
Enterprise COBOL for z/OS
6.3

Performance Tuning Guide

IBM

SC27-9202-01

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 73.

Second edition (31 January 2024 update)

This edition applies to IBM® Enterprise COBOL Version 6 Release 3 (program number 5655-EC6) running with the
Language Environment® component of z/OS® Version 2 Release 1, and to all subsequent releases and modifications until
otherwise indicated in new editions.

You can view or download softcopy publications free of charge in the Enterprise COBOL for z/OS library. Because
Enterprise COBOL for z/OS supports the continuous delivery (CD) model and publications are updated to document the
features delivered under the CD model, it is a good idea to check for updates once every two months.

It is our intention to update the product documentation for this release periodically, without updating the order number.
If you need to uniquely refer to the version of your product documentation, refer to the order number with the date of
update.
© Copyright International Business Machines Corporation 1993, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/support/docview.wss?uid=swg27036733

Contents

Tables... vii

Preface...ix
About this information...ix
Performance measurements...ix
Summary of changes... ix

Version 6 Release 3 with PTFs installed... ix
Version 6 Release 3.. x

How to use examples... x
How to send your comments... x

Chapter 1. Why recompile with V6?..1
Architecture exploitation... 1
Advanced optimization.. 3
Enhanced functionality.. 4

Chapter 2. Prioritizing your application for migration to V6..................................... 7
COMPUTE... 7
INSPECT...10
MOVE..12
SEARCH.. 12
Tables... 13
Conditional expressions.. 13

Chapter 3. How to tune compiler options to get the most out of V6........................ 15
AFP... 15
ARCH.. 16
ARITH... 17
AWO..18
BLOCK0.. 18
DATA(24) and DATA(31)...19
DYNAM... 19
FASTSRT... 20
HGPR.. 20
INLINE..21
INVDATA...21
MAXPCF..23
NUMCHECK ... 24
NUMPROC.. 24
OPTIMIZE...25
SSRANGE..25
STGOPT.. 26
TEST... 26
THREAD..27
TRUNC.. 27
Program residence and storage considerations... 28

Chapter 4. Runtime options that affect runtime performance................................ 31
AIXBLD... 31

 iii

ALL31... 31
CBLPSHPOP... 32
CHECK.. 33
DEBUG..33
INTERRUPT.. 33
RPTOPTS.. 34
RPTSTG...34
STORAGE..34
TEST... 36
TRAP...36
VCTRSAVE.. 37

Chapter 5. COBOL and LE features that affect runtime performance...................... 39
Storage management tuning... 39
Storage tuning user exit...40
Using the CEEENTRY and CEETERM macros...40
Using preinitialization services (CEEPIPI) ..40
Using library routine retention (LRR)...41
Library in the LPA/ELPA... 42
Using CALLs..42
Using IS INITIAL on the PROGRAM-ID statement or INITIAL compiler option...................................... 43
Using IS RECURSIVE on the PROGRAM-ID statement... 43

Chapter 6. Other product related factors that affect runtime performance.............45
Decimal overflow implications in ILC applications... 45
First program not LE-conforming.. 46
CICS..46
Db2... 48
DFSORT.. 48
IMS... 48
LLA..49

Chapter 7. Coding techniques to get the most out of V6...51
BINARY (COMP or COMP-4).. 51
DISPLAY... 53
PACKED-DECIMAL (COMP-3).. 53
Fixed-point versus floating-point.. 54
Factoring expressions..54
Symbolic constants..55
Performance tuning considerations for Occurs Depending On tables... 55
Using PERFORM... 55
Using QSAM files..57
Using variable-length files...57
Using HFS files... 58
Using VSAM files.. 58

VSAM dynamic access optional logic path.. 59

Chapter 8. Program object size and PDSE requirement... 61
Changes in load module size between V4 and V6.. 61
Impact of TEST suboptions on program object size... 61
Why does COBOL V6 use PDSEs for executables?..63

Appendix A. Using IBM Automatic Binary Optimizer for z/OS (ABO) to improve
COBOL application performance...65

Appendix B. Intrinsic function implementation considerations..............................67

iv

Appendix C. Accessibility features for Enterprise COBOL for z/OS......................... 71

Notices..73
Trademarks.. 75
Disclaimer.. 75

Glossary..77
List of resources.. 121

Enterprise COBOL for z/OS..121
Related publications..121

 v

vi

Tables

1. ARCH levels with average improvement...16

2. ARCH settings and hardware models... 17

3. Setting INVDATA and NUMPROC options when migrating from earlier COBOL versions......................... 22

4. Performance degradations of TEST(NOEJPD) or TEST(EJPD) over NOTEST...27

5. Performance differences results of four test cases when specifying TRUNC(STD).................................. 51

6. Performance differences results of four test cases when specifying TRUNC(BIN).................................. 52

7. Performance differences results of four test cases when specifying TRUNC(OPT)..................................52

8. CPU time, elapsed time and EXCP counts with different access mode...58

9. NOTEST(DWARF) % size increase over NOTEST(NODWARF)..62

10. TEST % size increase over NOTEST..62

11. TEST(SOURCE) % size increase over TEST(NOSOURCE)...63

12. TEST(EJPD) % size increase over TEST(NOEJPD)... 63

13. Intrinsic Function Implementation.. 67

 vii

viii

Preface

About this information
This document identifies key performance benefits and tuning considerations when using IBM Enterprise
COBOL for z/OS Version 6 Release 3.

First, this document gives an overview of the major performance features and options in Version 6 of
the compiler, followed by performance improvements for several specific COBOL statements. Next, it
provides tuning considerations for many compiler and runtime options that affect the performance of
a COBOL application. Coding techniques to get the best performance are examined next with a special
focus on any coding recommendations that have changed when using Version 6.

The final section examines some causes of increased program object size and studies the object size
impact of the various new TEST suboptions as well as discussing the related issue of why PDSEs are
required for programs compiled using Version 6.

The performance characteristics of Version 5 of the compiler are similar to Version 6. Except where
otherwise noted, the information and recommendations in this document are also applicable to Version
5. Because the performance tuning changes required during migration from Version 5 to Version 6 are
so small, recommendations and comparisons in this document assume that the reader is migrating from
Version 4 of the compiler.

As the hardware evolves, V6 generated code is always improved. V4 generated code may improve as well,
and in some cases, may improve even greater than V6. Thus, the apparent speedup of V6 generated code
relative to V4 generated code is not monotonically increasing with each new generation of hardware.

Performance measurements
The performance measurements in this information were made on the IBM z15® system. The programs
used were batch-type (non-interactive) applications. Unless otherwise indicated, all performance
comparisons made in this information are referencing CPU time performance and not elapsed time
performance.

Note: Except where otherwise noted, performance comparisons in this document are measured
using microbenchmarks. Each microbenchmark is designed to highlight the compiler's performance
improvement in a specific area. Real programs typically use a mix of features. A program will only see
a performance improvement from improvements in the compiler if the program spends a significant
percentage of its time executing code that is affected by those improvements.

Summary of changes
This section lists the major changes that have been made to this document since Enterprise COBOL for
z/OS V6.3. The changes that are described in this information have an associated cross-reference for your
convenience. The latest technical changes are marked within >| and |< in the HTML version, or marked by
vertical bars (|) in the left margin in the PDF version.

For a complete list of new and improved features in Enterprise COBOL for z/OS 6.3 and COBOL 6.3 with
PTFs installed, see What is new in Enterprise COBOL for z/OS 6.3 and COBOL 6.3 with PTFs installed in
the Enterprise COBOL for z/OS What's New.

Version 6 Release 3 with PTFs installed
• PH37328: INVDATA: The new INVDATA compiler option replaces the deprecated ZONEDATA compiler

option and provides users fine-grained control over how the compiler generates code to handle USAGE
DISPLAY and USAGE PACKED-DECIMAL data items that contain invalid data. (“INVDATA” on page 21)

© Copyright IBM Corp. 1993, 2024 ix

• PH40356: NUMCHECK(ZON): LAXREDEF|STRICTREDEF is deprecated but is tolerated for compatibility,
and it is replaced by the LAX|STRICT option. (“NUMCHECK ” on page 24)

• PH56036 and PH56037: An optional alternate logic path is introduced for VSAM files that use the
ACCESS IS DYNAMIC mode. The alternate logic path uses a direct read-by-key request instead of a
point to a record by key. (“VSAM dynamic access optional logic path” on page 59)

Version 6 Release 3

Architecture exploitation
• A new higher level of ARCH(13) is accepted. The new hardware feature, the ability to suppress hardware

overflow exceptions on individual vector packed decimal instructions, is introduced. For more details,
see “Architecture exploitation” on page 1.

Enhanced functionality
Changes in IBM Enterprise COBOL for z/OS, Version 6 Release 3 in the Enterprise COBOL for z/OS Migration
Guide contains a complete list of new and changed functions in Enterprise COBOL V6.3. Some highlights
are:

• Support for creating AMODE 64 (64-bit) batch applications.
• Improved processing of UTF-8 data by supporting the UTF-8 data type.
• Support for the FUNCTION specifier INTRINSIC in the REPOSITORY paragraph. This is part of the 2002

COBOL Standard.
• Support for the DYNAMIC LENGTH clause to specify a dynamic-length elementary item. This is part of

the 2014 COBOL Standard.

V6.3 continues to support all of the new features introduced in V6.2, V6.1, and V5.

How to use examples
This information shows numerous examples of sample COBOL statements, program fragments, and small
programs to illustrate the coding techniques being described. The examples of program code are written
in lowercase, uppercase, or mixed case to demonstrate that you can write your programs in any of these
ways.

To more clearly separate some examples from the explanatory text, they are presented in a monospace
font.

COBOL keywords and compiler options that appear in text are generally shown in SMALL UPPERCASE.
Other terms such as program variable names are sometimes shown in an italic font for clarity.

If you copy and paste examples from the PDF format documentation, make sure that the spaces in the
examples (if any) are in place; you might need to manually add some missing spaces to ensure that
COBOL source text aligns to the required columns per the COBOL reference format in the Enterprise
COBOL for z/OS Language Reference. Alternatively, you can copy and paste examples from the HTML
format documentation and the spaces should be already in place.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this information or any other Enterprise COBOL documentation, send your comments to:
compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number, the version of Enterprise COBOL,
and, if applicable, the specific location (for example, the page number or section heading) of the text that
you are commenting on.

x Preface

mailto:compinfo@cn.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way that IBM believes appropriate without incurring any obligation to you.

Preface xi

xii Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 1. Why recompile with V6?
Enterprise COBOL V6 includes a number of improvements over Enterprise COBOL V5 and V4. Recompiling
your applications will leverage the advanced optimizations and z/Architecture® exploitation capabilities in
Enterprise COBOL V6, delivering performance improvements for COBOL on IBM Z. Compared to COBOL
V5, the capacity of the COBOL V6 compiler internals are expanded to allow for the compilation and
optimization of large programs. You can now use COBOL V6 to compile much larger programs, including
COBOL programs that are created by code generators.

Improved performance is delivered through:

• “Architecture exploitation” on page 1
• “Advanced optimization” on page 3
• “Enhanced functionality” on page 4

Architecture exploitation
COBOL V6 continues to support the ARCH option (short for architecture) introduced in COBOL V5.
This option exploits new hardware instructions and enables you to get the most out of your hardware
investment.

The default setting for ARCH is 8, and other supported values are 9, 10, 11, 12, and 13.

For more information on the facilities available at each level, and the mapping of these ARCH levels to
specific hardware models, see ARCH in the Enterprise COBOL for z/OS Programming Guide.

Each successive ARCH level allows the compiler to exploit more facilities in your hardware leading to the
potential for increased performance. To illustrate the benefits from a COBOL application perspective, each
ARCH level will be examined in greater detail below.

ARCH(8)
Hardware Feature: Decimal Floating Point (DFP)

Why This Matters For COBOL Performance: Decimal Floating Point is a natural fit for the packed decimal
(COMP-3) and external decimal (DISPLAY) types that are ubiquitous in most COBOL applications. Using
ARCH(8) and some OPTIMIZE setting above 0 enables the compiler to convert larger multiply and divide
operations on any type of decimal operands to DFP, in order to avoid an expensive callout to a library
routine.

This is possible as the hardware precision limit for DFP is much greater than is allowed in the packed
decimal multiply and divide instructions.

The overhead of converting to DFP means that it is not suitable for all decimal arithmetic that would not
need a library call. However, the ARCH(10) option described later in this section enables much greater use
of DFP to improve performance.

Hardware Feature: Larger Move Immediate Instructions

Why This Matters For COBOL Performance: MOVEs of literal data and VALUE clause statements are
common in many COBOL applications. Lower ARCH settings and all earlier compiler releases only
contained support for moving a single byte of literal data in a single instruction, for example, by using
the MVI - Move Immediate Instruction.

Any larger literal data required storing the constant value in the literal pool and using a memory move
instruction to initialize the data item. This was less efficient in time and space than being able to embed
larger immediate values directly in the instruction text.

With ARCH(8), several new move immediate instruction variants are available to move up to 16 bytes of
sign extended data using one or two of these new instructions.

© Copyright IBM Corp. 1993, 2024 1

Also, these instructions are exploited regardless of the data type, so binary, internal/external decimal,
alphanumeric, and even floating point literals take advantage of these more efficient instructions.

ARCH(9)
Hardware Feature: Distinct Operands Instructions

Why This Matters For COBOL Performance: Updating a data item or index to a new value while retaining
the original value occurs frequently in many contexts in a typical COBOL application. One instance is when
processing a table as some base value for the table is updated to access the various elements within the
table. Under lower ARCH settings or in all earlier compiler releases, almost all instructions available that
took two operands to produce a result would also overwrite the input first operand with the result.

For example: a conceptual operation such as:

C = A + B

Implemented with a pre ARCH(9) instruction variant would conceptually have to perform the operation as:

A = A + B
C = A

This means if the original value of A is required in another context, it must first be saved:

T = A
T = T + B
C = T

With ARCH(9), the distinct-operands facility is exploited to take advantage of the new variants of many
arithmetic, shift, and logical instructions that will not destructively overwrite the first operand.

So the operation can be implemented in a more straightforward way:

C = A + B

That removes the need for extra instructions to save the original value as it is naturally preserved with the
distinct operand instruction form. This feature reduces path length leading to better performance.

ARCH(10)
Hardware Feature: Improved Decimal Floating Point (DFP) Performance

Why This Matters For COBOL Performance: Using ARCH(8) and an OPTIMIZE setting greater than 0 already
enables the compiler to make use of DFP to improve performance of packed and external decimal
arithmetic in some particular instances. ARCH(10) goes further by adding efficient instructions to convert
between DISPLAY (in particular unsigned and trailing signed overpunch zoned decimal) types and DFP.

These ARCH(10) instructions lower the overhead for using DFP for arithmetic on zoned decimal data
items and enable the compiler to make much greater use of DFP to improve performance when the
surrounding conditions are optimal and the optimization level is greater than 0.

Instead of converting zoned decimal data items to packed decimal format to perform arithmetic, the
compiler will convert zoned decimal data directly to DFP format and then back again to zoned decimal
format after the computations are complete. This generally results in better performance, as the DFP
instructions operate on in-register (compared to in-memory) data that is more efficiently handled by the
hardware in many cases.

ARCH(11)
Hardware Feature: Improved conversion between packed decimal and Decimal Floating Point (DFP)

Why This Matters For COBOL Performance: At ARCH(10), the compiler is able to convert more efficiently
between DISPLAY types and DFP, enabling the compiler to make significant use of DFP to improve
performance of packed and external decimal arithmetic. While instructions to convert between packed

2 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

decimal and DFP existed at ARCH(10), they were inefficient, and the benefit of performing packed
arithmetic in DFP was outweighed by the cost of converting packed decimal values to and from DFP.

With ARCH(11), there are new instructions that convert between packed decimal and DFP more
efficiently. They lower the overhead for using DFP arithmetic on packed decimal data items, enabling the
compiler to make further use of DFP when the surrounding conditions are optimal and the optimization
level is greater than 0.

Instead of performing arithmetic on packed decimal items, the compiler will convert packed decimal
data to DFP format and then back again to packed decimal format after the computations are complete.
This generally results in better performance, as the DFP instructions operate on in-register (compared
to in-memory) data that is more efficiently handled by the hardware in many cases. Due to the more
efficient conversion instructions, the benefit of performing arithmetic in DFP outweighs the added cost of
converting between packed decimal and DFP instead of performing packed arithmetic directly.

Hardware Feature: Vector Registers

Why This Matters For COBOL Performance: The new vector facility is able to operate on up to 16 byte-sized
elements in parallel. With ARCH(11), COBOL V6 is able to take advantage of the new vector instructions
to accelerate some forms of INSPECT statements by working with 16 bytes at a time. This can be much
faster than operating on 1 byte at a time.

ARCH(12)
Hardware Feature: Vector packed decimal instructions

Why This Matters For COBOL Performance: In ARCH(11) and below, packed decimal arithmetic can only be
performed using in-memory data, or by converting the data to Decimal Floating Point (DFP). In ARCH(12),
the new vector packed decimal facility enables the compiler to perform native packed decimal arithmetic
on data-in registers. This provides the performance advantages of using registers instead of memory,
while eliminating the overhead of converting data back and forth between packed decimal and DFP.

ARCH(13)
Hardware Feature: Ability to suppress hardware overflow exceptions on individual vector packed decimal
instructions

Why This Matters For COBOL Performance:When a packed decimal overflow occurs, the hardware can
suppress the overflow without doing anything, and this is the default COBOL behavior, or it can raise
an exception. This is controlled by an application-wide hardware setting. As the correct behavior for
COBOL programs is to have the overflow exception suppressed, Enterprise COBOL programs do not
change this setting. In a pure COBOL application, all overflows are suppressed at the hardware level. In
a mixed-language application, other languages turn this setting on, causing exceptions. As the setting is
application-wide, this affects COBOL programs as well. The exceptions are handled by LE, which chooses
to suppress them if they're generated from a COBOL program, but there's a performance penalty for LE
getting involved. COBOL programs also do not turn the setting on and off, as in programs with few or no
overflows, that would also incur a performance penalty.

At ARCH(13), the vector packed decimal instructions introduced at ARCH(12) can indicate, per
instruction, whether the overflow should be suppressed or not. This allows the hardware to suppress
the overflows for COBOL programs without getting LE involved, and without the overhead of changing the
setting.

Advanced optimization
In addition to deep architecture exploitation, Enterprise COBOL V6 improves performance of your
application by employing a suite of advanced optimizations. In V4, the OPTIMIZE option has three
settings; however, the kind and number of optimizations enabled in V6 is quite different.

Specifying OPTIMIZE(1) or OPTIMIZE(2) enables a range of general and COBOL specific optimizations.

For example, specifying OPTIMIZE(1) enables optimizations including:

Chapter 1. Why recompile with V6? 3

• Strength reduction of complex and expensive operations, such as:

– Reducing decimal multiply and divide by powers of ten, to simpler and better performing decimal
shift operations

– Reducing binary multiply and divide by powers of two to less expensive shift operations
– Reducing exponentiation operations with a constant exponent to series of multiplications
– Refactoring and redistributing arithmetic

• Eliminate common sub expressions, so computations are not duplicated
• Inline out-of-line PERFORM statements to save the branching overhead and expose other optimization

opportunities for the surrounding code
• Coalesce sequential stores of constant values to a single larger store to reduce path length
• Coalesce individual loads/stores from/to sequential storage to a single larger move operation to reduce

path length and reduce overall object size
• Simplify code to remove unneeded computations
• Remove unreachable code
• Propagate the VALUE OF clause literal over the entire program for data items that are read but never

written
• Move nested programs inline to reduce CALL overhead and expose other optimization opportunities for

the surrounding code
• Compute constant expressions, including the full range of arithmetic, data type conversions and

branches, at compile-time
• Use a better performing branchless sequence for conditionally setting level-88 variables
• Convert some packed and zoned decimal computations to use better performing Decimal Floating Point

types
• Perform comparisons of small DISPLAY and COMP-3 items in registers, instead of in memory
• Generate faster code for moves to numeric-edited items
• Use a better-performing sequence for DIVIDE GIVING REMAINDER

When specifying OPTIMIZE(2), all the optimizations above are enabled plus additional optimizations,
including:

• Propagate values and ranges of values over the entire program to expose constants and enable simpler
sequences of instructions to be used

• Propagate sign values, including the "unsigned" sign encoding, over the entire program to eliminate
redundant sign correction

• Allocate global registers for accessing indexed tables, and control PERFORM 'N' TIMES looping
constructs to reduce path length

• Remove redundant sign correction operations globally. For example, if a sign correction for a data item
in a loop is dominated by one outside of a loop to the same data item, then these sign-correcting
instructions in the loop will be removed

Enhanced functionality
In addition to the performance improvements offered on your existing programs through architecture
exploitation and advanced optimizations, COBOL V6 also offers enhanced functionality in several areas.

Highlights in Version 6 Release 3
Changes in IBM Enterprise COBOL for z/OS, Version 6 Release 3 in the Enterprise COBOL for z/OS Migration
Guide contains a complete list of new and changed functions in Enterprise COBOL V6.3. Some highlights
are:

• Support for creating AMODE 64 (64-bit) batch applications.

4 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

• Improved processing of UTF-8 data by supporting the UTF-8 data type.
• Support for the FUNCTION specifier INTRINSIC in the REPOSITORY paragraph. This is part of the 2002

COBOL Standard.
• Support for the DYNAMIC LENGTH clause to specify a dynamic-length elementary item. This is part of

the 2014 COBOL Standard.

V6.3 continues to support all of the new features introduced in V6.2, V6.1, and V5.

Highlights in Version 6 Release 2
Changes in IBM Enterprise COBOL for z/OS, Version 6 Release 2 in the Enterprise COBOL for z/OS Migration
Guide contains a complete list of new and changed functions in Enterprise COBOL V6.2. Some highlights
are:

• Support for parsing JSON using the new JSON PARSE statement
• Support for conditional compilation using the new IF, EVALUATE, and DEFINE directives
• Support for controlling the inlining of PERFORM statements using the new INLINE directive (only

available in V6.2) and option (also available in V6.1 with service PTFs)
• Support for detecting invalid numeric data using the new NUMCHECK option (also available in V6.1 with

service PTFs)
• Support for detecting corruption beyond the end of working storage caused by mismatched parameter

blocks using the new PARMCHECK option (also available in V6.1 with service PTFs)

V6.2 continues to support all of the new features introduced in V6.1 and V5.

Highlights in Version 6 Release 1
Some highlights in V6.1 are:

• Support for the new ALLOCATE and FREE statements to obtain and release dynamic storage
• Enhancements to the INITIALIZE statement to support FILLER and VALUE clauses
• Support for generating JSON using the new GENERATE JSON statement
• Support for the new VSAMOPENFS and SUPPRESS options
• Enhancements to the SSRANGE option

V6.1 continues to support all of the new features introduced in V5.

Chapter 1. Why recompile with V6? 5

6 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 2. Prioritizing your application for migration
to V6

In order to prioritize your migration effort to V6, this section describes a number of specific COBOL
statements and data type declarations that typically perform better with V5 and V6 versus earlier releases
of the compiler. This is not meant to be an exhaustive list, but instead demonstrate some specific known
cases where V5 and V6 performs reliably well.

See Prioritizing your applications in the Enterprise COBOL for z/OS Migration Guide for related information
about migrating to maintain correctness of your application.

All performance measurements are compared to running the same program on the same machine
level but compiled with V4. In all cases, the V4 programs were compiled with OPTIMIZE(FULL) and
other options left at their default settings, except when ARITH(EXTEND) was required for the data that
contained more than 18 digits.

COMPUTE
A significant number of COMPUTE, ADD, SUBTRACT, MULTIPLY, DIVIDE statements show improved
performance in V6.

Under "Data types" in the following examples, italics are used to indicate the variant tested for
performance, but all data types listed would demonstrate similar performance results.

Larger decimal multiply/divide
Statement: COMPUTE (* | /), MULTIPLY, DIVIDE

Data types: COMP-3, DISPLAY, NATIONAL

Options: OPT(1 | 2)

Conditions: When intermediate results exceed the limits for using the hardware packed decimal
instructions. This occurs at around 15 digits depending on the particular operation.

V4 behavior: Call to runtime routine

V6 behavior: Inline after converting to DFP

Source Example:

1 z14v2 pic s9(14)v9(2)
1 z13v2 pic s9(13)v9(2)

Compute z14v2 = z14v2 / z13v2.

Performance: V6 is 43% faster than V4

Zoned decimal (DISPLAY) arithmetic
Statement: COMPUTE (+ | - | * | /), ADD, SUBTRACT, MULTIPLY, DIVIDE

Data types: DISPLAY

Options: OPT(1 | 2), ARCH(10)

Conditions: In all cases

V4 behavior: Inline using packed decimal instructions

V6 behavior: Inline after converting to DFP

© Copyright IBM Corp. 1993, 2024 7

Source Example:

1 z12v2 pic s9(12)v9(2)
1 z11v2 pic s9(11)v9(2)
Compute z12v2 = z12v2 / z11v2

Performance: V6 is 59% faster than V4

Divide by powers of ten (10,100,1000,..)
Statement: COMPUTE (/), DIVIDE

Data types: COMP-3, DISPLAY, NATIONAL

Options: Default

Conditions: Divisor is a power of 10 (e.g. 10,100,1000,…)

V4 behavior: Use packed decimal divide (DP) instruction

V6 behavior: Model as decimal right shift

Source Example:

1 p8v2a pic s9(8)v9(2) comp-3
1 p8v2b pic s9(8)v9(2) comp-3

Compute p8v2b = p8v2a / 100

Performance: V6 is 45% faster than V4

Multiply by powers of ten (10,100,1000,..)
Statement: COMPUTE (/), MULTIPLY

Data types: COMP-3, DISPLAY, NATIONAL

Options: Default

Conditions: Multiply is a power of 10 (e.g. 10,100,1000,…)

V4 behavior: Use packed decimal multiply (MP) instruction

V6 behavior: Model as decimal left shift

Source Example:

1 z5v2 pic s9(5)v9(2)
1 z7v2 pic s9(7)v9(2)

Compute z7v2 = z5v2 * 100

Performance: V6 is 73% faster than V4

Decimal exponentiation
Statement: COMPUTE (**)

Data types: COMP-3, DISPLAY, NATIONAL

Options: Default

Conditions: In all cases

V4 behavior: Call to runtime routine

V6 behavior: Call to a more efficient runtime routine

8 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Source Example:

1 R PIC 9v9(8) value 0.05.
1 NF PIC 9(4) value 300.
1 EXP PIC 9(23)v9(8).

COMPUTE EXP = (1.0 + R) ** NF.

Performance: V6 is 96% faster than V4

Decimal scaling and divide
Statement: COMPUTE (/), DIVIDE

Data types: COMP-3, DISPLAY, NATIONAL

Options: Default

Conditions: When the divisor value and the decimal scaling cancel out. In the example below, the divide
operation necessitates a decimal left shift by 2, and since the divide by 100 is modelled as the decimal
right shift by 2, these operations cancel out.

V4 behavior: Use packed decimal shift (SRP) and divide (DP) instructions

V6 behavior: Divide and decimal scaling are cancelled out so instructions equivalent to a simple MOVE
operation are generated

Source Example:

1 p9v0 pic s9(9) comp-3
1 p10v2 pic s9(10)v9(2) comp-3.

COMPUTE p10v2 = p9v0 / 100

Performance: V6 is 89% faster than V4

TRUNC(STD) binary arithmetic
Statement: COMPUTE (+ | - | * | /), ADD, SUBTRACT, MULTIPLY, DIVIDE

Data types: BINARY, COMP, COMP-4

Options: TRUNC(STD)

Conditions: In all cases

V4 behavior: Use an expensive divide operation to correct digits back to PIC specification

V6 behavior: Only use divide when actually required (in cases of overflow).

Source Example:

1 b5v2a pic s9(5)v9(2) comp.
1 b5v2b pic s9(5)v9(2) comp.

COMPUTE b5v2a = b5v2a + b5v2b

Performance: V6 is 75% faster than V4

Large binary arithmetic
Statement: COMPUTE (+ | - | * | /), ADD, SUBTRACT, MULTIPLY, DIVIDE

Data types: BINARY, COMP, COMP-4

Options: TRUNC(STD)

Conditions: Intermediate results exceed 9 digits

V4 behavior: Arithmetic performed piecewise and converted to packed decimal

Chapter 2. Prioritizing your application for migration to V6 9

V6 behavior: Arithmetic performed in 64-bit registers

Source Example:

1 b8v2a pic s9(8)v9(2) comp.
1 b8v2b pic s9(9)v9(2) comp.

Compute b8v2a = b8v2a + b8v2b.

Performance: V6 is 93% faster than V4

Negation of decimal values
Statement: COMPUTE (-), SUBTRACT

Data types: COMP-3, DISPLAY, NATIONAL

Options: Default

Conditions: In all cases

V4 behavior: Treat as any other subtract from zero

V6 behavior: Recognize as a special case negate operation

Source Example:

1 p7v2a pic s9(7)v9(2) comp-3.
1 p7v2b pic s9(7)v9(2) comp-3.

Compute p7v2b = - p7v2a.

Performance: V6 is 26% faster than V4

Fusing DIVIDE GIVING REMAINDER
Statement: DIVIDE

Data types: COMP-3, DISPLAY

Options: OPT(1 | 2)

Conditions: Both the remainder and the quotient of a division are being used

V4 behavior: Separate divide and remainder computations

V6 behavior: Uses a single DP instruction, and recovers both the remainder and the quotient

Source Example:

01 A COMP-3 PIC S9(15).
01 B COMP-3 PIC S9(15).
01 C COMP-3 PIC S9(15).
01 D COMP-3 PIC S9(15).

DIVIDE A BY B GIVING C REMAINDER D

Performance: V6 is 2% faster than V4

INSPECT

INSPECT REPLACING ALL on 1 byte operands
Statement: INSPECT REPLACING ALL

Data types: PIC X

Options: Default

10 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Conditions: In all cases

V4 behavior: Uses general translate instruction as in all cases

V6 behavior: Handle short cases with a simple test and move

Source Example:

1 ITEM PIC X(1)

INSPECT ITEM REPLACING ALL ‘ ‘ BY ‘.’.

Performance: V6 is 84% faster than V4

Consecutive INSPECTs on the same data item
Statement: More than one consecutive INSPECT REPLACING ALL on the same data item

Data types: PIC X

Options: OPT(1 | 2)

Conditions: When the compiler can prove, according to the rules of INSPECT, that the optimization will
not alter the result.

