
Enterprise COBOL for z/OS
6.3

Customization Guide

IBM

SC27-8712-02

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 87.

Third edition (29 March 2024 update)

This edition applies to Version 6 Release 3 of IBM® Enterprise COBOL for z/OS® (program number 5655-EC6) and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using the
correct edition for the level of the product.

You can view or download softcopy publications free of charge in the Enterprise COBOL for z/OS library. Because
Enterprise COBOL for z/OS supports the continuous delivery (CD) model and publications are updated to document the
features delivered under the CD model, it is a good idea to check for updates once every two months.

It is our intention to update the product documentation for this release periodically, without updating the order number.
If you need to uniquely refer to the version of your product documentation, refer to the order number with the date of
update.
© Copyright International Business Machines Corporation 1996, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/support/docview.wss?uid=swg27036733

Contents

Figures.. vii

Tables.. ix

Preface...xi
About this information...xi

How to read the syntax diagrams.. xi
How to use examples..xii
Using the macro planning worksheets... xii

Summary of changes... xiii
Version 6 Release 3 with PTFs installed..xiii
Version 6 Release 3..xiv

How to send your comments...xiv

Chapter 1. Planning to customize Enterprise COBOL... 1
Making changes after installation: why customize?..1
Planning to modify compiler option default values.. 1

Modifying compiler options ... 2
Sample installation jobs to modify IGYCDOPT compiler option defaults... 5
Overriding compiler options that are fixed.. 7

Planning to create an additional reserved word table.. 7
Why create additional reserved word tables?... 7
Controlling use of nested programs...7
Reserved word tables supplied with Enterprise COBOL... 7

Using product registration to enable or disable Enterprise COBOL... 9

Chapter 2. Enterprise COBOL compiler options... 11
Specifying COBOL compiler options..11
Conflicting compiler options..11
Compiler options for standards conformance.. 13
Compiler options syntax and descriptions..13
ADATA...13
ADEXIT... 13
ADV...14
AFP... 14
ALOWCBL... 15
ALOWCOPYLOC.. 15
ALOWDEFINE .. 16
ARCH.. 16
ARITH... 18
AWO..18
BLOCK0.. 19
BUF...19
CICS..20
CODEPAGE... 20
COMPILE.. 21
CONDCOMP..21
COPYRIGHT..22
CURRENCY... 22

 iii

DATA... 23
DBCS...24
DBCSXREF..24
DECK...25
DIAGTRUNC... 25
DISPSIGN...26
DLL..27
DYNAM... 27
EXPORTALL.. 28
FASTSRT...28
FLAG... 29
FLAGSTD.. 30
HGPR.. 32
INEXIT..32
INITCHECK...32
INITIAL...34
INLINE..34
INTDATE...35
INVDATA...35
LANGUAGE... 38
LIBEXIT.. 39
LINECNT...40
LIST.. 40
LITCHAR...41
LP..41
MAP.. 42
MAXPCF..42
MDECK..43
MSGEXIT.. 44
NAME..44
NSYMBOL... 44
NUM..45
NUMCHECK.. 45
NUMCLS... 49
NUMPROC.. 50
OBJECT.. 50
OFFSET...51
OPTIMIZE...51
OUTDD..52
PARMCHECK.. 52
PGMNAME.. 53
PRTEXIT... 54
QUALIFY...54
RENT...55
RMODE... 56
RULES...57
SEQ... 58
SERVICE... 59
SOURCE..59
SPACE...59
SQL... 60
SQLCCSID...60
SQLIMS...61
SSRANGE..62
STGOPT.. 63
SUPPRESS.. 63
TERM.. 64
TEST... 64

iv

THREAD..66
TRUNC.. 68
TUNE.. 69
VBREF...70
VLR... 70
VSAMOPENFS.. 71
WORD... 72
XMLPARSE..73
XREFOPT.. 73
ZONECHECK...74
ZONEDATA..74
ZWB.. 76

Chapter 3. Customizing Enterprise COBOL..77
Summary of user modifications...77
Changing the defaults for compiler options..77

Changing the compiler options default module.. 78
Overriding options specified as fixed...79

Changing reserved words.. 79
Creating or modifying a reserved word table.. 80
Coding control statements...81
Rules for coding control statements..81
Coding operands in control statements...82
Rules for coding control statement operands... 82
ABBR statement... 82
INFO statement..82
RSTR statement..83
Modifying and running non-SMP/E JCL..83
Running JCL that creates a reserved word table...84

Tailoring the cataloged procedures to your site..84

Appendix A. Accessibility features for Enterprise COBOL for z/OS......................... 85

Notices..87
Programming interface information.. 89
Trademarks.. 89

Glossary..91
List of resources.. 135

Enterprise COBOL for z/OS..135
Related publications..135

Index.. 139

 v

vi

Figures

1. Syntax format for IGYCOPT compiler options macro... 2

2. Syntax format for reserved word control statements.. 81

 vii

viii

Tables

1. IGYCDOPT worksheet for options... 2

2. Conflicting compiler options... 11

3. DISPLAY output with the DISPSIGN=COMPAT option or the DISPSIGN=SEP option specified:..............26

4. Setting INVDATA and NUMPROC options when migrating from earlier COBOL versions......................... 36

5. Entries for the LANGUAGE compiler option... 39

6. Effect of RENT and RMODE on residency mode...55

7. Effect of RMODE and RENT | NORENT on residency mode..56

8. Length of record read and file status.. 71

9. Summary of user modification jobs for Enterprise COBOL.. 77

 ix

x

Preface

About this information
This information is intended for systems programmers who are responsible for customizing IBM
Enterprise COBOL for z/OS for their location. It provides information needed to plan for and customize
Enterprise COBOL under z/OS. This information can also help you assess the value of Enterprise COBOL to
your organization.

In this information, the generic term "operating system" is used to refer to z/OS.

To use this information, and ensure successful customization, you should have a knowledge of Enterprise
COBOL and of your system's operating environment.

How to read the syntax diagrams
This section describes how to read the syntax diagrams in this information.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following table shows the meaning of symbols at the beginning and end of syntax diagram lines.

Symbol Indicates

►►─── The syntax diagram starts here

───► The syntax diagram is continued on the next line

►─── The syntax diagram is continued from the previous line

───►◄ The syntax diagram ends here

Diagrams of syntactical units other than complete statements start with the ►─── symbol and end with
the ───► symbol.

• Required items appear on the horizontal line (the main path).

STATEMENT required item

• Optional items appear below the main path.

STATEMENT

optional item

• When you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item of the stack appears on the main path. The default, if any,
appears above the main path and is chosen by the IGYCOPT macro if you do not specify another choice.
In some cases, the default is affected by the system in which the program is being run.

STATEMENT

default-item

required choice 1

required choice 2

If choosing one of the items is optional, the entire stack appears below the main path.

© Copyright IBM Corp. 1996, 2024 xi

STATEMENT

optional choice 1

optional choice 2

• An arrow returning to the left above the main line indicates an item that can be repeated.

STATEMENT

,

repeatable item

A repeat arrow above a stack indicates that you can make more than one choice from the stacked items,
or repeat a single choice.

• Keywords appear in uppercase letters (for example, PRINT). They must be spelled exactly as shown.
Variables appear in an italic font (for example, item). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, they must be
entered as part of the syntax.

• Use at least one blank or comma to separate parameters.

For a description of the meaning of the asterisk (*) in syntax diagrams, and for further information, see
“Compiler options syntax and descriptions” on page 13.

How to use examples
This information shows numerous examples of sample COBOL statements, program fragments, and small
programs to illustrate the coding techniques being described. The examples of program code are written
in lowercase, uppercase, or mixed case to demonstrate that you can write your programs in any of these
ways.

To more clearly separate some examples from the explanatory text, they are presented in a monospace
font.

COBOL keywords and compiler options that appear in text are generally shown in SMALL UPPERCASE.
Other terms such as program variable names are sometimes shown in an italic font for clarity.

If you copy and paste examples from the PDF format documentation, make sure that the spaces in the
examples (if any) are in place; you might need to manually add some missing spaces to ensure that
COBOL source text aligns to the required columns per the COBOL reference format in the Enterprise
COBOL Language Reference. Alternatively, you can copy and paste examples from the HTML format
documentation and the spaces should be already in place.

Using the macro planning worksheets
The planning worksheets in this information (“IGYCDOPT worksheet for compiler options” on page 2)
will help you prepare to customize Enterprise COBOL. By completing the worksheets, you will be able to
easily identify those values that you want to change from the IBM-supplied defaults. You might then want
to use the worksheets as a source from which to customize the IBM-supplied default values.

The headings in each worksheet differ somewhat from each other. See the following list of definitions for
an explanation of the column headings in the worksheet for compiler options.

Compiler option
The options contained within a specific installation macro. This column represents the options exactly
as they are in the macro.

Enter * for fixed
The options that cannot be overridden by an application programmer. Enter an asterisk (*) only for
those options that you want to be fixed.

xii Preface

Enter selection
The value associated with each option. In the space provided, enter the value that you want to assign
to each option. To assist you in selecting the appropriate value, see the reference in the Syntax
description column.

IBM-supplied default
The value that is supplied for the specified installation macro if the option is not altered. If the
IBM-supplied default is the value that you want, you do not need to modify that option within that
specific macro.

Syntax description
The topic that contains the syntax diagram and more specific information about the given option.

After you have completed the worksheets, identify those options that are different from the IBM-supplied
defaults. These are the items that you must code in the installation macros. The worksheet entries are
positioned such that the order of the entries is consistent with the actual coding semantics.

Summary of changes
This section lists the key changes that have been made to this document since Enterprise COBOL for z/OS
Version 6 Release 3. The latest technical changes are marked within >| and |< in the HTML version, or
marked by vertical bars (|) in the left margin in the PDF version.

For a complete list of new and improved features in Enterprise COBOL for z/OS 6.3 and COBOL 6.3 with
PTFs installed, see What is new in Enterprise COBOL for z/OS 6.3 and COBOL 6.3 with PTFs installed in
the Enterprise COBOL for z/OS What's New.

Version 6 Release 3 with PTFs installed

Compiler option changes
• The following compiler options are new:

– PH34804: TUNE: The new TUNE option specifies the architecture for which the executable program
will be optimized. (“TUNE” on page 69)

– PH37328: INVDATA: The new INVDATA compiler option replaces the deprecated ZONEDATA
compiler option and provides users fine-grained control over how the compiler generates code
to handle USAGE DISPLAY and USAGE PACKED-DECIMAL data items that contain invalid data.
(“INVDATA” on page 35)

– PH49504: CONDCOMP: The new CONDCOMP option is introduced to control how conditional code will
be displayed in the listing. (CONDCOMP)

• The following compiler options are modified:

– PH22581: INITCHECK: New suboptions LAX | STRICT are added to the INITCHECK option to
control whether the compiler will issue warning messages for data items unless they are initialized on
at least one, or on all, logical paths to a statement. (“INITCHECK” on page 32)

– PH27536: NUMCHECK=(ZON): New suboptions LAXREDEF | STRICTREDEF are added to the
NUMCHECK=(ZON) option to control whether the compiler will check and issue warning messages
for redefined items. (“NUMCHECK” on page 45)

– PH29542: NUMCHECK=(BIN): New suboptions TRUNCBIN| NOTRUNCBIN are added to the
NUMCHECK=(BIN) option to control whether the compiler will generate the checking code for binary
data items. (“NUMCHECK” on page 45)

– PTF UI71591 (No APAR number): New functionality is added to NUMCHECK to check alphanumeric
senders whose contents are being moved to a numeric receiver. For alphanumeric senders whose
contents are being moved to a numeric receiver, the compiler treats the sender as a numeric integer
so NUMCHECK generates an implicit numeric class test for each alphanumeric sender. (“NUMCHECK”
on page 45)

Preface xiii

– PH33122: RULES: New suboptions LAXREDEF | NOLAXREDEF are added to the RULES option to
inform users of redefined items with mismatched lengths. (“RULES” on page 57)

– PH35643: SOURCE: New suboptions DEC | HEX are added to the SOURCE option to control whether
the generated sequence numbers for the listing of the source are in decimal or hexadecimal format.
(“SOURCE” on page 59)

– PH35652: OFFSET: The OFFSET option behavior is changed. If there are multiple blocks of
instructions for a single line of COBOL code, multiple entries will be generated for those instructions
in the OFFSET table. (“OFFSET” on page 51)

– PH40356: NUMCHECK(ZON(LAX)): When a zoned decimal data item is moved to another zoned
decimal data item, NUMCHECK will not check the sender of the move. However, if the sender is
subsequently used in a numeric context, it will be checked. (“NUMCHECK” on page 45)

• The following compiler options are deprecated:

– PH37328: ZONEDATA: This compiler option is deprecated but tolerated and is automatically mapped
to an equivalent form of the new INVDATA compiler option. (“ZONEDATA” on page 74)

– PH40356: NUMCHECK(ZON): LAXREDEF|STRICTREDEF is deprecated but is tolerated for
compatibility, and it is replaced by the LAX|STRICT option. (“NUMCHECK” on page 45)

Change in behavior for IGYCDOPT default options processing
• PH37331: Adds support for diagnosing miscoded options or options coded as OPTION() instead of
OPTION= in the COBOL customization macro. (“Changing the defaults for compiler options” on page
77)

Version 6 Release 3

Compiler option changes
• The following compiler option is new:

– LP: The new LP compiler option can be used to indicate whether a AMODE 31 (31-bit) or AMODE
64 (64-bit) program should be generated with the related language features enabled. LP(32) is the
default. (“LP” on page 41)

• The following compiler options are modified:

– ARCH: ARCH(7) is no longer accepted. A new higher level of ARCH(13) is accepted. ARCH(8) is the
default. (“ARCH” on page 16)

– NUMCHECK: When invalid data is found at compile time, regardless of whether NUMCHECK(MSG)
or NUMCHECK(ABD) is specified, an error-level message is produced and the check is removed.
(“NUMCHECK” on page 45)

Compiler phases in shared storage changes
• The installation customization for placing compiler phases into shared storage is removed.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this information or any other Enterprise COBOL documentation, send your comments to:
compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number, the version of Enterprise COBOL,
and, if applicable, the specific location (for example, the page number or section heading) of the text that
you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way that IBM believes appropriate without incurring any obligation to you.

xiv Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

mailto:compinfo@cn.ibm.com

Chapter 1. Planning to customize Enterprise COBOL

When you plan the customization of Enterprise COBOL, you need to consider whether to modify compiler-
option default values and whether to create an additional reserved-word table.

The following information helps you plan your customization:

• “Making changes after installation: why customize?” on page 1
• “Planning to modify compiler option default values” on page 1
• “Planning to create an additional reserved word table” on page 7
• “Using product registration to enable or disable Enterprise COBOL” on page 9

If you're installing IBM Debug for z/OS (formerly IBM Debug for z Systems® and IBM Debug Tool for
z/OS), you can decide whether to place its modules in shared storage, and whether to set up your CICS®

environment to work with the debugger.

For the actual customization procedures, see Chapter 3, “Customizing Enterprise COBOL,” on page 77.

This information also contains worksheets to help you plan modifications to the IBM-supplied default
values within macros. For an explanation about the planning sheets, see “Using the macro planning
worksheets” on page xii.

Important: Confer with the application programmers at your site while you plan the customization of
Enterprise COBOL. Doing so will ensure that the modifications you make serve their needs and support
the applications being developed.

Making changes after installation: why customize?
When you install Enterprise COBOL, you receive IBM-supplied defaults for compiler options, and for
the reserved word table. You might want to customize Enterprise COBOL to better suit the needs of
application programmers at your site.

After you install Enterprise COBOL, you can:

• Modify the default values of compiler options: see “Planning to modify compiler option default values”
on page 1.

• Make compiler options fixed: see “Overriding compiler options that are fixed” on page 7.
• Create additional reserved word tables: see “Planning to create an additional reserved word table” on

page 7.

Planning to modify compiler option default values
IBM provides a default setting for each compiler option. You can accept the IBM-supplied compiler
option values when you install Enterprise COBOL, or you can modify them to better suit the needs of
programmers at your location. You can also choose whether your application programmers will have the
ability to override an option default (meaning the option default is not fixed) or will be restricted from
overriding an option default (meaning the option default is fixed). The IGYCDOPT program lets you set and
fix the defaults for the compiler options.

Compiler option defaults is set in the IGYCDOPT program.

IGYCDOPT is link-edited with AMODE 31 and RMODE ANY during installation.

For compiler option defaults sets in the IGYCDOPT program, see Table 1 on page 2.

When you assemble COBOL customization parts, such as IGYCDOPT, you need access to a system
MACLIB. Typically, the MACLIB is found in SYS1.MACLIB. You also need access to the COBOL MACLIB
IGY.V6R3M0.SIGYMAC.

© Copyright IBM Corp. 1996, 2024 1

Note: The high-level qualifier IGY.V6R3M0 might have been changed when Enterprise COBOL was
installed.

Modifying compiler options
IBM provides a default setting for each compiler option which can be modified to better suit your needs at
your location.

The compiler options and their defaults are described in “IGYCDOPT worksheet for compiler options” on
page 2. Review these options and their default values to determine the values that are most suitable
for your applications.

If you plan to modify the values for compiler options, use the following IGYCOPT syntax format.

Note: Prefacing an option's value with an asterisk will set that option's value as "fixed", meaning that it
cannot be overridden at compile time, unless special steps are taken to do so. See “Overriding compiler
options that are fixed” on page 7 for more information on how options whose defaults are set as fixed
can be overridden later at compiler time if needed.

IGYCOPT format
IGYCOPT

* ,

 option

Figure 1. Syntax format for IGYCOPT compiler options macro

IGYCDOPT worksheet for compiler options
The IGYCDOPT worksheet will help you plan and set the compiler options portion in the IGYCDOPT
program. The IBM-supplied default values are shown in the "IBM-supplied default" column. The default is
also visible following the syntax diagram by clicking on the option in the "Syntax description" column. For
more information about the syntax diagrams, see “How to read the syntax diagrams” on page xi.

To complete the worksheet, fill in the "Enter * for fixed" and the "Enter selection" columns.

Note:

• Coding the asterisk [*] when you modify a compiler option default value indicates that the option is to
be fixed and cannot be overridden by an application programmer. An attempt to override a fixed option
at compile time will result in a diagnostic message with a nonzero compiler return code. For special
circumstances where a compiler option value that you chose to set as fixed needs to be overridden by
an application programmer, see “Overriding compiler options that are fixed” on page 7.

• The ALOWCBL, DBCSXREF, and NUMCLS options cannot be overridden at compile time. Therefore, the
"Enter * for fixed" worksheet entries for these options are blank.

• The IBM-supplied default value for ADEXIT, INEXIT, LIBEXIT, MSGEXIT, and PRTEXIT is null. Therefore,
the "IBM-supplied default" entries for these options are blank.

• The DUMP compiler option cannot be set through the IGYCDOPT program. Unless changed at compile
time, DUMP is always set to NODUMP.

• The OPTFILE compiler option cannot be set through the IGYCDOPT program.

Table 1. IGYCDOPT worksheet for options

Compiler
option

Enter *
for
fixed

Enter
selection

IBM-supplied
default

Syntax
description

ADATA= ____ __________ NO “ADATA” on page 13

ADEXIT= ____ __________ “ADEXIT” on page 13

2 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Table 1. IGYCDOPT worksheet for options (continued)

Compiler
option

Enter *
for
fixed

Enter
selection

IBM-supplied
default

Syntax
description

ADV= ____ __________ YES “ADV” on page 14

AFP= ____ __________ NOVOLATILE “AFP” on page 14

ALOWCBL= ____ __________ YES “ALOWCBL” on page 15

ALOWCOPYLOC= ____ __________ YES “ALOWCOPYLOC” on page
15

ALOWDEFINE= ____ __________ YES “ALOWDEFINE ” on page
16

ARCH= ____ __________ 8 “ARCH” on page 16

ARITH= ____ __________ COMPAT “ARITH” on page 18

AWO= ____ __________ NO “AWO” on page 18

BLOCK0= ____ __________ NO “BLOCK0” on page 19

BUF= ____ __________ 4K “BUF” on page 19

CICS= ____ __________ NO “CICS” on page 20

CODEPAGE= ____ __________ 1140 “CODEPAGE” on page 20

COMPILE= ____ __________ NOC(S) “COMPILE” on page 21

CONDCOMP= ____ __________ NOSKIPSRC “CONDCOMP” on page 21

COPYRIGHT= ____ __________ NO “COPYRIGHT” on page 22

CURRENCY= ____ __________ NO “CURRENCY” on page 22

DATA= ____ __________ 31 “DATA” on page 23

DBCS= ____ __________ Yes “DBCS” on page 24

DBCSXREF= ____ __________ NO “DBCSXREF” on page 24

DECK= ____ __________ NO “DECK” on page 25

DIAGTRUNC= ____ __________ NO “DIAGTRUNC” on page 25

DISPSIGN= ____ __________ COMPAT “DISPSIGN” on page 26

DLL= ____ __________ NO “DLL” on page 27

DYNAM= ____ __________ NO “DYNAM” on page 27

EXPORTALL= ____ __________ NO “EXPORTALL” on page 28

FASTSRT= ____ __________ NO “FASTSRT” on page 28

FLAG= ____ __________ (I,I) “FLAG” on page 29

FLAGSTD= ____ __________ NO “FLAGSTD” on page 30

HGPR= ____ __________ PRESERVE “HGPR” on page 32

INEXIT= ____ __________ “INEXIT” on page 32

INITCHECK= ____ __________ NO “INITCHECK” on page 32

INITIAL= ____ __________ NO “INITIAL” on page 34

INLINE= ____ __________ YES “INLINE” on page 34

Chapter 1. Planning to customize Enterprise COBOL 3

Table 1. IGYCDOPT worksheet for options (continued)

Compiler
option

Enter *
for
fixed

Enter
selection

IBM-supplied
default

Syntax
description

INTDATE= ____ __________ ANSI “INTDATE” on page 35

INVDATA= ____ __________ NO “INVDATA” on page 35

LANGUAGE= ____ __________ EN “LANGUAGE” on page 38

LIBEXIT= ____ __________ “LIBEXIT” on page 39

LINECNT= ____ __________ 60 “LINECNT” on page 40

LIST= ____ __________ NO “LIST” on page 40

LITCHAR= ____ __________ QUOTE “LITCHAR” on page 41

LP= ____ __________ 32 LP

MAP= ____ __________ NO “MAP” on page 42

MAXPCF= ____ __________ 100000 “MAXPCF” on page 42

MDECK= ____ __________ NO “MDECK” on page 43

MSGEXIT= ____ __________ “MSGEXIT” on page 44

NAME= ____ __________ NO “NAME” on page 44

NSYMBOL= ____ __________ NATIONAL “NSYMBOL” on page 44

NUM= ____ __________ NO “NUM” on page 45

NUMCHECK= ____ __________ (NO) “NUMCHECK” on page 45

NUMCLS= ____ __________ PRIM “NUMCLS” on page 49

NUMPROC= ____ __________ NOPFD “NUMPROC” on page 50

OBJECT= ____ __________ YES “OBJECT” on page 50

OFFSET= ____ __________ NO “OFFSET” on page 51

OPTIMIZE= ____ __________ 0 “OPTIMIZE” on page 51

OUTDD= ____ __________ SYSOUT “OUTDD” on page 52

PARMCHECK= ____ __________ (NO) “PARMCHECK” on page 52

PGMNAME= ____ __________ COMPAT “PGMNAME” on page 53

PRTEXIT= ____ __________ “PRTEXIT” on page 54

QUALIFY= ____ __________ COMPAT “QUALIFY” on page 54

RENT= ____ __________ YES “RENT” on page 55

RMODE= ____ __________ AUTO “RMODE” on page 56

RULES= ____ __________ (NO) “RULES” on page 57

SEQ= ____ __________ YES “SEQ” on page 58

SERVICE= ____ __________ NO “SERVICE” on page 59

SOURCE= ____ __________ YES “SOURCE” on page 59

SPACE= ____ __________ 1 “SPACE” on page 59

SQL= ____ __________ NO “SQL” on page 60

4 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Table 1. IGYCDOPT worksheet for options (continued)

Compiler
option

Enter *
for
fixed

Enter
selection

IBM-supplied
default

Syntax
description

SQLCCSID= ____ __________ YES “SQLCCSID” on page 60

SQLIMS= ____ __________ NO “SQLIMS” on page 61

SSRANGE= ____ __________ NO “SSRANGE” on page 62

STGOPT= ____ __________ NO “STGOPT” on page 63

SUPPRESS= ____ __________ YES “SUPPRESS” on page 63

TERM= ____ __________ NO “TERM” on page 64

TEST= ____ __________ (NO, NODWARF) “TEST” on page 64

THREAD= ____ __________ NO “THREAD” on page 66

TRUNC= ____ __________ STD “TRUNC” on page 68

TUNE= ____ __________ 8, if ARCH is
not specified. The
default TUNE level
must match the
ARCH level if ARCH
is specified.

“TUNE” on page 69

VBREF= ____ __________ NO “VBREF” on page 70

VLR= ____ __________ STANDARD “VLR” on page 70

VSAMOPENFS= ____ __________ COMPAT “VSAMOPENFS” on page
71

WORD= ____ __________ NO “WORD” on page 72

XMLPARSE= ____ __________ XMLSS “XMLPARSE” on page 73

XREFOPT= ____ __________ FULL “XREFOPT” on page 73

ZWB= ____ __________ YES “ZWB” on page 76

Sample installation jobs to modify IGYCDOPT compiler option defaults
Enterprise COBOL provides two sample installation jobs that you can modify and then use to change the
defaults for compiler options. The first sample job, IGYWDOPT, provides an example of how to change the
IBM-supplied defaults for compilers. This job then uses SMP/E to install the newly built compiler option
default module, IGYCDOPT, into SIGYCOMP. The second sample job, IGYWUOPT, provides an example
of how to override compiler options that have been fixed. This job will place the newly built compiler
option default module, IGYCDOPT, into an application execution data set, that can then be included in
the application's STEPLIB DD in the compile JCL. These jobs are located in the COBOL sample data set
IGY.V6R3M0.SIGYSAMP.
IGYWDOPT

This sample installation job can be used to change the IBM-supplied compiler option defaults. It will
create a new IGYCDOPT module and then apply it into SIGYCOMP using SMP/E. If SMP/E is used to
install the COBOL compiler, then use this sample installation job to change the IBM-supplied compiler
option defaults.

If IGYWDOPT is being run for the first time, complete the following steps:

1. Change the job card to meet your system requirements.

Chapter 1. Planning to customize Enterprise COBOL 5

2. Change these items:

• #globalcsi (Make it the CSI name of the installation site)
• #tzone (Make it the TARGET ZONE name of the installation site)

3. Copy member SIGYSAMP(IGYCDOPT) into SIGYSAMP(IGYWDOPT) in place of the comment lines
following the ++ SRC statement in step DOPT.

4. Modify the IGYCDOPT text that was just copied in so that it contains the list of compiler options
that need to be overridden. For example:

COPY IGYCDOPT
 IGYCDOPT CSECT
 IGYCDOPT AMODE ANY
 IGYCDOPT RMODE ANY
 IGYCOPT ARCH=10, X
 OPTIMIZE=*2, X
 NUMCHECK=(ZON,PAC,BIN,MSG), X
 INVDATA=NO
 END IGYCDOPT

Use the continuation "X" in column 72 as needed.
5. Run IGYWDOPT to receive and apply the usermod to create a customized version of

MOD(IGYCDOPT).
6. Important: Save a copy of the modified SIGYSAMP(IGYWDOPT) for future reference.

CAUTION: Do not ACCEPT the usermod! Accepting the usermod makes it impossible to RESTORE it
later in SMP/E when needed.

If MOD(IGYCDOPT) is being changed by an IBM PTF and requires a rerun of the
SIGYSAMP(IGYWDOPT) job, complete the following steps:

1. RESTORE the usermod created by the IGYWDOPT job. This is done via the SMP/E command
RESTORE SELECT (IGYWDOP). Doing this will restore MOD(IGYCDOPT) back to the previous IBM
PTF level, which will then allow the new IBM PTF to apply properly.

2. Apply the IBM PTF.
3. Change the rework date by changing the REWORK parameter on the ++ USERMOD statement to

the date the changes are being made.
4. Add the proper "PRE()" statement after the "FMID()" statement. This is typically the PTF number

that was just applied. See the technote to determine what PRE statement to add if an error occurs.
5. Using the SIGYSAMP(IGYWDOPT) backup member as a reference and referring to any options that

may have been added or modified in SIGYMAC(IGYCOPT), update IGYWDOPT so that it contains
the list of compiler options that need to be overridden.

6. Rerun IGYWDOPT to receive and apply the usermod to recreate a customized version of
MOD(IGYCDOPT).

7. Important: Save off a copy of the modified SIGYSAMP(IGYWDOPT) for future reference.

IGYWDOPT should run with a condition code of 0.

Check the IGYNNNN informational messages in the ASSEMBLER SYSPRINT data set to verify the
options that will be in effect when the new IGYCDOPT module is used.

IGYWUOPT
This sample installation job can be used to change the IBM-supplied compiler option defaults. If
SMP/E is not used to install the COBOL compiler, which is a rare case, then this sample installation
job can be used to change the IBM-supplied defaults and copy the new IGYCDOPT module into
SIGYCOMP. This job can also be used to create an IGYCDOPT compiler option default module that
can be placed into an application execution data set and then referenced by the application in the
STEPLIB DD in the compile JCL. In this way, compiler option defaults in SIGYCOMP (IGYCDOPT) that
are fixed and cannot normally be overridden can be overridden.

6 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

http://www.ibm.com/support/docview.wss?uid=swg21972436

Overriding compiler options that are fixed
At installation time, the IGYCDOPT program (sample jobs SIGYSAMP(IGYWDOPT & IGYWUOPT) can be
used to specify that a compiler option is fixed and cannot be changed or overridden at compile time. This
means that at compile time, an attempt to override the fixed option will result in a diagnostic message
with a nonzero compiler return code.

However, there may be special conditions that require the ability to override a fixed option. For example,
if OPT=2 is fixed at the installation level (indicating that you always want the COBOL compiler to generate
optimized object code), and you have an immediate need to compile without optimization, then you would
need a way to override the fixed OPT=2 option, so that OPT=0 could be used instead.

This change can be made by assembling a temporary copy of the IGYCDOPT program to contain a
(non-fixed) default for the compiler option and then placing that copy of IGYCDOPT into an application's
data set. At compile time, programmers can then use a JOBLIB or STEPLIB to point to the data set that
contains the modified IGYCDOPT module to bypass the fixed compiler option.

The sample job, SIGYSAMP(IGYWUOPT) can be used to accomplish this task. Carefully follow the
instructions in the comments in SIGYSAMP(IGYWUOPT) to tailor that sample job.

Note:

• //SYSLMOD should point to the application data set where the new IGYCDOPT module will reside.
• If SIGYSAMP(IGYWDOPT) was used at installation time to set the defaults, it is recommended to copy

the compiler option overrides from that job into SIGYSAMP(IGYWUOPT) and then change the desired
option to the new default. In this way, the application will retain all the installation defaults, except the
one they chose to alter.

Planning to create an additional reserved word table
The following sections describe why you might want to create additional reserved word tables, explain
how you can restrict the use of nested programs by modifying a reserved word table, and list the reserved
word tables supplied with Enterprise COBOL.

You can create additional reserved word tables after installation. During compilation, the value of the
WORD compiler option determines which reserved word table is used.

Why create additional reserved word tables?
This section describes the benefits of creating additional reserved word tables.

You can create additional reserved word tables to:

• Translate the reserved words into another language, such as French or German.
• Prevent application programmers from using a particular Enterprise COBOL instruction, such as GO TO.
• Control the usage of nested programs.
• Flag words that are not supported under CICS, such as READ and WRITE.

Controlling use of nested programs
To restrict the use of nested programs without restricting any other COBOL language features, modify the
reserved word table.

Do this by using the INFO and RSTR control statements. For instructions on how to make these
modifications, see “Creating or modifying a reserved word table” on page 80.

Reserved word tables supplied with Enterprise COBOL
Enterprise COBOL provides reserved word tables on the installation medium.

The reserved word tables are:

Chapter 1. Planning to customize Enterprise COBOL 7

• Default reserved word table
• CICS reserved word table

Default reserved word table (IGYCRWT)
About the default reserved word table provided for your entire facility, see Reserved words in the
Enterprise COBOL Language Reference.

CICS reserved word table (IGYCCICS)
Enterprise COBOL provides an alternate reserved word table for CICS application programs so that COBOL
words that are not supported under CICS are flagged by the compiler.

The CICS reserved word table is the same as the default reserved word table except that the following
COBOL words are marked as restricted (RSTR):

• CLOSE
• DELETE3

• FACTORY
• FD
• FILE1

• FILE-CONTROL1

• INPUT-OUTPUT1

• INVOKE
• I-O-CONTROL
• MERGE
• METHOD
• OBJECT
• OPEN
• READ
• RERUN
• REWRITE
• SD1, 2

• SELF
• START
• SUPER
• WRITE

Notes:

1. If you intend to use the SORT statement under CICS (COBOL supports an interface for the SORT
statement under CICS), you must change the CICS reserved-word table to remove the words from the
list of words marked as restricted.

2. The SORT keyword is not restricted, but the SD keyword is. This allows you to use the format 2 (table)
sort statement but not the format 1 (file) sort statement.

3. If you restrict the DELETE keyword, you may still use the DELETE function of BASIS processing.

Using the table
To use the CICS reserved word table, you must specify the WORD(CICS) compiler option.

To have the CICS reserved word table used as the default, you must set the default value of the WORD
compiler option to WORD=CICS.

8 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Location of the table
The data used to create the CICS reserved word table is in member IGY8CICS in IGY.V6R3M0.SIGYSAMP.

Note: The high-level qualifier IGY.V6R3M0 might have been changed when Enterprise COBOL was
installed.

Using product registration to enable or disable Enterprise COBOL
The default behavior for Enterprise COBOL V6 is to run on every z/OS system, but you can use the
IFAPRDxx member of SYSx.PARMLIB to disable COBOL V6 from running on selected z/OS systems.

If you want to disable COBOL V6, add the following code to the active IFAPRDxx member:

PRODUCT OWNER('IBM CORP')
 NAME('ENTERPRISE COBOL')
 ID(5655-EC6)
 VERSION(06) RELEASE(*) MOD(*)
 FEATURENAME(*)
 STATE(DISABLED)

In this case, the compiler stops with RC=16 and a write-to-operator message.

If you want to explicitly enable COBOL V6, add the following code to the active IFAPRDxx member:

PRODUCT OWNER('IBM CORP')
 NAME('ENTERPRISE COBOL')
 ID(5655-EC6)
 VERSION(06) RELEASE(*) MOD(*)
 FEATURENAME(*)
 STATE(ENABLED)

However, because COBOL V6 is enabled by default, you don't have to explicitly enable COBOL V6 by
adding the previous statements to the active IFAPRDxx member.

