBM Corp. 1991, 2024 85

Table 13. Compiler options for converted OS/VS COBOL programs (continued)

Compiler option Comments

TRUNC TRUNC controls the way arithmetic fields are truncated into binary receiving
fields during MOVE and arithmetic operations. Use TRUNC(STD) if your shop
used TRUNC as the default with OS/VS COBOL. Use TRUNC(OPT) if your shop
uses NOTRUNC as the default with OS/VS COBOL (except for select programs
that require guaranteed nontruncation of binary data). For programs that require
nontruncation of binary data, use TRUNC(BIN), especially if there is a possibility
that data being moved into binary data items can have a value larger than that
defined by the PICTURE clause for the binary data item. For individual data items
you can specify USAGE COMP-5 to get guaranteed nontruncation of binary data.

High-order digits: Enterprise COBOL programs compiled with TRUNC(OPT) can
give different results than OS/VS COBOL programs compiled with NOTRUNC.
The main difference is that programs can lose nonzero high-order digits. For
statements for which a loss of high-order digits might take place, Enterprise
COBOL issues a diagnostic message indicating that you should ensure that at
least one of the following conditions is met:

• The sending items will not contain large numbers.
• The receiving items are defined with enough digits in the PICTURE clause to

handle the largest sending data items.

Unsupported OS/VS COBOL compiler options
Table 14 on page 86 shows the OS/VS COBOL compiler options that are not supported by Enterprise
COBOL.

For a complete list of Enterprise COBOL compiler options, see Appendix E, “Option comparison,” on page
297.

Table 14. OS/VS COBOL compiler options not supported by Enterprise COBOL

OS/VS COBOL option Enterprise COBOL equivalent

BATCH/NOBATCH Batch environment is always available (sequence of programs). CBL
statements are always processed with Enterprise COBOL.

Enterprise COBOL considerations for sequence of programs are described
in the Enterprise COBOL for z/OS Programming Guide.

COUNT/NOCOUNT Similar function is available in Debug Tool.

ENDJOB/NOENDJOB ENDJOB behavior is always in effect.

LANGLVL(1/2) The LANGLVL option is not available. Enterprise COBOL supports only 85
COBOL Standard.

LVL=A|B|C|D/ NOLVL FLAGSTD is used for FIPS flagging. ANSI COBOL 74 FIPS is not supported.

RES/NORES The RES or NORES option is not available. With Enterprise COBOL, the
object module is always treated such that library subroutines are located
dynamically at run time, instead of being link-edited with the COBOL
program. This is equivalent to RES behavior in OS/VS COBOL.

STATE/NOSTATE Function is available with the TEST option.

SUPMAP/NOSUPMAP Equivalent to the NOCOMPILE/COMPILE compiler option.

86 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 14. OS/VS COBOL compiler options not supported by Enterprise COBOL (continued)

OS/VS COBOL option Enterprise COBOL equivalent

SYMDMP/ NOSYMDMP ABEND dumps and dynamic dumps are available through Language
Environment services. Symbolic dumps are available through using the
TEST compiler option.

SXREF/NOSXREF The XREF option provides sorted SXREF output.

VBSUM/NOVBSUM Function is available with the VBREF compiler option.

CDECK/NOCDECK The LISTER feature is not supported.

FDECK/NOFDECK The LISTER feature is not supported.

LCOL1/LCOL2 The LISTER feature is not supported.

LSTONLY/LSTCOMP NOLST The LISTER feature is not supported.

L120/L132 The LISTER feature is not supported.

OSDECK With Enterprise COBOL, the object deck runs only in the z/OS environment,
not z/VM®. The OSDECK function is not supported.

Prolog format changes
The prolog of an object program is the code that the compiler generates at the entry point of the program.
It also contains data that identifies the program.

Object modules generated by Enterprise COBOL are Language Environment conforming, and thus have a
different prolog format than with OS/VS COBOL. You will need to update existing assembler programs that
scan for date and time to the new format.

You can compile your programs with the Enterprise COBOL LIST compiler option to generate a listing that
you can use to compare the OS/VS COBOL prolog format with the Enterprise COBOL prolog format.

Chapter 7. Compiling converted OS/VS COBOL programs 87

88 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 8. Upgrading VS COBOL II source programs
There are differences between the VS COBOL II language and the Enterprise COBOL language that might
require that you modify your programs.

Your VS COBOL II programs will compile without change using the Enterprise COBOL compiler unless the
programs meet one or more of the following conditions:

• Programs were compiled with the CMPR2 compiler option. Enterprise COBOL does not support the
CMPR2/NOCMPR2 compiler option.

• Programs were compiled with VS COBOL II 3.x, and that contain one or more of three minor 85 COBOL
Standard features that were subject to 85 COBOL Standard interpretation changes

• Programs were compiled with VS COBOL II 3.0 and that use ACCEPT . . . FROM CONSOLE
• Programs use words which are now reserved in Enterprise COBOL
• Programs with undocumented VS COBOL II extensions
• Programs with SEARCH ALL statements
• Programs use the SIMVRD support
• Programs contain the format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and

optionally the syntax: GO TO MORE-LABELS. The support for these were removed in Enterprise COBOL
5

Upgrading VS COBOL II programs compiled with the CMPR2
compiler option

If your VS COBOL II source programs were compiled with the CMPR2 compiler option, you must
convert them to NOCMPR2 programs in order to compile them with Enterprise COBOL. The CMPR2/
NOCMPR2 compiler option is not supported in Enterprise COBOL. Enterprise COBOL programs behave
as if NOCMPR2 was always in effect. For information about language differences between CMPR2 and
NOCMPR2 (85 COBOL Standard), see “Upgrading programs compiled with the CMPR2 compiler option” on
page 104.

For information about tools that will help with the CMPR2 to NOCMPR2 conversion, see Appendix C,
“Conversion tools for source programs,” on page 281.

85 COBOL Standard interpretation changes
Some language differences exist between programs compiled with NOCMPR2 on VS COBOL II 1.3
(including 1.3.0, 1.3.1, and 1.3.2) and programs compiled with NOCMPR2 on subsequent releases
(including VS COBOL II 1.4, IBM COBOL, and Enterprise COBOL). These changes are the result of
responses from COBOL Standard Interpretation Requests that required an implementation different from
that used in VS COBOL II 1.3. Most likely you do not have these very minor differences in your programs
because of their rarity. However, the following language elements are affected:

• REPLACE and comment lines
• Precedence of USE procedures for nested programs
• Reference modification of a variable-length group receiver with no length specified

REPLACE and comment lines
This item affects the treatment of blank lines and comment lines that are displayed in text that matches
pseudo-text-1 of REPLACE statements.

Blank lines, which are interspersed in the matched text, will not be displayed in the output of the
REPLACE statement. This change could affect the semantics of the resulting program since the line

© Copyright IBM Corp. 1991, 2024 89

numbers could be different. (For example, if a program uses the USE FOR DEBUGGING declarative, the
contents of DEBUG-ITEM might be different). If an Enterprise COBOL generated program differs from the
equivalent VS COBOL II program, the following message will be issued:
IGYLI0193-I

Matched pseudo-text-1 contained blank or comment lines. Execution results may differ from VS
COBOL II 1.3.x.

Precedence of USE procedures
This difference affects the precedence of USE procedures relating to contained programs.

In VS COBOL II 1.3.x, a file-specific USE procedure always takes precedence over a mode-specific USE
procedure. This precedence occurs if an applicable mode-specific USE procedure exists in the current
program, or if a mode-specific USE procedure with the GLOBAL attribute in an outer program is "nearer"
than the file-specific procedure.

In VS COBOL II 1.4 and Enterprise COBOL, USE procedure precedence is based on a program by program
level; from the current program to the containing program for that program, and so on to the outermost
program.

The following message will be issued if an Enterprise COBOL generated program selects a different USE
procedure than would have been used by the VS COBOL II 1.3.x program:
IGYSC2300-I

A mode-specific declarative may be selected for file "file-name" in program "program-name."
Execution results may differ from VS COBOL II 1.3.x.

Reference modification of a variable-length group receiver
Programs that MOVE data to reference-modified, variable-length groups might produce different results
depending on whether the length used for the variable-length group is evaluated by using the actual
length or the maximum length.

You might see a difference if the variable-length group meets all of the following criteria:

• If it is a receiver
• If it contains its own OCCURS DEPENDING ON object
• If it is not followed by a nonsubordinate item (also referred to as a variably located data item)
• If it is reference-modified and a length is not specified

For example, Group VAR-LEN-GROUP-A contains an ODO object and an OCCURS subject and is followed
by a variably located data item.

01 VAR-LEN-PARENT-A.
 02 VAR-LEN-GROUP-A.
 03 ODO-OBJECT PIC 99 VALUE 5.
 03 OCCURS-SUBJECT OCCURS 10 TIMES DEPENDING ON ODO-OBJECT.
 04 TAB-ELEM PIC X(4).
 02 VAR-LOC-ITEM PIC XX.
01 NEXT-GROUP.

MOVE ALL SPACES TO VAR-LEN-GROUP-A(1:).

Group VAR-LEN-GROUP-B contains an ODO object and an OCCURS subject and is not followed by a
variably located data item. VAR-LOC-ITEM follows the OCCURS subject, but does not follow VAR-LEN-
GROUP-B.

01 VAR-LEN-PARENT-B.
 02 VAR-LEN-GROUP-B.
 03 ODO-OBJECT PIC 99 VALUE 5.
 03 OCCURS-SUBJECT OCCURS 10 TIMES DEPENDING ON ODO-OBJECT.
 04 TAB-ELEM PIC X(4).
 03 VAR-LOC-ITEM PIC XX.
01 NEXT-GROUP.

90 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

MOVE ALL SPACES TO VAR-LEN-GROUP-B(1:).

In the above examples, MOVE ALL SPACES TO VAR-LEN-GROUP-A (1:) would give the same results
with any NOCMPR2 program (VS COBOL II 1.3.x, VS COBOL II 1.4, or Enterprise COBOL). They all use the
actual length in this case.

MOVE ALL SPACES TO VAR-LEN-GROUP-B (1:) would give different results for the following
programs compiled with NOCMPR2:

• VS COBOL II 1.3.x uses the actual length of the group as defined by the current value of the ODO object
(the actual length of the group is set to spaces using the ODO object value).

• VS COBOL II 1.4 and Enterprise COBOL use the maximum length of the group (the entire data item is set
to spaces using the ODO object value).

If a program contains a reference-modified, variable-length group receiver that contains its own ODO
object and is not followed by variably located data and whose reference modifier does not have a length
specified, the following message is issued:
IGYPS2298-I

The reference to variable-length group "data name" will be evaluated using the maximum length of
the group. Execution results might differ from VS COBOL II 1.3.x.

ACCEPT statement
One additional difference between later releases and VS COBOL II 1.3.0 involves the system input devices
for the mnemonic-name suboption of the ACCEPT statement.

For VS COBOL II 1.3.0 only, an input record of 80 characters is assumed even if a logical record length
of other than 80 characters is specified. For VS COBOL II 1.3.1 through 1.4.0, an input record of 256
characters is assumed even if a logical record length of other than 80 characters is specified.

In Enterprise COBOL, the maximum logical record length allowed is 32,760 characters.

New reserved words
Enterprise COBOL has quite a few more reserved words than VS COBOL II. If your VS COBOL II programs
use these reserved words as user-defined words, then they must be changed before you can compile your
programs with Enterprise COBOL.

New reserved words
If your programs use any of the new reserved words as user-defined words (such as data item names or
paragraph names), then those words must be changed. You can do something similar to what CCCA does
and just add a suffix such as -85 to all instances of the word. For example:

77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

To compile with Enterprise COBOL 5 or 6, change it to:

77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

You can use CCCA to convert the reserved words automatically. For more information about the CCCA
tool, see Appendix C, “Conversion tools for source programs,” on page 281.

CCCA is updated for reserved word conversions for Enterprise COBOL 5.1 by the PTF for APAR PM86253.
For Enterprise COBOL 5.2, CCCA is updated for reserved word conversions by the PTF for APAR PI32750.
For Enterprise COBOL 6.1, CCCA is updated for reserved word conversions by the PTF for APAR PI55980.

The following table shows the reserved words added to each subsequent release of COBOL. For a
complete list of reserved words, see Appendix B, “COBOL reserved word comparison,” on page 257.

Chapter 8. Upgrading VS COBOL II source programs 91

Table 15. New reserved words by compilers

Compiler Reserved word

COBOL/370 1.1 FUNCTION, PROCEDURE-POINTER

COBOL for MVS & VM 1.2 CLASS-ID, METACLASS, RECURSIVE, END-INVOKE,
METHOD, REPOSITORY, INHERITS, METHOD-ID,
RETURNING, INVOKE, OBJECT, SELF, SUPER,
LOCAL-STORAGE, OVERRIDE

COBOL for OS/390 & VM 2.1 Same as COBOL for MVS & VM

COBOL for OS/390 & VM 2.2 COMP-5, COMPUTATIONAL-5, EXEC, END-EXEC,
SQL, TYPE, FACTORY

COBOL for OS/390 & VM 2.2 with PQ49375 EXECUTE

Enterprise COBOL 3.1 JNIENVPTR, NATIONAL, XML, END-XML, XML-
EVENT, XML-CODE, XML-TEXT, XML-NTEXT,
FUNCTION-POINTER

Enterprise COBOL 3.4 NATIONAL-EDITED, GROUP-USAGE

Enterprise COBOL 4.1 XML-NAMESPACE, XML-NAMESPACE-PREFIX,
XML-NNAMESPACE, XML-NNAMESPACE-PREFIX

Enterprise COBOL 4.2 XML-SCHEMA

Note: XML-INFORMATION is added as a reserved
word with APAR PM85035.

Enterprise COBOL 5.1 XML-INFORMATION

Enterprise COBOL 5.2 VOLATILE

Enterprise COBOL 6.1 ALLOCATE, DEFAULT, END-JSON, FREE, JSON,
JSON-CODE

Enterprise COBOL 6.2 JSON-STATUS

Enterprise COBOL 6.3 BYTE-LENGTH, JAVA, LIMIT, POINTER-32, UTF-8

Enterprise COBOL 6.4 FUNCTION-ID

Undocumented VS COBOL II extensions
The VS COBOL II compiler did not diagnose a period in Area A following an Area A item (or no item) that is
not valid. In Enterprise COBOL, periods in Area A must be preceded by a valid Area A item.

SEARCH ALL statements
If you have programs that contain SEARCH ALL statements and that were compiled with VS COBOL II, you
may need to make some changes due to changes in the behavior of the SEARCH ALL statement

The new behavior for the SEARCH ALL statement is described in “Upgrading programs that have SEARCH
ALL statements” on page 99.

Upgrading programs that use SIMVRD support
This section describes the actions to upgrade programs that use SIMVRD support. Support for COBOL
simulated variable-length relative-record data sets (RRDS) is removed for programs compiled with
Enterprise COBOL 4 or later. These files must be changed to VSAM RRDS files.

92 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

In COBOL compilers that supported the NOCMPR2 compiler option before Enterprise COBOL 4, it was
possible to use COBOL simulated variable-length RRDS using a VSAM KSDS when you used the SIMVRD
runtime option support.

The coding that you use in a COBOL program to identify and describe VSAM variable-length RRDS and
COBOL simulated variable-length RRDS is similar. With Enterprise COBOL 4 you must use VSAM variable-
length RRDS support. In general, the only action to migrate from COBOL simulated variable-length RRDS
to VSAM variable-length RRDS support is to change the IDCAMS definition of the file.

Table 16. Steps for using variable-length RRDS

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

1 Define the file with the
ORGANIZATION IS RELATIVE
clause.

Same

2 Use FD entries to describe the
records with variable-length sizes.

Same, but you must also code RECORD IS VARYING in
the FD entry of every COBOL program that accesses the
data set.

3 Use the NOSIMVRD runtime
option.

Use the SIMVRD runtime option.

4 Define the VSAM file through
access-method services as an
RRDS.

Define the VSAM file through access-method services as
follows:

DEFINE CLUSTER INDEXED
KEYS(4,0)
RECORDSIZE(avg,m)

avg
Is the average size of the COBOL records; strictly
less than m.

m
Is greater than or equal to the maximum size COBOL
record + 4.

In step 2 for simulated variable-length RRDS, coding other language elements that implied a variable-
length record format did not give you COBOL simulated variable-length RRDS. For example, the following
elements alone did not cause the use of simulated variable-length RRDS access, and therefore did not
require the SIMVRD runtime option:

• Multiple FD records of different lengths
• OCCURS . . . DEPENDING ON in the record definitions
• RECORD CONTAINS integer-1 TO integer-2 CHARACTERS

Use the REUSE IDCAMS parameter for files that contain records and that you will open for output.

• Define the file with the ORGANIZATION IS RELATIVE clause.
• Use FD entries to describe the records with variable-length sizes.
• Use the NOSIMVRD runtime option.
• Define the VSAM file through access-method services as an RRDS.

Errors: When you work with simulated variable-length relative data sets and true VSAM RRDS data sets,
an OPEN file status 39 occurs if the COBOL file definition and the VSAM data-set attributes do not match.

For more reference information about the commands for using variable-length RRDS, see z/OS DFSMS:
Access Method Services for Catalogs.

Chapter 8. Upgrading VS COBOL II source programs 93

94 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 9. Compiling VS COBOL II programs

This section contains information about the following topics:

• Compiler options for VS COBOL II programs
• Prolog format changes

Information specific to VS COBOL II or Enterprise COBOL is noted.

Compiler options for VS COBOL II programs
The Enterprise COBOL and VS COBOL II compilers are similar. If you will be using the same compiler
options that are specified in your current VS COBOL II applications, some internal changes might take
effect, but basically the behavior is unchanged.

If you do change compiler option settings from the ones you used with VS COBOL II, make sure you
understand the possible effects on your applications. For information about converting your source
programs from CMPR2 to NOCMPR2 see “Upgrading programs compiled with the CMPR2 compiler
option” on page 104. For information about other compiler options, see the Enterprise COBOL for z/OS
Programming Guide.

Compiling with Enterprise COBOL
Table 17 on page 95 lists the Enterprise COBOL compiler options that have special relevance to
converted programs.

Table 17. Key Enterprise COBOL compiler options for VS COBOL II programs

Enterprise COBOL
compiler options Comments

PGMNAME If compiling with Enterprise COBOL, use the PGMNAME(COMPAT) option to
ensure that program names are processed in a manner compatible with VS
COBOL II (and COBOL/370).

TEST The syntax of the TEST option is different in Enterprise COBOL than in VS
COBOL II.

• In Enterprise COBOL 5 and 6.1, The TEST option has suboptions of EJPD
| NOEJPD and SOURCE | NOSOURCE. You can specify whether or not
source file information is stored in the object and whether or not JUMPTO
and GOTO commands are enabled for use with Debug Tool.

TEST without any suboptions gives you TEST(NOEJPD,SOURCE).
• In Enterprise COBOL 6.2, new suboptions SEPARATE and NOSEPARATE

are added to the TEST compiler option to control program object
size on disk while retaining debugging capability. In addition, new
combinations of suboptions are supported in both the TEST and NOTEST
compiler options, including TEST(NODWARF), TEST(SEPARATE), and
NOTEST(DWARF,SOURCE).

For more information about the TEST option, see TEST in the Enterprise
COBOL for z/OS Programming Guide.

© Copyright IBM Corp. 1991, 2024 95

Compiler options not supported in Enterprise COBOL
Table 18 on page 96 lists the VS COBOL II compiler options that are not supported in Enterprise COBOL.
In some cases, the function of the VS COBOL II compiler option is mapped to an Enterprise COBOL
compiler option, as described in the comments section.

Table 18. Compiler options not supported in Enterprise COBOL

VS COBOL II compiler
options Comments

CMPR2 The CMPR2 option is not supported. You must convert programs compiled
with CMPR2 to 85 COBOL Standard in order to compile them with Enterprise
COBOL.

FDUMP/NOFDUMP Enterprise COBOL does not provide the FDUMP compiler option. For existing
applications, FDUMP is mapped to the Enterprise COBOL TEST compiler
option, which can provide equivalent function and more.

Language Environment generates a better formatted dump than VS COBOL
II, regardless of the FDUMP option. The use of TEST enables Language
Environment to include the symbolic dump of information about data items
in the formatted dump.

For information about how to obtain the Language Environment formatted
dump at abnormal termination, see the Language Environment Debugging
Guide and Run-Time Messages.

If NOFDUMP is encountered, Enterprise COBOL issues a warning message
because NOFDUMP is not supported.

FLAGMIG The FLAGMIG option is not supported in Enterprise COBOL. FLAGMIG
requires CMPR2, which is not supported in Enterprise COBOL. To get similar
migration flagging use CCCA, this Migration Guide, or a compiler released prior
to Enterprise COBOL to compile programs that use FLAGMIG.

FLAGSAA Enterprise COBOL does not support the FLAGSAA option. If FLAGSAA is
specified, Enterprise COBOL issues a warning message.

NUMPROC(MIG) Enterprise COBOL 5 and 6 does not support the NUMPROC(MIG) option.
If NUMPROC(MIG) is specified, Enterprise COBOL 5 or 6 issues a warning
message and the compilation will get the default setting for NUMPROC.
This is either the user-customized default or the IBM default, which is
NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to Enterprise
COBOL 6, consider using the NUMCHECK compiler option to help you migrate
to NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and NUMPROC(PFD).
2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK abends, you
can safely compile with NUMPROC(PFD) and NONUMCHECK for production.
This will not only solve the invalid data problem, but NUMPROC(PFD) is the
most efficient setting for the NUMPROC compiler option.

For details, see NUMCHECK in the Enterprise COBOL for z/OS Programming
Guide.

RES/NORES Enterprise COBOL does not provide the RES/NORES compiler option. If RES or
NORES are encountered, Enterprise COBOL issues an error message.

96 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Prolog format changes
The prolog of an object program is the code that the compiler generates at the entry point of the program.
It also contains data that identifies the program.

Object modules generated by Enterprise COBOL are Language Environment conforming, and thus have
a different prolog format than in VS COBOL II. Existing applications that scan for date and time and
user-level information need to be updated to the new format.

You can compile your programs with the Enterprise COBOL LIST compiler option to generate a listing that
you can use to compare the VS COBOL II format with the Enterprise COBOL format.

Chapter 9. Compiling VS COBOL II programs 97

98 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 10. Upgrading IBM COBOL source programs
There are differences in COBOL language support between IBM COBOL and Enterprise COBOL.

This information will help you determine which IBM COBOL programs need source modifications in order
to compile with Enterprise COBOL. For example, IBM COBOL programs compiled with the CMPR2 option
require source modification because Enterprise COBOL does not support the CMPR2/NOCMPR2 compiler
option.

This section contains information about the following items that you will need to consider when upgrading
IBM COBOL source programs to Enterprise COBOL:

• Determining which programs require upgrade before you compile with Enterprise COBOL
• Upgrading SOM-based object-oriented (OO) COBOL programs
• SOM-based OO COBOL language elements that are not supported
• SOM-based OO COBOL language elements that are changed
• New reserved words in Enterprise COBOL
• Language Environment runtime considerations

For information about upgrading programs compiled with the CMPR2 compiler option, see “Migrating from
the CMPR2 compiler option to NOCMPR2” on page 104.

For more information about migrating from the separate CICS translator to the integrated CICS translator,
see “Migrating from the separate CICS translator to the integrated translator” on page 232

Determining which programs require upgrade before you compile
with Enterprise COBOL

Many IBM COBOL programs will compile without change under Enterprise COBOL.

These programs, however, will need to be upgraded before compiling with Enterprise COBOL:

• Programs that have SEARCH ALL statements
• Programs that use the SIMVRD support
• Programs that use words which are now reserved in Enterprise COBOL
• Programs that have undocumented IBM COBOL extensions
• Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and

optionally the syntax: GO TO MORE-LABELS. The support for these were removed in Enterprise COBOL
5

• Programs that use DATE FORMAT data types and/or DATEVAL, UNDATE or YEARWINDOW functions for
Y2K

• Programs that have SOM-based object-oriented COBOL syntax
• Programs compiled with the CMPR2 compiler option

Upgrading programs that have SEARCH ALL statements
Enterprise COBOL has corrected errors in the implementation of the SEARCH ALL statement. SEARCH
ALL statements in earlier releases of COBOL contained errors in the key comparison logic, which caused
different results than might have been intended. In particular, the comparison did not produce the same
result as an IF statement or a sequential SEARCH statement.

Length mismatch problem: a search argument is longer than the table key

The SEARCH ALL statement comparisons should pad an alphanumeric key with blanks or extend a
numeric key with leading zeros if the key is shorter than the SEARCH argument. However, in COBOL

© Copyright IBM Corp. 1991, 2024 99

3.3 and earlier releases, SEARCH ALL ignored the excess characters in the argument in some cases.
For example, an alphanumeric search argument of 01 ARG PIC X(6) containing "ABCDEF" would
incorrectly match a table or array key of 05 MY-KEY PIC X(4) with value "ABCD". A search argument
containing "ABCD??" (where ? is a blank) would match, as expected.

Similar problems occurred with a numeric search argument and keys. For example, a search argument of
01 ARG PIC 9(6) containing 123456 would incorrectly match a table or array key of 05 MY-KEY PIC
9(4) with value 3456. A search argument containing 003456 would match, as expected.

Sign mismatch problem: signed numeric argument and unsigned numeric key

A second problem occurs when the search argument is a signed numeric item and the table key is an
unsigned numeric item. If the runtime value of the search argument is negative, such as -1234, programs
compiled with 3.3 and earlier would match a table key of 1234. These comparisons should be done using
the rules for a normal COBOL relation condition, and a negative argument such as -1234 should never
match a table key that is unsigned.

The correction:

Enterprise COBOL corrected these problems. However, some applications compiled with earlier releases
might depend on the incorrect behavior. You must identify and modify these applications before you move
them to Enterprise COBOL 4 or later.

To assist you in identifying the programs and SEARCH ALL statements that are impacted by these
corrections, the following compiler and runtime warning diagnostics are issued.

• Compiler messages: Enterprise COBOL compiler generates the following compiler diagnostics. Whether
there is an actual impact depends on the contents of the argument at run time.

– IGYPG3189-W for all SEARCH ALL statements that have a search argument that is longer than the
table key, and hence might be impacted by the first problem

– IGYPG3188-W when the search argument is a signed numeric item and the table key is an unsigned
numeric item, and hence the program might be impacted by the second problem

• Runtime messages: The following runtime messages are generated. Programs that generate either of
these runtime messages might be affected by the change.

– IGZ0194W for all SEARCH ALL statements that have search arguments with excess bytes that are not
blank or zero.

– IGZ0193W when the search argument is a signed numeric item with a negative value and the table
key is an unsigned numeric item.

To migrate

To move an application to Enterprise COBOL 4 or later, do one of the following sets of steps:

• Act on the compiler messages:

1. Compile your programs with Enterprise COBOL
2. Review any SEARCH ALL statements that are flagged with compiler messages IGYPG3188-W or

IGYPG3189-W; such statements are potentially impacted.

Tip: To minimize the possibility of incompatible results, you can force programmers at your site
to correct these SEARCH ALL statements by changing the severity of these messages to E or
S. To change the severity of these messages, you can use the MSGEXIT suboption of the EXIT
compiler option. By doing this, the programs that get these messages cannot be run until the code
is corrected. The sample user exit IGYMSGXT has sample code in it to change the severity of
IGYPG3188-W and IGYPG3189-W, to IGYPG3188-S and IGYPG3189-S, respectively.

• Act on the runtime messages:

1. Run the application in a test environment.
2. Review any SEARCH ALL statements that generate runtime message IGZ0193W or IGZ0194W.

After you have identified which of the SEARCH ALL statements are affected, adjust the application logic
appropriately by doing the following steps:

100 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• For SEARCH ALL statements in which the search argument is longer than the table key, do one of the
following actions:

– Ensure that any bytes in the argument in excess of the key length are spaces or zeroes as appropriate.

Tip: When you have completed this investigation and if you decided not to change your programs, you
can change the severity of IGYPG3188-W and IGYPG3189-W, to IGYPG3188-I and IGYPG3189-I,
respectively, or suppress these messages entirely, by using the MSGEXIT suboption of the EXIT
compiler options. This allows your programs to then compile with RC=0. The sample user exit
IGYMSGXT has sample code in it to change the severity of IGYPG3188-W and IGYPG3189-W.

– Move the argument to a temporary data item of the same size as the key and use the temporary item
as the search argument.

– Limit the range of the comparison with reference-modification. For example:

- in the alphanumeric case of search argument 01 ARG PIC X(6) and key of 05 MY-KEY PIC
X(4) use this:

WHEN MY-KEY (MY-INDEX) = ARG(1:4)

- in the numeric case of search argument 01 ARG PIC 9(6) and array key of 05 MY-KEY PIC
9(4) use this:

WHEN MY-KEY (MY-INDEX) = ARG(3:4)

The second and third actions above will prevent the warning message in the future.
• For SEARCH ALL statements in which the search argument is signed and the table key is unsigned,

ensure that the search argument is correctly initialized to a positive value before the SEARCH statement
is run. Depending on the specific application logic in the COBOL program, it might be possible to make
one of the following changes:

– Change the data description of the argument to be unsigned.
– Move the search argument to a temporary variable with no sign and use the temporary variable in the

SEARCH ALL statement.

Either action will prevent the warning message in the future.

Upgrading programs that use SIMVRD support
This section describes the actions to upgrade programs that use SIMVRD support. Support for COBOL
simulated variable-length relative-record data sets (RRDS) is removed for programs compiled with
Enterprise COBOL 4 or later. These files must be changed to VSAM RRDS files.

In COBOL compilers that supported the NOCMPR2 compiler option before Enterprise COBOL 4, it was
possible to use COBOL simulated variable-length RRDS using a VSAM KSDS when you used the SIMVRD
runtime option support.

The coding that you use in a COBOL program to identify and describe VSAM variable-length RRDS and
COBOL simulated variable-length RRDS is similar. With Enterprise COBOL 4 you must use VSAM variable-
length RRDS support. In general, the only action to migrate from COBOL simulated variable-length RRDS
to VSAM variable-length RRDS support is to change the IDCAMS definition of the file.

Table 19. Steps for using variable-length RRDS

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

1 Define the file with the
ORGANIZATION IS RELATIVE
clause.

Same

Chapter 10. Upgrading IBM COBOL source programs 101

Table 19. Steps for using variable-length RRDS (continued)

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

2 Use FD entries to describe the
records with variable-length sizes.

Same, but you must also code RECORD IS VARYING in
the FD entry of every COBOL program that accesses the
data set.

3 Use the NOSIMVRD runtime
option.

Use the SIMVRD runtime option.

4 Define the VSAM file through
access-method services as an
RRDS.

Define the VSAM file through access-method services as
follows:

DEFINE CLUSTER INDEXED
KEYS(4,0)
RECORDSIZE(avg,m)

avg
Is the average size of the COBOL records; strictly
less than m.

m
Is greater than or equal to the maximum size COBOL
record + 4.

In step 2 for simulated variable-length RRDS, coding other language elements that implied a variable-
length record format did not give you COBOL simulated variable-length RRDS. For example, the following
elements alone did not cause the use of simulated variable-length RRDS access, and therefore did not
require the SIMVRD runtime option:

• Multiple FD records of different lengths
• OCCURS . . . DEPENDING ON in the record definitions
• RECORD CONTAINS integer-1 TO integer-2 CHARACTERS

Use the REUSE IDCAMS parameter for files that contain records and that you will open for output.

• Define the file with the ORGANIZATION IS RELATIVE clause.
• Use FD entries to describe the records with variable-length sizes.
• Use the NOSIMVRD runtime option.
• Define the VSAM file through access-method services as an RRDS.

Errors: When you work with simulated variable-length relative data sets and true VSAM RRDS data sets,
an OPEN file status 39 occurs if the COBOL file definition and the VSAM data-set attributes do not match.

For more reference information about the commands for using variable-length RRDS, see z/OS DFSMS:
Access Method Services for Catalogs.

Language Environment runtime considerations
Enterprise COBOL programs use the Language Environment STACK storage in several cases where IBM
COBOL used HEAP storage. These cases include intrinsic functions UPPER-CASE and LOWER-CASE.
Recompiling with Enterprise COBOL may result in a significant STACK storage usage difference. If the
STACK is allocated below the 16-MB line and a large DSA (Dynamic Save Area) is needed, an insufficient
storage error might occur.

To see the amount of storage that is required, compile your program with the compiler options MAP and
LIST. Look for FuncResultTemp under the listing line: ***** STACK STORAGE MAP******

You may need to reduce the amount of storage required or change to STACK=(...ANYWHERE..) to use
storage above the line.

102 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

New reserved words in Enterprise COBOL
Enterprise COBOL has a few more reserved words than IBM COBOL. If your IBM COBOL programs use
these reserved words as user-defined words, then they must be changed before you can compile your
programs with Enterprise COBOL.

New reserved words
If your programs use any of the new reserved words as user-defined words (such as data item names or
paragraph names), then those words must be changed. You can do something similar to what CCCA does
and just add a suffix such as -85 to all instances of the word. For example:

77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

To compile with Enterprise COBOL 5 or 6, change it to:

77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

You can use CCCA to convert the reserved words automatically. For more information about the CCCA
tool, see Appendix C, “Conversion tools for source programs,” on page 281.

CCCA is updated for reserved word conversions for Enterprise COBOL 5.1 by the PTF for APAR PM86253.
For Enterprise COBOL 5.2, CCCA is updated for reserved word conversions by the PTF for APAR PI32750.
For Enterprise COBOL 6.1, CCCA is updated for reserved word conversions by the PTF for APAR PI55980.

The following table shows the reserved words added to each subsequent release of COBOL. For a
complete list of reserved words, see Appendix B, “COBOL reserved word comparison,” on page 257.

Table 20. New reserved words by compilers

Compiler Reserved word

COBOL/370 1.1 FUNCTION, PROCEDURE-POINTER

COBOL for MVS & VM 1.2 CLASS-ID, METACLASS, RECURSIVE, END-INVOKE,
METHOD, REPOSITORY, INHERITS, METHOD-ID,
RETURNING, INVOKE, OBJECT, SELF, SUPER,
LOCAL-STORAGE, OVERRIDE

COBOL for OS/390 & VM 2.1 Same as COBOL for MVS & VM

COBOL for OS/390 & VM 2.2 COMP-5, COMPUTATIONAL-5, EXEC, END-EXEC,
SQL, TYPE, FACTORY

COBOL for OS/390 & VM 2.2 with PQ49375 EXECUTE

Enterprise COBOL 3.1 JNIENVPTR, NATIONAL, XML, END-XML, XML-
EVENT, XML-CODE, XML-TEXT, XML-NTEXT,
FUNCTION-POINTER

Enterprise COBOL 3.4 NATIONAL-EDITED, GROUP-USAGE

Enterprise COBOL 4.1 XML-NAMESPACE, XML-NAMESPACE-PREFIX,
XML-NNAMESPACE, XML-NNAMESPACE-PREFIX

Enterprise COBOL 4.2 XML-SCHEMA

Note: XML-INFORMATION is added as a reserved
word with APAR PM85035.

Enterprise COBOL 5.1 XML-INFORMATION

Enterprise COBOL 5.2 VOLATILE

Chapter 10. Upgrading IBM COBOL source programs 103

Table 20. New reserved words by compilers (continued)

Compiler Reserved word

Enterprise COBOL 6.1 ALLOCATE, DEFAULT, END-JSON, FREE, JSON,
JSON-CODE

Enterprise COBOL 6.2 JSON-STATUS

Enterprise COBOL 6.3 BYTE-LENGTH, JAVA, LIMIT, POINTER-32, UTF-8

Enterprise COBOL 6.4 FUNCTION-ID

SEARCH ALL statements
If you have programs that contain SEARCH ALL statements and that were compiled with IBM COBOL, you
may need to make some changes due to changes in the behavior of the SEARCH ALL statement

You need to take some actions for certain programs that have SEARCH ALL statements and that were
compiled with one of the following compilers:

• COBOL for OS/390 & VM
• COBOL for MVS & VM
• COBOL/370

The new behavior for the SEARCH ALL statement is described in “Upgrading programs that have SEARCH
ALL statements” on page 99.

Migrating from the CMPR2 compiler option to NOCMPR2
If your COBOL programs were compiled with the CMPR2 option, you must convert them to NOCMPR2
programs to compile them with Enterprise COBOL. The CMPR2/NOCMPR2 option is not supported in
Enterprise COBOL.

Enterprise COBOL programs behave as if NOCMPR2 is always in effect.

Upgrading programs compiled with the CMPR2 compiler option
Beginning with VS COBOL II 1.3.0, you could choose the 85 COBOL Standard behavior (without the
Intrinsic Function module) by using NOCMPR2, or the 74 COBOL Standard behavior by using the CMPR2
compiler option. But with Enterprise COBOL, programs must be at the 85 COBOL Standard level.

The CMPR2 option provided the Standard COBOL 74 behavior as implemented by VS COBOL II 1.2,
as well as nonstandard VS COBOL II 1.2 extensions now implemented in 85 COBOL Standard. The
NOCMPR2 option provided 85 COBOL Standard-conforming behavior and IBM extensions. This same
mechanism was provided by IBM COBOL as an aid to allow delaying the upgrade from VS COBOL II 1.2
level code to 85 COBOL Standard level code. In Enterprise COBOL, this delay is not available.

Enterprise COBOL provides 85 COBOL Standard support whereas VS COBOL II 1.2, provided the 74
COBOL Standard support (with some 85 COBOL Standard features added in). The implementation of
85 COBOL Standard caused some language elements to behave in a manner that differs from the
implementation of 74 COBOL Standard.

When referring to VS COBOL II 1.3 or later and IBM COBOL, the following terms have been defined:
CMPR2

We use CMPR2 to refer to the language and behavior of programs compiled and run with:

• VS COBOL II 1.2
• VS COBOL II, 1.3 or 1.4 with the CMPR2 compiler option
• IBM COBOL with the CMPR2 compiler option.

104 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

NOCMPR2
We use NOCMPR2 to refer to the language and behavior of programs compiled and run with:

• VS COBOL II, 1.3 or 1.4, with the NOCMPR2 compiler option
• IBM COBOL with the NOCMPR2 compiler option
• Enterprise COBOL

FLAGMIG
We use FLAGMIG to refer to the use of a pre-Enterprise COBOL compiler (VS COBOL II or IBM COBOL)
that supports the CMPR2 and FLAGMIG options.

Tip: To aid you with migration to Enterprise COBOL, use a previous COBOL compiler that supports
FLAGMIG and CMPR2 to flag the statements that need to be converted.

The language elements listed below are affected by the CMPR2/NOCMPR2 compiler option. The
differences are explained in the sections that follow.

Table 21. Language elements different between CMPR2 and NOCMPR2

Language element Page

ALPHABET clause of the SPECIAL-NAMES paragraph “ALPHABET clause of the SPECIAL-
NAMES paragraph” on page 106

ALPHABETIC class “ALPHABETIC class” on page 107

CALL ... ON OVERFLOW “CALL . . . ON OVERFLOW” on page
107

Comparisons between scaled integers and nonnumerics “Comparisons between scaled
integers and nonnumerics” on page
108

COPY...REPLACING statements using non-COBOL characters “COPY ... REPLACING statements
using non-COBOL characters” on page
109

COPY statement using national extension characters “COPY statement using national
extension characters” on page 111

File status codes “File status codes” on page 112

Fixed filed attributes and DCB= parameters of JCL “Fixed-file attributes and DCB=
parameters of JCL” on page 114

Implicit EXIT PROGRAM “Implicit EXIT PROGRAM” on page
115

OPEN statement failing for QSAM file (FILE STATUS 39) “OPEN statement failing for QSAM
files (FILE STATUS 39)” on page 116

OPEN statement failing for VSAM files (FILE STATUS 39) “OPEN statement failing for VSAM files
(FILE STATUS 39)” on page 117

PERFORM return mechanism “PERFORM return mechanism” on
page 117

PERFORM...VARYING...AFTER “PERFORM ... VARYING ... AFTER” on
page 119

PICTURE clause with "A"s and "B"s “PICTURE clause with "A"s and "B"s”
on page 121

PROGRAM COLLATING SEQUENCE “PROGRAM COLLATING SEQUENCE”
on page 123

Chapter 10. Upgrading IBM COBOL source programs 105

Table 21. Language elements different between CMPR2 and NOCMPR2 (continued)

Language element Page

READ INTO and RETURN INTO “READ INTO and RETURN INTO” on
page 124

RECORD CONTAINS n CHARACTERS “RECORD CONTAINS n CHARACTERS”
on page 125

SET...TO TRUE “SET . . . TO TRUE” on page 126

SIZE ERROR on MULTIPLY and DIVIDE “SIZE ERROR on MULTIPLY and
DIVIDE” on page 128

UNSTRING operand evaluation “UNSTRING operand evaluation” on
page 129

UPSI switches “UPSI switches” on page 134

Variable-length group moves “Variable-length group moves” on
page 135

ALPHABET clause of the SPECIAL-NAMES paragraph
Whether ALPHABET is a reserved word that must be specified in the ALPHABET clause depends on the
setting of the CMPR2/NOCMPR2 option.

CMPR2
The ALPHABET clause does not include the keyword ALPHABET. In fact, ALPHABET is not a reserved
word.

For example:

SPECIAL-NAMES.
 ALPHA-NAME IS STANDARD-1.

NOCMPR2
The ALPHABET clause requires the use of the keyword ALPHABET. ALPHABET is now a reserved keyword.

For example:

SPECIAL-NAMES.
 ALPHABET ALPHA-NAME IS STANDARD-1.

Messages
Compiling the program with the CMPR2 and FLAGMIG compiler options generates the following message
for each ALPHABET clause of the SPECIAL-NAMES paragraph:
IGYDS1190-W

MIGR Alphabet-name must be preceded by the keyword "ALPHABET" under the "NOCMPR2"
compiler option.

Corrective action for ALPHABET clause of the SPECIAL-NAMES paragraph:
Add the keyword ALPHABET to the ALPHABET clause.

106 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

ALPHABETIC class
Whether the ALPHABETIC class includes the 26 lowercase letters depends on the setting of the CMPR2/
NOCMPR2 option.

CMPR2
The ALPHABETIC class of characters defined by the ALPHABETIC class test consists of the 26 uppercase
letters and the space. The 26 lowercase letters are not considered alphabetic.

For example:

MOVE "AbC dE" TO PIC-X6.
IF PIC-X6 IS NOT ALPHABETIC THEN DISPLAY "CMPR2".

NOCMPR2
The ALPHABETIC class of characters defined by the ALPHABETIC class test consists of the 26 uppercase
letters, the 26 lowercase letters, and the space.

For example:

MOVE "AbC dE" TO PIC-X6.
IF PIC-X6 IS ALPHABETIC THEN DISPLAY "NOCMPR2".

Messages
Compiling the program with the CMPR2 and FLAGMIG compiler options generates the following message
for each ALPHABETIC class test:
IGYPS2221-W

MIGR The alphabetic class has been expanded to include lowercase letters under the "NOCMPR2"
compiler option.

Corrective action for the ALPHABETIC class:
Use the ALPHABETIC-UPPER class test under NOCMPR2 to get the same function as the ALPHABETIC
class test under CMPR2. The ALPHABETIC-UPPER class under NOCMPR2 consists of the 26 uppercase
letters and the space.

CALL . . . ON OVERFLOW
Whether the ON OVERFLOW condition is raised for errors other than "out of storage" errors depends on
the setting of the CMPR2/NOCMPR2 option.

CMPR2
Under CMPR2, the ON OVERFLOW condition exists if the available portion of object time memory cannot
accommodate the program specified in the CALL statement. CMPR2 interpreted that definition to cover
only the condition "not enough storage available to load the program."

Only errors that occur on the actual LOAD of the called program raise the ON OVERFLOW condition. Errors
occurring after the program has been loaded and has started execution do not raise the condition.

NOCMPR2
Under NOCMPR2, the ON OVERFLOW condition exists if the program specified by the CALL statement
cannot be made available for execution at that time.

NOCMPR2 implements 85 COBOL Standard rules and defines the ON OVERFLOW condition to handle any
"recoverable" condition that may prevent the called program from being made available.

Only errors that occur on the actual LOAD of the called program raise the ON OVERFLOW condition. Errors
occurring after the program has been loaded and started execution do not raise the condition.

Chapter 10. Upgrading IBM COBOL source programs 107

Messages
Compiling the program with the CMPR2 and FLAGMIG options will cause the compiler to issue messages
for all CALL statements that specify the ON OVERFLOW phrase. The following message will be issued:
IGYPS2012-W

MIGR The "ON OVERFLOW" phrase of the "CALL" statement will execute under more conditions
under the "NOCMPR2" compiler option.

The following program fragment illustrates one situation that will be affected by this change:

PERFORM UNTIL ALL-ACCOUNTS-SETTLED
⋮
 CALL "SUBPROGA" USING CURRENT-ACCOUNT
 ON OVERFLOW
 CANCEL "SUBPROGB"
 CALL "SUBPROGA" USING CURRENT-ACCOUNT
 END-CALL
 END-CALL
⋮
 CALL "SUBPROGB" USING CURRENT-ACCOUNT
 ON OVERFLOW
 CANCEL "SUBPROGA"
 CALL "SUBPROGB" USING CURRENT-ACCOUNT
 END-CALL
 END-CALL
⋮
END-PERFORM

The assumption is that for some executions of this program, SUBPROGA and SUBPROGB might not fit into
available storage at the same time. The ON OVERFLOW phrase is used to react to this situation, and to
release the storage occupied by the other subprogram.

Running under CMPR2, the ON OVERFLOW condition will be raised only for the "out of storage" errors, and
the approach above is reasonable.

Running under NOCMPR2, the ON OVERFLOW condition might be raised for errors other than the "out of
storage" errors, and therefore, the second call (inside the ON OVERFLOW phrase) might fail as well.

Corrective action for CALL . . . ON OVERFLOW:
No correction that is generally applicable exists for programs using this or similar techniques. If the ON
OVERFLOW condition is indeed raised because of the "out of storage" error, the program will exhibit the
same behavior as before; if the condition is raised for some other error, the recovery statements that you
coded (in the ON OVERFLOW phrase) might not correct the error, and the subsequent CALL will fail as
well.

In general, it is not possible for an Enterprise COBOL program to determine the actual cause of the error
that raised the ON OVERFLOW condition.

Comparisons between scaled integers and nonnumerics
Comparisons between nonnumeric items and scaled numeric items are handled differently depending on
the setting of the CMPR2/NOCMPR2 option.

CMPR2
Under CMPR2, the numeric or algebraic value of a scaled numeric item is used in comparison operations
with nonnumeric items. In determining the algebraic value, all symbols P in the PICTURE character-string
are included in the total number of digits, and zeros are used in their place.

NOCMPR2
Under NOCMPR2, the actual character representation or character value of the scaled numeric item is
used in comparison operations with nonnumeric items. The character value for scaled numeric items does
not include any digit positions specified with the symbol P. These digit positions are ignored and not
counted in the size of the operand.

108 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

For example:

01 NUM PIC 99PP VALUE 2300.
01 ALPHA1 PIC XX VALUE "23".
01 ALPHA2 PIC XXX VALUE "23".
01 ALPHA3 PIC XXXX VALUE "2300".

 IF NUM EQUAL ALPHA1 DISPLAY "ALPHA1".
 IF NUM EQUAL ALPHA2 DISPLAY "ALPHA2".
 IF NUM EQUAL ALPHA3 DISPLAY "ALPHA3".

 CMPR2 NOCMPR2

Results ALPHA3 ALPHA1
displayed ALPHA2

In this example, under NOCMPR2, the character value of NUM has only two digit positions. When it is
compared to a nonnumeric item of unequal length as in ALPHA2, the shorter operand (NUM) is padded
with enough blanks to equal the length of the other operand.

Messages
Compiling a program with the CMPR2 and FLAGMIG options will cause the compiler to issue the following
message for all comparisons between scaled integers and nonnumeric items.
IGYPG3138-W

MIGR The comparison between the scaled integer item " " and the nonnumeric item " " will be
performed differently under the "NOCMPR2" compiler option.

Corrective action for comparisons between scaled integers and nonnumerics:
To preserve CMPR2 behavior, you can define the scaled integer within a structure. FILLER serves as the
placeholders for the integer scaling positions and must be initialized to zero. There must be as many
alphanumeric positions defined in FILLER as there are scaling positions in NUM. Wherever NUM is used in
a comparison with a nonnumeric item, CHARVAL should be substituted instead.

01 CHARVAL.
 05 NUM PIC 99PP VALUE 2300.
 05 FILLER PIC XX VALUE "00".

 IF CHARVAL EQUAL ALPHA1 DISPLAY "ALPHA1".
 IF CHARVAL EQUAL ALPHA2 DISPLAY "ALPHA2".
 IF CHARVAL EQUAL ALPHA3 DISPLAY "ALPHA3".

COPY ... REPLACING statements using non-COBOL characters
Some non-COBOL characters in library text or COPY ... REPLACING statements are treated differently
depending on the setting of the CMPR2/NOCMPR2 option.

Non-COBOL characters are the EBCDIC characters outside the legal set of COBOL characters, excluding
nonnumeric literals. Nonnumeric literals can contain any character within the character set of the
computer.

CMPR2
Under CMPR2, library text and COPY ... REPLACING statements can contain operands consisting of non-
COBOL characters.

NOCMPR2
85 COBOL Standard disallows all non-COBOL characters and adds lowercase and the colon to the
character set.

Chapter 10. Upgrading IBM COBOL source programs 109

Lowercase alphabetic characters
"Lowercase" alphabetic characters, which were non-COBOL with CMPR2, are now in the set of legal
COBOL characters with Enterprise COBOL. With CMPR2, COPY allowed replacement of lowercase
characters:

COPY A REPLACING == abc == BY == XYZ ==.

The previous example would locate all instances of "abc" and replace it with "XYZ". In contrast, Enterprise
COBOL will treat lowercase and uppercase characters as equivalent in data-names and replace all
instances of "abc" as well as "ABC" with "XYZ". If member A contains:

1 abc PIC X.
1 ABC PIC XX.

then the results are as follows:

 CMPR2 NOCMPR2

After COPY & REPLACING After COPY & REPLACING
 1 XYZ PIC X. 1 XYZ PIC X.
 1 ABC PIC XX. 1 XYZ PIC XX.

Message
The difference in behavior is flagged by the FLAGMIG compiler option.
IGYLI0161-W

MIGR Lowercase character " " found in column " " will be treated the same as its uppercase
equivalent under the "NOCMPR2" compiler option. Results may be different.

Corrective action for lowercase alphabetic characters:
To obtain the same results when compiling CMPR2 programs under Enterprise COBOL, you must verify
that all your REPLACING arguments are unique (even after folding to uppercase).

The colon (:) character
With CMPR2, the colon character was a non-COBOL character that COPY ... REPLACING allowed as part of
its operands. This character is a legal COBOL separator under Enterprise COBOL.

COPY A REPLACING == A == BY == X ==
 == B == BY == Y ==
 == A:B == BY == Z ==.

If member A contains:

MOVE A:B TO ID2.

These are the differences between CMPR2 and Enterprise COBOL after COPY ... REPLACING has been
performed.

 CMPR2 NOCMPR2

MOVE Z TO ID2. MOVE X:Y TO ID2.

Because ":" is a separator under Enterprise COBOL, "A:B" is broken up into three separate tokens: "A" ":"
and "B." The replacements for A and B are made first.

Message
This difference in behavior between the two releases is flagged by FLAGMIG.

110 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

IGYLI0160-W
MIGR The colon will be treated as a separator under the "NOCMPR2" compiler option. Results
may be different.

Corrective action for the colon (:) character:
To make the previous piece of code behave in the same manner as with CMPR2, change the REPLACING
clauses to:

COPY A REPLACING == A:B == BY == Z ==
 == A == BY == X ==
 == B == BY == Y ==.

Characters that are not valid
Some characters do not fall into the legal COBOL character set. Consider this example:

COPY A REPLACING == % == BY == 1 ==.

where member A contains:

% XDATA PIC X.

Here, the "non-COBOL" character is the "%" character.

Under both CMPR2 and NOCMPR2, the member above will be copied with the replacement executed. The
Enterprise COBOL compiler will issue an E-level diagnostic message.
IGYLI0163-E

Non-COBOL character "%" was found in column 8. The character was accepted.

In both cases, after processing all COPY statements, a legal COBOL program should result.

Message
This difference in behavior between the two releases is flagged by FLAGMIG.

IGYLI0162-W
MIGR Non-COBOL character "%" found in column 8 will be diagnosed under the "NOCMPR2"
compiler option. Results may be different.

Corrective action for characters that are not valid:
You should remove all non-COBOL characters from your source programs and COPY libraries, and replace
them with COBOL characters.

This removal of non-COBOL characters will protect you against new problems in later releases of
Enterprise COBOL. Future releases may assign meaning to one of these characters (as with the colon)
and results might be different.

COPY statement using national extension characters
Whether the characters @, #, and $ can be coded in the text-name and library-name of the COPY
statement depends on the setting of the CMPR2/NOCMPR2 option.

CMPR2
National extension characters @, #, and $ are allowed in the text-name and library-name of the COPY
statement. For example in COPY X$3. the item will be copied.

NOCMPR2
The compiler will issue an E-level diagnostic message.

Chapter 10. Upgrading IBM COBOL source programs 111

IGYLI0025-E
Name "X$3" was invalid. It was processed as "X03".

Enterprise COBOL allows national extension characters @, #, and $ in the text-name and library-name, if
they are in the form of an alphanumeric literal. For example, to copy X$3 in Enterprise COBOL, code COPY
"X$3".

Message
The difference in behavior is flagged by FLAGMIG.
IGYLI0115-W

MIGR The name "X$3" did not follow the rules for formation of a program-name. It will be
diagnosed under the "NOCMPR2" compiler option.

Corrective action for the COPY statement that uses national extension characters:
You should change all national extension characters in your source programs and COPY libraries, to
COBOL characters.

File status codes
The setting of the CMPR2/NOCMPR2 option affects which file status codes are returned and the amount
of detail the codes provide about input-output operations.

CMPR2
File status codes based on the 74 COBOL Standard are returned with CMPR2.

NOCMPR2
The file status codes are enhanced with NOCMPR2. New and changed file status codes are returned, and
more detail is provided about the status of input-output operations. In addition, problems are detected
earlier in some cases, and there are updated definitions and file status conditions for "missing" files.

Message
A program that contains a file status data-name will receive the following message when compiled with
the CMPR2 and FLAGMIG compiler options:
IGYGR1188-W

MIGR The file status values are different under the "NOCMPR2" compiler option.

Corrective action for file status codes
Although there is no one-to-one mapping of the CMPR2 status codes to those in Enterprise COBOL, Table
22 on page 113 shows, in general, the relationships between CMPR2 and NOCMPR2 file status codes.. For
a comprehensive definition of the Enterprise COBOL file status codes, see File status key in the Enterprise
COBOL for z/OS Language Reference.

112 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 22. QSAM and VSAM file status codes with CMPR2 and NOCMPR2

VSAM file status codes QSAM file status codes

CMPR2 NOCMPR2 CMPR2 NOCMPR2

00 00
04
05
14
24
35
39
44

00 00
04
05
07
39
44

02 02

10 10 10 10

21 21

22 22

23 23

24 24

30 30
39

30 30
39

34 34

90 37
90

90 35
37
90

91 91

92 38
41
42
43
44
47
48
49
92

92 38
41
42
43
46
47
48
49
92

93 93

Chapter 10. Upgrading IBM COBOL source programs 113

Table 22. QSAM and VSAM file status codes with CMPR2 and NOCMPR2 (continued)

VSAM file status codes QSAM file status codes

CMPR2 NOCMPR2 CMPR2 NOCMPR2

94 46

95 39
95

96 96

97 97

Fixed-file attributes and DCB= parameters of JCL
The handling of block sizes, record sizes, and other fixed-file attributes is different between CMPR2 and
NOCMPR2. You might need to change your programs and your JCL to migrate to NOCMPR2.

CMPR2
In CMPR2 programs, fixed-file attribute checking is only done at READ/WRITE time, if done at all. An
OPEN statement could succeed even if some fixed-file attributes were inconsistent. For example, an
OPEN could succeed with different record sizes in:

• RECORD CONTAINS x clause
• JCL DCB=(LRECL=y)
• Actual data-set label

NOCMPR2
In NOCMPR2 programs, 85 COBOL Standard requires that fixed-file attribute checking be done in many
cases. As a result, a program with inconsistent fixed file attributes might fail at OPEN time rather than
have problems later. The OPEN could fail with either runtime message IGZ0035S or file status 39 (if a file
status clause is specified). See Appendix G, “Preventing file status 39 for QSAM files,” on page 327 for
more information about preventing file status 39 for QSAM files.

A common source of fixed file attribute inconsistency problems is the DCB= parameter of the JCL DD
statement for your file.

Messages
There are no **MIGR** messages for these differences, because fixed-file attributes can be specified
outside of the source program.

Recommendation for DCB= parameters of JCL
It is strongly recommended that you take advantage of features of DFSMS and COBOL that let the system
determine the block size. (In general, you should not specify DCB= attributes except in the few cases
mentioned in the Enterprise COBOL for z/OS Programming Guide.

These are the recommendations:

• For new files, let z/OS determine the block size. To take advantage of system-determined block size:

– Code BLOCK CONTAINS 0 in your source program or use the BLOCK0 compiler option.
– Do not code RECORD CONTAINS 0 in your source program.

114 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

– Do not code a BLKSIZE value in the JCL DD statement.
• For existing blocked data sets, use the existing file block size:

– Code BLOCK CONTAINS 0 in your source program or use the BLOCK0 compiler option.
– Do not code a BLKSIZE value in the ddname definition.

The one case where you might consider putting BLKSIZE in the JCL is if you require a specific block size
for a new file and you need the flexibility to modify that block size without recompiling your program. In
this case, follow these guidelines:

• Code BLOCK CONTAINS 0 in your source program or use the BLOCK0 compiler option.
• Code a BLKSIZE value in the ddname definition (DCB=(BLKSIZE=xxx) in the JCL DD statement).

Implicit EXIT PROGRAM
To end a program, you must use an EXIT PROGRAM, STOP RUN, or GOBACK statement.

You can use an EXIT PROGRAM for a called subprogram; you can use a STOP RUN for a main program.
GOBACK, an IBM extension, can be used for either type of program.

CMPR2
Under CMPR2, if a program does not contain any of the statements above, a compiler warning diagnostic
message is issued to suggest that you should analyze the program to verify that it could exit.

Suppose that this is the last line in the program:

IF TALLY = 0 THEN STOP RUN.

In this case, the compiler diagnostic message would not be issued, and the following runtime message
would be issued only if the IF condition tested false:
IGZ0037S

The flow of control in program "program-name" proceeded beyond the last line of the program.

NOCMPR2
Under NOCMPR2, all programs are assumed to end with an EXIT PROGRAM statement. For a called
subprogram, then, control can no longer flow beyond the last line of the program, but instead, the
program will return to the calling program. In the preceding example, where the program ended with the
statement:

IF TALLY = 0 THEN STOP RUN.

a false test will cause control to be returned to the caller. With CMPR2 behavior, the result is an abend.

For a main program, the EXIT PROGRAM statement has no effect. Therefore, the implicit EXIT PROGRAM
that is generated by the compiler will have no effect on the execution of the program; a main program that
executes beyond the last line of the program will still abend.

Messages
A program that does not contain a STOP RUN, GOBACK, or EXIT PROGRAM statement will receive the
following diagnostic message:
IGYPS2091-W

No "STOP RUN", "GOBACK" or "EXIT PROGRAM" was found in the program. Check program logic to
verify that the program will exit.

Also, if the CMPR2 and FLAGMIG compiler options are used, the following message will be issued:
IGYPS2223-W

MIGR An implicit "EXIT PROGRAM" will be executed at the end of this program under the
"NOCMPR2" compiler option.

Chapter 10. Upgrading IBM COBOL source programs 115

If a program does contain a STOP RUN, GOBACK, or EXIT PROGRAM statement, and the NOOPTIMIZE
compiler option is in effect, then use of the FLAGMIG compiler option will result in the following message:
IGYPS2224-W

MIGR An implicit "EXIT PROGRAM" may be executed at the end of this program under the
"NOCMPR2" compiler option. Recompile with the "OPTIMIZE" and "FLAGMIG" compiler options. If no
"MIGR" message about an implicit "EXIT PROGRAM" is issued then no implicit "EXIT PROGRAM" will
be executed.

Upon re-compilation with the OPTIMIZE compiler option, the absence of any such messages indicates
that the program will not have an implicit EXIT PROGRAM generated for it, while the presence of the
following message indicates otherwise:
IGYOP3210-W

MIGR An implicit "EXIT PROGRAM" will be executed at the end of this program under the
"NOCMPR2" compiler option.

Corrective action for implicit EXIT PROGRAM
To preserve CMPR2 behavior, a program can be modified to contain a new section and section-name as
the very last section in the program. That new section can then contain error-handling code, such as a call
to CEE3ABD.

Any program receiving a message indicating that an EXIT PROGRAM will be implicitly generated should be
examined to ensure that it will exit properly.

OPEN statement failing for QSAM files (FILE STATUS 39)
There is a difference in the way CMPR2 and NOCMPR2 handle fixed-file attributes for QSAM files for OPEN
statements.

CMPR2
The fixed file attributes for QSAM files do not need to match between COBOL program file definition, JCL,
or data-set label for a successful file OPEN.

NOCMPR2
If the following items are inconsistent, an OPEN statement in your program might not run successfully:

• The fixed file attributes of a file from the data set label
• The fixed file attributes specified in the JCL DD statement for a file
• The attributes specified for that file in the SELECT and FD statements of your COBOL program

Inconsistencies in the attributes for file organization, record format (fixed or variable), the code set, or
record length result in a file status code 39, and the OPEN statement fails.

Message
There are no **MIGR** messages for this difference, because fixed-file attributes can be specified outside
of the source program.

Corrective action for OPEN statement failing for QSAM files (FILE STATUS 39)
To prevent common file status 39 problems, see Appendix G, “Preventing file status 39 for QSAM files,”
on page 327.

116 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

OPEN statement failing for VSAM files (FILE STATUS 39)
There is a difference in the way CMPR2 and NOCMPR2 handle RECORDSIZE defined in VSAM files
associated with IDCAMS.

In CMPR2, the RECORDSIZE defined in your VSAM files associated with IDCAMS was not required to
match your COBOL program file definition for successful file OPEN.

CMPR2
The RECORDSIZE defined in your VSAM files associated with IDCAMS was not required to match your
COBOL program file definitions for successful file OPEN.

NOCMPR2
The RECORDSIZE defined in your VSAM files associated with IDCAMS are required to match the file
definitions for those files in your COBOL program for successful file OPEN.

Message
There are no **MIGR** messages for this difference, because the VSAM RECORDSIZE attribute is outside
of the source program.

Corrective action for OPEN statement failing for VSAM files (FILE STATUS 39)
Change your program file definitions or the RECORDSIZE defined in your VSAM files associated with
IDCAMS to match according to the following table. The following rules apply to VSAM ESDS, KSDS, and
RRDS file definitions:

Table 23. Rules for VSAM file definitions

File type Rules

ESDS and
KSDS VSAM

RECORDSIZE(avg,m) is specified where avg is the average size of the COBOL
records, and is strictly less than m; m is greater than or equal to the maximum
size of a COBOL record.

RRDS VSAM RECORDSIZE(n,n) is specified where n is greater than or equal to the maximum
size of a COBOL record.

PERFORM return mechanism
There is a difference in the way CMPR2 and NOCMPR2 handle out-of-line PERFORM statements that
might require corrective action.

When a paragraph or a range of paragraphs is executed with a PERFORM statement ("out-of-line
PERFORM"), a mechanism at the end of the range of paragraphs causes control to be returned to the
point just after the PERFORM statement.

Consider the following example:

 PERFORM A
 STOP RUN.
A. DISPLAY "Hi".
B. DISPLAY "there".

After displaying the message "Hi," compiler-generated code will cause the flow of control to return to
the STOP RUN statement after performing paragraph A. Without this, control would fall through into
paragraph B.

This code mechanism is reset to an initial state the first time a program is called or when a program is
cancelled. Under NOCMPR2, it is also reset every time a program is called. Under CMPR2, the mechanism
retains its last-used state when a program is called twice in succession without having been cancelled.

Chapter 10. Upgrading IBM COBOL source programs 117

This can be important when the program issues an EXIT PROGRAM or GOBACK statement before all of the
PERFORM statements have completed their execution.

Now consider this example:

 IF FIRST-TIME-CALLED THEN
 PERFORM A
 MOVE ZERO TO N
 ELSE
 SUBTRACT 1 FROM N
 GO TO A.
 GOBACK.
A. IF N > 1 THEN
 GOBACK.
B. DISPLAY "Processing continues...".

The program is passed a switch, FIRST-TIME-CALLED, which tells the program whether or not the
program has been called without having been cancelled. It is also passed a variable, N.

CMPR2
When the program is called for the first time, the PERFORM statement will be executed. If the "N > 1" test
succeeds, the program will return to the calling program.

However, this means that the PERFORM statement has not reached normal completion because
paragraph A never returned to the point from which it was performed. The compiler-generated
mechanism at the end of paragraph A is still "set" to return back to the PERFORM statement.

Thus, on the second call to the program, the ELSE path will be taken, 1 will be subtracted from N, and
control will be transferred by the GO TO statement to paragraph A. However, if the test "N > 1" fails, the
PERFORM mechanism is still set. So, when the end of paragraph A is reached, instead of falling through
into paragraph B, control is "returned" to the MOVE statement after the PERFORM statement.

These results might not be intended. The problem might occur whenever all of the following conditions
occur:

1. The program returns to the calling program with an EXIT PROGRAM or GOBACK statement.
2. A PERFORM statement performs a paragraph or a range of paragraphs, and those paragraphs might

also be reached by a GO TO statement or by falling through into the paragraph.
3. All such PERFORM statements have not had a chance to return prior to the execution of the EXIT

PROGRAM or GOBACK statement.

NOCMPR2
Under NOCMPR2, when the program is called for the first time, the PERFORM statement will be executed
and control will flow to paragraph A. Then, depending on the result of the test "N > 1," the program will
either immediately return to the calling program, or it will return to the PERFORM, move zero to N, and
then return to the calling program.

On subsequent calls to the program, the ELSE path will be taken, 1 will be subtracted from N, and then
control will be transferred by the GO TO statement to paragraph A. Then, depending on the result of
the test "N > 1," the program will either immediately return to the calling program or fall through into
paragraph B, display a message, and continue.

Regardless of the paths taken, the mechanism that controls the PERFORM statement will be reset each
time the program is called and no irregular control flow will take place.

Messages
A program that contains an out-of-line PERFORM, and either an EXIT PROGRAM or GOBACK statement,
will receive the following messages when compiled with the CMPR2, FLAGMIG, and NOOPTIMIZE
compiler options:

118 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

IGYPA3205-W
MIGR "EXIT PROGRAM" or "GOBACK" statements assume that ends of "PERFORM" ranges were
reached under the "NOCMPR2" compiler option. This program may have different execution results
after migration if used as a subprogram.

IGYPA3206-W
MIGR For more information about ends of "PERFORM" ranges, recompile with the "OPTIMIZE"
and "FLAGMIG" compiler options. If no messages about ends of "PERFORM" ranges are issued, then
this program will not have a migration problem with ends of "PERFORM" ranges.

Upon re-compilation with the OPTIMIZE compiler option, the absence of any such messages indicates
that the program will not have any problem with an EXIT PROGRAM or GOBACK statement being executed
within the range of an out-of-line PERFORM statement, while the presence of the following messages
indicates otherwise:
IGYOP3205-W

MIGR "EXIT PROGRAM" or "GOBACK" statements assume that ends of "PERFORM" ranges were
reached under the "NOCMPR2" compiler option. This program may have different execution results
after migration if used as a subprogram.

IGYOP3092-W
An "EXIT PROGRAM" or a "GOBACK" statement was encountered in the range of the "PERFORM"
statement at "PERFORM (LINE xx.xx)". Re-entry of the program may cause unexpected control flow.

Corrective action for the PERFORM return mechanism:
The CMPR2 behavior of affected programs cannot be preserved without extensive and complex recoding.
Such programs should be rewritten to avoid this dependency on the CMPR2 behavior.

PERFORM ... VARYING ... AFTER
Certain identifiers in the VARYING phrase of the PERFORM statement are set and incremented differently
depending on whether CMPR2 or NOCMPR2 is in effect.

Identifiers are set and increment differently, for example:

PERFORM PARA3 VARYING id-2 FROM id-3 BY id-4
 UNTIL condition-1
 AFTER id-5 FROM id-6 BY id-7
 UNTIL condition-2.

CMPR2
Within the VARYING ... AFTER phrase of the PERFORM statement under CMPR2, id-5 is set before id-2 is
augmented.

When varying two variables under CMPR2, at the intermediate stage when the inner condition is true,
the inner variable (id-5) was set to its current FROM value (id-6) before the outer variable (id-2) was
augmented with its current BY value (id-4).

NOCMPR2
However, under NOCMPR2, id-2 is augmented before id-5 is set. This change creates an incompatibility
when id-6 is dependent on id-2.

Consider the following example:

PERFORM PARA3 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3
 AFTER Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

In this example, id-6 (X) is dependent on id-2 (X) because they are identical.

Under CMPR2, PARA3 will be executed eight times with the following values:

Chapter 10. Upgrading IBM COBOL source programs 119

 X: 1 1 1 2 2 2 3 3
 Y: 1 2 3 1 2 3 2 3

Under NOCMPR2, PARA3 will be executed six times with the following values:

 X: 1 1 1 2 2 3
 Y: 1 2 3 2 3 3

A dependency between identifiers occurs if the first identifier is identical to, subscripted with, a partial or
full redefinition of, or variably located depending on the second identifier.

Message
First, recompile all programs under an earlier COBOL compiler with the CMPR2 and FLAGMIG compiler
options. This will flag any PERFORM ... VARYING statements that have dependencies between the
following variables:

• id-6 is (potentially) dependent on id-2
• id-9 is (potentially) dependent on id-5
• id-4 is (potentially) dependent on id-5
• id-7 is (potentially) dependent on id-8

Only PERFORM ... VARYING with the AFTER phrase is affected.

For example, compiling the program under an earlier COBOL compiler with the CMPR2 and FLAGMIG
compiler options causes the compiler to issue the following message when id-6 is dependent on id-2:
IGYPA3209-W

MIGR "PERFORM ... VARYING" operand "ID-6 (NUMERIC INTEGER)" was dependent on "ID-2
(NUMERIC INTEGER)". Under the "NOCMPR2" compiler option, the rules for augmenting/setting
"PERFORM ... VARYING" operands have changed, and this statement may have incompatible results.

Corrective action for PERFORM . . . VARYING . . . AFTER
If a PERFORM ... VARYING statement is flagged by FLAGMIG, that statement will have to be converted.
A possible way of converting a PERFORM ... VARYING statement that has all four dependencies is as
follows:

PERFORM xx
 VARYING id-2 FROM id-3 BY id-4 UNTIL cond-1
 AFTER id-5 FROM id-6 BY id-7 UNTIL cond-2
 AFTER id-8 FROM id-9 BY id-10 UNTIL cond-3.

is converted into:

MOVE id-3 TO id-2.
MOVE id-6 TO id-5
MOVE id-9 TO id-8

PERFORM UNTIL cond-1
 PERFORM UNTIL cond-2
 PERFORM UNTIL cond-3
 PERFORM xx
 ADD id-10 TO id-8
 END-PERFORM
 MOVE id-9 TO id-8
 ADD id-7 TO id-5
 END-PERFORM
 MOVE id-6 TO id-5
 ADD id-4 TO id-2
END-PERFORM

This example assumes that all id-x are identifiers. If any are index-names, then SET statements must be
used in place of MOVE statements.

120 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

The example above is a worst-case conversion. It could be refined by changing only the parts of the
statement that use those identifiers for which a dependency (potentially) exists. For example, if only id-6
is dependent on id-2 and no other dependency exists, the conversion above can be reduced to:

MOVE id-3 TO id-2.
MOVE id-6 TO id-5.

PERFORM UNTIL cond-1
 PERFORM UNTIL cond-2
 PERFORM VARYING id-8 FROM id-9 BY id-10 UNTIL cond-3
 PERFORM XX
 END-PERFORM
 ADD id-7 TO id-5
 END-PERFORM
 MOVE id-6 TO id-5
 ADD id-4 TO id-2
END-PERFORM

PICTURE clause with "A"s and "B"s
A data item that has the symbol B in its PICTURE clause is treated either as alphabetic or alphabetic-
edited depending on whether CMPR2 or NOCMPR2 is in effect.

CMPR2
Under CMPR2, a data item with the symbol B in its PICTURE clause is an alphabetic data item.

NOCMPR2
Under NOCMPR2, a data item with the symbol B in its PICTURE clause is an alphanumeric-edited item.

Most functions do not pose a problem with this change. However, there are a few subtleties that you
should watch for when upgrading from CMPR2 to Enterprise COBOL, relating to the INITIALIZE, STRING,
CALL and CANCEL statements.

Message
If a program is compiled with the CMPR2 and FLAGMIG options, a message is issued for any alphabetic
items that had been defined with the symbol B.
IGYDS1105-W

MIGR A "PICTURE" clause was found consisting of symbols "A" and "B". This alphabetic item will
be treated as an alphanumeric-edited item under the "NOCMPR2" compiler option.

INITIALIZE statement
Consider the following example:

01 ALPHA PIC AABAABAA.

INITIALIZE ALPHA REPLACING ALPHABETIC DATA BY ALL "3".

A statement like this coded under CMPR2 is valid and initialization will take place. However, this
statement gives the following warning message under NOCMPR2, and no initialization will take effect:
IGYPS2047-W

"INITIALIZE" statement receiver "ALPHA" was incompatible with the data category(s) of the
"REPLACING" operand(s). "ALPHA" was not initialized.

This incompatibility can also happen when a group of items are being initialized. Under NOCMPR2, ALPHA
above would be classified as alphanumeric-edited. If ALPHA was defined in a group that was to be
initialized, a message like the one above would be issued only if there were no alphabetic items to be
initialized. Thus, in the following example, ALPHA is never initialized, but no message alerts you to that
fact.

01 GROUP1.
 05 ALPHA PIC AABAA.

Chapter 10. Upgrading IBM COBOL source programs 121

 05 BETA PIC AAA.

INITIALIZE GROUP1 REPLACING ALPHABETIC DATA BY ALL "5".

Corrective action for the INITIALIZE statement
To initialize any of these reclassified data items in the same manner as they had been previously, change
the original statement for the first example above to the following statement:

INITIALIZE ALPHA REPLACING
 ALPHANUMERIC-EDITED DATA BY ALL "3".

In the second example, which shows a group of possibly mixed types, INITIALIZE should be
supplemented with an additional phrase. For example:

INITIALIZE GROUP1 REPLACING
 ALPHABETIC DATA BY ALL "5"
 ALPHANUMERIC-EDITED DATA BY ALL "5".

Important: Adding this extra phrase could cause conflicts if you already specified this phrase but used
different replacing data or if you had other alphanumeric-edited items within the group that you did not
want initialized.

STRING statement
With either CMPR2 or NOCMPR2, alphabetic items are allowed to be the STRING...INTO receiving field.
However, edited items are not allowed. Therefore, if any CMPR2 programs have an alphabetic item
defined with the symbol B in this position of the STRING statement, these statements will get a severe
error message from Enterprise COBOL because this item is reclassified as alphanumeric-edited.

IGYPA3104-S
"STRING INTO" identifier "ALPHA (ALPHANUMERIC-EDITED)" was an edited data item or was defined
with the "JUSTIFIED" clause. The statement was discarded.

Corrective action for the STRING statement
Because a STRING statement with CMPR2 would automatically overlay any positions represented with
the symbol B, all that is really needed is a new alphabetic data-name redefined on the original INTO field.
For example:

Statement under CMPR2:

01 ALPHA PIC AABAABAA.
01 VARX PIC A(3) VALUE "XXX".
01 VARY PIC A(3) VALUE "YYY".

 STRING VARX VARY DELIMITED BY SIZE INTO ALPHA.

Statement under NOCMPR2:

01 ALPHA PIC AABAABAA
01 BETA REDEFINES ALPHA PIC A(8).
01 VARX PIC A(3) VALUE "XXX".
01 VARY PIC A(3) VALUE "YYY".

 STRING VARX VARY DELIMITED BY SIZE INTO BETA.

BETA is redefined on ALPHA and has a length equal to ALPHA, including all symbols of B. BETA is then
used in the STRING statement. After STRING is executed, ALPHA will have the same value as it did with
CMPR2.

CALL and CANCEL statements
An IBM extension allows the CALL and CANCEL statement identifier to be an alphabetic data item.
However, alphanumeric-edited items are not allowed; therefore, any CMPR2 programs with alphabetic

122 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

items defined with the symbol B will get a severe error message. For example, the following program
would have worked with CMPR2, but will now get a severe error message:

01 CALLDN PIC AAAAABB.

 MOVE "PROG1" TO CALLDN.
 CALL CALLDN.
 CANCEL CALLDN.

IGYPA3063-S
"CALL" or "CANCEL" identifier "CALLDN (ALPHANUMERIC-EDITED)" was not alphanumeric, zoned
decimal nor alphabetic. The statement was discarded.

To compile with Enterprise COBOL, change the definition of CALLDN to all alphabetic or alphanumeric or
add a new data-name that redefines CALLDN with a valid data type as shown below.

01 CALLDN PIC A(7).
 or
01 CALLDN PIC X(7).
 or

01 CALLDN PIC AAAAABB
01 CALLDN1 REDEFINES CALLDN PIC A(7).

 MOVE "PROG1" TO CALLDN1.
 CALL CALLDN1.
 CANCEL CALLDN1.

PROGRAM COLLATING SEQUENCE
The truth value of nonnumeric comparisons determined by the PROGRAM COLLATING SEQUENCE clause
might be different under CMPR2 and NOCOMPR2.

CMPR2
The PROGRAM COLLATING SEQUENCE established in the OBJECT COMPUTER paragraph is used to
determine the truth value of any nonnumeric comparisons that are:

• Explicitly specified in relation conditions
• Explicitly specified in condition-name conditions
• Implicitly performed as part of the execution of the SORT and MERGE statements, unless overridden by

the COLLATING SEQUENCE phrase on the respective SORT or MERGE statement
• Implicitly performed as part of the execution of STRING, UNSTRING, and INSPECT statements

NOCMPR2
The PROGRAM COLLATING SEQUENCE established in the OBJECT COMPUTER paragraph is used to
determine the truth value of any nonnumeric comparisons that are:

• Explicitly specified in relation conditions
• Explicitly specified in condition-name conditions
• Implicitly performed as part of the execution of the SORT and MERGE statements, unless overridden by

the COLLATING SEQUENCE phrase on the respective SORT or MERGE statement

The native collating sequence is used to determine the truth value of any nonnumeric comparisons that
are implicitly performed as part of the execution of STRING, UNSTRING, and INSPECT statements.

For most applications, this difference will not affect the results of these statements. The implicit
comparisons performed as part of STRING, UNSTRING, and INSPECT statements are always for equality.
Therefore, even if the ordering of the characters in the PROGRAM COLLATING SEQUENCE is different than
that of the native sequence, the results of these comparisons will be the same.

For an application to be affected by this change, the PROGRAM COLLATING SEQUENCE established in the
OBJECT COMPUTER paragraph must identify an alphabet that was defined with the ALSO clause, which
assigns several different characters to the same ordinal position.

Chapter 10. Upgrading IBM COBOL source programs 123

Messages
Compiling the program with the CMPR2 and FLAGMIG options will cause the compiler to issue messages
for all statements that might be affected by this change:
IGYPS3142-W

MIGR The "PROGRAM COLLATING SEQUENCE" will not affect the "STRING" statement under the
"NOCMPR2" compiler option.

Corrective action
No correction that is generally applicable exists for programs receiving this message if the PROGRAM
COLLATING SEQUENCE contains multiple characters assigned to the same ordinal position.

The CMPR2 behavior of affected programs cannot be preserved without extensive and complex recoding.
Such programs must be rewritten to avoid this dependency on the CMPR2 behavior.

READ INTO and RETURN INTO
READ (or RETURN) with the INTO phrase might be performed differently for CMPR2 and NOCMPR2 for
fixed-length files that have multiple 01-level record descriptions in which at least one of the descriptions
is numeric or numeric-edited.

When deciding which record description to use as the sending field for an implicit MOVE statement, the
compiler selects the longest of the 01 record descriptions. If multiple record descriptions have the same
length, then the first such record description is chosen. This is true under both CMPR2 and NOCMPR2.
However, the method for determining which 01 record description is the longest is different.

CMPR2
Under CMPR2, the length of numeric and numeric-edited record descriptions is calculated by totaling the
number of digit positions in the PICTURE. Other types of record descriptions are assigned a length equal
to the number of bytes occupied by the record description.

