
IBM Application Delivery Foundation
for z Systems Common Components

Customization Guide and User Guide
Version 1.8.0

ii

Note
Before you read this document, look at the general information under Notices on page cxxxiii.

iii

Edition notice
This edition (published December 2023) applies to Version 1 Release 8 of IBM® Application Delivery Foundation for z/OS®

Common Components (program number 5655-IPV), and to Version 14 Release 1 Modification 21 of IBM® File Manager

for z/OS® (program number 5655-Q42), IBM® Fault Analyzer for z/OS® (program number 5655-Q41), z/OS® Debugger

(program number 5655-Q50), IBM® Application Performance Analyzer for z/OS® (program number 5697-Q49), and to all

subsequent releases and modifications until otherwise indicated in new editions.

iv

Contents
PDF documentation... v
Preface...vi
Summary of changes...vii
Chapter 1. Introduction to IBM ADFz Common
Components..9

ADFzCC server... 9
IPVLANGX, IPVLANGP, and IPVLANGO........................10
Interactive Panel Viewer..10

Chapter 2. ADFzCC server overview................................12
Sample server procedure.. 12
Startup, shutdown, and activity tracing........................ 13
Configuration file keyword descriptions.......................13

Chapter 3. Customizing the ADFzCC server.................... 17
Required authorizations.. 17

Example commands for RACF®........................... 18
Multi-Factor Authentication (MFA)............................... 19
Using PassTickets... 19
Setting SSL encrypted communications...................... 20
Using AT-TLS for encrypted communications..............21
Update sample IPVCONFG..22
Create matching WORKDIR by running job
IPVMKDIR... 24
Check address space timeout...................................... 25
Add ports to TCPIP reservation list.............................. 25
Configuration considerations for IBM® Explorer for
z/OS® (z/OS® Explorer)... 25
Configuring TCP/IP stack affinity................................. 26

Chapter 4. Options..27
Option descriptions..27

EventProcessingExit...27
Locale..28

Using an IPVOPTLM configuration-options
module.. 28

Chapter 5. Quick start guide for compiling and assembling
programs for use with IBM ADFz products...................... 30

Updating your build process... 31
Updating your promotion process................................ 31
Preparing your programs...32

Enterprise COBOL for z/OS® Version 6 or later
programs...32
Enterprise COBOL for z/OS® Version 5
programs...33
Enterprise COBOL for z/OS® Version 4
programs...33
Enterprise COBOL for z/OS® Version 3 and COBOL
for OS/390® and VM programs............................ 37
COBOL for MVS™ and VM programs.................... 41
VS COBOL II programs...45

OS/VS COBOL programs....................................... 49
Enterprise PL/I Version 3.7 and later
programs...51
Enterprise PL/I Version 3.5 and Version 3.6
programs...57
Enterprise PL/I Version 3.4 and earlier
programs...62
PL/I for MVS™ and VM and OS PL/I
programs...67
z/OS® XL C and C++ programs............................ 70
Assembler programs..82

Chapter 6. IPVLANGX compiler listing to side file
conversion utility.. 86

Creating side files using IPVLANGX............................. 86
IPVLANGX parameters...88

Including an IPVLANGX step in your SCLM
translator...89

High Level Assembler SCLM example..................89
COBOL SCLM example.. 90

Chapter 7. IPVLANGP side file formatting utility............. 92
Deferred Breakpoints Feature....................................... 93

Chapter 8. IPVLANGO Automatic Binary Optimizer LANGX
file update utility...100
Chapter 9. Maintaining ADFz Common Components..... 102
Chapter 10. ADFzCC event processing..........................103

Sender load module IPVEPSND..................................103
Usage.. 103
Example...104

Receiver load module IPVEPRCV............................... 105
IPVCNF00 option EVENTPROCESSINGEXIT.............. 105
The Event Processing user exit.................................. 105

Example customer event processing user
exit... 105

Appendix A. Messages... 107
ADFzCC server messages...107
IPVLANGX messages..116
IPVLANGX return codes.. 127

Examples of IPVLANGX return codes.................128
Appendix B. Troubleshooting.. 129

Error scenarios and tracing...129
Appendix C. Support resources.....................................132
Notices... cxxxiii
Index... 137

v

PDF documentation

PDF documentation is also available by opening any online topic and clicking the icon.

IBM Application Delivery Foundation for z/OS® Common Components Customization Guide and User Guide V1.8.0 (English)

IBM Application Delivery Foundation for z/OS® Common Components Customization Guide and User Guide V1.8.0

(Japanese)

https://help.blueproddoc.com/adfz_common_components/1.8.0/en/ibm_adfzcc_1.8.0.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/en/ibm_adfzcc_1.8.0.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/en/ibm_adfzcc_1.8.0.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/en/ibm_adfzcc_1.8.0.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/en/ibm_adfzcc_1.8.0.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/en/ibm_adfzcc_1.8.0.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/ja/ibm_adfzcc_1.8.0_ja.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/ja/ibm_adfzcc_1.8.0_ja.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/ja/ibm_adfzcc_1.8.0_ja.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/ja/ibm_adfzcc_1.8.0_ja.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/ja/ibm_adfzcc_1.8.0_ja.pdf
https://help.blueproddoc.com/adfz_common_components/1.8.0/ja/ibm_adfzcc_1.8.0_ja.pdf

vi

Preface
This document provides information about IBM® Application Delivery Foundation for z/OS® Common Components.

It is intended for people who are responsible for installing, configuring, and using ADFz Common Components. You should

have a working knowledge of:

• z/OS® operating system

• system programming

• configuration of servers

In these topics, ADFz Common Components is also referred to as ADFzCC.

vii

Summary of changes
This edition of the document provides information applicable to IBM® Application Delivery Foundation for z/OS® Common

Components Version 1 Release 8. Changes to the latest release are indicated by a “|” change bar in the left margin of the

page in the PDF format only.

Latest service: For details of the APARs that have been addressed in this release, see Latest PTFs for ADFz Common

Components.

December 2023

This edition of the documentation contains minor clarifications and corrections from the previous version.

June 2023

This edition of the document contains minor updates from the previous edition.

February 2023

This edition of the document contains minor updates from the previous edition.

November 2022

This edition of the documentation contains minor clarifications and corrections, as well as the following change relative to

the previous edition:

• The IPVLANGO utility is updated for currency with the latest COBOL compiler versions supported by IBM Automatic

Binary Optimizer for z/OS. See the eligible compilers in the IBM Automatic Binary Optimizer for z/OS User's Guide.

June 2022

This edition of the document contains minor updates from the previous edition.

March 2021

A new server customization topic is added. See Configuring TCP/IP stack affinity on page 26.

October 2020

The IPVMKDIR sample job has been changed to avoid using recursive commands and to only set permissions, attributes, and

ownership of the nominated target working directory and its associated files. See Create matching WORKDIR by running job

IPVMKDIR on page 24.

These changes, and smaller corrections and additions, are indicated by a “|” change bar in the left margin of the page.

http://www.ibm.com/support/docview.wss?uid=swg21612547
http://www.ibm.com/support/docview.wss?uid=swg21612547

viii

March 2020

The server now supports a new parameter, APPLID, which can be used to configure a resource name other than OMVSAPPL

in the APPL class for the authorization of user context-switching requests. See Configuration file keyword descriptions on

page 13, Required authorizations on page 17, and Using PassTickets on page 19.

These changes, and smaller corrections and additions, are indicated by a “|” change bar in the left margin of the page.

SC27-9050-07: September 2019

New PASSTK keyword provides support to facilitate Multifactor Authentication (MFA) clients. See Configuration file keyword

descriptions on page 13 and Using PassTickets on page 19 for more details.

SC27-9050-06: June 2019

This edition of the document contains minor updates from the previous edition.

SC27-9050-05: March 2019

This edition of the document contains minor updates from the previous edition.

SC27-9050-04: December 2018

This edition of the document contains minor updates from the previous edition.

SC27-9050-03: September 2018

This edition of the document contains minor updates from the previous edition.

SC27-9050-02: March 2018

Product names have been updated to reflect current offerings and there are other minor updates from the previous edition.

SC27-9050-01: December 2017

This document covers support for Enterprise COBOL for z/OS® Version 6. For more information, see Enterprise COBOL for

z/OS Version 6 or later programs on page 32.

SC27-9050-00: September 2017

Product names have been updated to reflect current offerings and there are other minor updates from the previous edition.

Chapter 1. Introduction to IBM ADFz Common Components
IBM® ADFz Common Components consists of these major features:

• ADFzCC server

• IPVLANGX, IPVLANGP, and IPVLANGO

• Interactive Panel Viewer

These features can be used by the IBM® Application Delivery Foundation for z/OS® family of products.

ADFzCC server
The ADFzCC server is an extensible server program that runs on a z/OS® system to serve clients. Multiple clients can

connect to a single instance of the server program and request a service by invoking a specific extension of the server. The

server needs to be customized to install various extensions. Without installing the extensions, the ADFzCC server program

alone does not serve any purpose.

The following products use the ADFzCC server:

DTSP profile view plug-in for Eclipse

See IBM® z/OS® Debugger Customization Guide V15.0 for details on customization.

Debug Tool Code Coverage plug-in for Eclipse

See IBM® z/OS® Debugger Customization Guide V15.0 for details on customization.

Load Module Analyzer plug-in for Eclipse

See IBM® z/OS® Debugger Customization Guide V15.0 for details on customization.

IMS transaction isolation extension

See IBM® z/OS® Debugger Customization Guide V15.0 for details on customization.

Fault Analyzer plug-in for Eclipse

See Fault Analyzer for z/OS® User's Guide and Reference V14R1 (SC27-9040) for details on customization.

File Manager plug-in for Eclipse

See File Manager for z/OS® Customization Guide V14R1 (SC27-9041) for details on customization.

File Manager for CICS®

See File Manager for z/OS® Customization Guide V14R1 (SC27-9041) and File Manager for z/OS® User's

Guide and Reference for CICS® V14R1 (SC27-9045) for details on customization.

File Manager Remote Services

See File Manager for z/OS® Customization Guide V14R1 (SC27-9041) "Preparing for File Manager Remote

Services" for details on customization.

9

IBM Application Delivery Foundation for z Systems Common Components

10

Application Performance Analyzer plug-in for Eclipse

See Application Performance Analyzer for z/OS® Customization Guide V14.1 (SC27-8401) for details on

customization.

For more information about configuring the product-specific extensions to the ADFzCC server, see the product-specific

customization guide.

IPVLANGX, IPVLANGP, and IPVLANGO
IPVLANGX, IPVLANGP, and IPVLANGO provide utility programs that undertake various functions.

Currently, the following products use one or more of these utilities:

• Fault Analyzer for z/OS®

• z/OS® Debugger

• Application Performance Analyzer for z/OS® (APA)

Here is more information about each utility:

IPVLANGX

A utility program that converts a compiler listing, or SYSADATA file, to a special format ADFz side file, in the

remainder of this document referred to as a “LANGX side file”, or simply a “LANGX file”. A LANGX side file is

typically a lot smaller in size than a compiler listing. (See IPVLANGX compiler listing to side file conversion

utility on page 86 for details.)

IPVLANGP

A utility program that creates a readable listing from a LANGX side file, a SYSDEBUG side file generated by

using the COBOL or PL/I TEST(SEPARATE) option, or a COBOL program object containing DWARF debugging

information generated by the TEST(SOURCE) option (see IPVLANGP side file formatting utility on page 92

for details).

This listing might be useful if side files, rather than compiler listings, are kept in order to conserve DASD space.

The utility program is able to format the side file in a way that resembles the original compiler listing.

IPVLANGP also supports the setting of z/OS® Debugger Deferred Breakpoints.

IPVLANGO

A utility program used to create new LANGX side files to support the Automatic Binary Optimizer (see

IPVLANGO Automatic Binary Optimizer LANGX file update utility on page 100 for details).

Interactive Panel Viewer
The Interactive Panel Viewer feature enables ISPF-based applications to display panels under CICS®.

The following products use the Interactive Panel Viewer feature:

Chapter 1. Introduction to IBM ADFz Common Components

Fault Analyzer for z/OS®

See the topic about installing non-ISPF interfaces to access Fault Analyzer for z/OS® history files in the Fault

Analyzer for z/OS® User's Guide and Reference V14R1 (SC27-9040).

File Manager for CICS®

See File Manager for z/OS® Customization Guide V14R1 (SC27-9041) for details on customization.

11

12

Chapter 2. ADFzCC server overview
ADFzCC server runs a process that identifies a connection request on a specific port. ADFzCC server can be started

manually, or during an IPL, by running a customized procedure. A sample procedure, IPVSRV1, is supplied in the sample

library hlq.SIPVSAM1.

Multiple servers might be simultaneously run, provided different port numbers are used for each server.

For participating products that use the ADFzCC server, the server negotiates SSL-encrypted communications if configured to

do so, then verifies the client user ID, password, or passphrase. If valid, the server creates a new process for that user.

The ADFzCC server consists of a main program module, IPVSRV, and supporting message and API-related modules.

IPVSRV requires a parameter string 'port family trace' where:

port

Describes the port number that is used to bind and accept incoming connections.

family

The addressing family to bind to. For example, AF_INET, or AF_INET6.

trace

N, T, D, U, or omitted. This parameter specifies the level of tracing to be performed by the server, and is intended

only for diagnostic purposes. N is for no tracing, while T or D produce IPVTRACE, or STDOUT, outputs of

undocumented messages that show flow and processing details for diagnostic purposes. U produces trace

entries showing user connections to participating ADFz products.

Sample server procedure
The ADFzCC server is recommended to run as a started task, although it might be run as a job.

A sample procedure, IPVSRV1, is supplied in the hlq.IPVSAM1 data set. Copy the procedure to your procedure library.

//IPVSRV1 PROC PORT=2800,FAMILY='AF_INET',TRACE=N
//**
//* Copyright = Licensed Materials - Property of IBM *
//* *
//* 5655-Q42 *
//* *
//* Copyright IBM Corp. 2006, 2017. *
//* All Rights Reserved. *
//* Copyright HCL Technologies Ltd. 2017, 2023. *
//* All Rights Reserved. *
//* *
//* US Government Users Restricted Rights - *
//* Use, duplication or disclosure restricted by *
//* GSA ADP Schedule Contract with IBM Corp. *
//* *
//* Status = IBM Application Delivery Foundation for *
//* z Systems Common Components, Version 14 Release 1. *
//* *

Chapter 2. ADFzCC server overview

//**
//* FAMILY=AF_INET|AF_INET6 for TCP/IP V4 or V6 socket and bind
//* TRACE=N|D|U No server trace, detailed trace or
//* user connection trace
//*
//* This is not a complete JCL procedure. It requires customisation
//* steps before running. To customise,
//* 1. Customise the IPVCONFG member
//* 2. Customise and run the IPVMKDIR sample job to match
//* 3. replace IPV with your high level qualifier for the ADFzCC product
//* 4. Uncomment and replace CEE for your hlq for the LE C runtime
//* if SCEERUN is not in the site linklist
//*
//RUN EXEC PGM=IPVSRV,REGION=40M,
// PARM=('&PORT &FAMILY &TRACE')
// SET IPV=IPV >== Update HLQ
//* Common component authorised library
//STEPLIB DD DISP=SHR,DSN=&IPV.SIPVMODA >== ADFzCC APF LIBRARY
//* DD DISP=SHR,DSN=CEE.SCEERUN >== LE C RUNTIME
//SYSPRINT DD SYSOUT=*
//IPVTRACE DD SYSOUT=* >== OUTPUT if Tracing
//STDOUT DD SYSOUT=*
//* Server wide, then participating product configurations
//CONFIG DD DISP=SHR,DSN=&IPV.SIPVSAM1(IPVCONFG)
**************************** Bottom of Data **************************

Startup, shutdown, and activity tracing
The server is controlled using the START (S), STOP (P) and MODIFY (F) z/OS® system commands. These commands are

typically issued on a z/OS® system console.

Use START procname to start the server.

Use STOP procname to stop the server.

To enable activity tracing, usually as an IBM® support request, the following modify command can be used:

F procname,APPL=TRACEON

To disable activity tracing, the following modify command can be used:

F procname,APPL=TRACEOFF

To display the release and PTF level of the running server, the following modify command can be used:

F procname,APPL=VER

Configuration file keyword descriptions
The configuration data might contain line comments. Line comments begin with either an asterisk (*) or a hash/pound (#)

character, and continue to the end of the line. When configuration involves data set names that include hash/pound (#), such

characters must be escaped using a backslash (\) so that they are not interpreted as comments.

13

IBM Application Delivery Foundation for z Systems Common Components

14

CONFIG=name

name is the name of the configuration as specified by the client. At least one configuration is expected with a

name of DEFAULT. Other configuration keywords apply to the current CONFIG name, in top-down order.

APPLID=applid (Optional)

The ADFzCC server uses C runtime services to switch user context when spawning processes for requesting

clients that provide a valid user ID and password. These services are associated with the OMVSAPPL resource

of the APPL class by default, if the APPL class is active. If this is the case, the authenticating user ID must have

READ access to the OMVSAPPL resource of the APPL class.

Alternatively, your configuration file can specify APPLID=applid, where applid is a 1- to 8-character resource

name defined to the APPL class. When APPLID is configured, the ADFzCC server will use the specified applid

rather than OMVSAPPL.

The APPLID parameter must be specified under the CONFIG=DEFAULT configuration.

PASSTK=nnn (Optional)

The server can be configured to use PassTickets to start sessions for authenticated clients. If you specify the

PASSTK parameter in your configuration, the server will generate and use PassTickets for requesting clients

that provide a valid user ID and a valid password or passphrase.

After successfully connecting to the server, a client can start new sessions for the period in minutes specified

by nnn without having to re-authenticate. Allowable values are 1 to 720 (12 hours). If PASSTK is specified

without a value, the default is 480 (8 hours).

If PASSTK is not specified PassTickets will not be generated or used by the server. This feature is primarily to

facilitate multifactor authentication (MFA) clients. See Using PassTickets on page 19 for more details.

The PASSTK parameter must be specified under the CONFIG=DEFAULT configuration.

WORKDIR=/path

The CONFIG=DEFAULT set of parameters needs the WORKDIR=path keyword. This keyword specifies where

the server can write semi-permanent (existing at least while the server task is running) files. A sample job,

IPVMKDIR is supplied in the sample library to create this path.

ATTLS=YES|NO (Optional)

The Application Transparent Transport Layer Security (AT-TLS) feature of z/OS® Communication Server can

be used to secure communications between the ADFzCC server and connecting clients. See Using AT-TLS for

encrypted communications on page 21 for more details.

SSL_REQUIRED=YES|TLSV1|TLSV1.1|TLSV1.2|NO (Optional, default is NO)

Determines whether SSL encrypted communications are mandatory for the server and the desired protocol

level. SSL communications are achieved by using the System SSL APIs. The default protocol level is TLS 1.1

when YES is specified.

Chapter 2. ADFzCC server overview

To use TLS 1.2, clients must be at level 13.1.0.17 or later.

If SSL encryption is used, then the server uses a certificate stored in either a RACF® keystore, when specified

via the SSL_KEYRING keyword, or a GSKKYMAN managed key database and certificate for this server as

specified in the SSL_CERT keyword or, if that keyword is omitted, at the WORKDIR specified location.

SSL_CERT=/path/keyringfile (optional, for use of user created certificate)

The path and name of a key database that contains a stored certificate that is used by the server. This

parameter is passed to the gsk toolkit as the GSK_KEYRING_FILE setting. If this parameter is omitted, the

server attempts to create a key database and self-signed certificate as it starts up.

SSL_CERTPW=keyringpw (optional, for use of user created certificate)

The password to be used to access the certificate repository. If omitted, the server uses a default password.

SSL_KEYRING=userid/keyring

If SSL is being used for the server, this configuration option provides the userid and keyring name for a

certificate being held in a SAF keyring. The userid should match the ID used when creating the keyring.

SSL_LABEL=labelstring (optional, for use of user created certificate)

The label of the certificate from the key database to be used.

SPAWN_ACCT=accountdata

Allows specification of the account data used for the spawned address space. This is as per the

_BPX_ACCT_DATA environment variable discussed in the z/OS® UNIX™ System Services Planning manual.

SPAWN_TIME=nn

Allows specification of the CPU time limit, in seconds, used for the spawned address space.

SPAWN_PROGRAM=PROGRAM

Specification of the program that is launched for the client connection. The server checks the existence of the

named program. If you want to specify the name of a z/OS® UNIX™ executable file, rather than a load module

in a STEPLIB data set, include the path. Otherwise, the server creates a sticky bit file in the WORKDIR specified

location. Sticky bit is the mechanism in the z/OS® UNIX™ file system of indicating that this file is a load library

member. The program is launched as a UNIX System Services process, but can be a traditional z/OS® program.

SPAWN_STEPLIB=steplib1:steplib2 (optional)

Allows specification of the run libraries that are used for the spawned address space. Support for continuing

library specifications is provided by ending a line with the colon character.

If the run libraries are not all APF authorized, you must ensure that the _BPX_SHAREAS environment variable

is set to NO to avoid a potential abend S306. The server will then spawn the participating products in their own

address space. You can add a STDENV DD statement to set the environment variable in the server procedure.

For example:

//STDENV *
_BPX_SHAREAS=NO
/*

15

IBM Application Delivery Foundation for z Systems Common Components

16

SPAWN_PARMS_SECTION

This entry marks the beginning of extra parameters that are passed to the spawned process. The contents of

this area are determined by the products that use the server.

Launching a TSO environment is provided for by the ADFzCC server when the SPAWN_PROGRAM is set to

IPVSRVTE. In such a configuration, the launched process deals with these extra keywords that follow the

SPAWN_PARMS_SECTION:

SPAWN_DD=ddname=datasetname1:datasetname2

Specification of a data set or data sets that are allocated with DISP=SHR to the supplied DD

name.

SPAWN_DD=ddname=SYSOUT=c

Specification of a sysout allocation that is allocated with the specified class c, to the supplied DD

name.

Use of SYSOUT=* is not permitted as the spawned address space is not running as a batch

job with a JCL MSGCLASS. Use of SYSOUT=* will result in the server terminating until the

configuration is corrected.

SOCKETFIONBIO

Specification that the socket communications run in nonblocking mode.

Specify this keyword only when the application for the particular CONFIG allows or expects it.

TSO_CMD=command;

Specification of a command that is run in the TSO environment. This command typically

instigates the launch of the participating products main serving function. This parameter can be

repeated as needed for multiple TSO commands.

MIXEDCASEPASS=YES|NO (optional, default is NO)

Determines whether uppercase translation is performed for incoming passwords for this system. If this system

supports mixed case passwords, set this to YES and specify this keyword in the CONFIG=DEFAULT section.

SPAWN_REGIONSZ=nnn (optional, default is to inherit the region size of the server)

Determines the region size (in MB) for the launched process. Participating products being launched have their

own recommendations for this sizing.