Chapter 1. Planning to customize Enterprise COBOL 9

10 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Chapter 2. Enterprise COBOL compiler options
This information describes the compiler options whose default values can be changed.

The notes that accompany some of the descriptions provide additional information about these options,
such as how they interact with other options during compilation.

This information might help you to make decisions about which default values are appropriate for your
installation.

For more information about the compiler options, see Compiler options in the Enterprise COBOL
Programming Guide.

Important:
Confer with the application programmers at your site while you plan the customization of Enterprise
COBOL. Doing so will ensure that the modifications you make serve their needs and support the
applications that are being developed.

Specifying COBOL compiler options
When you specify compiler options in the IGYCOPT macro, be sure to follow the assembler syntax
described in the subsequent sections. This assembler syntax is not the same as the option syntax used
with the compiler itself.

Always assemble your IGYCOPT macro source with the *. SIGYMAC library of the compiler for which you
are preparing the default options. This will ensure that the resulting options module is consistent with the
expectations of the compiler, for example when options are added or withdrawn.

Conflicting compiler options
If you specify certain compiler option values, a conflict with other compiler options might result. This
topic describes possible conflicts between compiler options.

Table 2. Conflicting compiler options

Compiler option Conflicts with:

AFP=VOLATILE LP=64

CICS=YES DYNAM=YES
LP=64
RENT=NO

DATA=24 LP=64

DBCS=NO NSYMBOL=NATIONAL

DBCSXREF=(other than NO) XREFOPT=NO

DLL=NO EXPORTALL=YES

DLL=YES DYNAM=YES
RENT=NO

© Copyright IBM Corp. 1996, 2024 11

Table 2. Conflicting compiler options (continued)

Compiler option Conflicts with:

DYNAM=YES CICS=YES
DLL=YES
EXPORTALL=YES

EXPORTALL=YES DLL=NO
DYNAM=YES
RENT=NO

FLAGSTD=(other than NO) WORD=xxxx

HGPR=NOPRESERVE LP=64

LIST=YES OFFSET=YES

LP=64 AFP=VOLATILE
CICS=YES
DATA=24
HGPR=NOPRESERVE
RENT=NO
RMODE=24
SQLIMS=YES
THREAD=YES

NSYMBOL=NATIONAL DBCS=NO

OBJECT=NO TEST=(other than NO)

OFFSET=YES LIST=YES

RENT=NO CICS=YES
DLL=YES
EXPORTALL=YES
LP=64
THREAD=YES

RMODE=24 LP=64

SQLIMS=YES LP=64

THREAD=YES INITIAL=YES
LP=64
RENT=NO

WORD=xxxx FLAGSTD=(other than NO)

XREFOPT=NO DBCSXREF=(other than NO)

12 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Compiler options for standards conformance
Several compiler options are required to conform with the 85 COBOL Standard.

For details, see Option settings for 85 COBOL Standard conformance in the Enterprise COBOL Programming
Guide.

Compiler options syntax and descriptions
The syntax diagrams in the following topics describe each modifiable compiler option. The text after each
diagram describes the effect of selecting a specific parameter.

Note:

• The DUMP option is not in this list. Unless you change DUMP at compile time, it is always set to
NODUMP. This option is not for general use; it is used only at the request of an IBM representative.

• The OPTFILE option is not in this list. It can be specified only as a compiler invocation PARM option, or
in a PROCESS or CBL statement in the COBOL source program.

• Coding the asterisk (*) when you modify a compiler option default value indicates that the option is to
be fixed and cannot be overridden by an application programmer.

ADATA
ADATA affects whether an Associated Data file is produced during compilation.
Syntax

ADATA=

*

NO

YES

Default
ADATA=NO

YES
Produces the Associated Data file with the appropriate records.

NO
Does not produce the Associated Data file.

Notes:

• The ADATA option can be specified only at invocation through the option list, on the PARM field of JCL,
as a command option, or as an installation default.

• Selection of the Japanese language option might result in DBCS characters written records in the
Associated Data file.

• Specification of NOCOMPILE(W|E|S) might stop compilation prematurely, resulting in a loss of specific
Associated Data records.

• If you use the INEXIT option, the compilation source module is not identified in the SYSADATA
(Associated Data file) information.

ADEXIT
ADEXIT designates a module to be called for each record that is written to the SYSADATA file.
Syntax

ADEXIT=

* name

Chapter 2. Enterprise COBOL compiler options 13

Default
No exit is specified. Equivalent to specifying the NOADEXIT suboption of the EXIT compiler option. If
ADEXIT=* is coded without the name parameter, NOADEXIT cannot be overridden.

name
Identifies a module to be used with the EXIT compiler option. If the suboption for this user exit is
specified, the compiler loads the named module and calls it for each record that is written to the
SYSADATA file.

For more information about the EXIT compiler option, see EXIT compiler option in the Enterprise
COBOL Programming Guide.

ADV
ADV affects WRITE ... ADVANCING statements, determining whether one byte is added to the record
length for the printer control character.
Syntax

ADV=

*

YES

NO

Default
ADV=YES

YES
Adds one byte to the record length for the printer control character. This option might be useful to
programmers who use WRITE ... ADVANCING in their source files. The first character of the record
does not have to be explicitly reserved by the programmer.

NO
Does not adjust the record length for WRITE ... ADVANCING. The compiler uses the first character
of the specified record area to place the printer control character. The application programmer must
ensure that the record description allows for this additional byte.

Note:

• With ADV=YES, the record length on the physical device is one byte larger than the record description
length in the source program.

• If the record length for the output file is not defined in the source code, COBOL ensures that the DCB
parameters are appropriately set.

• If ADV=YES is specified, and the record length for the output file has been defined in the source code,
the programmer must specify the record description length as one byte larger than the source program
record description. The programmer must also specify the block size in correct multiples of the larger
record size.

• If the LINAGE clause is specified in a file description (FD), the compiler treats that file as if ADV=YES has
been specified.

AFP
The AFP option controls the compiler usage of the Additional Floating Point (AFP) registers that are
provided by z/Architecture processors.

Syntax

AFP=

*

NOVOLATILE

VOLATILE

14 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

The Enterprise COBOL compiler generates code that uses the full complement of 16 floating point
registers (FPR) provided by a z/Architecture processor. These FPRs are as follows:

• Original FPRs, which are numbered 0, 2, 4, and 6
• AFP registers, which are numbered 1, 3, 5, 7, and 8-15

Default
AFP=NOVOLATILE

VOLATILE
If you specify AFP=VOLATILE, the AFP registers 8-15 are considered volatile, which means that they
might be changed by a called subprogram. Therefore, the COBOL compiler generates extra code to
protect the values in these registers.

NOVOLATILE
If you specify AFP=NOVOLATILE, the AFP registers 8-15 are considered nonvolatile, which means
that they are known to be unchanged or preserved by every called subprogram. Therefore, the
compiler can generate more efficient code sequences for programs with floating point operations. It is
the normal z/OS architecture convention.

AMODE 64 considerations: When the LP=64 compiler option is in effect, the AFP=VOLATILE option is
not supported. If the option is specified explicitly by the user, an informational message is issued and the
setting is ignored.

ALOWCBL
ALOWCBL affects whether PROCESS (or CBL) statements can be used in COBOL programs.
Syntax

ALOWCBL=

YES

NO

Default
ALOWCBL=YES

YES
Allows the use of the PROCESS (or CBL) statements in COBOL programs.

NO
Diagnoses the use of PROCESS (or CBL) statements in a program as an error.

Note:

• ALOWCBL cannot be overridden at compile time because it cannot be included in the PROCESS (or CBL)
statement.

• The PROCESS (or CBL) statement specifies compiler-option parameters within source programs. If your
installation requirements do not allow compiler options to be specified in a source program, specify
ALOWCBL=NO.

ALOWCOPYLOC
ALOWCOPYLOC affects whether COPYLOC options can be used when compiling COBOL programs.
Syntax

ALOWCOPYLOC=

YES

NO

Default
ALOWCOPYLOC=YES

YES
Allows the specification of COPYLOC options when compiling COBOL programs.

Chapter 2. Enterprise COBOL compiler options 15

NO
Diagnoses the specification of any COPYLOC options as an error.

Note:

• ALOWCOPYLOC cannot be overridden at compile time because it cannot be included in the PROCESS (or
CBL) statement.

• If your installation requirements do not allow COPYLOC compiler options to be specified in a source
program, specify ALOWCOPYLOC=NO.

Related references
COPYLOC (Enterprise COBOL Programming Guide)

ALOWDEFINE
ALOWDEFINE affects whether DEFINE options can be used when compiling COBOL programs.
Syntax

ALOWDEFINE =

YES

NO

Default
ALOWDEFINE=YES

YES
Allows the specification of DEFINE options when compiling COBOL programs.

NO
Diagnoses the specification of any DEFINE options as an error.

Note:

• ALOWDEFINE cannot be overridden at compile time because it cannot be included in the PROCESS (or
CBL) statement.

• If your installation requirements do not allow DEFINE compiler options to be specified in a source
program, specify ALOWDEFINE=NO.

Related references
DEFINE (Enterprise COBOL Programming Guide)

ARCH
The ARCH option specifies the machine architecture for which the executable program instructions are to
be generated.

Syntax

ARCH=

*

8

9

10

11

12

13

If you specify a higher ARCH level, the compiler generates code that uses newer and faster instructions.
Your application might abend if it runs on a processor with an architecture level lower than what you
specify with the ARCH option. Use the ARCH level that matches the lowest machine architecture where
your application runs.

16 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Current supported architecture levels and groups of models are as follows:
Default

ARCH=8
8

Produces code that uses instructions available on the 2097-xxx (IBM System z10® EC) and 2098-xxx
(IBM System z10 BC) models in z/Architecture mode.

Specifically, these ARCH=8 machines and their follow-ons add instructions supported by the general
instruction extensions facility.

9
Produces code that uses instructions available on 2817-xxx (IBM zEnterprise® 196) and 2818-xxx
(IBM zEnterprise 114) models in z/Architecture mode.

Specifically, these ARCH=9 machines and their follow-ons add instructions supported by the following
facilities:

• High-word facility
• Interlocked access facility
• Load/store-on-condition facility
• Distinct-operands facility
• Population-count facility

10
Produces code that uses instructions available on the 2827-xxx (IBM zEnterprise EC12) and 2828-xxx
(IBM zEnterprise BC12) models in z/Architecture mode.

Specifically, these ARCH=10 machines and their follow-ons add instructions supported by the
following facilities:

• Execution-hint facility
• Load-and-trap facility
• Miscellaneous-instructions-extension facility
• Transactional-execution facility
• Enhanced decimal floating point facility that enables more efficient conversions between zoned

decimal data items and decimal floating point data items. Instead of converting zoned decimal
data items to packed decimal data items to perform arithmetic when conditions permit it and
the optimization level is greater than 0, the compiler converts zoned decimal data items directly
to decimal floating point data items, and then back again to zoned decimal data items after the
computations are complete.

11
Produces code that uses instructions available on 2964-xxx (IBM z13®) and 2965-xxx (IBM z13s®)
models in z/Architecture mode.

Specifically, these ARCH=11 machines and their follow-ons add instructions with support of the
following facilities:

• Enhanced decimal floating point facility that enables more efficient conversions between packed-
decimal data items and decimal floating point intermediate result data items when the surrounding
conditions are optimal and the optimization level is greater than 0.

• Exploitation of the vector extension facility (SIMD) instructions for some INSPECT REPLACING and
INSPECT TALLYING statements.

To use the vector extension facility (SIMD) instructions, the code must be executed on a machine
running on z/OS V2.2, or z/OS V2.1 with the PTFs for APARs OA43803 and PI12412 installed.

12
Produces code that uses instructions available on 3906-xxx (IBM z14) and 3907-xxx (IBM z14 ZR1)
models in z/Architecture mode.

Chapter 2. Enterprise COBOL compiler options 17

Specifically, these ARCH=12 machines and their follow-ons add instructions that support the vector
packed-decimal facility, which accelerates packed and zoned decimal computation by storing
intermediate results in vector registers instead of in memory.

13
Produces code that uses instructions available on the 8561-xxx (IBM z15) and 8562-xxx (IBM z15
T02) models in z/Architecture mode.

Specifically, these ARCH=13 machines and their follow-ons add instructions supported by the
following facilities:

• Vector packed-decimal enhancement facility
• Vector-enhancements facility 2
• Miscellaneous instruction-extensions-facility 3
• Aligned vector load/store hints

Note: A higher ARCH level includes the facilities of the lower ARCH levels. For example, ARCH=13 includes
all the facilities of the lower ARCH levels.

For more information about these facilities, see z/Architecture Principles of Operation.

Use the ARCH option with the TUNE option. For more information about the interaction between ARCH and
TUNE, see “TUNE” on page 69.

ARITH
ARITH affects the maximum number of digits that can be coded for integers, and the number of digits
used in fixed-point intermediate results.
Syntax

ARITH=

*

COMPAT

EXTEND

Default
ARITH=COMPAT

COMPAT
Specifies 18 digits as the maximum precision for decimal data.

EXTEND
Specifies 31 digits as the maximum precision for decimal data.

AWO
AWO affects whether the APPLY-WRITE-ONLY clause is activated for physical-sequential files that have
variable blocked format.
Syntax

AWO=

*

NO

YES

Default
AWO=NO

YES
Activates the APPLY-WRITE-ONLY clause for any file within the program that is physical sequential
with variable block format regardless of whether or not the APPLY-WRITE-ONLY clause is specified in
the program.

18 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Performance consideration: Using AWO=YES generally results in fewer calls to Data Management
Services for runtime files when handling input and output.

NO
Does not activate the APPLY-WRITE-ONLY clause for any file within the program that is physical
sequential with variable block format unless the APPLY-WRITE-ONLY clause is specified in the
program.

BLOCK0
BLOCK0 affects whether the default blocking specification for QSAM files is changed from unblocked to
blocked.
Syntax

BLOCK0=

*

NO

YES

Default
BLOCK0=NO

YES
Changes the default blocking specification for QSAM files that specify neither BLOCK CONTAINS nor
RECORDING MODE U in the file description entry. BLOCK0=YES activates the BLOCK CONTAINS 0
clause for such files, causing them to have a system-determined block size at run time.

Performance consideration: Using BLOCK0=YES could result in enhanced processing speed and
minimized storage requirements for QSAM output files. But see the recommendation below.

NO
Does not activate the BLOCK CONTAINS 0 clause by default for any file.

Recommendation: Adding a BLOCK CONTAINS 0 clause to file descriptions in existing programs could
result in a change of behavior in those programs, including some undesirable effects for files opened as
INPUT. For this reason, it is recommended that BLOCK0=YES not be set as an installation default.

For further details, see BLOCK0 in the Enterprise COBOL Programming Guide.

BUF
BUF specifies the amount of dynamic storage to be used during compilation.
Syntax

BUF=

*

4K

integer

integer K

Default
BUF=4K

integer
Specifies the amount of dynamic storage, in bytes, to be allocated to each compiler work file buffer.
The minimum value is 256 bytes.

Performance consideration: Using a large buffer size usually improves the performance of the
compiler.

integerK
Specifies the amount of dynamic storage to be allocated to buffers in increments of 1K (1024) bytes.

Note:

Chapter 2. Enterprise COBOL compiler options 19

• BUF cannot exceed the track capacity for the device used, nor can it exceed the maximum allowed by
data management services.

CICS
CICS affects whether a COBOL source program that contains CICS statements is to be processed by the
integrated CICS translator.
Syntax

CICS=

*

NO

YES

Default
CICS=NO

YES
If a COBOL source program contains CICS statements and has not been preprocessed by the CICS
translator, the YES option must be specified.

NO
When the NO option is specified, any CICS statements that are found in the source program are
diagnosed and discarded.

Note:

• The CICS compiler option can contain CICS suboptions. The CICS suboptions delimiters can be
quotation marks or apostrophes. CICS suboptions cannot be specified as a COBOL installation default.

• You can specify the CICS compiler option in any of the compiler option sources: installation defaults,
compiler invocation, or PROCESS (CBL) statements.

• When the LP(64) compiler option is in effect, the CICS option is not supported. A diagnostic message is
emitted if the option is explicitly specified by the user.

CODEPAGE
CODEPAGE affects the coded character set identifier (CCSID) for an EBCDIC code page for processing
compile-time and runtime COBOL operations that are sensitive to character encoding.
Syntax

CODEPAGE=

*

ccsid

Default
CODEPAGE=1140

ccsid
Specifies a valid coded character set identifier (CCSID) integer that identifies an EBCDIC code page.

The default CCSID 1140 is the equivalent of CCSID 37 (EBCDIC Latin-1, USA), but additionally includes
the euro symbol.

Recommendation: To avoid unnecessary conversions and associated performance overhead on systems
that use both COBOL and Db2, use the same CODEPAGE compiler option setting as in your Db2
subsystem parameters and application programming defaults (specify in DSNHDECP).

Note: If you specify the TEST option, you must set the CODEPAGE option to the CCSID that is used for
the COBOL source program. In particular, programs that use Japanese characters in DBCS literals or DBCS
user-defined words must be compiled with the CODEPAGE option set to a Japanese codepage CCSID.

For further details, see CODEPAGE in the Enterprise COBOL Programming Guide.

20 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

COMPILE
COMPILE determines whether compilation continues if diagnostic messages of a specified severity occur.
Syntax

COMPILE=

*

NOC(

S

E

W

)

YES

Default
COMPILE=NOC(S)

NOC
Indicates that you want only a syntax check.

NOC(W)
NOC(E)
NOC(S)

Specifies an error message level: W is warning; E is error; S is severe. When an error of the level
specified or of a more severe level occurs, compilation stops, and only syntax checking is done for the
balance of the compilation.

YES
Indicates that you want full compilation, including diagnostics and object code.

Specifying NOCOMPILE might affect the Associated Data file by stopping compilation prematurely,
resulting in loss of specific messages.

CONDCOMP
CONDCOMP affects the behavior of conditional compilation directives and controls how conditional code
will be displayed in the listing.
Syntax

CONDCOMP=

*

SKIPSRC

NOSKIPSRC

Default
CONDCOMP=NOSKIPSRC

NOSKIPSRC
If CONCOMP=NOSKIPSRC is in effect, all source code and comments bounded by conditional
compilation directives will be displayed in the listing. Sources lines in false branches of conditional
code will be displayed as comments in the listing.

SKIPSRC
If CONDCOMP=SKIPSRC is in effect, source lines and comments in the false branches of conditional
compilation directives, IF and EVALUATE directives, will not be shown in the listing. In addition,
compiled source lines and comments will also be omitted from the MDECK output file and SYSMDECK.

Chapter 2. Enterprise COBOL compiler options 21

COPYRIGHT
Use COPYRIGHT to place a string in the object module if the object module is generated. If the object is
linked into a program object, the string is loaded into memory with this program object.
Syntax

COPYRIGHT=

*

NO

'copyright string'

Default
COPYRIGHT=NO

The copyright string is limited to 64 characters in length.

CURRENCY
CURRENCY determines whether an alternate currency symbol will be used; the default is dollar sign ($).
Syntax

CURRENCY=

*

NO

literal

Default
CURRENCY=NO

literal
Represents the default currency symbol that you want to use in your program.

The literal must be an alphanumeric literal (optionally a hexadecimal literal) representing a 1-byte
EBCDIC character that must not be any of the following items:

• Digits zero (0) through nine (9)
• Uppercase alphabetic characters: A B C D P R S V X Z
• Lowercase alphabetic characters a through z
• The space
• Special characters: * + - / , . ; () = "
• Uppercase alphabetic character G, if the COBOL program defines a DBCS item with the PICTURE

symbol G. The PICTURE clause will not be valid for that DBCS item because the symbol G is
considered to be a currency symbol in the PICTURE clause.

• Uppercase alphabetic character N, if the COBOL program defines a DBCS item with the PICTURE
symbol N. The PICTURE clause will not be valid for that DBCS item because the symbol N is
considered to be a currency symbol in the PICTURE clause.

• Uppercase alphabetic character E, if the COBOL program defines an external floating-point item.
The PICTURE clause will not be valid for the external floating-point item because the symbol E is
considered to be a currency symbol in the PICTURE clause.

The literal (including hex literal) syntax rules are as follows:

• The literal delimiters can be either quotation marks or apostrophes regardless of whether the
APOST or QUOTE option is in effect.

• When an apostrophe (') is to be the currency sign, the embedded apostrophe must be doubled, that
is, two apostrophes must be coded to represent one apostrophe within the literal. For example:

'''' or "''"

22 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

• The format for a hex literal specification is as follows:

X'H1H2' or X"H1H2"

where H1H2 is a valid hexadecimal value representing a 1-byte EBCDIC character conforming to the
rules for the currency sign literal as described above. Alphabetic characters in the hex literal must
be in uppercase.

Note: Hex values of X'20' or X'21' are not allowed.

NO
Indicates that no alternate default currency sign is provided through the CURRENCY option, and the
dollar sign will be used as the default currency sign for the program if the CURRENCY option is not
specified at compile time.

The value NO provides the same results for the source program as omitting the CURRENCY SIGN
clause in the COBOL source program.

Note:

• You can use the CURRENCY option as an alternative to the CURRENCY SIGN clause (which is specified
in the COBOL source program) for selecting the currency symbol that you use in the PICTURE clause of
your COBOL program.

• When both the CURRENCY option and the CURRENCY SIGN clause are used in a program, the symbol
that is specified in the CURRENCY SIGN clause is the currency symbol in a PICTURE clause when that
symbol is used, even if the CURRENCY option is fixed (*).

DATA
DATA affects whether storage for dynamic data areas and other dynamic runtime storage is obtained from
above or below the 16 MB line.
Syntax

DATA=

*

31

24

Default
DATA=31

24
Causes allocation of user data areas in virtual addresses below 16 MB in storage acquired by a
GETMAIN with the LOC=BELOW option.

Specify DATA=24 for programs compiled with the RENT option that are passing data parameters to
programs in 24-bit mode. This includes the following cases:

• A COBOL program is passing items in its WORKING-STORAGE to an AMODE 24 program.
• A COBOL program is passing, by reference, data items received from its caller to an AMODE 24

program. DATA=24 is required even when the data received is below the 16 MB line.

Otherwise, the data might not be addressable by the called program.

DATA does not affect the location of LOCAL-STORAGE data; the STACK runtime option controls that
location instead, along with the AMODE of the program.

31
Causes allocation of user data areas, such as WORKING-STORAGE and FD record areas, from
unrestricted storage or in space acquired by a GETMAIN with the LOC=ANY option. Specifying this
option can result in storage being acquired in virtual addresses either above or below the 16 MB line.
The operating system generally satisfies the request with space in virtual addresses above the 16 MB
line, if it is available.

Chapter 2. Enterprise COBOL compiler options 23

Note:

• If a program is compiled with the RENT option, the DATA option controls how space for WORKING-
STORAGE and parameter lists is acquired.

• The DATA option has no effect on programs compiled with the NORENT option.
• The DATA option is ignored when LP(64) is in effect. If the user explicitly specifies the DATA option, an

informational message is issued.
• The LOCAL-STORAGE section is allocated from stack storage, which is managed by Language

Environment. LE allocates stack storage above the 2 GB bar in a 64-bit enclave.

DBCS
DBCS affects whether the compiler recognizes X'0E' and X'0F' in an alphanumeric literal and treats them
as shift-out and shift-in control characters for delimiting DBCS data.
Syntax

DBCS=

*

YES

NO

Default
DBCS=YES

YES
Recognizes X'0E' and X'0F' in an alphanumeric literal and treats them as shift-out and shift-in control
characters for delimiting DBCS data.

NO
Does not recognize X'0E' and X'0F' as shift-out and shift-in control characters in an alphanumeric
literal.

Note:

• The presence of DBCS data inside the alphanumeric literal might cause the compiler to disallow certain
uses of that literal. For example, DBCS characters are not allowed as program names or DDNAMES.

• DBCS=NO conflicts with NSYMBOL(NATIONAL).

DBCSXREF
DBCSXREF indicates that an ordering program is to be used for cross-referencing of DBCS names.
Syntax

DBCSXREF=

NO

(R

N

, xx
,  yy

, zz

)

Default
DBCSXREF=NO

R
Specifies that the DBCS Ordering Support Program (DBCSOS) is loaded into the user region.

N
Specifies that the DBCS Ordering Support Program (DBCSOS) is loaded into a shared system area such
as the MLPA.

xx
Names a program object of the relevant ordering program to produce DBCS cross-references. It must
be eight characters in length.

24 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

yy
Names an ordering type. It must be two characters in length. The default ordering type defined by the
specified ordering program occurs if this parameter is omitted.

zz
Names the encode table that the specified ordering type uses. It must be eight characters in length.
The default encode table that is associated with the particular ordering type occurs if this parameter
is omitted.

NO
Specifies that no ordering program is used for cross-reference of DBCS names. If the XREF phase is
specified, a cross-reference listing of DBCS names is provided based on their physical order in the
program.

Note:

• The DBCS Ordering Support Program (DBCSOS) must be installed to specify anything other than
DBCSXREF=NO.

• If R is specified, ensure that the user region is large enough to accommodate both the compiler and the
ordering program.

• Specifying both XREFOPT=NO and DBCSXREF with an ordering program results in a nonzero return code
while attempting to assemble the customization macro.

• The assembly process terminates when validation diagnoses:

– A parameter length that is not valid
– Characters other than 'R' and 'N'
– Missing parameters after a comma
– Missing yy when zz is specified

DECK
DECK determines whether 80-column object-code records are produced in a file defined by the
SYSPUNCH DD statement.
Syntax

DECK=

*

NO

YES

Default
DECK=NO

YES
Places the generated object code in a file defined by SYSPUNCH.

NO
Sends no object code to SYSPUNCH.

DIAGTRUNC
DIAGTRUNC affects whether the compiler issues a severity-4 (warning) diagnostic message for MOVE
statements with numeric receivers when the receiving data item has fewer integer positions than the
sending data item or literal.
Syntax

DIAGTRUNC=

*

NO

YES

Chapter 2. Enterprise COBOL compiler options 25

Default
DIAGTRUNC=NO

YES
Causes the compiler to issue a severity-4 (warning) diagnostic message for MOVE statements with
numeric receivers when the receiving data item has fewer integer positions than the sending data
item or literal.

NO
Does not cause the compiler to produce a severity-4 message.

Note:

• The diagnostic message is also issued for moves to numeric receivers from alphanumeric data names or
literal senders, except when the sending field is reference modified.

• There is no diagnostic message for COMP-5 receivers, nor for binary receivers when you specify the
TRUNC(BIN) option.

DISPSIGN
The DISPSIGN option controls output formatting for DISPLAY of signed numeric items.

Syntax

DISPSIGN=

*

COMPAT

SEP

Default
DISPSIGN=COMPAT

COMPAT
If you specify DISPSIGN=COMPAT, formatting for displayed values of signed numeric items is
compatible with prior versions of Enterprise COBOL. Overpunch signs are generated in some cases.

SEP
If you specify DISPSIGN=SEP, the displayed values for signed binary, signed packed-decimal, or
overpunch signed zoned-decimal items are always formatted with a leading separate sign.

The following example shows the DISPLAY output with the DISPSIGN=COMPAT option or the
DISPSIGN=SEP option specified:

Table 3. DISPLAY output with the DISPSIGN=COMPAT option or the DISPSIGN=SEP option specified:

Data items DISPLAY output with the
DISPSIGN=COMPAT option
specified

DISPLAY output with the
DISPSIGN=SEP option specified

Unsigned binary 111 111

Positive binary 111 +111

Negative binary 11J -111

Unsigned packed-decimal 222 222

Positive packed-decimal 222 +222

Negative packed-decimal 22K -222

Zoned-decimal unsigned 333 333

Zoned-decimal trailing positive 33C +333

Zoned-decimal trailing negative 33L -333

26 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Table 3. DISPLAY output with the DISPSIGN=COMPAT option or the DISPSIGN=SEP option specified:
(continued)

Data items DISPLAY output with the
DISPSIGN=COMPAT option
specified

DISPLAY output with the
DISPSIGN=SEP option specified

Zoned-decimal leading positive C33 +333

Zoned-decimal leading negative L33 -333

DLL
DLL affects whether an object module generated by the compiler is enabled for dynamic link library (DLL)
support.
Syntax

DLL=

*

NO

YES

Default
DLL=NO

YES
Generates an object module that is enabled for dynamic link library (DLL) support. DLL enablement is
required if the program is part of a DLL, references DLLs, or contains object-oriented COBOL syntax
(for example, INVOKE statements, or class definitions).

Specification of the DLL option requires that the NODYNAM option and RENT options are also used.

NO
Generates an object module that is not enabled for DLL usage.

Note: When the LP(64) compiler option is in effect, the following cases occur:

• The DLL option is effectively ignored. Object files generated using LP(64) are DLL enabled. They can be
linked as DLL or non-DLL.

• The EXPORTALL option is supported. Use this option to export symbols from programs when building
DLLs.

Related references
CALLINTERFACE (Enterprise COBOL Language Reference)

DYNAM
DYNAM affects whether the compiler dynamically loads subprograms that are invoked through the CALL
literal statement.
Syntax

DYNAM=

*

NO

YES

Default
DYNAM=NO

YES
Dynamically loads subprograms that are invoked through the CALL literal statement.

Chapter 2. Enterprise COBOL compiler options 27

Performance consideration: Using DYNAM=YES eases subprogram maintenance because the
application is not relink-edited if the subprogram is changed. However, individual applications with
CALL literal statements can experience some performance degradation due to a longer path length.

NO
Includes, in the calling program, the text files of subprograms called with a CALL literal statement into
a single program object.

Note:

• The DYNAM option has no effect on the CALL identifier statement at compile time. The CALL identifier
statement always compiles to a dynamic call.

• Do not specify DYNAM=YES for applications running under CICS.

For further details, see DYNAM in the Enterprise COBOL Programming Guide.

Related references
CALLINTERFACE (Enterprise COBOL Language Reference)

EXPORTALL
EXPORTALL affects whether the compiler automatically exports certain symbols when the object deck is
link-edited to form a DLL.
Syntax

EXPORTALL=

*

NO

YES

Default
EXPORTALL=NO

YES
Automatically exports the program-name and alternate entry-point names when the object deck is
link-edited to form a DLL.

Specification of EXPORTALL requires that the DLL, RENT, and NODYNAM options are also used.

NO
Does not export any symbols.

FASTSRT
FASTSRT determines whether DFSORT or comparable product performs input and output for sort and
merge, or whether they are performed by Enterprise COBOL. It applies only to sorting files by using the
format 1 SORT statement.
Syntax

FASTSRT=

*

NO

YES

Default
FASTSRT=NO

YES
Specifies that the IBM DFSORT licensed program or comparable product performs input and output
when you use either the USING or GIVING option.

Performance consideration: Using FASTSRT=YES eliminates the overhead, in terms of CPU time
usage, of returning to Enterprise COBOL after each record is processed. However, there are
restrictions that you must follow if you choose to use this option. (For a detailed description of

28 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

the restrictions, see Improving sort performance with FASTSRT in the Enterprise COBOL Programming
Guide.)

NO
Specifies that Enterprise COBOL does the input and output for the sort and merge.

Note:

• If FASTSRT is in effect at compile time, the compiler verifies that the FASTSRT interface can be used for
all restrictions except these two:

– A device other than a direct-access device must be used for sort work files.
– The DCB parameter of the DD statement for the input file or output file must match the file

description (FD) of the file.
• If FASTSRT cannot be used, the compiler generates a diagnostic message and prevents the sort

program from performing I/O when using either the USING or GIVING options. Therefore, it might
be to your advantage to specify YES as the default.

FLAG
FLAG affects whether the compiler produces diagnostic messages at or above a specified severity level.
Syntax

FLAG=

*

( x

,

y
)

NO

Default
FLAG=(I,I)

Note: The second severity level used in this syntax must be equal to or higher than the first.

x
I|W|E|S|U

Specifies that errors at or above the severity level specified are flagged and written at the end of the
source listing.

ID Type Return code

I Information 0

W Warning 4

E Error 8

S Severe error 12

U Unrecoverable error 16

y
I|W|E|S|U

The optional second severity level specifies the level of syntax messages embedded in the source
listing in addition to being at the end of the listing.

NO
Indicates that no error messages are flagged.

Note:

Chapter 2. Enterprise COBOL compiler options 29

• If the messages are to be embedded, SOURCE must be specified at compile time. Embedded messages
enhance productivity because they are placed after the referenced source statement.

• Specification of FLAG(W|E|S) might result in the loss of entire classes of messages from the Events
records in the Associated Data (SYSADATA) file. For further details, see FLAG in the Enterprise COBOL
Programming Guide.

FLAGSTD
FLAGSTD affects the subset of the 85 COBOL Standard language elements that are regarded as
conforming, and affects the flagging of informational messages about the language elements used.
Syntax

FLAGSTD=

*

NO

( x
y ,O

)

Default
FLAGSTD=NO

x
Can be M, I, or H to specify flagging for a FIPS COBOL subset or standard:
M =

ANS minimum subset of Standard COBOL
I =

ANS intermediate subset, composed of those additional intermediate subset language elements
that are not part of the ANS minimum subset

H =
ANS high subset, composed of those additional high subset language elements that are not part of
the ANS intermediate subset

y
Can be any one or two combinations of D, N, or S to further define the level of flagging produced:
D

Specifies ANS debug module level 1
N

Specifies ANS segmentation module level 1
S

Specifies ANS segmentation module level 2 (where S is a superset of N)
O

Specifies that obsolete elements occurring in any of the sets above are flagged
NO

Specifies that no FIPS flagging is to be done

Note:

• The following elements are flagged as nonconforming and nonstandard IBM extensions to the 85
COBOL Standard:

– Language syntax used by the COBOL automatic date-processing facilities
– Language syntax for object orientation and improved interoperability with Java™

– Use of the PGMNAME=LONGMIXED compiler option

For a complete list of nonconforming and nonstandard elements that is flagged, see IBM extensions in
the Enterprise COBOL Language Reference.

• When FIPS flagging is specified, informational messages in the source program listing identify:

30 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

– Whether the language element is obsolete, nonconforming standard, or nonconforming nonstandard
(language elements that are both obsolete and nonconforming are flagged as obsolete only)

– The clause, statement, or header containing the nonconforming or obsolete syntax
– The source program line and an indication of the starting column within that line
– The level or optional module to which the language element belongs

• FIPS flagging is suppressed when any error diagnosed as level E or higher occurs.
• Interaction of FLAGSTD and other compiler options:

– If the following compiler options are explicitly or implicitly specified in a program, FLAGSTD=(other
than NO) causes a compiler FIPS message to be issued :

- ADV=NO
- BLOCK0=YES
- CICS=YES
- DLL=YES
- DYNAM=NO
- EXPORTALL=YES
- FASTSRT=YES
- LITCHAR=APOST
- NAME=NO
- NUMPROC=PFD
- PGMNAME=LONGMIXED
- QUALIFY=EXTEND
- THREAD=YES
- TRUNC=OPT or BIN
- VLR=COMPAT
- WORD=(other than NO or RWT)
- INVDATA=(other than NO)
- ZWB=NO

– Specifying the following options together with FLAGSTD=(other than NO), while attempting to
assemble the customization macro, results in a nonzero return code:

- ADV=NO
- DBCS=YES
- DYNAM=NO
- LITCHAR=APOST
- NUM=YES
- NUMPROC=PFD
- QUALIFY=EXTEND
- SEQ=YES
- TRUNC=OPT or BIN
- VLR=COMPAT
- WORD=(other than NO or RWT)
- INVDATA=(other than NO)
- ZWB=NO

• FLAGSTD might produce events records in the Associated Data file for FIPS standard conformation
messages. Error messages are not guaranteed to be sequential with respect to source record numbers.