NOCMPR2
Under NOCMPR2, the length of each record description is determined to be the number of bytes occupied
by the record description, regardless of whether the record description is numeric, numeric-edited, or
otherwise.

Messages
If the FLAGMIG and CMPR2 compiler options are used, a message will be issued for any READ INTO or
RETURN INTO statement that might be affected.

A program that is affected by the rule change will receive the following message:
IGYPS2281-I

The "INTO" phrase of the "READ" or "RETURN" statement was specified for fixed-format file "file-
name", which contained multiple records. Record "record-name" was selected as the sending field for
the move.

This message will be issued under both the CMPR2 and NOCMPR2 compiler options. Therefore, you can
compile the program with CMPR2, and then with NOCMPR2, and examine the messages to determine
whether the same record was chosen under both CMPR2 and NOCMPR2. If so, then the program need not
be changed.

In addition, with the FLAGMIG compiler option, the following message will be issued:
IGYPS2283-W

MIGR The "INTO" phrase of the "READ" or "RETURN" statement was specified for file "file-name",
which contained multiple records. A different record might be selected for the sending field for the
move under the "NOCMPR2" compiler option.

124 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Corrective action for the READ INTO and RETURN INTO phrases:
By applying the record description rules to each qualified file or by checking the messages, you can
determine whether a different record description may be selected under NOCMPR2 than under CMPR2.
For example, consider the following record descriptions:

01 RECORD-1 PIC X(9) USAGE DISPLAY.
01 RECORD-2 PIC 9(9) USAGE DISPLAY.

In this case, each record description is calculated to have a length of "9", under both CMPR2 and
NOCMPR2. Therefore, no incompatibility exists.

Suppose, however, that there is a difference in the way that the record description lengths are calculated.
Consider the following statements:

01 RECORD-3 PIC X(4) USAGE DISPLAY.
01 RECORD-4 PIC 9(9) USAGE COMP.

In this case, under NOCMPR2, each record description is calculated to have a length of "4". However,
under CMPR2, the length of the numeric record description (RECORD-4) is calculated by counting digits,
so its length will be "9" instead of "4". Thus, RECORD-4 will be used as the sending field, even though the
byte length of each record description is 4.

After you have detected an incompatibility, change the code to ensure that the CMPR2 behavior will be
preserved. You can change the READ INTO or RETURN INTO statement to a READ or RETURN statement,
followed by a MOVE statement. The MOVE statement would specify, as a sending field, the required
record description (the "longest" one), and, as a receiving field, the item that had been specified as the
INTO item.

RECORD CONTAINS n CHARACTERS
The definition of RECORD CONTAINS n CHARACTERS affects existing programs.

Its behavior is different under CMPR2 and NOCMPR2.

Consider the following example:

FD FILE1
 RECORD CONTAINS 40.
 01 F1R1 PIC X(20).
 01 F1R2 PIC X(40).

FD FILE2
 RECORD CONTAINS 20 TO 40.
 01 F2R1 PIC X(20).
 01 F2R2 PIC X(40).

CMPR2
Under CMPR2, FILE1 and FILE2 have variable-length records.

NOCMPR2
Under NOCMPR2, FILE1 has fixed-length records and FILE2 has variable-length records.

Message
Compiling the program with the CMPR2 and FLAGMIG options will cause the compiler to issue the
following message for FILE1:
IGYPS1183-W

MIGR "RECORD CONTAINS" clause with one integer specified is supported differently under the
"NOCMPR2" compiler option.

Chapter 10. Upgrading IBM COBOL source programs 125

A program that has this difference might get a file status 39 on OPEN after compiling with Enterprise
COBOL.

Corrective action for the RECORD CONTAINS n CHARACTERS clause:
To maintain current behavior, remove the RECORD CONTAINS clauses. This change results in FILE1 and
FILE2 both having variable-length records.

For maximum clarity, and for any new applications, use RECORD CONTAINS n CHARACTERS for fixed-
length records and RECORD IS VARYING FROM integer-1 TO integer-2 for variable-length records. Avoid
using RECORD CONTAINS n1 TO n2 CHARACTERS.

SET . . . TO TRUE
SET ... TO TRUE has different effects depending on whether CMPR2 or NOCMPR2 is in effect.

CMPR2
The SET ... TO TRUE statement is performed according to the rules of the MOVE statement.

NOCMPR2
Under NOCMPR2, SET ... TO TRUE follows the rules of the VALUE clause. There are three instances in
which this change can cause different results:

• When the data item is described by a JUSTIFIED clause
• When the data item is described by a BLANK WHEN ZERO clause
• When the data item has editing symbols in its PICTURE string

Message
A program that is potentially affected by this change will receive the following message when compiled
with the CMPR2 and FLAGMIG options:
IGYPS2219-W

MIGR The "SET" statement with the "TO TRUE" phrase will be performed according to the rules
for the "VALUE" clause under the "NOCMPR2" compiler option.

JUSTIFIED clause
When a data item described by a JUSTIFIED clause is the receiving item in a MOVE statement, the
sending data is aligned at the rightmost character position in the receiving item. In a VALUE clause,
initialization is not affected by the JUSTIFIED clause. This means that the data in a VALUE clause will be
aligned at the leftmost character position in the receiving item.

Here's how it works under CMPR2:

01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")
 88 V VALUE "a".

SET V TO TRUE (Result = " a")
MOVE "a" TO A (Result = " a")

Here's how it works under NOCMPR2:

01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")
 88 V VALUE "a".
SET V TO TRUE (Result = "a ")

MOVE "a" TO A (Result = " a")

Corrective action for the JUSTIFIED clause
If using NOCMPR2, and you want the same behavior as with CMPR2, adjust the data in the VALUE clause
for the 88-level item accordingly:

126 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")
 88 V VALUE " a".

SET V TO TRUE (Result = " a")
MOVE "a" TO A (Result = " a")

BLANK WHEN ZERO clause
When a data item described by a BLANK WHEN ZERO clause receives the value of zero in a MOVE
statement, the item will contain nothing but spaces. In a VALUE clause, initialization is not affected by the
BLANK WHEN ZERO clause. This means that if the VALUE clause specifies a value of zero, the data will be
placed into the item as is, and the item will contain all zeros instead of spaces.

Here's how it works under CMPR2:

01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")
 88 V VALUE ZERO.

SET V TO TRUE (Result = " ")
MOVE ZERO TO N (Result = " ")

Here's how it works under NOCMPR2:

01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")
 88 V VALUE ZERO.
SET V TO TRUE (Result = "000")

MOVE ZERO TO N (Result = " ")

If the behavior exhibited under CMPR2 is required under NOCMPR2, the data in the VALUE clause for the
88-level item must be adjusted accordingly:

01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")
 88 V VALUE " ".

SET V TO TRUE (Result = " ")
MOVE ZERO TO N (Result = " ")

PICTURE string with editing symbols
When a data item contains editing symbols in its PICTURE string, the character positions represented by
those symbols will contain editing characters when data is moved into the data item. In a VALUE clause,
initialization is not affected by the editing symbols. This means that the data in the VALUE clause will be
placed into the item as is, and editing will not take place as it does in the MOVE statement.

Here's how it works under CMPR2:

01 E PIC X/X VALUE SPACE. (Result = " ")
 88 V VALUE SPACE.

SET V TO TRUE (Result = " / ")
MOVE SPACE TO E (Result = " / ")

Here's how it works under NOCMPR2:

01 E PIC X/X VALUE SPACE. (Result = " ")
 88 V VALUE SPACE.
SET V TO TRUE (Result = " ")

MOVE SPACE TO E (Result = " / ")

If the behavior exhibited under CMPR2 is required under NOCMPR2, the data in the VALUE clause for the
88-level item must be specified in edited form:

01 E PIC X/X VALUE SPACE. (Result = " ")
 88 V VALUE " / ".

Chapter 10. Upgrading IBM COBOL source programs 127

SET V TO TRUE (Result = " / ")
MOVE SPACE TO E (Result = " / ")

SIZE ERROR on MULTIPLY and DIVIDE
SIZE ERROR behaves differently depending on whether CMPR2 or NOCMPR2 is in effect.

The 74 COBOL Standard and the 85 COBOL Standard state that an intermediate result will be provided
by the implementer when a COMPUTE, DIVIDE, or MULTIPLY statement has multiple receiving fields. For
example: MULTIPLY A BY B GIVING C D should behave like:

MULTIPLY A BY B GIVING temp
MOVE temp TO C
MOVE temp TO D

where temp is an intermediate result provided by the implementer.

The Enterprise COBOL for z/OS Programming Guide describes the use and definition of intermediate
results. One such definition says that an intermediate result will have at most 30-digits (31-digits with
ARITH(EXTEND)).

So, in the example above, if A, B, C, and D are all defined as PIC S9(18), A will be multiplied by B, yielding
a 36-digit result, which will be moved to the 30-digit (or 31-digit) intermediate result, temp. Then temp
will be moved to C and D.

CMPR2
When SIZE ERROR is specified on the MULTIPLY statement example, SIZE ERROR can occur when the
36-digit (immediate) result is moved into the 30-digit (or 31-digit) (intermediate) result, according to the
74 COBOL Standard rules. This differs from the corresponding COMPUTE case, in which SIZE ERROR
cannot occur when the 36-digit (immediate) result is moved into the 30-digit (or 31-digit) (intermediate)
result.

COMPUTE C D = A * B ON SIZE ERROR...

This behavior applies to the DIVIDE statement with its corresponding COMPUTE statement as well.

NOCMPR2
However, under NOCMPR2, SIZE ERROR applies only to final results. In the MULTIPLY example, SIZE
ERROR cannot occur when the 36-digit (immediate) result is moved into the 30-digit (or 31-digit)
(intermediate) result. Consequently, the MULTIPLY and COMPUTE statements become equivalent in this
regard. This behavior also applies to the DIVIDE statement.

Such statements will now be flagged by the following compiler message:
IGYPG3113-W

Truncation of high-order digit positions can occur due to precision of intermediate results exceeding
30-digits.

If, at run time, truncation actually does occur, the following message will be issued:
IGZ0036W

Truncation of high order digit positions occurred in program "program-name" on line number "n".

Message
A program that is potentially affected by this change will receive the following message when compiled
with the CMPR2 and the FLAGMIG options:
IGYPG3204-W

MIGR The "ON SIZE ERROR" phrase will not be executed for intermediate results under the
"NOCMPR2" compiler option.

128 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Corrective action for the SIZE ERROR on MULTIPLY and DIVIDE
The CMPR2 behavior of affected programs cannot be preserved without extensive and complex recoding.
Such programs must be rewritten to avoid this dependency on the CMPR2 behavior.

UNSTRING operand evaluation
Subscripting, indexing, and length calculation associated with the UNSTRING statement might generate
different results depending on whether CMPR2 or NOCMPR2 is in effect.

In the description below, the following general format of the UNSTRING statement is used for reference:

UNSTRING id-1
 DELIMITED BY id-2 OR id-3 ...
 INTO id-4 DELIMITER IN id-5 COUNT IN id-6
 id-7 DELIMITER IN id-8 COUNT IN id-9
 WITH POINTER id-10
 TALLYING IN id-11
 ON OVERFLOW imp-stmt-1
 NOT ON OVERFLOW imp-stmt-2
 END-UNSTRING

CMPR2
Under CMPR2, any subscripting, indexing, or length calculation associated with id-1, id-10, and id-11
is to be evaluated only once, at the beginning of execution of the UNSTRING statement. However, any
subscripting, indexing, or length calculation associated with id-2, id-3, id-4, id-5, id-6, id-7, id-8, and id-9,
(or any repetitions) is to be evaluated immediately before transfer into the respective data item.

NOCMPR2
Under NOCMPR2, any subscripting, indexing, or length calculation associated with any of id-1 through
id-11 (or any repetitions) is to be evaluated only once, at the beginning of execution of the UNSTRING
statement. This change can lead to different results when certain dependencies exist between id-2
through id-9.

Dependencies involving identifiers id-1, id-10, and id-11 are not affected by this change.

Messages
Most of the UNSTRING statements flagged with messages 3211 through 3214 will generate identical
results. Only certain dependencies between the operands in the UNSTRING statement will generate
different results.

For example, a dependency can exist between two operands (op-1 and op-2) in an UNSTRING statement
in the following ways:

1. op-1 is subscripted, and the subscript value is modified by op-2:

a. The subscript identifier is used as a receiver in an INTO, DELIMITER IN, or COUNT IN operand.
b. The subscript identifier is a variably located item, and an ODO object affecting the location of this

item is used as a receiver in an INTO, DELIMITER IN, or COUNT IN operand.
2. op-1 is a variable-length group item, and an ODO object affecting the length of this group is modified

by op-2:

a. The ODO object is used as a receiver in an INTO, DELIMITER IN, or COUNT IN operand.
3. op-1 is a variably located item, and an ODO object affecting the location of this item is modified by

op-2:

a. The ODO object is used as a receiver in an INTO, DELIMITER IN, or COUNT IN operand.

Dependencies generated by overlapping operands, or by specifying the same identifier as a DELIMITED
BY operand and as one of the sending, INTO, or DELIMITER IN operands are illegal under both Standard
COBOL 74 and 85 COBOL Standard and are not addressed here. Generally, results will be unpredictable.

Chapter 10. Upgrading IBM COBOL source programs 129

Compiling the program with the CMPR2 and FLAGMIG options causes the compiler to issue messages for
all UNSTRING statements that might contain such dependencies.

Any UNSTRING statements not flagged with one of these messages will generate identical results under
CMPR2 and NOCMPR2.

All UNSTRING statements flagged with message 2222 will require changes to guarantee identical results.

Corrective action for the UNSTRING OPERAND evaluation:
The individual cases requiring changes are detailed below in order by message number, and with
examples illustrating the dependencies and the suggested changes. Only the essential program
fragments are included in the examples.
IGYPS2222-W

This message will be issued if one of the "receiver" identifiers in the UNSTRING statement refers to a
variable-length group item that contains its own ODO object. Due to the syntax rules and restrictions
applying to all UNSTRING statements, this situation can occur only for id-2, id-3, id-4, id-5, id-7, and
id-8 (or repetitions).

For example:

01 VLG-1.
 02 VLG-1-ODOOBJ PIC 9 VALUE IS 5.
 02 VLG-1-GR.
 03 VLG-1-ODO PIC X OCCURS 1 TO 9 TIMES
 DEPENDING ON VLG-1-ODOOBJ.
77 S-1 PIC X(20) VALUE IS ALL "123456789".

 UNSTRING S-1
 INTO VLG-1
 END-UNSTRING

IGYPS2222-W
MIGR The maximum length of receiver "vlg-1" will be used under the "NOCMPR2" compiler
option.

Enterprise COBOL will use the maximum length of vlg-1 to determine both the amount of data
extracted from sending item s-1 and the length of the receiving area vlg-1.

Regardless of which identifier is flagged with message 2222, you must replace the identifier with a
reference modified version, as in the following example:

UNSTRING S-1
 INTO VLG-1(1:LENGTH OF VLG-1)
 END-UNSTRING

This form forces the actual length of vlg-1 at the beginning of the UNSTRING statement to be used.

This correction is not affected by the presence of any of the optional phrases of the UNSTRING
statement (DELIMITED BY, WITH POINTER, ON OVERFLOW) and it applies equally to all flagged
identifiers in any one UNSTRING statement.

IGYPA3211-W
This message will be issued if one of the "DELIMITED BY" identifiers in the UNSTRING statement is
subscripted, refers to a variable-length group item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged DELIMITED BY operand must
depend on one of the INTO receivers.

For example:

01 DEL
 02 OCC-DEL-1 PIC X OCCURS 9 TIMES.
 02 VLEN-DEL-2-ODOOBJ PIC 9 VALUE IS 5.
 02 VLEN-DEL-2.
 03 VLEN-DEL-2-ODO PIC X OCCURS 1 TO 9 TIMES
 DEPENDING ON VLEN-DEL-2-ODOOBJ.

130 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

77 S-1 PIC X(20) VALUE IS ALL "123456789".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.
77 SUB-5 PIC 99 VALUE IS 5.

 UNSTRING S-1
 DELIMITED BY OCC-DEL-1(SUB-5) OR VLEN-DEL-2,
 INTO R-1 DELIMITER IN OCC-DEL-1(SUB-5 + 1)
 COUNT IN VLEN-DEL-2-ODOOBJ,
 R-2,
 END-UNSTRING

IGYPA3211-W
MIGR In this "UNSTRING" statement, the subscript or "OCCURS DEPENDING ON" calculations
for the "DELIMITED BY" operand will be done only once under the "NOCMPR2" compiler option.

No corrections are required for items flagged with message 3211.

IGYPA3212-W
This message will be issued if one of the INTO identifiers in the UNSTRING statement is subscripted,
refers to a variable-length group item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged INTO identifier must depend
on one of the receivers in a preceding INTO phrase.

For example:

01 REC.
 02 R-1 PIC X(20) VALUE IS SPACES.
 02 R-2-SUB PIC 9 VALUE IS 9.
 02 OCC-R-2-GR.
 03 OCC-R-2 PIC X OCCURS 9 TIMES.
 02 R-3-ODOOBJ PIC 9 VALUE IS 9.
 02 ODO-R-3.
 03 FILLER PIC X OCCURS 1 TO 9 TIMES
 DEPENDING ON R-3-ODOOBJ.

77 S-3 PIC X(20) VALUE IS "12 345 6789 ".

 UNSTRING S-3
 DELIMITED BY ALL SPACES,
 INTO R-1 COUNT IN R-2-SUB,
 OCC-R-2(R-2-SUB) COUNT IN R-3-ODOOBJ,
 ODO-R-3,
 END-UNSTRING

IGYPA3212-W
MIGR In this "UNSTRING" statement, the subscript or "OCCURS DEPENDING ON" calculations
for the "INTO" operand will be done only once under the "NOCMPR2" compiler option.

This UNSTRING statement will generate different results under CMPR2 and NOCMPR2 because the
subscript of the second INTO receiver is modified by the COUNT IN receiver of the first INTO phrase.
In addition, the length of the third INTO receiver is modified by the COUNT IN receiver of the second
INTO phrase.

Under CMPR2, the values that are moved to the COUNT IN identifiers will be used for the subsequent
INTO phrases. Under NOCMPR2, the values in effect at the beginning of the execution of the
UNSTRING statement will be used for all INTO phrases.

Any UNSTRING statement flagged with message 3212 must be broken into multiple UNSTRING
statements. A separate UNSTRING statement must be used for each dependent INTO phrase.
However, be aware of the following rules:

• If the original UNSTRING statement specified a WITH POINTER phrase, that phrase must be
included in all of the changed UNSTRING statements. If the original UNSTRING statement did
not specify a WITH POINTER phrase, that phrase must be added to all the changed UNSTRING
statements, and the POINTER identifier must be initialized to 1.

• If the original UNSTRING statement specified a TALLYING IN phrase, that phrase must be included
in all of the changed UNSTRING statements.

Chapter 10. Upgrading IBM COBOL source programs 131

• If the original UNSTRING statement specified the ON OVERFLOW or NOT ON OVERFLOW phrases,
those phrases must be included only in the last of the changed UNSTRING statements.

With these changes, the previous example becomes:

77 PTR PIC 99.

 MOVE 1 TO PTR
 UNSTRING S-3
 DELIMITED BY ALL SPACES,
 INTO R-1 COUNT IN R-2-SUB,
 WITH POINTER PTR,
 END-UNSTRING
 UNSTRING S-3
 DELIMITED BY ALL SPACES,
 INTO OCC-R-2(R-2-SUB) COUNT IN R-3-ODOOBJ,
 WITH POINTER PTR,
 END-UNSTRING
 UNSTRING S-3
 DELIMITED BY ALL SPACES,
 INTO ODO-R-3,
 WITH POINTER PTR,
 END-UNSTRING

IGYPA3213-W
This message will be issued if one of the DELIMITER IN identifiers in the UNSTRING statement is
subscripted, refers to a variable-length group item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged DELIMITER IN identifier must
depend on one of the receivers in a preceding INTO phrase.

Dependencies between identifiers in the same INTO phrase will not affect the result of the UNSTRING
statement. CMPR2 behavior delays the effects of these dependencies until the next INTO phrase.

For example:

01 DEL.
 02 D-2-SUB PIC 9 VALUE IS 9.
 02 OCC-D-2-GR.
 03 OCC-D-2 PIC X OCCURS 9 TIMES.
 02 D-3-ODOOBJ PIC 9 VALUE IS 9.
 02 ODO-D-3.
 03 FILLER PIC X OCCURS 1 TO 9 TIMES
 DEPENDING ON D-3-ODOOBJ.

77 S-4 PIC X(20) VALUE IS "12 345 6789 ".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.
77 R-3 PIC X(20) VALUE IS SPACES.

 UNSTRING S-4
 DELIMITED BY ALL SPACES,
 INTO R-1 COUNT IN D-2-SUB,
 R-2 DELIMITER IN OCC-D-2(D-2-SUB)
 COUNT IN D-3-ODOOBJ,
 R-3 DELIMITER IN ODO-D-3,
 END-UNSTRING

IGYPA3213-W
MIGR In this "UNSTRING" statement, the subscript or "OCCURS DEPENDING ON" calculations
for the "DELIMITER IN" operand will be done only once under the "NOCMPR2" compiler option.

This UNSTRING statement will generate different results under CMPR2 and NOCMPR2 because the
subscript of the DELIMITER IN identifier of the second INTO phrase is modified by the COUNT IN
receiver of the first INTO phrase. In addition, the length of the DELIMITER IN identifier of the third
INTO phrase is modified by the COUNT IN receiver of the second INTO phrase.

With CMPR2 behavior, the values that are moved to the COUNT IN identifiers will be used for the
subsequent INTO phrases. With NOCMPR2, the values in effect at the beginning of the execution of
the UNSTRING statement will be used for all INTO phrases.

Any UNSTRING statement flagged with message 3213 must be broken into multiple UNSTRING
statements; a separate UNSTRING statement must be used for each dependent INTO phrase.

132 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

With these changes, the previous example becomes:

77 PTR PIC 99.
 MOVE 1 TO PTR
 UNSTRING S-4
 DELIMITED BY ALL SPACES,
 INTO R-1 COUNT IN D-2-SUB,
 WITH POINTER PTR,
 END-UNSTRING
 UNSTRING S-4
 DELIMITED BY ALL SPACES,
 INTO R-2 DELIMITER IN OCC-D-2(D-2-SUB)
 COUNT IN D-3-ODOOBJ,
 WITH POINTER PTR,
 END-UNSTRING
 UNSTRING S-4
 DELIMITED BY ALL SPACES,
 INTO R-3 DELIMITER IN ODO-D-3,
 WITH POINTER PTR,
 END-UNSTRING

IGYPA3214-W
This message will be issued if one of the COUNT IN identifiers in the UNSTRING statement is
subscripted or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged COUNT IN identifier must
depend on one of the receivers in a preceding INTO phrase.

Dependencies between identifiers in the same INTO phrase will not affect the result of the UNSTRING
statement; CMPR2 behavior delays the effects of these dependencies to the next INTO phrase.

For example:

01 C-2.
 02 C-2-SUB PIC 9 VALUE IS 9.
 02 OCC-C-2-GR.
 03 OCC-C-2 PIC 9 OCCURS 9 TIMES.

77 S-5 PIC X(20) VALUE IS "12 345 6789........".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.

 UNSTRING S-5
 DELIMITED BY ALL SPACES,
 INTO R-1 COUNT IN C-2-SUB,
 R-2 COUNT IN OCC-C-2(C-2-SUB),
 END-UNSTRING

IGYPA3214-W
MIGR In this "UNSTRING" statement, the subscript or "OCCURS DEPENDING ON" calculations
for the "COUNT IN" operand will be done only once under the "NOCMPR2" compiler option.

This UNSTRING statement will generate different results under CMPR2 and NOCMPR2 because the
subscript of the COUNT IN identifier of the second INTO phrase is modified by the COUNT IN receiver
of the first INTO phrase.

With CMPR2 behavior, the values that are moved to the COUNT IN identifier in the first INTO phrase
will be used for the second INTO phrase. With NOCMPR2, the value in effect at the beginning of
execution of the UNSTRING statement will be used.

Any UNSTRING statement flagged with message 3214 must be broken into multiple UNSTRING
statements; a separate UNSTRING statement must be used for each dependent INTO phrase.

With these changes, the example above becomes:

77 PTR PIC 99.

 MOVE 1 TO PTR
 UNSTRING S-5
 DELIMITED BY ALL SPACES,
 INTO R-1 COUNT IN C-2-SUB,
 WITH POINTER PTR,
 END-UNSTRING

Chapter 10. Upgrading IBM COBOL source programs 133

 UNSTRING S-5
 DELIMITED BY ALL SPACES,
 INTO R-2 COUNT IN OCC-C-2(C-2-SUB),
 WITH POINTER PTR,
 END-UNSTRING

UPSI switches
Condition-names for the UPSI switches must be defined and referenced differently depending on whether
CMPR2 or NOCMPR2 is in effect.

CMPR2
UPSI switches can be defined by specifying condition-names for the ON and OFF settings of the switch.
Under CMPR2, the condition-names for all UPSI switches, UPSI-0 through UPSI-7, can be defined with
the same names, as follows:

SPECIAL-NAMES.
 UPSI-0 ON STATUS IS T OFF STATUS IS F
 UPSI-1 ON STATUS IS T OFF STATUS IS F
⋮
 UPSI-7 ON STATUS IS T OFF STATUS IS F

References to the names could be qualified with the UPSI name, as follows:

IF T OF UPSI-0 DISPLAY "UPSI-0".
IF T OF UPSI-1 DISPLAY "UPSI-1".
⋮
IF T OF UPSI-7 DISPLAY "UPSI-7".

NOCMPR2
The names of the UPSI switches, UPSI-0 through UPSI-7, can no longer be referenced in the PROCEDURE
DIVISION under NOCMPR2. The statements above will now be flagged with a message of the following
format:
IGYPS2121-S

"T OF UPSI-0" was not defined as a data-name. The statement was discarded.

Message
Using CMPR2 and FLAGMIG, any PROCEDURE DIVISION statement that references an UPSI switch by
name will be flagged with the following message:
IGYPS0186-W

MIGR UPSI switches cannot be referenced directly in the PROCEDURE DIVISION under the
"NOCMPR2" compiler option.

Corrective action for UPSI switches:
Programs will have to be changed to define unique condition-names, as follows:

SPECIAL-NAMES.
 UPSI-0 ON STATUS IS T0 OFF STATUS IS F0
 UPSI-1 ON STATUS IS T1 OFF STATUS IS F1
⋮
 UPSI-7 ON STATUS IS T7 OFF STATUS IS F7

and to reference the new condition-names, as follows:

IF T0 DISPLAY "UPSI-0".
IF T1 DISPLAY "UPSI-1".
⋮
IF T7 DISPLAY "UPSI-7".

134 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Variable-length group moves
The calculation of the length of a sending or receiving ODO object can vary depending on whether CMPR2
or NOCMPR2 is in effect.

CMPR2
All ODO objects in sending and receiving fields involved in a group move, such as a MOVE statement, must
be set before the statement is executed. The actual lengths of the sender and receiver are calculated just
before the execution of the data movement statement. For a list of affected statements, see the message
below.

NOCMPR2
In some cases, NOCMPR2 uses the maximum length of a variable-length group when it is a receiver,
whereas CMPR2 uses the actual length. This behavior occurs when the receiver is variable length,
contains its own ODO object, and is the last group in a structure. For example:

01 ODO-SENDER
 02 SEND-OBJ PIC 99.
 02 SEND-ITEM PIC X OCCURS 1 TO 20 DEPENDING ON SEND-OBJ.

01 ODO-RECEIVER.
 02 RECV-OBJ PIC 99.
 02 RECV-ITEM PIC X OCCURS 1 TO 20 DEPENDING ON RECV-OBJ.
⋮
MOVE 5 TO SEND-OBJ.
MOVE 10 TO RECV-OBJ.
MOVE ODO-SENDER TO ODO-RECEIVER.
⋮
CMPR2:
 Occurrences 1-5 of ODO-SENDER moved to ODO-RECEIVER.
 Occurrences 6-10 of ODO-RECEIVER become spaces.
 Occurrences 11-20 of ODO-RECEIVER are unchanged.
NOCMPR2:
 Occurrences 1-5 of ODO-SENDER moved to ODO-RECEIVER.
 Occurrences 6-20 of ODO-RECEIVER become spaces.

The programs that will have negative effects if used under NOCMPR2 are those that reference
occurrences of the table that are beyond the value of the ODO object when a data movement statement
was executed.

In the example above, if occurrences 11-20 have data in them before the group move, that data will be
lost after the group move if run under NOCMPR2.

Message
Compiling the program with the CMPR2 and FLAGMIG compiler options generates the following message
for each data movement statement that will behave differently under NOCMPR2:
IGYPS2222-W

MIGR The maximum length of receiver "ODO-RECEIVER" will be used under the "NOCMPR2"
compiler option.

This difference in variable-length group moves affects any statement that moves data. The affected
statements are:

ACCEPT identifier (Format 1 or Format 2)
MOVE . . . TO identifier
READ . . . INTO identifier
RELEASE identifier FROM . . .
RETURN . . . INTO identifier
REWRITE identifier FROM . . .
STRING . . . INTO identifier
UNSTRING . . . INTO identifier DELIMITER IN identifier
WRITE identifier FROM . . .

Chapter 10. Upgrading IBM COBOL source programs 135

Corrective action for variable-length group moves:
You can take the following steps:

• See if any of your COBOL programs have the variable-length data movement statements by compiling
them with the CMPR2 and FLAGMIG compiler options. This completion will flag all variable-length group
moves with receivers that contain their own ODO objects and are not complex ODO items.

• See if any data that was previously left unchanged and is now being set to blanks is referenced after the
data movement statements. In the example, if the ODO object has a value of 5 and a maximum value of
10 and the code uses data in occurrence numbers 6 through 10 after the MOVE, then the program will
have different results between CMPR2 and NOCMPR2.

• Change the receiver in the data movement statement to use reference modification to specify explicitly
the length of the receiving field. For example:

MOVE ODO-SENDER TO ODO-RECEIVER (1:LENGTH OF ODO-RECEIVER).

Upgrading SOM-based object-oriented (OO) COBOL programs
SOM-based object-oriented COBOL applications are not supported with Enterprise COBOL. OO COBOL
syntax has been retargeted for Java-based object-oriented programming to facilitate interoperation of
COBOL and Java.

The Java-based OO COBOL is not compatible with SOM-based OO COBOL, and is not intended as a
migration path for OO COBOL programs. In most cases you should rewrite your OO COBOL into procedural
COBOL in order to use the Enterprise COBOL compiler. It is possible that you could use the new OO
COBOL syntax in place of your existing SOM-based OO syntax, but it is not a straightforward conversion.

For more information about the considerations that apply when you upgrade your IBM COBOL programs
that contain SOM-based OO COBOL statements to Enterprise COBOL, see “SOM-based OO COBOL
language elements that are not supported” on page 136 and “SOM-based OO COBOL language elements
that are changed” on page 137.

SOM-based OO COBOL language elements that are not supported
When you migrate COBOL applications that use SOM-based OO programming to the Java-based OO
programming in Enterprise COBOL, be aware of the following SOM elements that are not supported.

Calls to SOM
Calls to SOM services are not supported.

INHERITS clause

• Specification of more than one class name on the INHERITS clause of the CLASS-ID paragraph
(multiple inheritance) is not supported.

• COBOL classes must be ultimately derived from the java.lang.Object class (rather than SOMObject
or SOMClass). Specification of SOMObject as a base class in the INHERITS clause is not supported.

• Specification of SOMClass as a base class in the INHERITS clause (defining metaclasses) is not
supported. Java-based OO COBOL classes can specify a FACTORY section, defining static methods
that are logically part of the class-object for the class.

INVOKE

• Argument lists on INVOKE statements and parameter lists for methods are restricted to data types
that map to Java types and that are passed BY VALUE.

• Specification of a class-name that qualifies SUPER in the INVOKE statement is not supported. For
example you cannot use:

INVOKE C OF SUPER "foo"

136 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

However, the following syntax continues to be supported in Enterprise COBOL:

INVOKE SUPER "foo"

METACLASS clauses

• The METACLASS IS clause of the CLASS-ID paragraph is not supported.
• The METACLASS OF clause from the USAGE clause, which defines object references, is not

supported.

METHODS

• The OVERRIDE clause of the METHOD-ID paragraph is not supported.
• Use of methods from SOM base classes such as somNew, somFree, and somInit are not supported.

Compiler options IDLGEN and TYPECHK
The IDLGEN and TYPECHK options are not available. Both compiler options require SOM-based OO
COBOL, which is not available with Enterprise COBOL.

SOM-based OO COBOL language elements that are changed
When you migrate applications that use SOM-based OO programming to the Java-based OO programming
in Enterprise COBOL, be aware of the following elements that are changed in Enterprise COBOL.

External names

• External class names that are defined in the REPOSITORY paragraph must be defined with Java
naming conventions for fully qualified class names, rather than the CORBA rules of formation for
class names.

• Method names that are specified as literals use Java naming conventions rather than CORBA
naming conventions.

INVOKE
Instead of somNew, object instances are created with the syntax:

INVOKE classname NEW ...

METHODS
COBOL methods can override inherited methods and can be overloaded, according to Java rules.
However, the OVERRIDE clause is not required or supported on the METHOD-ID paragraph in these
cases.

OBJECTS

• Instead of somNew, object instances are created with the syntax:

INVOKE classname NEW ...

• Object instances are freed through Java automatic garbage collection, rather than somFree.
• Object instance data is initialized through VALUE clauses or user-written initialization methods,

rather than with somInit.
• OBJECT and END OBJECT syntax must be specified unless the class does not specify any object

instance data or object instance methods.

Chapter 10. Upgrading IBM COBOL source programs 137

138 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 11. Compiling IBM COBOL programs

This section contains information about the following topics:

• Default compiler option changes from IBM COBOL
• Compiler options for IBM COBOL programs
• Compiler options not available in Enterprise COBOL

Information specific to IBM COBOL or Enterprise COBOL is noted.

Default compiler options for IBM COBOL programs
The Enterprise COBOL compiler has slightly different default compiler options than IBM COBOL. The
compiler options DBCS, FLAG(I,I), RENT, and XREF(FULL) are now default values in the product
configuration that is shipped from IBM. The default values for IBM COBOL were NODBCS, FLAG(I),
NORENT, and NOXREF.

The DBCS option might cause problems for CICS programs if you are using the COBOL2 CICS translator
option. The fix is to use the COBOL3 translator option.

Compiler options for IBM COBOL programs
The Enterprise COBOL and IBM COBOL compilers are very similar. If you will be using the same compiler
options that were used in your current IBM COBOL applications, some internal changes might take effect,
but basically the behavior is unchanged.

If you do change compiler options settings from the settings you used with IBM COBOL applications,
make sure you understand the possible effects on your applications. For information about other compiler
options, see the Enterprise COBOL for z/OS Programming Guide.

There are some new compiler options in Enterprise COBOL compared to compiler options in IBM COBOL.
Table 24 on page 139 lists the options that affect compatibility between IBM COBOL and Enterprise
COBOL.

Table 24. Compiler options for IBM COBOL programs

Compiler option Comments

ARITH Use ARITH(COMPAT) to get the same results as COBOL/370 1.1, thru
COBOL for OS/390 & VM 2.1 for intermediate results in arithmetic
statements.

© Copyright IBM Corp. 1991, 2024 139

Table 24. Compiler options for IBM COBOL programs (continued)

Compiler option Comments

INTDATE Use INTDATE(ANSI) to get the same results as COBOL/370 1.1 for date
intrinsic functions. Use INTDATE(LILIAN) if you store integer values and
will be using other languages with the same data. INTDATE(LILIAN) will
cause the date intrinsic functions to use the Language Environment start
date, which is the same starting date that would be used by PL/I or C
programs that use Language Environment date callable services.

If integer dates are used only within a single program, such as converting
Gregorian to Lilian and back to Gregorian in the same program, the setting
of INTDATE is immaterial.

If you choose INTDATE(LILIAN) as your installation default, you should
recompile all of your COBOL/370 1.1 programs (and any IBM COBOL
programs that used INTDATE(ANSI)) that use intrinsic functions to ensure
that all of your code uses the Lilian integer date standard. This method is
the safest, because you can store integer dates and pass them between
programs, even between PL/I, COBOL, and C programs, and know that
the date processing will be consistent.

PGMNAME Use PGMNAME(COMPAT) to ensure that program names are processed in
a manner similar to COBOL/370, 1.1.

NSYMBOL Controls the interpretation of the "N" symbol used on literals and
PICTURE clauses, indicating whether national or DBCS processing is
assumed.

NSYMBOL(DBCS) provides compatibility with previous releases of IBM
COBOL and VS COBOL II.

TRUNC In releases of COBOL for OS/390 & VM prior to 2.2, unsigned binary data
items with TRUNC(BIN) were correctly supported only when the binary
value contained at most 15 bits for halfwords, 31 bits for fullwords, or 63
bits for doublewords. In other words, the sign bit was not used as part
of the numeric value when the data item was unsigned. With Enterprise
COBOL and COBOL for OS/390 & VM 2.2, all 16 bits of a halfword, all 32
bits of a fullword, and all 64 bits of a doubleword can be used as part
of the numeric value of an unsigned COMP-5 data item or an unsigned
binary data item with TRUNC(BIN).

For example, in a program compiled with TRUNC(BIN), a data item
declared like this

01 X pic 9(2) binary.

correctly supported binary values from 0 through only 32767 in prior
releases, but with COBOL for OS/390 & VM 2.2 now supports values of 0
through 65535.

This support necessarily yields different arithmetic results than were
obtained with the prior releases, if these very large unsigned binary
values were inadvertently used.

Compiler options not available in Enterprise COBOL
Most compiler options that are available in IBM COBOL can be used when you compile with Enterprise
COBOL except for the following compiler options:

140 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 25. Compiler options not available in Enterprise COBOL

Compiler option Comments

ANALYZE The ANALYZE option is not available with Enterprise COBOL. Use the CICS, SQL,
and ADATA options instead.

CMPR2 The CMPR2 option is not available. You must convert programs compiled with
CMPR2 to 85 COBOL Standard to compile them with Enterprise COBOL

EVENTS The EVENTS option is not available. To emulate the COBOL/370 EVENTS compiler
option:

1. Specify the ADATA compiler option.
2. Allocate SYSADATA and SYSEVENTS.
3. Use the ADEXIT suboption of the EXIT compiler option with the sample exit

program IGYADXIT.

FLAGMIG The FLAGMIG option is not available. FLAGMIG requires CMPR2, which is not
available with Enterprise COBOL. Use CCCA, this Migration Guide, or a compiler
released prior to Enterprise COBOL to compile programs using FLAGMIG.

IDLGEN The IDLGEN option is not available. IDLGEN requires SOM-based OO COBOL,
which is not available with Enterprise COBOL.

NUMPROC(MIG) Enterprise COBOL does not support the NUMPROC(MIG) option in versions
after COBOL 4. If NUMPROC(MIG) is specified, Enterprise COBOL issues a
warning message and the compilation will get the default setting for NUMPROC.
This is either the user-customized default or the IBM default, which is
NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to Enterprise COBOL
6, consider using the NUMCHECK compiler option to help you migrate to
NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and NUMPROC(PFD).
2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK abends, you can
safely compile with NUMPROC(PFD) and NONUMCHECK for production. This will
not only solve the invalid data problem, but NUMPROC(PFD) is the most efficient
setting for the NUMPROC compiler option.

For details, see NUMCHECK in the Enterprise COBOL for z/OS Programming Guide.

TYPECHK The TYPECHK option is not available. TYPECHK requires SOM-based OO COBOL,
which is not available with Enterprise COBOL.

WORD(NOOO) If you have existing IBM COBOL programs that were compiled with the
WORD(NOOO) compiler option, they must be changed if they use any of the
following reserved words: CLASS-ID, END-INVOKE, INHERITS, INVOKE, LOCAL-
STORAGE, METACLASS, METHOD, METHOD-ID, OBJECT, OVERRIDE, RECURSIVE,
REPOSITORY, RETURNING, SELF, SUPER.

The IGYCNOOO reserved word table is not shipped with the Enterprise COBOL
compiler.

Chapter 11. Compiling IBM COBOL programs 141

142 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 12. Upgrading programs from Enterprise
COBOL 3

To compile with Enterprise COBOL 5 or 6, Enterprise COBOL 3 programs that use any of several features
might need to be changed.

Programs that contain any of the following language features might need to be modified:

• Programs with SEARCH ALL
• Programs that use XML PARSE
• Programs that use XML GENERATE
• Programs that use new reserved words as user words. For details, see “New reserved words” on page

91.
• Programs that use SIMVRD feature
• Label declaratives. Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL

PROCEDURE..., and optionally the syntax: GO TO MORE-LABELS. The support for these was removed in
Enterprise COBOL 5.

• Programs using DATE FORMAT and windowed date functions. For details, see “Changes in millennium
language extensions in IBM Enterprise COBOL for z/OS 5 and 6” on page 159.

SEARCH ALL statements
Refer to this information if you have programs that contain SEARCH ALL statements and that were
compiled with COBOL 3.4 before the installation of the PTF for APAR PK16765 or with Enterprise COBOL
3.1 through 3.3.

Tip: You can tell if your Enterprise COBOL 3.4 compiler has this PTF installed by looking at the page
header in the compiler listing. The modification level was changed by this PTF from 0 to 1. If the product
name in the header looks like this: "Enterprise COBOL for z/OS 3.4.1", your compiler has the PTF installed.

Upgrading programs that have SEARCH ALL statements
Enterprise COBOL has corrected errors in the implementation of the SEARCH ALL statement. SEARCH
ALL statements in earlier releases of COBOL contained errors in the key comparison logic, which caused
different results than might have been intended. In particular, the comparison did not produce the same
result as an IF statement or a sequential SEARCH statement.

Length mismatch problem: a search argument is longer than the table key

The SEARCH ALL statement comparisons should pad an alphanumeric key with blanks or extend a
numeric key with leading zeros if the key is shorter than the SEARCH argument. However, in COBOL
3.3 and earlier releases, SEARCH ALL ignored the excess characters in the argument in some cases.
For example, an alphanumeric search argument of 01 ARG PIC X(6) containing "ABCDEF" would
incorrectly match a table or array key of 05 MY-KEY PIC X(4) with value "ABCD". A search argument
containing "ABCD??" (where ? is a blank) would match, as expected.

Similar problems occurred with a numeric search argument and keys. For example, a search argument of
01 ARG PIC 9(6) containing 123456 would incorrectly match a table or array key of 05 MY-KEY PIC
9(4) with value 3456. A search argument containing 003456 would match, as expected.

Sign mismatch problem: signed numeric argument and unsigned numeric key

A second problem occurs when the search argument is a signed numeric item and the table key is an
unsigned numeric item. If the runtime value of the search argument is negative, such as -1234, programs
compiled with 3.3 and earlier would match a table key of 1234. These comparisons should be done using

© Copyright IBM Corp. 1991, 2024 143

the rules for a normal COBOL relation condition, and a negative argument such as -1234 should never
match a table key that is unsigned.

The correction:

Enterprise COBOL corrected these problems. However, some applications compiled with earlier releases
might depend on the incorrect behavior. You must identify and modify these applications before you move
them to Enterprise COBOL 4 or later.

To assist you in identifying the programs and SEARCH ALL statements that are impacted by these
corrections, the following compiler and runtime warning diagnostics are issued.

• Compiler messages: Enterprise COBOL compiler generates the following compiler diagnostics. Whether
there is an actual impact depends on the contents of the argument at run time.

– IGYPG3189-W for all SEARCH ALL statements that have a search argument that is longer than the
table key, and hence might be impacted by the first problem

– IGYPG3188-W when the search argument is a signed numeric item and the table key is an unsigned
numeric item, and hence the program might be impacted by the second problem

• Runtime messages: The following runtime messages are generated. Programs that generate either of
these runtime messages might be affected by the change.

– IGZ0194W for all SEARCH ALL statements that have search arguments with excess bytes that are not
blank or zero.

– IGZ0193W when the search argument is a signed numeric item with a negative value and the table
key is an unsigned numeric item.

To migrate

To move an application to Enterprise COBOL 4 or later, do one of the following sets of steps:

• Act on the compiler messages:

1. Compile your programs with Enterprise COBOL
2. Review any SEARCH ALL statements that are flagged with compiler messages IGYPG3188-W or

IGYPG3189-W; such statements are potentially impacted.

Tip: To minimize the possibility of incompatible results, you can force programmers at your site
to correct these SEARCH ALL statements by changing the severity of these messages to E or
S. To change the severity of these messages, you can use the MSGEXIT suboption of the EXIT
compiler option. By doing this, the programs that get these messages cannot be run until the code
is corrected. The sample user exit IGYMSGXT has sample code in it to change the severity of
IGYPG3188-W and IGYPG3189-W, to IGYPG3188-S and IGYPG3189-S, respectively.

• Act on the runtime messages:

1. Run the application in a test environment.
2. Review any SEARCH ALL statements that generate runtime message IGZ0193W or IGZ0194W.

After you have identified which of the SEARCH ALL statements are affected, adjust the application logic
appropriately by doing the following steps:

• For SEARCH ALL statements in which the search argument is longer than the table key, do one of the
following actions:

– Ensure that any bytes in the argument in excess of the key length are spaces or zeroes as appropriate.

Tip: When you have completed this investigation and if you decided not to change your programs, you
can change the severity of IGYPG3188-W and IGYPG3189-W, to IGYPG3188-I and IGYPG3189-I,
respectively, or suppress these messages entirely, by using the MSGEXIT suboption of the EXIT
compiler options. This allows your programs to then compile with RC=0. The sample user exit
IGYMSGXT has sample code in it to change the severity of IGYPG3188-W and IGYPG3189-W.

– Move the argument to a temporary data item of the same size as the key and use the temporary item
as the search argument.

144 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

– Limit the range of the comparison with reference-modification. For example:

- in the alphanumeric case of search argument 01 ARG PIC X(6) and key of 05 MY-KEY PIC
X(4) use this:

WHEN MY-KEY (MY-INDEX) = ARG(1:4)

- in the numeric case of search argument 01 ARG PIC 9(6) and array key of 05 MY-KEY PIC
9(4) use this:

WHEN MY-KEY (MY-INDEX) = ARG(3:4)

The second and third actions above will prevent the warning message in the future.
• For SEARCH ALL statements in which the search argument is signed and the table key is unsigned,

ensure that the search argument is correctly initialized to a positive value before the SEARCH statement
is run. Depending on the specific application logic in the COBOL program, it might be possible to make
one of the following changes:

– Change the data description of the argument to be unsigned.
– Move the search argument to a temporary variable with no sign and use the temporary variable in the

SEARCH ALL statement.

Either action will prevent the warning message in the future.

Upgrading Enterprise COBOL 3 programs that have XML PARSE
statements

Refer to this information for upgrading Enterprise COBOL 3 programs that have XML PARSE statements.

Enterprise COBOL 4 introduced new XML PARSE support compared to Enterprise COBOL 3. In particular,
the z/OS System Services XML parser was supported as the default alternative to the XML parser that is
part of the COBOL runtime library. In 5 and 6, you can choose between the COBOL runtime library parser
and the XML System Services parsers.

Originally, Enterprise COBOL 5.1 did not have an XMLPARSE compiler option and required the XMLSS
parser. However, with current service applied, COBOL 5.1 is the same as COBOL 5.2 in this area, and both
have the XMLPARSE compiler option so that you can choose the same parser in 5 and 6 that you used
with earlier versions of Enterprise COBOL.

• XMLPARSE(COMPAT) specifies that the compiled code will use the COBOL runtime library parser.

In most cases, you do not have to change your Enterprise COBOL 3 programs that have XML PARSE
statements to upgrade to Enterprise COBOL 5 or 6. You can have the compatible behavior by
specifying the XMLPARSE(COMPAT) compiler option. However, the COMPAT XML parser implementation
in Enterprise COBOL 5.2 and later is different in rare cases from that in COBOL 3. The change does not
affect most existing programs, but you should review the unusual cases where the differences could
occur. For details, see “COMPAT XML parser considerations” on page 146.

• XMLPARSE(XMLSS) specifies that the compiled code will use the z/OS System Services XML parser.

You must change your Enterprise COBOL 3 programs that use XML PARSE statements if you want to
change to use XMLPARSE(XMLSS).

The z/OS System Services XML parser provides the following benefits:

– The latest IBM parsing technology
– Offload of COBOL XML parsing to zAAP specialty processors
– Improved support for parsing XML documents that use XML namespaces
– Direct support for parsing XML documents encoded in UTF-8 Unicode
– Support for parsing large XML documents, a buffer at a time

Chapter 12. Upgrading programs from Enterprise COBOL 3 145

To optionally modify your Enterprise COBOL 3 programs to use XMLPARSE(XMLSS) with Enterprise
COBOL 5 or 6, change the programs to reflect the new, changed, and discontinued XML parsing events.
For details, see Appendix J, “Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS),” on page 335.

COMPAT XML parser considerations

User modifications to the XML document during execution of the XML PARSE
statement
In versions earlier than Enterprise COBOL 5, the COMPAT XML parser was actively in progress when the
XML processing procedure was executing. In COBOL 5, any encoding conflicts are resolved and after that,
the entire document is parsed, and the XML events are stored in a buffer. After the parse is terminated,
the XML events are then presented from this buffer to your program by the PERFORM statement that
executes the processing procedure. Thus, if the program modifies the XML document in the processing
procedure code, the parser does not detect these modifications. However, in the implementation in earlier
versions, those modifications such as correcting an end tag name to match the start tag name would be
seen and acted on by the parser.

A limited number of continuable XML EXCEPTION events
For XML EXCEPTION events with XML-CODE values in the range 1-49, if you request continuation by
setting XML-CODE to zero, the COMPAT XML parser checks only for further errors and does not present
any further non-EXCEPTION XML events. When the COBOL 5 COMPAT XML parser continues after an
EXCEPTION event, the parser does not expand the XML event buffer and thus might not present all the
EXCEPTION events that would otherwise occur. The initial buffer size can accommodate a minimum of
8192 XML events and is expanded as necessary for non-EXCEPTION events.

Differences caused by LE condition handling
In versions earlier than Enterprise COBOL 5, the processing procedure was executed in a stack frame that
is subordinate to the stack frame of the active XML parser. The processing procedure for the COBOL 5
COMPAT parser runs in the same stack frame as the rest of the COBOL program, after the XML parser has
run to completion. This change has the following effects:

• Previously, LE condition handlers that are registered in the XML processing procedure were not in effect
after a COMPAT XML PARSE statement is terminated. In the COBOL 5 implementation, they remain in
effect until unregistered.

• Previously, a branching to an LE service resume point that is set outside the XML processing procedure
terminated a COMPAT XML PARSE statement. In COBOL 5, the processing procedure must exit normally
to terminate an XML PARSE statement. Otherwise, the already active XML PARSE statement causes
a runtime error if either the program exits (IGZ0227S) or another XML PARSE statement is executed
(IGZ0228S).

The following program illustrates this difference. As described previously, it executes "correctly" on
versions earlier than Enterprise COBOL 5, but it causes runtime errors IGZ0227S or IGZ0228S on
Enterprise COBOL 5. After you uncomment the indicated statements in the XML processing procedure,
the program runs without error on all versions.

Process XMLPARSE(COMPAT)

**
*** Function: ***
*** Demonstate a difference between XML PARSE COMPAT on ***
*** COBOL 3/4 and COBOL 5 (or XMLSS on any version). ***
*** ***
*** In COBOL 3/4, the logical branch out of the XML ***
*** processing procedure by CEEMRCE terminates the ***
*** XML PARSE. In COBOL 5, it does not, resulting in ***
*** runtime messages such as: ***
*** IGZ0227S There was an invalid attempt to end an ***
*** XML PARSE statement. ***
*** when the program terminates (or attempts another parse).***

146 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

**
 Identification division.
 Program-id. XMLMIGR1.
 Data division.
 Working-storage section.
 1 XML-document pic x(4) value '<x/>'.
 1 zer0 comp pic 9 value 0.
 Local-storage section.
 1 routine procedure-pointer.
 1 token pointer.
 1 ceesrp-data.
 2 resume-point comp pic s9(9).
 2 state pic x value 'I'.
 1 fdbk-code.
 2 condition-token-value.
 88 fdbk-code-zero value low-value.
 3 pic xx.
 3 msg-no comp pic s9(4).
 3 pic x(4).
 2 pic x(4).
 Procedure division. Main section.
 Perform register-user-handler
 Call 'CEE3SRP' using resume-point fdbk-code
 Service label.
 Repeat.
 If state = 'I'
 XML parse XML-document processing procedure XML-proc
 Display 'Back from XML parse...'
 Go to Repeat
 Else
 If state = 'R'
 Display 'Resumed after exception; in mainline code.'
 End-if
 Perform unregister-user-handler
 Display 'Another XML parse (P), or exit (E)?'
 Accept state
 If state = 'P'
 Move '<y/>' to XML-document
 XML parse XML-document processing procedure XML-proc.
 Goback.
 Register-user-handler.
 Set routine to entry 'USERHDLR'
 Set token to address of ceesrp-data
 Call 'CEEHDLR' using routine token fdbk-code
 If fdbk-code-zero
 Display 'Registered exception handler successfully.'
 Else
 Display 'Failed to register exception handler!' msg-no
 Move 16 to return-code
 Stop run.
 Unregister-user-handler.
 Set routine to entry 'USERHDLR'
 Call 'CEEHDLU' using routine fdbk-code
 If fdbk-code-zero
 Display 'Unregistered exception handler successfully.'
 Else
 Display 'Failed to unregister exception handler!' msg-no
 Move 16 to return-code
 Stop run.
 XML-proc section.
 Display XML-event '{' XML-text '}'
 If XML-event = 'START-OF-DOCUMENT'
 Display 'XML parse in progress...'
 Move 1 to xml-code
 Go to xp-srp.
 If XML-event = 'START-OF-ELEMENT' and XML-text = 'x'
 Compute tally = 1 / zer0.
 Go to xp-exit.
 Xp-srp.
*** Uncomment the next two lines to move the resume point to ***
*** within the XML processing procedure, thus allowing the ***
*** XML PARSE statement to terminate normally and correctly. ***
* Call 'CEE3SRP' using resume-point fdbk-code
* Service label
 If state = 'R'
 Display 'Resumed after exception; still in XML-proc.'
 Move 'X' to state.
 Xp-exit.
 Continue.
 End program XMLMIGR1.

**

Chapter 12. Upgrading programs from Enterprise COBOL 3 147

*** LE user condition handler, invoked when the fixed-point ***
*** divide exception occurs (system completion code S0C9). ***
**
 Identification division.
 Program-id. USERHDLR.
 Data division.
 Working-storage section.
 1 fdbk-code.
 2 condition-token-value pic x(8).
 88 fdbk-code-zero value low-value.
 2 pic x(4).
 Linkage section.
 1 ceesrp-data.
 2 resume-point comp pic s9(9).
 2 state pic x.
 1 token pointer.
 1 result comp pic s9(9).
 88 resume value 10.
 1 curr-cond pic x(12).
 1 new-cond pic x(12).
 Procedure division using curr-cond token result new-cond.
 Display 'LE condition handler called...'
 Set address of ceesrp-data to token
 Call 'CEEMRCE' using resume-point fdbk-code
 If not fdbk-code-zero display 'Unable to resume execution!'
 Else Set resume to true Move 'R' to state.
 Goback.
 End program USERHDLR.

Upgrading Enterprise COBOL programs that have XML GENERATE
statements

Enterprise COBOL introduced five new XML GENERATE exception codes after Enterprise COBOL 3.

Programs that use these exception codes might have to be changed to migrate to later versions of
Enterprise COBOL.

The XML GENERATE exception codes that were added to Enterprise COBOL are:
415

The receiver was national, but the encoding specified for the document was not UTF-16.
416

The XML namespace identifier contained invalid XML characters.
417

Element character content or an attribute value contained characters that are illegal in XML content.
XML generation has continued, with the element tag name or the attribute name prefixed with "hex."
and the original data value represented in the document in hexadecimal.

418
Substitution characters were generated by encoding conversion.

419
The XML namespace prefix was invalid.

Converting programs that use new reserved words
Some reserved words have been added since Enterprise COBOL 3.

If your programs use any of the new reserved words as user-defined words (such as data item names or
paragraph names), then those words must be changed. You can do something similar to what CCCA does
and just add a suffix such as -85 to all instances of the word. For example:

77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

148 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

To compile with Enterprise COBOL 5 or 6, change it to:

77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

The new reserved words are:

• ALLOCATE
• DEFAULT
• END-JSON
• FREE
• JSON
• JSON-CODE
• JSON-STATUS
• VOLATILE
• XML-INFORMATION
• XML-NAMESPACE
• XML-NAMESPACE-PREFIX
• XML-NNAMESPACE
• XML-NNAMESPACE-PREFIX
• XML-SCHEMA

The conversion tool CCCA automatically converts these reserved words for you if you have the PTF for
APAR PM86253 installed for Enterprise COBOL 5.1, or if you have the PTF for APAR PI32750 installed for
Enterprise COBOL 5.2, or if you have the PTF for APAR PI55980 installed for Enterprise COBOL 6.1. CCCA
is included with the IBM Debug Tool product.

For a table comparing reserved words for all of the different COBOL compilers, see Table 50 on page 257.

Upgrading programs that use SIMVRD support
This section describes the actions to upgrade programs that use SIMVRD support. Support for COBOL
simulated variable-length relative-record data sets (RRDS) is removed for programs compiled with
Enterprise COBOL 4 or later. These files must be changed to VSAM RRDS files.

In COBOL compilers that supported the NOCMPR2 compiler option before Enterprise COBOL 4, it was
possible to use COBOL simulated variable-length RRDS using a VSAM KSDS when you used the SIMVRD
runtime option support.

The coding that you use in a COBOL program to identify and describe VSAM variable-length RRDS and
COBOL simulated variable-length RRDS is similar. With Enterprise COBOL 4 you must use VSAM variable-
length RRDS support. In general, the only action to migrate from COBOL simulated variable-length RRDS
to VSAM variable-length RRDS support is to change the IDCAMS definition of the file.

Table 26. Steps for using variable-length RRDS

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

1 Define the file with the
ORGANIZATION IS RELATIVE
clause.

Same

2 Use FD entries to describe the
records with variable-length sizes.

Same, but you must also code RECORD IS VARYING in
the FD entry of every COBOL program that accesses the
data set.

Chapter 12. Upgrading programs from Enterprise COBOL 3 149

Table 26. Steps for using variable-length RRDS (continued)

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

3 Use the NOSIMVRD runtime
option.

Use the SIMVRD runtime option.

4 Define the VSAM file through
access-method services as an
RRDS.

Define the VSAM file through access-method services as
follows:

DEFINE CLUSTER INDEXED
KEYS(4,0)
RECORDSIZE(avg,m)

avg
Is the average size of the COBOL records; strictly
less than m.

m
Is greater than or equal to the maximum size COBOL
record + 4.

In step 2 for simulated variable-length RRDS, coding other language elements that implied a variable-
length record format did not give you COBOL simulated variable-length RRDS. For example, the following
elements alone did not cause the use of simulated variable-length RRDS access, and therefore did not
require the SIMVRD runtime option:

• Multiple FD records of different lengths
• OCCURS . . . DEPENDING ON in the record definitions
• RECORD CONTAINS integer-1 TO integer-2 CHARACTERS

Use the REUSE IDCAMS parameter for files that contain records and that you will open for output.

• Define the file with the ORGANIZATION IS RELATIVE clause.
• Use FD entries to describe the records with variable-length sizes.
• Use the NOSIMVRD runtime option.
• Define the VSAM file through access-method services as an RRDS.

Errors: When you work with simulated variable-length relative data sets and true VSAM RRDS data sets,
an OPEN file status 39 occurs if the COBOL file definition and the VSAM data-set attributes do not match.

For more reference information about the commands for using variable-length RRDS, see z/OS DFSMS:
Access Method Services for Catalogs.

150 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 13. Compiling Enterprise COBOL 3 programs
There have been a number of changes to compiler options and debug behavior since Enterprise COBOL 3.

After reading these topics, see also Chapter 17, “Changes with Enterprise COBOL 5 and 6,” on page 183.

Compiler option changes from IBM Enterprise COBOL for z/OS 3
There have been a number of changes to compiler options.

The following options have been removed.

Table 27. Compiler options not available in Enterprise COBOL 5

Compiler option Comments

DATEPROC Support for Year 2000 extensions has been removed.

NOLIB Compiler behaves as though LIB is always in effect.

YEARWINDOW Support for Year 2000 extensions has been removed.

SIZE(MAX) The SIZE option has been removed.

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If NUMPROC(MIG) is
specified, Enterprise COBOL 5 or 6 issues a warning message and the compilation
will get the default setting for NUMPROC. This is either the user-customized
default or the IBM default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to Enterprise COBOL
6, consider using the NUMCHECK compiler option to help you migrate to
NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and NUMPROC(PFD).
2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK abends, you can
safely compile with NUMPROC(PFD) and NONUMCHECK for production. This will
not only solve the invalid data problem, but NUMPROC(PFD) is the most efficient
setting for the NUMPROC compiler option.

For details, see NUMCHECK in the Enterprise COBOL for z/OS Programming Guide.

Table 28. Compiler option not available in Enterprise COBOL 6

Compiler option Comments

LVLINFO Installation option removed. The build level information is put where LVLINFO
used to be, and the SERVICE compiler option can be used for user service level
information in place of LVLINFO.

Also note, the SSRANGE compiled-in range checks cannot be disabled at run time using the runtime
option CHECK(OFF) or NOSSRANGE

For descriptions of new and modified options for Enterprise COBOL 5 and 6, see “Compiler option
changes in Enterprise COBOL 5 and 6” on page 188.

For a detailed list of options supported for the various compiler versions, see Appendix E, “Option
comparison,” on page 297.

© Copyright IBM Corp. 1991, 2024 151

Differences in the TEST compiler option
This section provides information about changes to the TEST compiler option that you need to know
when you upgrade programs and compile with the TEST compiler option. Enterprise COBOL 5 and 6
has a simplified TEST compiler option compared to earlier compilers. If the TEST option is specified
in JCL or CBL/PROCESS statements in COBOL source, you may want to change them. The following
TEST suboptions have been removed, but some continue to be tolerated to ease migration. Compiler
diagnostics messages are issued if they are used. The removed suboptions may not be specified together
with new suboptions in the same TEST option specification.

Table 29. The removed TEST suboptions

Removed
suboption

Behavior if specified with compiler Diagnostic message level or
category

ALL Diagnostic message is issued. No hooks are
generated in object.

Error (Invalid option
diagnostic, option
discarded)

BLOCK Diagnostic message is issued. No hooks are
generated in object.

Error (Invalid option
diagnostic, option
discarded)

PATH Diagnostic message is issued. No hooks are
generated in object.

Error (Invalid option
diagnostic, option
discarded)

STMT Diagnostic message is issued. No hooks are
generated in object.

Error (Invalid option
diagnostic, option
discarded)

NONE Diagnostic message is issued. No hooks are
generated in object.

Error (Invalid option
diagnostic, option
discarded)

SYM Diagnostic message is issued. Symbolic debugging
information is always generated.

Error (Invalid option
diagnostic, option
discarded)

NOSYM Diagnostic message is issued. Symbolic debugging
information is always generated.

Error (Invalid option
diagnostic, option
discarded)

HOOK Diagnostic message is issued. No hooks are
generated in object.

Informational message about
NOHOOK behavior always
in effect (Suboption
tolerated, TEST in
effect)

NOHOOK Diagnostic message is issued. No hooks are
generated in object.

Informational message about
NOHOOK behavior always
in effect (Suboption
tolerated, TEST in
effect)

152 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 29. The removed TEST suboptions (continued)

Removed
suboption

Behavior if specified with compiler Diagnostic message level or
category

SEPARATE In Enterprise COBOL 5 and 6.1: Diagnostic
message is issued. Debug information is always
generated in the object program.

In Enterprise COBOL 6.2: TEST(SEPARATE)
causes the generated DWARF debugging
information to be written to the SYSDEBUG data
set instead of to the object program.

In Enterprise COBOL 5 and
6.1: Informational message
about NOSEPARATE behavior
always in effect (Suboption
tolerated, TEST in
effect)

In Enterprise COBOL 6.2: No
diagnostic messages will be
issued.

NOSEPARATE In Enterprise COBOL 5 and 6.1: Diagnostic
message is issued. Debug information is always
generated in the object program.

In Enterprise COBOL 6.2: TEST(NOSEPARATE)
causes the generated DWARF debugging
information to be written to the object program.

In Enterprise COBOL 5 and
6.1: Informational message
about NOSEPARATE behavior
always in effect (Suboption
tolerated, TEST in
effect)

In Enterprise COBOL 6.2: No
diagnostic messages will be
issued.

Note: None of the old TEST suboptions are recognized when specified in IGYCDOPT for setting installation
default options.

For details about choosing the appropriate TEST suboptions to meet your debugging needs, see “Debug
information changes with Enterprise COBOL 5 and 6” on page 153.

Debug information changes with Enterprise COBOL 5 and 6
Programs compiled with Enterprise COBOL 5 or 6 will have different debug information than that of
programs compiled with previous versions of the compiler.

IBM Enterprise COBOL 5 and 6 solves the dilemma of debugging information. In the past you had 2
choices:

• Have the debug data always with the executable at a cost of a large load footprint, or
• Have separate debug data but also have the challenge of keeping it synchronized with the application

and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the program object, the debug
data does not increase the size of the loaded program, it always matches the executable and is always
available so there is no need to search lists of data sets.

TEST option changes

There have been changes to the TEST compiler option used to generate debuggable versions of your
application and to the NOTEST option.

• When the TEST option is specified, DWARF debug information is included in the application module.
• If the SOURCE suboption is specified, the DWARF debug information includes the expanded source

code, and the compiler listing is not needed by IBM z/OS Debugger. When the TEST(NOSOURCE)
compiler option is specified, the generated DWARF debug information does not include the expanded
source code.

Chapter 13. Compiling Enterprise COBOL 3 programs 153

Tip: If you are using IBM z/OS Debugger, it is recommended that you specify TEST(SOURCE) (for
COBOL 5 or 6.1) or TEST(SEPARATE,SOURCE) (for COBOL 6.2 and later) to get the most debugging
functionality while controlling module size:

– With TEST(SOURCE), the debug information is saved in a NOLOAD debug segment in the program
object.

– With TEST(SEPARATE,SOURCE), the debug information is saved in a separate debug file.
• You can use the NOTEST(DWARF) compiler option to include basic DWARF debugging information in

the program object. You cannot debug such programs with z/OS Debugger, but you can get NOTEST
optimization and still enable application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

• To have no debugging information in the program object, use the NOTEST(NODWARF) option.

For details about the TEST option, see TEST in the Enterprise COBOL for z/OS Programming Guide.

For details about debugging COBOL programs using IBM z/OS Debugger, see Choosing TEST or NOTEST
compiler suboptions for COBOL programs in the IBM z/OS Debugger User's Guide.

Listing information changes

With Enterprise COBOL 5 and 6.1, the diagnostic messages are not at the bottom of the listing. Take the
following steps to get to the diagnostic messages part of the listing:

1. Type F 'end of c' on the command line (use the ISPF FIND command to find the header: End of
compilation).

2. Press Enter.
3. (Optional) Press Page back.

With Enterprise COBOL 6.2, the diagnostic messages are again at the bottom of the listing, as with
Enterprise COBOL 4 and earlier compilers.

Changes that apply to Enterprise COBOL 6 only
• The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise

COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to
locate the starting address of the WORKING-STORAGE SECTION might be affected. For details, see
“WORKING-STORAGE SECTION changes” on page 176.

• Enterprise COBOL 6 uses interprocess communication (IPC) message queues within the compiler.
Therefore, if you compile in z/OS UNIX with cob2 and the compiler experiences an internal error and
gets terminated with a KILL signal, you will need to query any message queues that are left over when
the compiler is killed and remove the stale message queues. You can remove the stale message queues
with the following z/OS UNIX commands:

1. Enter ipcs -q to list queues.
2. Find queues associated with your user ID.
3. Enter ipcrm -q to delete queues.

If you compile in z/OS batch, you do not have to remove stale message queues after a compiler error.
• PPA1 changes in Enterprise COBOL 6.3

Starting in Enterprise COBOL 6.3, bit 30 of flag3 (offset X'1C') of PPA1 may be set to indicate that the
Extended Flag field is present. If this bit is set, the extended flag will have bit 0 set to indicate
that Vector Registers Area is in the optional area. This should not affect tools or program code
that are accessing PPA1 according to the Language Environment interface. Refer to the z/OS Language
Environment Vendor Interfaces for details about PPA1.

When debugging your COBOL programs, you will find that there have been a large number of
improvements and behavior changes introduced with Enterprise COBOL 5 and 6. For details about
changes in debugging with IBM z/OS Debugger, see “z/OS Debugger changes with Enterprise COBOL
5 and 6” on page 223.

154 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs
https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs

Chapter 14. Upgrading from Enterprise COBOL 4
To compile with Enterprise COBOL 5 or 6, Enterprise COBOL 4 programs that use any of several features
might need to be upgraded.

Programs that contain any of the following language features might need to be modified:

• Programs using DATE FORMAT and windowed date functions. For details, see “Changes in millennium
language extensions in IBM Enterprise COBOL for z/OS 5 and 6” on page 159.

• Label declaratives. To compile programs with Enterprise COBOL 5 or 6, you must remove any format
2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and the syntax: GO TO MORE-LABELS. The
support for these was removed in Enterprise COBOL 5.

• Programs that use new reserved words as user words. For details, see “New reserved words” on page
91.

There is a new compiler option, FLAGMIG4, available with PTF for APAR PM93450 for Enterprise COBOL
4.2 to help you migrate to Enterprise COBOL 5 or 6. It is also recommended that you install PTFs
for APARs PI12240, PI26838, and PI58762 as these contain updates to the FLAGMIG4 option. The
FLAGMIG4 option identifies language elements in Enterprise COBOL 4 programs that are not supported,
or that are supported differently in Enterprise COBOL 5 or 6. The compiler will generate a warning
diagnostic message for all such language elements.

Note: The source code changes for COBOL 5 and 6 are rarely used COBOL language features and do not
affect 99% of COBOL users.

Tip: It is recommended that you review and apply the Enterprise COBOL 4 PTFs to support the
migration to Enterprise COBOL 5 or 6. For details, see http://www.ibm.com/support/docview.wss?
uid=swg21982146.

Upgrading Enterprise COBOL 4 programs that have XML PARSE
statements

You can refer to the following guidelines for upgrading Enterprise COBOL 4 programs that have XML
PARSE statements.

Whether you were using the COMPAT XML parser that is part of the COBOL runtime library or the the z/OS
System Services XML parser with previous versions of Enterprise COBOL, you most likely do not need to
make any code changes for Enterprise COBOL 5 or 6.

If you were using the z/OS System Services XML parser with Enterprise COBOL 4.2, you do not need to
make any code changes for COBOL 5.2 and 6. Originally, Enterprise COBOL 5.1 did not have an XMLPARSE
compiler option and required the XMLSS parser. However, with current service applied, COBOL 5.1 is the
same as COBOL 5.2 in this area, and both have the XMLPARSE compiler option so that you can choose the
same parser in 5 and 6 that you used with earlier versions of Enterprise COBOL.

If you were using the z/OS System Services XML parser with Enterprise COBOL 4.1, consider information
in “Upgrading Enterprise COBOL 4.1 programs that have XML PARSE statements and that use the
XMLPARSE(XMLSS) compiler option” on page 158.

If you use the COMPAT XML parser that is part of the COBOL runtime library with COBOL 4 and COBOL 3,
you most likely do not have to change your code. The COMPAT XML parser implementation in Enterprise
COBOL 5 and 6 has two minor differences in special cases compared to COBOL 3 and COBOL 4, so
you should review the special considerations to these rare cases where the differences could occur. For
details, see “COMPAT XML parser considerations” on page 146.

© Copyright IBM Corp. 1991, 2024 155

http://www.ibm.com/support/docview.wss?uid=swg21982146
http://www.ibm.com/support/docview.wss?uid=swg21982146

COMPAT XML parser considerations

User modifications to the XML document during execution of the XML PARSE
statement
In versions earlier than Enterprise COBOL 5, the COMPAT XML parser was actively in progress when the
XML processing procedure was executing. In COBOL 5, any encoding conflicts are resolved and after that,
the entire document is parsed, and the XML events are stored in a buffer. After the parse is terminated,
the XML events are then presented from this buffer to your program by the PERFORM statement that
executes the processing procedure. Thus, if the program modifies the XML document in the processing
procedure code, the parser does not detect these modifications. However, in the implementation in earlier
versions, those modifications such as correcting an end tag name to match the start tag name would be
seen and acted on by the parser.

A limited number of continuable XML EXCEPTION events
For XML EXCEPTION events with XML-CODE values in the range 1-49, if you request continuation by
setting XML-CODE to zero, the COMPAT XML parser checks only for further errors and does not present
any further non-EXCEPTION XML events. When the COBOL 5 COMPAT XML parser continues after an
EXCEPTION event, the parser does not expand the XML event buffer and thus might not present all the
EXCEPTION events that would otherwise occur. The initial buffer size can accommodate a minimum of
8192 XML events and is expanded as necessary for non-EXCEPTION events.

Differences caused by LE condition handling
In versions earlier than Enterprise COBOL 5, the processing procedure was executed in a stack frame that
is subordinate to the stack frame of the active XML parser. The processing procedure for the COBOL 5
COMPAT parser runs in the same stack frame as the rest of the COBOL program, after the XML parser has
run to completion. This change has the following effects:

• Previously, LE condition handlers that are registered in the XML processing procedure were not in effect
after a COMPAT XML PARSE statement is terminated. In the COBOL 5 implementation, they remain in
effect until unregistered.

• Previously, a branching to an LE service resume point that is set outside the XML processing procedure
terminated a COMPAT XML PARSE statement. In COBOL 5, the processing procedure must exit normally
to terminate an XML PARSE statement. Otherwise, the already active XML PARSE statement causes
a runtime error if either the program exits (IGZ0227S) or another XML PARSE statement is executed
(IGZ0228S).

The following program illustrates this difference. As described previously, it executes "correctly" on
versions earlier than Enterprise COBOL 5, but it causes runtime errors IGZ0227S or IGZ0228S on
Enterprise COBOL 5. After you uncomment the indicated statements in the XML processing procedure,
the program runs without error on all versions.

Process XMLPARSE(COMPAT)

**
*** Function: ***
*** Demonstate a difference between XML PARSE COMPAT on ***
*** COBOL 3/4 and COBOL 5 (or XMLSS on any version). ***
*** ***
*** In COBOL 3/4, the logical branch out of the XML ***
*** processing procedure by CEEMRCE terminates the ***
*** XML PARSE. In COBOL 5, it does not, resulting in ***
*** runtime messages such as: ***
*** IGZ0227S There was an invalid attempt to end an ***
*** XML PARSE statement. ***
*** when the program terminates (or attempts another parse).***
**
 Identification division.
 Program-id. XMLMIGR1.
 Data division.
 Working-storage section.
 1 XML-document pic x(4) value '<x/>'.

156 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

 1 zer0 comp pic 9 value 0.
 Local-storage section.
 1 routine procedure-pointer.
 1 token pointer.
 1 ceesrp-data.
 2 resume-point comp pic s9(9).
 2 state pic x value 'I'.
 1 fdbk-code.
 2 condition-token-value.
 88 fdbk-code-zero value low-value.
 3 pic xx.
 3 msg-no comp pic s9(4).
 3 pic x(4).
 2 pic x(4).
 Procedure division. Main section.
 Perform register-user-handler
 Call 'CEE3SRP' using resume-point fdbk-code
 Service label.
 Repeat.
 If state = 'I'
 XML parse XML-document processing procedure XML-proc
 Display 'Back from XML parse...'
 Go to Repeat
 Else
 If state = 'R'
 Display 'Resumed after exception; in mainline code.'
 End-if
 Perform unregister-user-handler
 Display 'Another XML parse (P), or exit (E)?'
 Accept state
 If state = 'P'
 Move '<y/>' to XML-document
 XML parse XML-document processing procedure XML-proc.
 Goback.
 Register-user-handler.
 Set routine to entry 'USERHDLR'
 Set token to address of ceesrp-data
 Call 'CEEHDLR' using routine token fdbk-code
 If fdbk-code-zero
 Display 'Registered exception handler successfully.'
 Else
 Display 'Failed to register exception handler!' msg-no
 Move 16 to return-code
 Stop run.
 Unregister-user-handler.
 Set routine to entry 'USERHDLR'
 Call 'CEEHDLU' using routine fdbk-code
 If fdbk-code-zero
 Display 'Unregistered exception handler successfully.'
 Else
 Display 'Failed to unregister exception handler!' msg-no
 Move 16 to return-code
 Stop run.
 XML-proc section.
 Display XML-event '{' XML-text '}'
 If XML-event = 'START-OF-DOCUMENT'
 Display 'XML parse in progress...'
 Move 1 to xml-code
 Go to xp-srp.
 If XML-event = 'START-OF-ELEMENT' and XML-text = 'x'
 Compute tally = 1 / zer0.
 Go to xp-exit.
 Xp-srp.
*** Uncomment the next two lines to move the resume point to ***
*** within the XML processing procedure, thus allowing the ***
*** XML PARSE statement to terminate normally and correctly. ***
* Call 'CEE3SRP' using resume-point fdbk-code
* Service label
 If state = 'R'
 Display 'Resumed after exception; still in XML-proc.'
 Move 'X' to state.
 Xp-exit.
 Continue.
 End program XMLMIGR1.

**
*** LE user condition handler, invoked when the fixed-point ***
*** divide exception occurs (system completion code S0C9). ***
**
 Identification division.
 Program-id. USERHDLR.
 Data division.

Chapter 14. Upgrading from Enterprise COBOL 4 157

 Working-storage section.
 1 fdbk-code.
 2 condition-token-value pic x(8).
 88 fdbk-code-zero value low-value.
 2 pic x(4).
 Linkage section.
 1 ceesrp-data.
 2 resume-point comp pic s9(9).
 2 state pic x.
 1 token pointer.
 1 result comp pic s9(9).
 88 resume value 10.
 1 curr-cond pic x(12).
 1 new-cond pic x(12).
 Procedure division using curr-cond token result new-cond.
 Display 'LE condition handler called...'
 Set address of ceesrp-data to token
 Call 'CEEMRCE' using resume-point fdbk-code
 If not fdbk-code-zero display 'Unable to resume execution!'
 Else Set resume to true Move 'R' to state.
 Goback.
 End program USERHDLR.

Upgrading Enterprise COBOL 4.1 programs that have XML PARSE statements
and that use the XMLPARSE(XMLSS) compiler option

There are differences in XML PARSE behavior with the XMLPARSE(XMLSS) compiler option in effect
between Enterprise COBOL 4.1 and Enterprise COBOL 4.2 or later. In Enterprise COBOL 4.1 when you
parsed an XML document using the XMLPARSE(XMLSS) compiler option and it contained character
references that could not be expressed in the encoding of the document, the result was a single
ATTRIBUTE-CHARACTERS or CONTENT-CHARACTERS XML event in which every unrepresentable
character reference was replaced by a hyphen-minus. No indication was given to the program that the
substitution occurred.

For example, parsing the content of the following XML element:

<elem>abcሴxyz</elem>

under Enterprise COBOL 4.1 with encoding CCSID 1140 and with the XMLPARSE(XMLSS) compiler
option in effect, resulted in a single CONTENT-CHARACTERS XML event with special register XML-TEXT
containing the (EBCDIC) string:

abc-xyz

and with special register XML-CODE containing zero.

In Enterprise COBOL 4.2 and later, when you parse an XML document using the XMLPARSE(XMLSS)
compiler option, instead of a single ATTRIBUTE-CHARACTERS or CONTENT-CHARACTERS event, multiple
XML events occur. Each unrepresentable character reference previously replaced by a hyphen-minus is
instead expressed as an ATTRIBUTE-NATIONAL-CHARACTER or CONTENT-NATIONAL-CHARACTER XML
event, depending on the context in which it occurred. These are XML events for the XMLPARSE(XMLSS)
compiler option.

Parsing the content of the XML element from before:

<elem>abcሴxyz</elem>

under Enterprise COBOL 4.2 and later results in the following sequence of XML events:

• CONTENT-CHARACTERS with XML-TEXT containing abc
• CONTENT-NATIONAL-CHARACTER with XML-NTEXT containing NX'1234'
• CONTENT-CHARACTERS with XML-TEXT containing xyz

158 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Converting programs that use new reserved words
Some reserved words have been added since Enterprise COBOL 4.

If your programs use any of the new reserved words as user-defined words (such as data item names or
paragraph names), then those words must be changed. You can do something similar to what CCCA does
and just add a suffix such as -85 to all instances of the word. For example:

77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

To compile with Enterprise COBOL 5 or 6, change it to:

77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

The new reserved words are:

• ALLOCATE
• DEFAULT
• END-JSON
• FREE
• JSON
• JSON-CODE
• JSON-STATUS
• VOLATILE
• XML-INFORMATION

The conversion tool CCCA automatically converts these reserved words for you if you have the PTF for
APAR PM86253 installed for Enterprise COBOL 5.1, or if you have the PTF for APAR PI32750 installed for
Enterprise COBOL 5.2, or if you have the PTF for APAR PI55980 installed for Enterprise COBOL 6.1. CCCA
is included with the IBM Debug Tool product.