Chapter 3. Customizing the ADFzCC server
This chapter provides you with instructions on how to customize the ADFzCC server. In brief, this consists of the following

general checklist:

• APF authorize the SIPVMODA library

• Add programs in SIPVMODA to program control

• Add user for server started task

• Add task to STARTED class

• Add sample IPVSRV1 to system procedure library

• Permit server user/group to BPX.SERVER facility

• Permit server user/group to CSF* profiles (if used)

• Permit connecting users/groups to OMVSAPPL or an equivalent resource (if used).

• Update sample IPVCONFG

• Create matching WORKDIR by running job IPVMKDIR

• Review address space timeout settings

• Configure the TCP/IP stack affinity

Required authorizations
The STEPLIB hlq.SIPVMODA must be APF-authorized.

Associate the started task that is used to run the ADFzCC server with a user ID that has an OMVS segment. If the

BPX.SERVER facility is active give the user ID READ access to it, otherwise the user ID requires superuser access. Make sure

write access to the z/OS® UNIX™ directory is available, as specified by the WORKDIR= configuration parameter. Edit and

run the job IPVMKDIR in the sample library (IPV.SIPVSAM1) to create this directory. Furthermore, any users logging in to the

ADFzCC server require read access to this location. Similarly, if you configure the ADFzCC server to a key database of your

own creation, the ADFzCC server and any users who log into it require read access to the specified key database.

Products that make use of the SPAWN_JOBNAME configuration keyword require the following authorizations. The user ID of

the ADFzCC server must be permitted to the BPX.SUPERUSER resource of the FACILITY class and must have READ access to

the BPX.JOBNAME resource, if it is defined.

The ADFzCC server uses C runtime services to switch user context when spawning processes for requesting clients that

provide a valid user ID and password. These services are associated with the OMVSAPPL resource of the APPL class by

default, if the APPL class is active. If this is the case, the authenticating user ID must have READ access to the OMVSAPPL

resource of the APPL class.

Alternatively, your server configuration can specify APPLID=applid, where applid is a user-defined resource name defined

to the APPL class. When APPLID is configured, the ADFzCC server will use the specified applid rather than OMVSAPPL.

If PassTickets are used, the default resource name is IPVAPPL, however this can also be overridden by the APPLID

configuration parameter. In all cases, authenticating users must have READ access to the appropriate resource of the APPL

class (if it is active).

17

IBM Application Delivery Foundation for z Systems Common Components

18

If enhanced program security is enabled, at a minimum the following programs must be defined to program control, unless

BPX.DAEMON.HFSCTL was set up:

• IPVSRV

• IPVMSGT

• IPVCMENU

• IPVCMJPN

• IPVCMKOR

• UIPVMSGT

• IPV0LVL

Alternatively, define all ADFzCC server programs in the library IPV.SIPVMODA to program control, rather than specifying

individual programs.

If enhanced program security is enabled, IPVSRV must be defined with the MAIN attribute, using the APPLDATA operand on

the PROGRAM profile.

Example commands for RACF®

To activate program control if not already active, use the following command:

SETROPTS WHEN(PROGRAM)

To add all ADFzCC server programs in a library to program control, use the following command:

RDEFINE PROGRAM IPV* ADDMEM('IPV.SIPVMODA'//NOPADCHK) UACC(READ)

In addition, the following command is required for alias member UIPVMSGT:

RDEFINE PROGRAM UIPVMSGT ADDMEM(’IPV.SIPVMODA’//NOPADCHK) UACC(READ)

To add individual programs, use the following command:

RDEFINE PROGRAM IPVSRV ADDMEM('IPV.SIPVMODA'//NOPADCHK) UACC(READ)

To refresh, use the following command:

SETROPTS WHEN(PROGRAM) REFRESH

Note:

• If you are using Japanese, then include the module IPVCMJPN in program control.

• If you are using Korean, then include the module IPVCMKOR in program control.

If RACF®, or an equivalent security product is implemented, the ADFzCC server (IPVSRV1) started task must also be defined

to the STARTED class. For example, to add IPVSRV1 as an STC, the RACF® commands in the example that is shown here

could be used, where IPVSRV1 is the name of your ADFzCC server procedure and userid is the userid that the started task runs

under:

Chapter 3. Customizing the ADFzCC server

RDEFINE STARTED IPVSRV1.* STDATA(USER(userid))

SETROPTS RACLIST(STARTED) REFRESH

For more information about started tasks and security, see the z/OS® Security Server RACF® Security Administrator's Guide,

or equivalent documentation for your security product.

Multi-Factor Authentication (MFA)
When clients initially connect to the ADFzCC server they are prompted for a user ID and a password or passphrase. If the

credentials are valid, the client can start sessions on the relevant z/OS system as the nominated user.

Rather than prompting for the user ID and password each time a new session is required, the plug-in client reuses the initial

user ID and password. This can pose a problem for Multi-Factor Authentication users as their password or passphrase is

typically single-use only. Consequently, reusing a credential will likely fail.

To support Multi-Factor Authentication users, the ADFzCC server provides support for PassTickets. For more information

about PassTickets, refer to the documentation for RACF or your equivalent security product.

Using PassTickets
The ADFzCC server can be configured to use PassTickets for authenticated clients.

To exploit this feature, a client must first authenticate with a valid user ID and password or passphrase. Following a

successful authentication, the server generates and use PassTickets for requesting clients. Such requests are valid for the

period (in minutes) specified by the PASSTK configuration parameter.

To enable the use of PassTickets, complete the following steps:

1. Specify the PASSTK parameter in your ADFzCC server configuration file. For a description of the parameter, see

Configuration file keyword descriptions on page 13.

2. The ADFzCC server must run APF-authorized. For more information about APF authorization and PassTickets, refer

to the documentation for RACF or your equivalent security product.

3. PassTickets are generated in association with an APPLID. For ADFzCC, the default APPLID is IPVAPPL.

If the APPL class is active, connecting users must have READ access to the relevant APPLID resource name in

the APPL class. The APPLID resource name can be overridden by the APPLID parameter in the ADFzCC server

configuration file, in which case, authorization checks are performed against the configured APPLID resource name.

4. The server started task user ID must have the following authorizations to generate PassTickets:

SETROPTS CLASSACT(PTKTDATA)
SETROPTS RACLIST(PTKTDATA)
RDEF PTKTDATA IPVAPPL SSIGNON(KEYMASKED(yourmaskvalue))
RDEF PTKTDATA IRRPTAUTH.IPVAPPL.* UACC(NONE)
PERMIT IRRPTAUTH.IPVAPPL.* ID(your.userid) ACCESS(UPDATE) CLASS(PTKTDATA)
SETR RACLIST(PTKTDATA) REFRESH

If the server has the necessary authority, message IPV0052I is generated at startup, otherwise, message IPV0050S is

generated.

19

IBM Application Delivery Foundation for z Systems Common Components

20

Note: This feature primarily exists to facilitate multi-factor authentication (MFA) clients. Your MFA environment might

require additional authorizations to use PassTickets. Refer to the instructions on using MFA with PassTickets in the

documentation for IBM® Z Multi-Factor Authentication or equivalent MFA product.

Setting SSL encrypted communications
The sample IPVCONFG configuration file member has SSL encrypted communications active with the following line under

the CONFIG=DEFAULT section:

SSL_REQUIRED=YES

If SSL encryption is not required in your environment, comment out this line and uncomment the next line (or alter your

existing line to SSL_REQUIRED=NO). If SSL is required, replace SSL_REQUIRED=YES with SSL_REQUIRED=TLSVxxx, where TLSVxxx

is one of the supported TLS versions listed in the description of the SSL_REQUIRED keyword in Configuration file keyword

descriptions on page 13.

If using a SAF keyring and not using AT-TLS, uncomment and modify the SSL_KEYRING line. The SSL_LABEL line should also be

uncommented and modified if the certificate you generate does not have a label of 'ADFzCC Server Certificate'.

For use of a certificate in a keyring, the userid of the server task or job, as well as the userids connecting to the server need

to be permitted UPDATE access to the IRR.DIGTCERT.LISTRING facility and CONTROL access to the IRR.DIGCERT.GENCERT

facility in order to share the certificate amongst users of the common server.

For RACF® users, a keyring and certificate can be created by the following example commands.

RACDCERT ID(IPVSRV) ADDRING(RINGA)
RACDCERT GENCERT SITE SIZE(2048) -
 SUBJECTSDN(-
 CN('Common Server') -
 OU('ADL') -
 O('ADL') -
 C('AU')) -
 WITHLABEL('ADFzCC Server Certificate')
RACDCERT ID(IPVSRV) -
 CONNECT(SITE LABEL('ADFzCC Server Certificate') -
 RING(RINGA) USAGE(PERSONAL) -
 DEFAULT)
SETR REFR RACL(DIGTCERT)

In this example, IPVSRV is used for the user ID of the ADFzCC server task.

Note that the generated certificate must be a SITE certificate. This is because multiple users will need access to the

certificate. An alternative to SITE certificates is to use AT-TLS. See Using AT-TLS for encrypted communications on

page 21 for more information.

Updating the server config to include SSL_KEYRING=IPVSRV/RINGA would use the above generated certificate. These

commands serve as a working example only and should be updated as desired to match your needs. RACDCERT commands

are documented in the z/OS® Security Server RACF® Command Language Reference.

Chapter 3. Customizing the ADFzCC server

If you are using ICSF and have protected resources through the CSFSERV facility class, the server user or group id needs to

be permitted to the resource, for example:

PERMIT CSF* CLASS(CSFSERV)
 ID(groupid) ACCESS(READ)

For more details see the Cryptographic Services ICSF Administrator's Guide.

If you wish to specify a cipher string for the System SSL component to use, you can do this by modifying the server JCL to

specify an ENVAR(GSK_V3_CIPHER_SPECS=xx) or ENVAR(GSK_V3_CIPHER_SPECS_EXPANDED=xx) as required. The sample server JCL

member IPVSRV1 includes an example format of the above.

Using AT-TLS for encrypted communications

The Application Transparent Transport Layer Security (AT-TLS) feature of z/OS® Communication Server can be used to

secure communications between the ADFzCC server and connecting clients by setting the ATTLS configuration parameter to

the value ‘Y’. For example:

ATTLS=Y

Using AT-TLS requires the configuration of z/OS® Communications Server and policy agent rules to enable TLS protection

of inbound connections to the ADFzCC server and subsequent data flows between the client and server. Your security

administrator or system programmer can create this configuration in accordance with your installation standards and ensure

that the z/OS® Communication server policy agent is running to provide AT-TLS services.

To establish an AT-TLS environment, take the following steps:

Note: Particulars might vary by installation.

1. Change the z/OS® Communication Server profile TCPCONFIG statement to activate the AT-TLS function. For

example:

TCPCONFIG TTLS ; Required for AT-TLS

Optionally, installations might also change the z/OS® Communication Server profile AUTOLOG statement to

automate starting the policy agent (PAGENT), which is needed to effect AT-TLS rules. For example:

AUTOLOG
 PAGENT ; POLICY AGENT, required for AT-TLS
ENDAUTOLOG

2. Create the z/OS® Communication Server policy agent (PAGENT) configuration to establish AT-TLS rules for inbound

connections to the ADFzCC server. For example:

TTLSRule rule_ADFzCC
{
 LocalPortRange 2800
 Direction Inbound
 TTLSGroupActionRef grp_ADFzCC
 TTLSEnvironmentActionRef env_ADFzCC
}
TTLSGroupAction grp_ADFzCC

21

IBM Application Delivery Foundation for z Systems Common Components

22

{
 TTLSEnabled On
}
TTLSEnvironmentAction env_ADFzCC
{
HandshakeRole Server
TTLSKeyRingParms
{
 Keyring ADFzCC.KEYRING
}
TTLSEnvironmentAdvancedParms
{
 TLSv1.2 On
 HandshakeTimeout 30
 ApplicationControlled On
 }
}

Note: The ApplicationControlled parameter must be on for the ADFzCC server. In addition, the

SSL_REQUIRED configuration parameter must be set to a valid protocol value. The protocol that is chosen

must match a protocol that is supported by the AT-TLS rules that are specified in the AT-TLS configuration

TTLSEnvironmentAdvancedParms statement. For example:

SSL_REQUIRED=TLSv1.2

A HandshakeTimeout value of 30 seconds is recommended. If using a LocalAddr* (LocalAddr, LocalAddrRef,

LocalAddrSetRef, LocalAddrGroupRef) statement within your rule to limit the IP addresses on which the ADFzCC

server listens, you must ensure that the statement allows connections to the server on address 127.0.0.1.

In addition, the IPVSRV STC user will require access to the keystore that is identified on the Keyring parameter of the

TTLSKeyRingParms statement. .

3. Start the z/OS® Communications Server policy agent.

Note: If your policy agent configuration, or the key ring or keystore that is identified in the policy agent

configuration is changed, restart the policy agent.

Clients such as z/OS® Explorer will be prompted to trust the server certificate identified in the AT-TLS configuration if the

certificate is not registered as trusted.

Clients such as File Manager Remote Services might require that the remote server CA certificate is imported as a SITE

certificate on the client z/OS® system for establishing trust of the remote system.

Update sample IPVCONFG
The CONFIG ddname in the ADFzCC server JCL procedure provides parameters that can be used to configure the ADFzCC

server on startup. A sample configuration member is provided in IPV.SIPVSAM1(IPVCONFG), and the member can be

customized as required.

Chapter 3. Customizing the ADFzCC server

The File Manager configuration in the sample configuration member specifies parameter SPAWN_PROGRAM=FMNCSEP.

This program allows File Manager to run authorized and ensures that the File Manager plug-in can:

• Perform auditing

• Access tapes

• Use remote services

Previous versions of the IPV sample IPVCONFG used parameter SPAWN_PROGRAM=IPVSRVTE for the File Manager

configuration. IPVSRVTE can still be used, but File Manager will run unauthorized, and the functions that are listed above will

not be available.

For more information on setting up IPV server to allow the use of File Manager, see chapter "IBM® File Manager plug-in for

Eclipse" in File Manager for z/OS® Customization Guide.

Update the sample configuration member to suit your site, according to the comments in that member. In general terms,

review the following items in the config file:

• Alter ddname=SYSOUT=H to suitable classes for your site. For example, for tracing activity, the CONFIG=DEFAULT

section contains a SPAWN_DD=IPVTRACE=SYSOUT=H card that other configurations inherit and write trace output (if

activated) to. Adjust this class to a class suitable for your site.

• Alter SPAWN_STEPLIB data set names to the installation high-level qualifiers for the relevant libraries. The

SPAWN_STEPLIB statement is not required if all of the libraries are already in the linklist for your site.

• If a configuration makes use of the SPAWN_JOBNAME statement, then all address spaces that are launched for that

connection type run with that specified jobname (the owner of each job reflects the user that is logged in).

• Do not alter CONFIG=name and SPAWN_PROGRAM=name values unless otherwise detailed in the participating

product's documentation.

The configuration file supports the setting and reference of substitution variables in the following form:

$VAR=value

For setting these variables, specify the above form before the first CONFIG statement, or between the CONFIG and

SPAWN_PARMS_SECTION statements. If using concatenations for the CONFIG DD, the first CONFIG refers to the statements

in the first of the concatenations.

In following statements in the configuration, occurrences of '$VAR' are replaced by the 'value' specified. This could be used to

represent high level qualifiers that are repeated in the configuration file. For example, set the value:

$IPVHLQ=SYS1.IPV

Then allow a reference in a following statement, such as:

SPAWN_STEPLIB=$IPVHLQ.SIPVMODA

The sample IPVCONFG makes use of this for high level qualifiers but it could also be used for other substitutions as desired.

23

IBM Application Delivery Foundation for z Systems Common Components

24

Create matching WORKDIR by running job IPVMKDIR
The IPVMKDIR job creates a work directory to be used with the server. It is supplied in the sample library hlq.SIPVSAM1.

IPVMKDIR creates a directory hierarchy in the following form:

/etc/ipv/v18/ipvsrv1

You can alter this to suit your site. You must update the WORKDIR statement in the server configuration to refer to the

created directory. A unique path is recommended.

Tip: Do not use /tmp as a directory location.

The files in the work directory must be owned by the user ID of the ADFzCC server. The IPVMKDIR job issues the chown

command to set the owner of the files and any sub-directories within the work directory. It is recommended to use a unique

work directory that is not used by other program products. The file system containing the work directory must allow the user

ID to be changed through the SETUID attribute. If the file system is mounted with the NOSETUID attribute, the APF extended

attribute set by the IPVMKDIR job is ignored, resulting in abend code EC6 when connecting to the ADFzCC server.

Note: The IPVMKDIR job is expected to run with superuser authority. That is, IPVMKDIR must have READ access in

the FACILITY class to BPX.SUPERUSER and BPX.FILEATTR.APF. The job will try to set the sticky bit attribute and the

APF extended attribute. If these file attributes are not set correctly, attempts to start sessions using the ADFzCC

server might fail with authorization errors or abend code EC6. After running this job you can check the extended file

attribute in the job output or use the ls -E z/OS® UNIX™ command. For more information, see the IPVMKDIR sample

member.

As an alternative to running the IPVMKDIR job, you can manually create the working directory and its contents by executing

the following steps in z/OS® UNIX™ System Services:

1. Start an OMVS session as superuser.

2. Create the working directory. For example:

mkdir /etc/ipv/v18/ipvsrv1

3. Create the set of session files in the working directory using the touch command:

touch FMNCSEP File Manager for z/OS®

touch CAZLCS01 Application Performance Analyzer for z/OS®

touch IDIGMAIN Fault Analyzer for z/OS®

touch IPVVRFY ADFz Common Components

4. Set the APF file attributes for File Manager and APA session files:

extattr +a FMNCSEP
extattr +a CAZLCS01

Chapter 3. Customizing the ADFzCC server

5. Set the file ownership of the work directory and session files:

chown <IPVSRV> /etc/ipv/v18/ipvsrv1
chown <IPVSRV> /etc/ipv/v18/ipvsrv1/FMNCSEP
chown <IPVSRV> /etc/ipv/v18/ipvsrv1/CAZLCS01
chown <IPVSRV> /etc/ipv/v18/ipvsrv1/IDIGMAIN
chown <IPVSRV> /etc/ipv/v18/ipvsrv1/IPVVRFY

Where <IPVSRV> is the user ID that will run the ADFzCC server started task.

6. Set the file permissions for the work directory and session files:

chmod 755 /etc/ipv/v18/ipvsrv1
chmod 755 FMNCSEP
chmod 755 CAZLCS01
chmod 755 IDIGMAIN
chmod 755 IPVVRFY

7. Set the sticky bit file attribute for all session files:

chmod +t FMNCSEP
chmod +t CAZLCS01
chmod +t IDIGMAIN
chmod +t IPVVRFY

Related information

Mounting file systems

z/OS® UNIX System Services Command Reference

Check address space timeout
When an address space is launched for a client, and it has completed its current function, the address space is waiting

for TCP/IP communications from the peer. In line with this, the client address space might be subject to an s522 abend

if waiting longer than the active site settings for job wait time. The job wait time is controlled by the JWT parameter of the

SMFPRMxx member, but might also be set to never time out by the site settings for MAXCPUTIME in the site's BPXPRMxx member.

Set these parameters as needed by the site.

Add ports to TCPIP reservation list
Add the ports for the server, or servers, you want to run to the reserved port list in your TCPIP configuration data.

Configuration considerations for IBM® Explorer for z/OS® (z/OS®
Explorer)

The port number that is used by the ADFzCC server must be specified in the rse.env directive PD_SERVER_PORT statement as

follows:

PD_SERVER_PORT=nnnn

where nnnn is the port number.

25

https://www.ibm.com/docs/en/zos/2.4.0?topic=system-mounting-file-systems
https://www.ibm.com/docs/en/zos/2.4.0?topic=services-zos-unix-system-command-reference

IBM Application Delivery Foundation for z Systems Common Components

26

rse.env is located in /etc/zexpl/. For more details, see /etc/zexpl/rse.env.

Configuring TCP/IP stack affinity
About this task

When multiple TCP/IP stacks are in use on the system, you can specify the desired ADFzCC stack on the started task.

1. Create a new PDSE data set with LRECL=80 and RECFM=FB. For example:

<hlq>.EXMP.CONFIG

2. Create a new member in the data set, for example, <hlq>.EXMP.CONFIG(TCPDATA). In the new member, include

the following line:

TCPIPJOBNAME TCPIPPRD

where TCPIPPRD is the name of the desired TCP/IP stack.

3. In the IPVCONFIG member , for example, <hlq>.EXMP.CONFIG(IPVCONFIG), add the following line to each

product's SPAWN_PARMS_SECTION:

 SPAWN_DD=SYSTCPD=<hlq>.EXMP.CONFIG(TCPDATA)

4. Restart the ADFzCC started task for the changes to take effect.

http://www.ibm.com/support/knowledgecenter/SSBDYH_3.0.1/com.ibm.zexpl.config.hostconfigref.doc/topics/hostinfo79.html

Chapter 4. Options
For the IPVLANG utilities, you can specify installation-wide default options in the IPVCNF00 parmlib configuration member.

You can create a member IPVCNF00 in SYS1.PARMLIB, or any other data set that is part of the logical parmlib

concatenation.

Note: If not providing general READ access to data sets in the logical parmlib concatenation, then an IPVOPTLM

configuration-options module can be used to specify an alternative data set, as explained in Using an IPVOPTLM

configuration-options module on page 28.

If you do not specify an option, then it takes either the product default (as indicated on the syntax diagram for each option),

or has no value at all.

Options that are specified in the IPVCNF00 parmlib configuration member are subject to these syntax rules:

• Only columns 1 - 71 are processed.

• Options can be specified anywhere in a line. They do not have to start in column 1.

• You can use a blank or a comma as a delimiter.

• Options can be continued across any number of lines

• Options specifications are not case-sensitive—all options are converted to uppercase. commentsin options

• Comments are permitted anywhere and can be nested. The characters “/*” identify the beginning of a comment, and

“*/” identify the end.

Option descriptions
The following explains each option in detail.

EventProcessingExit

Use the EventProcessingExit option to define an exit that is to be invoked to perform asynchronous event processing. For

more information, see ADFzCC event processing on page 103.

Figure 1. Syntax

EventProcessingExit( exit-name)

exit-name

The name of an Event Processing user exit that contains an LE fetchable function of the same name. The

maximum length of the name is 8 characters.

If this option is changed, ADFz products that use the Event Processing user exit are affected.

27

IBM Application Delivery Foundation for z Systems Common Components

28

Locale
Figure 2. Syntax

NOLOCALE

LOCALE( locale-name)

The Locale option specifies the locale to be used for cultural environment-dependent presentation.

The locale name that is specified can be one of those supplied with z/OS® C/C++ for the setlocale() runtime function. For a

list of locale names, see z/OS® C/C++ Programming Guide, "Appendix D. Locales Supplied with z/OS® C/C++".