Chapter 2. Enterprise COBOL compiler options 31

FLAGSTD messages can be converted into diagnostic messages, or suppressed. For details, see
“MSGEXIT” on page 44.

HGPR
The HGPR option controls the compiler usage of the 64-bit registers provided by z/Architecture
processors.

Syntax

HGPR=

*

PRESERVE

NOPRESERVE

Default is: HGPR=PRESERVE

The Enterprise COBOL compiler uses the 64-bit width of the z/Architecture General Purpose Registers
(GPRs). HGPR stands for "High-halves of 64-bit GPRs", which means the use of native 64-bit instructions.

HGPR=PRESERVE
If you specify HGPR=PRESERVE, the compiler preserves the high halves of the 64-bit GPRs that a
program is using, by saving them in the prolog for the function and restoring them in the epilog. The
PRESERVE suboption is necessary only if the caller of the program is not Enterprise COBOL, Enterprise
PL/I, or z/OS XL C/C++ compiler-generated code.

HGPR=NOPRESERVE
If you specify HGPR=NOPRESERVE, the compiler omits preserving the high-halves of the 64-bit GPRs
that a program is using, which improves performance.

INEXIT
INEXIT designates a module to be called to obtain source statements instead of reading the SYSIN data
set.
Syntax

INEXIT=

* name

Default
No exit is specified. Equivalent to specifying the NOINEXIT suboption of the EXIT compiler option. If
INEXIT=* is coded without the name parameter, NOINEXIT cannot be overridden.

name
Identifies a module to be used with the EXIT compiler option. If the suboption for this user exit is
specified, the compiler loads the named module and calls it to obtain source statements instead of
reading the SYSIN data set. If the option is supplied, the SYSIN data set is not opened.

For more information about the EXIT compiler option, see EXIT compiler option in the Enterprise
COBOL Programming Guide.

INITCHECK
Use the INITCHECK option to have the compiler check for uninitialized data items and issue warning
messages when they are used without being initialized.

Syntax

INITCHECK=

*

NO

LAX

STRICT

32 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Default
INITCHECK=NO

NO
The compiler will not issue any warning messages for uninitialized data items.

LAX
The compiler will check for uninitialized data items and issue a warning message when a data item
is used without being initialized. However, if a data item is initialized on at least one logical path to a
statement, no warning message will be issued.

STRICT
The compiler will still check for uninitialized data items and issue a warning message when a data
item is used without being initialized. However, unlike INITCHECK=LAX, INITCHECK=STRICT will
issue a warning message about uninitialized data for a data item used in a statement unless the data
item is initialized on all logical paths to the statement.

Here is a sample program to illustrate the behavior differences between specifying INITCHECK=LAX
versus INITCHECK=STRICT. Y and Z represent some data items, with no value clauses:

 PROCEDURE DIVISION.
 IF Y > 5
 MOVE 2 TO Z
 END-IF
 DISPLAY Z

Z is initialized on one path to the DISPLAY statement but not the other, so if INITCHECK=LAX is
in effect, a warning message will be issued for Y only, while INITCHECK=STRICT will also issue a
warning message for Z.

Restrictions:

• The INITCHECK option analyzes data items in the WORKING-STORAGE SECTION and LOCAL-STORAGE
SECTION only. In particular, it does not analyze data items in the LINKAGE SECTION or FILE
SECTION.

• The INITCHECK analysis does not track external or global data items.
• The INITCHECK analysis does not track individual elements in tables independently. Instead, if one

element of a table is initialized, all corresponding elements of the table are considered to be initialized.
This applies to both fixed-length and variable-length tables.

• The INITCHECK analysis does not track the initialization of items if it happens through a pointer. For
example, if a pointer to an uninitialized data item is created by using ADDRESS-OF, and that data item is
initialized through that pointer, the INITCHECK analysis might also issue a warning message.

• For uninitialized data items being passed BY REFERENCE, no warning messages will be issued.
However, the INITCHECK analysis will warn about uninitialized data items being passed BY CONTENT
and BY VALUE.

• The INITCHECK option does not track individual bytes of reference-modified data items accurately.
Instead, if a data item is accessed by using a reference modification, this data item is considered to be
initialized.

• If a data item is in a group with other items that have had their address taken, for example, as the result
of being an SQL host variable, then that data item will also be considered to have its address taken, and
the set of all address taken data items is always considered to be set by any call to an external function.

Notes:

• All of the INITCHECK analysis occur at compile time only.
• The INITCHECK option has no effect on the behavior or performance of the program after it has been

compiled.
• Use of the INITCHECK option might increase compile time and memory consumption.
• The INITCHECK option reports and prints only the first uninitialized data item in a group. Subsequent

data items that are also uninitialized will not be printed.

Chapter 2. Enterprise COBOL compiler options 33

• INITCHECK is more accurate when used with OPT=1 or OPT=2, but it is also helpful when used with
OPT=0.

INITIAL
The INITIAL compiler option causes a program and all of its nested programs to behave as if the IS
INITIAL clause was specified on the PROGRAM-ID paragraph.

Syntax

INITIAL=

*

NO

YES

Default is: INITIAL=NO

YES
INITIAL=YES causes a program and all of its nested programs to behave as if the IS INITIAL
clause was specified on the PROGRAM-ID paragraph.

Note: INITIAL=YES and the IS INITIAL clause have no effect on data items that do not have
VALUE clauses.

NO
INITIAL=NO will have no effect on programs that already have IS INITIAL on the PROGRAM-ID
paragraph in the source.

INLINE
The INLINE option controls whether the inlining of procedures (paragraphs or sections) referenced by
PERFORM statements in the source program is allowed.

Syntax

INLINE=

*

YES

NO

Default is: INLINE=YES

YES

If you specify INLINE=YES, when OPTIMIZE(1) or OPTIMIZE(2) is in effect, the compiler can
inline procedures referenced by PERFORM statements in the source program. INLINE is a potential
performance-boosting option. Note that INLINE was always in effect in COBOL 5.

NO
If you specify INLINE=NO, the compiler is prevented from inlining1 procedures referenced by
PERFORM statements in the source program, regardless of the optimization level in effect.
INLINE=NO should only be set as the default if a particular reason has been identified to eliminate all
inlining of PERFORM statements in programs. This is rare and not recommended.

Note:

1. The word inlining here implies that the compiler might choose to replace the PERFORM of a
procedure (paragraph or section) with a copy of that procedure's code. By inserting the procedure
code at the location of the PERFORM, the compiler saves the overhead of branching logic to and from
the procedure.

34 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

INTDATE
INTDATE affects the starting date that is used for date intrinsic functions.
Syntax

INTDATE=

*

ANSI

LILIAN

Default
INTDATE=ANSI

ANSI
Uses the ANSI COBOL Standard starting date for integer date format dates used with date intrinsic
functions. Day 1 = Jan 1, 1601.

With INTDATE(ANSI), the date intrinsic functions return the same results as in COBOL/370 Release 1.

LILIAN
Uses the Language Environment Lilian starting date for integer date format dates used with date
intrinsic functions. Day 1 = Oct 15, 1582.

With INTDATE(LILIAN), the date intrinsic functions return results compatible with the Language
Environment date callable services. These results are different from those in COBOL/370 Release
1.

Note:

• When INTDATE(LILIAN) is in effect, CEECBLDY is not usable because you have no way to turn an ANSI
integer into a meaningful date using either intrinsic functions or callable services. If you code a CALL
literal statement with CEECBLDY as the target of the call with INTDATE(LILIAN) in effect, the compiler
diagnoses this and converts the call target to CEEDAYS.

• If you set your installation option to INTDATE(LILIAN), you should recompile all of your COBOL/370
Release 1 programs that use intrinsic functions to ensure that all of your code uses the lilian integer
date standard. This method is the safest, because you can store integer dates, pass them between
programs, and even pass them from PL/I to COBOL to C programs and have no problems.

INVDATA
The INVDATA option tells the compiler whether the data in USAGE DISPLAY and PACKED-DECIMAL data
items is valid, and if not, what the behavior of the compiler should be.

Because most users have valid data in their USAGE DISPLAY and USAGE PACKED-DECIMAL data items,
they should use NOINVDATA, even if they use NUMPROC=NOPFD. Even if you find that your programs
are processing invalid data at run time with the NUMCHECK compiler option, you should change your
programs to avoid processing invalid data and use NOINVDATA.

Note: The goal of the INVDATA option is to provide a behavior that is as compatible as possible with the
behavior of programs compiled with COBOL V4 or earlier versions in cases of invalid numeric data. When
discrepancies are found, this option will be updated in favor of making the behavior more closely match
the behavior of COBOL V4 or earlier versions.

When the INVDATA option is in effect, the compiler will avoid performing known optimizations that might
produce a different result than COBOL V4 or earlier versions when a zoned decimal or packed decimal
data item has invalid digits or an invalid sign code, or when a zoned decimal data item has invalid zone
bits.

The following table provides a quick reference on how to set the INVDATA and NUMPROC options when
migrating to COBOL V6.2 or later versions from earlier versions of COBOL, depending on the default value
of the NUMPROC option that was used in the earlier version of COBOL and whether or not you have invalid
data.

Chapter 2. Enterprise COBOL compiler options 35

Table 4. Setting INVDATA and NUMPROC options when migrating from earlier COBOL versions

COBOL versions Invalid data
present?

NUMPROC/ZONEDATA
used in COBOL V6.1 or
earlier versions

INVDATA and NUMPROC
settings in COBOL V6.2 or
later versions

Pre-COBOL V5 No NUMPROC=MIG INVDATA=(NO),NUMPROC=
NOPFD

Pre-COBOL V5 No NUMPROC=NOPFD INVDATA=(NO),NUMPROC=
NOPFD

Pre-COBOL V5 No NUMPROC=PFD INVDATA=(NO),NUMPROC=
PFD

Pre-COBOL V5 Yes NUMPROC=MIG INVDATA=(FORCENUMCMP,
NOCLEANSIGN),NUMPROC
=NOPFD

Pre-COBOL V5 Yes NUMPROC=NOPFD INVDATA=(NOFORCENUMC
MP,CLEANSIGN),NUMPROC
=NOPFD

Pre-COBOL V5 Yes NUMPROC=PFD INVDATA=(NOFORCENUMC
MP,CLEANSIGN),NUMPROC
=PFD

COBOL V5 or later No ZONEDATA=PFD INVDATA=(NO)

COBOL V5 or later Yes ZONEDATA=NOPFD INVDATA=(NOFORCENUMC
MP,CLEANSIGN)

COBOL V5 or later Yes ZONEDATA=MIG INVDATA=(FORCENUMCMP,
CLEANSIGN)1

1. INVDATA=(FORCENUMCMP,NOCLEANSIGN) is a closer representation of the pre-COBOL V5
NUMPROC=MIG behavior than INVDATA=(FORCENUMCMP,CLEANSIGN) when invalid data is present.
If you are not satisfied with the behavior of ZONEDATA=MIG in COBOL V5 or later versions when
invalid data is present, then consider using INVDATA=(FORCENUMCMP,NOCLEANSIGN) to more
closely mimic the pre-COBOL V5 NUMPROC=MIG behavior when invalid data is present.

Syntax

INVDATA=

*

(

NO
,

CLEANSIGN

NOCLEANSIGN

NOFORCENUMCMP

FORCENUMCMP

)

Default
INVDATA=(NO)
Suboptions defaults are:

• If INVDATA is specified and neither FORCENUMCMP nor NOFORCENUMCMP is specified, default is
NOFORCENUMCMP.

• If INVDATA is specified and neither CLEANSIGN nor NOCLEANSIGN is specified, default is
CLEANSIGN.

36 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

(NO)
When INVDATA=(NO) is in effect, the compiler assumes that all data in USAGE DISPLAY and PACKED-
DECIMAL data items is valid, and generates the most efficient code possible. For example, the
compiler might generate a string comparison to avoid numeric conversion.

(FORCENUMCMP | NOFORCENUMCMP)

When INVDATA=(FORCENUMCMP) is in effect, the compiler generates instructions to do comparisons
of zoned decimal data items that ignore the zone bits of each digit. For example, the zoned decimal
value is converted to packed-decimal with a PACK instruction before the comparison.

When INVDATA=(NOFORCENUMCMP) is in effect, the compiler generates instructions for numeric
comparisons or an alphanumeric comparison of zoned-decimal data in the same manner as COBOL V4
or earlier versions do when using NUMPROC=(NOPFD | PFD) with COBOL V4 or earlier versions:

• In the cases where COBOL V4 or earlier versions considered the zone bits, the compiler generates
an alphanumeric comparison which will also consider the zone bits of each digit in zoned decimal
data items. The zoned decimal value remains as zoned decimal.

• In the cases where COBOL V4 or earlier versions ignored the zone bits, the compiler generates
numeric comparisons that ignore the zone bits of each digit in zoned decimal data items. The
zoned-decimal value is converted to packed decimal with a PACK instruction before the comparison.

In order for the compiler to handle zone bits in the same way as COBOL V4 or earlier versions did
when generating comparisons of zoned-decimal data, the NUMPROC suboption used in COBOL V6
must match the NUMPROC suboption used in COBOL V4 or earlier versions:

• To get the COBOL V4 or earlier versions NUMPROC=(NOPFD) behavior in COBOL V6, use
INVDATA=(NOFORCENUMCMP) and NUMPROC=(NOPFD) in COBOL V6.

• To get the COBOL V4 or earlier versions NUMPROC=(PFD) behavior in COBOL V6, use
INVDATA=(NOFORCENUMCMP) and NUMPROC=(PFD) in COBOL V6.

Note: The sign code must be a valid sign code according to the NUMPROC compiler option setting. In
addition, the low-order byte must have a valid zone (x'F') for unsigned and signed with either SIGN IS
LEADING or SIGN IS SEPARATE.

(CLEANSIGN | NOCLEANSIGN)
CLEANSIGN is the default when INVDATA is specified and neither CLEANSIGN nor NOCLEANSIGN is
specified.
When the INVDATA=(CLEANSIGN) option is in effect, the compiler generates code to clean the sign
nibble of USAGE DISPLAY and USAGE PACKED-DECIMAL data items on input to compare, add,
subtract, multiply, and divide operations.

Note: CLEANSIGN does not apply to USAGE DISPLAY items defined with SIGN IS SEPARATE.

When the INVDATA=(NOCLEANSIGN) option is in effect, the compiler avoids generating code to clean
the sign nibble of USAGE DISPLAY and USAGE PACKED-DECIMAL data items on input to compare,
add, subtract, multiply, and divide operations, increasing the probability of a S0C7 abend when one of
the operands of the operation contains an invalid sign nibble.

Note: The INVDATA option affects the behavior of MOVE statements, comparisons, and computations for
USAGE DISPLAY or PACKED-DECIMAL data items that could contain invalid digits, an invalid sign code, or
invalid zone bits.

In the following example, you can see a data item with an invalid zone bit 4 in the zone bits in the middle
of data item VALUE1, forced in by REDEFINES:

77 VALUE0 PIC X(4) VALUE '00 0'. *> x'F0F040F0'
 77 VALUE1 REDEFINES VALUE0 PIC 9(4).
 PROCEDURE DIVISION.
 IF VALUE1 = ZERO
 DISPLAY 'INVDATA(FORCENUMCMP) is in effect ' VALUE1
 ELSE
 DISPLAY 'INVDATA(NOFORCENUMCMP) is in effect ' VALUE1
 END-IFCopy code

Chapter 2. Enterprise COBOL compiler options 37

In this example,

• With COBOL V4 or earlier versions, the test is true if the NUMPROC=(MIG) option is used, and false for
NUMPROC=(NOPFD | PFD).

• With COBOL V5 or later versions:

– When using INVDATA=(NO), the test is true at OPT=(0) and false at OPT=(1 | 2).
– When using INVDATA=(NOFORCENUMCMP), the test is false at any OPT setting.

In all, to ease your migration to COBOL V6:

• If your digits, sign codes, and zone bits are valid, use INVDATA=(NO), and if you used NUMPROC=PFD
or NUMPROC=NOPFD in COBOL V4 or earlier versions, then use the same NUMPROC setting when using
COBOL V6; if you used NUMPROC=(MIG) in COBOL V4 or earlier versions, then use NUMPROC=NOPFD
when using COBOL V6.

• If you have invalid digits, invalid sign codes, or invalid zone bits in your data, change your programs or
systems so that your programs do not have invalid data in numeric data items at run time.

When you have corrected your programs or systems, you can use the preferred INVDATA=(NO) option.
Only if you cannot contain this work and must continue to run with invalid data, consider the following
choices for INVDATA:

– If you used NUMPROC=(MIG) with COBOL V4 or earlier versions, use
INVDATA=(FORCENUMCMP,NOCLEANSIGN) and NUMPROC=(NOPFD) with COBOL V6.

– If you used NUMPROC=(NOPFD) with COBOL V4 or earlier versions, use
INVDATA=(NOFORCENUMCMP,CLEANSIGN) and NUMPROC=(NOPFD) with COBOL V6.

– If you used NUMPROC=(PFD) with COBOL V4 or earlier versions, use
INVDATA=(NOFORCENUMCMP,CLEANSIGN) and NUMPROC=(PFD) with COBOL V6.

Notes:

– If you completed migration from COBOL V4 or earlier versions to COBOL V5 or V6 in the past and
used the deprecated ZONEDATA=(MIG) option in COBOL V5 or V6 and are satisfied with the behavior,
use INVDATA=(FORCENUMCMP,CLEANSIGN) now instead of ZONEDATA=(MIG).

– It is not always possible to entirely match the behavior of the old compiler even with
these options when faced with clearly invalid data. For example, even for comparisons,
INVDATA=(NOFORCENUMCMP) does not give the same result in all cases as COBOL V4 does.

Performance consideration: INVDATA=(NO) gives better runtime performance than
INVDATA(NOFORCENUMCMP | FORCENUMCMP,NOCLEANSIGN | CLEANSIGN) does.
INVDATA(NOFORCENUMCMP | FORCENUMCMP,NOCLEANSIGN | CLEANSIGN) disables some of the
optimizations that NUMPROC=(PFD) can give.

related references
“NUMPROC” on page 50

LANGUAGE
LANGUAGE affects the language used for compiler output messages.
Syntax

LANGUAGE=

*

XX

Default
LANGUAGE=EN

XX
Specifies the language for compiler output messages. Entries for this parameter might be selected
from the following list.

38 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Table 5. Entries for the LANGUAGE compiler option

Entry Language

EN or ENGLISH Mixed case U.S. English

JA, JP, or JAPANESE Japanese

UE or UENGLISH Uppercase U.S. English

Notes:

• The LANGUAGE option name must consist of at least the first two identifying characters. Other
characters after the first two can be used; however, only the first two are used to determine the
language name.

• This compiler option does not affect the language in which runtime messages are displayed. For more
information about runtime options and messages, see the z/OS Language Environment Programming
Guide.

• Some printers use only uppercase and might not accept output in mixed case (LANGUAGE=ENGLISH).
• To specify the Japanese language option, the Japanese National Language Feature must be installed.
• To specify the English language option (mixed-case English), the U.S. English Language Feature must be

installed.
• If your installation provides a language other than those listed above, and you select it as your

installation's default, you must specify at least the first two characters of the language name. These
two characters must be alphanumeric.

• The selection of Japanese together with specification of the ADATA option might result in DBCS
characters being written to error identification records in the Associated Data file.

• To change to uppercase English or Japanese compiler messages, in addition to using the LANGUAGE
compiler option, you must also set the Language Environment runtime option NATLANG at compile time.
We recommend using CEEOPTS DD in the compile JCL.

For example, to change messages to Japanese, use LANGUAGE=JA and also specify the NATLANG LE
runtime option at compile time:

//CEEOPTS DD *
 NATLANG(JPN)
/*

LIBEXIT
LIBEXIT designates a module to be called to obtain COPY statements instead of reading the SYSLIB or
library-name data set.
Syntax

LIBEXIT=

* name

Default
No exit is specified. Equivalent to specifying the NOLIBEXIT suboption of the EXIT compiler option. If
LIBEXIT=* is coded without the name parameter, NOLIBEXIT cannot be overridden.

name
Identifies a module to be used with the EXIT compiler option. If the suboption for this user exit is
specified, the compiler loads the named module and calls it to obtain COPY statements instead of
reading the SYSLIB or library-name data set. If the option is supplied, the SYSLIB and library-name
data sets are not opened.

For more information about the EXIT compiler option, see EXIT compiler option in the Enterprise
COBOL Programming Guide.

Chapter 2. Enterprise COBOL compiler options 39

LINECNT
LINECNT affects the number of lines to be printed on each page of the compiler source listing.
Syntax

LINECNT=

*

60

integer

Default
LINECNT=60

integer
Specifies the number of lines to be printed on each page of the compiler source code listing, and it
must be an integer between 10 and 255, or 0. Three of the lines are used to generate headings. For
example, if you specify LINECNT=60, 57 lines of source code are printed on each page of the output
listing, and 3 lines are used for headings.

If you specify LINECNT=0, no page ejects are generated in the compilation listing.

The LINECNT installation option is equivalent to the LINECOUNT compiler option.

LIST
LIST affects whether an assembler-language expansion is produced in source listings.
Syntax

LIST=

*

NO

YES

Default
LIST=NO

YES
Produces a listing that includes:

• The assembler-language expansion of source code
• Constant area
• Program prolog areas (PPA1, PPA2, PPA3, PPA4)
• Time stamp, compiler version, and build level information
• Compiler options and program information
• Base locator table
• External symbols dictionary
• Initial heap storage maps
• Stack storage maps

NO
Suppresses this listing.

The LIST and OFFSET compiler options are mutually exclusive. Setting OFFSET=YES and LIST=YES results
in a nonzero return code and an error message during assembly of the customization macro.

40 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

LITCHAR
LITCHAR affects whether the QUOTE figurative constant represents quotation marks or apostrophes.
Syntax

LITCHAR=

*

QUOTE

APOST

Default
LITCHAR=QUOTE

APOST
Use APOST if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to represent one or more
apostrophe (') characters.

QUOTE
Use QUOTE if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to represent one or more
quotation mark (") characters. QUOTE conforms to the 85 COBOL Standard.

Note:

• Either quotation marks or apostrophes can be used as literal delimiters, regardless of whether the
APOST or QUOTE option is in effect.

• The delimiter character used as the opening delimiter for a literal must be used as the closing delimiter
for that literal.

LP
The LP compiler option affects whether a AMODE 31 (31-bit) or AMODE 64 (64-bit) program should be
generated with the related language features enabled when compiling COBOL programs.

Syntax

LP=

32

64

You can specify the LP option in the ways that you specify other compiler options. However, if you specify
the option in a CBL (PROCESS) statement, you can only specify the LP option for the first program. You
cannot change the value of the option for subsequent programs in the batch.

Default
LP=32

32
Indicates that an AMODE 31 (31-bit) program should be generated with the related language features
enabled.

64
Indicates that an AMODE 64 (64-bit) program should be generated with the related language features
enabled.

Runtime consideration: With current service applied, Language Environment supports mixing AMODE
64 and AMODE 31 programs in the same application. However, only dynamic call supports calling a
subprogram with different AMODE from the caller, and you need to specify the COBOL runtime option
AMODE3164 when running mixed AMODE COBOL programs. For static CALLs, the binder will issue a
message if it encounters mixing addressing modes during external name resolution. For details, see
Dynamic call between AMODE 31 and AMODE 64 programs in the Enterprise COBOL Programming Guide.

When using the LP=64 compiler option, the compilation process includes a component that runs in
POSIX(ON) mode. This implies that there must be an OMVS Segment established in RACF® (or equivalent
in RACF alternatives) for each user executing the compiler with this option.

Chapter 2. Enterprise COBOL compiler options 41

Restrictions for programs using LP=64: Programs compiled using the LP=64 compiler option cannot
contain XML GENERATE or XML PARSE statements, JSON GENERATE or JSON PARSE statements, Object-
oriented COBOL statements, ALTER statements, GO TO. statements, and DISPLAY ... UPON SYSPUNCH
statements. In addition, AMODE 64 programs cannot run in CICS or IMS.

Note: Under LP(64), some compiler options are not applicable. For more information, see Using compiler
options to compile AMODE 64 programs in the Enterprise COBOL Programming Guide.

MAP
The MAP option affects whether map information about the DATA DIVISION items and all implicitly
declared items is shown in the listing. The option also controls whether hexadecimal or decimal offsets
are shown for MAP output in the listing.
Syntax

MAP=

*

NO

HEX

DEC

Default
MAP=NO

HEX or DEC
Maps items that are declared in the DATA DIVISION. Map output includes:

• DATA DIVISION map
• Nested program structure map, and program attributes
• Size of the program's WORKING-STORAGE and LOCAL-STORAGE and its location in the object code if

the program is compiled with the NORENT option

If you specify MAP=HEX, data item offsets within groups will be in hexadecimal notation.
If you specify MAP=DEC, data item offsets within groups will be in decimal notation.

NO
Mapping is not performed.

MAXPCF
Use the MAXPCF option to specify a maximum program complexity factor value. The program complexity
factor (PCF) is computed by the compiler and the computed value is in the listing file. If the PCF of your
program exceeds the maximum value, the compiler will automatically reduce the optimization level to
speed up the compilation and use less storage. Therefore, when you compile a suite of programs, you do
not have to specify an OPTIMIZE option value for each program.

Syntax
MAXPCF=

*

 n

Default
MAXPCF=100000

n
Must be an integer of 0 - 999999.

The aspects of the program taken into consideration when computing the complexity factor include:

• The number of COBOL statements in the PROCEDURE DIVISION, including generated statements from
the CICS, SQL or SQLIMS options, and the expansion of COPY and REPLACE statements

• Initialization operations for WORKING-STORAGE or LOCAL-STORAGE data items with value clauses

42 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

• Operations for variable-length groups or subgroups in the DATA DIVISION, which compute their size at
run time

Note: PCF is not a metric to measure how complex a program is. It is merely a count of COBOL items that
can cause problems for optimization when there are a lot of them. To measure program complexity, you
should use something like the Metrics feature provided by IBM Developer for z/OS.

For large and complex programs, you can use the MAXPCF option to set a threshold on the program
complexity that the compiler attempts to optimize. Lower the MAXPCF value to reduce the optimization
level, hence the compiler needs less memory and compilation time. Raise the MAXPCF value to attempt to
optimize the programs at the cost of longer compilation time.

If you specify MAXPCF=0, no limit is enforced on the complexity of the program, and the MAXPCF option
has no effect.

If you specify MAXPCF=n and n is not zero, when the program complexity factor exceeds n, any
specification of OPTIMIZE(1) or OPTIMIZE(2) is reset to OPTIMIZE(0), and a warning message is
generated.

If the COBOL source file contains a sequence of source programs (a batch compile), the MAXPCF limit is
applied on a per program basis.

Notes:

• If the OPT=1 or OPT=2 option is set at installation time as a fixed, nonoverridable option, then
MAXPCF=n with a nonzero n is an option conflict. In this case, the OPTIMIZE option takes precedence
and the MAXPCF=0 option is forced on.

• If you attempt to optimize a program larger than the default threshold by raising the value of MAXPCF to
n where n is greater than the default, or by specifying MAXPCF(0), the compiler might take excessive
time to compile or fail to compile because of insufficient memory.

Related references
“OPTIMIZE” on page 51

MDECK
The MDECK compiler option specifies that a copy of the updated input source after library processing
(that is, the result of COPY, BASIS, REPLACE, EXEC SQL INCLUDE, EXEC SQLIMS INCLUDE, and
conditional compilation directive statements) is written to a file.
Syntax

MDECK=

*

NO

COMPILE

NOCOMPILE

Default
MDECK=NO

COMPILE
Compilation continues normally after library processing and generation of the MDECK output file.

NOCOMPILE
Compilation ends after library processing is completed and the expanded source program file is
written.

NO
An MDECK output file is not produced.

Chapter 2. Enterprise COBOL compiler options 43

https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.1.0/com.ibm.rsar.analysis.metrics.cobol.doc/topics/t_cobol_metrics.html?sc=SSQ2R2_latest

MSGEXIT
MSGEXIT designates a module to be called to enable customization of compiler messages.
Syntax

MSGEXIT=

* name

Default
No exit is specified. Equivalent to specifying the NOMSGEXIT suboption of the EXIT compiler option. If
MSGEXIT=* is coded without the name parameter, NOMSGEXIT cannot be overridden.

name
Identifies a module to be used with the EXIT compiler option. If the suboption for this user exit is
specified, the compiler loads the named module and calls it to enable customization of compiler
messages. The severity of messages can be changed, messages can be suppressed, and FIPS
messages resulting from the FLAGSTD compiler option can be converted into diagnostic messages.

For more information about the EXIT compiler option, see EXIT compiler option in the Enterprise
COBOL Programming Guide.

NAME
NAME affects whether a program management binder NAME statement is appended to each object
module and whether an ALIAS statement is created for each ENTRY statement.
Syntax

NAME=

*

NO

NOALIAS

ALIAS

Default
NAME=NO

ALIAS
Creates a program management binder ALIAS statement for each ENTRY statement in the program.
The ALIAS statement is inserted preceding the NAME statement corresponding to the PROGRAM-ID.

NOALIAS
Appends a program management binder NAME statement (NAME modname(R)) to each object
module created in a batch compilation. The module name (modname) is derived from the PROGRAM-
ID according to the rules for forming external module names.

NO
Does not append program management binder NAME statements.

The NAME option lets you create multiple modules in a program library with a single batch compilation,
which can be useful for dynamic calls.

NSYMBOL
NSYMBOL controls the interpretation of the N symbols used in PICTURE clauses, indicating whether
national or DBCS processing is assumed.
Syntax

NSYMBOL=

*

NATIONAL

DBCS

44 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Default
NSYMBOL=NATIONAL

DBCS
Use DBCS when data items are defined with the PICTURE clause consisting only of the PICTURE
symbol N and without the USAGE clause. Such data items are treated as if the USAGE DISPLAY-1
clause were specified. Literals of the form N". . ." or N’. . .’ are treated as DBCS literals.

NATIONAL
Use NATIONAL when data items are defined with the PICTURE clause consisting only of the PICTURE
symbol N and without the USAGE clause. Such data items are treated as if the USAGE NATIONAL
clause were specified. Literals of the form N". . ." or N’. . .’ are treated as national literals.

Note:

• The NSYMBOL(DBCS) option is compatible with previous releases of IBM COBOL. The
NSYMBOL(NATIONAL) option handles the N symbol consistently with the 2002 COBOL Standard.

• NSYMBOL(NATIONAL) forces the DBCS option.

NUM
NUM affects whether source-program line numbers are used in error messages and procedure maps.
Syntax

NUM=

*

NO

YES

Default
NUM=NO

YES
Uses the line numbers from the source program rather than compiler-generated line numbers in error
messages and procedure maps.

NO
Uses the compiler-generated line numbers in error messages and procedure maps.

If COBOL programmers use COPY statements and NUM=YES is in effect, they must ensure that the source
program line numbers and the COPY member line numbers are coordinated.

NUMCHECK
The NUMCHECK compiler option tells the compiler whether to generate extra code to validate data items
when they are used as sending data items. For zoned decimal (numeric USAGE DISPLAY) and packed
decimal (COMP-3) data items, the compiler generates implicit numeric class tests for each sending field.
For alphanumeric senders whose contents are being moved to a numeric receiver, the compiler treats the
sender as a numeric integer so NUMCHECK generates an implicit numeric class test for each alphanumeric
sender. For binary data items, the compiler generates SIZE ERROR checking to see whether the data
item has more digits than its PICTURE clause allows.

The NUMCHECK option is updated to remove redundant checks for invalid data, thus improving runtime
performance. There may be fewer runtime messages than before.

The analysis done to remove redundant checks is more involved at OPT(1|2) than at OPT(0). OPT(0)
does a simpler form of the analysis to keep compilation time as low as possible. There may be fewer
messages at higher OPT levels.

When the compiler is able to determine at compile time that a check will always find invalid data, a
compile-time message is produced and the runtime check is removed. (See MSG|ABD below.)

Chapter 2. Enterprise COBOL compiler options 45

Syntax
NUMCHECK=

*

(

NO
,

ZON

(

,

ALPHNUM

NOALPHNUM

LAX

STRICT

)

NOZON

PAC

NOPAC

BIN

(TRUNCBIN

NOTRUNCBIN

)

NOBIN

MSG

ABD

)

Default
NUMCHECK=(NO)

Suboption defaults are:

• If no suboption is specified, defaults are
NUMCHECK=(ZON(ALPHNUM,STRICT),PAC,BIN(TRUNCBIN),MSG).

• If no datatype suboption is specified, default datatype suboptions are ZON(ALPHNUM,STRICT),
PAC, and BIN(TRUNCBIN). For example, NUMCHECK=(ABD) has the same effect as
NUMCHECK=(ZON(ALPHNUM,STRICT),PAC,BIN(TRUNCBIN),ABD).

• If only one datatype suboption is specified, defaults are NOZON, NOPAC,
NOBIN, and MSG. For example, NUMCHECK=(BIN) has the same effect as
NUMCHECK=(NOZON,NOPAC,BIN(TRUNCBIN),MSG).

• If all datatype suboptions are specified with NO, then the listing will show NONUMCHECK. For
example, NUMCHECK=(NOZON,NOPAC,NOBIN) has the same effect as NUMCHECK=NO.

ZON(ALPHNUM|NOALPHNUM,LAX|STRICT) | NOZON
Specifying ZON(ALPHNUM) causes the compiler to generate code for an implicit numeric class test for
zoned decimal (numeric USAGE DISPLAY) data items that are used as sending data items in COBOL
statements.
Specifying ZON(NOALPHNUM) causes the compiler to generate code for an implicit numeric class
test for zoned decimal (numeric USAGE DISPLAY) data items that are used as sending data items
in COBOL statements, except when they are used in a comparison with an alphanumeric data item,
alphanumeric literal or alphanumeric figurative constant.
Receivers are not checked, unless they are both a sender and a receiver, such as data item B in the
following sample statements:

46 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

ADD A TO B

DIVIDE A INTO B

COMPUTE B = A + B

INITIALIZE B REPLACING ALPHANUMERIC BY B

This checking is done before the data is used in each statement:

• If the data is NOT NUMERIC, either a warning message for NUMCHECK=(ZON,MSG) or a terminating
message for NUMCHECK=(ZON,ABD) is issued.