For a table comparing reserved words for all of the different COBOL compilers, see Table 50 on page 257.

Changes in millennium language extensions in IBM Enterprise
COBOL for z/OS 5 and 6

The Millennium Language Extensions are no longer supported.

The elements that have been removed are:

• DATE FORMAT clause
• DATEVAL intrinsic function
• UNDATE intrinsic function
• YEARWINDOW intrinsic function
• DATEPROC compiler option
• YEARWINDOW compiler option

These language elements must be removed in order to compile with Enterprise COBOL 5 or 6.

Chapter 14. Upgrading from Enterprise COBOL 4 159

160 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 15. Compiling Enterprise COBOL 4 programs
There have been a number of changes to compiler options and debug behavior for Enterprise COBOL 4
programs.

After reading these topics, see also Chapter 17, “Changes with Enterprise COBOL 5 and 6,” on page 183.

Compiler option changes from IBM Enterprise COBOL for z/OS 4
There have been a number of changes to compiler options.

The following options have been removed.

Table 30. Compiler options not available in Enterprise COBOL 5

Compiler option Comments

DATEPROC Support for Year 2000 extensions has been removed.

NOLIB Compiler behaves as though LIB is always in effect.

YEARWINDOW Support for Year 2000 extensions has been removed.

SIZE The SIZE option has been removed.

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If NUMPROC(MIG) is
specified, Enterprise COBOL 5 or 6 issues a warning message and the compilation
will get the default setting for NUMPROC. This is either the user-customized
default or the IBM default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to Enterprise COBOL
6, consider using the NUMCHECK compiler option to help you migrate to
NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and NUMPROC(PFD).
2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK abends, you can
safely compile with NUMPROC(PFD) and NONUMCHECK for production. This will
not only solve the invalid data problem, but NUMPROC(PFD) is the most efficient
setting for the NUMPROC compiler option.

For details, see NUMCHECK in the Enterprise COBOL for z/OS Programming Guide.

Table 31. Compiler option not available in Enterprise COBOL 6

Compiler option Comments

LVLINFO Installation option removed. The build level information is put where LVLINFO
used to be, and the SERVICE compiler option can be used for user service level
information in place of LVLINFO.

Also note, the compiled-in range checks (for programs compiled with the SSRANGE compiler option)
cannot be disabled at run time using the runtime options CHECK(OFF) or NOSSRANGE.

For descriptions of new and modified options for Enterprise COBOL 5 and 6, see “Compiler option
changes in Enterprise COBOL 5 and 6” on page 188.

For a detailed list of options supported for the various compiler versions, see Appendix E, “Option
comparison,” on page 297.

For detailed descriptions of all options, see the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2024 161

Debug information changes with Enterprise COBOL 5 and 6
Programs compiled with Enterprise COBOL 5 or 6 will have different debug information than that of
programs compiled with previous versions of the compiler.

IBM Enterprise COBOL 5 and 6 solves the dilemma of debugging information. In the past you had 2
choices:

• Have the debug data always with the executable at a cost of a large load footprint, or
• Have separate debug data but also have the challenge of keeping it synchronized with the application

and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the program object, the debug
data does not increase the size of the loaded program, it always matches the executable and is always
available so there is no need to search lists of data sets.

TEST option changes

There have been changes to the TEST compiler option used to generate debuggable versions of your
application and to the NOTEST option.

• When the TEST option is specified, DWARF debug information is included in the application module.
• If the SOURCE suboption is specified, the DWARF debug information includes the expanded source

code, and the compiler listing is not needed by IBM z/OS Debugger. When the TEST(NOSOURCE)
compiler option is specified, the generated DWARF debug information does not include the expanded
source code.

Tip: If you are using IBM z/OS Debugger, it is recommended that you specify TEST(SOURCE) (for
COBOL 5 or 6.1) or TEST(SEPARATE,SOURCE) (for COBOL 6.2 and later) to get the most debugging
functionality while controlling module size:

– With TEST(SOURCE), the debug information is saved in a NOLOAD debug segment in the program
object.

– With TEST(SEPARATE,SOURCE), the debug information is saved in a separate debug file.
• You can use the NOTEST(DWARF) compiler option to include basic DWARF debugging information in

the program object. You cannot debug such programs with z/OS Debugger, but you can get NOTEST
optimization and still enable application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

• To have no debugging information in the program object, use the NOTEST(NODWARF) option.

For details about the TEST option, see TEST in the Enterprise COBOL for z/OS Programming Guide.

For details about debugging COBOL programs using IBM z/OS Debugger, see Choosing TEST or NOTEST
compiler suboptions for COBOL programs in the IBM z/OS Debugger User's Guide.

Listing information changes

With Enterprise COBOL 5 and 6.1, the diagnostic messages are not at the bottom of the listing. Take the
following steps to get to the diagnostic messages part of the listing:

1. Type F 'end of c' on the command line (use the ISPF FIND command to find the header: End of
compilation).

2. Press Enter.
3. (Optional) Press Page back.

With Enterprise COBOL 6.2, the diagnostic messages are again at the bottom of the listing, as with
Enterprise COBOL 4 and earlier compilers.

Changes that apply to Enterprise COBOL 6 only
• The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise

COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to

162 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs
https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs

locate the starting address of the WORKING-STORAGE SECTION might be affected. For details, see
“WORKING-STORAGE SECTION changes” on page 176.

• Enterprise COBOL 6 uses interprocess communication (IPC) message queues within the compiler.
Therefore, if you compile in z/OS UNIX with cob2 and the compiler experiences an internal error and
gets terminated with a KILL signal, you will need to query any message queues that are left over when
the compiler is killed and remove the stale message queues. You can remove the stale message queues
with the following z/OS UNIX commands:

1. Enter ipcs -q to list queues.
2. Find queues associated with your user ID.
3. Enter ipcrm -q to delete queues.

If you compile in z/OS batch, you do not have to remove stale message queues after a compiler error.
• PPA1 changes in Enterprise COBOL 6.3

Starting in Enterprise COBOL 6.3, bit 30 of flag3 (offset X'1C') of PPA1 may be set to indicate that the
Extended Flag field is present. If this bit is set, the extended flag will have bit 0 set to indicate
that Vector Registers Area is in the optional area. This should not affect tools or program code
that are accessing PPA1 according to the Language Environment interface. Refer to the z/OS Language
Environment Vendor Interfaces for details about PPA1.

When debugging your COBOL programs, you will find that there have been a large number of
improvements and behavior changes introduced with Enterprise COBOL 5 and 6. For details about
changes in debugging with IBM z/OS Debugger, see “z/OS Debugger changes with Enterprise COBOL
5 and 6” on page 223.

Chapter 15. Compiling Enterprise COBOL 4 programs 163

164 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Part 4. What is new and different with Enterprise
COBOL 5 and 6?

There are many changes to the compiler and runtime library with Enterprise COBOL 5 and 6. There are
changes in compiling, binding (link-editing), execution, and even changed Debug Tool behavior.

• To find out changes with COBOL 6 specifically, see Chapter 16, “Changes with Enterprise COBOL 6,” on
page 167.

• To find out changes with COBOL 5 and 6, see Chapter 17, “Changes with Enterprise COBOL 5 and 6,” on
page 183.

© Copyright IBM Corp. 1991, 2024 165

166 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 16. Changes with Enterprise COBOL 6
For more information about changes with Enterprise COBOL 6 specifically, read this section.

The COBOL 6 changes mainly fall into the following categories:

• Prerequisite software level changes
• COBOL source code differences
• Compiler option changes
• Dependence on system MEMLIMIT setting for large programs
• Runtime changes
• Changes that might affect vendor tools

Prerequisite software level changes for Enterprise COBOL 6
Enterprise COBOL for z/OS 6 runs under the control of, or in conjunction with, the currently supported
releases of the following programs and their subsequent releases or their equivalents. For more
information, see the Program Directory and the preventive service planning (PSP) bucket for each COBOL
release.

For COBOL 6.4:

• z/OS 2.3 (5650-ZOS), or later, is required with various z/OS Language Environment APARs applied for
mixed AMODE 31 (31-bit)/AMODE 64 (64-bit) and COBOL runtime support. Check the Program Directory
for APARs needed depending on your z/OS version.

• For installation on z/OS, z/OS SMP/E is required.
• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.3 (5650-ZOS), or later.
• The new COBOL/Java interoperability feature available in Enterprise COBOL for z/OS 6.4 requires

IBM SDK for z/OS, Java Technology Edition 8.0.6.36 (JVM), or IBM Semeru Certified Edition for z/OS
11.0.14.1, or later.

For COBOL 6.3:

• z/OS 2.2 (5650-ZOS), or later, is required.

Note: To run 64-bit (AMODE 64) COBOL applications, z/OS 2.3 (5650-ZOS) or later is required.
• For installation on z/OS, z/OS SMP/E is required.
• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.2 (5650-ZOS), or later.

For COBOL 6.2:

• z/OS 2.1 (5650-ZOS), or later, is required.
• For installation on z/OS, z/OS SMP/E is required.
• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.1 (5650-ZOS), or later.

For COBOL 6.1:

• z/OS 2.1 (5650-ZOS), or later, is required.
• For installation on z/OS, z/OS SMP/E is required.

© Copyright IBM Corp. 1991, 2024 167

• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.1 (5650-ZOS), or later.

Depending on the functions used, you might require other software products such as CICS, Db2, or IMS.
For a list of compatible software, see the Software Product Compatibility Reports (SPCR) website. From
the SPCR website, in the In-depth reports section, under Detailed system requirements, click Create a
report. Search for Enterprise COBOL for z/OS, choose the COBOL version and then click Submit.

Note: Prerequisite software levels were valid as of the General Availability of the Enterprise COBOL 6
releases. Over time, some of the products will announce end of support plans. Check the product lifecycle
website for versions currently supported.

COBOL source code differences in Enterprise COBOL 6
The following differences apply to Enterprise COBOL 6 specifically.

Reserved words
Starting in Enterprise COBOL 6.1, ALLOCATE, DEFAULT, END-JSON, FREE, JSON, and JSON-CODE are new
reserved words. Existing programs that use these words as user-defined words (for example, as data
names or paragraph names) will get S-level diagnostic messages with Enterprise COBOL 6. You must
change instances of these reserved words to other words such as ALLOCATE-X or JSON-Y, or you can use
the CCCA utility to do it for you.

Starting in Enterprise COBOL 6.2, JSON-STATUS is a new reserved word. Existing programs that use
JSON-STATUS as a user-defined word (for example, as a data name or paragraph name) will get S-level
diagnostic messages with Enterprise COBOL 6.2. You must change these instances of JSON-STATUS to
other words such as JSON-STATUS-X, or you can use the CCCA utility to do it for you.

Starting in Enterprise COBOL 6.3, BYTE-LENGTH, JAVA, LIMIT, POINTER-32, and UTF-8 are new reserved
words. Existing programs that use these words as user-defined words (for example, as data names or
paragraph names) will get S-level diagnostic messages with Enterprise COBOL 6.3. You must change
instances of these reserved words to other words such as BYTE-LENGTH-X or BYTE-LENGTH-Y, or you
can use the CCCA utility to do it for you.

Starting in Enterprise COBOL 6.4, FUNCTION-ID is a new reserved word. Existing programs that use
FUNCTION-ID as a user-defined word (for example, as a data name or paragraph name) will get S-level
diagnostic messages with Enterprise COBOL 6.4. You must change these instances of FUNCTION-ID to
other words such as FUNCTION-ID-X, or you can use the CCCA utility to do it for you.

CURRENCY SIGN clause
Starting in Enterprise COBOL 6.3, in the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph:

• If the PICTURE SYMBOL phrase is not specified, then operand literal-6 can no longer be the character
'U' or the character 'u'.

• If the PICTURE SYMBOL phrase is specified, then operand literal-7 can no longer be the character 'U' or
the character 'u'.

VALUE clause
In Enterprise COBOL 5 and earlier versions, a non-88 level VALUE clause in the LINKAGE SECTION or the
FILE SECTION was treated as a comment and ignored.

For example, with Enterprise COBOL 5 and earlier versions:

 000224 LINKAGE SECTION.
 000225 01 ALPH-ITEM PIC X(4) VALUE 1234.

168 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://ibm.com/software/reports/compatibility/clarity/index.html
https://www.ibm.com/support/home/pages/lifecycle/?from=index_a

==000225==> IGYDS1158-I A non-level-88 "VALUE" clause was found in the
"FILE SECTION" or "LINKAGE SECTION". The "VALUE" clause was treated as comments.

However, starting in Enterprise COBOL 6.1, the VALUE clause for the LINKAGE SECTION and the FILE
SECTION items is now syntax checked and has meaning.

With Enterprise COBOL 6:

 000224 LINKAGE SECTION.
 000225 01 ALPH-ITEM PIC X(4) VALUE 1234.

==000225==> IGYGR1080-S A "VALUE" clause literal was not compatible with the data
category of the subject data item. The "VALUE" clause was discarded.

In COBOL 6:

• If the data VALUE literal is incompatible with the PICTURE clause, as shown in the example above, the
IGYGR1080-S error message will be issued.

• If the data VALUE literal is compatible with the PICTURE clause, it will be used to initialize the data item
in the LINKAGE SECTION when the data item is used in an INITIALIZE...TO VALUE statement.

In summary, a COBOL 5 program with a non-88 level VALUE clause in the LINKAGE SECTION that is
compiled with an RC=0 could get an RC=12 with COBOL 6 or have the LINKAGE data item be initialized
when the data item is used in an INITIALIZE...TO VALUE statement, depending on the validity of the
VALUE clause literal.

CALL...USING file-name statement
The use of passing a file-name to a subprogram with the USING phrase of the CALL statement was
removed in Enterprise COBOL 6.3, but is restored in Enterprise COBOL 6.3 with PTF for APAR PH20724
installed.

Compiler option changes in Enterprise COBOL 6
The following options are added:

Table 32. Compiler options new with Enterprise COBOL 6

Compiler option Comments

CONDCOMP New option in Enterprise COBOL V6.3 with the service PTFs. It affects the
behavior of conditional compilation directives and controls how conditional code
will be displayed in the listing.

COPYLOC New option in Enterprise COBOL 6.1 with the service PTFs, 6.2 with the service
PTFs, and from 6.3. It can be used to add either a PDSE (or PDS) dataset or z/OS
UNIX directory as an additional location to be searched for copy members during
the library phase.

DEFINE New option from Enterprise COBOL 6.2. It assigns a literal value to a compilation
variable that is defined in the program by using the DEFINE directive with the
PARAMETER phrase.

INITCHECK New option in Enterprise COBOL 6.1 with the service PTFs and from 6.2. It
controls whether to check for uninitialized data items and issue warning messages
when they are used without being initialized.

INITIAL New option in Enterprise COBOL 6.2 with the service PTFs and from 6.3. It causes
a program and all of its nested programs to behave as if the IS INITIAL clause was
specified on the PROGRAM-ID paragraph.

Chapter 16. Changes with Enterprise COBOL 6 169

Table 32. Compiler options new with Enterprise COBOL 6 (continued)

Compiler option Comments

INLINE New option in Enterprise COBOL 6.1 with the service PTFs and from 6.2 and
later versions. It controls the compiler to consider whether to inline procedures
referenced by PERFORM statements in the source program. INLINE is a potential
performance boosting option. (Note that INLINE was always in effect in COBOL 5.)

INVDATA New option in Enterprise COBOL 6.2 with the service PTFs and from 6.3.
The option supercedes the deprecated ZONEDATA option. It tells the compiler
whether data in USAGE DISPLAY and PACKED-DECIMAL data items is valid, and if
not, what the behavior of the compiler should be.

To ease your migration to COBOL 5 or 6:

• If your digits, sign code, and zone bits are valid, use NOINVDATA and the same
NUMPROC setting that you used with COBOL 4 when using COBOL 5 or 6.

Note: If you used NUMPROC(MIG) in 4, it is no longer available in COBOL 5 or 6
and you should use NUMPROC(NOPFD) in this scenario instead.

• If you have invalid digits, invalid sign code, or invalid zone bits:

– If you used NUMPROC(MIG) with COBOL 4, use
INVDATA(FORCENUMCMP,NOCLEANSIGN) and NUMPROC(NOPFD) with
COBOL 5 or 6.

– If you used NUMPROC(NOPFD) with COBOL 4, use
INVDATA(NOFORCENUMCMP,CLEANSIGN) (or simply INVDATA) with COBOL
5 or 6.

– If you used NUMPROC(PFD) with COBOL 4, use
INVDATA(NOFORCENUMCMP,CLEANSIGN) (or simply INVDATA) with COBOL
5 or 6.

JAVAIOP New option from Enterprise COBOL 6.4. It controls the behavior of COBOL
programs that interoperate with Java though the JAVA-CALLABLE or JAVA-
SHAREABLE directives or by calling Java static methods using the CALL
statement.

LP New option from Enterprise COBOL 6.3. It can be used to indicate whether an
AMODE 31 (31-bit) or AMODE 64 (64-bit) program should be generated with the
related language features enabled.

NUMCHECK New option in Enterprise COBOL 6.1 with the service PTFs and from 6.2. It
controls whether to generate implicit numeric class tests for zoned decimal and
packed decimal data items that are used as sending data items, and whether to
generate SIZE ERROR checking for binary data items.

PARMCHECK New option in Enterprise COBOL 6.1 with the service PTFs and from 6.2. It tells
the compiler to generate an extra data item following the last item in WORKING-
STORAGE. This buffer data item is then used at run time to check whether a called
subprogram corrupted data beyond the end of WORKING-STORAGE.

SMARTBIN New option from Enterprise COBOL 6.4. It instructs the compiler to generate
modules containing additional binary metadata that enables them to be optimized
by IBM Automatic Binary Optimizer (ABO) for z/OS 2.2.

For details, see “SMARTBIN changes” on page 174.

SUPPRESS New option from Enterprise COBOL 6.1. It controls whether to ignore the
SUPPRESS phrase of COPY statements.

170 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 32. Compiler options new with Enterprise COBOL 6 (continued)

Compiler option Comments

TUNE New option from Enterprise COBOL 6.3 with the service PTFs. It specifies the
architecture for which the executable program will be optimized.

In Enterprise COBOL 6.4, TUNE(8) and TUNE(9) are removed, and a new higher
level of TUNE(14) is accepted.

The default TUNE level matches the ARCH level if ARCH is specified. If ARCH is
not specified, both ARCH and TUNE default to 10.

VSAMOPENFS New option from Enterprise COBOL 6.1. It affects the user file status reported
from successful VSAM OPEN statements that require verified file integrity check.

The following options are modified:

Table 33. Compiler option changed with Enterprise COBOL 6

Compiler option Comments

AFP It controls the compiler usage of the Additional Floating Point (AFP) registers that
are provided by IBM z/Architecture processors.

• In Enterprise COBOL 6.1, AFP(VOLATILE) is the default.
• From Enterprise COBOL 6.2, AFP(NOVOLATILE) is the default.

ARCH It specifies the machine architecture for which the executable program
instructions are to be generated.

• In Enterprise COBOL 6.1, ARCH(7) is the default.
• In Enterprise COBOL 6.2, a new higher level of ARCH(12) is accepted, and

ARCH(7) is still the default.
• In Enterprise COBOL 6.3, ARCH(7) is removed, and a new higher level of

ARCH(13) is accepted. ARCH(8) is the default.
• In Enterprise COBOL 6.4, ARCH(8) and ARCH(9) are removed, and a new higher

level of ARCH(14) is accepted. ARCH(10) is the default.

CURRENCY From Enterprise COBOL 6.3, the literal argument to the CURRENCY option can no
longer be the character 'U' or the character 'u'.

INITCHECK In Enterprise COBOL 6.1 with the service PTFs, 6.2 with the service PTFs, and
from 6.3 with the service PTFs, new suboptions LAX | STRICT are added to the
INITCHECK option to control whether the compiler will issue warning messages
for data items unless they are initialized on at least one, or on all, logical paths to
a statement.

LANGUAGE

To change to uppercase English or Japanese compiler messages in COBOL 6, in
addition to using the LANGUAGE compiler option, you must also set the Language
Environment runtime option NATLANG at compile time. We recommend using
CEEOPTS DD in the compile JCL.

For example, to change messages to Japanese, use the LANGUAGE(JA) compiler
option and also specify the NATLANG LE runtime option at compile time:

//CEEOPTS DD *
 NATLANG(JPN)
/*

Chapter 16. Changes with Enterprise COBOL 6 171

Table 33. Compiler option changed with Enterprise COBOL 6 (continued)

Compiler option Comments

MAXPCF New option. It instructs the compiler not to optimize code if the program contains
a complexity factor greater than n.

• In Enterprise COBOL 6.1, MAXPCF(60000) is the default.
• From Enterprise COBOL 6.2, MAXPCF(100000) is the default.

NOSTGOPT In Enterprise COBOL 6.1, data items can get optimized with OPT(2) even when
NOSTGOPT was in effect. In Enterprise COBOL 6.1 with the service PTFs and
from 6.2, NOSTGOPT was changed so that no optimization of storage or data
items occurs even with OPT(2). This is especially helpful for WORKING-STORAGE
eye-catchers.

NUMCHECK From Enterprise COBOL 6.3, when invalid data is found at compile time,
regardless of whether NUMCHECK(MSG) or NUMCHECK(ABD) is in effect, an error-
level message is produced and the check is removed.

RULES In Enterprise COBOL 6.2 with the service PTFs and from 6.3, the following new
suboptions are added to the RULES compiler option:

• OMITODOMIN | NOOMITODOMIN tells the compiler whether to issue warning
messages for any OCCURS DEPENDING ON clauses that are specified without
integer-1 (the minimum number of occurrences).

• UNREF | NOUNREFALL | NOUNREFSOURCE tells the compiler whether to
issue warning messages for unreferenced data items, and to control whether
the reporting is done only for data items not declared in a copy member
(NOUNREFSOURCE) or all data items (NOUNREFALL).

• LAXREDEF | NOLAXREDEF tells the compiler whether to issue warning
messages when a data item is redefined to a smaller item on any level.

From Enterprise COBOL 6.4, if there are multiple RULES specifications for a
compilation, the suboptions are additive, which means they are accumulated.

SOURCE From Enterprise COBOL 6.3 with the service PTFs, new suboptions DEC | HEX
are added to SOURCE compiler option. If SOURCE(DEC) is in effect, the line
numbers for the listing of the source will be in decimal format. If SOURCE(HEX)
is in effect, the line numbers for the listing of the source will be in hexadecimal
format.

SSRANGE In Enterprise COBOL 6.1 with the service PTFs and from 6.2, new suboptions MSG
| ABD are added to the SSRANGE compiler option to control the runtime behavior
of the COBOL program when a range check fails.

TEST From Enterprise COBOL 6.2, new suboptions SEPARATE | NOSEPARATE are
added to the TEST compiler option to control program object size on disk while
retaining debugging capability. In addition, new combinations of suboptions
are supported in both the TEST and NOTEST compiler options, including
TEST(NODWARF), TEST(SEPARATE), and NOTEST(DWARF,SOURCE).

The following options are removed:

Table 34. Compiler option not available in Enterprise COBOL 6

Compiler option Comments

LVLINFO From Enterprise COBOL 6.1, the LVLINFO installation option is removed. The build
level information is put where LVLINFO used to be, and the SERVICE compiler
option can be used for user service level information in place of LVLINFO.

172 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 34. Compiler option not available in Enterprise COBOL 6 (continued)

Compiler option Comments

ZONECHECK In Enterprise COBOL 6.1 with the service PTFs and from 6.2, ZONECHECK
is deprecated but is tolerated for compatibility, and it is replaced by
NUMCHECK(ZON).

For a detailed list of options supported for the various compiler versions, see Appendix E, “Option
comparison,” on page 297.

For a detailed list of compiler options that can affect performance, see How to tune compiler options to get
the most out of COBOL 6 in the Enterprise COBOL Performance Tuning Guide.

For detailed descriptions of all the compiler options, see Compiler options in the Enterprise COBOL
Programming Guide.

Changes in compiling with Enterprise COBOL 6

z/OS MEMLIMIT changes
In Enterprise COBOL 6, the compiler starts using storage above the 2 GB BAR to compile programs,
even those that are not large. This means that the z/OS MEMLIMIT parameter would have to be set to a
nonzero value. The z/OS default for MEMLIMIT is 2 GB, but if you compile a program and your z/OS setting
for MEMLIMIT is not high enough, you could get this compiler message: IGYCB7145-U Insufficient
memory in the compiler to continue compilation. If you encounter this error message, set
REGION=0M and MEMLIMIT=3G on the job card and recompile your programs. If it is successful, consider
changing the system MEMLIMIT default that was set in IEFUSI, SMFPRMxx, or SMFLIMxx to no less than
2 GB.

Note: The SMFLIMxx PARMLIB member is only available in z/OS 2.2 and later versions.

Listing changes
• Starting in Enterprise COBOL 6.1, the build level information (of the form PYYMMDD) is always included

in the header of the listing file, which assists with determining the maintenance level of the compiler.
Here is an example of the listing header:

PP 5655-EC6 IBM Enterprise COBOL for z/OS 6.4.0 PXXXXXX

In Enterprise COBOL 5 and 6.1, the diagnostic messages are in the middle of the listing. In Enterprise
COBOL 6.2 and later versions, the diagnostic messages are at the bottom of the listing as with
Enterprise COBOL 4 and earlier compilers.

• Starting in Enterprise COBOL 6.3, listing terminologies change as follows:

– STATIC MAP in Enterprise COBOL 6.2 and earlier versions is changed to INITIAL HEAP STORAGE
MAP.

– Writeable static area (WSA) in Enterprise COBOL 6.2 and earlier versions is changed to storage.
– WSA24 in Enterprise COBOL 6.2 and earlier versions is changed to BELOW THE LINE STORAGE.
– AUTOMATIC MAP in Enterprise COBOL 6.2 and earlier versions is changed to STACK STORAGE MAP.

JCL changes
To change to uppercase English or Japanese compiler messages in COBOL 6, in addition to using the
LANGUAGE compiler option, you must also set the Language Environment runtime option NATLANG at
compile time. We recommend using CEEOPTS DD in the compile JCL.

For example, to change messages to Japanese, use the LANGUAGE(JA) compiler option and also specify
the NATLANG LE runtime option at compile time:

Chapter 16. Changes with Enterprise COBOL 6 173

//CEEOPTS DD *
 NATLANG(JPN)
/*

Starting in Enterprise COBOL 6.3, new cataloged procedures for doing compilation have been provided to
help developing COBOL AMODE 64 (64-bit) programs. The AMODE 64 support is a new feature introduced
to Enterprise COBOL 6.3. See Developing AMODE 64 programs (Enterprise COBOL for z/OS Programming
Guide) for details about AMODE 64 support.

Compiler phases in shared storage changes
Starting in Enterprise COBOL 6.3, the installation customization for placing compiler phases into shared
storage is removed, since in modern systems most users have lots of storage available, and do not need to
conserve storage by placing compiler phases in shared storage. As a result of this change to the compiler,
the language for placing compiler phases in shared storage is no longer supported, so if you have a saved
copy of the IGYCDOPT customization that has a specification of compiler phases being IN or OUT of
shared storage, that language must be removed before you can assemble IGYCDOPT. If you do not have
any statements in IGYCDOPT that specify IN or OUT for compiler phases, then you will not be affected by
this change.

Use of file-name in CALL ... USING statement
The use of passing a file-name to a subprogram with the USING phrase of the CALL statement was
removed in Enterprise COBOL 6.3, but is restored in Enterprise COBOL 6.3 with PTF for APAR PH20724
installed.

SMARTBIN changes
Starting in Enterprise COBOL 6.4, the SMARTBIN option is on by default when LP(32) is in effect.
SMARTBIN instructs the compiler to generate modules containing additional binary metadata that enables
them to be optimized by IBM Automatic Binary Optimizer (ABO) for z/OS (ABO) 2.2. When SMARTBIN is
in effect, the additional binary metadata is placed in a NOLOAD segment of the module. To generate the
SMARTBIN metadata, compile times may increase by up to 21% at OPT(0) and 2-3% at OPT(1) and
OPT(2) on an IBM z15® (or later) machine with zEnterprise Data Compression (zEDC) enabled (hardware
compression turned on). This is in comparison to an increase of up to 33% at OPT(0) and 10% at OPT(1)
and OPT(2) on an IBM z15™ (or later) machine without zEDC enabled (hardware compression turned off).
The additional metadata will also increase the size of the module on disk, requiring larger load libraries,
but will not increase the size in memory when the program is running since it is not loaded. The size
increase on disk will be approximately 2 times to 3 times the size of the original binary.

You can change the option to NOSMARTBIN, however, without the additional binary metadata, COBOL
modules built with Enterprise COBOL 6.4 will be ineligible for ABO optimization and you would need to
recompile and test your modules in the future to maximize benefit from IBM Z hardware improvements. If
you use ABO or plan to in the future, the SMARTBIN option is recommended.

Refer to the IBM Automatic Binary Optimizer for z/OS product page for additional information on ABO
benefits.

Related references
SMARTBIN
(Enterprise COBOL for z/OS Programming Guide)

Usability enhancement
Starting in Enterprise COBOL 6.4 with PTF for APAR PH56142 installed, when compiling under z/OS UNIX,
you can use the cob2 -M option to generate a make dependency file, file.u. This file contains entries
for each copybook file that resides in a z/OS UNIX file system and is referenced in your COBOL source file.

Related references

174 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/products/automatic-binary-optimizer-zos

cob2 syntax and options
(Enterprise COBOL for z/OS Programming Guide)

cob2 input and output files
(Enterprise COBOL for z/OS Programming Guide)

Changes at run time with Enterprise COBOL 6
• In some cases, the STORAGE runtime option cannot be used to initialize WORKING-STORAGE to a

chosen value at startup. These cases are:

– COBOL 6 programs with spanned (RECORDING MODE S) files
– Non-CICS COBOL 5 programs compiled with DATA(31)

• File status changes in 6:

– WRITE statement on line-sequential file with a record size mismatch.

In prior releases of Enterprise COBOL, when an attempt is made to write a record to a line-sequential
file with mismatched record size, file status 48 is incorrectly returned. This is corrected in Enterprise
COBOL 6 to return file status 44.

– OPEN INPUT on a line-sequential file when the UNIX file attribute is write-only.

In prior releases of Enterprise COBOL, an OPEN statement with the INPUT phrase on a
line-sequential file that has the write-only attribute, such as a z/OS UNIX file with DD
PATHOPTS=(OWRONLY,...) or a COBOL program that has the write access permission only, incorrectly
returned file status 0 (successful). An OPEN statement attempted on a file that does not support the
open access mode should return file status 37.

Note: "write-only" here does not mean the APPLY WRITE-ONLY clause that is not applicable to
line-sequential files. Line-sequential files are files created in the z/OS UNIX file system.

In Enterprise COBOL 6, this OPEN statement is detected with file status 37.
– OPEN INPUT, I-O, EXTEND on VSAM file with file attributes mismatch.

In prior releases of Enterprise COBOL, when an OPEN INPUT, I-O or EXTEND statement is attempted
on a VSAM file that is not defined as OPTIONAL, and a file attributes mismatch is detected, file status
35 is incorrectly returned. This is corrected in Enterprise COBOL 6 to return file status 39.

Note:

- Similar file attributes mismatch condition for OPEN OUTPUT, and for OPEN INPUT, I-O, and EXTEND
when the VSAM file is defined as OPTIONAL, are already correctly reported as file status 39.

- Starting from Enterprise COBOL 6.3, when using the LP(64) option, the compilation process
includes a component that runs in POSIX(ON) mode. This implies that there must be an OMVS
Segment established in RACF® (or equivalent in RACF alternatives) for each user executing the
compiler with this option.

• Enterprise COBOL 6 introduces an optional alternate logic path for VSAM files that use the ACCESS IS
DYNAMIC mode. The alternate logic path uses a direct read-by-key request instead of a point to a record
by key. For details, see "VSAM dynamic access optional logic path" in the Enterprise COBOL Performance
Tuning Guide.

• The VSAM dynamic access read option VSAMDYNAMICDIR and the COBOL runtime options
report disabling option DISABLEUOPTREPORT are added. For details, see "VSAMDYNAMICDIR" and
"DISABLEUOPTREPORT" in the Enterprise COBOL Performance Tuning Guide.

Changes with Enterprise COBOL 6 that might affect vendor tools
• The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise

COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to

Chapter 16. Changes with Enterprise COBOL 6 175

locate the starting address of the WORKING-STORAGE SECTION might be affected. For details, see
“WORKING-STORAGE SECTION changes” on page 176.

• Enterprise COBOL 6 uses interprocess communication (IPC) message queues within the compiler.
Therefore, if you compile in z/OS UNIX with cob2 and the compiler experiences an internal error and
gets terminated with a KILL signal, you will need to query any message queues that are left over when
the compiler is killed and remove the stale message queues. You can remove the stale message queues
with the following z/OS UNIX commands:

1. Enter ipcs -q to list queues.
2. Find queues associated with your user ID.
3. Enter ipcrm -q to delete queues.

If you compile in z/OS batch, you do not have to remove stale message queues after a compiler error.
• PPA1 changes in Enterprise COBOL 6.3

Starting in Enterprise COBOL 6.3, bit 30 of flag3 (offset X'1C') of PPA1 may be set to indicate that the
Extended Flag field is present. If this bit is set, the extended flag will have bit 0 set to indicate
that Vector Registers Area is in the optional area. This should not affect tools or program code
that are accessing PPA1 according to the Language Environment interface. Refer to the z/OS Language
Environment Vendor Interfaces for details about PPA1.

WORKING-STORAGE SECTION changes
The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise
COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to locate
the starting address of the WORKING-STORAGE SECTION might be affected. You can use the following
method to locate the WORKING-STORAGE in Enterprise COBOL 5 and 6 programs at run time.

To find the start of WORKING-STORAGE in COBOL 5 and 6, you need to know how to locate the PPA4
(Program Prologue Area 4) in a dump.

A: For AMODE 31

The following description applies when the program is compiled with LP(32):

How to find the PPA4 (Program Prolog Area 4) in a dump?

1. Find the start of the program in the dump from the traceback.
2. At the starting address + x'0C' is an offset value. This is the offset to the PPA1 from the start of the

program.
3. Starting address + PPA1 offset = PPA1.
4. Go there in the dump.
5. At PPA1 + x'04' is an offset value. This is the offset to the PPA2 from the start of the program.
6. Starting address + PPA2 offset = PPA2.
7. Go there in the dump.
8. At PPA2 + x'08' is an offset value. This is the offset to the PPA4 from the PPA2 address.
9. PPA2 + PPA4 offset = PPA4.

10. Go there in the dump. You are now at the PPA4.

Next, you need to know the layout of the PPA4.

PPA4 layout

For information about the layout of PPA4 and each PPA4 offset, length, and description, see COBOL V5+
32-bit PPA4 layout in the z/OS Language Environment Vendor Interfaces.

176 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/cv3plmv.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/cv3plmv.htm?sc=SSLTBW_latest

Next, you need to know some terminology.

Terms to know
NORENT static area

This storage area is allocated in the executable for each program that was compiled with NORENT. A
NORENT program’s WORKING-STORAGE will be located here.

LE’s writable static area (WSA)
Every COBOL 5 or 6 program object (executable) has this storage area.

RENT static area
This storage area is allocated inside the WSA for every program that is statically bound into the
executable and compiled with RENT. Each program has their own RENT static area. A program’s
WORKING-STORAGE may or may not be located here.

Program static area
This storage area is allocated outside of the WSA only if certain conditions are met. In those cases, the
program’s WORKING-STORAGE will be located here, instead of in the RENT static area.

Next, you need to understand that there are three locations where WORKING-STORAGE can reside.

Explanation of the areas where WORKING-STORAGE can reside

There are three different locations where WORKING-STORAGE can reside:

• Inside the program object (executable). All programs compiled with the NORENT option have a NORENT
static area reserved within the executable and WORKING-STORAGE resides here.

• All programs compiled with the RENT option have a RENT static area allocated inside LE’s WSA (writable
static area). WORKING-STORAGE could reside here.

• Instead of being located in the RENT static area, some COBOL 5 or later RENT programs have their
WORKING-STORAGE allocated outside of LE’s WSA, in an area called the program static area.

The rules for determining where WORKING-STORAGE resides are located in the next section.

The picture below shows how storage is laid out for RENT programs whose WORKING-STORAGE resides
in the program static area:

 Program Object (Executable)
 (Has two programs A & B statically bound.)
|---|
| |
| LE's WSA (writable static area) |

	Program A - RENT static area			

		(Corresponds to the INITIAL HEAP		
		STORAGE MAP in Program A's listing)		

	Program B - RENT static area			

		(Corresponds to the INITIAL HEAP		
		STORAGE MAP in Program B's listing)		

Program A - program static area				

	(Corresponds to the WORKING-STORAGE MAP			
	(or the BELOW THE LINE STORAGE MAP) in			
	Program A's listing)			

Chapter 16. Changes with Enterprise COBOL 6 177

| |---| |
| |
| |
| Program B - program static area |

	(Corresponds to the WORKING-STORAGE MAP	
	(or the BELOW THE LINE STORAGE MAP) in	
	Program B's listing)	

Once you understand the three areas where WORKING-STORAGE could reside, you need to know how
to determine where a program’s WORKING-STORAGE actually does reside. For details, see WORKING-
STORAGE location and Layout of the Language Environment WSA, STATIC, PROGRAM STATIC, and User
Working Storage in IGZXAPI in the z/OS Language Environment Vendor Interfaces.

How to determine the area where WORKING-STORAGE is located?

Table 35. Area where WORKING-STORAGE is located

COBOL versions Compiler options
Where is WORKING-STORAGE
located?

COBOL 5 NORENT In the program's NORENT static
area

RENT, DATA(31) In the program's RENT static area
inside the WSA

RENT, DATA(24) or RENT,
WSOPT1

In the program's program static
area outside the WSA

COBOL 6 or later versions NORENT In the program's NORENT static
area

RENT, DATA(31) & SPANNED
RECORDS (i.e. the WSOPT bit is
OFF)2

In the program's RENT static area
inside the WSA

RENT, DATA(24) (i.e. the WSOPT
bit is ON)2

In the program's program static
area outside the WSA

RENT, DATA(31) & NO SPANNED
RECORDS (i.e. the WSOPT bit is
ON)2

In the program's program static
area outside the WSA

Notes:

1. In COBOL 5, there is a WSOPT compiler option. In COBOL 6, there is no longer a WSOPT compiler
option, but rather a signature information bit for WSOPT that is automatically set by the compiler.

2. For SPANNED RECORDS, the WSOPT signature information bit is OFF. For NO SPANNED RECORDS,
the WSOPT signature information bit is ON.

• You can scan your programs for 'RECORDING MODE' and look for any files set to 'S' to determine if
SPANNED RECORDS are used.

• Another alternative is to check the signature information bytes in the listing for the WSOPT bit,
which is signature byte 8, bit 3. For example, take the following from a listing:

=X'001000000000' INFO. BYTES 7-12

Byte 8 is x'10', which is b'00010000'. Numbering the bits from left to right as 01234567, because
bit 3 is on, WSOPT is on.

178 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/IGZXAPI.htm?sc=SSLTBW_latest

Once you know what area the WORKING-STORAGE resides in, then you will know how to find it.

How to find WORKING-STORAGE in a dump?
Table 36. How to find the PPA4, NORENT static area, LE’s WSA, RENT static area, and program static area
in a dump?

What to find? How to find it in a dump?

PPA4 See the instructions above.

NORENT static area The address is located in storage at <PPA4 + x'08'>

LE’s WSA The address is located in storage at <CEECAA (or
R12) + x'1F4'>.
This is called CEECAARENT in a dump.

RENT static area The address is located in storage at
<The address in storage at CEECAA (or R12) +
x'1F4'> +
<the offset in the program’s PPA4 + x'0C'>

Program static area The address is located in storage at
<The address in storage at CEECAA (or R12) +
x'1F4’> +
<the offset in the program’s PPA4 + x'0C'> +
<the offset in the program’s PPA4 + x'10'>

Once you find these areas in a dump, then you can compare that to the compile listing.

In a COBOL listing:

• The INITIAL HEAP STORAGE MAP shows the layout of the RENT static area or the NORENT static area.
• The WORKING-STORAGE MAP or the BELOW THE LINE STORAGE MAP shows the layout of the program

static area.

B: For AMODE 64
The following information applies when the program is compiled with LP(64):

Information about the WORKING-STORAGE SECTION can be found in the PPA4 of the program together
with the Heap Storage Address Table. Follow the steps below to locate them.

1. Find the entry point address of the program in the dump from the traceback. In the LE CEEDUMP
traceback, this is the address under the "E Addr" column corresponding to the row of the program.

In the example below, HELLO is the COBOL program. Its entry point address is X'260000A8'. This
address should contain the first executable instruction of the program, that is, an STMG instruction.

Traceback:
 DSA Entry E Offset …
 1 CEEHDSP +00003F3C
 2 CELQHROD +00000266
 3 HELLO +00000224
 4 CELQINIT +00001D0C

 DSA DSA Addr E Addr
 1 00000050082FBC60 0000000026B0A3D0
 2 00000050082FEDA0 0000000026B1DD18
 3 00000050082FEFA0 00000000260000A8
 4 00000050082FF220 0000000026903010

2. At program entry point offset -x'08', that is, before the entry point, there is an integer value. This value
is the offset from the entry point address to PPA1.

3. At PPA1+x'04', there is an offset value. This is the offset from the entry point address to PPA2.

Chapter 16. Changes with Enterprise COBOL 6 179

4. At PPA2+x'08', there is an offset value. This is the offset from PPA2 to PPA4.
5. At PPA4+x'7C', there is an offset value. This is the offset from the environment of the program to the

Heap Storage Address Table.

Environment here refers to the XPLINK environment of the program. This is the address in register R5 on
entry into the program. The first instruction of the program, the STMG, stores the register to the stack. The
contents of R5 can be found in the dump.

Heap Storage Address Table

Offset of this table from the environment of the program is in PPA4+X'7C'.

Data items in WORKING-STORAGE SECTION in LP(64) are by default allocated above the bar. They are
in COBOL's ABOVE THE BAR HEAP. Its starting address is in the first field of the Heap Storage Address
Table (at offset X'00' of this table). Note that this address corresponds also to the ABOVE THE BAR HEAP
MAP section in the compilation listing, which provides information about level 77 and 01 data items in the
WORKING-STORAGE SECTION.

There are also COBOL control areas and compiler internal variables allocated in the ABOVE THE BAR
HEAP. The first WORKING-STORAGE data item in the program might not reside right at the beginning. The
offset of the first data item in the program's WORKING-STORAGE SECTION can be found in PPA4 offset
+X'40'.

Table 37. Heap Storage Address Table

Length Description

X'00' 8 Starting Address of COBOL's
ABOVE THE BAR HEAP (64-bit
storage area)

X'08' 8 Reserved

X'10' 8 Reserved

Information relating to WOKRING-STORAGE SECTION can be summarized below:

Table 38. WORKING-STORAGE SECTION summary

Description Can be found in:

Offset of Heap Storage Address Table from R5 PPA4+x'7C'

Starting address of WORKING-STORAGE Heap Storage Address Table + x'00'

Offset of first user 64-bit data item from
WORKING-STORAGE

PPA4+x'40'

Length of the area containing all user WORKING-
STORAGE 64-bit data items

PPA4+x'48'

For information about the layout of PPA4 and each PPA4 offset, length, and description, see COBOL 64-bit
PPA4 layout in the z/OS Language Environment Vendor Interfaces.

C: Use the LE vendor interface IGZXAPI to query the WORKING-STORAGE address
The COBOL-specific vendor interface routine, IGZXAPI, can also be used to query the WORKING-
STORAGE address. With Enterprise COBOL 6.1, the LE vendor interface IGZXAPI is enhanced with new
function code 8 to request information about the WORKING-STORAGE SECTION length and address
for a COBOL program. The returned address corresponds to the INITIAL HEAP STORAGE MAP section
in the COBOL compiler listing. Other information, such as the program name from PROGRAM-ID and
signature information bytes (correspond to the “Compiler Options and Program Information Section” of
the compiler listing), are also returned.

180 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/c64ppa4l.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/c64ppa4l.htm?sc=SSLTBW_latest

This enhancement is introduced in COBOL Runtime LE PTF for APAR PI49703. For more information
about IGZXAPI, see IGZXAPI in the z/OS Language Environment Vendor Interfaces.

Related tasks
Reading LIST output (Enterprise COBOL for z/OS Programming Guide)

Related references
Example: Program prolog areas (Enterprise COBOL for z/OS Programming Guide)
Common interfaces and conventions (z/OS Language Environment Vendor Interfaces)

Chapter 16. Changes with Enterprise COBOL 6 181

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/IGZXAPI.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceev100/convnt.htm

182 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 17. Changes with Enterprise COBOL 5 and 6
There are a few differences from all previous compilers to consider when using Enterprise COBOL 5 or 6.
After reading the section about migrating a program or application from the compiler you are currently
using, read this section.

The changes with Enterprise COBOL 5 and 6 mainly fall into the following categories:

• Prerequisite software and service changes
• COBOL source code differences
• Compiler option changes
• Compiling behavior differences
• Binding (link-editing) changes
• Changes at run time
• Debug information and Debug Tool behavior changes

Migrating to COBOL 5 or 6 is different from earlier COBOL migrations in that we recommend regression
testing to see if your programs use invalid data and get different results with COBOL 5 or 6. Previous
COBOL compilers generated the same code and the same data layout, so invalid data would get the same
results from version to version.

With current service applied, Enterprise COBOL 5.1 is equivalent to Enterprise COBOL 5.2 for migration
purposes.

The performance characteristics of COBOL 5 of the compiler are similar to those of COBOL 6. Except
where otherwise noted, the changes and migration recommendations in this section are applicable to
both 5 and 6.

Prerequisite software and service for Enterprise COBOL 5 and 6
Updates are required for other products to compile programs with Enterprise COBOL 5 and 6 and also to
bind, run and debug those programs. Now, with Enterprise COBOL 5 and 6, you can use FIXCAT to find
required service.

Prerequisite levels of related software products
Enterprise COBOL for z/OS 6 runs under the control of, or in conjunction with, the currently supported
releases of the following programs and their subsequent releases or their equivalents. For more
information, see the Program Directory and the preventive service planning (PSP) bucket for each COBOL
release.

For COBOL 6.4:

• z/OS 2.3 (5650-ZOS), or later, is required with various z/OS Language Environment APARs applied for
mixed AMODE 31 (31-bit)/AMODE 64 (64-bit) and COBOL runtime support. Check the Program Directory
for APARs needed depending on your z/OS version.

• For installation on z/OS, z/OS SMP/E is required.
• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.3 (5650-ZOS), or later.
• The new COBOL/Java interoperability feature available in Enterprise COBOL for z/OS 6.4 requires

IBM SDK for z/OS, Java Technology Edition 8.0.6.36 (JVM), or IBM Semeru Certified Edition for z/OS
11.0.14.1, or later.

For COBOL 6.3:

© Copyright IBM Corp. 1991, 2024 183

• z/OS 2.2 (5650-ZOS), or later, is required.

Note: To run 64-bit (AMODE 64) COBOL applications, z/OS 2.3 (5650-ZOS) or later is required.
• For installation on z/OS, z/OS SMP/E is required.
• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.2 (5650-ZOS), or later.

For COBOL 6.2:

• z/OS 2.1 (5650-ZOS), or later, is required.
• For installation on z/OS, z/OS SMP/E is required.
• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.1 (5650-ZOS), or later.

For COBOL 6.1:

• z/OS 2.1 (5650-ZOS), or later, is required.
• For installation on z/OS, z/OS SMP/E is required.
• For customization during or after installation, z/OS High Level Assembler is required.
• Enterprise COBOL XML PARSE statements in programs, which are compiled with the XMLPARSE(XMLSS)

compiler option, require z/OS XML System Services 2.1 (5650-ZOS), or later.

Depending on the functions used, you might require other software products such as CICS, Db2, or IMS.
For a list of compatible software, see the Software Product Compatibility Reports (SPCR) website. From
the SPCR website, in the In-depth reports section, under Detailed system requirements, click Create a
report. Search for Enterprise COBOL for z/OS, choose the COBOL version and then click Submit.

Note: Prerequisite software levels were valid as of the General Availability of the Enterprise COBOL 6
releases. Over time, some of the products will announce end of support plans. Check the product lifecycle
website for versions currently supported.

Determining service required

You no longer need to find lists of APARs and PTFs in PSP buckets. As of Enterprise COBOL for z/OS 5, you
must use SMP/E FIXCATs to identify the required PTFs on other products to work with Enterprise COBOL 5
and 6. The required service PTFs for COBOL for z/OS 5 and 6 are not documented in this Migration Guide,
are not included in PSP buckets, and are not included in any handouts for conferences.

SMP/E FIXCATs allow you to have the most up to date and correct information about Enterprise COBOL 5
and 6 required service. It is the easiest way to quickly determine if you have all the necessary required
service PTFs installed. For Enterprise COBOL 5 and 6, you should use SMP/E 3.5 or later support for
FIXCAT HOLDDATA to do programmatic target system PTF verification. These PTFs are identified with a
FIXCAT category name in HOLDDATA. There are now 6 for COBOL.

• For COBOL 5.1: IBM.TargetSystem-RequiredService.Enterprise-COBOL.V5R1
• For COBOL 5.2: IBM.TargetSystem-RequiredService.Enterprise-COBOL.V5R2
• For COBOL 6.1: IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R1
• For COBOL 6.2: IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R2
• For COBOL 6.3: IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R3
• For COBOL 6.4: IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R4

A HOLDDATA type FIXCAT (fix category) is used to associate an APAR to a particular category of fix for
necessary target system PTFs. To help identify PTFs required but not yet installed for your upgrade to

184 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://ibm.com/software/reports/compatibility/clarity/index.html
https://www.ibm.com/support/home/pages/lifecycle/?from=index_a

Enterprise COBOL 5 or 6 on your current system, use the SMP/E REPORT MISSINGFIX command. Here is
a sample command used to run against your z/OS CSI for COBOL 6.4 (and earlier versions):

SET BDY(GLOBAL).
REPORT MISSINGFIX ZONES(ZOS13T)
FIXCAT(IBM.TargetSystem-RequiredService.Enterprise-COBOL.V5R1,
 IBM.TargetSystem-RequiredService.Enterprise-COBOL.V5R2,
 IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R1,
 IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R2,
 IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R3
 IBM.TargetSystem-RequiredService.Enterprise-COBOL.V6R4)

For complete information about the REPORT MISSINGFIX command, see SMP/E Commands.

Enterprise COBOL 4.2 aids for migration to Enterprise COBOL 5 or 6
Fixes for previous versions of Enterprise COBOL are not handled by FIXCAT. The following APAR fixes
contain aids for helping you migrate from Enterprise COBOL 4.2 to Enterprise COBOL 5 or 6.

• PM93450 - FLAGMIG4. This one helps you identify if you have COBOL statements that are unsupported
in 5 or 6. It is also recommended that you install PTFs for APARs PI12240, PI26838, and PI58762 as
these contain updates to the FLAGMIG4 option.

Note: The source code changes for COBOL 5 and 6 are rarely used COBOL language features and do not
affect 99% of COBOL users.

• PM85035 - new function to support the XML-INFORMATION special register. This was helpful for
migrating to XMLPARSE(XMLSS), which was required for migrating to COBOL 5.1 before XMLPARSE was
added. In COBOL 5.1 with service applied and COBOL 5.2 and later compilers, the XMLPARSE compiler
option is added so that you do not need to migrate to XMLPARSE(XMLSS).

• PI40323 - ZONECHECK. This option helps you find cases of invalid COBOL data in numeric DISPLAY
zoned decimal data items. Invalid data can get different results in COBOL 5 or 6 compared to previous
COBOL compiler releases.

• Language Environment 1.13 PM87347 for XML-INFORMATION support at run time if you have installed
the related Enterprise COBOL 4 APAR, PM85035.

COBOL source code differences in Enterprise COBOL 5 and 6
Several language elements have been removed or modified in Enterprise COBOL 5 and 6 that may require
updates to your source programs.

Millennium Language Extensions
The Millennium Language Extensions are no longer supported. If your programs have any of these
language elements, they must be removed before you can compile and run these programs with
Enterprise COBOL 5 or 6:

• DATE FORMAT clause
• DATEVAL intrinsic function
• UNDATE intrinsic function
• YEARWINDOW intrinsic function

LABEL declarative
There have been changes to LABEL declarative support. If your programs have any of these language
elements, they must be removed before you can compile and run these programs with Enterprise COBOL
5 or 6:

• Format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE... is no longer supported
• The syntax: GO TO MORE-LABELS is no longer supported.

Chapter 17. Changes with Enterprise COBOL 5 and 6 185

VOLATILE reserved word
Starting in Enterprise COBOL 5.2, VOLATILE is a new reserved word. Existing programs that use VOLATILE
as a user-defined word (for example, as a data name or paragraph name) will get S-level diagnostic
messages with Enterprise COBOL 5.2 and 6. You must change these instances of VOLATILE to other words
such as VOLATILE-X, or you can use the CCCA utility to do it for you.

INSPECT...TALLYING behavior
For INSPECT...TALLYING, previous versions of the compiler insert zone nibbles in a signed numeric
display inspected item before performing the INSPECT. This will, for example, change SPACES to ZEROS.
COBOL 5 and later versions no longer do this zone normalization. Having INSPECT without a REPLACING
clause update the inspected item was unexpected, and COBOL 5 and later versions do not do this.

There is no way to have COBOL 5 and later versions behave in the same unexpected way as COBOL 4.
Adding or removing REPLACING will not replicate COBOL 4 and earlier behavior, which we consider to
be in error. To avoid the unexpected behavior in COBOL 4, you can add a NUMERIC class test before the
INSPECT, avoid moving spaces or alphanumeric data into the inspected item, or move zeroes into the
inspected item. COBOL 5 and later versions will not unexpectedly modify the inspected data item.

For example:

01 TEST-DATA.
 02 NUM-DISP PIC S9(9).

. . .

MOVE 0 To TALLY
MOVE SPACES TO TEST-DATA
INSPECT NUM-DISP TALLYING TALLY FOR ALL ZEROES
IF TALLY > 0 THEN
 DISPLAY 'This is COBOL V4 or earlier'
ELSE
 DISPLAY 'This is COBOL V6'

If your programs rely on this behavior, then you can change your program to do INSPECT, with
REPLACING to, for example, replace SPACES with ZEROS in COBOL 6 programs:

INSPECT NUM-DISP REPLACING ALL SPACES BY '0'

This is effectively what COBOL 4 did, but you might have to replace other nonnumeric content of the
signed numeric display data item.

Move instruction
When moving a 16-bit COMP-5 sender (PICTURE clause PIC 9(2) through PIC 9(4)), with value x'8000' or
higher, to an alphanumeric data item, Enterprise COBOL 4.2 incorrectly uses an instruction that loads the
value as a 32-bit value with the high sixteen bits all ones. This incorrectly changes the value that is moved
to the PIC X(9) receiver. Enterprise COBOL 5 and 6 correctly load the 16-bit value as a 32-bit value with
the high sixteen bits all zeros, which is correct, but is different from Enterprise COBOL 4.2.

Changes that apply to Enterprise COBOL 6 only
The following differences apply to Enterprise COBOL 6 specifically.

Reserved words
Starting in Enterprise COBOL 6.1, ALLOCATE, DEFAULT, END-JSON, FREE, JSON, and JSON-CODE are new
reserved words. Existing programs that use these words as user-defined words (for example, as data
names or paragraph names) will get S-level diagnostic messages with Enterprise COBOL 6. You must
change instances of these reserved words to other words such as ALLOCATE-X or JSON-Y, or you can use
the CCCA utility to do it for you.

186 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Starting in Enterprise COBOL 6.2, JSON-STATUS is a new reserved word. Existing programs that use
JSON-STATUS as a user-defined word (for example, as a data name or paragraph name) will get S-level
diagnostic messages with Enterprise COBOL 6.2. You must change these instances of JSON-STATUS to
other words such as JSON-STATUS-X, or you can use the CCCA utility to do it for you.

Starting in Enterprise COBOL 6.3, BYTE-LENGTH, JAVA, LIMIT, POINTER-32, and UTF-8 are new reserved
words. Existing programs that use these words as user-defined words (for example, as data names or
paragraph names) will get S-level diagnostic messages with Enterprise COBOL 6.3. You must change
instances of these reserved words to other words such as BYTE-LENGTH-X or BYTE-LENGTH-Y, or you
can use the CCCA utility to do it for you.

Starting in Enterprise COBOL 6.4, FUNCTION-ID is a new reserved word. Existing programs that use
FUNCTION-ID as a user-defined word (for example, as a data name or paragraph name) will get S-level
diagnostic messages with Enterprise COBOL 6.4. You must change these instances of FUNCTION-ID to
other words such as FUNCTION-ID-X, or you can use the CCCA utility to do it for you.

CURRENCY SIGN clause
Starting in Enterprise COBOL 6.3, in the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph:

• If the PICTURE SYMBOL phrase is not specified, then operand literal-6 can no longer be the character
'U' or the character 'u'.

• If the PICTURE SYMBOL phrase is specified, then operand literal-7 can no longer be the character 'U' or
the character 'u'.

VALUE clause
In Enterprise COBOL 5 and earlier versions, a non-88 level VALUE clause in the LINKAGE SECTION or the
FILE SECTION was treated as a comment and ignored.

For example, with Enterprise COBOL 5 and earlier versions:

 000224 LINKAGE SECTION.
 000225 01 ALPH-ITEM PIC X(4) VALUE 1234.

==000225==> IGYDS1158-I A non-level-88 "VALUE" clause was found in the
"FILE SECTION" or "LINKAGE SECTION". The "VALUE" clause was treated as comments.

However, starting in Enterprise COBOL 6.1, the VALUE clause for the LINKAGE SECTION and the FILE
SECTION items is now syntax checked and has meaning.

With Enterprise COBOL 6:

 000224 LINKAGE SECTION.
 000225 01 ALPH-ITEM PIC X(4) VALUE 1234.

==000225==> IGYGR1080-S A "VALUE" clause literal was not compatible with the data
category of the subject data item. The "VALUE" clause was discarded.

In COBOL 6:

• If the data VALUE literal is incompatible with the PICTURE clause, as shown in the example above, the
IGYGR1080-S error message will be issued.

• If the data VALUE literal is compatible with the PICTURE clause, it will be used to initialize the data item
in the LINKAGE SECTION when the data item is used in an INITIALIZE...TO VALUE statement.

In summary, a COBOL 5 program with a non-88 level VALUE clause in the LINKAGE SECTION that is
compiled with an RC=0 could get an RC=12 with COBOL 6 or have the LINKAGE data item be initialized
when the data item is used in an INITIALIZE...TO VALUE statement, depending on the validity of the
VALUE clause literal.

Chapter 17. Changes with Enterprise COBOL 5 and 6 187

CALL...USING file-name statement
The use of passing a file-name to a subprogram with the USING phrase of the CALL statement was
removed in Enterprise COBOL 6.3, but is restored in Enterprise COBOL 6.3 with PTF for APAR PH20724
installed.

Compiler option changes in Enterprise COBOL 5 and 6
A number of changes are made to compiler options in Enterprise COBOL 5 and 6.

The following options are new:

Table 39. Compiler options new with Enterprise COBOL 5 and 6

Compiler option Comments

AFP New option. It controls the compiler usage of the Additional Floating Point (AFP)
registers that are provided by IBM z/Architecture processors.

• From Enterprise COBOL 5.1, AFP(VOLATILE) is the default.
• From Enterprise COBOL 6.2, AFP(NOVOLATILE) is the default.

ARCH New option. It specifies the machine architecture for which the executable
program instructions are to be generated.

• In Enterprise COBOL 5.1, ARCH(6) is the default.
• In Enterprise COBOL 5.2 and 6.1, ARCH(6) is no longer accepted, and ARCH(7)

is the default.
• In Enterprise COBOL 6.2, a new higher level of ARCH(12) is accepted. ARCH(7)

is still the default.
• In Enterprise COBOL 6.3, ARCH(7) is removed, and a new higher level of

ARCH(13) is accepted. ARCH(8) is the default.
• In Enterprise COBOL 6.4, ARCH(8) and ARCH(9) are removed, and a new higher

level of ARCH(14) is accepted. ARCH(10) is the default.

CONDCOMP New option in Enterprise COBOL V6.3 with the service PTFs. It affects the
behavior of conditional compilation directives and controls how conditional code
will be displayed in the listing.

COPYLOC New option in Enterprise COBOL 6.1 with the service PTFs, 6.2 with the service
PTFs, and from 6.3. It can be used to add either a PDSE (or PDS) dataset or z/OS
UNIX directory as an additional location to be searched for copy members during
the library phase.

COPYRIGHT New option from Enterprise COBOL 5.2. It places a string in the object module if
the object module is generated.

DEFINE New option from Enterprise COBOL 6.2. It assigns a literal value to a compilation
variable that is defined in the program by using the DEFINE directive with the
PARAMETER phrase.

DISPSIGN New option. It controls output formatting for DISPLAY of signed numeric items.
DISPSIGN(COMPAT) is the default.

HGPR New option. It controls the compiler usage of the 64-bit registers provided by IBM
z/Architecture processors. HGPR(PRESERVE) is the default.

INITCHECK New option in Enterprise COBOL 5.2 with the service PTFs, 6.1 with the service
PTFs, and from 6.2. It controls whether to check for uninitialized data items and
issue warning messages when they are used without being initialized.

188 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 39. Compiler options new with Enterprise COBOL 5 and 6 (continued)

Compiler option Comments

INITIAL New option in Enterprise COBOL 6.2 with the service PTFs and from 6.3. It causes
a program and all of its nested programs to behave as if the IS INITIAL clause was
specified on the PROGRAM-ID paragraph.

INLINE New option in Enterprise COBOL 6.1 with the service PTFs and from 6.2 and later
versions and later versions. It controls the compiler to consider whether to inline
procedures referenced by PERFORM statements in the source program. INLINE is
a potential performance boosting option. Note that INLINE was always in effect in
COBOL 5.

INVDATA New option in Enterprise COBOL 6.2 with the service PTFs and from 6.3.
The option supercedes the deprecated ZONEDATA option. It tells the compiler
whether data in USAGE DISPLAY and PACKED-DECIMAL data items is valid, and if
not, what the behavior of the compiler should be.

To ease your migration to COBOL 5 or 6:

• If your digits, sign code, and zone bits are valid, use NOINVDATA and the same
NUMPROC setting that you used with COBOL 4 when using COBOL 5 or 6.

Note: If you used NUMPROC(MIG) in 4, it is no longer available in COBOL 5 or 6
and you should use NUMPROC(NOPFD) in this scenario instead.

• If you have invalid digits, invalid sign code, or invalid zone bits:

– If you used NUMPROC(MIG) with COBOL 4, use
INVDATA(FORCENUMCMP,NOCLEANSIGN) and NUMPROC(NOPFD) with
COBOL 5 or 6.

– If you used NUMPROC(NOPFD) with COBOL 4, use
INVDATA(NOFORCENUMCMP,CLEANSIGN) (or simply INVDATA) with COBOL
5 or 6.

– If you used NUMPROC(PFD) with COBOL 4, use
INVDATA(NOFORCENUMCMP,CLEANSIGN) (or simply INVDATA) with COBOL
5 or 6.

JAVAIOP New option from Enterprise COBOL 6.4. It controls the behavior of COBOL
programs that interoperate with Java though the JAVA-CALLABLE or JAVA-
SHAREABLE directives or by calling Java static methods using the CALL
statement.

LP New option from Enterprise COBOL 6.3. It indicates whether an AMODE 31 (31-
bit) or AMODE 64 (64-bit) program should be generated with the related language
features enabled. LP(32) is the default.

MAXPCF New option. It instructs the compiler not to optimize code if the program contains
a complexity factor greater than n.

• From Enterprise COBOL 5.1, MAXPCF(60000) is the default.
• From Enterprise COBOL 6.2, MAXPCF(100000) is the default.

NUMCHECK New option in Enterprise COBOL 5.2 with the service PTFs, 6.1 with the service
PTFs, and from 6.2. It controls whether to generate implicit numeric class tests
for zoned decimal and packed decimal data items that are used as sending data
items, and whether to generate SIZE ERROR checking for binary data items.

Chapter 17. Changes with Enterprise COBOL 5 and 6 189

Table 39. Compiler options new with Enterprise COBOL 5 and 6 (continued)

Compiler option Comments

PARMCHECK New option in Enterprise COBOL 6.1 with the service PTFs and from 6.2. It tells
the compiler to generate an extra data item following the last item in WORKING-
STORAGE. This buffer data item is then used at run time to check whether a called
subprogram corrupted data beyond the end of WORKING-STORAGE.

QUALIFY New option from Enterprise COBOL 5.2. It affects qualification rules and controls
whether to extend qualification rules so that some data items that cannot be
referenced under COBOL Standard rules can be referenced.

RULES New option from Enterprise COBOL 5.2. It requests information about your
program from the compiler to improve the program by flagging certain types of
source code at compile time.

SERVICE New option from Enterprise COBOL 5.2. It places a string in the object module if
the object module is generated.

SMARTBIN New option from Enterprise COBOL 6.4. It instructs the compiler to generate
modules containing additional binary metadata that enables them to be optimized
by IBM Automatic Binary Optimizer (ABO) for z/OS 2.2.

For details, see “SMARTBIN changes” on page 174.

SQLIMS New option in Enterprise COBOL 5.1 with the service PTFs, and from 5.2. It
enables the new IMS SQL coprocessor (called SQL statement coprocessor by
IMS). The new coprocessor handles your source programs that contain embedded
SQLIMS statements.

STGOPT New option. It controls storage optimization. NOSTGOPT is the default.

In Enterprise COBOL 5.1, 5.2, and 6.1, data items can get optimized with OPT(2)
even when NOSTGOPT was in effect. NOSTGOPT was changed in Enterprise
COBOL 6.1 with the service PTFs and from 6.2, so that no optimization of storage
or data items occurs even with OPT(2). This is especially helpful for WORKING-
STORAGE eye-catchers.

SUPPRESS New option from Enterprise COBOL 6.1. It controls whether to ignore the
SUPPRESS phrase of COPY statements.

TUNE New option from Enterprise COBOL 6.3 with the service PTFs. It specifies the
architecture for which the executable program will be optimized.

In Enterprise COBOL 6.4, TUNE(8) and TUNE(9) are removed, and a new higher
level of TUNE(14) is accepted.

The default TUNE level matches the ARCH level if ARCH is specified. If ARCH is
not specified, both ARCH and TUNE default to 10.

VLR New option in Enterprise COBOL 5.1 with the service PTFs and from 5.2. It
affects the READ statement processing of variable length records that have length
conflicts. VLR(STANDARD) is the default.

For details, see “Variable length records - wrong length READ” on page 204.

VSAMOPENFS New option from Enterprise COBOL 6.1. It affects the user file status reported
from successful VSAM OPEN statements that require verified file integrity check.

190 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 39. Compiler options new with Enterprise COBOL 5 and 6 (continued)

Compiler option Comments

XMLPARSE New option in Enterprise COBOL 5.1 with the service PTFs and from 5.2. It
enables you to choose between parsing with the compatibility-mode COBOL
XML parser from the COBOL library, or with the z/OS XML System Services
parser. It can ease your migration to the Enterprise COBOL 5 or 6 compilers.
XMLPARSE(XMLSS) is the default.

ZONECHECK New option in Enterprise COBOL 5.2 with the service PTFs and 6.1. It tells the
compiler to generate IF NUMERIC class tests for zoned decimal data items that
are used as sending data items.

In Enterprise COBOL 6.1 with the service PTFs and from 6.2, ZONECHECK is
deprecated but is tolerated for compatibility. Consider using NUMCHECK(ZON)
instead. For details, see NUMCHECK in the Enterprise COBOL for z/OS
Programming Guide.

ZONEDATA New option from Enterprise COBOL 5.2. It tells the compiler whether data in
USAGE DISPLAY and PACKED-DECIMAL data items is valid, and if not, what the
behavior of the compiler should be.

Originally, Enterprise COBOL 5.2 at base level did not have the NOPFD suboption.
In 5.2 with the service PTFs and from 6.1, the NOPFD suboption is added to let
the compiler generate code that performs comparisons of zoned decimal data in
the same manner as COBOL 4 does when using NUMPROC(NOPFD|PFD) in COBOL
4.

To ease your migration to COBOL 5 or 6:

• If your digits, sign code, and zone bits are valid, use ZONEDATA(PFD) and the
same NUMPROC setting that you used with COBOL 4 when using COBOL 5 or 6.

• If you have invalid digits, invalid sign code, or invalid zone bits:

– If you used NUMPROC(MIG) with COBOL 4, use ZONEDATA(MIG) and
NUMPROC(NOPFD) with COBOL 5 or 6.

– If you used NUMPROC(NOPFD) with COBOL 4, use ZONEDATA(NOPFD) and
NUMPROC(NOPFD) with COBOL 5 or 6.

– If you used NUMPROC(PFD) with COBOL 4, use ZONEDATA(NOPFD) and
NUMPROC(PFD) with COBOL 5 or 6.

Note: In Enterprise COBOL 6.2 and 6.3 with the service PTFs, ZONEDATA is
deprecated but is tolerated for compatibility. Consider using INVDATA instead.
For more details, see INVDATA in the Enterprise COBOL for z/OS Programming
Guide.

For new compiler options in Enterprise COBOL 6, see Compiler options new with Enterprise COBOL 6.

The following options are modified:

Table 40. Compiler options changed with Enterprise COBOL 5 and 6

Compiler option Comments

CURRENCY From Enterprise COBOL 6.3, the literal argument to the CURRENCY option can no
longer be the character 'U' or the character 'u'.

EXIT The EXIT compiler option is no longer mutually exclusive with the DUMP compiler
option, and the compiler exits rules are updated.

Chapter 17. Changes with Enterprise COBOL 5 and 6 191

Table 40. Compiler options changed with Enterprise COBOL 5 and 6 (continued)

Compiler option Comments

INITCHECK In Enterprise COBOL 6.1 with the service PTFs, 6.2 with the service PTFs, and
from 6.3 with the service PTFs, new suboptions LAX | STRICT are added to the
INITCHECK option to control whether the compiler will issue warning messages
for data items unless they are initialized on at least one, or on all, logical paths to
a statement.

LANGUAGE

To change to uppercase English or Japanese compiler messages in COBOL 6, in
addition to using the LANGUAGE compiler option, you must also set the Language
Environment runtime option NATLANG at compile time. We recommend using
CEEOPTS DD in the compile JCL.

For example, to change messages to Japanese, use the LANGUAGE(JA) compiler
option and also specify the NATLANG LE runtime option at compile time:

//CEEOPTS DD *
 NATLANG(JPN)
/*

MAP In Enterprise COBOL 5.1 with the service PTFs and from 5.2, new suboptions HEX
| DEC are added to the MAP compiler option to control whether hexadecimal or
decimal offsets are shown for MAP output in the compiler listing.

Previous versions of Enterprise COBOL always showed hexadecimal offsets in
MAP output, but Enterprise COBOL 5.1 at base level originally showed decimal
offsets for MAP output. From Enterprise COBOL 5.1 with the service PTFs, new
suboptions HEX and DEC are added to the MAP option. If MAP is specified with no
suboption, it will be accepted as MAP(HEX).

This will give you the same behavior in Enterprise COBOL 5 or 6 as in earlier
COBOL compilers. Thus, it can ease your migration to Enterprise COBOL 5 or 6
compilers.

MDECK The MDECK option no longer has a dependency on the LIB option, as the compiler
behaves as though the LIB option is always enabled.

NORENT NORENT can no longer be used with RMODE(ANY).

Execution of NORENT programs above the 16 MB line is not supported.

NOSTGOPT

• From Enterprise COBOL 5.1, data items can get optimized with OPT(2) even
when NOSTGOPT was in effect.

• In Enterprise COBOL 6.1 with the service PTFs and from 6.2, NOSTGOPT was
changed so that no optimization of storage or data items occurs even with
OPT(2). This is especially helpful for WORKING-STORAGE eye-catchers.

NUMCHECK From Enterprise COBOL 6.3, when invalid data is found at compile time and
regardless of whether NUMCHECK(MSG) or NUMCHECK(ABD) is in effect, an error-
level message is produced and the check is removed.

192 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 40. Compiler options changed with Enterprise COBOL 5 and 6 (continued)

Compiler option Comments

OPTIMIZE The OPTIMIZE option is modified to allow more levels of performance
optimization for your application. The previous OPTIMIZE option format is
deprecated but is tolerated for compatibility.

Note: Although OPT(0) is equivalent to the NOOPTIMIZE option in previous
compilers, it now removes some code that previously was not removed.

The storage optimization provided by the old FULL suboption of OPT is now
provided by the new compiler option STGOPT.

RMODE(ANY) RMODE(ANY) can no longer be used with NORENT.

RULES In Enterprise COBOL 6.2 with the service PTFs and from 6.3, the following new
suboptions are added to the RULES compiler option:

• OMITODOMIN | NOOMITODOMIN tells the compiler whether to issue warning
messages for any OCCURS DEPENDING ON clauses that are specified without
integer-1 (the minimum number of occurrences).

• UNREF | NOUNREFALL | NOUNREFSOURCE tells the compiler whether to
issue warning messages for unreferenced data items, and to control whether
the reporting is done only for data items not declared in a copy member
(NOUNREFSOURCE) or all data items (NOUNREFALL).

• LAXREDEF | NOLAXREDEF tells the compiler whether to issue warning
messages when a data item is redefined to a smaller item on any level.

From Enterprise COBOL 6.4, if there are multiple RULES specifications for a
compilation, the suboptions are additive, which means they are accumulated.

SOURCE From Enterprise COBOL 6.3 with the service PTFs, new suboptions DEC | HEX
are added to SOURCE compiler option. If SOURCE(DEC) is in effect, the line
numbers for the listing of the source will be in decimal format. If SOURCE(HEX)
is in effect, the line numbers for the listing of the source will be in hexadecimal
format.

SSRANGE The compiled-in range checks cannot be disabled at run time using the runtime
options CHECK(OFF) or NOSSRANGE.

In Enterprise COBOL 5.2 with the service PTFs and from 6.1, new suboptions
ZLEN | NOZLEN are added to the SSRANGE compiler option to control how the
compiler checks reference modification lengths.

In Enterprise COBOL 6.1 with the service PTFs and from 6.2, new suboptions MSG
| ABD are added to the SSRANGE compiler option to control the runtime behavior
of the COBOL program when a range check fails.

Note: The compiler option NOSSRANGE is still supported.

Chapter 17. Changes with Enterprise COBOL 5 and 6 193

Table 40. Compiler options changed with Enterprise COBOL 5 and 6 (continued)

Compiler option Comments

TEST

• From Enterprise COBOL 5.1, the HOOK | NOHOOK and SEPARATE |
NOSEPARATE suboptions of the TEST compiler option have been removed. If
specified,

– HOOK - compiled in hooks are not available.
– NOHOOK - NOHOOK behavior is always in effect
– SEPARATE - Compiler always places debugging info in object
– NOSEPARATE - NOSEPARATE behavior is always in effect

New suboptions SOURCE and NOSOURCE are added to the TEST compiler
option.

Note: EJPD and NOEJPD subotions are still supported. With Debug Tool 12 with
APAR PM75819 or Debug Tool 13 or later, you can do JUMPTO or GOTO even if
you compile with the TEST(NOEJPD) option and a non-zero OPTIMIZE level. You
must, however, use the Debug Tool command SET WARNING OFF and you may
get unpredictable results.

The NOTEST option is enhanced to include the suboptions DWARF | NODWARF.

Note: Even though DWARF debugging information is always placed in the
object program as NOLOAD segments, these NOLOAD segments will not take
storage at runtime, unless Debug Tool, CEEDUMP, Fault Analyzer, Application
Performance Analyzer or a 3rd-party vendor tool that uses DWARF debugging
data is used

• From Enterprise COBOL 6.2, new suboptions SEPARATE | NOSEPARATE are
added to the TEST compiler option to control program object size on disk while
retaining debugging capability. In addition, new combinations of suboptions
are supported in both the TEST and NOTEST compiler options, including
TEST(NODWARF), TEST(SEPARATE), and NOTEST(DWARF,SOURCE).

For modified compiler options in Enterprise COBOL 6, see Compiler option changed with Enterprise
COBOL 6.

The following options are removed:

Table 41. Compiler options not available in Enterprise COBOL 5 and 6

Compiler option Comments

DATEPROC Support for Year 2000 extensions has been removed.

LVLINFO From Enterprise COBOL 6.1, the LVLINFO installation option is removed. The build
level information is put where LVLINFO used to be, and the SERVICE compiler
option can be used for user service level information in place of LVLINFO.

NOLIB Compiler behaves as though LIB is always in effect.

194 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 41. Compiler options not available in Enterprise COBOL 5 and 6 (continued)

Compiler option Comments

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If NUMPROC(MIG) is
specified, Enterprise COBOL 5 or 6 issues a warning message and the compilation
will get the default setting for NUMPROC. This is either the user-customized
default or the IBM default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to Enterprise COBOL
6, consider using the NUMCHECK compiler option to help you migrate to
NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and NUMPROC(PFD).
2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK abends, you can
safely compile with NUMPROC(PFD) and NONUMCHECK for production. This will
not only solve the invalid data problem, but NUMPROC(PFD) is the most efficient
setting for the NUMPROC compiler option.

For details, see NUMCHECK in the Enterprise COBOL for z/OS Programming Guide.

SIZE

• In Enterprise COBOL 5.1, the SIZE option value is no longer an upper-limit for
the total storage used by a COBOL compilation. In addition, the SIZE suboption
value MAX is no longer supported. The default value for the SIZE option is
SIZE(5000000). For more information about compiler memory requirements,
see “Changes in compiling with Enterprise COBOL 5 and 6” on page 196.

• From Enterprise COBOL 5.2, the SIZE option has been removed.

YEARWINDOW Support for Year 2000 extensions has been removed.

ZONECHECK In Enterprise COBOL 6.1 with the service PTFs and from 6.2, ZONECHECK
is deprecated but is tolerated for compatibility, and it is replaced by
NUMCHECK(ZON).

For removed compiler options in Enterprise COBOL 6, see Compiler option not available in Enterprise
COBOL 6.

The following options were obsolete in Enterprise COBOL 4, but were tolerated with informational or
warning messages to ease migration from 3 or prior versions. With Enterprise COBOL 5 and 6, these
options are no longer tolerated, and specifying any of them will result in an error message.

• CMPR2
• EVENTS
• FDUMP
• FLAGSAA
• PFDSIGN
• RES

For a detailed list of options supported for the various compiler versions, see Appendix E, “Option
comparison,” on page 297.

For a detailed list of compiler options that can affect performance, see How to tune compiler options to get
the most out of COBOL 6 in the Enterprise COBOL Performance Tuning Guide.

For detailed descriptions of all the compiler options, see Compiler options in the Enterprise COBOL
Programming Guide.

Chapter 17. Changes with Enterprise COBOL 5 and 6 195

Changes in compiling with Enterprise COBOL 5 and 6
There are a number of changes to Enterprise COBOL 5 and 6 that result in different behaviors.

The COBOL runtime library, the Language Environment component of z/OS, must now be available at
compilation time. In addition, Language Environment must be updated with the APAR fixes (PTFs) for
compiling programs with Enterprise COBOL 5 or 6 and for running programs that were compiled with
Enterprise COBOL 5 or 6. For details about prerequisite software levels and required maintenance, see
“Prerequisite software and service for Enterprise COBOL 5 and 6” on page 183.

Compile-time storage requirements are substantially increased compared to prior versions of Enterprise
COBOL. The compiler requires a minimum of 200 M region size to run. In Enterprise COBOL 5.1, the
compiler option SIZE(MAX) is no longer supported, but gets tolerated and interpreted as SIZE(5000K).
Your SIZE option setting should be in the range of 5000 K to 20000 K for 5.1.

It is not necessary to specify a high SIZE value for every large program. You must raise the default
SIZE value only when you encounter this error message during compilation: IGYPG5062-U THERE WAS
INSUFFICIENT STORAGE FOR COMPILER PROCESSING. This message indicates that the compiler
front end has run out of memory while still processing the program, and you must use the SIZE option to
allocate more memory for the front end.

However, note that the memory allocated to the front end using the SIZE option is not available to
later phases of the compilation. Therefore, carefully calibrate the SIZE value to avoid depriving the
code generation and optimization steps of memory. Otherwise, the compiler might abend in those later
phases with the following message: IGYCB7145-U INSUFFICIENT MEMORY IN THE COMPILER TO
CONTINUE COMPILATION.