Specifying the NoLocale option is the equivalent to specifying Locale(C).

The following are affected by the Locale option:

IPVLANGP source code comments

Characters in source code comments which are considered non-printable given the current locale are shown as

periods.

Fault Analyzer for z/OS®

Affected are things like date and time formatting, collating sequences of sorted information, and determination

of non-printable characters which are shown as periods.

Note: If used, the equivalent Fault Analyzer for z/OS® Locale option overrides the IPVCNF00 Locale

option specification.

Using an IPVOPTLM configuration-options module
An optional IPVOPTLM configuration-options module can be used to provide settings which are required before reading the

IPVCNF00 parmlib member.

The name of the configuration-options load module must be IPVOPTLM, and it must be placed in an APF-authorized library.

Place the library in LNKLST so that the IPVOPTLM load module can be found. The recommended library is IPV.SIPVMODA.

A sample job to create an IPVOPTLM configuration-options load module is provided as member IPVOPTLM in data set

IPV.SIPVSAM1. sample data set membersIPVOPTLMIPVOPTLM sample member

Individual settings in the IPVOPTLM configuration-options module are specified using the IPVOPT macro, as explained in the

sample job. The only available setting is:

IPVCNFDS

To accommodate installations that do not provide general READ access to SYS1.PARMLIB (or any one of the

data sets in the logical parmlib concatenation), an alternative data set dsname can be specified as follows:

 IPVOPT IPVCNFDS,dsname

Chapter 4. Options

For example, to specify TOOLS.PARMLIB as an alternative data set name:

 IPVOPT IPVCNFDS,TOOLS.PARMLIB

29

30

Chapter 5. Quick start guide for compiling and assembling
programs for use with the ADFz family of products
These topics describe the minimal steps that are required to prepare your programs for use with the Application Delivery

Foundation for z/OS® family of products. They provide instructions for a single compilation method for organizations that

are using some combination of z/OS® Debugger, Fault Analyzer, and Application Performance Analyzer (APA).

For more detailed information on working with particular products, refer to the following topics:

• Part 2. “Preparing your program for debugging” of the IBM® z/OS® Debugger User's Guide

• Part 2. “Fault Analyzer Installation and Administration” of the Fault Analyzer for z/OS® User's Guide

• Appendix B. of the Application Performance Analyzer for z/OS® User's Guide

z/OS® Debugger, Fault Analyzer, and APA are designed to use load modules and other files that are produced by IBM®

compilers. You must compile your programs with certain compiler options so that they produce load modules and files that

these products can use.

In these topics the term 'source information files' refers to the types of files that are used by z/OS® Debugger, Fault Analyzer,

and APA. The different kinds of source information files that are discussed include:

• SYSDEBUG files

• LANGX files

• Compiler listings

• DWARF files

• Expanded source files

Different compilers generate different kinds of source information files. If you use more than one compiler, you might have

more than one type of source information library.

When you compile your programs with the compiler options described in these topics, you can use the load modules and

source information files that are created by the compilers as follows:

• Prepare the module for debugging using z/OS® Debugger. z/OS® Debugger lets you work with program statements

and variables.

When a program is compiled with the right options, the module that is produced by the compiler can be debugged

and a source information file, which contains program statements, can be produced. When you use z/OS® Debugger

to debug a program, the source information file is used to display the program source statements in the source

window.

Depending on the source language and compiler that are used, the load module, the source information file, or

the DWARF file contains information about statements and variables, such as offsets and lengths, and contains

information that allows the debugger to locate statements and variables in storage. If you do not compile with the

correct compiler options, debugging is limited to something called 'disassembly' mode, where machine code is

displayed, but no source statements or variables.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

• Use Fault Analyzer to automatically pinpoint the source statement that caused an abend, and show the values of

variables in your programs at the time of an abend.

• Use APA to show precisely which program statements are using the most CPU time and wait time. Use this

information to tune your applications.

Updating your build process
If one or more ADFz products were recently installed on your system, the program build processes might not have been

updated yet. Updating build processes is an important and necessary part of implementing the ADFz family of products.

In many organizations there is clear ownership of these build processes. In other organizations, it might not be obvious who

makes the changes. Many sites use standard compilation processes or PROCs that your system administrators maintain and

have updated to prepare programs for the ADFz family of products. In this case, find out what processes have been made

available and how to use them. In other organizations, developers maintain their own compilation JCL or PROCs to compile

programs. In this case, update your own compilation JCL to prepare your programs for use with ADFz products as described

below.

Start by researching what is required for each compiler individually. For example, the changes that are required for Enterprise

COBOL for z/OS®, Enterprise PL/I for z/OS®, C/C++ and Assembler are all slightly different.

In general, there are three changes that might be needed to enable compiler JCL to produce programs that can be used by

ADFz products:

1. Specify compiler options that are required by the ADFz family of products.

2. Code the JCL to produce and save the source information files that ADFz products need. Newer compilers can

generate the required source information files directly. Some older compilers require an extra step in the compilation

job to run a special utility program that produces the needed file.

3. In certain environments, it is advantageous to include a special z/OS® Debugger module into the application load

module during the link-edit step. In most cases this special module is optional, but it can simplify starting z/OS®

Debugger for certain types of programs. For certain older compilers running in certain environments, you must

include a special module to enable z/OS® Debugger.

Updating your promotion process
Typically, when a program is tested, program load modules are promoted through different stages before reaching

production.

For example, when a new program is compiled for the first time, it might be placed into a test load library. After unit testing is

completed, perhaps the compiled program is promoted to a QA environment. Finally, it is promoted into production. On your

system, you might know these stages by different names, such as Unit test, System test, and Model office.

Consider whether you want the ability to use z/OS® Debugger, Fault Analyzer, and Application Performance Analyzer for

z/OS® throughout your program's lifecycle. Even if you do not plan to use z/OS® Debugger with production programs, Fault

Analyzer and APA are useful in those stages. To enable the ADFz products at each stage, update your promotion processes

31

IBM Application Delivery Foundation for z Systems Common Components

32

to retain the source information files. Promotions can be accomplished by performing a recompile, a copy, or a move.

Perform the same steps with your source information files that you perform with your load modules or object modules.

For each load library or object library, have a corresponding set of source information libraries. Whenever you promote a

load module or object module, promote the source information file as well. This ensures that the source information file

is available for Fault Analyzer and APA, and you can continue to take advantage of the ADFz products at all stages of your

program's lifecycle.

Preparing your programs
Each compiler produces different kinds of source information files, and each of the ADFz products reads different kinds of

files.

It can be time-consuming to research all the different combinations, but for each compiler, there is a suggested method that

is described below. If you use the suggested method, your programs are ready to take full advantage of the ADFz family of

products.

Enterprise COBOL for z/OS® Version 6 or later programs

The following table shows various compiler options that can be used to prepare Enterprise COBOL for z/OS® Version 6

programs for use with the ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance

Analyzer for z/OS®). The methods suggested in the following table indicate whether the program object produced is suitable

for a production environment. Program objects suitable for a production environment have no significant runtime overhead.

The table shows what is required for full function.

Table 1. Examples of compiler options and source information files that are supported by ADFz family of products for

Enterprise COBOL for z/OS® Version 6

Compiler options

Source

information file

type produced

Is the program

object

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer®

Options

supported and su

ggested for APA

TEST(SOURCE, NOSEP) NOLOAD class in

the object

Yes Supported Supported Supported

TEST(SOURCE,

SEPARATE)

SYSDEBUG Yes Supported Supported Supported

NOTEST(DWARF,

SOURCE, SEPARATE)

SYSDEBUG Yes Not Supported Supported Not Supported

NOTEST, LIST, MAP,

SOURCE, NONUMBER,

XREF(SHORT)

Listing Yes Not Supported Supported Supported

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

Enterprise COBOL for z/OS® Version 5 programs

The following table shows various compiler options that can be used to prepare Enterprise COBOL for z/OS® Version 5

programs for use with the ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance

Analyzer for z/OS®). The methods suggested in the following table indicate whether the program object produced is suitable

for a production environment. Program objects suitable for a production environment have no significant runtime overhead.

The table shows what is required for full function.

Table 2. Examples of compiler options and source information files that are supported by ADFz products for Enterprise

COBOL for z/OS® Version 5

Compiler options

Source

information file

type produced

Is the program

object

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

TEST(SOURCE) NOLOAD class in

the object

Yes Supported Supported Supported

NOTEST, LIST, MAP,

SOURCE, NONUMBER,

XREF(SHORT)

Listing Yes Not Supported Supported Supported

Enterprise COBOL for z/OS® Version 4 programs

The following table shows various compiler options that can be used to prepare Enterprise COBOL for z/OS® Version 4

programs for use with the ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance

Analyzer for z/OS®). The methods suggested in the following table indicate whether the load module produced is suitable

for a production environment. Load modules suitable for a production environment have no significant runtime overhead.

Table 3. Examples of compiler options and source information files that are supported by ADFz products for Enterprise

COBOL for z/OS® Version 4

This table has 6 columns. The fourth cell of the second row spans 3 columns. The second cell of the third row spans 2 rows.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

TEST (NOHOOK,

SEPARATE, EJPD),

LIST, MAP, SOURCE,

NONUMBER,

XREF(SHORT)

SYSDEBUG Yes Suggested for production and test

33

IBM Application Delivery Foundation for z Systems Common Components

34

Table 3. Examples of compiler options and source information files that are supported by ADFz products for Enterprise

COBOL for z/OS® Version 4

This table has 6 columns. The fourth cell of the second row spans 3 columns. The second cell of the third row spans 2 rows.

(continued)

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

NOTEST, LIST, MAP,

SOURCE, NONUMBER,

XREF(SHORT)

Yes N/A Supported Supported

NOTEST, LIST, MAP,

SOURCE, NUMBER,

XREF(SHORT)

Compiler listing

Yes N/A Supported N/A

LIST, MAP, SOURCE,

NONUMBER,

XREF(SHORT)

LANGX file Yes Not supported Supported Supported

LIST, MAP, SOURCE,

NONUMBER, NOTEST,

NOOPT, XREF

LANGX file Yes Supported Supported Supported

Preparing Enterprise COBOL for z/OS® Version 4 programs

Perform the following steps for compiling your Enterprise COBOL for z/OS® Version 4 programs using the compiler options

suggested in Table 3 on page 33:

1. Create libraries (PDSE is suggested unless PDS is required in your organization) for SYSDEBUG files. Create one or

more SYSDEBUG libraries for each environment, such as test, and production.

2. Create a corresponding SYSDEBUG library for each load library. Specify LRECL=(80 to

1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

3. For all programs in both test and production environments, specify the following compiler options:

TEST(NOHOOK,SEPARATE,EJPD),LIST,MAP,SOURCE,NONUMBER,XREF(SHORT).

The TEST compiler option is required if you plan to use z/OS® Debugger to debug a program. The TEST option is

optional if you plan to use Fault Analyzer for z/OS® or Application Performance Analyzer for z/OS®.

The SEPARATE suboption produces a SYSDEBUG file.

NOHOOK and SEPARATE produce a production-ready module that can still be debugged.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

If the OPT option is also used, EJPD might reduce optimization but enables the debugger’s JUMPTO and GOTO commands.

These commands are disabled when OPT and NOEJPD are both used.

4. When the TEST option is not used, save the compiler listing in a file, or use the IPVLANGX utility program to create a

LANGX file. To minimize JCL changes, IPVLANGX has aliases to match names. These are:

z/OS® Debugger

EQALANGX

Fault Analyzer for z/OS®

IDILANGX

Application Performance Analyzer for z/OS®

CAZLANGX

Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS® can use compiler listings and LANGX files

to provide source-level support.

5. The LIST, MAP, SOURCE, and XREF options are needed only if a compiler listing or a LANGX file is used to provide source

information to Fault Analyzer for z/OS® or Application Performance Analyzer for z/OS®. If a SYSDEBUG file is used

with these products or if you are not using Fault Analyzer for z/OS® or Application Performance Analyzer for z/OS®,

the LIST, MAP, SOURCE, and XREF options are optional.

6. The NONUMBER compiler option is needed only if a compiler listing file is used to provide source information to

Application Performance Analyzer for z/OS®. If a SYSDEBUG file is used with Application Performance Analyzer for

z/OS®, or if you are not using Application Performance Analyzer for z/OS®, the NONUMBER option is optional.

7. Code a SYSDEBUG DD in the JCL of the compiler step:

 //SYSDEBUG DD DSN= SYSDEBUG.pds(pgmname),DISP=SHR

Save the SYSDEBUG file that is produced by the compiler in the SYSDEBUG library and specify a member name that

is equal to the program name of your application program. This file is the source information file for z/OS® Debugger,

Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS®.

8. Modify the promotion process to promote SYSDEBUG files. When a load module is promoted, for example from test

to production, promote the corresponding SYSDEBUG file or files. A promotion can be a recompile, copy, or move.

Perform the same steps with the SYSDEBUG file that you perform with the module during promotion.

9. Optionally, include a z/OS® Debugger Language Environment® (LE) exit module into the load module during the

linkage editor step. This inclusion is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven

method to start the debugger automatically when a program runs, without JCL changes, based on the program name

and user ID. Use module EQADBCXT for batch programs (including IMS™ batch), EQADICXT for IMS/TM programs

and EQADDCXT for DB2® stored procedures. Do not include the exit module for CICS® programs.

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures.

35

IBM Application Delivery Foundation for z Systems Common Components

36

Sample JCL for compiling Enterprise COBOL for z/OS® Version 4 programs

Here is a JCL example for compiling an Enterprise COBOL for z/OS® Version 4 program for use with the IBM® Application

Delivery Foundation for z Systems family of products. This sample is a generic sample, and might not meet all your

requirements to generate your modules.

Notice that the TEST compiler option is specified. Code the correct suboptions of the TEST compiler option for the version

of the compiler that you are using. You can also code any other compatible compiler options that are required by your

programs.

Also. notice that a SYSDEBUG DD statement was coded. This statement indicates the source information file that the

compiler produces. It refers to a SYSDEBUG library that is a PDS or PDSE. The member name must be the same as the

program name.

For Enterprise COBOL for z/OS®, these are the only required changes.

However, there is an optional change in the linkage editor step. The example shows that a special Language Environment®

exit module is included in the application load module. Although this is exit module not required, it enables the use of z/OS®

Debugger panel 6, which makes the debugger easier to start in some environments. If you prefer to use panel 6 to start

z/OS® Debugger, this method is one way to enable it. If you do not plan to use z/OS® Debugger panel 6, then do not include

an exit module.

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE COBOL PROGRAM
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A TEST COMPILER PARM IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARM TEST(NOHOOK,SEPARATE,EJPD) HAS ADVANTAGES:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - THE MODULE IS PRODUCTION-READY (NO RUN-TIME OVERHEAD)
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 3. COMPILER PARMS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU PLAN
//* TO USE THE COMPILER LISTING WITH FA OR APA, OR IPVLANGX
//*
//* BINDER (LINKAGE EDITOR):
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, AND DB2 TYPE MAIN STORED PROCEDURES.
//*

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAM1 PROGRAM NAME
// SET COBOLLIB='IGY.V4R1.SIGYCOMP' COBOL COMPILER LOADLIB
// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LELIB='CEE.SCEELKED' LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
//*
//* ****************************
//* COMPILE STEP
//* ****************************
//COMPILE EXEC PGM=IGYCRCTL,REGION=0M,
// PARM=('TEST(NOHOOK,SEPARATE,EJPD),LIST,MAP,XREF(SHORT),NONUMBER,SOURCE')
//STEPLIB DD DISP=SHR,DSN=&COBOLLIB
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM='LIST,XREF'
//SYSLIB DD DISP=SHR,DSN=&LELIB
//DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT, OR EQAD3CXT)
//* IS OPTIONAL.
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

Enterprise COBOL for z/OS® Version 3 and COBOL for OS/390® and VM programs

The following table shows various compiler options that can be used to prepare Enterprise COBOL for z/OS® Version 3

and COBOL for OS/390® and VM programs for use with the IBM® Application Delivery Foundation for z Systems family

of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS®). The methods

37

IBM Application Delivery Foundation for z Systems Common Components

38

suggested in the following table indicate whether the load module produced is suitable for a production environment. Load

modules suitable for a production environment have no significant runtime overhead.

Table 4. Examples of compiler options and source information files that are supported by ADFz products for Enterprise

COBOL for z/OS® Version 3 and COBOL for OS/390® and VM

This table has 6 columns. The fourth cell in the second row spans 3 columns. The second cell in the third row spans 2 rows.

Compiler options Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

TEST(NONE, SYM,

SEPARATE), LIST, MAP,

SOURCE, NONUMBER,

XREF(SHORT)

SYSDEBUG Yes Suggested for production and test

NOTEST, LIST, MAP,

SOURCE, NONUMBER,

NOOPT, XREF(SHORT)

Yes N/A Supported Supported

NOTEST, LIST, MAP,

SOURCE, XREF(SHORT),

NUMBER

Compiler listing

Yes N/A Supported N/A

LIST, MAP, SOURCE,

NONUMBER,

XREF(SHORT)

LANGX file Yes Not supported Supported Supported

LIST, MAP, SOURCE,

NONUMBER, NOTEST,

NOOPT, XREF

LANGX file Yes Supported Supported Supported

Preparing Enterprise COBOL for z/OS® Version 3 and COBOL for OS/390® and VM
programs

Perform the following steps for compiling your Enterprise COBOL for z/OS® Version 3 and COBOL for OS/390® and VM

programs using the compiler options suggested in Table 4 on page 38:

1. Create libraries (PDSE is suggested unless PDS is required in your organization) for SYSDEBUG files. Allocate one or

more SYSDEBUG libraries for each environment, such as test, and production.

2. Create a corresponding SYSDEBUG library for each load library. Specify LRECL=(80 to

1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

3. For all programs in both test and production environments, use

TEST(NONE,SYM,SEPARATE),LIST,MAP,SOURCE,NONUMBER,XREF(SHORT).

TEST is required by z/OS® Debugger.

The SEPARATE suboption produces a SYSDEBUG file. Specifying NONE with SEPARATE produces a production-ready

module that can still be debugged.

If OPTIMIZE is specified, the debugger JUMPTO and GOTO commands are disabled. These commands are enabled when

NOOPTIMIZE is specified.

4. The LIST, MAP, SOURCE, and XREF options are needed only if a compiler listing or a LANGX file is used to provide source

information to Fault Analyzer for z/OS® or Application Performance Analyzer for z/OS®. If a SYSDEBUG file is used

with these products, or if you are not using Fault Analyzer for z/OS® or Application Performance Analyzer for z/OS®,

the LIST, MAP, SOURCE, and XREF options are optional.

5. The NONUMBER compiler option is needed only if a compiler listing file is used to provide source information to

Application Performance Analyzer for z/OS®. If a SYSDEBUG file is used with Application Performance Analyzer for

z/OS®, or if you are not using Application Performance Analyzer for z/OS®, the NONUMBER option is optional.

6. Code a SYSDEBUG DD in the JCL of the compiler step.

//SYSDEBUG DD DSN= SYSDEBUG.pds(pgmname),DISP=SHR

Save the SYSDEBUG file that is produced by the compiler in the SYSDEBUG library and specify a member name that

is equal to the program name of your application program. This file is the source information file for z/OS® Debugger,

Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS®.

7. Modify the promotion process to promote SYSDEBUG files. When a load module is promoted, for example from test

to production, promote the corresponding SYSDEBUG file or files. A promotion can be a recompile, copy, or move.

Perform the same steps with the SYSDEBUG file that you perform with the module during promotion.

8. Optionally, include a z/OS® Debugger Language Environment® exit module into the load module during the linkage

editor step. This inclusion is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven method to

start the debugger automatically when a program runs, without JCL changes, based on the program name and

user ID. Use module EQADBCXT for batch programs (including IMS™ batch), EQADICXT for IMS/TM programs and

EQADDCXT for DB2® stored procedures. Do not include the exit module for CICS® programs.

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures.

Sample JCL for compiling Enterprise COBOL for z/OS® Version 3 programs

Here is a JCL example for compiling an Enterprise COBOL for z/OS® Version 3 program for use with the ADFz family of

products. This example is a generic sample, and might not meet all your requirements.

Notice that a TEST option is specified. Code the correct suboption of the TEST compiler option for the version of the compiler

that you are using. You can also code any other compatible compiler options that are required by your programs.

39

IBM Application Delivery Foundation for z Systems Common Components

40

Also, notice that a SYSDEBUG DD statement was coded. This statement indicates the source information file that the

compiler produces. It refers to a SYSDEBUG library that is a PDS or PDSE. The member name must be the same as the

program name.

For Enterprise COBOL for z/OS®, these are the only required changes.

However, there is an optional change in the linkage editor step. The example shows that a special Language Environment®

exit module is included in the application load module. Although this exit module is not required, it enables the use of z/OS®

Debugger panel 6, which makes the debugger easier to start in some environments. If you prefer to use panel 6 to start

z/OS® Debugger, this method is one way to enable it. If you do not plan to use z/OS® Debugger panel 6, then do not include

an exit module.

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE COBOL PROGRAM
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A TEST COMPILER PARM IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARM TEST(NONE,SYM,SEP) HAS THREE ADVANTAGES:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - THE MODULE IS PRODUCTION-READY (NO RUN-TIME OVERHEAD)
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 3. COMPILER PARMS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU PLAN
//* TO USE THE COMPILER LISTING WITH FA OR APA, OR IPVLANGX
//* 4. COMPILER PARM NOOPT IS OPTIONAL. HOWEVER, THE DEBUG TOOL
//* COMMANDS JUMPTO AND GOTO WILL NOT BE AVAILABLE IF
//* THE OPT PARM IS USED
//*
//* BINDER (LINKAGE EDITOR):
//* 5. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAM1 PROGRAM NAME
// SET COBOLLIB='IGY.V3R4.SIGYCOMP' COBOL COMPILER LOADLIB
// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LELIB='CEE.SCEELKED' LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
//*
//* ****************************
//* COMPILE STEP

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//* ****************************
//COMPILE EXEC PGM=IGYCRCTL,REGION=0M,
// PARM=('TEST(NONE,SYM,SEPARATE),LIST,MAP,SOURCE,NONUMBER,XREF(SHORT)')
//STEPLIB DD DISP=SHR,DSN=&COBOLLIB
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM='LIST,XREF'
//SYSLIB DD DISP=SHR,DSN=&LELIB
//DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL.
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

COBOL for MVS™ and VM programs

The following table shows various compiler options that can be used to prepare COBOL for MVS™ and VM programs for

use with the ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance Analyzer

for z/OS®). The methods suggested in the following table indicate whether the load module produced is suitable for a

production environment. Load modules suitable for a production environment have no significant runtime overhead.