• If the data is NUMERIC, the external behavior of the statement is the same as NUMCHECK=(NOZON),
other than being slower.

Specifying ZON(LAX) causes the compiler to be more tolerant of invalid data in a zoned decimal data
item. Three cases are considered by the compiler as follows:

• An unsigned zoned decimal data item redefines a signed trailing overpunch zoned decimal data
item such that the last byte of the unsigned item overlaps the last byte of the signed item. In this
case, the unsigned redefining item is treated as a signed zoned decimal item for the purposes of the
NUMCHECK checking.

Notes:

– The signed zoned decimal item that is redefined must be a level-01 or level-77 item. The
unsigned zoned decimal item can be a level-01 or level-77 item or can be a subordinate item
in a group.

– The unsigned zoned decimal item does not need to overlap the entire signed zoned decimal item.
It is only necessary for the last byte of each item to overlap. For example:

01 NUM1 PIC S9(8).
01 NUM2 REDEFINES NUM1.
 03 NUM2-PART1 PIC 9(4).
 03 NUM2-PART2 PIC 9(2).
 03 NUM2-PART3 PIC 9(2).

In this case, data item NUM2-PART3 will be treated by NUMCHECK as a signed zoned decimal data
item because its last byte overlaps the last byte of NUM1, which is a signed trailing overpunch
zoned decimal item. Thus, the following values of NUM2-PART3 are all considered valid:

- x'F1F2F3F4F5F6F7F8'
- x'F1F2F3F4F5F6F7C8'
- x'F1F2F3F4F5F6F7D8'

.
• A zoned decimal data item redefines a numeric-edited data item that may contain leading spaces,

as indicated by the Z symbol in the numeric-edited item’s PICTURE string, and the leading bytes of
the zoned decimal data item overlap some or all of the leading bytes of the numeric-edited item. In
this case, NUMCHECK will tolerate spaces in the leading bytes of the zoned decimal data item that
overlap those bytes of the numeric-edited item that permit spaces.

Notes:

– The numeric-edited item that is redefined must be a level-01 or level-77 item. The zoned decimal
item can be a level-01 or level-77 item or can be a subordinate item in a group.

– If the zoned decimal item is signed, it must be signed trailing overpunch.
– The first byte of the zoned decimal item must overlap the first byte of the numeric-edited item to

be considered eligible for this treatment, but the zoned decimal item does not need to overlap the
entire numeric-edited item. For example:

Chapter 2. Enterprise COBOL compiler options 47

01 NUMED PIC ZZ99.99.
01 NUM REDEFINES NUMED.
 03 INTVAL PIC 9(4).
 03 FILLER PIC X.
 03 DECVAL PIC 9(2).

In this case, NUMCHECK tolerates spaces in the first two bytes of INTVAL because it overlaps the
first two bytes of NUMED which are defined with the Z symbol in its PICTURE string. Thus, the
following values of INTVAL are all considered valid:

- x'F1F2F3F4'
- x'40F1F2F3'
- x'4040F1F2'

Note that for performance reasons, mixes of spaces and non-spaces are tolerated in the leading
bytes, thus x’F140F1F2’ is also considered valid.

• A zoned decimal data item is moved to another zoned decimal data item. In this case, NUMCHECK
will not check the sender of the move. However, if the sender is subsequently used in a numeric
context, it will be checked.

If ZON(STRICT) is specified, NUMCHECK does not consider any data items that a zoned decimal data
item might redefine, and strict checking of the zoned decimal data is performed as usual.

Note: The ZON(LAXREDEF|STRICTREDEF) option is deprecated but is tolerated for compatibility,
and it is replaced by the ZON(LAX|STRICT) option.

PAC | NOPAC

Specifying PAC causes the compiler to generate code for an implicit numeric class test for packed
decimal (COMP-3) data items that are used as sending data items in COBOL statements. For packed
decimal data items that have an even number of digits, the unused bits are checked for ones.

Restriction: For CALL statements, NUMCHECK=(ZON) and NUMCHECK=(PAC) check BY CONTENT
data items that are zoned decimal or packed decimal, but they do not check BY REFERENCE
parameters. (Neither zoned decimal nor packed decimal data items can be specified in a BY VALUE
phrase.)

BIN(TRUNCBIN|NOTRUNCBIN) | NOBIN
Specifying BIN causes the compiler to generate code similar to ON SIZE ERROR to test if binary data
items contents are bigger than the PICTURE clause. This extra code will be generated only for binary
data items that are used as sending data items, and COMP-5 data items will not get this ON SIZE
ERROR code generated.

When BIN(TRUNCBIN) is in effect, the checking code is generated for binary data items, even when
the TRUNC=(BIN) compiler option is in effect. Note that BIN(TRUNCBIN) is the default when no
suboption for BIN is specified.

When BIN(NOTRUNCBIN) is in effect, the checking code is not generated for binary items when the
TRUNC=(BIN) compiler option is in effect.

Note: BIN(NOTRUNCBIN) is useful for users who want to make NUMCHECK=(..., BIN, ...) a
fixed option in their default options, but do not want the checking to be done for modules that are
compiled with the TRUNC=(BIN) option in effect.

MSG | ABD
Determines whether the message issued for invalid data is a warning level message to continue
processing or a terminating level message to cause an abend:

• If MSG is in effect, a runtime warning message with the line number, data item name, data item
content, and program name is issued. Also, the affected statements will still be executed.

• If ABD is in effect, a terminating message is issued that causes an abend.

48 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

When the compiler is able to determine at compile time that a check will always find invalid data, a
compile-time error-level message is produced and the check is removed regardless of whether MSG or
ABD is in effect.

NO
No code is generated to validate data items when they are used as sending data items.

Performance considerations: NUMCHECK is much slower than NUMCHECK=NO, depending on how many
zoned decimal (numeric USAGE DISPLAY) data items, packed decimal (COMP-3) data items, and binary
data items are used in a COBOL program.
Since COBOL V6.2 with service applied, performance of NUMCHECK has been improved. However,
performance is still best when specifying NONUMCHECK, and will be better at a higher OPT level.

ZONECHECK is deprecated and can no longer be specified in IGYCDOPT. NUMCHECK=(ZON(ALPHNUM))
gives the same results as ZONECHECK used to.

Related references
“NUMPROC” on page 50
“TRUNC” on page 68
“ZONECHECK” on page 74
“INVDATA” on page 35

NUMCLS
NUMCLS, in conjunction with NUMPROC, affects the numeric signs that the compiler treats as valid in
numeric class tests.

NUMCLS specifies the sign representations that are recognized as valid by the numeric class test for data
items that are defined with all of the following conditions:

• As signed (with an "S" in the PICTURE clause)
• Using DISPLAY or COMPUTATIONAL-3 (packed-decimal)
• No SEPARATE phrase on any SIGN clause

Syntax

NUMCLS=

PRIM

ALT

Default
NUMCLS=PRIM

ALT
Processing with ALT accepts hexadecimal A through F as valid.

PRIM
Processing with PRIM accepts hexadecimal C, D, and F as valid.

Note:

• The numeric class test is affected by how the NUMPROC and the NUMCLS options are specified.
• The NUMCLS option is effective only for NUMPROC=NOPFD. NUMPROC=PFD specifies more strict rules

for valid sign configuration.

Chapter 2. Enterprise COBOL compiler options 49

NUMPROC
NUMPROC affects the treatment and processing of signs in internal decimal and zoned decimal data.
Syntax

NUMPROC=

*

NOPFD

PFD

Default
NUMPROC=NOPFD

NOPFD
Repairs signs on input. After repair is performed, the signs meet the criteria for NUMPROC=PFD.

PFD
Optimizes the generated code, especially when a non-zero OPTIMIZE level (OPT=1 or OPT=2) is
specified. No explicit sign repair is performed. Note that NUMPROC=PFD has stringent criteria to
produce correct results. To use NUMPROC=PFD:

• The sign position of unsigned numeric items must be X'F'.
• The sign position of signed numeric items must be either X'C' if positive or zero, or must be X'D' if

negative.
• The sign position of separately signed numeric items must be either '+' if positive or zero, or '-' if

otherwise.

Elementary MOVE and arithmetic statements in Enterprise COBOL always generate results with these
preferred signs; however, group MOVEs and redefinitions might produce nonconforming results. The
numeric class test can be used for verification. With NUMPROC=PFD, a numeric item fails the numeric
class test if the signs do not meet the preferred sign criteria.

Performance consideration: Using NUMPROC=PFD generates significantly more efficient code for
numeric comparisons. For most references to COMP-3 and DISPLAY numeric data items, using
NUMPROC=NOPFD generates extra code because of sign "fix-up" processing. This extra code might
also inhibit some other types of optimizations. Before setting this option, consult with your application
programmers to determine the effect on the application program's output.

Both the NUMPROC and NUMCLS options affect the numeric class test. With NUMPROC=NOPFD, the
results of the numeric class test are controlled by how NUMCLS is set. When NUMPROC=PFD, a data item
must meet the preferred sign criteria to be considered numeric.

OBJECT
OBJECT affects whether the generated object code is written to a file.
Syntax

OBJECT=

*

YES

NO

Default
OBJECT=YES

YES
Places the generated object code in a file, defined by the SYSLIN DD statement, to be used as input to
the binder.

NO
Places no object code in SYSLIN.

The OBJECT=NO option conflicts with all values for TEST other than NO.

50 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

OFFSET
OFFSET affects whether a condensed PROCEDURE DIVISION listing is produced.
Syntax

OFFSET=

*

NO

YES

Default
OFFSET=NO

YES
Produces a condensed PROCEDURE DIVISION listing, which will contain line numbers, statement
references, and the location of each block of instructions generated for a statement. The optimizer
might inline paragraphs, move code around, or indeed place it after the body of the program if little
used, such as the error message formatting code. As a result, there might be more than one entry in
the OFFSET table of a given statement.

These items will also be written to the output listing:

• Constant area
• Program prolog areas (PPA1, PPA2, PPA3, PPA4)
• Time stamp and compiler version information
• Compiler options and program information
• Base locator table
• External symbols dictionary
• Initial heap storage maps
• Stack storage maps

NO
Does not condense the listing or produce the items listed above.

The LIST and OFFSET compiler options are mutually exclusive. Setting OFFSET=YES and LIST=YES results
in a nonzero return code when you attempt to assemble the customization macro. For more information
about conflict resolution, see “Conflicting compiler options” on page 11.

OPTIMIZE
OPTIMIZE affects the level of optimization that is made to object code, and can result in performance
improvements.
Syntax

OPT=

*

0

1

2

Default
OPT=0

0
Specifies limited optimizations, which result in the shortest compilation time. When the TEST option is
specified, full debug capabilities are available.

1
Specifies optimizations that improve application runtime performance. Optimizations at this level
include basic inlining, strength reduction, simplification of complex operations into equivalent simpler
operations, removal of some unreachable code and block rearrangement. Also, OPT=1 includes some

Chapter 2. Enterprise COBOL compiler options 51

intrablock optimizations such as common subexpression elimination and value propagation. When the
TEST option is specified, most debug capabilities are available.

2
Specifies further optimizations, which include more aggressive simplifications and instruction
scheduling. Also, some interblock optimizations such as global value propagation and loop invariant
code motion are included. When the TEST option is specified, some debug capabilities are available.

Performance consideration: Using OPT=1 or OPT=2 generally results in more efficient runtime code.

Note:

• The OPTIMIZE compiler option is fully supported for programs that use object-oriented syntax for Java
interoperability.

• Optimization is set to 0 if an S-level error or U-level error occurs, or if the Program Complexity Factor
exceeds the MAXPCF integer specified.

For further details, see OPTIMIZE in the Enterprise COBOL Programming Guide.

OUTDD
OUTDD specifies the ddname to which DISPLAY output should be directed.
Syntax

OUTDD=

*

SYSOUT

ddname

Default
OUTDD=SYSOUT

ddname
Specifies the ddname of the file used for runtime DISPLAY output.

Change the default for this option if, at run time, you expect there could be a conflict with another product
that requires SYSOUT as a ddname.

To understand how OUTDD interacts with the MSGFILE runtime option, see the description of MSGFILE in
the z/OS Language Environment Programming Reference.

PARMCHECK
The PARMCHECK option tells the compiler to generate an extra data item following the last item in
WORKING-STORAGE. This buffer data item is then used at run time to check whether a called subprogram
corrupted data beyond the end of WORKING-STORAGE.

When a calling program is compiled with PARMCHECK, the compiler generates a buffer following the last
data item in the WORKING-STORAGE section. At run time, before each call, the buffer is set to ALL x'AA'.
After each call, the buffer is checked to see whether it was changed. The PARMCHECK option can help with
your migration from COBOL V4 and earlier compilers to COBOL V6 and later compilers, and can also be
used to clean up and check for good programming practices.

Syntax
PARMCHECK=

*

(NO

MSG

ABD

,n

)

Default
PARMCHECK=(NO)

52 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

MSG | ABD

Determines whether the message issued for subprogram corruption of data is a warning level
message to continue processing or a terminating level message to cause an abend:

• If MSG is in effect, a runtime warning message with the name of the parameter, the line number of
the CALL statement, and the program name is issued. Also, this check is done after the affected
CALL statement is executed.

• If ABD is in effect, a similar message is issued, but with a terminating level that causes an abend.

n
The size in bytes of the buffer to be added after the last item in WORKING-STORAGE. Must be an
integer in the range of 1 to 9999.

NO
No buffer data item is generated following the last item in WORKING-STORAGE.

Performance considerations: PARMCHECK will cause the compiler to generate slower code for programs
with CALL statements. NOPARMCHECK should be in effect for good performance.

Related references
CALL statement (Enterprise COBOL Language Reference)

PGMNAME
PGMNAME controls the handling of program-names and entry-point names.
Syntax

PGMNAME=

*

COMPAT

LONGMIXED

LONGUPPER

Default
PGMNAME=COMPAT

COMPAT
Program names are processed in a manner compatible with COBOL/370 Release 1 and VS COBOL II.

LONGMIXED
Program names are processed as is, without truncation, translation, or folding to uppercase.

LONGUPPER
Program names are folded to uppercase by the compiler but otherwise are processed as is, without
truncation or translation.

The PGMNAME option controls the handling of names used in the following contexts:

• Program names defined in the PROGRAM-ID paragraph
• Program entry-point names in the ENTRY statement
• Program-name references in:

– CALL statements that reference nested programs, statically linked programs, or DLLs
– SET procedure-pointer or function-pointer statements that reference statically linked programs or

DLLs
– CANCEL statements that reference nested programs

For further details, see PGMNAME in the Enterprise COBOL Programming Guide.

Chapter 2. Enterprise COBOL compiler options 53

PRTEXIT
PRTEXIT designates a module to be called instead of output being written to the SYSPRINT data set.
Syntax

PRTEXIT=

* name

Default
No exit is specified. Equivalent to specifying the NOPRTEXIT suboption of the EXIT compiler option. If
PRTEXIT=* is coded without the name parameter, NOPRTEXIT cannot be overridden.

name
Identifies a module to be used with the EXIT compiler option. When the suboption for this user exit is
specified, the compiler loads the named module and calls it instead of writing to the SYSPRINT data
set. When the option is supplied, the SYSPRINT data set is not opened.

For more information about the EXIT compiler option, see EXIT compiler option in the Enterprise
COBOL Programming Guide.

QUALIFY
QUALIFY affects qualification rules and controls whether to extend qualification rules so that some data
items that cannot be referenced under COBOL Standard rules can be referenced.

Syntax

QUALIFY=

*

COMPAT

EXTEND

Default
QUALIFY=COMPAT

COMPAT
If QUALIFY=COMPAT is in effect, the behavior will be the same as in previous COBOL compilers.
A reference must be unique even if there is only one data item with exactly that complete set of
qualifiers.

EXTEND
If QUALIFY=EXTEND is in effect, qualification rules are extended so that some references that are not
unique by COBOL standard rules can be unique. If every level in the containing hierarchy of a group of
names is qualified, the set of qualifiers is called a complete set of qualifiers. If there is only one data
item with a specific complete set of qualifiers, the reference resolves to that data item, even if the
same set of qualifiers could match with another reference as an incomplete set of qualifiers.

Example

01 A.
 02 B.
 03 C PIC X.
 02 C PIC X.
.
.
.
Move space to C of A *> Refers to 02 level C (unique only with QUALIFY(EXTEND))
Move space to C of B of A *> Refers to 03 level C (unique by COBOL standard rules)
Move space to C of B *> Refers to 03 level C (unique by COBOL standard rules)

54 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

RENT
RENT affects whether generated object code is reentrant.
Syntax

RENT=

*

YES

NO

Default
RENT=YES

YES
Indicates that generated object code is to be reentrant. Using RENT=YES enables the program to be
placed in shared storage for running above the 16 MB line. However, this option causes the compiler
to generate additional code to ensure that the application program is reentrant.

NO
Indicates that generated object code is not to be reentrant.

Note:

• Compile programs with RENT if they will be run in virtual storage addresses above 16 MB.
• Execution of nonreentrant programs above 16 MB is not supported. Programs compiled with NORENT

must be RMODE 24.
• The RENT compiler option is required for programs that are run under CICS.
• The LP(64) compiler option implies RENT. If the user explicitly specifies NORENT, an informational

message is issued and the setting is ignored.
• The RMODE assigned to a program depends on the RENT|NORENT and RMODE compiler options. Valid

combinations are shown in the following table.

Table 6. Effect of RENT and RMODE on residency mode

RENT|NORENT
setting

RMODE
setting

Residency
mode assigned

RENT AUTO RMODE ANY

RENT ANY RMODE ANY

RENT 24 RMODE 24

NORENT AUTO RMODE 24

NORENT ANY Compiler option conflict

NORENT 24 RMODE 24

• If the THREAD compiler option is specified, the RENT compiler option must also be specified. If
THREAD and NORENT are specified at the same level of precedence, the RENT option is forced on.

For further details, see RENT in the Enterprise COBOL Programming Guide.

Chapter 2. Enterprise COBOL compiler options 55

RMODE
RMODE affects the residency mode of generated object programs.
Syntax

RMODE=

*

AUTO

24

ANY

Default
RMODE=AUTO

24
Specifies that a program will have RMODE 24 whether NORENT or RENT is specified.

ANY
Specifies that a program will have RMODE ANY if RENT is specified, and will receive an error if
NORENT is specified.

AUTO
Specifies that a program will have RMODE 24 if NORENT is specified, and RMODE ANY if RENT is
specified.

Note:

• Enterprise COBOL NORENT programs that pass data to programs running in AMODE 24 must be either
compiled with the RMODE(24) option or link-edited with RMODE 24. The data areas for NORENT
programs will be above the 16 MB line or below the 16 MB line depending on the RMODE of the
program, even if DATA(24) has been specified. DATA(24) applies to programs compiled with the RENT
option only.

• Programs compiled with Enterprise COBOL always have AMODE ANY. The RMODE assigned to a
program depends on the RMODE and RENT|NORENT compiler options. Valid combinations are shown in
the following table.

Table 7. Effect of RMODE and RENT | NORENT on residency mode

RMODE
setting

RENT|NORENT
setting

Residency
mode assigned

AUTO RENT RMODE ANY

AUTO NORENT RMODE 24

ANY RENT RMODE ANY

ANY NORENT Not applicable. A compiler error
is issued.

24 RENT RMODE 24

24 NORENT RMODE 24

• The LP(64) compiler option implies RMODE(ANY). If the user explicitly specifies RMODE(24), an
informational message issued and the setting is ignored.

56 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

RULES
You can use the RULES option to request information about your program from the compiler to improve
the program by flagging certain types of source code at compile time.
Syntax

RULES= (

NO
,

ENDP

NOENDP

EVENP

NOEVENP

LXPRF

NOLXPRF

SLCKB

NOSLCKB

OOM

NOOOM

UNREF

NOUNRA

NOUNRS

LXRDF

NOLXRDF

)

Default
RULES = (NO)
Has the same effect as RULES=(ENDP,EVENP,LXPRF,SLCKB,OOM,UNREF,LXRDF).

You can specify the following suboptions for RULES other than default ones:

(NOENDP)
Causes the compiler to issue warning messages when the scope of a conditional statement is
terminated by a period instead of an explicit scope terminator END-*.

(NOEVENP)
Causes the compiler to issue warning messages for any USAGE PACKED-DECIMAL (COMP-3) data
items that have an even number of digits because those data items whose unused bits are not zero
can lead to an unexpected program behavior.

Notes:

• RULES=(NOEVENP) helps you identify USAGE PACKED-DECIMAL (COMP-3) data items that have
unused extra space reserved for them. However, it is not necessary to change those data items to
have an odd number of digits, it is only a slightly better way of programming.

• The compiler does not issue messages for even-digit PACKED-DECIMAL data items if the name
starts with DFH, DSN, EYU, or SQL. That is, data items generated for/by CICS and Db2.

(NOLXPRF)
Causes the compiler to issue warning messages for usage of inefficient COBOL features. These
features might include USAGE DISPLAY numeric data items in arithmetic statements, large amounts
of space padding in MOVE statements, inefficient compiler options, and other cases.

Chapter 2. Enterprise COBOL compiler options 57

(NOSLCKB)
Causes the compiler to issue warning messages for any SYNCHRONIZED data items that cause the
compiler to add slack bytes, either slack bytes within records or slack bytes between records. Each
data item that causes slack bytes to be added gets a compiler diagnostic.

(NOOOM)
Causes the compiler to issue warning messages for any OCCURS DEPENDING ON clauses that are
specified without integer-1 (the minimum number of occurrences).

(NOUNRA)
When NOUNRA is specified, all level-01 and level-77 data items in the FILE SECTION, WORKING-
STORAGE SECTION, LOCAL-STORAGE SECTION, and LINKAGE SECTION that are unreferenced,
including no subordinate items referenced when the item is a group, are reported, regardless of
whether the definition of the data item appears directly in the user source program or was included in
the program from a copy member.

(NOUNRS)
When NOUNRS is specified, all level-01 and level-77 data items in the FILE SECTION, WORKING-
STORAGE SECTION, LOCAL-STORAGE SECTION, and LINKAGE SECTION that are unreferenced,
including no subordinate items referenced when the item is a group, are reported only if the definition
of the data item appears directly in the user source program.

Notes:

• In COBOL, the definition of a single group item can spread across different files. When this occurs,
and if the definition of the level-01 data item of the group is in the main source file, then those data
items that are unreferenced will be reported when NOUNRS is in effect.

• Data items with the name prefix DFH, DSN, EYU, or SQL (that is, data items generated for/by CICS
and Db2) will not be reported when NOUNRA or NOUNRS is in effect.

(NOLXRDF)
When NOLXRDF is specified, the compiler will issue warning messages when a data item is redefined
by a smaller item on any level, including level-01.

Notes:

• It is not necessary to specify all of the suboptions for RULES. If a suboption is not specified, the default
takes effect.

• RULES must be specified with at least one suboption for installation defaults.

SEQ
SEQ affects whether the compiler verifies that source statements are in ascending order by sequence
number.
Syntax

SEQ=

*

YES

NO

Default
SEQ=YES

YES
Checks that the source statements are in ascending alphanumeric order by line number.

NO
Does not perform sequence checking.

If both SEQ and NUM are in effect at compile time, the sequence is checked according to numeric, rather
than alphanumeric, collating sequence.

58 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

SERVICE
Use SERVICE to place a string in the object module if the object module is generated. If the object
module is linked into a program object, the string is loaded into memory with this program object. If the
Language Environment dump includes a traceback, this string is included in that traceback.
Syntax

SERVICE=

*

NO

'service string'

Default
SERVICE=NO

The service string is limited to 64 characters in length.

SOURCE
SOURCE affects whether source statements are included in compiler listings.
Syntax

SOURCE=

*

YES

NO

Default
SOURCE=YES

YES
Indicates that you want a listing of the source statements in the compiler-generated output. This
listing also includes any statements embedded by COPY. SOURCE=YES will result in the SOURCE(DEC)
compiler option being in effect.

Note: You can specify SOURCE(HEX) as a compiler invocation option or in the PROCESS or CBL
statement in your COBOL source program, but SOURCE=HEX cannot be specified as an installation
default.

NO
Source statements do not appear in the output.

The SOURCE compiler option must be in effect at compile time if you want embedded messages in the
source listing.

SPACE
SPACE affects whether single-, double-, or triple-spacing is used in source listings.
Syntax

SPACE=

*

1

2

3

Default
SPACE=1

1
Provides single spacing for the source statement listing.

2
Provides double spacing for the source statement listing.

Chapter 2. Enterprise COBOL compiler options 59

3
Provides triple spacing for the source statement listing.

SQL
SQL affects whether the Db2 coprocessor is enabled and whether Db2 options can be specified.
Syntax

SQL=

*

NO

YES

Default
SQL=NO

YES
Use to enable the Db2 coprocessor and to specify Db2 options. When the LP(64) compiler option is in
effect, you must specify the SQL option if your COBOL source program contains SQL statements, and
Db2 precompiler is not supported in LP(64).
The Db2 coprocessor writes the database request module (DBRM) to ddname DBRMLIB.

NO
Specify to have any SQL statements found in the source program diagnosed and discarded.

Use SQL=NO if your COBOL source programs do not contain SQL statements, or if the separate SQL
precompiler will be used to process SQL statements before invocation of the COBOL compiler.

Note:

• You can specify the SQL option in any of the compiler option sources: compiler invocation, PROCESS or
CBL statements, OPTFILE, or installation defaults.

• Use either quotation marks or apostrophes to delimit the string of Db2 options.
• Db2 options cannot be specified as part of customizing the SQL option. (Db2 options are supported only

if the SQL compiler option is specified as an invocation option or in a CBL or PROCESS statement.)
However, default Db2 options can be specified when you customize the Db2 product installation
defaults.

Related tasks
Compiling with the SQL option
(Enterprise COBOL Programming Guide)

SQLCCSID
SQLCCSID controls whether the CODEPAGE compiler option influences the processing of SQL statements
when the SQL compiler option is in effect.
Syntax

SQLCCSID=

*

YES

NO

Default
SQLCCSID=YES

YES
Indicates that the CODEPAGE compiler option setting will influence the processing of SQL statements
within the source program when the integrated Db2 coprocessor (SQL compiler option) is used.

60 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

NO
Indicates that the CODEPAGE compiler option setting will only be used as the encoding for string
literals and the COBOL application source that includes converted SQL statements. Db2 (character
string) host variables will not be affected by the CODEPAGE compiler option. Instead, the encoding
for Db2 (character string) host variables will come from the CCSID value found in the DSNHDECP file,
which means Db2 (via DSNHDECP) determines the encoding of the Db2 data (host variables).

Notes:

• The SQLCCSID option is supported when the LP(64) compiler option is in effect, which behaves in the
same way as in LP(32).

• The SQLCCSID option has an effect only when you use the integrated Db2 coprocessor (SQL compiler
option).

• The NOSQLCCSID option is recommended for applications that require the highest compatibility with
the behavior of the Db2 precompiler.

Related references
SQLCCSID (Enterprise COBOL Programming Guide)

SQLIMS
SQLIMS affects whether the IMS SQL coprocessor is enabled and whether Information Management
System (IMS) suboptions can be specified.
Syntax

SQLIMS=

*

NO

YES

Default
SQLIMS=NO

YES
Use to enable the IMS SQL coprocessor and to specify Information Management System (IMS)
suboptions. You must specify the SQLIMS option if a COBOL source program contains SQLIMS
statements.

NO
Specify to have any SQLIMS statements found in the source program diagnosed and discarded.

Use SQLIMS=NO if your COBOL source programs do not contain SQLIMS statements.

Notes:

• You can specify the SQLIMS option in any of the compiler option sources: compiler invocation, PROCESS
or CBL statements, or installation defaults.

• Use either quotation marks or apostrophes to delimit the string of IMS suboptions.
• You can partition a long suboption string into multiple suboption strings in multiple CBL statements.
• When the LP(64) compiler option is in effect, the SQLIMS option is not supported. If the option is
specified explicitly by the user, a diagnostic message is emitted.

Chapter 2. Enterprise COBOL compiler options 61

SSRANGE
SSRANGE affects whether code is generated to check for out-of-range storage references.
Syntax

SSRANGE=

*

NO

(

NOZLEN

ZLEN ,

ABD

MSG)

Default
SSRANGE=NO

ZLEN | NOZLEN
Generates code that checks subscripts, reference modifications for non-UTF-8 data items and
function values, variable-length group ranges, and indexes at run time to ensure that they do not
refer to storage outside the area assigned. It also verifies that a table with ALL subscripting, specified
as a function argument, contains at least one occurrence in the table.

The generated code also checks that variable-length items do not exceed their defined maximum
length as a result of incorrect setting of the OCCURS DEPENDING ON object. For unbounded groups or
their subordinate items, checking is done only for reference modification expressions. Subscripted or
indexed references to tables subordinate to an unbounded group are not checked.

The ZLEN and NOZLEN suboptions control how the compiler checks reference modification lengths:

• If ZLEN is in effect, the compiler will generate code to ensure that reference modification lengths
are greater than or equal to zero. Zero-length reference modification specifications will not get an
SSRANGE error at run time.

• If NOZLEN is in effect, the compiler will generate code to ensure that reference modification
lengths are greater than or equal to 1. Zero-length reference modification specifications will get
an SSRANGE error at run time. This is compatible with how SSRANGE behaved in previous COBOL
versions.

MSG | ABD
The MSG and ABD suboptions control the runtime behavior of the COBOL program when a range check
fails.

• If MSG is in effect and a range check fails, a runtime warning message will be issued. Also, the
affected statements will still be executed. The program will continue and might potentially identify
other out-of-range conditions.

• If ABD is in effect and a range check fails, the first out-of-range condition will result in a runtime
error message and the program will abend. You can find the next potential out-of-range condition
by fixing the first out-of-range condition and then recompiling and running the program again. To
identify all other potential out-of-range conditions, you might need to repeat this process several
times.

Performance consideration: If anything other than SSRANGE=NO is in effect at compile-time, the
object code size will be increased, and the runtime overhead will also be increased to accomplish the
range checking.

NO
No code is generated to perform subscript or index checking at run time.

Note: If you specify anything other than SSRANGE=NO, range checks are generated by the compiler and
the checks are always executed at run time. The compiled-in range checks cannot be disabled even if you
specify the Language Environment runtime option CHECK(OFF).

62 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

STGOPT
The STGOPT option controls storage optimization.

Syntax

STGOPT=

*

NO

YES

Default
STGOPT=NO

YES

If you specify STGOPT=YES, the compiler might discard any or all of the following data items, and
does not allocate storage for them.

• Unreferenced LOCAL-STORAGE and WORKING-STORAGE level-77 and level-01 elementary data
items

• Level-01 group items if none of their subordinate items are referenced
• Unreferenced special registers

Note: The STGOPT option is ignored for data items that have the VOLATILE clause. For details, see
VOLATILE clause in the Enterprise COBOL Language Reference.

The compiler will not generate code to initialize discarded data items to the values in their VALUE
clauses.

In addition, with STGOPT=YES, data items in the LOCAL-STORAGE SECTION can be reordered in
memory to optimize performance.

NO
If you specify STGOPT=NO, the storage for all data items, including unreferenced data items, is
allocated by the compiler, data items are never reordered to improve performance, and all data items
defined with a VALUE clause are guaranteed to be initialized, even if they are unreferenced.

You can also use the RULES=(UNREF | NOUNRA | NOUNRS) option to control whether to issue warning
messages for unreferenced data items. For details, see “RULES” on page 57.

SUPPRESS
Use the NOSUPPRESS option to ignore the SUPPRESS phrase of all COPY statements in a program so that
copybook information can appear in the listing. The copybook information can be used by debuggers,
tools, and so on, without users needing to modify their source code.
Syntax

SUPPRESS=

*

YES

NO

Default
SUPPRESS=YES

YES
Enables the SUPPRESS phrase of COPY statements.

NO
Ignores the SUPPRESS phrase of COPY statements.

Chapter 2. Enterprise COBOL compiler options 63

TERM
TERM affects whether progress and diagnostic messages are sent to the SYSTERM device.
Syntax

TERM=

*

NO

YES

Default
TERM=NO

YES
Specifies that the progress and diagnostic messages are sent to the SYSTERM file, which defaults to
the user's terminal unless specified otherwise.

NO
Specifies that no messages are sent to the SYSTERM file.

If TERM is specified in the source program, a SYSTERM DD statement must also be specified for each
application program.

TERM corresponds to the TERMINAL compiler option.

TEST
TEST affects the amount of debugging information that is produced in object code, which determines the
level of debugging support that is available.
Syntax

TEST=

*

(NO, NODWARF

DWARF

, NOSOURCE

SOURCE

, NOSEPARATE

SEPARATE

(NODSNAME

DSNAME

)

NOEJPD

EJPD

, NODWARF

DWARF

, NOSOURCE

SOURCE

, NOSEPARATE

SEPARATE

(NODSNAME

DSNAME

)

)

Note: Unlike specifying this option in JCL or CBL/PROCESS, all suboptions are required and must be in the
order shown in the syntax diagram.

Default
TEST=(NO,NODWARF,NOSOURCE,NOSEPARATE)

(NO,DWARF,...)

If TEST=(NO,DWARF,...) is in effect, basic DWARF diagnostic information is included in
the object program, or the separate debug file if SEPARATE is also in effect. This option
enables application failure analysis tools, such as CEEDUMP and IBM Fault Analyzer. With
TEST=(NO,DWARF,...), the debugging information is a subset of the DWARF information that
is available with TEST=(DWARF,...). The DWARF diagnostic information that is produced when
TEST=(NO,DWARF,...) is in effect cannot be used with IBM z/OS Debugger. Consider using
TEST=(NO,DWARF,...) when use of the debugger is not needed and you want to avoid the
performance implications of the TEST option while having improved usability for application failure
analysis tools, such as CEEDUMP and IBM Fault Analyzer.

Debugging information generated by the compiler is in the industry-standard DWARF format. For
more information about DWARF, see About Common Debug Architecture in the DWARF/ELF Extensions
Library Reference.

64 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/cdaintro.htm?sc=SSLTBW_latest

(NO,NODWARF,...)
If TEST=(NO,NODWARF,...) is in effect, DWARF diagnostic information is not included in the object
program, nor written to a separate debug file.

Note: SOURCE and SEPARATE are not allowed with NODWARF.

(NO,...,SOURCE,...)
If you specify TEST=(NO,...,SOURCE,...), the DWARF debugging information generated by the
compiler includes the expanded source code.

Note: SOURCE is not allowed with NODWARF.

(NO,...,NOSOURCE,...)
If you specify TEST=(NO,...,NOSOURCE,...), the generated DWARF debugging information does
not include the expanded source code.