In Enterprise COBOL 5.2 and later, the compiler option SIZE is no longer supported. Your region size must
also be at least 200 M. The region size must be large especially at higher optimization levels, that is,
programs compiled with the OPT(1) or OPT(2) compiler option.

Note: If you get unexpected compiler abends or this message: IEW4000I FETCH FOR MODULE IGYCBE
FROM DDNAME STEPLIB FAILED BECAUSE INSUFFICIENT STORAGE WAS AVAILABLE, make sure
that your region size is at least 200 M. REGION=0M in JCL gives you the maximum amount allowed by the
JES system defaults set up by your system programmer. It may be less than needed. In that case your
system programmer must increase the user limit of region size.

In Enterprise COBOL 6, the compiler starts using storage above the 2 GB BAR to compile programs,
even those that are not large. This means that the z/OS MEMLIMIT parameter would have to be set to a
nonzero value. The z/OS default for MEMLIMIT is 2 GB, but if you compile a program and your z/OS setting
for MEMLIMIT is not high enough, you could get this compiler message: IGYCB7145-U Insufficient
memory in the compiler to continue compilation. If you encounter this error message, set
REGION=0M and MEMLIMIT=3G on the job card and recompile your programs. If it is successful, consider
changing the system MEMLIMIT default that was set in IEFUSI, SMFPRMxx, or SMFLIMxx to no less than
2 GB.

Note: The SMFLIMxx PARMLIB member is only available in z/OS 2.2 and later versions.

Consider also the following changes:

• The Language Environment member ID for Enterprise COBOL 5.1 or later is 4 (The member ID for all
previous COBOL versions was 5).

• Compile-time CPU time requirements are substantially increased, compared to prior versions of
Enterprise COBOL. The compiler may take more than five times as long to compile as the older
compilers.

• Compile time and run time diagnostic messages might differ, and might be generated at different times
or locations.

– Presence or absence of informational and warning level diagnostic messages might differ
– Diagnostic messages for programs that define excessive and unsupported amounts of storage might

be issued either by the binder at bind time, or by Language Environment at run time, instead of by the
compiler at compilation time.

196 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• The compiler output is in GOFF format. This format allows the compiler to create more efficient
generated code and also to put out the NOLOAD debug information (DWARF) segments.

• There is no SYSDEBUG data set created for debug information.
• Compiler listing format and contents differ from prior versions of Enterprise COBOL. You can find details

on these changes in the Enterprise COBOL Programming Guide.
• Starting in Enterprise COBOL 6.1, the build level information (of the form PYYMMDD) is always included

in the header of the listing file, which assists with determining the maintenance level of the compiler.
Here is an example of the listing header:

PP 5655-EC6 IBM Enterprise COBOL for z/OS 6.4.0 PXXXXXX

• In Enterprise COBOL 5 and 6.1, the diagnostic messages are in the middle of the listing. In Enterprise
COBOL 6.2 and later versions, the diagnostic messages are at the bottom of the listing as with
Enterprise COBOL 4 and earlier compilers.

• Several compiler limits are increased with Enterprise COBOL 5 and 6. For details, see Appendix F,
“Compiler limit comparison,” on page 321.

• Starting in Enterprise COBOL 6.3, listing terminologies change as follows:

– STATIC MAP in Enterprise COBOL 6.2 and earlier versions is changed to INITIAL HEAP STORAGE
MAP.

– Writeable static area (WSA) in Enterprise COBOL 6.2 and earlier versions is changed to storage.
– WSA24 in Enterprise COBOL 6.2 and earlier versions is changed to BELOW THE LINE STORAGE.
– AUTOMATIC MAP in Enterprise COBOL 6.2 and earlier versions is changed to STACK STORAGE MAP.

• Starting in Enterprise COBOL 6.3, the installation customization for placing compiler phases into shared
storage is removed, since in modern systems most users have lots of storage available, and do not need
to conserve storage by placing compiler phases in shared storage. As a result of this change to the
compiler, the language for placing compiler phases in shared storage is no longer supported, so if you
have a saved copy of the IGYCDOPT customization that has a specification of compiler phases being IN
or OUT of shared storage, that language must be removed before you can assemble IGYCDOPT. If you do
not have any statements in IGYCDOPT that specify IN or OUT for compiler phases, then you will not be
affected by this change.

• The use of passing a file-name to a subprogram with the USING phrase of the CALL statement was
removed in Enterprise COBOL 6.3, but is restored in Enterprise COBOL 6.3 with PTF for APAR PH20724
installed.

• Starting in Enterprise COBOL 6.4 with PTF for APAR PH56142 installed, when compiling under z/OS
UNIX, you can use the cob2 -M option to generate a make dependency file, file.u. This file contains
entries for each copybook file that resides in a z/OS UNIX file system and is referenced in your COBOL
source file.

If you are using IBM Enterprise COBOL Value Unit Edition (VUE) for z/OS 5.2 and later versions, you
cannot invoke the compiler multiple times from the same task (for example, invoking the compiler
multiple times from the same task by using the MVS LINK macro).

Compiler output to uninitialized data sets not supported
There are a couple of cases where the compiler fails if it tries to write to uninitialized data sets.

Sequential data sets
With Enterprise COBOL 4 and earlier, the compiler could write to a pre-allocated object file with no
specific attributes from a previous compile step. This is not possible with Enterprise COBOL 5 and 6.

Chapter 17. Changes with Enterprise COBOL 5 and 6 197

For example, with Enterprise COBOL 4, the compiler could write to a pre-allocated data set with no
specified attributes (DISP=MOD) from a previous step. When the compiler had written to the data set, it
had the following attributes:

RECFM=FB LRECL=80 BLKSIZE=3200 DSORG=PS

With Enterprise COBOL 5 and 6, the attributes are not changed and the attempt to write to the file fails.

The file attributes will be

RECFM=U LRECL=** BLKSIZE=6144 DSORG=PS

This is not valid input to the binder.

To address this, you can provide data control block (DCB) information as follows on the preallocation:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

PDS or PDSE data set

With earlier versions of Enterprise COBOL, the compiler could write to a pre-allocated PDS object file with
no specific attributes from a previous compile step. This is not supported with Enterprise COBOL 5 and 6.

For example, with Enterprise COBOL 4, the compiler could write to a pre-allocated PDS or PDSE with no
specified attributes (DISP=MOD) from a previous step. The compiler will create an object file of attributes:

RECFM=FB LRECL=80 BLKSIZE=3200 DSORG=PO

With Enterprise COBOL 5 and 6, DISP=MOD is not supported for PDS or PDSE data sets.

If the PDS has undefined format (such as ouput from a previous step with no DCB), and you use
DISP=SHR or DISP=OLD, Enterprise COBOL 5 will write but will not change the attributes. They will
be left as:

RECFM=U LRECL=** BLKSIZE=6144 DSORG=PO

which is not valid input to the binder.

To fix this, specify DCB information on the allocation step as:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

Do not use DISP=MOD. Use only DISP=SHR or DISP=OLD.

JCL and packaging changes for Enterprise COBOL 5 and 6
There have been a number of changes to the packaging, installation and JCL with Enterprise COBOL 5 and
6.

Changes that apply to Enterprise COBOL 5 and 6
The SIGYCOMP data set is now a PDSE, rather than a PDS data set as in prior versions.

Enterprise COBOL 5 and 6 requires additional data sets:

• When compiling under z/OS TSO or batch, the COBOL compiler now requires 15 utility data sets,
SYSUT1 to SYSUT15

• The SYSMDECK data set is now required for all compilations. SYSMDECK may be specified as a utility
(temporary) data set if the NOMDECK option is specified. When MDECK is specified, the SYSMDECK DD
allocation must specify a permanent data set.

• The alternate DDNAME list parameter, used when the COBOL compiler is invoked from an assembly
language program, is expanded with entries for the additional work data sets.

198 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

The following JCL cataloged procedures are no longer supported, and have been deleted with Enterprise
COBOL 5 and 6. Because they all use the Language Environment Prelinker or the DFSMS Loader, which are
no longer supported for use with Enterprise COBOL 5 and 6.

• IGYWCG
• IGYWCPG
• IGYWCPL
• IGYWCPLG
• IGYWPL

The catalogued procedures that ship with Enterprise COBOL 5 and 6 have been modified.

• IGYWC
• IGYWCL
• IGYWCLG

Changes that apply to Enterprise COBOL 6
To change to uppercase English or Japanese compiler messages in COBOL 6, in addition to using the
LANGUAGE compiler option, you must also set the Language Environment runtime option NATLANG at
compile time. We recommend using CEEOPTS DD in the compile JCL.

For example, to change messages to Japanese, use the LANGUAGE(JA) compiler option and also specify
the NATLANG LE runtime option at compile time:

//CEEOPTS DD *
 NATLANG(JPN)
/*

Starting in Enterprise COBOL 6.3, new cataloged procedures for doing compilation have been provided to
help developing COBOL AMODE 64 (64-bit) programs. The AMODE 64 support is a new feature introduced
to Enterprise COBOL 6.3. See Developing AMODE 64 programs (Enterprise COBOL for z/OS Programming
Guide) for details about AMODE 64 support.

Compilation restrictions for user-written condition handlers with Enterprise
COBOL 5 and 6

Refer to the restrictions for user-written condition handlers with Enterprise COBOL 5 and 6, and the
differences between COBOL 5.1 and 5.2.

User-written condition handlers with Enterprise COBOL 5.1
With Enterprise COBOL 5.1, all COBOL programs in an application that use the Language Environment
service CEEHDLR to register a user-written condition handler must be compiled with one of the following
configurations of compiler options:

• OPTIMIZE(0)
• OPTIMIZE(1) and TEST
• OPTIMIZE(2) and TEST

Use of user-written condition handling services is incompatible with the advanced optimizations done
with OPTIMIZE(1) or OPTIMIZE(2) and NOTEST, and can cause unpredictable results. You must specify
the TEST option along with OPTIMIZE(1) or OPTIMIZE(2), which reduces the amount of optimization
performed.

User-written condition handlers with Enterprise COBOL 5.2 and 6
With Enterprise COBOL 5.2 and 6, a new VOLATILE clause is added to the format 1 data description
entry, which helps to address issues with using higher levels of optimization for programs that use

Chapter 17. Changes with Enterprise COBOL 5 and 6 199

Language Environment (LE) condition handlers registered via the LE service CEEHDLR. When OPTIMIZE(1)
or OPTIMIZE(2) is used without the TEST compiler option for such programs, care must be taken. In
particular, if a condition handler program accesses data items that are not defined local to the condition
handler program itself (for example, data items defined in the application as EXTERNAL), such data items
must be defined with the VOLATILE clause in every program where a condition can occur. Otherwise, the
handler program might not use the latest value of the data item. In this case, the use of the VOLATILE
clause is preferred over the use of the TEST option for performance considerations.

For condition handler scenarios that also use the SERVICE LABEL compiler-directing statement with
the LE service CEE3SRP to set a resume point, the optimization of such programs can be significantly
reduced.

Note: VOLATILE is now a reserved word in Enterprise COBOL. Existing programs that use VOLATILE as a
user-defined word (for example, as a data name or paragraph name) will get S-level diagnostic messages
with Enterprise COBOL 5.2 and 6. You must change these instances of VOLATILE to other words such as
VOLATILE-X, or you can use the CCCA utility to do it for you.

For more information about the VOLATILE clause, see VOLATILE clause in the Enterprise COBOL for z/OS
Language Reference.

Binding (link-editing) changes with Enterprise COBOL 5 and 6
There have been a number of changes to binding (link-editing) Enterprise COBOL 5 or 6 programs.

• The DFSMS Program Management Binder must be used to bind (link-edit) Enterprise COBOL 5 or 6
applications.

• The Language Environment Prelinker can no longer be used, because it doesn't understand the
GOFF object format. The transformations that the Prelinker does on prior object module formats
are incompatible with program object features. Using the Language Environment Prelinker for any
component of an executable which involves Enterprise COBOL 5 or 6 applications will yield the
undefined behavior.

• Executables are program objects, not load modules. The batch loader (IEWBLDGO) cannot be used to
produce a program module in a partitioned data set or a PDSE, because it doesn't understand the GOFF
object format or program object formats. Alternatively, the Program Management Loader can support
programs in PDSE data sets.

• Executables cannot reside in PDS (only in PDSE) data sets.
• NOLOAD segments will not take storage at run time, unless Debug Tool, CEEDUMP, Fault Analyzer,

Application Performance Analyzer or a 3rd-party vendor tool that uses DWARF debugging data is used
• When a program object contains any of the following programs, the binder option RMODE(24) must be
specified:

– An Enterprise COBOL program that is compiled with the RMODE(24) or NORENT compiler options.
– A VS COBOL II program that is compiled with the NORENT option.
– An assembler program that contains a CSECT with RMODE 24.
– COBOL programs compiled with a compiler earlier than COBOL 5 that run with AMODE 24 and

statically call a COBOL program compiled with COBOL 5 or later.

Changes at run time with Enterprise COBOL 5 and 6
There are a number of changes to runtime behavior with Enterprise COBOL 5 and 6.

If a z/OS system does not have Language Environment PTFs installed to support Enterprise COBOL 5 or 6
programs, you cannot run Enterprise COBOL 5 or 6 programs on that system.

• Runtime option changes. For details, see “Language Environment option changes” on page 203.
• Interoperability. Enterprise COBOL 5 and 6 has some restrictions with interoperability with older

versions of COBOL. For details, see “Interoperability with older levels of IBM COBOL programs” on
page 21.

200 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• Invalid data might get different results with COBOL 5 and 6 than in earlier COBOL versions. Some users
have found that they get different results with the newer compilers than with previous compilers, and/or
that they get different results with different OPT or ARCH settings. These are normally due to invalid
data that is brought into the COBOL programs at run time. One way to find out whether your programs
will have this problem is to follow our new migration recommendation:

1. Compile with SSRANGE, NUMCHECK, PARMCHECK, INITCHECK, and OPT(0), and then run
regression tests.

2. Check whether there are any problems:

– If no problems found, recompile with NOSSRANGE, NONUMCHECK, NOPARMCHECK, and OPT(2);
then run a final test and move the application into production.

– If problems are found, then either correct the programs and or data, or in the case of bad data in
zoned decimal data items, use the INVDATA compiler option to tolerate the invalid data.

Both INITCHECK and NUMCHECK options are available in Enterprise COBOL 6.2, 6.1, and 5.2 with
current service applied.

Note: You do not have to do this extra testing for programs that have already been compiled with
Enterprise COBOL 5 or 6.

• In a rare scenario, valid data using COMPUTE and ROUNDED may return different results with Enterprise
COBOL 5 and 6 as compared to earlier COBOL versions.

In this scenario, if the last operation on a COMPUTE statement with ROUNDED is either addition or
subtraction, and if an operand for that operation has a decimal precision that is different from the
decimal precision for the intermediate result of that computation, then the operand may require
shifting, and if a right-shift is performed, and results in a loss of decimal precision for the operand,
then the value of that operand will be rounded before the operation is performed. In some cases, based
on the data value, this can give different results between Enterprise COBOL and earlier compilers. As
is always the case, we recommend regression testing to verify that the results of any computations are
correct after migrating.

• All of the AMODE and RMODE scenarios supported by Enterprise COBOL 4 are now supported with 5
and 6, except that programs compiled with the NORENT compiler option must be RMODE 24. After
binding, executable COBOL programs can have any of the following combinations of AMODE and RMODE
attributes:

– AMODE 31 and RMODE ANY
– Either AMODE ANY or AMODE 31, and RMODE 24
– AMODE 24 and RMODE 24

The resolved AMODE and RMODE settings depend on the COBOL language constructs used, the
compiler options specified, the binder options specified, and the AMODE and RMODE attributes of the
input object modules that are bound into the executable module.

• In some cases, AMODE 24 execution is not supported and the applications must run in AMODE 31. For
details, see “Restrictions for AMODE” on page 203.

• For applications compiled with Enterprise COBOL 5 or 6, the compiled-in range checks cannot be
disabled at run time using the runtime option CHECK(OFF) or NOSSRANGE .

• The ILBOABN0 interface for requesting an ABEND in a COBOL environment can be called dynamically
with Enterprise COBOL 5 and later versions. When called by a program compiled with the Enterprise
COBOL compiler, it will have the same result as calling CEE3ABD using ACTION code 1.

You are strongly recommended to migrate and use the CEE3ABD interface, because the CEE3ABD
interface provides extra flexibility to control the level of details provided in the CEEDUMP produced.

When your application is called by Enterprise COBOL programs, it might ABEND in an unexpected way
if it has an older version of ILBOABN0 (before LE's SCEELKED) statically linked. To fix the unexpected
ABEND, you can follow one of the suggestions below:

– Migrate to CEE3ABD.

Chapter 17. Changes with Enterprise COBOL 5 and 6 201

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceea300/cee3abd.htm

– Relink your application with REPLACE ILBOABN and resolve the reference against the LE SCEELKED
library. (ILBOABN0 is an alias of ILBOABN.)

– Change the COBOL program to use dynamic call for ILBOABN0.
• The IGZERRE and ILBOSTP0 interfaces for managing a reusable COBOL environment are not supported

for applications containing programs compiled with Enterprise COBOL 5 or 6.
• The IGZBRDGE macro, for converting static calls to dynamic calls, is not supported for programs

compiled with Enterprise COBOL 5 or 6.
• A new compiler option, VLR(COMPAT|STANDARD), controls how Enterprise COBOL handles conflicts

with record length in READ statements for variable-length record files. For details, see “Variable length
records - wrong length READ” on page 204.

• VSAM record areas for reentrant COBOL programs are allocated above 16 MB, by default. Programs
that pass data in VSAM file records as CALL … USING parameters to AMODE 24 subprograms may
be impacted. Such programs can be recompiled with the DATA(24) compiler option, or the Language
Environment HEAP() option can be used, to ensure that the records are addressable by the AMODE 24
programs.

• CICS System Definition (CSD) file might need to be updated to include Enterprise COBOL 5 and 6
runtime modules. For details, see “CSD setup differences with Enterprise COBOL 5 and 6” on page 229.

• When COBOL programs perform an IEEE (decimal or binary) floating point division-by-zero operation,
the division operation raises an IEEE divide-by-zero exception. For details, see “Using object oriented
COBOL or interoperating with C programs” on page 207.

For COBOL 5 and later, procedure and function pointers point to a function descriptor rather than directly
to the entry point. If your code expects these pointers to point directly to the entry point, for example of
a data-only module, this requires a code change. For details, see Using procedure and function pointers
(Enterprise COBOL for z/OS Programming Guide).

For COBOL 5 and later, calls to procedure and function pointers must be from a module with an LE stack
frame, which is the case for any high-level programming language. If such a call is to be made from an
assembler module, an LE stack frame must be provided by using the CEEENTRY and CEETERM macros,
along with the associated register content requirements.

Changes that apply to Enterprise COBOL 6 only
• In some cases, the STORAGE runtime option cannot be used to initialize WORKING-STORAGE to a

chosen value at startup. These cases are:

– COBOL 6 programs with spanned (RECORDING MODE S) files
– Non-CICS COBOL 5 programs compiled with DATA(31)

• File status changes in 6:

– WRITE statement on line-sequential file with a record size mismatch.

In prior releases of Enterprise COBOL, when an attempt is made to write a record to a line-sequential
file with mismatched record size, file status 48 is incorrectly returned. This is corrected in Enterprise
COBOL 6 to return file status 44.

– OPEN INPUT on a line-sequential file when the UNIX file attribute is write-only.

In prior releases of Enterprise COBOL, an OPEN statement with the INPUT phrase on a
line-sequential file that has the write-only attribute, such as a z/OS UNIX file with DD
PATHOPTS=(OWRONLY,...) or a COBOL program that has the write access permission only, incorrectly
returned file status 0 (successful). An OPEN statement attempted on a file that does not support the
open access mode should return file status 37.

Note: "write-only" here does not mean the APPLY WRITE-ONLY clause that is not applicable to
line-sequential files. Line-sequential files are files created in the z/OS UNIX file system.

In Enterprise COBOL 6, this OPEN statement is detected with file status 37.
– OPEN INPUT, I-O, EXTEND on VSAM file with file attributes mismatch.

202 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

In prior releases of Enterprise COBOL, when an OPEN INPUT, I-O or EXTEND statement is attempted
on a VSAM file that is not defined as OPTIONAL, and a file attributes mismatch is detected, file status
35 is incorrectly returned. This is corrected in Enterprise COBOL 6 to return file status 39.

Note:

- Similar file attributes mismatch condition for OPEN OUTPUT, and for OPEN INPUT, I-O, and EXTEND
when the VSAM file is defined as OPTIONAL, are already correctly reported as file status 39.

- Starting from Enterprise COBOL 6.3, when using the LP(64) option, the compilation process
includes a component that runs in POSIX(ON) mode. This implies that there must be an OMVS
Segment established in RACF (or equivalent in RACF alternatives) for each user executing the
compiler with this option.

• Enterprise COBOL 6 introduces an optional alternate logic path for VSAM files that use the ACCESS IS
DYNAMIC mode. The alternate logic path uses a direct read-by-key request instead of a point to a record
by key. For details, see "VSAM dynamic access optional logic path" in the Enterprise COBOL Performance
Tuning Guide.

• The VSAM dynamic access read option VSAMDYNAMICDIR and the COBOL runtime options
report disabling option DISABLEUOPTREPORT are added. For details, see "VSAMDYNAMICDIR" and
"DISABLEUOPTREPORT" in the Enterprise COBOL Performance Tuning Guide.

Language Environment option changes
There have been a number of changes to runtime options for Enterprise COBOL 5 and 6 programs.

The following options have different behavior for programs compiled with Enterprise COBOL 5 or 6.

Table 42. Runtime option changes with Enterprise COBOL 5 and 6

Option Comments

HEAP • With COBOL 5, in some cases under non-CICS (such as batch, TSO, or IMS),
WORKING-STORAGE space (for programs compiled with RENT) is not acquired
from HEAP and therefore the HEAP (and STORAGE) option has no effect on it.

WORKING-STORAGE under non-CICS is not acquired from HEAP when the
COBOL 5 program is statically linked to a C, C++ or PL/I program and the main
entry point of the program object is not COBOL 5.

• With COBOL 6 and later, WORKING-STORAGE space (for programs compiled
with RENT) is acquired from HEAP. Therefore, the HEAP (and STORAGE) option
does have an effect on it.

CHECK(OFF) CHECK(OFF) does not disable runtime subscript range checking for COBOL 5 or 6
programs compiled with SSRANGE.

NOSSRANGE The NOSSRANGE runtime option does not disable runtime subscript range
checking for COBOL 5 or 6 programs compiled with SSRANGE.

Note: The NOSSRANGE compiler option is still fully supported.

STORAGE In a few special cases with COBOL 5, STORAGE initial values for HEAP no longer
affect WORKING-STORAGE initial values. For details about the cases, see the
discussion of the HEAP option above.

Restrictions for AMODE
AMODE 24 execution is not supported in the following cases, and the applications must run in AMODE 31.
This is the same set of AMODE 24 restrictions as COBOL 3 and 4.

• Programs containing XML PARSE statements
• Programs containing XML GENERATE statements

Chapter 17. Changes with Enterprise COBOL 5 and 6 203

• Program objects containing COBOL bound together with C, C++, or PL/I programs, and communicating
via static CALL

• Programs containing object-oriented language syntax, such as INVOKE statements, or object-oriented
class definitions

• Programs compiled with any of the following compiler options:

– DLL
– PGMNAME(LONGUPPER)
– PGMNAME(LONGMIXED)

• Multithreaded applications

Note: A program compiled with the THREAD option can run in AMODE 24, but only in an application that
does not have multiple threads or PL/I tasks.

• Programs run from the z/OS UNIX file system

Note: An AMODE 31 driver program resident in the z/OS UNIX file system can contain a dynamic call to
an AMODE 24 program module resident in an MVS PDSE.

• Programs used as COBOL compiler exit modules that are specified on the EXIT compiler option
• Language Environment enclaves that use XPLINK, including either the enclaves that contain non-

COBOL programs compiled with the XPLINK compiler option, or run with the XPLINK runtime option

Note: To run COBOL programs with addressing mode 24, you must compile all COBOL programs with
Enterprise COBOL 5.1.1, or later versions; or Enterprise COBOL 4.2 or earlier versions. If any component
of a program object is compiled with Enterprise COBOL 5.1.0, the program object must run in addressing
mode 31. COBOL programs that run with addressing mode 24 must be linked with the binder option
RMODE(24).

Variable length records - wrong length READ
Originally, Enterprise COBOL 5.1 changed the behavior for wrong length READ compared to previous
COBOL compilers; but for Enterprise COBOL 5.1 with current service applied, 5.2, and later versions, that
behavior can be changed via a new compiler option, VLR(COMPAT|STANDARD) that was introduced to
control whether you get the original standard-conforming behavior of COBOL 5.1 without service applied,
or the behavior that is compatible with earlier COBOL compilers. It eases your migration from earlier
versions to Enterprise COBOL 5 and 6, if your programs have READ statements that result in a record
length conflict.

The 85 COBOL standard specifies the following rules as part of the processing of READ statements: "If
the number of character positions in the record that is read is less than the minimum size specified by
the record description entries for the file, the portion of the record area which is to the right of the last
valid character read is undefined. If the number of character positions in the record that is read is greater
than the maximum size specified by the record description entries for file-name-1, the record is truncated
on the right to the maximum size. In either of these cases, the READ statement is successful and an I-O
status value of 04 is set indicating that a record length conflict has occurred."

This logic was correctly implemented in VS COBOL II, COBOL/370, COBOL for MVS & VM (except those
compilers with the following APAR fixes installed), and Enterprise COBOL 5.1 without service applied, you
would get the status value of 04 when READ statements encountered a record length conflict. However, if
your programs are compiled with one of the following compilers, you get the status value of 00, which is
the nonstandard result for READ statements.

• VS COBOL II 1.3 with PTFs for APAR PN34704 installed
• VS COBOL II 1.4 with PTFs for APAR PN38730 installed
• COBOL/370 1.1 or 1.2 with PTFs for APAR PN36445 installed
• COBOL for OS/390 & VM 2.1 or 2.2
• Enterprise COBOL 3 or 4

204 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

The inconsistent behavior could have inhibited the migration to Enterprise COBOL 5 and 6. Thus, in
Enterprise COBOL 5.1 with current service applied, 5.2, and later versions, you can choose to have the
compatible and nonstandard behavior available with the VLR(COMPAT) compiler option.

• If you specify VLR(COMPAT), you get File Status 00 when READ statements encounter a record
length conflict or "wrong length READ".

If your program performs a "wrong length READ" and your code checks for File Status=0 after
reading variable-length record files, your code will take the "zero" path, just as it did in Enterprise
COBOL 4 and earlier versions.

Note: This setting can hide I/O problems that can arise with the wrong length READ situation. Use the
VLR(COMPAT) option with caution, and check for correct READ statements.

• If you specify VLR(STANDARD), you get File Status 04 when READ statements encounter a record
length conflict or "wrong length READ". Using this setting, you can check for FS=04 and then add
code to avoid accessing undefined data in a record and also avoid getting protection exceptions for
attempting to reference a part of the record that was truncated.

If your program performs a "wrong length READ" and your code checks for File Status=0 after
reading variable-length record files, your code will take the "Not zero" path. You can change your code
to test for FS=0, while FS=4 and other values will all be a failed READ. For FS=4, you can add code to
avoid the bad data in variables or protection exceptions.

Using VLR(STANDARD) can result in more reliable code and fewer I/O problems because the file status
will tell you when a "wrong length READ" might occur. A new compiler message, MSGIGYP3178, can also
help you avoid I/O problems by telling you if a program has a possibility of a "wrong length READ". This
message can be used to assist with migration from VLR(COMPAT) to VLR(STANDARD) by indicating the
possible "wrong length READ" that you can solve by correcting the File Definition (FD). You can also raise
the severity of the message so that the program must be corrected in order to run. To do this, use the
MSGEXIT suboption of the EXIT compiler option to change the severity of message MSGIGYP3178 from
I (RC=0) to S (RC=12), E (RC=8), or W (RC=4). If you are not interested in seeing this message, you can
suppress the message completely.

Error behavior changes for incorrect programs
Incorrect COBOL programs might behave differently with Enterprise COBOL 5 and 6 than with prior
versions. You must consider more vigorous testing for migrating to Enterprise COBOL 5 or 6 than you did
for migrating to Enterprise COBOL 4.

• Programs that use unsupported (yet undiagnosed) COBOL language syntax.
• Programs that move data to and from data items that at run time contain values not conforming to the

PICTURE clause in the data description entry. For example:

– A fullword binary item with picture S9(6) USAGE BINARY, which contains an oversize value of
+123456789 (unless the TRUNC(BIN) option was specified)

– A two-byte packed-decimal item with picture S99 PACKED-DECIMAL, which contains an oversize
value of 123 (for example, 123C in hexadecimal).

– A packed-decimal or zoned-decimal item that contains an invalid or non-preferred sign, which does
not conform to the sign requirements of the data description entry.

• Programs with undiagnosed subscript range errors (when the SSRANGE compiler option was not
specified), that reference storage outside the storage allocation for the base data item.

• Applications with low-level dependencies on specific generated code sequences, register conventions,
or internal IBM control blocks might behave differently with Enterprise COBOL 5 and 6 than with prior
versions. The information such as PROGRAM-ID, COMPILED TIME, and COMPILED DATE included in the
initialization code of Enterprise COBOL 4 or earlier is not included in the initialization code of Enterprise
COBOL 5 or later, so the program it depends on might behave differently with Enterprise COBOL 5 and 6.

• Not all incorrect programs are diagnosed as incorrect. For example, see the following program that sets
the value of an ODO object to outside of the legal range:

Chapter 17. Changes with Enterprise COBOL 5 and 6 205

77 VAR1 COMP-3 PIC 9(3).
01 X.
 02 VAR2 PIC X OCCURS 0 to 1 depending on VAR1.

 MOVE 128 to VAR1
 MOVE ALL 'C' to X *> This is illegal!

Results:

– For COBOL 2, 3, and 4: 128 bytes of 'C' were moved
– For COBOL 5 and 6: 1 byte of 'C' and 127 bytes of junk were moved

• Programs with parameter length mismatches:

WORKING-STORAGE SECTION.
. . .
77 GRP1 PIC X(100). *> The last item in WORKING-STORAGE SECTION
PROCEDURE DIVISION.
. . .
 CALL 'SUBP' USING GRP1.

PROGRAM-ID. SUBP.
LINKAGE SECTION.
01 GRP2 PIC X(500).
PROCEDURE DIVISION USING GRP2
 MOVE 'STUFF' TO GRP2(300:20) *> This is illegal!

Results:

In the example above, GRP1 and GRP2 lengths do not match. The MOVE to GRP2 results in an overlay of
storage following the last data item in WORKING-STORAGE in the calling program.

– For COBOL 2, 3 and 4: The illegal MOVE did not result in a failure because there was usually
unused storage after the last data-item in WORKING-STORAGE (see CALLER), so the overwrite went
undetected.

– For COBOL 5 and 6: The file control blocks immediately follow the last data-item in WORKING-
STORAGE. Therefore, the file-status information in the CALLER gets overlaid, which can subsequently
change the flow of the program.

• Programs using zoned decimal data (numeric with USAGE DISPLAY) with bad zone bits in numeric
comparisons. In this example, byte 3 of VAR2 is x'40' that has zone bits x'4', which is invalid; all zone
bits must be x'F'.

WORKING-STORAGE SECTION.
01 VAR1 PIC X(5) VALUE '00 0'. <* Value x'F0F040F0'
 02 VAR2 REDEFINES VAR1 PIC 9(5).
. . .
 IF VAR2 = ZERO
 DISPLAY "EQUAL TO ZERO"
 ELSE
 DISPLAY "NOT EQUAL TO ZERO"
 END-IF.

Results:

– For COBOL 4 with NUMPROC(MIG) and COBOL 5.1 with OPT(0), the program displays "EQUAL TO
ZERO"

– For COBOL 4 with NUMPROC(PFD) or NUMPROC(NOPFD), and COBOL 5.1 with OPT(1) or OPT(2), the
program displays "NOT EQUAL TO ZERO"

If you have invalid digits, invalid sign codes, or invalid zone bits in your data, change your programs or
systems so that your programs do not have invalid data in numeric data items at run time.

When you have corrected your programs or systems, you can use the preferred NOINVDATA option.
Only if you cannot contain this work and must continue to run with invalid data, consider the following
choices for the INVDATA option:

– If you used NUMPROC(MIG) with COBOL 4, use INVDATA(FORCENUMCMP, NOCLEANSIGN) and
NUMPROC(NOPFD) with COBOL 6.

206 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

– If you used NUMPROC(NOPFD) with COBOL 4, use INVDATA(NOFORCENUMCMP,CLEANSIGN) (or
simply INVDATA) and NUMPROC(NOPFD) with COBOL 6.

– If you used NUMPROC(PFD) with COBOL 4, use INVDATA(NOFORCENUMCMP,CLEANSIGN) (or simply
INVDATA) and NUMPROC(PFD) with COBOL 6.

Notes®:

– If you completed migration from COBOL 4 or earlier versions to COBOL 5 or 6 in the past and used
the deprecated ZONEDATA(MIG) option in COBOL 5 or 6 and are satisfied with the behavior, use
INVDATA(FORCENUMCMP, CLEANSIGN) instead of ZONEDATA(MIG).

– IBM recommends that you correct your programs and/or data and use the NOINVDATA option.

If your data doesn't always have the correct zone bits in zoned decimal data items, compile with the
INVDATA(FORCENUMCMP) compiler option so that the zone bits will always be ignored.

• For programs using zoned decimal data with invalid zone bits, the SEARCH ALL statement may produce
different results between Enterprise COBOL 4 and later versions (COBOL 5 and 6.1). In Enterprise
COBOL 6.2, the SEARCH ALL statement behaves according to the INVDATA option as described in the
previous bullet. Use any legal form of the INVDATA option to produce the same behaviour as Enterprise
COBOL 4 or earlier versions.

When the COBOL 6.2 runtime library enablement PTF is applied to the Language Environment, SEARCH
ALL statement will behave according to the INVDATA option as described in the previous bullet. This
is available for all COBOL 5 and 6 programs without recompilation. Use any legal form of the INVDATA
option to produce the same behaviour as Enterprise COBOL 4 or earlier versions.

Note: It is not always possible to entirely match the behaviour of the old compiler even with these
options when faced with clearly invalid data.

This only affects programs with invalid zoned decimal data. If there are no invalid zone bits, the SEARCH
ALL statement produces the same result regardless of the setting of the INVDATA option.

Using object oriented COBOL or interoperating with C programs
Some programming languages, such as Java and C, expect division-by-zero operations to result in infinity.
Others, such as PL/I and COBOL, expect division-by-zero operations to cause an exception. COBOL
programs set the processor to run in a mode whereby division-by-zero operations cause an exception.
If a COBOL program is object oriented and invokes a Java method or if a COBOL program interoperates
with a C program, and if the Java or C program executes a division-by-zero operation, the program could
terminate.

To avoid program termination, you can follow the instructions in the IGZXDIVZ sample to compile and
link the condition handler into the SCEERUN data set and use the Language Environment runtime option
USRHDLR(IGZXDIVZ) with the affected application.

ILBOABN0 considerations
The ILBOABN0 interface for requesting an ABEND in a COBOL environment can be called dynamically with
Enterprise COBOL 5 and later versions. When called by a program compiled with the Enterprise COBOL
compiler, it will have the same result as calling CEE3ABD using ACTION code 1.

You are strongly recommended to migrate and use the CEE3ABD interface, because the CEE3ABD
interface provides extra flexibility to control the level of details provided in the CEEDUMP produced.

When your application is called by Enterprise COBOL programs, it might ABEND in an unexpected way if it
has an older version of ILBOABN0 (before LE's SCEELKED) statically linked. To fix the unexpected ABEND,
you can follow one of the suggestions below:

• Migrate to CEE3ABD.
• Relink your application with REPLACE ILBOABN and resolve the reference against the LE SCEELKED

library. (ILBOABN0 is an alias of ILBOABN.)
• Change the COBOL program to use dynamic call for ILBOABN0.

Chapter 17. Changes with Enterprise COBOL 5 and 6 207

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceea300/cee3abd.htm

Using DFSORT option NOBLKSET
The BLKSET option is the default when you invoke DFSORT. This allows DFSORT to use the efficient
BLOCKSET techniques. When NOBLKSET is in effect, DFSORT falls back to use the conventional
technique. The recommended setting is BLKSET.

DFSORT also uses the conventional technique in the following cases:

1. Use tape device for intermediate work storage. You can avoid this restriction by using disk device
instead of tape. Intermediate storage is specified using SORTWKdd statements.

2. Use L5 in the RECORD statement of DFSORT OPTION control. L5 specifies the average record length.
Instead of using L5, the same can be specified by using the AVGRLEN=n statement.

The use of DFSORT conventional technique is allowed by COBOL 4.2 or earlier versions. It is strongly
recommended that programs upgrading to COBOL 5 or later versions take the opportunity to migrate
away from the conventional technique of DFSORT.

To provide compatibility with COBOL 4.2 and earlier versions and to tolerate this usage in COBOL 5 or
later versions, apply runtime LE PTFs UI67483(V2R2)/UI67485(V2R3)/UI67486(V2R4) and follow the
instructions to set up the JCL when executing the program.

Note: Those runtime PTFs apply to AMODE 31 only. DFSORT conventional technique is not supported by
COBOL programs running in AMODE 64.

Debug information changes with Enterprise COBOL 5 and 6
Programs compiled with Enterprise COBOL 5 or 6 will have different debug information than that of
programs compiled with previous versions of the compiler.

IBM Enterprise COBOL 5 and 6 solves the dilemma of debugging information. In the past you had 2
choices:

• Have the debug data always with the executable at a cost of a large load footprint, or
• Have separate debug data but also have the challenge of keeping it synchronized with the application

and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the program object, the debug
data does not increase the size of the loaded program, it always matches the executable and is always
available so there is no need to search lists of data sets.

TEST option changes

There have been changes to the TEST compiler option used to generate debuggable versions of your
application and to the NOTEST option.

• When the TEST option is specified, DWARF debug information is included in the application module.
• If the SOURCE suboption is specified, the DWARF debug information includes the expanded source

code, and the compiler listing is not needed by IBM z/OS Debugger. When the TEST(NOSOURCE)
compiler option is specified, the generated DWARF debug information does not include the expanded
source code.

Tip: If you are using IBM z/OS Debugger, it is recommended that you specify TEST(SOURCE) (for
COBOL 5 or 6.1) or TEST(SEPARATE,SOURCE) (for COBOL 6.2 and later) to get the most debugging
functionality while controlling module size:

– With TEST(SOURCE), the debug information is saved in a NOLOAD debug segment in the program
object.

– With TEST(SEPARATE,SOURCE), the debug information is saved in a separate debug file.
• You can use the NOTEST(DWARF) compiler option to include basic DWARF debugging information in

the program object. You cannot debug such programs with z/OS Debugger, but you can get NOTEST
optimization and still enable application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

208 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• To have no debugging information in the program object, use the NOTEST(NODWARF) option.

For details about the TEST option, see TEST in the Enterprise COBOL for z/OS Programming Guide.

For details about debugging COBOL programs using IBM z/OS Debugger, see Choosing TEST or NOTEST
compiler suboptions for COBOL programs in the IBM z/OS Debugger User's Guide.

Listing information changes

With Enterprise COBOL 5 and 6.1, the diagnostic messages are not at the bottom of the listing. Take the
following steps to get to the diagnostic messages part of the listing:

1. Type F 'end of c' on the command line (use the ISPF FIND command to find the header: End of
compilation).

2. Press Enter.
3. (Optional) Press Page back.

With Enterprise COBOL 6.2, the diagnostic messages are again at the bottom of the listing, as with
Enterprise COBOL 4 and earlier compilers.

Changes that apply to Enterprise COBOL 6 only
• The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise

COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to
locate the starting address of the WORKING-STORAGE SECTION might be affected. For details, see
“WORKING-STORAGE SECTION changes” on page 176.

• Enterprise COBOL 6 uses interprocess communication (IPC) message queues within the compiler.
Therefore, if you compile in z/OS UNIX with cob2 and the compiler experiences an internal error and
gets terminated with a KILL signal, you will need to query any message queues that are left over when
the compiler is killed and remove the stale message queues. You can remove the stale message queues
with the following z/OS UNIX commands:

1. Enter ipcs -q to list queues.
2. Find queues associated with your user ID.
3. Enter ipcrm -q to delete queues.

If you compile in z/OS batch, you do not have to remove stale message queues after a compiler error.
• PPA1 changes in Enterprise COBOL 6.3

Starting in Enterprise COBOL 6.3, bit 30 of flag3 (offset X'1C') of PPA1 may be set to indicate that the
Extended Flag field is present. If this bit is set, the extended flag will have bit 0 set to indicate
that Vector Registers Area is in the optional area. This should not affect tools or program code
that are accessing PPA1 according to the Language Environment interface. Refer to the z/OS Language
Environment Vendor Interfaces for details about PPA1.

When debugging your COBOL programs, you will find that there have been a large number of
improvements and behavior changes introduced with Enterprise COBOL 5 and 6. For details about
changes in debugging with IBM z/OS Debugger, see “z/OS Debugger changes with Enterprise COBOL
5 and 6” on page 223.

WORKING-STORAGE SECTION changes
The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise
COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to locate
the starting address of the WORKING-STORAGE SECTION might be affected. You can use the following
method to locate the WORKING-STORAGE in Enterprise COBOL 5 and 6 programs at run time.

To find the start of WORKING-STORAGE in COBOL 5 and 6, you need to know how to locate the PPA4
(Program Prologue Area 4) in a dump.

Chapter 17. Changes with Enterprise COBOL 5 and 6 209

https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs
https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs

A: For AMODE 31

The following description applies when the program is compiled with LP(32):

How to find the PPA4 (Program Prolog Area 4) in a dump?

1. Find the start of the program in the dump from the traceback.
2. At the starting address + x'0C' is an offset value. This is the offset to the PPA1 from the start of the

program.
3. Starting address + PPA1 offset = PPA1.
4. Go there in the dump.
5. At PPA1 + x'04' is an offset value. This is the offset to the PPA2 from the start of the program.
6. Starting address + PPA2 offset = PPA2.
7. Go there in the dump.
8. At PPA2 + x'08' is an offset value. This is the offset to the PPA4 from the PPA2 address.
9. PPA2 + PPA4 offset = PPA4.

10. Go there in the dump. You are now at the PPA4.

Next, you need to know the layout of the PPA4.

PPA4 layout

For information about the layout of PPA4 and each PPA4 offset, length, and description, see COBOL V5+
32-bit PPA4 layout in the z/OS Language Environment Vendor Interfaces.

Next, you need to know some terminology.

Terms to know
NORENT static area

This storage area is allocated in the executable for each program that was compiled with NORENT. A
NORENT program’s WORKING-STORAGE will be located here.

LE’s writable static area (WSA)
Every COBOL 5 or 6 program object (executable) has this storage area.

RENT static area
This storage area is allocated inside the WSA for every program that is statically bound into the
executable and compiled with RENT. Each program has their own RENT static area. A program’s
WORKING-STORAGE may or may not be located here.

Program static area
This storage area is allocated outside of the WSA only if certain conditions are met. In those cases, the
program’s WORKING-STORAGE will be located here, instead of in the RENT static area.

Next, you need to understand that there are three locations where WORKING-STORAGE can reside.

Explanation of the areas where WORKING-STORAGE can reside

There are three different locations where WORKING-STORAGE can reside:

• Inside the program object (executable). All programs compiled with the NORENT option have a NORENT
static area reserved within the executable and WORKING-STORAGE resides here.

• All programs compiled with the RENT option have a RENT static area allocated inside LE’s WSA (writable
static area). WORKING-STORAGE could reside here.

210 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/cv3plmv.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/cv3plmv.htm?sc=SSLTBW_latest

• Instead of being located in the RENT static area, some COBOL 5 or later RENT programs have their
WORKING-STORAGE allocated outside of LE’s WSA, in an area called the program static area.

The rules for determining where WORKING-STORAGE resides are located in the next section.

The picture below shows how storage is laid out for RENT programs whose WORKING-STORAGE resides
in the program static area:

 Program Object (Executable)
 (Has two programs A & B statically bound.)
|---|
| |
| LE's WSA (writable static area) |

	Program A - RENT static area			

		(Corresponds to the INITIAL HEAP		
		STORAGE MAP in Program A's listing)		

	Program B - RENT static area			

		(Corresponds to the INITIAL HEAP		
		STORAGE MAP in Program B's listing)		

Program A - program static area				

	(Corresponds to the WORKING-STORAGE MAP			
	(or the BELOW THE LINE STORAGE MAP) in			
	Program A's listing)			

Program B - program static area				

	(Corresponds to the WORKING-STORAGE MAP			
	(or the BELOW THE LINE STORAGE MAP) in			
	Program B's listing)			

Once you understand the three areas where WORKING-STORAGE could reside, you need to know how
to determine where a program’s WORKING-STORAGE actually does reside. For details, see WORKING-
STORAGE location and Layout of the Language Environment WSA, STATIC, PROGRAM STATIC, and User
Working Storage in IGZXAPI in the z/OS Language Environment Vendor Interfaces.

How to determine the area where WORKING-STORAGE is located?

Table 43. Area where WORKING-STORAGE is located

COBOL versions Compiler options
Where is WORKING-STORAGE
located?

COBOL 5 NORENT In the program's NORENT static
area

RENT, DATA(31) In the program's RENT static area
inside the WSA

RENT, DATA(24) or RENT,
WSOPT1

In the program's program static
area outside the WSA

Chapter 17. Changes with Enterprise COBOL 5 and 6 211

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/IGZXAPI.htm?sc=SSLTBW_latest

Table 43. Area where WORKING-STORAGE is located (continued)

COBOL versions Compiler options
Where is WORKING-STORAGE
located?

COBOL 6 or later versions NORENT In the program's NORENT static
area

RENT, DATA(31) & SPANNED
RECORDS (i.e. the WSOPT bit is
OFF)2

In the program's RENT static area
inside the WSA

RENT, DATA(24) (i.e. the WSOPT
bit is ON)2

In the program's program static
area outside the WSA

RENT, DATA(31) & NO SPANNED
RECORDS (i.e. the WSOPT bit is
ON)2

In the program's program static
area outside the WSA

Notes:

1. In COBOL 5, there is a WSOPT compiler option. In COBOL 6, there is no longer a WSOPT compiler
option, but rather a signature information bit for WSOPT that is automatically set by the compiler.

2. For SPANNED RECORDS, the WSOPT signature information bit is OFF. For NO SPANNED RECORDS,
the WSOPT signature information bit is ON.

• You can scan your programs for 'RECORDING MODE' and look for any files set to 'S' to determine if
SPANNED RECORDS are used.

• Another alternative is to check the signature information bytes in the listing for the WSOPT bit,
which is signature byte 8, bit 3. For example, take the following from a listing:

=X'001000000000' INFO. BYTES 7-12

Byte 8 is x'10', which is b'00010000'. Numbering the bits from left to right as 01234567, because
bit 3 is on, WSOPT is on.

Once you know what area the WORKING-STORAGE resides in, then you will know how to find it.

How to find WORKING-STORAGE in a dump?
Table 44. How to find the PPA4, NORENT static area, LE’s WSA, RENT static area, and program static area
in a dump?

What to find? How to find it in a dump?

PPA4 See the instructions above.

NORENT static area The address is located in storage at <PPA4 + x'08'>

LE’s WSA The address is located in storage at <CEECAA (or
R12) + x'1F4'>.
This is called CEECAARENT in a dump.

RENT static area The address is located in storage at
<The address in storage at CEECAA (or R12) +
x'1F4'> +
<the offset in the program’s PPA4 + x'0C'>

212 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 44. How to find the PPA4, NORENT static area, LE’s WSA, RENT static area, and program static area
in a dump? (continued)

What to find? How to find it in a dump?

Program static area The address is located in storage at
<The address in storage at CEECAA (or R12) +
x'1F4’> +
<the offset in the program’s PPA4 + x'0C'> +
<the offset in the program’s PPA4 + x'10'>

Once you find these areas in a dump, then you can compare that to the compile listing.

In a COBOL listing:

• The INITIAL HEAP STORAGE MAP shows the layout of the RENT static area or the NORENT static area.
• The WORKING-STORAGE MAP or the BELOW THE LINE STORAGE MAP shows the layout of the program

static area.

B: For AMODE 64
The following information applies when the program is compiled with LP(64):

Information about the WORKING-STORAGE SECTION can be found in the PPA4 of the program together
with the Heap Storage Address Table. Follow the steps below to locate them.

1. Find the entry point address of the program in the dump from the traceback. In the LE CEEDUMP
traceback, this is the address under the "E Addr" column corresponding to the row of the program.

In the example below, HELLO is the COBOL program. Its entry point address is X'260000A8'. This
address should contain the first executable instruction of the program, that is, an STMG instruction.

Traceback:
 DSA Entry E Offset …
 1 CEEHDSP +00003F3C
 2 CELQHROD +00000266
 3 HELLO +00000224
 4 CELQINIT +00001D0C

 DSA DSA Addr E Addr
 1 00000050082FBC60 0000000026B0A3D0
 2 00000050082FEDA0 0000000026B1DD18
 3 00000050082FEFA0 00000000260000A8
 4 00000050082FF220 0000000026903010

2. At program entry point offset -x'08', that is, before the entry point, there is an integer value. This value
is the offset from the entry point address to PPA1.

3. At PPA1+x'04', there is an offset value. This is the offset from the entry point address to PPA2.
4. At PPA2+x'08', there is an offset value. This is the offset from PPA2 to PPA4.
5. At PPA4+x'7C', there is an offset value. This is the offset from the environment of the program to the

Heap Storage Address Table.

Environment here refers to the XPLINK environment of the program. This is the address in register R5 on
entry into the program. The first instruction of the program, the STMG, stores the register to the stack. The
contents of R5 can be found in the dump.

Heap Storage Address Table

Offset of this table from the environment of the program is in PPA4+X'7C'.

Data items in WORKING-STORAGE SECTION in LP(64) are by default allocated above the bar. They are
in COBOL's ABOVE THE BAR HEAP. Its starting address is in the first field of the Heap Storage Address
Table (at offset X'00' of this table). Note that this address corresponds also to the ABOVE THE BAR HEAP
MAP section in the compilation listing, which provides information about level 77 and 01 data items in the
WORKING-STORAGE SECTION.

Chapter 17. Changes with Enterprise COBOL 5 and 6 213

There are also COBOL control areas and compiler internal variables allocated in the ABOVE THE BAR
HEAP. The first WORKING-STORAGE data item in the program might not reside right at the beginning. The
offset of the first data item in the program's WORKING-STORAGE SECTION can be found in PPA4 offset
+X'40'.

Table 45. Heap Storage Address Table

Length Description

X'00' 8 Starting Address of COBOL's
ABOVE THE BAR HEAP (64-bit
storage area)

X'08' 8 Reserved

X'10' 8 Reserved

Information relating to WOKRING-STORAGE SECTION can be summarized below:

Table 46. WORKING-STORAGE SECTION summary

Description Can be found in:

Offset of Heap Storage Address Table from R5 PPA4+x'7C'

Starting address of WORKING-STORAGE Heap Storage Address Table + x'00'

Offset of first user 64-bit data item from
WORKING-STORAGE

PPA4+x'40'

Length of the area containing all user WORKING-
STORAGE 64-bit data items

PPA4+x'48'

For information about the layout of PPA4 and each PPA4 offset, length, and description, see COBOL 64-bit
PPA4 layout in the z/OS Language Environment Vendor Interfaces.

C: Use the LE vendor interface IGZXAPI to query the WORKING-STORAGE address
The COBOL-specific vendor interface routine, IGZXAPI, can also be used to query the WORKING-
STORAGE address. With Enterprise COBOL 6.1, the LE vendor interface IGZXAPI is enhanced with new
function code 8 to request information about the WORKING-STORAGE SECTION length and address
for a COBOL program. The returned address corresponds to the INITIAL HEAP STORAGE MAP section
in the COBOL compiler listing. Other information, such as the program name from PROGRAM-ID and
signature information bytes (correspond to the “Compiler Options and Program Information Section” of
the compiler listing), are also returned.

This enhancement is introduced in COBOL Runtime LE PTF for APAR PI49703. For more information
about IGZXAPI, see IGZXAPI in the z/OS Language Environment Vendor Interfaces.

Related tasks
Reading LIST output (Enterprise COBOL for z/OS Programming Guide)

Related references
Example: Program prolog areas (Enterprise COBOL for z/OS Programming Guide)
Common interfaces and conventions (z/OS Language Environment Vendor Interfaces)

214 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/c64ppa4l.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/c64ppa4l.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/IGZXAPI.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceev100/convnt.htm

Chapter 18. Adding Enterprise COBOL 5 or 6
programs to existing COBOL applications

When you add an Enterprise COBOL 5 or 6 program to an existing application, you are either recompiling
an existing program with Enterprise COBOL 5 or 6 or including a newly written Enterprise COBOL 5 or 6
program.

Note: You should use this Migration Guide only if you have completed the runtime migration to Language
Environment. This means that the following conditions have been met:

• The Language Environment data set SCEERUN is installed in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or LPALST.
• There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or JOBLIB statements or in

CICS startup JCL.
• All statically bound runtime library routines for programs that are compiled with NORES have been

REPLACEd with routines from Language Environment.
• IGZEBST bootstrap modules for VS COBOL II programs that are compiled with RES were either linked

with the VS COBOL II runtime version of IGZEBST that has APAR PN74000 applied, or IGZEBST was
REPLACEd with IGZEBST from Language Environment.

If these steps have not been completed, please first complete all runtime migration activities in the
Enterprise COBOL 4.2 Compiler and Runtime Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/
igy3mg50.pdf prior to following the steps here.

When you add Enterprise COBOL 5 or 6 programs to your existing applications, you have the ability to:

• Upgrade your existing programs incrementally, as your shop's needs dictate
• Use Language Environment condition handling

If you have a program object that includes a COBOL program linked with C, C++, or Enterprise PL/I
programs, the program object has slightly different behavior when the COBOL program is changed to
Enterprise COBOL 5 or 6. This occurs when such program objects are fetched (that is, using either C fetch
or PL/I fetch) more than once. In the subsequent fetches, external and static variables in these other LE
languages may retain their last used state, following COBOL rules, instead of getting their initial values.
With prior versions of COBOL linked in, the C, C++ and PL/I programs would retain C/C++ or PL/I behavior.

Using Language Environment with Enterprise COBOL 5 or 6 and VS COBOL II
programs
When running a mixture of VS COBOL II programs and Enterprise COBOL 5 or 6 programs:

• A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace IGZEBST in applications with VS
COBOL II programs with the IGZEBST from LE with the PTFs for APAR PI33330 installed.

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can also be used with any COBOL
programs VS COBOL II and later without COBOL 5 or 6 programs.

– For dynamically CALLed CICS programs, you just need to install the PTFs for APAR PI25079 on
SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be better if you replace IGZEBST
in applications with VS COBOL II programs with the IGZEBST from LE with the PTFs for APAR
PI33330 installed. It is not required. There is no issue with IGZEBST for dynamically called programs
in non-CICS for calling VS COBOL II programs from COBOL 5 or 6 programs.

© Copyright IBM Corp. 1991, 2024 215

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

• A current version of CEEBETBL, the Language Environment externals table, is required. If you are
including object code bound some time ago with your new COBOL 5 or 6 object code, you might be
indirectly including an old version of CEEBETBL.

If the length of CEEBETBL you bind is less than x'28' (or the length of the CEEBETBL in the current
SCEELKED library), it is old and needs to be replaced, or you will encounter runtime abends or a
terminating runtime message.

If you rebind older object code with COBOL 5 or 6 as part of your migration, it is recommended that
you specifically INCLUDE a current copy of CEEBETBL prior to INCLUDEs of the older object code, taking
care that you do not inadvertently make CEEBETBL the entry point.

AMODE restrictions with Enterprise COBOL 5 or 6 programs
AMODE 24 execution of Enterprise COBOL 5.2 or 6 programs is supported in all the same cases as in
earlier Enterprise COBOL compilers.

Note: To run COBOL 5 or 6 programs with AMODE 24, you must compile all COBOL programs with
Enterprise COBOL 5.1.1 or later versions; or Enterprise COBOL 4.2 or earlier versions. If any component
of a program object is compiled with Enterprise COBOL 5.1.0, the program object must run in AMODE 31.
COBOL programs that run with AMODE 24 must be linked with the binder option RMODE(24).

Run time differences with Enterprise COBOL 5 or 6 programs
You cannot mix Enterprise COBOL 5 or 6 programs with:

• OS/VS COBOL programs. You must migrate to Enterprise COBOL. To find any OS/VS COBOL programs,
you can:

– Use the File Manager View Load Module to scan load libraries for OS/VS COBOL programs.
– Use the free COBOL Analyzer from http://cbttape.org/cbtdowns.htm to scan load libraries for OS/VS

COBOL programs. It is named as File # 321 COBOL Analyzer from Roland Schiradin & post processor
on that web page.

– Install the fix for APAR PM86742 to your Language Environment and look for a warning message
about detected OS/VS COBOL programs at run time.

• VS COBOL II NORES programs. You must migrate to Enterprise COBOL.

The ILBOABN0 interface for requesting an ABEND in a COBOL environment can be called dynamically with
Enterprise COBOL 5 and later versions. When called by a program compiled with the Enterprise COBOL
compiler, it will have the same result as calling CEE3ABD using ACTION code 1.

Your are strongly recommended to migrate and use the CEE3ABD interface, because the CEE3ABD
interface provides extra flexibility to control the level of details provided in the CEEDUMP produced.

When your application is called by Enterprise COBOL programs, it might ABEND in an unexpected way if it
has an older version of ILBOABN0 (before LE's SCEELKED) statically linked. To fix the unexpected ABEND,
you can follow one of the advises below:

• Migrate to CEE3ABD.
• Relink your application with REPLACE ILBOABN and resolve the reference against the LE SCEELKED

library. (ILBOABN0 is an alias of ILBOABN.)
• Change the COBOL program to use dynamic call for ILBOABN0.

RMODE restrictions with Enterprise COBOL 5 or 6 programs
• Reentrant programs may be RMODE 24 or RMODE ANY
• Non-reentrant programs must be RMODE 24.

216 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://cbttape.org/cbtdowns.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceea300/cee3abd.htm

AMODE and RMODE considerations
Static calls between AMODE 24 and AMODE 31 programs are not supported by Enterprise COBOL 5.1.0
programs. Static calls between AMODE 24 programs and Enterprise COBOL 4.2 and earlier programs are
supported for the cases where AMODE 24 is supported for Enterprise COBOL 4.2 and earlier programs.

In addition, NORENT programs can no longer reside above the line. The following diagram shows
the types of calls that can be dynamic or static and those that can only be dynamic. It also shows
configurations of data and program location with respect to the 16 MB line.

Figure 5. Examples of valid dynamic and static calls between different AMODE and RMODE COBOL
programs

Note: For other AMODE 24 programs, no calls are allowed between Enterprise COBOL 5 or 6 programs
and either OS/VS COBOL or VS COBOL II NORES programs.

Chapter 18. Adding Enterprise COBOL 5 or 6 programs to existing COBOL applications 217

218 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Part 5. Enterprise COBOL migration and other IBM
products

Enterprise COBOL 5 and 6 gives you access to CICS, Db2, IMS and other data and transactional systems.
It can also be used with z/OS Debugger.

© Copyright IBM Corp. 1991, 2024 219

220 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 19. IBM z/OS Debugger
IBM z/OS Debugger runs within Language Environment and supports a number of high-level languages,
including Enterprise COBOL.

z/OS Debugger provides support for VS COBOL II 1.3 and all subsequent COBOL compilers.

Initiating z/OS Debugger
When you use z/OS Debugger, the application program starts first and the Language Environment TEST
runtime option controls the invocation of z/OS Debugger.

You can also invoke z/OS Debugger directly from your application by using the Language Environment
callable service CEETEST. A brief description of these two methods follows.

TEST runtime option
The Language Environment TEST runtime option is used to determine if z/OS Debugger is to be
invoked when an application program is run with Language Environment. Invocation can be immediate
or deferred, depending on the option subparameters.

The IBM-supplied default is NOTEST. This specifies that z/OS Debugger is not to be initialized to
process the initial command string nor is it to be initialized for any program condition that might arise
when you run the program. However, if debugging services are needed, you can invoke z/OS Debugger
by using the library service CEETEST.

For detailed information about the Language Environment TEST option subparameters and
suboptions, see the Language Environment Programming Reference.

CEETEST
Language Environment provides callable service CEETEST to allow z/OS Debugger to gain control, and
to specify a string of commands to be passed to z/OS Debugger. Calling this service, causes Debug
Tool to be initialized and invoked. (If z/OS Debugger is already initialized, then this re-entry is similar
to a breakpoint.)

When using CEETEST to invoke z/OS Debugger, the string parameter containing a command list is
optional. If you do use a command list, the commands are passed to z/OS Debugger and executed. If
the command list does not contain any GO, GOTO, STEP, or QUIT commands, commands will then be
requested from the terminal or the primary commands file. If the GO command is encountered at any
point (command list, terminal, or commands file), z/OS Debugger returns to the application program
at the point following the service call and your program continues running.

For detailed information and examples of the Language Environment callable service CEETEST, see
the Language Environment Programming Reference.

Debug information changes with Enterprise COBOL 5 and 6
Programs compiled with Enterprise COBOL 5 or 6 will have different debug information than that of
programs compiled with previous versions of the compiler.

IBM Enterprise COBOL 5 and 6 solves the dilemma of debugging information. In the past you had 2
choices:

• Have the debug data always with the executable at a cost of a large load footprint, or
• Have separate debug data but also have the challenge of keeping it synchronized with the application

and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the program object, the debug
data does not increase the size of the loaded program, it always matches the executable and is always
available so there is no need to search lists of data sets.

TEST option changes

© Copyright IBM Corp. 1991, 2024 221

There have been changes to the TEST compiler option used to generate debuggable versions of your
application and to the NOTEST option.

• When the TEST option is specified, DWARF debug information is included in the application module.
• If the SOURCE suboption is specified, the DWARF debug information includes the expanded source

code, and the compiler listing is not needed by IBM z/OS Debugger. When the TEST(NOSOURCE)
compiler option is specified, the generated DWARF debug information does not include the expanded
source code.

Tip: If you are using IBM z/OS Debugger, it is recommended that you specify TEST(SOURCE) (for
COBOL 5 or 6.1) or TEST(SEPARATE,SOURCE) (for COBOL 6.2 and later) to get the most debugging
functionality while controlling module size:

– With TEST(SOURCE), the debug information is saved in a NOLOAD debug segment in the program
object.

– With TEST(SEPARATE,SOURCE), the debug information is saved in a separate debug file.
• You can use the NOTEST(DWARF) compiler option to include basic DWARF debugging information in

the program object. You cannot debug such programs with z/OS Debugger, but you can get NOTEST
optimization and still enable application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

• To have no debugging information in the program object, use the NOTEST(NODWARF) option.

For details about the TEST option, see TEST in the Enterprise COBOL for z/OS Programming Guide.

For details about debugging COBOL programs using IBM z/OS Debugger, see Choosing TEST or NOTEST
compiler suboptions for COBOL programs in the IBM z/OS Debugger User's Guide.

Listing information changes

With Enterprise COBOL 5 and 6.1, the diagnostic messages are not at the bottom of the listing. Take the
following steps to get to the diagnostic messages part of the listing:

1. Type F 'end of c' on the command line (use the ISPF FIND command to find the header: End of
compilation).

2. Press Enter.
3. (Optional) Press Page back.

With Enterprise COBOL 6.2, the diagnostic messages are again at the bottom of the listing, as with
Enterprise COBOL 4 and earlier compilers.

Changes that apply to Enterprise COBOL 6 only
• The allocation and management of WORKING-STORAGE SECTION have been changed since Enterprise

COBOL 5. This does not affect the execution of the COBOL program. Tools or programs that need to
locate the starting address of the WORKING-STORAGE SECTION might be affected. For details, see
“WORKING-STORAGE SECTION changes” on page 176.

• Enterprise COBOL 6 uses interprocess communication (IPC) message queues within the compiler.
Therefore, if you compile in z/OS UNIX with cob2 and the compiler experiences an internal error and
gets terminated with a KILL signal, you will need to query any message queues that are left over when
the compiler is killed and remove the stale message queues. You can remove the stale message queues
with the following z/OS UNIX commands:

1. Enter ipcs -q to list queues.
2. Find queues associated with your user ID.
3. Enter ipcrm -q to delete queues.

If you compile in z/OS batch, you do not have to remove stale message queues after a compiler error.
• PPA1 changes in Enterprise COBOL 6.3

222 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs
https://www.ibm.com/docs/en/developer-for-zos/latest?topic=debugging-choosing-test-notest-compiler-suboptions-cobol-programs

Starting in Enterprise COBOL 6.3, bit 30 of flag3 (offset X'1C') of PPA1 may be set to indicate that the
Extended Flag field is present. If this bit is set, the extended flag will have bit 0 set to indicate
that Vector Registers Area is in the optional area. This should not affect tools or program code
that are accessing PPA1 according to the Language Environment interface. Refer to the z/OS Language
Environment Vendor Interfaces for details about PPA1.

When debugging your COBOL programs, you will find that there have been a large number of
improvements and behavior changes introduced with Enterprise COBOL 5 and 6. For details about
changes in debugging with IBM z/OS Debugger, see “z/OS Debugger changes with Enterprise COBOL
5 and 6” on page 223.

z/OS Debugger changes with Enterprise COBOL 5 and 6
Programs compiled with Enterprise COBOL 5 and 6 will have many debugging advantages over programs
compiled with previous versions of COBOL when debugged with z/OS Debugger.

For details about z/OS Debugger interfaces with COBOL applications, see the documentation available at:
https://www.ibm.com/docs/en/debug-for-zos/latest?topic=overview-zos-debugger.

Most of these differences apply to all debugging modes: full screen, batch, and remote. Complete details
of Debug Tool commands are described in IBM z/OS Debugger References and Messages.

DESCRIBE ATTRIBUTES commands
The PIC string shown in z/OS Debugger appears as it is specified in the source and not normalized as it
was prior to Enterprise COBOL 5.

Level members are shown as written in the source code and not normalized as they were prior to
Enterprise COBOL 5.

There are clearer data descriptions. For example, you could now see:

S9(5) SIGN LEAD SEP DISP

instead of

S9(5) DSLS

DESCRIBE ATTRIBUTES shows the length and type of symbolic characters with Enterprise COBOL 5 and
6. With prior versions of the compiler, only zeros were shown.

For condition names (level 88) , an address of 000000000 is no longer shown.

There is more compact and clearer output for an array and array element. For example:

• INDEX is displayed for type instead of IX
• The level 00 is not displayed
• There is no repetition of the type for each array element, the element type is shown only once.

z/OS Debugger no longer displays an address for DESCRIBE ATTRIBUTES of a register, such as %GPR0,
because registers do not have addresses.

LIST command and AUTOMON output
LIST or AUTOMON of tables always shows the option SET LIST BY SUBSCRIPT format.

When listing a record or group that contains a zero length ODO table, any data items that follow that table
within the record or group are displayed. Previously, they were not.

No message is displayed for program entry when AUTOMONITOR is active.

z/OS Debugger variables of category Alphanumeric will be displayed within a pair of apostrophes. For
example, if you execute LIST %SYSTEM, you will now see %SYSTEM = 'MVS'.

Chapter 19. IBM z/OS Debugger 223

https://www.ibm.com/docs/en/debug-for-zos/latest?topic=overview-zos-debugger

The output of LIST %HEX has improved. The output of LIST %HEX(var) no longer shows %HEX
in the output. Now the output is SBIN0_5 = X'00003039' instead of %HEX (SBIN0_5) =
X'00003039'. The X' indicates a hex representation.

The output of LIST varname no longer includes the block qualification. For example, the result could be
varname = 5 instead of block_name ::>varname = 5.

The output of the LIST NAMES command now displays 01 and 77 level data items. In previous versions,
all data items, including subordinate data items within a record or group hierarchy were shown. To see the
entire expanded structure, use DESCRIBE ATTRIBUTES varname.

LIST NAMES LABEL now only displays labels in active blocks in nested programs. Previously, all labels
for the program were displayed regardless of which block you were in.

LIST TITLED output for nested programs is modified. Now only variables in active blocks are displayed.

The formatted display of an array after the LIST command has changed for COBOL. When the elements
of an array are groups, all members of that group are listed together for a given element, followed by
the members of the group for the following element, and so on. Previously, a given member would be
listed across all array elements, and then the next member of the group would be listed across all array
elements. The keyword SUB is no longer displayed.

AUTOMONITOR output shows ADDRESS OF var and LENGTH OF var as single references.

AT APPEARANCE and LIST NAMES CUS has changed. z/OS Debugger is aware of cus. For example, if the
main program object in your application is MYMAIN, the main program is MYMAIN, and the second program
in the program object is MYSUB1, you can stop at MYMAIN::>MYMAIN 1, you will see the following new
behaviors:

• When you issue LIST NAMES CUS, the display shows the program object MYMAIN, and both the main
program MYMAIN and the subprogram MYSUB1.

• When you issue an AT APPEARANCE breakpoint for MYSUB1, the breakpoint is accepted.

Enterprise COBOL 5 and 6 assigns a save area for each nested program. You can see these save areas
with commands, such as LIST CALL.

MOVE, COMPUTE, IF commands
The MOVE and COMPUTE commands in Debug Tool have expanded to allow the same data types as the
compiler for receivers and senders. This enhancement removes previous restrictions on the use of those
commands.

The IF command has been expanded. Allowable comparisons for relational conditions are expanded in
Debug Tool with Enterprise COBOL 5 and 6. The allowable comparison for relational conditions (involving
data items, literals, and figurative constants) are implemented according to the Enterprise COBOL for
z/OS Language Reference.

Index changes also improve the use of these commands:

• There is relative subscripting of index names with Enterprise COBOL 5 and 6.
• To conform to COBOL language rules, you can no longer index an array with index data items.
• To conform to COBOL language rules, you can no longer use IN or OF qualifiers for an index name.

STEP command
You can STEP and set breakpoints for the WHEN phrase of EVALUATE.

STEP OVER with PERFORM is now supported.

224 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Support for COBOL types
z/OS Debugger now supports the correct maximum value in all binary data types. For example, an 8-byte,
unsigned COMP-5 data item can contain a maximum value of 18,446,744,073,709,551,615, which is 20
digits.

INDEX (IX) and Arrays
With Enterprise COBOL 5 and 6, you cannot use a data item of type INDEX as a subscript. For example, if
you have defined a data item as 77 IXDI1 USAGE IS INDEX, you cannot execute LIST ARR(IXDI1).

Index names are in the debug infomation in the same way as top-level (01 or 77) data items, although
index names do not have level numbers. In earlier versions of Enterprise COBOL, index names are shown
in the debug information along with table elements, like children of the array to which they belong.
In Enterprise COBOL 5 and 6, index names are not shown when table information is listed, they are
only shown when listed explicitly by name. This change is reflected in the output from the following
commands:

• LIST NAMES
• LIST TITLED
• DESCRIBE ATTRIBUTES (with no argument)

With Enterprise COBOL 5 and 6, you cannot qualify an INDEX name using the name of the array to which it
belongs. You also can no longer qualify a containing group or record name, as if it were a subordinate data
item. For example IX3 of REC1. This was possible with earlier versions of Enterprise COBOL.

Enterprise COBOL 5 and 6 supports an increment (+) or decrement (-) operator as part of the INDEX of an
array. Enterprise COBOL 4 did not support this.

With Enterprise COBOL 5 and 6 programs, z/OS Debugger defaults to 1 if you do not specify the index of
an array. With previous versions, z/OS Debugger listed all members of the array. If the array is declared as
shown below, and you issue LIST X, z/OS Debugger only displays the first element in the array ARR(1)
as LIST X(1). LIST ARR(n) will show X and Y for the specified index, and LIST ARR will show X and Y
for all members.

05 ARR OCCURS 10
10 X PIC 99
10 Y PIC 99

For previous versions of Enterprise COBOL, when you list a single element of an array, the format of the
output is as if it is an array of size 1. For Enterprise COBOL 5 and 6, the output is the same as a variable of
the given type, not as an array of size 1.

Other changes
The AT CALL entry name is not supported for Enterprise COBOL 5 and 6.

Several changes are implemented for the DESCRIBE CUS command. These changes are:

• New compiler name: IBM COBOL 5.2.0
• Time Stamp is displayed: * Compiler: IBM COBOL 5.2.0 2014/11/27 13:08
• There have been many changes to compiler options.
• The type of linkage is displayed: * Its linkage is Language Environment FastLink. This is

the default linkage for the compiler.

Line numbering with the NUM option and sequence of programs is different with Enterprise COBOL 5 and
6. In prior versions, a batch compile (sequence of programs in a single source) with NUM and NOLIB the
line numbers start over in the second program. With Enterprise COBOL 5 and 6, the NOLIB option has
been removed. The compiler behaves as though LIB is always enabled and therefore the second program
in a sequence has line numbers that continue from those of the first program.

Chapter 19. IBM z/OS Debugger 225

Display of National data items will include N with Enterprise COBOL 5 and 6. For example: listing of 01
nat pic N(5) value "abcde" national is NAT= N'abcde' V4: NAT = 'abcde'.

The number of digits displayed in arithmetic expressions is different with Enterprise COBOL 5 and 6.
The number of digits resulting from arithmetic operations are defined in the Enterprise COBOL for z/OS
Programming Guide.

Sign is handled differently with Enterprise COBOL 5 and 6. The result of an arithmetic expression will have
a sign if either operands are signed. In earlier versions, the sign of the result depended on the answer. The
exception is the case of results from subtraction and unary minus which are always signed to guarantee
correctness of the result.

If the program being debugged was compiled with the QUALIFY(EXTEND) option, Debug Tool will apply
the new name resolution rules in any command that references a data item, for example, LIST, MOVE,
COMPUTE, and other commands. This makes z/OS Debugger consistent with the compiler when it comes
to resolving data item references.

z/OS Debugger has been updated to handle data items that have been defined with the VOLATILE
keyword, allowing such data items to be used in all of the same commands as nonvolatile data items.

Full-screen mode changes with Enterprise COBOL 5 and 6
These changes apply to the Full-screen mode commands and functions.

The following commands are different between Enterprise COBOL 5 and 6 programs and those of previous
compilers:

• PANEL LISTINGS and PANEL SOURCES. Both commands show the program name.
• SET DEFAULT LISTINGS. The source listing information is embedded in the object for COBOL 5 and 6

programs.
• SET DYNDEBUG OFF. COBOL 5 and 6 compiler does not support compiled-in hooks. You must have SET
DYNDEBUG ON if you want to step or set breakpoints in a COBOL 5 or 6 program.

• SET LIST BY SUBSCRIPT. With COBOL 5 and 6 programs, z/OS Debugger displays arrays as if LIST
BY SUBSCRIPT ON is always enabled. With Enterprise COBOL 4 programs, the default display on an
array was SET LIST BY SUBSCRIPT OFF.

• SET PROGRAMMING LANGUAGE. The programming language for COBOL 5 and 6 is COBOL.
• SET SOURCE. The source listing information is embedded in the object. An error message is displayed

when you issue this command for a COBOL 5 or 6 program.

Remote mode changes with Enterprise COBOL 5 and 6
This section lists changes that apply to the remote debugger interfaces.

The changes are:

• With Enterprise COBOL 5 and 6, nodes in the tree of a monitored expression show the level number, for
example, 05 VAR1. With Enterprise COBOL 4, it showed VAR1.

• With Enterprise COBOL 5 and 6, PIC is shown as part of the type information, for example, 05 SBIN1
PIC 99 COMP.

• With Enterprise COBOL 4, array type was shown as ARRAY. With Enterprise COBOL 5 and 6, it is shown
by using appropriate COBOL terminology such as, 9 COMP OCCURS 2. This matches the behavior of
batch/Full Screen Mode.

• With Enterprise COBOL 5 and 6, record types are shown as known to the language. For example,
ALPHANUMERIC GROUP or NATIONAL GROUP. With Enterprise COBOL 4, record types were shown as
CHARACTER, STRUCT, or ARRAY

• With programs compiled by Enterprise COBOL 5 and 6, array subscripts can be separated by a
semicolon. This was not allowed for programs compiled with Enterprise COBOL 4 and is not allowed in
full screen mode.

226 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• With programs compiled by Enterprise COBOL 5 and 6, nested programs will now show in the Debug
View.

• COBOL language provides a DECLARATIVES section to handle exceptional conditions. With Enterprise
COBOL 5 and 6, when a DECLARATIVES section gets control in a z/OS Debugger session, the debug view
shows a separate frame for it.

Chapter 19. IBM z/OS Debugger 227

228 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 20. CICS conversion considerations
To run COBOL 5 and later programs under CICS, you need to be familiar with the required CSD and
DFHRPL updates. You should also be familiar with compiler options for CICS. Finally, you may want to
migrate to the integrated CICS translator.

Consider the following topics:

• “CSD setup differences with Enterprise COBOL 5 and 6” on page 229
• “DFHRPL setup differences with Enterprise COBOL 5 and 6” on page 229
• “Compiler options for programs that run under CICS” on page 230
• “Migrating from the separate CICS translator to the integrated translator” on page 232
• “Static calls from COBOL 5 or 6 programs to VS COBOL II programs under CICS” on page 234

OS/VS COBOL restriction

OS/VS COBOL programs no longer run under CICS. Any OS/VS COBOL programs to be run under CICS
must be upgraded to Enterprise COBOL.

DFHRPL setup differences with Enterprise COBOL 5 and 6
To run programs under CICS, consider the DFHRPL setup differences.

You must update the JCL that starts CICS. Include the hlq.SEQAMOD data set of Debug Tool if debugging
in the region, and the Language Environment runtime libraries (SCEECICS, SCEERUN, and if required by
your applications, SCEERUN2) in the DFHRPL concatenation. The DFHRPL concatenation is in the CICS
region startup JCL.

If you are running Enterprise COBOL 5.1 or later programs compiled with the TEST compiler option under
CICS, except when using TEST(...,SEPARATE) exclusively, you must also add system libraries MIGLIB
and SIEAMIGE in the DFHRPL DD concatenation to support binder access to debug segments in the
applications.

For the binder to access the debug segments, the CICS region userid needs read access to the libraries
in the DFHRPL DD concatenation. Failure to provide the read access will produce the following diagnostic
messages:

IEW2716S D801 OPEN FAILED FOR DDNAME DFHRPL.
IEW2146S 02D9 CONFLICTING INPUT SPECIFICATIONS ON AN INCLUDE CALL.

CSD setup differences with Enterprise COBOL 5 and 6
With the following CICS TS versions, CICS uses system autoinstall to install the modules required
Enterprise COBOL 5 and 6 runtime so you do not need to update the CICS System Definition (CSD) file:

• CICS TS 5.4 and later
• CICS TS 5.3 with the PTF for APAR PI60389 applied
• CICS TS 5.1 and 5.2 with PTFs for APARs PI60388 and PI73184 applied

Without those PTFs applied or for earlier CICS TS versions, you must update the CICS CSD file to include
the modules required by the Enterprise COBOL 5 and 6 runtime that will be used under CICS. The
member CEECCSD in the Language Environment SCEESAMP data set provides an example of this definition
file and can be used to build the CICS CSD file.

© Copyright IBM Corp. 1991, 2024 229

You can also manually add the following lines to your existing CSD file if you are not at a CICS level that
supports autoinstall and choose not to use the CEECCSD example::

DEFINE PROGRAM(CEEEV004) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKA) GROUP(CEE)
DEFINE PROGRAM(IGZXD24) GROUP(CEE)
DEFINE PROGRAM(IGZXDMR) GROUP(CEE)
DEFINE PROGRAM(IGZLLIBV) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKC) GROUP(CEE)
DEFINE PROGRAM(IGZXLPIO) GROUP(CEE)
DEFINE PROGRAM(IGZXAPI) GROUP(CEE)
DEFINE PROGRAM(IEWBNDD) GROUP(CEE)
DEFINE PROGRAM(IEWBIND) GROUP(CEE)
DEFINE PROGRAM(CDAEEDE) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKB) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKD) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKE) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKF) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKG) GROUP(CEE)
DEFINE PROGRAM(IGZXPK2) GROUP(CEE)
DEFINE PROGRAM(IGZUOPT) GROUP(CEE) *
DEFINE PROGRAM(IGZXCDA) GROUP(CEE)

The IGZ* and CEE* modules are contained in the SCEERUN data set.

IEWBNDD is contained in SYS1.SIEAMIGE.

IEWBIND is contained in SYS1.MIGLIB and possibly LPA.

* The IGZUOPT module is not contained in SCEERUN by default. IGZUOPT is an optional module that can
be created as needed by using the sample JCL members IGZ1OPT, IGZ2OPT, IGZ3OPT, or IGZ4OPT in
SCEESAMP.

IGZUOPT is also not included in the SCEESAMP(CEECCSD) sample. If in use, it can be added to
SCEESAMP(CEECCSD).