41

IBM Application Delivery Foundation for z Systems Common Components

42

Table 5. Examples of compiler options and source information files that are supported by ADFz products for COBOL for

MVS™ and VM

This table has 6 columns. The second cell of the second row spans 2 rows. The fourth cell of the second row spans 3 columns.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

TEST(ALL, SYM),

LIST, MAP, SOURCE,

NOOPT, NONUMBER,

XREF(SHORT)

No Suggested for test. (Using z/OS® Debugger in production

for this compiler is not suggested.)

NOTEST, LIST, MAP,

SOURCE, NONUMBER,

XREF(SHORT)

Compiler listing

Yes N/A Suggested for production

NOTEST, LIST, MAP,

SOURCE, NONUMBER,

XREF(SHORT)

LANGX file Yes N/A Supported Supported

Preparing COBOL for MVS™ and VM programs

Perform the following steps for compiling your COBOL for MVS™ and VM programs:

1. Create libraries (PDSE is suggested unless PDS is required in your organization) for compiler listing files. Allocate one

or more compiler listing libraries for each environment, such as test and production.

2. Create a corresponding listing library for each load library. Specify LRECL=133,RECFM=FBA,BLKSIZE=(multiple of lrecl

< 32K).

3. For all programs, such as batch, CICS®, and IMS™:

◦ In test environments, specify compiler options TEST(ALL,SYM),NOOPT,LIST,MAP,SOURCE,NONUMBER,XREF(SHORT)

to create a module that can be used with z/OS® Debugger, Fault Analyzer for z/OS® and Application

Performance Analyzer for z/OS®.

TEST is required for z/OS® Debugger.

The ALL suboption adds debug hooks, which add some runtime overhead.

SYM stores symbolics data that is required by z/OS® Debugger into the module, which can make it significantly

larger.

The other options format the compiler listing as required by z/OS® Debugger, Fault Analyzer for z/OS®, and

Application Performance Analyzer for z/OS®.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

◦ In production environments, specify compiler options NOTEST,LIST,MAP,SOURCE,NONUMBER,XREF(SHORT)

to create a production-ready module that can be used with Fault Analyzer for z/OS® and Application

Performance Analyzer for z/OS® (but not z/OS® Debugger). Specify OPTIMIZE if preferred.

NOTEST disables source level debugging with z/OS® Debugger, but can provide better performance and

smaller module size.

The other options (except OPTIMIZE) format the compiler listing as required by Fault Analyzer for z/OS® and

Application Performance Analyzer for z/OS®.

4. Modify the SYSPRINT DD in the JCL of the compiler step to refer to a file.

//SYSPRINT DD DSN= compiler.listing.pds(pgmname),DISP=SHR

Save the compiler listing in a file in the compiler listing library and specify a member name that is equal to the

program name of your application program. This file is the source information file for z/OS® Debugger, Fault Analyzer

for z/OS® and Application Performance Analyzer for z/OS®.

5. Modify the promotion process to promote compiler listing files. When a load module is promoted, for example, from

test to production, promote the corresponding compiler listing file or files. A promotion can be a recompile, a copy, or

a move. Perform the same steps with the compiler listing file that you perform with the module during promotion.

6. Optionally, include a z/OS® Debugger Language Environment® exit module into the load module during the linkage

editor step. This inclusion is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven method to

start the debugger automatically when a program runs, without JCL changes, that is based on the program name and

user ID. Use module EQADBCXT for batch programs (including IMS™ batch), EQADICXT for IMS/TM programs and

EQADDCXT for DB2® stored procedures. Do not include the exit module for CICS® programs.

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures.

Sample JCL for compiling COBOL for MVS™ and VM programs

Here is a JCL example for compiling a COBOL for MVS™ and VM program for use with the ADFz family of products. This

sample is a generic sample, and might not meet all your requirements.

Notice that a TEST option is specified. Code the correct suboptions of the TEST compiler option for the version of the compiler

that you are using. You can also code any other compatible compiler options that are required by your programs.

Also, notice that the SYSPRINT DD refers to a permanent file. This file is the source information file that the compiler

produces. It refers to a listing library that is a PDS or PDSE. The member name must be the same as the program name. For

COBOL for MVS™ and VM, these are the only required changes.

However, there is an optional change in the linkage editor step. The example shows that a special Language Environment®

exit module is included in the application load module. Although this exit module is not required, it enables the use of z/OS®

Debugger panel 6, which makes the debugger easier to start in some environments. If you prefer to use panel 6 to start

z/OS® Debugger, this method is one way to enable it. If you do not plan to use z/OS® Debugger panel 6, then do not include

an exit module.

43

IBM Application Delivery Foundation for z Systems Common Components

44

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE A COBOL FOR MVS AND VM PROGRAM
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A TEST COMPILER PARM IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARMS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU PLAN
//* TO USE THE COMPILER LISTING WITH FA OR APA, OR IPVLANGX
//* 3. COMPILER PARM NOOPT IS OPTIONAL. HOWEVER, THE DEBUG TOOL
//* COMMANDS JUMPTO AND GOTO WILL NOT BE AVAILABLE IF
//* THE OPT PARM IS USED
//*
//* BINDER (LINKAGE EDITOR):
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAM1 PROGRAM NAME
// SET COBOLLIB='IGY.SIGYCOMP' COBOL COMPILER LOADLIB
// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LELIB='CEE.SCEELKED' LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
//*
//* ****************************
//* COMPILE STEP
//* ****************************
////COMPILE EXEC PGM=IGYCRCTL,REGION=0M,
// PARM=(NOTEST,LIST,MAP,SOURCE,NONUMBER,XREF(SHORT)')
//STEPLIB DD DISP=SHR,DSN=&COBOLLIB
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM='LIST,XREF'
//SYSLIB DD DISP=SHR,DSN=&LELIB
//*** DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL.
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

VS COBOL II programs

If you are currently using the TEST option to compile your programs, consider using NOTEST. Using NOTEST allows you to take

advantage of z/OS® Debugger functionality that is not available when compiling with the TEST option. Examples of z/OS®

Debugger functions that are available when compiling with the NOTEST option include the automonitor feature and using AT

ENTRY program name breakpoints. Compiling with NOTEST also allows you to generate a module that can be debugged but

does not incur extra overhead when running without the debugger.

The following table shows various compiler options that can be used to prepare VS COBOL II programs for use with the

ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS®).

The methods suggested in the following table indicate whether the load module produced is suitable for a production

environment. Load modules suitable for a production environment have no significant runtime overhead.

Table 6. Examples of compiler options and source information files that are supported by ADFz products for VS COBOL II

This table has 6 columns. The second cell of the second row spans 2 rows. The fourth cell of the final row spans 3 columns.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

NOTEST, LIST, MAP,

SOURCE, XREF,

NONUMBER, NOOFFSET

Yes N/A Supported Supported

NOTEST, LIST, MAP,

SOURCE, XREF, NUMBER

Compiler listing

Yes N/A Supported N/A

45

IBM Application Delivery Foundation for z Systems Common Components

46

Table 6. Examples of compiler options and source information files that are supported by ADFz products for VS COBOL II

This table has 6 columns. The second cell of the second row spans 2 rows. The fourth cell of the final row spans 3 columns.

(continued)

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

NOTEST, LIST, MAP,

NOOPT, SOURCE, XREF,

NONUMBER

LANGX file Yes Suggested for production and test

Preparing VS COBOL II programs

Perform the following steps for compiling your VS COBOL II programs using the compiler options suggested in Table 6 on

page 45:

1. Allocate libraries (PDSE is suggested unless PDS is required for your organization) for LANGX files. Allocate one or

more LANGX libraries for each environment, such as test and production.

2. Create a corresponding LANGX library for each load library. Specify LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl

+4 to 32k.

3. For all programs, such as batch, CICS®, and IMS™, in both test and production environments, compile with

NOTEST,LIST,MAP,NOOPT,SOURCE,XREF,NONUMBER compiler options.

4. Modify the SYSPRINT DD in the compiler step to refer to a file. It can be either a permanent or temporary file. This file

is the input to the IPVLANGX utility.

5. Add a step after the compiler step to run the ADFz IPVLANGX utility. This utility program reads the compiler listing

and generates a LANGX file. This file is the source information file for z/OS® Debugger, Fault Analyzer for z/OS® and

Application Performance Analyzer for z/OS®. Save the LANGX file in the LANGX file library and specify a member

name that is equal to the program name of your application program.

6. If the module is linked with Language Environment® services, optionally include a z/OS® Debugger Language

Environment® exit module into the load module during the linkage editor step. This approach is one way to enable

the z/OS® Debugger panel 6 in ISPF, a simple panel-driven method to start the debugger automatically when a

program runs, without JCL changes, based on the program name and user ID. Use module EQADBCXT for batch

programs (including IMS™ batch), EQADICXT for IMS/TM programs and EQADDCXT for DB2® stored procedures. Do

not include the exit module for CICS® programs or if the module is not linked with Language Environment® services

(it is linked with COBOL II runtime services).

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures.

7. Modify the promotion process to promote LANGX files. When a load module is promoted, for example, from test to

production, promote the corresponding LANGX file or files. A promotion can be a recompile, copy, or move. Perform

the same steps with the LANGX file that you perform with the module during promotion.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

Sample JCL for compiling VS COBOL II programs

Here is an example of JCL for compiling a VS COBOL II program for use with the ADFz family of products. This sample is a

generic sample, and might not meet all your requirements.

Notice the compiler options that are used and notice that the compiler listing is passed to an added step that generates

a LANGX file. The compiler listing can be stored in a permanent file or can be passed in a temporary file. For VS COBOL II,

these are the only required changes.

However, there is an optional change in the linkage editor step. The example includes a special Language Environment® exit

module in the application load module. Although this exit module is not required, it enables the use of z/OS® Debugger panel

6, which makes the debugger easier to start in some environments. If you prefer to use panel 6 to start z/OS® Debugger, this

inclusion is one way to enable it. If you do not plan to use z/OS® Debugger panel 6, then do not include an exit module. Do

not include the exit module for CICS® programs or if the module is not linked with Language Environment® services (it is

linked with COBOL II runtime services).

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE A VS COBOL II PROGRAM
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. COMPILER OPTIONS LIST,MAP,SOURCE,XREF ARE REQUIRED IF YOU
//* PLAN TO USE THE LISTING WITH AN ADFz PRODUCT, OR TO
//* PROCESS THE LISTING WITH THE IPVLANGX UTILITY
//* 2. COMPILER OPTION NOTEST IS SUGGESTED FOR ALL COBOL II
//* PROGRAMS, EVEN IF IBM DEBUG TOOL FOR Z/OS WILL BE USED
//*
//* BINDER (LINKAGE EDITOR):
//* 3. IN THIS EXAMPLE, THE MODULE IS LINKED WITH LANGUAGE
//* ENVIRONMENT RUNTIME SERVICES. THIS IS CONTROLLED BY THE
//* LIBRARY OR LIBRARIES SPECIFIED IN THE SYSLIB DD IN THE
//* BINDER STEP.
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS *OPTIONAL*. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS, OR FOR
//* PROGRAMS LINKED WITH THE COBOL II RUNTIME SERVICES
//* INSTEAD OF LANGUAGE ENVIRONMENT RUNTIME SERVICES)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET OPTIONS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAMII1 PROGRAM NAME
// SET COB2COMP='IGY.V1R4M0.COB2COMP' COBOL II COMPILER LIB

47

IBM Application Delivery Foundation for z Systems Common Components

48

// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LELKED='CEE.SCEELKED' LE LINK LIBRARY
// SET LELIB='CEE.SCEERUN' LE RUNTIME LIBRARY
// SET UNITDEV=SYSALLDA TEMP data set UNIT
// SET LANGX='IPVLANGX' IPVLANGX UTILITY PROGRAM
// SET LANGXLIB='IPV.SIPVMODA' LIB FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* ****************************
//* COMPILE STEP
//* ****************************
//COMPILE EXEC PGM=IGYCRCTL,REGION=4M,
// PARM=('NOTEST,LIST,MAP,NOOPT,SOURCE,XREF,NONUMBER',
// 'RES,APOST,LIB,DYNAM,NORENT,NOSSRANGE')
//STEPLIB DD DISP=SHR,DSN=&COB2COMP
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.LISTING(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE A LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM='(COBOL ERROR 64K CREF'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LELIB
//LISTING DD DSN=&SYSUID..ADLAB.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM='LIST,XREF'
//SYSLIB DD DISP=SHR,DSN=&LELKED
//DTLIB DD DISP=SHR,DSN=&DTLIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL
//* AN EXIT ENABLES STARTING DEBUG TOOL USING THE USER EXIT DATA SET UTILITY
//* (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

OS/VS COBOL programs

The following table shows various compiler options that can be used to prepare OS/VS COBOL programs for use with the

ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS®).

The methods suggested in the following table indicate whether the load module produced is suitable for a production

environment. Load modules suitable for a production environment have no significant runtime overhead.

Table 7. Examples of compiler options and source information files that are supported by ADFz products for OS/VS COBOL

This table has 6 columns. The second cell of the second row spans 2 rows. The fourth cell of the final row spans 3 columns.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

DMAP, NOCLIST, NOLST,

PMAP, SOURCE, VERB,

XREF(SHORT)

Yes N/A Supported Supported

(LIST, NOPMAP) or

(CLIST, NOPMAP) or

(CLIST, PMAP)

Compiler listing

Yes N/A Supported N/A

NOBATCH, NOCLIST,

NOCOUNT, DMAP,

NOLST, PMAP,

SOURCE, NOSYMDMP,

NOTEST, NOOPT, VERB,

XREF(SHORT)

LANGX file Yes Suggested for production and test

Preparing OS/VS COBOL programs

Perform the following steps for compiling your OS/VS COBOL programs:

1. Allocate libraries (PDSE is suggested unless PDS is required for your organization) for LANGX files. Allocate one or

more LANGX libraries for each environment, such as test and production.

2. Create a corresponding LANGX library for each load library. Specify LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl

+4 to 32k.

3. For all programs, such as batch, CICS®, and IMS™, in both test and production environments, compile with the

NOBATCH, NOCLIST, NOCOUNT, DMAP, NOLST, PMAP, SOURCE, NOSYMDMP, NOTEST, NOOPT, VERB, XREF(SHORT) compiler

options. The module is production-ready and can be debugged using z/OS® Debugger.

49

IBM Application Delivery Foundation for z Systems Common Components

50

4. Modify the SYSPRINT DD in the compiler step to refer to a file. It can be either a permanent or temporary file. This is

the input to the IPVLANGX utility.

5. Add a step after the compiler step to run the ADFz IPVLANGX utility. This utility program reads the compiler listing

and generates a LANGX file, which is the source information file for z/OS® Debugger, Fault Analyzer for z/OS® and

Application Performance Analyzer for z/OS®. Save the LANGX file in the LANGX file library, and specify a member

name that is equal to the program name of your application program.

6. Modify the promotion process to promote LANGX files. When a load module is promoted, for example, from test to

production, promote the corresponding LANGX file or files. A promotion can be a recompile, copy, or move. Perform

the same steps with the LANGX file that you perform with the module during promotion.

Sample JCL for compiling OS/VS COBOL programs

Here is a JCL example for compiling an OS/VS program for use with the ADFz family of products:

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN OS VS COBOL PROGRAM
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* - COMPILER PARMS DMAP,NOCLIST,NOLST,PMAP,SOURCE,VERB,XREF
//* ARE REQUIRED IF YOU PLAN TO USE THE COMPILER LISTING WITH
//* ADFz AND/OR PROCESS IT WITH IPVLANGX
//*
//* A STEP THAT PROCESSES THE SYSADATA FILE,
//* AND CREATES A LANGX FILE IS NEEDED.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=SAMOS1 PROGRAM NAME
// SET OSVSCOMP='IGY.VSCOLIB' OS VS COBOL COMPILER LIBRARY
// SET LELIB='CEE.SCEELKED' LE LINKEDIT LIBRARY
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET SCEERUN='CEE.SCEERUN' LANGUAGE ENVIRON SCEERUN LIB
// SET LANGX='IPVLANGX' IPVLANGX UTILITY PROGRAM
// SET LANGXLIB='IPV.SIPVMODA' LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* ****************************
//* COMPILE STEP
//* ****************************
//COMPILE EXEC PGM=IKFCBL00,REGION=4M,
// PARM=('DMAP,NOCLIST,NOLST,NOOPT,SOURCE,VERB,XREF(SHORT)')
//* FOR DT (CHECK DEFAULTS): NOBATCH,NOCOUNT,PMAP,NOSYMDMP,NOTEST
//STEPLIB DD DISP=SHR,DSN=&OSVSCOMP
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.OSVSCOB.LISTING(&MEM)
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//SYSUT1 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//SYSUT2 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT3 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT4 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT5 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT6 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//SYSUT7 DD SPACE=(80,(10,10),,,ROUND),UNIT=&UNITDEV
//*
//CBLPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.OSVSCOB.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM='(COBOL ERROR 64K CREF'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.OSVSCOB.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LKED EXEC PGM=IEWL,REGION=0M,COND=(5,LT,COMPILE),PARM='LIST,XREF'
//SYSLIB DD DISP=SHR,DSN=&LELIB
//SYSLMOD DD DSN=&SYSUID..ADLAB.LOAD(&MEM),DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNITDEV,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))

Enterprise PL/I Version 3.7 and later programs

The following table shows various compiler options that can be used to prepare Enterprise PL/I Version 3.7 and later

programs for use with the ADFz family of products (z/OS® Debugger, IBM® Fault Analyzer for z/OS® and IBM® Application

Performance Analyzer for z/OS®). The methods suggested in the following table indicate whether the load module produced

has no significant runtime overhead and therefore is suitable for a production environment.

51

IBM Application Delivery Foundation for z Systems Common Components

52

Table 8. Examples of compiler options and source information files that are supported by ADFz products for Enterprise PL/I

Version 3.7 and later

This table has 6 columns. The fourth cell of the second row spans 3 columns. The first cell of the third row spans 2 rows. The fifth cell of the final row spans 3 columns.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

For Enterprise

PL/I Version 3.7:

TEST(ALL, SYM,

NOHOOK, SEPARATE,

SEPNAME, AALL),

NOPT, AGGREGATE,

ATTRIBUTES (FULL),

NOBLKOFF, LIST, MAP,

NEST, NONUMBER,

OFFSET, OPTIONS,

SOURCE, STMT,

XREF(FULL)

For Enterprise PL/I

Version 3.8 and

later: TEST(ALL,

SYM, NOHOOK,

SEPARATE, SEPNAME),

LISTVIEW (AALL),

NOPT, AGGREGATE,

ATTRIBUTES (FULL),

NOBLKOFF, LIST, MAP,

NEST, NONUMBER,

OFFSET, OPTIONS,

SOURCE, STMT,

XREF(FULL)

SYSDEBUG file

used by z/OS®

Debugger and

Fault Analyzer

for z/OS®.

LANGX file used

by Application

Performance

Analyzer for

z/OS®

Although the

module is

larger than

a module

compiled with

the NOTEST

option, you

can use the

module in

production if

needed.

Suggested for test. You can also use these options in a

production environment if the increased load module size is

not an issue.

Compiler listing Yes N/A Supported N/AAGGREGATE,

ATTRIBUTES (FULL),

NOBLKOFF, LIST,

MAP, NEST, NOTEST,

NONUMBER, OFFSET,

LANGX file Yes N/A Suggested for production and test

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

Table 8. Examples of compiler options and source information files that are supported by ADFz products for Enterprise PL/I

Version 3.7 and later

This table has 6 columns. The fourth cell of the second row spans 3 columns. The first cell of the third row spans 2 rows. The fifth cell of the final row spans 3 columns.

(continued)

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

OPTIONS, SOURCE,

STMT, XREF(FULL)

Preparing Enterprise PL/I Version 3.7 and later programs

Perform the following steps for compiling your Enterprise PL/I Version 3.7 and later programs:

1. Create a library (PDSE is suggested unless PDS is required for your organization) for SYSDEBUG files.

This library is only needed in test environments where debugging is performed using LRECL=(80 to

1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

2. Allocate one or more LANGX libraries for each environment, such as test and production.

3. Create a corresponding LANGX library for each load library. Specify LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl

+4 to 32k.

4. For all programs, such as batch, CICS®, and IMS™:

◦ In test environments:

▪ When using the Enterprise PL/I Version 3.7 compiler:

For all programs, specify the following compiler options:

TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME,AALL), NOPT, AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST,

MAP, NEST, NONUMBER, OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).

▪ When using the Enterprise PL/I Version 3.8 and later compilers:

For all programs, specify the following compiler options: TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME),

LISTVIEW(AALL), NOPT, AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER,

OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).

TEST(…) and NOPT are required by z/OS® Debugger.

The SEPARATE suboption produces a SYSDEBUG file. Save the SYSDEBUG file that is created by the compiler

for z/OS® Debugger and optionally, IBM® Fault Analyzer for z/OS®.

The AALL (AFTERALL) suboption of TEST or LISTVIEW stores program source information in the SYSDEBUG file

that contains information after the last preprocessor, such as macros and INCLUDEs. This expanded source

information is available in the source window of z/OS® Debugger while debugging.

53

IBM Application Delivery Foundation for z Systems Common Components

54

The other options format the compiler listing as required for the IPVLANGX utility.

Consider using the TEST(ALL,NOHOOK,SEPARATE) options for best performance and to produce a module

that can be debugged. Depending on the policies in your organization, the module can be considered for

production.

◦ In production environments:

▪ When using the Enterprise PL/I Version 3.7 or later compiler:

For all programs, specify NOTEST, AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST,

NONUMBER, OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).

NOTEST disables z/OS® Debugger, but produces a smaller load module.

The other options format the compiler listing as required for the IPVLANGX utility to produce a production-

ready module that can be used with IBM® Fault Analyzer for z/OS® and IBM® Application Performance

Analyzer for z/OS® (but not z/OS® Debugger).

5. When a TEST(…SEPARATE) option is used, code a SYSDEBUG DD in the second compiler step as follows:

 //SYSDEBUG DD DSN= sysdebug.pds(pgmname),DISP=SHR

This is the source information file for z/OS® Debugger, and optionally, IBM® Fault Analyzer for z/OS®. Save it in the

SYSDEBUG library, and specify a member name that is equal to the primary entry point name or CSECT name of your

application program.

6. Modify the SYSPRINT DD in the compiler step. This file is the compiler listing. Write the listing to either a permanent

or temporary file. This file is the input to the IPVLANGX utility.

Note: This compiler typically renames CSECTs according to an internal compiler algorithm. Therefore, it is

not recommended to store PL/I compiler listings or side files using CSECT names as they might not be found

by IBM® Application Performance Analyzer for z/OS® or IBM® Fault Analyzer for z/OS®. Instead, use the

primary entry point name.

7. Add a step after the compile step to run the IPVLANGX utility. This utility reads the compiler listing and generates

a LANGX file. This file is the source information file for IBM® Fault Analyzer for z/OS® and IBM® Application

Performance Analyzer for z/OS®. Save the LANGX file in the LANGX file library, and specify a member name that is

equal to the primary entry point name of your application program.