(NO,...,SEPARATE(NODSNAME))
If you specify TEST=(NO,...,SEPARATE(NODSNAME)), any generated DWARF debugging
information will be stored in an external file and will not cause an increase in the size of the
object program. The external file name, which is the name of the SYSDEBUG dataset, used during
compilation will not be stored in the object program. The default is SEPARATE(NODSNAME) when
SEPARATE is specified with no suboptions.

Note: SEPARATE is not allowed with NODWARF.

(NO,...,SEPARATE(DSNAME))
If you specify TEST=(NO,...,SEPARATE(DSNAME)), any generated DWARF debugging information
will be stored in an external file and will not cause an increase in the size of the object program.
The external file name, which is the name of the SYSDEBUG dataset, used during compilation will
be stored in the object program. This name would be used as the default at run time when DWARF
information is required.

Note: SEPARATE is not allowed with NODWARF.

(NO,...,NOSEPARATE)
If you specify TEST=(NO,...,NOSEPARATE), any generated DWARF debugging information will be
stored in the object program.

(other than NO)

(EJPD,...)
If you specify TEST=(EJPD,...) and OPT=(1|2):

• The IBM z/OS Debugger commands GOTO and JUMPTO are enabled.
• Program optimization will be reduced. Optimization will be done within statements; most

optimizations will not cross statement boundaries.

(NOEJPD,...)
If you specify TEST=(NOEJPD,...) and OPT=(1|2):

• The JUMPTO and GOTO commands are not enabled. However, you can still use JUMPTO and GOTO
if you use the SET WARNING OFF IBM z/OS Debugger command. In this scenario, JUMPTO and
GOTO will have unpredictable results.

• The normal amount of program optimization is done.

(...,DWARF,...)
If you specify TEST=(...,DWARF,...), complete DWARF diagnostic information is included in
the object program, or a separate debug file, when the SEPARATE suboption is in effect. This
option enables the best usability for application failure analysis tools, such as CEEDUMP and IBM
Fault Analyzer.

(...,NODWARF,...)
If you specify TEST=(...,NODWARF,...), DWARF diagnostic information is not included in the
object program, nor written to a separate debug file.

Note: SOURCE and SEPARATE are not allowed with NODWARF.

Chapter 2. Enterprise COBOL compiler options 65

(...,SOURCE,...)
If you specify TEST=(...,SOURCE,...), the DWARF debugging information generated by the
compiler includes the expanded source code.

(...,NOSOURCE,...)
If you specify TEST=(...,NOSOURCE,...), the generated DWARF debugging information does
not include the expanded source code.

(...,SEPARATE(NODSNAME))
If you specify TEST=(...,SEPARATE(NODSNAME)), any generated DWARF debugging
information will be stored in an external file and will not cause an increase in the size of the
object program. The external file name, which is the name of the SYSDEBUG dataset, used during
compilation will not be stored in the object program. The default is SEPARATE(NODSNAME) when
SEPARATE is specified with no suboptions.

(...,SEPARATE(DSNAME))
If you specify TEST=(...,SEPARATE(DSNAME)), any generated DWARF debugging information
will be stored in an external file and will not cause an increase in the size of the object program.
The external file name, which is the name of the SYSDEBUG dataset, used during compilation will
be stored in the object program. This name would be used as the default at run time when DWARF
information is required.

Notes:

• SEPARATE is not allowed with NODWARF.
• Support for debugging DWARF debugging information in the SYSDEBUG data set with the IBM

debugger requires any of the tools at the following levels:

– IBM Debug for z Systems V14.1 (5655-Q50) (formerly IBM Debug Tool for z/OS) or later
– IBM Developer for z Systems V14.1 (5724-T07) or later
– IBM Application Delivery Foundation for z Systems V3.1 (5655-AC6) or later

(...,NOSEPARATE)
If you specify TEST=(...,NOSEPARATE), any generated DWARF debugging information will be
stored in the object program.

Note: If you specify the TEST option, you must set the CODEPAGE option to the CCSID that is used for
the COBOL source program. In particular, programs that use Japanese characters in DBCS literals or
DBCS user-defined words must be compiled with the CODEPAGE option set to a Japanese codepage
CCSID. For more information, see “CODEPAGE” on page 20.

THREAD
THREAD controls whether programs are to be enabled for use in multithreaded applications.
Syntax

THREAD=

*

NO

YES

Default
THREAD=NO

YES
Use YES to indicate that programs are to be enabled for execution in Language Environment enclaves
that have multiple POSIX threads or PL/I tasks.

NO
Use NO to indicate that programs are not to be enabled for execution in Language Environment
enclaves that have multiple POSIX threads or PL/I tasks.

66 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Performance consideration: If the THREAD compiler option is specified, runtime performance might be
degraded because of the serialization logic that is automatically generated.

Note:

• The THREAD compiler option is ignored when LP(64) is in effect. If the user explicitly specifies the
THREAD option, an informational message is issued.

• If the THREAD compiler option is specified, the program is enabled for use in a threaded application.
However, THREAD can be used in nonthreaded applications. For example, you can run a program that
was compiled with the THREAD option in the CICS environment if the application does not contain
multiple POSIX threads or PL/I tasks at run time.

• If the THREAD compiler option is specified, the RENT compiler option must also be specified. If
THREAD and NORENT are specified at the same level of precedence, RENT is forced on.

• For COBOL programs to run in a threaded application, all COBOL programs in the run unit must be
compiled with the THREAD compiler option.

• If the THREAD compiler option is specified, the following language elements are not supported. If any of
the following language elements are specified, they are diagnosed as errors:

– ALTER statement
– DEBUG-ITEM special register
– GO TO statement without a procedure name
– INITIAL phrase in the PROGRAM-ID paragraph
– Nested programs
– RERUN
– Segmentation module
– MERGE or Format 1 SORT statements
– STOP literal statement
– USE FOR DEBUGGING statement

• If you compile programs with the THREAD compiler option, the following special registers are allocated
upon each invocation:

– ADDRESS OF
– JSON-CODE
– JSON-STATUS
– RETURN-CODE
– SORT-CONTROL
– SORT-CORE-SIZE
– SORT-FILE-SIZE
– SORT-MESSAGE
– SORT-MODE-SIZE
– SORT-RETURN
– TALLY
– XML-CODE
– XML-EVENT
– XML-INFORMATION
– XML-NAMESPACE
– XML-NAMESPACE-PREFIX
– XML-NNAMESPACE
– XML-NNAMESPACE-PREFIX

Chapter 2. Enterprise COBOL compiler options 67

– XML-NTEXT
– XML-TEXT

TRUNC
TRUNC affects the way that binary data is truncated during MOVE and arithmetic operations.
Syntax

TRUNC=

*

STD

OPT

BIN

Default
TRUNC=STD

BIN
Should not be used as an installation default. Specifies that:

• Output binary fields are truncated only at halfword, fullword, and doubleword boundaries, rather
than at PICTURE-clause limits.

• Sending binary fields are treated as halfwords, fullwords, or doublewords, and no assumption is
made that the values are limited to those implied by the PICTURE clause.

• DISPLAY converts and outputs the full content of binary fields with no truncation to the PICTURE
description.

Note: When TRUNC(BIN) and NUMCHECK(BIN) are both in effect and an error message or an
abend is generated, if you intend to switch to TRUNC(STD|OPT) later for better performance, you
must correct the data; if not, you can turn off NUMCHECK(BIN) to reduce the execution time of the
application and avoid an error message or an abend.

OPT
The compiler assumes that the data conforms to PICTURE and USAGE specifications. The compiler
manipulates the result based on the size of the field in storage (halfword or fullword).

TRUNC=OPT is recommended, but it should be specified only when data being moved into binary
areas does not have a value with larger precision than that defined by the binary item PICTURE clause.
Otherwise, truncation of high-order digits might occur.

STD
Conforms to the 85 COBOL Standard.

Controls the way arithmetic fields are truncated during MOVE and arithmetic operations. The
TRUNC option applies only to binary (COMP) receiving fields in MOVE statements and in arithmetic
expressions. When TRUNC=STD is in effect, the final intermediate result of an arithmetic expression,
or of the sending field in the MOVE statement, truncates to the number of digits in the PICTURE clause
of the binary receiving field.

Performance consideration: Using TRUNC=OPT does not generate extra code, and generally improves
performance. However, both TRUNC=BIN and TRUNC=STD generate extra code whenever a BINARY data
item is changed. TRUNC=BIN is usually the slower of these options.

Recommendations:

• TRUNC=BIN is the recommended option for programs that use binary values set by other products.
Other products, such as IMS, Db2, C/C++, FORTRAN, and PL/I, might place values in COBOL binary data
items that do not conform to the PICTURE clause of those data items.

• You can use TRUNC=OPT with CICS programs provided that your data conforms to the PICTURE clause
for the binary data items.

68 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

• Setting this option affects program runtime logic; that is, the same COBOL source program can give
different results depending on the option setting. Verify whether your COBOL source programs assume
a particular setting for correct running.

Related references
“NUMCHECK” on page 45

TUNE
The TUNE option specifies the architecture for which the executable program will be optimized.

Syntax

TUNE=

*

8

9

10

11

12

13

Default
The default TUNE level matches the ARCH level if ARCH is specified. If ARCH is not specified, both ARCH
and TUNE default to 8.

Current supported architecture levels and groups of models are as follows:
8

Generates code that is optimized for the 2097-xxx (IBM System z10 EC) and 2098-xxx (IBM System
z10 BC) models in z/Architecture mode.

9
Generates code that is optimized for the 2817-xxx (IBM zEnterprise 196) and 2818-xxx (IBM
zEnterprise 114) models in z/Architecture mode.

10
Generates code that is optimized for the 2827-xxx (IBM zEnterprise EC12) and 2828-xxx (IBM
zEnterprise BC12) models in z/Architecture mode.

11
Generates code that is optimized for the 2964-xxx (IBM z13) and 2965-xxx (IBM z13s) models in
z/Architecture mode.

12
Generates code that is optimized for the 3906-xxx (IBM z14) and 3907-xxx (IBM z14 ZR1) models in
z/Architecture mode.

13
Generates code that is optimized for the 8561-xxx (IBM z15) and 8562-xxx (IBM z15 T02) models in
z/Architecture mode.

The TUNE option specifies the architecture for which the executable program will be optimized. The
TUNE level controls how the compiler selects the available machine instructions, while staying within
the restrictions of the ARCH level in effect. The TUNE option does so to provide the highest performance
possible on the given TUNE architecture, choosing from the instructions allowed by the given ARCH level.

Note: TUNE impacts performance only; it does not impact the processor model on which you will be able
to run your application.

Select TUNE to match the architecture of the machine where your application will run most often. The
TUNE level must always be greater or equal to the ARCH level because you will want to tune an application
for a machine on which it can run. The compiler enforces this by adjusting TUNE up rather than ARCH
down. TUNE does not specify where an application can run and it affects optimization only.

Chapter 2. Enterprise COBOL compiler options 69

For example, if you have production machines that are z15® and disaster recovery (DR) machines that are
z14, you should compile with ARCH(12) and TUNE(13). In this way, your programs will run well on the
DR machines and run as fast as possible in production.

Note: If the specified TUNE level is lower than the specified ARCH level, the compiler adjusts the TUNE
level to match the ARCH level.

Related references
“ARCH” on page 16

VBREF
VBREF affects whether a cross-reference of statements to line numbers and a statement-usage summary
is produced.
Syntax

VBREF=

*

NO

YES

Default
VBREF=NO

YES
Produces a cross-reference of all statement types in a source program to the line numbers where they
are found. VBREF=YES also produces a summary of how many times each statement was used in the
program.

NO
Does not produce a cross-reference or statement-summary listing.

VLR
The VLR option affects the file status returned from READ statements for variable-length records when
the length of record returned is inconsistent with the record descriptions. It eases your migration from
earlier versions to Enterprise COBOL V6, if your programs have READ statements that result in a record
length conflict.
Syntax

VLR=

*

STANDARD

COMPAT

Default
VLR=STANDARD

After the execution of a READ statement:

• If the number of character positions in the record that is read is less than the minimum size specified
by the record description entries for the file, the portion of the record area that is to the right of the last
valid character read is undefined.

• If the number of character positions in the record that is read is greater than the maximum size
specified by the record description entries for the file, the record is truncated on the right to the
maximum size.

In either of these cases, the READ statement is successful, and the file status is set to either 00
(hiding the record length conflict condition) or 04 (indicating that a record length conflict has occurred),
depending on the VLR compiler option setting.

70 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

COMPAT
VLR=COMPAT checks the size of the read record against the "VERYING IN SIZE FROM min TO max"
declaration of the FD clause. If you specify VLR=COMPAT, you get the status value of 00 when READ
statements encounter a record length conflict.

Note: This setting can hide I/O problems that can arise with the wrong length read situation. Use the
VLR=COMPAT option with caution, and check for correct READ statements.

STANDARD
VLR=STANDARD checks the size of the read record against the declaration of the FD level 01 clause. If
you specify VLR=STANDARD, you get the status value of 04 when READ statements encounter a record
length conflict.

You can add code to test for FS=04 to avoid accessing undefined data in a record and also avoid
getting protection exceptions for attempting to reference a part of the record that was truncated.

The following example shows how VLR option checks the size of the read record against the declaration of
the FD clause and FD level 01 clause.

FD MYDD
 block contains 0 records
 record varying in size from 10 to 80
 recording mode V.
01 REC-20
 02 PIC X(20).
01 REC-50.
 02 PIC X(50).

Table 8. Length of record read and file status

Length of record
read

=5

< min varying
< min level 01

= 15

>= min varying
< min level 01

= 40

>= min varying <=
max varying
>= min level 01
<= max level 01

= 70

>= min varying <=
max varying
> max level 01

COBOL V4 FS=04 FS=00 FS=00 FS=00

COBOL V6
VLR(COMPAT)

FS=04 FS=00 FS=00 FS=00

COBOL V6
VLR(STANDARD)

FS=04 FS=04 FS=00 FS=04

VSAMOPENFS
The VSAMOPENFS option affects the user file status reported from successful VSAM OPEN statements that
require verified file integrity check.
Syntax

VSAMOPENFS=

*

COMPAT

SUCC

Default
VSAMOPENFS=COMPAT

COMPAT
If you specify VSAMOPENFS=COMPAT, the statement returns the file status 97 when a VSAM OPEN
statement is successfully verified. This is compatible with pre-V6 COBOL runtime behavior.

Chapter 2. Enterprise COBOL compiler options 71

SUCC
If you specify VSAMOPENFS=SUCC, the statement returns the file status 00 when a VSAM OPEN
statement is successfully verified. This allows users to simply check for 0 in the first digit of the
returned file status, as they usually do with other successful operations.

WORD
WORD indicates which alternate reserved-word table is to be used during compilation.
Syntax

WORD=

*

NO

xxxx

CICS

Default
WORD=NO

CICS
A CICS-specific word table, IGYCCICS, is provided as an alternate reserved word table. For a
description, see “CICS reserved word table (IGYCCICS)” on page 8.

xxxx
Specifies an alternative default reserved word table to be used during compilation. xxxx represents
the ending characters (can be 1 to 4 characters in length) of the name of the reserved word table
used. The first 4 characters are IGYC. The last 4 characters cannot be any one of the character strings
listed below, nor can any of them contain the dollar sign character ($).

• CBE
• DGEN
• DIAG
• DMAP
• DOPT
• ECWI
• FGEN
• INIT
• LIBO
• LIBR
• LSTR
• LVL0
• LVL1
• LVL2
• LVL3
• LVL8
• OSCN
• PGEN
• RCTL
• RDPR
• RDSC
• RWT
• SAW
• SCAN

72 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

• SIMD
• XREF

NO
Indicates that no alternative reserved word table is to be used as the default.

Note:

• Specification of WORD affects the interpretation of input reserved words. System names (such as UPSI
and SYSPUNCH) and the intrinsic function names should not be used as aliases for reserved words. If
a function name is specified as an alias through the reserved word table ABBR control-statement, that
function name will be recognized and diagnosed by the compiler as a reserved word and the intrinsic
function will not be performed.

• Changing the default value of the WORD=XXXX option conflicts with all values for FLAGSTD other than
NO.

XMLPARSE
XMLPARSE indicates which parser is to be used for processing XML input, and therefore which XML
parsing capabilities are available.
Syntax

XMLPARSE=

*

XMLSS

COMPAT

Default
XMLPARSE=XMLSS

COMPAT
XML PARSE statements are processed using the XML parser that is a built-in component of the COBOL
library. The XML PARSE statement results and operational behaviors are then compatible with those
obtained with Enterprise COBOL Version 3, and also with Version 4 when XMLPARSE(COMPAT) was
used.

XMLSS
XML PARSE statements are processed using the z/OS XML System Services parser. The following XML
parsing capabilities are available only when this suboption is in effect:

• Namespace processing enhancements
• The ENCODING, RETURNING NATIONAL, and VALIDATING phrases of the XML PARSE statement
• Support for direct parsing of XML documents encoded in UTF-8
• Support for parsing very large XML documents, a buffer of XML at a time
• Offloading of XML parsing to System z® Application Assist Processors (zAAPs)

XREFOPT
XREFOPT sets the default value for the XREF compiler option, which affects the amount of cross-
reference information produced in listings.
Syntax

XREFOPT=

*

FULL

SHORT

NO

Default
XREFOPT=FULL

Chapter 2. Enterprise COBOL compiler options 73

FULL
Produces a sorted cross-reference of the names used in the program, and indicates the lines
where the names are defined. Also produces a COPY/BASIS cross-reference. If SOURCE=YES is also
specified, embedded cross-reference information is printed on the same lines as the source.

SHORT
Produces a sorted listing of only the explicitly referenced variables, and produces a COPY/BASIS
cross-reference.

NO
Suppresses the cross-reference listings.

Note:

• XREFOPT=NO conflicts with values of DBCSXREF other than NO.
• It is recommended that you not change the default to XREFOPT=NO. If XREFOPT=NO, the COPY/BASIS

cross-reference might in some cases be incomplete or missing.

For further details, see XREF in the Enterprise COBOL Programming Guide.

ZONECHECK
ZONECHECK is deprecated and can no longer be specified in IGYCDOPT. NUMCHECK=(ZON(ALPHNUM))
gives the same results as ZONECHECK used to.

For details, see “NUMCHECK” on page 45.

Related references
“NUMCHECK” on page 45
“NUMPROC” on page 50
“INVDATA” on page 35

ZONEDATA
The ZONEDATA option tells the compiler whether the data in USAGE DISPLAY and PACKED-DECIMAL
data items is valid, and if not, what the behavior of the compiler should be.

Since most users have valid data in their USAGE DISPLAY and USAGE PACKED-DECIMAL data items,
most users should use ZONEDATA=PFD. Even if you find that your programs are processing invalid data
at run time (using the NUMCHECK compiler option), you should change your programs to avoid processing
invalid data, and use ZONEDATA=PFD.

Note: The ZONEDATA option is deprecated but is tolerated for compatibility, and it is replaced by the
INVDATA option.

When the ZONEDATA option is specified, it is mapped to the equivalent INVDATA option as follows:

ZONEDATA=PFD -> NOINVDATA
ZONEDATA=NOPFD -> INVDATA(NOFORCENUMCMP,CLEANSIGN)
ZONEDATA=MIG -> INVDATA(FORCENUMCMP,CLEANSIGN)

Syntax

ZONEDATA=

*

PFD

MIG

NOPFD

Default
ZONEDATA=PFD

PFD
When ZONEDATA=PFD is in effect, the compiler assumes that all data in USAGE DISPLAY and
PACKED-DECIMAL data items is valid, and generates the most efficient code possible to make

74 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

numeric comparisons. For example, the compiler might generate a string comparison to avoid numeric
conversion.

MIG
When ZONEDATA=MIG is in effect, the compiler generates instructions to do numeric comparisons
that ignore the zone bits of each digit in zoned decimal data items. For example, the zoned decimal
value is converted to packed-decimal with a pack instruction before the comparison. The compiler will
also avoid performing known optimizations that might produce a different result than COBOL V4 (or
earlier versions) when a zoned decimal or packed decimal data item has invalid digits or an invalid
sign code, or when a zoned decimal data item has invalid zone bits.

NOPFD

When ZONEDATA=NOPFD is in effect, the compiler generates instructions for numeric comparisons
or an alphanumeric comparison of zoned decimal data in the same manner as COBOL V4 (or earlier
versions) does when using NUMPROC=NOPFD|PFD with COBOL V4 (or earlier versions):

• In the cases where COBOL V4 (or earlier versions) considered the zone bits, the compiler generates
an alphanumeric comparison which will also consider the zone bits of each digit in zoned decimal
data items. The zoned decimal value remains as zoned decimal.

• In the cases where COBOL V4 ignored the zone bits, the compiler generates numeric comparisons
that ignore the zone bits of each digit in zoned decimal data items. The zoned decimal value is
converted to packed-decimal with a PACK instruction before the comparison.

In order for the compiler to handle zone bits in the same way as COBOL V4 (or earlier versions) did
when generating comparisons of zoned decimal data, the NUMPROC suboption used in COBOL V6 must
match the NUMPROC suboption used in COBOL V4 (or earlier versions):

• To get the COBOL V4 (or earlier versions) NUMPROC=NOPFD behavior in COBOL V6, use
ZONEDATA=NOPFD and NUMPROC=NOPFD in COBOL V6.

• To get the COBOL V4 (or earlier versions) NUMPROC=PFD behavior in COBOL V6, use
ZONEDATA=NOPFD and NUMPROC=PFD in COBOL V6.

The compiler will also avoid performing known optimizations that might produce a different result
than COBOL V4 (or earlier versions) when a zoned decimal or packed decimal data item has invalid
digits or an invalid sign code, or when a zoned decimal data item has invalid zone bits.

Note: The sign code must be a valid sign code according to the NUMPROC compiler option setting. In
addition, the low-order byte must have a valid zone (x'F') for unsigned and signed with either SIGN
IS LEADING or SIGN IS SEPARATE.

In all, to ease your migration to COBOL V6:

• If your digits, sign codes, and zone bits are valid, use ZONEDATA=PFD and the same NUMPROC setting
that you used with COBOL V4 when using COBOL V6.

• If you have invalid digits, invalid sign codes, or invalid zone bits in your data, change your programs or
systems so that your programs do not have invalid data in numeric data items at run time.

Once you have corrected your programs or systems, you can use the preferred ZONEDATA=PFD option.
Only if you cannot contain this work and must continue to run with invalid data, consider the following
choices for ZONEDATA:

– If you used NUMPROC=MIG with COBOL V4, use ZONEDATA=MIG and NUMPROC=NOPFD with COBOL
V6.

– If you used NUMPROC=NOPFD with COBOL V4, use ZONEDATA=NOPFD and NUMPROC=NOPFD with
COBOL V6.

– If you used NUMPROC=PFD with COBOL V4, use ZONEDATA=NOPFD and NUMPROC=PFD with COBOL
V6.

Note: It is not always possible to entirely match the behavior of the old compiler even with these options
when faced with clearly invalid data. For example, even for compares, ZONEDATA=NOPFD isn't going to
give the same result in all cases as COBOL V4.

Chapter 2. Enterprise COBOL compiler options 75

Performance consideration:ZONEDATA=PFD gives better runtime performance than ZONEDATA=NOPFD|
MIG does. ZONEDATA=NOPFD|MIG disables some of the optimizations that NUMPROC=PFD can give.

ZWB
ZWB determines whether the compiler removes the sign from signed zoned decimal fields before they are
compared to alphanumeric fields at run time.
Syntax

ZWB=

*

YES

NO

Default
ZWB=YES

YES
Removes the sign from a signed external decimal (DISPLAY) field when comparing this field to an
alphanumeric field at run time.

NO
Does not remove the sign from a signed external decimal (DISPLAY) field when comparing this field to
an alphanumeric field at run time.

Note:

• Setting this option affects program runtime logic; that is, the same COBOL source program can give
different results, depending on the option setting. Verify whether your Enterprise COBOL source
programs assume a particular setting to run correctly.

• Application programmers use ZWB=NO to test input numeric fields for SPACES.

76 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Chapter 3. Customizing Enterprise COBOL
The following sections describe the supplied user jobs and modules that you can modify to customize
Enterprise COBOL.

You can make modifications to Enterprise COBOL only after installation of the product is complete.

One of the modifications is made using an SMP/E USERMOD. If you do not ACCEPT Enterprise COBOL into
the distribution libraries before applying the USERMOD, you will not be able to use the SMP/E RESTORE
statement to remove your USERMOD. Do not accept your USERMOD into the distribution libraries. You
might want to remove your USERMOD if you find that it does not suit the needs of the programmers at
your site.

You will have to remove your USERMOD before applying service to the modules that it changes. In this
case, you will probably want to reapply your USERMOD after successful installation of the service.

Important: Make sure that Enterprise COBOL serves the needs of the application programmers at your
site. Confer with them while you plan the customization of Enterprise COBOL. Doing so will ensure that
the modifications you make at install time best support the application programs being developed at your
site.

All information for installing Enterprise COBOL is included in the Program Directory provided with the
product.

Summary of user modifications
Installation of Enterprise COBOL places a number of sample modification jobs in the target data set
IGY.V6R3M0.SIGYSAMP. However, these sample modification jobs are not customized for your particular
system. You must customize them.

Table 9 on page 77 shows the names of the sample modification jobs, which are described in detail in
the referenced information.

Copy members from IGY.V6R3M0.SIGYSAMP into one of your personal data sets before you modify and
submit them so that you have an unmodified backup copy if you make changes that you want to abandon.

Descriptions of possible modifications appear in the comments in the JCL. You can use TSO to modify and
submit the job.

Table 9. Summary of user modification jobs for Enterprise COBOL

Description Job See:

Changing the compiler options default
module

IGYWDOPT “Changing the compiler options default
module” on page 78

Overriding options specified as fixed IGYWUOPT “Overriding options specified as fixed” on
page 79

Changing reserved words IGYWRWD “Changing reserved words” on page 79

Changing the defaults for compiler options
You can change the defaults for compiler options, and can override fixed compiler options.

To change the defaults for compiler options:

1. Copy the source of options module IGYCDOPT from IGY.V6R3M0.SIGYSAMP into the appropriate job,
IGYWDOPT or IGYWUOPT, in place of the two-line comment.

2. Change the parameters on the IGYCOPT macro call to match the compiler options that you have
selected for your installation.

© Copyright IBM Corp. 1996, 2024 77

Observe the following requirements when coding the changed IGYCOPT macro call:

• Place continuation character (X in the source) in column 72 on each line of the IGYCOPT invocation
except the last line. The continuation line must start in column 16. You can break the coding after any
comma.

• Do not put a comma in front of the first option in the macro.
• Specify options and suboptions in uppercase. Only suboptions that are strings can be specified in mixed

case or lowercase.
• If one of the string suboptions contains a special character (for example, an embedded blank or

unmatched right or left parenthesis), the string must be enclosed in apostrophes ('), not in quotation
marks ("). A null string can be specified with either contiguous apostrophes or quotation marks.

To obtain an apostrophe (') or a single ampersand (&) within a string, two contiguous instances of the
character must be specified. The pair is counted as only one character in determining whether the
maximum allowable string length has been exceeded and in setting the effective length of the string.

• Avoid unmatched apostrophes in any string that uses apostrophes. The error cannot be captured within
IGYCOPT itself. Instead, the assembler produces a message such as:

IEV03 *** ERROR *** NO ENDING APOSTROPHE

This message bears no spatial relationship to the offending suboption. Furthermore, none of the options
is properly parsed if this error is committed.

• Code only those options whose default value you want to change. The IGYCOPT macro generates the
default value for any option that you do not code.

For a worksheet to help you plan your default compiler options, see “IGYCDOPT worksheet for compiler
options” on page 2. For descriptions of the options, see Chapter 2, “Enterprise COBOL compiler
options,” on page 11.

• Place an END statement after the macro instruction.

Note: When the assembler encounters an unknown keyword on any macro call, like the call to IGYCOPT
in igycdopt.asm, it treats the keyword as a positional parameter. Because the current version of the
IGYCOPT macro did not check for positional parameters, those unknown keywords were completely
ignored. Now, the IGYCOPT macro has been changed so that it detects these positional parameters and
emits appropriate error messages. If you rebuild an existing customization macro that used to assemble
RC=00, it might fail with assembly errors due to either unknown compiler options that were previously
treated as positional parameters and thus ignored, or compiler options coded with incorrect syntax such
as OPTION() instead of OPTION= in the COBOL customization macro. You must remove or correct these
unknown or improperly coded options and rebuild the IGYCDOPT module.

For additional details about how to code macro calls, see the High Level Assembler for z/OS Language
Reference.

Changing the compiler options default module
To change the defaults for the Enterprise COBOL compiler options, modify the sample job IGYWDOPT.

To choose default values, use the information in Chapter 2, “Enterprise COBOL compiler options,” on page
11.

To modify the JCL for IGYWDOPT, do these steps:

1. Add a job card appropriate for your site.
2. Add a JES ROUTE card if required for your site.
3. Replace the two comment lines in IGYWDOPT with a copy of the source for IGYCDOPT found in

IGY.V6R3M0.SIGYSAMP.
4. Code parameters on the IGYCOPT macro statement in IGYCDOPT to reflect the values you have chosen

for your installation-wide default compiler options.

78 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

5. Change #GLOBALCSI to the global CSI name.
6. Change #TZONE in the SET BDY statement to the target zone name.

After you modify the IGYWDOPT job, submit it. You will get a condition code of 0 if the job runs correctly.
Also check the IGYnnnn informational messages in your listing to verify the defaults that will be in effect
for your installation.

Overriding options specified as fixed
Occasionally, you might have an application that needs to override one or more options that were
specified as fixed.

You can provide other options by creating a temporary copy of the options module in a separate data set
that can be accessed as a STEPLIB or JOBLIB (ahead of the IGY.V6R3M0.SIGYCOMP data set) when the
application is compiled.

Sample job IGYWUOPT creates a default options module that is link-edited into a user-specified data set.
The assembly and link-editing take place outside SMP/E control, so the standard default options module
is not disturbed.

To modify the JCL for IGYWUOPT, do these steps:

1. Add a job card appropriate for your site.
2. Add a JES ROUTE card if required for your site.
3. Replace the two comment lines in IGYWUOPT with a copy of the source for IGYCDOPT found in

IGY.V6R3M0.SIGYSAMP.
4. Change the parameters on the IGYCOPT macro statement in IGYWUOPT to reflect the values that you

have chosen for this fixed option override compiler-options module.
5. If you chose to use a different prefix than the IBM-supplied one for the Enterprise COBOL target data

sets, check the SYSLIB DD statement (marked with '<<<<<') to ensure that the data set names are
correct.

6. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the data set that you want
your IGYCDOPT module bound into. Note that an IGYCDOPT module currently in the chosen data set
will be replaced by the new version.

After you modify the IGYWUOPT job, submit it. Both steps return a condition code of 0 if the job runs
successfully. Also check the IGYnnnn informational messages in your listing to verify the defaults that are
in effect when this module is used in place of the standard default options module.

Changing reserved words
To change the words that Enterprise COBOL treats as reserved, use the reserved word table utility.

The reserved words used by Enterprise COBOL are maintained in a table (IGYCRWT) provided with the
product. A CICS-specific reserved word table (IGYCCICS) is provided as an alternate reserved word table
(see “CICS reserved word table (IGYCCICS)” on page 8). You can change the reserved words by using
the reserved word table utility (IGY8RWTU) to modify IGYCRWT or IGYCCICS, or by creating additional
reserved word tables. You can also modify tables that you previously created.

The reserved word table utility accepts control statements to create or modify a reserved word table. The
new table then contains the reserved words from the IBM-supplied table with all the changes that you
have applied.

You can make the following types of changes to reserved word tables:

• Add words to be flagged with an informational message whenever they are used in a program. To
produce these information messages, you must modify the IGYCRWT reserved word table and compile
using the FLAGSTD option.

• Add words to be flagged with a severe error message whenever they are used in a program.

Chapter 3. Customizing Enterprise COBOL 79

• Indicate that words currently flagged with an informational or error message should no longer be
flagged.

Each reserved word table that you create must have a unique 1- to 4-character identifier. For a list of
character strings that cannot be used, see “WORD” on page 72.

At compile time, the value of the compiler option WORD(xxxx) identifies the reserved word table to be
used. xxxx is the unique 1- to 4-character identification that you specified in the member name IGYCxxxx.
You can create multiple reserved word tables, but only one can be specified at compile time.

Note: The total number of entries in a reserved word table should not exceed 1536 or 1.5 KB.

Because of the following example, when the IBM extension reserved word ENTRY is used in a program, it
will be flagged with message 0086.

INFO ENTRY

The following example restricts the use of Boolean, XD, and PARENT. Use of these will cause errors.

RSTR BOOLEAN
 XD
 PARENT

The following example restricts the use of GO TO and ALTER. Use of these will cause errors.

RSTR GO
 ALTER

In the following example, the reserved word table generated allows usage of all the 85 COBOL Standard
language except nested programs.

RSTR IDENTIFICATION(1) only allow 1 program per compilation unit
RSTR ID(1) same for the short form
RSTR PROGRAM-ID(1) only allow 1 program per compilation unit
RSTR GLOBAL do not allow this phrase at all

Creating or modifying a reserved word table
You can create or modify a reserved word table using one of these existing tables:

• Member IGY8RWRD in IGY.V6R3M0.SIGYSAMP (the IBM-supplied default reserved word table)
• Member IGY8CICS in IGY.V6R3M0.SIGYSAMP (the IBM-supplied CICS reserved word table)

You must also modify and invoke the appropriate non-SMP/E JCL.

The source file of the existing reserved word table above should have four parts: Parts I, II, III, and IV.
Follow these steps to modify the file and non-SMP/E JCL:

1. Make a private copy of the latest IGY8RWRD or IGY8CICS.

Note: IGY8RWRD or IGY8CICS might be updated with the addition of new reserved words either
through a new release or continuous delivery PTFs. Be sure to rebuild your custom reserved word table
using the latest version of IGY8RWRD or IGY8CICS as the basis.

2. Skip Part I (all lines up to and including the line with the keyword MOD). Make no alterations in this
part of the file!

3. Edit Part II by placing asterisks in column 1 of the lines that contain reserved words for which you do
not want informational messages issued.

4. Edit Part III by placing asterisks in column 1 of the lines that contain reserved words for which you do
not want severe messages issued.

80 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

5. Edit Part IV by coding additional reserved word control statements that create the modifications that
you want, as described in “Coding control statements” on page 81.

6. Modify and run the JCL, as described in “Running JCL that creates a reserved word table” on page 84.
You also must create a unique 1- to 4-character identification for the new reserved word table and
supply it in the JCL. Your user-defined reserved word table will be a program object in a PDSE dataset.

Coding control statements
To create or modify a reserved word table, you must understand the syntax of the control statements that
affect them.

The following figure illustrates the format for coding reserved word control statements.