Related tasks
Suppressing information in CEEDUMP processing (IGZ1OPT) (Enterprise COBOL for z/OS Programming
Guide)
Controlling suppress of OS/VS COBOL warning messages (IGZ2OPT)
Requesting QSAM buffer above the line (IGZ3OPT)
Controlling initiation of QSAM buffer (IGZ4OPT)

Compiler options for programs that run under CICS
Table 47 on page 231 lists the compiler options for Enterprise COBOL programs that run under CICS.

230 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 47. Compiler options for programs that run under CICS

Compiler
options Comments

CICS The CICS compiler option enables the integrated CICS translator capability. The CICS option
must be specified if the source program contains CICS statements and has not been
processed by the separate CICS translator.

The CICS option requires that the NODYNAM and RENT options also are in effect. Enterprise
COBOL forces on these options if DYNAM, or NORENT are specified at the same level as the
CICS option.

The CICS translator option COBOL3 is recommended, although COBOL2 is still supported.

Choose the COBOL2 option if you are retranslating old programs that require the use
of temporary variables. In particular, note that the use of temporary variables might
circumvent errors that would normally occur when an argument value in a program is
incorrectly defined. The COBOL2 option provides declarations of temporary variables.
Because of this feature, incorrect definitions of argument values might be present, but not
noticeable at run time, in programs that were translated with COBOL2. Translating these
programs with the COBOL3 option can reveal these errors for the first time.

For example, suppose you coded:

 EXEC CICS LINK PROGRAM('XXXXXXX')
 COMMAREA(WS-COMMAREA)
 LENGTH('1000')
 END-EXEC.

The length is supposed to be a binary halfword but because it is enclosed in quotation
marks, it is a character string. With COBOL3 the character string will be passed directly to
CICS on the CALL and will result in an error. With the COBOL2 option the length will be
moved to an intermediate variable and COBOL will convert it from character string to binary
halfword as part of the move. To assist with migration to the newer releases of CICS, you
can use the COBOL2 option to continue to circumvent errors in the programs, rather than
correcting them.

If the NOCICS option is in effect, any CICS statements found will be flagged with S-level
diagnostics and discarded.

DBCS The DBCS option is the default for Enterprise COBOL. It might cause problems for CICS
programs if you are using the COBOL2 CICS translator option. The fix is to use the COBOL3
translator option.

NODYNAM NODYNAM is required for programs translated by the CICS translator because the CICS
command-level stub cannot be dynamically called.

Note: Dynamic calls are supported under CICS by the use of the CALL identifier format of
the CALL statement, or by the use of the >>CALLINTERFACE DYNAM directive.

RENT RENT is required for CICS programs. RENT causes the compiler to produce reentrant code
and allows you to place the COBOL modules in the LPA (Link PackAarea) or ELPA (Extended
Link Pack Area) and thus shared among multiple address spaces under CICS. Also, the
modules cannot be overwritten, since the LPA and ELPA are read-only storage.

Chapter 20. CICS conversion considerations 231

Table 47. Compiler options for programs that run under CICS (continued)

Compiler
options Comments

TRUNC Use TRUNC(OPT) for CICS programs that contain EXEC CICS commands, if the program
uses binary data items in a way that conforms to the PICTURE and USAGE clause for them.

Use TRUNC(BIN) if your program uses binary data items in a way that does not conform to
the PICTURE and USAGE clause for them. For example, if a data item is defined as PIC S9(8)
BINARY and might receive a value greater than eight digits, use TRUNC(BIN). You can also
use TRUNC(OPT) and redefine specific items as COMP-5 to improve runtime performance
for the whole program.

For a full list of CICS translator options, see Defining translator options in the Developing CICS
Applications.

Migrating from the separate CICS translator to the integrated
translator

The separate CICS translator has not been updated for newer COBOL language such as floating comment
delimiters, JSON GENERATE and JSON PARSE, and compiler directives. To use the latest features of the
COBOL compiler, use the integrated CICS translator.

When you migrate COBOL applications to use the integrated CICS translator:

• Delete the separate translation step from the compile process.
• Change the XOPTS translator option to the CICS compiler option. The suboptions string must be

delimited with quotes or apostrophes. For example, a program to be translated by the separate CICS
translator might have a CBL statement like this:

CBL TEST(NOEJPD), XOPTS(LINKAGE,SEQ,SP)

For the integrated CICS translator it must be changed to this:

CBL TEST(NOEJPD), CICS('LINKAGE,SEQ,SP')

• Move all CBL/PROCESS statements to the first lines of the source program. The integrated CICS
translator does not accept comment lines preceding a CBL/PROCESS statement. The source program
must conform to Enterprise COBOL rules.

• Check if you have nested programs that redefine DFHCOMMAREA. The integrated translator will
not generate declarations of DFHCOMMAREA or DFHEIBLK in nested programs. DFHCOMMAREA and
DFHEIBLK declarations are generated in the outermost program with the GLOBAL attribute specified.
COBOL programs that depend on these generated declarations within nested programs require source
changes.

Integrated CICS translator
An integrated translator eliminates the separate translation step for COBOL programs that contain CICS
statements.

With the integrated translator, the COBOL compiler handles both native COBOL and embedded CICS
statements in the source program. When CICS statements are encountered, the compiler interfaces with
the integrated CICS translator. The integrated CICS translator takes appropriate actions and then returns
to the compiler indicating what native language statements to generate.

Although the separate CICS translator is still supported in Enterprise COBOL, use of the integrated CICS
translator is recommended. The integrated CICS translator improves usability and offers the highest level
of functionality. The benefits of using the integrated CICS translator include:

232 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.6.0/applications/developing/compiler/dfhp3_transl_options_define.html?sc=SSGMCP_latest

• Enhancements in interactive debugging of COBOL applications with Debug Tool. The application can be
debugged at the original source level, instead of at the level of the expanded source produced by the
CICS translator.

• EXEC CICS or EXEC DLI statements can reside in copybooks, eliminating the need to translate them
with an external translator before compilation.

• There is no longer a need for an intermediate data set to hold the translated version (before the
program has been compiled) of the source program.

• There is only one output listing instead of two.
• Using nested programs that contain EXEC CICS statements is simplified. DFHCOMMAREA and

DFHEIBLK are generated in the outermost program with the GLOBAL attribute specified on the
PROCEDURE DIVISION USING of nested programs.

• Nested programs that contain EXEC CICS statements can be held in separate files and included through
a COPY statement.

• REPLACE statements can now affect EXEC CICS statements.
• Binary fields in CICS control blocks are generated with USAGE COMP-5 instead of BINARY. Thus, there

is no longer a dependency on the setting of the TRUNC compiler option. Any setting of the TRUNC option
can be used with CICS applications that use the integrated translator, subject only to the requirements
of the user-written logic within the application.

Note: CICS 5.2 and later versions support the EXCI translator option with the integrated CICS translator.
In earlier versions than CICS 5.2, the CICS documentation states that the EXCI translator option is not
supported for programs compiled with the integrated CICS translator, but CICS has reversed this position.
You can also compile with the EXCI translator option and ignore the warning message DFH7006I.

Compiler options for the integrated CICS translator
Table 48 on page 233 lists compiler options for Enterprise COBOL programs that use the integrated CICS
translator.

Table 48. Key compiler options for the integrated CICS translator

Compiler option Comments

CICS The CICS compiler option enables the integrated CICS translator capability. The CICS
option must be specified if the source program contains CICS statements and has not
been processed by the integrated CICS translator.

The CICS option requires that the NODYNAM, and RENT options also are in effect.
Enterprise COBOL forces on these options if DYNAM or NORENT are specified at the
same level as the CICS option.

If NOCICS option is specified, any CICS statements found in the source program will
receive S-level messages and be discarded.

NODYNAM NODYNAM is required for programs translated by the CICS translator because the CICS
command-level stub cannot be dynamically called.

Note: Dynamic calls are supported under CICS by the use of the CALL identifier format of
the CALL statement, or by the use of the >>CALLINTERFACE DYNAM directive.

RENT RENT is required for CICS programs. RENT causes the compiler to produce reentrant
code and allows you to place the COBOL modules in the LPA or ELPA and thus shared
among multiple address spaces under CICS. Also, the modules cannot be overwritten,
since the LPA and ELPA are read-only storage.

Chapter 20. CICS conversion considerations 233

Static calls from COBOL 5 or 6 programs to VS COBOL II programs
under CICS

Existing applications with VS COBOL II programs are probably linked with older versions of the pre-
Enterprise COBOL library. When a module contains COBOL 5 or 6 programs statically linked with VS
COBOL II programs, and if the module is to be run under CICS, the application must be relinked with
REPLACE IGZEBST using LE library modules from SCEELKED that have been updated by the PTFs for
APAR PI33330.

234 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 21. Db2 coprocessor conversion
considerations

When you upgrade programs that use the Db2 precompiler to instead use the Db2 coprocessor, you need
to be aware of differences in behavior between the Db2 precompiler and the integrated Db2 coprocessor
and in code-page conversions.

Consider the following topics:

• Db2 coprocessor integration
• Language elements
• Code-page conversion

Starting with Db2 8 you can no longer use the Db2 precompiler for OS/VS COBOL programs. In addition,
you cannot mix OS/VS COBOL with Enterprise COBOL. Therefore, if a program needs to be changed, it
must be upgraded to Enterprise COBOL.

Db2 coprocessor integration
The integrated SQL coprocessor eliminates the need for precompilation with the Db2 precompiler in
COBOL programs containing SQL statements.

The coprocessor uses the COBOL compiler to handle both native COBOL and imbedded SQL statements
in the source program. When the SQL statements are encountered, the compiler interfaces with the Db2
coprocessor. The Db2 coprocessor takes appropriate actions and then returns to the compiler typically
indicating what native language statements to generate.

The separate precompiler is still supported by Db2 and Enterprise COBOL, however the coprocessor
approach is the preferred and recommended solution. The coprocessor approach provides improved
usability and the highest level of functionality. In particular, interactive debugging of COBOL applications
with Debug Tool is enhanced when the coprocessor solution is used, since the application may be
debugged at the original source level, instead of at the level of the expanded source produced by the Db2
precompiler.

The benefits of the coprocessor approach include:

• Compilation of COBOL programs with a single JOB step even if the source contains EXEC SQL (and EXEC
CICS) statements.

• The ability to include source code that contains EXEC SQL statements using COPY statements is
available.

• Enhancements in interactive debugging of COBOL applications with Debug Tool. The application may be
debugged at the original source level, instead of at the level of the expanded source produced by the
separate Db2 precompiler.

• There is only one output listing instead of two.
• REPLACE statements can now affect EXEC SQL statements.
• Nested programs that contain EXEC SQL statements can be held in separate files and included through

a COPY statement.

The following job stream shows an example of using the Db2 precompiler:

//DB2PRE JOB ...,
// NOTIFY=GTAO,MSGCLASS=A,CLASS=A,TIME=(1,0),
// REGION=200M,MSGLEVEL=(1,1)
//PC EXEC PGM=DSNHPC,
// PARM='HOST(COB2),QUOTE,APOSTSQL,SOURCE,XREF'
//DBRMLIB DD DSN=GTAO.DBRMLIB.DATA(COBTEST),DISP=SHR
//STEPLIB DD DSN=DSN910.SDSNLOAD,DISP=SHR
//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,

© Copyright IBM Corp. 1991, 2024 235

// SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSIN DD *

 IDENTIFICATION DIVISION.
 PROGRAM-ID.COBTEST.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 RES PIC X(10).
 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.
 PROCEDURE DIVISION.
 EXEC SQL
 SELECT COL1 INTO :RES FROM TABLE1
 END-EXEC.
 GOBACK.

//COB EXEC PGM=IGYCRCTL,
//PARM=(NODYNAM,'BUF(12288)',SOURCE,NOXREF)
//STEPLIB DD DSN=IGY.V5R1M0.SIGYCOMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CEE.SCEERUN2,DISP=SHR
//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
//SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT3 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT4 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT5 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT6 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT7 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT8 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT9 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT10 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT11 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT12 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT13 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT14 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT15 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSMDECK DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)

The following example shows the integrated SQL coprocessor:

//DB2INT JOB (GTAO,F342,090,M49),'Gianni Tao',
//NOTIFY=GTAO,MSGCLASS=A,CLASS=A,TIME=(1,0),
//REGION=200M,MSGLEVEL=(1,1)
//COB EXEC PGM=IGYCRCTL,
//PARM=(NODYNAM,'BUF(12288)',SOURCE,NOXREF,SQL)
//STEPLIB DD DSN=IGY.V5R1M0.SIGYCOMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CEE.SCEERUN2,DISP=SHR
// DD DSN=DSN910.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=GTAO.DBRMLIB.DATA(COBTEST),DISP=SHR
//SYSIN DD *

 IDENTIFICATION DIVISION.
 PROGRAM-ID.COBTEST.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 RES PIC X(10).
 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.
 PROCEDURE DIVISION.
 EXEC SQL
 SELECT COL1 INTO :RES FROM TABLE1
 END-EXEC.
 GOBACK.

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,

236 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

//SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=* //SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT3 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT4 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT5 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT6 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT7 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT8 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT9 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT10 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT11 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT12 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT13 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT14 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT15 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSMDECK DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)

Differences between the Db2 precompiler and the integrated Db2
coprocessor

There are some differences in the way certain aspects of SQL code are handled between the separate
precompiler and the integrated coprocessor. View the following items to take into account these
differences when you change to using the coprocessor.
Continuation lines

Precompiler: Requires that an EXEC SQL statement start in columns 12 through 72; continuation
lines of the statement can start anywhere in columns 8 through 72.

Coprocessor: Requires that all lines of an EXEC SQL statement be coded in columns 12 through 72,
including continuation lines.

Action to migrate to coprocessor: Move any continuation of EXEC SQL statements that start in
columns 8 through 11 over to start in columns 12 through 72.

FOR BIT DATA host variables
Precompiler: A COBOL alphanumeric data item can be used as a host variable to hold Db2 character
data that has subtype FOR BIT DATA. An explicit EXEC SQL DECLARE VARIABLE statement that
declares the host variable in question as FOR BIT DATA is not required with the precompiler.

Coprocessor: A COBOL alphanumeric data item can be used as a host variable to hold Db2 character
data having subtype FOR BIT DATA only if:

• You specify the NOSQLCCSID compiler option, or
• An explicit EXEC SQL DECLARE VARIABLE statement for the host variable is specified in the COBOL

program. For example:

EXEC SQL DECLARE :HV1 VARIABLE FOR BIT DATA END-EXEC

If you use the Db2 DCLGEN command to generate COBOL declarations for a table, you can create
the EXEC SQL DECLARE statements automatically. To do so, specify the DCLBIT(YES) option of the
DCLGEN command.

Action to migrate to coprocessor:

• Use DCLGEN to add the explicit EXEC SQL DECLARE VARIABLE FOR BIT DATA statement to the data
declarations for any data items that are used as bit data and not just as character data.

• Add the explicit EXEC SQL DECLARE VARIABLE FOR BIT DATA statement to the data declarations
manually.

• Use the NOSQLCCSID compiler option.

Chapter 21. Db2 coprocessor conversion considerations 237

Host variables defined in the FILE SECTION
Precompiler: Only gives a warning message for a host variable defined in the File Section, even
though the Db2 Application Programming and SQL Guide clearly states that this is not allowed. Here is
the message that the Db2 precompiler issues:

DSNH310I W csectname LINE nnnn COL cc language HOST VARIABLE name WAS DECLARED IN FILE
SECTION.

Coprocessor: Gives a severe error message for a host variable defined in the File Section. Here is the
message that the Db2 coprocessor issues:

IGYPS0231-S SQL HOST VARIABLE name WAS DEFINED IN THE "FILE SECTION".

Multiple definitions of a host variable
Precompiler: Does not require host variable references to be unique.

The first definition that maps to a valid Db2 data type is used.

Coprocessor: Requires that all host variables references be unique.

If a host variable reference is not unique, the coprocessor diagnoses it as a nonunique reference. You
must fully qualify the host variable reference to make it unique.

Action to migrate to coprocessor: Fully qualify any host variable references for which there are
multiple definitions.

Period at the end of an EXEC SQL INCLUDE statement
Precompiler: A period is not required.

If you do specify a period, the precompiler processes it as part of the statement. If you do not specify
a period, the precompiler accepts the statement as if a period were specified.

Coprocessor: A period is required. (The coprocessor treats the EXEC SQL INCLUDE statement like a
COPY statement.)

Note: Periods are not required following any other EXEC SQL statements, except for EXEC SQL
INCLUDE statements.

Example:

IF A = B THEN
 EXEC SQL INCLUDE somecode END-EXEC.
ELSE
 ...
END-IF

Note that the period does not terminate the IF statement.

Action to migrate to coprocessor: Add a period after every

EXEC SQL INCLUDE somecode END-EXEC

statement.

REPLACE and EXEC SQL statements
Precompiler: COBOL REPLACE statements and the REPLACING phrase of COPY statements act on the
expanded source created from EXEC SQL statements.

Coprocessor: COBOL REPLACE statements and the REPLACING phrase of COPY statements act on
the original source program including EXEC statements, which can result in different behavior in the
following examples:

REPLACE ==ABC ==By ==XYZ ==.
01 G.
02 ABC PIC X(10).
...
EXEC SQL SELECT *INTO :G.ABC FROM TABLE1 END-EXEC

238 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

With the precompiler the reference to G.ABC will be displayed as ABC OF G in the expanded source
and will be replaced with XYZ OF G. With the coprocessor, replacement will not occur because ABC is
not delimited by separators in the original source string G.ABC.

Action to migrate to coprocessor: Change your code to either REPLACE the qualified references (for
example G.ABC) as well as the unqualified references:

REPLACE ==ABC ==By ==XYZ ==
==G.ABC ==By ==G.XYZ ==.

Or change code so that qualification is not required, stop using REPLACE for such data items, or any
other means to allow the COBOL programs changed by REPLACE to compile cleanly.

Source code that follows END-EXEC
Precompiler: Ignores any code that follows the END-EXEC on the same line.

Coprocessor: Processes the code that follows the END-EXEC on the same line.

Note: This includes a period that follows END-EXEC, so that using the integrated SQL coprocessor
with SQL statements that have periods on the same line as the END-EXEC should be changed. The
periods should be removed since they were ignored in the precompiler case.

Action to migrate to coprocessor: add the floating comment indicator *> after the END-EXEC phrase.

SQL-INIT-FLAG
Precompiler: If you pass host variables that might be located at different addresses when the
program is called more than once, the called program must reset SQL-INIT-FLAG. Resetting this flag
indicates to Db2 that storage must be initialized when the next SQL statement runs. To reset the flag,
insert the statement MOVE ZERO TO SQL-INIT-FLAG in the PROCEDURE DIVISION of the called
program, ahead of any executable SQL statements that use the host variables.

Coprocessor: The called program does not need to reset SQL-INIT-FLAG. An SQL-INIT-FLAG is
automatically defined in the program to aid in program portability. However, statements that modify
SQL-INIT-FLAG, such as MOVE ZERO TO SQL-INIT-FLAG, have no effect on the SQL processing in
the program.

Action to migrate to coprocessor: Optionally remove references to SQL-INIT-FLAG, they are not used
and not needed.

SYSLIB and COPY versus EXEC SQL INCLUDE
Precompiler: The precompiler has a separate SYSLIB concatenation from the compiler, so that
a specific member name, like 'member1', might refer to two different members using EXEC SQL
INCLUDE 'member1' during precompilation and COPY 'member1' during compilation.

Coprocessor: There is only one SYSLIB concatenation for both EXEC SQL INCLUDE statements and
COPY statements. In this case, you cannot use a single name to refer to two different members.

Action to migrate to coprocessor: Rename the SQL INCLUDE member or the copybook member, and
make corresponding source code changes to the SQL INCLUDE or COPY statements involved.

Code-page conversion
There are differences in the way character conversion is handled between the separate precompiler and
the integrated coprocessor. View the following items to take into account these differences when you
change to using the coprocessor.

Code-page coordination between COBOL and Db2 for SQL statements
Precompiler: There is no coordination. The code page for processing SQL statements is determined
from Db2 external mechanisms and defaults

Coprocessor: Code-page coordination between COBOL and Db2 for SQL statements is dependant on
the SQLCCSID compile option:

• SQLCCSID:

Chapter 21. Db2 coprocessor conversion considerations 239

– The COBOL CODEPAGE(ccsid) compiler option affects processing of host variables in COBOL
statements and SQL statements.

– CCSID processing is compatible with the SQL coprocessor in Enterprise COBOL 3.4.
– The ccsid specified in the CODEPAGE compiler option must match the ccsid in DSNHDECP for the

database encoding.
• NOSQLCCSID (recommended):

– The CODEPAGE(ccsid) compiler option only affects processing of COBOL statements, it is not
used for processing SQL statements.

– The code page for processing SQL statements is determined from Db2 external mechanisms such
as DSNHDECP and defaults.

For more information about SQLCCSID and NOSQLCCSID, see the Enterprise COBOL for z/OS
Programming Guide section "COBOL and Db2 CCSID determination".

240 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Chapter 22. Moving IMS programs to Enterprise
COBOL 5 or 6

If you use COBOL for IMS exit routines, pay attention to some restrictions with COBOL 5 and 6.

Only IMS exits that are enabled for enhanced services can reside in PDSE data sets. In particular, COBOL
users commonly use two types of exits, and they are not enabled to run out of PDSE data sets:

DFSME127 The Input Message Segment Edit user exit
DFSME000 The Input Message Field Edit user exit

If you have COBOL programs that are used as these types of IMS user exits, the programs cannot be
compiled with COBOL 5 or 6. The exception is when the actual exit is an assembler program in a PDS data
set that LOADs and calls a COBOL 5 or 6 program in a PDSE. To handle the cases with COBOL 5 or 6 and
these users exits, you have the following choices:

• If the exit routine is COBOL, do not recompile with COBOL 5 or 6, but keep using the older COBOL
version.

• If the exit routine is COBOL, change to use an assembler program that LOADs COBOL 5 or 6, or an older
COBOL program that does a dynamic CALL to COBOL 5 or 6 for exit logic.

• If the exit routine is assembler that loads a COBOL program, recompile the COBOL program with COBOL
5 or 6, bind into a PDSE data set, and add that new data set to the concatenation.

IMS is in the process of enabling user exits for enhanced services, which allows them to be run out of
PDSE data sets. See the list of the user exit types that are enabled for the new services in IMS V11:

ICQSEVNT(new) The IMS CQS Event user exit
ICQSSEVT(new) The IMS CQS Structure Event user exit
INITTERM(new) The Initialization / Termination user exit
RESTART(new in IMS 10)The Restart user exit
PPUE (DSFSPPUE0) The Partner Product user exit

No additional exits were enabled in IMS 12.

The following user exit types are enabled in IMS 13:

BSEX (DFSBSEX0) The Build Security Environment user exit
LOGEDIT (DFSFLGE0) The Log Edit user exit
LOGWRT (DFSFLGX0) The Logger user exit
NDMX (DFSNDMX0) The Non-Discardable Message user exit
OTMAIOED (DFSYIOE0) The OTMA Input / Output Exit user exit
OTMARTUX (DFSYRTUX) The OTMA Resume TPIPE Security user exit
OTMAYPRX (DFSYPRX0) The OTMA Destination Resolution user exit
RASE (DFSRAS00) The Resource Access Security user exit

Compiling and linking for running under IMS
For best performance in the IMS environment, use the RENT compiler option. It causes COBOL to
generate reentrant code. You can then run your application programs in either preloaded mode (the
programs are always in storage) or nonpreload mode, without having to recompile with different options.

IMS allows COBOL programs to be preloaded. This preloading can boost performance because
subsequent requests for the program can be handled faster when the program is already in storage
(rather than being fetched from a library each time it is needed).

You must use the RENT compiler option to compile a program that is to be run preloaded or as both
preloaded and nonpreloaded. When you preload a program object that contains COBOL programs, all of
the COBOL programs in that program object must be compiled with the RENT option.

In an application with any mixture of Enterprise COBOL, IBM COBOL, and VS COBOL II programs, the
following compiler options are recommended:

© Copyright IBM Corp. 1991, 2024 241

Table 49. Recommended compiler options for applications with mixed COBOL programs

Enterprise COBOL IBM COBOL VS COBOL II

RENT RENT RENT and RES

You can place programs compiled with the RENT option in the LPA or ELPA. There they can be shared
among the IMS dependent regions.

To run above the 16-MB line, your application program must be compiled with RENT and RMODE(ANY).

With IMS, the data for IMS application programs can reside above the 16-MB line, and you can use
DATA(31) and RENT for programs that use IMS services.

The recommended link-edit attributes for proper execution of COBOL programs under IMS are as follows:

• Link as RENT program objects that contain only COBOL programs compiled with the RENT compiler
option.

• To link program objects that contain a mixture of COBOL RENT programs and other programs, use the
link-edit attributes recommended for the other programs.

LLA-managed load libraries for performance
If you use Library Lookaside (LLA) to manage caching of COBOL load modules (PDS load libraries) and
program objects (PDSE load libraries) for performance, COBOL 5 or 6 modules are not cached by LLA in
the base versions of z/OS because of the structure of their resulting program objects. IBM has corrected
this in the service stream via APAR OA45127. Alternatively, you can get a performance boost by enabling
PDSE hyperspace caching, which helps the case of COBOL 5 or 6 program objects in load libraries that are
managed by LLA.

One approach for loading large program objects is called page-fault driven loading. The initial load brings
in only part of the program object; other parts of the program object might be brought in only when
they are referenced, that is, when a page-fault occurs. For libraries that are managed by LLA, in some
cases performance can be improved by avoiding page-fault driven loading. If you use the binder option
FETCHOPT=(NOPACK,PRIME) for a program object, the system does not use page-fault driven loading.
The default binder option of FETCHOPT=(NOPACK,NOPRIME) allows use of page-fault driven loading.

Note: When a program object resides in a library that is not LLA managed, the default binder option of
FETCHOPT=(NOPACK,NOPRIME) might provide better performance.

See also Other product related factors that affect runtime performance in the Enterprise COBOL for z/OS
Performance Tuning Guide, for considerations on using LLA when the program object contains RMODE 24
CSECTs.

242 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix A. Frequently asked questions (FAQ) and
answers

This section provides answers to some of the most common questions about upgrading to Enterprise
COBOL and Language Environment. The questions are grouped into the following categories:

• Before migration
• Compatibility
• Link-editing with Language Environment
• Compiling with Enterprise COBOL
• Language Environment services
• Language Environment runtime options
• Subsystems
• z/OS
• Performance
• Service
• Object-oriented syntax, and Java 6, Java 7 and Java 8 SDKs

Before migration
This topic describes frequently asked questions before migration.

• “What does COBOL migration refer to?” on page 243
• “Is migrating from COBOL 4 and earlier to COBOL 6 different than migrating from COBOL 3 to 4?” on

page 244
• “Will support end for my load modules that have been compiled with earlier versions of COBOL?” on

page 244
• “Which COBOL 6 version should I choose to migrate to?” on page 244
• “Why do I need to migrate?” on page 244
• “Are there any best practices to learn before my migration?” on page 244
• “Are there any tools to speed up migration?” on page 244
• “Do I need to recompile everything for the migration?” on page 245
• “Where can I get an overview of the complete migration process?” on page 245
• “How do I select the top CPU hitters for my first migration target?” on page 245
• “Are there any education packages available so that I can take a deep dive into migration?” on page 245
• “How can I get support if running into migration issues?” on page 246
• “Once I've migrated to 5 or 6, do I have to worry about invalid data?” on page 246
• “If I find that my programs are using invalid data at run time, but my application results are OK, can I

avoid correcting the invalid data problems?” on page 246
• “Can I measure the performance gains of a COBOL program or an application on production systems

after migration?” on page 246

What does COBOL migration refer to?
From a licensing and system programmer perspective, migration means updating your build compiler to a
later version, including required source, option, testing, and environment changes. The current migration
target is Enterprise COBOL 6.

© Copyright IBM Corp. 1991, 2024 243

From a development perspective, migration means migrating an application: recompiling programs with
the newer compiler to get the performance benefits and access to new features of COBOL.

Is migrating from COBOL 4 and earlier to COBOL 6 different than migrating from
COBOL 3 to 4?
Yes. Since the newer generation of COBOL compilers can use different instructions to make your COBOL
programs more efficient, they can reveal hidden and underlying issues with invalid data use at run
time. The presence of invalid data can lead to different behaviors, so additional testing is needed. Most
customers do not have this problem, but you cannot know in advance if you will run into these problems,
thus we have a new recommended migration process.

Will support end for my load modules that have been compiled with earlier versions
of COBOL?
No. The already compiled modules using z/OS LE will continue to be supported in production as long as
you’re using a supported z/OS level.

Which COBOL 6 version should I choose to migrate to?
It is recommended that you migrate to the latest COBOL version (COBOL 6.4 that was released in April
2022) to benefit from the latest features and performance enhancements. To discover the latest features,
see What is new in Enterprise COBOL for z/OS 6.4 and COBOL 6.4 with PTFs installed.

For a list of compatible hardware and software levels for the COBOL 6.4 compiler, see the Software
Product Compatibility Reports (SPCR) website. From the SPCR website, click Create a Report under
in-depth reports, search for Enterprise COBOL for z/OS, choose version 6.4, and then click submit.

Why do I need to migrate?
The necessity is that EOS (End of Service) is announced for Enterprise COBOL 4 and 5. See IBM Software
lifecycle website for more information.

The advantages of COBOL 6 are as follows:

• Fully exploiting IBM z/Architecture: Enterprise COBOL 6 has advanced optimization and deep hardware
exploitation of the latest IBM mainframes to improve performance.

• Modernizing applications: You can leverage new COBOL language and productivity features, such as
JSON, Conditional compilation, new intrinsic functions, 64-bit COBOL applications, and others.

Are there any best practices to learn before my migration?
Yes. In order to avoid a failed migration which is possibly caused by a presence of invalid data in COBOL
data items at run time, you can go through a 2-compile and 2-test process with migration options, which
were added to the compiler to help migration. You can also use IBM DevOps tools (as introduced in the
following FAQ) to build and test automatically, which will simplify the migration and further application
maintenance and upgrades.

Are there any tools to speed up migration?
Yes. IBM DevOps tools can make management of your applications much easier, including automated
testing, which is key to migrating to COBOL 6 from COBOL 4 and earlier compilers.

For improved application building and releasing, the DevOps tools are as follows:

• IBM Dependency Based Build
• IBM UrbanCode Deploy

For improved editing and debugging, the DevOps tools are as follows:

244 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/docs/en/cobol-zos/6.4?topic=wn-what-is-new-in-enterprise-cobol-zos-64-cobol-64-ptfs-installed
https://www.ibm.com/software/reports/compatibility/clarity/index.html
https://www.ibm.com/software/reports/compatibility/clarity/index.html
https://www.ibm.com/support/home/pages/lifecycle/
https://www.ibm.com/support/home/pages/lifecycle/
https://www.ibm.com/docs/dbb/latest
https://www.ibm.com/docs/urbancode-deploy/latest

• IBM Developer for z/OS
• IBM Z and Cloud Modernization Stack

For automated testing and testing efficiency, the DevOps tools are as follows:

• IBM Z Virtual Test Platform

For efficient analyzing, the DevOps tools are as follows:

• IBM Application Discovery and Delivery Intelligence

Do I need to recompile everything for the migration?
Although it is recommended, you do not have to recompile all of your programs with the newer build
compiler. However, only the recompiled programs have the performance boost of COBOL 6.

Most COBOL users focus their migration effort on applications or programs that are under active
development. You can first analyze the development activity on your applications to determine the key
candidates for recompilation. Applications or programs that are not regularly updated do not need to be
immediately recompiled. If the source of an application or a program is changed, you must recompile the
application or program, but if not, you can use IBM Automatic Binary Optimizer for z/OS (ABO) to improve
the performance. For details about ABO, see the ABO product page.

Where can I get an overview of the complete migration process?
The following migration process diagram illustrates the whole migration process and COBOL Migration
Assistant provides guidance to migration.

Start migration

PDS load

libraries?

No

Migrate to

PDSE

Yes

No

Keep separated,

migrate early to V5/V6,

or migrate first to V4

OS/VS COBOL or
VS COBOL II NORES

programs?

Run under LE?

Yes

Move old

runtime to LE

Upgrade SW

and HW to

required levels

Prepare source

and LE

Install new

compiler

Install prerequisite
service updates

Install new

compiler and PTFs

Set default

compiler options

Recompile, test,

and verify

Your programs

compiled with V3 or

later?

Yes

Pass regression

tests? No

Migration done

Raise region

sizes

YesYYes

No

Update COBOL

source

Fix invalid data

or programs

Yes

No

Recompile

selected programs

Complete
preparation

Complete
installation

Complete
verification

Required
process

Decision Terminal

Optional
process

Connector Preparation

How do I select the top CPU hitters for my first migration target?
The video "How to Identify Top CPU Consuming COBOL Modules" (https://mediacenter.ibm.com/media/
1_ygabnyso) introduces a way to identify the top CPU hitters in four steps, including identifying peak
usage, identifying top job-program pairs, identifying top models, and scanning for COBOL CSECTS.

Are there any education packages available so that I can take a deep dive into
migration?
It is recommended that you watch the recorded videos for the IBM Enterprise COBOL for z/OS 6 Migration
Webinar and Performance Tuning Webinar on COBOL Migration and Performance Tuning Webinars.
The Migration Webinar helps you understand the migration process, tips, and tricks to avoid common
pitfalls, and the Performance Tuning Webinar helps you understand how to take advantage of advanced

Appendix A. Frequently asked questions (FAQ) and answers 245

https://www.ibm.com/docs/developer-for-zos/latest
https://www.ibm.com/docs/cloud-paks/z-modernization-stack/latest
https://www.ibm.com/docs/zvtp/latest
https://www.ibm.com/docs/addi/latest
https://www.ibm.com/products/automatic-binary-optimizer-zos
https://www.ibm.com/products/automatic-binary-optimizer-zos
https://cobol-migration-assistant.ibm.com
https://cobol-migration-assistant.ibm.com
https://mediacenter.ibm.com/media/1_ygabnyso
https://mediacenter.ibm.com/media/1_ygabnyso
https://www.ibm.com/docs/SS6SG3_latest/migration-webinars.html

optimization technology in the Enterprise COBOL 6 compiler to increase performance of your business-
critical applications and reduce CPU usage.

If you still have questions after watching the webinar videos, contact the COBOL experts by filling out the
questionnaire.

How can I get support if running into migration issues?
You can open a case at COBOL compilers support portal to report migration problems.

Once I've migrated to 5 or 6, do I have to worry about invalid data?
If you have corrected all previous invalid data and you have validated the data your program uses, then
no. If you still have invalid data, you may see differences in behaviour after a future migration or when you
change the ARCH or OPT options.

If I find that my programs are using invalid data at run time, but my application
results are OK, can I avoid correcting the invalid data problems?
No. For some customers who migrated successfully to COBOL 6.1 without testing invalid data, when they
moved up to COBOL 6.2 and compiled with ARCH(12) for z14 hardware, their programs started abending
on the invalid data. Invalid data could be a problem for years and should be corrected.

Can I measure the performance gains of a COBOL program or an application on
production systems after migration?
Yes, you can, but it is not recommended because hardware, workloads, and code may all be changed
during the migration. The best and most accurate way is to measure COBOL 4 modules and COBOL
6 modules right afterwards on the same machine with the same data. Make sure you either did
measurements or kept your load modules around. Otherwise, you cannot get the old numbers when
you move forward with your migration.

Compatibility
This topic describes frequently asked questions about compatibility.

• “Is Enterprise COBOL 6 compatible with earlier versions of IBM COBOL?” on page 247
• “Does my IBM COBOL or Enterprise COBOL compiler support the latest IBM hardware and operating

systems?” on page 247
• “Can OS/VS COBOL and VS COBOL II programs call Enterprise COBOL programs?” on page 247
• “Can programs compiled with Enterprise COBOL 3 or 4 call programs compiled with Enterprise COBOL

6?” on page 248
• “Can you convert programs selectively to Enterprise COBOL?” on page 248
• “We have had errors when running COBOL programs where an output DD was misspelled and a

temporary file was created. This causes problems when it occurs with a file for a one-time program
run. Is this still a concern with Enterprise COBOL?” on page 248

• “When should you use the CMPR2 option?” on page 248
• “Is the signature area of Enterprise COBOL programs the same as for OS/VS COBOL and VS COBOL II?”

on page 248
• “How is Enterprise COBOL 6 different from previous versions?” on page 248
• “What features are removed from Enterprise COBOL 6?” on page 249

246 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.surveygizmo.com/s3/6745998/contact-IBM-COBOL-experts
https://www.ibm.com/support/pages/node/6560933

Is Enterprise COBOL 6 compatible with earlier versions of IBM COBOL?
Enterprise COBOL 6 provides a high level of source compatibility, object compatibility, and runtime
compatibility with earlier versions of IBM COBOL.

• Enterprise COBOL 6 is source compatible with earlier versions of IBM COBOL. This means that the
compiler will compile correct COBOL source programs that were developed using Enterprise COBOL
5, Enterprise COBOL 4, or earlier, with the exception of obsolete functions that were removed and
the addition of new reserved words. The removed functions include obsolete COBOL language syntax
and obsolete compiler options. IBM does not expect that many applications will be affected by the
removed functions, which in practice are no longer heavily used.

It is recommended that you plan your source program upgrading by following the steps in Chapter 5,
“Planning to upgrade source programs,” on page 29. For details about source updating and recompiling,
see appropriate topics in Part 3, “Upgrading programs,” on page 43.

• Enterprise COBOL 6 is object compatible with earlier versions of IBM COBOL. This means that
applications can be constructed by using a mixture of object modules that are compiled with
COBOL 6 and those compiled with earlier versions. Both static calls (calls within a link-edited module)
and dynamic calls (calls between programs link-edited as separate modules) can be used. The following
are exceptions:

– Interoperation with object modules that are compiled with OS/VS COBOL (5740-CB1) is not
supported.

– Interoperation with object modules that are compiled with VS COBOL II (5688-958) is limited to
programs compiled with the RES compiler option. Interoperation with VS COBOL II programs that are
compiled with the NORES option is not supported.

For these OS/VS COBOL and VS COBOL II NORES programs, you must recompile them with Enterprise
COBOL 6 so that they can work in the same application with Enterprise COBOL 6 programs. For details,
see Chapter 18, “Adding Enterprise COBOL 5 or 6 programs to existing COBOL applications,” on page
215.

To improve the performance of your VS COBOL II NORES programs without recompiling, you can use the
IBM Automatic Binary Optimizer for z/OS (ABO) product. However, the interoperation between COBOL 6
programs and ABO-optimized VS COBOL II NORES programs is not supported, either.

• Enterprise COBOL 6 is runtime compatible with earlier versions of IBM COBOL. This means that
COBOL programs using valid data will continue to produce the same runtime results after being
recompiled with Enterprise COBOL 6. A small number of exception cases and how to handle invalid
data are documented in “Changes at run time with Enterprise COBOL 5 and 6” on page 200.

Does my IBM COBOL or Enterprise COBOL compiler support the latest IBM hardware
and operating systems?
IBM COBOL and Enterprise COBOL compilers support forward compatibility with IBM hardware and
operating systems. There are no known compatibility issues with running older versions of the COBOL
compilers themselves on the latest hardware or the latest operating systems, nor are there any known
compatibility issues with running the load modules or executables of these older compilers on the latest
hardware and operating systems.

Depending on the functions used, you might require other software products such as CICS, Db2, or IMS.
For a list of hardware, operating systems, or software products compatible with your IBM COBOL or
Enterprise COBOL compiler, see the Software Product Compatibility Reports (SPCR) site.

Can OS/VS COBOL and VS COBOL II programs call Enterprise COBOL programs?
Under non-CICS, calls between OS/VS COBOL and Enterprise COBOL are not supported. Under CICS,
OS/VS COBOL programs cannot run at all.

Appendix A. Frequently asked questions (FAQ) and answers 247

https://www.ibm.com/products/automatic-binary-optimizer-zos
https://www.ibm.com/software/reports/compatibility/clarity/index.html

Under non-CICS, calls between VS COBOL II NORES programs (that is, programs compiled with the
NORES compiler option) and Enterprise COBOL are not supported. Under CICS, VS COBOL II NORES
programs cannot run at all.

Under non-CICS and under CICS, any calls between VS COBOL II RES programs and Enterprise COBOL
programs are supported. For additional details, see the Enterprise COBOL for z/OS Programming Guide.

For a complete list of calls between COBOL and assembler (including whether they are supported or not
when running with Language Environment), see “Runtime support for assembler COBOL calls under CICS”
on page 293 .

Can programs compiled with Enterprise COBOL 3 or 4 call programs compiled with
Enterprise COBOL 6?
Yes, you can have applications with Enterprise COBOL 3, 4, and 6 programs and they can work well
together. Enterprise COBOL 6 programs can call any COBOL programs except for programs compiled with
OS/VS COBOL or VS COBOL II when compiled with the NORES option. This means that you can mix and
match programs compiled with different COBOL compiler versions. It also means that you can recompile
a few programs with Enterprise COBOL 6 in an existing application, while the rest of the programs are still
compiled with earlier compilers.

To improve the performance of your COBOL programs without recompiling, you can use IBM Automatic
Binary Optimizer for z/OS (ABO) to optimize your old load modules that have been compiled by a COBOL
version listed at Eligible compilers in IBM Automatic Binary Optimizer for z/OS User's Guide.

Can you convert programs selectively to Enterprise COBOL?
Yes, unless an application contains any OS/VS COBOL programs or VS COBOL II programs compiled with
the NORES option. When you convert applications containing OS/VS COBOL programs or VS COBOL II
programs compiled with the NORES option, you must convert all of these programs in the run unit to
Enterprise COBOL.

We have had errors when running COBOL programs where an output DD was
misspelled and a temporary file was created. This causes problems when it occurs
with a file for a one-time program run. Is this still a concern with Enterprise COBOL?
Yes, for QSAM you can turn off automatic file creation with the Language Environment CBLQDA(OFF)
runtime option.

When should you use the CMPR2 option?
The CMPR2/NOCMPR2 option is not available in Enterprise COBOL. Enterprise COBOL behaves as if
NOCMPR2 were in effect at all times. Any programs that were compiled with CMPR2 with a previous
compiler must be upgraded to the 85 COBOL standard to compile with Enterprise COBOL.

For more details, see “Migrating from the CMPR2 compiler option to NOCMPR2” on page 104.

Is the signature area of Enterprise COBOL programs the same as for OS/VS COBOL
and VS COBOL II?
No, but maps of the signature area can be used to find out what compiler options were used to compile
the module, when it was compiled, release level, and so on. For details, see Reading LIST output in the
Enterprise COBOL for z/OS Programming Guide.

How is Enterprise COBOL 6 different from previous versions?
Enterprise COBOL 6 changes mainly fall into the following categories:

• Prerequisite software level changes

248 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/products/automatic-binary-optimizer-zos
https://www.ibm.com/products/automatic-binary-optimizer-zos
https://www.ibm.com/support/knowledgecenter/en/SSERQD_latest/com.ibm.opt.doc/supportedcom.html

• COBOL source code differences
• Compiler option changes
• Dependence on system MEMLIMIT setting for large programs
• Runtime changes
• Changes that might affect vendor tools

Follow the above links and you can learn more about these changes in the Enterprise COBOL for z/OS
Migration Guide.

What features are removed from Enterprise COBOL 6?
The removed features are the Millennium Language Extensions and LABEL declaratives. Learn more
details at “COBOL source code differences in Enterprise COBOL 5 and 6” on page 185.

Compiling with Enterprise COBOL
This topic describes frequently asked questions about compiling with Enterprise COBOL.

• “Are there any compiler options for finding invalid data or for performance tuning purposes?” on page
249

• “Regarding invalid data, is the testing done at run time?” on page 250
• “Is the 2-step compile exercise a one-time process?” on page 250
• “Can you compile programs written for OS/VS COBOL with Enterprise COBOL using the CMPR2 option?”

on page 250
• “Can you compile programs written for VS COBOL II with Enterprise COBOL?” on page 250
• “What utilities or tools can assist in converting OS/VS COBOL or VS COBOL II source to Enterprise

COBOL source?” on page 250
• “For Enterprise COBOL 6 only: what should I do if the compiler gives me a message about insufficient

memory?” on page 250
• “Does Enterprise COBOL meet the 85 COBOL Standard?” on page 251
• “Does Enterprise COBOL meet the 2002 COBOL Standard and 2014 COBOL Standard?” on page 251
• “How can we compile the programs with parameters to get it executed above the 2 GB bar?” on page

251

Are there any compiler options for finding invalid data or for performance tuning
purposes?
For finding invalid data, you can first compile with SSRANGE, NUMCHECK, PARMCHECK, INITCHECK, and
OPT(0) for initial code changes and unit tests, and then recompile with NOSSRANGE, NONUMCHECK,
NOPARMCHECK, and OPT(2) for quality assurance tests and production (2-step compile process).

• SSRANGE in the Enterprise COBOL for z/OS Programming Guide: Use SSRANGE to have the compiler
generate code that checks for out-of-range storage references.

• NUMCHECK in the Enterprise COBOL for z/OS Programming Guide: Use NUMCHECK to have the compiler
generate extra code to validate data items when they are used as sending data items.

• PARMCHECK in the Enterprise COBOL for z/OS Programming Guide: Use PARMCHECK to have the
compiler generate an extra data item following the last item in WORKING-STORAGE, and then to check
whether a called subprogram corrupted data beyond the end of WORKING-STORAGE.

• INITCHECK in the Enterprise COBOL for z/OS Programming Guide: Use INITCHECK to have the compiler
check for uninitialized data items and issue warning messages when they are used without being
initialized.

For performance tuning, Enterprise COBOL 6 offers several new and substantially changed compiler
options that can affect performance, and the recommended compiler option set for best performance

Appendix A. Frequently asked questions (FAQ) and answers 249

is OPT(2), ARCH(x), and TUNE(y). For more information about performance tuning, see How to tune
compiler options to get the most out of 6 in the Enterprise COBOL for z/OS Performance Tuning Guide.

To learn more migration best practices, see Chapter 4, “Migration recommendations to Enterprise COBOL
6,” on page 27.

Regarding invalid data, is the testing done at run time?
Most testing is done at run time, but certain testing is done at compile time. Generally speaking, you will
find issues at run time because the compiler does not know where the invalid data comes from unless it
happens to be within one program.

Is the 2-step compile exercise a one-time process?
As long as you can find and correct all invalid data while migrating, the 2-step compile is a one-time
process. If you allow invalid data to persist, future compiler versions or changes in options could result in
behavior changes when processing that invalid data.

Can you compile programs written for OS/VS COBOL with Enterprise COBOL using
the CMPR2 option?
No, CMPR2 is not available with Enterprise COBOL.

For details, see “Upgrading your source to Enterprise COBOL” on page 15.

Can you compile programs written for VS COBOL II with Enterprise COBOL?
Yes. For details, see “Upgrading your source to Enterprise COBOL” on page 15.

What utilities or tools can assist in converting OS/VS COBOL or VS COBOL II source
to Enterprise COBOL source?
The following conversion tools, which you can order through IBM, can assist in converting OS/VS COBOL
and VS COBOL II source to Enterprise COBOL source:

1. The COBOL conversion aid (CCCA), which is included with the IBM Debug Tool product, assists in
converting OS/VS COBOL and VS COBOL II source to Enterprise COBOL source.

2. The COBOL Report Writer Precompiler 5798-DYR assists in converting OS/VS COBOL Report Writer
code, or allows you to continue using it with Enterprise COBOL.

3. The File Manager View Load Module can determine the language translator for each object in your
program objects. The File Manager View Load Module is included with the IBM File Manager for z/OS
product.

4. The free and open source COBOL Analyzer can provide assistance in taking an inventory of your
existing program objects by reporting the compiler, compiler release, and compiler options used.

Download the free COBOL Analyzer from http://cbttape.org/cbtdowns.htm. It is named as File # 321
COBOL Analyzer from Roland Schiradin & post processor on that web page.

5. Rational Asset Analyzer for System z, product number 5655-W57, assists in taking an inventory and
analyzing the impact that code changes make upon your enterprise assets.

For Enterprise COBOL 6 only: what should I do if the compiler gives me a message
about insufficient memory?
With Enterprise COBOL 6, if you get the message: IGYCB7145-U Insufficient memory in the
compiler to continue compilation, then you need to either increase the region size available to
your compilation job, or increase the MEMLIMIT setting for your system. If you are already using 1 GB
or more and it is still not enough, then it might be that your program is so large as to require the "above
the BAR" storage. This would mean that the system MEMLIMIT setting must be 2 GB or more. Ask your

250 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://cbttape.org/cbtdowns.htm

system programmer what your MEMLIMIT setting is. For very large programs, MEMLIMIT might need to be
set to 3 GB or 4 GB or more.

Does Enterprise COBOL meet the 85 COBOL Standard?
Yes, Enterprise COBOL supports all required modules of the 85 COBOL Standard at the highest level
defined by the Standard.

Does Enterprise COBOL meet the 2002 COBOL Standard and 2014 COBOL Standard?
Enterprise COBOL supports many parts of the 2002 COBOL Standard and 2014 COBOL Standard. For
details, see 2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later versions in
the Enterprise COBOL for z/OS Language Reference.

How can we compile the programs with parameters to get it executed above the 2
GB bar?
There is no support in z/OS for high-level languages to run above the bar (RMODE 64), but Enterprise
COBOL 6.4 has an LP(64) compiler option that enables programs to address the data above the bar
(AMODE 64). Learn more about LP in the Enterprise COBOL for z/OS Programming Guide.

Binding (link-editing) Enterprise COBOL programs
This topic describes frequently asked questions about binding (link-editing) Enterprise COBOL programs.

• “What is the difference between an object module, a load module, and a program object?” on page 251
• “Are PDS and PDSE data sets allowed for object modules with Enterprise COBOL 5 or 6?” on page 251
• “Are there changes in compiler generated symbols between Enterprise COBOL 4 and 5 or 6?” on page

251

What is the difference between an object module, a load module, and a program
object?
An object module is the output of the compiler and input to the binder. A load module is a non-GOFF
executable that is output from the binder with an Enterprise COBOL 4 or earlier object module. A program
object is a new style GOFF executable that is the output from the binder when binding an object module
from Enterprise COBOL 5.1 or later versions, or the output from the binder anytime the target data set
(SYSLMOD) is a PDSE.

Are PDS and PDSE data sets allowed for object modules with Enterprise COBOL 5 or
6?

Compiler output data sets can be PDS or PDSE, including the object module. The output of the bind step
must be a PDSE. When COBOL object modules are bound (link-edited), they become program objects and
must be stored in PDSE data sets.

Are there changes in compiler generated symbols between Enterprise COBOL 4 and
5 or 6?
If you use binder statements such as CHANGE to inspect or modify a 4 compiler generated symbol,
you should use the AMBLIST utility to understand the symbols generated in COBOL 5 and 6 GOFF
executables. For details, see AMBLST in the MVS Program Management: User's Guide and Reference.

The 5 and 6 compilers typically generate new CSECTs such as C_WSA and C_CODE. They also typically
generate three related label symbols for each program, for example, Program P will result in label

Appendix A. Frequently asked questions (FAQ) and answers 251

symbols P, P#C, and P#S. If you use a binder statement to modify any one of these symbols, you will need
to modify all of them by using similar statements.

Language Environment runtime options
This topic describes frequently asked questions about Language Environment runtime options and their
answers.

• “Does Enterprise COBOL use HEAP for WORKING-STORAGE?” on page 252
• “Will lower HEAP storage values for COBOL performance affect the performance of C or C++ programs?”

on page 252
• “Will lower HEAP storage values for COBOL performance affect PL/I performance?” on page 252
• “Does Enterprise COBOL use STACK storage?” on page 252
• “What do HEAP(KEEP) or LIBSTACK(KEEP) do? Does the KEEP suboption keep all of the HEAP or

LIBSTACK storage or just the increments of extra storage that were obtained?” on page 253
• “How does ERRCOUNT relate to abends? Does ERRCOUNT only count HANDLED conditions?” on page

253

Does Enterprise COBOL use HEAP for WORKING-STORAGE?
It uses HEAP for WORKING-STORAGE when the COBOL program is compiled with the RENT option and is
in one of the following cases:

• Compiled with Enterprise COBOL 4.2 or earlier releases
• Compiled with the DATA(24) compiler option
• Running in CICS
• A COBOL 5.1.1 or later program in a program object that contains only COBOL programs (except COBOL

5.1.0) and assembler. There are no Language Environment interlanguage calls within the program object
and no COBOL 5.1.0 programs.

• A COBOL 5 program in a program object where the main entry point is COBOL 5. In this case, the
program object can contain Language Environment interlanguage calls, with COBOL statically linking
with C, C++ or PL/I. All COBOL 5 programs within such program objects (even if they are not the main
entry point) have their WORKING-STORAGE allocated from heap storage.

• A COBOL 6.1 or later program

Will lower HEAP storage values for COBOL performance affect the performance of C
or C++ programs?
Yes. If the C programs use a lot of MALLOC statements, then C performance will be worse with lower
HEAP storage values.

Will lower HEAP storage values for COBOL performance affect PL/I performance?
In general, the answer is no. However, performance might be slower for applications that have a
high use of ALLOCATE and FREE. In this case, tune the HEAP values to improve performance. Also,
if the application has many automatic variables, the STACK values should also be tuned to improve
performance.

Does Enterprise COBOL use STACK storage?
Enterprise COBOL programs use STACK storage for LOCAL-STORAGE data items. Other COBOL programs
do not use STACK storage.

COBOL runtime routines do use STACK storage.

252 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

What do HEAP(KEEP) or LIBSTACK(KEEP) do? Does the KEEP suboption keep all of
the HEAP or LIBSTACK storage or just the increments of extra storage that were
obtained?
The KEEP suboption causes Language Environment to keep all of the storage obtained, including the
initial and incremental amounts.

How does ERRCOUNT relate to abends? Does ERRCOUNT only count HANDLED
conditions?
ERRCOUNT is a count of errors, conditions, abends, and exceptions that are allowed before Language
Environment abends with its own abend code. If an error is not HANDLED, the application will terminate
so ERRCOUNT will have no effect.

Subsystems
This topic describes frequently asked questions about subsystems and their answers.

• “When running in a CICS region, does EXEC DLI "translate" into interfacing with CEETDLI or CBLTDLI?”
on page 253

• “Is CALL 'CEETDLI' supported in a CICS program? What about CALL 'CBLTDLI' in a CICS program
running under Language Environment?” on page 253

• “If you have a batch or IMS DC application that has explicit calls to other Language Environment
services, or user-coded Language Environment condition handlers, must all IMS interfaces use CEETDLI
instead of CBLTDLI?” on page 253

• “Will Language Environment (and its support of mixed COBOL and PL/I programs) still support
applications with PL/I and VS COBOL II (or IBM COBOL) where the COBOL programs use CBLTDLI,
or must such programs be converted to CEETDLI?” on page 254

• “Do I need to specify the TRAP(OFF) runtime option when using the CBLTDLI interface under IMS?” on
page 254

• “Will assembler programs continue to work fine with Enterprise COBOL 6 programs?” on page 254
• “Is Enterprise COBOL 6 less compatible with non-LE-conforming assembler than Enterprise COBOL 4?”

on page 254

When running in a CICS region, does EXEC DLI "translate" into interfacing with
CEETDLI or CBLTDLI?
EXEC DLI does not "translate" into interfacing with either CEETDLI or CBLIDLI. The CICS translator
generates a call to DFHELI. The call to DFHELI must be a static call. (The NODYNAM compiler option is
required for programs translated by the CICS translator.)

Is CALL 'CEETDLI' supported in a CICS program? What about CALL 'CBLTDLI' in a
CICS program running under Language Environment?
CEETDLI is not supported under a CICS environment. (CICS does not supply a CEETDLI entry point in
DFHDLIAL.) CBLTDLI is supported under a CICS environment (CICS does supply a CBLTDLI entry point in
DFHDLIAL) under Language Environment.

If you have a batch or IMS DC application that has explicit calls to other Language
Environment services, or user-coded Language Environment condition handlers,
must all IMS interfaces use CEETDLI instead of CBLTDLI?
No, all calls within a program or run unit are not required to be CEETDLI. The exception is if you have any
current application using the AIBTDLI interface. AIBTDLI should be changed to CEETDLI as it improves
ESTAE processing and does not require a logic change, only a change to the call from AIBTDLI to CEETDLI.

Appendix A. Frequently asked questions (FAQ) and answers 253

Will Language Environment (and its support of mixed COBOL and PL/I programs)
still support applications with PL/I and VS COBOL II (or IBM COBOL) where the
COBOL programs use CBLTDLI, or must such programs be converted to CEETDLI?
There is no problem with a mixed environment from an IMS standpoint and the programs do not need to
be modified. Consider CBLTDLI and CEETDLI equivalent for conversion purposes.

Under Language Environment, your COBOL programs can still use the CBLTDLI interface. Remember that
the programs must be VS COBOL II or Enterprise COBOL because mixed OS/VS COBOL and PL/I is not
allowed under Language Environment. Either CBLTDLI or CEETDLI can be used, except that CEETDLI is
not supported under a CICS environment.

Under CICS, mixed VS COBOL II and PL/I is not allowed.

Do I need to specify the TRAP(OFF) runtime option when using the CBLTDLI
interface under IMS?
No, TRAP(OFF) is not supported for COBOL programs. There are some instances when you cannot
use Language Environment condition handling when using CBLTDLI under IMS. However, if you specify
ABTERMENC(ABEND), database rollback will be performed automatically for severe-error conditions. For
details, see the Language Environment Programming Guide.

Will assembler programs continue to work fine with Enterprise COBOL 6 programs?
It depends on what your assembler programs do. If your assembler programs look into COBOL
executables for information (depending on the COBOL program layout), or if your assembler programs
are not LE-enabled (running well with LE), then problems may occur. Otherwise, assembler programs
that currently interoperate with Enterprise COBOL 4 and earlier programs will continue to work fine with
Enterprise COBOL 6 programs.

Is Enterprise COBOL 6 less compatible with non-LE-conforming assembler than
Enterprise COBOL 4?
If your assembler programs are not LE-enabled (running well with LE), then problems may occur.
Assembler programs do not need to be LE-conforming (using CEEENTRY and CEETERM macros), but
they do need to be LE-enabled.

z/OS

Does COBOL run in 64-bit z/OS?
Yes. COBOL now supports AMODE 64 addressing in COBOL programs, and you can fully exploit AMODE
64 capabilities in COBOL programs. Even in AMODE 31, you can get some of the benefits of AMODE 64
z/OS just by moving to it. With an AMODE 64 addressable real memory backing your virtual memory, there
will be less paging and swapping and therefore better system performance, and you don't have to change
your programs at all! In addition, Db2 can exploit AMODE 64 addressing for SQL statements in COBOL
programs without any change to the COBOL programs.

Even when your z/OS system is running in 64-bit mode, you can still run existing AMODE 24 and AMODE
31 applications without having to relink or recompile them. You can get improved system performance
without any changes to your applications.

Performance
This topic describes frequently asked questions about performance and their answers.

• “Is there a performance improvement when one converts from OS/VS COBOL to Enterprise COBOL?” on
page 255

254 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• “How do I know the performance gains after recompiling with Enterprise COBOL 6?” on page 255
• “What is the best way to measure the performance of a COBOL program before and after the

migration?” on page 255

Is there a performance improvement when one converts from OS/VS COBOL to
Enterprise COBOL?
Yes. Enterprise COBOL 5 and 6 can give you a significant performance improvement when compared to all
older COBOL compilers. It is especially true for programs with a lot of arithmetic.

For details about the key performance benefits and tuning considerations when using Enterprise COBOL,
see the Enterprise COBOL for z/OS Performance Tuning Guide.

How do I know the performance gains after recompiling with Enterprise COBOL 6?
The only way to know the performance gains is to measure the performance before and after the
migration. So if you want to find out what your performance improvement is, it is recommended that
you back up your current Enterprise COBOL 4 modules before migrating your build compiler. When the
migration, required recompilation, or optimization by IBM Automatic Binary Optimizer for z/OS (ABO) is
done, set up a test environment, prepare the real representative workload, and measure the performance
between the Enterprise COBOL 4 modules that you backed up and your new COBOL 6 or ABO-optimized
modules.

What is the best way to measure the performance of a COBOL program before and
after the migration?
It depends on your application and workload:

• If it's a transactional application, you'll look at throughput for how many transactions it can process in a
given amount of time, for example, transactions per second.

• If it's a batch application, measure the CPU or elapsed time of the batch job.

To measure the performance of a COBOL program before and after the migration, use a profiling tool like
IBM Omegamon, IBM Application Performance Analyzer for z/OS, and other tools from IBM and other
vendors. You could also use IBM RMF to measure job resource usage through the use of SMF records.
For details on how to use RMF and other tools, see the white paper: COBOL Applications: Techniques to
make them more Efficient. In performance tuning, you should find the hotspot and the particular modules
that take the most amount of CPU time. It's not best practice to compare COBOL 4 performance before
migration with COBOL 6 performance after migration because hardware, workloads, and code may all be
changed during the migration. The comparison should be made on the same machine at the same time of
day with the same data as input.

Service

Do I need to recompile all of my programs to get IBM service support for my
applications?
If your programs are running with a supported run time, you do not need to recompile your programs to
continue to have IBM service support. For additional details, see “Service support for OS/VS COBOL and
VS COBOL II programs” on page 20.

Object-oriented syntax, and Java 6 or later SDKs

How do I run existing COBOL applications with Java 6 or later?
Earlier versions of Enterprise COBOL applications that use object-oriented syntax for Java interoperability
were supported with Java SDK 1.4.2 and Java 5.

Appendix A. Frequently asked questions (FAQ) and answers 255

https://www.ibm.com/products/automatic-binary-optimizer-zos
https://www.ibm.com/support/pages/node/6208968
https://www.ibm.com/support/pages/node/6208968

To run these applications with Java 6 or later, do these steps:

1. Recompile and relink the applications using Enterprise COBOL 5.2 or later.
2. Recompile the generated Java class that is associated with each object-oriented COBOL class using

the javac command from Java 6 or later.

256 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix B. COBOL reserved word comparison
The following table shows differences in reserved words between OS/VS COBOL, VS COBOL II, IBM
COBOL, and Enterprise COBOL.

Information about source language comparison can be found in:

• Chapter 6, “Upgrading OS/VS COBOL source programs,” on page 45
• Chapter 8, “Upgrading VS COBOL II source programs,” on page 89
• Chapter 10, “Upgrading IBM COBOL source programs,” on page 99
• Chapter 12, “Upgrading programs from Enterprise COBOL 3,” on page 143
• Chapter 14, “Upgrading from Enterprise COBOL 4,” on page 155

Key:
X

The word is reserved in the product.
-

The word is not reserved in the product. (This includes obsolete reserved words that are no longer
flagged.)

CDW
The word is an Enterprise COBOL compiler directing statement. If used as a user-defined word, it is
flagged with a severe message.

RFD
The word is reserved for future development. If used, it is flagged with an informational message.

UNS
The word is a 85 COBOL Standard reserved word for a feature not supported by this compiler. For
some of these words, the feature is supported by the Report Writer Precompiler. If used in a program,
it is recognized as a reserved word and flagged with a severe message.

Table 50. Reserved word comparison

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

ACCEPT X X X X

ACCESS X X X X

ACTIVE-CLASS RFD - - -

ACTUAL - - - X

ADD X X X X

ADDRESS X X X X

ADVANCING X X X X

AFTER X X X X

ALIGNED RFD - - -

ALL X X X X

© Copyright IBM Corp. 1991, 2024 257

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

ALLOCATE1 X

Reserved only in
Enterprise

COBOL 6.1 or
later

- - -

ALPHABET X X X -

ALPHABETIC X X X X

ALPHABETIC-LOWER X X X -

ALPHABETIC-UPPER X X X -

ALPHANUMERIC X X X -

ALPHANUMERIC-EDITED X X X -

ALSO X X X X

ALTER X X X X

ALTERNATE X X X X

AND X X X X

ANY X X X -

ANYCASE RFD - - -

APPLY X X X X

ARE X X X X

AREA X X X X

AREAS X X X X

ASCENDING X X X X

ASSIGN X X X X

AT X X X X

AUTHOR X X X X

AUTOMATIC RFD - - -

B-AND RFD RFD RFD -

B-NOT RFD RFD RFD -

B-OR RFD RFD RFD -

B-XOR RFD - - -

BASED RFD - - -

BASIS CDW CDW CDW X

BEFORE X X X X

BEGINNING X X X X

258 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

BINARY X X X -

BINARY-CHAR RFD - - -

BINARY-DOUBLE RFD - - -

BINARY-LONG RFD - - -

BINARY-SHORT RFD - - -

BIT RFD RFD RFD -

BLANK X X X X

BLOCK X X X X

BOOLEAN RFD RFD RFD -

BOTTOM X X X X

BY X X X X

BYTE-LENGTH X

Reserved only in
Enterprise

COBOL 6.3 or
later

- - -

CALL X X X X

CANCEL X X X X

CBL CDW CDW CDW X

CD UNS UNS UNS X

CF UNS UNS UNS X

CH UNS UNS UNS X

CHANGED - - - X

CHARACTER X X X X

CHARACTERS X X X X

CLASS X X X -

CLASS-ID X X - -

CLOCK-UNITS UNS UNS UNS -

CLOSE X X X X

COBOL X X X -

CODE X X X X

CODE-SET X X X X

COL RFD - - -

COLLATING X X X X

Appendix B. COBOL reserved word comparison 259

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

COLS RFD - - -

COLUMN UNS UNS UNS X

COLUMNS RFD - - -

COM-REG X X X -

COMMA X X X X

COMMON X X X -

COMMUNICATION UNS UNS UNS X

COMP X X X X

COMP-1 X X X X

COMP-2 X X X X

COMP-3 X X X X

COMP-4 X X X X

COMP-5 X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

RFD -

COMPUTATIONAL X X X X

COMPUTATIONAL-1 X X X X

COMPUTATIONAL-2 X X X X

COMPUTATIONAL-3 X X X X

COMPUTATIONAL-4 X X X X

COMPUTATIONAL-5 X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

RFD -

COMPUTE X X X X

CONDITION RFD - - -

CONFIGURATION X X X X

CONSOLE - - - X

260 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

CONSTANT RFD - - -

CONTAINS X X X X

CONTENT X X X -

CONTINUE X X X -

CONTROL UNS UNS UNS X

CONTROLS UNS UNS UNS X

CONVERTING X X X -

COPY CDW CDW CDW X

CORR X X X X

CORRESPONDING X X X X

COUNT X X X X

CRT RFD - - -

CSP - - - X

CURRENCY X X X X

CURRENT-DATE - - - X

CURSOR RFD - - -

C01 - - - X

C02 - - - X

C03 - - - X

C04 - - - X

C05 - - - X

C06 - - - X

C07 - - - X

C08 - - - X

C09 - - - X

C10 - - - X

C11 - - - X

C12 - - - X

DATA X X X X

DATA-POINTER RFD - - -

DATE X X X X

DATE-COMPILED X X X X

DATE-WRITTEN X X X X

DAY X X X X

Appendix B. COBOL reserved word comparison 261

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

DAY-OF-WEEK X X X -

DBCS X X X -

DE UNS UNS UNS X

DEBUG - - - X

DEBUG-CONTENTS X X X X

DEBUG-ITEM X X X X

DEBUG-LINE X X X X

DEBUG-NAME X X X X

DEBUG-SUB-1 X X X X

DEBUG-SUB-2 X X X X

DEBUG-SUB-3 X X X X

DEBUGGING X X X X

DECIMAL-POINT X X X X

DECLARATIVES X X X X

DEFAULT1 X

Reserved only in
Enterprise

COBOL 6.1 or
later

RFD RFD -

DELETE X X X X

DELIMITED X X X X

DELIMITER X X X X

DEPENDING X X X X

DESCENDING X X X X

DESTINATION UNS UNS UNS X

DETAIL UNS UNS UNS X

DISABLE UNS UNS UNS X

DISP - - - X

DISPLAY X X X X

DISPLAY-ST - - - X

DISPLAY-1 X X X -

DIVIDE X X X X

DIVISION X X X X

DOWN X X X X

262 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

DUPLICATES X X X X

DYNAMIC X X X X

EC RFD - - -

EGCS X X X -

EGI UNS UNS UNS X

EJECT CDW CDW CDW X

ELSE X X X X

EMI UNS UNS UNS X

ENABLE UNS UNS UNS X

END X X X X

END-ACCEPT RFD - - -

END-ADD X X X -

END-CALL X X X -

END-COMPUTE X X X -

END-DELETE X X X -

END-DISPLAY RFD - - -

END-DIVIDE X X X -

END-EVALUATE X X X -

END-EXEC X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

- -

END-IF X X X -

END-INVOKE X X - -

END-JSON1 X

Reserved only in
Enterprise

COBOL 6.1 or
later

- - -

END-MULTIPLY X X X -

END-OF-PAGE X X X X

END-PERFORM X X X -

Appendix B. COBOL reserved word comparison 263

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

END-READ X X X -

END-RECEIVE UNS UNS UNS -

END-RETURN X X X -

END-REWRITE X X X -

END-SEARCH X X X -

END-START X X X -

END-STRING X X X -

END-SUBTRACT X X X -

END-UNSTRING X X X -

END-WRITE X X X -

END-XML1 X - - -

ENDING X X X X

ENTER X X X X

ENTRY X X X X

ENVIRONMENT X X X X

EO RFD - - -

EOP X X X X

EQUAL X X X X

ERROR X X X X

ESI UNS UNS UNS X

EVALUATE X X X -

EVERY X X X X

EXAMINE - - - X

EXCEPTION X X X X

EXCEPTION-OBJECT RFD - - -

EXEC X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

- -

264 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

EXECUTE X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

- -

EXHIBIT - - - X

EXIT X X X X

EXTEND X X X X

EXTERNAL X X X -

FACTORY X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

- -

FALSE X X X -

FD X X X X

FILE X X X X

FILE-CONTROL X X X X

FILE-LIMIT - - - X

FILE-LIMITS - - - X

FILLER X X X X

FINAL UNS UNS UNS X

FIRST X X X X

FLOAT-EXTENDED RFD - - -

FLOAT-LONG RFD - - -

FLOAT-SHORT RFD - - -

FOOTING X X X X

FOR X X X X

FORMAT RFD RFD RFD -

Appendix B. COBOL reserved word comparison 265

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

FREE1 X

Reserved only in
Enterprise

COBOL 6.1 or
later

RFD RFD -

FROM X X X X

FUNCTION X X - -

FUNCTION-ID RFD
In Enterprise
COBOL 6.3 or

earlier
X

Reserved
since

Enterprise
COBOL 6.4

- - -

FUNCTION-POINTER1 X - - -

GENERATE UNS UNS UNS X

GET RFD RFD RFD -

GIVING X X X X

GLOBAL X X X -

GO X X X X

GOBACK X X X X

GREATER X X X X

GROUP UNS UNS UNS X

GROUP-USAGE1 X - - -

HEADING UNS UNS UNS X

HIGH-VALUE X X X X

HIGH-VALUES X X X X

I-O X X X X

I-O-CONTROL X X X X

ID X X X X

IDENTIFICATION X X X X

IF X X X X

IN X X X X

INDEX X X X X

INDEXED X X X X

266 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

INDICATE UNS UNS UNS X

INHERITS X X - -

INITIAL X X X X

INITIALIZE X X X -

INITIATE UNS UNS UNS X

INPUT X X X X

INPUT-OUTPUT X X X X

INSERT CDW CDW CDW X

INSPECT X X X X

INSTALLATION X X X X

INTERFACE RFD - - -

INTERFACE-ID RFD - - -

INTO X X X X

INVALID X X X X

INVOKE X X - -

IS X X X X

JAVA X

Reserved only in
Enterprise

COBOL 6.3 or
later

- - -

JNIENVPTR1 X - - -

JSON1 X

Reserved only in
Enterprise

COBOL 6.1 or
later

- - -

JSON-CODE1 X

Reserved only in
Enterprise

COBOL 6.1 or
later

- - -

JSON-STATUS1 X

Reserved only in
Enterprise

COBOL 6.2 or
later

- - -

Appendix B. COBOL reserved word comparison 267

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

JUST X X X X

JUSTIFIED X X X X

KANJI X X X -

KEY X X X X

LABEL X X X X

LAST UNS UNS UNS X

LEADING X X X X

LEAVE - - - X

LEFT X X X X

LENGTH X X X X

LESS X X X X

LIMIT X

Reserved only in
Enterprise

COBOL 6.3 or
later

UNS UNS X

LIMITS UNS UNS UNS X

LINAGE X X X X

LINAGE-COUNTER X X X -

LINE X X X X

LINE-COUNTER UNS UNS UNS X

LINES X X X X

LINKAGE X X X X

LOCAL-STORAGE X X - -

LOCALE RFD - - -

LOCK X X X X

LOW-VALUE X X X X

LOW-VALUES X X X X

MEMORY X X X X

MERGE X X X X

MESSAGE UNS UNS UNS X

METACLASS - X - -

METHOD X X - -

METHOD-ID X X - -

268 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

MINUS RFD - - -

MODE X X X X

MODULES X X X X

MORE-LABELS X X X X

MOVE X X X X

MULTIPLE X X X X

MULTIPLY X X X X

NAMED - - - X

NATIONAL1 X - - -

NATIONAL-EDITED1 X - - -

NATIVE X X X X

NEGATIVE X X X X

NESTED RFD - - -

NEXT X X X X

NO X X X X

NOMINAL - - - X

NOT X X X X

NOTE - - - X

NULL X X X -

NULLS X X X -

NUMBER UNS UNS UNS X

NUMERIC X X X X

NUMERIC-EDITED X X X -

OBJECT X X - -

OBJECT-COMPUTER X X X X

OBJECT-REFERENCE RFD - - -

OCCURS X X X X

OF X X X X

OFF X X X X

OMITTED X X X X

ON X X X X

OPEN X X X X

OPTIONAL X X X X

OPTIONS RFD - - -

Appendix B. COBOL reserved word comparison 269

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

OR X X X X

ORDER X X X -

ORGANIZATION X X X X

OTHER X X X -

OTHERWISE - - - X

OUTPUT X X X X

OVERFLOW X X X X

OVERRIDE X X - -

PACKED-DECIMAL X X X -

PADDING X X X -

PAGE X X X X

PAGE-COUNTER UNS UNS UNS X

PASSWORD X X X X

PERFORM X X X X

PF UNS UNS UNS X

PH UNS UNS UNS X

PIC X X X X

PICTURE X X X X

PLUS UNS UNS UNS X

POINTER X X X X

POINTER-24 RFD - - -

POINTER-31 RFD - - -

POINTER-32 X

Reserved only in
Enterprise

COBOL 6.3 or
later

- - -

POINTER-64 RFD - - -

POSITION X X X X

POSITIONING - - - X

POSITIVE X X X X

PRESENT RFD RFD RFD -

PREVIOUS RFD RFD - -

PRINT-SWITCH - - - X

270 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

PRINTING UNS UNS UNS -

PROCEDURE X X X X

PROCEDURE-POINTER X X - -

PROCEDURES X X X X

PROCEED X X X X

PROCESSING X X X X

PROGRAM X X X X

PROGRAM-ID X X X X

PROGRAM-POINTER RFD - - -

PROPERTY RFD - - -

PROTOTYPE RFD - - -

PURGE UNS UNS UNS -

QUEUE UNS UNS UNS X

QUOTE X X X X

QUOTES X X X X

RAISE RFD - - -

RAISING RFD - - -

RANDOM X X X X

RD UNS UNS UNS X

READ X X X X

READY X X X X

RECEIVE UNS UNS UNS X

RECORD X X X X

RECORD-OVERFLOW - - - X

RECORDING X X X X

RECORDS X X X X

RECURSIVE X X - -

REDEFINES X X X X

REEL X X X X

REFERENCE X X X -

REFERENCES X X X X

RELATIVE X X X X

RELEASE X X X X

RELOAD X X X X

Appendix B. COBOL reserved word comparison 271

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

REMAINDER X X X X

REMARKS - - - X

REMOVAL X X X X

RENAMES X X X X

REORG-CRITERIA - - - X

REPLACE X X X -

REPLACING X X X X

REPORT UNS UNS UNS X

REPORTING UNS UNS UNS X

REPORTS UNS UNS UNS X

REPOSITORY X X - -

REREAD - - - X

RERUN X X X X

RESERVE X X X X

RESET X X X X

RESUME RFD - - -

RETRY RFD - - -

RETURN X X X X

RETURN-CODE X X X X

RETURNING X X - -

REVERSED X X X X

REWIND X X X X

REWRITE X X X X

RF UNS UNS UNS X

RH UNS UNS UNS X

RIGHT X X X X

ROUNDED X X X X

RUN X X X X

SAME X X X X

SCREEN RFD - - -

SD X X X X

SEARCH X X X X

SECTION X X X X

SECURITY X X X X

272 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

SEEK - - - X

SEGMENT UNS UNS UNS X

SEGMENT-LIMIT X X X X

SELECT X X X X

SELECTIVE - - - X

SELF X X - -

SEND UNS UNS UNS X

SENTENCE X X X X

SEPARATE X X X X

SEQUENCE X X X X

SEQUENTIAL X X X X

SERVICE X X X X

SET X X X X

SHARING RFD - - -

SHIFT-IN X X X -

SHIFT-OUT X X X -

SIGN X X X X

SIZE X X X X

SKIP1 CDW CDW CDW X

SKIP2 CDW CDW CDW X

SKIP3 CDW CDW CDW X

SORT X X X X

SORT-CONTROL X X X -

SORT-CORE-SIZE X X X X

SORT-FILE-SIZE X X X X

SORT-MERGE X X X X

SORT-MESSAGE X X X X

SORT-MODE-SIZE X X X X

SORT-RETURN X X X X

SOURCE UNS UNS UNS X

SOURCE-COMPUTER X X X X

SOURCES RFD - - -

SPACE X X X X

SPACES X X X X

Appendix B. COBOL reserved word comparison 273

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

SPECIAL-NAMES X X X X

SQL X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

- -

STANDARD X X X X

STANDARD-1 X X X X

STANDARD-2 X X X -

START X X X X

STATUS X X X X

STOP X X X X

STRING X X X X

SUB-QUEUE-1 UNS UNS UNS X

SUB-QUEUE-2 UNS UNS UNS X

SUB-QUEUE-3 UNS UNS UNS X

SUB-SCHEMA RFD RFD RFD -

SUBTRACT X X X X

SUM UNS UNS UNS X

SUPER X X - -

SUPPRESS X X X X

SYMBOLIC X X X X

SYNC X X X X

SYNCHRONIZED X X X X

SYSIN - - - X

SYSLIST - - - X

SYSOUT - - - X

SYSPUNCH X X X X

SYSTEM-DEFAULT RFD - - -

S01 - - - X

S02 - - - X

TABLE UNS UNS UNS X

274 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

TALLY X X X X

TALLYING X X X X

TAPE X X X X

TERMINAL UNS UNS UNS X

TERMINATE UNS UNS UNS X

TEST X X X -

TEXT UNS UNS UNS X

THAN X X X X

THEN X X X X

THROUGH X X X X

THRU X X X X

TIME X X X X

TIME-OF-DAY - - - X

TIMES X X X X

TITLE CDW CDW CDW -

TO X X X X

TOP X X X X

TOTALED - - - X

TOTALING - - - X

TRACE X X X X

TRACK-AREA - - - X

TRACK-LIMIT - - - X

TRACKS - - - X

TRAILING X X X X

TRANSFORM - - - X

TRUE X X X -

TYPE X X

Reserved
only in
COBOL

for
OS/390

& VM 2.2
or later

- -

TYPEDEF RFD - - -

Appendix B. COBOL reserved word comparison 275

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

UNIT X X X X

UNIVERSAL RFD - - -

UNLOCK RFD - - -

UNSTRING X X X X

UNTIL X X X X

UP X X X X

UPDATE RFD RFD RFD -

UPON X X X X

UPSI-0 - - - X

UPSI-1 - - - X

UPSI-2 - - - X

UPSI-3 - - - X

UPSI-4 - - - X

UPSI-5 - - - X

UPSI-6 - - - X

UPSI-7 - - - X

USAGE X X X X

USE X X X X

USER-DEFAULT RFD - - -

USING X X X X

UTF-8 X

Reserved only in
Enterprise

COBOL 6.3 or
later

- - -

VAL-STATUS RFD - - -

VALID RFD RFD RFD -

VALIDATE RFD RFD RFD -

VALIDATE-STATUS RFD - - -

VALUE X X X X

VALUES X X X X

VARYING X X X X

276 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

VOLATILE1 X

Reserved only in
Enterprise

COBOL 5.2 or
later

- - -

WHEN X X X X

WHEN-COMPILED X X X X

WITH X X X X

WORDS X X X X

WORKING-STORAGE X X X X

WRITE X X X X

WRITE-ONLY X X X X

XML1 X - - -

XML-CODE1 X - - -

XML-EVENT1 X - - -

XML-INFORMATION1 X

Reserved only in
Enterprise

COBOL 4.2 or
later

- - -

XML-NAMESPACE1 X

Reserved only in
Enterprise

COBOL 4.1 or
later

- - -

XML-NAMESPACE-PREFIX1 X

Reserved only in
Enterprise

COBOL 4.1 or
later

- - -

XML-NNAMESPACE1 X

Reserved only in
Enterprise

COBOL 4.1 or
later

- - -

Appendix B. COBOL reserved word comparison 277

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

XML-NNAMESPACE-PREFIX1 X

Reserved only in
Enterprise

COBOL 4.1 or
later

- - -

XML-NTEXT1 X - - -

XML-SCHEMA1 X

Reserved only in
Enterprise

COBOL 4.2 or
later

- - -

XML-TEXT1 X - - -

ZERO X X X X

ZEROES X X X X

ZEROS X X X X

_ X

Reserved only in
Enterprise

COBOL 4.2 or
later

- - -

< X X X X

<> RFD

<= X X X -

+ X X X X

* X X X X

** X X X X

- X X X X

/ X X X X

> X X X X

>= X X X -

= X X X X

*>1 X

Reserved only in
Enterprise

COBOL 5.1 or
later

- - -

:: RFD - - -

278 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 50. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL VS COBOL II
OS/VS
COBOL

Note:

1. This is a new reserved word that has been added since IBM COBOL.

Appendix B. COBOL reserved word comparison 279

280 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix C. Conversion tools for source programs
A number of conversion tools are available to help you upgrade OS/VS COBOL, VS COBOL II, or IBM
COBOL source programs to Enterprise COBOL.