V4 behavior: Generate separate operations for each INSPECT operation

V6 behavior: Coalesce the separate INSPECTs into a single INSPECT operation

Source Example:

1 ITEM PIC X(15)

INSPECT ITEM REPLACING ALL QUOTE BY SPACE.
INSPECT ITEM REPLACING ALL LOW-VALUE BY SPACE.

Performance: V6 is 57% faster than V4

INSPECT TALLYING ALL / INSPECT REPLACING ALL
Statement: INSPECT TALLYING ALL / INSPECT REPLACING ALL

Data types: PIC X

Options: ARCH(11)

Conditions: No BEFORE, AFTER, FIRST, or LEADING clause. For REPLACING, the replaced value must
have length > 1

V4 behavior: Use regular instructions or runtime calls

COBOL 6 behavior: At ARCH(11), COBOL 6 is able to generate code using the vector instructions
introduced in z13®. These instructions are able to process up to 16 bytes at a time

Source Example:

01 STR PIC X(255).
01 C PIC 9(5) COMP-5 VALUE 0.

INSPECT STR TALLYING C FOR ALL ' '

Performance: V6 ARCH(11) is 98% faster than V4

Source Example:

01 STR PIC X(255).

INSPECT STR REPLACING ALL 'AB' BY 'CD'

Performance: V6 ARCH(11) is 78% faster than V4

Chapter 2. Prioritizing your application for migration to V6 11

MOVE

VALUE clause and initializing groups
Statement: MOVE and VALUE IS

Data types: All types

Options: OPT(1 | 2)

Conditions: Initializing data items with literals

V4 behavior: Series of separate and sequential move instructions

V6 behavior: Coalesces literals and generates fewer move instructions

Source Example:

01 WS-GROUP.
 05 WS-COMP3 COMP-3 PIC S9(13)V9(2).
 05 WS-COMP COMP PIC S9(9)V9(2).
 05 WS-COMP5 COMP-5 PIC S9(5)V9(2).
 05 WS-COMP1 COMP-1.
 05 WS-ALPHANUM PIC X(11).
 05 WS-DISPLAY PIC 9(13) DISPLAY.
 05 WS-COMP2 COMP-2.

Move +0 to WS-COMP5
 WS-COMP3
 WS-COMP
 WS-DISPLAY
 WS-COMP1
 WS-COMP2
 WS-ALPHANUM.

Performance: V6 is 20% faster than V4

Moving into numeric-edited data items
Statement: MOVE

Data types: Receiver is numeric-edited

Options: OPT(1 | 2)

Conditions: None

V4 behavior: Uses the ED or EDMK instruction in all cases

V6 behavior: The ED and EDMK instructions, which handle numeric edits, are extremely slow. V6 converts
uses of these specialized instructions into a series of other instructions. This is a new optimization
technique in V6.

Source Example:

01 PRINCIPAL PIC 9(8)V9999 VALUE 1234.1234.
01 AMT-PRINCIPAL PIC $,$$$,$$9.99.

Move PRINCIPAL to AMT-PRINCIPAL.

Performance: V6 is 41% faster

SEARCH

SEARCH ALL
Statement: SEARCH ALL

12 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Options: Default

Conditions: In all cases

V4 behavior: Call to runtime routine

V6 behavior: Call to a more efficient runtime routine

Source Example:

SEARCH ALL table
 AT END
 statements
 WHEN conditions
 statements

Performance: V6 is 50% faster than V4

Tables

Indexed tables
Statement: Accessing data items in indexed tables

Options: OPT(2)

Conditions: In all cases

V6 behavior: An efficient sequence is used to access indexed table elements by caching the offset to the
start of the table in a globally available register versus having to reload this each time

Source Example:

1 TAB.
 5 TABENTS OCCURS 40 TIMES INDEXED BY TABIDX.
 10 TABENT1 PIC X(4) VALUE SPACES.
 10 TABENT2 PIC X(4) VALUE SPACES.

IF TABENT1 (TABIDX) NOT = TABENT2 (TABIDX)
 statements
END-IF

Performance: V6 is 17% faster than V4

Conditional expressions

Comparing small data items to constants
Statement: conditional expressions

Data types: DISPLAY, COMP-3

Options: OPT(1 | 2)

Conditions: The data item has 8 or fewer digits if zoned, or 15 or fewer digits if packed.

V4 behavior: Using in-memory instructions, modifies the sign code of the data item to a known value,
then compares to a constant.

V6 behavior: Loads the value of the data item into a register, then modifies the sign code and performs
the comparison in a register. This is a new optimization in V6.

Source Example:

01 A PIC 9(4).

Chapter 2. Prioritizing your application for migration to V6 13

If A = 0 THEN
...

Performance: This depends on the architecture level. On zEC12, V6 is 60% faster than V4. On
subsequent implementations of the Z architecture, V6 generated code may be up to 91% faster than
V4 generated code.

14 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 3. How to tune compiler options to get the
most out of V6

Enterprise COBOL V6 offers a number of new and substantially changed compiler options that can affect
performance. This section highlights these options and gives recommendations on the optimal settings in
order to achieve the best possible performance for your application.

Recommended compiler option set for best performance is: OPT(2), ARCH(x), TUNE(y).

These options improve performance through:

• Maximum level of optimization - OPT(2)
• Deepest architecture exploitation:

– ARCH(x), where x = 8 | 9 | 10 | 11 | 12 | 13. Set the value to match the architecture of the oldest
machine where your application will run, including any disaster recovery systems.

– TUNE(y), where y = 8 | 9 | 10 | 11 | 12 | 13. Set the value to match the architecture of the machine
where your application will run most often. The TUNE level must always be greater or equal to the
ARCH level.

Refer to the recommendations in this document and Enterprise COBOL for z/OS Programming Guide.

Additional settings for maximum performance applicable to some users are: STGOPT, AFP(NOVOLATILE),
HGPR(NOPRESERVE).

These options improve performance through:

• Removal of unreferenced data items – STGOPT
• Omitting of saves/restores for floating point and high word registers – AFP and HGPR

Note: There are some important prerequisites for using these additional options as discussed below, and
in Compiler options in the Enterprise COBOL for z/OS Programming Guide. Read and understand these
options settings completely before using.

In short, these restrictions are:

• STGOPT - You cannot use STGOPT if your program relies upon any of the following data items:

– Unreferenced LOCAL-STORAGE and non-external WORKING-STORAGE level-77 and level-01
elementary data items

– Non-external level-01 group items if none of their subordinate items are referenced
– Unreferenced special registers

• Omitting saves/restores for high word registers - HPGR
• HGPR(NOPRESERVE) – must only be set when the caller is Enterprise COBOL, Enterprise PL/I or z/OS

XL C/C++ compiler-generated code

Next we will discuss the considerations when setting these and other performance-related compiler
options.

Related references
Performance-related compiler options
(Enterprise COBOL for z/OS Programming Guide)

AFP
Default

AFP(NOVOLATILE)

© Copyright IBM Corp. 1993, 2024 15

Recommended
AFP(NOVOLATILE)

Reasoning

When AFP(VOLATILE) is specified, values cannot be saved in registers FP8-FP15 during calls. They
must instead be saved in memory and subsequently restored. The performance impact is most
significant for small programs called many times.

The use of AFP(NOVOLATILE) over AFP(VOLATILE) reduces the overhead of a program call by
4% at OPT(2). Note this was measured in an otherwise empty COBOL program to emphasize the
performance cost of this option and would be less of an overall degradation in a more substantial
called program.

Considerations
Specifying AFP(NOVOLATILE) requires a CICS® Transaction Server V4.1 or later.

Note: AFP has no effect when the LP(64) compiler option is specified. This means user application
has no control on COBOL compiler's usage of floating point registers. The compiler may behave as if
AFP(NOVOLATILE) is specified. Note that with LP(64), register usage (what is preserved and what is
volatile) for all register classes is in accordance with the XPLINK specification. No guarantees beyond this
specification are supported.

Related references
AFP (Enterprise COBOL for z/OS Programming Guide)

ARCH
Default

ARCH(8)
Recommended

ARCH(x) where x is the lowest level of hardware your application will have to be run on, including any
disaster recovery systems.

Reasoning
Higher ARCH settings enable the compiler to exploit features of the corresponding and all earlier
hardware models in order to achieve the best performance.

Note: Your application might abend if it runs on a processor with an architecture level lower than what
you specified with the ARCH option.

Considerations

None besides matching to hardware level

By varying only ARCH and keeping the other options at their best recommended settings, the following
performance improvements were measured over a set of IBM internal performance benchmarks:

Table 1. ARCH levels with average improvement

ARCH Levels Average % Improvement

ARCH(9) vs. ARCH(8) 0.3%

ARCH(10) vs. ARCH(9) 9.1%

ARCH(11) vs. ARCH(10) 0.9%

ARCH(12) vs. ARCH(11) 8.7%

ARCH(13) vs. ARCH(12) 1.1%

When moving from ARCH(8) directly to ARCH(13), the average performance gain on these same set of
benchmarks is 23%.

16 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Note that only the ARCH compiler option was changed for the numbers above, and the underlying
hardware was an IBM z14™ machine in all cases. This means the performance gains are strictly from
compiler improvements in optimizing the COBOL applications tested.

This set of benchmarks is a mix of computation intensive and I/O intensive applications. Computation
intensive applications see the largest improvement: for example, one computation intensive
benchmark is reduced by 86% in execution time moving from ARCH(7) to ARCH(12). Other
benchmarks spend the majority of their time performing I/O operations, and relatively little time
in compiler-generated code. The performance of these benchmarks is not significantly affected by the
ARCH option.

For reference, the mapping between ARCH settings and hardware models is provided below:

Table 2. ARCH settings and hardware models

ARCH Hardware Models

ARCH(8) 2097-xxx models (IBM System z10® EC)
2098-xxx models (IBM System z10 BC)

ARCH(9) 2817-xxx models (IBM zEnterprise® z196 EC)
2818-xxx models (IBM zEnterprise z114 BC)

ARCH(10) 2827-xxx models (IBM zEnterprise EC12)
2828-xxx models (IBM zEnterprise BC12)

ARCH(11) 2964-xxx models (IBM z13®)
2965-xxx models (IBM z13s®)

ARCH(12) 3906-xxx models (IBM z14)
3907-xxx (IBM z14 ZR1) models

ARCH(13) 8561-xxx models (IBM z15)
8562-xxx (IBM z15 T02) models

Related references
ARCH
(Enterprise COBOL for z/OS Programming Guide)

ARITH
Default

ARITH(COMPAT)
Recommended

Use ARITH(EXTEND) only if the larger maximum number of digits enabled by this option is required
(31 instead of 18). Otherwise, use ARITH(COMPAT) as it can result in better performance in some
cases.

Reasoning

In addition to allowing larger variables to be declared, ARITH(EXTEND) also raises the maximum
number of digits maintained for intermediate results. These larger intermediate results sometimes
require different, slower code to be generated. Inline calculations may need to be replaced with more
expensive runtime library routines.

For example, the comp-1 floating point exponentiation:

COMPUTE C = A ** B

Is 67% faster when using ARITH(COMPAT) compared to ARITH(EXTEND).

Related references
ARITH (Enterprise COBOL for z/OS Programming Guide)

Chapter 3. How to tune compiler options to get the most out of V6 17

AWO
Default

NOAWO
Recommended

AWO, unless the written record is required to be updated on disk as soon as possible
Reasoning

A large reduction of EXCPs is possible by combining records written together in a block, resulting in
faster file output operations, and lower CPU usage.

The AWO compiler option causes the APPLY WRITE-ONLY clause to be in effect for all physical
sequential, variable-length, blocked files, even if the APPLY WRITE-ONLY clause is not specified in
the program. With APPLY WRITE-ONLY in effect, the file buffer is written to the output device when
there is not enough space in the buffer for the next record. Without APPLY WRITE-ONLY, the file buffer
is written to the output device when there is not enough space in the buffer for the maximum size
record. If the application has a large variation in the size of the records to be written, using APPLY
WRITE-ONLY can result in a performance savings, since this will generally result in fewer calls to Data
Management Services to handle the I/Os.

Notes:

• The APPLY WRITE-ONLY clause can be used on the physical sequential, variable-length, blocked
files in the program instead of using the AWO compiler option. However, to obtain the full
performance benefit, the APPLY WRITE-ONLY clause would have to be used on every physical
sequential, variable-length, blocked file in the program. When used this way, the performance
benefits will be the same as using the AWO compiler option.

• The AWO compiler option has no effect on a program that does not contain any physical sequential,
variable-length, blocked files.

As a performance example, one test program using variable-length blocked files and AWO was 90%
faster than NOAWO. This faster processing was the result of using 98% fewer EXCPs to process the
writes.

Related references
AWO (Enterprise COBOL for z/OS Programming Guide)

BLOCK0
Default

NOBLOCK0
Recommended

BLOCK0
Reasoning

Blocked I/O can reduce the number of physical I/O transfers, resulting in fewer EXCPs. The BLOCK0
compiler option changes the default for QSAM files from unblocked to blocked (as if the BLOCK
CONTAINS 0 clause were specified for the files), and thus gain the benefit of system-determined
blocking for output files. BLOCK0 activates an implicit BLOCK CONTAINS 0 clause for each file in the
program that meets all of the following criteria:

• The FILE-CONTROL paragraph either specifies ORGANIZATION SEQUENTIAL or omits the
ORGANIZATION clause.

• The FD entry does not specify RECORDING MODE U.
• The FD entry does not specify a BLOCK CONTAINS clause.

As a performance example, one test program using BLOCK0 that meets the above criteria was 90%
faster than a corresponding one using NOBLOCK0, and used 98% fewer EXCPs.

18 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Related references
BLOCK0 (Enterprise COBOL for z/OS Programming Guide)

DATA(24) and DATA(31)
Default

DATA(31)
Recommended

DATA(31), if the program doesn't need to call and pass parameters to AMODE 24 subprograms.
Reasoning

Using DATA(31) with your RENT program will help to relieve some below the line virtual storage
constraint problems. When you use DATA(31) with your RENT programs, most QSAM file buffers
can be allocated above the 16 MB line. When you use DATA(31) with the runtime option
HEAP(,,ANYWHERE), all non-EXTERNAL WORKING-STORAGE and non-EXTERNAL FD record areas
can be allocated above the 16 MB line.

With DATA(24), the WORKING-STORAGE and FD record areas will be allocated below the 16 MB line.

Notes:

• For NORENT programs, the RMODE option determines where non-EXTERNAL data is allocated.
• See QSAM buffers for additional information on QSAM file buffers.
• See ALL31 for information on where EXTERNAL data is allocated.
• LOCAL-STORAGE data is not affected by the DATA option. The STACK runtime option and the AMODE

of the program determine where LOCAL-STORAGE is allocated.

Note that while it is not expected to impact the performance of the application, it does affect where
the program's data is located.

Related references
DATA (Enterprise COBOL for z/OS Programming Guide)

DYNAM
Default

NODYNAM
Considerations

The DYNAM compiler option specifies that all subprograms invoked through the CALL literal statement
will be loaded dynamically at run time. This allows you to share common subprograms among several
different applications, allowing for easier maintenance of these subprograms since the application will
not have to be relinked if the subprogram is changed. DYNAM also allows you to control the use of
virtual storage by giving you the ability to use a CANCEL statement to free the virtual storage used by
a subprogram when the subprogram is no longer needed. However, when using the DYNAM option,
you pay a performance penalty since the call must go through a library routine, whereas with the
NODYNAM option, the call goes directly to the subprogram. Hence, the path length is longer with
DYNAM than with NODYNAM.

As a performance example of using CALL literal in a CALL intensive program (measuring CALL
overhead only), the overhead associated with the CALL using DYNAM was around 100% slower than
NODYNAM. The result is affected by the number of calls to the same program. A larger number of calls
tend to better amortize the overhead cost of loading the subprogram.

For additional considerations using call literal and call identifier, see “Using CALLs” on page 42.

Note: This test measured only the overhead of the CALL (i.e., the subprogram did only a GOBACK);
thus, a full application that does more work in the subprograms is not degraded as much.

Chapter 3. How to tune compiler options to get the most out of V6 19

Related references
DYNAM (Enterprise COBOL for z/OS Programming Guide)

FASTSRT
Default

NOFASTSRT
Recommended

FASTSRT, if COBOL file error handling semantics is not needed during the sort processing.
Reasoning

For eligible sorts, the FASTSRT compiler option specifies that the SORT product will handle all of the
I/O and that COBOL does not need to do it. This eliminates all of the overhead of returning control
to COBOL after each record is read in, or after processing each record that COBOL returns to SORT.
The use of FASTSRT is recommended when direct access devices are used for the sort work files,
since the compiler will then determine which sorts are eligible for this option and generate the proper
code. If the sort is not eligible for this option, the compiler will still generate the same code as if the
NOFASTSRT option were in effect. A list of requirements for using the FASTSRT option is in the COBOL
programming guide.

As a performance example, one test program that processed 100,000 records was 45% faster when
using FASTSRT compared to using NOFASTSRT and used 4,000 fewer EXCPs.

Related references
FASTSRT (Enterprise COBOL for z/OS Programming Guide)

HGPR
Default

HGPR(PRESERVE)
Recommended

HGPR(NOPRESERVE)
Reasoning

Better performance as no code has to be generated to save on entry and restore on exit the high
halves of the 64-bit GPRs. Using the recommended HGPR setting is particularly important to improve
the performance of relatively small COBOL programs that are entered many times.

When HGPR(PRESERVE) is specified, the compiler cannot rely on the high halves of general
purpose registers (GPRs) being preserved during calls. Instead, they must be saved in memory and
subsequently restored. The performance impact is most weakened for small programs that are called
many times.

The use of HGPR(NOPRESERVE) over HGPR(PRESERVE) reduces the overhead of a program call by
11% at OPT(2). Note this was measured in an otherwise empty COBOL program to emphasize the
performance cost of this option and would be less of an overall degradation in a more substantial
callee program.

Considerations
The PRESERVE suboption is necessary only if the caller of the program is not Enterprise COBOL,
Enterprise PL/I, or z/OS XL C/C++ compiler-generated code.

Related references
HGPR (Enterprise COBOL for z/OS Programming Guide)

20 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

INLINE
Default

INLINE
Recommended

INLINE
Reasoning

When the INLINE option is specified, the compiler may choose to replace the PERFORM of a
paragraph or section with a copy of that paragraph or section's code. By inserting that code at
the location of the PERFORM, the compiler saves the overhead of branching logic to and from the
procedure. Inlining also allows the compiler to perform further optimizations on the inlined code. For
example, a data item used inside the inlined code may have a known constant value at that PERFORM,
allowing the compiler to simplify expressions.

When NOINLINE is specified, the compiler will not create any inlined duplicate code.

For example, a simple program repeatedly performing a paragraph in a loop runs 40% faster with
INLINE than with NOINLINE.

Considerations

The >>INLINE OFF and >>INLINE ON directives enable more fine-grained control over inlining. This
can help reduce program size and improve instruction cache performance in cases where PERFORMs
are rarely executed (for example, in error handling code).

Related references
INLINE (Enterprise COBOL for z/OS Programming Guide)

INVDATA
Default

NOINVDATA
Recommended

NOINVDATA

Because most users have valid data in their USAGE DISPLAY and USAGE PACKED-DECIMAL data
items, use NOINVDATA to improve the performance of your application. Even if you find that your
programs are processing invalid data at run time with the NUMCHECK compiler option, you should
change your programs to avoid processing invalid data and use NOINVDATA.

Note: The goal of the INVDATA option is to provide a behavior that is as compatible as possible with
the behavior of programs compiled with COBOL V4 or earlier versions in cases of invalid numeric
data. When discrepancies are found, this option will be updated in favor of making the behavior more
closely match the behavior of COBOL V4 or earlier versions.

When the INVDATA option is in effect, the compiler will avoid performing known optimizations that
might produce a different result than COBOL V4 or earlier versions when a zoned decimal or packed
decimal data item has invalid digits or an invalid sign code, or when a zoned decimal data item has
invalid zone bits.

The following table provides a quick reference on how to set the INVDATA and NUMPROC options when
migrating to COBOL V6.2 or later versions from earlier versions of COBOL, depending on the default
value of the NUMPROC option that was used in the earlier version of COBOL and whether or not you
have invalid data.

Chapter 3. How to tune compiler options to get the most out of V6 21

Table 3. Setting INVDATA and NUMPROC options when migrating from earlier COBOL versions

COBOL versions Invalid data
present?

NUMPROC/ZONEDATA used
in COBOL V6.1 or earlier
versions

INVDATA and NUMPROC
settings in COBOL V6.2 or
later versions

Pre-COBOL V5 No NUMPROC(MIG) NOINVDATA,NUMPROC(NO
PFD)

Pre-COBOL V5 No NUMPROC(NOPFD) NOINVDATA,NUMPROC(NO
PFD)

Pre-COBOL V5 No NUMPROC(PFD) NOINVDATA,NUMPROC(PF
D)

Pre-COBOL V5 Yes NUMPROC(MIG) INVDATA(FORCENUMCMP,
NOCLEANSIGN),NUMPRO
C(NOPFD)

Pre-COBOL V5 Yes NUMPROC(NOPFD) INVDATA(NOFORCENUMCM
P,CLEANSIGN),NUMPRO
C(NOPFD) or
INVDATA,NUMPROC(NOPF
D)

Pre-COBOL V5 Yes NUMPROC(PFD) INVDATA(NOFORCENUMCM
P,CLEANSIGN),NUMPRO
C(PFD) or
INVDATA,NUMPROC(PFD)

COBOL V5 or later No ZONEDATA(PFD) NOINVDATA

COBOLV5 or later Yes ZONEDATA(NOPFD) INVDATA(NOFORCENUMCM
P,CLEANSIGN) or simply
INVDATA

COBOL V5 or later Yes ZONEDATA(MIG) INVDATA(FORCENUMCMP,
CLEANSIGN)1

1. INVDATA(FORCENUMCMP,NOCLEANSIGN) is a closer representation of the pre-COBOL
V5 NUMPROC(MIG) behavior than INVDATA(FORCENUMCMP,CLEANSIGN) when invalid
data is present. If you are not satisfied with the behavior of ZONEDATA(MIG)
in COBOL V5 or later versions when invalid data is present, then consider using
INVDATA(FORCENUMCMP,NOCLEANSIGN) to more closely mimic the pre-COBOL V5
NUMPROC(MIG) behavior when invalid data is present.

For details about the INVDATA option and how the compiler behaves when the sign code, digits, or
zone bits are invalid, see INVDATA in the Enterprise COBOL for z/OS Programming Guide.

Reasoning

• When the NOINVDATA option is in effect, the compiler assumes that the data in USAGE DISPLAY
and PACKED-DECIMAL data items are valid, and generates the most efficient code possible to
make numeric comparisons. For example, the compiler might generate a string comparison to avoid
numeric conversion.

• When the INVDATA(FORCENUMCMP) option is in effect, the compiler must generate additional
instructions to do numeric comparisons that ignore the zone bits of each digit in zoned decimal
data items. For example, a zoned decimal value might be converted to packed-decimal with a PACK
instruction before the comparison.

• When the INVDATA(NOFORCENUMCMP) option is in effect, the V6 compiler must generate a
sequence that treats the invalid zone bits, the invalid sign code and the invalid digits in the same

22 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

way as the V4 compiler, even when that sequence is less efficient than another possible sequence.
The following cases are considered:

– In the cases where COBOL V4 or earlier versions considered the zone bits, the compiler generates
an alphanumeric comparison which will also consider the zone bits of each digit in zoned decimal
data items. The zoned decimal value remains as zoned decimal.

– In the cases where COBOL V4 or earlier versions ignored the zone bits of each digit in zoned
decimal data items. The zoned decimal value is converted to packed-decimal with a PACK
instruction before the comparison.

Source Example

01 A PIC S9(5)V9(2).
01 B PIC S9(7)V9(2).
COMPUTE B = A * 100

In this example, the multiplication is 32% faster with NOINVDATA than INVDATA. With NOINVDATA,
the compiler can use a shift instruction instead of a multiplication. With INVDATA, it must perform the
more expensive multiplication.

Related references
INVDATA (Enterprise COBOL for z/OS Programming Guide)

MAXPCF
Default

MAXPCF(100000)

Recommended

MAXPCF(0)

Reasoning

MAXPCF can be specified to automatically reduce the amount of optimization for large and complex
programs that may require excessive compilation time or excessive storage requirements.

The MAXPCF option is intended to allow large programs to compile successfully but at the cost of
reduced optimization. However, if possible, it is recommended to restructure your large applications
into smaller separate programs.

A number of new "global" optimizations have been added to the V5 compiler release. These
optimizations are termed "global" as they attempt to find synergies and improve performance across
an entire program instead of just "locally" within a statement or a linear set of statements in a
section. Because these global optimizations must analyze the statements and data items of the entire
program, they sometimes require significant amounts of storage and time.

For this reason, and to generally benefit software maintenance activities, it is strongly recommended
to break large programs into smaller separate programs linked together by static calls (to minimize
overhead versus using dynamic calls). These smaller programs will have a much better chance of
not requiring a downgrade of optimization by the MAXPCF option. This will also likely result in faster
compile times requiring less storage, and the final compiled and linked application will have been
subject to the full suite of optimizations available in the V6 compiler.

Considerations

Specifying MAXPCF(0) may increase compilation time.

Related references
MAXPCF (Enterprise COBOL for z/OS Programming Guide)

Chapter 3. How to tune compiler options to get the most out of V6 23

NUMCHECK
Default

NONUMCHECK
Recommended

For best performance, NONUMCHECK is recommended. Specifying NUMCHECK will cause IS
NUMERIC class tests to be generated whenever a numeric data item is used as a sender.

Reasoning
The extra checks inserted by NUMCHECK can cause significant performance degradations for
programs that use zoned decimal data items as sending data items. It is faster to manually insert
IS NUMERIC tests at places in your program where data is read into your program, instead of using
NUMCHECK that will enable checks for all cases, including the performance-critical parts of your
program.

For example, the zoned decimal move:

01 X1 PIC 9(5).
01 X2 PIC 9(5).
MOVE X1 TO X2.

is 51% faster when using NONUMCHECK compared to NUMCHECK(MSG) or NUMCHECK(ABD).
A set of benchmark programs was 17% faster with NONUMCHECK than with
NUMCHECK(ZON,PAC,BIN,MSG).

Considerations

In addition to the runtime performance impact, use of NUMCHECK can also significantly increase
compilation time.

Note: NUMCHECK(ZON) was previously known as ZONECHECK.

Related references
NUMCHECK (Enterprise COBOL for z/OS Programming Guide)

NUMPROC
Default

NUMPROC(NOPFD)
Recommended

When your numeric data exactly conforms to the IBM system standards as detailed in NUMPROC in
the Enterprise COBOL for z/OS Programming Guide, use NUMPROC(PFD) to improve the performance
of your application.

Reasoning

NUMPROC(PFD) improves performance as the compiler no longer has to generate code to correct
input sign configurations. This is particularly important when your application contains unsigned
internal decimal and zoned decimal data, as this type of data requires correction before use in any
arithmetic or compare statements, in addition to also correcting after certain arithmetic, move and
compare statements.

A benchmark that contains many types of arithmetic improves by 11% when using NUMPROC(PFD)
compared to NUMPROC(NOPFD)

Related references
NUMPROC (Enterprise COBOL for z/OS Programming Guide)

24 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

OPTIMIZE
Default

OPT(0)
Recommended

OPT(2)
Reasoning

Maximum level of optimization generally results in the fastest performing code to be generated by the
compiler.

For example, a suite of benchmark programs shows that compiling with OPT(1) is 31% faster than
OPT(0), and OPT(2) is 1.8% faster than OPT(1).

Considerations

OPT(2) compiles generally use more memory and take longer to complete compared to using OPT(1)
or OPT(0).

Compile-time data gathered from a set of benchmarks show that on average OPT(1) takes 1.5 times
longer than OPT(0), and OPT(2) takes 1.8 times longer than OPT(0) (comparing CPU time). For very
large test cases, the compile-time trade off can be worse than the average.

In addition, debuggability can be reduced as compiler optimizations and dead code removal are more
advanced at this setting.

The possible settings for the OPTIMIZE option changed between V4 and V5. V6 continues to use the
new V5 settings. The meaning of those settings has not changed between V5 and V6.

Note that unreferenced level 01 and level 77 items are no longer deleted with this highest OPT setting
as was the case in V4 with OPT(FULL). This means programs that could not use OPT(FULL) previously
can specify OPT(2). See “STGOPT” on page 26 for more information.

Although both V4 and V6 offer three levels of OPT specifications, the names and more importantly the
underlying optimizations enabled have changed.

For example, an important difference between V4 and V6 is that the highest setting in V4 of
OPT(FULL) was the suite of OPT(STD) optimizations plus the removal of unreferenced data items
and the corresponding code to initialize their VALUE clauses.

In contrast, the highest setting in V6 is OPT(2) and this contains the suite of OPT(1) optimizations
plus additional optimizations to improve performance, such as globally propagating values, sign state
information and better register allocation for accessing indexed tables.

As detailed in OPTIMIZE in the Enterprise COBOL for z/OS Programming Guide, the table of "Mapping
of deprecated options to new options", the V4 OPT settings are currently tolerated, but none of the V4
settings map to OPT(2). For example, OPT(FULL) specified with V6 is mapped to OPT(1) and STGOPT.

Related references
OPTIMIZE (Enterprise COBOL for z/OS Programming Guide)

SSRANGE
Default

NOSSRANGE
Recommended

For best performance, NOSSRANGE is recommended. Specifying SSRANGE will cause extra code to be
generated to detect out of range storage references.

Reasoning

The extra checks enabled by SSRANGE can cause significant performance degradations for programs
with index, subscript, and reference modification expressions (for non-UTF-8 data items and function

Chapter 3. How to tune compiler options to get the most out of V6 25

values) in performance sensitive areas of your program. If only a few places in your program require
the extra range checking, then it might be faster to code your own checks instead of using SSRANGE
which will enable checks for all cases.

Note that in V6, there is no longer a runtime option to disable the compiled-in checks. So specifying
SSRANGE will always result in the range checking code to be used at runtime. A benchmark that
makes moderate use of subscripted references to tables slows down by 18% when SSRANGE is
specified.

There is no performance difference between SSRANGE(ZLEN) and SSRANGE(NOZLEN).

Considerations

In addition to the runtime performance impact, use of SSRANGE can also significantly increase
compilation time.