ABBR reserved-word: user-word [comments]
 [reserved-word: user-word [comments]]
 ?
INFO COBOL-word [(0 | 1)] [comments]
 [COBOL-word [(0 | 1)] [comments]]
 ?
RSTR COBOL-word [(0 | 1)] [comments]
 [COBOL-word [(0 | 1)] [comments]]
 ?

Figure 2. Syntax format for reserved word control statements

As shown in the preceding figure, the keywords you can use are:
ABBR

Specifies an alternative form of an existing reserved word
INFO

Specifies words that are to be flagged with an informational message whenever they are used in a
program and the FLAGSTD compiler option is in effect

RSTR
Specifies words that are to be flagged with an error message whenever they are used in a program

All words that you identify with the control statement keywords INFO and RSTR are flagged with
a message in the source listing of the Enterprise COBOL program that uses them. Words that are
abbreviated are not flagged in the source listing unless you have also specified them on the INFO or
RSTR control statements.

Rules for coding control statements
You need to follow the rules when you code your control statements.

These rules are:

• Begin the control statement in column 1.
• Place one or more spaces between the keyword and the first operand.
• When specifying a second operand, include a colon (:) and one or more spaces after the first operand.
• Continue a control statement by putting blanks in columns 1 through 5, followed by the operand or

operands, to make additional specifications.
• Specify comments by putting an asterisk (*) in column 1 of the control statements. You can also place

comments on the same line as the control statement. In that case, however, there must be at least one
space following the operand or operands before a comment begins.

• To specify more than one change within a single control statement, put each additional specification on
a separate line.

• Do not add any blank lines.

Chapter 3. Customizing Enterprise COBOL 81

Coding operands in control statements
This topic shows the types of operands that you will be coding in the control statements.

reserved-word
An existing reserved word.

user-word
A user-defined COBOL word that is not a reserved word.

comments
Any comments that you want to put on the same line with the control statement, or on a separate line
that has an asterisk in column 1.

COBOL-word
A word of up to 30 characters that can be a system name, a reserved word, or a user-defined word.

Rules for coding control statement operands
Follow the rules when you code the control statement operands.

These rules are:

• A user-word can be used in only one ABBR statement in any particular reserved word table.
• A reserved-word specified in an ABBR statement can also be specified in either a RSTR or an INFO

statement.
• A particular reserved-word can be specified only once in an ABBR statement.
• A particular COBOL-word can be specified only once in either a RSTR or an INFO statement.

ABBR statement
The ABBR statement defines an alternative symbol for the reserved word specified. The symbol can be
used when you code a program.

ABBR reserved-word: user-word [comments]

Note:

• The user-word becomes a reserved word and can be used in place of the reserved-word specified in this
statement.

• The reserved-word remains a reserved word with its original definition.
• The source listing shows the original source—the symbol as you coded it.
• The reserved word is used in compiler output—other listings, some messages, and so forth.

In the following example, REDEF and SEP become abbreviations that can be used in source programs.
The appropriate reaction to the use of REDEFINES and SEPARATE takes place when the source program is
compiled.

ABBR REDEFINES: REDEF
SEPARATE: SEP

INFO statement
The INFO statement specifies the COBOL words that are to be flagged by the compiler, and it can also be
used to control the use of nested programs.
INFO COBOL-word[(0 | 1)] [comments]

By selecting either 1 or 0, you can indicate whether a specific COBOL-word can be used only once, or
not at all.

82 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

0
Indicates that whenever the specified COBOL-word is used, the 0086 informational message is
issued if the FLAGSTD compiler option is in effect.

1
Indicates that the specified COBOL-word can be used once. If it is used more than once,
informational message 0195 is issued.

The messages are handled as information (I) messages. The compilation condition is not changed.

RSTR statement
The RSTR statement specifies COBOL words that cannot be used in a program, and it can also be used to
control the use of nested programs.
RSTR COBOL-word[(0 | 1)] [comments]

By selecting either 1 or 0, you can indicate whether a specific COBOL-word can be used only once, or
not at all.
0

Indicates that whenever the specified COBOL-word is used, message 0084 is issued.
1

Indicates that the specified COBOL-word can be used once. If it is used more than once, severe
message 0194 is issued.

The following reserved words can be restricted only by using option 1:

DATA
ENVIRONMENT
ID
IDENTIFICATION
PROGRAM-ID
WORKING-STORAGE
LOCAL-STORAGE
LINKAGE

Modifying and running non-SMP/E JCL
Use sample job IGYWRWD in IGY.V6R3M0.SIGYSAMP to create or modify a reserved word table.

The sample job uses a member based on IGY8RWRD or IGY8CICS in IGY.V6R3M0.SIGYSAMP as the input
to the reserve word utility. It creates program object IGYCxxxx (where xxxx is the user identification) in
IGY.V6R3M0.SIGYCOMP.

To modify the JCL for IGYWRWD, do these steps:

1. Modify the job statement for your site.
2. Add JES ROUTE records if required.
3. Change the data set name on the STEPLIB DD statement in STEP1 to match the compiler target data

set name you used during installation.
4. To point to your modified reserved word table, do only one of the following steps:

• Change the data set name in //RSWDREAD DD DSN=... to the data set name and member name of
your modified reserved word table.

• Replace the RSWDREAD DD with //RSWDREAD DD * and insert your modified reserved table
immediately following that line.

For specific instructions, see the comments in job IGYWRWD.
5. Change the name of the data set in the SYSLMOD DD statement in STEP3 to match the name of

the data set to which you are adding your modified reserved word table. (The data set name in the

Chapter 3. Customizing Enterprise COBOL 83

SYSLMOD DD statement should be the name of the compiler target data set.) Also, you must specify
the name of your modified reserved word table in the parentheses that follow the data set name in the
SYSLMOD DD statement.

After you run IGYWRWD, if you receive a nonzero return code from the table utility, use the error
messages in the output data set specified on the RSWDPRNT DD statement to correct any mistakes
and rerun the job.

Running JCL that creates a reserved word table
The JCL that creates a reserved word table contains STEP1, STEP2, and STEP3.

The three steps do the following tasks, respectively:

1. Run the reserved word table utility with your modified table.
2. Assemble your modified reserved word table.
3. Produce a runtime program object from the object module.

After you run the job, a reserved word table is created, the library that you specified contains the new
table, and the table has IGYC plus the 1- to 4-character identification that you specified.

Tailoring the cataloged procedures to your site
You might want to tailor the cataloged procedures IGYWC, IGYWCL, or IGYWCLG for use at your site.

Consider these changes:

• Modifying the data set name prefixes if you used a different prefix than the IBM-supplied ones for
Enterprise COBOL or Language Environment target data sets

• Removing the STEPLIB DD statements if you placed IGY.V6R3M0.SIGYCOMP, CEE.SCEERUN, and
CEE.SCEERUN2 in the LNKLST concatenation

• Changing the default region size for the GO steps if most of the programs at your site require a larger
region for successful execution

• Changing the UNIT=parameter

84 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Appendix A. Accessibility features for Enterprise
COBOL for z/OS

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Enterprise COBOL for z/OS.

Accessibility features
z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (https://www.access-board.gov/ict/) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

The Enterprise COBOL for z/OS online product documentation in IBM Knowledge Center is enabled for
accessibility. The accessibility features of IBM Knowledge Center are described at http://www.ibm.com/
support/knowledgecenter/en/about/releasenotes.html.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120)
• z/OS TSO/E User's Guide (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/

APPENDIX1.3)
• z/OS ISPF User's Guide Volume I (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70)
• IBM Developer for z/OS Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSQ2R2/

rdz_welcome.html?lang=en)

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The Enterprise COBOL for z/OS online product documentation is available in IBM Knowledge Center,
which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

© Copyright IBM Corp. 1996, 2024 85

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

86 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

http://www.ibm.com/able
http://www.ibm.com/able

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

© Copyright IBM Corp. 1996, 2024 87

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1996, 2020.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"

88 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Programming interface information
IBM Enterprise COBOL for z/OS provides no macros that allow a customer installation to write programs
that use the services of IBM Enterprise COBOL for z/OS.

Attention: Do not use as programming interfaces any IBM Enterprise COBOL for z/OS
macros.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

Notices 89

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

90 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Glossary

The terms in this glossary are defined in accordance with their meaning in COBOL. These terms might or
might not have the same meaning in other languages.

This glossary includes terms and definitions from the following publications:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL, and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

• ANSI X3.172-2002, American National Standard Dictionary for Information Systems
• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL
• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments and

system software interfaces - Programming language COBOL

American National Standard definitions are preceded by an asterisk (*).

A

* abbreviated combined relation condition
The combined condition that results from the explicit omission of a common subject or a common
subject and common relational operator in a consecutive sequence of relation conditions.

abend
Abnormal termination of a program.

above the 2 GB bar
Storage located above the so-called 2 GB bar (or boundary). This storage is only addressable by
AMODE 64 programs.

above the 16 MB line
Storage located above the so-called 16 MB line (or boundary) but below the 2 GB bar. This storage
is not addressable by AMODE 24 programs. Before IBM introduced the MVS™/XA architecture in the
1980s, the virtual storage for a program was limited to 16 MB. Programs that have been link-edited
as AMODE 24 can address only 16 MB of space, as though they were kept under an imaginary storage
line. Since VS COBOL II, a program can have AMODE 31 and can be loaded above the 16 MB line.

* access mode
The manner in which records are to be operated upon within a file.

* actual decimal point
The physical representation, using the decimal point characters period (.) or comma (,), of the decimal
point position in a data item.

actual document encoding
For an XML document, one of the following encoding categories that the XML parser determines by
examining the first few bytes of the document:

• ASCII
• EBCDIC
• UTF-8
• UTF-16, either big-endian or little-endian
• Other unsupported encoding
• No recognizable encoding

© Copyright IBM Corp. 1996, 2024 91

* alphabet-name
A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that
assigns a name to a specific character set or collating sequence or both.

* alphabetic character
A letter or a space character.

alphanumeric character position
See character position.

alphabetic data item
A data item that is described with a PICTURE character string that contains only the symbol A. An
alphabetic data item has USAGE DISPLAY.

* alphanumeric character
Any character in the single-byte character set of the computer.

alphanumeric data item
A general reference to a data item that is described implicitly or explicitly as USAGE DISPLAY, and
that has category alphanumeric, alphanumeric-edited, or numeric-edited.

alphanumeric-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol A or X and at least one of the simple insertion symbols B, 0, or /. An alphanumeric-edited data
item has USAGE DISPLAY.

* alphanumeric function
A function whose value is composed of a string of one or more characters from the alphanumeric
character set of the computer.

alphanumeric group item
A group item that is defined without a GROUP-USAGE NATIONAL clause. For operations such as
INSPECT, STRING, and UNSTRING, an alphanumeric group item is processed as though all its content
were described as USAGE DISPLAY regardless of the actual content of the group. For operations
that require processing of the elementary items within a group, such as MOVE CORRESPONDING, ADD
CORRESPONDING, or INITIALIZE, an alphanumeric group item is processed using group semantics.

alphanumeric literal
A literal that has an opening delimiter from the following set: ', ", X', X", Z', or Z". The string of
characters can include any character in the character set of the computer.

* alternate record key
A key, other than the prime record key, whose contents identify a record within an indexed file.

ANSI (American National Standards Institute)
An organization that consists of producers, consumers, and general-interest groups and establishes
the procedures by which accredited organizations create and maintain voluntary industry standards in
the United States.

argument
(1) An identifier, a literal, an arithmetic expression, or a function-identifier that specifies a value to
be used in the evaluation of a function. (2) An operand of the USING phrase of a CALL or INVOKE
statement, used for passing values to a called program or an invoked method.

* arithmetic expression
A numeric literal, an identifier representing a numeric elementary item, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or
an arithmetic expression enclosed in parentheses.

* arithmetic operation
The process caused by the execution of an arithmetic statement, or the evaluation of an arithmetic
expression, that results in a mathematically correct solution to the arguments presented.

* arithmetic operator
A single character, or a fixed two-character combination that belongs to the following set:

92 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Character Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

* arithmetic statement
A statement that causes an arithmetic operation to be executed. The arithmetic statements are ADD,
COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT.

array
An aggregate that consists of data objects, each of which can be uniquely referenced by subscripting.
An array is roughly analogous to a COBOL table.

* ascending key
A key upon the values of which data is ordered, starting with the lowest value of the key up to the
highest value of the key, in accordance with the rules for comparing data items.

ASCII
American National Standard Code for Information Interchange. The standard code uses a coded
character set that is based on 7-bit coded characters (8 bits including parity check). The standard
is used for information interchange between data processing systems, data communication systems,
and associated equipment. The ASCII set consists of control characters and graphic characters.

IBM has defined an extension to ASCII (characters 128-255).

ASCII DBCS
See double-byte ASCII.

assignment-name
A name that identifies the organization of a COBOL file and the name by which it is known to the
system.

* assumed decimal point
A decimal point position that does not involve the existence of an actual character in a data item. The
assumed decimal point has logical meaning but no physical representation.

AT END condition
A condition that is caused during the execution of a READ, RETURN, or SEARCH statement under
certain conditions:

• A READ statement runs on a sequentially accessed file when no next logical record exists in the file,
or when the number of significant digits in the relative record number is larger than the size of the
relative key data item, or when an optional input file is not available.

• A RETURN statement runs when no next logical record exists for the associated sort or merge file.
• A SEARCH statement runs when the search operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

B

basic character set
The basic set of characters used in writing words, character-strings, and separators of the language.
The basic character set is implemented in single-byte EBCDIC. The extended character set includes
DBCS characters, which can be used in comments, literals, and user-defined words.

Synonymous with COBOL character set in the 85 COBOL Standard.

big-endian
The default format that the mainframe and the AIX® workstation use to store binary data and UTF-16
characters. In this format, the least significant byte of a binary data item is at the highest address and
the least significant byte of a UTF-16 character is at the highest address. Compare with little-endian.

Glossary 93

binary item
A numeric data item that is represented in binary notation (on the base 2 numbering system). The
decimal equivalent consists of the decimal digits 0 through 9, plus an operational sign. The leftmost
bit of the item is the operational sign.

binary search
A dichotomizing search in which, at each step of the search, the set of data elements is divided by
two; some appropriate action is taken in the case of an odd number.

* block
A physical unit of data that is normally composed of one or more logical records. For mass storage
files, a block can contain a portion of a logical record. The size of a block has no direct relationship
to the size of the file within which the block is contained or to the size of the logical records that are
either contained within the block or that overlap the block. Synonymous with physical record.

boolean condition
A boolean condition determines whether a boolean literal is true or false. A boolean condition can only
be used in a constant conditional expression.

boolean literal
Can be either B'1', indicating a true value, or B'0', indicating a false value. Boolean literals can only be
used in constant conditional expressions.

breakpoint
A place in a computer program, usually specified by an instruction, where external intervention or a
monitor program can interrupt the program as it runs.

buffer
A portion of storage that is used to hold input or output data temporarily.

built-in function
See intrinsic function.

business method
A method of an enterprise bean that implements the business logic or rules of an application. (Oracle)

byte
A string that consists of a certain number of bits, usually eight, treated as a unit, and representing a
character or a control function.

byte order mark (BOM)
A Unicode character that can be used at the start of UTF-16 or UTF-32 text to indicate the byte order
of subsequent text; the byte order can be either big-endian or little-endian.

bytecode
Machine-independent code that is generated by the Java compiler and executed by the Java
interpreter. (Oracle)

C

callable services
In Language Environment, a set of services that a COBOL program can invoke by using the
conventional Language Environment-defined call interface. All programs that share the Language
Environment conventions can use these services.

called program
A program that is the object of a CALL statement. At run time the called program and calling program
are combined to produce a run unit.

* calling program
A program that executes a CALL to another program.

canonical decomposition
A way to represent a single precomposed Unicode character using two or more Unicode characters. A
canonical decomposition is typically used to separate latin letters with a diacritical mark so that the
latin letter and the diacritical mark are represented individually. See precomposed character for an
example showing a precomposed Unicode character and its canonical decomposition.

94 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

case structure
A program-processing logic in which a series of conditions is tested in order to choose between a
number of resulting actions.

cataloged procedure
A set of job control statements that are placed in a partitioned data set called the procedure library
(SYS1.PROCLIB). You can use cataloged procedures to save time and reduce errors in coding JCL.

CCSID
See coded character set identifier.

century window
A 100-year interval within which any two-digit year is unique. Several types of century window are
available to COBOL programmers:

• For the windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and YEAR-TO-
YYYY, you specify the century window with argument-2.

• For Language Environment callable services, you specify the century window in CEESCEN.

* character
The basic indivisible unit of the language.

character encoding unit
A unit of data that corresponds to one code point in a coded character set. One or more character
encoding units are used to represent a character in a coded character set. Also known as encoding
unit.

For USAGE NATIONAL, a character encoding unit corresponds to one 2-byte code point of UTF-16.

For USAGE DISPLAY, a character encoding unit corresponds to a byte.

For USAGE DISPLAY-1, a character encoding unit corresponds to a 2-byte code point in the DBCS
character set.

character position
The amount of physical storage or presentation space required to hold or present one character. The
term applies to any class of character. For specific classes of characters, the following terms apply:

• Alphanumeric character position, for characters represented in USAGE DISPLAY
• DBCS character position, for DBCS characters represented in USAGE DISPLAY-1
• National character position, for characters represented in USAGE NATIONAL; synonymous with

character encoding unit for UTF-16

character set
A collection of elements that are used to represent textual information, but for which no coded
representation is assumed. See also coded character set.

character string
A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE character string, or
a comment-entry. A character string must be delimited by separators.

checkpoint
A point at which information about the status of a job and the system can be recorded so that the job
step can be restarted later.

* class
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class. Classes
can be defined hierarchically, allowing one class to inherit from another.

class (object-oriented)
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class.

Glossary 95

* class condition
The proposition (for which a truth value can be determined) that the content of an item is wholly
alphabetic, is wholly numeric, is wholly DBCS, is wholly Kanji, or consists exclusively of the characters
that are listed in the definition of a class-name.

* class definition
The COBOL source unit that defines a class.

class hierarchy
A tree-like structure that shows relationships among object classes. It places one class at the top and
one or more layers of classes below it. Synonymous with inheritance hierarchy.

* class identification entry
An entry in the CLASS-ID paragraph of the IDENTIFICATION DIVISION; this entry contains
clauses that specify the class-name and assign selected attributes to the class definition.

class-name (object-oriented)
The name of an object-oriented COBOL class definition.

* class-name (of data)
A user-defined word that is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION; this word assigns a name to the proposition (for which a truth value can be defined)
that the content of a data item consists exclusively of the characters that are listed in the definition of
the class-name.

class object
The runtime object that represents a class.

* clause
An ordered set of consecutive COBOL character strings whose purpose is to specify an attribute of an
entry.

client
In object-oriented programming, a program or method that requests services from one or more
methods in a class.

COBOL character set
The set of characters used in writing COBOL syntax. The complete COBOL character set consists of
these characters:

Character Meaning

0,1, . . . ,9 Digit

A,B, . . . ,Z Uppercase letter

a,b, . . . ,z Lowercase letter

Space

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

96 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

Character Meaning

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

* COBOL word
See word.

code page
An assignment of graphic characters and control function meanings to all code points. For example,
one code page could assign characters and meanings to 256 code points for 8-bit code, and another
code page could assign characters and meanings to 128 code points for 7-bit code. For example, one
of the IBM code pages for English on the workstation is IBM-1252 and on the host is IBM-1047. A
coded character set.

code point
A unique bit pattern that is defined in a coded character set (code page). Graphic symbols and control
characters are assigned to code points.

coded character set
A set of unambiguous rules that establish a character set and the relationship between the characters
of the set and their coded representation. Examples of coded character sets are the character sets as
represented by ASCII or EBCDIC code pages or by the UTF-16 encoding scheme for Unicode.

coded character set identifier (CCSID)
An IBM-defined number in the range 1 to 65,535 that identifies a specific code page.

* collating sequence
The sequence in which the characters that are acceptable to a computer are ordered for purposes of
sorting, merging, comparing, and for processing indexed files sequentially.

* column
A byte position within a print line or within a reference format line. The columns are numbered from 1,
by 1, starting at the leftmost position of the line and extending to the rightmost position of the line. A
column holds one single-byte character.

* combined condition
A condition that is the result of connecting two or more conditions with the AND or the OR logical
operator. See also condition and negated combined condition.

combining characters
A Unicode character used to modify other succeeding or preceding Unicode characters. Combining
characters are typically Unicode diacritical mark used to modify latin letters. See precomposed
character for an example of combining character U+0308 (¨) used with latin letter U+0061 (a).

* comment-entry
An entry in the IDENTIFICATION DIVISION that is used for documentation and has no effect on
execution.

comment line
A source program line represented by an asterisk (*) in the indicator area of the line or by an asterisk
followed by greater-than sign (*>) as the first character string in the program text area (Area A plus
Area B), and any characters from the character set of the computer that follow in Area A and Area B of
that line. A comment line serves only for documentation. A special form of comment line represented
by a slant (/) in the indicator area of the line and any characters from the character set of the
computer in Area A and Area B of that line causes page ejection before the comment is printed.

Glossary 97

* common program
A program that, despite being directly contained within another program, can be called from any
program directly or indirectly contained in that other program.

* compile
(1) To translate a program expressed in a high-level language into a program expressed in an
intermediate language, assembly language, or a computer language. (2) To prepare a machine-
language program from a computer program written in another programming language by making
use of the overall logic structure of the program, or generating more than one computer instruction for
each symbolic statement, or both, as well as performing the function of an assembler.

compilation variable
A symbolic name for a particular literal value or the value of a compile-time arithmetic expression as
specified by the DEFINE directive or by the DEFINE compiler option.

* compile time
The time at which COBOL source code is translated, by a COBOL compiler, to a COBOL object program.

compile-time arithmetic expression
A subset of arithmetic expressions that are specified in the DEFINE and EVALUATE directives or in
a constant conditional expression. The difference between compile-time arithmetic expressions and
regular arithmetic expressions is that in a compile-time arithmetic expression:

• The exponentiation operator shall not be specified.
• All operands shall be integer numeric literals or arithmetic expressions in which all operands are

integer numeric literals.
• The expression shall be specified in such a way that a division by zero does not occur.

compiler
A program that translates source code written in a higher-level language into machine-language
object code.

compiler-directing statement
A statement that causes the compiler to take a specific action during compilation. The standard
compiler-directing statements are COPY, REPLACE, and USE.

* complex condition
A condition in which one or more logical operators act upon one or more conditions. See also
condition, negated simple condition, and negated combined condition.

complex ODO
Certain forms of the OCCURS DEPENDING ON clause:

• Variably located item or group: A data item described by an OCCURS clause with the DEPENDING ON
option is followed by a nonsubordinate data item or group. The group can be an alphanumeric group
or a national group.

• Variably located table: A data item described by an OCCURS clause with the DEPENDING ON option
is followed by a nonsubordinate data item described by an OCCURS clause.

• Table with variable-length elements: A data item described by an OCCURS clause contains a
subordinate data item described by an OCCURS clause with the DEPENDING ON option.

• Index name for a table with variable-length elements.
• Element of a table with variable-length elements.

component
(1) A functional grouping of related files. (2) In object-oriented programming, a reusable object
or program that performs a specific function and is designed to work with other components and
applications. JavaBeans is Oracle's architecture for creating components.

composed form
Representation of a precomposed Unicode character through a canonical decomposition. See
precomposed character for details.

* computer-name
A system-name that identifies the computer where the program is to be compiled or run.

98 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

condition (exception)
An exception that has been enabled, or recognized, by Language Environment and thus is eligible to
activate user and language condition handlers. Any alteration to the normal programmed flow of an
application. Conditions can be detected by the hardware or the operating system and result in an
interrupt. They can also be detected by language-specific generated code or language library code.

condition (expression)
A status of data at run time for which a truth value can be determined. Where used in this information
in or in reference to "condition" (condition-1, condition-2,. . .) of a general format, the term refers
to a conditional expression that consists of either a simple condition optionally parenthesized or a
combined condition (consisting of the syntactically correct combination of simple conditions, logical
operators, and parentheses) for which a truth value can be determined. See also simple condition,
complex condition, negated simple condition, combined condition, and negated combined condition.

* conditional expression
A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM, or SEARCH
statement. See also simple condition and complex condition.

* conditional phrase
A phrase that specifies the action to be taken upon determination of the truth value of a condition that
results from the execution of a conditional statement.

* conditional statement
A statement that specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program depends on this truth value.

* conditional variable
A data item one or more values of which has a condition-name assigned to it.

* condition-name
A user-defined word that assigns a name to a subset of values that a conditional variable can assume;
or a user-defined word assigned to a status of an implementor-defined switch or device.

* condition-name condition
The proposition (for which a truth value can be determined) that the value of a conditional variable is a
member of the set of values attributed to a condition-name associated with the conditional variable.

* CONFIGURATION SECTION
A section of the ENVIRONMENT DIVISION that describes overall specifications of source and object
programs and class definitions.

CONSOLE
A COBOL environment-name associated with the operator console.

constant conditional expression
A subset of conditional expressions that may be used in IF directives or WHEN phrases of the
EVALUATE directives.

A constant conditional expression shall be one of the following items:

• A relation condition in which both operands are literals or arithmetic expressions that contain only
literal terms. The condition shall follow the rules for relation conditions, with the following additions:

– The operands shall be of the same category. An arithmetic expression is of the category numeric.
– If literals are specified and they are not numeric literals, the relational operator shall be “IS
EQUAL TO”, “IS NOT EQUAL TO”, “IS =”, “IS NOT =”, or “IS <>”.

See also relation condition.
• A defined condition. See also defined condition.
• A boolean condition. See also boolean condition.
• A complex condition formed by combining the above forms of simple conditions into complex

conditions by using AND, OR, and NOT. Abbreviated combined relation conditions shall not be
specified. See also complex condition.

Glossary 99

contained program
A COBOL program that is nested within another COBOL program.

* contiguous items
Items that are described by consecutive entries in the DATA DIVISION, and that bear a definite
hierarchic relationship to each other.

copybook
A file or library member that contains a sequence of code that is included in the source program at
compile time using the COPY statement. The file can be created by the user, supplied by COBOL, or
supplied by another product. Synonymous with copy file.

* counter
A data item used for storing numbers or number representations in a manner that permits these
numbers to be increased or decreased by the value of another number, or to be changed or reset to
zero or to an arbitrary positive or negative value.

cross-reference listing
The portion of the compiler listing that contains information on where files, fields, and indicators are
defined, referenced, and modified in a program.

currency-sign value
A character string that identifies the monetary units stored in a numeric-edited item. Typical examples
are $, USD, and EUR. A currency-sign value can be defined by either the CURRENCY compiler option
or the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.
If the CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the
dollar sign ($) is used as the default currency-sign value. See also currency symbol.

currency symbol
A character used in a PICTURE clause to indicate the position of a currency sign value in a numeric-
edited item. A currency symbol can be defined by either the CURRENCY compiler option or the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. If the
CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the dollar
sign ($) is used as the default currency sign value and currency symbol. Multiple currency symbols
and currency sign values can be defined. See also currency sign value.

* current record
In file processing, the record that is available in the record area associated with a file.

* current volume pointer
A conceptual entity that points to the current volume of a sequential file.

D

* data clause
A clause, appearing in a data description entry in the DATA DIVISION of a COBOL program, that
provides information describing a particular attribute of a data item.

* data description entry
An entry in the DATA DIVISION of a COBOL program that is composed of a level-number followed by
a data-name, if required, and then followed by a set of data clauses, as required.

DATA DIVISION
The division of a COBOL program or method that describes the data to be processed by the program
or method: the files to be used and the records contained within them; internal WORKING-STORAGE
records that will be needed; data to be made available in more than one program in the COBOL run
unit.

* data item
A unit of data (excluding literals) defined by a COBOL program or by the rules for function evaluation.

data set
Synonym for file.

100 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

* data-name
A user-defined word that names a data item described in a data description entry. When used in the
general formats, data-name represents a word that must not be reference-modified, subscripted, or
qualified unless specifically permitted by the rules for the format.

DBCS
See double-byte character set (DBCS).

DBCS character
Any character defined in IBM's double-byte character set.

DBCS character position
See character position.

DBCS data item
A data item that is described by a PICTURE character string that contains at least one symbol G, or,
when the NSYMBOL(DBCS) compiler option is in effect, at least one symbol N. A DBCS data item has
USAGE DISPLAY-1.

* debugging line
Any line with a D in the indicator area of the line.

* debugging section
A section that contains a USE FOR DEBUGGING statement.

* declarative sentence
A compiler-directing sentence that consists of a single USE statement terminated by the separator
period.

* declaratives
A set of one or more special-purpose sections, written at the beginning of the PROCEDURE
DIVISION, the first of which is preceded by the key word DECLARATIVE and the last of which is
followed by the key words END DECLARATIVES. A declarative is composed of a section header,
followed by a USE compiler-directing sentence, followed by a set of zero, one, or more associated
paragraphs.

* de-edit
The logical removal of all editing characters from a numeric-edited data item in order to determine the
unedited numeric value of the item.

defined condition
A compile-time condition that tests whether a compilation variable is defined. Defined conditions are
specified in IF directives or WHEN phrases of the EVALUATE directives.

* delimited scope statement
Any statement that includes its explicit scope terminator.

* delimiter
A character or a sequence of contiguous characters that identify the end of a string of characters and
separate that string of characters from the following string of characters. A delimiter is not part of the
string of characters that it delimits.

dependent region
In IMS, the MVS virtual storage region that contains message-driven programs, batch programs, or
online utilities.

* descending key
A key upon the values of which data is ordered starting with the highest value of key down to the
lowest value of key, in accordance with the rules for comparing data items.

digit
Any of the numerals from 0 through 9. In COBOL, the term is not used to refer to any other symbol.

* digit position
The amount of physical storage required to store a single digit. This amount can vary depending on the
usage specified in the data description entry that defines the data item.

Glossary 101

* direct access
The facility to obtain data from storage devices or to enter data into a storage device in such a way
that the process depends only on the location of that data and not on a reference to data previously
accessed.

display floating-point data item
A data item that is described implicitly or explicitly as USAGE DISPLAY and that has a PICTURE
character string that describes an external floating-point data item.

* division
A collection of zero, one, or more sections or paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. Each division consists of the division header and
the related division body. There are four divisions in a COBOL program: Identification, Environment,
Data, and Procedure.

* division header
A combination of words followed by a separator period that indicates the beginning of a division. The
division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL
See dynamic link library (DLL).

DLL application
An application that references imported programs, functions, or variables.

DLL linkage
A CALL in a program that has been compiled with the DLL and NODYNAM options; the CALL resolves
to an exported name in a separate module, or to an INVOKE of a method that is defined in a separate
module.

do construct
In structured programming, a DO statement is used to group a number of statements in a procedure.
In COBOL, an inline PERFORM statement functions in the same way.

do-until
In structured programming, a do-until loop will be executed at least once, and until a given condition
is true. In COBOL, a TEST AFTER phrase used with the PERFORM statement functions in the same
way.

do-while
In structured programming, a do-while loop will be executed if, and while, a given condition is true. In
COBOL, a TEST BEFORE phrase used with the PERFORM statement functions in the same way.

document type declaration
An XML element that contains or points to markup declarations that provide a grammar for a class of
documents. This grammar is known as a document type definition, or DTD.

document type definition (DTD)
The grammar for a class of XML documents. See document type declaration.

double-byte ASCII
An IBM character set that includes DBCS and single-byte ASCII characters. (Also known as ASCII
DBCS.)

double-byte EBCDIC
An IBM character set that includes DBCS and single-byte EBCDIC characters. (Also known as EBCDIC
DBCS.)

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more symbols than can be represented by 256 code points,

102 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

require double-byte character sets. Because each character requires 2 bytes, entering, displaying,
and printing DBCS characters requires hardware and supporting software that are DBCS-capable.

DWARF
DWARF was developed by the UNIX International Programming Languages Special Interest Group
(SIG). It is designed to meet the symbolic, source-level debugging needs of different languages in a
unified fashion by supplying language-independent debugging information. A DWARF file contains
debugging data organized into different elements. For more information, see DWARF program
information in the DWARF/ELF Extensions Library Reference.

* dynamic access
An access mode in which specific logical records can be obtained from or placed into a mass storage
file in a nonsequential manner and obtained from a file in a sequential manner during the scope of the
same OPEN statement.

dynamic CALL
A CALL literal statement in a program that has been compiled with the DYNAM option and the NODLL
option, or a CALL identifier statement in a program that has been compiled with the NODLL option.

dynamic-length
An adjective describing an item whose logical length might change at runtime.

dynamic-length elementary item
An elementary data item whose data declaration entry contains the DYNAMIC LENGTH clause.

dynamic-length group
A group item that contains a subordinate dynamic-length elementary item.

dynamic link library (DLL)
A file that contains executable code and data that are bound to a program at load time or run time,
rather than during linking. Several applications can share the code and data in a DLL simultaneously.
Although a DLL is not part of the executable file for a program, it can be required for an executable file
to run properly.

dynamic storage area (DSA)
Dynamically acquired storage composed of a register save area and an area available for dynamic
storage allocation (such as program variables). A DSA is allocated upon invocation of a program or
function and persists for the duration of the invocation instance. DSAs are generally allocated within
stack segments managed by Language Environment.

E

* EBCDIC (Extended Binary-Coded Decimal Interchange Code)
A coded character set based on 8-bit coded characters.

EBCDIC character
Any one of the symbols included in the EBCDIC (Extended Binary-Coded-Decimal Interchange Code)
set.

EBCDIC DBCS
See double-byte EBCDIC.

edited data item
A data item that has been modified by suppressing zeros or inserting editing characters or both.

* editing character
A single character or a fixed two-character combination belonging to the following set:

Character Meaning

Space

0 Zero

+ Plus

- Minus

CR Credit

Glossary 103

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest

Character Meaning

DB Debit

Z Zero suppress

* Check protect

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Slant (forward slash)

EGCS
See extended graphic character set (EGCS).

EJB
See Enterprise JavaBeans.

EJB container
A container that implements the EJB component contract of the J2EE architecture. This contract
specifies a runtime environment for enterprise beans that includes security, concurrency, life cycle
management, transaction, deployment, and other services. An EJB container is provided by an EJB or
J2EE server. (Oracle)

EJB server
Software that provides services to an EJB container. An EJB server can host one or more EJB
containers. (Oracle)

element (text element)
One logical unit of a string of text, such as the description of a single data item or verb, preceded by a
unique code identifying the element type.

* elementary item
A data item that is described as not being further logically subdivided.

encapsulation
In object-oriented programming, the technique that is used to hide the inherent details of an
object. The object provides an interface that queries and manipulates the data without exposing
its underlying structure. Synonymous with information hiding.

enclave
When running under Language Environment, an enclave is analogous to a run unit. An enclave can
create other enclaves by using LINK and by using the system() function in C.

encoding unit
See character encoding unit.

end class marker
A combination of words, followed by a separator period, that indicates the end of a COBOL class
definition. The end class marker is:

END CLASS class-name.

end method marker
A combination of words, followed by a separator period, that indicates the end of a COBOL method
definition. The end method marker is:

END METHOD method-name.