8. Modify the promotion process to promote LANGX files. When a load module is promoted, for example, from test to

production, promote the corresponding LANGX file or files. A promotion can be a recompile, copy, or move. Perform

the same steps with the LANGX file that you perform with the module during promotion.

9. If you compile with the TEST option and promote these modules into production, promote the SYSDEBUG file for your

production environment.

10. Optionally, include a z/OS® Debugger Language Environment® exit module into the load module during the linkage

editor step. This approach is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven method

to start the debugger automatically when a program runs, without JCL changes, based on the program name and

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

user ID. Use module EQADBCXT for batch programs (including IMS™ batch), EQADICXT for IMS/TM programs and

EQADDCXT for DB2® stored procedures. Do not include the exit module for CICS® programs.

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures

Sample JCL for compiling Enterprise PL/I for z/OS® Version 3.7 or later programs

Here is a JCL example for compiling an Enterprise PL/I for z/OS® Version 3.7 or later program for use with the ADFz family

of products.

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE PL/I V3.7 OR LATER
//* PROGRAM FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. COMPILER PARMS TEST IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARM NOPT IS RECOMMENDED FOR DEBUG TOOL
//* 3. COMPILER PARM:
//* TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME,AALL) (V3.7)
//* TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME),LISTVIEW(AALL), (V3.8+)
//* IS USED BECAUSE:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - NOHOOK DOES NOT HAVE RUN-TIME CPU OVERHEAD. HOWEVER, THE
//* MODULE IS LARGER BECAUSE OF STATEMENT TABLE
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 4. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),NOBLKOFF,LIST,
//* MAP,NEST,NONUMBER,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* TO PROCESS THE COMPILER LISTING WITH IPVLANGX
//*
//* BINDER (LINKAGE EDITOR):
//* 5. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=PADSTAT PROGRAM NAME
// SET PLICOMP='IBMZ.V3R7.SIBMZCMP' PLI COMPILER LOADLIB
// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LEHLQ='CEE' LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX='IPVLANGX' IPVLANGX UTILITY PROGRAM

55

IBM Application Delivery Foundation for z Systems Common Components

56

// SET LANGXLIB='IPV.SIPVMODA' LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED
//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//*
//* ***************************************
//* COMPILE STEP
//* ***************************************
//COMPILE EXEC PGM=IBMZPLI,REGION=0M,
// PARM=('+DD:OPTIONS')
//* THE +DD:OPTIONS PARAMETER IS USED TO DIRECT THE COMPILER TO
//* GET THE COMPILATION OPTIONS FROM THE OPTIONS DD STATEMENT
//OPTIONS DD *
TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME,AALL),LIST,MAP,SOURCE,
XREF(FULL),NOBLKOFF,AGGREGATE,ATTRIBUTES(FULL),NEST,OPTIONS,NOPT,
STMT,NONUMBER,OFFSET
/*
//* Note: The above options are for Enterprise PL/I Version 3.7
//* For Enterprise PL/I Version 3.8+, change the TEST option
//* to TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME), and add the
//* LISTVIEW(AALL) option
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSUT1 DD SPACE=(CYL,(5,2),,CONTIG),DCB=BLKSIZE=1024,UNIT=&UNITDEV
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM='(PLI ERROR 64K CREF'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//*
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

Enterprise PL/I Version 3.5 and Version 3.6 programs

The following table shows various compiler options that can be used to prepare Enterprise PL/I Version 3.5 and Version 3.6

programs for use with the ADFz family of products (z/OS® Debugger, IBM® Fault Analyzer for z/OS® and IBM® Application

Performance Analyzer for z/OS®). The methods suggested in the following table indicate whether the load module produced

has no significant runtime overhead and therefore is suitable for a production environment.

Table 9. Examples of compiler options and source information files that are supported by ADFz products for Enterprise PL/I

Version 3.5 and Version 3.6

This table has 6 columns. The fourth cell of the second row spans 3 columns. The first cell of the third row spans 2 rows. The fifth cell of the final row spans 3 columns.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

Preprocess (1st stage)

to expand source, In

compile (2nd stage):

For Enterprise

PL/I Version 3.5:

TEST(ALL, SYM,

NOHOOK, SEPARATE),

NOPT, AGGREGATE,

ATTRIBUTES (FULL),

NOBLKOFF, LIST, MAP,

NEST, NONUMBER,

OFFSET, OPTIONS,

SOURCE, STMT,

XREF(FULL)

For Enterprise PL/I

Version 3.6: TEST(ALL,

SYM, NOHOOK,

SEPARATE, SEPNAME),

NOPT, AGGREGATE,

SYSDEBUG file

used by z/OS®

Debugger and

Fault Analyzer

for z/OS®.

LANGX file used

by Application

Performance

Analyzer for

z/OS®

Although the

module is

larger than

a module

compiled with

the NOTEST

option, you

can use the

module in

production if

needed.

Suggested for test. You can also use these options in a

production environment if the increased load module size is

not an issue.

57

IBM Application Delivery Foundation for z Systems Common Components

58

Table 9. Examples of compiler options and source information files that are supported by ADFz products for Enterprise PL/I

Version 3.5 and Version 3.6

This table has 6 columns. The fourth cell of the second row spans 3 columns. The first cell of the third row spans 2 rows. The fifth cell of the final row spans 3 columns.

(continued)

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

ATTRIBUTES (FULL),

NOBLKOFF, LIST, MAP,

NEST, NONUMBER,

OFFSET, OPTIONS,

SOURCE, STMT,

XREF(FULL)

Compiler listing Yes N/A Supported N/AAGGREGATE,

ATTRIBUTES (FULL),

NOBLKOFF, LIST,

MAP, NEST, NOTEST,

NONUMBER, OFFSET,

OPTIONS, SOURCE,

STMT, XREF(FULL)

LANGX file Yes N/A Suggested for production and test

Preparing Enterprise PL/I Version 3.5 and Version 3.6 programs

Perform the following steps for compiling your Enterprise PL/I Version 3.5 and Version 3.6 programs:

1. Create a library (PDSE is suggested unless PDS is required for your organization) for SYSDEBUG files.

This library is only needed in test environments where debugging is performed using LRECL=(80 to

1024),RECFM=FB,BLKSIZE=(multiple of lrecl < 32K).

2. Allocate one or more LANGX libraries for each environment, such as test and production.

3. Create a corresponding LANGX library for each load library. Specify LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl

+4 to 32k.

4. Run a two-stage compile. The first stage preprocesses the program, so the IBM® Application Delivery Foundation for

z Systems family of products have access to fully expanded source code with INCLUDEs and macros. The second

stage compiles the program. For all programs, such as batch, CICS®, and IMS™:

◦ In the first compile stage, in both test and production environments, specify compiler options

MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE to expand INCLUDEs and macros. The output SYSPUNCH DD is

the input SYSIN DD to the second compile stage.

◦ In the second compile stage, in test environments,

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

▪ When using the Enterprise PL/I Version 3.5 compiler:

For all programs, specify the following compiler options: TEST(ALL,SYM,NOHOOK,SEPARATE), NOPT,

AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET, OPTIONS, SOURCE,

STMT, XREF(FULL).

▪ When using the Enterprise PL/I Version 3.6 compiler:

For all programs, specify the following compiler options: TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME),

NOPT, AGGREGATE, ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET, OPTIONS,

SOURCE, STMT, XREF(FULL).

TEST(…) and NOPT are required by z/OS® Debugger.

The SEPARATE suboption produces a SYSDEBUG file. Save the SYSDEBUG file that is created by the compiler

for z/OS® Debugger (and optionally, Fault Analyzer).

The other options format the compiler listing as required for the IPVLANGX utility.

Consider using TEST(ALL,SYM,NOHOOK,SEPARATE) for best performance and to produce a module that can be

debugged. Depending on the policies in your organization, the module can be considered for production.

◦ In the second compile stage, in production environments, specify compiler options NOTEST, AGGREGATE,

ATTRIBUTES(FULL), NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).

Note: The above options can be used with both the Enterprise PL/I Version 3.5 and Version 3.6

compilers.

NOTEST disables z/OS® Debugger, but produces a smaller load module.

The other options format the compiler listing as required for the IPVLANGX utility to produce a production-ready

module that can be used with Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS® (but not

z/OS® Debugger).

5. When a TEST(…SEPARATE) parm is used, code a SYSDEBUG DD in the second compiler step as follows:

//SYSDEBUG DD DSN= sysdebug.pds(pgmname),DISP=SHR

This is the source information file for z/OS® Debugger, IBM® Application Performance Analyzer for z/OS® and

optionally, IBM® Fault Analyzer for z/OS®. Save it in the SYSDEBUG library, and specify a member name that is equal

to the primary entry point name or CSECT name of your application program.

6. Modify the SYSPRINT DD in the second compiler stage. This file is the compiler listing. Write the listing to either a

permanent or temporary file. This file is the input to the IPVLANGX utility.

Note: This compiler typically renames CSECTs according to an internal compiler algorithm. Therefore, it is

not recommended to store PL/I compiler listings or side files using CSECT names as they might not be found

59

IBM Application Delivery Foundation for z Systems Common Components

60

by IBM® Application Performance Analyzer for z/OS® or IBM® Fault Analyzer for z/OS®. Instead, use the

primary entry point name.

7. Add a step after the compile step to run the IPVLANGX utility. This utility reads the compiler listing and generates

a LANGX file. This file is the source information file for IBM® Fault Analyzer for z/OS® and IBM® Application

Performance Analyzer for z/OS®. Save the LANGX file in the LANGX file library, and specify a member name that is

equal to the primary entry point name of your application program.

8. Modify the promotion process to promote LANGX files. When a load module is promoted, for example, from test to

production, promote the corresponding LANGX file or files. A promotion can be a recompile, copy, or move. Perform

the same steps with the LANGX file that you perform with the module during promotion.

9. If you compile with the TEST option and promote these modules into production, promote the SYSDEBUG file for your

production environment.

10. Optionally, include a z/OS® Debugger Language Environment® exit module into the load module during the linkage

editor step. This approach is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven method

to start the debugger automatically when a program runs, without JCL changes, based on the program name and

user ID. Use module EQADBCXT for batch programs (including IMS™ batch), EQADICXT for IMS/TM programs and

EQADDCXT for DB2® stored procedures. Do not include the exit module for CICS® programs.

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures

Sample JCL for compiling Enterprise PL/I Version 3.5 or Version 3.6 programs

Here is a JCL example for compiling an Enterprise PL/I for z/OS® Version 3.5 or Version 3.6 program for use with the ADFz

family of products.

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ENTERPRISE PL/I V3.5 OR
//* ENTERPRISE PL/I V3.6 PROGRAM FOR THE IBM ZSERIES
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM, SO THAT
//* THE SYSDEBUG FILE CREATED IN STAGE 2 (COMPILE) HAS ALL STMTS.
//* 2. COMPILER PARMS TEST AND NOPT ARE REQUIRED FOR DEBUG TOOL
//* 3. COMPILER PARM TEST(ALL,SYM,NOHOOK,SEP) (V3.5) OR
//* TEST(ALL,SYM,NOHOOK,SEP,SEPNAME) (V3.6) IS USED BECAUSE:
//* - THE MODULE IS READY FOR DEBUG TOOL
//* - NOHOOK DOES NOT HAVE RUN-TIME CPU OVERHEAD. HOWEVER, THE
//* MODULE IS LARGER BECAUSE OF STATEMENT TABLE
//* - A SYSDEBUG FILE IS CREATED THAT CAN BE USED BY DT,FA,APA
//* 4. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),NOBLKOFF,LIST,
//* MAP,NEST,NONUMBER,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* TO PROCESS THE COMPILER LISTING WITH IPVLANGX
//*

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//* BINDER (LINKAGE EDITOR):
//* 5. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=PADSTAT PROGRAM NAME
// SET PLICOMP='IBMZ.V3R5.SIBMZCMP' PLI COMPILER LOADLIB
// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LEHLQ='CEE' LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX='IPVLANGX' IPVLANGX UTILITY PROGRAM
// SET LANGXLIB='IPV.SIPVMODA' LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED
//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//* ***************************************
//* PREPROCESS STEP (COMPILE STAGE 1)
//* ***************************************
//PRECOMP EXEC PGM=IBMZPLI,REGION=0M,
// PARM=('MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE')
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024,
// UNIT=&UNITDEV
//SYSPUNCH DD DISP=(MOD,PASS),DSN=&&SRC1,UNIT=&UNITDEV,
// SPACE=(80,(10,10))
//*
//* ***************************************
//* COMPILE STEP (COMPILE STAGE 2)
//* ***************************************
//COMPILE EXEC PGM=IBMZPLI,REGION=0M,
// PARM=('+DD:OPTIONS')
//* THE +DD:OPTIONS PARAMETER IS USED TO DIRECT THE COMPILER TO
//* GET THE COMPILATION OPTIONS FROM THE OPTIONS DD STATEMENT
//OPTIONS DD *
TEST(ALL,SYM,NOHOOK,SEPARATE),LIST,MAP,SOURCE,XREF(FULL),
NOBLKOFF,AGGREGATE,ATTRIBUTES(FULL),NEST,OPTIONS,NOPT,
STMT,NONUMBER,OFFSET
/*
//* Note: The above options are for Enterprise PL/I Version 3.5
//* For Enterprise PL/I Version 3.6, change the TEST option
//* to: TEST(ALL,SYM,NOHOOK,SEPARATE,SEPNAME)
//STEPLIB DD DSN=&PLICOMP,DISP=SHR

61

IBM Application Delivery Foundation for z Systems Common Components

62

// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DSN=&&SRC1,DISP=(OLD,PASS)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM)
//SYSDEBUG DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSDEBUG(&MEM)
//SYSUT1 DD SPACE=(CYL,(5,2),,CONTIG),DCB=BLKSIZE=1024,UNIT=&UNITDEV
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM='(PLI ERROR 64K CREF'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

Enterprise PL/I Version 3.4 and earlier programs

The following table shows various compiler options that can be used to prepare Enterprise PL/I Version 3.4 and earlier

programs for use with the ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance

Analyzer for z/OS®). The methods suggested in the following table indicate whether the load module produced has no

significant runtime overhead and therefore is suitable for a production environment.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

Table 10. Examples of compiler options and source information files that are supported by ADFz products for Enterprise

PL/I Version 3.4 and earlier

This table has 6 columns. The first cell of the third row spans 2 rows. The fifth cell of the final row spans 3 columns.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

Preprocess (1st stage)

to expand source,

In compile (2nd

stage): TEST(ALL),

NOPT, AGGREGATE,

ATTRIBUTES (FULL),

NOBLKOFF, LIST, MAP,

NEST, NONUMBER,

OFFSET, OPTIONS,

SOURCE, STMT,

XREF(FULL))

Expanded source

file used by

z/OS® Debugger,

LANGX file used

by Fault Analyzer

for z/OS® and

Application

Performance

Analyzer for

z/OS®

No Suggested for test. (Using z/OS® Debugger in production

for this compiler is not recommended.)

Compiler listing Yes N/A Supported N/AAGGREGATE,

ATTRIBUTES (FULL),

NOBLKOFF, LIST,

MAP, NEST, NOTEST,

NONUMBER, OFFSET,

OPTIONS, SOURCE,

STMT, XREF(FULL))

LANGX file Yes N/A Suggested for production and test

Preparing Enterprise PL/I Version 3.4 and earlier programs

Perform the following steps for compiling your Enterprise PL/I Version 3.4 and earlier programs:

1. Create a library (PDSE is suggested unless PDS is required for your organization) for expanded source files. This

library is only needed in test environments where debugging is performed. The library can be any RECFM / LRECL /

BLKSIZE supported as input by the compiler.

2. Allocate libraries (PDSE is suggested unless PDS is required for your organization) for LANGX files. Allocate one or

more LANGX libraries for each environment, such as test or production.

3. Create a corresponding LANGX library for each load library. Specify LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl

+4 to 32k.

4. Run a 2-stage compilation. The first stage preprocesses the program, so that ADFz products have access to fully

expanded source code with INCLUDEs and macros. The second stage compiles the program.

63

IBM Application Delivery Foundation for z Systems Common Components

64

◦ In the first compilation stage, in both test and production environments:

▪ Specify compiler options MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE to expand INCLUDEs and macros.

▪ Save the output, the expanded source file, in a permanent file in the expanded source file library and

specify member name = program name. This file is the source information file for z/OS® Debugger.

The output SYSPUNCH DD is the input SYSIN DD to the second compiler stage.

◦ In the second compilation stage, for all programs, such as batch, CICS®, and IMS™:

▪ In test environments, specify compiler options TEST(ALL), NOPT, AGGREGATE, ATTRIBUTES(FULL),

NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL).

TEST(ALL) and NOPT are required by z/OS® Debugger. Debug hooks are inserted, which add some

runtime overhead. Symbolic data that is required by z/OS® Debugger is also stored in the module,

which can make it larger.

The other options format the compiler listing as required for the IPVLANGX utility.

▪ In production environments, specify compiler options NOTEST, AGGREGATE, ATTRIBUTES(FULL),

NOBLKOFF, LIST, MAP, NEST, NONUMBER, OFFSET, OPTIONS, SOURCE, STMT, XREF(FULL)).

NOTEST disables z/OS® Debugger, but provides the best performance. This produces a production-

ready module that can be used with Fault Analyzer for z/OS® and Application Performance Analyzer

for z/OS® (but not z/OS® Debugger).

The other options format the compiler listing as required for the IPVLANGX utility.

5. Modify the SYSPRINT DD in the second compilation stage. This file is the compiler listing. Save the compiler listing to

either a permanent or temporary file. This file is the input to the IPVLANGX utility.

Note: This compiler typically renames CSECTs according to an internal compiler algorithm. Therefore, it is not

recommended to store PL/I compiler listings or side files using CSECT names as they might not be found by

Application Performance Analyzer for z/OS® or Fault Analyzer for z/OS®. Instead, use the primary entry point

name.

6. Add a step after the compilation step to run the IPVLANGX utility. The IPVLANGX utility reads the compiler listing

and generates a LANGX file, which is the source information file for Fault Analyzer for z/OS® and Application

Performance Analyzer for z/OS®. Save the LANGX file in the LANGX file library, and specify a member name that is

equal to the primary entry point name or CSECT name of your application program.

7. Modify the promotion process to promote LANGX files. When a load module is promoted, for example, from test to

production, promote the corresponding LANGX file or files. A promotion can be a recompile, copy, or move. Perform

the same steps with the LANGX file that you perform with the module during promotion.

8. Optionally, include a z/OS® Debugger Language Environment® exit module into the load module during the linkage

editor step. This approach is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven method

to start the debugger automatically when a program runs, without JCL changes, based on the program name and

user ID. Use module EQADBCXT for batch programs (including IMS™ batch), EQADICXT for IMS/TM programs and

EQADDCXT for DB2® stored procedures. Do not include the exit module for CICS® programs.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures

9. For CICS® applications only, if the z/OS® Debugger DTCN transaction is used to start z/OS® Debugger, link edit the

z/OS® Debugger CICS® startup exit module EQADCCXT into the application load module to enable z/OS® Debugger

in CICS®. This link edit is not needed if using the CADP transaction instead of DTCN.

Sample JCL for compiling Enterprise PL/I for z/OS® Version 3.4 or earlier programs

Here is a JCL example for compiling an Enterprise PL/I for z/OS® Version 3.4 or earlier program for use with the ADFz family

of products.

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO COMPILE WITH ENTERPRISE PLI V3.4 AND PREVIOUS
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM, SO THAT
//* A SOURCE FILE IS CREATED FOR DEBUG TOOL THAT HAS ALL STMTS.
//* 2. COMPILER PARM TEST AND NOPT ARE REQUIRED FOR DEBUG TOOL
//* 3. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),NOBLKOFF,LIST,
//* MAP,NEST,NONUMBER,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* TO PROCESS THE COMPILER LISTING WITH IPVLANGX
//*
//* BINDER (LINKAGE EDITOR):
//* 4. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=PTEST PROGRAM NAME
// SET PLICOMP='IBMZ.V3R4.SIBMZCMP' PLI COMPILER LOADLIB
// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LEHLQ='CEE' LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX='IPVLANGX' IPVLANGX UTILITY PROGRAM
// SET LANGXLIB='IPV.SIPVMODA' LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED

65

IBM Application Delivery Foundation for z Systems Common Components

66

//XSOURCE DD DSN=&SYSUID..ADLAB.EXPANDED.SOURCE,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//* ***************************************
//* PREPROCESS STEP (COMPILE STAGE 1)
//* ***************************************
//PRECOMP EXEC PGM=IBMZPLI,REGION=0M,
// PARM=('MACRO,MDECK,NOCOMPILE,NOSYNTAX,INSOURCE')
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024,
// UNIT=&UNITDEV
//SYSPUNCH DD DISP=SHR,DSN=&SYSUID..ADLAB.EXPANDED.SOURCE(&MEM)
//*
//* ***************************************
//* COMPILE STEP (COMPILE STAGE 2)
//* ***************************************
//COMPILE EXEC PGM=IBMZPLI,REGION=0M,
// PARM=('+DD:OPTIONS')
//* THE +DD:OPTIONS PARAMETER IS USED TO DIRECT THE COMPILER TO
//* GET THE COMPILATION OPTIONS FROM THE OPTIONS DD STATEMENT
//OPTIONS DD *
TEST(ALL),LIST,MAP,SOURCE,XREF(FULL),
NOBLKOFF,AGGREGATE,ATTRIBUTES(FULL),NEST,OPTIONS,NOPT,
STMT,NONUMBER,OFFSET
/*
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
// DD DSN=&LEHLQ..SCEERUN,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.EXPANDED.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM)
//SYSUT1 DD SPACE=(CYL,(5,2),,CONTIG),DCB=BLKSIZE=1024,UNIT=&UNITDEV
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM='(PLI ERROR 64K CREF'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.ENTPLI.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

PL/I for MVS™ and VM and OS PL/I programs

The following table shows various compiler options that can be used to prepare PL/I for MVS™ and VM programs and

OS PL/I programs for use with the ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application

Performance Analyzer for z/OS®). The methods suggested in the following table indicate whether the load module produced

has no significant runtime overhead and therefore is suitable for a production environment.

For the test environment, you need both the listing and the LANGX file (for Fault Analyzer for z/OS® and Application

Performance Analyzer for z/OS®). In production, only the LANGX file is suggested.

Table 11. Examples of compiler options and source information files that are supported by ADFz products for PL/I for

MVS™ and VM and OS PLI

This table has 6 columns. The first cell of the second row spans 2 rows. The first cell of the fourth row spans 2 rows.

Compiler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and

suggested for APA

Compiler listing No Suggested for

test. Using z/OS®

Debugger in

production for this

compiler is not

recommended.