Related references
SSRANGE (Enterprise COBOL for z/OS Programming Guide)

STGOPT
Default

NOSTGOPT
Recommended

STGOPT
Reasoning

This is a new option introduced in V5 that is now orthogonal to OPT. In V4, the STGOPT behavior
to remove unreferenced data items and the corresponding code to initialize their VALUE clauses
is implied when going from OPT(STD) to OPT(FULL). Since V5, that behavior is now specified
independently. Over a set of benchmark programs, the use of STGOPT results in an average 2.8%
reduction in the size of the object file at OPT(2), and a maximum reduction of 11.8%.

Considerations
The same considerations that applied in V4 to specifying OPT(FULL) should be used in deciding to use
STGOPT in V6. That is, you cannot use neither OPT(FULL) nor STGOPT if you relies upon any of the
following data items:

• Unreferenced LOCAL-STORAGE and non-external WORKING-STORAGE level-77 and level-01
elementary data items

• Non-external level-01 group items if none of their subordinate items are referenced
• Unreferenced special registers

Note: The STGOPT option is ignored for data items that have the VOLATILE clause.

Related references
STGOPT (Enterprise COBOL for z/OS Programming Guide)

TEST
See TEST in the Enterprise COBOL for z/OS Programming Guide for a full discussion of the TEST option and
suboptions including a discussion of performance versus debugging capability tradeoffs.

To summarize the performance tradeoffs of programs compiled with TEST options:

• NOTEST performs better than TEST(NOEJPD)
• TEST(NOEJPD) performs significantly better than TEST(EJPD)

TEST(EJPD) enables the JUMPTO and GOTO commands and therefore puts severe restrictions on the
amount optimization performed by the compiler. The EJPD suboption limits the compiler to in-statement
optimizations to allow the JUMPTO and GOTO commands to work properly.

26 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Note: If you specify TEST(NOEJPD) and a non-zero OPTIMIZE level: The JUMPTO and GOTO commands
are not enabled, but you can use JUMPTO and GOTO if you use the SET WARNING OFF command. In this
scenario, JUMPTO and GOTO will have unpredictable results.

TEST(NOEJPD) also restricts the optimizer, but much less so than TEST(EJPD). The NOEJPD suboption
allows the viewing of data items at statement boundaries and this restricts the optimizer in removing
some dead code and dead stores.

The table below shows average execution time performance numbers over a set of IBM internal
performance benchmarks.

The numbers were produced at OPT(1) and OPT(2), using different TEST suboptions. The percentages
show the performance degradations of TEST(NOEJPD) or TEST(EJPD) over NOTEST.

Table 4. Performance degradations of TEST(NOEJPD) or TEST(EJPD) over NOTEST

OPT level
TEST(NOEJPD) % degradation
versus NOTEST

TEST(EJPD) % degradation
versus NOTEST

OPT(1) 5.8% 20.9%

OPT(2) 11.1% 28.5%

As expected, this demonstrates the much larger impact on performance of TEST(EJPD) versus
TEST(NOEJPD).

Related references
TEST (Enterprise COBOL for z/OS Programming Guide)

THREAD
Default

NOTHREAD
Recommended

NOTHREAD
Reasoning

The THREAD option requires additional locking in the generated code and the COBOL runtime library,
which can impact performance. This is unnecessary if the program is not running in a multi-threaded
environment.

This applies not just to Enterprise COBOL V6, but also applies to previous Enterprise COBOL
compilers.

The THREAD option indicates that a COBOL program is to be enabled for execution in an environment
that has multiple POSIX threads or PL/I tasks. In order to do so, the compiler inserts locks in various
places in the generated code to protect the execution. This can impact performance of a THREAD
compiled program in comparison with a corresponding NOTHREAD program.

It is recommended that the NOTHREAD option is used unless the program requires it. The compiler
default is NOTHREAD.

One example where the compiler needs to insert locks to protect is I/O. When the THREAD option
is used, all I/O verbs (OPEN, READ, WRITE, REWRITE, CLOSE, etc) are protected by locks. In a
measurement, we observed a performance degradation of 10% due to the THREAD option.

Related references
THREAD (Enterprise COBOL for z/OS Programming Guide)

TRUNC
As in V4, there are three possible settings for the TRUNC option: BIN, STD and OPT.

Chapter 3. How to tune compiler options to get the most out of V6 27

The recommended option for best performance continues to be TRUNC(OPT), as this allows the compiler
the most freedom in determining the most efficient code to generate. For additional information on
determining which TRUNC option to specify, see TRUNC in the Enterprise COBOL for z/OS Programming
Guide.

The cost of using TRUNC(STD) has been improved compared to V4, as the divide instruction used to
truncate the result back to the number of digits in the PICTURE clause of the BINARY receiving data item
is only conditionally executed in V6. The compiler inserts a runtime check for overflow and will branch
around the divide if no truncation is required.

However, better performance is still possible when using TRUNC(OPT) as no runtime overflow checks or
divide instructions are required at all.

TRUNC(BIN) will often result in poorer performance, and is usually the slowest of the three TRUNC
suboptions. Although no divides (conditional or otherwise) are required in order to truncate results, the
full 2, 4 or 8 byte value is considered significant and therefore intermediate results grow that much more
quickly and require conversions to larger or more complex data types.

For example, when adding two BINARY PIC 9(10) values with TRUNC(STD) or TRUNC(OPT), the maximum
result size is 11 digits. No overflow is possible. The addition can be performed using binary arithmetic.
When performing the same addition with TRUNC(BIN), each operand can have up to 18 digits, and the
maximum result size is 19 digits. This may overflow. Therefore, the operands must be converted to
packed decimal before performing the addition. This is slower.

Similarly, when multiplying two BINARY PIC 9(10) values with TRUNC(STD) or TRUNC(BIN), the maximum
result size is 20 digits. This is too large for a binary operation, but not too large for packed decimal
arithmetic. When performing the same multiplication with TRUNC(BIN), each operand can have up to 18
digits, and the maximum result size is 36 digits. Because hardware support for packed decimal arithmetic
is limited to 31 digits, this multiplication requires an expensive runtime call.

Specifically, adding two BINARY PIC 9(10) items together is 23% faster using TRUNC(OPT) than
TRUNC(STD), and 96% faster using TRUNC(OPT) than TRUNC(BIN).

In one program with a significant amount of binary arithmetic setting TRUNC(BIN) results in a 76%
slowdown compared to TRUNC(STD). This performance difference is due to the runtime library calls
required for the larger intermediate result sizes.

See “BINARY (COMP or COMP-4)” on page 51 for a more detailed discussion and study of BINARY data
and interaction with TRUNC suboptions.

Related references
TRUNC (Enterprise COBOL for z/OS Programming Guide)

Program residence and storage considerations

Compiler option
The following compiler options can affect where the program resides (above/below the 16 MB line), which
in turn can affect the location of WORKING-STORAGE section, and I/O file buffers and record areas.

RENT or NORENT

Using the RENT compiler option causes the compiler to generate some additional code to ensure that the
program is reentrant. Reentrant programs can be placed in shared storage like the Link Pack Area (LPA) or
the Extended Link Pack Area (ELPA). Also, the RENT option will allow the program to run above the 16 MB
line. Producing reentrant code may increase the execution time path length slightly.

Note: The RMODE(ANY) option can be used to run NORENT programs above the 16 MB line.

Performance considerations using RENT: On the average, RENT was equivalent to NORENT.

For details, see RENT in the Enterprise COBOL for z/OS Programming Guide.

RMODE - AUTO, 24, or ANY

28 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

The RMODE compiler option determines the RMODE setting for the COBOL program. When using
RMODE(AUTO), the RMODE setting depends on the use of RENT or NORENT. For RENT, the program will
have RMODE ANY. For NORENT, the program will have RMODE 24. When using RMODE(24), the program
will always have RMODE 24. When using RMODE(ANY), the program will always have RMODE ANY.

Note: When using NORENT, the RMODE option controls where the WORKING-STORAGE will reside. With
RMODE(24), the WORKING-STORAGE will be below the 16 MB line. With RMODE(ANY), the WORKING-
STORAGE can be above the 16 MB line.

While it is not expected to impact the performance of the application, it can affect where the program and
its WORKING-STORAGE are located.

For details, see RMODE in the Enterprise COBOL for z/OS Programming Guide.

Location of Storage
WORKING-STORAGE

COBOL WORKING-STORAGE is allocated from the Language Environment heap storage when the program
is compiled with the RENT option.

LOCAL-STORAGE

COBOL LOCAL-STORAGE is always allocated from the Language Environment stack storage. It is affected
by the LE STACK runtime option.

EXTERNAL variables

External variables in an Enterprise COBOL program are always allocated from the Language Environment
heap storage.

QSAM buffers

QSAM buffers can be allocated above the 16 MB line if all of the following are true:

• The programs are compiled with VS COBOL II Release 3.0 or higher, COBOL/370 Release 1.0 or higher,
IBM COBOL for MVS™ & VM Release 2.0 or higher, IBM COBOL for OS/390® & VM, or IBM Enterprise
COBOL

• The programs are compiled with RENT and DATA(31) or compiled with NORENT and RMODE(ANY)
• The program is executing in AMODE 31
• The ALL31(ON) and HEAP(,,ANYWHERE) runtime options are used (for EXTERNAL files)
• The file is not allocated to a TSO terminal
• The file is not spanned external, spanned with a SAME RECORD clause, or spanned opened as I-O and

updated with REWRITE

For details, see Allocation of buffers for QSAM files in the Enterprise COBOL for z/OS Programming Guide.

VSAM buffers

VSAM buffers can be allocated above the 16 MB line if the programs are compiled with VS COBOL II
Release 3.0 or higher, COBOL/370 Release 1.0 or higher, IBM COBOL for MVS & VM Release 2.0 or higher,
IBM COBOL for OS/390 & VM, or IBM Enterprise COBOL.

Chapter 3. How to tune compiler options to get the most out of V6 29

30 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 4. Runtime options that affect runtime
performance

Selecting the proper runtime options affects the performance of a COBOL application.

Therefore, it is important for the system programmer responsible for installing and setting up the LE
environment to work with the application programmers so that the proper runtime options are set up
correctly for your installation. It is also important to understand these options so that you can set the
appropriate options for specific programs, applications, and regions that require fast performance. The
individual LE runtime options can be set using any of the supported methods for setting that individual
option. Below examines some of the options that can help to improve the performance of the individual
application, as well as the overall LE runtime environment.

Note: In the following option description, if an option setting is different between CICS and non-CICS,
the setting will be qualified by text in parentheses. Otherwise the same setting applies to both CICS and
Non-CICS.

Related references
Using runtime options (z/OS Language Environment Programming Guide)
Summary of Language Environment runtime options
(z/OS Language Environment Programming Reference)
Using the Language Environment runtime options
(z/OS Language Environment Programming Reference)
Language Environment runtime options
(z/OS Language Environment Customization)

AIXBLD
Default

OFF (Non-CICS); N/A (CICS)
Recommended

OFF (Non-CICS); N/A (CICS)
Considerations

The AIXBLD option allows alternate indexes to be built at run time. However, this may adversely affect
the runtime performance of the application. It is much more efficient to use Access Method Services
to build the alternate indexes before running the COBOL application than using the AIXBLD runtime
option. Note that AIXBLD is not supported when VSAM data sets are accessed in RLS mode.

Related references
AIXBLD (COBOL only) (z/OS Language Environment Programming Reference)
AIXBLD (COBOL only) (z/OS Language Environment Customization)

ALL31
Default

ON
Recommended

ON, unless there are AMODE(24) routines in the application
Considerations

The ALL31 option allows LE to take advantage of the knowledge that there are no AMODE(24) routines
in the application.

ALL31(ON) specifies that the entire application will run in AMODE(31). This can help to improve
the performance for an all AMODE(31) application because LE can minimize the amount of mode

© Copyright IBM Corp. 1993, 2024 31

switching across calls to common runtime library routines. Additionally, using ALL31(ON) will help to
relieve some below the line virtual storage constraint problems, since less below the line storage is
used.

When using ALL31(ON), all EXTERNAL WORKING-STORAGE and EXTERNAL FD records areas can be
allocated above the 16 MB line if you also use the HEAP(,,ANYWHERE) runtime option and compile
the program with either the DATA(31) and RENT compiler options or with the RMODE(ANY) and
NORENT compiler options. Note that when using ALL31(OFF), you must also use STACK(,,BELOW).

Notes:

• Beginning with LE for z/OS Release 1.2, the runtime defaults have changed to
ALL31(ON),STACK(,,ANY). LE for OS/390 Release 2.10 and earlier runtime defaults were
ALL31(OFF),STACK(,,BELOW).

• ALL31(OFF) is required for all OS/VS COBOL programs that are not running under CICS, all VS
COBOL II NORES programs, and all other AMODE(24) programs.

As a performance example (measuring CALL overhead only), a test program using ALL31(ON) was
equivalent to ALL31(OFF).

Note: This test measured only the overhead of the CALL for a RENT program (i.e., the subprogram did
only a GOBACK); thus, a full application that does more work in the subprograms will have different
results, depending on the number of calls that are made to LE common runtime routines.

Related references
ALL31 (z/OS Language Environment Programming Reference)
ALL31 (z/OS Language Environment Customization)

CBLPSHPOP
Default

ON
Recommended

N/A (Non-CICS); ON (CICS), if compatible behavior with VS COBOL II is required in the EXEC CICS
condition handling commands. If compatible behavior with VS COBOL II is not required, or if the
program does not use any of the EXEC CICS condition handling commands, the OFF setting is
recommended

Considerations
The CBLPSHPOP option controls whether CICS PUSH HANDLE and CICS POP HANDLE commands are
issued when a COBOL subroutine is called.

This option only applies to the CICS environment. The CBLPSHPOP option is used to avoid
compatibility problems when calling COBOL subroutines that contain CICS CONDITION, AID, or
ABEND condition handling commands.

• When CBLPSHPOP is OFF and you want to handle these CICS conditions in your COBOL subprogram,
you will need to issue your own CICS PUSH HANDLE before calling the COBOL subprogram and CICS
POP HANDLE upon return. Otherwise, the COBOL subroutine will inherit the caller's settings and
upon return, the caller will inherit any settings that were made in the subprogram. This behavior is
different from that of VS COBOL II.

• When CBLPSHPOP is ON, you will receive the same behavior as with the VS COBOL II run time when
using CICS condition handling commands. However, the performance of calls will be impacted.

For performance considerations using CBLPSHPOP, see “CICS” on page 46.

Related tasks
Developing COBOL programs for CICS
(Enterprise COBOL for z/OS Programming Guide)

Related references
Using the CBLPSHPOP runtime option under CICS

32 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

(z/OS Language Environment Programming Guide)
CBLPSHPOP (COBOL only) (z/OS Language Environment Programming Reference)
CBLPSHPOP (COBOL only) (z/OS Language Environment Customization)

CHECK
The CHECK runtime option is ignored for applications compiled with Enterprise COBOL V6.

If the compile time option SSRANGE is specified, range checks are generated by the compiler and checks
are always executed at run time. The compiled-in range checks cannot be disabled.

Related references
CHECK (COBOL only) (z/OS Language Environment Programming Reference)
CHECK (COBOL only) (z/OS Language Environment Customization)

DEBUG
Default

OFF
Recommended

OFF
Considerations

The DEBUG option activates the COBOL batch debugging features specified by the USE FOR
DEBUGGING declarative. This might add some additional overhead to process the debugging
statements. This option has an effect only on a program that has the USE FOR DEBUGGING
declarative.

Performance considerations using DEBUG:

• When not using the USE FOR DEBUGGING declarative, on the average, DEBUG was equivalent to
NODEBUG.

• When using the USE FOR DEBUGGING declarative, a test program measured was 900% slower
when using DEBUG compared to using NODEBUG.

Note: The program in this test had WITH DEBUGGING MODE clause on the SOURCE-COMPUTER
paragraph, and contained a USE FOR DEBUGGING ON a paragraph name in the procedure division.
This paragraph is empty (that is containing just an EXIT statement), and is performed many times in
a loop. The paragraph in the declarative section is also empty (just an EXIT statement). The purpose
is to give an indication on the overhead due to transferring of control to the USE FOR DEBUGGING
declarative.

Related references
DEBUG (COBOL only) (z/OS Language Environment Programming Reference)
DEBUG (COBOL only) (z/OS Language Environment Customization)

INTERRUPT
Default

OFF (Non-CICS); N/A (CICS)
Recommended

OFF (Non-CICS); N/A (CICS)
Considerations

The INTERRUPT option causes attention interrupts to be recognized by Language Environment. When
you cause an interrupt, Language Environment can give control to your application or to Debug Tool.

Performance considerations using INTERRUPT: On the average, INTERRUPT(ON) is 1% slower than
INTERRUPT(OFF), with a range of equivalent to 20% slower.

Chapter 4. Runtime options that affect runtime performance 33

Related references
INTERRUPT (z/OS Language Environment Programming Reference)
INTERRUPT (z/OS Language Environment Customization)

RPTOPTS
Default

OFF
Recommended

OFF
Considerations

The RPTOPTS option allows you to get a report of the runtime options that were in use during the
execution of an application. This report is produced after the application has terminated. Thus, if
the application abends, the report may not be generated. Generating the report can result in some
additional overhead. Specifying RPTOPTS(OFF) will eliminate this overhead.

Performance considerations using RPTOPTS: On the average, RPTOPTS(ON) was equivalent to
RPTOPTS(OFF).

Note: Although the average for a single batch program shows equivalent performance for
RPTOPTS(ON), you may experience some degradation in a transaction environment (for example,
CICS) where main programs are repeatedly invoked.

Related references
RPTOPTS (z/OS Language Environment Programming Reference)
RPTOPTS (z/OS Language Environment Customization)

RPTSTG
Default

OFF
Recommended

OFF
Considerations

The RPTSTG option allows you to get a report on the storage that was used by an application. This
report is produced after the application has terminated. Thus, if the application abends, the report
may not be generated. The data from this report can help you fine tune the storage parameters for the
application, reducing the number of times that the LE storage manager must make system requests to
acquire or free storage.

Collecting the data and generating the report can result in some additional overhead. Specifying
RPTSTG(OFF) will eliminate this overhead.

Performance considerations using RPTSTG: The degradation in a call intensive program was measured
to be more than 200%.

Note: The program did nothing except repeatedly calling a number of subprograms, which were
empty (that is, containing only a GOBACK statement).

Related references
RPTSTG (z/OS Language Environment Programming Reference)
RPTSTG (z/OS Language Environment Customization)

STORAGE
Default

NONE,NONE,NONE,0K

34 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Recommended
NONE,NONE,NONE,0K

Considerations
The STORAGE option specifies the heap allocations or stack storage.

The first parameter of this option initializes all heap allocations, including all external data records
acquired by a program, to the specified value when the storage for the external data is allocated.
This also includes the WORKING-STORAGE acquired by a RENT program (see note below), unless a
VALUE clause is used on the data item, when the program is first called or, for dynamic calls, when the
program is canceled and then called again. In any case, storage is not initialized on subsequent calls
to the program. This can result in some overhead at run time depending on the number of external
data records in the program and the size of the WORKING-STORAGE section.

The WORKING-STORAGE is affected by the STORAGE option in the following categories of RENT
programs:

• When the program runs in CICS environment
• When the program is compiled with Enterprise COBOL V4.2 or earlier
• When the program is compiled with Enterprise COBOL V6.1 or later
• When the program object (where the program resides) contains only programs compiled with

COBOL V5.1.1 or later, or compiled with COBOL V4.2 or earlier compilers; (i.e. there is no Language
Environment interlanguage calls within the program object)

• When the primary entry point of the program object is a program compiled with Enterprise COBOL
V5.1.1 or later; (i.e. having LE interlanguage calls within the program object is allowed)

Note: If you used the WSCLEAR option with VS COBOL II, STORAGE(00,NONE,NONE) is the equivalent
option with Language Environment.

The second parameter of this option initializes all heap storage when it is freed.

The third parameter of this option initializes all DSA (stack) storage when it is allocated. The amount
of overhead depends on the number of routines called (subroutines and library routines) and the
amount of LOCAL-STORAGE data items that are used. This can have a significant impact on the CPU
time of an application that is call intensive. You should not use STORAGE(,,00) to initialize variables
for your application. Instead, you should change your application to initialize their own variables. You
should not use STORAGE(,,00) in any performance-critical application.

Performance considerations using STORAGE:

• On the average, STORAGE(00,00,00) was 11% slower than STORAGE(NONE,NONE,NONE), with a
range of equivalent to 133% slower. One RENT program calling a RENT subprogram with a 40
MB WORKING-STORAGE was 28% slower. Note that when using call intensive applications, the
degradation can be 200% slower or more.

• On the average, STORAGE(00,NONE,NONE) was equivalent to STORAGE(NONE,NONE,NONE). One
RENT program calling a RENT subprogram with a 40 MB WORKING-STORAGE was 5% slower.

• On the average, STORAGE(NONE,00,NONE) was equivalent to STORAGE(NONE,NONE,NONE). One
RENT program calling a RENT subprogram with a 40 MB WORKING-STORAGE was 9% slower.

• For a call intensive program, STORAGE(NONE,NONE,00) can degrade more than 100%, depending
on the number of calls.

Note: The call intensive tests measured only the overhead of the CALL (i.e., the subprogram did
only a GOBACK); thus, a full application that does more work in the subprograms is not degraded as
much.

Related references
STORAGE (z/OS Language Environment Programming Reference)
STORAGE (z/OS Language Environment Customization)
COBOL and Language Environment runtime options comparison
(z/OS Language Environment Runtime Application Migration Guide)

Chapter 4. Runtime options that affect runtime performance 35

TEST
Default

NOTEST(ALL,*,PROMPT,INSPPREF)
Recommended

NOTEST(ALL,*,PROMPT,INSPPREF)
Considerations

The TEST option specifies the conditions under which Debug Tool assumes control when the user
application is invoked.

Since this may result in Debug Tool being initialized and invoked, there may be some additional
overhead when using TEST. Specifying NOTEST will eliminate this overhead.

Related references
TEST | NOTEST (z/OS Language Environment Programming Reference)
TEST | NOTEST (z/OS Language Environment Customization)

TRAP
Default

ON,SPIE
Recommended

ON,SPIE
Considerations

The TRAP option allows LE to intercept an abnormal termination (abend), provide the abend
information, and then terminate the LE runtime environment.

TRAP(ON) also assures that all files are closed when an abend is encountered and is required for
proper handling of the ON SIZE ERROR clause of arithmetic statements for overflow conditions. In
addition, LE uses condition handling internally and requires TRAP(ON). TRAP(OFF) prevents LE from
intercepting the abend. In general, there will not be any significant impact on the performance of a
COBOL application when using TRAP(ON).

When using the SPIE suboption, LE will issue an ESPIE to handle program interrupts. When using the
NOSPIE suboption, LE will handle program interrupts via an ESTAE.

Performance considerations using TRAP: On the average, TRAP(ON) was equivalent to TRAP(OFF).

Related tasks
Closing QSAM files (Enterprise COBOL for z/OS Programming Guide)
Closing VSAM files (Enterprise COBOL for z/OS Programming Guide)
Closing line-sequential files (Enterprise COBOL for z/OS Programming Guide)
Handling errors in arithmetic operations
(Enterprise COBOL for z/OS Programming Guide)

Related references
Language Environment runtime options
(Enterprise COBOL for z/OS Migration Guide)
TRAP effects on the condition handling process
(z/OS Language Environment Programming Guide)
TRAP runtime option and user-written condition handlers
(z/OS Language Environment Programming Guide)
TRAP runtime option and CEEBXITA
(z/OS Language Environment Programming Guide)
TRAP (z/OS Language Environment Programming Reference)
TRAP (z/OS Language Environment Customization)

36 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

VCTRSAVE
Default

OFF (Non-CICS); N/A (CICS)
Recommended

OFF (Non-CICS); N/A (CICS)
Considerations

The VCTRSAVE option specifies whether any language in the application uses the vector facility when
the user-provided condition handlers are called.

Run with VCTRSAVE(OFF) to avoid the overhead, except in the following cases:

• You have user-written condition handlers registered with CEEHDLR.
• Your user-written condition handlers get vector facility instructions. This can happen for INSPECT

statements at ARCH(11) or above and for zoned and packed computations at ARCH(12) or above.

Performance considerations using VCTRSAVE: On the average, VCTRSAVE(ON) was equivalent to
VCTRSAVE(OFF).

Related references
VCTRSAVE (z/OS Language Environment Programming Reference)
VCTRSAVE (z/OS Language Environment Customization)

Chapter 4. Runtime options that affect runtime performance 37

38 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 5. COBOL and LE features that affect runtime
performance

COBOL and Language Environment have several installation and environment tuning features that can
enhance the performance of your application.

The following information describes some additional factors that should be considered for the application.

Storage management tuning
Storage management tuning can reduce the overhead involved in getting and freeing storage for the
application program. With proper tuning, several GETMAIN and FREEMAIN calls can be eliminated.

First of all, storage management was designed to keep a block of storage only as long as necessary. This
means that during the execution of a COBOL program, if any block of storage becomes unused, it will be
freed. This can be beneficial in a transaction environment (or any environment) where you want storage
to be freed as soon as possible so that other transactions (or applications) can make efficient use of the
storage.

However, it can also be detrimental if the last block of storage does not contain enough free space to
satisfy a storage request by a library routine. For example, suppose that a library routine needs 2K of
storage but there is only 1K of storage available in the last block of storage. The library routine will call
storage management to request 2K of storage. Storage management will determine that there is not
enough storage in the last block and issue a GETMAIN to acquire this storage (this GETMAINed size can
also be tuned). The library routine will use it and then, when it is done, call storage management to
indicate that it no longer needs this 2K of storage. Storage management, seeing that this block of storage
is now unused, will issue a FREEMAIN to release the storage back to the operating system.

Now, if this library routine or any other library routine that needs more than 1K of storage is called
often, a significant amount of CPU time degradation can result because of the amount of GETMAIN and
FREEMAIN activity.

Fortunately, there is a way to compensate for this with LE; it is called storage management tuning. The
RPTSTG(ON) runtime option can help you in determining the values to use for any specific application
program. You use the value returned by the RPTSTG(ON) option as the size of the initial block of storage
for the HEAP, ANYHEAP, BELOWHEAP, STACK, and LIBSTACK runtime options. This will prevent the above
from happening in an all VS COBOL II, COBOL/370, COBOL for MVS & VM, COBOL for OS/390 & VM, or
Enterprise COBOL application. However, if the application also contains OS/VS COBOL programs that are
being called frequently, the RPTSTG(ON) option may not indicate a need for additional storage. Increasing
these initial values can also eliminate some storage management activity in this mixed environment.

The IBM supplied default storage options for batch applications are listed below:

ANYHEAP(16K,8K,ANYWHERE,FREE)
BELOWHEAP(8K,4K,FREE)
HEAP(32K,32K,ANYWHERE,KEEP,8K,4K)
LIBSTACK(4K,4K,FREE)
STACK(128K,128K,ANYWHERE,KEEP,512K,128K)
THREADHEAP(4K,4K,ANYWHERE,KEEP)
THREADSTACK(OFF,4K,4K,ANYWHERE,KEEP,128K,128K)

If you are running only COBOL applications, you can do some further storage tuning as indicated below:

STACK(64K,64K,ANYWHERE,KEEP)

The IBM supplied default storage options for CICS applications are listed below:

ANYHEAP(4K,4080,ANYWHERE,FREE)
BELOWHEAP(4K,4080,FREE)
HEAP(4K,4080,ANYWHERE,KEEP,4K,4080)

© Copyright IBM Corp. 1993, 2024 39

LIBSTACK(32,4000,FREE)
STACK(4K,4080,ANYWHERE,KEEP,4K,4080)

If all of your applications are AMODE(31), you can use ALL31(ON) and STACK(,,ANYWHERE). Otherwise,
you must use ALL31(OFF) and STACK(,,BELOW).

Overall below the line storage requirements have been reduced by reducing the default storage options
and by moving some of the library routines above the line.

Note: Beginning with LE for z/OS Release 1.2, the runtime defaults have changed to
ALL31(ON),STACK(,,ANY). LE for OS/390 Release 2.10 and earlier runtime defaults were
ALL31(OFF),STACK(,,BELOW).

Storage tuning user exit
In an environment where Language Environment is being initialized and terminated constantly, such as
CICS, IMS, or other transaction processing type of environments, tuning the storage options can improve
the overall performance of the application.

This helps to reduce the GETMAIN and FREEMAIN activity. The Language Environment storage tuning
user exit is one way that you can manage the task of selecting the best values for your environment. The
storage tuning user exit allows you to set storage values for your main programs without having to linkedit
the values into your load modules.

Related references
Storage tuning user exit (z/OS Language Environment Customization)

Using the CEEENTRY and CEETERM macros
To improve the performance of non-LE-conforming Assembler calling COBOL, you can make the
Assembler program LE-conforming. This can be done using the CEEENTRY and CEETERM macros
provided with LE.

This helps to reduce the GETMAIN and FREEMAIN activity. The Language Environment storage tuning
user exit is one way that you can manage the task of selecting the best values for your environment. The
storage tuning user exit allows you to set storage values for your main programs without having to linkedit
the values into your load modules.

Performance considerations using the CEEENTRY and CEETERM macros (measuring CALL overhead only):

• One testcase (an LE-conforming Assembler calling COBOL) using the CEEENTRY and CEETERM macros
was 99% faster than not using them.

Note: This test measured only the overhead of the CALL (i.e., the subprogram did only a GOBACK); thus,
a full application that does more work in the subprograms may have different results.

See also “First program not LE-conforming” on page 46 for additional performance considerations
comparing using CEEENTRY and CEETERM with other environment initialization techniques.

Related references
CEEENTRY macro (z/OS Language Environment Programming Guide)
CEETERM macro (z/OS Language Environment Programming Guide)

Using preinitialization services (CEEPIPI)
LE preinitialization services (CEEPIPI) can also be used to improve the performance of non-LE-conforming
Assembler calling COBOL.

LE preinitialization services let an application initialize the LE environment once, execute multiple LE-
conforming programs, then explicitly terminate the LE environment. This substantially reduces the use of
system resources that would have been required to initialize and terminate the LE environment for each
program of the application.

40 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

See “Using CEEPIPI with Call_Sub” for an example of using CEEPIPI to call a COBOL subprogram and
“Using CEEPIPI with Call_Main” for an example of using CEEPIPI to call a COBOL main program.