* end of PROCEDURE DIVISION
The physical position of a COBOL source program after which no further procedures appear.

104 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

* end program marker
A combination of words, followed by a separator period, that indicates the end of a COBOL source
program. The end program marker is:

END PROGRAM program-name.

enterprise bean
A component that implements a business task and resides in an EJB container. (Oracle)

Enterprise JavaBeans
A component architecture defined by Oracle for the development and deployment of object-oriented,
distributed, enterprise-level applications.

* entry
Any descriptive set of consecutive clauses terminated by a separator period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL program.

* environment clause
A clause that appears as part of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition. The
ENVIRONMENT DIVISION describes the computers where the source program is compiled and those
where the object program is run. It provides a linkage between the logical concept of files and their
records, and the physical aspects of the devices on which files are stored.

environment-name
A name, specified by IBM, that identifies system logical units, printer and card punch control
characters, report codes, program switches or all of these. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT DIVISION, the mnemonic-name can be substituted in
any format in which such substitution is valid.

environment variable
Any of a number of variables that define some aspect of the computing environment, and are
accessible to programs that operate in that environment. Environment variables can affect the
behavior of programs that are sensitive to the environment in which they operate.

escape sequence
A sequence of characters that are used to represent certain special characters within string literals
and character literals.
Escape sequences consist of two or more characters, the first of which is the backslash (\) character,
which is called the "escape character"; the remaining characters determine the interpretation of the
escape sequence. For example, \n is an escape sequence that denotes a newline character.
Escape sequences are used in programming languages such as C, C++, Java, or Python. COBOL does
not have the concept of "escape sequence" or "escape character". To handle special characters within
COBOL literals, see Basic alphanumeric literals and DBCS literals in the Enterprise COBOL for z/OS
Language Reference.

execution time
See run time.

execution-time environment
See runtime environment.

* explicit scope terminator
A reserved word that terminates the scope of a particular PROCEDURE DIVISION statement.

exponent
A number that indicates the power to which another number (the base) is to be raised. Positive
exponents denote multiplication; negative exponents denote division; and fractional exponents
denote a root of a quantity. In COBOL, an exponential expression is indicated with the symbol **
followed by the exponent.

* expression
An arithmetic or conditional expression.

Glossary 105

* extend mode
The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that file,
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

extended graphic character set (EGCS)
A graphic character set, such as a kanji character set, that requires two bytes to identify each graphic
character. It is refined and replaced by double-byte character set (DBCS).

Extensible Markup Language
See XML.

extensions
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

external code page
For XML documents, the value specified by the CODEPAGE compiler option.

* external data
The data that is described in a program as external data items and external file connectors.

* external data item
A data item that is described as part of an external record in one or more programs of a run unit and
that can be referenced from any program in which it is described.

* external data record
A logical record that is described in one or more programs of a run unit and whose constituent data
items can be referenced from any program in which they are described.

external decimal data item
See zoned decimal data item and national decimal data item.

* external file connector
A file connector that is accessible to one or more object programs in the run unit.

external floating-point data item
See display floating-point data item and national floating-point data item.

external program
The outermost program. A program that is not nested.

* external switch
A hardware or software device, defined and named by the implementor, which is used to indicate that
one of two alternate states exists.

F

factory data
Data that is allocated once for a class and shared by all instances of the class. Factory data is declared
in the WORKING-STORAGE SECTION of the DATA DIVISION in the FACTORY paragraph of the class
definition, and is equivalent to Java private static data.

factory method
A method that is supported by a class independently of an object instance. Factory methods are
declared in the FACTORY paragraph of the class definition, and are equivalent to Java public static
methods. They are typically used to customize the creation of objects.

* figurative constant
A compiler-generated value referenced through the use of certain reserved words.

* file
A collection of logical records.

* file attribute conflict condition
An unsuccessful attempt has been made to execute an input-output operation on a file and the file
attributes, as specified for that file in the program, do not match the fixed attributes for that file.

* file clause
A clause that appears as part of any of the following DATA DIVISION entries: file description entry
(FD entry) and sort-merge file description entry (SD entry).

106 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

* file connector
A storage area that contains information about a file and is used as the linkage between a file-name
and a physical file and between a file-name and its associated record area.

File-Control
The name of an ENVIRONMENT DIVISION paragraph in which the data files for a given source
program are declared.

file control block
Block containing the addresses of I/O routines, information about how they were opened and closed,
and a pointer to the file information block.

* file control entry
A SELECT clause and all its subordinate clauses that declare the relevant physical attributes of a file.

FILE-CONTROL paragraph
A paragraph in the ENVIRONMENT DIVISION in which the data files for a given source unit are
declared.

* file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

* file-name
A user-defined word that names a file connector described in a file description entry or a sort-merge
file description entry within the FILE SECTION of the DATA DIVISION.

* file organization
The permanent logical file structure established at the time that a file is created.

file position indicator
A conceptual entity that contains the value of the current key within the key of reference for an
indexed file, or the record number of the current record for a sequential file, or the relative record
number of the current record for a relative file, or indicates that no next logical record exists, or that
an optional input file is not available, or that the AT END condition already exists, or that no valid next
record has been established.

* FILE SECTION
The section of the DATA DIVISION that contains file description entries and sort-merge file
description entries together with their associated record descriptions.

file system
The collection of files that conform to a specific set of data-record and file-description protocols, and
a set of programs that manage these files.

* fixed file attributes
Information about a file that is established when a file is created and that cannot subsequently
be changed during the existence of the file. These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key, the alternate record keys, the code set, the
minimum and maximum record size, the record type (fixed or variable), the collating sequence of the
keys for indexed files, the blocking factor, the padding character, and the record delimiter.

* fixed-length record
A record associated with a file whose file description or sort-merge description entry requires that all
records contain the same number of bytes.

fixed-point item
A numeric data item defined with a PICTURE clause that specifies the location of an optional sign, the
number of digits it contains, and the location of an optional decimal point. The format can be either
binary, packed decimal, or external decimal.

floating comment indicators (*>)
A floating comment indicator indicates a comment line if it is the first character string in the program-
text area (Area A plus Area B), or indicates an inline comment if it is after one or more character
strings in the program-text area.

Glossary 107

floating point
A format for representing numbers in which a real number is represented by a pair of distinct
numerals. In a floating-point representation, the real number is the product of the fixed-point part
(the first numeral) and a value obtained by raising the implicit floating-point base to a power denoted
by the exponent (the second numeral). For example, a floating-point representation of the number
0.0001234 is 0.1234 -3, where 0.1234 is the mantissa and -3 is the exponent.

floating-point data item
A numeric data item that contains a fraction and an exponent. Its value is obtained by multiplying the
fraction by the base of the numeric data item raised to the power that the exponent specifies.

* format
A specific arrangement of a set of data.

* function
A temporary data item whose value is determined at the time the function is referenced during the
execution of a statement.

* function-identifier
A syntactically correct combination of character strings and separators that references a function.
The data item represented by a function is uniquely identified by a function-name with its arguments,
if any. A function-identifier can include a reference-modifier. A function-identifier that references an
alphanumeric function can be specified anywhere in the general formats that an identifier can be
specified, subject to certain restrictions. A function-identifier that references an integer or numeric
function can be referenced anywhere in the general formats that an arithmetic expression can be
specified.

function-name
A word that names the mechanism whose invocation, along with required arguments, determines the
value of a function.

function-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS FUNCTION-POINTER clause contains the address of a function entry point. Typically used to
communicate with C and Java programs.

G

garbage collection
The automatic freeing by the Java runtime system of the memory for objects that are no longer
referenced.

* global name
A name that is declared in only one program but that can be referenced from the program and from
any program contained within the program. Condition-names, data-names, file-names, record-names,
report-names, and some special registers can be global names.

global reference
A reference to an object that is outside the scope of a method.

group item
(1) A data item that is composed of subordinate data items. See alphanumeric group item and national
group item. (2) When not qualified explicitly or by context as a national group or an alphanumeric
group, the term refers to groups in general.

grouping separator
A character used to separate units of digits in numbers for ease of reading. The default is the
character comma.

H

header label
(1) A data-set label that precedes the data records in a unit of recording media. (2) Synonym for
beginning-of-file label.

108 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

hide (a method)
To redefine (in a subclass) a factory or static method defined with the same method-name in a parent
class. Thus, the method in the subclass hides the method in the parent class.

* high-order end
The leftmost character of a string of characters.

hiperspace
In a z/OS environment, a range of up to 2 GB of contiguous virtual storage addresses that a program
can use as a buffer.

I

IBM COBOL extension
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

IDENTIFICATION DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition.
The IDENTIFICATION DIVISION identifies the program, class, or method. The IDENTIFICATION
DIVISION can include the following documentation: author name, installation, or date.

* identifier
A syntactically correct combination of character strings and separators that names a data item.
When referencing a data item that is not a function, an identifier consists of a data-name, together
with its qualifiers, subscripts, and reference-modifier, as required for uniqueness of reference. When
referencing a data item that is a function, a function-identifier is used.

IGZCBSN
The bootstrap routine for COBOL/370 Release 1. It must be link-edited with any module that contains
a COBOL/370 Release 1 program.

IGZCBSO
The bootstrap routine for COBOL for MVS & VM Release 2, COBOL for OS/390® & VM and Enterprise
COBOL. It must be link-edited with any module that contains a COBOL for MVS & VM Release 2,
COBOL for OS/390 & VM or Enterprise COBOL program.

IGZEBST
The bootstrap routine for VS COBOL II. It must be link-edited with any module that contains a VS
COBOL II program.

ILC
InterLanguage Communication. Interlanguage communication is defined as programs that call or are
called by other high-level languages. Assembler is not considered a high-level language; thus, calls to
and from assembler programs are not considered ILC.

* imperative statement
A statement that either begins with an imperative verb and specifies an unconditional action to be
taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope
statement). An imperative statement can consist of a sequence of imperative statements.

* implicit scope terminator
A separator period that terminates the scope of any preceding unterminated statement, or a phrase of
a statement that by its occurrence indicates the end of the scope of any statement contained within
the preceding phrase.

IMS
Information Management System, IBM licensed product. IMS supports hierarchical databases, data
communication, translation processing, and database backout and recovery.

* index
A computer storage area or register, the content of which represents the identification of a particular
element in a table.

* index data item
A data item in which the values associated with an index-name can be stored in a form specified by
the implementor.

Glossary 109

indexed data-name
An identifier that is composed of a data-name, followed by one or more index-names enclosed in
parentheses.

* indexed file
A file with indexed organization.

* indexed organization
The permanent logical file structure in which each record is identified by the value of one or more keys
within that record.

indexing
Synonymous with subscripting using index-names.

* index-name
A user-defined word that names an index associated with a specific table.

inheritance
A mechanism for using the implementation of a class as the basis for another class. By definition,
the inheriting class conforms to the inherited classes. Enterprise COBOL does not support multiple
inheritance; a subclass has exactly one immediate superclass.

inheritance hierarchy
See class hierarchy.

* initial program
A program that is placed into an initial state every time the program is called in a run unit.

* initial state
The state of a program when it is first called in a run unit.

inline
In a program, instructions that are executed sequentially, without branching to routines, subroutines,
or other programs.

inline comments
An inline comment is identified by a floating comment indicator (*>) preceded by one or more
character-strings in the program-text area, and can be written on any line of a compilation group.
All characters that follow the floating comment indicator up to the end of area B are comment text.

* input file
A file that is opened in the input mode.

* input mode
The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that file
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

* input-output file
A file that is opened in the I-O mode.

* INPUT-OUTPUT SECTION
The section of the ENVIRONMENT DIVISION that names the files and the external media required by
an object program or method and that provides information required for transmission and handling of
data at run time.

* input-output statement
A statement that causes files to be processed by performing operations on individual records or
on the file as a unit. The input-output statements are ACCEPT (with the identifier phrase), CLOSE,
DELETE, DISPLAY, OPEN, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START, and
WRITE.

* input procedure
A set of statements, to which control is given during the execution of a format 1 SORT statement, for
the purpose of controlling the release of specified records to be sorted.

instance data
Data that defines the state of an object. The instance data introduced by a class is defined in
the WORKING-STORAGE SECTION of the DATA DIVISION in the OBJECT paragraph of the class
definition. The state of an object also includes the state of the instance variables introduced by

110 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

classes that are inherited by the current class. A separate copy of the instance data is created for each
object instance.

* integer
(1) A numeric literal that does not include any digit positions to the right of the decimal point. (2) A
numeric data item defined in the DATA DIVISION that does not include any digit positions to the
right of the decimal point. (3) A numeric function whose definition provides that all digits to the right
of the decimal point are zero in the returned value for any possible evaluation of the function.

integer function
A function whose category is numeric and whose definition does not include any digit positions to the
right of the decimal point.

Interactive System Productivity Facility (ISPF)
An IBM software product that provides a menu-driven interface for the TSO or VM user. ISPF includes
library utilities, a powerful editor, and dialog management.

interlanguage communication (ILC)
The ability of routines written in different programming languages to communicate. ILC support lets
you readily build applications from component routines written in a variety of languages.

intermediate result
An intermediate field that contains the results of a succession of arithmetic operations.

* internal data
The data that is described in a program and excludes all external data items and external file
connectors. Items described in the LINKAGE SECTION of a program are treated as internal data.

* internal data item
A data item that is described in one program in a run unit. An internal data item can have a global
name.

internal decimal data item
A data item that is described as USAGE PACKED-DECIMAL or USAGE COMP-3, and that has a
PICTURE character string that defines the item as numeric (a valid combination of symbols 9, S, P, or
V). Synonymous with packed-decimal data item.

* internal file connector
A file connector that is accessible to only one object program in the run unit.

internal floating-point data item
A data item that is described as USAGE COMP-1 or USAGE COMP-2. COMP-1 defines a single-
precision floating-point data item. COMP-2 defines a double-precision floating-point data item. There
is no PICTURE clause associated with an internal floating-point data item.

* intrarecord data structure
The entire collection of groups and elementary data items from a logical record that a contiguous
subset of the data description entries defines. These data description entries include all entries
whose level-number is greater than the level-number of the first data description entry describing the
intra-record data structure.

intrinsic function
A predefined function, such as a commonly used arithmetic function, called by a built-in function
reference.

* invalid key condition
A condition, at run time, caused when a specific value of the key associated with an indexed or relative
file is determined to be not valid.

* I-O-CONTROL
The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for rerun
points, sharing of same areas by several data files, and multiple file storage on a single input-output
device are specified.

* I-O-CONTROL entry
An entry in the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that provide information required for the transmission and handling of data on named files
during the execution of a program.

Glossary 111

* I-O mode
The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file
and before the execution of a CLOSE statement without the REEL or UNIT phase for that file.

* I-O status
A conceptual entity that contains the two-character value indicating the resulting status of an input-
output operation. This value is made available to the program through the use of the FILE STATUS
clause in the file control entry for the file.

is-a
A relationship that characterizes classes and subclasses in an inheritance hierarchy. Subclasses that
have an is-a relationship to a class inherit from that class.

ISPF
See Interactive System Productivity Facility (ISPF).

iteration structure
A program processing logic in which a series of statements is repeated while a condition is true or
until a condition is true.

J

J2EE
See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications, defined by Oracle. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and protocols that
provide the functionality for developing multitiered, Web-based applications. (Oracle)

Java Batch Launcher and Toolkit for z/OS (JZOS)
A set of tools that helps you develop z/OS Java applications that run in a traditional batch
environment, and that access z/OS system services.

Java batch-processing program (JBP)
An IMS batch-processing program that has access to online databases and output message queues.
JBPs run online, but like programs in a batch environment, they are started with JCL or in a TSO
session.

Java batch-processing region
An IMS dependent region in which only Java batch-processing programs are scheduled.

Java Database Connectivity (JDBC)
A specification from Oracle that defines an API that enables Java programs to access databases.

Java message-processing program (JMP)
A Java application program that is driven by transactions and has access to online IMS databases and
message queues.

Java message-processing region
An IMS dependent region in which only Java message-processing programs are scheduled.

Java Native Interface (JNI)
A programming interface that lets Java code that runs inside a Java virtual machine (JVM)
interoperate with applications and libraries written in other programming languages.

Java virtual machine (JVM)
A software implementation of a central processing unit that runs compiled Java programs.

JavaBeans
A portable, platform-independent, reusable component model. (Oracle)

JBP
See Java batch-processing program (JBP).

JDBC
See Java Database Connectivity (JDBC).

JMP
See Java message-processing program (JMP).

112 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

job control language (JCL)
A control language used to identify a job to an operating system and to describe the job's
requirements.

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.

JVM
See Java virtual machine (JVM).

JZOS
See Java Batch Launcher and Toolkit for z/OS.

K

K
When referring to storage capacity, two to the tenth power; 1024 in decimal notation.

* key
A data item that identifies the location of a record, or a set of data items that serve to identify the
ordering of data.

* key of reference
The key, either prime or alternate, currently being used to access records within an indexed file.

* keyword
A context-sensitive word or a reserved word whose presence is required when the format in which the
word appears is used in a source unit.

kilobyte (KB)
One kilobyte equals 1024 bytes.

L

* language-name
A system-name that specifies a particular programming language.

Language Environment
Short form of z/OS Language Environment. A set of architectural constructs and interfaces that
provides a common runtime environment and runtime services for C, C++, COBOL, FORTRAN and PL/I
applications. It is required for programs compiled by Language Environment-conforming compilers
and for Java applications.

Language Environment-conforming
A characteristic of compiler products (such as Enterprise COBOL, COBOL for OS/390 & VM, COBOL
for MVS & VM, C/C++ for MVS & VM, PL/I for MVS & VM) that produce object code conforming to the
Language Environment conventions.

last-used state
A state that a program is in if its internal values remain the same as when the program was exited (the
values are not reset to their initial values).

* letter
A character belonging to one of the following two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator
Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level
indicators in the DATA DIVISION are: CD, FD, and SD.

* level-number
A user-defined word (expressed as a two-digit number) that indicates the hierarchical position of
a data item or the special properties of a data description entry. Level-numbers in the range from
1 through 49 indicate the position of a data item in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 can be written either as a single digit or as a zero followed by
a significant digit. Level-numbers 66, 77, and 88 identify special properties of a data description entry.

Glossary 113

* library-name
A user-defined word that names a COBOL library that the compiler is to use for compiling a given
source program.

* library text
A sequence of text words, comment lines, inline comments, the separator space, or the separator
pseudo-text delimiter in a COBOL library.

Lilian date
The number of days since the beginning of the Gregorian calendar. Day one is Friday, October 15,
1582. The Lilian date format is named in honor of Luigi Lilio, the creator of the Gregorian calendar.

* linage-counter
A special register whose value points to the current position within the page body.

link
(1) The combination of the link connection (the transmission medium) and two link stations, one
at each end of the link connection. A link can be shared among multiple links in a multipoint or
token-ring configuration. (2) To interconnect items of data or portions of one or more computer
programs; for example, linking object programs by a linkage-editor to produce an executable file.

LINKAGE SECTION
The section in the DATA DIVISION of the called program or invoked method that describes data
items available from the calling program or invoking method. Both the calling program or invoking
method and the called program or invoked method can refer to these data items.

linker
A term that refers to either the z/OS binder (linkage-editor).

literal
A character string whose value is specified either by the ordered set of characters comprising the
string or by the use of a figurative constant.

little-endian
The default format that Intel processors use to store binary data and UTF-16 characters. In this
format, the most significant byte of a binary data item is at the highest address and the most
significant byte of a UTF-16 character is at the highest address. Compare with big-endian.

local reference
A reference to an object that is within the scope of your method.

locale
A set of attributes for a program execution environment that indicates culturally sensitive
considerations, such as character code page, collating sequence, date and time format, monetary
value representation, numeric value representation, or language.

* LOCAL-STORAGE SECTION
The section of the DATA DIVISION that defines storage that is allocated and freed on a per-
invocation basis, depending on the value assigned in the VALUE clauses.

* logical operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or OR, or both
can be used as logical connectives. NOT can be used for logical negation.

* logical record
The most inclusive data item. The level-number for a record is 01. A record can be either an
elementary item or a group of items. Synonymous with record.

* low-order end
The rightmost character of a string of characters.

M

main program
In a hierarchy of programs and subroutines, the first program that receives control when the programs
are run within a process.

114 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

makefile
A text file that contains a list of the files for your application. The make utility uses this file to update
the target files with the latest changes.

* mass storage
A storage medium in which data can be organized and maintained in both a sequential manner and a
nonsequential manner.

* mass storage device
A device that has a large storage capacity, such as a magnetic disk.

* mass storage file
A collection of records that is stored in a mass storage medium.

* megabyte (MB)
One megabyte equals 1,048,576 bytes.

* merge file
A collection of records to be merged by a MERGE statement. The merge file is created and can be used
only by the merge function.

message-processing program (MPP)
An IMS application program that is driven by transactions and has access to online IMS databases and
message queues.

message queue
The data set on which messages are queued before being processed by an application program or
sent to a terminal.

method
Procedural code that defines an operation supported by an object and that is executed by an INVOKE
statement on that object.

* method definition
The COBOL source code that defines a method.

* method identification entry
An entry in the METHOD-ID paragraph of the IDENTIFICATION DIVISION; this entry contains a
clause that specifies the method-name.

method invocation
A communication from one object to another that requests the receiving object to execute a method.

method-name
The name of an object-oriented operation. When used to invoke the method, the name can be an
alphanumeric or national literal or a category alphanumeric or category national data item. When used
in the METHOD-ID paragraph to define the method, the name must be an alphanumeric or national
literal.

method hiding
See hide.

method overloading
See overload.

method overriding
See override.

* mnemonic-name
A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified
implementor-name.

module definition file
A file that describes the code segments within a program object.

MPP
See message-processing program (MPP).

multitasking
A mode of operation that provides for the concurrent, or interleaved, execution of two or more tasks.

Glossary 115

multithreading
Concurrent operation of more than one path of execution within a computer. Synonymous with
multiprocessing.

N

name
A word (composed of not more than 30 characters) that defines a COBOL operand.

namespace
See XML namespace.

national character
(1) A UTF-16 character in a USAGE NATIONAL data item or national literal. (2) Any character
represented in UTF-16.

national character data
A general reference to data represented in UTF-16.

national character position
See character position.

national data
See national character data.

national data item
A data item of category national, national-edited, or numeric-edited of USAGE NATIONAL.

national decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE NATIONAL and that
contains a valid combination of PICTURE symbols 9, S, P, and V.

national-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol N and at least one of the simple insertion symbols B, 0, or /. A national-edited data item has
USAGE NATIONAL.

national floating-point data item
An external floating-point data item that is described implicitly or explicitly as USAGE NATIONAL and
that has a PICTURE character string that describes a floating-point data item.

national group item
A group item that is explicitly or implicitly described with a GROUP-USAGE NATIONAL clause. A
national group item is processed as though it were defined as an elementary data item of category
national for operations such as INSPECT, STRING, and UNSTRING. This processing ensures correct
padding and truncation of national characters, as contrasted with defining USAGE NATIONAL data
items within an alphanumeric group item. For operations that require processing of the elementary
items within a group, such as MOVE CORRESPONDING, ADD CORRESPONDING, and INITIALIZE, a
national group is processed using group semantics.

* native character set
The implementor-defined character set associated with the computer specified in the OBJECT-
COMPUTER paragraph.

* native collating sequence
The implementor-defined collating sequence associated with the computer specified in the OBJECT-
COMPUTER paragraph.

native method
A Java method with an implementation that is written in another programming language, such as
COBOL.

* negated combined condition
The NOT logical operator immediately followed by a parenthesized combined condition. See also
condition and combined condition.

* negated simple condition
The NOT logical operator immediately followed by a simple condition. See also condition and simple
condition.

116 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

nested program
A program that is directly contained within another program.

* next executable sentence
The next sentence to which control will be transferred after execution of the current statement is
complete.

* next executable statement
The next statement to which control will be transferred after execution of the current statement is
complete.

* next record
The record that logically follows the current record of a file.

* noncontiguous items
Elementary data items in the WORKING-STORAGE SECTION and LINKAGE SECTION that bear no
hierarchic relationship to other data items.

* noncontiguous items
Elementary data items in the WORKING-STORAGE and LINKAGE SECTIONs that bear no hierarchic
relationship to other data items.

* nonnumeric item
A data item whose description permits its content to be composed of any combination of characters
taken from the computer's character set. Certain categories of nonnumeric items may be formed from
more restricted character sets.

null
A figurative constant that is used to assign, to pointer data items, the value of an address that is not
valid. NULLS can be used wherever NULL can be used.

* numeric character
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item
(1) A data item whose description restricts its content to a value represented by characters chosen
from the digits 0 through 9. If signed, the item can also contain a +, -, or other representation of
an operational sign. (2) A data item of category numeric, internal floating-point, or external floating-
point. A numeric data item can have USAGE DISPLAY, NATIONAL, PACKED-DECIMAL, BINARY, COMP,
COMP-1, COMP-2, COMP-3, COMP-4, or COMP-5.

numeric-edited data item
A data item that contains numeric data in a form suitable for use in printed output. The data item can
consist of external decimal digits from 0 through 9, the decimal separator, commas, the currency sign,
sign control characters, and other editing characters. A numeric-edited item can be represented in
either USAGE DISPLAY or USAGE NATIONAL.

* numeric function
A function whose class and category are numeric but that for some possible evaluation does not
satisfy the requirements of integer functions.

* numeric item
A data item whose description restricts its content to a value represented by characters chosen from
the digits from '0' through '9'; if signed, the item may also contain a '+', '-', or other representation of
an operational sign.

* numeric literal
A literal composed of one or more numeric characters that can contain a decimal point or an algebraic
sign, or both. The decimal point must not be the rightmost character. The algebraic sign, if present,
must be the leftmost character.

O

object
An entity that has state (its data values) and operations (its methods). An object is a way to
encapsulate state and behavior. Each object in the class is said to be an instance of the class.

Glossary 117

object code
Output from a compiler or assembler that is itself executable machine code or is suitable for
processing to produce executable machine code.

* OBJECT-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
object program is run, is described.

* object computer entry
An entry in the OBJECT-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the object program is to be executed.

object deck
A portion of an object program suitable as input to a linkage-editor. Synonymous with object module
and text deck.

object instance
A single object, of possibly many, instantiated from the specifications in the object paragraph of a
COBOL class definition. An object instance has a copy of all the data described in its class definition
and all inherited data. The methods associated with an object instance includes the methods defined
in its class definition and all inherited methods.

An object instance can be an instance of a Java class.

object module
Synonym for object deck or text deck.

* object of entry
A set of operands and reserved words, within a DATA DIVISION entry of a COBOL program, that
immediately follows the subject of the entry.

object-oriented programming
A programming approach based on the concepts of encapsulation and inheritance. Unlike procedural
programming techniques, object-oriented programming concentrates on the data objects that
comprise the problem and how they are manipulated, not on how something is accomplished.

object program
A set or group of executable machine-language instructions and other material designed to interact
with data to provide problem solutions. In this context, an object program is generally the machine
language result of the operation of a COBOL compiler on a source program or class definition. Where
there is no danger of ambiguity, the word program can be used in place of object program.

object reference
A value that identifies an instance of a class. If the class is not specified, the object reference is
universal and can apply to instances of any class.

* object time
The time at which an object program is executed. Synonymous with run time.

* obsolete element
A COBOL language element in the 85 COBOL Standard that was deleted from the 2002 COBOL
Standard.

ODO object
In the example below, X is the object of the OCCURS DEPENDING ON clause (ODO object).

WORKING-STORAGE SECTION.
01 TABLE-1.
 05 X PIC S9.
 05 Y OCCURS 3 TIMES
 DEPENDING ON X PIC X.

The value of the ODO object determines how many of the ODO subject appear in the table.

ODO subject
In the example above, Y is the subject of the OCCURS DEPENDING ON clause (ODO subject). The
number of Y ODO subjects that appear in the table depends on the value of X.

118 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

* open mode
The state of a file after execution of an OPEN statement for that file and before the execution of a
CLOSE statement without the REEL or UNIT phrase for that file. The particular open mode is specified
in the OPEN statement as either INPUT, OUTPUT, I-O, or EXTEND.

* operand
(1) The general definition of operand is "the component that is operated upon." (2) For the purposes
of this document, any lowercase word (or words) that appears in a statement or entry format can
be considered to be an operand and, as such, is an implied reference to the data indicated by the
operand.

operation
A service that can be requested of an object.

* operational sign
An algebraic sign that is associated with a numeric data item or a numeric literal, to indicate whether
its value is positive or negative.

optional file
A file that is declared as being not necessarily available each time the object program is run.

* optional word
A reserved word that is included in a specific format only to improve the readability of the language.
Its presence is optional to the user when the format in which the word appears is used in a source
unit.

* output file
A file that is opened in either output mode or extend mode.

* output mode
The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase specified,
for that file and before the execution of a CLOSE statement without the REEL or UNIT phrase for that
file.

* output procedure
A set of statements to which control is given during execution of a format 1 SORT statement after the
sort function is completed, or during execution of a MERGE statement after the merge function reaches
a point at which it can select the next record in merged order when requested.

overflow condition
A condition that occurs when a portion of the result of an operation exceeds the capacity of the
intended unit of storage.

overload
To define a method with the same name as another method that is available in the same class, but
with a different signature. See also signature.

override
To redefine an instance method (inherited from a parent class) in a subclass.

P

package
A group of related Java classes, which can be imported individually or as a whole.

packed-decimal data item
See internal decimal data item.

padding character
An alphanumeric or national character that is used to fill the unused character positions in a physical
record.

page
A vertical division of output data that represents a physical separation of the data. The separation is
based on internal logical requirements or external characteristics of the output medium or both.

* page body
That part of the logical page in which lines can be written or spaced or both.

Glossary 119

* paragraph
In the PROCEDURE DIVISION, a paragraph-name followed by a separator period and by zero, one,
or more sentences. In the IDENTIFICATION DIVISION and ENVIRONMENT DIVISION, a paragraph
header followed by zero, one, or more entries.

* paragraph header
A reserved word, followed by the separator period, that indicates the beginning of a paragraph in the
IDENTIFICATION DIVISION and ENVIRONMENT DIVISION. The permissible paragraph headers in
the IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION
 DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION
 DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class
 CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION.

parameter
(1) Data passed between a calling program and a called program. (2) A data element in the USING
phrase of a method invocation. Arguments provide additional information that the invoked method
can use to perform the requested operation.

Persistent Reusable JVM
A JVM that can be serially reused for transaction processing by resetting the JVM between
transactions. The reset phase restores the JVM to a known initialization state.

* phrase
An ordered set of one or more consecutive COBOL character strings that form a portion of a COBOL
procedural statement or of a COBOL clause.

* physical record
See block.

pointer data item
A data item in which address values can be stored. Data items are explicitly defined as pointers with
the USAGE IS POINTER clause. ADDRESS OF special registers are implicitly defined as pointer data
items. Pointer data items can be compared for equality or moved to other pointer data items.

port
(1) To modify a computer program to enable it to run on a different platform. (2) In the Internet
suite of protocols, a specific logical connector between the Transmission Control Protocol (TCP) or the
User Datagram Protocol (UDP) and a higher-level protocol or application. A port is identified by a port
number.

portability
The ability to transfer an application program from one application platform to another with relatively
few changes to the source program.

120 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

precomposed character
A single Unicode character that can be represented using two or more Unicode characters through a
canonical decomposition. A precomposed character does not have the same physical representation
as its composed character form. For example, Unicode character U+00E4 (ä) is a precomposed
character that can be represented as a combination of Unicode characters U+0061 + U+0308 (ä) -
latin small letter a + combining diaeresis. A precomposed character is typically used to represent a
latin letter with a diacritical mark or some other combining character.

preinitialization
The initialization of the COBOL runtime environment in preparation for multiple calls from programs,
especially non-COBOL programs. The environment is not terminated until an explicit termination.

* prime record key
A key whose contents uniquely identify a record within an indexed file.

* priority-number
A user-defined word that classifies sections in the PROCEDURE DIVISION for purposes of
segmentation. Segment numbers can contain only the characters 0 through 9. A segment number
can be expressed as either one or two digits.

private
As applied to factory data or instance data, accessible only by methods of the class that defines the
data.

* procedure
A paragraph or group of logically successive paragraphs, or a section or group of logically successive
sections, within the PROCEDURE DIVISION.

* procedure branching statement
A statement that causes the explicit transfer of control to a statement other than the next executable
statement in the sequence in which the statements are written in the source code. The procedure
branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT
PROCEDURE phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE
phrase), XML PARSE.

PROCEDURE DIVISION
The COBOL division that contains instructions for solving a problem.

procedure integration
One of the functions of the COBOL optimizer is to simplify calls to performed procedures or contained
programs.

PERFORM procedure integration is the process whereby a PERFORM statement is replaced by its
performed procedures. Contained program procedure integration is the process where a call to a
contained program is replaced by the program code.

* procedure-name
A user-defined word that is used to name a paragraph or section in the PROCEDURE DIVISION. It
consists of a paragraph-name (which can be qualified) or a section-name.

procedure pointer
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE IS
PROCEDURE-POINTER clause contains the address of a procedure entry point.

procedure-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS PROCEDURE-POINTER clause contains the address of a procedure entry point. Typically used to
communicate with COBOL and Language Environment programs.

process
The course of events that occurs during the execution of all or part of a program. Multiple processes
can run concurrently, and programs that run within a process can share resources.

program
(1) A sequence of instructions suitable for processing by a computer. Processing may include the use
of a compiler to prepare the program for execution, as well as a runtime environment to execute it. (2)

Glossary 121

A logical assembly of one or more interrelated modules. Multiple copies of the same program can be
run in different processes.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or an
alphanumeric literal that identifies a COBOL source program.

* program identification entry
In the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION, an entry that contains clauses
that specify the program-name and assign selected program attributes to the program.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or
alphanumeric literal that identifies a COBOL source program.

project
The complete set of data and actions that are required to build a target, such as a dynamic link library
(DLL) or other executable (EXE).

* pseudo-text
A sequence of text words, comment lines, inline comments, or the separator space in a source
program or COBOL library bounded by, but not including, pseudo-text delimiters.

* pseudo-text delimiter
Two contiguous equal sign characters (==) used to delimit pseudo-text.

* punctuation character
A character that belongs to the following set:

Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

" Quotation mark

(Left parenthesis

) Right parenthesis

Space

= Equal sign

Q

QSAM (Queued Sequential Access Method)
An extended version of the basic sequential access method (BSAM). When this method is used, a
queue is formed of input data blocks that are awaiting processing or of output data blocks that have
been processed and are awaiting transfer to auxiliary storage or to an output device.