Supported SupportedTEST(ALL),

AGGREGATE,

ATTRIBUTES (FULL),

ESD, LIST, MAP, NEST,

NOPT, OPTIONS,

SOURCE, STMT,

XREF(FULL)
LANGX file No N/A Supported N/A

Compiler listing Yes N/A Supported Suggested for

production and

test

NOTEST, AGGREGATE,

ATTRIBUTES (FULL),

ESD, LIST, MAP, NEST,

OPTIONS, SOURCE,

STMT, XREF(FULL)
LANGX file Yes N/A Suggested for

production and

test

N/A

67

IBM Application Delivery Foundation for z Systems Common Components

68

Preparing PL/I for MVS™ and VM programs and OS PL/I programs

Perform the following steps to compile your PL/I for MVS™ and VM programs and OS PL/I programs:

1. Create a library (PDSE is suggested unless PDS is required for your organization) for compiler listing files. This library

is only needed in test environments where debugging is performed. Specify LRECL=125 minimum,RECFM=VBA,BLKSIZE=

lrecl+4 to 32k.

2. Allocate libraries (PDSE is suggested unless PDS is required for your organization) for LANGX files. Allocate one or

more LANGX libraries for each environment, such as test and production.

3. Create a corresponding LANGX library for each load library. Specify LRECL=1562 or greater,RECFM=VB,BLKSIZE= lrecl

+4 to 32k.

4. For all programs, such as batch, CICS®, and IMS™:

◦ In test environments, specify compiler options TEST(ALL), NOPT, AGGREGATE, ATTRIBUTES(FULL), ESD, LIST,

MAP, NEST, OPTIONS, SOURCE, STMT, XREF(FULL).

TEST(ALL) and NOOPT are required by z/OS® Debugger. TEST adds debug hooks, which add some runtime

overhead. Symbolic data that is required by z/OS® Debugger is stored in the module, which can make it

larger.

The other options format the compiler listing as required by z/OS® Debugger and by the IPVLANGX utility.

◦ In production environments, specify compiler options NOTEST, AGGREGATE, ATTRIBUTES(FULL), ESD, LIST,

MAP, NEST, OPTIONS, SOURCE, STMT, XREF(FULL).

NOTEST disables z/OS® Debugger, but provides the best performance.

The other options format the compiler listing as required for the IPVLANGX utility.

This produces a production-ready module that can be used with Fault Analyzer for z/OS® and Application

Performance Analyzer for z/OS® but not z/OS® Debugger.

5. Modify the SYSPRINT DD in the compiler step. This parameter is the compiler listing. Save this to a permanent file.

The compiler listing is the input to the IPVLANGX utility and is the source information file for z/OS® Debugger.

Note: This compiler typically renames CSECTs according to an internal compiler algorithm. Therefore, it is not

recommended to store PL/I compiler listings or side files using CSECT names as they might not be found by

Application Performance Analyzer for z/OS® or Fault Analyzer for z/OS®. Instead, use the primary entry point

name.

6. Add a step after the compiler step to run the IPVLANGX utility. This utility reads the compiler listing and saves a

LANGX file. This file is the source information file for Fault Analyzer for z/OS® and Application Performance Analyzer

for z/OS®. Save it in the LANGX file library and specify a member name that is equal to the primary entry point name

of your application program.

7. Modify the promotion process to promote LANGX files. When a load module is promoted, for example, from test to

production, promote the corresponding LANGX file or files. A promotion can be a recompile, copy, or move. Perform

the same steps with the LANGX file that you perform with the module during promotion.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

8. Optionally, include a z/OS® Debugger Language Environment® exit module into the load module during the linkage

editor step. This approach is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven method

to start the debugger automatically when a program runs, without JCL changes, based on the program name and

user ID. Use module EQADBCXT for batch programs (including IMS™ batch), EQADICXT for IMS/TM programs and

EQADDCXT for DB2® stored procedures. Do not include the exit module for CICS® programs.

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures

9. For CICS® applications only, if the z/OS® Debugger DTCN transaction is used to start z/OS® Debugger, link edit the

z/OS® Debugger CICS® startup exit module EQADCCXT into the application load module to enable z/OS® Debugger

in CICS®. This link edit is not needed if using the CADP transaction instead of DTCN.

Sample JCL for compiling PL/I for MVS™ and VM programs

Here is a JCL example for compiling a PL/I for MVS™ and VM program for use with the ADFz family of products.

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE A PLI FOR MVS AND VM PROGRAM
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. COMPILER PARM TEST IS REQUIRED FOR DEBUG TOOL
//* 2. COMPILER PARMS AGGREGATE,ATTRIBUTES(FULL),ESD,LIST,
//* MAP,NEST,OPTIONS,SOURCE,STMT,XREF(FULL) ARE NEEDED
//* FOR ADFz TO PROCESS THE COMPILER LISTING
//*
//* BINDER (LINKAGE EDITOR):
//* 3. THE INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, LOAD THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=PADSTAT PROGRAM NAME
// SET PLICOMP='IEL.V1R1M1.SIELCOMP' PLI COMPILER LOADLIB
// SET DTLIB='EQAW.SEQAMOD' DEBUG TOOL LOADLIB
// SET LEHLQ='CEE' LE HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX='IPVLANGX' IPVLANGX UTILITY PROGRAM
// SET LANGXLIB='IPV.SIPVMODA' LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*

69

IBM Application Delivery Foundation for z Systems Common Components

70

//ALLOCOBJ EXEC PGM=IEFBR14 ALLOC OBJ LIB IF NEEDED
//OBJ DD DSN=&SYSUID..ADLAB.OBJ,SPACE=(CYL,(3,1,15)),
// DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=8000,DISP=(MOD,CATLG)
//*
//* ***************************************
//* COMPILE STEP
//* ***************************************
//*
//COMPILE EXEC PGM=IEL1AA,REGION=6M,
// PARM=('TEST(ALL),NOPT,AGGREGATE,ATTRIBUTES(FULL),ESD,LIST,MAP,',
// 'NEST,OPTIONS,SOURCE,STMT,XREF(FULL)')
//STEPLIB DD DSN=&PLICOMP,DISP=SHR
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSLIB DD DISP=SHR,DSN=&SYSUID..ADLAB.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=&SYSUID..ADLAB.PLIMVS.LISTING(&MEM)
//SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
//*
//PLIPRINT EXEC PGM=IEBGENER,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUID..ADLAB.PLIMVS.LISTING(&MEM),DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM='(PLI ERROR 64K CREF'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.PLIMVS.LISTING(&MEM),DISP=SHR
//IDILANGX DD DISP=SHR,DSN=&SYSUID..ADLAB.EQALANGX(&MEM)
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM=(LET,MAP,LIST),REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//DTLIB DD DSN=&DTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=(OLD,PASS)
//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES)
//* // DD *
//* INCLUDE DTLIB(EQADBCXT)

z/OS® XL C and C++ programs

The following table shows various compiler options that can be used to prepare z/OS® XL C and C++ programs for use

with the ADFz family of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance Analyzer for

z/OS®). The methods suggested in the following table indicate whether the load module produced has no significant runtime

overhead and therefore is suitable for a production environment.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

Table 12. Examples of compiler options and source information files that are supported by ADFz products for C and C++

This table has 5 columns. The first cell of the second row spans 2 rows. The first cell of the fourth row spans 2 rows.

Compiler options Output produced

Options supported

and suggested for

z/OS® Debugger

Options

supported and

suggested for Fault

Analyzer for z/OS®

Options

supported and

suggested for APA

• Expanded

source file

• DWARF

file (used

by z/OS®

Debugger,

Fault Analyzer

for z/OS®, and

Application

Performance

Analyzer)

• Compiler

listing (can

be used by

Application

Performance

Analyzer

and Fault

Analyzer for

z/OS® when

DWARF is not

available)

Supported. You can

use it for production

if the OPT compile

option is not used.

Full functionality

available.

Supported. Use of

the OPT compile

option might result

in incorrect source

line being reported.

Full functionality

available.

Supported.Preprocess (1st stage)

to expand source:

PP(COMMENTS, NOLINES)

Compile (2nd stage):

DEBUG (FORMAT (DWARF),

NOHOOK, SYMBOL,

FILE (location)), LIST,

LONGNAME, NOOFFSET,

GONUMBER1

• .mdbg file2
Recommended.

You can use it

for production if

Supported. Use of

the OPT compile

option might result

Not supported.

1. The FORMAT(DWARF) option is supported for z/OS® Version 1.6 and higher.

2. For C and C++ programs that are compiled with z/OS® XL C/C++, Version 1.10 or later, if you specify the

FORMAT(DWARF) suboption of the DEBUG compiler option, the load modules are smaller and you can create .mdbg files

with captured source using the CDADBGLD utility.

z/OS® Debugger needs only the .mdbg file to debug your program.

71

IBM Application Delivery Foundation for z Systems Common Components

72

Table 12. Examples of compiler options and source information files that are supported by ADFz products for C and C++

This table has 5 columns. The first cell of the second row spans 2 rows. The first cell of the fourth row spans 2 rows.

(continued)

Compiler options Output produced

Options supported

and suggested for

z/OS® Debugger

Options

supported and

suggested for Fault

Analyzer for z/OS®

Options

supported and

suggested for APA

the OPT compile

option is not used.

Full functionality

available.

in incorrect source

line being reported.

Full functionality

available.

• Expanded

source file

• DWARF

file (used

by z/OS®

Debugger and

Fault Analyzer

for z/OS®)

• Compiler

listing (used

by Application

Performance

Analyzer)

Supported. Full

functionality

available. Use in

production not

recommended.

Supported. Full

functionality

available.

Supported.Preprocess (1st stage)

to expand source:

PP(COMMENTS, NOLINES)

Compile (2nd stage): DEBUG

(FORMAT (DWARF), HOOK

(LINE, NOBLOCK, PATH),

SYMBOL, FILE (location)),

LIST, LONGNAME, NOOPT,

NOOFFSET, GONUMBER 1

• .mdbg file2
Supported. Full

functionality

available. Use in

production not

recommended.

Supported. Full

functionality

available.

Not supported.

Preprocess (1st stage)

to expand source:

PP(COMMENTS, NOLINES)

Compile (2nd stage): TEST,

AGGREGATE3, NOIPA, LIST,

NESTINC (255), NOOFFSET,

NOOPT, SOURCE, XREF,

LONGNAME, GONUMBER

• Expanded

source

file (used

by z/OS®

Debugger)

• Compiler

listing (used by

Fault Analyzer

Supported. Use

in production not

recommended.

Supported. Use

in production not

recommended.

Variables not

reported.

Supported. Use

in production not

recommended.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

Table 12. Examples of compiler options and source information files that are supported by ADFz products for C and C++

This table has 5 columns. The first cell of the second row spans 2 rows. The first cell of the fourth row spans 2 rows.

(continued)

Compiler options Output produced

Options supported

and suggested for

z/OS® Debugger

Options

supported and

suggested for Fault

Analyzer for z/OS®

Options

supported and

suggested for APA

for z/OS® and

Application

Performance

Analyzer)

• Expanded

source

file (used

by z/OS®

Debugger)

• LANGX file

(used by Fault

Analyzer for

z/OS® and

Application

Performance

Analyzer)

Supported. Use

in production not

recommended.

Supported. Use

in production not

recommended.

Variables not

reported.

Supported. Use

in production not

recommended.

• Compiler

listing (used by

Fault Analyzer

for z/OS® and

Application

Performance

Analyzer)

Not supported. Supported.

Suggested for

production and

test. Variables not

reported.

Supported.

Suggested for

production and test.

NOTEST, AGGREGATE3,

NOIPA, LIST, NESTINC

(255), NOOFFSET, NOOPT,

SOURCE, XREF, LONGNAME

• LANGX file

(used by Fault

Analyzer for

Not supported. Supported.

Suggested for

production and

Supported.

Suggested for

production and test.

3. For C++, do not use the AGGREGATE keyword. Use ATTRIBUTES instead.

73

IBM Application Delivery Foundation for z Systems Common Components

74

Table 12. Examples of compiler options and source information files that are supported by ADFz products for C and C++

This table has 5 columns. The first cell of the second row spans 2 rows. The first cell of the fourth row spans 2 rows.

(continued)

Compiler options Output produced

Options supported

and suggested for

z/OS® Debugger

Options

supported and

suggested for Fault

Analyzer for z/OS®

Options

supported and

suggested for APA

z/OS® and

Application

Performance

Analyzer)

test. Variables not

reported.

• DWARF

file (used

by z/OS®

Debugger,

Fault Analyzer

for z/OS®, and

Application

Performance

Analyzer)

Supported. Supported. Supported.UNIX™ System Services

compile -g

• .mdbg file2
Supported. Supported. Not supported.

Preparing z/OS® XL C and C++ programs

Perform the following steps for compiling your z/OS® XL C and C++ programs:

1. Create a library (PDSE is suggested unless PDS is required for your organization) for expanded source files. This

library is only needed in test environments where debugging is performed. This can be any RECFM / LRECL / BLKSIZE

supported as input by the compiler.

2. Allocate libraries (PDSE is suggested unless PDS is required for your organization) for compiler listing files. Allocate

one or more compiler listing libraries for each environment, such as test and production.

3. Create a corresponding listing library for each load library. Specify LRECL=133,RECFM=FBA,BLKSIZE=(multiple of

lrecl up to 32k) or LRECL=137 or greater, RECFM=VBA,BLKSIZE= lrecl+4 to 32k.

4. Run a 2-stage compilation. The first stage preprocesses the program, so that ADFz products have access to fully

expanded source code. The second stage compiles the program.

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

◦ In the first compilation stage, in both test and production environments:

▪ Specify compiler options PP(COMMENTS,NOLINES) to expand INCLUDEs and macros. The output is

SYSUT10 DD, which is the expanded source file and is the input for the second compiler stage.

Note that DB2® programs containing SQL statements cannot use the PP option directly. If used, the

behavior is undefined. Follow z/OS® Debugger instructions to Processing SQL Statements first. See

z/OS® Debugger V14.1 User's Guide, Chapter 8. "Preparing a DB2® program", section "Processing

SQL statements".

Modify the SYSUT10 DD to enable z/OS® Debugger, by saving it in an expanded source library and specify a

member name that is equal to the primary entry point name or CSECT name of your application program.

◦ You can prepare your program with a one-stage compilation, skipping the expanding source preprocessing

step recommended above. If you do this, you need to be aware of the following:

▪ Case 1: If there are no executable statements in the header file, the header file is not included in

the captured source that is saved in the mdbg file and is not available for browsing during a z/OS®

Debugger session. All other z/OS® Debugger functionality is still available.

▪ Case 2: If there are executable statements in the header file, the header file is included in the captured

source that is saved in the mdbg file and is available for browsing during a z/OS® Debugger session.

◦ For all programs, such as batch, CICS®, and IMS™, for the second compilation stage, refer to Table 12 on

page 71 for the appropriate options.

5. Modify the SYSCPRT DD in the second compiler stage to refer to a file. This file is the compiler listing and is the

source information file for Application Performance Analyzer for z/OS®. Save it in the compiler listing library and

specify a member that is equal to the CSECT name of your application program.

//SYSCPRT DD DSN=compiler.listing.pds(csect-name),DISP=SHR

Note: To facilitate source support in Fault Analyzer, CSECTs in C programs should be named using the

following statement:

#pragma csect(code, "csect_name")

where, if using a PDS(E), csect_name matches the compiler listing or LANGX file member name. This enables

the side file search to automatically locate compiler listings. Without named CSECTs, C compiler listings can

only be located by using the compiler listing read user exit or the compiler listing prompt. For details see

the “Compiler Listing Read user exit” and “Prompting for compiler listing or side file” topics in the IBM Fault

Analyzer for z/OS User’s Guide.

6. Modify the promotion process to promote compiler listing files. When a load module is promoted, for example, from

test to production, promote the corresponding compiler listing file or files. A promotion can be a recompile, copy,

or move. Perform the same steps with the compiler listing file that you perform with the module during promotion.

You also need to promote any file that is related to the compilation, not just the listing. So you need to promote, for

example, dbg and mdbg files.

7. Optionally, include a z/OS® Debugger Language Environment® exit module into the load module during the linkage

editor step. This approach is one way to enable z/OS® Debugger panel 6 in ISPF, a simple panel-driven method to

75

IBM Application Delivery Foundation for z Systems Common Components

76

start the debugger automatically when a program runs, without JCL changes, based on the program name and user

ID.

Use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored procedures.

8. For CICS® applications only: if the z/OS® Debugger DTCN transaction is used to start z/OS® Debugger, link edit the

z/OS® Debugger CICS® startup exit module EQADCCXT into the application load module to enable z/OS® Debugger

in CICS®. This link edit is not needed if using the CADP transaction instead of DTCN.

Sample JCL for compiling z/OS® C programs with TEST

Here is a JCL example for compiling a z/OS® C program for use with the ADFz family of products.

//* ADD A JOB CARD HERE
//*
//*
//* SAMPLE JCL TO PREPARE A Z/OS C PROGRAM USING TEST WITH HOOKS
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM AND TO
//* PRODUCE AN EXPANDED SOURCE FILE.
//* 2. THE EXPANDED SOURCE FILE IS RETAINED. IT IS USED BY
//* DEBUG TOOL.
//* 2. COMPILER PARMS TEST AND NOOPT ARE REQUIRED FOR DEBUG TOOL.
//* 3. COMPILER PARMS AGGREGATE, NOIPA, LIST, NOOFFSET, SOURCE,
//* AND XREF(FULL) ARE NEEDED TO FORMAT THE COMPILER LISTING
//* SO THAT IT CAN BE PROCESSED WITH IPVLANGX
//*
//* A STEP RUNS TO PRODUCE A LANGX FILE FOR FAULT ANALYZER AND APA.
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* BINDER (LINKAGE EDITOR):
//* 1. AN INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, INCLUDE THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (for SUB this is supported only for invocations through call_sub)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
//* CPRFX: THE PREFIX THE C COMPILE IS INSTALLED UNDER
//* LEPRFX: THE PREFIX FOR THE LE RUNTIME AND LINK LIBS
//* DTPRFX: THE PREFIX OF THE DEBUG TOOL SEQAMOD LIBRARY
//* LANGXLIB: THE PROGRAM OBJECT LIBRARY FOR THE COMMON COMPONENT

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//*
// SET CPRFX=CBC
// SET LEPRFX=CEE
// SET DTPRFX=EQAW
// SET LANGXLIB=IPV.SIPVMODA
//*
//***/
//* CREATE C COMPILER LISTING SYSPRINT, EXPANDED SOURCE DEBUG, */
//* AND EQALANGX FILES */
//***/
//ALLOC EXEC PGM=IEFBR14
//LISTING DD DSN=&SYSUID..ADLAB.CLST,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=VBA,LRECL=137,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//DBGSRC DD DSN=&SYSUID..ADLAB.CDBG,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//LANGX DD DSN=&SYSUID..ADLAB.EQALANGX,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=VB,LRECL=1562,BLKSIZE=0),
// SPACE=(TRK,(40,40,50)),UNIT=SYSDA
//* *
//**
//*---
//* COMPILE STEP1: GENERATE EXPANDED C SOURCE FILE IN THE DD
//* SYSUT10
//*---
//COMP1 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=('PP(COMMENTS,NOLINES)')
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
// DD DSNAME=&SYSUID..ADLAB.COPYLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD DISP=SHR,DSN=&SYSUID..ADLAB.CDBG(TMC01A)
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),

77

IBM Application Delivery Foundation for z Systems Common Components

78

// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DUMMY
//SYSIN DD DSNAME=&SYSUID..ADLAB.SOURCE(TMC01A),DISP=SHR
//*
//*---
//* COMPILE STEP2: COMPILE THE EXPANDED SOURCE FILE WITH THE DEBUG
//* COMPILER OPTION TEST
//*---
//COMP2 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=('TEST, AGGREGATE, NOIPA, LIST, NESTINC(255),',
// ' NOOFFSET, NOOPT, SOURCE, XREF, LONGNAME')
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
// DD DSNAME=&LEPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
//SYSCPRT DD DISP=SHR,DSN=&SYSUID..ADLAB.CLST(TMC01A)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DSN=&&TEMOBJ1(TMC01A),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(TRK,(20,20,20)),DCB=(RECFM=FB,BLKSIZE=3120,LRECL=80,DSORG=PO)
//SYSIN DD DSNAME=&SYSUID..ADLAB.CDBG(TMC01A),DISP=SHR
//*
//*---
//* LINK STEP: LINK THE COMPILED OBJECT DECK
//*---
//LKED EXEC PGM=IEWL,PARM=(LET,MAP,LIST)
//SYSLIB DD DSN=&LEPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD
//SYSUT1 DD SPACE=(TRK,(10,10)),UNIT=SYSDA
//OBJECT DD DISP=(OLD,PASS),DSN=&&TEMOBJ1
//* DTLIB DD DSN=&DTPRFX..SEQAMOD,DISP=SHR
//SYSLIN DD *
 INCLUDE OBJECT(TMC01A)
 ENTRY CEESTART
 NAME TMC01(R)
/*

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//* INCLUDING A DEBUG TOOL LE EXIT (EQADBCXT, EQADDCXT, EQADICXT OR EQAD3CXT)
//* IS OPTIONAL. THE EXIT ENABLES STARTING DEBUG TOOL WITH THE
//* USER EXIT DATA SET UTILITY (ONE OF THE DEBUG TOOL ISPF UTILITIES).
//* AN INCLUDE CAN BE ADDED TO SYSLIN IN THE APPRORIATE SEQUENCE:
//* INCLUDE DTLIB(EQADBCXT)
//**
//* GENERATE THE TMC01A EQALANGX FILE
//**
//LANGX1 EXEC PGM=IPVLANGX,REGION=32M,
// PARM='(C ERROR'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEPRFX..SCEERUN
//LISTING DD DSN=&SYSUID..ADLAB.CLST(TMC01A),DISP=SHR
//IDILANGX DD DSN=&SYSUID..ADLAB.EQALANGX(TMC01A),DISP=(OLD)

Sample JCL for compiling z/OS® C++ programs

Here is a JCL example for compiling a z/OS® C++ program for use with the ADFz family of products.