Performance considerations using CEEPIPI (measuring CALL overhead only):

• One testcase (a non-LE-conforming Assembler calling COBOL) using CEEPIPI to invoke the COBOL
program as a subprogram was 99% faster than not using CEEPIPI.

• The same program using CEEPIPI to invoke the COBOL program as a main program was 95% faster than
not using CEEPIPI.

Note: This test measured only the overhead of the CALL (i.e., the subprogram did only a GOBACK); thus, a
full application that does more work in the subprograms may have different results.

See “First program not LE-conforming” on page 46 for additional performance considerations comparing
using CEEPIPI with other environment initialization techniques.

Related references
Using preinitialization services (z/OS Language Environment Programming Guide)

Using library routine retention (LRR)
LRR is a function that provides a performance improvement for those applications or subsystems running
on MVS with the following attributes:

• The application or subsystem invokes programs that require LE
• The application or subsystem is not LE-conforming (i.e., LE is not already initialized when the application

or subsystem invokes programs that require LE)
• The application or subsystem repeatedly invokes programs that require LE running under the same MVS

task
• The application or subsystem is not using LE preinitialization services

LRR is useful for non-LE-conforming assembler drivers that repeatedly call LE-conforming languages and
for IMS/TM regions. LRR is not supported under CICS. See “IMS” on page 48 for information on using
LRR under IMS.

When LRR has been initialized, LE keeps a subset of its resources in memory after the environment
terminates. As a result, subsequent invocations of programs in the same MVS task that caused LE
to be initialized are faster because the resources can be reused without having to be reacquired and
reinitialized. The resources that LE keeps in memory upon LE termination are:

• LE runtime load modules
• Storage associated with these load modules
• Storage for LE startup control blocks

When LRR is terminated, these resources are released from memory.

LE preinitialization services and LRR can be used simultaneously. However, there is no additional benefit
by using LRR when LE preinitialization services are being used. Essentially, when LRR is active and a
non-LE-conforming application uses preinitialization services, LE remains preinitialized between repeated
invocations of LE-conforming programs and does not terminate. Upon return to the non-LE-conforming
application, preinitialization services can be called to terminate the LE environment, in which case LRR
will be back in effect. See “Using library routine retention (LRR)” on page 41 for an example of using LRR.

Performance considerations using LRR:

• One testcase (a non-LE-conforming Assembler calling COBOL) using LRR was 96% faster than not using
LRR.

Note: This test measured only the overhead of the CALL (i.e., the subprogram did only a GOBACK); thus,
a full application that does more work in the subprograms may have different results.

See “First program not LE-conforming” on page 46 for additional performance considerations comparing
using LRR with other environment initialization techniques.

Chapter 5. COBOL and LE features that affect runtime performance 41

Related references
Language Environment library routine retention (LRR)
(z/OS Language Environment Programming Guide)
Using Language Environment under IMS
(z/OS Language Environment Customization)

Library in the LPA/ELPA
Placing the COBOL and the LE library routines in the Link Pack Area (LPA) or Extended Link Pack Area
(ELPA) can also help to improve total system performance.

This will reduce the real storage requirements for the entire system for COBOL/370, COBOL for MVS & VM,
COBOL for OS/390 & VM, Enterprise COBOL, VS COBOL II RES, or OS/VS COBOL RES applications since
the library routines can be shared by all applications instead of each application having its own copy of
the library routines. For a list of COBOL library routines that are eligible to be placed in the LPA/ELPA, see
members CEEWLPA and IGZWMLP4 in the SCEESAMP data set.

Placing the library routines in a shared area will also reduce the I/O activity since they are loaded only
once when the system is started and not for each application program.

Related references
Modules eligible for the link pack area
(z/OS Language Environment Customization)
Planning to link and run with Language Environment
(z/OS Language Environment Runtime Application Migration Guide)

Using CALLs
You should consider storage management tuning for all CALL intensive applications.

With static CALLs (call literal with NODYNAM), all programs are link-edited together, and hence, are
always in storage, even if you do not call them. However, there is only one copy of the bootstrapping
library routines link-edited with the application. With dynamic CALLs (call literal with DYNAM or call
identifier), each subprogram is link-edited separately from the others. They are brought into storage
only if they are needed. This is the better way of managing complicated applications. However, each
subprogram has its own copy of the bootstrapping library routines link-edited with it, bringing multiple
copies of these routines in storage as the application is executing.

Another aspect is program loading. Since a dynamic CALL subprogram is brought into storage when it
is first needed, it is not loaded into storage at the beginning together with the caller program. There is
an overhead in terms of program load processing. In general, it is beneficial to use dynamic calls when
the call structure of an application is complicated, the size of the subprograms is not small, and not all
subprograms are called in a particular run of the application.

Performance considerations for using CALLs between programs compiled with similar COBOL versions
(measuring CALL overhead only):

• Static CALL literal was on average 40% faster than dynamic CALL literal.
• Static CALL literal was on average 52% faster than dynamic CALL identifier.
• Dynamic CALL literal was on average 20% faster than dynamic CALL identifier.

Note:

• For the purpose of this discussion, the following COBOL versions are considered similar:

– COBOL V4.2 and prior releases
– COBOL V5.1 and later releases

• These measurements are only for the overhead of the CALL (i.e. the subprogram did only a GOBACK);
thus, a full application that does more work in the subprograms may have different results.

42 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Related tasks
Transferring control to another program
(Enterprise COBOL for z/OS Programming Guide)

Using IS INITIAL on the PROGRAM-ID statement or INITIAL
compiler option

The IS INITIAL clause on the PROGRAM-ID statement or the INITIAL compiler option specifies that when
a program is called, it and any programs that it contains will be entered in their initial or first-time called
state.

There is an overhead in initializing all WORKING-STORAGE variables with VALUE clauses. The
performance impact depends on the number and sizes of such variables.

Using IS RECURSIVE on the PROGRAM-ID statement
The IS RECURSIVE clause on the PROGRAM-ID statement specifies that the COBOL program can be
recursively called while a previous invocation is still active.

The IS RECURSIVE clause is required for all programs that are compiled with the THREAD compiler
option.

Performance considerations for using IS RECURSIVE on the PROGRAM-ID statement (measuring CALL
overhead only):

• One testcase (an LE-conforming Assembler repeatedly calling COBOL) using IS RECURSIVE was 15 %
slower than not using IS RECURSIVE.

Note: This test measured only the overhead of the CALL (i.e., the subprogram did only a GOBACK); thus,
a full application that does more work in the subprograms is not degraded as much.

Chapter 5. COBOL and LE features that affect runtime performance 43

44 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 6. Other product related factors that affect
runtime performance

It is important to understand COBOL's interaction with other products in order to enhance the
performance of your application.

This section describes some product related factors that should be considered for the application.

Decimal overflow implications in ILC applications
Interlanguage communication (ILC) applications are applications built of two or more high-level
languages (such as COBOL, PL/I, or C) and frequently assembler.

ILC applications run outside of the realm of a single language environment, which creates special
conditions, such as how the data from each language maps across load module boundaries, how
conditions are handled, or how data can be passed and received by each language.

While LE fully supports ILC applications, there can be significant performance implications when using
them with COBOL applications. One area to look at is condition handling.

COBOL normally either ignores decimal overflow conditions or handles them by checking the condition
code after the decimal instruction. However, when languages such as C or PL/I are in the same application
as COBOL, these decimal overflow conditions will now be handled by LE condition management since
both C and PL/I set the Decimal Overflow bit in the program mask. This can have a significant impact
on the performance of the COBOL application, especially under CICS, if decimal overflows are occurring
during arithmetic operations in the COBOL program.

The following programming languages or COBOL features require hardware decimal overflows to be
enabled. During arithmetic operations in COBOL compile units, Language Environment and COBOL
runtime condition management work together to resume execution after overflows in COBOL compile
units. This can have a significant impact on the performance of the COBOL application, especially under
CICS, if many decimal overflows occur during arithmetic operations in COBOL compile units.

• Interlanguage Communication (ILC) with C/C++ and PL/I
• DLL calls
• XML GENERATE and XML PARSE
• JSON GENERATE
• BPXWDYN dynamic allocation

Notes:

• These languages or features need not be used to affect decimal overflows, their mere presence in
the executable code will enable decimal overflows at the time the executable is loaded such as via a
dynamic call.

• The C/C++ or PL/I program does not need to be called. Just the presence of C/C++ or PL/I in the load
module will cause this degradation for decimal overflow conditions.

• The DLL implementation uses the C/C++ runtime.
• When XML GENERATE, XML PARSE, or JSON GENERATE statements are in the program, the C runtime

library will be initialized. Hence, the decimal overflow bit in the program mask will be set even though
you do not explicitly have a C or PL/I program in the application. This will also cause the same
degradation for decimal overflow conditions. JSON PARSE statement does not require the C runtime
library. Therefore, JSON PARSE does not affect the decimal overflow bit in the program mask.

• For the BPXWDYN interface to dynamic allocation, use the alternate entry point BPXWDY2 instead.
BPXWDY2 will preserve the program mask.

© Copyright IBM Corp. 1993, 2024 45

For a COBOL program using COMP-3 (PACKED-DECIMAL) data types in 100,000 arithmetic statements
that cause a decimal overflow condition, the C or PL/I, ILC case was over 99.98% slower than the
COBOL-only, non-ILC case.

z15 introduces a way for COBOL programs to suppress the overflows on a per-instruction basis, enabling
overflow conditions to be ignored by the hardware even when the Decimal Overflow bit in the program
mask is set. In an ILC benchmark compiled where some computations overflowed, performance improved
by 27% when compiling at ARCH(13) than at ARCH(12).

Related references
Performance of decimal overflows (Enterprise COBOL for z/OS Migration Guide)

First program not LE-conforming
If the first program in the application is non LE-conforming, and if this program is repeatedly calling
COBOL, there can be a significant degradation because the COBOL environment must be initialized and
terminated each time a COBOL main program is invoked.

This overhead can be reduced by doing one of the following (listed in order of most improvement to least
improvement):

• Use the CEEENTRY and CEETERM macros in the first program of the application to make it an LE-
conforming program.

• Call the first program of the application from a COBOL stub program (a program that just has a call
statement to the original first program).

• Call CEEPIPI sub from the first program of the application to initialize the LE environment, invoke the
COBOL program, and then terminate the LE environment when the application is complete.

• Use the runtime option RTEREUS to initialize the runtime environment for reusability, making all COBOL
main programs become subprograms.

CAUTION: Using RTEREUS significantly changes the behavior of COBOL programs. Before using
RTEREUS, thoroughly explore the possible side effects and understand the impact on your
application.

For details about the RTEREUS runtime option, see RTEREUS (COBOL only) in the z/OS Language
Environment Customization.

• Use the Library Routine Retention (LRR) function (similar to the function provided by the LIBKEEP
runtime option in VS COBOL II).

• Call CEEPIPI main from the first program of the application to initialize the LE environment, invoke the
COBOL program, and then terminate the LE environment when the application is complete.

• Place the LE library routines in the LPA or ELPA. The list of routines to put in the LPA or EPLA is release
dependent and is the same routines listed under the IMS preload list considerations.

Related references
Assembler considerations (z/OS Language Environment Programming Guide)

CICS
Language Environment uses more transaction storage than VS COBOL II. This is especially noticeable
when more than one run-unit (enclave) is used since storage is managed at the run-unit level with LE.
This means that HEAP, STACK, ANYHEAP, etc. are allocated for each run-unit under LE. With VS COBOL
II, stack (SRA) and heap storage are managed at the transaction level. Additionally, there are some LE
control blocks that need to be allocated.

In order to minimize the amount of below the line storage used by LE under CICS, you should run
with ALL31(ON) and STACK(,,ANYWHERE) as much as possible. In order to do this, you have to identify
all of your AMODE(24) COBOL programs that are not OS/VS COBOL. Then you can either make the
necessary coding changes to make them AMODE(31) or you can link-edit a CEEUOPT with ALL31(OFF)

46 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

https://www.ibm.com/docs/en/zos/latest?topic=options-rtereus-cobol-only

and STACK(,,BELOW) as necessary for those run units that need it. You can find out how much storage a
particular transaction is using by looking at the auxiliary trace data for that transaction. You do not need
to be concerned about OS/VS COBOL programs since the LE runtime options do not affect OS/VS COBOL
programs running under CICS. Also, if the transaction is defined with TASKDATALOC(ANY) and ALL31(ON)
is being used and the programs are compiled with DATA(31), then LE does not use any below the line
storage for the transaction under CICS, resulting in some additional below the line storage savings.

There are two CICS SIT options that can be used to reduce the amount of GETMAIN and FREEMAIN
activity, which will help the response time. The first one is the RUWAPOOL SIT option. You can set
RUWAPOOL to YES to reduce the GETMAIN and FREEMAIN activity. The second is the AUTODST SIT
option. If you are using CICS Transaction Server Version 1 Release 3 or later, you can also set AUTODST
to YES to cause Language Environment to automatically tune the storage for the CICS region. Doing this
should result in fewer GETMAIN and FREEMAIN requests in the CICS region. Additionally, when using
AUTODST=YES, you can also use the storage tuning user exit (see “Storage tuning user exit” on page 40)
to modify the default behavior of this automatic storage tuning.

For details, see Using Language Environment under CICS in the z/OS Language Environment
Customization.

The RENT compiler option is required for an application running under CICS. Additionally, if the program is
run through the CICS translator or co-processor (i.e., it has EXEC CICS commands in it), it must also use
the NODYNAM compiler option. CICS Transaction Server 1.3 or later is required for Enterprise COBOL.

For details, see RENT in the Enterprise COBOL for z/OS Programming Guide.

Enterprise COBOL supports static and dynamic calls to Enterprise COBOL and VS COBOL II (with the RES
option) subprograms containing CICS commands or dependencies. Note that Enterprise COBOL 4.2 and
earlier releases also support calls to VS COBOL II with the NORES option. Static calls are done with the
CALL literal statement and dynamic calls are done with the CALL identifier statement. Converting EXEC
CICS LINKs to COBOL CALLs can improve transaction response time and reduce virtual storage usage.
Enterprise COBOL does not support calls to or from OS/VS COBOL programs in a CICS environment. In
this case, EXEC CICS LINK must be used.

Note: When using EXEC CICS LINK under Language Environment, a new run-unit (enclave) will be created
for each EXEC CICS LINK. This means that new control blocks will be allocated and subsequently freed
for each LINKed to program. This will result in an increase in the number of storage requests. If storage
management tuning has not been done, you may experience more storage requests per enclave. As a
result of a new enclave being created for each EXEC CICS LINK, the CPU time performance will also be
degraded when compared to VS COBOL II. If your application uses many EXEC CICS LINKs, you can avoid
this extra overhead by using COBOL CALLs whenever possible.

If you are using the COBOL CALL statement to call a program that has been translated with the
CICS translator or has been compiled with the CICS co-processor, you must pass DFHEIBLK and
DFHCOMMAREA as the first two parameters on the CALL statement. However, if you are calling a program
that has not been translated, you should not pass DFHEIBLK and DFHCOMMAREA on the CALL statement.
Additionally, if your called subprogram does not use any of the EXEC CICS condition handling commands,
you can use the runtime option CBLPSHPOP(OFF) to eliminate the overhead of doing an EXEC CICS PUSH
HANDLE and an EXEC CICS POP HANDLE that is done for each call by the LE runtime. The CBLPSHPOP
setting can be changed dynamically by using the CLER transaction.

As long as your usage of all binary (COMP) data items in the application conforms to the PICTURE
and USAGE specifications, you can use TRUNC(OPT) to improve transaction response time. This is
recommended in performance sensitive CICS applications. If your usage of any binary data item does
not conform to the PICTURE and USAGE specifications, you can either use a COMP-5 data type or
increase the precision in the PICTURE clause instead of using the TRUNC(BIN) compiler option. Note
that the CICS translator does not generate code that will cause truncation and the CICS co-processor
uses COMP-5 data types which does not cause truncation. If you were using NOTRUNC with your OS/VS
COBOL programs without problems, TRUNC(OPT) on IBM Enterprise COBOL behaves in a similar way.
For additional information on the TRUNC compiler option, see TRUNC in the Enterprise COBOL for z/OS
Programming Guide.

Chapter 6. Other product related factors that affect runtime performance 47

Db2
As long as your usage of all binary (COMP) data items in the application conforms to the PICTURE and
USAGE specifications and your binary data was created by COBOL programs, you can use TRUNC(OPT) to
improve performance under Db2®.

This is recommended in performance sensitive Db2 applications. If your usage of any binary data item
does not conform to the PICTURE and USAGE specifications, you should use COMP-5 data types or
use the TRUNC(BIN) compiler option. If you were using NOTRUNC with your OS/VS COBOL programs
without problems, TRUNC(OPT) on COBOL for MVS & VM, COBOL for OS/390 & VM, and Enterprise COBOL
behaves in a similar way. For additional information on the TRUNC option, please refer to “TRUNC” on
page 27.

The RENT compiler option must be used for COBOL programs used as Db2 stored procedures.

For the best performance, make sure that you use codepages that are compatible to avoid unnecessary
conversions. For example, if your Db2 database uses codepage 037, but you use the CODEPAGE(1140),
SQL, SQLCCSID compiler options, the performance can be slower than using either CODEPAGE(037), SQL,
SQLCCSID or CODEPAGE(1140), SQL, NOSQLCCSID since the first set of options require conversions to
match the codepage but the second and third set of options do not require such conversions.

DFSORT
Use the FASTSRT compiler option to improve the performance of most sort operations. With FASTSRT,
the DFSORT product performs the I/O on input and/or output files named in either or both of the
SORT ... USING or SORT ... GIVING statements. If you have an INPUT PROCEDURE phrase or an OUTPUT
PROCEDURE phrase for your sort files, the FASTSRT option has no impact to the INPUT PROCEDURE or
the OUTPUT PROCEDURE. However, if you have an INPUT PROCEDURE phrase with a GIVING phrase or a
USING phrase with an OUTPUT PROCEDURE phrase, FASTSRT will still apply to the USING or GIVING part
of the SORT statement. The complete list of requirements is contained in the Enterprise COBOL for z/OS
Programming Guide.

Performance considerations using DFSORT:

• One program that processed 100,000 records is 45% faster when using FASTSRT compared to using
NOFASTSRT.

Related references
FASTSRT (Enterprise COBOL for z/OS Programming Guide)

IMS
If the application is running under IMS, preloading the application program and the library routines can
help to reduce the load/search overhead, as well as reduce the I/O activity.

This is especially true for the library routines since they are used by every COBOL program. When the
application program is preloaded, subsequent requests for the program are handled faster because it
does not have to be fetched from external storage. The RENT compiler option is required for preloaded
applications.

Using the Library Routine Retention (LRR) function can significantly improve the performance of COBOL
transactions running under IMS/TM. LRR provides function similar to that of the VS COBOL II LIBKEEP
runtime option. It keeps the LE environment initialized and retains in memory any loaded LE library
routines, storage associated with these library routines, and storage for LE startup control blocks. To use
LRR in an IMS dependent region, you must do the following steps:

1. In your startup JCL or procedure to bring up the IMS dependent region, specify the PREINIT=xx
parameter, where xx is the 2-character suffix of the DFSINTxx member in your IMS PROCLIB data set.

2. Include the name CEELRRIN in the DFSINTxx member of your IMS PROCLIB data set.
3. Bring up your IMS dependent region.

48 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

You can also create your own load module to initialize the LRR function by modifying the CEELRRIN
sample source in the SCEESAMP data set. If you do this, use your module name in place of CEELRRIN
above.

Warning: The RTEREUS option is not recommended for IMS and its usage should be avoided. If the
RTEREUS runtime option is used, the top level COBOL programs of all applications must be preloaded.

Using RTEREUS will keep the LE environment up until the region goes down or until a STOP RUN is issued
by a COBOL program. This means that every program and its WORKING-STORAGE (from the time the
first COBOL program was initialized) is kept in the region. Although this is very fast, you may find that
the region may soon fill to overflowing, especially if there are many different COBOL programs that are
invoked.

Note: Refer to z/OS Language Environment Customization for restrictions and usage notes about this
option.

When not using RTEREUS or LRR, it is recommended that you preload the following library modules:

• For all COBOL applications: CEEBINIT, IGZCPAC, IGZCPCO, CEEEV005, CEEPLPKA, IGZETRM, IGZEINI,
IGZCLNK, CEEEV004, IGZXDMR, IGZXD24, IGZXLPIO, IGZXLPKA, IGZXLPKB, IGZXLPKC

• If the application also contains VS COBOL II programs: IGZCTCO, IGZEPLF, and IGZEPCL

Preloading should reduce the amount of I/O activity associated with loading and deleting these modules
for each transaction.

Other than the COBOL library modules listed above, you should also preload any of the below the line
routines that you need. A list of the below the line routines can be found in the Language Environment
Customization manual.

Additionally, heavily used application programs can be compiled with the RENT compiler option and
preloaded to reduce the amount of I/O activity associated with loading them.

The TRUNC(OPT) compiler option can be used if the following conditions are satisfied:

• You are not using a database that was built by a non-COBOL program.
• Your usage of all binary data items conforms to the PICTURE and USAGE specifications for the data

items (e.g., no pointer arithmetic using binary data types).

Otherwise, you should use the TRUNC(BIN) compiler option or COMP-5 data types. For additional
information on the TRUNC compiler option, see “TRUNC” on page 27.

Related references
Language Environment library routine retention (LRR)
(z/OS Language Environment Programming Guide)
Using Language Environment under IMS
(z/OS Language Environment Customization)
Language Environment COBOL component modules
(z/OS Language Environment Customization)

LLA
Enterprise COBOL programs (V5 and later releases) linking with CSECTs that have the RMODE 24 attribute
may be excluded from management by Library Lookaside (LLA).

Considerations when using the LLA facility
Programs in the following list contain CSECTs with the RMODE 24 attribute:

• Enterprise COBOL program that is compiled with the RMODE(24) or NORENT compiler options.
• VS COBOL II program that is compiled with the NORENT compiler option.
• Assembler program that contains CSECT with RMODE 24.

Chapter 6. Other product related factors that affect runtime performance 49

By default, the RMODE attribute of an Enterprise COBOL V5 (or later) program is RMODE ANY. When such
program is linked with any of the above, the binder will place RMODE 24 CSECTS in one segment, and
the Enterprise COBOL V5 code in a second segment. There is also a third segment for the C-WSA class
(new starting in COBOL V5). Program objects with more than two segments cannot be used with the
Library Lookaside (LLA) facility. This issue can be avoided by specifying the RMODE(24) compiler option
explicitly for the Enterprise COBOL V5 program, and specifying the DYNAM=NO binder option (default for
the binder). This would make the RMODE attributes consistent within the program object. Alternatively,
you can also change the compilation of the COBOL programs in the above list by not using the RMODE(24)
and NORENT options, and not having RMODE 24 CSECTs in assemble programs.

50 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 7. Coding techniques to get the most out of
V6

This section focuses on how the source code can be modified to tune a program for better performance.
Coding style, as well as data types, can have a significant impact on the performance of an application.

BINARY (COMP or COMP-4)
BINARY data and synonyms COMP and COMP-4 are the two's complement data representation in COBOL.

BINARY data is declared with a PICTURE clause as with internal or external decimal data but the
underlying data representation is as a halfword (2 bytes), a fullword (4 bytes) or a doubleword (8 bytes).

The compiler option TRUNC(OPT | STD | BIN) determines if and how the compiler corrects values back to
the declared picture clause and how much significant data is present when accessing a data item.

Although the overall general performance considerations for BINARY data and the TRUNC option from V4
and earlier versions still apply in V6, some of the relative performance differences for the various TRUNC
suboptions have changed (sometimes dramatically). These changes may impact coding and compiler
option choices.

To quantify the relative and absolute performance differences a series of addition operations on binary
data items were executed in a loop on a z15 machine. The 4 tests below contain the same type and
number of arithmetic operations but have a varying number of digits. All of the operands are signed.

• TEST 1: 8 additions with one each of 1 through 8 digits
• TEST 2: 8 additions each with 9 digits
• TEST 3: 8 additions with one each of 10 through 17 digits
• TEST 4: 8 additions each with 18 digits

The tests were then compiled varying the TRUNC option.

The first experiment specified the TRUNC(STD) compiler option.

TRUNC(STD) instructs the compiler to always correct back to the specified PICTURE clause and allows the
compiler to assume that loaded values only have the specified number of PICTURE clause digits.

Table 5. Performance differences results of four test cases when specifying TRUNC(STD)

TRUNC(STD) V4 versus TEST 1 V6 versus TEST 1 V6 versus V4

TEST 1: 1-8 digits 100% 100% 16.6%

TEST 2: 9 digits 145.9% 116.9% 13.3%

TEST 3: 10-17 digits 479.1% 116.4% 4%

TEST 4: 18 digits 768.2% 100.5% 2.2%

These results demonstrate that:

• V6 outperforms V4 for all lengths when using TRUNC(STD).
• Although performance slows as the number of digits increases for both V4 and V6 it slows much more

gradually and to much lower overall amount using V6 compared to V4.

The second experiment specified the TRUNC(BIN) compiler option. Specifying this option is equivalent to
using the COMP-5 type for all BINARY data.

TRUNC(BIN) instructs the compiler to allow values to only correct back to the underlying data
representation (two, four or eight bytes) instead of back to the specified PICTURE clause. This option

© Copyright IBM Corp. 1993, 2024 51

also requires the compiler to assume that loaded values can have up to two, four or eight bytes worth of
significant data.

Table 6. Performance differences results of four test cases when specifying TRUNC(BIN)

TRUNC(BIN) V4 versus TEST 1 V6 versus TEST 1 V6 versus V4

TEST 1: 1-8 digits 100% 100% 62.5%

TEST 2: 9 digits 154.5% 100.4% 40.6%

TEST 3: 10-17 digits 5098.2% 1925.5% 23.6%

TEST 4: 18 digits 5099.2% 1928% 23.6%

These results demonstrate that:

• V6 also outperforms V4 for all lengths when using TRUNC(BIN).
• V6 shows no slow down when testing at 9 digits.
• There is a dramatic reduction in performance for both V4 and V6 (but more so for V4 in absolute terms)

when the length is increased beyond 9 digits. This is due to the TRUNC(BIN) requirement that input data
may contain up to the full integer half/full/double word of data (and extra data type conversions and
library routines are required).

The third and final experiment specified the TRUNC(OPT) compiler option. TRUNC(OPT) is a performance
option. The compiler assumes that input data conforms to the PICTURE clause and then allows the
compiler the freedom to manipulate data in either of the following ways that are most optimal:

• Correcting back to the PICTURE clause as with TRUNC(STD) or
• Only correcting back to the two, four or eight byte boundary as with TRUNC(BIN)

Table 7. Performance differences results of four test cases when specifying TRUNC(OPT)

TRUNC(OPT) V4 versus TEST 1 V6 versus TEST 1 V6 versus V4

TEST 1: 1-8 digits 100% 100% 97%

TEST 2: 9 digits 333.3% 69.7% 20.4%

TEST 3: 10-17 digits 209.7% 70.4% 32.7%

TEST 4: 18 digits 5553.4% 129.7% 2.3%

These results demonstrate that:

• V6 also outperforms V4 when using TRUNC(OPT).
• V6 shows no slow down until the 18 digit case but still vastly outperforms V4 at this longest length.

Note: Use the TRUNC(OPT) only if you are sure the data being moved in the binary areas conforms to the
PICTURE clause otherwise unpredictable results could occur. See TRUNC in the Enterprise COBOL for z/OS
Programming Guide for more information.

Across all the TRUNC options and data item lengths just presented V6 outperforms V4. These
improvements are due to the following reasons:

• The use of 64-bit ‘G’ form instructions enables much more efficient code for > 8 digit cases
• More efficient library routines for the very large TRUNC(BIN) cases

Chapter 2, “Prioritizing your application for migration to V6,” on page 7 has a specific example of binary
double word arithmetic (Large Binary Arithmetic) that demonstrates the performance improvement for
this type of operation relative to version 4 of the compiler. In this example V6 is considerably faster than
V4 and earlier compiler releases.

52 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

The relative performance differences across the different TRUNC options have been smoothed out
compared to V4. This is primarily due to the compiler inserting a runtime test for overflow. If no overflow
is possible then an expensive ‘divide’ hardware instruction is avoided.

If your data is known to conform to the PICTURE clause then TRUNC(OPT) remains the best overall
option to choose but relatively speaking it improves less over TRUNC(STD) than in V4 and overall absolute
performance is better with either option in V6.

Although TRUNC(BIN) enables more efficient code when storing out a COMPUTE or MOVE result it
continues to significantly harm the performance when these data items are used as input to arithmetic
statements (as the compiler must assume the max 2,4,8 byte size). V6 optimizes the correction code for
TRUNC(STD) so the performance benefit of TRUNC(BIN) has been reduced slightly.

It might be better to only specify COMP-5 for select data items versus using TRUNC(BIN). For example,
performance will usually be improved if data items in COMPUTE statements in particular are not specified
with COMP-5.

DISPLAY
In IBM Enterprise COBOL Version 4 Release 2 Performance Tuning, it says: "Avoid using USAGE DISPLAY
data items for computations (especially in areas that are heavily used for computations)". This continues
to be the best practice in V6. However, using the options OPT(1 | 2) and ARCH(10 | 11) enables the
V6 compiler to efficiently convert DISPLAY operands to Decimal Floating Point (DFP). At ARCH(12) and
above, using OPT(1 | 2) enables the V6 compiler to convert DISPLAY operands to PACKED-DECIMAL,
carrying out PACKED-DECIMAL arithmetic in vector registers. Both optimizations reduce the overhead of
using DISPLAY data items in computations.

Comparing data USAGE DISPLAY:

1 A pic s9(17).
1 B pic s9(17).
1 C pic s9(18).

To COMP-3:

1 A pic s9(17) COMP-3.
1 B pic s9(17) COMP-3.
1 C pic s9(18) COMP-3.

For the statement:

ADD A TO B GIVING C.

In V4 using COMP-3 is 22% faster than using DISPLAY, while in V6 using COMP-3 is 27% faster than using
DISPLAY.

Although performance comparisons will vary for different sizes of data and different types of
computational statements the performance of DISPLAY data items in computations has generally
improved in V6 when using ARCH(10 | 11) and OPT(1 | 2), or when using ARCH(12) or higher. Despite the
improvements between V6 and V4, it is still recommended to use COMP-3 or BINARY for data items that
will be used in computations. In particular, if a data item will be used as a loop counter or a table index,
converting that data item from DISPLAY to BINARY can lead to significant performance gains.