This appendix describes the conversion tools available for your assistance during the conversion. These
tools are:

• MIGR compiler option (OS/VS COBOL)
• FLAGMIG compiler option (VS COBOL II, COBOL for MVS & VM, COBOL for OS/390 & VM)
• FLAGMIG4 compiler option (Enterprise COBOL 4.2 with current service applied)
• Other programs that aid conversion

This appendix helps you to determine which, if any, of the tools to use, and understand how to use them
and how to analyze their output to assess the extent of the remaining conversion effort.

MIGR compiler option
You can use the OS/VS COBOL MIGR compiler option when you are planning to convert an OS/VS COBOL
program to Enterprise COBOL. This option helps you understand the magnitude of the conversion effort.

MIGR can also ease any planned future conversion by helping you avoid using OS/VS COBOL source
language not supported by Enterprise COBOL. By compiling your programs using MIGR, you can
determine ahead of time which language elements must be converted.

There are incompatibilities in the following areas:

• New reserved words that are introduced because of COBOL functions that have been added (previously
valid user words might now be illegal)

• Language function that is supported in a different manner
• Language function that is not supported

You can set the MIGR compiler option either as an installation default, or when compiling an OS/VS
COBOL program. When you set MIGR on, the compiler flags most statements that are changed in or not
supported by Enterprise COBOL.

Language differences
The following language differences exist between Enterprise COBOL and OS/VS COBOL.

• Changes to ALPHABETIC class
• B symbol in PICTURE clause
• Changes to CALL statement
• Changes to CBL compiler directing statement
• Changes to Combined abbreviated relation condition
• DIVIDE ID1 BY ID2 [GIVING ID3] ON SIZE ERROR . . .
• DIVIDE ID1 INTO ID2 [GIVING ID3] ON SIZE ERROR . . .
• EXIT PROGRAM (or STOP RUN) missing at program end
• FILE STATUS clause
• ID1 IS [NOT] ALPHABETIC

(class test on IF, PERFORM, and SEARCH)
• Changes to IF . . . OTHERWISE statement

© Copyright IBM Corp. 1991, 2024 281

• MOVE A TO B

where B is defined as a variable-length data item containing its own ODO object
• MULTIPLY ID1 BY ID2 [GIVING ID3] ON SIZE ERROR . . .
• Changes to OCCURS DEPENDING ON clause
• Changes in intermediate results for ON SIZE ERROR option
• PERFORM P1 [THRU P2] VARYING ID2 FROM ID3 BY ID4 UNTIL COND-1 AFTER ID5 FROM ID6 BY ID7

UNTIL COND-2 AFTER ID8 FROM ID9 BY ID10 UNTIL COND-3

1. Where ID6 is (potentially) dependent on ID-2
2. Where ID9 is (potentially) dependent on ID-5
3. Where ID4 is (potentially) dependent on ID-5
4. Where ID7 is (potentially) dependent on ID-8

Dependencies occur when the first identifier or index name (IDx) is identical to, subscripted with, or
qualified with the second identifier. Dependencies might also occur with a partial or full redefinition
of the second identifier.

• Changes to PROGRAM COLLATING SEQUENCE clause
• READ filename RECORD INTO B

where B is defined variable-length data containing the object of the ODO phrase
• RECORD CONTAINS integer-4 CHARACTERS in the FD section
• Changes to RERUN clause
• Changes to RESERVE clause
• Changes to Reserved word list
• SPECIAL-NAMES: alphabet-name IS xxxxx
• Changes in evaluation for subscripts out of range
• UNSTRING A INTO B . . .

where B is defined variable-length data containing the object of the ODO phrase
• UNSTRING ID1 DELIMITED BY ID2 INTO ID4 DELIMITER IN ID5 COUNT IN ID6 WITH POINTER ID7
• UPSI switches and UPSI mnemonic names references
• VALUE clause condition names
• WHEN-COMPILED special register
• WRITE BEFORE/AFTER ADVANCING PAGE statement
• WRITE AFTER POSITIONING

Statements supported with enhanced accuracy
Via the link below, you can see OS/VS COBOL statements supported with enhanced accuracy in Enterprise
COBOL and flagged by a message indicating that more accurate results might be provided in Enterprise
COBOL.

Arithmetic statements
• Definitions of floating-point data items
• Usage of floating-point literals
• Usage of exponentiation

282 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

LANGLVL(1) statements not supported
The following OS/VS COBOL statements, applicable only to the LANGLVL(1) compiler option, are not
supported in Enterprise COBOL and are flagged when the MIGR compiler option is specified.

• COPY language—1968
• JUSTIFIED|JUST clause with VALUE
• Changes in scaling for MOVE statement and comparison
• NOT in an abbreviated combined relation condition
• PERFORM statement in independent segments
• RESERVE integer AREAS
• SELECT OPTIONAL clause—1968 standard interpretation
• SPECIAL-NAMES paragraph: use of L, /, and =
• UNSTRING with DELIMITED BY ALL

LANGLVL(1) and LANGLVL(2) statements not supported
The following OS/VS COBOL statements, applicable to both the LANGLVL(1) and LANGLVL(2) compiler
options, are not supported in Enterprise COBOL and are flagged when the MIGR compiler option is
specified.

Communications
• COMMUNICATION SECTION
• ACCEPT MESSAGE
• SEND, RECEIVE, ENABLE, and DISABLE statements. (Note that RECEIVE ...MESSAGE is LANGLVL

sensitive, but is flagged only under Communications.)

Report Writer
• INITIATE, GENERATE, and TERMINATE statements
• LINE-COUNTER, PAGE-COUNTER, and PRINT-SWITCH special registers
• Alphanumeric literal IS mnemonic-name in SPECIAL NAMES
• REPORT clause of FD
• REPORT SECTION header
• USE BEFORE REPORTING declarative

The Report Writer Precompiler can convert these statements for you. See “COBOL Report Writer
Precompiler” on page 289.

ISAM
• APPLY REORG-CRITERIA (ISAM)
• APPLY CORE-INDEX (ISAM)
• I/O statements—all that reference ISAM files
• ISAM file declarations
• NOMINAL KEY clause
• Organization parameter "I"
• TRACK-AREA clause
• USING KEY clause on START statement

Appendix C. Conversion tools for source programs 283

BDAM
• ACTUAL KEY clause
• APPLY RECORD-OVERFLOW (BDAM)
• BDAM file declarations
• I/O statements—all that reference BDAM files
• Organization parameters “D”, “R”, and "W"
• SEEK statement
• TRACK-LIMIT clause

Use for debugging
• USE FOR DEBUGGING ON [ALL REFERENCES OF] identifiers, file-names, cd-names

Other statements
• APPLY RECORD-OVERFLOW
• Assignment-name organization parameter "C" indicating ASCII
• ASSIGN . . . OR
• ASSIGN TO integer system-name
• ASSIGN . . . FOR MULTIPLE REEL/UNIT
• CLOSE . . . WITH POSITIONING/DISP
• CURRENT-DATE and TIME-OF-DAY special registers
• Debug packets
• EXAMINE statement
• EXHIBIT statement
• FILE-LIMITS
• LABEL RECORDS Clause with TOTALING/TOTALED AREA options
• NOTE statement
• ON statement
• OPEN . . . LEAVE/REREAD/DISP
• Qualified index-names

(Using this unsupported format results in a severe (RC = 12) level message.)
• READY TRACE and RESET TRACE statements
• REMARKS paragraph
• RESERVE NO/ALTERNATE AREAS
• SEARCH . . . WHEN condition using KEY item as object, not subject
• SERVICE RELOAD statement
• START . . . USING key statement
• THEN as a statement connector
• TIME-OF-DAY special register
• TRANSFORM statement
• USE AFTER STANDARD ERROR . . . GIVING
• USE BEFORE STANDARD LABEL
• USING procedure-name or file-name on CALL statement

284 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

FLAGMIG compiler option
The FLAGMIG option helps identify source statements that need to be converted to compile under
Enterprise COBOL. FLAGMIG is available in compilers prior to Enterprise COBOL that support the CMPR2
option. If you are already using Enterprise COBOL 4.2, it is recommended that you use the FLAGMIG4
option (available in Enterprise COBOL 4.2 with current service applied) to help you migrate to Enterprise
COBOL 5 or 6.

To get similar migration flagging, use “COBOL and CICS Command Level Conversion Aid for z/OS (CCCA)”
on page 286, this Migration Guide, or a compiler released prior to Enterprise COBOL to compile programs
that use FLAGMIG.

For details about using the FLAGMIG and CMPR2 options to aid you with migration to Enterprise COBOL,
see “Upgrading programs compiled with the CMPR2 compiler option” on page 104.

If you are already using Enterprise COBOL 4.2 and want to migrate to Enterprise COBOL 5 or 6, use the
FLAGMIG4 option to flag source code syntax-related changes required to move to Enterprise COBOL 5 or
6. For details, see “FLAGMIG4 compiler option” on page 14.

FLAGMIG4 compiler option
The FLAGMIG4 option helps you migrate to Enterprise COBOL 5 or 6. FLAGMIG4 is available in Enterprise
COBOL 4.2 with PTF for APAR PM93450 installed. It is also recommended that you install PTFs for APARs
PI12240, PI26838, and PI58762 as these contain updates to the FLAGMIG4 option.

The FLAGMIG4 option identifies language elements in Enterprise COBOL 4 programs that are not
supported, or that are supported differently in Enterprise COBOL 5 or 6. The compiler generates a warning
diagnostic message for all such language elements.

Note: The source code changes for COBOL 5 and 6 are rarely used COBOL language features and do not
affect 99% of COBOL users.

Other programs that aid conversion
The following sections describe several conversion tools that offer you help in your conversion tasks.
These programs are:

• The File Manager View Load Module can determine the language translator for each object in your
program objects.

The File Manager View Load Module is included in IBM File Manager for z/OS.
• COBOL and CICS Command Level Conversion Aid (CCCA)

CCCA is bundled with IBM Debug for z/OS (IDz) 14.2 or earlier versions, and it is removed since IDz
15.0. After IDz 14.2 reached EOS on September 30, 2022, you can download CCCA from here at no
charge.

• CICS application migration aid
• COBOL Report Writer Precompiler

IBM Application Discovery and Delivery Intelligence
IBM Application Discovery and Delivery Intelligence provides tools that generate an inventory of
enterprise assets and return an index of the relative effort required to make code changes.

For details, see IBM Application Discovery and Delivery Intelligence at https://www.ibm.com/products/
app-discovery-and-delivery-intelligence.

Appendix C. Conversion tools for source programs 285

https://epwt-www.mybluemix.net/software/support/trial/cst/welcomepage.wss?siteId=1751&tabId=4813&w=1
https://www.ibm.com/products/app-discovery-and-delivery-intelligence
https://www.ibm.com/products/app-discovery-and-delivery-intelligence

COBOL and CICS Command Level Conversion Aid for z/OS (CCCA)
IBM COBOL and CICS Command Level Conversion Aid for z/OS (CCCA) converts CICS and non-CICS
source code into source code that can be compiled with Enterprise COBOL.

CCCA is bundled with IBM Debug for z/OS (IDz) 14.2 or earlier versions, and it is removed since IDz 15.0.
After IDz 14.2 reached EOS on September 30, 2022, you can download CCCA from here at no charge.

CCCA is updated for reserved word conversions for Enterprise COBOL 5.1 by the PTF for APAR PM86253.
For Enterprise COBOL 5.2, CCCA is updated for reserved word conversions by the PTF for APAR PI32750.
For Enterprise COBOL 6.1, CCCA is updated for reserved word conversions by the PTF for APAR PI55980.

CCCA is designed to automate identifying incompatible source code and converting it to Enterprise COBOL
source. Using CCCA should significantly reduce your conversion effort.

CCCA requires that you have an Enterprise COBOL, IBM COBOL, VS COBOL II, or OS/VS COBOL compiler
available when converting CICS programs.

The key CCCA facilities:

• Conversion of most syntax differences between OS/VS COBOL or VS COBOL II programs and Enterprise
COBOL programs

• Elimination of conflicts between OS/VS COBOL, VS COBOL II, and IBM COBOL user-defined names and
Enterprise COBOL reserved words

• Flagging of language elements that cannot be directly converted
• Statement-by-statement diagnostic listing
• Conversion management information, including where-used reports for COPY books and files
• Conversion of EXEC CICS commands
• Removal or conversion of the BLL (Base Locator for Linkage) section mechanism and references

CCCA is designed so that you can tailor it to fit the needs of your shop. CCCA LCPs (Language Conversion
Programs), which determine the conversions to be performed, are written in a COBOL-like language. You
can modify the supplied LCPs or add your own.

For more details, see the IBM COBOL and CICS Command Level Conversion Aid User's Guide.

Frequently asked questions (FAQ) and answers about CCCA
This topic describes frequently asked questions and answers about CCCA.

• “When should I use CCCA?” on page 286
• “Do I need CCCA if I do not have applications built from earlier COBOL versions than Enterprise COBOL

3?” on page 287
• “Which z/OS levels is CCCA supported on?” on page 287
• “Where can I find the CCCA documentation?” on page 287
• “How can I get CCCA and at which cost?” on page 287
• “How can I get support if running into issues with CCCA?” on page 287
• “Which CICS TS (CICS) levels is CCCA compatible with?” on page 287

When should I use CCCA?
If you plan to convert your applications from OS/VS COBOL, VS COBOL II or IBM COBOL to Enterprise
COBOL, evaluate the usefulness of the CCCA to your conversion project. While the number of changes
required to any individual program might be small, the CCCA will identify those changes, and in the
majority of cases, convert them automatically in a standard fashion.

The CCCA converts both CICS and non-CICS programs. The CCCA converts SERVICE RELOAD statements
and the complicated logic of BLL cell addressing to statements valid for Enterprise COBOL.

286 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://epwt-www.mybluemix.net/software/support/trial/cst/welcomepage.wss?siteId=1751&tabId=4813&w=1
https://publibfp.dhe.ibm.com/epubs/pdf/igyccm03.pdf

CCCA also handles non-CICS syntax.

Do I need CCCA if I do not have applications built from earlier COBOL versions than
Enterprise COBOL 3?
CCCA also supports converting applications from older to newer releases of Enterprise COBOL, for
example, checking for data names that match new reserved words and systematically changing them
as necessary.

Which z/OS levels is CCCA supported on?
CCCA is compatible with all releases of z/OS. It is like a user program, in that it runs without Authorized
Program Facility (APF) authorisation and only uses standard operating system interfaces, so it should
continue to run on any current and future level of z/OS unless specifically notified otherwise. No specific
maintenance is needed to run under z/OS.

Where can I find the CCCA documentation?
To learn more about CCCA and how to customize it, see the IBM COBOL and CICS Command Level
Conversion Aid Program Directory.

To learn how to use CCCA, see the IBM COBOL and CICS Command Level Conversion Aid User's Guide.

Notes:

• The CCCA manuals have not been updated for a while, and the following information no longer applies:

– Ordering CCCA via Shopz.

For the latest information about how to obtain CCCA, see “How can I get CCCA and at which cost?” on
page 287

– Program support.

If you have issues when using CCCA, see “How can I get support if running into issues with CCCA?”
on page 287

– Millennium language extensions (MLE) support.
– Running CCCA under VM.
– For OS/VS COBOL programs, recompile each program using OS/VS COBOL 2.4 before you input these

programs to CCCA.
• The CCCA manuals might not include the latest updates for CCCA. For example, CCCA is updated for

reserved word conversions by PTF for APAR PM86253, PTF for APAR PI32750, and PTF for APAR
PI55980, due to new reserved words introduced in Enterprise COBOL 5.1, 5.2, and 6.1, respectively.

How can I get CCCA and at which cost?
CCCA is bundled with IBM Debug for z/OS (IDz) 14.2 or earlier versions, and it is removed since IDz 15.0.
After IDz 14.2 reached EOS on September 30, 2022, you can download CCCA from here at no charge.

How can I get support if running into issues with CCCA?
You can submit an issue in the COBOL community to report CCCA problems.

Which CICS TS (CICS) levels is CCCA compatible with?
CCCA support for CICS COBOL programs does not have any specific relationship to the CICS TS version.

Appendix C. Conversion tools for source programs 287

https://publibfp.dhe.ibm.com/epubs/pdf/10508007.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/10508007.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/igyccm03.pdf
https://epwt-www.mybluemix.net/software/support/trial/cst/welcomepage.wss?siteId=1751&tabId=4813&w=1
https://community.ibm.com/community/user/ibmz-and-linuxone/groups/topic-home/discussions?communitykey=dc94cb0f-7361-47d9-854f-dfcbdbbf04a3

CCCA processing of CICS statements
If the CICS option is ON, the BLL definitions and SERVICE RELOAD statements are removed. If the entire
BLL structure is redefined, the redefined structure is removed. If the BLLs are not defined with a length of
4 bytes, the CICS conversion cannot be performed.

If needed by the conversion of statements involving the primary BLLs, the following code is generated in
the WORKING-STORAGE SECTION for use with the POINTER facility:

 77 LCP-WS-ADDR-COMP PIC S9(8) COMP.
 77 LCP-WS-ADDR-PNTR REDEFINES LCP-WS-ADDR-COMP USAGE POINTER.

EXEC CICS processing
The primary BLLs used with SET options are replaced by corresponding ADDRESS OF special register. For
example:

 EXEC CICS READ ... SET(BLL1) ...

is replaced by:

 EXEC CICS READ ... SET(ADDRESS OF REC1) ...

The statements involved are:

• CONVERSE
• GETMAIN
• ISSUE RECEIVE
• LOAD
• POST
• READ
• READNEXT
• READPREV
• READQ
• RECEIVE
• RETRIEVE
• SEND CONTROL
• SEND PAGE
• SEND TEXT

The primary BLLs used with CICS ADDRESS statements are replaced by the corresponding Enterprise
COBOL ADDRESS OF special register.

For example:

 EXEC CICS TWA(BLL).

is replaced by:

 EXEC CICS ADDRESS TWA (ADDRESS OF TWA).

The options involved are: CSA, CWA, EIB, TCTUA, and TWA.

Statements dealing with the primary BLLs
The statements dealing with the primary BLLs are shown in Table 51 on page 289.

Statements dealing with the secondary BLLs are replaced by CONTINUE.

288 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 51. COBOL statements dealing with primary BLLs

Original source Source after conversion

MOVE BLL1 TO BLL2 SET ADDRESS OF REC2 TO ADDRESS OF REC1

MOVE ID TO BLL MOVE ID TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC1 TO LCP-WS-ADDR-PNTR

MOVE BLL TO ID SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
MOVE LCP-WS-ADDR-COMP TO ID

ADD ID1, .. TO BLL SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID1, TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR

ADD BLL TO ID1, ID2 SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD LCP-WS-ADDR-COMP TO ID1, ID2

ADD ID1, ID2 GIVING BLL ADD ID1, ID2 GIVING LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR

ADD ID, BLL1 GIVING BLL2 BLL3 SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID, LCP-WS-ADDR-COMP GIVING
LCP-WS-ADDR-COMP
SET ADDRESS OF REC2 TO LCP-WS-ADDR-PNTR
SET ADDRESS OF REC3 TO LCP-WS-ADDR-PNTR

ADD ID1, BLL1 GIVING ID2 ID3 SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID1, LCP-WS-ADDR-COMP GIVING ID2 ID3

SUBTRACT statements The conversion is performed in the same way as ADD.

COMPUTE BLL = exp (BLL) SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
COMPUTE LCP-WS-ADDR-COMP =
exp (LCP-WS-ADDR-COMP)

COMPUTE ID = exp (BLL) SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
COMPUTE ID = exp (LCP-WS-ADDR-COMP)

COMPUTE BLL = exp ... COMPUTE LCP-WS-ADDR-COMP = exp ...

COBOL Report Writer Precompiler
You can use the COBOL Report Writer Precompiler to compile applications that contain Report Writer
statements, or to permanently convert Report Writer statements to valid Enterprise COBOL statements.

IBM has licensed COBOL Report Writer Precompiler from SPC Systems and sells it under the following
program numbers:

• 5798-DYR: COBOL Report Writer Precompiler and Libraries
• 5798-DZX: COBOL Report Writer Library only

Appendix C. Conversion tools for source programs 289

Note: Starting with Enterprise COBOL 5.1, COBOL Report Writer Precompiler 1.6.01 or later is required
due to changes to the compiler architecture. Updates to the COBOL Report Writer must be obtained from
SPC Systems subject to an SPC Systems support contract. For program services and technical support
(including Q&A), contact SPC Systems at https://www.spc-systems.com.

The Report Writer Precompiler offers the following features:

• Extended Report Writer language capabilities
• Integration with the target COBOL compiler—as though Report Writer statements in the source program

are being processed by the COBOL compiler itself
• Single consolidated source listing merges information from the precompiler listing and the COBOL

compiler listings
• COPY library members can contain Report Writer statements
• Supports the Enterprise COBOL nested COPY feature
• Performs a diagnostic check of the input Report Writer source statements
• Can be run in stand-alone mode to convert Report Writer statements in your COBOL programs into

non-Report Writer COBOL source statements acceptable to the Enterprise COBOL compiler

For details, see COBOL Report Writer Precompiler Programmer's Manual and COBOL Report Writer
Precompiler Installation and Operation.

File Manager View Load Module
The File Manager View Load Module analyzes program objects to determine the language translator
(compiler or assembler) that was used to generate the object for each CSECT.

This program can process all or selected program objects in a concatenation of PDS or PDSE data sets.
File Manager View Load Module is included with the IBM File Manager for z/OS product.

Free and open source COBOL Analyzer
The free and open source COBOL Analyzer helps you inventory your existing program objects by reporting
the compiler, compiler release, and compiler options used.

Download the free COBOL Analyzer from http://cbttape.org/cbtdowns.htm. It is named as File # 321
COBOL Analyzer from Roland Schiradin & post processor on that web page.

290 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.spc-systems.com/
https://publibfp.dhe.ibm.com/epubs/pdf/c2643014.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643023.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643023.pdf
http://cbttape.org/cbtdowns.htm

Appendix D. Applications with COBOL and assembler
If your applications contain mixed COBOL and assembler programs, you might have to make some
modifications to the applications.

Do the following tasks as needed:

• Determining requirements for calling and called assembler programs
• Determining which assembler/COBOL calls are supported under non-CICS
• Determining which assembler/COBOL calls are supported under CICS
• Converting programs that change the program mask
• Upgrading applications that use an assembler driver
• Modifying applications in which assembler loads, calls, or deletes COBOL programs
• Saving and restoring the high halves of General Purpose Registers (GPRs) in assembler programs that

will call or be called by Enterprise COBOL 5

Some information about applications that contain both assembler and COBOL programs is included in
other sections of this documentation. For example, you can find information about assembler programs
that pass procedure names in “Language elements that changed from OS/VS COBOL” on page 69

Called assembler programs
A called assembler program must save the registers and store other information in the save area passed
to it by the COBOL program. In particular, the COBOL save area must be properly back chained from the
save area of an assembler program. The assembler program must also contain a return routine that:

• Loads the address of the COBOL save area back into R13
• Restores the contents of the other registers
• Optionally sets a return code in R15
• Branches to the address in R14
• Returns to the COBOL caller in the same AMODE that was in use when it was called

SVC LINK and COBOL run-unit boundary
If the target of SVC LINK is a non-Language Environment-conforming assembler program, and the
assembler program later calls a COBOL program, the Language Environment enclave and COBOL run-unit
boundary will be at the COBOL program, not at the assembler program. The main program of the enclave
(and run unit) is the COBOL program.

If the target of SVC LINK is a Language Environment-conforming assembler program, the Language
Environment enclave boundary will be at the assembler program. The assembler program is the main
program of the enclave (provided MAIN=YES is specified in the CEEENTRY macro). If the assembler
program calls a COBOL program at a later time, the COBOL program is a subprogram.

Runtime support for assembler COBOL calls under non-CICS
The combinations of calls involving COBOL programs and assembler programs and whether the calls are
supported when running under Language Environment under non-CICS are listed in the following table.

For the calls that are not supported, Table 52 on page 292 also lists the symptom (message or abend
code) that is returned in most cases. In some cases, depending on the application environment, the
symptom might not occur. You could receive a different failure, or the application might appear to run
successfully.

The term, IBM COBOL refers to COBOL/370, COBOL for MVS &VM and COBOL for OS/390 & VM.

© Copyright IBM Corp. 1991, 2024 291

Table 52. Language Environment supported calls between COBOL programs and assembler programs under
non-CICS; Yes indicates that a call is supported.

Calls from Issued to

Call type Program issuing
Enterpris
e COBOL

IBM
COBOL

VS
COBOL
II

OS/VS
COBOL

LanEnv1

Asm2

main

LanEnv1

Asm
subrtn

Non-
LanEnv
Asm

Static Enterprise COBOL Yes Yes Yes No No3 Yes Yes

IBM COBOL Yes Yes Yes Yes No3 Yes Yes

VS COBOL II with
RES Yes Yes Yes Yes No3 Yes4 Yes

VS COBOL II with
NORES No Yes Yes Yes No3 Yes4 Yes

OS/VS COBOL No Yes Yes Yes No3 Yes4 Yes

Dynamic Enterprise COBOL Yes Yes Yes No No3 Yes Yes

IBM COBOL Yes Yes Yes Yes No3 Yes Yes

VS COBOL II with
RES Yes Yes Yes Yes No3 Yes Yes

VS COBOL II with
NORES No Yes Yes Yes No3 Yes Yes

OS/VS COBOL No Yes Yes Yes No3 Yes Yes

VCON Asm (LanEnv) Yes Yes Yes Yes No3 Yes Yes

Asm (non-LanEnv) Yes Yes Yes Yes Yes5 No6 Yes

LOAD Asm (LanEnv) Yes Yes Yes Yes No3 Yes Yes

BALR Asm (non-LanEnv) Yes Yes Yes Yes Yes5 No6 Yes

LINK Asm (LanEnv) Yes Yes Yes Yes7 Yes No6 Yes

Asm (non-LanEnv) Yes Yes Yes Yes7 Yes No6 Yes

292 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 52. Language Environment supported calls between COBOL programs and assembler programs under
non-CICS; Yes indicates that a call is supported. (continued)

Calls from Issued to

Call type Program issuing
Enterpris
e COBOL

IBM
COBOL

VS
COBOL
II

OS/VS
COBOL

LanEnv1

Asm2

main

LanEnv1

Asm
subrtn

Non-
LanEnv
Asm

The failure symptoms described in these notes are as they would occur when the Language Environment
TRAP(ON) and ABTERMENC(ABEND) runtime options are in effect.

1. (LanEnv stands for Language Environment.) CEEENTRY macro with MAIN=YES creates a Language
Environment assembler main. If you specify MAIN=NO on the CEEENTRY macro, a Language Environment
assembler subroutine is created. The default is MAIN=YES.

2. (Asm stands for assembler.)
3. Invoking a Language Environment assembler main program from an established Language Environment

enclave is not recommended (unless through the use of SVC LINK). For this reason, the table entries
associated with this footnote are marked No. A nested enclave is not created and, therefore, the program
runs as a subprogram in the invoking enclave. If you follow this recommendation, you might avoid the need
for reprogramming in the future.

4. You must specify NAB=NO and MAIN=NO on the CEEENTRY macro. Otherwise, you will receive failure
symptom 0C1, 0C4, or 0C5 abend.

5. If the non-Language Environment assembler caller is running within an established Language Environment
enclave, see note 3.

6. Failure symptom of 0C1, 0C4, or 0C5 abend.
7. Except when OS/VS COBOL programs exist in another established Language Environment enclave. For

detail, see Failure symptom of: message IGZ0005S.

Runtime support for assembler COBOL calls under CICS
The combinations of calls involving COBOL programs and assembler programs and whether the calls are
supported when running under Language Environment under CICS are listed in the following table.

For the calls that are not supported, Table 53 on page 293 also lists the symptom (message or abend
code) that will be returned in most cases. In some cases, depending on the application environment, the
symptom might not occur; you could receive a different failure, or the application might appear to run
successfully.

The term IBM COBOL refers to COBOL/370, COBOL for MVS & VM, and COBOL for OS/390 & VM.

Table 53. Language Environment supported calls between COBOL programs and assembler programs that run under CICS;
Yes indicates that a call is supported.

Calls from Issued to

Call type Program issuing
Enterprise
COBOL

IBM
COBOL

VS
COBOL II

LanEnv1
Asm2 main

LanEnv1
Asm subrtn

Non-LanEnv
Asm

Static Enterprise COBOL Yes Yes Yes No3 Yes Yes

IBM COBOL Yes Yes Yes No3 No4 Yes

VS COBOL II Yes Yes Yes No3 No4 Yes

Dynamic Enterprise COBOL Yes Yes Yes No3 Yes Yes

IBM COBOL Yes Yes Yes No3 Yes Yes

VS COBOL II Yes Yes Yes No3 Yes Yes

Appendix D. Applications with COBOL and assembler 293

Table 53. Language Environment supported calls between COBOL programs and assembler programs that run under CICS;
Yes indicates that a call is supported. (continued)

Calls from Issued to

Call type Program issuing
Enterprise
COBOL

IBM
COBOL

VS
COBOL II

LanEnv1
Asm2 main

LanEnv1
Asm subrtn

Non-LanEnv
Asm

EXEC CICS
LINK

Enterprise COBOL Yes Yes Yes No3 No4 Yes

IBM COBOL Yes Yes Yes No3 No4 Yes

VS COBOL II Yes Yes Yes No3 No4 Yes

VCON Asm (LanEnv) Yes Yes No4 No3 Yes Yes

Asm (non-LanEnv) No4 No4 No4 No3 No4 Yes

EXEC CICS
LINK

Asm (non-LanEnv) Yes Yes Yes No3 No4 Yes

Asm (non-LanEnv) Yes Yes Yes No3 No4 Yes

The failure symptoms described in these notes are as they would occur when the Language Environment TRAP(ON) and
ABTERMENC(ABEND) runtime options are in effect.

1. (LanEnv stands for Language Environment.) CEEENTRY macro with MAIN=YES creates a Language Environment
assembler main. If you specify MAIN=NO on the CEEENTRY macro, a Language Environment assembler subroutine
is created. The default is MAIN=YES.

2. (Asm stands for assembler.)
3. There is no support for Language Environment-conforming assembler main programs under CICS at a level earlier than

CICS TS 3. Failure symptom: Unpredictable. The applications might appear to run successfully.
4. Failure symptom of: ASRA abend (caused by type 1 or 5 program check).

Converting programs that change the program mask
When a VS COBOL II program calls an assembler program that changes the program mask (for example,
uses an SPM instruction), the program mask is restored after the call to the assembler program.

With Enterprise COBOL, the program mask is not restored. Thus, if you change the program mask in your
assembler program, you must restore it before returning to the COBOL program. Failure to restore the
program mask could result in undetected data errors, such as fixed-point overflow, decimal overflow,
exponent underflow, and significance exceptions.

Upgrading applications that use an assembler driver
There are three methods for upgrading applications that use an assembler driver to call COBOL
subroutines:

• Convert the assembler driver to a Language Environment-conforming assembler driver.
• Modify the assembler driver to set up the Language Environment.
• Use the RTEREUS runtime option if the assembler driver cannot be modified.

These methods are described in the sections below. In all cases, you upgrade the COBOL subroutines in
the same way as described in the other COBOL conversion scenarios.

Convert the assembler driver
To upgrade an application that has an assembler driver, you can change the assembler driver to be a
Language Environment-conforming assembler main program. For details about how to make your existing
assembler programs Language Environment-conforming, see the Language Environment Programming
Guide.

294 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Modify the assembler driver
If the assembler driver uses either IGZERRE or ILBOSTP0, it must be modified.

Replace the OS/VS COBOL ILBOSTP0 or IGZERRE routine with the Language Environment CEEPIPI
INIT_SUB, CEEPIPI INIT_ MAIN, and CEEPIPI TERM functions. These Language Environment routines
have a convenient complementary termination function that was not available with OS/VS COBOL.

Use an unmodified assembler driver
If you cannot (or do not want to) modify the non-COBOL driver, you can use the unmodified driver
while specifying the Language Environment RTEREUS runtime option. RTEREUS initializes the runtime
environment for reusability when the first COBOL program is invoked, maintaining this initialization for
subsequent invocations and bypassing most of the runtime environment setup and termination.

CAUTION: Although RTEREUS is beneficial for scenarios involving non-COBOL drivers repeatedly
calling COBOL subprograms (for example, a non-LE-conforming assembler driver that repeatedly
calls COBOL applications), using it significantly changes the behavior of COBOL programs. Before
using RTEREUS, thoroughly explore the possible side effects and understand the impact on your
application.

For details about the RTEREUS runtime option, see RTEREUS (COBOL only) in the z/OS Language
Environment Customization.

Assembler programs that load and BALR to MAIN COBOL programs
Previous to Enterprise COBOL 5, you could LOAD and BALR, then BALR again to OS/VS COBOL main
programs from assembler. But it is not supported to LOAD and BALR then BALR again to a main program
that was compiled with Enterprise COBOL (or any newer compiler) with the NORENT option. If you
recompile an OS/VS COBOL program (in the above case of BALR again) with Enterprise COBOL and use the
NORENT compiler option, the program will abend with message IGZ0044S. There are a couple of possible
solutions:

• Compile with RENT.
• Change the assembler program to be Language Environment-conforming.

Assembler programs that load and delete COBOL programs
Under Language Environment, assembler programs can SVC load and SVC delete load modules that
contain any of the following programs:

• VS COBOL II programs compiled with the NORENT option
• IBM COBOL programs compiled with the NORENT option

Restriction: Language Environment cannot keep track of SVC delete, which can free storage, control
areas, and file I/O areas associating with the program. Any files not closed by the program, or storage
allocated for it, will not be freed properly by the Language Environment or the COBOL library. Subsequent
access to these resources may lead to unpredictable results. In addition, Debug Tool does not support
COBOL programs that are in load modules that are deleted by assembler using SVC delete.

Under Language Environment, assembler programs can SVC load but cannot SVC delete load modules
that contain any of the following programs:

• VS COBOL II programs compiled with the RENT option
• IBM COBOL programs compiled with the RENT option
• Enterprise COBOL programs

If assembler programs SVC delete load modules that contain these kinds of programs, unpredictable
results can occur.

Appendix D. Applications with COBOL and assembler 295

https://www.ibm.com/docs/en/zos/latest?topic=options-rtereus-cobol-only

In general, for assembler programs that need to load and delete load modules that contain a COBOL
program, the recommended method is one of the following. This applies to COBOL programs with RENT or
NORENT options.

• Have the assembler program statically call a COBOL program that performs the dynamic call and
performs the CANCEL.

• Use the Language Environment-provided CEEFETCH and CEERELES macros.

Assembler programs must use CEEFETCH instead of CEELOAD to load COBOL 5 or 6 programs, because
COBOL 5 and 6 programs are program objects.

Saving and restoring the high halves of General Purpose Registers
in assembler programs

In this topic, you can find information about how to save and restore the high halves of General Purpose
Registers (GPRs) in assembler programs that will call or be called by Enterprise COBOL 5 or 6.

Do not use the F5SA or F8SA save area formats as described in the MVS Programming: Assembler Services
Guide.

You can save the high halves of GPRs to and restore from anywhere in your user storage, but you might
want to choose the model used by COBOL when HGPR(PRESERVE) is in effect. In this case, the COBOL
5 or 6 compiler always uses a block of storage in the same relative location as is used to save the lower
halves of the registers. Here is an example of what COBOL 5 does to save and restore the high halves of
GPRs:

1. On entry:

a. Reserve 72 bytes in DSA, currently at about offset +136
b. Specify STMH R1,R15,136(,R13)

2. On exit, specify LMH R1,R15,136(,R13)

Finding the program name and compile time stamp in Enterprise
COBOL 5 or 6 programs

You can find the program name (and PPA1) for COBOL 5 or 6 programs at run time.

1. From the current Register 13, follow the backchain pointer (R13 + 4).
2. The Entry Point address (EP@) is in the backchain, in the R15 slot (backchain address + 16).
3. At the EP@, look at the word in EP@+12. An integer is there, which is the offset from the entry point to

the PPA1 in this program.
4. Add this integer to the EP@. This is the PPA1 address.
5. The program name is in the PPA1. (The first byte in PPA1 times 2 (byte *2) gives the offset of the

program name in PPA1.)
6. The first 2 bytes of the program name are the length of the name, followed by the name.

Finding the name of the program that called the current COBOL 5
or 6 program

You can find the name of the calling programs from a COBOL 5 or 6 program at run time by using the LE
service CEETBCK. For more information, see the z/OS Language Environment Vendor Interfaces.

296 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix E. Option comparison
The following table describes the Enterprise COBOL 5 and 6 compiler options and installation options, and
explains how the options compare with those in OS/VS COBOL, VS COBOL II, IBM COBOL, and Enterprise
COBOL 3 and 4.

For complete descriptions of the Enterprise COBOL 5 and 6 options, see Compiler options in the Enterprise
COBOL for z/OS Programming Guide.

Key:
X

The compiler option is available.
-

The compiler option is not available.

Table 54. Option comparison

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

ADATA - - X X X X

Produces associated data file at
compilation. NOADATA is the default.
The Enterprise COBOL ADATA option
replaces the COBOL/370 EVENTS
option.

ADV X X X X X X Adds print control byte at beginning of
records. ADV is the default.

AFP - - - - X X

Controls the compiler usage of
the Additional Floating Point (AFP)
registers that are provided by IBM z/
Architecture processors.

• In Enterprise COBOL 5.1, 5.2, and
6.1, AFP(VOLATILE) is the default.

• In Enterprise COBOL 6.2,
AFP(NOVOLATILE) is the default.

ANALYZE - -

X

Availa
ble

only in
COBOL

 for
OS/39

0 &
VM

2.1, or
later

- - -

Causes the compiler to check the
syntax of embedded SQL and CICS
statements in addition to native
COBOL statements.

ALOWCBL - X X X X X

Allows PROCESS or CBL statements
in source programs. You can only
specify this option at installation time.
ALOWCBL is the default.

© Copyright IBM Corp. 1991, 2024 297

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

APOST/QUOTE X X X X X X

Specifies apostrophe (') as delimiter
for literals. QUOTE is the default.

In Enterprise COBOL, literals can be
delimited with either quotation marks
or apostrophes regardless of whether
APOST or QUOTE is in effect. If
APOST is used, the figurative constant
QUOTE/QUOTES represents one or
more apostrophe (') characters.

ARCH - - - - X X

Specifies the machine architecture
for which the executable program
instructions are to be generated.
ARCH(10) is the default.

ARITH - - X X X X

Sets the maximum number of digits
that you can specify for decimal
data and affects the precision of
intermediate results. ARITH(COMPAT)
is the default.

With ARITH(COMPAT) you can specify
18 digits in the PICTURE clause, fixed-
point numeric literals, and arguments
to NUMVAL, NUMVAL-C and NUMVAL-
F, and 28 digits in arguments to
FACTORIAL.

With ARITH(EXTEND) you can specify
31 digits in the PICTURE clause, fixed-
point numeric literals, and arguments
to NUMVAL, NUMVAL-C and NUMVAL-
F, and 29 digits in arguments to
FACTORIAL.

AWO - X X X X X

Activates APPLY WRITE-ONLY
processing for physical sequential
files with VB format. NOAWO is the
default.

BLOCK0 - - - X X X

Activates BLOCK CONTAINS 0 clause
for all physical sequential files in the
program that specify neither BLOCK
CONTAINS nor RECORDING MODE U
in the file description.

BUF X - - - - -

Allocates buffer storage for compiler
work data sets. In Enterprise COBOL,
the BUFSIZE option replaces the
OS/VS COBOL BUF option.

298 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

BUFSIZE - X X X X X

Allocates buffer storage for compiler
work data sets. Three suboptions
are available: BUFSIZE(nnnnn),
BUFSIZE(nnnK), and BUFSIZE(4096).
BUFSIZE(4096) is the default.
BUFSIZE replaces the OS/VS COBOL
BUF option.

CICS - - X X X X
Enables the integrated CICS translator
capability and specifies CICS options.
NOCICS is the default.

CLIST X - - - - -

Produces a condensed PROCEDURE
DIVISION listing plus tables and
program statistics. NOCLIST is the
default.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL OFFSET option
replaces the OS/VS COBOL CLIST
option.

CMPR2 - X X - - -

Specified generation of IBM COBOL
source code compatible with VS
COBOL II 1.2 or other VS COBOL II
CMPR2 behavior.

NOCMPR2 is the default behavior
which cannot be changed. NOCMPR2
specifies the full use of all IBM COBOL
language features (including language
extensions for object-oriented COBOL
and improved interoperability with C
programs).

The CMPR2 option is obsolete
in Enterprise COBOL 4, but was
tolerated with informational or
warning messages to ease migration
from 3 or prior versions. With
Enterprise COBOL 5 and 6, CMPR2
option is no longer tolerated, and
specifying it will result in an error
message.

CODEPAGE - - - X X X

Specifies the code page used for
encoding contents of alphanumeric
and DBCS data items at run time
as well as alphanumeric, national,
and DBCS literals in a COBOL source
program. CODEPAGE(1140) is the
default.

Appendix E. Option comparison 299

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

COMPILE - X X X X X

Requests an unconditional full
compilation. Other options are
NOCOMPILE and NOCOMPILE(W|E|S).
The default is NOCOMPILE(S).

NOCOMPILE specifies unconditional
syntax checking. NOCOMPILE(W|E|S)
specify conditional syntax checking
based on the severity of the error.

COMPILE is equivalent to the OS/VS
COBOL NOSYNTAX and NOCSYNTAX
options. NOCOMPILE is equivalent to
the OS/VS COBOL SYNTAX options.
NOCOMPILE(W|E|S) is equivalent to
the OS/VS COBOL CSYNTAX and
SUPMAP options.

CONDCOMP - - - - - X

Use CONDCOMP to control how
conditional code will be displayed
in the listing for programs with
conditional compilation directives.

COPYLOC - - - - -

X

Available
only in

Enterpris
e COBOL
6.1 with
service
applied,
or later

Use the COPYLOC compiler option to
add either a PDSE (or PDS) dataset or
z/OS UNIX directory as an additional
location to be searched for copy
members during the library phase.

COPYRIGHT - - - - X X

Use COPYRIGHT to place a string
in the object module if the object
module is generated. If the object
is linked into a program object, the
string is loaded into memory with that
program object.

COUNT X - - - - -

Produces statement execution
summaries at the end of program
execution. Each statement is
identified by procedure-name and by
statement number, and the number of
times it was used is indicated.

A similar function is provided with
Debug Tool.

300 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

CURRENCY - - X X X X

Defines the default currency symbol.
When both the CURRENCY option and
the CURRENCY SIGN clause are used
in a program, the symbol specified
in the CURRENCY SIGN clause is
considered the currency symbol in a
PICTURE clause when that symbol is
used.

NOCURRENCY is the default and
indicates that no alternate default
currency sign is provided by the
CURRENCY option.

DATA - X X X X X

Specifies whether reentrant program
data areas are acquired above or
below the 16-MB line. With DATA(24),
reentrant programs data is acquired
below the 16-MB line. With DATA(31),
reentrant programs data is acquired
above the 16-MB line. DATA(31) is the
default.

DATEPROC - - X X - -

Enables the millennium language
extensions of the COBOL compiler.
Options consist of DATEPROC(FLAG),
DATEPROC(NOFLAG),
DATEPROC(TRIG),
DATEPROC(NOTRIG) and
NODATEPROC.

DBCS - X X X X X
Tells the compiler to recognize DBCS
shift-in and shift-out codes.

DBCS is the default.

DBCSXREF - X X X X X

Specifies that an ordering program is
to be used for cross-references to
DBCS characters, where code sets
parameters giving information about
the DBCS Ordering Support Program.
You can only specify DBCSXREF at
installation time.

DBCSXREF=NO is the default.

DECK X X X X X X

Generates object code as 80-
character card images and places it
in SYSPUNCH file. NODECK is the
default.

Appendix E. Option comparison 301

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

DEFINE

- - - - -

X

Available
only in

Enterpris
e COBOL
6.1 with
service
applied,
or later

Assigns a literal value to a compilation
variable that is defined in the program
by using the DEFINE directive with the
PARAMETER phrase.

DIAGTRUNC

- - X X X X

Causes the compiler to issue
a severity-4 (warning) diagnostic
message for MOVE statements with
numeric receivers when the receiving
data has fewer integer positions than
the sending data item or literal.
NODIAGTRUNC is the default.

DISPSIGN
- - - - X X

Controls output formatting for
DISPLAY of signed numeric items.
DISPSIGN(COMPAT) is the default.

DLL - - X X X X

Enables the compiler to generate an
object module that is enabled for
DLL (Dynamic Link Library) support.
NODLL is the default.

DMAP X - - - - -

Produces a listing of the DATA
DIVISION and implicitly declared
items. NODMAP is the default.

The VS COBOL II, IBM COBOL,
and Enterprise COBOL MAP option
replaces the OS/VS COBOL DMAP
option.

DUMP X X X X X X
Specifies that a system dump be
produced at end of compilation.
NODUMP is the default.

DYNAM X X X X X X

Changes the behavior of CALL literal
statements to load subprograms
dynamically at run time. NODYNAM
is the default. With NODYNAM, CALL
literal statements cause subprograms
to be statically link-edited in the
program object.

302 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

EXIT - X X X X X

Allows the compiler to accept user-
supplied modules. (Each string is an
optional user-supplied input string to
the exit module, and each mod names
a user-supplied exit module.)

The ADEXIT suboption is only
available with COBOL for MVS & VM
and later compilers.

The MSGEXIT suboption is only
available with Enterprise COBOL 4.2
and later compilers.

NOEXIT is the default.

EXPORTALL - - X X X X

Instructs the compiler to
automatically export certain symbols
when the object deck is link-edited
to form a DLL. NOEXPORTALL is the
default.

FASTSRT - X X X X X

Specifies fast sorting by the
IBM DFSORT licensed program.
NOFASTSRT is the default, and
specifies that Enterprise COBOL will
do SORT or MERGE input/output.

FLAG X X X X X X

Specifies that syntax messages are
produced at the level indicated. For
OS/VS COBOL the FLAG options are:
FLAGW and FLAGE. For Enterprise
COBOL, the FLAG options are:

FLAG(I) FLAG(W) FLAG(E) FLAG(S)
FLAG(U) FLAG(I|W|E|S|U,I|W|E|S|
U)

For VS COBOL II and IBM COBOL
FLAG(I) is the default. For Enterprise
COBOL, FLAG(I,I) is the default.

FLAGMIG - X X X - -

Specifies NOCMPR2 flagging for
possible semantic changes from VS
COBOL II 1.2 or other programs with
CMPR2 behavior.

Appendix E. Option comparison 303

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

FLAGMIG4 - - -

X

Available
only in

Enterpris
e COBOL
4.2 with
service
applied

- -

APAR PM93450 for Enterprise COBOL
4.2 adds option FLAGMIG4 to identify
language elements in Enterprise
COBOL 4 programs that are not
supported, or that are supported
differently in Enterprise COBOL 5
or 6. The compiler will generate a
warning diagnostic messages for all
such language elements. It is also
recommended that you install PTFs
for APARs PI12240, PI26838, and
PI58762 as these contain updates to
the FLAGMIG4 option.

Note: The source code changes for
COBOL 5 and 6 are rarely used COBOL
language features and do not affect
99% of COBOL users.

FLAGSTD - X X X X X

Specifies 85 COBOL Standard
flagging. For COBOL for OS/390
& VM and COBOL for MVS &
VM, FLAGSTD also flags language
syntax for object-oriented COBOL,
improved C interoperability, and
use of the PGMNAME(LONGMIXED)
compiler option.

NOFLAGSTD is the default.

FDUMP - X - - - -

Produces a dump with debugging
information when an application ends
with an abend. NOFDUMP is the
default.

The Enterprise COBOL TEST option
replaces the VS COBOL II FDUMP
option.

HGPR - - - - X X

Controls the compiler usage of
the 64-bit registers provided
by IBM z/Architecture processors.
HGPR(PRESERVE) is the default.

304 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

INITCHECK - - - - -

X

Available
only in

Enterpris
e COBOL
6.1 with
service
applied,
or later

Controls whether to check for
uninitialized data items and issue
warning messages when they are
used without being initialized.

INITIAL - - - - -

X

Available
only in

Enterpris
e COBOL
6.2 with
service
applied,
or later

Causes a program and all of its nested
programs to behave as if the IS
INITIAL clause was specified on the
PROGRAM-ID paragraph.

INLINE - - - - -

X

Available
only in

Enterpris
e COBOL
6.1 with
service
applied,
or later

Controls the compiler usage of inlining
procedures (paragraphs or sections)
referenced by PERFORM statements
in the source program. Specifying
NOINLINE prevents the compiler from
inlining procedures referenced by
PERFORM statements.

IDLGEN - - X - - -

In addition to the normal compile
of the COBOL source file, IDLGEN
generates IDL definitions for defined
classes. NOIDLGEN is the default.

INTDATE - - X X X X

Determines the starting date
for integer format dates when
used with date intrinsic functions.
INTDATE(ANSI) uses 85 COBOL
Standard starting date, where Day 1
= January 1, 1601. INTDATE(LILIAN)
uses the Language Environment Lilian
starting date, where Day 1 = October
15, 1582.

INTDATE(ANSI) is the default.

Appendix E. Option comparison 305

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

INVDATA - - - - -

Available
only in

Enterpris
e COBOL
6.2 with
service
applied,
or later

Tells the compiler whether data
in USAGE DISPLAY and PACKED-
DECIMAL data items is valid, and if
not, what the behavior of the compiler
should be.

JAVAIOP - - - - -

X

Available
only in

Enterpris
e COBOL

6.4 or
later

Controls the behavior of COBOL
programs that interoperate with Java
through the JAVA-CALLABLE or
JAVA-SHAREABLE directives or by
calling Java static methods using the
CALL statement.

LANGUAGE - X X X X X

LANGUAGE(AAa...a) specifies
language in which compiler messages
are issued, where AAa...a is:
UE or UENGLISH

Uppercase English
EN or ENGLISH

Mixed-case English
JA, JP, or JAPANESE

Japanese, using the KANJI
character set

LANGUAGE=(EN) is the default.

LIB X X X X - - Specifies that the program uses the
COPY library.

LINECNT X - - - - -

Specifies the number of lines per
page on the output listing. For VS
COBOL II, IBM COBOL, and Enterprise
COBOL, the LINECOUNT compiler
option replaces the OS/VS COBOL
LINECNT option.

LINECOUNT - X X X X X

Specifies the number of lines per page
on the output listing. The two formats
for LINECOUNT are: LINECOUNT(60)
and LINECOUNT(nn). LINECOUNT(60)
is the default.

LINECOUNT replaces the OS/VS
COBOL LINECNT option.

306 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

LIST - X X X X X

Produces a listing of assembler
language expansion of source code.
NOLIST is the default.

LIST replaces the OS/VS COBOL PMAP
option.

LOAD X - - - - -

Stores object code on disk or tape
for input to linkage-editor. NOLOAD is
default.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL OBJECT option
replaces the OS/VS COBOL LOAD
option.

LP - - - - -

X

Available
only in

Enterpris
e COBOL

6.3, or
later

Indicates whether an AMODE 31
or AMODE 64 program should be
generated with the related language
features enabled. LP(32) is the
default.

MAP - X X X X X

Produces a listing of the DATA
DIVISION and implicitly declared
items. NOMAP is the default.

MAP replaces the OS/VS COBOL
DMAP option.

In Enterprise COBOL 5.1 with the
latest service installed, and Enterprise
COBOL 5.2 and 6, new suboptions
HEX and DEC are added to control
whether hexadecimal or decimal
offsets are shown for MAP output in
the compiler listing.

Enterprise COBOL 5.1 at base
level always produced MAP output
with decimal offsets, while earlier
compilers all produced MAP output
with hexadecimal offsets.

If MAP is specified with no suboption,
it will be accepted as MAP(HEX). This
will give you the same behavior in
Enterprise COBOL 5 and 6 as in earlier
COBOL compilers.

Appendix E. Option comparison 307

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

MAXPCF - - - - X X

Instructs the compiler not to optimize
code if the program contains a
complexity factor greater than n. The
default is MAXPCF(100000).

MDECK - - - X X X

Causes output from the library
processing (the expansion of COPY,
BASIS, REPLACE, and EXEC SQL
INCLUDE statements) to be written to
a file. NOMDECK is the default.

NAME X X X X X X

Indicates that a linkage-editor NAME
statement is appended to each object
module created. For VS COBOL II,
IBM COBOL, and Enterprise COBOL,
NAME has the suboptions (ALIAS|
NOALIAS). If ALIAS is specified, an
ALIAS statement is also generated for
each ENTRY statement

NONAME is the default.

NSYMBOL - - - X X X

Controls the interpretation of the "N"
symbol used in literals and picture
clauses, indicating whether national
or DBCS processing is assumed.

NSYMBOL(NATIONAL) is the default.

NUM X - - - - -

Prints line numbers in error messages
and listings. NONUM is the default.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL NUMBER option
replaces the OS/VS COBOL NUM
option.

NUMBER - X X X X X

Prints line numbers in error messages
and listings. NONUMBER is the
default.

The NUMBER option replaces the
OS/VS COBOL NUM option.

NUMCHECK - - - - -

X

Available
only in

Enterpris
e COBOL
6.1 with
service
applied,
or later

Controls whether to generate implicit
numeric class tests for zoned decimal
and packed decimal data items that
are used as sending data items, and
whether to generate SIZE ERROR
checking for binary data items.

For details, see NUMCHECK in
the Enterprise COBOL for z/OS
Programming Guide.

308 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

NUMCLS - X X X X X

Determines, together with the
NUMPROC option, valid sign
configurations for numeric items in
the NUMERIC class test. NUMCLS
has two suboptions: (PRIM/ALT).
NUMCLS(PRIM) is the default.

You can specify NUMCLS only
at installation time. For more
information, see the Enterprise COBOL
for z/OS Customization Guide.

Appendix E. Option comparison 309

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

NUMPROC - X X X X X

Handles packed/zoned decimal signs
as follows:
NUMPROC(PFD)

Decimal fields assumed to have
standard S/390® signs

NUMPROC(NOPFD)
The compiler does any necessary
sign conversion of nonpreferred
but valid signs.

NUMPROC(MIG)

Enterprise COBOL processes sign
conversion in a manner very
similar to OS/VS COBOL. This
suboption is not supported in
Enterprise COBOL 5 and 6.

To migrate your programs
compiled with NUMPROC(MIG)
to Enterprise COBOL 6, consider
using the NUMCHECK compiler
option to help you migrate to
NUMPROC(PFD):

1. Compile your programs with
NUMCHECK(ZON,PAC) and
NUMPROC(PFD).

2. Run a thorough regression test
with a good breadth of input
data.

If your applications get
no NUMCHECK messages
or NUMCHECK abends,
you can safely compile
with NUMPROC(PFD) and
NONUMCHECK for production.
This will not only solve the invalid
data problem, but NUMPROC(PFD)
is the most efficient setting for the
NUMPROC compiler option.

For details, see NUMCHECK in
the Enterprise COBOL for z/OS
Programming Guide.

NUMPROC(NOPFD) is the default.

310 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

OBJECT - X X X X X

Stores object code on disk or tape for
input to linkage-editor. OBJECT is the
default.

OBJECT replaces the OS/VS COBOL
LOAD option.

OFFSET - X X X X X

Produces a condensed PROCEDURE
DIVISION listing plus tables and
program statistics. NOOFFSET is the
default.

OFFSET replaces the OS/VS COBOL
CLIST option.

OPTFILE - - - X X X

Specifies that compiler options should
be read from a separate data set
or file specified by a SYSOPTF DD
statement. OPTFILE is not in effect by
default.

OPTIMIZE X X X X X X

Optimizes the object program.

With IBM COBOL and Enterprise
COBOL prior to 5, OPTIMIZE had the
suboptions of (STD/FULL). The default
was NOOPTIMIZE.

In Enterprise COBOL 5 and 6,
OPTIMIZE has the suboptions of
(0 / 1 / 2). The OPTIMIZE
option specifies increasing levels of
optimization to improve application
runtime performance.

OPTIMIZE(0) is the default.

OUTDD - X X X X X

Routes DISPLAY output to SYSOUT
or to a specified data set.
OUTDD(SYSOUT) is the default.

OUTDD replaces the OS/VS COBOL
SYSx option.

PARMCHECK - - - - -

X

Available
only in

Enterpris
e COBOL
6.1 with
service
applied,
or later

Tells the compiler to generate an extra
data item following the last item in
WORKING-STORAGE. This buffer data
item is then used at run time to
check whether a called subprogram
corrupted data beyond the end of
WORKING-STORAGE.

NOPARMCHECK is the default.

Appendix E. Option comparison 311

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

PGMNAME - - X X X X

Controls the handling of program
names in relation to length and case.
PGMNAME(LONGMIXED)

Program names are used at their
full length, without truncation and
without folding or translating by
the compiler.

PGMNAME(LONGUPPER)
Program names are used at their
full length, without truncation.

PGMNAME(COMPAT)
Program names are handled in
a manner compatible with older
versions of COBOL compilers.

PGMNAME(COMPAT) is the default.

PMAP X - - - - -

Produces a listing of assembler
language expansion of source code.

The VS COBOL II, IBM COBOL,
and Enterprise COBOL LIST compiler
option replaces the OS/VS COBOL
PMAP option.

QUALIFY - - - - X X

QUALIFY affects qualification rules
and controls whether to extend
qualification rules so that some data
items that cannot be referenced
under COBOL Standard rules can be
referenced.

QUOTE X X X X X X

Specifies a quotation mark (") as the
delimiter for literals. QUOTE is the
default.

In Enterprise COBOL, literals can be
delimited with either quotation marks
or apostrophes regardless of whether
APOST or QUOTE is in effect. If
QUOTE is used, the figurative constant
QUOTE/QUOTES represents one or
more quotation marks (") characters.

RES X X - - - -

Causes most library routines to be
loaded dynamically, instead of being
link-edited with the COBOL program.
RES is the default behavior and is not
changeable.

RENT - X X X X X Specifies reentrant code in object
program. RENT is the default.

312 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

RMODE - - X X X X

Establishes the residency mode
for the generated object program.
Programs compiled with NORENT will
have RMODE(24). Programs compiled
with RENT will have RMODE(ANY).
RMODE(AUTO) is the default.

RULES - - - -

X

Available
only in

Enterpris
e COBOL
5.1 with
service
applied,
or later

X

Requests information about your
program from the compiler to improve
the program by flagging certain types
of source code at compile time.

SEQ X - - - - -

Checks ascending sequencing of
source statement line numbers.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL SEQUENCE option
replaces the OS/VS COBOL SEQ
option.

SEQUENCE - X X X X X

Checks ascending sequencing of
source statement line numbers.
SEQUENCE is the default.

SEQUENCE replaces the OS/VS
COBOL SEQ option.

SERVICE - - - - X X

Use SERVICE to place a string in the
object module if the object module
is generated. If the object module
is linked into a program object,
the string is loaded into memory
with this program object. If the
Language Environment dump includes
a traceback, this string is included in
that traceback.

SIZE - X X X X

Specifies virtual storage to be used for
compilation.

SIZE(MAX) is not supported in
Enterprise COBOL 5.1. The SIZE
option is not supported in Enterprise
COBOL 5.2.

Appendix E. Option comparison 313

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

SMARTBIN - - - - -

X

Available
only in

Enterpris
e COBOL

6.4 or
later

Instructs the compiler to generate
modules containing additional binary
metadata that enables them to be
optimized by IBM Automatic Binary
Optimizer (ABO) for z/OS 2.2.
Default is SMARTBIN when LP(32) is
in effect.
SMARTBIN is not supported when
LP(64) is in effect.

SOURCE X X X X X X

Produces a listing of the source
program and embedded messages.
SOURCE(DEC) is the default.

From Enterprise COBOL 6.3 with
the latest service installed, new
suboptions HEX and DEC are added.
If SOURCE(DEC) is in effect, the
line numbers for the listing of the
source will be in decimal format. If
SOURCE(HEX) is in effect, the line
numbers for the listing of the source
will be in hexadecimal format.

SPACE X X X X X X

Produces a single, double, or triple
spaced listing. The syntax of the
SPACE option in OS/VS COBOL
is: SPACE1, SPACE2, SPACE3. The
syntax of SPACE in VS COBOL II
and Enterprise COBOL is: SPACE(1),
SPACE(2), SPACE(3).

SPACE(1) is the default.

SQL - - X X X X
Enables the Db2 coprocessor
capability and specifies Db2
suboptions. NOSQL is the default.

SQLCCSID - - - X X X

Determines whether the CODEPAGE
compiler option influences the
processing of SQL statements in
COBOL programs. Has an effect only
when the integrated Db2 coprocessor
(SQL compiler option) is used.

SQLCCSID is the default.

SQLIMS - - - - X X
Enables the IMS SQL coprocessor
capability and specifies IMS
suboptions. NOSQLIMS is the default.

314 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

SSRANGE - X X X X X

At run time, checks validity of
subscript, index, and reference
modification references.

In Enterprise COBOL 6.2, new
suboptions MSG and ABD are added
to control the runtime behavior of the
COBOL program when a range check
fails.

In Enterprise COBOL 6.1, new
suboptions ZLEN and NOZLEN are
added to control how the compiler
checks reference modification
lengths.

NOSSRANGE is the default.

STGOPT - - - - X X Controls storage optimization.
NOSTGOPT is the default.

SUPPRESS - - - - - X
Controls whether to ignore the
SUPPRESS phrase of COPY
statements.

SYSx X - - - - -

Routes DISPLAY output to SYSOUT or
to a specified data set.

The VS COBOL II, IBM COBOL,
and Enterprise COBOL OUTDD option
replaces the OS/VS COBOL SYSx
option.

STATE X - - - - -

Produces a dump with debugging
information when an application ends
with an abend.

The IBM Enterprise COBOL TEST
option replaces the OS/VS COBOL
STATE option.

SUPMAP
SYNTAX
CSYNTAX

X - - - - -

Specifies the extent of compilation.
SYNTAX specifies unconditional
syntax checking. CSYNTAX and
CSUPMAP specify conditional
syntax checking. NOSYNTAX and
NOCSYNTAX specify an unconditional
full compile.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL COMPILE option
replaces the OS/VS COBOL SYNTAX,
CSYNTAX, and CSUPMAP options.

Appendix E. Option comparison 315

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

SYMDMP X - - - - -

Produces a symbolic dump.

ABEND dumps and dynamic dumps
are available through Language
Environment services. Symbolic
dumps are available by using the TEST
compiler option.

SXREF X - - - - -

Produces sorted cross-reference
listing of data names and procedure
names used in program.

The VS COBOL II, IBM COBOL,
and Enterprise COBOL XREF option
replaces the OS/VS COBOL SXREF
option.

TERM X - - - - -

Sends progress messages to the
SYSTERM data set.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL TERMINAL option
replaces the OS/VS COBOL TERM
option.

TERMINAL - X X X X X

Sends progress messages to the
SYSTERM data set. NOTERMINAL is
the default.

TERMINAL replaces the OS/VS COBOL
TERM option.

TEST X X X X X X

Produces object code usable by
Debug Tool for the product.
NOTEST(NODWARF, NOSOURCE,
NOSEPARATE) is the default.

For details, see TEST in the Enterprise
COBOL for z/OS Programming Guide.

THREAD - - - X X X

Enables a COBOL program for
execution in a run unit with
multiple POSIX threads or PL/I tasks.
NOTHREAD is the default.

316 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

TRUNC X X X X X X

Truncates final intermediate results.
OS/VS COBOL has the TRUNC and
NOTRUNC options (NOTRUNC is the
default). VS COBOL II, IBM COBOL,
and Enterprise COBOL have the
TRUNC(STD|OPT|BIN) option.
TRUNC(STD)

Truncates numeric fields
according to PICTURE
specification of the binary
receiving field

TRUNC(OPT)
Truncates numeric fields in the
most optimal way

TRUNC(BIN)
Truncates binary fields based on
the storage they occupy

TRUNC(STD) is the default.

For a complete description, see
the Enterprise COBOL for z/OS
Programming Guide.

TUNE - - - - -

X

Available
only in

Enterpris
e COBOL
6.3 with
service
applied,
or later

Specifies the architecture for which
the executable program will be
optimized.

The default TUNE level matches the
ARCH level if ARCH is specified. If
ARCH is not specified, both ARCH and
TUNE default to 10.

TYPECHK - - X - - -

Enforces the rules for OO type
conformance and issues diagnostics
for any violations.

NOTYPECHK is the default.

VBREF - X X X X X
Produces a cross-reference listing of
all statement types used in program.

NOVBREF is the default.

VBSUM X - - - - - Produces a cross-reference listing of
all verb types used in program.

Appendix E. Option comparison 317

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

VLR - - - -

X

Available
only in

Enterpris
e COBOL
5.1 with
service
applied,
or later

X

Affects the file status returned from
READ statements for variable-length
records when the length of record
returned is inconsistent with the
record descriptions.

VSAMOPENFS - - - -

X

Available
only in

Enterpris
e COBOL
5.2 with
service
applied,
or later

X

Affects the user file status
reported from successful VSAM OPEN
statements that require verified file
integrity check.

WORD - X X X X X

Tells the compiler which reserved
word table to use. To use an
installation-specific reserved word
table, specify WORD(table-name). To
use the default reserved word table,
specify NOWORD.

NOWORD is the default.

XMLPARSE - - -

X

Available
only in

Enterpris
e COBOL

4.1, or
later

X

Available
only in

Enterpris
e COBOL
5.1 with
service
applied,
or later

X

For Enterprise COBOL 4 and later
only (available in Enterprise COBOL
5.1 via service). Selects which XML
parser is to be used, either the z/OS
XML System Services parser (XMLSS)
or the COBOL high-speed parser that
was used in Enterprise COBOL 3. The
default is XMLPARSE(XMLSS).

XREF - X X X X X

Produces a sorted cross-reference
listing of data names and procedure
names used in program. The default is
XREF.

XREF replaces the OS/VS COBOL
SXREF option.

318 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Table 54. Option comparison (continued)

Option OS/
VS

COB
OL

VS
COB
OL
II

IBM
COBO

L

Enterpri
se

COBOL 3
and 4

Enterpri
se

COBOL 5

Enterpri
se

COBOL 6

Usage notes

YEARWINDOW - - X X - -

Specifies the first year of the 100-
year window (the century window) to
be applied to windowed date field
processing by the COBOL compiler.
YEARWINDOW(1900) is the default.

ZONECHECK - - - -

X

Available
only in

Enterpris
e COBOL
5.1 with
service
applied,
or later

X

Tells the compiler to generate IF
NUMERIC class tests for zoned
decimal data items that are used as
sending data items.

In Enterprise COBOL 6.1 with
the service PTFs and from 6.2,
ZONECHECK is deprecated but is
tolerated for compatibility. Consider
using NUMCHECK(ZON) instead.
For details, see NUMCHECK in
the Enterprise COBOL for z/OS
Programming Guide.

ZWB X X X X X X

Removes the sign from a signed
numeric DISPLAY field when
comparing it with an alphanumeric
field. ZWB is the default.

Appendix E. Option comparison 319

320 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix F. Compiler limit comparison
The following table lists the compiler limits for Enterprise COBOL 5 and 6, other Enterprise COBOL
versions, IBM COBOL, VS COBOL II, and OS/VS COBOL programs.

These are guidelines to the limits in the table:

• Interpret a limit stated in megabytes (MB) as: x megabytes minus 1-B.
• Interpret a limit stated in kilobytes (KB) as: x kilobytes minus 1-B.
• Interpret a limit stated in gigabytes (GB) as: x gigabytes minus 1-B.
• B stands for bytes.
• N/L stands for no limit.
• Footnotes are at the end of the table.

Language element

Enterprise COBOL
5 and 6

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

Size of program 999,999 lines 999,999 lines 999,999 lines 999,999 lines

Number of literals 4,194,303-B1 4,194,303-B1 4,194,303-B1 16,384-B

Total length of literals 4,194,303-B1 4,194,303-B1 4,194,303-B1 32,767-B
after OPT

Reserved word table entries 1536 1536 1536 N/L

COPY REPLACING . . . BY . . . (items
per COPY statement)

N/L N/L N/L 150

Number of COPY libraries N/L N/L N/L N/L

Block size of COPY library 32,760-B 32,760-B 32,760-B 16,384-B

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES paragraph

mnemonic-name IS 18 18 18 18

UPSI-n . . . (switches) 0-7 0-7 0-7 0-7

alphabet-name IS . . . N/L N/L N/L N/L

literal THRU . . . or ALSO . . . 256 256 256 256

INPUT-OUPUT SECTION

FILE-CONTROL paragraph

SELECT file-name . . . A maximum of
65,535 file names
can be assigned
external names

A maximum of
65,535 file
names can be
assigned
external
names

A maximum of
65,535 file names
can be assigned
external names

A maximum
of 65,535 file
names can be
assigned
external
names

© Copyright IBM Corp. 1991, 2024 321

Language element

Enterprise COBOL
5 and 6

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

ASSIGN system-name . . . N/L N/L N/L N/L

ALTERNATE RECORD KEY data-
name . . .

253 253 253 253

RECORD KEY length N/L2 N/L2 N/L2 255

RESERVE integer (buffers) 2553 2553 2553 2553

I-O-CONTROL paragraph

RERUN ON system-name . . . 32,767 32,767 32,767 32,767

RERUN integer RECORDS 16,777,215 16,777,215 16,777,215 16,777,215

SAME RECORD AREA 255 255 255 255

SAME RECORD AREA FOR file-
name . . .

255 255 255 255

SAME SORT/MERGE AREA N/L4 N/L4 N/L4 N/L4

MULTIPLE FILE file-name . . . N/L4 N/L4 N/L4 N/L4

DATA DIVISION

77 data item size With LP(32):
999,999,999 -B
With LP(64):
2,147,483,646 -B

134,217,727 16,777,215 1,048,576

Total 01 + 77 (data items) N/L N/L N/L 255

88 condition-names . . . N/L N/L N/L N/L

66 RENAMES . . . N/L N/L N/L N/L

PICTURE clause, number of
characters in character-string

50 50 30 30

PICTURE clause, numeric item digit
positions

With
ARITH(COMPAT):
18

With
ARITH(EXTEND):
31

18 (or 31)6
For IBM COBOL:
18 (or 31)6

For VS COBOL II:
18

18

PICTURE clause, numeric-edited
character positions

249 249 249 127

PICTURE symbol replication () With LP(32):
999,999,999
With LP(64):
2,147,483,646

134,217,727 16,777,215 99,999

322 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Language element

Enterprise COBOL
5 and 6

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

PICTURE symbol replication (), class
DBCS items

With LP(32):
499,999,999
With LP(64):
1,073,741,823

67,108,863 8,388,607 N/A

PICTURE symbol replication (), class
national items

With LP(32):
499,999,999
With LP(64):
1,073,741,823

67,108,863 N/A N/A

PICTURE symbol replication (editing) 32,767 32,767 32,767 99,999

Elementary item size With LP(32):
999,999,999
With LP(64):
2,147,483,646

134,217,727 16,777,215 32,767

OCCURS integer With LP(32):
999,999,999
With LP(64):
2,147,483,646

134,217,727 4,194,303 65,535

Table size With LP(32):
999,999,999
With LP(64):
2,147,483,646

134,217,727 8,388,607 32,767

Table element size With LP(32):
999,999,999
With LP(64):
2,147,483,646

134,217,727

ASC or DES KEY . . . (per OCCURS
clause)

12 12 12 12

Total length of keys (per OCCURS
clause)

256B 256B 256B 256B

INDEXED BY . . . (index names by
OCCURS clause)

12 12 12 12

Total number of indexes (index
names) per class or program

65,535 65,535 65,535 65,535

Size of relative index 32,765 32,765 32,765 32,765

FILE SECTION

FD record description entry 1,048,575 1,048,575 1,048,575 1,048,575

FD file-name . . . 65,535 65,535 65,535 65,535

LABEL data-name . . . (if no optional
clauses)

255 255 255 185

Appendix F. Compiler limit comparison 323

Language element

Enterprise COBOL
5 and 6

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

Label record length 80-B 80-B 80-B 80-B

DATA RECORD data-name . . . N/L4 N/L4 N/L4 N/L4

BLOCK CONTAINS integer 2,147,483,6479 2,147,483,647
9 For IBM COBOL:

2,147,483,647

For VS COBOL II:
1,048,5755

32,760

RECORD CONTAINS integer 1,048,5755 1,048,5755 1,048,5755 32760

SD file-name . . . 65,535 65,535 65,535 65,535

DATA RECORD data-name . . . N/L4 N/L4 N/L4 N/L4

WORKING-STORAGE SECTION

Total size of items without the
EXTERNAL attribute

With LP(32):
2,147,483,646 -B
With LP(64):
Unlimited, up to
the available 64-
bit addressing
capacity of the
machine.

134,217,727-
B

134,217,727-B 1,048,576

Total size of items with the
EXTERNAL attribute

With LP(32):
2,147,483,646 -B
With LP(64):
Unlimited, up to
the available 64-
bit addressing
capacity of the
machine.

134,217,727-
B

134,217,727-B N/A

LINKAGE SECTION

Total size With LP(32):
2,147,483,646 -B
With LP(64):
Unlimited, up to
the available 64-
bit addressing
capacity of the
machine.

134,213,631-
B

134,217,727-B 1,048,576

PROCEDURE DIVISION

Procedure and constant area 4,194,3031 4,194,3031 4,194,3031 1M+32-KB

PROCEDURE DIVISION USING
identifier . . .

32,767 32,767 32,767 N/L

Procedure-names 1,048,5751 1,048,5751 1,048,5751 64-KB1

324 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Language element

Enterprise COBOL
5 and 6

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

Statements per line (FDUMP/TEST) 7 7 7 7

Subscripted data-names per
statement

32,767 32,767 32,767 511

ADD identifier . . . N/L N/L N/L N/L

ALTER procedure-name 1 TO
procedure-name 2 . . .

4,194,3031 4,194,3031 4,194,3031 64-KB1

CALL . . . BY CONTENT identifier 2,147,483,647 2,147,483,647 2,147,483,647 N/A

CALL literal . . . 4,194,3031 4,194,3031 4,194,3031 N/L

CALL identifier or literal USING
identifier or literal . . .

16,380 16,380 16,380 N/L

Active programs in run unit 32,767 32,767 32,767 32,767

Number of names called (DYN
option)

N/L N/L N/L 64-K

CANCEL identifier or literal . . . N/L N/L N/L N/L

CLOSE file-name . . . N/L N/L N/L N/L

COMPUTE identifier . . . N/L N/L N/L N/L

DISPLAY identifier or literal . . . N/L N/L N/L N/L

DIVIDE identifier . . . N/L N/L N/L N/L

ENTRY USING identifier or literal . . . N/L N/L N/L N/L

EVALUATE . . . subjects 64 64 64 N/L

EVALUATE . . . WHEN clauses 256 256 256 N/L

GO procedure-name . . . DEPENDING 255 255 255 2031

INSPECT TALLYING and REPLACING
clauses

N/L N/L N/L 15

MERGE file-name ASC or DES KEY . . . N/L N/L N/L 12

Total merge key length 4092-B7 4092-B7 4092-B7 256-B

MERGE USING file-name . . . 168 168 168 168

MOVE identifier or literal TO literal . . . N/L N/L N/L N/L

MULTIPLY identifier . . . N/L N/L N/L N/L

OPEN file-name . . . N/L N/L N/L N/L

PERFORM 4,194,303 4,194,303 4,194,303 64-K

SEARCH . . . WHEN . . . N/L N/L N/L N/L

SET index or identifier . . . TO N/L N/L N/L N/L

SET index . . . UP or DOWN N/L N/L N/L N/L

SORT file-name ASC or DES KEY N/L N/L N/L 12

Appendix F. Compiler limit comparison 325

Language element

Enterprise COBOL
5 and 6

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

Total sort key length 4092-B7 4092-B7 4092-B7 256-B

SORT USING file-name . . . 168 168 168 168

STRING identifier . . . N/L N/L N/L N/L

STRING DELIMITED identifier or
literal . . .

N/L N/L N/L N/L

UNSTRING DELIMITED identifier or
literal . . .

N/L 255 255 15

UNSTRING INTO identifier or
literal . . .

N/L N/L N/L N/L

USE . . . ON file-name . . . N/L N/L N/L N/L

1. Items included in limit for procedure plus constant area.
2. No compiler limit, but VSAM limits it to 255 bytes.
3. QSAM limit.
4. Syntax checked, but has no effect on the execution of the program; there is no limit.
5. The compiler limit is shown, but QSAM limits it to 32,767 bytes.
6. For COBOL for OS/390 & VM V2R2 and later versions, 18 if ARITH(COMPAT) is in effect, or 31 if

ARITH(EXTEND) is in effect.
7. For QSAM and VSAM, the limit is 4088 bytes if EQUALS is coded on the OPTION control statement.
8. SORT limit for QSAM and VSAM.
9. Requires large block interface (LBI) support provided by OS/390 DFSMS 2.10.0 or later. On OS/390 systems

with earlier releases of DFSMS, the limit is 32,767 bytes. For more information about using large block sizes,
see the Enterprise COBOL for z/OS Programming Guide.

326 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix G. Preventing file status 39 for QSAM files
To prevent file-status 39 for a QSAM file, ensure that there are no mismatches between the description of
the file in your program and the attributes defined for the data set.

Processing existing files
When your program processes an existing file, code the description of the file in your COBOL program to
be consistent with the file attributes of the data set, for example:

File format Requirement

Format-V files or
Format-S files

The maximum record length specified in your program must be exactly 4 bytes
smaller than the length attribute of the data set.

Format-F files The record length specified in your program must exactly match the length
attribute of the data set.

Format-U files The maximum record length specified in your program must exactly match the
length attribute of the data set.

Remember: Information in the JCL overrides information in the data set label.

For details about how record lengths are determined from the FD entry and record descriptions in your
program, see the Enterprise COBOL for z/OS Programming Guide.

Defining variable-length records
The easiest way to define variable-length records in your program is to use RECORD IS VARYING FROM
integer-1 TO integer-2 in the FD entry and specify an appropriate value for integer-2. For example,
assume that you have determined the length attribute of the data set to be 104 (LRECL=104). Keeping
in mind that the maximum record length is determined from the RECORD IS VARYING clause (in which
values are specified) and not from the level-01 record descriptions, you could define a format-V file in
your program with this code:

 FILE SECTION.
 FD COMMUTER-FILE-MST
 RECORDING MODE IS V
 RECORD IS VARYING FROM 4 TO 100 CHARACTERS.
 01 COMMUTER-RECORD-A PIC X(4).
 01 COMMUTER-RECORD-B PIC X(75).

Assume that the existing file in the previous example was format-U instead of format-V. If the 104 bytes
are all user data, you could define the file in your program with this code:

 FILE SECTION.
 FD COMMUTER-FILE-MST
 RECORDING MODE IS U
 RECORD IS VARYING FROM 4 TO 104 CHARACTERS.
 01 COMMUTER-RECORD-A PIC X(4).
 01 COMMUTER-RECORD-B PIC X(75).

Defining fixed-length records
To define fixed-length records in your program, use either the RECORD CONTAINS integer clause, or omit
this clause and specify all level-01 record descriptions to be the same fixed size. In either case, use a
value that equals the value of the length attribute of the data set. When you intend to use the same
program to process different files at execution and the files have differing fixed-length record lengths, the
recommended way to avoid record-length conflicts is to code RECORD CONTAINS 0.