//* ADD A JOB CARD HERE
//*
//*
//* SAMPLE JCL TO PREPARE A Z/OS C++ PROGRAM USING DWARF WITHOUT HOOKS
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* COMPILER:
//* 1. A 2-STAGE COMPILE IS PERFORMED. STAGE 1 (PREPROCESS) IS
//* DONE TO EXPAND INCLUDES AND MACROS IN THE PROGRAM AND TO
//* PRODUCE AN EXPANDED SOURCE FILE.
//* 2. THE EXPANDED SOURCE FILE IS RETAINED. IT IS USED BY
//* THE MDBG CREATE ROUTINE TO CAPTURE THE SOURCE.
//* 2. COMPILER PARMS ARE SPECIFIED TO GENERATE A DWARF FILE WITH
//* NOHOOKS. OTHER OPTIONS ARE SPECIFIED TO FULFILL FA, DT AND
//* APA REQUIREMENTS.
//*
//* BIND:
//* 1. AN INCLUDE FOR MODULE EQAD?CXT IS OPTIONAL. IT IS AN
//* LE EXIT MODULE THAT CAN BE USED TO START DEBUG TOOL.
//* UNDERSTAND THE METHODS AVAILABLE FOR STARTING DEBUG TOOL,
//* AND CHOOSE WHETHER YOU WANT TO USE THE LE EXITS.
//* IF YOU USE THIS METHOD, INCLUDE THE CORRECT EXIT MODULE:
//* EQADBCXT: FOR BATCH PROGRAMS
//* EQADICXT: FOR ONLINE IMS PROGRAMS
//* EQADDCXT: FOR DB2 STORED PROCEDURES (OF TYPE MAIN AND SUB)
//* (FOR SUB THIS IS SUPPORTED ONLY FOR INVOCATIONS THROUGH CALL_SUB)
//* (DO NOT INCLUDE AN EXIT FOR CICS PROGRAMS)
//* YOU CAN ALSO USE MODULE EQAD3CXT FOR BATCH PROGRAMS, ONLINE IMS
//* PROGRAMS, DB2 TYPE MAIN STORED PROCEDURES.
//*
//* MDBG:
//* AN MDBG FILE IS CREATED FOR DEBUG TOOL. IT WILL CONTAIN ALL THE
//* ROUTINES IN THE PROGRAM OBJECT WITH DBG FILES AND THE CAPTURED
//* SOURCE. IN ORDER TO USE THIS FILE IN DEBUG TOOL, THE DEBUG TOOL
//* SESSION NEEDS TO HAVE THE EQAOPTS MDBG COMMAND SET TO YES.
//*

79

IBM Application Delivery Foundation for z Systems Common Components

80

//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
//* CPRFX: THE PREFIX THE C++ COMPILE IS INSTALLED UNDER
//* LEPRFX: THE PREFIX FOR THE LE RUNTIME AND LINK LIBS
//* DTPRFX: THE PREFIX OF THE DEBUG TOOL SEQAMOD LIBRARY
//*
// SET CPRFX=CBC
// SET LEPRFX=CEE
// SET DTPRFX=EQAW
//*
//***/
//* CREATE C++ COMPILER LISTING SYSPRINT, EXPANDED SOURCE DEBUG, */
//* DBG AND MDBG files. */
//***/
//ALLOC EXEC PGM=IEFBR14
//LISTING DD DSN=&SYSUID..ADLAB.CLST,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=VBA,LRECL=137,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//DBGSRC DD DSN=&SYSUID..ADLAB.CDBG,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(20,20,50)),UNIT=SYSDA
//DBG DD DSN=&SYSUID..ADLAB.DBG,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(40,40,50)),UNIT=SYSDA
//MDBG DD DSN=&SYSUID..ADLAB.MDBG,
// DISP=(MOD,CATLG),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK,(40,40,50)),UNIT=SYSDA
//* *
//**
//*---
//* COMPILE STEP1: GENERATE EXPANDED C++ SOURCE FILE IN THE DD
//* SYSUT10
//*---
//COMP1 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=('PP(COMMENTS,NOLINES)')
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
// DD DSNAME=&SYSUID..ADLAB.COPYLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD DISP=SHR,DSN=&SYSUID..ADLAB.CDBG(TMC01A)
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DUMMY
//SYSIN DD DSNAME=&SYSUID..ADLAB.SOURCE(TMC01A),DISP=SHR
//*
//*---
//* COMPILE STEP2: COMPILE THE EXPANDED SOURCE FILE WITH THE DEBUG
//* COMPILER DEBUG(FORMAT(DWARF, NOHOOK))
//*---
//COMP2 EXEC PGM=CCNDRVR,REGION=0M,
// PARM=('/CXX DEBUG(FORMAT(DWARF), NOHOOK, SYMBOL),',
// ' LIST, LONGNAME, NOOFFSET')
//STEPLIB DD DSNAME=&LEPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&CPRFX..SCCNCMP,DISP=SHR
// DD DSNAME=&LEPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSLIB DD DSNAME=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LEPRFX..SCEEH.SYS.H,DISP=SHR
//SYSCPRT DD DISP=SHR,DSN=&SYSUID..ADLAB.CLST(TMC01A)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=SYSDA,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSLIN DD DSN=&&TEMOBJ1(TMC01A),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(TRK,(20,20,20)),DCB=(RECFM=FB,BLKSIZE=3120,LRECL=80,DSORG=PO)
//SYSIN DD DSNAME=&SYSUID..ADLAB.CDBG(TMC01A),DISP=SHR
//*
//*---
//* BIND STEP: BIND THE COMPILED OBJECT DECK INTO A PDSE
//*---
//BIND EXEC PGM=IEWL,PARM=(LET,MAP,LIST)
//SYSLIB DD DSN=&LEPRFX..SCEELKED,DISP=SHR
// DD DSN=&LEPRFX..SCEECPP,DISP=SHR
//SYSPRINT DD SYSOUT=*

81

IBM Application Delivery Foundation for z Systems Common Components

82

//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOADPDSE
//SYSUT1 DD SPACE=(TRK,(10,10)),UNIT=SYSDA
//OBJECT DD DISP=(OLD,PASS),DSN=&&TEMOBJ1
//* DTLIB DD DSN=&DTPRFX..SEQAMOD,DISP=SHR
//SYSLIN DD *
 INCLUDE OBJECT(TMC01A)
 ENTRY CEESTART
 NAME TMC01(R)
/*
//*
//*---
//* BUILD MDBG STEP
//*---
//DBGLD EXEC PGM=CDADBGLD,REGION=1500K,
// PARM=('ENVAR("LIBPATH=/usr/lib")/VERSION CAPSRC')
//STEPLIB DD DISP=SHR,DSN=&LEPRFX..SCEERUN2
// DD DISP=SHR,DSN=&LEPRFX..SCEERUN
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.LOADPDSE(TMC01)
//SYSMDBG DD DISP=SHR,DSN=&SYSUID..ADLAB.MDBG(TMC01)
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
/*

Assembler programs

The following table shows various assembler options that can be used to prepare programs for use with the ADFz family

of products (z/OS® Debugger, Fault Analyzer for z/OS® and Application Performance Analyzer for z/OS®). The methods

suggested in the following table indicate whether the load module produced is suitable for a production environment. Load

modules suitable for a production environment have no significant runtime overhead.

Table 13. Examples of assembler options and source information files that are supported by ADFz products for Assembler

This table has 6 columns, except for the last row, where the fourth cell spans 3 columns.

Assembler options

Source

information file

type produced

Is the load

module

production

ready?

Options supported

and suggested for

z/OS® Debugger

Options supported

and suggested for

Fault Analyzer

Options

supported and su

ggested for APA

ADATA SYSADATA file Yes N/A Supported Supported

ADATA LANGX file Yes Suggested for production and test

Preparing Assembler programs

Perform the following steps for assembling your programs:

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

1. Allocate libraries (PDSE is suggested unless PDS is required for your organization) for LANGX files. Allocate one or

more LANGX libraries for each environment, such as test and production.

2. Create a corresponding LANGX library for each load library. Specify LRECL=1562 or greater,RECFM=VB,BLKSIZE=

lrecl+4 to 32k.

3. For all programs, such as batch, CICS®, and IMS™, in both test and production environments, specify ADATA.

ADATA instructs the assembler to produce a SYSADATA file, which contains source and symbolic data about the

program. This produces a production-ready module that can be debugged using z/OS® Debugger. ADATA does not

affect the contents of the assembled module.

4. Add a SYSADATA DD in the assembler step. This file is created by the assembler and it can be a permanent or

temporary file. Specify LRECL=8188 or greater,RECFM=VB,BLKSIZE= lrecl+4 to 32k. This file is the input to the

IPVLANGX utility.

5. Add a step after the assembler step to run the IPVLANGX utility. The IPVLANGX utility reads the SYSADATA file and

creates a LANGX file. The LANGX file is the source information file for z/OS® Debugger, Fault Analyzer for z/OS® and

Application Performance Analyzer for z/OS®.

6. Save the LANGX file in the LANGX file library, and specify a member name that is equal to the CSECT name.

7. Modify the promotion process to promote LANGX files. When a load module is promoted, for example, from test to

production, promote the corresponding LANGX file or files. A promotion can be a recompile, copy, or move. Perform

the same steps with the LANGX file that you perform with the module during promotion.

8. If the assembler program is Language Environment-enabled, optionally include a z/OS® Debugger Language

Environment® exit module into the load module during the linkage editor step. This approach is one way to enable

z/OS® Debugger panel 6 in ISPF, a simple panel-driven method to start the debugger automatically when a program

runs, without JCL changes, based on the program name and user ID. Use module EQADBCXT for batch programs

(including IMS™ batch), EQADICXT for IMS/TM programs and EQADDCXT for DB2® stored procedures. Do not

include the exit module for CICS® programs.

You can also use module EQAD3CXT for batch programs, IMS/TM, IMS™ BTS programs, and DB2® type MAIN stored

procedures

9. For CICS® programs only: If the program is a CICS® main program, is enabled for Language Environment®, and the

z/OS® Debugger DTCN transaction is used to start z/OS® Debugger, then supplied module EQADCCXT must be

included in the load module during the linkage editor step.

Sample JCL for assembling a program

Here is a JCL example for assembling a program for use with the ADFz family of products.

//* - - - ADD A JOB CARD ABOVE THIS LINE - - -
//*
//* SAMPLE JCL TO PREPARE AN ASSEMBLER PROGRAM
//* FOR THE IBM ZSERIES ADFz PRODUCTS:
//* FAULT ANALYZER, DEBUG TOOL, AND APPLICATION PERF. ANALYZER
//*
//* NOTES:
//*
//* ASSEMBLER:
//* 1. AN ADATA PARM IS REQUIRED TO PRODUCE A SYSADATA FILE

83

IBM Application Delivery Foundation for z Systems Common Components

84

//*
//* A STEP THAT PROCESSES THE SYSADATA FILE,
//* AND CREATES A LANGX FILE IS NEEDED.
//*
//* BINDER (LINKAGE EDITOR):
//* 1. AMODE / RMODE CAN BE CODED AS NEEDED BY THE PROGRAM. THEY ARE
//* NOT REQUIRED FOR ADFz.
//*
//* SET PARMS FOR THIS COMPILE:
//* ---------------------------
// SET MEM=ASAM1 PROGRAM NAME
// SET Language EnvironmentHLQ='CEE' Language Environment HIGH LVL QUALIFIER
// SET UNITDEV=SYSALLDA UNIT FOR TEMP FILES
// SET LANGX='IPVLANGX' IPVLANGX UTILITY PROGRAM
// SET LANGXLIB='IPV.SIPVMODA' LIBRARY FOR IPVLANGX UTILITY
//* NOTE: USE THE IPVLANGX FACILITY SHIPPED WITH THE COMMON COMPONENT.
//*
//* *********************************
//* ASSEMBLER STEP
//* *********************************
//ASM1 EXEC PGM=ASMA90,COND=(4,LT),REGION=32M,
// PARM='ADATA,OBJECT'
//SYSIN DD DISP=SHR,DSN=&SYSUID..ADLAB.SOURCE(&MEM)
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DISP=SHR,DSN=&SYSUID..ADLAB.OBJ(&MEM)
//SYSADATA DD DISP=SHR,DSN=&SYSUID..ADLAB.SYSADATA(&MEM)
//SYSLIB DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=&LEHLQ..SCEEMAC,DISP=SHR
//SYSUT1 DD DISP=(NEW,DELETE),DSN=&&SYSUT1,SPACE=(1700,(900,450)),
// UNIT=&UNITDEV
//SYSUT2 DD DISP=(NEW,DELETE),DSN=&&SYSUT2,SPACE=(1700,(600,300)),
// UNIT=&UNITDEV
//SYSUT3 DD DISP=(NEW,DELETE),DSN=&&SYSUT3,SPACE=(1700,(600,300)),
// UNIT=&UNITDEV
//*
//* *********************************
//* STEP TO GENERATE LANGX FILE
//* *********************************
//LANGX EXEC PGM=&LANGX,REGION=32M,
// PARM='(ASM ERROR'
//STEPLIB DD DISP=SHR,DSN=&LANGXLIB
// DD DISP=SHR,DSN=&LEHLQ..SCEERUN
//SYSADATA DD DSN=&SYSUID..ADLAB.SYSADATA(&MEM),DISP=SHR
//IDILANGX DD DSN=&SYSUID..ADLAB.EQALANGX(&MEM),DISP=SHR
//*
//* *********************************
//* LINK-EDIT (BINDER) STEP
//* *********************************
//LINK EXEC PGM=IEWL,PARM='MAP',REGION=0M
//SYSLIB DD DSN=&LEHLQ..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..ADLAB.LOAD(&MEM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&SYSUID..ADLAB.OBJ(&MEM),DISP=SHR
// DD *
 MODE AMODE(31),RMODE(24)

Chapter 5. Quick start guide for compiling and assembling programs for use with the ADFz family of products

 ENTRY ASAM1
//*

85

86

Chapter 6. IPVLANGX compiler listing to side file conversion
utility
IPVLANGX is a utility program that converts a compiler listing, or SYSADATA file, to a LANGX side file.

Creating side files using IPVLANGX
Use the IPVLANGX program to create a side file from a compiler listing.

The sample JCL in Figure 3 on page 87 is provided as member IPVSCMPS in the IPV.SIPVSAM1 data set. It performs the

following steps:

• Compiles a COBOL program.

Note: You can only compile one program per compile step in order to name the compiler listing PDS(E)

member (if using a partitioned data set), and to ensure that only one compiler listing is written to the output

file. Nested COBOL programs are not supported.

• Executes IPVLANGX to process the listing and store it as a side file where the ADFz products can access it. (For

return codes issued by IPVLANGX, see IPVLANGX return codes on page 127.)

• Writes the listing as part of the job output.

Chapter 6. IPVLANGX compiler listing to side file conversion utility

Figure 3. Sample JCL to compile a COBOL program and store the side file

//IPVSCMPS JOB (GSF),'GENERATE.SIDE.FILE',NOTIFY=&SYSUID.,
// MSGCLASS=X,CLASS=A,MSGLEVEL=(1,1)
// JCLLIB ORDER=(IGY.V2R1M0.SIGYPROC) <== INSTALLATION
//* IGYWCLG PROC
//*
//**/
//* THIS JOB RUNS A COBOL COMPILE PLUS PRODUCES A SIDE FILE */
//* FROM A PROGRAM LISTING THAT THE ADFz PRODUCTS CAN */
//* USE FOR OBTAINING SOURCE INFORMATION. */
//* THE COMPILE OUTPUT IS THEN WRITTEN TO SYSUT2 IN THE */
//* IEBGENER STEP. */
//**/
//*
//CBLRUN EXEC IGYWC,PARM.COBOL='LIST,MAP,Source,XREF'
//COBOL.SYSIN DD DATA,DLM='##'
⋮
(Program source not shown)
⋮
##
//COBOL.SYSPRINT DD DSN=&&COBLIST(IPVSCBL1),
// DISP=(,PASS),SPACE=(TRK,(10,5,5),RLSE),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//*
//IPVLANGX EXEC PGM=IPVLANGX,REGION=4096K,
// PARM='IDISCBL1 (COBOL ERROR'
//LISTING DD DISP=(OLD,PASS),DSN=&&COBLIST ❶
//IDILANGX DD DISP=SHR,DSN=IPV.IPVLANGX ❷
//SYSUDUMP DD SYSOUT=*
//*
//IEBGENER EXEC PGM=IEBGENER,REGION=4096K
//SYSUT1 DD DISP=OLD,DSN=&&COBLIST(IPVSCBL1)
//SYSUT2 DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
/*

After you have created and stored a side file, there is no benefit to ADFz products in retaining the listing.

If you already have listings, you can turn them into side files. Here is sample JCL to do this conversion (it is provided as

member IPVSFILE in the IPV.SIPVSAM1 data set): sample data set membersIPVSFILE IPVSFILE sample member side filescreating from listing listingscreating side file

87

IBM Application Delivery Foundation for z Systems Common Components

88

Figure 4. Sample JCL to create a side file from a COBOL listing

//IPVLANGX JOB (C97),'IPVLANGX',MSGCLASS=X,
// CLASS=A,NOTIFY=&SYSUID
//***
//* This job produces a side file from a program listing that
//* the ADFz products can use for obtaining source information.
//* This particular example is set up for a COBOL extraction
//* from IPV.LISTING.COBOL(COBOLA) to IPV.IPVLANGX
//***
//IPVLANGX EXEC PGM=IPVLANGX,REGION=4096K,
// PARM='COBOLA (COBOL ERROR'
//LISTING DD DISP=SHR,DSN=IDI.LISTING.COBOL ❶
//IDILANGX DD DISP=SHR,DSN=IDI.IPVLANGX ❷
//SYSUDUMP DD SYSOUT=*

Notes:

❶

DDname must be LISTING for all types of compiler listings, or SYSADATA for an assembler ADATA file.

❷

DDname must be IDILANGX for the output LANGX side file. The data set must be sequential or PDS(E),

RECFM=VB, LRECL≥1562.

Refer to the documentation for the individual ADFz products for information about how to provide the LANGX side file for

processing.

A compiler listing is the only data format that IPVLANGX accepts as input, with the exception of SYSADATA for assembler.

IPVLANGX parameters

The PARM string passed to IPVLANGX should contain:

Figure 5. Syntax

PARM='

mbr_name

( language

ERROR

PermitLangx(

,1

msgid)

Notes:

1 Either comma or blank character is permitted as delimiter.

where:

Chapter 6. IPVLANGX compiler listing to side file conversion utility

mbr_name

The compiler listing or ADATA file member name in the input data set identified by the LISTING DD name (for

a compiler listing) or the SYSADATA DD name (if an ADATA file). This parameter is optional. If omitted, the

JCL must specify for the compiler listing or ADATA file, either a sequential data set, or a PDS(E) data set with

member name. Also, the output IPVLANGX member is named according to the input program name. In the

case of COBOL, for example, this name is the name found on the PROGRAM-ID source line.

language

The language of the compiler listing or ADATA file, as:

• COBOL

• PLI

• C

• ASM

ERROR

An optional parameter that provides more diagnostics on variables for which information is incomplete.

PermitLangx(msgid, …)

An optional parameter that specifies message IDs for compiler error messages which should be ignored.

For details, see IBM® Fault Analyzer for z/OS® User’s Guide and Reference. Chapter 33 “Options”, section

“PermitLangx”.

Including an IPVLANGX step in your SCLM translator
If you use Software Configuration and Library Manager (SCLM) to manage your application software, consider including

an IPVLANGX step in your SCLM translator. LANGX side files generally take up less disk space than compiler listings. The

following examples show an IPVLANGX step inserted into a High Level Assembler and a COBOL SCLM translator.

High Level Assembler SCLM example

This example is included in data set IPV.SIPVSAM1 as member IPVSCLMA.sample data set membersIDISCLMAIPVSCLMA sample member

 * SYSADATA DDNAME used in HLASM step.
 * (* SYSADATA *)
 FLMALLOC IOTYPE=W,DDNAME=SYSADATA,RECFM=VB,RECNUM=9000, C
 LRECL=8188,BLKSIZE=8192,PRINT=Y
 *
 *
 * IPVLANGX BUILD TRANSLATOR
 *
 FLMTRNSL CALLNAM='IPVLANGX', C
 FUNCTN=BUILD, C
 COMPILE=IPVLANGX, C
 DSNAME=IPV.SIPVMODA, C
 VERSION=3.5.2, C
 GOODRC=0, C
 PORDER=1, C

89

IBM Application Delivery Foundation for z Systems Common Components

90

 OPTIONS='@@FLMMBR(ASM ERROR'
 *
 * (* SYSADATA *)
 FLMALLOC IOTYPE=U,DDNAME=SYSADATA
 *
 * (* IDILANGX *)
 FLMALLOC IOTYPE=P,DDNAME=IDILANGX,DFLTTYP=IDILANGX, C
 KEYREF=OUT2,BLKSIZE=27998,LRECL=1562,RECFM=VB, C
 RECNUM=10000,DIRBLKS=50,DFLTMEM=*

COBOL SCLM example

This example is included in data set IPV.SIPVSAM1 as member IPVSCLMC.sample data set membersIDISCLMCIPVSCLMC sample member

* --COPY SYSPRINT FILE TO LISTING
* The COPYFILE EXEC, in dataset PDFTDEV.PROJDEFS.EXEC contains the
* following:
*
* /* REXX */
* /**/
* /* Copy file I to file O. Both are assumed to be pre-allocated. */
* /**/
* PARSE UPPER ARG I","O .
* "EXECIO * DISKR "I" (STEM R. FINIS "
* "EXECIO * DISKW "O" (STEM R. FINIS "
* RETURN
*

*
 FLMTRNSL CALLNAM='COPY FILES ', C
 FUNCTN=BUILD, C
 COMPILE=COPYFILE, C
 DSNAME=PDFTDEV.PROJDEFS.EXEC, C
 CALLMETH=TSOLNK, C
 VERSION=1.0, C
 PORDER=1, C
 OPTIONS=(SYSPRINT,LISTING), C
 GOODRC=0

 FLMALLOC IOTYPE=W,RECFM=VBA,LRECL=133, C
 RECNUM=90000,DDNAME=LISTING
*
 FLMTRNSL CALLNAM='IPVLANGX', C
 FUNCTN=BUILD, C
 COMPILE=IPVLANGX, C
 DSNAME=IPV.SIPVMODA, C
 VERSION=3.5.2, C
 GOODRC=0, C
 PORDER=1, C
 OPTIONS='@@FLMMBR(COBOL ERROR'
*
* (* LISTING *)
 FLMALLOC IOTYPE=U,DDNAME=LISTING
*
* (* IDILANGX *)
 FLMALLOC IOTYPE=P,DDNAME=IDILANGX,DFLTTYP=IDILANGX, C

Chapter 6. IPVLANGX compiler listing to side file conversion utility

 KEYREF=OUT2,BLKSIZE=27998,LRECL=1562,RECFM=VB, C
 RECNUM=10000,DIRBLKS=50,DFLTMEM=*

91

92

Chapter 7. IPVLANGP side file formatting utility
A utility program, IPVLANGP, is provided, which can be used to create a readable listing from one of the following:

• A LANGX side file.

• For Enterprise PL/I, a SYSDEBUG side file that is generated by using the PL/I TEST(SEPARATE) or PL/I (NOSEP

SOURCE) compiler option.

• For Enterprise PL/I Version 6 or later a load module that is generated by using the PL/I TEST(NOSEPARATE SOURCE)

compiler option.

• For Enterprise COBOL, a SYSDEBUG side file that is generated by using the COBOL TEST(SEPARATE) option.

• For Enterprise COBOL Version 5 or later, a program object containing DWARF debugging information generated by

using the TEST(SOURCE) or NOTEST(SOURCE) option.