PACKED-DECIMAL (COMP-3)
In IBM Enterprise COBOL Version 4 Release 2 Performance Tuning, it says: "When using PACKED-DECIMAL
(COMP-3) data items in computations, use 15 or fewer digits in the PICTURE specification to avoid the use
of library routines for multiplication and division".

Using V6 and the options ARCH(8 | 9 | 10 | 11) and OPT(1 | 2), the compiler can generate inline decimal
floating-point (DFP) code for some of these larger multiplication and division operations. The maximum
intermediate result size supported for this optimization is 34 digits. Although there is some overhead in

Chapter 7. Coding techniques to get the most out of V6 53

this conversion to DFP, it is less of a penalty than having to invoke a library routine. This is also true for
external decimal (DISPLAY and NATIONAL) types that are converted by the compiler to packed decimal
for COMPUTE statements.

Using V6.2 and ARCH(12), the compiler instead uses the vector packed-decimal facility, which
accelerates packed and zoned decimal computation by storing intermediate results in vector registers
instead of in memory. This avoids the overhead of conversion to DFP.

Fixed-point versus floating-point
In IBM Enterprise COBOL Version 4 Release 2 Performance Tuning, it says: "When using fixed-point
exponentiations with large exponents, the calculation can be done more efficiently by using operands that
force the exponentiation to be evaluated in floating-point".

In V6, it is still true that floating point exponentiation is much faster than fixed-point exponentiation;
however, the relative cost of each type of exponentiation has changed from V4 to V6.

Consider the following code example:

01 A PIC S9(6)V9(12) COMP-3 VALUE 0.
01 B PIC S9V9(12) COMP-3 VALUE 1.234567891.
01 C PIC S9(10) COMP-3 VALUE -9.

COMPUTE A = (1 + B) ** C. (original)
COMPUTE A = (1.0E0 + B) ** C. (forced to floating-point)

The original, fixed-point exponentiation, is 89% faster in V6 compared to V4.

The forced to floating point exponentiation is 39% faster in V6 compared to V4.

However, because floating point exponentiation remains many times faster than fixed-point
exponentiation, it is still recommended to use floating point exponentiation whenever possible.

Factoring expressions
In IBM Enterprise COBOL Version 4 Release 2 Performance Tuning, it says: "For evaluating arithmetic
expressions, the compiler is bound by the left-to-right evaluation rules for COBOL. In order for
the optimizer to recognize constant computations (that can be done at compile time) or duplicate
computations (common subexpressions), move all constants and duplicate expressions to the left end
of the expression or group them in parentheses."

The V6 compiler factors expressions as a part of optimization and no longer requires this type of factoring
to be done at the source code level as was recommended in V4. However, this only applies within a single
expression. Consider the following example, which shows two ways of summing the total cost of a set of
items and applying a discount:

MOVE ZERO TO TOTAL
PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10
COMPUTE TOTAL = TOTAL + ITEM(I) * DISCOUNT
END-PERFORM

MOVE ZERO TO TOTAL
PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10
COMPUTE TOTAL = TOTAL + ITEM(I)
END-PERFORM
COMPUTE TOTAL = TOTAL * DISCOUNT

The first block of code performs ten multiplications, while the second block of code only performs one.
The second block of code is therefore more efficient. The V6 compiler does not perform this type of
factoring across loops. It's done at the source code level.

54 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Symbolic constants
In IBM Enterprise COBOL Version 4 Release 2 Performance Tuning, it says: "If you want the optimizer to
recognize a data item as a constant throughout the program, initialize it with a VALUE clause and don't
modify it anywhere in the program".

This remains a valid and important recommendation, with one difference. The V6 compiler tolerates the
data item being reinitialized to an identical value as was specified in the VALUE clause. In this case, the
compiler recognizes that the value of the data item has not changed from its initial value and will still treat
it as a constant.

Performance tuning considerations for Occurs Depending On
tables

Usually the relative ordering of data item declarations does not have a significant or easily predictable
impact on performance.

However, if your program contains Occurs Depending On (ODO) tables, the specific group layout of data
items that follow an ODO table might lead to greatly degraded performance when accessing certain other
variables.

Consider an ODO table declared as below:

01 TABLE-1.
 05 X PIC S9(4) comp.
 05 Y OCCURS 3 TIMES
 DEPENDING ON X PIC X.
 05 Z PIC S9.

Because the size of item Y in TABLE-1 depends on another data-item, any subsequent non-subordinate
items in the same level-01 record are variably located items, such as item Z in the previous example.

Any load or store to the variably located item Z requires additional code to be generated by the compiler
to determine the location of Z based on the current value of X. If ODO tables are nested then multiple
extra computations are required.

However, by always ending a record after the ODO table, all variables declared after the table will no
longer be variably located and access to these variables will be much more efficient. The following
example adds a new level 01 record after the ODO table and before any other variables are declared:

01 TABLE-1.
 05 X PIC S9(4) comp.
 05 Y OCCURS 3 TIMES
 DEPENDING ON X PIC X.
01 WS-VARS.
 05 Z PIC S9.

A benchmark program performing arithmetic on data items located after fixed-size tables in an 01-level
record performs 94% better than when the tables have OCCURS DEPENDING ON clauses.

Using PERFORM
Enterprise COBOL allows you to use the PERFORM verb in two basic ways: you may write an inline
PERFORM or an out-of-line PERFORM.

An inline PERFORM is preferable from a performance perspective, because at all optimization levels
control flow is straightforward. In addition, with V6 program objects, Debug Tool is capable of skipping
over the contents of an out-of-line PERFORM. However, it is generally not desirable to replicate large or
complicated code sequences simply to have inline PERFORMs.

In general, the executed code for an out-of-line PERFORM includes the following steps:

1. Establishing the program address where control will return when the PERFORM is completed and
saving that address in a compiler generated LOCAL-STORAGE data item.

Chapter 7. Coding techniques to get the most out of V6 55

2. Branching to the start of the PERFORMed range.
3. Executing the PERFORMed range.
4. Branching back indirectly via the compiler generated data item mentioned in the first step.

In addition, the logic associated with phrases such as those for specifying the number of iterations or
testing conditions is also executed.

At optimization levels above OPT(0), the compiler will attempt to remove some of the out-of-line
branching code. If necessary, it will replicate code sequences to achieve this. This replication is limited to
a maximum size for a PERFORM range and to a total maximum size for the whole program. There are no
configuration options to control these maximum values.

This ‘PERFORM inlining’ optimization can be done on a per PERFORM statement basis. However, the
nature of the range being PERFORMed must have certain characteristics in order to be a candidate.

In essence, out-of-line PERFORM statements should resemble procedure calls to have the best chance to
be optimized. And, of course, that implies that the range being performed should resemble a procedure.

Typically, a procedure has a single entry point and control always returns ultimately to the caller.
Therefore, in a performed range, all branching (except for additional PERFORM statements that code in
the range itself might execute) should remain within the range. Similarly, the program should not contain
branches (other than the PERFORMs of the range) from outside the performed range to statements inside
it. For example, assuming that we have sequential sentences A, B and C in order in the program, the
compiler does not optimize the following PERFORMs as the second PERFORM essentially branches into
the middle of the first PERFORM’s range:

PERFORM A THROUGH C
PERFORM B THROUGH C

Overlapping performed ranges in general can also inhibit the PERFORM inlining optimization as well
as other global optimizations that tend to work best on more straightforward control flow constructs.
Assuming that, in addition to sentences A, B and C, we also have (immediately following C) sentence D.
The following statements result in overlapping performed ranges:

PERFORM A THROUGH C
PERFORM B THROUGH D

Recursively performed ranges are also not recommended in COBOL as these will also inhibit
optimizations. For example, the following is not recommended:

A. IF COND THEN PERFORM A.

Recursion can be more subtle than this case. Ranges A and B might recursively call each other and this
would inhibit optimization.

In general, any branching between code in the main program and code in declarative sections (except
the branching that happens as part of the natural flow of the COBOL program) is an impediment to
optimization. And this is certainly true of branching in the form of PERFORM statements.

You should write the COBOL code that most naturally expresses the required logic. Sometimes, however,
you can achieve the same thing in a number of ways, especially in utility routines. For example, the
following code expresses logic one way:

LOCAL-STORAGE SECTION.
 01 ACTION PIC 9.

 PROCEDURE DIVISION.

 MOVE 1 TO ACTION
 PERFORM A

 MOVE 2 TO ACTION
 PERFORM A

 MOVE 1 TO ACTION
 PERFORM A

56 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

A. IF ACTION = 1 DISPLAY "X" ELSE DISPLAY "Y".

In a case like this, it is likely beneficial to specialize the performed range as follows:

PERORM A1

PERFORM A2

PERFORM A1

A1. DISPLAY "X".
A2. DISPLAY "Y".

In this specific case, the optimizer will be able to achieve the same effect. It will start by replicating the
statement in A at each PERFORM statement. Then it will have to spend compilation resources at each
PERFORM statement to realize that, in each context, it can clearly identify whether or not ACTION = 1.
Furthermore, in similar code patterns, there may be cases where the programmer knows something about
the use of a utility range that the optimizer is not able to deduce.

Using QSAM files
When using QSAM files, use large block sizes whenever possible by using the BLOCK CONTAINS clause on
your file definitions (the default with COBOL is to use unblocked files).

You can have the system determine the optimal block size for you by specifying the BLOCK CONTAINS 0
clause for any new files that you are creating and omitting the BLKSIZE parameter in your JCL for these
files. You can also omit the BLOCK CONTAINS clause for the file and use the BLOCK0 compiler option to
achieve the same effect. This should significantly improve the file processing time (both in CPU time and
elapsed time).

Performance considerations using I/O buffers for a program that reads 14,000 records and wrote 28,000
records with no BLOCK CONTAINS clause and no BLKSIZE in the JCL:

• Using BLOCK0 was 90% faster and used 98% fewer EXCPs than NOBLOCK0.

Additionally, increasing the number of I/O buffers for heavy I/O jobs can improve both the CPU and
elapsed time performance, at the expense of using more storage. This can be accomplished by using the
BUFNO subparameter of the DCB parameter in the JCL or by using the RESERVE clause of the SELECT
statement in the FILE-CONTROL paragraph. Note that if you do not use either the BUFNO subparameter
or the RESERVE clause, the system default will be used.

Performance considerations using I/O buffers for a program that reads 14,000 records and wrote 28,000
records with no blocking:

• Using DCB=BUFNO=1 took 0.452 CPU seconds
• Using DCB=BUFNO=5 took 0.129 CPU seconds
• Using DCB=BUFNO=10 took 0.089 CPU seconds
• Using DCB=BUFNO=25 took 0.067 CPU seconds

Refer to Chapter 4.1 for a discussion on the location of QSAM buffers.

Using variable-length files
When writing to variable-length blocked sequential files, use the APPLY WRITE-ONLY clause for the file or
use the AWO compiler option. This reduces the number of calls to Data Management Services to handle
the I/Os. For performance considerations using the APPLY-WRITE-ONLY clause or the AWO compiler
option, see “AWO” on page 18.

Chapter 7. Coding techniques to get the most out of V6 57

Using HFS files
You can process byte-stream HFS files as ORGANIZATIONAL SEQUENTIAL files using QSAM and
specifying the PATH=fully-qualified-pathname and FILEDATA=BINARY options on the DD statement or
using an environment variable to define the file.

You can process text HFS files as ORGANIZATION SEQUENTIAL files using QSAM and specifying the
PATH=fully-qualified-pathname and FILEDATA=TEXT on the DD statement or as ORGANIZATION LINE
SEQUENTIAL and specifying the PATH=fully-qualified-pathname on the DD statement.

Using VSAM files
When using VSAM files, increase the number of data buffers (BUFND) for sequential access or index
buffers (BUFNI) for random access.

Also, select a control interval size (CISZ) that is appropriate for the application. A smaller CISZ results in
faster retrieval for random processing at the expense of inserts, whereas a larger CISZ is more efficient for
sequential processing. In general, using large CI and buffer space VSAM parameters may help to improve
the performance of the application.

In general, sequential access is the most efficient, dynamic access the next, and random access is
the least efficient. However, for relative record VSAM (ORGANIZATION IS RELATIVE), using ACCESS IS
DYNAMIC when reading each record in a random order can be slower than using ACCESS IS RANDOM,
since VSAM may prefetch multiple tracks of data when using ACCESS IS DYNAMIC. ACCESS IS DYNAMIC
is optimal when reading one record in a random order and then reading several subsequent records
sequentially.

Random access results in an increase in I/O activity because VSAM must access the index for each
request. In order to give an idea of the differences in using SEQUENTIAL, RANDOM, and DYNAMIC access
for sequential operations on an INDEXED file, we provide the measurements that were obtained from
running a COBOL program that uses an ORGANIZATION IS INDEXED file on our test system; this may
not be representative of the results on your system. The COBOL program does 10,000 writes and 10,000
reads. The ratios of CPU time, elapsed time and EXCP counts are shown, with ACCESS IS SEQUENTIAL
used as the base line 100%.

Table 8. CPU time, elapsed time and EXCP counts with different access mode

Access mode CPU Time (seconds) Elapsed (seconds) EXCP counts

ACCESS IS SEQUENTIAL 100% 100% 100%

ACCESS IS DYNAMIC
with READ NEXT

134% 143% 193%

ACCESS IS DYNAMIC
with READ

713% 1095% 7189%

ACCESS IS RANDOM 1405% 3140% 15190%

Note: For the DYNAMIC with READ and the RANDOM cases, the record key of the next sequential record
was moved into the data buffer prior to the READ.

If you use alternate indexes, it is more efficient to use the Access Method Services to build them than to
use the AIXBLD runtime option. Avoid using multiple alternate indexes when possible since updates will
have to be applied through the primary paths and reflected through the multiple alternate paths.

Refer to Chapter 4.1 about the location of VSAM buffers.

To improve VSAM performance, you can use system-managed buffering (SMB) when possible. To use
SMB, the data set must use System Management Subsystem (SMS) storage and be in Extended format
(DSNTYPE=xxx in the data class, where xxx is some form of extended format). Then you can use one of
the following, depending on the record access type needed:

1. AMP='ACCBIAS=DO': optimize for only random record access

58 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

2. AMP='ACCBIAS=SO': optimize for only sequential record access
3. AMP='ACCBIAS=DW': optimize for mainly random record access with some sequential access
4. AMP='ACCBIAS=SW': optimize for mainly sequential record access with some random access

Refer to Tuning your program in the Enterprise COBOL for z/OS Programming Guide for additional coding
techniques and best practices.

VSAM dynamic access optional logic path
With the PTF for APAR PH56036 for AMODE 31 or PH56037 for AMODE 64 installed, an optional alternate
logic path is introduced for VSAM files that use the ACCESS IS DYNAMIC mode. This alternate logic path
does not alter your program logic, but instead changes the runtime logic used to locate a record by key
(read-by-key). Both the default and alternate logic path return the same results.

The default COBOL runtime ACCESS IS DYNAMIC logic path gears toward those who use more READ
NEXT (read-next-record) after positioning to a key record (read-by-key). This logic path works best in this
case because VSAM does record pre-fetches in anticipation of programs that do a read-next-record. The
COBOL runtime would point to a record by key, then issue a sequential read from that point priming the
read-ahead buffers.

The alternate logic path introduced uses a direct read-by-key request instead of a point to a record by
key. This approach takes advantage of IBM's hardware disk systems that feature zHyperLink. zHyperLink
improves application response time, which cuts I/O-sensitive workload response times. Note that the
CPU cost is not neutral for some environments. You are highly recommended to use this approach where
your critical business demands depend on I/O sensitive workload response times. You might get varying
performance results, so you should do your own performance measurements.

You can enable this alternate logic path by using the COBOL runtime option VSAMDYNAMICDIR. For more
details, see "VSAM dynamic access read option VSAMDYNAMICDIR" in the Programming Guide.

More information about zHyperLink is available at zHyperLink I/O in the IBM z/OS documentation and the
Getting Started with IBM zHyperLink for z/OS on IBM Redbooks®.

Related references
VSAM dynamic access read option VSAMDYNAMICDIR (Enterprise COBOL for z/OS Programming Guide)
zHyperLink I/O

Related tasks
Getting Started with IBM zHyperLink for z/OS

Chapter 7. Coding techniques to get the most out of V6 59

https://www.ibm.com/docs/en/zos/latest?topic=performance-zhyperlink-io
https://www.redbooks.ibm.com/redpapers/pdfs/redp5493.pdf
https://www.ibm.com/docs/en/zos/latest?topic=performance-zhyperlink-io
https://www.redbooks.ibm.com/redpapers/pdfs/redp5493.pdf

60 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Chapter 8. Program object size and PDSE
requirement

For details, see the following topics:

• “Changes in load module size between V4 and V6” on page 61
• “Impact of TEST suboptions on program object size” on page 61
• “Why does COBOL V6 use PDSEs for executables?” on page 63

Changes in load module size between V4 and V6
The most important reason for executable code growth between V4 and V6 is an advanced optimization in
V6, which was introduced in V5, to inline some out-of-line PERFORM statements to their calling site. This
inlining has a number of advantages for program performance. First, it avoids the overhead of dispatching
and returning from the out-of-line perform. Second, it exposes the statements being performed to further
optimization in the context of the surrounding statements. This latter reason often allows the optimizer,
even at OPT(1), to exploit synergies and to eliminate redundancies in order to improve performance.
Tuning has been done since V5.1 to reduce the number of PERFORMs that are inlined in cases where a
performance increase is unlikely.

In V6, the INLINE and NOINLINE options are introduced to control whether the inlining of procedures
(paragraphs or sections) referenced by PERFORM statements in the source program. For details, please
view INLINE in the Enterprise COBOL for z/OS Programming Guide.

There are other reasons as well why the executable size may be larger in some cases compared to V4:

• Use of higher ARCH instructions that are usually 6 bytes versus 4 bytes for many lower arch
instructions. For example:

– Using more than one ARCH(8) move immediate instruction instead of one in memory move
– Exploiting Decimal Floating Point for packed/zoned decimal arithmetic

• Various V6 optimizations over and above V4 results in more generated code but shorter path length and
better performance. For example:

– More advanced INSPECT inlining
– Conditionally inlining some complex conversions
– Conditionally correcting decimal precision for binary data
– Speeding up MOVEs to numeric-edited and alpha-numeric-edited data items

• V4 used "base locator" pointers accessed by 4 byte load, but in V6, fewer base locators are used, but 6
byte long displacement instructions are used instead

• V6 has a higher unroll threshold than V4 when deciding to use multiple MVCs for large copies to avoid a
more expensive MVCL instruction

Impact of TEST suboptions on program object size
As detailed in TEST in the Enterprise COBOL for z/OS Programming Guide, the TEST and NOTEST
options have several suboptions in V6. The SOURCE/NOSOURCE, DWARF/NODWARF and SEPARATE/
NOSEPARATE suboptions directly control if extra information used for debugging should or should not be
included in the program object, and therefore can change the size of the object significantly.

The TEST option by itself and the suboption EJPD will also affect the program object size, but making it
either greater or lesser, as these options may change the amount and types of optimizations performed by
the compiler (so the resulting code and literal data areas may be smaller or larger).

© Copyright IBM Corp. 1993, 2024 61

Note that although the added debugging information will affect the size of the resulting program object,
this will not affect the LOADed size.

Since the debugging information is in NOLOAD class segments, these parts of the program object are not
loaded when the program is run, unless Debug Tool or Fault Analyzer or CEEDUMP processing explicitly
requests it. So, unlike COBOL V4 and earlier versions, the size of the program object related to debugging
information does not affect LOAD times or execution performance.

Since each suboption will impact the object size in a different way, let’s examine each suboption
separately. Results will be shown for OPTIMIZE(0) and OPTIMIZE(1) for each case, and all other options
are kept at their default settings.

The size comparisons were gathered from a large selection of COBOL tests in our performance verification
suite of applications.

First, let’s compare the NOTEST suboption DWARF/NODWARF. The DWARF setting will cause basic
DWARF diagnostic information to be included in the object.

Table 9. NOTEST(DWARF) % size increase over NOTEST(NODWARF)

Average Size NOTEST(DWARF) %
size increase over
NOTEST(NODWARF)

OPTIMIZE(0) 96.1%

OPTIMIZE(1) 105.7%

So at both OPTIMIZE settings measured the overall object size roughly doubles when specifying DWARF
overall the default NODWARF setting.

For TEST, let’s first look at the option by itself versus NOTEST. The differences in object size in this case
are due to a few reasons:

• The first major reason for the size increase is that TEST always causes full DWARF debugging
information to be included in the object

• The second major reason for the size increase is that TEST by default enables the SOURCE suboption, so
the generated DWARF debug information includes the expanded source code

• The third reason, and this generally matters less than the previous two reasons, is that TEST slightly
inhibits optimization, and this may result in object size increases or decreases depending on the
characteristics of the program

Table 10. TEST % size increase over NOTEST

Average Size TEST % size increase
over NOTEST

OPTIMIZE(0) 216.7%

OPTIMIZE(1) 237.8%

Next, let’s look at the impact of the SOURCE/NOSOURCE suboption. This increase is directly related
to the size of your expanded source file as it will be included in the DWARF debug information when
TEST(SOURCE) is specified.

Despite the object size increase it causes, the advantage of specifying SOURCE is that since the DWARF
information will contain the expanded source, a separate compiler listing will not be required by IBM
Debug Tool.

62 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Table 11. TEST(SOURCE) % size increase over TEST(NOSOURCE)

Average Size TEST(SOURCE) %
size increase over
TEST(NOSOURCE)

OPTIMIZE(0) 27.5%

OPTIMIZE(1) 27.0%

Finally, let’s look at the impact to object size from toggling the TEST suboption EJPD/NOEJPD. This
option does not change the amount or type of DWARF debug information included in the object, but only
impacts the amount and types of optimizations performed by the compiler in order to meet the debugging
requirements of EJPD.

Table 12. TEST(EJPD) % size increase over TEST(NOEJPD)

Average Size TEST(EJPD) %
size increase over
TEST(NOEJPD)

OPTIMIZE(0) 0%

OPTIMIZE(1) 4.0%

The 0% change at OPTIMIZE(0) makes sense, as this lowest level of optimization is already low enough to
be not restricted by the extra debugging requirements of EJPD.

At OPTIMIZE(1), the more restrictive EJPD setting generally inhibits optimizations that would have
resulted in smaller, and likely faster performing, executable code.

Why does COBOL V6 use PDSEs for executables?
As detailed in Changes in compiling with Enterprise COBOL Version 5 and Version 6 in the Enterprise
COBOL for z/OS Migration Guide, COBOL V6 executables must reside in a PDSE and can no longer be in a
PDS.

This section describes some of the rationale for this change in behavior.

First, here is background information regarding PDS. When using PDS, customers reported problems in
several areas:

• The need for frequent compressions
• Loss of data due to the directory being overwritten
• Performance impact due to a sequential directory search
• Performance delay if member added to beginning of directory
• When PDS went into multiple extents

In addition, PDS data sets cannot share update access to members without an enqueue on the entire
dataset. More seriously though, a PDS library has to be taken down in order to perform compression to
reclaim member space, or for a directory reallocation to reclaim wasted spaced (also known as gas).

Both of these can cause application downtime in production systems and are therefore very undesirable.

PDSEs, which were introduced in 1990, were designed to eliminate or at least reduce these problems
and for the most part they have been successful. The initial rollout of PDSEs was rocky, and due to these
problems long ago, many sites continue to avoid PDSEs to this day.

On the other hand, many other sites have moved their COBOL load libraries to PDSEs, and the process to
do so is fairly mechanical. For example:

• Allocate new PDSE datasets with new names

Chapter 8. Program object size and PDSE requirement 63

• Copy Load Modules into PDSEs - these are converted to Program Objects
• Rename PDSs, then rename PDSEs

In fact, Enterprise COBOL has required program objects, therefore, PDSE for executables since 2001 for
features such as long program names, object-oriented programs and for DLLs using the binder instead of
the prelinker.

Only PDSEs (and z/OS USS files) can contain program objects, and this allows program management
binder to solve some long standing existing problems using these program object features.

For example, once the 16 MB text size limit of load modules was hit, the only solution was an expensive
redesign or refactoring of the program in order to make it smaller. With program objects the text size limit
is increased to 1GB.

This extra space also allows the COBOL compiler to perform more advanced optimizations that may
increase program literal area, and ultimately object, size (with the goal of course of improving runtime
performance). There are other advantages as well for COBOL using program objects:

• QY-con requires program objects
• Condition-sequential RLD support requires program objects (leading to a performance improvement for

bootstrap invocation)
• Program objects can get page mapped 4K at a time for better performance
• Common reentrancy model with C/C++ requires program objects
• Looking into potential for the future XPLINK requires program objects and will be used for AMODE 64

A related issue is the different sharing rules across a SYSPLEX system. Unlike PDS libraries, PDSE data
sets cannot be shared across SYSPLEX systems. Therefore, if existing pre-V6 PDS based COBOL load
libraries are being shared, then V6 PDSE based load libraries can be moved using the following process:

• One SYSPLEX can be the writer/owner of main PDSE load library (development SYSPLEX)
• When PDSE load library is updated, push the new copy out to production SYSPLEX systems with XMIT or

FTP
• The other SYSPLEX systems would then RECEIVE the updated PDSE load library

64 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Appendix A. Using IBM Automatic Binary Optimizer
for z/OS (ABO) to improve COBOL application
performance

IBM Automatic Binary Optimizer for z/OS (ABO) enables you to improve the performance of already
compiled IBM COBOL programs without the need for recompilation. The input to ABO is your compiled
COBOL program modules, and it does not require source code, source code migration, or performance
options tuning.

You can continue to use the latest version of Enterprise COBOL for new development, modernization, and
maintenance, and if you don't have a recompile plan for some compiled programs or if some program
source code is not available, you can use ABO to improve the performance of those COBOL modules.

To learn more about the relationship between COBOL and ABO, see Using ABO and Enterprise COBOL
together in the IBM Automatic Binary Optimizer for z/OS User's Guide. To learn more about ABO, see the
ABO product page.

Below are some of the frequently asked questions (FAQ) on ABO. More FAQs are available on the ABO FAQ
page.
Is ABO a cost item?

The fully licensed and supported edition of ABO requires a license charge. Talk to your IBM sales
representative or the online ABO sales to get the price.
ABO is also available as a 90-day cloud trial or on-premises trial, and both trial editions are no-charge.
The ABO cloud trial does not require any installation, while the on-premises trial allows you to install
ABO at your site.

What happens with ABO when I have the load module but not the source code?
ABO needs the load module only, and it does not look for the source. If you do not have the
source, with the COBOL compiler you cannot recompile it because the compiler needs the source.
However, ABO will work fine as long as the load module has been compiled with any COBOL compiler
versions between VS COBOL II and Enterprise COBOL 6. For details, see Eligible compilers in the IBM
Automatic Binary Optimizer for z/OS User's Guide.

When using ABO, should we save the original load module?
In case anything goes wrong, you can back up the original load module.

© Copyright IBM Corp. 1993, 2024 65

https://www.ibm.com/docs/en/abo/latest?topic=overview-using-abo-enterprise-cobol-together
https://www.ibm.com/docs/en/abo/latest?topic=overview-using-abo-enterprise-cobol-together
https://www.ibm.com/products/automatic-binary-optimizer-zos
https://www.ibm.com/products/automatic-binary-optimizer-zos/faq
https://www.ibm.com/products/automatic-binary-optimizer-zos/faq
https://www.ibm.com/products/automatic-binary-optimizer-zos/pricing
https://optimizer.ibm.com/
https://www.ibm.com/docs/en/abo/latest?topic=requirements-eligible-compilers

66 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Appendix B. Intrinsic function implementation
considerations

The COBOL intrinsic functions are implemented either by using LE callable services, library routines,
inline code, or a combination of these. The following table shows how each of the intrinsic functions are
implemented:

Table 13. Intrinsic Function Implementation

Function Name LE Service
Library Routine (COBOL
runtime) Inline Code

ABS Yes

ACOS Yes

ANNUITY Yes

ASIN Yes

ATAN Yes

BIT-OF Yes

BIT-TO-CHAR Yes

BYTE-LENGTH Yes

CHAR Yes

COMBINED-DATETIME Yes

COS Yes

CURRENT-DATE Yes

DATE-OF-INTEGER Yes1 Yes2

DATE-TO-YYYYMMDD Yes1 Yes2

DAY-OF-INTEGER Yes1 Yes2 Yes

DAY-TO-YYYYMMDD Yes1 Yes2

DISPLAY-OF Yes

E Yes

EXP Yes

EXP10 Yes

FACTORIAL Yes

FORMATTED-CURRENT-
DATE

Yes1 Yes2

FORMATTED-DATE Yes1 Yes2

FORMATTED-DATETIME Yes1 Yes2

FORMATTED-TIME Yes

HEX-OF Yes

HEX-TO-CHAR Yes

© Copyright IBM Corp. 1993, 2024 67

Table 13. Intrinsic Function Implementation (continued)

Function Name LE Service
Library Routine (COBOL
runtime) Inline Code

INTEGER Yes Yes Yes

INTEGER-OF-DATE Yes1 Yes2

INTEGER-OF-DAY Yes1 Yes2 Yes

INTEGER-OF-
FORMATTED-DATE

Yes1 Yes2

INTEGER-PART Yes

LENGTH Yes

LOG Yes

LOG10 Yes

LOWER-CASE Yes

MAX Yes

MEAN Yes

MEDIAN Yes

MIDRANGE Yes

MIN Yes

MOD Yes

NATIONAL-OF Yes

NUMVAL Yes

NUMVAL-C Yes

NUMVAL-F Yes

ORD Yes

ORD-MAX Yes

ORD-MIN Yes

PI Yes

PRESENT-VALUE Yes

RANDOM Yes Yes

RANGE Yes

REM (fixed-point) Yes

REM (floating-point) Yes

REVERSE Yes Yes

SECONDS-FROM-
FORMATTED-TIME

Yes

SECONDS-PAST-
MIDNIGHT

Yes1 Yes2

SIGN Yes

68 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Table 13. Intrinsic Function Implementation (continued)

Function Name LE Service
Library Routine (COBOL
runtime) Inline Code

SIN Yes

SQRT Yes

STANDARD-DEVIATION Yes Yes

SUM Yes

TAN Yes

TEST-DATE-YYYYMMDD Yes

TEST-DAY-YYYYMMDD Yes

TEST-FORMATTED-
DATETIME

Yes

TEST-NUMVAL Yes

TEST-NUMVAL-C Yes

TEST-NUMVAL-F Yes

TRIM Yes

ULENGTH Yes

UPOS Yes

UPPER-CASE Yes

USUBSTR Yes

USUPPLEMENTARY Yes

UUID4 Yes

UVALID Yes

UWIDTH Yes

VARIANCE Yes Yes

WHEN-COMPILED Yes3

YEAR-TO-YYYY Yes1 Yes2

1. If LP(32) is in effect
2. If LP(64) is in effect
3. WHEN-COMPILED is a literal that is used whenever it is needed.

Appendix B. Intrinsic function implementation considerations 69

70 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Appendix C. Accessibility features for Enterprise
COBOL for z/OS

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Enterprise COBOL for z/OS.