© Copyright IBM Corp. 1991, 2024 327

If the existing file is an ASCII data set (DCB=(OPTCD=Q)), you must specify the CODE-SET clause in the
program's FD entry for the file.

Converting existing files that do not match the COBOL record
You can re-allocate a new file with the matching LRECL, copy the data from an existing file to the new file,
then use the new file as input.

Processing new files
If your COBOL program will write records to a new file which is made available before the program is
run, ensure that the file attributes you specify in the DD statement or the allocation do not conflict with
the attributes you have specified in your program. In most cases, you only need to specify a minimum of
parameters when predefining your files, as illustrated in the following example of a DD statement related
to the FILE-CONTROL and FD entries in your program:

JCL DD Statement:

 1
//OUTFILE DD DSNAME=OUT171,UNIT=SYSDA,SPACE=(TRK,(50,5)),
// DCB=(BLKSIZE=400)

/*

Enterprise COBOL Program Code:

ENVIRONMENT DIVISION.
 INPUT─OUTPUT SECTION.
 FILE─CONTROL.
 SELECT CARPOOL 2
 ASSIGN TO OUTFILE 1
 ORGANIZATION IS SEQUENTIAL
 ACCESS IS SEQUENTIAL.
 .
 .
 .
DATA DIVISION.
 FILE SECTION.
 FD CARPOOL 2
 LABEL RECORD STANDARD
 BLOCK CONTAINS 0 CHARACTERS
 RECORD CONTAINS 80 CHARACTERS

Figure 6. Example of JCL, FILE-CONTROL entry, and FD entry

Where:
 1

The ddname in the DD statement corresponds to the assignment-name in the ASSIGN clause:

//OUTFILE DD DSNAME=OUT171 …

This assignment-name points to the ddname of OUTFILE in the DD statement.

ASSIGN TO OUTFILE

 2
When you specify a file in your COBOL FILE-CONTROL entry, the file must be described in an FD entry
for file-name.

SELECT CARPOOL

FD CARPOOL

If you do need to explicitly specify a length attribute for the data set (for example, you are using an ISPF
allocation panel or if your DD statement is for a batch job in which the program uses RECORD CONTAINS
0), use the following rules:

328 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

• For format-V and format-S files, specify a length attribute that is 4 bytes larger than what is defined in
the program.

• For format-F and format-U files, specify a length attribute that is the same as what is defined in the
program.

• If you open your file as OUTPUT and write it to a printer, the compiler might add one byte to the
record length to account for the carriage control character, depending on the ADV compiler option and
the COBOL language used in your program. In such a case, take the added byte into account when
specifying the LRECL.

For example, if your program contains the following code for a file with variable-length records:

 FILE SECTION.
 FD COMMUTER-FILE-MST
 RECORDING MODE IS V
 RECORD VARYING 10 TO 50 CHARACTERS.
 01 COMMUTER-RECORD-A PIC X(10).
 01 COMMUTER-RECORD-B PIC X(50).

The LRECL in your DD statement or allocation should be 54.

Processing files dynamically created by COBOL
Note: This topic is for QSAM files only.

Enterprise COBOL dynamically allocates a file when all of the following conditions exist:

• The CBLQDA(ON) runtime option is in effect.
• A ddname for the file is not explicitly allocated.
• An environment variable of the same name is not set.
• The COBOL program opens the file to write to it.

When the file is opened, the attributes specified in your program will be used.

If CBLQDA(OFF) is in effect, an error will be generated.

Appendix G. Preventing file status 39 for QSAM files 329

330 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix H. Overriding binder (linkage-editor)
defaults

AMODE and RMODE
You might need to override the Enterprise COBOL default settings for AMODE and RMODE depending on
the settings of the RENT and RMODE compiler options.

Do not override AMODE or RMODE assigned by the compiler, in particular:

• Do not change the RMODE of Enterprise COBOL 5 and 6 NORENT programs to RMODE ANY.
• Do not change the AMODE of Enterprise COBOL 5.1.0 programs to AMODE 24. You can change the

AMODE of Enterprise COBOL 5.1.1 and later programs to AMODE 24.

If a program object gets assigned AMODE 24 after binding, then it must also have RMODE 24. You cannot
specify the binder option RMODE(ANY).

RENT
If you compile with the RENT compiler option, you must tell the binder that a module is RENT with
REUS=RENT or the alternative RENT option (RENT includes REUS, so REUS is not necessary). The
attribute RENT is not set in the program object by the compiler, unlike AMODE and RMODE.

How to override the defaults
To override the defaults, specify AMODE or RMODE using one of the mechanisms as described in this
topic.

• EXEC statement of your link-edit job step, where programname refers to the program binder (linkage-
editor), such as IEWBLINK, IEWL or HEWL:

//LKED EXEC PGM=programname,
// PARM='AMODE=xx,RMODE=yy'

• The linkage-editor MODE control statements:

MODE AMODE(xx),RMODE(yy)

• One of the following TSO commands LINK or LOADGO:

LINK(dsn-list)
AMODE(xx) RMODE(yy)
LOADGO(dsn-list) AMODE(xx) RMODE(yy)

For more information about allowable xx and yy and binder MODE control statements, see your MVS
Program Management: User's Guide and Reference.

The loader that uses information set by the binder uses a program's AMODE attribute to determine
whether a program invoked using ATTACH, LINK, XCTL, or LOAD/BASSM is to receive control in 24-bit or
31-bit addressing mode. The loader uses the RMODE attribute to determine whether a program must be
loaded into virtual storage below 16 MB, or can reside anywhere in virtual storage (above or below 16
MB).

© Copyright IBM Corp. 1991, 2024 331

332 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix I. TSO considerations

This appendix describes conversion considerations for programs running on TSO. It includes information
about using REXX execs.

Using REXX execs
When you run a COBOL program from a REXX exec, you need to be aware of the differences in the
parameter list formats for using the different "address" options. When you use 'Address TSO' (the
default) or 'Address ATTCHMVS', both program parameters and Language Environment runtime options
are processed. When using 'Address LINKMVS', runtime options are not processed, but they are passed as
program parameters to the COBOL program.

Due to the differences in parameter list formats and save area conventions, 'Address LINK', 'Address
ATTACH', 'Address LINKPGM', and 'Address ATTCHPGM' are not supported.

© Copyright IBM Corp. 1991, 2024 333

334 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix J. Migrating from XMLPARSE(COMPAT) to
XMLPARSE(XMLSS)

You can migrate your programs to use XMLPARSE(XMLSS) after you understand the differences between
XMLPARSE settings: XMLSS and COMPAT. Some of these differences are described in terms of new,
changed, unchanged, and discontinued events when XMLPARSE(XMLSS) is in effect.

• ATTRIBUTE-CHARACTER event (discontinued)

– XMLSS: The ATTRIBUTE-CHARACTER event no longer occurs. All entity references, including
predefined ones, are now included in the ATTRIBUTE-CHARACTERS event, unless there is an
unresolved entity reference, in which case an EXCEPTION event is signaled.

– COMPAT: The ATTRIBUTE-CHARACTER event occurs for predefined entity references only. The five
predefined entity references are shown in Table 55 on page 341. XML-TEXT or XML-NTEXT contains
the single character that corresponds with the predefined entity reference in the attribute value.
Character references are signaled as ATTRIBUTE-NATIONAL-CHARACTER events.

– To migrate to XMLPARSE(XMLSS): Remove references to the ATTRIBUTE-CHARACTER event and
integrate any actions for this event into your ATTRIBUTE-CHARACTERS event handling.

• ATTRIBUTE-CHARACTERS event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the value for the ATTRIBUTE-
CHARACTERS event. XML-TEXT or XML-NTEXT could also contain a complete string of the value
even if the value contains a character reference or an entity reference.

– COMPAT: XML-TEXT or XML-NTEXT has only a substring of the value for the ATTRIBUTE-
CHARACTERS event when the value contains a character reference or an entity reference.

– To migrate to XMLPARSE(XMLSS): You might have to modify your code that handles the
ATTRIBUTE-CHARACTERS event to handle more than one event even if your attribute values
do not contain character or entity references. You might also have to change your code to
process ATTRIBUTE-CHARACTERS as a single event where your code was handling ATTRIBUTE-
CHARACTERS as multiple events.

• ATTRIBUTE-NAME event (changed)

– XMLSS: For attribute names that are not in a namespace, XML-TEXT or XML-NTEXT contains the
attribute name, and the namespace special registers are all empty and have length zero. Attributes
with names in a namespace are always prefixed and have the form:

prefix:local-part = AttValue

XML-TEXT or XML-NTEXT contains the local-part, XML-NAMESPACE or XML-NNAMESPACE contains
the namespace and XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX contains the prefix.

– COMPAT: For all attribute names, XML-TEXT or XML-NTEXT contains the complete attribute name,
even if the name is prefixed (indicating that the name belongs to a namespace).

– To migrate to XMLPARSE(XMLSS): Either change your code to process the separate parts of the
namespace, or change your code to reconstruct the complete attribute name from the separate parts
in XML-TEXT, XML-NAMESPACE-PREFIX, and XML-NAMESPACE, or XML-NTEXT, XML-NNAMESPACE-
PREFIX, and XML-NNAMESPACE.

• ATTRIBUTE-NATIONAL-CHARACTER event (changed)

– XMLSS: Character references that can be represented in the EBCDIC encoding of the XML document
are resolved and included in the ATTRIBUTE-CHARACTERS event.

Unrepresentable character references are expressed as ATTRIBUTE-NATIONAL-CHARACTER events,
as for COMPAT.

© Copyright IBM Corp. 1991, 2024 335

– COMPAT: Regardless of the type of the XML document specified by identifier-1 in the XML PARSE
statement, XML-TEXT is empty and XML-NTEXT contains the single national character corresponding
with the (numeric) character reference.

– To migrate to XMLPARSE(XMLSS): Possibly no change will be required, but be aware that with
COMPAT, the national character might have an EBCDIC equivalent, whereas with XMLSS, the national
character is known to have no representation in the EBCDIC encoding of the document.

• COMMENT event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the value for the COMMENT event.
– COMPAT: XML-TEXT or XML-NTEXT always has the complete string of the value for the COMMENT

event.
– To migrate to XMLPARSE(XMLSS): You might have to modify your code that handles the COMMENT

event to handle more than one event if you get a substring of the COMMENT value in XML-TEXT or
XML-NTEXT. If that is the case, you get two or more COMMENT events in succession and you would
concatenate strings together to re-create the complete string of the value. You cannot distinguish a
comment that is split in this way from a sequence of distinct comments.

• CONTENT-CHARACTER event (discontinued)

– XMLSS: The CONTENT-CHARACTER event no longer occurs. All entity references, including
predefined ones, are now included in the CONTENT-CHARACTERS event unless there is an
unresolved entity reference, in which case an UNRESOLVED-REFERENCE event or an EXCEPTION
event is signaled.

– COMPAT: The CONTENT-CHARACTER event occurs for predefined entity references only. The five
predefined entity references are shown in Table 55 on page 341. XML-TEXT or XML-NTEXT contains
the single character that corresponds with the predefined entity reference in the attribute value.
Character references are signaled as CONTENT-NATIONAL-CHARACTER events.

– To migrate to XMLPARSE(XMLSS): Remove references to the CONTENT-CHARACTER event and
integrate any actions for this event into your CONTENT-CHARACTERS event handling.

• CONTENT-CHARACTERS event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the content for the CONTENT-
CHARACTERS event. XML-TEXT or XML-NTEXT could also contain a complete string of the content
even if the content contains a character reference or an entity reference.

– COMPAT: XML-TEXT or XML-NTEXT has only a substring of the content for the CONTENT-
CHARACTERS event when the content contains a character reference or an entity reference.

– To migrate to XMLPARSE(XMLSS): You might have to modify your code that handles the CONTENT-
CHARACTERS event to handle more than one event even if your attribute values do not contain
character or entity references. You might also have to change your code to process CONTENT-
CHARACTERS as a single event where your code was handling CONTENT-CHARACTERS as multiple
events.

• CONTENT-NATIONAL-CHARACTER event (changed)

– XMLSS: Character references that can be represented in the EBCDIC encoding of the XML document
are resolved and included in the CONTENT-CHARACTERS event.

Unrepresentable character references are expressed as CONTENT-NATIONAL-CHARACTER events,
as for COMPAT.

– COMPAT: Regardless of the type of the XML document specified by identifier-1 in the XML PARSE
statement, XML-TEXT is empty, and XML-NTEXT contains the single national character corresponding
with the (numeric) character reference.

– To migrate to XMLPARSE(XMLSS): Possibly no change will be required, but be aware that with
COMPAT, the national character might have an EBCDIC equivalent, whereas with XMLSS, the national
character is known to have no representation in the EBCDIC encoding of the document.

Note: The XML System Services parser transforms the following characters or character combinations
to x'15' when parsing EBCDIC documents:

336 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

x'0D' CR

x'15' NL

x'25' LF

x'0D15' (these two bytes together)

x'0D25' (these two bytes together)

Some of these characters might be produced when an in-memory image of an ASCII document
is translated to EBCDIC. The COMPAT parser does none of these transforms. An application which
depends on them not being done will need appropriate changes when using XMLPARSE(XMLSS).

• DOCUMENT-TYPE-DECLARATION event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the name of the root element, as specified in the
document type declaration. The parser processes entity declarations and default attribute values
in the internal DTD subset, and ignores the rest of the text in the document type declaration.

– COMPAT: XML-TEXT or XML-NTEXT contains the entire document type declaration.
– To migrate to XMLPARSE(XMLSS): If having the whole document type declaration is important, you

might have to modify your code that handles the DOCUMENT-TYPE-DECLARATION event to acquire
the information directly from your XML document.

• ENCODING-DECLARATION event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the encoding name. The encoding declaration is not used
by the parser, so you might get incorrect characters passed through that would cause the parser to
signal an EXCEPTION event from which you can't recover.

– COMPAT: XML-TEXT or XML-NTEXT contains the encoding name. If there are errors in the encoding
of the document, you would get an EXCEPTION event from which you might be able to recover and
continue.

– To migrate to XMLPARSE(XMLSS): Check your document before parsing or specify your encoding
using the CODEPAGE compiler option or by using the WITH ENCODING phrase on the XML PARSE
statement.

• END-OF-CDATA-SECTION event (changed)

– XMLSS: All XML special registers except XML-EVENT, XML-CODE and XML-INFORMATION are empty
with length zero.

– COMPAT: XML-TEXT or XML-NTEXT always contains the string "]]>".
– To migrate to XMLPARSE(XMLSS): If the string "]]>" is acquired from the END-OF-CDATA-SECTION

event, change your code to manually return it using a literal, or data item initialized with the value
"]]>".

• END-OF-DOCUMENT event (no change)

– The 2 parsers have the same behavior for the END-OF-DOCUMENT event.
– To migrate to XMLPARSE(XMLSS): No change required.

• END-OF-ELEMENT event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the local part of the end element tag or empty element
tag name. If the element name is in a namespace, XML-NAMESPACE or XML-NNAMESPACE contains
the namespace, otherwise these special registers are empty with length zero. If the element name
is in a namespace and is prefixed (of the form "prefix:local-part"), XML-NAMESPACE-PREFIX or
XML-NNAMESPACE-PREFIX contains the prefix, otherwise these special registers are empty with
length zero.

– COMPAT: XML-TEXT or XML-NTEXT contains the complete element tag name, including any prefix.
If the element name is not in a namespace, there is no difference between COMPAT and XMLSS for
END-OF-ELEMENT.

Appendix J. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS) 337

– To migrate to XMLPARSE(XMLSS): If the element name is not in a namespace, then no change
is required. If the element name is in a namespace, change your code to not use the complete
element name, or reconstruct the complete element name from the separate parts in the XML text
and namespace special registers.

• END-OF-INPUT event (new)

– XMLSS: The END-OF-INPUT event indicates the end of a segment of an XML document.
– COMPAT: The END-OF-INPUT event does not occur.
– To migrate to XMLPARSE(XMLSS): With COMPAT, your document is in one segment, so no change is

required to change to XMLSS.
• EXCEPTION event (changed)

– XMLSS: XML-CODE contains the unique return code and reason code identifying the exception. See
the following section "Other differences" for a description of XML-CODE differences. XML-TEXT or
XML-NTEXT contains the document fragment up to the point of the error or anomaly that caused the
EXCEPTION event. All other XML special registers except XML-EVENT and XML-INFORMATION are
empty with length zero. It is not possible to continue from any EXCEPTION event.

– COMPAT: XML-TEXT or XML-NTEXT contains the entire document that has been parsed up to the
point of the EXCEPTION event. It is possible to continue from some EXCEPTION events.

– To migrate to XMLPARSE(XMLSS): You might have to change your code or documents if they depend
on being able to recover from EXCEPTION events.

• NAMESPACE-DECLARATION event (new)

– XMLSS: XML-TEXT and XML-NTEXT are both empty with length zero. XML-NAMESPACE or XML-
NNAMESPACE contains the declared namespace. If the namespace is "undeclared" by specifying
the empty string, XML-NAMESPACE and XML-NNAMESPACE are empty with length zero. XML-
NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX contains the prefix if the attribute name for the
namespace declaration is of the form "xmlns:prefix", otherwise, if the declaration is for the default
namespace and the attribute name is "xmlns", XML-NAMESPACE-PREFIX and XML-NNAMESPACE-
PREFIX are both empty with length zero.

– COMPAT: The NAMESPACE-DECLARATION event does not occur.
– To migrate to XMLPARSE(XMLSS): If you get the NAMESPACE-DECLARATION event after migrating

to XMLSS, see the descriptions in this table of ATTRIBUTE-NAME, END-OF-ELEMENT and START-OF-
ELEMENT event changes.

• PROCESSING-INSTRUCTION-DATA event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the value for the PROCESSING-
INSTRUCTION-DATA event.

– COMPAT: XML-TEXT or XML-NTEXT always has the complete string of the value for the PROCESSING-
INSTRUCTION-DATA event.

– To migrate to XMLPARSE(XMLSS): You might have to modify your code that handles the
PROCESSING-INSTRUCTION-DATA event to handle more than one event if you get a substring
of the PROCESSING-INSTRUCTION-DATA value in XML-TEXT or XML-NTEXT. If that is the
case, you get two or more PROCESSING-INSTRUCTION-DATA events, each one preceded
by its matching PROCESSING-INSTRUCTION-TARGET event. You would then concatenate the
PROCESSING-INSTRUCTION-DATA substrings together to reconstitute the complete data string.

• PROCESSING-INSTRUCTION-TARGET event (changed)

– XMLSS: If the processing instruction data is split into substrings, the PROCESSING-INSTRUCTION-
TARGET event is repeated before each instance of the PROCESSING-INSTRUCTION-DATA event for a
given processing instruction.

– COMPAT: The PROCESSING-INSTRUCTION-TARGET event occurs only once for a given processing
instruction.

338 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

– To migrate to XMLPARSE(XMLSS): You might have to modify your code to accommodate multiple
occurrences of the PROCESSING-INSTRUCTION-TARGET event while accumulating processing
instruction data.

• STANDALONE-DECLARATION event (no change)

– XMLSS and COMPAT have the same behavior for the STANDALONE-DECLARATION event.
– To migrate to XMLPARSE(XMLSS): No change required.

• START-OF-CDATA-SECTION event (changed)

– XMLSS: All XML special registers except XML-EVENT, XML-CODE and XML-INFORMATION are empty
with length zero.

– COMPAT: XML-TEXT or XML-NTEXT always contains the string "![CDATA[".
– To migrate to XMLPARSE(XMLSS): If the string "![CDATA[" is acquired from the START-OF-CDATA-

SECTION event, change your code to manually return it using a literal, or data item initialized with the
value "![CDATA[".

• START-OF-DOCUMENT event (changed)

– XMLSS: All XML special registers except XML-EVENT, XML-CODE and XML-INFORMATION are empty
with length zero.

– COMPAT: XML-TEXT or XML-NTEXT contains the entire document.
– To migrate to XMLPARSE(XMLSS): Change your code to not require the entire document for START-

OF-DOCUMENT.
• START-OF-ELEMENT event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the local part of the start element name or empty
element name. If the element name is in a namespace, XML-NAMESPACE or XML-NNAMESPACE
contains the namespace, otherwise these special registers are empty with length zero. If the element
name is in a namespace and is prefixed (of the form "prefix:local-part"), XML-NAMESPACE-PREFIX
or XML-NNAMESPACE-PREFIX contains the prefix, otherwise these special registers are empty with
length zero.

– COMPAT: XML-TEXT or XML-NTEXT contains the complete start element name, including any prefix.
If the element name is not in a namespace, there is no difference between COMPAT and XMLSS for
START-OF-ELEMENT.

– To migrate to XMLPARSE(XMLSS): If the element name is not in a namespace, then no change
is required. If the element name is in a namespace, change your code to not use the complete
element name, or reconstruct the complete element name from the separate parts in the XML text
and namespace special registers.

• UNKNOWN-REFERENCE-IN-ATTRIBUTE event (discontinued)

– XMLSS: Does not occur. The parser always signals an EXCEPTION event if, while processing an
attribute value, it encounters a reference to an entity that has not been defined.

– COMPAT: XML-TEXT or XML-NTEXT contains the entity reference name, not including the "&" and ";"
delimiters.

– To migrate to XMLPARSE(XMLSS): Ensure that your XML documents do not contain any undefined
entity references in attribute values.

• UNKNOWN-REFERENCE-IN-CONTENT event (discontinued)

– XMLSS: Does not occur. Instead, an UNRESOLVED-REFERENCE or EXCEPTION event occurs.
– COMPAT: XML-TEXT or XML-NTEXT contains the entity reference name, not including the "&" and ";"

delimiters.
– To migrate to XMLPARSE(XMLSS): Change your code that processes UNKNOWN-REFERENCE-IN-

CONTENT to process UNRESOLVED-REFERENCE instead.

The UNRESOLVED-REFERENCE event is signaled only if all of the following conditions are true:

- The unresolved reference is within element content, not an attribute value.

Appendix J. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS) 339

- The XML document starts with an XML declaration that specifies standalone="no".
- The XML document contains a document type declaration, for example:

<!DOCTYPE rootElementName>

- If the VALIDATING phrase is specified on the XML PARSE statement, the document type declaration
must also specify an external DTD subset, for example:

<!DOCTYPE rootElementName SYSTEM "extSub.dtd">

If these conditions are not met, the parser signals an EXCEPTION event instead of UNRESOLVED-
REFERENCE.

• UNRESOLVED-REFERENCE event (new)

– XMLSS: XML-TEXT or XML-NTEXT contains the entity reference name, not including the "&" and ";"
delimiters.

– COMPAT: The event does not occur. Instead an UNKNOWN-REFERENCE-IN-CONTENT event would
occur.

– To migrate to XMLPARSE(XMLSS): See UNKNOWN-REFERENCE-IN-CONTENT.
• VERSION-INFORMATION event (no change)

– both parsers have the same behavior for the VERSION-INFORMATION event.
– To migrate to XMLPARSE(XMLSS): No change required.

More differences between XMLPARSE(XMLSS) and XMLPARSE(COMPAT):

• XML-CODE

– XMLSS: When XML-CODE is set by the parser for an EXCEPTION event, the first halfword is the
return code and the last halfword is the reason code. Convert the value to hexadecimal. You can find
common return code and reason code in the z/OS XML System Services User's Guide and Reference.
You can also find COBOL specific return code and reason code in the Enterprise COBOL for z/OS
Programming Guide

– COMPAT: XML-CODE values are described in decimal in the Enterprise COBOL for z/OS Programming
Guide.

– To migrate to XMLPARSE(XMLSS): If your program tests for specific XML-CODE values for
EXCEPTION events, you might have to change those values in your source program.

• Condition handling, RESUME, and XML PARSE statements

– XMLSS: If a condition handling routine, registered by CEEHDLR or runtime option USERHDLR, gets
control while executing a processing procedure due to an exception in the processing procedure and
the resume cursor is moved by CEEMRCE to a point in the program before an XML PARSE statement,
and RESUME is requested from the condition manager, the second XML PARSE would result in the
following severity 3 runtime error message:

IGZ0228S There was an invalid attempt to start an XML PARSE statement.

– COMPAT: If a condition handling routine (registered by CEEHDLR or runtime option USERHDLR) gets
control while executing a processing procedure due to an exception in the processing procedure,
and the resume cursor is moved by CEEMRCE to a point in the program before an XML PARSE
statement, and RESUME is requested from the condition manage, the second XML PARSE would start
sucessfully.

– To migrate to XMLPARSE(XMLSS): Move the call to CEE3SRP to be within the processing procedure.
Then at the resumption point, if the condition handling routine is unable to recover from the
exception, terminate parsing by moving -1 to XML-CODE. If the condition handling routine is able to
make an effective recovery, you might be able to continue parsing by leaving XML-CODE unchanged.

340 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Alternatively, you can use CEEMRCR instead of CEEMRCE so that when execution is resumed, it is in
the program that called the program that had the XML PARSE statement that got the exception in the
processing procedure.

Either of these methods properly addresses the exception.

The following table shows the predefined entity references.

Table 55. The predefined entity references

Predefined entity Character

< <

> >

& &

' '

" "

Appendix J. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS) 341

342 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix K. Controlling the suppression of the OS/VS
COBOL warning messages (IGZ2OPT)

The COBOL runtime can detect the execution of an OS/VS program that is called or calls other programs.
With each invocation of the OS/VS program, the COBOL runtime will issue a message IGZ0268W or
IGZ0269W to inform you that an OS/VS program was invoked in your environment. The suppression of
these messages is useful in environments such as IMS or CICS, where OS/VS programs are heavily used.

To control the number of OS/VS invocation warning messages issued, perform the following steps:

• In the Language Environment sample data set .SCEESAMP, copy and customize the sample JCL
IGZ2OPT. Specify the SUPP_OSV option as directed below. Change the JOB card and load library name.

• Run this JCL to build the IGZUOPT module. JOB STEP1 of the JCL assembles this program which
invokes a MACRO called IGZXOPT. This macro is used to specify special COBOL runtime options.

• Put the IGZUOPT module in a data set in the STEPLIB concatenation when running the application. For
CICS, add the IGZUOPT module to the CSD.

When using the sample JCL IGZ2OPT to create IGZUOPT, specify the SUPP_OSV option with the following
syntax:

IGZXOPT SUPP_OSV=OFF | ONCE | ON

You can set SUPP_OSV OFF, ONCE, or ON, and the default value is OFF. The IGZ0268W and IGZ0269W
messages are suppressed based on the value specified:

• If OFF is specified, the IGZ0268W or IGZ0269W message is issued each time an OS/VS program is
invoked in an application and the messages are not suppressed. For example, an OS/VS program that is
invoked 5 times will issue 5 messages.

• If ONCE is specified, the IGZ0268W or IGZ0269W message is issued only once per OS/VS program,
regardless of how many times that program is invoked within the application. This option is useful in an
IMS/CICS environment where a large volume of OS/VS programs are being run.

• If ON is specified, no IGZ0268W or IGZ0269W messages will be issued, regardless of how many times
that program is invoked within the application.

© Copyright IBM Corp. 1991, 2024 343

344 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix L. Requesting QSAM buffers above the line
(IGZ3OPT)

If a program in Enterprise COBOL 5 or later is compiled with NORENT, RMODE(AUTO|24) and is running in
AMODE 31, then when the COBOL runtime allocates QSAM buffers, it might be allocated below the line,
which can cause region problems for an application. When this occurs, you can force the allocation of the
QSAM buffers to be above the line.

To force the QSAM buffers to be allocated above the line, perform the following steps:

• In the Language Environment sample data set .SCEESAMP, copy and customize the sample JCL
IGZ3OPT. Specify the QSAMBUFFATL option as directed below. Change the JOB card and load library
name.

• Run this JCL to build the IGZUOPT module. JOB STEP1 of the JCL assembles this program which
invokes a MACRO called IGZXOPT. This macro is used to specify special COBOL runtime options.

• Put the IGZUOPT module in a data set in the STEPLIB concatenation when running the application. For
CICS, add the IGZUOPT module to the CSD.

When using the sample JCL IGZ3OPT to create IGZUOPT, specify the QSAMBUFFATL option with the
following syntax:

IGZXOPT QSAMBUFFATL=OFF | ON

You can set QSAMBUFFATL OFF or ON, and the default value is OFF. The location of the QSAM buffers is
controlled based on the value specified:

• If OFF is specified, the QSAM buffers will be allocated according to the normal documented behavior.
• If ON is specified, the QSAM buffers will be allocated above the line for a program in Enterprise COBOL

5 or later that is compiled with options NORENT, RMODE(AUTO|24) and running in AMODE 31.

© Copyright IBM Corp. 1991, 2024 345

346 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix M. Controlling initialization of QSAM buffer
(IGZ4OPT)

The first character in a QSAM file can be used as a control character (CC) for printer spacing control.
In some cases, a blank record with just the control character is outputted, depending on semantic
requirements of the LINAGE clause or WRITE AFTER...LINE(S) statement.

The bytes after the CC are called the slack bytes. In Enterprise COBOL 5.1 and earlier versions, the value
of these slack bytes is undefined. It might be either EBCDIC SPACE or BINARY ZERO, but no explicit
initialization is done during the COBOL processing routine. These slack bytes are technically irrelevant
because the printer would have moved to a different line when processing the CC. However, some printers
might misbehave with a certain value.

To control what the QSAM buffer is initialized with during COBOL processing and ensure that the value
of slack bytes is consistent, apply the COBOL runtime LE PTF for APAR PH25917 and take the following
steps:

1. In the Language Environment sample data set .SCEESAMP, copy and customize the sample JCL
IGZ4OPT. Specify the QSAMBUFFINITCHAR option as needed. Change the JOB card and load library
name, and run this JCL to generate IGZUOPT.

2. Put this module in a data set in the STEPLIB concatenation when running the application.

When using the sample JCL IGZ4OPT to create IGZUOPT, JOB STEP1 of the JCL assembles an assembler
program that invokes a MACRO called IGZXOPT. This macro is used to specify special COBOL runtime
options. Specify the QSAMBUFFINITCHAR option with the following syntax:

IGZXOPT QSAMBUFFINITCHAR=DEFAULT | SPACE | BINZERO

The setting of QSAMBUFFINITCHAR can be DEFAULT, SPACE, or BINZERO, and the default value is
DEFAULT. The QSAM buffer is initialized based on the value that you specify:

• If DEFAULT is specified, the QSAM buffer used for the LINAGE clause or WRITE AFTER...LINE(S)
statement is using the same behavior as in Enterprise COBOL 5.1 or earlier versions.

• If SPACE is specified, the QSAM buffer used for the LINAGE clause WRITE AFTER...LINE(S)
statement is initialized with EBCDIC SPACE (X'40').

• If BINZERO is specified, the QSAM buffer used for the LINAGE clause or WRITE AFTER...LINE(S)
statement is initialized with BINARY ZERO (X'00').

© Copyright IBM Corp. 1991, 2024 347

348 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Appendix N. Accessibility features for Enterprise
COBOL for z/OS

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Enterprise COBOL for z/OS.

Accessibility features
z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (https://www.access-board.gov/ict/) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

The Enterprise COBOL for z/OS online product documentation in IBM Knowledge Center is enabled for
accessibility. The accessibility features of IBM Knowledge Center are described at http://www.ibm.com/
support/knowledgecenter/en/about/releasenotes.html.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120)
• z/OS TSO/E User's Guide (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/

APPENDIX1.3)
• z/OS ISPF User's Guide Volume I (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70)

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The Enterprise COBOL for z/OS online product documentation is available in IBM Knowledge Center,
which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

© Copyright IBM Corp. 1991, 2024 349

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf

Related accessibility information

In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

350 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://www.ibm.com/able
http://www.ibm.com/able

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

© Copyright IBM Corp. 1991, 2024 351

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1991, 2024.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"

352 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Programming interface information
This information is intended to help you write programs using IBM Enterprise COBOL for z/OS. This
Migration Guide documents General-Use Programming Interface and Associated Guidance Information
provided for IBM Enterprise COBOL for z/OS. General-Use programming interfaces allow the customer to
write programs that obtain the services of IBM Enterprise COBOL for z/OS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Notices 353

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

354 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Glossary

The terms in this glossary are defined in accordance with their meaning in COBOL. These terms might or
might not have the same meaning in other languages.

This glossary includes terms and definitions from the following publications:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL, and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

• ANSI X3.172-2002, American National Standard Dictionary for Information Systems
• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL
• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments and

system software interfaces - Programming language COBOL

American National Standard definitions are preceded by an asterisk (*).

A

* abbreviated combined relation condition
The combined condition that results from the explicit omission of a common subject or a common
subject and common relational operator in a consecutive sequence of relation conditions.

abend
Abnormal termination of a program.

above the 2 GB bar
Storage located above the so-called 2 GB bar (or boundary). This storage is only addressable by
AMODE 64 programs.

above the 16 MB line
Storage located above the so-called 16 MB line (or boundary) but below the 2 GB bar. This storage
is not addressable by AMODE 24 programs. Before IBM introduced the MVS/XA architecture in the
1980s, the virtual storage for a program was limited to 16 MB. Programs that have been link-edited
as AMODE 24 can address only 16 MB of space, as though they were kept under an imaginary storage
line. Since VS COBOL II, a program can have AMODE 31 and can be loaded above the 16 MB line.

* access mode
The manner in which records are to be operated upon within a file.

* actual decimal point
The physical representation, using the decimal point characters period (.) or comma (,), of the decimal
point position in a data item.

actual document encoding
For an XML document, one of the following encoding categories that the XML parser determines by
examining the first few bytes of the document:

• ASCII
• EBCDIC
• UTF-8
• UTF-16, either big-endian or little-endian
• Other unsupported encoding
• No recognizable encoding

© Copyright IBM Corp. 1991, 2024 355

* alphabet-name
A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that
assigns a name to a specific character set or collating sequence or both.

* alphabetic character
A letter or a space character.

alphanumeric character position
See character position.

alphabetic data item
A data item that is described with a PICTURE character string that contains only the symbol A. An
alphabetic data item has USAGE DISPLAY.

* alphanumeric character
Any character in the single-byte character set of the computer.

alphanumeric data item
A general reference to a data item that is described implicitly or explicitly as USAGE DISPLAY, and
that has category alphanumeric, alphanumeric-edited, or numeric-edited.

alphanumeric-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol A or X and at least one of the simple insertion symbols B, 0, or /. An alphanumeric-edited data
item has USAGE DISPLAY.

* alphanumeric function
A function whose value is composed of a string of one or more characters from the alphanumeric
character set of the computer.

alphanumeric group item
A group item that is defined without a GROUP-USAGE NATIONAL clause. For operations such as
INSPECT, STRING, and UNSTRING, an alphanumeric group item is processed as though all its content
were described as USAGE DISPLAY regardless of the actual content of the group. For operations
that require processing of the elementary items within a group, such as MOVE CORRESPONDING, ADD
CORRESPONDING, or INITIALIZE, an alphanumeric group item is processed using group semantics.

alphanumeric literal
A literal that has an opening delimiter from the following set: ', ", X', X", Z', or Z". The string of
characters can include any character in the character set of the computer.

* alternate record key
A key, other than the prime record key, whose contents identify a record within an indexed file.

ANSI (American National Standards Institute)
An organization that consists of producers, consumers, and general-interest groups and establishes
the procedures by which accredited organizations create and maintain voluntary industry standards in
the United States.

argument
(1) An identifier, a literal, an arithmetic expression, or a function-identifier that specifies a value to
be used in the evaluation of a function. (2) An operand of the USING phrase of a CALL or INVOKE
statement, used for passing values to a called program or an invoked method.

* arithmetic expression
A numeric literal, an identifier representing a numeric elementary item, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or
an arithmetic expression enclosed in parentheses.

* arithmetic operation
The process caused by the execution of an arithmetic statement, or the evaluation of an arithmetic
expression, that results in a mathematically correct solution to the arguments presented.

* arithmetic operator
A single character, or a fixed two-character combination that belongs to the following set:

356 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Character Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

* arithmetic statement
A statement that causes an arithmetic operation to be executed. The arithmetic statements are ADD,
COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT.

array
An aggregate that consists of data objects, each of which can be uniquely referenced by subscripting.
An array is roughly analogous to a COBOL table.

* ascending key
A key upon the values of which data is ordered, starting with the lowest value of the key up to the
highest value of the key, in accordance with the rules for comparing data items.

ASCII
American National Standard Code for Information Interchange. The standard code uses a coded
character set that is based on 7-bit coded characters (8 bits including parity check). The standard
is used for information interchange between data processing systems, data communication systems,
and associated equipment. The ASCII set consists of control characters and graphic characters.

IBM has defined an extension to ASCII (characters 128-255).

ASCII DBCS
See double-byte ASCII.

assignment-name
A name that identifies the organization of a COBOL file and the name by which it is known to the
system.

* assumed decimal point
A decimal point position that does not involve the existence of an actual character in a data item. The
assumed decimal point has logical meaning but no physical representation.

AT END condition
A condition that is caused during the execution of a READ, RETURN, or SEARCH statement under
certain conditions:

• A READ statement runs on a sequentially accessed file when no next logical record exists in the file,
or when the number of significant digits in the relative record number is larger than the size of the
relative key data item, or when an optional input file is not available.

• A RETURN statement runs when no next logical record exists for the associated sort or merge file.
• A SEARCH statement runs when the search operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

B

basic character set
The basic set of characters used in writing words, character-strings, and separators of the language.
The basic character set is implemented in single-byte EBCDIC. The extended character set includes
DBCS characters, which can be used in comments, literals, and user-defined words.

Synonymous with COBOL character set in the 85 COBOL Standard.

batch compilation
Synonymous with sequence of programs.

Glossary 357

big-endian
The default format that the mainframe and the AIX® workstation use to store binary data and UTF-16
characters. In this format, the least significant byte of a binary data item is at the highest address and
the least significant byte of a UTF-16 character is at the highest address. Compare with little-endian.

binary item
A numeric data item that is represented in binary notation (on the base 2 numbering system). The
decimal equivalent consists of the decimal digits 0 through 9, plus an operational sign. The leftmost
bit of the item is the operational sign.

binary search
A dichotomizing search in which, at each step of the search, the set of data elements is divided by
two; some appropriate action is taken in the case of an odd number.

* block
A physical unit of data that is normally composed of one or more logical records. For mass storage
files, a block can contain a portion of a logical record. The size of a block has no direct relationship
to the size of the file within which the block is contained or to the size of the logical records that are
either contained within the block or that overlap the block. Synonymous with physical record.

boolean condition
A boolean condition determines whether a boolean literal is true or false. A boolean condition can only
be used in a constant conditional expression.

boolean literal
Can be either B'1', indicating a true value, or B'0', indicating a false value. Boolean literals can only be
used in constant conditional expressions.

breakpoint
A place in a computer program, usually specified by an instruction, where external intervention or a
monitor program can interrupt the program as it runs.

buffer
A portion of storage that is used to hold input or output data temporarily.

built-in function
See intrinsic function.

business method
A method of an enterprise bean that implements the business logic or rules of an application. (Oracle)

byte
A string that consists of a certain number of bits, usually eight, treated as a unit, and representing a
character or a control function.

byte order mark (BOM)
A Unicode character that can be used at the start of UTF-16 or UTF-32 text to indicate the byte order
of subsequent text; the byte order can be either big-endian or little-endian.

bytecode
Machine-independent code that is generated by the Java compiler and executed by the Java
interpreter. (Oracle)

C

callable services
In Language Environment, a set of services that a COBOL program can invoke by using the
conventional Language Environment-defined call interface. All programs that share the Language
Environment conventions can use these services.

called program
A program that is the object of a CALL statement. At run time the called program and calling program
are combined to produce a run unit.

* calling program
A program that executes a CALL to another program.

358 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

canonical decomposition
A way to represent a single precomposed Unicode character using two or more Unicode characters. A
canonical decomposition is typically used to separate latin letters with a diacritical mark so that the
latin letter and the diacritical mark are represented individually. See precomposed character for an
example showing a precomposed Unicode character and its canonical decomposition.

case structure
A program-processing logic in which a series of conditions is tested in order to choose between a
number of resulting actions.

cataloged procedure
A set of job control statements that are placed in a partitioned data set called the procedure library
(SYS1.PROCLIB). You can use cataloged procedures to save time and reduce errors in coding JCL.

CCSID
See coded character set identifier.

century window
A 100-year interval within which any two-digit year is unique. Several types of century window are
available to COBOL programmers:

• For the windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and YEAR-TO-
YYYY, you specify the century window with argument-2.

• For Language Environment callable services, you specify the century window in CEESCEN.

* character
The basic indivisible unit of the language.

character encoding unit
A unit of data that corresponds to one code point in a coded character set. One or more character
encoding units are used to represent a character in a coded character set. Also known as encoding
unit.

For USAGE NATIONAL, a character encoding unit corresponds to one 2-byte code point of UTF-16.

For USAGE DISPLAY, a character encoding unit corresponds to a byte.

For USAGE DISPLAY-1, a character encoding unit corresponds to a 2-byte code point in the DBCS
character set.

character position
The amount of physical storage or presentation space required to hold or present one character. The
term applies to any class of character. For specific classes of characters, the following terms apply:

• Alphanumeric character position, for characters represented in USAGE DISPLAY
• DBCS character position, for DBCS characters represented in USAGE DISPLAY-1
• National character position, for characters represented in USAGE NATIONAL; synonymous with

character encoding unit for UTF-16

character set
A collection of elements that are used to represent textual information, but for which no coded
representation is assumed. See also coded character set.

character string
A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE character string, or
a comment-entry. A character string must be delimited by separators.

checkpoint
A point at which information about the status of a job and the system can be recorded so that the job
step can be restarted later.

* class
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class. Classes
can be defined hierarchically, allowing one class to inherit from another.

Glossary 359

class (object-oriented)
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class.

* class condition
The proposition (for which a truth value can be determined) that the content of an item is wholly
alphabetic, is wholly numeric, is wholly DBCS, is wholly Kanji, or consists exclusively of the characters
that are listed in the definition of a class-name.

* class definition
The COBOL source unit that defines a class.

class hierarchy
A tree-like structure that shows relationships among object classes. It places one class at the top and
one or more layers of classes below it. Synonymous with inheritance hierarchy.

* class identification entry
An entry in the CLASS-ID paragraph of the IDENTIFICATION DIVISION; this entry contains
clauses that specify the class-name and assign selected attributes to the class definition.

class-name (object-oriented)
The name of an object-oriented COBOL class definition.

* class-name (of data)
A user-defined word that is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION; this word assigns a name to the proposition (for which a truth value can be defined)
that the content of a data item consists exclusively of the characters that are listed in the definition of
the class-name.

class object
The runtime object that represents a class.

* clause
An ordered set of consecutive COBOL character strings whose purpose is to specify an attribute of an
entry.

client
In object-oriented programming, a program or method that requests services from one or more
methods in a class.

COBOL character set
The set of characters used in writing COBOL syntax. The complete COBOL character set consists of
these characters:

Character Meaning

0,1, . . . ,9 Digit

A,B, . . . ,Z Uppercase letter

a,b, . . . ,z Lowercase letter

Space

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

360 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Character Meaning

" Quotation mark

' Apostrophe

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

* COBOL word
See word.

code page
An assignment of graphic characters and control function meanings to all code points. For example,
one code page could assign characters and meanings to 256 code points for 8-bit code, and another
code page could assign characters and meanings to 128 code points for 7-bit code. For example, one
of the IBM code pages for English on the workstation is IBM-1252 and on the host is IBM-1047. A
coded character set.

code point
A unique bit pattern that is defined in a coded character set (code page). Graphic symbols and control
characters are assigned to code points.

coded character set
A set of unambiguous rules that establish a character set and the relationship between the characters
of the set and their coded representation. Examples of coded character sets are the character sets as
represented by ASCII or EBCDIC code pages or by the UTF-16 encoding scheme for Unicode.

coded character set identifier (CCSID)
An IBM-defined number in the range 1 to 65,535 that identifies a specific code page.

* collating sequence
The sequence in which the characters that are acceptable to a computer are ordered for purposes of
sorting, merging, comparing, and for processing indexed files sequentially.

* column
A byte position within a print line or within a reference format line. The columns are numbered from 1,
by 1, starting at the leftmost position of the line and extending to the rightmost position of the line. A
column holds one single-byte character.

* combined condition
A condition that is the result of connecting two or more conditions with the AND or the OR logical
operator. See also condition and negated combined condition.

combining characters
A Unicode character used to modify other succeeding or preceding Unicode characters. Combining
characters are typically Unicode diacritical mark used to modify latin letters. See precomposed
character for an example of combining character U+0308 (¨) used with latin letter U+0061 (a).

* comment-entry
An entry in the IDENTIFICATION DIVISION that is used for documentation and has no effect on
execution.

comment line
A source program line represented by an asterisk (*) in the indicator area of the line or by an asterisk
followed by greater-than sign (*>) as the first character string in the program text area (Area A plus
Area B), and any characters from the character set of the computer that follow in Area A and Area B of
that line. A comment line serves only for documentation. A special form of comment line represented

Glossary 361

by a slant (/) in the indicator area of the line and any characters from the character set of the
computer in Area A and Area B of that line causes page ejection before the comment is printed.

* common program
A program that, despite being directly contained within another program, can be called from any
program directly or indirectly contained in that other program.

compilation group
Synonymous with sequence of programs.

compilation unit
A unit of COBOL source code that can be separately compiled: a program, class, user-defined
function, or prototype definition. Also known as a source unit.

compilation variable
A symbolic name for a particular literal value or the value of a compile-time arithmetic expression as
specified by the DEFINE directive or by the DEFINE compiler option.

* compile
(1) To translate a program expressed in a high-level language into a program expressed in an
intermediate language, assembly language, or a computer language. (2) To prepare a machine-
language program from a computer program written in another programming language by making
use of the overall logic structure of the program, or generating more than one computer instruction for
each symbolic statement, or both, as well as performing the function of an assembler.

* compile time
The time at which COBOL source code is translated, by a COBOL compiler, to a COBOL object program.

compile-time arithmetic expression
A subset of arithmetic expressions that are specified in the DEFINE and EVALUATE directives or in
a constant conditional expression. The difference between compile-time arithmetic expressions and
regular arithmetic expressions is that in a compile-time arithmetic expression:

• The exponentiation operator shall not be specified.
• All operands shall be integer numeric literals or arithmetic expressions in which all operands are

integer numeric literals.
• The expression shall be specified in such a way that a division by zero does not occur.

compiler
A program that translates source code written in a higher-level language into machine-language
object code.

compiler-directing statement
A statement that causes the compiler to take a specific action during compilation. The standard
compiler-directing statements are COPY, REPLACE, and USE.

* complex condition
A condition in which one or more logical operators act upon one or more conditions. See also
condition, negated simple condition, and negated combined condition.

complex ODO
Certain forms of the OCCURS DEPENDING ON clause:

• Variably located item or group: A data item described by an OCCURS clause with the DEPENDING ON
option is followed by a nonsubordinate data item or group. The group can be an alphanumeric group
or a national group.

• Variably located table: A data item described by an OCCURS clause with the DEPENDING ON option
is followed by a nonsubordinate data item described by an OCCURS clause.

• Table with variable-length elements: A data item described by an OCCURS clause contains a
subordinate data item described by an OCCURS clause with the DEPENDING ON option.

• Index name for a table with variable-length elements.
• Element of a table with variable-length elements.

362 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

component
(1) A functional grouping of related files. (2) In object-oriented programming, a reusable object
or program that performs a specific function and is designed to work with other components and
applications. JavaBeans is Oracle's architecture for creating components.

composed form
Representation of a precomposed Unicode character through a canonical decomposition. See
precomposed character for details.

* computer-name
A system-name that identifies the computer where the program is to be compiled or run.

condition (exception)
An exception that has been enabled, or recognized, by Language Environment and thus is eligible to
activate user and language condition handlers. Any alteration to the normal programmed flow of an
application. Conditions can be detected by the hardware or the operating system and result in an
interrupt. They can also be detected by language-specific generated code or language library code.

condition (expression)
A status of data at run time for which a truth value can be determined. Where used in this information
in or in reference to "condition" (condition-1, condition-2,. . .) of a general format, the term refers
to a conditional expression that consists of either a simple condition optionally parenthesized or a
combined condition (consisting of the syntactically correct combination of simple conditions, logical
operators, and parentheses) for which a truth value can be determined. See also simple condition,
complex condition, negated simple condition, combined condition, and negated combined condition.

* conditional expression
A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM, or SEARCH
statement. See also simple condition and complex condition.

* conditional phrase
A phrase that specifies the action to be taken upon determination of the truth value of a condition that
results from the execution of a conditional statement.

* conditional statement
A statement that specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program depends on this truth value.

* conditional variable
A data item one or more values of which has a condition-name assigned to it.

* condition-name
A user-defined word that assigns a name to a subset of values that a conditional variable can assume;
or a user-defined word assigned to a status of an implementor-defined switch or device.

* condition-name condition
The proposition (for which a truth value can be determined) that the value of a conditional variable is a
member of the set of values attributed to a condition-name associated with the conditional variable.

* CONFIGURATION SECTION
A section of the ENVIRONMENT DIVISION that describes overall specifications of source and object
programs and class definitions.

CONSOLE
A COBOL environment-name associated with the operator console.

constant conditional expression
A subset of conditional expressions that may be used in IF directives or WHEN phrases of the
EVALUATE directives.

A constant conditional expression shall be one of the following items:

• A relation condition in which both operands are literals or arithmetic expressions that contain only
literal terms. The condition shall follow the rules for relation conditions, with the following additions:

– The operands shall be of the same category. An arithmetic expression is of the category numeric.

Glossary 363

– If literals are specified and they are not numeric literals, the relational operator shall be “IS
EQUAL TO”, “IS NOT EQUAL TO”, “IS =”, “IS NOT =”, or “IS <>”.

See also relation condition.
• A defined condition. See also defined condition.
• A boolean condition. See also boolean condition.
• A complex condition formed by combining the above forms of simple conditions into complex

conditions by using AND, OR, and NOT. Abbreviated combined relation conditions shall not be
specified. See also complex condition.

contained program
A COBOL program that is nested within another COBOL program.

* contiguous items
Items that are described by consecutive entries in the DATA DIVISION, and that bear a definite
hierarchic relationship to each other.

copybook
A file or library member that contains a sequence of code that is included in the source program at
compile time using the COPY statement. The file can be created by the user, supplied by COBOL, or
supplied by another product. Synonymous with copy file.

* counter
A data item used for storing numbers or number representations in a manner that permits these
numbers to be increased or decreased by the value of another number, or to be changed or reset to
zero or to an arbitrary positive or negative value.

cross-reference listing
The portion of the compiler listing that contains information on where files, fields, and indicators are
defined, referenced, and modified in a program.

currency-sign value
A character string that identifies the monetary units stored in a numeric-edited item. Typical examples
are $, USD, and EUR. A currency-sign value can be defined by either the CURRENCY compiler option
or the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.
If the CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the
dollar sign ($) is used as the default currency-sign value. See also currency symbol.

currency symbol
A character used in a PICTURE clause to indicate the position of a currency sign value in a numeric-
edited item. A currency symbol can be defined by either the CURRENCY compiler option or the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. If the
CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the dollar
sign ($) is used as the default currency sign value and currency symbol. Multiple currency symbols
and currency sign values can be defined. See also currency sign value.

* current record
In file processing, the record that is available in the record area associated with a file.

* current volume pointer
A conceptual entity that points to the current volume of a sequential file.

D

* data clause
A clause, appearing in a data description entry in the DATA DIVISION of a COBOL program, that
provides information describing a particular attribute of a data item.

* data description entry
An entry in the DATA DIVISION of a COBOL program that is composed of a level-number followed by
a data-name, if required, and then followed by a set of data clauses, as required.

DATA DIVISION
The division of a COBOL program or method that describes the data to be processed by the program
or method: the files to be used and the records contained within them; internal WORKING-STORAGE

364 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

records that will be needed; data to be made available in more than one program in the COBOL run
unit.

* data item
A unit of data (excluding literals) defined by a COBOL program or by the rules for function evaluation.

data set
Synonym for file.

* data-name
A user-defined word that names a data item described in a data description entry. When used in the
general formats, data-name represents a word that must not be reference-modified, subscripted, or
qualified unless specifically permitted by the rules for the format.

DBCS
See double-byte character set (DBCS).

DBCS character
Any character defined in IBM's double-byte character set.

DBCS character position
See character position.

DBCS data item
A data item that is described by a PICTURE character string that contains at least one symbol G, or,
when the NSYMBOL(DBCS) compiler option is in effect, at least one symbol N. A DBCS data item has
USAGE DISPLAY-1.

* debugging line
Any line with a D in the indicator area of the line.

* debugging section
A section that contains a USE FOR DEBUGGING statement.

* declarative sentence
A compiler-directing sentence that consists of a single USE statement terminated by the separator
period.

* declaratives
A set of one or more special-purpose sections, written at the beginning of the PROCEDURE
DIVISION, the first of which is preceded by the key word DECLARATIVE and the last of which is
followed by the key words END DECLARATIVES. A declarative is composed of a section header,
followed by a USE compiler-directing sentence, followed by a set of zero, one, or more associated
paragraphs.

* de-edit
The logical removal of all editing characters from a numeric-edited data item in order to determine the
unedited numeric value of the item.

defined condition
A compile-time condition that tests whether a compilation variable is defined. Defined conditions are
specified in IF directives or WHEN phrases of the EVALUATE directives.

* delimited scope statement
Any statement that includes its explicit scope terminator.

* delimiter
A character or a sequence of contiguous characters that identify the end of a string of characters and
separate that string of characters from the following string of characters. A delimiter is not part of the
string of characters that it delimits.

dependent region
In IMS, the MVS virtual storage region that contains message-driven programs, batch programs, or
online utilities.

* descending key
A key upon the values of which data is ordered starting with the highest value of key down to the
lowest value of key, in accordance with the rules for comparing data items.

Glossary 365

digit
Any of the numerals from 0 through 9. In COBOL, the term is not used to refer to any other symbol.

* digit position
The amount of physical storage required to store a single digit. This amount can vary depending on the
usage specified in the data description entry that defines the data item.

* direct access
The facility to obtain data from storage devices or to enter data into a storage device in such a way
that the process depends only on the location of that data and not on a reference to data previously
accessed.

display floating-point data item
A data item that is described implicitly or explicitly as USAGE DISPLAY and that has a PICTURE
character string that describes an external floating-point data item.

* division
A collection of zero, one, or more sections or paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. Each division consists of the division header and
the related division body. There are four divisions in a COBOL program: Identification, Environment,
Data, and Procedure.

* division header
A combination of words followed by a separator period that indicates the beginning of a division. The
division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL
See dynamic link library (DLL).

DLL application
An application that references imported programs, functions, or variables.

DLL linkage
A CALL in a program that has been compiled with the DLL and NODYNAM options; the CALL resolves
to an exported name in a separate module, or to an INVOKE of a method that is defined in a separate
module.

do construct
In structured programming, a DO statement is used to group a number of statements in a procedure.
In COBOL, an inline PERFORM statement functions in the same way.

do-until
In structured programming, a do-until loop will be executed at least once, and until a given condition
is true. In COBOL, a TEST AFTER phrase used with the PERFORM statement functions in the same
way.

do-while
In structured programming, a do-while loop will be executed if, and while, a given condition is true. In
COBOL, a TEST BEFORE phrase used with the PERFORM statement functions in the same way.

document type declaration
An XML element that contains or points to markup declarations that provide a grammar for a class of
documents. This grammar is known as a document type definition, or DTD.

document type definition (DTD)
The grammar for a class of XML documents. See document type declaration.

double-byte ASCII
An IBM character set that includes DBCS and single-byte ASCII characters. (Also known as ASCII
DBCS.)

366 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

double-byte EBCDIC
An IBM character set that includes DBCS and single-byte EBCDIC characters. (Also known as EBCDIC
DBCS.)

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more symbols than can be represented by 256 code points,
require double-byte character sets. Because each character requires 2 bytes, entering, displaying,
and printing DBCS characters requires hardware and supporting software that are DBCS-capable.

DWARF
DWARF was developed by the UNIX International Programming Languages Special Interest Group
(SIG). It is designed to meet the symbolic, source-level debugging needs of different languages in a
unified fashion by supplying language-independent debugging information. A DWARF file contains
debugging data organized into different elements. For more information, see DWARF program
information in the DWARF/ELF Extensions Library Reference.

* dynamic access
An access mode in which specific logical records can be obtained from or placed into a mass storage
file in a nonsequential manner and obtained from a file in a sequential manner during the scope of the
same OPEN statement.

dynamic CALL
A CALL literal statement in a program that has been compiled with the DYNAM option and the NODLL
option, or a CALL identifier statement in a program that has been compiled with the NODLL option.

dynamic-length
An adjective describing an item whose logical length might change at runtime.

dynamic-length elementary item
An elementary data item whose data declaration entry contains the DYNAMIC LENGTH clause.

dynamic-length group
A group item that contains a subordinate dynamic-length elementary item.

dynamic link library (DLL)
A file that contains executable code and data that are bound to a program at load time or run time,
rather than during linking. Several applications can share the code and data in a DLL simultaneously.
Although a DLL is not part of the executable file for a program, it can be required for an executable file
to run properly.

dynamic storage area (DSA)
Dynamically acquired storage composed of a register save area and an area available for dynamic
storage allocation (such as program variables). A DSA is allocated upon invocation of a program or
function and persists for the duration of the invocation instance. DSAs are generally allocated within
stack segments managed by Language Environment.

E

* EBCDIC (Extended Binary-Coded Decimal Interchange Code)
A coded character set based on 8-bit coded characters.

EBCDIC character
Any one of the symbols included in the EBCDIC (Extended Binary-Coded-Decimal Interchange Code)
set.

EBCDIC DBCS
See double-byte EBCDIC.

edited data item
A data item that has been modified by suppressing zeros or inserting editing characters or both.

* editing character
A single character or a fixed two-character combination belonging to the following set:

Glossary 367

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest

Character Meaning

Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

Z Zero suppress

* Check protect

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Slant (forward slash)

EGCS
See extended graphic character set (EGCS).

EJB
See Enterprise JavaBeans.

EJB container
A container that implements the EJB component contract of the J2EE architecture. This contract
specifies a runtime environment for enterprise beans that includes security, concurrency, life cycle
management, transaction, deployment, and other services. An EJB container is provided by an EJB or
J2EE server. (Oracle)

EJB server
Software that provides services to an EJB container. An EJB server can host one or more EJB
containers. (Oracle)

element (text element)
One logical unit of a string of text, such as the description of a single data item or verb, preceded by a
unique code identifying the element type.

* elementary item
A data item that is described as not being further logically subdivided.

encapsulation
In object-oriented programming, the technique that is used to hide the inherent details of an
object. The object provides an interface that queries and manipulates the data without exposing
its underlying structure. Synonymous with information hiding.

enclave
When running under Language Environment, an enclave is analogous to a run unit. An enclave can
create other enclaves by using LINK and by using the system() function in C.

encoding unit
See character encoding unit.

end class marker
A combination of words, followed by a separator period, that indicates the end of a COBOL class
definition. The end class marker is:

END CLASS class-name.

368 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

end method marker
A combination of words, followed by a separator period, that indicates the end of a COBOL method
definition. The end method marker is:

END METHOD method-name.

* end of PROCEDURE DIVISION
The physical position of a COBOL source program after which no further procedures appear.

* end program marker
A combination of words, followed by a separator period, that indicates the end of a COBOL source
program. The end program marker is:

END PROGRAM program-name.

enterprise bean
A component that implements a business task and resides in an EJB container. (Oracle)

Enterprise JavaBeans
A component architecture defined by Oracle for the development and deployment of object-oriented,
distributed, enterprise-level applications.

* entry
Any descriptive set of consecutive clauses terminated by a separator period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL program.

* environment clause
A clause that appears as part of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition. The
ENVIRONMENT DIVISION describes the computers where the source program is compiled and those
where the object program is run. It provides a linkage between the logical concept of files and their
records, and the physical aspects of the devices on which files are stored.

environment-name
A name, specified by IBM, that identifies system logical units, printer and card punch control
characters, report codes, program switches or all of these. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT DIVISION, the mnemonic-name can be substituted in
any format in which such substitution is valid.

environment variable
Any of a number of variables that define some aspect of the computing environment, and are
accessible to programs that operate in that environment. Environment variables can affect the
behavior of programs that are sensitive to the environment in which they operate.

escape sequence
A sequence of characters that are used to represent certain special characters within string literals
and character literals.
Escape sequences consist of two or more characters, the first of which is the backslash (\) character,
which is called the "escape character"; the remaining characters determine the interpretation of the
escape sequence. For example, \n is an escape sequence that denotes a newline character.
Escape sequences are used in programming languages such as C, C++, Java, or Python. COBOL does
not have the concept of "escape sequence" or "escape character". To handle special characters within
COBOL literals, see Basic alphanumeric literals and DBCS literals in the Enterprise COBOL for z/OS
Language Reference.

execution time
See run time.

execution-time environment
See runtime environment.

Glossary 369

* explicit scope terminator
A reserved word that terminates the scope of a particular PROCEDURE DIVISION statement.

exponent
A number that indicates the power to which another number (the base) is to be raised. Positive
exponents denote multiplication; negative exponents denote division; and fractional exponents
denote a root of a quantity. In COBOL, an exponential expression is indicated with the symbol **
followed by the exponent.

* expression
An arithmetic or conditional expression.

* extend mode
The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that file,
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

extended graphic character set (EGCS)
A graphic character set, such as a kanji character set, that requires two bytes to identify each graphic
character. It is refined and replaced by double-byte character set (DBCS).

Extensible Markup Language
See XML.

extensions
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

external code page
For XML documents, the value specified by the CODEPAGE compiler option.

* external data
The data that is described in a program as external data items and external file connectors.

* external data item
A data item that is described as part of an external record in one or more programs of a run unit and
that can be referenced from any program in which it is described.

* external data record
A logical record that is described in one or more programs of a run unit and whose constituent data
items can be referenced from any program in which they are described.

external decimal data item
See zoned decimal data item and national decimal data item.

* external file connector
A file connector that is accessible to one or more object programs in the run unit.

external floating-point data item
See display floating-point data item and national floating-point data item.

external program
The outermost program. A program that is not nested.

* external switch
A hardware or software device, defined and named by the implementor, which is used to indicate that
one of two alternate states exists.

F

factory data
Data that is allocated once for a class and shared by all instances of the class. Factory data is declared
in the WORKING-STORAGE SECTION of the DATA DIVISION in the FACTORY paragraph of the class
definition, and is equivalent to Java private static data.

factory method
A method that is supported by a class independently of an object instance. Factory methods are
declared in the FACTORY paragraph of the class definition, and are equivalent to Java public static
methods. They are typically used to customize the creation of objects.

370 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

* figurative constant
A compiler-generated value referenced through the use of certain reserved words.

* file
A collection of logical records.

* file attribute conflict condition
An unsuccessful attempt has been made to execute an input-output operation on a file and the file
attributes, as specified for that file in the program, do not match the fixed attributes for that file.

* file clause
A clause that appears as part of any of the following DATA DIVISION entries: file description entry
(FD entry) and sort-merge file description entry (SD entry).

* file connector
A storage area that contains information about a file and is used as the linkage between a file-name
and a physical file and between a file-name and its associated record area.

File-Control
The name of an ENVIRONMENT DIVISION paragraph in which the data files for a given source
program are declared.

file control block
Block containing the addresses of I/O routines, information about how they were opened and closed,
and a pointer to the file information block.

* file control entry
A SELECT clause and all its subordinate clauses that declare the relevant physical attributes of a file.

FILE-CONTROL paragraph
A paragraph in the ENVIRONMENT DIVISION in which the data files for a given source unit are
declared.

* file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

* file-name
A user-defined word that names a file connector described in a file description entry or a sort-merge
file description entry within the FILE SECTION of the DATA DIVISION.

* file organization
The permanent logical file structure established at the time that a file is created.

file position indicator
A conceptual entity that contains the value of the current key within the key of reference for an
indexed file, or the record number of the current record for a sequential file, or the relative record
number of the current record for a relative file, or indicates that no next logical record exists, or that
an optional input file is not available, or that the AT END condition already exists, or that no valid next
record has been established.

* FILE SECTION
The section of the DATA DIVISION that contains file description entries and sort-merge file
description entries together with their associated record descriptions.

file system
The collection of files that conform to a specific set of data-record and file-description protocols, and
a set of programs that manage these files.

* fixed file attributes
Information about a file that is established when a file is created and that cannot subsequently
be changed during the existence of the file. These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key, the alternate record keys, the code set, the
minimum and maximum record size, the record type (fixed or variable), the collating sequence of the
keys for indexed files, the blocking factor, the padding character, and the record delimiter.

Glossary 371

* fixed-length record
A record associated with a file whose file description or sort-merge description entry requires that all
records contain the same number of bytes.

fixed-point item
A numeric data item defined with a PICTURE clause that specifies the location of an optional sign, the
number of digits it contains, and the location of an optional decimal point. The format can be either
binary, packed decimal, or external decimal.

floating comment indicators (*>)
A floating comment indicator indicates a comment line if it is the first character string in the program-
text area (Area A plus Area B), or indicates an inline comment if it is after one or more character
strings in the program-text area.

floating point
A format for representing numbers in which a real number is represented by a pair of distinct
numerals. In a floating-point representation, the real number is the product of the fixed-point part
(the first numeral) and a value obtained by raising the implicit floating-point base to a power denoted
by the exponent (the second numeral). For example, a floating-point representation of the number
0.0001234 is 0.1234 -3, where 0.1234 is the mantissa and -3 is the exponent.

floating-point data item
A numeric data item that contains a fraction and an exponent. Its value is obtained by multiplying the
fraction by the base of the numeric data item raised to the power that the exponent specifies.

* format
A specific arrangement of a set of data.

* function
A temporary data item whose value is determined at the time the function is referenced during the
execution of a statement.

* function-identifier
A syntactically correct combination of character strings and separators that references a function.
The data item represented by a function is uniquely identified by a function-name with its arguments,
if any. A function-identifier can include a reference-modifier. A function-identifier that references an
alphanumeric function can be specified anywhere in the general formats that an identifier can be
specified, subject to certain restrictions. A function-identifier that references an integer or numeric
function can be referenced anywhere in the general formats that an arithmetic expression can be
specified.

function-name
A word that names the mechanism whose invocation, along with required arguments, determines the
value of a function.

function-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS FUNCTION-POINTER clause contains the address of a function entry point. Typically used to
communicate with C and Java programs.

G

garbage collection
The automatic freeing by the Java runtime system of the memory for objects that are no longer
referenced.

* global name
A name that is declared in only one program but that can be referenced from the program and from
any program contained within the program. Condition-names, data-names, file-names, record-names,
report-names, and some special registers can be global names.

global reference
A reference to an object that is outside the scope of a method.

372 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

group item
(1) A data item that is composed of subordinate data items. See alphanumeric group item and national
group item. (2) When not qualified explicitly or by context as a national group or an alphanumeric
group, the term refers to groups in general.

grouping separator
A character used to separate units of digits in numbers for ease of reading. The default is the
character comma.

H

header label
(1) A data-set label that precedes the data records in a unit of recording media. (2) Synonym for
beginning-of-file label.

hide (a method)
To redefine (in a subclass) a factory or static method defined with the same method-name in a parent
class. Thus, the method in the subclass hides the method in the parent class.

* high-order end
The leftmost character of a string of characters.

hiperspace
In a z/OS environment, a range of up to 2 GB of contiguous virtual storage addresses that a program
can use as a buffer.

I

IBM COBOL extension
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

IDENTIFICATION DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition.
The IDENTIFICATION DIVISION identifies the program, class, or method. The IDENTIFICATION
DIVISION can include the following documentation: author name, installation, or date.

* identifier
A syntactically correct combination of character strings and separators that names a data item.
When referencing a data item that is not a function, an identifier consists of a data-name, together
with its qualifiers, subscripts, and reference-modifier, as required for uniqueness of reference. When
referencing a data item that is a function, a function-identifier is used.

IGZCBSN
The bootstrap routine for COBOL/370 1.1. It must be link-edited with any module that contains a
COBOL/370 1.1 program.

IGZCBSO
The bootstrap routine for COBOL for MVS & VM 1.2, COBOL for OS/390 & VM and Enterprise COBOL.
It must be link-edited with any module that contains a COBOL for MVS & VM 1.2, COBOL for OS/390 &
VM or Enterprise COBOL program.

IGZEBST
The bootstrap routine for VS COBOL II. It must be link-edited with any module that contains a VS
COBOL II program.

ILC
InterLanguage Communication. Interlanguage communication is defined as programs that call or are
called by other high-level languages. Assembler is not considered a high-level language; thus, calls to
and from assembler programs are not considered ILC.

* imperative statement
A statement that either begins with an imperative verb and specifies an unconditional action to be
taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope
statement). An imperative statement can consist of a sequence of imperative statements.

Glossary 373

* implicit scope terminator
A separator period that terminates the scope of any preceding unterminated statement, or a phrase of
a statement that by its occurrence indicates the end of the scope of any statement contained within
the preceding phrase.

IMS
Information Management System, IBM licensed product. IMS supports hierarchical databases, data
communication, translation processing, and database backout and recovery.

* index
A computer storage area or register, the content of which represents the identification of a particular
element in a table.

* index data item
A data item in which the values associated with an index-name can be stored in a form specified by
the implementor.

indexed data-name
An identifier that is composed of a data-name, followed by one or more index-names enclosed in
parentheses.

* indexed file
A file with indexed organization.

* indexed organization
The permanent logical file structure in which each record is identified by the value of one or more keys
within that record.

indexing
Synonymous with subscripting using index-names.

* index-name
A user-defined word that names an index associated with a specific table.

inheritance
A mechanism for using the implementation of a class as the basis for another class. By definition,
the inheriting class conforms to the inherited classes. Enterprise COBOL does not support multiple
inheritance; a subclass has exactly one immediate superclass.

inheritance hierarchy
See class hierarchy.

* initial program
A program that is placed into an initial state every time the program is called in a run unit.

* initial state
The state of a program when it is first called in a run unit.

inline
In a program, instructions that are executed sequentially, without branching to routines, subroutines,
or other programs.

inline comments
An inline comment is identified by a floating comment indicator (*>) preceded by one or more
character-strings in the program-text area, and can be written on any line of a compilation group.
All characters that follow the floating comment indicator up to the end of area B are comment text.

* input file
A file that is opened in the input mode.

* input mode
The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that file
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

* input-output file
A file that is opened in the I-O mode.

374 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

* INPUT-OUTPUT SECTION
The section of the ENVIRONMENT DIVISION that names the files and the external media required by
an object program or method and that provides information required for transmission and handling of
data at run time.

* input-output statement
A statement that causes files to be processed by performing operations on individual records or
on the file as a unit. The input-output statements are ACCEPT (with the identifier phrase), CLOSE,
DELETE, DISPLAY, OPEN, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START, and
WRITE.

* input procedure
A set of statements, to which control is given during the execution of a format 1 SORT statement, for
the purpose of controlling the release of specified records to be sorted.

instance data
Data that defines the state of an object. The instance data introduced by a class is defined in
the WORKING-STORAGE SECTION of the DATA DIVISION in the OBJECT paragraph of the class
definition. The state of an object also includes the state of the instance variables introduced by
classes that are inherited by the current class. A separate copy of the instance data is created for each
object instance.

* integer
(1) A numeric literal that does not include any digit positions to the right of the decimal point. (2) A
numeric data item defined in the DATA DIVISION that does not include any digit positions to the
right of the decimal point. (3) A numeric function whose definition provides that all digits to the right
of the decimal point are zero in the returned value for any possible evaluation of the function.

integer function
A function whose category is numeric and whose definition does not include any digit positions to the
right of the decimal point.

Interactive System Productivity Facility (ISPF)
An IBM software product that provides a menu-driven interface for the TSO or VM user. ISPF includes
library utilities, a powerful editor, and dialog management.

interlanguage communication (ILC)
The ability of routines written in different programming languages to communicate. ILC support lets
you readily build applications from component routines written in a variety of languages.

intermediate result
An intermediate field that contains the results of a succession of arithmetic operations.

* internal data
The data that is described in a program and excludes all external data items and external file
connectors. Items described in the LINKAGE SECTION of a program are treated as internal data.

* internal data item
A data item that is described in one program in a run unit. An internal data item can have a global
name.

internal decimal data item
A data item that is described as USAGE PACKED-DECIMAL or USAGE COMP-3, and that has a
PICTURE character string that defines the item as numeric (a valid combination of symbols 9, S, P, or
V). Synonymous with packed-decimal data item.

* internal file connector
A file connector that is accessible to only one object program in the run unit.

internal floating-point data item
A data item that is described as USAGE COMP-1 or USAGE COMP-2. COMP-1 defines a single-
precision floating-point data item. COMP-2 defines a double-precision floating-point data item. There
is no PICTURE clause associated with an internal floating-point data item.

* intrarecord data structure
The entire collection of groups and elementary data items from a logical record that a contiguous
subset of the data description entries defines. These data description entries include all entries

Glossary 375

whose level-number is greater than the level-number of the first data description entry describing the
intra-record data structure.

intrinsic function
A predefined function, such as a commonly used arithmetic function, called by a built-in function
reference.

* invalid key condition
A condition, at run time, caused when a specific value of the key associated with an indexed or relative
file is determined to be not valid.

* I-O-CONTROL
The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for rerun
points, sharing of same areas by several data files, and multiple file storage on a single input-output
device are specified.

* I-O-CONTROL entry
An entry in the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that provide information required for the transmission and handling of data on named files
during the execution of a program.

* I-O mode
The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file
and before the execution of a CLOSE statement without the REEL or UNIT phase for that file.

* I-O status
A conceptual entity that contains the two-character value indicating the resulting status of an input-
output operation. This value is made available to the program through the use of the FILE STATUS
clause in the file control entry for the file.

is-a
A relationship that characterizes classes and subclasses in an inheritance hierarchy. Subclasses that
have an is-a relationship to a class inherit from that class.

ISPF
See Interactive System Productivity Facility (ISPF).

iteration structure
A program processing logic in which a series of statements is repeated while a condition is true or
until a condition is true.

J

J2EE
See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications, defined by Oracle. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and protocols that
provide the functionality for developing multitiered, Web-based applications. (Oracle)

Java Batch Launcher and Toolkit for z/OS (JZOS)
A set of tools that helps you develop z/OS Java applications that run in a traditional batch
environment, and that access z/OS system services.

Java batch-processing program (JBP)
An IMS batch-processing program that has access to online databases and output message queues.
JBPs run online, but like programs in a batch environment, they are started with JCL or in a TSO
session.

Java batch-processing region
An IMS dependent region in which only Java batch-processing programs are scheduled.

Java Database Connectivity (JDBC)
A specification from Oracle that defines an API that enables Java programs to access databases.

Java message-processing program (JMP)
A Java application program that is driven by transactions and has access to online IMS databases and
message queues.

376 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Java message-processing region
An IMS dependent region in which only Java message-processing programs are scheduled.

Java Native Interface (JNI)
A programming interface that lets Java code that runs inside a Java virtual machine (JVM)
interoperate with applications and libraries written in other programming languages.

Java virtual machine (JVM)
A software implementation of a central processing unit that runs compiled Java programs.

JavaBeans
A portable, platform-independent, reusable component model. (Oracle)

JBP
See Java batch-processing program (JBP).

JDBC
See Java Database Connectivity (JDBC).

JMP
See Java message-processing program (JMP).

job control language (JCL)
A control language used to identify a job to an operating system and to describe the job's
requirements.

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.

JVM
See Java virtual machine (JVM).

JZOS
See Java Batch Launcher and Toolkit for z/OS.

K

K
When referring to storage capacity, two to the tenth power; 1024 in decimal notation.

* key
A data item that identifies the location of a record, or a set of data items that serve to identify the
ordering of data.

* key of reference
The key, either prime or alternate, currently being used to access records within an indexed file.

* keyword
A context-sensitive word or a reserved word whose presence is required when the format in which the
word appears is used in a source unit.

kilobyte (KB)
One kilobyte equals 1024 bytes.

L

* language-name
A system-name that specifies a particular programming language.

Language Environment
Short form of z/OS Language Environment. A set of architectural constructs and interfaces that
provides a common runtime environment and runtime services for C, C++, COBOL, FORTRAN and PL/I
applications. It is required for programs compiled by Language Environment-conforming compilers
and for Java applications.

Language Environment-conforming
A characteristic of compiler products (such as Enterprise COBOL, COBOL for OS/390 & VM, COBOL
for MVS & VM, C/C++ for MVS & VM, PL/I for MVS & VM) that produce object code conforming to the
Language Environment conventions.

Glossary 377

last-used state
A state that a program is in if its internal values remain the same as when the program was exited (the
values are not reset to their initial values).

* letter
A character belonging to one of the following two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator
Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level
indicators in the DATA DIVISION are: CD, FD, and SD.

* level-number
A user-defined word (expressed as a two-digit number) that indicates the hierarchical position of
a data item or the special properties of a data description entry. Level-numbers in the range from
1 through 49 indicate the position of a data item in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 can be written either as a single digit or as a zero followed by
a significant digit. Level-numbers 66, 77, and 88 identify special properties of a data description entry.

* library-name
A user-defined word that names a COBOL library that the compiler is to use for compiling a given
source program.

* library text
A sequence of text words, comment lines, inline comments, the separator space, or the separator
pseudo-text delimiter in a COBOL library.

Lilian date
The number of days since the beginning of the Gregorian calendar. Day one is Friday, October 15,
1582. The Lilian date format is named in honor of Luigi Lilio, the creator of the Gregorian calendar.

* linage-counter
A special register whose value points to the current position within the page body.

link
(1) The combination of the link connection (the transmission medium) and two link stations, one
at each end of the link connection. A link can be shared among multiple links in a multipoint or
token-ring configuration. (2) To interconnect items of data or portions of one or more computer
programs; for example, linking object programs by a linkage-editor to produce an executable file.

LINKAGE SECTION
The section in the DATA DIVISION of the called program or invoked method that describes data
items available from the calling program or invoking method. Both the calling program or invoking
method and the called program or invoked method can refer to these data items.

linker
A term that refers to either the z/OS binder (linkage-editor).

literal
A character string whose value is specified either by the ordered set of characters comprising the
string or by the use of a figurative constant.

little-endian
The default format that Intel processors use to store binary data and UTF-16 characters. In this
format, the most significant byte of a binary data item is at the highest address and the most
significant byte of a UTF-16 character is at the highest address. Compare with big-endian.

local reference
A reference to an object that is within the scope of your method.

locale
A set of attributes for a program execution environment that indicates culturally sensitive
considerations, such as character code page, collating sequence, date and time format, monetary
value representation, numeric value representation, or language.

378 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

* LOCAL-STORAGE SECTION
The section of the DATA DIVISION that defines storage that is allocated and freed on a per-
invocation basis, depending on the value assigned in the VALUE clauses.

* logical operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or OR, or both
can be used as logical connectives. NOT can be used for logical negation.

* logical record
The most inclusive data item. The level-number for a record is 01. A record can be either an
elementary item or a group of items. Synonymous with record.

* low-order end
The rightmost character of a string of characters.

M

main program
In a hierarchy of programs and subroutines, the first program that receives control when the programs
are run within a process.

makefile
A text file that contains a list of the files for your application. The make utility uses this file to update
the target files with the latest changes.

* mass storage
A storage medium in which data can be organized and maintained in both a sequential manner and a
nonsequential manner.

* mass storage device
A device that has a large storage capacity, such as a magnetic disk.

* mass storage file
A collection of records that is stored in a mass storage medium.

* megabyte (MB)
One megabyte equals 1,048,576 bytes.

* merge file
A collection of records to be merged by a MERGE statement. The merge file is created and can be used
only by the merge function.

message-processing program (MPP)
An IMS application program that is driven by transactions and has access to online IMS databases and
message queues.

message queue
The data set on which messages are queued before being processed by an application program or
sent to a terminal.

method
Procedural code that defines an operation supported by an object and that is executed by an INVOKE
statement on that object.

* method definition
The COBOL source code that defines a method.

* method identification entry
An entry in the METHOD-ID paragraph of the IDENTIFICATION DIVISION; this entry contains a
clause that specifies the method-name.

method invocation
A communication from one object to another that requests the receiving object to execute a method.

method-name
The name of an object-oriented operation. When used to invoke the method, the name can be an
alphanumeric or national literal or a category alphanumeric or category national data item. When used
in the METHOD-ID paragraph to define the method, the name must be an alphanumeric or national
literal.

Glossary 379

method hiding
See hide.

method overloading
See overload.

method overriding
See override.

* mnemonic-name
A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified
implementor-name.

module definition file
A file that describes the code segments within a program object.

MPP
See message-processing program (MPP).

multitasking
A mode of operation that provides for the concurrent, or interleaved, execution of two or more tasks.

multithreading
Concurrent operation of more than one path of execution within a computer. Synonymous with
multiprocessing.