* qualified data-name
An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

* qualifier
(1) A data-name or a name associated with a level indicator that is used in a reference either together
with another data-name (which is the name of an item that is subordinate to the qualifier) or together
with a condition-name. (2) A section-name that is used in a reference together with a paragraph-name
specified in that section. (3) A library-name that is used in a reference together with a text-name
associated with that library.

R

122 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

* random access
An access mode in which the program-specified value of a key data item identifies the logical record
that is obtained from, deleted from, or placed into a relative or indexed file.

* record
See logical record.

* record area
A storage area allocated for the purpose of processing the record described in a record description
entry in the FILE SECTION of the DATA DIVISION. In the FILE SECTION, the current number of
character positions in the record area is determined by the explicit or implicit RECORD clause.

* record description
See record description entry.

* record description entry
The total set of data description entries associated with a particular record. Synonymous with record
description.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed-length), V (variable-length),
S (spanned), or U (undefined).

record key
A key whose contents identify a record within an indexed file.

* record-name
A user-defined word that names a record described in a record description entry in the DATA
DIVISION of a COBOL program.

* record number
The ordinal number of a record in the file whose organization is sequential.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed length), V (variable length),
S (spanned), or U (undefined).

recursion
A program calling itself or being directly or indirectly called by one of its called programs.

recursively capable
A program is recursively capable (can be called recursively) if the RECURSIVE attribute is on the
PROGRAM-ID statement.

reel
A discrete portion of a storage medium, the dimensions of which are determined by each implementor
that contains part of a file, all of a file, or any number of files. Synonymous with unit and volume.

reentrant
The attribute of a program or routine that lets more than one user share a single copy of a program
object.

* reference format
A format that provides a standard method for describing COBOL source programs.

reference modification
A method of defining a new category alphanumeric, category DBCS, or category national data item
by specifying the leftmost character and length relative to the leftmost character position of a USAGE
DISPLAY, DISPLAY-1, or NATIONAL data item.

* reference-modifier
A syntactically correct combination of character strings and separators that defines a unique data
item. It includes a delimiting left parenthesis separator, the leftmost character position, a colon
separator, optionally a length, and a delimiting right parenthesis separator.

* relation
See relational operator or relation condition.

* relation character
A character that belongs to the following set:

Glossary 123

Character Meaning

> Greater than

< Less than

= Equal to

* relation condition
The proposition (for which a truth value can be determined) that the value of an arithmetic expression,
data item, alphanumeric literal, or index-name has a specific relationship to the value of another
arithmetic expression, data item, alphanumeric literal, or index name. See also relational operator.

* relational operator
A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation condition.
The permissible operators and their meanings are:

Character Meaning

IS GREATER THAN Greater than

IS > Greater than

IS NOT GREATER THAN Not greater than

IS NOT > Not greater than

IS LESS THAN Less than

IS < Less than

IS NOT LESS THAN Not less than

IS NOT < Not less than

IS EQUAL TO Equal to

IS = Equal to

IS NOT EQUAL TO Not equal to

IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO Less than or equal to

IS <= Less than or equal to

* relative file
A file with relative organization.

* relative key
A key whose contents identify a logical record in a relative file.

* relative organization
The permanent logical file structure in which each record is uniquely identified by an integer value
greater than zero, which specifies the logical ordinal position of the record in the file.

* relative record number
The ordinal number of a record in a file whose organization is relative. This number is treated as a
numeric literal that is an integer.

124 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

* reserved word
A COBOL word that is specified in the list of words that can be used in a COBOL source program, but
that must not appear in the program as a user-defined word or system-name.

* resource
A facility or service, controlled by the operating system, that an executing program can use.

* resultant identifier
A user-defined data item that is to contain the result of an arithmetic operation.

reusable environment
A reusable environment is created when you establish an assembler program as the main program by
using either the old COBOL interfaces for preinitialization (RTEREUS runtime option), or the Language
Environment interface, CEEPIPI.

routine
A set of statements in a COBOL program that causes the computer to perform an operation or series
of related operations. In Language Environment, refers to either a procedure, function, or subroutine.

* routine-name
A user-defined word that identifies a procedure written in a language other than COBOL.

* run time
The time at which an object program is executed. Synonymous with object time.

runtime environment
The environment in which a COBOL program executes.

* run unit
A stand-alone object program, or several object programs, that interact by means of COBOL CALL or
INVOKE statements and function at run time as an entity.
A run unit is also called an enclave in Language Environment terminology.

S

SBCS
See single-byte character set (SBCS).

scope terminator
A COBOL reserved word that marks the end of certain PROCEDURE DIVISION statements.It can be
either explicit (END-ADD, for example) or implicit (separator period).

* section
A set of zero, one, or more paragraphs or entities, called a section body, the first of which is preceded
by a section header. Each section consists of the section header and the related section body.

* section header
A combination of words followed by a separator period that indicates the beginning of a section in
any of these divisions: ENVIRONMENT, DATA, or PROCEDURE. In the ENVIRONMENT DIVISION and
DATA DIVISION, a section header is composed of reserved words followed by a separator period.
The permissible section headers in the ENVIRONMENT DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the DATA DIVISION are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a separator period.

Glossary 125

* section-name
A user-defined word that names a section in the PROCEDURE DIVISION.

segmentation
A feature of Enterprise COBOL that is based on the 85 COBOL Standard segmentation module. The
segmentation feature uses priority-numbers in section headers to assign sections to fixed segments
or independent segments. Segment classification affects whether procedures contained in a segment
receive control in initial state or last-used state.

selection structure
A program processing logic in which one or another series of statements is executed, depending on
whether a condition is true or false.

* sentence
A sequence of one or more statements, the last of which is terminated by a separator period.

* separately compiled program
A program that, together with its contained programs, is compiled separately from all other programs.

* separator
A character or two or more contiguous characters used to delimit character strings.

* separator comma
A comma (,) followed by a space used to delimit character strings.

* separator period
A period (.) followed by a space used to delimit character strings.

* separator semicolon
A semicolon (;) followed by a space used to delimit character strings.

sequence structure
A program processing logic in which a series of statements is executed in sequential order.

* sequential access
An access mode in which logical records are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined by the order of records in the file.

* sequential file
A file with sequential organization.

* sequential organization
The permanent logical file structure in which a record is identified by a predecessor-successor
relationship established when the record is placed into the file.

serial search
A search in which the members of a set are consecutively examined, beginning with the first member
and ending with the last.

session bean
In EJB, an enterprise bean that is created by a client and that usually exists only for the duration of a
single client/server session. (Oracle)

77-level-description-entry
A data description entry that describes a noncontiguous data item that has level-number 77.

* sign condition
The proposition (for which a truth value can be determined) that the algebraic value of a data item or
an arithmetic expression is either less than, greater than, or equal to zero.

signature
(1) The name of an operation and its parameters. (2) The name of a method and the number and types
of its formal parameters.

* simple condition
Any single condition chosen from this set:

• Relation condition
• Class condition

126 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

• Condition-name condition
• Switch-status condition
• Sign condition

See also condition and negated simple condition.

single-byte character set (SBCS)
A set of characters in which each character is represented by a single byte. See also ASCII and
EBCDIC (Extended Binary-Coded Decimal Interchange Code).

slack bytes (within records)
Bytes inserted by the compiler between data items to ensure correct alignment of some elementary
data items. Slack bytes contain no meaningful data. The SYNCHRONIZED clause instructs the
compiler to insert slack bytes when they are needed for proper alignment.

slack bytes (between records)
Bytes inserted by the programmer between blocked logical records of a file, to ensure correct
alignment of some elementary data items. In some cases, slack bytes between records improve
performance for records processed in a buffer.

* sort file
A collection of records to be sorted by a format 1 SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator SD,
followed by a file-name, and then followed by a set of file clauses as required.

* SOURCE-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
source program is compiled, is described.

* source computer entry
An entry in the SOURCE-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the source program is to be compiled.

* source item
An identifier designated by a SOURCE clause that provides the value of a printable item.

source program
Although a source program can be represented by other forms and symbols, in this document the
term always refers to a syntactically correct set of COBOL statements. A COBOL source program
commences with the IDENTIFICATION DIVISION or a COPY statement and terminates with the end
program marker, if specified, or with the absence of additional source program lines.

source unit
A unit of COBOL source code that can be separately compiled: a program or a class definition. Also
known as a compilation unit.

special character
A character that belongs to the following set:

Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

Glossary 127

Character Meaning

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

SPECIAL-NAMES
The name of an ENVIRONMENT DIVISION paragraph in which environment-names are related to
user-specified mnemonic-names.

* special names entry
An entry in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION; this entry provides
means for specifying the currency sign; choosing the decimal point; specifying symbolic characters;
relating implementor-names to user-specified mnemonic-names; relating alphabet-names to
character sets or collating sequences; and relating class-names to sets of characters.

* special registers
Certain compiler-generated storage areas whose primary use is to store information produced in
conjunction with the use of a specific COBOL feature.

* standard data format
The concept used in describing the characteristics of data in a COBOL DATA DIVISION under which
the characteristics or properties of the data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than a form oriented to the manner in
which the data is stored internally in the computer, or on a particular external medium.

* statement
A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a
COBOL source program.

structured programming
A technique for organizing and coding a computer program in which the program comprises a
hierarchy of segments, each segment having a single entry point and a single exit point. Control
is passed downward through the structure without unconditional branches to higher levels of the
hierarchy.

* subclass
A class that inherits from another class. When two classes in an inheritance relationship are
considered together, the subclass is the inheritor or inheriting class; the superclass is the inheritee or
inherited class.

* subject of entry
An operand or reserved word that appears immediately following the level indicator or the level-
number in a DATA DIVISION entry.

* subprogram
See called program.

* subscript
An occurrence number that is represented by either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name optionally followed by an integer with the operator
+ or -, that identifies a particular element in a table. A subscript can be the word ALL when the
subscripted identifier is used as a function argument for a function allowing a variable number of
arguments.

128 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

* subscripted data-name
An identifier that is composed of a data-name followed by one or more subscripts enclosed in
parentheses.

substitution character
A character that is used in a conversion from a source code page to a target code page to represent a
character that is not defined in the target code page.

* superclass
A class that is inherited by another class. See also subclass.

surrogate pair
In the UTF-16 format of Unicode, a pair of encoding units that together represents a single Unicode
graphic character. The first unit of the pair is called a high surrogate and the second a low surrogate.
The code value of a high surrogate is in the range X'D800' through X'DBFF'. The code value of a low
surrogate is in the range X'DC00' through X'DFFF'. Surrogate pairs provide for more characters than
the 65,536 characters that fit in the Unicode 16-bit coded character set.

switch-status condition
The proposition (for which a truth value can be determined) that an UPSI switch, capable of being set
to an on or off status, has been set to a specific status.

* symbolic-character
A user-defined word that specifies a user-defined figurative constant.

syntax
(1) The relationship among characters or groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The structure of expressions in a language. (3) The
rules governing the structure of a language. (4) The relationship among symbols. (5) The rules for the
construction of a statement.

* system-name
A COBOL word that is used to communicate with the operating environment.

T

* table
A set of logically consecutive items of data that are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element
A data item that belongs to the set of repeated items comprising a table.

text deck
Synonym for object deck or object module.

* text-name
A user-defined word that identifies library text.

* text word
A character or a sequence of contiguous characters between margin A and margin R in a COBOL
library, source program, or pseudo-text that is any of the following characters:

• A separator, except for space; a pseudo-text delimiter; and the opening and closing delimiters for
alphanumeric literals. The right parenthesis and left parenthesis characters, regardless of context
within the library, source program, or pseudo-text, are always considered text words.

• A literal including, in the case of alphanumeric literals, the opening quotation mark and the closing
quotation mark that bound the literal.

• Any other sequence of contiguous COBOL characters except comment lines and the word COPY
bounded by separators that are neither a separator nor a literal.

thread
A stream of computer instructions (initiated by an application within a process) that is in control of a
process.

Glossary 129

token
In the COBOL editor, a unit of meaning in a program. A token can contain data, a language keyword, an
identifier, or other part of the language syntax.

top-down design
The design of a computer program using a hierarchic structure in which related functions are
performed at each level of the structure.

top-down development
See structured programming.

trailer-label
(1) A data-set label that follows the data records on a unit of recording medium. (2) Synonym for
end-of-file label.

troubleshoot
To detect, locate, and eliminate problems in using computer software.

* truth value
The representation of the result of the evaluation of a condition in terms of one of two values: true or
false.

typed object reference
A data-name that can refer only to an object of a specified class or any of its subclasses.

U

* unary operator
A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an arithmetic expression
and that has the effect of multiplying the expression by +1 or -1, respectively.

unbounded table
A table with OCCURS integer-1 to UNBOUNDED instead of specifying integer-2 as the upper
bound.

Unicode
A universal character encoding standard that supports the interchange, processing, and display of text
that is written in any of the languages of the modern world. There are multiple encoding schemes to
represent Unicode, including UTF-8, UTF-16, and UTF-32. Enterprise COBOL supports Unicode using
UTF-16 in big-endian format as the representation for the national data type.

Uniform Resource Identifier (URI)
A sequence of characters that uniquely names a resource; in Enterprise COBOL, the identifier of a
namespace. URI syntax is defined by the document Uniform Resource Identifier (URI): Generic Syntax.

unit
A module of direct access, the dimensions of which are determined by IBM.

universal object reference
A data-name that can refer to an object of any class.

unrestricted storage
In AMODE 31, unrestricted storage is below the 2 GB bar and can be above or below the 16 MB line.
In AMODE 64, unrestricted storage encompasses all the storage available to your program, both
above and below the 2 GB bar.

* unsuccessful execution
The attempted execution of a statement that does not result in the execution of all the operations
specified by that statement. The unsuccessful execution of a statement does not affect any data
referenced by that statement, but can affect status indicators.

UPSI switch
A program switch that performs the functions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

URI
See Uniform Resource Identifier (URI).

130 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

http://www.rfc-editor.org/rfc/rfc3986.txt

* user-defined word
A COBOL word that must be supplied by the user to satisfy the format of a clause or statement.

V

* variable
A data item whose value can be changed by execution of the object program. A variable used in an
arithmetic expression must be a numeric elementary item.

variable-length item
A group item that contains a table described with the DEPENDING phrase of the OCCURS clause.

* variable-length record
A record associated with a file whose file description or sort-merge description entry permits records
to contain a varying number of character positions.

* variable-occurrence data item
A variable-occurrence data item is a table element that is repeated a variable number of times.
Such an item must contain an OCCURS DEPENDING ON clause in its data description entry or be
subordinate to such an item.

* variably located group
A group item following, and not subordinate to, a variable-length table in the same record. The group
item can be an alphanumeric group or a national group.

* variably located item
A data item following, and not subordinate to, a variable-length table in the same record.

* verb
A word that expresses an action to be taken by a COBOL compiler or object program.

volume
A module of external storage. For tape devices it is a reel; for direct-access devices it is a unit.

volume switch procedures
System-specific procedures that are executed automatically when the end of a unit or reel has been
reached before end-of-file has been reached.

VSAM file system
A file system that supports COBOL sequential, relative, and indexed organizations.

W

web service
A modular application that performs specific tasks and is accessible through open protocols like HTTP
and SOAP.

white space
Characters that introduce space into a document. They are:

• Space
• Horizontal tabulation
• Carriage return
• Line feed
• Next line

as named in the Unicode Standard.

* word
A character string of not more than 30 characters that forms a user-defined word, a system-name, a
reserved word, or a function-name.

* WORKING-STORAGE SECTION
The section of the DATA DIVISION that describes WORKING-STORAGE data items, composed either
of noncontiguous items or WORKING-STORAGE records or of both.

Glossary 131

workstation
A generic term for computers, including personal computers, 3270 terminals, intelligent workstations,
and UNIX terminals. Often a workstation is connected to a mainframe or to a network.

wrapper
An object that provides an interface between object-oriented code and procedure-oriented code.
Using wrappers lets programs be reused and accessed by other systems.

X

x
The symbol in a PICTURE clause that can hold any character in the character set of the computer.

XML
Extensible Markup Language. A standard metalanguage for defining markup languages that was
derived from and is a subset of SGML. XML omits the more complex and less-used parts of SGML and
makes it much easier to write applications to handle document types, author and manage structured
information, and transmit and share structured information across diverse computing systems. The
use of XML does not require the robust applications and processing that is necessary for SGML. XML is
developed under the auspices of the World Wide Web Consortium (W3C).

XML data
Data that is organized into a hierarchical structure with XML elements. The data definitions are
defined in XML element type declarations.

XML declaration
XML text that specifies characteristics of the XML document such as the version of XML being used
and the encoding of the document.

XML document
A data object that is well formed as defined by the W3C XML specification.

XML namespace
A mechanism, defined by the W3C XML Namespace specifications, that limits the scope of a collection
of element names and attribute names. A uniquely chosen XML namespace ensures the unique
identity of an element name or attribute name across multiple XML documents or multiple contexts
within an XML document.

XML schema
A mechanism, defined by the W3C, for describing and constraining the structure and content of XML
documents. An XML schema, which is itself expressed in XML, effectively defines a class of XML
documents of a given type, for example, purchase orders.

Z

z/OS UNIX file system
A collection of files and directories that are organized in a hierarchical structure and can be accessed
by using z/OS UNIX.

zoned decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE DISPLAY and that
contains a valid combination of PICTURE symbols 9, S, P, and V. The content of a zoned decimal data
item is represented in characters 0 through 9, optionally with a sign. If the PICTURE string specifies a
sign and the SIGN IS SEPARATE clause is specified, the sign is represented as characters + or -. If
SIGN IS SEPARATE is not specified, the sign is one hexadecimal digit that overlays the first 4 bits of
the sign position (leading or trailing).

#

85 COBOL Standard
The COBOL language defined by the following standards:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

132 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

2002 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL

2014 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments
and system software interfaces - Programming language COBOL

Glossary 133

134 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

List of resources

Enterprise COBOL for z/OS

COBOL for z/OS publications
You can find the following publications in the Enterprise COBOL for z/OS library:

• What's new
• Customization Guide, SC27-8712-02
• Language Reference, SC27-8713-02
• Programming Guide, SC27-8714-02
• Migration Guide, GC27-8715-02
• Performance Tuning Guide, SC27-9202-01
• Messages and Codes, SC27-4648-01
• Program Directory, GI13-4526-02
• Licensed Program Specifications, GI13-4532-02

Softcopy publications
The following collection kits contain Enterprise COBOL and other product publications. You can find them
at http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.

• z/OS Software Products Collection
• z/OS and Software Products DVD Collection

Support

If you have a problem using Enterprise COBOL for z/OS, see the following site that provides
up-to-date support information: https://www.ibm.com/support/home/product/B984385H82239E03/
Enterprise_COBOL_for_z/OS.

Related publications

z/OS library publications
You can find the following publications in the z/OS library.

Run-Time Library Extensions

• Common Debug Architecture Library Reference
• Common Debug Architecture User’s Guide
• DWARF/ELF Extensions Library Reference

z/Architecture

• Principles of Operation

z/OS DFSMS

• Access Method Services for Catalogs
• Checkpoint/Restart

© Copyright IBM Corp. 1996, 2024 135

https://www.ibm.com/support/pages/node/611415
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
https://www.ibm.com/support/home/product/B984385H82239E03/Enterprise_COBOL_for_z/OS
https://www.ibm.com/support/home/product/B984385H82239E03/Enterprise_COBOL_for_z/OS
https://www.ibm.com/systems/z/os/zos/library/bkserv/

• Macro Instructions for Data Sets
• Using Data Sets
• Utilities

z/OS DFSORT

• Application Programming Guide
• Installation and Customization

z/OS ISPF

• Dialog Developer's Guide and Reference
• User's Guide Vol I
• User's Guide Vol II

z/OS Language Environment

• Concepts Guide
• Customization
• Debugging Guide
• Language Environment Vendor Interfaces
• Programming Guide
• Programming Reference
• Run-Time Messages
• Run-Time Application Migration Guide
• Writing Interlanguage Communication Applications

z/OS MVS

• JCL Reference
• JCL User's Guide
• Programming: Callable Services for High-Level Languages
• Program Management: User's Guide and Reference
• System Commands
• z/OS Unicode Services User's Guide and Reference
• z/OS XML System Services User's Guide and Reference

z/OS TSO/E

• Command Reference
• Primer
• User's Guide

z/OS UNIX System Services

• Command Reference
• Programming: Assembler Callable Services Reference
• User's Guide

z/OS XL C/C++

• Programming Guide
• Run-Time Library Reference

CICS Transaction Server for z/OS
You can find the following publications in the CICS library:

136 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/PDF.html?sc=SSGMCP_latest

• Developing CICS Applications
• API (EXEC CICS) Reference
• Developing CICS System Programs
• Global User Exit Reference
• XPI Reference
• Using EXCI with CICS

COBOL Report Writer Precompiler
• Programmer's Manual, SC26-4301
• Installation and Operation, SC26-4302

Db2 for z/OS
You can find the following publications in the Db2 library:

• Application Programming and SQL Guide
• Command Reference
• SQL Reference

IBM Debug for z/OS (formerly IBM Debug for z Systems and IBM Debug Tool for
z/OS)
You can find information about IBM Debug for z/OS in the IBM Debug for z/OS library.

IBM Debug for z/OS supersedes IBM Debug for z Systems and IBM Debug Tool for z/OS. Not all
references to IBM Debug for z Systems and IBM Debug Tool for z/OS have been changed in the COBOL
documentation library. It is recommended that you upgrade your debugger to the latest level in order
to have the full range of debugging features available. In some cases, you must upgrade your debugger
to a certain version depending on what level of Enterprise COBOL you are using to create the COBOL
application:

• IBM Debug Tool V13.1 supports Enterprise COBOL V5.1 and earlier versions
• IBM Debug for z Systems V14.0 supports Enterprise COBOL V6.1 and earlier versions
• IBM Debug for z Systems V14.1 supports Enterprise COBOL V6.2 and earlier versions
• IBM Debug for z/OS V14.2 supports Enterprise COBOL V6.3 and earlier versions

To find out which IBM debug product best suits your needs, see https://www.ibm.com/support/
knowledgecenter/SSQ2R2_14.2.0/com.ibm.debug.cg.doc/common/dcompo.html?sc=SSQ2R2_latest.

IBM Developer for z/OS (formerly IBM Developer for z Systems)
You can find information about IBM Developer for z Systems in the IBM Developer for z/OS library.

Note: IBM Developer for z/OS supersedes IBM Developer for z Systems and Rational® Developer for z
Systems.

You can find the following publications by searching their publication numbers in the IBM Publications
Center.

IMS
• Application Programming API Reference, SC18-9699
• Application Programming Guide, SC18-9698

List of resources 137

http://www.ibm.com/support/docview.wss?uid=swg27019288
http://www.ibm.com/support/docview.wss?uid=swg27050482
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.2.0/com.ibm.debug.cg.doc/common/dcompo.html?sc=SSQ2R2_latest
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.2.0/com.ibm.debug.cg.doc/common/dcompo.html?sc=SSQ2R2_latest
https://www.ibm.com/support/pages/node/713179
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

WebSphere® Application Server for z/OS
• Applications, SA22-7959

Softcopy publications for z/OS
The following collection kit contains z/OS and related product publications:

• z/OS CD Collection Kit, SK3T-4269

Java
• IBM SDK for Java - Tools Documentation, publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
• The Java 2 Enterprise Edition Developer's Guide, download.oracle.com/javaee/1.2.1/devguide/html/

DevGuideTOC.html
• Java 2 on z/OS, www.ibm.com/servers/eserver/zseries/software/java/
• The Java EE 5 Tutorial, download.oracle.com/javaee/5/tutorial/doc/
• The Java Language Specification, Third Edition, by Gosling et al., java.sun.com/docs/books/jls/
• The Java Native Interface, download.oracle.com/javase/1.5.0/docs/guide/jni/
• JDK 5.0 Documentation, download.oracle.com/javase/1.5.0/docs/

JSON
• JavaScript Object Notation (JSON), www.json.org

Unicode and character representation
• Unicode, www.unicode.org/
• Character Data Representation Architecture Reference and Registry, SC09-2190

XML
• Extensible Markup Language (XML), www.w3.org/XML/
• Namespaces in XML 1.0, www.w3.org/TR/xml-names/
• Namespaces in XML 1.1, www.w3.org/TR/xml-names11/
• XML specification, www.w3.org/TR/xml/

138 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://www.ibm.com/servers/eserver/zseries/software/java/
http://download.oracle.com/javaee/5/tutorial/doc/
http://java.sun.com/docs/books/jls/
http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://download.oracle.com/javase/1.5.0/docs/
http://www.json.org
http://www.unicode.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml/

Index

A
accessibility features for this product 85
ADATA compiler option 13
ADEXIT compiler option 13
ADV compiler option 14
AFP compiler option 14
ALOWCBL compiler option 15
ALOWCOPYLOC compiler option 15
ALOWDEFINE compiler option 16
ARCH compiler option 16
ARITH compiler option 18
asterisk (*) for indicating fixed compiler options 13
AWO compiler option 18

B
Bibliography 135
BLOCK0 compiler option 19
BUF compiler option 19

C
CBL statement 15
CICS

coding programs to run under
SORT statement 8

sorting under
change reserved-word table
8

CICS reserved word table 8
coding

programs to run under CICS
SORT statement 8

comment lines 97
comments

sending xiv
COMPILE compiler option 21
compiler options

CONDCOMP 21
conflicting options 11
default values 1
description of

ADATA 13
ADEXIT 13
ADV 14
AFP 14
ALOWCBL 15
ALOWCOPYLOC 15
ALOWDEFINE 16
ARCH 16
ARITH 18
AWO 18
BLOCK0 19
BUF 19
COMPILE 21
COPYRIGHT 22

compiler options (continued)
description of (continued)

CURRENCY 22
DATA 23
DBCS 24
DBCSXREF 24
DECK 25
DIAGTRUNC 25
DISPSIGN 26
DLL 27
DYNAM 27
EXPORT 28
FASTSRT 28
FLAG 29
FLAGSTD 30
HGPR 32
INEXIT 32
INITCHECK 32
INTDATE 35
INVDATA 35
LANGUAGE 38
LIBEXIT 39
LINECNT 40
LIST 40
LITCHAR 41
LP 41
MAP 42
MAXPCF 42
MDECK 43
MSGEXIT 44
NAME 44
NUM 45
NUMCHECK 45
NUMCLS 49
NUMPROC 50
OBJECT 50
OFFSET 51
OPTIMIZE 51
OUTDD 52
PARMCHECK 52
PGMNAME 53
PRTEXIT 54
QUALIFY 54
RENT 55
RMODE 56
RULES 57
SEQ 58
SERVICE 59
SOURCE 59
SPACE 59
SQL 60
SQLCCSID 60
SQLIMS 61
SSRANGE 62
STGOPT 63
SUPPRESS 63
TERM 64

Index 139

compiler options (continued)
description of (continued)

TEST 64
THREAD 66
TRUNC 68
TUNE 69
VBREF 70
VLR 70
VSAMOPENFS 71
WORD 72
XMLPARSE 73
XREFOPT 73
ZONECHECK 74
ZONEDATA 74
ZWB 76

fixed
indicate with asterisk (*) 13
making compiler options fixed 7

INITIAL 34
INLINE 34
modifying 2, 77
planning worksheet 2
setting defaults for 1, 77

CONDCOMP compiler option
description 21

COPYRIGHT compiler option 22
CURRENCY compiler option 22
customer support 135
customization

compiler options 11, 77
installation jobs

Enterprise COBOL 77
planning for 1

D
DATA compiler option 23
DBCS compiler option 24
DBCSXREF compiler option 24
DECK compiler option 25
default reserved word table 8
default values

compiler options 1
DIAGTRUNC compiler option 25
DISPSIGN compiler option 26
DLL compiler option 27
DYNAM compiler option 27

E
EGCS 106
Enterprise COBOL

disable 9
enable 9
job modification 77

error messages
flagging 29

EXPORT compiler option 28

F
FASTSRT option 28
feedback

feedback (continued)
sending xiv

fixed compiler options
indicate with asterisk (*) 13
making compiler options fixed 7

FLAG compiler option 29
FLAGSTD compiler option 30
floating comment indicators (*>) 107

G
Glossary 91

H
HGPR compiler option 32

I
IGYCCICS (CICS reserved word table) 8
IGYCDOPT

link AMODE 31 and RMODE ANY 1
planning worksheet 2

IGYCOPT
syntax format 2

IGYCRWT (default reserved word table) 8
index checking 62
INEXIT compiler option 32
INITCHECK compiler option 32
INITIAL compiler option

description 34
inline comments 110
INLINE compiler option

description 34
installation option 15, 16
INTDATE compiler option 35
INVDATA compiler option 35

K
keyword 113

L
LANGUAGE compiler option 38
LIBEXIT compiler option 39
LINECNT compiler option 40
LIST compiler option 40
List of resources 135
LITCHAR compiler option 41
LP compiler option 41

M
macros

IGYCDOPT (compiler options)
planning worksheet 2
syntax format 2

MAP compiler option 42
MAXPCF compiler option 42
MDECK compiler option 43
messages, flagging 29

140 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

MSGEXIT compiler option 44

N
NAME compiler option 44
nested programs 7
nonoverridable compiler options, indicate with asterisk (*)
13
NUM compiler option 45
NUMCHECK compiler option 45
NUMCLS compiler option 49
NUMPROC compiler option 50

O
object code, reentrant 55
OBJECT compiler option 50
OFFSET compiler option 51
OPTIMIZE compiler option 51
optional words xi
OUTDD compiler option 52

P
PARMCHECK compiler option 52
PGMNAME compiler option 53
planning worksheets

description of xii
IGYCDOPT (compiler options) 2

preface xi
PROCESS (CBL) statement 15
product registration 9
product support 135
PRTEXIT compiler option 54
publications 135

Q
QUALIFY compiler option 54

R
RCFs

sending xiv
reader comments

sending xiv
reentrant object code 55
RENT compiler option 55
required words xi
reserved word table

contents of 8
creating or modifying 79
nested programs 7
planning for 7
specifying an alternative table 72
supplied with Enterprise COBOL

IGYCCICS (CICS) 7
IGYCRWT (default) 7

residency mode 56
RMODE compiler option 56
RULES compiler option 57

S
sample installation jobs 5
sequence checking of line numbers 58
SEQUENCE compiler option 58
SERVICE compiler option 59
shared storage

placing Enterprise COBOL modules in 84
SORT statement

under CICS
change reserved-word table
8

SOURCE compiler option 59
SPACE compiler option 59
SQL compiler option 60
SQLCCSID compiler option 60
SQLIMS compiler option 61
SSRANGE compiler option 62
stacked words xi
STGOPT compiler option 63
subscript checking 62
support 135
SUPPRESS compiler option 63
syntax checking 21
syntax diagrams, how to read xi
syntax notation

asterisk (*) 13
COBOL keywords xii
repeat arrows xii

SYSLIN 50
SYSOUT 52
SYSPUNCH 25
SYSTERM 64

T
TERM compiler option 64
TEST compiler option 64
THREAD compiler option 66
TRUNC compiler option 68
TUNE compiler option 69

U
user exit routine

ADEXIT compiler option 13
INEXIT compiler option 32
LIBEXIT compiler option 39
MSGEXIT compiler option 44
PRTEXIT compiler option 54

V
VBREF compiler option 70
VLR compiler option 70
VSAMOPENFS compiler option 71

W
WORD compiler option 72

Index 141

X
XMLPARSE compiler option 73
XREF compiler option 73
XREFOPT option 73

Z
ZONECHECK compiler option 74
ZONEDATA compiler option 74
ZWB compiler option 76

142 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS, V6.3 Customization Guide

IBM®

Product Number: 5655-EC6

SC27-8712-02

	Contents
	Figures
	Tables
	Preface
	About this information
	How to read the syntax diagrams
	How to use examples
	Using the macro planning worksheets

	Summary of changes
	Version 6 Release 3 with PTFs installed
	Version 6 Release 3

	How to send your comments

	Chapter 1. Planning to customize Enterprise COBOL
	Making changes after installation: why customize?
	Planning to modify compiler option default values
	Modifying compiler options
	IGYCDOPT worksheet for compiler options

	Sample installation jobs to modify IGYCDOPT compiler option defaults
	Overriding compiler options that are fixed

	Planning to create an additional reserved word table
	Why create additional reserved word tables?
	Controlling use of nested programs
	Reserved word tables supplied with Enterprise COBOL
	Default reserved word table (IGYCRWT)
	CICS reserved word table (IGYCCICS)
	Using the table
	Location of the table

	Using product registration to enable or disable Enterprise COBOL

	Chapter 2. Enterprise COBOL compiler options
	Specifying COBOL compiler options
	Conflicting compiler options
	Compiler options for standards conformance
	Compiler options syntax and descriptions
	ADATA
	ADEXIT
	ADV
	AFP
	ALOWCBL
	ALOWCOPYLOC
	ALOWDEFINE
	ARCH
	ARITH
	AWO
	BLOCK0
	BUF
	CICS
	CODEPAGE
	COMPILE
	CONDCOMP
	COPYRIGHT
	CURRENCY
	DATA
	DBCS
	DBCSXREF
	DECK
	DIAGTRUNC
	DISPSIGN
	DLL
	DYNAM
	EXPORTALL
	FASTSRT
	FLAG
	FLAGSTD
	HGPR
	INEXIT
	INITCHECK
	INITIAL
	INLINE
	INTDATE
	INVDATA
	LANGUAGE
	LIBEXIT
	LINECNT
	LIST
	LITCHAR
	LP
	MAP
	MAXPCF
	MDECK
	MSGEXIT
	NAME
	NSYMBOL
	NUM
	NUMCHECK
	NUMCLS
	NUMPROC
	OBJECT
	OFFSET
	OPTIMIZE
	OUTDD
	PARMCHECK
	PGMNAME
	PRTEXIT
	QUALIFY
	RENT
	RMODE
	RULES
	SEQ
	SERVICE
	SOURCE
	SPACE
	SQL
	SQLCCSID
	SQLIMS
	SSRANGE
	STGOPT
	SUPPRESS
	TERM
	TEST
	THREAD
	TRUNC
	TUNE
	VBREF
	VLR
	VSAMOPENFS
	WORD
	XMLPARSE
	XREFOPT
	ZONECHECK
	ZONEDATA
	ZWB

	Chapter 3. Customizing Enterprise COBOL
	Summary of user modifications
	Changing the defaults for compiler options
	Changing the compiler options default module
	Overriding options specified as fixed

	Changing reserved words
	Creating or modifying a reserved word table
	Coding control statements
	Rules for coding control statements
	Coding operands in control statements
	Rules for coding control statement operands
	ABBR statement
	INFO statement
	RSTR statement
	Modifying and running non-SMP/E JCL
	Running JCL that creates a reserved word table

	Tailoring the cataloged procedures to your site

	Appendix A. Accessibility features for Enterprise COBOL for z/OS
	Notices
	Programming interface information
	Trademarks

	Glossary
	List of resources
	Enterprise COBOL for z/OS
	Related publications

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