Accessibility features
z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (https://www.access-board.gov/ict/) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

The Enterprise COBOL for z/OS online product documentation in IBM Knowledge Center is enabled for
accessibility. The accessibility features of IBM Knowledge Center are described at http://www.ibm.com/
support/knowledgecenter/en/about/releasenotes.html.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120)
• z/OS TSO/E User's Guide (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/

APPENDIX1.3)
• z/OS ISPF User's Guide Volume I (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70)
• IBM Developer for z/OS Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSQ2R2/

rdz_welcome.html?lang=en)

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The Enterprise COBOL for z/OS online product documentation is available in IBM Knowledge Center,
which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

© Copyright IBM Corp. 1993, 2024 71

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

72 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

http://www.ibm.com/able
http://www.ibm.com/able

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

© Copyright IBM Corp. 1993, 2024 73

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1993, 2020.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"

74 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.html.

Disclaimer
The performance considerations contained in this information were obtained by running sample programs
in a particular hardware/software configuration using a selected set of tests and are presented as
illustrations.

Since performance varies with configuration, program characteristics, and other installation and
environment factors, results obtained in other operating environments may vary. We recommend that
you construct sample programs representative of your workload and run your own experiments with a
configuration applicable to your environment.

IBM does not represent, warrant, or guarantee that a user will achieve the same or similar results in the
user's environment as the experimental results reported in this information.

Notices 75

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.html

76 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Glossary

The terms in this glossary are defined in accordance with their meaning in COBOL. These terms might or
might not have the same meaning in other languages.

This glossary includes terms and definitions from the following publications:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL, and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

• ANSI X3.172-2002, American National Standard Dictionary for Information Systems
• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL
• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments and

system software interfaces - Programming language COBOL

American National Standard definitions are preceded by an asterisk (*).

A

* abbreviated combined relation condition
The combined condition that results from the explicit omission of a common subject or a common
subject and common relational operator in a consecutive sequence of relation conditions.

abend
Abnormal termination of a program.

above the 2 GB bar
Storage located above the so-called 2 GB bar (or boundary). This storage is only addressable by
AMODE 64 programs.

above the 16 MB line
Storage located above the so-called 16 MB line (or boundary) but below the 2 GB bar. This storage
is not addressable by AMODE 24 programs. Before IBM introduced the MVS/XA architecture in the
1980s, the virtual storage for a program was limited to 16 MB. Programs that have been link-edited
as AMODE 24 can address only 16 MB of space, as though they were kept under an imaginary storage
line. Since VS COBOL II, a program can have AMODE 31 and can be loaded above the 16 MB line.

* access mode
The manner in which records are to be operated upon within a file.

* actual decimal point
The physical representation, using the decimal point characters period (.) or comma (,), of the decimal
point position in a data item.

actual document encoding
For an XML document, one of the following encoding categories that the XML parser determines by
examining the first few bytes of the document:

• ASCII
• EBCDIC
• UTF-8
• UTF-16, either big-endian or little-endian
• Other unsupported encoding
• No recognizable encoding

© Copyright IBM Corp. 1993, 2024 77

* alphabet-name
A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that
assigns a name to a specific character set or collating sequence or both.

* alphabetic character
A letter or a space character.

alphanumeric character position
See character position.

alphabetic data item
A data item that is described with a PICTURE character string that contains only the symbol A. An
alphabetic data item has USAGE DISPLAY.

* alphanumeric character
Any character in the single-byte character set of the computer.

alphanumeric data item
A general reference to a data item that is described implicitly or explicitly as USAGE DISPLAY, and
that has category alphanumeric, alphanumeric-edited, or numeric-edited.

alphanumeric-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol A or X and at least one of the simple insertion symbols B, 0, or /. An alphanumeric-edited data
item has USAGE DISPLAY.

* alphanumeric function
A function whose value is composed of a string of one or more characters from the alphanumeric
character set of the computer.

alphanumeric group item
A group item that is defined without a GROUP-USAGE NATIONAL clause. For operations such as
INSPECT, STRING, and UNSTRING, an alphanumeric group item is processed as though all its content
were described as USAGE DISPLAY regardless of the actual content of the group. For operations
that require processing of the elementary items within a group, such as MOVE CORRESPONDING, ADD
CORRESPONDING, or INITIALIZE, an alphanumeric group item is processed using group semantics.

alphanumeric literal
A literal that has an opening delimiter from the following set: ', ", X', X", Z', or Z". The string of
characters can include any character in the character set of the computer.

* alternate record key
A key, other than the prime record key, whose contents identify a record within an indexed file.

ANSI (American National Standards Institute)
An organization that consists of producers, consumers, and general-interest groups and establishes
the procedures by which accredited organizations create and maintain voluntary industry standards in
the United States.

argument
(1) An identifier, a literal, an arithmetic expression, or a function-identifier that specifies a value to
be used in the evaluation of a function. (2) An operand of the USING phrase of a CALL or INVOKE
statement, used for passing values to a called program or an invoked method.

* arithmetic expression
A numeric literal, an identifier representing a numeric elementary item, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or
an arithmetic expression enclosed in parentheses.

* arithmetic operation
The process caused by the execution of an arithmetic statement, or the evaluation of an arithmetic
expression, that results in a mathematically correct solution to the arguments presented.

* arithmetic operator
A single character, or a fixed two-character combination that belongs to the following set:

78 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Character Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

* arithmetic statement
A statement that causes an arithmetic operation to be executed. The arithmetic statements are ADD,
COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT.

array
An aggregate that consists of data objects, each of which can be uniquely referenced by subscripting.
An array is roughly analogous to a COBOL table.

* ascending key
A key upon the values of which data is ordered, starting with the lowest value of the key up to the
highest value of the key, in accordance with the rules for comparing data items.

ASCII
American National Standard Code for Information Interchange. The standard code uses a coded
character set that is based on 7-bit coded characters (8 bits including parity check). The standard
is used for information interchange between data processing systems, data communication systems,
and associated equipment. The ASCII set consists of control characters and graphic characters.

IBM has defined an extension to ASCII (characters 128-255).

ASCII DBCS
See double-byte ASCII.

assignment-name
A name that identifies the organization of a COBOL file and the name by which it is known to the
system.

* assumed decimal point
A decimal point position that does not involve the existence of an actual character in a data item. The
assumed decimal point has logical meaning but no physical representation.

AT END condition
A condition that is caused during the execution of a READ, RETURN, or SEARCH statement under
certain conditions:

• A READ statement runs on a sequentially accessed file when no next logical record exists in the file,
or when the number of significant digits in the relative record number is larger than the size of the
relative key data item, or when an optional input file is not available.

• A RETURN statement runs when no next logical record exists for the associated sort or merge file.
• A SEARCH statement runs when the search operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

B

basic character set
The basic set of characters used in writing words, character-strings, and separators of the language.
The basic character set is implemented in single-byte EBCDIC. The extended character set includes
DBCS characters, which can be used in comments, literals, and user-defined words.

Synonymous with COBOL character set in the 85 COBOL Standard.

big-endian
The default format that the mainframe and the AIX® workstation use to store binary data and UTF-16
characters. In this format, the least significant byte of a binary data item is at the highest address and
the least significant byte of a UTF-16 character is at the highest address. Compare with little-endian.

Glossary 79

binary item
A numeric data item that is represented in binary notation (on the base 2 numbering system). The
decimal equivalent consists of the decimal digits 0 through 9, plus an operational sign. The leftmost
bit of the item is the operational sign.

binary search
A dichotomizing search in which, at each step of the search, the set of data elements is divided by
two; some appropriate action is taken in the case of an odd number.

* block
A physical unit of data that is normally composed of one or more logical records. For mass storage
files, a block can contain a portion of a logical record. The size of a block has no direct relationship
to the size of the file within which the block is contained or to the size of the logical records that are
either contained within the block or that overlap the block. Synonymous with physical record.

boolean condition
A boolean condition determines whether a boolean literal is true or false. A boolean condition can only
be used in a constant conditional expression.

boolean literal
Can be either B'1', indicating a true value, or B'0', indicating a false value. Boolean literals can only be
used in constant conditional expressions.

breakpoint
A place in a computer program, usually specified by an instruction, where external intervention or a
monitor program can interrupt the program as it runs.

buffer
A portion of storage that is used to hold input or output data temporarily.

built-in function
See intrinsic function.

business method
A method of an enterprise bean that implements the business logic or rules of an application. (Oracle)

byte
A string that consists of a certain number of bits, usually eight, treated as a unit, and representing a
character or a control function.

byte order mark (BOM)
A Unicode character that can be used at the start of UTF-16 or UTF-32 text to indicate the byte order
of subsequent text; the byte order can be either big-endian or little-endian.

bytecode
Machine-independent code that is generated by the Java™ compiler and executed by the Java
interpreter. (Oracle)

C

callable services
In Language Environment, a set of services that a COBOL program can invoke by using the
conventional Language Environment-defined call interface. All programs that share the Language
Environment conventions can use these services.

called program
A program that is the object of a CALL statement. At run time the called program and calling program
are combined to produce a run unit.

* calling program
A program that executes a CALL to another program.

canonical decomposition
A way to represent a single precomposed Unicode character using two or more Unicode characters. A
canonical decomposition is typically used to separate latin letters with a diacritical mark so that the
latin letter and the diacritical mark are represented individually. See precomposed character for an
example showing a precomposed Unicode character and its canonical decomposition.

80 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

case structure
A program-processing logic in which a series of conditions is tested in order to choose between a
number of resulting actions.

cataloged procedure
A set of job control statements that are placed in a partitioned data set called the procedure library
(SYS1.PROCLIB). You can use cataloged procedures to save time and reduce errors in coding JCL.

CCSID
See coded character set identifier.

century window
A 100-year interval within which any two-digit year is unique. Several types of century window are
available to COBOL programmers:

• For the windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and YEAR-TO-
YYYY, you specify the century window with argument-2.

• For Language Environment callable services, you specify the century window in CEESCEN.

* character
The basic indivisible unit of the language.

character encoding unit
A unit of data that corresponds to one code point in a coded character set. One or more character
encoding units are used to represent a character in a coded character set. Also known as encoding
unit.

For USAGE NATIONAL, a character encoding unit corresponds to one 2-byte code point of UTF-16.

For USAGE DISPLAY, a character encoding unit corresponds to a byte.

For USAGE DISPLAY-1, a character encoding unit corresponds to a 2-byte code point in the DBCS
character set.

character position
The amount of physical storage or presentation space required to hold or present one character. The
term applies to any class of character. For specific classes of characters, the following terms apply:

• Alphanumeric character position, for characters represented in USAGE DISPLAY
• DBCS character position, for DBCS characters represented in USAGE DISPLAY-1
• National character position, for characters represented in USAGE NATIONAL; synonymous with

character encoding unit for UTF-16

character set
A collection of elements that are used to represent textual information, but for which no coded
representation is assumed. See also coded character set.

character string
A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE character string, or
a comment-entry. A character string must be delimited by separators.

checkpoint
A point at which information about the status of a job and the system can be recorded so that the job
step can be restarted later.

* class
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class. Classes
can be defined hierarchically, allowing one class to inherit from another.

class (object-oriented)
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class.

Glossary 81

* class condition
The proposition (for which a truth value can be determined) that the content of an item is wholly
alphabetic, is wholly numeric, is wholly DBCS, is wholly Kanji, or consists exclusively of the characters
that are listed in the definition of a class-name.

* class definition
The COBOL source unit that defines a class.

class hierarchy
A tree-like structure that shows relationships among object classes. It places one class at the top and
one or more layers of classes below it. Synonymous with inheritance hierarchy.

* class identification entry
An entry in the CLASS-ID paragraph of the IDENTIFICATION DIVISION; this entry contains
clauses that specify the class-name and assign selected attributes to the class definition.

class-name (object-oriented)
The name of an object-oriented COBOL class definition.

* class-name (of data)
A user-defined word that is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION; this word assigns a name to the proposition (for which a truth value can be defined)
that the content of a data item consists exclusively of the characters that are listed in the definition of
the class-name.

class object
The runtime object that represents a class.

* clause
An ordered set of consecutive COBOL character strings whose purpose is to specify an attribute of an
entry.

client
In object-oriented programming, a program or method that requests services from one or more
methods in a class.

COBOL character set
The set of characters used in writing COBOL syntax. The complete COBOL character set consists of
these characters:

Character Meaning

0,1, . . . ,9 Digit

A,B, . . . ,Z Uppercase letter

a,b, . . . ,z Lowercase letter

Space

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

82 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

Character Meaning

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

* COBOL word
See word.

code page
An assignment of graphic characters and control function meanings to all code points. For example,
one code page could assign characters and meanings to 256 code points for 8-bit code, and another
code page could assign characters and meanings to 128 code points for 7-bit code. For example, one
of the IBM code pages for English on the workstation is IBM-1252 and on the host is IBM-1047. A
coded character set.

code point
A unique bit pattern that is defined in a coded character set (code page). Graphic symbols and control
characters are assigned to code points.

coded character set
A set of unambiguous rules that establish a character set and the relationship between the characters
of the set and their coded representation. Examples of coded character sets are the character sets as
represented by ASCII or EBCDIC code pages or by the UTF-16 encoding scheme for Unicode.

coded character set identifier (CCSID)
An IBM-defined number in the range 1 to 65,535 that identifies a specific code page.

* collating sequence
The sequence in which the characters that are acceptable to a computer are ordered for purposes of
sorting, merging, comparing, and for processing indexed files sequentially.

* column
A byte position within a print line or within a reference format line. The columns are numbered from 1,
by 1, starting at the leftmost position of the line and extending to the rightmost position of the line. A
column holds one single-byte character.

* combined condition
A condition that is the result of connecting two or more conditions with the AND or the OR logical
operator. See also condition and negated combined condition.

combining characters
A Unicode character used to modify other succeeding or preceding Unicode characters. Combining
characters are typically Unicode diacritical mark used to modify latin letters. See precomposed
character for an example of combining character U+0308 (¨) used with latin letter U+0061 (a).

* comment-entry
An entry in the IDENTIFICATION DIVISION that is used for documentation and has no effect on
execution.

comment line
A source program line represented by an asterisk (*) in the indicator area of the line or by an asterisk
followed by greater-than sign (*>) as the first character string in the program text area (Area A plus
Area B), and any characters from the character set of the computer that follow in Area A and Area B of
that line. A comment line serves only for documentation. A special form of comment line represented
by a slant (/) in the indicator area of the line and any characters from the character set of the
computer in Area A and Area B of that line causes page ejection before the comment is printed.

Glossary 83

* common program
A program that, despite being directly contained within another program, can be called from any
program directly or indirectly contained in that other program.

* compile
(1) To translate a program expressed in a high-level language into a program expressed in an
intermediate language, assembly language, or a computer language. (2) To prepare a machine-
language program from a computer program written in another programming language by making
use of the overall logic structure of the program, or generating more than one computer instruction for
each symbolic statement, or both, as well as performing the function of an assembler.

compilation variable
A symbolic name for a particular literal value or the value of a compile-time arithmetic expression as
specified by the DEFINE directive or by the DEFINE compiler option.

* compile time
The time at which COBOL source code is translated, by a COBOL compiler, to a COBOL object program.

compile-time arithmetic expression
A subset of arithmetic expressions that are specified in the DEFINE and EVALUATE directives or in
a constant conditional expression. The difference between compile-time arithmetic expressions and
regular arithmetic expressions is that in a compile-time arithmetic expression:

• The exponentiation operator shall not be specified.
• All operands shall be integer numeric literals or arithmetic expressions in which all operands are

integer numeric literals.
• The expression shall be specified in such a way that a division by zero does not occur.

compiler
A program that translates source code written in a higher-level language into machine-language
object code.

compiler-directing statement
A statement that causes the compiler to take a specific action during compilation. The standard
compiler-directing statements are COPY, REPLACE, and USE.

* complex condition
A condition in which one or more logical operators act upon one or more conditions. See also
condition, negated simple condition, and negated combined condition.

complex ODO
Certain forms of the OCCURS DEPENDING ON clause:

• Variably located item or group: A data item described by an OCCURS clause with the DEPENDING ON
option is followed by a nonsubordinate data item or group. The group can be an alphanumeric group
or a national group.

• Variably located table: A data item described by an OCCURS clause with the DEPENDING ON option
is followed by a nonsubordinate data item described by an OCCURS clause.

• Table with variable-length elements: A data item described by an OCCURS clause contains a
subordinate data item described by an OCCURS clause with the DEPENDING ON option.

• Index name for a table with variable-length elements.
• Element of a table with variable-length elements.

component
(1) A functional grouping of related files. (2) In object-oriented programming, a reusable object
or program that performs a specific function and is designed to work with other components and
applications. JavaBeans is Oracle's architecture for creating components.

composed form
Representation of a precomposed Unicode character through a canonical decomposition. See
precomposed character for details.

* computer-name
A system-name that identifies the computer where the program is to be compiled or run.

84 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

condition (exception)
An exception that has been enabled, or recognized, by Language Environment and thus is eligible to
activate user and language condition handlers. Any alteration to the normal programmed flow of an
application. Conditions can be detected by the hardware or the operating system and result in an
interrupt. They can also be detected by language-specific generated code or language library code.

condition (expression)
A status of data at run time for which a truth value can be determined. Where used in this information
in or in reference to "condition" (condition-1, condition-2,. . .) of a general format, the term refers
to a conditional expression that consists of either a simple condition optionally parenthesized or a
combined condition (consisting of the syntactically correct combination of simple conditions, logical
operators, and parentheses) for which a truth value can be determined. See also simple condition,
complex condition, negated simple condition, combined condition, and negated combined condition.

* conditional expression
A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM, or SEARCH
statement. See also simple condition and complex condition.

* conditional phrase
A phrase that specifies the action to be taken upon determination of the truth value of a condition that
results from the execution of a conditional statement.

* conditional statement
A statement that specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program depends on this truth value.

* conditional variable
A data item one or more values of which has a condition-name assigned to it.

* condition-name
A user-defined word that assigns a name to a subset of values that a conditional variable can assume;
or a user-defined word assigned to a status of an implementor-defined switch or device.

* condition-name condition
The proposition (for which a truth value can be determined) that the value of a conditional variable is a
member of the set of values attributed to a condition-name associated with the conditional variable.

* CONFIGURATION SECTION
A section of the ENVIRONMENT DIVISION that describes overall specifications of source and object
programs and class definitions.

CONSOLE
A COBOL environment-name associated with the operator console.

constant conditional expression
A subset of conditional expressions that may be used in IF directives or WHEN phrases of the
EVALUATE directives.

A constant conditional expression shall be one of the following items:

• A relation condition in which both operands are literals or arithmetic expressions that contain only
literal terms. The condition shall follow the rules for relation conditions, with the following additions:

– The operands shall be of the same category. An arithmetic expression is of the category numeric.
– If literals are specified and they are not numeric literals, the relational operator shall be “IS
EQUAL TO”, “IS NOT EQUAL TO”, “IS =”, “IS NOT =”, or “IS <>”.

See also relation condition.
• A defined condition. See also defined condition.
• A boolean condition. See also boolean condition.
• A complex condition formed by combining the above forms of simple conditions into complex

conditions by using AND, OR, and NOT. Abbreviated combined relation conditions shall not be
specified. See also complex condition.

Glossary 85

contained program
A COBOL program that is nested within another COBOL program.

* contiguous items
Items that are described by consecutive entries in the DATA DIVISION, and that bear a definite
hierarchic relationship to each other.

copybook
A file or library member that contains a sequence of code that is included in the source program at
compile time using the COPY statement. The file can be created by the user, supplied by COBOL, or
supplied by another product. Synonymous with copy file.

* counter
A data item used for storing numbers or number representations in a manner that permits these
numbers to be increased or decreased by the value of another number, or to be changed or reset to
zero or to an arbitrary positive or negative value.

cross-reference listing
The portion of the compiler listing that contains information on where files, fields, and indicators are
defined, referenced, and modified in a program.

currency-sign value
A character string that identifies the monetary units stored in a numeric-edited item. Typical examples
are $, USD, and EUR. A currency-sign value can be defined by either the CURRENCY compiler option
or the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.
If the CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the
dollar sign ($) is used as the default currency-sign value. See also currency symbol.

currency symbol
A character used in a PICTURE clause to indicate the position of a currency sign value in a numeric-
edited item. A currency symbol can be defined by either the CURRENCY compiler option or the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. If the
CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the dollar
sign ($) is used as the default currency sign value and currency symbol. Multiple currency symbols
and currency sign values can be defined. See also currency sign value.

* current record
In file processing, the record that is available in the record area associated with a file.

* current volume pointer
A conceptual entity that points to the current volume of a sequential file.

D

* data clause
A clause, appearing in a data description entry in the DATA DIVISION of a COBOL program, that
provides information describing a particular attribute of a data item.

* data description entry
An entry in the DATA DIVISION of a COBOL program that is composed of a level-number followed by
a data-name, if required, and then followed by a set of data clauses, as required.

DATA DIVISION
The division of a COBOL program or method that describes the data to be processed by the program
or method: the files to be used and the records contained within them; internal WORKING-STORAGE
records that will be needed; data to be made available in more than one program in the COBOL run
unit.

* data item
A unit of data (excluding literals) defined by a COBOL program or by the rules for function evaluation.

data set
Synonym for file.

86 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

* data-name
A user-defined word that names a data item described in a data description entry. When used in the
general formats, data-name represents a word that must not be reference-modified, subscripted, or
qualified unless specifically permitted by the rules for the format.

DBCS
See double-byte character set (DBCS).

DBCS character
Any character defined in IBM's double-byte character set.

DBCS character position
See character position.

DBCS data item
A data item that is described by a PICTURE character string that contains at least one symbol G, or,
when the NSYMBOL(DBCS) compiler option is in effect, at least one symbol N. A DBCS data item has
USAGE DISPLAY-1.

* debugging line
Any line with a D in the indicator area of the line.

* debugging section
A section that contains a USE FOR DEBUGGING statement.

* declarative sentence
A compiler-directing sentence that consists of a single USE statement terminated by the separator
period.

* declaratives
A set of one or more special-purpose sections, written at the beginning of the PROCEDURE
DIVISION, the first of which is preceded by the key word DECLARATIVE and the last of which is
followed by the key words END DECLARATIVES. A declarative is composed of a section header,
followed by a USE compiler-directing sentence, followed by a set of zero, one, or more associated
paragraphs.

* de-edit
The logical removal of all editing characters from a numeric-edited data item in order to determine the
unedited numeric value of the item.

defined condition
A compile-time condition that tests whether a compilation variable is defined. Defined conditions are
specified in IF directives or WHEN phrases of the EVALUATE directives.

* delimited scope statement
Any statement that includes its explicit scope terminator.

* delimiter
A character or a sequence of contiguous characters that identify the end of a string of characters and
separate that string of characters from the following string of characters. A delimiter is not part of the
string of characters that it delimits.

dependent region
In IMS, the MVS virtual storage region that contains message-driven programs, batch programs, or
online utilities.

* descending key
A key upon the values of which data is ordered starting with the highest value of key down to the
lowest value of key, in accordance with the rules for comparing data items.

digit
Any of the numerals from 0 through 9. In COBOL, the term is not used to refer to any other symbol.

* digit position
The amount of physical storage required to store a single digit. This amount can vary depending on the
usage specified in the data description entry that defines the data item.

Glossary 87

* direct access
The facility to obtain data from storage devices or to enter data into a storage device in such a way
that the process depends only on the location of that data and not on a reference to data previously
accessed.

display floating-point data item
A data item that is described implicitly or explicitly as USAGE DISPLAY and that has a PICTURE
character string that describes an external floating-point data item.

* division
A collection of zero, one, or more sections or paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. Each division consists of the division header and
the related division body. There are four divisions in a COBOL program: Identification, Environment,
Data, and Procedure.

* division header
A combination of words followed by a separator period that indicates the beginning of a division. The
division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL
See dynamic link library (DLL).

DLL application
An application that references imported programs, functions, or variables.

DLL linkage
A CALL in a program that has been compiled with the DLL and NODYNAM options; the CALL resolves
to an exported name in a separate module, or to an INVOKE of a method that is defined in a separate
module.

do construct
In structured programming, a DO statement is used to group a number of statements in a procedure.
In COBOL, an inline PERFORM statement functions in the same way.

do-until
In structured programming, a do-until loop will be executed at least once, and until a given condition
is true. In COBOL, a TEST AFTER phrase used with the PERFORM statement functions in the same
way.

do-while
In structured programming, a do-while loop will be executed if, and while, a given condition is true. In
COBOL, a TEST BEFORE phrase used with the PERFORM statement functions in the same way.

document type declaration
An XML element that contains or points to markup declarations that provide a grammar for a class of
documents. This grammar is known as a document type definition, or DTD.

document type definition (DTD)
The grammar for a class of XML documents. See document type declaration.

double-byte ASCII
An IBM character set that includes DBCS and single-byte ASCII characters. (Also known as ASCII
DBCS.)

double-byte EBCDIC
An IBM character set that includes DBCS and single-byte EBCDIC characters. (Also known as EBCDIC
DBCS.)

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more symbols than can be represented by 256 code points,

88 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

require double-byte character sets. Because each character requires 2 bytes, entering, displaying,
and printing DBCS characters requires hardware and supporting software that are DBCS-capable.

DWARF
DWARF was developed by the UNIX International Programming Languages Special Interest Group
(SIG). It is designed to meet the symbolic, source-level debugging needs of different languages in a
unified fashion by supplying language-independent debugging information. A DWARF file contains
debugging data organized into different elements. For more information, see DWARF program
information in the DWARF/ELF Extensions Library Reference.

* dynamic access
An access mode in which specific logical records can be obtained from or placed into a mass storage
file in a nonsequential manner and obtained from a file in a sequential manner during the scope of the
same OPEN statement.

dynamic CALL
A CALL literal statement in a program that has been compiled with the DYNAM option and the NODLL
option, or a CALL identifier statement in a program that has been compiled with the NODLL option.

dynamic-length
An adjective describing an item whose logical length might change at runtime.

dynamic-length elementary item
An elementary data item whose data declaration entry contains the DYNAMIC LENGTH clause.

dynamic-length group
A group item that contains a subordinate dynamic-length elementary item.

dynamic link library (DLL)
A file that contains executable code and data that are bound to a program at load time or run time,
rather than during linking. Several applications can share the code and data in a DLL simultaneously.
Although a DLL is not part of the executable file for a program, it can be required for an executable file
to run properly.

dynamic storage area (DSA)
Dynamically acquired storage composed of a register save area and an area available for dynamic
storage allocation (such as program variables). A DSA is allocated upon invocation of a program or
function and persists for the duration of the invocation instance. DSAs are generally allocated within
stack segments managed by Language Environment.

E

* EBCDIC (Extended Binary-Coded Decimal Interchange Code)
A coded character set based on 8-bit coded characters.

EBCDIC character
Any one of the symbols included in the EBCDIC (Extended Binary-Coded-Decimal Interchange Code)
set.

EBCDIC DBCS
See double-byte EBCDIC.

edited data item
A data item that has been modified by suppressing zeros or inserting editing characters or both.

* editing character
A single character or a fixed two-character combination belonging to the following set:

Character Meaning

Space

0 Zero

+ Plus

- Minus

CR Credit

Glossary 89

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest

Character Meaning

DB Debit

Z Zero suppress

* Check protect

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Slant (forward slash)

EGCS
See extended graphic character set (EGCS).

EJB
See Enterprise JavaBeans.

EJB container
A container that implements the EJB component contract of the J2EE architecture. This contract
specifies a runtime environment for enterprise beans that includes security, concurrency, life cycle
management, transaction, deployment, and other services. An EJB container is provided by an EJB or
J2EE server. (Oracle)

EJB server
Software that provides services to an EJB container. An EJB server can host one or more EJB
containers. (Oracle)

element (text element)
One logical unit of a string of text, such as the description of a single data item or verb, preceded by a
unique code identifying the element type.

* elementary item
A data item that is described as not being further logically subdivided.

encapsulation
In object-oriented programming, the technique that is used to hide the inherent details of an
object. The object provides an interface that queries and manipulates the data without exposing
its underlying structure. Synonymous with information hiding.

enclave
When running under Language Environment, an enclave is analogous to a run unit. An enclave can
create other enclaves by using LINK and by using the system() function in C.

encoding unit
See character encoding unit.

end class marker
A combination of words, followed by a separator period, that indicates the end of a COBOL class
definition. The end class marker is:

END CLASS class-name.

end method marker
A combination of words, followed by a separator period, that indicates the end of a COBOL method
definition. The end method marker is:

END METHOD method-name.

* end of PROCEDURE DIVISION
The physical position of a COBOL source program after which no further procedures appear.

90 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

* end program marker
A combination of words, followed by a separator period, that indicates the end of a COBOL source
program. The end program marker is:

END PROGRAM program-name.

enterprise bean
A component that implements a business task and resides in an EJB container. (Oracle)

Enterprise JavaBeans
A component architecture defined by Oracle for the development and deployment of object-oriented,
distributed, enterprise-level applications.

* entry
Any descriptive set of consecutive clauses terminated by a separator period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL program.

* environment clause
A clause that appears as part of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition. The
ENVIRONMENT DIVISION describes the computers where the source program is compiled and those
where the object program is run. It provides a linkage between the logical concept of files and their
records, and the physical aspects of the devices on which files are stored.

environment-name
A name, specified by IBM, that identifies system logical units, printer and card punch control
characters, report codes, program switches or all of these. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT DIVISION, the mnemonic-name can be substituted in
any format in which such substitution is valid.

environment variable
Any of a number of variables that define some aspect of the computing environment, and are
accessible to programs that operate in that environment. Environment variables can affect the
behavior of programs that are sensitive to the environment in which they operate.

escape sequence
A sequence of characters that are used to represent certain special characters within string literals
and character literals.
Escape sequences consist of two or more characters, the first of which is the backslash (\) character,
which is called the "escape character"; the remaining characters determine the interpretation of the
escape sequence. For example, \n is an escape sequence that denotes a newline character.
Escape sequences are used in programming languages such as C, C++, Java, or Python. COBOL does
not have the concept of "escape sequence" or "escape character". To handle special characters within
COBOL literals, see Basic alphanumeric literals and DBCS literals in the Enterprise COBOL for z/OS
Language Reference.

execution time
See run time.

execution-time environment
See runtime environment.