N

name
A word (composed of not more than 30 characters) that defines a COBOL operand.

namespace
See XML namespace.

national character
(1) A UTF-16 character in a USAGE NATIONAL data item or national literal. (2) Any character
represented in UTF-16.

national character data
A general reference to data represented in UTF-16.

national character position
See character position.

national data
See national character data.

national data item
A data item of category national, national-edited, or numeric-edited of USAGE NATIONAL.

national decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE NATIONAL and that
contains a valid combination of PICTURE symbols 9, S, P, and V.

national-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol N and at least one of the simple insertion symbols B, 0, or /. A national-edited data item has
USAGE NATIONAL.

national floating-point data item
An external floating-point data item that is described implicitly or explicitly as USAGE NATIONAL and
that has a PICTURE character string that describes a floating-point data item.

national group item
A group item that is explicitly or implicitly described with a GROUP-USAGE NATIONAL clause. A
national group item is processed as though it were defined as an elementary data item of category
national for operations such as INSPECT, STRING, and UNSTRING. This processing ensures correct
padding and truncation of national characters, as contrasted with defining USAGE NATIONAL data
items within an alphanumeric group item. For operations that require processing of the elementary

380 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

items within a group, such as MOVE CORRESPONDING, ADD CORRESPONDING, and INITIALIZE, a
national group is processed using group semantics.

* native character set
The implementor-defined character set associated with the computer specified in the OBJECT-
COMPUTER paragraph.

* native collating sequence
The implementor-defined collating sequence associated with the computer specified in the OBJECT-
COMPUTER paragraph.

native method
A Java method with an implementation that is written in another programming language, such as
COBOL.

* negated combined condition
The NOT logical operator immediately followed by a parenthesized combined condition. See also
condition and combined condition.

* negated simple condition
The NOT logical operator immediately followed by a simple condition. See also condition and simple
condition.

nested program
A program that is directly contained within another program.

* next executable sentence
The next sentence to which control will be transferred after execution of the current statement is
complete.

* next executable statement
The next statement to which control will be transferred after execution of the current statement is
complete.

* next record
The record that logically follows the current record of a file.

* noncontiguous items
Elementary data items in the WORKING-STORAGE SECTION and LINKAGE SECTION that bear no
hierarchic relationship to other data items.

* noncontiguous items
Elementary data items in the WORKING-STORAGE and LINKAGE SECTIONs that bear no hierarchic
relationship to other data items.

* nonnumeric item
A data item whose description permits its content to be composed of any combination of characters
taken from the computer's character set. Certain categories of nonnumeric items may be formed from
more restricted character sets.

null
A figurative constant that is used to assign, to pointer data items, the value of an address that is not
valid. NULLS can be used wherever NULL can be used.

* numeric character
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item
(1) A data item whose description restricts its content to a value represented by characters chosen
from the digits 0 through 9. If signed, the item can also contain a +, -, or other representation of
an operational sign. (2) A data item of category numeric, internal floating-point, or external floating-
point. A numeric data item can have USAGE DISPLAY, NATIONAL, PACKED-DECIMAL, BINARY, COMP,
COMP-1, COMP-2, COMP-3, COMP-4, or COMP-5.

numeric-edited data item
A data item that contains numeric data in a form suitable for use in printed output. The data item can
consist of external decimal digits from 0 through 9, the decimal separator, commas, the currency sign,

Glossary 381

sign control characters, and other editing characters. A numeric-edited item can be represented in
either USAGE DISPLAY or USAGE NATIONAL.

* numeric function
A function whose class and category are numeric but that for some possible evaluation does not
satisfy the requirements of integer functions.

* numeric item
A data item whose description restricts its content to a value represented by characters chosen from
the digits from '0' through '9'; if signed, the item may also contain a '+', '-', or other representation of
an operational sign.

* numeric literal
A literal composed of one or more numeric characters that can contain a decimal point or an algebraic
sign, or both. The decimal point must not be the rightmost character. The algebraic sign, if present,
must be the leftmost character.

O

object
An entity that has state (its data values) and operations (its methods). An object is a way to
encapsulate state and behavior. Each object in the class is said to be an instance of the class.

object code
Output from a compiler or assembler that is itself executable machine code or is suitable for
processing to produce executable machine code.

* OBJECT-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
object program is run, is described.

* object computer entry
An entry in the OBJECT-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the object program is to be executed.

object deck
A portion of an object program suitable as input to a linkage-editor. Synonymous with object module
and text deck.

object instance
A single object, of possibly many, instantiated from the specifications in the object paragraph of a
COBOL class definition. An object instance has a copy of all the data described in its class definition
and all inherited data. The methods associated with an object instance includes the methods defined
in its class definition and all inherited methods.

An object instance can be an instance of a Java class.

object module
Synonym for object deck or text deck.

* object of entry
A set of operands and reserved words, within a DATA DIVISION entry of a COBOL program, that
immediately follows the subject of the entry.

object-oriented programming
A programming approach based on the concepts of encapsulation and inheritance. Unlike procedural
programming techniques, object-oriented programming concentrates on the data objects that
comprise the problem and how they are manipulated, not on how something is accomplished.

object program
A set or group of executable machine-language instructions and other material designed to interact
with data to provide problem solutions. In this context, an object program is generally the machine
language result of the operation of a COBOL compiler on a source program or class definition. Where
there is no danger of ambiguity, the word program can be used in place of object program.

object reference
A value that identifies an instance of a class. If the class is not specified, the object reference is
universal and can apply to instances of any class.

382 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

* object time
The time at which an object program is executed. Synonymous with run time.

* obsolete element
A COBOL language element in the 85 COBOL Standard that was deleted from the 2002 COBOL
Standard.

ODO object
In the example below, X is the object of the OCCURS DEPENDING ON clause (ODO object).

WORKING-STORAGE SECTION.
01 TABLE-1.
 05 X PIC S9.
 05 Y OCCURS 3 TIMES
 DEPENDING ON X PIC X.

The value of the ODO object determines how many of the ODO subject appear in the table.

ODO subject
In the example above, Y is the subject of the OCCURS DEPENDING ON clause (ODO subject). The
number of Y ODO subjects that appear in the table depends on the value of X.

* open mode
The state of a file after execution of an OPEN statement for that file and before the execution of a
CLOSE statement without the REEL or UNIT phrase for that file. The particular open mode is specified
in the OPEN statement as either INPUT, OUTPUT, I-O, or EXTEND.

* operand
(1) The general definition of operand is "the component that is operated upon." (2) For the purposes
of this document, any lowercase word (or words) that appears in a statement or entry format can
be considered to be an operand and, as such, is an implied reference to the data indicated by the
operand.

operation
A service that can be requested of an object.

* operational sign
An algebraic sign that is associated with a numeric data item or a numeric literal, to indicate whether
its value is positive or negative.

optional file
A file that is declared as being not necessarily available each time the object program is run.

* optional word
A reserved word that is included in a specific format only to improve the readability of the language.
Its presence is optional to the user when the format in which the word appears is used in a source
unit.

* output file
A file that is opened in either output mode or extend mode.

* output mode
The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase specified,
for that file and before the execution of a CLOSE statement without the REEL or UNIT phrase for that
file.

* output procedure
A set of statements to which control is given during execution of a format 1 SORT statement after the
sort function is completed, or during execution of a MERGE statement after the merge function reaches
a point at which it can select the next record in merged order when requested.

overflow condition
A condition that occurs when a portion of the result of an operation exceeds the capacity of the
intended unit of storage.

overload
To define a method with the same name as another method that is available in the same class, but
with a different signature. See also signature.

Glossary 383

override
To redefine an instance method (inherited from a parent class) in a subclass.

P

package
A group of related Java classes, which can be imported individually or as a whole.

packed-decimal data item
See internal decimal data item.

padding character
An alphanumeric or national character that is used to fill the unused character positions in a physical
record.

page
A vertical division of output data that represents a physical separation of the data. The separation is
based on internal logical requirements or external characteristics of the output medium or both.

* page body
That part of the logical page in which lines can be written or spaced or both.

* paragraph
In the PROCEDURE DIVISION, a paragraph-name followed by a separator period and by zero, one,
or more sentences. In the IDENTIFICATION DIVISION and ENVIRONMENT DIVISION, a paragraph
header followed by zero, one, or more entries.

* paragraph header
A reserved word, followed by the separator period, that indicates the beginning of a paragraph in the
IDENTIFICATION DIVISION and ENVIRONMENT DIVISION. The permissible paragraph headers in
the IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION
 DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION
 DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class
 CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION.

parameter
(1) Data passed between a calling program and a called program. (2) A data element in the USING
phrase of a method invocation. Arguments provide additional information that the invoked method
can use to perform the requested operation.

Persistent Reusable JVM
A JVM that can be serially reused for transaction processing by resetting the JVM between
transactions. The reset phase restores the JVM to a known initialization state.

* phrase
An ordered set of one or more consecutive COBOL character strings that form a portion of a COBOL
procedural statement or of a COBOL clause.

384 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

* physical record
See block.

pointer data item
A data item in which address values can be stored. Data items are explicitly defined as pointers with
the USAGE IS POINTER clause. ADDRESS OF special registers are implicitly defined as pointer data
items. Pointer data items can be compared for equality or moved to other pointer data items.

port
(1) To modify a computer program to enable it to run on a different platform. (2) In the Internet
suite of protocols, a specific logical connector between the Transmission Control Protocol (TCP) or the
User Datagram Protocol (UDP) and a higher-level protocol or application. A port is identified by a port
number.

portability
The ability to transfer an application program from one application platform to another with relatively
few changes to the source program.

precomposed character
A single Unicode character that can be represented using two or more Unicode characters through a
canonical decomposition. A precomposed character does not have the same physical representation
as its composed character form. For example, Unicode character U+00E4 (ä) is a precomposed
character that can be represented as a combination of Unicode characters U+0061 + U+0308 (ä) -
latin small letter a + combining diaeresis. A precomposed character is typically used to represent a
latin letter with a diacritical mark or some other combining character.

preinitialization
The initialization of the COBOL runtime environment in preparation for multiple calls from programs,
especially non-COBOL programs. The environment is not terminated until an explicit termination.

* prime record key
A key whose contents uniquely identify a record within an indexed file.

* priority-number
A user-defined word that classifies sections in the PROCEDURE DIVISION for purposes of
segmentation. Segment numbers can contain only the characters 0 through 9. A segment number
can be expressed as either one or two digits.

private
As applied to factory data or instance data, accessible only by methods of the class that defines the
data.

* procedure
A paragraph or group of logically successive paragraphs, or a section or group of logically successive
sections, within the PROCEDURE DIVISION.

* procedure branching statement
A statement that causes the explicit transfer of control to a statement other than the next executable
statement in the sequence in which the statements are written in the source code. The procedure
branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT
PROCEDURE phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE
phrase), XML PARSE.

PROCEDURE DIVISION
The COBOL division that contains instructions for solving a problem.

procedure integration
One of the functions of the COBOL optimizer is to simplify calls to performed procedures or contained
programs.

PERFORM procedure integration is the process whereby a PERFORM statement is replaced by its
performed procedures. Contained program procedure integration is the process where a call to a
contained program is replaced by the program code.

* procedure-name
A user-defined word that is used to name a paragraph or section in the PROCEDURE DIVISION. It
consists of a paragraph-name (which can be qualified) or a section-name.

Glossary 385

procedure pointer
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE IS
PROCEDURE-POINTER clause contains the address of a procedure entry point.

procedure-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS PROCEDURE-POINTER clause contains the address of a procedure entry point. Typically used to
communicate with COBOL and Language Environment programs.

process
The course of events that occurs during the execution of all or part of a program. Multiple processes
can run concurrently, and programs that run within a process can share resources.

program
(1) A sequence of instructions suitable for processing by a computer. Processing may include the use
of a compiler to prepare the program for execution, as well as a runtime environment to execute it. (2)
A logical assembly of one or more interrelated modules. Multiple copies of the same program can be
run in different processes.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or an
alphanumeric literal that identifies a COBOL source program.

* program identification entry
In the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION, an entry that contains clauses
that specify the program-name and assign selected program attributes to the program.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or
alphanumeric literal that identifies a COBOL source program.

project
The complete set of data and actions that are required to build a target, such as a dynamic link library
(DLL) or other executable (EXE).

* pseudo-text
A sequence of text words, comment lines, inline comments, or the separator space in a source
program or COBOL library bounded by, but not including, pseudo-text delimiters.

* pseudo-text delimiter
Two contiguous equal sign characters (==) used to delimit pseudo-text.

* punctuation character
A character that belongs to the following set:

Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

" Quotation mark

(Left parenthesis

) Right parenthesis

Space

= Equal sign

Q

386 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

QSAM (Queued Sequential Access Method)
An extended version of the basic sequential access method (BSAM). When this method is used, a
queue is formed of input data blocks that are awaiting processing or of output data blocks that have
been processed and are awaiting transfer to auxiliary storage or to an output device.

* qualified data-name
An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

* qualifier
(1) A data-name or a name associated with a level indicator that is used in a reference either together
with another data-name (which is the name of an item that is subordinate to the qualifier) or together
with a condition-name. (2) A section-name that is used in a reference together with a paragraph-name
specified in that section. (3) A library-name that is used in a reference together with a text-name
associated with that library.

R

* random access
An access mode in which the program-specified value of a key data item identifies the logical record
that is obtained from, deleted from, or placed into a relative or indexed file.

* record
See logical record.

* record area
A storage area allocated for the purpose of processing the record described in a record description
entry in the FILE SECTION of the DATA DIVISION. In the FILE SECTION, the current number of
character positions in the record area is determined by the explicit or implicit RECORD clause.

* record description
See record description entry.

* record description entry
The total set of data description entries associated with a particular record. Synonymous with record
description.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed-length), V (variable-length),
S (spanned), or U (undefined).

record key
A key whose contents identify a record within an indexed file.

* record-name
A user-defined word that names a record described in a record description entry in the DATA
DIVISION of a COBOL program.

* record number
The ordinal number of a record in the file whose organization is sequential.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed length), V (variable length),
S (spanned), or U (undefined).

recursion
A program calling itself or being directly or indirectly called by one of its called programs.

recursively capable
A program is recursively capable (can be called recursively) if the RECURSIVE attribute is on the
PROGRAM-ID statement.

reel
A discrete portion of a storage medium, the dimensions of which are determined by each implementor
that contains part of a file, all of a file, or any number of files. Synonymous with unit and volume.

reentrant
The attribute of a program or routine that lets more than one user share a single copy of a program
object.

Glossary 387

* reference format
A format that provides a standard method for describing COBOL source programs.

reference modification
A method of defining a new category alphanumeric, category DBCS, or category national data item
by specifying the leftmost character and length relative to the leftmost character position of a USAGE
DISPLAY, DISPLAY-1, or NATIONAL data item.

* reference-modifier
A syntactically correct combination of character strings and separators that defines a unique data
item. It includes a delimiting left parenthesis separator, the leftmost character position, a colon
separator, optionally a length, and a delimiting right parenthesis separator.

* relation
See relational operator or relation condition.

* relation character
A character that belongs to the following set:

Character Meaning

> Greater than

< Less than

= Equal to

* relation condition
The proposition (for which a truth value can be determined) that the value of an arithmetic expression,
data item, alphanumeric literal, or index-name has a specific relationship to the value of another
arithmetic expression, data item, alphanumeric literal, or index name. See also relational operator.

* relational operator
A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation condition.
The permissible operators and their meanings are:

Character Meaning

IS GREATER THAN Greater than

IS > Greater than

IS NOT GREATER THAN Not greater than

IS NOT > Not greater than

IS LESS THAN Less than

IS < Less than

IS NOT LESS THAN Not less than

IS NOT < Not less than

IS EQUAL TO Equal to

IS = Equal to

IS NOT EQUAL TO Not equal to

IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO Greater than or equal to

IS >= Greater than or equal to

388 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

Character Meaning

IS LESS THAN OR EQUAL TO Less than or equal to

IS <= Less than or equal to

* relative file
A file with relative organization.

* relative key
A key whose contents identify a logical record in a relative file.

* relative organization
The permanent logical file structure in which each record is uniquely identified by an integer value
greater than zero, which specifies the logical ordinal position of the record in the file.

* relative record number
The ordinal number of a record in a file whose organization is relative. This number is treated as a
numeric literal that is an integer.

* reserved word
A COBOL word that is specified in the list of words that can be used in a COBOL source program, but
that must not appear in the program as a user-defined word or system-name.

* resource
A facility or service, controlled by the operating system, that an executing program can use.

* resultant identifier
A user-defined data item that is to contain the result of an arithmetic operation.

reusable environment
A reusable environment is created when you establish an assembler program as the main program by
using either the old COBOL interfaces for preinitialization (RTEREUS runtime option), or the Language
Environment interface, CEEPIPI.

routine
A set of statements in a COBOL program that causes the computer to perform an operation or series
of related operations. In Language Environment, refers to either a procedure, function, or subroutine.

* routine-name
A user-defined word that identifies a procedure written in a language other than COBOL.

* run time
The time at which an object program is executed. Synonymous with object time.

runtime environment
The environment in which a COBOL program executes.

* run unit
A stand-alone object program, or several object programs, that interact by means of COBOL CALL or
INVOKE statements and function at run time as an entity.
A run unit is also called an enclave in Language Environment terminology.

S

SBCS
See single-byte character set (SBCS).

scope terminator
A COBOL reserved word that marks the end of certain PROCEDURE DIVISION statements.It can be
either explicit (END-ADD, for example) or implicit (separator period).

* section
A set of zero, one, or more paragraphs or entities, called a section body, the first of which is preceded
by a section header. Each section consists of the section header and the related section body.

* section header
A combination of words followed by a separator period that indicates the beginning of a section in
any of these divisions: ENVIRONMENT, DATA, or PROCEDURE. In the ENVIRONMENT DIVISION and

Glossary 389

DATA DIVISION, a section header is composed of reserved words followed by a separator period.
The permissible section headers in the ENVIRONMENT DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the DATA DIVISION are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a separator period.

* section-name
A user-defined word that names a section in the PROCEDURE DIVISION.

segmentation
A feature of Enterprise COBOL that is based on the 85 COBOL Standard segmentation module. The
segmentation feature uses priority-numbers in section headers to assign sections to fixed segments
or independent segments. Segment classification affects whether procedures contained in a segment
receive control in initial state or last-used state.

selection structure
A program processing logic in which one or another series of statements is executed, depending on
whether a condition is true or false.

* sentence
A sequence of one or more statements, the last of which is terminated by a separator period.

* separately compiled program
A program that, together with its contained programs, is compiled separately from all other programs.

* separator
A character or two or more contiguous characters used to delimit character strings.

* separator comma
A comma (,) followed by a space used to delimit character strings.

* separator period
A period (.) followed by a space used to delimit character strings.

* separator semicolon
A semicolon (;) followed by a space used to delimit character strings.

sequence of programs
A sequence of separate COBOL programs in a single source file that can be input to the compiler.

A sequence of programs is also called a batch compilation or a compilation group.

sequence structure
A program processing logic in which a series of statements is executed in sequential order.

* sequential access
An access mode in which logical records are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined by the order of records in the file.

* sequential file
A file with sequential organization.

* sequential organization
The permanent logical file structure in which a record is identified by a predecessor-successor
relationship established when the record is placed into the file.

390 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

serial search
A search in which the members of a set are consecutively examined, beginning with the first member
and ending with the last.

session bean
In EJB, an enterprise bean that is created by a client and that usually exists only for the duration of a
single client/server session. (Oracle)

77-level-description-entry
A data description entry that describes a noncontiguous data item that has level-number 77.

* sign condition
The proposition (for which a truth value can be determined) that the algebraic value of a data item or
an arithmetic expression is either less than, greater than, or equal to zero.

signature
(1) The name of an operation and its parameters. (2) The name of a method and the number and types
of its formal parameters.

* simple condition
Any single condition chosen from this set:

• Relation condition
• Class condition
• Condition-name condition
• Switch-status condition
• Sign condition

See also condition and negated simple condition.

single-byte character set (SBCS)
A set of characters in which each character is represented by a single byte. See also ASCII and
EBCDIC (Extended Binary-Coded Decimal Interchange Code).

slack bytes (within records)
Bytes inserted by the compiler between data items to ensure correct alignment of some elementary
data items. Slack bytes contain no meaningful data. The SYNCHRONIZED clause instructs the
compiler to insert slack bytes when they are needed for proper alignment.

slack bytes (between records)
Bytes inserted by the programmer between blocked logical records of a file, to ensure correct
alignment of some elementary data items. In some cases, slack bytes between records improve
performance for records processed in a buffer.

* sort file
A collection of records to be sorted by a format 1 SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator SD,
followed by a file-name, and then followed by a set of file clauses as required.

* SOURCE-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
source program is compiled, is described.

* source computer entry
An entry in the SOURCE-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the source program is to be compiled.

* source item
An identifier designated by a SOURCE clause that provides the value of a printable item.

source program
Although a source program can be represented by other forms and symbols, in this document the
term always refers to a syntactically correct set of COBOL statements. A COBOL source program

Glossary 391

commences with the IDENTIFICATION DIVISION or a COPY statement and terminates with the end
program marker, if specified, or with the absence of additional source program lines.

source unit
A unit of COBOL source code that can be separately compiled: a program or a class definition. Also
known as a compilation unit.

special character
A character that belongs to the following set:

Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

SPECIAL-NAMES
The name of an ENVIRONMENT DIVISION paragraph in which environment-names are related to
user-specified mnemonic-names.

* special names entry
An entry in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION; this entry provides
means for specifying the currency sign; choosing the decimal point; specifying symbolic characters;
relating implementor-names to user-specified mnemonic-names; relating alphabet-names to
character sets or collating sequences; and relating class-names to sets of characters.

* special registers
Certain compiler-generated storage areas whose primary use is to store information produced in
conjunction with the use of a specific COBOL feature.

* standard data format
The concept used in describing the characteristics of data in a COBOL DATA DIVISION under which
the characteristics or properties of the data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than a form oriented to the manner in
which the data is stored internally in the computer, or on a particular external medium.

* statement
A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a
COBOL source program.

392 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

structured programming
A technique for organizing and coding a computer program in which the program comprises a
hierarchy of segments, each segment having a single entry point and a single exit point. Control
is passed downward through the structure without unconditional branches to higher levels of the
hierarchy.

* subclass
A class that inherits from another class. When two classes in an inheritance relationship are
considered together, the subclass is the inheritor or inheriting class; the superclass is the inheritee or
inherited class.

* subject of entry
An operand or reserved word that appears immediately following the level indicator or the level-
number in a DATA DIVISION entry.

* subprogram
See called program.

* subscript
An occurrence number that is represented by either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name optionally followed by an integer with the operator
+ or -, that identifies a particular element in a table. A subscript can be the word ALL when the
subscripted identifier is used as a function argument for a function allowing a variable number of
arguments.

* subscripted data-name
An identifier that is composed of a data-name followed by one or more subscripts enclosed in
parentheses.

substitution character
A character that is used in a conversion from a source code page to a target code page to represent a
character that is not defined in the target code page.

* superclass
A class that is inherited by another class. See also subclass.

surrogate pair
In the UTF-16 format of Unicode, a pair of encoding units that together represents a single Unicode
graphic character. The first unit of the pair is called a high surrogate and the second a low surrogate.
The code value of a high surrogate is in the range X'D800' through X'DBFF'. The code value of a low
surrogate is in the range X'DC00' through X'DFFF'. Surrogate pairs provide for more characters than
the 65,536 characters that fit in the Unicode 16-bit coded character set.

switch-status condition
The proposition (for which a truth value can be determined) that an UPSI switch, capable of being set
to an on or off status, has been set to a specific status.

* symbolic-character
A user-defined word that specifies a user-defined figurative constant.

syntax
(1) The relationship among characters or groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The structure of expressions in a language. (3) The
rules governing the structure of a language. (4) The relationship among symbols. (5) The rules for the
construction of a statement.

* system-name
A COBOL word that is used to communicate with the operating environment.

T

* table
A set of logically consecutive items of data that are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element
A data item that belongs to the set of repeated items comprising a table.

Glossary 393

text deck
Synonym for object deck or object module.

* text-name
A user-defined word that identifies library text.

* text word
A character or a sequence of contiguous characters between margin A and margin R in a COBOL
library, source program, or pseudo-text that is any of the following characters:

• A separator, except for space; a pseudo-text delimiter; and the opening and closing delimiters for
alphanumeric literals. The right parenthesis and left parenthesis characters, regardless of context
within the library, source program, or pseudo-text, are always considered text words.

• A literal including, in the case of alphanumeric literals, the opening quotation mark and the closing
quotation mark that bound the literal.

• Any other sequence of contiguous COBOL characters except comment lines and the word COPY
bounded by separators that are neither a separator nor a literal.

thread
A stream of computer instructions (initiated by an application within a process) that is in control of a
process.

token
In the COBOL editor, a unit of meaning in a program. A token can contain data, a language keyword, an
identifier, or other part of the language syntax.

top-down design
The design of a computer program using a hierarchic structure in which related functions are
performed at each level of the structure.

top-down development
See structured programming.

trailer-label
(1) A data-set label that follows the data records on a unit of recording medium. (2) Synonym for
end-of-file label.

troubleshoot
To detect, locate, and eliminate problems in using computer software.

* truth value
The representation of the result of the evaluation of a condition in terms of one of two values: true or
false.

typed object reference
A data-name that can refer only to an object of a specified class or any of its subclasses.

U

* unary operator
A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an arithmetic expression
and that has the effect of multiplying the expression by +1 or -1, respectively.

unbounded table
A table with OCCURS integer-1 to UNBOUNDED instead of specifying integer-2 as the upper
bound.

Unicode
A universal character encoding standard that supports the interchange, processing, and display of text
that is written in any of the languages of the modern world. There are multiple encoding schemes to
represent Unicode, including UTF-8, UTF-16, and UTF-32. Enterprise COBOL supports Unicode using
UTF-16 in big-endian format as the representation for the national data type.

Uniform Resource Identifier (URI)
A sequence of characters that uniquely names a resource; in Enterprise COBOL, the identifier of a
namespace. URI syntax is defined by the document Uniform Resource Identifier (URI): Generic Syntax.

394 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://www.rfc-editor.org/rfc/rfc3986.txt

unit
A module of direct access, the dimensions of which are determined by IBM.

universal object reference
A data-name that can refer to an object of any class.

unrestricted storage
In AMODE 31, unrestricted storage is below the 2 GB bar and can be above or below the 16 MB line.
In AMODE 64, unrestricted storage encompasses all the storage available to your program, both
above and below the 2 GB bar.

* unsuccessful execution
The attempted execution of a statement that does not result in the execution of all the operations
specified by that statement. The unsuccessful execution of a statement does not affect any data
referenced by that statement, but can affect status indicators.

UPSI switch
A program switch that performs the functions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

URI
See Uniform Resource Identifier (URI).

* user-defined word
A COBOL word that must be supplied by the user to satisfy the format of a clause or statement.

V

* variable
A data item whose value can be changed by execution of the object program. A variable used in an
arithmetic expression must be a numeric elementary item.

variable-length item
A group item that contains a table described with the DEPENDING phrase of the OCCURS clause.

* variable-length record
A record associated with a file whose file description or sort-merge description entry permits records
to contain a varying number of character positions.

* variable-occurrence data item
A variable-occurrence data item is a table element that is repeated a variable number of times.
Such an item must contain an OCCURS DEPENDING ON clause in its data description entry or be
subordinate to such an item.

* variably located group
A group item following, and not subordinate to, a variable-length table in the same record. The group
item can be an alphanumeric group or a national group.

* variably located item
A data item following, and not subordinate to, a variable-length table in the same record.

* verb
A word that expresses an action to be taken by a COBOL compiler or object program.

volume
A module of external storage. For tape devices it is a reel; for direct-access devices it is a unit.

volume switch procedures
System-specific procedures that are executed automatically when the end of a unit or reel has been
reached before end-of-file has been reached.

VSAM file system
A file system that supports COBOL sequential, relative, and indexed organizations.

W

web service
A modular application that performs specific tasks and is accessible through open protocols like HTTP
and SOAP.

Glossary 395

white space
Characters that introduce space into a document. They are:

• Space
• Horizontal tabulation
• Carriage return
• Line feed
• Next line

as named in the Unicode Standard.

* word
A character string of not more than 30 characters that forms a user-defined word, a system-name, a
reserved word, or a function-name.

* WORKING-STORAGE SECTION
The section of the DATA DIVISION that describes WORKING-STORAGE data items, composed either
of noncontiguous items or WORKING-STORAGE records or of both.

workstation
A generic term for computers, including personal computers, 3270 terminals, intelligent workstations,
and UNIX terminals. Often a workstation is connected to a mainframe or to a network.

wrapper
An object that provides an interface between object-oriented code and procedure-oriented code.
Using wrappers lets programs be reused and accessed by other systems.

X

x
The symbol in a PICTURE clause that can hold any character in the character set of the computer.

XML
Extensible Markup Language. A standard metalanguage for defining markup languages that was
derived from and is a subset of SGML. XML omits the more complex and less-used parts of SGML and
makes it much easier to write applications to handle document types, author and manage structured
information, and transmit and share structured information across diverse computing systems. The
use of XML does not require the robust applications and processing that is necessary for SGML. XML is
developed under the auspices of the World Wide Web Consortium (W3C).

XML data
Data that is organized into a hierarchical structure with XML elements. The data definitions are
defined in XML element type declarations.

XML declaration
XML text that specifies characteristics of the XML document such as the version of XML being used
and the encoding of the document.

XML document
A data object that is well formed as defined by the W3C XML specification.

XML namespace
A mechanism, defined by the W3C XML Namespace specifications, that limits the scope of a collection
of element names and attribute names. A uniquely chosen XML namespace ensures the unique
identity of an element name or attribute name across multiple XML documents or multiple contexts
within an XML document.

XML schema
A mechanism, defined by the W3C, for describing and constraining the structure and content of XML
documents. An XML schema, which is itself expressed in XML, effectively defines a class of XML
documents of a given type, for example, purchase orders.

Z

396 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

z/OS UNIX file system
A collection of files and directories that are organized in a hierarchical structure and can be accessed
by using z/OS UNIX.

zoned decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE DISPLAY and that
contains a valid combination of PICTURE symbols 9, S, P, and V. The content of a zoned decimal data
item is represented in characters 0 through 9, optionally with a sign. If the PICTURE string specifies a
sign and the SIGN IS SEPARATE clause is specified, the sign is represented as characters + or -. If
SIGN IS SEPARATE is not specified, the sign is one hexadecimal digit that overlays the first 4 bits of
the sign position (leading or trailing).

#

85 COBOL Standard
The COBOL language defined by the following standards:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

2002 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL

2014 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments
and system software interfaces - Programming language COBOL

Glossary 397

398 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

List of resources

Enterprise COBOL for z/OS

COBOL for z/OS publications
You can find the following publications in the Enterprise COBOL for z/OS library:

• What's New, SC31-5708-00
• Customization Guide, SC27-8712-03
• Language Reference, SC27-8713-03
• Programming Guide, SC27-8714-03
• Migration Guide, GC27-8715-03
• Performance Tuning Guide, SC27-9202-02
• Messages and Codes, SC27-4648-02
• Program Directory, GI13-4526-03
• Licensed Program Specifications, GI13-4532-03

Softcopy publications
The following collection kits contain Enterprise COBOL and other product publications. You can find them
at https://www.ibm.com/resources/publications.

• z/OS Software Products Collection
• z/OS and Software Products DVD Collection

Support
If you have a problem using Enterprise COBOL for z/OS, see the following site that provides up-to-date
support information: https://www.ibm.com/support/pages/node/6560933.

Related publications

z/OS library publications
You can find the following publications in the z/OS library.

Run-Time Library Extensions

• Common Debug Architecture Library Reference
• Common Debug Architecture User’s Guide
• DWARF/ELF Extensions Library Reference

z/Architecture

• Principles of Operation

z/OS DFSMS

• Access Method Services for Catalogs
• Checkpoint/Restart
• Macro Instructions for Data Sets
• Using Data Sets

© Copyright IBM Corp. 1991, 2024 399

https://www.ibm.com/support/pages/node/611415
https://www.ibm.com/resources/publications
https://www.ibm.com/support/pages/node/6560933
https://www.ibm.com/systems/z/os/zos/library/bkserv/

• Utilities

z/OS DFSORT

• Application Programming Guide
• Installation and Customization

z/OS ISPF

• Dialog Developer's Guide and Reference
• User's Guide Vol I
• User's Guide Vol II

z/OS Language Environment

• Concepts Guide
• Customization
• Debugging Guide
• Language Environment Vendor Interfaces
• Programming Guide
• Programming Reference
• Run-Time Messages
• Run-Time Application Migration Guide
• Writing Interlanguage Communication Applications

z/OS MVS

• JCL Reference
• JCL User's Guide
• Programming: Callable Services for High-Level Languages
• Program Management: User's Guide and Reference
• System Commands
• z/OS Unicode Services User's Guide and Reference
• z/OS XML System Services User's Guide and Reference

z/OS TSO/E

• Command Reference
• Primer
• User's Guide

z/OS UNIX System Services

• Command Reference
• Programming: Assembler Callable Services Reference
• User's Guide

z/OS XL C/C++

• Programming Guide
• Run-Time Library Reference

CICS Transaction Server for z/OS
You can find the following publications in the CICS library:

• Developing CICS Applications

400 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/PDF.html?sc=SSGMCP_latest

• API (EXEC CICS) Reference
• Developing CICS System Programs
• Global User Exit Reference
• XPI Reference
• Using EXCI with CICS

COBOL Report Writer Precompiler
• Programmer's Manual, SC26-4301
• Installation and Operation, SC26-4302

Db2 for z/OS
You can find the following publications in the Db2 library:

• Application Programming and SQL Guide
• Command Reference
• SQL Reference

IBM z/OS Debugger (formerly IBM Debug for z Systems and Debug Tool)
You can find information about IBM z/OS Debugger in the IBM z/OS Debugger library.

IBM Developer for z/OS (formerly IBM Developer for z Systems)
You can find information about IBM Developer for z/OS in the IBM Developer for z/OS library.

Note: IBM Developer for z/OS supersedes IBM Developer for z Systems and Rational Developer for z
Systems.

You can find the following publications by searching their publication numbers in the IBM Publications
Center.

IMS
• Application Programming API Reference, SC18-9699
• Application Programming Guide, SC18-9698

WebSphere® Application Server for z/OS
• Applications, SA22-7959

Softcopy publications for z/OS
The following collection kit contains z/OS and related product publications:

• z/OS CD Collection Kit, SK3T-4269

Java
• IBM SDK for Java - Tools Documentation, publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
• The Java 2 Enterprise Edition Developer's Guide, download.oracle.com/javaee/1.2.1/devguide/html/

DevGuideTOC.html
• Java 2 on z/OS, www.ibm.com/servers/eserver/zseries/software/java/
• The Java EE 5 Tutorial, download.oracle.com/javaee/5/tutorial/doc/
• The Java Language Specification, Third Edition, by Gosling et al., java.sun.com/docs/books/jls/

List of resources 401

http://www.ibm.com/support/docview.wss?uid=swg27019288
http://www.ibm.com/support/docview.wss?uid=swg27050482
https://www.ibm.com/support/pages/node/713179
https://www.ibm.com/resources/publications
https://www.ibm.com/resources/publications
http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://www.ibm.com/servers/eserver/zseries/software/java/
http://download.oracle.com/javaee/5/tutorial/doc/
http://java.sun.com/docs/books/jls/

• The Java Native Interface, download.oracle.com/javase/1.5.0/docs/guide/jni/
• JDK 5.0 Documentation, download.oracle.com/javase/1.5.0/docs/

JSON
• JavaScript Object Notation (JSON), www.json.org

Unicode and character representation
• Unicode, www.unicode.org/
• Character Data Representation Architecture Reference and Registry, SC09-2190

XML
• Extensible Markup Language (XML), www.w3.org/XML/
• Namespaces in XML 1.0, www.w3.org/TR/xml-names/
• Namespaces in XML 1.1, www.w3.org/TR/xml-names11/
• XML specification, www.w3.org/TR/xml/

402 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://download.oracle.com/javase/1.5.0/docs/
http://www.json.org
http://www.unicode.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml/

Index

Special Characters
* (asterisk) 62
/ (slash) in CURRENCY-SIGN clause changed 72

Numerics
2 GB BAR xlv, 173, 196
68 COBOL Standard 45
85 COBOL Standard

interpretation changes 89
tools for converting source programs to 281

A
A in PICTURE clause 121
abbreviated combined relation conditions

parenthesis evaluation changed 61
abends

OCx, caused by unsupported calls 293
U3504, caused by unsupported calls 293

ACCEPT statement
keyword FROM requirements 62
system input devices for mnemonic-name suboption 91

accessibility
keyboard navigation 349
of Enterprise COBOL for z/OS
349
of this information 349
using z/OS 349

accessibility features for this product 349
ACTUAL KEY clause 55
advantages of new compiler and run time 6
AFP compiler option

from Enterprise COBOL 6 171
AFTER phrase of PERFORM 78
ALPHABET clause 69, 106
ALPHABETIC class 69, 107
Amode 64 addressing 254
AMODE considerations 217
ANALYZE compiler option

not available in Enterprise COBOL 141
applications

taking an inventory of (source) 30
APPLY CORE-INDEX clause 55
APPLY RECORD-OVERFLOW clause 55
APPLY REORG-CRITERIA clause 55
ARCH compiler option

from Enterprise COBOL 6 171
Area A, periods in 65, 92
ARITH compiler option

for converted IBM COBOL programs 139
arithmetic accuracy 69
ASCII data set 328
ASRA abend failure symptom 293
assembler driver 294
assembler programs

assembler programs (continued)
call considerations

supported calls under CICS 293
supported calls under non-CICS 291

changing program mask 294
loading and BALRing COBOL 295
loading and deleting COBOL 295
paragraph name restrictions 70
saving and restoring high halves of GPRs 296

ASSIGN ... FOR MULTIPLE REEL/UNIT phrase 56
ASSIGN ... OR clause 56
ASSIGN clause 69
ASSIGN TO integer system-name clause 56
assistive technologies 349
asterisk (*) 62

B
B in PICTURE clause 69, 121
BATCH compiler option 86
BDAM files 55
benefits of new compiler and run time 6
Bibliography 399
binder

overriding 331
binding 200
BLANK WHEN ZERO clause 62
BLL cells

automated conversion of 286
BUF compiler option 85
buffer size specification 85
BUFSIZE compiler option

for converted OS/VS COBOL programs 85

C
CALL statement

changes for USING phrase 70
ON OVERFLOW, CMPR2/NOCMPR2 107

callable services
CEETEST 221

calls
dynamic to alternate entry points 72
SOM services, to 136
supported

under CICS 293
under non-CICS 291

CCCA conversion tool
BDAM file conversion 55
brief description 53
detailed description 286
ISAM file conversion 55
reserved words 91, 103

CD FOR INITIAL INPUT 56
CEETEST callable service 221
changes to compiler, summary xxxv
CICS

Index 403

CICS (continued)
call considerations

supported under Language Environment 293
converting source programs

automatically (CCCA) 288
DATE special register 56

effect of TRUNC compiler option 232
integrated translator 232
migrating separate translator to integrated translator
232
OS/VS COBOL programs, support for 45, 229
required compiler options

CICS 231
NODYNAM 231, 233
RENT 231

CICS compiler option 12, 231, 233
CICS integrated translator

benefits of 232
CBL/PROCESS statements, considerations for 232
comment lines, considerations for 232
DFHCOMMAREA considerations 232
migrating from separate translator 232
TRUNC compiler option considerations 233

CLOSE statement
DISP phrase unsupported 56
FOR REMOVAL phrase 62
POSITIONING phrase 56

CMPR2 114
CMPR2 compiler option

ALPHABET clause 106
ALPHABETIC class 107
CALL...ON OVERFLOW class 107
COPY statement 111
COPY...REPLACING statement 109
definition for 104
EXIT PROGRAM 115
file status codes 112
for converted VS COBOL II programs 96
language differences from NOCMPR2 105
not available with Enterprise COBOL 13
PERFORM statement 117
PERFORM...VARYING...AFTER 119
PICTURE clause 121
PROGRAM COLLATING SEQUENCE 123
READ INTO and RETURN INTO 124
RECORD CONTAINS n CHARACTERS 125
scaled integers and nonnumerics 108
SET...TO TRUE 126
SIZE ERROR on MULTIPLY and DIVIDE 128
UNSTRING statement 129
upgrading programs compiled with 104
upgrading VS COBOL II programs compiled with 89
UPSI switches 134
variable-length group moves 135
variable-length records 125

COBOL
and Java

compatibility 255
COBOL and CICS Command Level Conversion Aid

detailed description 286
COBOL and CICS/VS Command Level Conversion Aid

ISAM file conversion 55
COBOL applications

taking an inventory of (source) 31

COBOL for MVS & VM
upgrading to Enterprise COBOL 99

COBOL for OS/390 & VM
upgrading to Enterprise COBOL 99

COBOL/370
upgrading to Enterprise COBOL 99

CODE-SET clause, FS 39 327
comment lines

in VS COBOL II programs 89
comments

sending lvii
communication feature 55
comparing group to numeric packed-decimal item 62
compatibility

Java and COBOL 255
object-oriented syntax 255

compilation
Report Writer programs 53

compiler limits 321
compiler options

complete list 297
for compiling VS COBOL II programs 95
for converted OS/VS COBOL programs 85
for OS/VS COBOL, not supported 86
for SOM-based object-oriented COBOL, not supported
137
required for CICS integrated translator 233
upgrading from IBM COBOL 139

complexity ratings
conversion priorities relating to 34
conversion priority 32

CONDCOMP compiler option 169, 188
Controlling suppression of warning messages

IGZ2OPT 343
OS/VS COBOL 343

conversion priority
complexity ratings relating to 34

conversion tools
CICS Application Migration Aid 30
CMPR2 compiler option 30
COBOL Conversion Tool (CCCA) 29, 53, 286
FLAGMIG compiler option 30
FLAGMIG4 compiler option 30
free COBOL Analyzer 290
MIGR compiler option 30, 53, 281
NOCOMPILE compiler option 30
Report Writer Precompiler 30, 289
z/OS Debugger Load Module Analyzer 290

converting source
IBM COBOL programs, requiring 99
scenarios

Report Writer discarded 37
Report Writer retained 38
with CICS 37
without CICS or report writer 36

tasks when updating 39
COPY statement 72
COPY statement, using @, #, $ 111
COPY...REPLACING statement 109
COPYLOC compiler option 169, 188
COPYRIGHT compiler option 188
COUNT compiler option 86
CURRENCY compiler option

from Enterprise COBOL 6 171, 191

404 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

CURRENCY-SIGN clause 72
CURRENT-DATE special register 56
customer support 399

D
DATA DIVISION, two periods in a row 65
data-name, unique compared to program-id 66
DATA(24) compiler option

or converted OS/VS COBOL programs 85
DATE FORMAT language elements

support removed 159
DATE special register 56
DATEPROC compiler option 194
Db2

coprocessor considerations 237
coprocessor integration 235
coprocessor migration 239
coprocessor, benefits of 235
separate precompiler 235

debug information changes 153, 162, 208, 221
Debug Tool 4, 223
debugging

full screen mode 226
initiating the Debug Tool 221
remote mode 226

DEBUGGING declarative 80
decimal overflow, program mask and 294
declaratives

changes to LABEL declarative support 185
debugging changes 80
GIVING phrase of ERROR 58

DEFINE compiler option 169, 188
DFHCOMMAREA

integrated CICS translator, considerations for 232
DIAGTRUNC compiler option

for converted OS/VS COBOL programs 85
disability 349
DISP phrase of CLOSE 56
DISPLAY statement 57
DISPSIGN compiler option 188
DIVIDE statement 77, 128
dynamic calls

CICS considerations
supported under Language Environment 293

placed to alternate entry points 72
supported under non-CICS under Language
Environment 291

E
education

available for Enterprise COBOL 30
EGCS 370
enclave boundary with assembler programs 291
ENDJOB compiler option 86
Enterprise COBOL

advantages of 6
changes with 13
compiler options, complete list 297
compiler options, unsupported 96
high level overview 4
installing, documentation needed 29

Enterprise COBOL (continued)
JCL changes 198
logical record length 91
prolog format changes 87
reserved words, complete list 257
upgrading IBM COBOL programs to 16
upgrading VS COBOL II programs to 16
user-written condition handlers restrictions
199

Enterprise COBOL compiler limits 321
Enterprise COBOL programs

existing applications, adding to 215
Enterprise COBOL, upgrading OS/VS COBOL programs to 15
ENTRY points 72
ENVIRONMENT DIVISION, two periods in a row 65
errors

subscripts out of range message 80
evaluation changes in relation conditions 70
EVENTS compiler option

not available in Enterprise COBOL 141
EXAMINE statement 57
EXEC CICS LINK

support under Language Environment 293
EXEC CICS statement 233
EXEC DLI statement 233
executables

residing in PDSE data sets 3, 200
EXHIBIT statement 57
existing applications

adding Enterprise COBOL programs to 215
preventing file status 39 327

EXIT compiler option 191
EXIT PROGRAM statement

differences between CMPR2 and NOCMPR2 115
exponent underflow, program mask and 294
exponentiation changes 69
Extended Link Pack Area (ELPA) 233
extensions, undocumented 61, 92
External names, changed in Enterprise COBOL 137

F
FAQ 243
FAQs

CCCA 286
FD support in REDEFINES clause 66
FDUMP compiler option

mapped to TEST 96
feedback

sending lvii
file status 39

avoiding when processing new files 328
preventing for QSAM files 327
preventing for VSAM files 59

FILE STATUS clause 72
file status code

39 93, 102, 150
file status codes, CMPR2/NOCMPR2 112
FILE-CONTROL paragraph

FILE STATUS clause changed 72
FILE-LIMIT clause unsupported 58

files
preventing file status 39 327

fixed-length records, defining 327

Index 405

fixed-point overflow, program mask and 294
FLAGMIG compiler option

definition for 105
not available with Enterprise COBOL 13, 96, 285

FLAGSAA compiler option 96
floating comment indicators (*>) 372
floating-point changes 69
flow of control, ended 62, 115
FOR REMOVAL phrase of CLOSE statement 62
Format-x (F,S,U,V) files 327
free COBOL Analyzer 290
Frequently asked questions 243
FROM, requirements with ACCEPT statement 62

G
GENERATE statement 54
Glossary 355
GO TO MORE-LABELS 58
GOBACK statement

differences between CMPR2 and NOCMPR2 115

H
HGPR compiler option 188

I
IBM COBOL

upgrading source, requiring 16, 99
upgrading to Enterprise COBOL 99

IDCAMS REPRO facility 55
IDLGEN compiler option

not supported in Enterprise COBOL 137
IF statement 75
IGYPG3188 143
IGYPG3189 143
IGZ0005S 293
IGZ0079S 293
IGZ0193W 143
IGZ0194W 143
IGZERRE routine

for upgrading assembler driver 295
ILBOSTP0

assembler driver, alternatives for 295
in Enterprise COBOL 5 and 6 183
in Enterprise COBOL 6 167
index names

qualified 63
INHERITS clause 136
INITCHECK compiler option 169, 171, 188, 192
INITIAL compiler option 169, 189
INITIATE statement 54
inline comments 374
INLINE compiler option 170, 189
INSPECT statement

EXAMINE statement 57
TRANSFORM statement 61

installation
compiler, documentation needed 29

INTDATE compiler option
for converted IBM COBOL programs 140

integrated CICS translator

integrated CICS translator (continued)
required compiler options 233

integrated Db2 coprocessor 235
Integrated Db2 coprocessor 14
integrated SQL coprocessor 235
intermediate results changed 77
INVDATA compiler option 170, 189
inventory of applications

for upgrading source to Enterprise COBOL 30
free COBOL Analyzer 290
z/OS Debugger Load Module Analyzer 290

INVOKE statement 136, 137
IS evaluation in relation conditions changed 72, 77
ISAM files 55

J
Java

and COBOL
compatibility 255

javac command
recompile for Java 255

JAVAIOP compiler option 170, 189
JUSTIFIED clause 75

K
keyboard navigation 349
keyword 377

L
LABEL RECORD clause 63
LABEL RECORDS clause 58
LANGLVL compiler option

unsupported 86
LANGLVL(1) compiler option

/, =, and L characters 72
ACCEPT MESSAGE COUNT 55
combined abbreviated relational conditions 70
COPY statement with associated names 72
DELIMITED BY ALL 81
JUSTIFIED clause 75
NOT phrase 71
PERFORM statement 79
RESERVE clause 78
scaling change 75
SELECT OPTIONAL clause 79

LANGUAGE compiler option
from Enterprise COBOL 6 171, 192

language elements
changed

OS/VS COBOL 69
SOM-based object-oriented COBOL 137

not supported
OS/VS COBOL 54, 56
SOM-based object-oriented COBOL 136

Language Environment
advantages of 6

Language Environment-conforming assembler programs 294
LE’s writable static area (WSA) 177, 210
LINE-COUNTER special register 54
Link Pack Area (LPA) 233

406 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

link-editing 200, 251
LIST compiler option 87, 97
List of resources 399
LISTER features, unsupported 87
LOAD/BALR calls supported under Language Environment
291
LP compiler option 170, 189
LVLINFO compiler option

LVLIINFO not available from Enterprise COBOL 6 172,
194

M
MAP compiler option 192
MAXPCF compiler option

from Enterprise COBOL 6 172
MDECK compiler option 192
MEMLIMIT

for compiling programs xlv, 173, 196
message IGZ0005S 293
message IGZ0079S 293
messages

MIGR, missing for RENAMES 67
METACLASS clause 137
METHODS, changed in Enterprise COBOL 137
METHODS, not supported in Enterprise COBOL 137
MIGR compiler option

conversion tool 53, 281
message missing for RENAMES 67

migrating CICS translator
from separate to integrated 232

migrating from CMPR2 to NOCMPR2 104
Migrating from XMLPARSE(COMPAT) 335
migrating source

scenarios
Report Writer discarded 37
Report Writer retained 38
with CICS 37
without CICS or report writer 36

tasks when updating 39
migration tools

COBOL and CICS Command Level Conversion Aid (CCCA)
286
free COBOL Analyzer 290
Report Writer Precompiler 289
z/OS Debugger Load Module Analyzer 290

mnemonic-name of system input devices in ACCEPT
statement 91
MOVE ALL statement

to PIC 99 64
MOVE statement

CORRESPONDING changes 63
moving fullword binary items 63
multiple TO specification 64
scaling change 75
SET...TO TRUE 126
warning message for numeric truncation 64

MULTIPLY statement 77, 128

N
national extension characters 111
new reserved words 148, 159

NOCMPR2 114
NOCMPR2 compiler option

definition for 105
language differences from CMPR2 105

NOCMPR2 programs
tools for converting source to 281

NOCOMPILE compiler option 86
NODYNAM compiler option 231, 233
NOLIB compiler option 194
NOMINAL KEY clause 55
nonnumerics, CMPR2/NOCMPR2 108
nonunique program-id names 66
NORENT compiler option

above the line support 13
NORENT static area 177, 210
NORES compiler option

unsupported in Enterprise COBOL 96
NOSTGOPT compiler option

for converted OS/VS COBOL programs 85
from Enterprise COBOL 6 172, 192

NOT phrase 71
NOTE statement 58
NSYMBOL compiler option

for converted IBM COBOL programs 140
NUMCHECK compiler option

migrating to NUMPROC(PFD) 96, 141, 151, 161, 195,
310

numeric-edited, differences 65
NUMPROC compiler option

for converted OS/VS COBOL programs 85
NUMPROC(MIG) not available from Enterprise COBOL 5
151, 161, 195
NUMPROC(MIG) not available in Enterprise COBOL 5 96,
141, 310

O
OBJECT COMPUTER paragraph 123
object module 251
object module, prolog format 87, 97
object-oriented COBOL

compatibility 255
object-oriented COBOL, SOM-based

compiler options not supported 137
language elements changed 137
language elements not supported 136
not supported in Enterprise COBOL 136

OBJECTS, changed in Enterprise COBOL 137
OCCURS clause 64
OCCURS DEPENDING ON clause

changes in values for receiving items 76
RECORD CONTAINS n CHARACTERS 66
variable-length group moves 135

OCx abends 293
ODO objects, changes for variable-length groups 90
ON SIZE ERROR phrase 77
ON statement 58
OPEN statement

COBOL 68 support dropped 59
REVERSED phrase changed 65

OPTIMIZE compiler option 193
options

compiler
complete list 297

Index 407

options (continued)
compiler (continued)

for IBM COBOL programs 139
for OS/VS COBOL programs 85
for VS COBOL II programs 95

ORGANIZATION clause 55
OS/VS COBOL

ALPHABET-NAME clause changed 69
arithmetic accuracy 69
ASSIGN clause changed 69
ASSIGN TO integer system-name clause 56
CALL statement changed 70
compiler options, complete list 297
considerations when compiling 85
CURRENCY-SIGN clause changed 72
IF statement changed 75
intermediate results changed 77
JUSTIFIED clause 75
OCCURS DEPENDING ON clause 76
ON SIZE ERROR phrase changed 77
PERFORM statement changes 78
PROGRAM COLLATING SEQUENCE clause 78
READ statement changes 78
RERUN clause changes 78
RESERVE clause changes 78
reserved word list

complete list 257
RETURN statement changes 78
scaling changed 75
SEARCH statement changes 79
segmentation changes 79
SELECT OPTIONAL clause 79
SORT special register differences 80
source language debugging 80
subscripts out of range 80
undocumented extensions for 61
unsupported compiler options 86
UPSI switch evaluation changed 81
VALUE clause 82
VSAM files 74, 75
WHEN-COMPILED 82
WRITE AFTER POSITIONING statement 82

OS/VS COBOL compiler limits 321
OS/VS COBOL programs

CICS considerations
support for 229

OS/VS COBOL, upgrading source 15
OSDECK compiler option 87
OUTDD compiler option

for converted OS/VS COBOL programs 85

P
PAGE-COUNTER special register 54
paragraph names

error for period missing in 65
requirements for Enterprise COBOL 66, 70
restrictions for USING phrase 70

parameters
restrictions for paragraph names 70

parenthesis evaluation changed 71
PARMCHECK compiler option 170, 190
PDS data sets 198, 251
PDSE data sets

PDSE data sets (continued)
migrating to 25

PERFORM statement
difference between CMPR2 and NOCMPR2 117
second UNTIL 65
VARYING/AFTER options 119
VARYING/AFTER phrases 78

periods
missing at end of SD, FD, or RD 65
missing on paragraph names 65
multiple in any division 65
requirements for Area A 65, 92

PGMNAME compiler option
for converted IBM COBOL programs 140
for converted OS/VS COBOL programs 85

PICTURE clause
B symbol in 69, 121
numeric-edited differences 65
use with VALUE clause 68

POSITIONING phrase of CLOSE 56
PPA4

how to find 176, 210
layout 176, 210

precedence of USE procedures 90
prerequisite software level 167, 183
PROCEDURE DIVISION, two periods in a row 65
product support 399
program checks causing ASRA abend 293
PROGRAM COLLATING SEQUENCE clause

alphabet-name, implicit comparisons 78
difference between CMPR2 and NOCMPR2 123

program mask, programs that change it 294
program names

compatibility 85, 95
requirements 66

program object analysis
free COBOL Analyzer 290
z/OS Debugger Load Module Analyzer
290

program objects
inventory of, using conversion tool 290

program static area 177, 210
prolog format 87, 97
PTFs

installing in Enterprise COBOL 5 and 6 184
publications 399

Q
QSAM buffer

initializing 347
QSAM files

preventing files status 39 327
status key values 73

qualification - using the same phrase repeatedly 66
qualified index names 63
QUALIFY compiler option 190
QUEUE runtime option 56

R
RCFs

sending lvii

408 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

READ statement
implicit elementary MOVEs 78
INTO phrase, CMPR2/NOCMPR2 124

reader comments
sending lvii

READY TRACE statement, not supported 59
RECEIVE statement 56
receiving fields, ODO objects 135
RECORD CONTAINS n CHARACTERS clause

difference between CMPR2 and NOCMPR2 125
when overridden 66

RECORD CONTAINS, fixed-length records 327
records, preventing FS 39 when defining 327
REDEFINES clause

FD support dropped 66
SD support dropped 66

reference modification 90
registers

requirement for assembler programs 291
regression testing

source considerations 40
relation condition

coding changes 67
evaluation changes 70

REMARKS paragraph 60
RENAMES clause 67
RENT compiler option 231, 233
RENT static area 177, 210
REPLACE statement

affecting EXEC CICS 233
REPLACE statement and comment lines 89
REPORT clause 54
report section 54
Report Writer

conversion scenario discarding 37
conversion scenario retaining 38
conversion tool 53, 289
language affected 54

Report Writer Precompiler 289
Requesting QSAM buffers above the line)

IGZ3OPT 345
RERUN clause 78
RES compiler option

unsupported in Enterprise COBOL 96
RESERVE clause 78
reserved words

comparison of 257
comparison to VS COBOL II 91

RESET TRACE statement, not supported 59
return routine, assembler programs 291
RETURN statement

implicit elementary MOVEs 78
INTO phrase, CMPR2/NOCMPR2 124

REVERSED phrase of OPEN statement 65
RMODE compiler option 193
RMODE considerations 217
RRDS (relative-record data sets)

simulating variable-length records 93, 101, 149
RTEREUS runtime option

using with assembler drivers 294
RULES compiler option

from Enterprise COBOL 6 172, 193
runtime options

CHECK(OFF) 203

runtime options (continued)
HEAP 203
NOSSRANGE 203
SIMVRD 93, 101, 149
STORAGE 203

S
scaled integers, CMPR2/NOCMPR2 108
SD support in REDEFINES clause 66
SEARCH ALL 104, 143
SEARCH statement 79
SEEK statement unsupported 55
segmentation 79
SELECT clause 79
sending fields, ODO objects 135
sequential files 73
SERVICE compiler option 190
SERVICE RELOAD statement

automated conversion of 286
SET...TO TRUE, CMPR2/NOCMPR2 126
significance exceptions, program mask and 294
simplified TEST compiler option 152
SIMVRD runtime option 92, 93, 101, 149
SIZE compiler option

SIZE not available from Enterprise COBOL 5 195
SIZE ERROR on MULTIPLY and DIVIDE 128
slash (/) in CURRENCY-SIGN clause changed 72
SMARTBIN compiler option 170, 190
SMP/E FIXCAT 184
SOM-based object-oriented COBOL

compiler options not available 137
language elements changed 137
language elements not supported 136
not available with Enterprise COBOL 136

SORT special registers 80
SOURCE compiler option

from Enterprise COBOL 6 172, 193
source language conversion

IBM tools 281
inventory of applications 31
tasks when updating 39

special registers
CURRENT-DATE 56
DATE 56
LINE-COUNTER 54
PAGE-COUNTER 54
PRINT-SWITCH 54
SORT differences 80
TALLY 57
TIME 60
TIME-OF-DAY 60
WHEN-COMPILED 82

SPECIAL-NAMES paragraph 72, 106
SPM instructions 294
SQL

coprocessor integration 235
SQL statements

Db2 coprocessor, handling 235
SQLIMS compiler option 190
SSRANGE compiler option

from Enterprise COBOL 5 193
from Enterprise COBOL 6 172, 193

STACK storage for work area 102

Index 409

STANDARD LABEL statement 61
START statement

support changed 60
USING KEY clause unsupported 55, 60

STATE compiler option 86
statement connectors, THEN unsupported 60
static CALL statement

supported under Language Environment under CICS
293
supported under Language Environment under non-
CICS 291

status key
QSAM files 73
VSAM files 74, 75

STGOPT compiler option 190
STOP RUN statement

differences between CMPR2 and NOCMPR2 115
storage

2 GB BAR xlv, 173, 196
subprograms

dynamic calls to ENTRY points 72
subroutines, called by assembler driver 294
subscripts 80
SUPMAP compiler option 86
support 399
SUPPRESS compiler option 170, 190
SVC LINK

supported under Language Environment under non-
CICS 291
targeting assembler programs 291

SVC LOAD/BALR 295
SVC LOAD/DELETE 295
SXREF compiler option 87
SYMDMP compiler option 87
system input devices for mnemonic-name suboption in
ACCEPT statement 91

T
TALLY special register 57
TERMINATE statement 54
terminating statements, required 62
TEST compiler option

for converted VS COBOL II programs 95
from Enterprise COBOL 5.1 194
from Enterprise COBOL 6.2 172, 194

testing
regression, for source 40

THEN statement 60
TIME-OF-DAY special register 60
TRACK-AREA clause 55
TRACK-LIMIT clause 55
TRANSFORM statement unsupported 61
translator option

XOPTS 232
translator, integrated CICS 232
TRUNC compiler option

for CICS applications 232, 233
for converted IBM COBOL programs 140
for converted OS/VS COBOL programs 86
possible differences using TRUNC(OPT) 63

TUNE compiler option 171, 190
TYPECHK compiler option

not supported in Enterprise COBOL 137

U
U3504 abends 293
undocumented extensions

for OS/VS COBOL 61
for VS COBOL II 92

unitialized data sets 197
UNSTRING statement

coding not accepted 68
difference between CMPR2 and NOCMPR2 129
multiple INTO phrases 68

upgrading
IBM COBOL programs 16
VS COBOL II programs 16

Upgrading programs from Enterprise COBOL 3
Enterprise COBOL 4, 6, 13, 16, 29, 87, 91, 96, 143, 155,
198, 199, 257, 297

Upgrading programs from Enterprise COBOL 4
Enterprise COBOL 4, 6, 13, 16, 29, 87, 91, 96, 143, 155,
198, 199, 257, 297

upgrading source
IBM COBOL programs, requiring 99
IBM conversion tools 281
scenarios

Report Writer discarded 37
Report Writer retained 38
with CICS 37
without CICS or report writer 36

tasks when updating 39
upgrading, OS/VS COBOL programs 15
UPSI switches

difference between CMPR2 and NOCMPR2 134
differences with condition-names 81

USE procedure
precedence in VS COBOL II 90

USE statement
BEFORE STANDARD LABEL 61
DEBUGGING declarative 80
GIVING phrase of ERROR declarative 58
LABEL declarative 58
reporting declarative 54

Using REXX execs
processing parameter list formats 333

V
VALUE clause

condition-name changes 82
use with PICTURE clause changed 68

variable length read 204
variable-length group moves 135
variable-length group, differences 90
variable-length records, defining 327
VARYING phrase of PERFORM changed 78
VBREF compiler option 87
VBSUM compiler option 87
VCON

supported COBOL/assembler under CICS 293
supported COBOL/assembler under non-CICS 291

VLR compiler option 190, 204
VOLATILE clause 199
VS COBOL II

compiler options, complete list 297
reserved words, complete list 257

410 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

VS COBOL II (continued)
upgrading source 16

VS COBOL II compiler limits 321
VS COBOL II programs

reserved words, comparison 91
upgrading source programs 89

VSAM files
conversions 55
status key changes 74, 75

VSAMOPENFS compiler option 171, 190

W
WHEN-COMPILED special register 82
WORD(NOOO) compiler option

for converted IBM COBOL programs 141
WORKING-STORAGE

areas explanation 177, 210
how to determine the area 178, 211

WORKING-STORAGE data items 217
WORKING-STORAGE SECTION

how to find 176, 209
in Enterprise COBOL 5 and 6 176, 209

WRITE statement 82

X
XML PARSE statements

COMPAT parser considerations 146, 156
XML parser 145, 155
XMLSS suboption behavior 158

XMLPARSE compiler option 191
XOPTS translator option 232

Z
Z's in PICTURE string 65
z/OS

commonly asked questions and answers 254
z/OS Debugger Load Module Analyzer 290
ZONECHECK compiler option

ZONECHECK not available from Enterprise COBOL 6
173, 195

ZONEDATA compiler option 191

Index 411

412 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Migration Guide

IBM®

Product Number: 5655-EC6

GC27-8715-03

	Contents
	Tables
	Preface
	About this information
	Terminology clarification
	COBOL compilers by name and version
	How to use examples
	Acknowledgement
	Related publications

	Summary of changes to this information
	Changes in GC27-8715-03 (February 2024)
	Changes in GC27-8715-02 (September 2023)
	Changes in GC27-8715-01 (December 2021)
	Changes in GC27-8715-00 (February 2021)
	Changes in GC14-7383-03 (March 2019)
	Changes in GC14-7383-02 (March 2019)
	Changes in GC14-7383-00 (June 2013)
	Changes in GC23-8527-01 (August 2009)
	Changes in GC23-8527-00 (December 2007)
	Compiler
	Run time

	Changes in GC27-1409-05 (November 2006)
	Changes in GC27-1409-04 (March 2006)
	Changes in GC27-1409-03 (July 2005)
	Changes in GC27-1409-02 (December 2003)
	Changes in GC27-1409-01 (September 2002)
	Compiler
	Run time

	Changes in GC27-1409-00 (November 2001)
	Compiler
	Run time

	Changes in GC26-4764-05 (September 2000)
	Compiler
	Run time

	Summary of changes to the COBOL compilers
	Changes in IBM Enterprise COBOL for z/OS 6.4 with PTFs installed
	Changes in IBM Enterprise COBOL for z/OS 6.4
	Changes in IBM Enterprise COBOL for z/OS 6.3 with PTFs installed
	Changes in IBM Enterprise COBOL for z/OS 6.3
	Changes in IBM Enterprise COBOL for z/OS 6.2 with PTFs installed
	Changes in IBM Enterprise COBOL for z/OS 6.2
	Changes in IBM Enterprise COBOL for z/OS 6.1 with PTFs installed
	Changes in IBM Enterprise COBOL for z/OS 6.1
	Changes in IBM Enterprise COBOL for z/OS 5.2 with PTFs installed
	Changes in IBM Enterprise COBOL for z/OS 5.2
	Changes in IBM Enterprise COBOL for z/OS 5.1.1
	Changes in IBM Enterprise COBOL for z/OS 5.1
	Changes in IBM Enterprise COBOL for z/OS 4.2
	Changes in IBM Enterprise COBOL for z/OS 4.1
	Changes in IBM Enterprise COBOL for z/OS 3.4 with PTFs installed
	Changes in IBM Enterprise COBOL for z/OS 3.4
	Changes in IBM Enterprise COBOL for z/OS 3.3
	Changes in IBM Enterprise COBOL for z/OS and OS/390 3.2
	Changes in IBM Enterprise COBOL for z/OS and OS/390 3.1
	Changes in COBOL for OS/390 & VM 2.2
	Changes in COBOL for OS/390 & VM 2.1.2
	Changes in COBOL for OS/390 & VM 2.1.1
	Changes in COBOL for OS/390 & VM 2.1

	How to send your comments

	Part 1. Overview
	Chapter 1. Introducing the new compiler and run time
	Product relationships: compiler, runtime library, debug
	Comparison of COBOL compilers
	Language Environment's runtime support for different compilers
	Advantages of the new compiler and run time
	Changes with the new compiler and run time
	CMPR2 compiler option
	FLAGMIG compiler option
	FLAGMIG4 compiler option
	SOM-based object-oriented COBOL
	Integrated Db2 coprocessor
	Integrated CICS translator
	Performance of decimal overflows

	General migration tasks
	Planning your strategy
	Upgrading your source to Enterprise COBOL
	OS/VS COBOL
	VS COBOL II
	IBM COBOL
	Enterprise COBOL 3
	Enterprise COBOL 4

	Adding Enterprise COBOL programs to existing applications

	Chapter 2. Do I need to recompile?
	Migration basics
	Runtime migration
	Moving to Language Environment

	Compiler migration

	Service support for OS/VS COBOL and VS COBOL II programs
	Changing OS/VS COBOL programs

	Interoperability with older levels of IBM COBOL programs

	Part 2. Migration strategies
	Chapter 3. Compiler upgrade checklist
	Chapter 4. Migration recommendations to Enterprise COBOL 6
	Chapter 5. Planning to upgrade source programs
	Preparing to upgrade your source
	Installing Enterprise COBOL
	Deciding which conversion tools to use and install them
	Educating your programmers on new compiler features

	Taking an inventory of your applications
	Taking an inventory of vendor tools, packages, and products
	Taking an inventory of COBOL applications

	Prioritizing your applications
	Assigning complexity ratings
	Determining conversion priority

	Setting up a conversion procedure
	Programs without CICS or Report Writer
	Programs with CICS
	Programs with Report Writer statements to be discarded
	Programs with Report Writer statements to be retained

	Making application program updates

	Part 3. Upgrading programs
	Chapter 6. Upgrading OS/VS COBOL source programs
	Comparing OS/VS COBOL to Enterprise COBOL
	Language elements that require change (quick reference)

	Converting to 85 COBOL Standard
	COBOL Conversion Tool (CCCA)
	OS/VS COBOL MIGR compiler option

	Language elements that require other products for support
	Report Writer
	Keep existing Report Writer code and use the Report Writer Precompiler
	Convert existing Report Writer code using the Report Writer Precompiler
	Run existing OS/VS COBOL-compiled Report Writer programs under Language Environment
	Report Writer language items affected

	Language elements that are not implemented
	ISAM file handling
	ISAM file handling language items affected
	Conversion options

	BDAM file handling
	BDAM file handling language items affected
	Automated conversion options

	Communication feature
	Communication language items affected
	Communication conversion actions

	Language elements that are not supported
	SEARCH ALL statements
	Undocumented OS/VS COBOL extensions that are not supported
	Language elements that changed from OS/VS COBOL

	Chapter 7. Compiling converted OS/VS COBOL programs
	Compiler options for converted programs
	Unsupported OS/VS COBOL compiler options
	Prolog format changes

	Chapter 8. Upgrading VS COBOL II source programs
	Upgrading VS COBOL II programs compiled with the CMPR2 compiler option
	85 COBOL Standard interpretation changes
	REPLACE and comment lines
	Precedence of USE procedures
	Reference modification of a variable-length group receiver

	ACCEPT statement
	New reserved words
	New reserved words

	Undocumented VS COBOL II extensions
	SEARCH ALL statements
	Upgrading programs that use SIMVRD support

	Chapter 9. Compiling VS COBOL II programs
	Compiler options for VS COBOL II programs
	Compiling with Enterprise COBOL
	Compiler options not supported in Enterprise COBOL

	Prolog format changes

	Chapter 10. Upgrading IBM COBOL source programs
	Determining which programs require upgrade before you compile with Enterprise COBOL
	Upgrading programs that have SEARCH ALL statements
	Upgrading programs that use SIMVRD support
	Language Environment runtime considerations
	New reserved words in Enterprise COBOL
	New reserved words

	SEARCH ALL statements
	Migrating from the CMPR2 compiler option to NOCMPR2
	Upgrading programs compiled with the CMPR2 compiler option
	ALPHABET clause of the SPECIAL-NAMES paragraph
	CMPR2
	NOCMPR2
	Messages
	Corrective action for ALPHABET clause of the SPECIAL-NAMES paragraph:

	ALPHABETIC class
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the ALPHABETIC class:

	CALL . . . ON OVERFLOW
	CMPR2
	NOCMPR2
	Messages
	Corrective action for CALL . . . ON OVERFLOW:

	Comparisons between scaled integers and nonnumerics
	CMPR2
	NOCMPR2
	Messages
	Corrective action for comparisons between scaled integers and nonnumerics:

	COPY ... REPLACING statements using non-COBOL characters
	CMPR2
	NOCMPR2
	Lowercase alphabetic characters
	Message
	Corrective action for lowercase alphabetic characters:
	The colon (:) character
	Message
	Corrective action for the colon (:) character:
	Characters that are not valid
	Message
	Corrective action for characters that are not valid:

	COPY statement using national extension characters
	CMPR2
	NOCMPR2
	Message
	Corrective action for the COPY statement that uses national extension characters:

	File status codes
	CMPR2
	NOCMPR2
	Message
	Corrective action for file status codes

	Fixed-file attributes and DCB= parameters of JCL
	CMPR2
	NOCMPR2
	Messages
	Recommendation for DCB= parameters of JCL

	Implicit EXIT PROGRAM
	CMPR2
	NOCMPR2
	Messages
	Corrective action for implicit EXIT PROGRAM

	OPEN statement failing for QSAM files (FILE STATUS 39)
	CMPR2
	NOCMPR2
	Message
	Corrective action for OPEN statement failing for QSAM files (FILE STATUS 39)

	OPEN statement failing for VSAM files (FILE STATUS 39)
	CMPR2
	NOCMPR2
	Message
	Corrective action for OPEN statement failing for VSAM files (FILE STATUS 39)

	PERFORM return mechanism
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the PERFORM return mechanism:

	PERFORM ... VARYING ... AFTER
	CMPR2
	NOCMPR2
	Message
	Corrective action for PERFORM . . . VARYING . . . AFTER

	PICTURE clause with "A"s and "B"s
	CMPR2
	NOCMPR2
	Message
	INITIALIZE statement
	Corrective action for the INITIALIZE statement
	STRING statement
	Corrective action for the STRING statement
	CALL and CANCEL statements

	PROGRAM COLLATING SEQUENCE
	CMPR2
	NOCMPR2
	Messages
	Corrective action

	READ INTO and RETURN INTO
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the READ INTO and RETURN INTO phrases:

	RECORD CONTAINS n CHARACTERS
	CMPR2
	NOCMPR2
	Message
	Corrective action for the RECORD CONTAINS n CHARACTERS clause:

	SET . . . TO TRUE
	CMPR2
	NOCMPR2
	Message
	JUSTIFIED clause
	Corrective action for the JUSTIFIED clause
	BLANK WHEN ZERO clause
	PICTURE string with editing symbols

	SIZE ERROR on MULTIPLY and DIVIDE
	CMPR2
	NOCMPR2
	Message
	Corrective action for the SIZE ERROR on MULTIPLY and DIVIDE

	UNSTRING operand evaluation
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the UNSTRING OPERAND evaluation:

	UPSI switches
	CMPR2
	NOCMPR2
	Message
	Corrective action for UPSI switches:

	Variable-length group moves
	CMPR2
	NOCMPR2
	Message
	Corrective action for variable-length group moves:

	Upgrading SOM-based object-oriented (OO) COBOL programs
	SOM-based OO COBOL language elements that are not supported
	Compiler options IDLGEN and TYPECHK

	SOM-based OO COBOL language elements that are changed

	Chapter 11. Compiling IBM COBOL programs
	Default compiler options for IBM COBOL programs
	Compiler options for IBM COBOL programs
	Compiler options not available in Enterprise COBOL

	Chapter 12. Upgrading programs from Enterprise COBOL 3
	SEARCH ALL statements
	Upgrading programs that have SEARCH ALL statements

	Upgrading Enterprise COBOL 3 programs that have XML PARSE statements
	COMPAT XML parser considerations

	Upgrading Enterprise COBOL programs that have XML GENERATE statements
	Converting programs that use new reserved words
	Upgrading programs that use SIMVRD support

	Chapter 13. Compiling Enterprise COBOL 3 programs
	Compiler option changes from IBM Enterprise COBOL for z/OS 3
	Differences in the TEST compiler option
	Debug information changes with Enterprise COBOL 5 and 6

	Chapter 14. Upgrading from Enterprise COBOL 4
	Upgrading Enterprise COBOL 4 programs that have XML PARSE statements
	COMPAT XML parser considerations
	Upgrading Enterprise COBOL 4.1 programs that have XML PARSE statements and that use the XMLPARSE(XMLSS) compiler option

	Converting programs that use new reserved words
	Changes in millennium language extensions in IBM Enterprise COBOL for z/OS 5 and 6

	Chapter 15. Compiling Enterprise COBOL 4 programs
	Compiler option changes from IBM Enterprise COBOL for z/OS 4
	Debug information changes with Enterprise COBOL 5 and 6

	Part 4. What is new and different with Enterprise COBOL 5 and 6?
	Chapter 16. Changes with Enterprise COBOL 6
	Prerequisite software level changes for Enterprise COBOL 6
	COBOL source code differences in Enterprise COBOL 6
	Compiler option changes in Enterprise COBOL 6
	Changes in compiling with Enterprise COBOL 6
	Changes at run time with Enterprise COBOL 6
	Changes with Enterprise COBOL 6 that might affect vendor tools
	WORKING-STORAGE SECTION changes

	Chapter 17. Changes with Enterprise COBOL 5 and 6
	Prerequisite software and service for Enterprise COBOL 5 and 6
	COBOL source code differences in Enterprise COBOL 5 and 6
	Compiler option changes in Enterprise COBOL 5 and 6
	Changes in compiling with Enterprise COBOL 5 and 6
	Compiler output to uninitialized data sets not supported
	JCL and packaging changes for Enterprise COBOL 5 and 6
	Compilation restrictions for user-written condition handlers with Enterprise COBOL 5 and 6

	Binding (link-editing) changes with Enterprise COBOL 5 and 6
	Changes at run time with Enterprise COBOL 5 and 6
	Language Environment option changes
	Restrictions for AMODE
	Variable length records - wrong length READ
	Error behavior changes for incorrect programs
	Using object oriented COBOL or interoperating with C programs
	ILBOABN0 considerations
	Using DFSORT option NOBLKSET

	Debug information changes with Enterprise COBOL 5 and 6
	WORKING-STORAGE SECTION changes

	Chapter 18. Adding Enterprise COBOL 5 or 6 programs to existing COBOL applications
	AMODE and RMODE considerations

	Part 5. Enterprise COBOL migration and other IBM products
	Chapter 19. IBM z/OS Debugger
	Initiating z/OS Debugger
	Debug information changes with Enterprise COBOL 5 and 6
	z/OS Debugger changes with Enterprise COBOL 5 and 6
	Full-screen mode changes with Enterprise COBOL 5 and 6
	Remote mode changes with Enterprise COBOL 5 and 6

	Chapter 20. CICS conversion considerations
	DFHRPL setup differences with Enterprise COBOL 5 and 6
	CSD setup differences with Enterprise COBOL 5 and 6
	Compiler options for programs that run under CICS
	Migrating from the separate CICS translator to the integrated translator
	Integrated CICS translator
	Compiler options for the integrated CICS translator

	Static calls from COBOL 5 or 6 programs to VS COBOL II programs under CICS

	Chapter 21. Db2 coprocessor conversion considerations
	Db2 coprocessor integration
	Differences between the Db2 precompiler and the integrated Db2 coprocessor
	Code-page conversion

	Chapter 22. Moving IMS programs to Enterprise COBOL 5 or 6
	Compiling and linking for running under IMS
	LLA-managed load libraries for performance

	Appendix A. Frequently asked questions (FAQ) and answers
	Before migration
	Compatibility
	Compiling with Enterprise COBOL
	Binding (link-editing) Enterprise COBOL programs
	Language Environment runtime options
	Subsystems
	z/OS
	Performance
	Service
	Object-oriented syntax, and Java 6 or later SDKs

	Appendix B. COBOL reserved word comparison
	Appendix C. Conversion tools for source programs
	MIGR compiler option
	Language differences
	Statements supported with enhanced accuracy
	Arithmetic statements

	LANGLVL(1) statements not supported
	LANGLVL(1) and LANGLVL(2) statements not supported
	Communications
	Report Writer
	ISAM
	BDAM
	Use for debugging
	Other statements

	FLAGMIG compiler option
	FLAGMIG4 compiler option
	Other programs that aid conversion
	IBM Application Discovery and Delivery Intelligence
	COBOL and CICS Command Level Conversion Aid for z/OS (CCCA)
	Frequently asked questions (FAQ) and answers about CCCA
	CCCA processing of CICS statements
	EXEC CICS processing

	Statements dealing with the primary BLLs

	COBOL Report Writer Precompiler
	File Manager View Load Module
	Free and open source COBOL Analyzer

	Appendix D. Applications with COBOL and assembler
	Called assembler programs
	SVC LINK and COBOL run-unit boundary
	Runtime support for assembler COBOL calls under non-CICS
	Runtime support for assembler COBOL calls under CICS
	Converting programs that change the program mask
	Upgrading applications that use an assembler driver
	Convert the assembler driver
	Modify the assembler driver
	Use an unmodified assembler driver

	Assembler programs that load and BALR to MAIN COBOL programs
	Assembler programs that load and delete COBOL programs
	Saving and restoring the high halves of General Purpose Registers in assembler programs
	Finding the program name and compile time stamp in Enterprise COBOL 5 or 6 programs
	Finding the name of the program that called the current COBOL 5 or 6 program

	Appendix E. Option comparison
	Appendix F. Compiler limit comparison
	Appendix G. Preventing file status 39 for QSAM files
	Processing existing files
	Defining variable-length records
	Defining fixed-length records
	Converting existing files that do not match the COBOL record

	Processing new files
	Processing files dynamically created by COBOL

	Appendix H. Overriding binder (linkage-editor) defaults
	How to override the defaults

	Appendix I. TSO considerations
	Using REXX execs

	Appendix J. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS)
	Appendix K. Controlling the suppression of the OS/VS COBOL warning messages (IGZ2OPT)
	Appendix L. Requesting QSAM buffers above the line (IGZ3OPT)
	Appendix M. Controlling initialization of QSAM buffer (IGZ4OPT)
	Appendix N. Accessibility features for Enterprise COBOL for z/OS
	Notices
	Programming interface information
	Trademarks

	Glossary
	List of resources
	Enterprise COBOL for z/OS
	Related publications

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