* explicit scope terminator
A reserved word that terminates the scope of a particular PROCEDURE DIVISION statement.

exponent
A number that indicates the power to which another number (the base) is to be raised. Positive
exponents denote multiplication; negative exponents denote division; and fractional exponents
denote a root of a quantity. In COBOL, an exponential expression is indicated with the symbol **
followed by the exponent.

* expression
An arithmetic or conditional expression.

Glossary 91

* extend mode
The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that file,
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

extended graphic character set (EGCS)
A graphic character set, such as a kanji character set, that requires two bytes to identify each graphic
character. It is refined and replaced by double-byte character set (DBCS).

Extensible Markup Language
See XML.

extensions
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

external code page
For XML documents, the value specified by the CODEPAGE compiler option.

* external data
The data that is described in a program as external data items and external file connectors.

* external data item
A data item that is described as part of an external record in one or more programs of a run unit and
that can be referenced from any program in which it is described.

* external data record
A logical record that is described in one or more programs of a run unit and whose constituent data
items can be referenced from any program in which they are described.

external decimal data item
See zoned decimal data item and national decimal data item.

* external file connector
A file connector that is accessible to one or more object programs in the run unit.

external floating-point data item
See display floating-point data item and national floating-point data item.

external program
The outermost program. A program that is not nested.

* external switch
A hardware or software device, defined and named by the implementor, which is used to indicate that
one of two alternate states exists.

F

factory data
Data that is allocated once for a class and shared by all instances of the class. Factory data is declared
in the WORKING-STORAGE SECTION of the DATA DIVISION in the FACTORY paragraph of the class
definition, and is equivalent to Java private static data.

factory method
A method that is supported by a class independently of an object instance. Factory methods are
declared in the FACTORY paragraph of the class definition, and are equivalent to Java public static
methods. They are typically used to customize the creation of objects.

* figurative constant
A compiler-generated value referenced through the use of certain reserved words.

* file
A collection of logical records.

* file attribute conflict condition
An unsuccessful attempt has been made to execute an input-output operation on a file and the file
attributes, as specified for that file in the program, do not match the fixed attributes for that file.

* file clause
A clause that appears as part of any of the following DATA DIVISION entries: file description entry
(FD entry) and sort-merge file description entry (SD entry).

92 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

* file connector
A storage area that contains information about a file and is used as the linkage between a file-name
and a physical file and between a file-name and its associated record area.

File-Control
The name of an ENVIRONMENT DIVISION paragraph in which the data files for a given source
program are declared.

file control block
Block containing the addresses of I/O routines, information about how they were opened and closed,
and a pointer to the file information block.

* file control entry
A SELECT clause and all its subordinate clauses that declare the relevant physical attributes of a file.

FILE-CONTROL paragraph
A paragraph in the ENVIRONMENT DIVISION in which the data files for a given source unit are
declared.

* file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

* file-name
A user-defined word that names a file connector described in a file description entry or a sort-merge
file description entry within the FILE SECTION of the DATA DIVISION.

* file organization
The permanent logical file structure established at the time that a file is created.

file position indicator
A conceptual entity that contains the value of the current key within the key of reference for an
indexed file, or the record number of the current record for a sequential file, or the relative record
number of the current record for a relative file, or indicates that no next logical record exists, or that
an optional input file is not available, or that the AT END condition already exists, or that no valid next
record has been established.

* FILE SECTION
The section of the DATA DIVISION that contains file description entries and sort-merge file
description entries together with their associated record descriptions.

file system
The collection of files that conform to a specific set of data-record and file-description protocols, and
a set of programs that manage these files.

* fixed file attributes
Information about a file that is established when a file is created and that cannot subsequently
be changed during the existence of the file. These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key, the alternate record keys, the code set, the
minimum and maximum record size, the record type (fixed or variable), the collating sequence of the
keys for indexed files, the blocking factor, the padding character, and the record delimiter.

* fixed-length record
A record associated with a file whose file description or sort-merge description entry requires that all
records contain the same number of bytes.

fixed-point item
A numeric data item defined with a PICTURE clause that specifies the location of an optional sign, the
number of digits it contains, and the location of an optional decimal point. The format can be either
binary, packed decimal, or external decimal.

floating comment indicators (*>)
A floating comment indicator indicates a comment line if it is the first character string in the program-
text area (Area A plus Area B), or indicates an inline comment if it is after one or more character
strings in the program-text area.

Glossary 93

floating point
A format for representing numbers in which a real number is represented by a pair of distinct
numerals. In a floating-point representation, the real number is the product of the fixed-point part
(the first numeral) and a value obtained by raising the implicit floating-point base to a power denoted
by the exponent (the second numeral). For example, a floating-point representation of the number
0.0001234 is 0.1234 -3, where 0.1234 is the mantissa and -3 is the exponent.

floating-point data item
A numeric data item that contains a fraction and an exponent. Its value is obtained by multiplying the
fraction by the base of the numeric data item raised to the power that the exponent specifies.

* format
A specific arrangement of a set of data.

* function
A temporary data item whose value is determined at the time the function is referenced during the
execution of a statement.

* function-identifier
A syntactically correct combination of character strings and separators that references a function.
The data item represented by a function is uniquely identified by a function-name with its arguments,
if any. A function-identifier can include a reference-modifier. A function-identifier that references an
alphanumeric function can be specified anywhere in the general formats that an identifier can be
specified, subject to certain restrictions. A function-identifier that references an integer or numeric
function can be referenced anywhere in the general formats that an arithmetic expression can be
specified.

function-name
A word that names the mechanism whose invocation, along with required arguments, determines the
value of a function.

function-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS FUNCTION-POINTER clause contains the address of a function entry point. Typically used to
communicate with C and Java programs.

G

garbage collection
The automatic freeing by the Java runtime system of the memory for objects that are no longer
referenced.

* global name
A name that is declared in only one program but that can be referenced from the program and from
any program contained within the program. Condition-names, data-names, file-names, record-names,
report-names, and some special registers can be global names.

global reference
A reference to an object that is outside the scope of a method.

group item
(1) A data item that is composed of subordinate data items. See alphanumeric group item and national
group item. (2) When not qualified explicitly or by context as a national group or an alphanumeric
group, the term refers to groups in general.

grouping separator
A character used to separate units of digits in numbers for ease of reading. The default is the
character comma.

H

header label
(1) A data-set label that precedes the data records in a unit of recording media. (2) Synonym for
beginning-of-file label.

94 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

hide (a method)
To redefine (in a subclass) a factory or static method defined with the same method-name in a parent
class. Thus, the method in the subclass hides the method in the parent class.

* high-order end
The leftmost character of a string of characters.

hiperspace
In a z/OS environment, a range of up to 2 GB of contiguous virtual storage addresses that a program
can use as a buffer.

I

IBM COBOL extension
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

IDENTIFICATION DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition.
The IDENTIFICATION DIVISION identifies the program, class, or method. The IDENTIFICATION
DIVISION can include the following documentation: author name, installation, or date.

* identifier
A syntactically correct combination of character strings and separators that names a data item.
When referencing a data item that is not a function, an identifier consists of a data-name, together
with its qualifiers, subscripts, and reference-modifier, as required for uniqueness of reference. When
referencing a data item that is a function, a function-identifier is used.

IGZCBSN
The bootstrap routine for COBOL/370 Release 1. It must be link-edited with any module that contains
a COBOL/370 Release 1 program.

IGZCBSO
The bootstrap routine for COBOL for MVS & VM Release 2, COBOL for OS/390 & VM and Enterprise
COBOL. It must be link-edited with any module that contains a COBOL for MVS & VM Release 2,
COBOL for OS/390 & VM or Enterprise COBOL program.

IGZEBST
The bootstrap routine for VS COBOL II. It must be link-edited with any module that contains a VS
COBOL II program.

ILC
InterLanguage Communication. Interlanguage communication is defined as programs that call or are
called by other high-level languages. Assembler is not considered a high-level language; thus, calls to
and from assembler programs are not considered ILC.

* imperative statement
A statement that either begins with an imperative verb and specifies an unconditional action to be
taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope
statement). An imperative statement can consist of a sequence of imperative statements.

* implicit scope terminator
A separator period that terminates the scope of any preceding unterminated statement, or a phrase of
a statement that by its occurrence indicates the end of the scope of any statement contained within
the preceding phrase.

IMS
Information Management System, IBM licensed product. IMS supports hierarchical databases, data
communication, translation processing, and database backout and recovery.

* index
A computer storage area or register, the content of which represents the identification of a particular
element in a table.

* index data item
A data item in which the values associated with an index-name can be stored in a form specified by
the implementor.

Glossary 95

indexed data-name
An identifier that is composed of a data-name, followed by one or more index-names enclosed in
parentheses.

* indexed file
A file with indexed organization.

* indexed organization
The permanent logical file structure in which each record is identified by the value of one or more keys
within that record.

indexing
Synonymous with subscripting using index-names.

* index-name
A user-defined word that names an index associated with a specific table.

inheritance
A mechanism for using the implementation of a class as the basis for another class. By definition,
the inheriting class conforms to the inherited classes. Enterprise COBOL does not support multiple
inheritance; a subclass has exactly one immediate superclass.

inheritance hierarchy
See class hierarchy.

* initial program
A program that is placed into an initial state every time the program is called in a run unit.

* initial state
The state of a program when it is first called in a run unit.

inline
In a program, instructions that are executed sequentially, without branching to routines, subroutines,
or other programs.

inline comments
An inline comment is identified by a floating comment indicator (*>) preceded by one or more
character-strings in the program-text area, and can be written on any line of a compilation group.
All characters that follow the floating comment indicator up to the end of area B are comment text.

* input file
A file that is opened in the input mode.

* input mode
The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that file
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

* input-output file
A file that is opened in the I-O mode.

* INPUT-OUTPUT SECTION
The section of the ENVIRONMENT DIVISION that names the files and the external media required by
an object program or method and that provides information required for transmission and handling of
data at run time.

* input-output statement
A statement that causes files to be processed by performing operations on individual records or
on the file as a unit. The input-output statements are ACCEPT (with the identifier phrase), CLOSE,
DELETE, DISPLAY, OPEN, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START, and
WRITE.

* input procedure
A set of statements, to which control is given during the execution of a format 1 SORT statement, for
the purpose of controlling the release of specified records to be sorted.

instance data
Data that defines the state of an object. The instance data introduced by a class is defined in
the WORKING-STORAGE SECTION of the DATA DIVISION in the OBJECT paragraph of the class
definition. The state of an object also includes the state of the instance variables introduced by

96 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

classes that are inherited by the current class. A separate copy of the instance data is created for each
object instance.

* integer
(1) A numeric literal that does not include any digit positions to the right of the decimal point. (2) A
numeric data item defined in the DATA DIVISION that does not include any digit positions to the
right of the decimal point. (3) A numeric function whose definition provides that all digits to the right
of the decimal point are zero in the returned value for any possible evaluation of the function.

integer function
A function whose category is numeric and whose definition does not include any digit positions to the
right of the decimal point.

Interactive System Productivity Facility (ISPF)
An IBM software product that provides a menu-driven interface for the TSO or VM user. ISPF includes
library utilities, a powerful editor, and dialog management.

interlanguage communication (ILC)
The ability of routines written in different programming languages to communicate. ILC support lets
you readily build applications from component routines written in a variety of languages.

intermediate result
An intermediate field that contains the results of a succession of arithmetic operations.

* internal data
The data that is described in a program and excludes all external data items and external file
connectors. Items described in the LINKAGE SECTION of a program are treated as internal data.

* internal data item
A data item that is described in one program in a run unit. An internal data item can have a global
name.

internal decimal data item
A data item that is described as USAGE PACKED-DECIMAL or USAGE COMP-3, and that has a
PICTURE character string that defines the item as numeric (a valid combination of symbols 9, S, P, or
V). Synonymous with packed-decimal data item.

* internal file connector
A file connector that is accessible to only one object program in the run unit.

internal floating-point data item
A data item that is described as USAGE COMP-1 or USAGE COMP-2. COMP-1 defines a single-
precision floating-point data item. COMP-2 defines a double-precision floating-point data item. There
is no PICTURE clause associated with an internal floating-point data item.

* intrarecord data structure
The entire collection of groups and elementary data items from a logical record that a contiguous
subset of the data description entries defines. These data description entries include all entries
whose level-number is greater than the level-number of the first data description entry describing the
intra-record data structure.

intrinsic function
A predefined function, such as a commonly used arithmetic function, called by a built-in function
reference.

* invalid key condition
A condition, at run time, caused when a specific value of the key associated with an indexed or relative
file is determined to be not valid.

* I-O-CONTROL
The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for rerun
points, sharing of same areas by several data files, and multiple file storage on a single input-output
device are specified.

* I-O-CONTROL entry
An entry in the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that provide information required for the transmission and handling of data on named files
during the execution of a program.

Glossary 97

* I-O mode
The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file
and before the execution of a CLOSE statement without the REEL or UNIT phase for that file.

* I-O status
A conceptual entity that contains the two-character value indicating the resulting status of an input-
output operation. This value is made available to the program through the use of the FILE STATUS
clause in the file control entry for the file.

is-a
A relationship that characterizes classes and subclasses in an inheritance hierarchy. Subclasses that
have an is-a relationship to a class inherit from that class.

ISPF
See Interactive System Productivity Facility (ISPF).

iteration structure
A program processing logic in which a series of statements is repeated while a condition is true or
until a condition is true.

J

J2EE
See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications, defined by Oracle. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and protocols that
provide the functionality for developing multitiered, Web-based applications. (Oracle)

Java Batch Launcher and Toolkit for z/OS (JZOS)
A set of tools that helps you develop z/OS Java applications that run in a traditional batch
environment, and that access z/OS system services.

Java batch-processing program (JBP)
An IMS batch-processing program that has access to online databases and output message queues.
JBPs run online, but like programs in a batch environment, they are started with JCL or in a TSO
session.

Java batch-processing region
An IMS dependent region in which only Java batch-processing programs are scheduled.

Java Database Connectivity (JDBC)
A specification from Oracle that defines an API that enables Java programs to access databases.

Java message-processing program (JMP)
A Java application program that is driven by transactions and has access to online IMS databases and
message queues.

Java message-processing region
An IMS dependent region in which only Java message-processing programs are scheduled.

Java Native Interface (JNI)
A programming interface that lets Java code that runs inside a Java virtual machine (JVM)
interoperate with applications and libraries written in other programming languages.

Java virtual machine (JVM)
A software implementation of a central processing unit that runs compiled Java programs.

JavaBeans
A portable, platform-independent, reusable component model. (Oracle)

JBP
See Java batch-processing program (JBP).

JDBC
See Java Database Connectivity (JDBC).

JMP
See Java message-processing program (JMP).

98 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

job control language (JCL)
A control language used to identify a job to an operating system and to describe the job's
requirements.

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.

JVM
See Java virtual machine (JVM).

JZOS
See Java Batch Launcher and Toolkit for z/OS.

K

K
When referring to storage capacity, two to the tenth power; 1024 in decimal notation.

* key
A data item that identifies the location of a record, or a set of data items that serve to identify the
ordering of data.

* key of reference
The key, either prime or alternate, currently being used to access records within an indexed file.

* keyword
A context-sensitive word or a reserved word whose presence is required when the format in which the
word appears is used in a source unit.

kilobyte (KB)
One kilobyte equals 1024 bytes.

L

* language-name
A system-name that specifies a particular programming language.

Language Environment
Short form of z/OS Language Environment. A set of architectural constructs and interfaces that
provides a common runtime environment and runtime services for C, C++, COBOL, FORTRAN and PL/I
applications. It is required for programs compiled by Language Environment-conforming compilers
and for Java applications.

Language Environment-conforming
A characteristic of compiler products (such as Enterprise COBOL, COBOL for OS/390 & VM, COBOL
for MVS & VM, C/C++ for MVS & VM, PL/I for MVS & VM) that produce object code conforming to the
Language Environment conventions.

last-used state
A state that a program is in if its internal values remain the same as when the program was exited (the
values are not reset to their initial values).

* letter
A character belonging to one of the following two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator
Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level
indicators in the DATA DIVISION are: CD, FD, and SD.

* level-number
A user-defined word (expressed as a two-digit number) that indicates the hierarchical position of
a data item or the special properties of a data description entry. Level-numbers in the range from
1 through 49 indicate the position of a data item in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 can be written either as a single digit or as a zero followed by
a significant digit. Level-numbers 66, 77, and 88 identify special properties of a data description entry.

Glossary 99

* library-name
A user-defined word that names a COBOL library that the compiler is to use for compiling a given
source program.

* library text
A sequence of text words, comment lines, inline comments, the separator space, or the separator
pseudo-text delimiter in a COBOL library.

Lilian date
The number of days since the beginning of the Gregorian calendar. Day one is Friday, October 15,
1582. The Lilian date format is named in honor of Luigi Lilio, the creator of the Gregorian calendar.

* linage-counter
A special register whose value points to the current position within the page body.

link
(1) The combination of the link connection (the transmission medium) and two link stations, one
at each end of the link connection. A link can be shared among multiple links in a multipoint or
token-ring configuration. (2) To interconnect items of data or portions of one or more computer
programs; for example, linking object programs by a linkage-editor to produce an executable file.

LINKAGE SECTION
The section in the DATA DIVISION of the called program or invoked method that describes data
items available from the calling program or invoking method. Both the calling program or invoking
method and the called program or invoked method can refer to these data items.

linker
A term that refers to either the z/OS binder (linkage-editor).

literal
A character string whose value is specified either by the ordered set of characters comprising the
string or by the use of a figurative constant.

little-endian
The default format that Intel processors use to store binary data and UTF-16 characters. In this
format, the most significant byte of a binary data item is at the highest address and the most
significant byte of a UTF-16 character is at the highest address. Compare with big-endian.

local reference
A reference to an object that is within the scope of your method.

locale
A set of attributes for a program execution environment that indicates culturally sensitive
considerations, such as character code page, collating sequence, date and time format, monetary
value representation, numeric value representation, or language.

* LOCAL-STORAGE SECTION
The section of the DATA DIVISION that defines storage that is allocated and freed on a per-
invocation basis, depending on the value assigned in the VALUE clauses.

* logical operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or OR, or both
can be used as logical connectives. NOT can be used for logical negation.

* logical record
The most inclusive data item. The level-number for a record is 01. A record can be either an
elementary item or a group of items. Synonymous with record.

* low-order end
The rightmost character of a string of characters.

M

main program
In a hierarchy of programs and subroutines, the first program that receives control when the programs
are run within a process.

100 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

makefile
A text file that contains a list of the files for your application. The make utility uses this file to update
the target files with the latest changes.

* mass storage
A storage medium in which data can be organized and maintained in both a sequential manner and a
nonsequential manner.

* mass storage device
A device that has a large storage capacity, such as a magnetic disk.

* mass storage file
A collection of records that is stored in a mass storage medium.

* megabyte (MB)
One megabyte equals 1,048,576 bytes.

* merge file
A collection of records to be merged by a MERGE statement. The merge file is created and can be used
only by the merge function.

message-processing program (MPP)
An IMS application program that is driven by transactions and has access to online IMS databases and
message queues.

message queue
The data set on which messages are queued before being processed by an application program or
sent to a terminal.

method
Procedural code that defines an operation supported by an object and that is executed by an INVOKE
statement on that object.

* method definition
The COBOL source code that defines a method.

* method identification entry
An entry in the METHOD-ID paragraph of the IDENTIFICATION DIVISION; this entry contains a
clause that specifies the method-name.

method invocation
A communication from one object to another that requests the receiving object to execute a method.

method-name
The name of an object-oriented operation. When used to invoke the method, the name can be an
alphanumeric or national literal or a category alphanumeric or category national data item. When used
in the METHOD-ID paragraph to define the method, the name must be an alphanumeric or national
literal.

method hiding
See hide.

method overloading
See overload.

method overriding
See override.

* mnemonic-name
A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified
implementor-name.

module definition file
A file that describes the code segments within a program object.

MPP
See message-processing program (MPP).

multitasking
A mode of operation that provides for the concurrent, or interleaved, execution of two or more tasks.

Glossary 101

multithreading
Concurrent operation of more than one path of execution within a computer. Synonymous with
multiprocessing.

N

name
A word (composed of not more than 30 characters) that defines a COBOL operand.

namespace
See XML namespace.

national character
(1) A UTF-16 character in a USAGE NATIONAL data item or national literal. (2) Any character
represented in UTF-16.

national character data
A general reference to data represented in UTF-16.

national character position
See character position.

national data
See national character data.

national data item
A data item of category national, national-edited, or numeric-edited of USAGE NATIONAL.

national decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE NATIONAL and that
contains a valid combination of PICTURE symbols 9, S, P, and V.

national-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol N and at least one of the simple insertion symbols B, 0, or /. A national-edited data item has
USAGE NATIONAL.

national floating-point data item
An external floating-point data item that is described implicitly or explicitly as USAGE NATIONAL and
that has a PICTURE character string that describes a floating-point data item.

national group item
A group item that is explicitly or implicitly described with a GROUP-USAGE NATIONAL clause. A
national group item is processed as though it were defined as an elementary data item of category
national for operations such as INSPECT, STRING, and UNSTRING. This processing ensures correct
padding and truncation of national characters, as contrasted with defining USAGE NATIONAL data
items within an alphanumeric group item. For operations that require processing of the elementary
items within a group, such as MOVE CORRESPONDING, ADD CORRESPONDING, and INITIALIZE, a
national group is processed using group semantics.

* native character set
The implementor-defined character set associated with the computer specified in the OBJECT-
COMPUTER paragraph.

* native collating sequence
The implementor-defined collating sequence associated with the computer specified in the OBJECT-
COMPUTER paragraph.

native method
A Java method with an implementation that is written in another programming language, such as
COBOL.

* negated combined condition
The NOT logical operator immediately followed by a parenthesized combined condition. See also
condition and combined condition.

* negated simple condition
The NOT logical operator immediately followed by a simple condition. See also condition and simple
condition.

102 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

nested program
A program that is directly contained within another program.

* next executable sentence
The next sentence to which control will be transferred after execution of the current statement is
complete.

* next executable statement
The next statement to which control will be transferred after execution of the current statement is
complete.

* next record
The record that logically follows the current record of a file.

* noncontiguous items
Elementary data items in the WORKING-STORAGE SECTION and LINKAGE SECTION that bear no
hierarchic relationship to other data items.

* noncontiguous items
Elementary data items in the WORKING-STORAGE and LINKAGE SECTIONs that bear no hierarchic
relationship to other data items.

* nonnumeric item
A data item whose description permits its content to be composed of any combination of characters
taken from the computer's character set. Certain categories of nonnumeric items may be formed from
more restricted character sets.

null
A figurative constant that is used to assign, to pointer data items, the value of an address that is not
valid. NULLS can be used wherever NULL can be used.

* numeric character
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item
(1) A data item whose description restricts its content to a value represented by characters chosen
from the digits 0 through 9. If signed, the item can also contain a +, -, or other representation of
an operational sign. (2) A data item of category numeric, internal floating-point, or external floating-
point. A numeric data item can have USAGE DISPLAY, NATIONAL, PACKED-DECIMAL, BINARY, COMP,
COMP-1, COMP-2, COMP-3, COMP-4, or COMP-5.

numeric-edited data item
A data item that contains numeric data in a form suitable for use in printed output. The data item can
consist of external decimal digits from 0 through 9, the decimal separator, commas, the currency sign,
sign control characters, and other editing characters. A numeric-edited item can be represented in
either USAGE DISPLAY or USAGE NATIONAL.

* numeric function
A function whose class and category are numeric but that for some possible evaluation does not
satisfy the requirements of integer functions.

* numeric item
A data item whose description restricts its content to a value represented by characters chosen from
the digits from '0' through '9'; if signed, the item may also contain a '+', '-', or other representation of
an operational sign.

* numeric literal
A literal composed of one or more numeric characters that can contain a decimal point or an algebraic
sign, or both. The decimal point must not be the rightmost character. The algebraic sign, if present,
must be the leftmost character.

O

object
An entity that has state (its data values) and operations (its methods). An object is a way to
encapsulate state and behavior. Each object in the class is said to be an instance of the class.

Glossary 103

object code
Output from a compiler or assembler that is itself executable machine code or is suitable for
processing to produce executable machine code.

* OBJECT-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
object program is run, is described.

* object computer entry
An entry in the OBJECT-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the object program is to be executed.

object deck
A portion of an object program suitable as input to a linkage-editor. Synonymous with object module
and text deck.

object instance
A single object, of possibly many, instantiated from the specifications in the object paragraph of a
COBOL class definition. An object instance has a copy of all the data described in its class definition
and all inherited data. The methods associated with an object instance includes the methods defined
in its class definition and all inherited methods.

An object instance can be an instance of a Java class.

object module
Synonym for object deck or text deck.

* object of entry
A set of operands and reserved words, within a DATA DIVISION entry of a COBOL program, that
immediately follows the subject of the entry.

object-oriented programming
A programming approach based on the concepts of encapsulation and inheritance. Unlike procedural
programming techniques, object-oriented programming concentrates on the data objects that
comprise the problem and how they are manipulated, not on how something is accomplished.

object program
A set or group of executable machine-language instructions and other material designed to interact
with data to provide problem solutions. In this context, an object program is generally the machine
language result of the operation of a COBOL compiler on a source program or class definition. Where
there is no danger of ambiguity, the word program can be used in place of object program.

object reference
A value that identifies an instance of a class. If the class is not specified, the object reference is
universal and can apply to instances of any class.

* object time
The time at which an object program is executed. Synonymous with run time.

* obsolete element
A COBOL language element in the 85 COBOL Standard that was deleted from the 2002 COBOL
Standard.

ODO object
In the example below, X is the object of the OCCURS DEPENDING ON clause (ODO object).

WORKING-STORAGE SECTION.
01 TABLE-1.
 05 X PIC S9.
 05 Y OCCURS 3 TIMES
 DEPENDING ON X PIC X.

The value of the ODO object determines how many of the ODO subject appear in the table.

ODO subject
In the example above, Y is the subject of the OCCURS DEPENDING ON clause (ODO subject). The
number of Y ODO subjects that appear in the table depends on the value of X.

104 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

* open mode
The state of a file after execution of an OPEN statement for that file and before the execution of a
CLOSE statement without the REEL or UNIT phrase for that file. The particular open mode is specified
in the OPEN statement as either INPUT, OUTPUT, I-O, or EXTEND.

* operand
(1) The general definition of operand is "the component that is operated upon." (2) For the purposes
of this document, any lowercase word (or words) that appears in a statement or entry format can
be considered to be an operand and, as such, is an implied reference to the data indicated by the
operand.

operation
A service that can be requested of an object.

* operational sign
An algebraic sign that is associated with a numeric data item or a numeric literal, to indicate whether
its value is positive or negative.

optional file
A file that is declared as being not necessarily available each time the object program is run.

* optional word
A reserved word that is included in a specific format only to improve the readability of the language.
Its presence is optional to the user when the format in which the word appears is used in a source
unit.

* output file
A file that is opened in either output mode or extend mode.

* output mode
The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase specified,
for that file and before the execution of a CLOSE statement without the REEL or UNIT phrase for that
file.

* output procedure
A set of statements to which control is given during execution of a format 1 SORT statement after the
sort function is completed, or during execution of a MERGE statement after the merge function reaches
a point at which it can select the next record in merged order when requested.

overflow condition
A condition that occurs when a portion of the result of an operation exceeds the capacity of the
intended unit of storage.

overload
To define a method with the same name as another method that is available in the same class, but
with a different signature. See also signature.

override
To redefine an instance method (inherited from a parent class) in a subclass.

P

package
A group of related Java classes, which can be imported individually or as a whole.

packed-decimal data item
See internal decimal data item.

padding character
An alphanumeric or national character that is used to fill the unused character positions in a physical
record.

page
A vertical division of output data that represents a physical separation of the data. The separation is
based on internal logical requirements or external characteristics of the output medium or both.

* page body
That part of the logical page in which lines can be written or spaced or both.

Glossary 105

* paragraph
In the PROCEDURE DIVISION, a paragraph-name followed by a separator period and by zero, one,
or more sentences. In the IDENTIFICATION DIVISION and ENVIRONMENT DIVISION, a paragraph
header followed by zero, one, or more entries.

* paragraph header
A reserved word, followed by the separator period, that indicates the beginning of a paragraph in the
IDENTIFICATION DIVISION and ENVIRONMENT DIVISION. The permissible paragraph headers in
the IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION
 DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION
 DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class
 CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION.

parameter
(1) Data passed between a calling program and a called program. (2) A data element in the USING
phrase of a method invocation. Arguments provide additional information that the invoked method
can use to perform the requested operation.

Persistent Reusable JVM
A JVM that can be serially reused for transaction processing by resetting the JVM between
transactions. The reset phase restores the JVM to a known initialization state.

* phrase
An ordered set of one or more consecutive COBOL character strings that form a portion of a COBOL
procedural statement or of a COBOL clause.

* physical record
See block.

pointer data item
A data item in which address values can be stored. Data items are explicitly defined as pointers with
the USAGE IS POINTER clause. ADDRESS OF special registers are implicitly defined as pointer data
items. Pointer data items can be compared for equality or moved to other pointer data items.

port
(1) To modify a computer program to enable it to run on a different platform. (2) In the Internet
suite of protocols, a specific logical connector between the Transmission Control Protocol (TCP) or the
User Datagram Protocol (UDP) and a higher-level protocol or application. A port is identified by a port
number.

portability
The ability to transfer an application program from one application platform to another with relatively
few changes to the source program.

106 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

precomposed character
A single Unicode character that can be represented using two or more Unicode characters through a
canonical decomposition. A precomposed character does not have the same physical representation
as its composed character form. For example, Unicode character U+00E4 (ä) is a precomposed
character that can be represented as a combination of Unicode characters U+0061 + U+0308 (ä) -
latin small letter a + combining diaeresis. A precomposed character is typically used to represent a
latin letter with a diacritical mark or some other combining character.

preinitialization
The initialization of the COBOL runtime environment in preparation for multiple calls from programs,
especially non-COBOL programs. The environment is not terminated until an explicit termination.

* prime record key
A key whose contents uniquely identify a record within an indexed file.

* priority-number
A user-defined word that classifies sections in the PROCEDURE DIVISION for purposes of
segmentation. Segment numbers can contain only the characters 0 through 9. A segment number
can be expressed as either one or two digits.

private
As applied to factory data or instance data, accessible only by methods of the class that defines the
data.

* procedure
A paragraph or group of logically successive paragraphs, or a section or group of logically successive
sections, within the PROCEDURE DIVISION.

* procedure branching statement
A statement that causes the explicit transfer of control to a statement other than the next executable
statement in the sequence in which the statements are written in the source code. The procedure
branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT
PROCEDURE phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE
phrase), XML PARSE.

PROCEDURE DIVISION
The COBOL division that contains instructions for solving a problem.

procedure integration
One of the functions of the COBOL optimizer is to simplify calls to performed procedures or contained
programs.

PERFORM procedure integration is the process whereby a PERFORM statement is replaced by its
performed procedures. Contained program procedure integration is the process where a call to a
contained program is replaced by the program code.

* procedure-name
A user-defined word that is used to name a paragraph or section in the PROCEDURE DIVISION. It
consists of a paragraph-name (which can be qualified) or a section-name.

procedure pointer
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE IS
PROCEDURE-POINTER clause contains the address of a procedure entry point.

procedure-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS PROCEDURE-POINTER clause contains the address of a procedure entry point. Typically used to
communicate with COBOL and Language Environment programs.

process
The course of events that occurs during the execution of all or part of a program. Multiple processes
can run concurrently, and programs that run within a process can share resources.

program
(1) A sequence of instructions suitable for processing by a computer. Processing may include the use
of a compiler to prepare the program for execution, as well as a runtime environment to execute it. (2)

Glossary 107

A logical assembly of one or more interrelated modules. Multiple copies of the same program can be
run in different processes.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or an
alphanumeric literal that identifies a COBOL source program.

* program identification entry
In the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION, an entry that contains clauses
that specify the program-name and assign selected program attributes to the program.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or
alphanumeric literal that identifies a COBOL source program.

project
The complete set of data and actions that are required to build a target, such as a dynamic link library
(DLL) or other executable (EXE).

* pseudo-text
A sequence of text words, comment lines, inline comments, or the separator space in a source
program or COBOL library bounded by, but not including, pseudo-text delimiters.

* pseudo-text delimiter
Two contiguous equal sign characters (==) used to delimit pseudo-text.

* punctuation character
A character that belongs to the following set:

Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

" Quotation mark

(Left parenthesis

) Right parenthesis

Space

= Equal sign

Q

QSAM (Queued Sequential Access Method)
An extended version of the basic sequential access method (BSAM). When this method is used, a
queue is formed of input data blocks that are awaiting processing or of output data blocks that have
been processed and are awaiting transfer to auxiliary storage or to an output device.

* qualified data-name
An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

* qualifier
(1) A data-name or a name associated with a level indicator that is used in a reference either together
with another data-name (which is the name of an item that is subordinate to the qualifier) or together
with a condition-name. (2) A section-name that is used in a reference together with a paragraph-name
specified in that section. (3) A library-name that is used in a reference together with a text-name
associated with that library.

R

108 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

* random access
An access mode in which the program-specified value of a key data item identifies the logical record
that is obtained from, deleted from, or placed into a relative or indexed file.

* record
See logical record.

* record area
A storage area allocated for the purpose of processing the record described in a record description
entry in the FILE SECTION of the DATA DIVISION. In the FILE SECTION, the current number of
character positions in the record area is determined by the explicit or implicit RECORD clause.

* record description
See record description entry.

* record description entry
The total set of data description entries associated with a particular record. Synonymous with record
description.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed-length), V (variable-length),
S (spanned), or U (undefined).

record key
A key whose contents identify a record within an indexed file.

* record-name
A user-defined word that names a record described in a record description entry in the DATA
DIVISION of a COBOL program.

* record number
The ordinal number of a record in the file whose organization is sequential.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed length), V (variable length),
S (spanned), or U (undefined).

recursion
A program calling itself or being directly or indirectly called by one of its called programs.

recursively capable
A program is recursively capable (can be called recursively) if the RECURSIVE attribute is on the
PROGRAM-ID statement.

reel
A discrete portion of a storage medium, the dimensions of which are determined by each implementor
that contains part of a file, all of a file, or any number of files. Synonymous with unit and volume.

reentrant
The attribute of a program or routine that lets more than one user share a single copy of a program
object.

* reference format
A format that provides a standard method for describing COBOL source programs.

reference modification
A method of defining a new category alphanumeric, category DBCS, or category national data item
by specifying the leftmost character and length relative to the leftmost character position of a USAGE
DISPLAY, DISPLAY-1, or NATIONAL data item.

* reference-modifier
A syntactically correct combination of character strings and separators that defines a unique data
item. It includes a delimiting left parenthesis separator, the leftmost character position, a colon
separator, optionally a length, and a delimiting right parenthesis separator.

* relation
See relational operator or relation condition.

* relation character
A character that belongs to the following set:

Glossary 109

Character Meaning

> Greater than

< Less than

= Equal to

* relation condition
The proposition (for which a truth value can be determined) that the value of an arithmetic expression,
data item, alphanumeric literal, or index-name has a specific relationship to the value of another
arithmetic expression, data item, alphanumeric literal, or index name. See also relational operator.

* relational operator
A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation condition.
The permissible operators and their meanings are:

Character Meaning

IS GREATER THAN Greater than

IS > Greater than

IS NOT GREATER THAN Not greater than

IS NOT > Not greater than

IS LESS THAN Less than

IS < Less than

IS NOT LESS THAN Not less than

IS NOT < Not less than

IS EQUAL TO Equal to

IS = Equal to

IS NOT EQUAL TO Not equal to

IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO Less than or equal to

IS <= Less than or equal to

* relative file
A file with relative organization.

* relative key
A key whose contents identify a logical record in a relative file.

* relative organization
The permanent logical file structure in which each record is uniquely identified by an integer value
greater than zero, which specifies the logical ordinal position of the record in the file.

* relative record number
The ordinal number of a record in a file whose organization is relative. This number is treated as a
numeric literal that is an integer.

110 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

* reserved word
A COBOL word that is specified in the list of words that can be used in a COBOL source program, but
that must not appear in the program as a user-defined word or system-name.

* resource
A facility or service, controlled by the operating system, that an executing program can use.

* resultant identifier
A user-defined data item that is to contain the result of an arithmetic operation.

reusable environment
A reusable environment is created when you establish an assembler program as the main program by
using either the old COBOL interfaces for preinitialization (RTEREUS runtime option), or the Language
Environment interface, CEEPIPI.

routine
A set of statements in a COBOL program that causes the computer to perform an operation or series
of related operations. In Language Environment, refers to either a procedure, function, or subroutine.

* routine-name
A user-defined word that identifies a procedure written in a language other than COBOL.

* run time
The time at which an object program is executed. Synonymous with object time.

runtime environment
The environment in which a COBOL program executes.

* run unit
A stand-alone object program, or several object programs, that interact by means of COBOL CALL or
INVOKE statements and function at run time as an entity.
A run unit is also called an enclave in Language Environment terminology.

S

SBCS
See single-byte character set (SBCS).

scope terminator
A COBOL reserved word that marks the end of certain PROCEDURE DIVISION statements.It can be
either explicit (END-ADD, for example) or implicit (separator period).

* section
A set of zero, one, or more paragraphs or entities, called a section body, the first of which is preceded
by a section header. Each section consists of the section header and the related section body.

* section header
A combination of words followed by a separator period that indicates the beginning of a section in
any of these divisions: ENVIRONMENT, DATA, or PROCEDURE. In the ENVIRONMENT DIVISION and
DATA DIVISION, a section header is composed of reserved words followed by a separator period.
The permissible section headers in the ENVIRONMENT DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the DATA DIVISION are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a separator period.

Glossary 111

* section-name
A user-defined word that names a section in the PROCEDURE DIVISION.

segmentation
A feature of Enterprise COBOL that is based on the 85 COBOL Standard segmentation module. The
segmentation feature uses priority-numbers in section headers to assign sections to fixed segments
or independent segments. Segment classification affects whether procedures contained in a segment
receive control in initial state or last-used state.

selection structure
A program processing logic in which one or another series of statements is executed, depending on
whether a condition is true or false.

* sentence
A sequence of one or more statements, the last of which is terminated by a separator period.

* separately compiled program
A program that, together with its contained programs, is compiled separately from all other programs.

* separator
A character or two or more contiguous characters used to delimit character strings.

* separator comma
A comma (,) followed by a space used to delimit character strings.

* separator period
A period (.) followed by a space used to delimit character strings.

* separator semicolon
A semicolon (;) followed by a space used to delimit character strings.

sequence structure
A program processing logic in which a series of statements is executed in sequential order.

* sequential access
An access mode in which logical records are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined by the order of records in the file.

* sequential file
A file with sequential organization.

* sequential organization
The permanent logical file structure in which a record is identified by a predecessor-successor
relationship established when the record is placed into the file.

serial search
A search in which the members of a set are consecutively examined, beginning with the first member
and ending with the last.

session bean
In EJB, an enterprise bean that is created by a client and that usually exists only for the duration of a
single client/server session. (Oracle)

77-level-description-entry
A data description entry that describes a noncontiguous data item that has level-number 77.

* sign condition
The proposition (for which a truth value can be determined) that the algebraic value of a data item or
an arithmetic expression is either less than, greater than, or equal to zero.

signature
(1) The name of an operation and its parameters. (2) The name of a method and the number and types
of its formal parameters.

* simple condition
Any single condition chosen from this set:

• Relation condition
• Class condition

112 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

• Condition-name condition
• Switch-status condition
• Sign condition

See also condition and negated simple condition.

single-byte character set (SBCS)
A set of characters in which each character is represented by a single byte. See also ASCII and
EBCDIC (Extended Binary-Coded Decimal Interchange Code).

slack bytes (within records)
Bytes inserted by the compiler between data items to ensure correct alignment of some elementary
data items. Slack bytes contain no meaningful data. The SYNCHRONIZED clause instructs the
compiler to insert slack bytes when they are needed for proper alignment.

slack bytes (between records)
Bytes inserted by the programmer between blocked logical records of a file, to ensure correct
alignment of some elementary data items. In some cases, slack bytes between records improve
performance for records processed in a buffer.

* sort file
A collection of records to be sorted by a format 1 SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator SD,
followed by a file-name, and then followed by a set of file clauses as required.

* SOURCE-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
source program is compiled, is described.

* source computer entry
An entry in the SOURCE-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the source program is to be compiled.

* source item
An identifier designated by a SOURCE clause that provides the value of a printable item.

source program
Although a source program can be represented by other forms and symbols, in this document the
term always refers to a syntactically correct set of COBOL statements. A COBOL source program
commences with the IDENTIFICATION DIVISION or a COPY statement and terminates with the end
program marker, if specified, or with the absence of additional source program lines.

source unit
A unit of COBOL source code that can be separately compiled: a program or a class definition. Also
known as a compilation unit.

special character
A character that belongs to the following set:

Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

Glossary 113

Character Meaning

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

SPECIAL-NAMES
The name of an ENVIRONMENT DIVISION paragraph in which environment-names are related to
user-specified mnemonic-names.

* special names entry
An entry in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION; this entry provides
means for specifying the currency sign; choosing the decimal point; specifying symbolic characters;
relating implementor-names to user-specified mnemonic-names; relating alphabet-names to
character sets or collating sequences; and relating class-names to sets of characters.

* special registers
Certain compiler-generated storage areas whose primary use is to store information produced in
conjunction with the use of a specific COBOL feature.

* standard data format
The concept used in describing the characteristics of data in a COBOL DATA DIVISION under which
the characteristics or properties of the data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than a form oriented to the manner in
which the data is stored internally in the computer, or on a particular external medium.

* statement
A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a
COBOL source program.

structured programming
A technique for organizing and coding a computer program in which the program comprises a
hierarchy of segments, each segment having a single entry point and a single exit point. Control
is passed downward through the structure without unconditional branches to higher levels of the
hierarchy.

* subclass
A class that inherits from another class. When two classes in an inheritance relationship are
considered together, the subclass is the inheritor or inheriting class; the superclass is the inheritee or
inherited class.

* subject of entry
An operand or reserved word that appears immediately following the level indicator or the level-
number in a DATA DIVISION entry.

* subprogram
See called program.

* subscript
An occurrence number that is represented by either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name optionally followed by an integer with the operator
+ or -, that identifies a particular element in a table. A subscript can be the word ALL when the
subscripted identifier is used as a function argument for a function allowing a variable number of
arguments.

114 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

* subscripted data-name
An identifier that is composed of a data-name followed by one or more subscripts enclosed in
parentheses.

substitution character
A character that is used in a conversion from a source code page to a target code page to represent a
character that is not defined in the target code page.

* superclass
A class that is inherited by another class. See also subclass.

surrogate pair
In the UTF-16 format of Unicode, a pair of encoding units that together represents a single Unicode
graphic character. The first unit of the pair is called a high surrogate and the second a low surrogate.
The code value of a high surrogate is in the range X'D800' through X'DBFF'. The code value of a low
surrogate is in the range X'DC00' through X'DFFF'. Surrogate pairs provide for more characters than
the 65,536 characters that fit in the Unicode 16-bit coded character set.

switch-status condition
The proposition (for which a truth value can be determined) that an UPSI switch, capable of being set
to an on or off status, has been set to a specific status.

* symbolic-character
A user-defined word that specifies a user-defined figurative constant.

syntax
(1) The relationship among characters or groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The structure of expressions in a language. (3) The
rules governing the structure of a language. (4) The relationship among symbols. (5) The rules for the
construction of a statement.

* system-name
A COBOL word that is used to communicate with the operating environment.

T

* table
A set of logically consecutive items of data that are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element
A data item that belongs to the set of repeated items comprising a table.

text deck
Synonym for object deck or object module.

* text-name
A user-defined word that identifies library text.

* text word
A character or a sequence of contiguous characters between margin A and margin R in a COBOL
library, source program, or pseudo-text that is any of the following characters:

• A separator, except for space; a pseudo-text delimiter; and the opening and closing delimiters for
alphanumeric literals. The right parenthesis and left parenthesis characters, regardless of context
within the library, source program, or pseudo-text, are always considered text words.

• A literal including, in the case of alphanumeric literals, the opening quotation mark and the closing
quotation mark that bound the literal.

• Any other sequence of contiguous COBOL characters except comment lines and the word COPY
bounded by separators that are neither a separator nor a literal.

thread
A stream of computer instructions (initiated by an application within a process) that is in control of a
process.

Glossary 115

token
In the COBOL editor, a unit of meaning in a program. A token can contain data, a language keyword, an
identifier, or other part of the language syntax.

top-down design
The design of a computer program using a hierarchic structure in which related functions are
performed at each level of the structure.

top-down development
See structured programming.

trailer-label
(1) A data-set label that follows the data records on a unit of recording medium. (2) Synonym for
end-of-file label.

troubleshoot
To detect, locate, and eliminate problems in using computer software.

* truth value
The representation of the result of the evaluation of a condition in terms of one of two values: true or
false.

typed object reference
A data-name that can refer only to an object of a specified class or any of its subclasses.

U

* unary operator
A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an arithmetic expression
and that has the effect of multiplying the expression by +1 or -1, respectively.

unbounded table
A table with OCCURS integer-1 to UNBOUNDED instead of specifying integer-2 as the upper
bound.

Unicode
A universal character encoding standard that supports the interchange, processing, and display of text
that is written in any of the languages of the modern world. There are multiple encoding schemes to
represent Unicode, including UTF-8, UTF-16, and UTF-32. Enterprise COBOL supports Unicode using
UTF-16 in big-endian format as the representation for the national data type.

Uniform Resource Identifier (URI)
A sequence of characters that uniquely names a resource; in Enterprise COBOL, the identifier of a
namespace. URI syntax is defined by the document Uniform Resource Identifier (URI): Generic Syntax.

unit
A module of direct access, the dimensions of which are determined by IBM.

universal object reference
A data-name that can refer to an object of any class.

unrestricted storage
In AMODE 31, unrestricted storage is below the 2 GB bar and can be above or below the 16 MB line.
In AMODE 64, unrestricted storage encompasses all the storage available to your program, both
above and below the 2 GB bar.

* unsuccessful execution
The attempted execution of a statement that does not result in the execution of all the operations
specified by that statement. The unsuccessful execution of a statement does not affect any data
referenced by that statement, but can affect status indicators.

UPSI switch
A program switch that performs the functions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

URI
See Uniform Resource Identifier (URI).

116 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

http://www.rfc-editor.org/rfc/rfc3986.txt

* user-defined word
A COBOL word that must be supplied by the user to satisfy the format of a clause or statement.

V

* variable
A data item whose value can be changed by execution of the object program. A variable used in an
arithmetic expression must be a numeric elementary item.

variable-length item
A group item that contains a table described with the DEPENDING phrase of the OCCURS clause.

* variable-length record
A record associated with a file whose file description or sort-merge description entry permits records
to contain a varying number of character positions.

* variable-occurrence data item
A variable-occurrence data item is a table element that is repeated a variable number of times.
Such an item must contain an OCCURS DEPENDING ON clause in its data description entry or be
subordinate to such an item.

* variably located group
A group item following, and not subordinate to, a variable-length table in the same record. The group
item can be an alphanumeric group or a national group.

* variably located item
A data item following, and not subordinate to, a variable-length table in the same record.

* verb
A word that expresses an action to be taken by a COBOL compiler or object program.

volume
A module of external storage. For tape devices it is a reel; for direct-access devices it is a unit.

volume switch procedures
System-specific procedures that are executed automatically when the end of a unit or reel has been
reached before end-of-file has been reached.

VSAM file system
A file system that supports COBOL sequential, relative, and indexed organizations.

W

web service
A modular application that performs specific tasks and is accessible through open protocols like HTTP
and SOAP.

white space
Characters that introduce space into a document. They are:

• Space
• Horizontal tabulation
• Carriage return
• Line feed
• Next line

as named in the Unicode Standard.

* word
A character string of not more than 30 characters that forms a user-defined word, a system-name, a
reserved word, or a function-name.

* WORKING-STORAGE SECTION
The section of the DATA DIVISION that describes WORKING-STORAGE data items, composed either
of noncontiguous items or WORKING-STORAGE records or of both.

Glossary 117

workstation
A generic term for computers, including personal computers, 3270 terminals, intelligent workstations,
and UNIX terminals. Often a workstation is connected to a mainframe or to a network.

wrapper
An object that provides an interface between object-oriented code and procedure-oriented code.
Using wrappers lets programs be reused and accessed by other systems.

X

x
The symbol in a PICTURE clause that can hold any character in the character set of the computer.

XML
Extensible Markup Language. A standard metalanguage for defining markup languages that was
derived from and is a subset of SGML. XML omits the more complex and less-used parts of SGML and
makes it much easier to write applications to handle document types, author and manage structured
information, and transmit and share structured information across diverse computing systems. The
use of XML does not require the robust applications and processing that is necessary for SGML. XML is
developed under the auspices of the World Wide Web Consortium (W3C).

XML data
Data that is organized into a hierarchical structure with XML elements. The data definitions are
defined in XML element type declarations.

XML declaration
XML text that specifies characteristics of the XML document such as the version of XML being used
and the encoding of the document.

XML document
A data object that is well formed as defined by the W3C XML specification.

XML namespace
A mechanism, defined by the W3C XML Namespace specifications, that limits the scope of a collection
of element names and attribute names. A uniquely chosen XML namespace ensures the unique
identity of an element name or attribute name across multiple XML documents or multiple contexts
within an XML document.

XML schema
A mechanism, defined by the W3C, for describing and constraining the structure and content of XML
documents. An XML schema, which is itself expressed in XML, effectively defines a class of XML
documents of a given type, for example, purchase orders.

Z

z/OS UNIX file system
A collection of files and directories that are organized in a hierarchical structure and can be accessed
by using z/OS UNIX.

zoned decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE DISPLAY and that
contains a valid combination of PICTURE symbols 9, S, P, and V. The content of a zoned decimal data
item is represented in characters 0 through 9, optionally with a sign. If the PICTURE string specifies a
sign and the SIGN IS SEPARATE clause is specified, the sign is represented as characters + or -. If
SIGN IS SEPARATE is not specified, the sign is one hexadecimal digit that overlays the first 4 bits of
the sign position (leading or trailing).

#

85 COBOL Standard
The COBOL language defined by the following standards:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

118 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

2002 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL

2014 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments
and system software interfaces - Programming language COBOL

Glossary 119

120 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

List of resources

Enterprise COBOL for z/OS

COBOL for z/OS publications
You can find the following publications in the Enterprise COBOL for z/OS library:

• What's new
• Customization Guide, SC27-8712-02
• Language Reference, SC27-8713-02
• Programming Guide, SC27-8714-02
• Migration Guide, GC27-8715-02
• Performance Tuning Guide, SC27-9202-01
• Messages and Codes, SC27-4648-01
• Program Directory, GI13-4526-02
• Licensed Program Specifications, GI13-4532-02

Softcopy publications
The following collection kits contain Enterprise COBOL and other product publications. You can find them
at http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.

• z/OS Software Products Collection
• z/OS and Software Products DVD Collection

Support

If you have a problem using Enterprise COBOL for z/OS, see the following site that provides
up-to-date support information: https://www.ibm.com/support/home/product/B984385H82239E03/
Enterprise_COBOL_for_z/OS.

Related publications

z/OS library publications
You can find the following publications in the z/OS library.

Run-Time Library Extensions

• Common Debug Architecture Library Reference
• Common Debug Architecture User’s Guide
• DWARF/ELF Extensions Library Reference

z/Architecture

• Principles of Operation

z/OS DFSMS

• Access Method Services for Catalogs
• Checkpoint/Restart

© Copyright IBM Corp. 1993, 2024 121

https://www.ibm.com/support/pages/node/611415
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
https://www.ibm.com/support/home/product/B984385H82239E03/Enterprise_COBOL_for_z/OS
https://www.ibm.com/support/home/product/B984385H82239E03/Enterprise_COBOL_for_z/OS
https://www.ibm.com/systems/z/os/zos/library/bkserv/

• Macro Instructions for Data Sets
• Using Data Sets
• Utilities

z/OS DFSORT

• Application Programming Guide
• Installation and Customization

z/OS ISPF

• Dialog Developer's Guide and Reference
• User's Guide Vol I
• User's Guide Vol II

z/OS Language Environment

• Concepts Guide
• Customization
• Debugging Guide
• Language Environment Vendor Interfaces
• Programming Guide
• Programming Reference
• Run-Time Messages
• Run-Time Application Migration Guide
• Writing Interlanguage Communication Applications

z/OS MVS

• JCL Reference
• JCL User's Guide
• Programming: Callable Services for High-Level Languages
• Program Management: User's Guide and Reference
• System Commands
• z/OS Unicode Services User's Guide and Reference
• z/OS XML System Services User's Guide and Reference

z/OS TSO/E

• Command Reference
• Primer
• User's Guide

z/OS UNIX System Services

• Command Reference
• Programming: Assembler Callable Services Reference
• User's Guide

z/OS XL C/C++

• Programming Guide
• Run-Time Library Reference

CICS Transaction Server for z/OS
You can find the following publications in the CICS library:

122 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/PDF.html?sc=SSGMCP_latest

• Developing CICS Applications
• API (EXEC CICS) Reference
• Developing CICS System Programs
• Global User Exit Reference
• XPI Reference
• Using EXCI with CICS

COBOL Report Writer Precompiler
• Programmer's Manual, SC26-4301
• Installation and Operation, SC26-4302

Db2 for z/OS
You can find the following publications in the Db2 library:

• Application Programming and SQL Guide
• Command Reference
• SQL Reference

IBM Debug for z/OS (formerly IBM Debug for z Systems and IBM Debug Tool for
z/OS)
You can find information about IBM Debug for z/OS in the IBM Debug for z/OS library.

IBM Debug for z/OS supersedes IBM Debug for z Systems® and IBM Debug Tool for z/OS. Not all
references to IBM Debug for z Systems and IBM Debug Tool for z/OS have been changed in the COBOL
documentation library. It is recommended that you upgrade your debugger to the latest level in order
to have the full range of debugging features available. In some cases, you must upgrade your debugger
to a certain version depending on what level of Enterprise COBOL you are using to create the COBOL
application:

• IBM Debug Tool V13.1 supports Enterprise COBOL V5.1 and earlier versions
• IBM Debug for z Systems V14.0 supports Enterprise COBOL V6.1 and earlier versions
• IBM Debug for z Systems V14.1 supports Enterprise COBOL V6.2 and earlier versions
• IBM Debug for z/OS V14.2 supports Enterprise COBOL V6.3 and earlier versions

To find out which IBM debug product best suits your needs, see https://www.ibm.com/support/
knowledgecenter/SSQ2R2_14.2.0/com.ibm.debug.cg.doc/common/dcompo.html?sc=SSQ2R2_latest.

IBM Developer for z/OS (formerly IBM Developer for z Systems)
You can find information about IBM Developer for z Systems in the IBM Developer for z/OS library.

Note: IBM Developer for z/OS supersedes IBM Developer for z Systems and Rational® Developer for z
Systems.

You can find the following publications by searching their publication numbers in the IBM Publications
Center.

IMS
• Application Programming API Reference, SC18-9699
• Application Programming Guide, SC18-9698

List of resources 123

http://www.ibm.com/support/docview.wss?uid=swg27019288
http://www.ibm.com/support/docview.wss?uid=swg27050482
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.2.0/com.ibm.debug.cg.doc/common/dcompo.html?sc=SSQ2R2_latest
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.2.0/com.ibm.debug.cg.doc/common/dcompo.html?sc=SSQ2R2_latest
https://www.ibm.com/support/pages/node/713179
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

WebSphere® Application Server for z/OS
• Applications, SA22-7959

Softcopy publications for z/OS
The following collection kit contains z/OS and related product publications:

• z/OS CD Collection Kit, SK3T-4269

Java
• IBM SDK for Java - Tools Documentation, publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
• The Java 2 Enterprise Edition Developer's Guide, download.oracle.com/javaee/1.2.1/devguide/html/

DevGuideTOC.html
• Java 2 on z/OS, www.ibm.com/servers/eserver/zseries/software/java/
• The Java EE 5 Tutorial, download.oracle.com/javaee/5/tutorial/doc/
• The Java Language Specification, Third Edition, by Gosling et al., java.sun.com/docs/books/jls/
• The Java Native Interface, download.oracle.com/javase/1.5.0/docs/guide/jni/
• JDK 5.0 Documentation, download.oracle.com/javase/1.5.0/docs/

JSON
• JavaScript Object Notation (JSON), www.json.org

Unicode and character representation
• Unicode, www.unicode.org/
• Character Data Representation Architecture Reference and Registry, SC09-2190

XML
• Extensible Markup Language (XML), www.w3.org/XML/
• Namespaces in XML 1.0, www.w3.org/TR/xml-names/
• Namespaces in XML 1.1, www.w3.org/TR/xml-names11/
• XML specification, www.w3.org/TR/xml/

124 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Performance Tuning Guide

http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://www.ibm.com/servers/eserver/zseries/software/java/
http://download.oracle.com/javaee/5/tutorial/doc/
http://java.sun.com/docs/books/jls/
http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://download.oracle.com/javase/1.5.0/docs/
http://www.json.org
http://www.unicode.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml/

IBM®

Product Number: 5655-EC6

SC27-9202-01

	Contents
	Tables
	Preface
	About this information
	Performance measurements
	Summary of changes
	Version 6 Release 3 with PTFs installed
	Version 6 Release 3

	How to use examples
	How to send your comments

	Chapter 1. Why recompile with V6?
	Architecture exploitation
	Advanced optimization
	Enhanced functionality

	Chapter 2. Prioritizing your application for migration to V6
	COMPUTE
	INSPECT
	MOVE
	SEARCH
	Tables
	Conditional expressions

	Chapter 3. How to tune compiler options to get the most out of V6
	AFP
	ARCH
	ARITH
	AWO
	BLOCK0
	DATA(24) and DATA(31)
	DYNAM
	FASTSRT
	HGPR
	INLINE
	INVDATA
	MAXPCF
	NUMCHECK
	NUMPROC
	OPTIMIZE
	SSRANGE
	STGOPT
	TEST
	THREAD
	TRUNC
	Program residence and storage considerations

	Chapter 4. Runtime options that affect runtime performance
	AIXBLD
	ALL31
	CBLPSHPOP
	CHECK
	DEBUG
	INTERRUPT
	RPTOPTS
	RPTSTG
	STORAGE
	TEST
	TRAP
	VCTRSAVE

	Chapter 5. COBOL and LE features that affect runtime performance
	Storage management tuning
	Storage tuning user exit
	Using the CEEENTRY and CEETERM macros
	Using preinitialization services (CEEPIPI)
	Using library routine retention (LRR)
	Library in the LPA/ELPA
	Using CALLs
	Using IS INITIAL on the PROGRAM-ID statement or INITIAL compiler option
	Using IS RECURSIVE on the PROGRAM-ID statement

	Chapter 6. Other product related factors that affect runtime performance
	Decimal overflow implications in ILC applications
	First program not LE-conforming
	CICS
	Db2
	DFSORT
	IMS
	LLA

	Chapter 7. Coding techniques to get the most out of V6
	BINARY (COMP or COMP-4)
	DISPLAY
	PACKED-DECIMAL (COMP-3)
	Fixed-point versus floating-point
	Factoring expressions
	Symbolic constants
	Performance tuning considerations for Occurs Depending On tables
	Using PERFORM
	Using QSAM files
	Using variable-length files
	Using HFS files
	Using VSAM files
	VSAM dynamic access optional logic path

	Chapter 8. Program object size and PDSE requirement
	Changes in load module size between V4 and V6
	Impact of TEST suboptions on program object size
	Why does COBOL V6 use PDSEs for executables?

	Appendix A. Using IBM Automatic Binary Optimizer for z/OS (ABO) to improve COBOL application performance
	Appendix B. Intrinsic function implementation considerations
	Appendix C. Accessibility features for Enterprise COBOL for z/OS
	Notices
	Trademarks
	Disclaimer

	Glossary
	List of resources
	Enterprise COBOL for z/OS
	Related publications