• For Enterprise COBOL Version 6, a SYSDEBUG side file that is generated by using the COBOL TEST(SEPARATE

SOURCE) or NOTEST(SEPARATE SOURCE) option.

This approach might be useful if side files, rather than compiler listings, are kept in order to conserve DASD space. The utility

program is able to format the side file or program object debugging information in a way that resembles the original compiler

listing.

IPVLANGP can be executed in a number of different ways:

• As an ISPF option 3.4 (Data Set List Utility) line command against a sequential LANGX side file or COBOL or PL/I

SYSDEBUG side file data set, or if the data set is partitioned, as a line command against a member of the data set.

For Enterprise COBOL Version 5 and PL/I Version 6, IPVLANGP can also be issued against a program object member

of a PDSE load library.

If a sequential COBOL or PL/I SYSDEBUG side file data set is used, or if the member of a partitioned COBOL or PL/I

SYSDEBUG side file data set does not match any PROGRAM-ID named program contained within it, then a prompt is

displayed which permits a program name to be specified.

When a COBOL Version 5 program object contains more than one compile unit, a prompt is displayed to select the

desired program.

All LANGX side files that are contained in a sequential data set, or a partitioned data set member, are displayed,

regardless of whether these match the member name or not.

The output is written to a temporary data set and displayed using ISPF EDIT.

• From a Fault Analyzer ISPF interface display, using the Services action-bar pull-down menu, and selecting the

“IPVLANGP Side File Formatting Utility” option. A prompt is displayed, from which you specify the data set to be

formatted.

The output is presented in an ISPF display, but may be copied to a data set using the COPY command.

• As a batch job, like the following:

Chapter 7. IPVLANGP side file formatting utility

//PRTLANGX JOB ...
//STEP1 EXEC PGM=IPVLANGP,PARM='parms'
//SYSPRINT DD SYSOUT=*

The PARM string passed to IPVLANGP should contain:

Figure 6. Syntax

PARM='  data_set_name

PROG: program_name

where:

data_set_name

The name of a sequential LANGX side file or COBOL or PL/I SYSDEBUG side file data set, or if the data

set is partitioned (as is the case for program objects), the data set name with member name included in

parentheses.

Examples:

MY.SYSDEBUG.SEQ.DS
MY.IPVLANGX.PDS.DS(MYPROG)

program_name

For COBOL, the name of a PROGRAM-ID named program contained within a SYSDEBUG side file or V5

program object. For PL/I, the name of a main PROCEDURE contained within a SYSDEBUG side file or V6

program object.

The formatted listing is written to the SYSPRINT DD. Normal listing file attributes, such as variable-blocked record

format and logical record length of 137, are generally appropriate.

When source code comments contain non-printable characters, specify a LOCALE with an appropriate code set for source

code translation. The IPVLANGP header shows the LOCALE and code set that are in effect (see Locale on page 28).

Deferred Breakpoints Feature
Start IPVLANGP with the “bkp” parameter for a COBOL or PL/I SYSDEBUG file, a COBOL LANGX file, a COBOL Version 5

program object containing DWARF debugging information, or a PL/I Version 6 program object containing C_PLISRC class

data. You can also start it from z/OS® Debugger Utilities or Fault Analyzer for z/OS® Services menus. Here it is started from

an ISPF member list:

93

IBM Application Delivery Foundation for z Systems Common Components

94

 Menu Functions Confirm Utilities Help
 ───
 DSLIST JERRYBL.IPVLANGX Row 0000001 of 0000023
 Command ===> Scroll ===> CSR
 Name Prompt Size Created Changed ID
 AFPBIM
 AFPBITM
 AFPLDOVL
 ASMHOLE
 ipvlangp COBEX1 bkp ❶
 COBOV1
 COBTINY
 CPPTST1
 DACBB030
 DACVD002
 DAGOTST
 HRHP702C
 NAMUCSM
 OSVSC01
 PLIPARM
 PLIPARME
 PLIPARM1
 F1=Help F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left
 F11=Right F12=Cancel

❶

The “bkp” parameter enables setting of deferred breakpoints.

IPVLANGP then prompts for the z/OS® Debugger Repository and the program's load module name (default is program

name):

 Menu Functions Confirm Utilities Help
─ ┌────────────────────────── Deferred Breakpoints ───────────────────────────┐
D │ │
C │ IPVLANGP requires the name of the z/OS Debugger Repository and a load │
 │ module name for program COBEX1 │
_ │ │
 │ Repository (PDS/E) . . PRINT.PDS ❷ │
 │ Load Module COBEX1 │
 │ │
I │ F1=Help F3=Exit F12=Cancel │
 └───┘
 COBTINY
 CPPTST1
 DACBB030
 DAGOTST
 HRHP702C
 NAMUCSM
 OSVSC01
 PLIPARM
 PLIPARME
 PLIPARM1
 F1=Help F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left
F11=Right F12=Cancel

❷

The Repository data set name is saved in an ISPF variable and is automatically initialized to the last used data

set name on subsequent invocations.

The main IPVLANGP panel now appears:

Chapter 7. IPVLANGP side file formatting utility

 File Services
 ───
 IPVLANGP Line 1 Col 1 80
 Command ===> Scroll ===> CSR

 IPVLANGX Print Utility V1R7M0 (AI41974 2015/08/

 Program Name : COBEX1
 Data Set Name. : JERRYBL.IPVLANGX(COBEX1)
 Options in Effect. : NoLocale
 Compiler name. : IBM Enterprise COBOL for z/OS 4.2.0
 Date of Compile. : 2015-04-30
 Time of Compile. : 12.52.1130
 Date of IPVLANGX extraction. : 2015-07-06
 Time of IPVLANGX extraction. : 11.43.2206

 Source listing

┌──?
│ Place cursor on an executable source line number or label to add a │ -+----5-
│ breakpoint │
└──┘ own
 F10=Left F11=Right

Any existing breakpoints for the program are retrieved from the repository. Line (Stmt) numbers where breakpoints are set

will be highlighted, for example lines 173 and 175 in the following example:

 File Services
 ───
 IPVLANGP Line 176 Col 1 80
 Command ===> Scroll ===> CSR

 00091C 000171 PERFORM CALC-TAX.
 000173 CALC-TAX.
 00093E 000174 IF ELECTRIC
 000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
 00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
 00097E 000177 ELSE
 0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
 0009D6 000179 IF KW < 150
 0009EA 000180 MOVE 10 TO BASE-AMOUNT
 0009EA 000181 ELSE
 0009F4 000182 MOVE 20 TO BASE-AMOUNT
 0009FA 000183 IF ZERO-100 < 5
 000A0E 000184 ADD 5 TO BASE-AMOUNT
 000A0E 000185 ELSE
 000A2C 000186 IF RED
 000A3E 000187 ADD 2 TO BASE-AMOUNT
 000A3E 000188 ELSE
 F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
 F10=Left F11=Right

Breakpoints can be added or viewed by pressing PF6, which is sensitive to the cursor position:

• With the cursor on a Line (Stmt) number, a popup appears allowing a new line or label breakpoint to be added, or an

existing breakpoint to be modified (or cleared).

• If the cursor is outside of the source area (for example, on the command line), a list of existing breakpoints is shown

allowing one or more to be worked with.

In the following example, PF6 is pressed with the cursor on the command line:

95

IBM Application Delivery Foundation for z Systems Common Components

96

 File Services
┌───?
│ Breakpoints Line 1 Col 1 76 │
│ │
│ S to select breakpoints to work with: │
│ s 000173 AT EVERY 10 FROM 1 TO 9 LABEL CALC-TAX; │
│ 000175 AT EVERY 10 FROM 9 TO 1 LINE 175 WHEN cc=0; │
│ │
│ *** Bottom of data. │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ Command ===> Scroll ===> CSR │
│ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
└───┘
0008F4 000167 MOVE ZERO TO TAX-AMOUNT.
0008FA 000168 PERFORM REDO-TAX.
 000170 REDO-TAX.
00091C 000171 PERFORM CALC-TAX.
 000173 CALC-TAX.
00093E 000174 IF ELECTRIC
000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
 F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

As shown, breakpoints are listed in z/OS® Debugger command format.

Enter the 'S' line command to work with one or more existing line or label breakpoints. Here, the line 173 breakpoint is

selected:

Chapter 7. IPVLANGP side file formatting utility

 File Services
┌───?
│ Breakpoints Line 1 Col 1 76 │
│ ┌───?
│ S │ Add Label Breakpoint Line 1 Col 1 76 │
│ s │ │
│ │ Label: │
│ │ 000173 CALC-TAX. │
│ * │ │
│ │ EVERY 10 FROM 1 TO 9 ❸ │
│ │ Action playback enable │
│ │ │
│ │ │
│ │ │
│ │ Clear breakpoint? N (Y/N) │
│ │ │
│ │ │
│ C │ Press ENTER to change/clear breakpoint. │
│ │ │
└── │ Command ===> Scroll ===> CSR │
000 │ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
000 └───┘
 000170 REDO-TAX.
00091C 000171 PERFORM CALC-TAX.
 000173 CALC-TAX.
00093E 000174 IF ELECTRIC
000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
 F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

The Add Label Breakpoint popup is used to add, change or clear a label breakpoint.

❸

Line and label breakpoints may specify an EVERY clause and an Action.

97

IBM Application Delivery Foundation for z Systems Common Components

98

 File Services
┌───?
│ Breakpoints Line 1 Col 1 76 │
│ ┌───?
│ S │ Add Label Breakpoint Line 1 Col 1 76 │
│ s │ │
│ │ Label: │
│ │ 000173 CALC-TAX. │
│ * │ │
│ │ EVERY 10 FROM 1 TO 9 │
│ │ WHEN cc = 0 ❹ │
│ │ │
│ │ │
│ │ Action playback disable │
│ │ │
│ │ │
│ │ │
│ C │ Clear breakpoint? N (Y/N) │
│ │ │
└── │ │
000 │ Press ENTER to change/clear breakpoint. │
000 │ │
 │ *** Bottom of data. │
000 │ │
 │ Command ===> Scroll ===> CSR │
000 │ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
000 └───┘
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
 F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

Similarly, the Add Line Breakpoint popup is used to add, change or clear (delete) a line breakpoint.

❹

Line breakpoints may also specify a WHEN condition.

On exiting IPVLANGP, the following popup appears:

Chapter 7. IPVLANGP side file formatting utility

 File Services
┌───?
│ Save Breakpoints for Program COBEX1 Line 1 Col 1 76 │
│ │
│ Select one of the following: │
│ 1. Save breakpoints │
│ 2. Exit without saving new or changed breakpoints │
│ 3. Clear all breakpoints for this program │
│ │
│ Breakpoints: │
│ 000173 AT EVERY 10 FROM 1 TO 9 LABEL CALC-TAX playback enable; │
│ 000175 AT EVERY 10 FROM 9 TO 1 LINE 175 WHEN cc=0 playback disable; │
│ │
│ *** Bottom of data. │
│ │
│ │
│ │
│ Command ===> Scroll ===> CSR │
│ F1=Help F3=Exit F5=RptFind F7=Up F8=Down F12=Cancel │
└───┘
0008F4 000167 MOVE ZERO TO TAX-AMOUNT.
0008FA 000168 PERFORM REDO-TAX.
 000170 REDO-TAX.
00091C 000171 PERFORM CALC-TAX.
 000173 CALC-TAX.
00093E 000174 IF ELECTRIC
000954 000175 COMPUTE BASE-AMOUNT = PRICE / CC
00097E 000176 COMPUTE TAX-AMOUNT = PRICE / BASE-AMOUNT
00097E 000177 ELSE
0009AC 000178 COMPUTE BASE-AMOUNT = CC / CYLINDERS
0009D6 000179 IF KW < 150
0009EA 000180 MOVE 10 TO BASE-AMOUNT
0009EA 000181 ELSE
0009F4 000182 MOVE 20 TO BASE-AMOUNT
0009FA 000183 IF ZERO-100 < 5
000A0E 000184 ADD 5 TO BASE-AMOUNT
000A0E 000185 ELSE
000A2C 000186 IF RED
000A3E 000187 ADD 2 TO BASE-AMOUNT
000A3E 000188 ELSE
 F1=Help F3=Exit F5=RptFind F6=AddBkp F7=Up F8=Down
F10=Left F11=Right

Breakpoints are saved back to the Repository in XML format. Use DTU to convert the breakpoint XML definitions to a z/OS®

Debugger commands file ready for use with the next debug session.

Deferred Breakpoints also feature in Fault Analyzer's COBOL Explorer.

99

100

Chapter 8. IPVLANGO Automatic Binary Optimizer LANGX file
update utility
The Automatic Binary Optimizer for z/OS® (ABO) product optimizes COBOL object code. See the IBM Automatic Binary

Optimizer for z/OS User's Guide for the eligible compilers.

ABO optimization results in code changes that render any existing compiler listing or side file unusable with the optimized

program. The IPVLANGO utility creates LANGX file members that can be used to provide source-level debugging of the

optimized program with ADFz products such as Fault Analyzer, z/OS® Debugger, and APA. New LANGX file members can be

created from compiler listings, SYSDEBUG side files (COBOL V4 or earlier), or existing LANGX files.

The sample job step in Figure 7 on page 101 takes the listing transforms file from a previous ABO step and merges it with

one or more LANGX file members to create 'optimized' LANGX members. (Refer to ABO documentation for the complete

optimization JCL, which this sample job step can be appended to.) If the listing transforms file is a PDS(E), it must specify a

member name. In Figure 7 on page 101, the input is a LANGX data set (DD:IPVLANGX); alternatively, it could be a compiler

listing (DD:IPVLCOB) or a SYSDEBUG data set (DD:IPVSYSDB).

As ABO can process multiple programs in a single invocation, the listing transforms file has a PROC section for each

optimized program. To accommodate this, compiler listing, SYSDEBUG, and LANGX data set DDs should specify a PDS(E)

data set without a member name. The input PDS(E) should contain a member for each PROC in the listing transforms file.

Likewise, the output LANGX PDS(E) contains a member for each PROC in the listing transforms file.

The IPVLANGO utility uses the following DDs:

LISTING

The (input) ABO listing transforms file that was written in the ABO step to SYSPRINT. This can be a sequential

data set, a PDS(E) member, or a concatenation.

IPVLANGX | IPVLCOB | IPVSYSDB

The original (input) side file that represents one or more unoptimized programs. This must be a PDS(E) that

contains a member for each program. Multiple data sets can be provided by specifying a concatenation. Do not

specify a member name. Use one of these DDs depending on the input side file format.

IPVLANGO

The new (output) LANGX side file that represents one or more optimized programs. This must be a VB PDS(E)

with LRECL>=1562 and must not be the same data set as the one specified for IPVLANGX. A member is written

for each PROC in the listing transforms file. Do not specify a member name. Note that this data set cannot

subsequently be used as input to the IPVLANGO utility.

SYSPRINT

A log of procedures processed and any problems encountered. IPVLANGO returns 0 if there are no problems.

Chapter 8. IPVLANGO Automatic Binary Optimizer LANGX file update utility

Figure 7. Sample job step to create an 'optimized' LANGX side file

//LANGO EXEC PGM=IPVLANGO
//LISTING DD DISP=SHR,DSN=*.OPT.SYSPRINT <--- Input ABO transforms file
//IPVLANGX DD DISP=SHR,DSN=JERRYBL.BINOPT.LANGX
//IPVLANGO DD DISP=SHR,DSN=JERRYBL.BINOPT.LANGX.ABO

101

102

Chapter 9. Maintaining ADFz Common Components

Take the following steps to apply maintenance to ADFz Common Components:

1. If ADFzCC SMP/E target libraries are in LINKLIST, remove them from LLA and VLF control before you perform the

SMP/E APPLY. The removal is to avoid errors when modules are loaded from LINKLIST because SMP/E compressed

or added extents to the libraries.

2. Perform SMP/E APPLY.

3. If the updated ADFzCC modules are in LPA, do one of the following actions:

◦ IPL with CLPA

◦ Perform dynamic updates as follows:

▪ If the IPVLANGX module is placed in LPA by using the command SETPROG, which is opposed to

placing IPV.SIPVLPA1 in LPA, take the following actions:

a. Issue the following command:

SETPROG LPA,DELETE,MOD=IPVLANGX),FORCE=YES

For complete information about the command SETPROG, see MVS™ System Commands.

b. Issue the following command:

F LLA,REFRESH

c. Optional: To add the IPVLANGX module to LPA and regain the region size space advantage,

issue the following command:

SETPROG LPA,ADD,MOD=(IPVLANGX),DSN=LNKLST

▪ If IPV.SIPVLPA1 is included in your LPALIST, issue the following command:

SETPROG LPA,ADD,MOD=(IPVLANGX),DSN=LNKLST

Chapter 10. ADFzCC event processing

ADFzCC event processing is a feature that allows any products or systems including the ADFz family of products to send

data to an asynchronous installation-written back-end for processing. Do not send sensitive information by using this

feature. The validity of all data is the responsibility of the users.

The ADFzCC event processing feature includes the following items:

• Sender load module IPVEPSND

• Receiver load module IPVEPRCV

• IPVCNF00 option EVENTPROCESSINGEXIT

• The Event Processing user exit

Sender load module IPVEPSND

The IPVEPSND load module contains the fetchable LE function IPVEPSND(). It spawns an extra BPX batch address space in

which the module IPVEPRCV runs asynchronously.

This module transfers data to IPVEPRCV via stdin, and any debug information is passed back to it via stdout if the debug

mode is active.

If this feature is enabled via the EventProcessingExit option, ADFz products> transparently call IPVEPSND to perform event

processing.

Note: If the debug mode is activated, IPVEPRCV does not run asynchronously to IPVEPSND.

Usage

IPVEPSND, the fetchable LE function IPVEPSND(), is defined as:

int IPVEPSND(char *ProdID, char *UsrPgm, char *BufPtr, char *DbgDDn);

The parameters are defined as follows:

ProdID

The product ID. For example: the Fault Analyzer product ID is “IDI"; the File Manager product ID is “FMN".

UsrPgm

The user program name. For the ADFz family of products, the user program name is obtained via the

EVENTPROCESSINGEXIT option.

BufPtr

The buffer pointer. The 31-bit address of a storage buffer to be passed to the Event Processing exit in the

following format:

103

IBM Application Delivery Foundation for z Systems Common Components

104

Byte 0-3

Total data length

Byte 4

Segment data

Byte 0-1

Segment length

Byte 2

Segment data

Repeat segment length and segment data for all segments

DbgDDn

The debug DDname.

The returned int value includes the following descriptive bytes:

Byte 0

IPVEPSND return code (0 = successful).

Byte 1

IPVEPRCV return code (0 = successful). This byte is valid only if the debug DDname is specified.

Byte 2-3

User exit return code. This byte is valid only if the debug DDname is specified.

Example

void *fetch_ptr;
typedef void exit_U(char *ProdID, char *UsrPgm, void *BufPtr, char *DbgDDn);
#pragma linkage(exit_U, OS)
exit_U *exit_ep;
char *exit_name;
char event_data[1024];
char *data_item1 = “Fred=Yes”;
char *data_item2 = “Barney=No”;
int i;

i = 4;
*(short *)&event_data[i] = strlen(data_item1);
memcpy(data_buffer + i + 2, data_item1, strlen(data_item1));
i += (2 + strlen(data_item1));

*(short *)&event_data[i] = strlen(data_item2);
memcpy(data_buffer + i + 2, data_item2, strlen(data_item2));
i += (2 + strlen(data_item2));

*(int *)&event_data[0] = i;

Chapter 10. ADFzCC event processing

// Set exit_name to the current EVENTPROCESSINGEXIT option value...

fetch_ptr = (void *)fetch("IPVEPSND");
if (fetch_ptr) {
 exit_ep = (exit_U *)fetch_ptr;
 exit_ep("XYZ", exit_name, event_data, 0);
}

Receiver load module IPVEPRCV

The IPVEPRCV load module is internal. It is the load module that is executed in the BPX batch address space that is spawned

by IPVEPSND().

IPVEPRCV provides an interface to the user exit that is specified via the EVENTPROCESSINGEXIT option.

IPVCNF00 option EVENTPROCESSINGEXIT

Use the EventProcessingExit option to specify the name of the exit to be invoked to process an event. For more information,

see EventProcessingExit on page 27.

The Event Processing user exit

The exit name that is specified in the IPVEPSND UsrPgm parameter must be a fetchable LE function with the following

format:

int exit_name(char *ProdID, char *BufPtr);

The ProdID and BufPtr are the same as specified for IPVEPSND.

The user exit load module must be available via the normal search path, that is, JOBLIB, STEPLIB, LINKLIST, and so on.

The user exit is invoked in problem state, that is, key 8.

For ADFz products, the exit name is specified via the EventProcessingExit option.

Example customer event processing user exit

The following code is a stub example of an exit written in C that can be specified via the EVENTPROCESSINGEXIT option,

named as IPVEPXIT.

#pragma linkage(IPVEPXIT, fetchable)

#include <string.h>

int IPVEPXIT(char *ProdID, char *BufPtr) {

 if (!BufPtr) {
 printf("BufPtr is null! Exiting...\n");
 return;

105

IBM Application Delivery Foundation for z Systems Common Components

106

 }

 if (strcmp(ProdID, "IDI")) {

 //Event from Fault Analyzer has been detected.
 //processFAEvent(BufPtr); ...

 } else if (strcmp(ProdID, "FMN")) {

 //Event from File Manager has been detected.
 //processFMEvent(BufPtr); ...

 } else if (strcmp(ProdID, "ABC")) {

 //Event from application ABC has been detected.
 //processABCEvent(BufPtr); ...

 }
}

Appendix A. Messages
The following information is provided for each ADFzCC server message:

• The message identifier.

• The text of the message.

• An explanation of the message.

• The required user response.

Messages have a unique alphanumeric identifier with the following format:

IPVnnnns

where:

nnnn

Is a 4-digit number.

s

Is a severity level indicator with the following meanings:

• I - Informational

• W - Warning

• S - Severe

ADFzCC server messages

IPV0001I

Server on port %i exiting

Explanation:  The server is finished processing. Either errors occurred during startup, running, or the server is responding to a
shutdown command. 

System action:  The server finishes processing. 

User response:   If the shutdown was unexpected, examine previous messages for the cause. 

IPV0002I

Error establishing SSL environment: %i

Explanation:  An error occurred while establishing the SSL environment. 

System action:  The ADFzCC server attempts to continue. 

User response:  Examine previous messages for reasons for environment failure. If previous messages do not help, contact
IBM® support. 

107

IBM Application Delivery Foundation for z Systems Common Components

108

IPV0003S

Console modify/stop interface failed rc=%i, errno=%i error= %s

Explanation:  An error occurred while establishing the console interface. 

System action:  The ADFzCC server exits. 

User response:  Examine the provided error for reasons for failure. If previous messages do not help, contact IBM® support. 

IPV0004I

Number of configurations %i

Explanation:  During start or configuration refresh, the CONFIG data was read and the specified number of configurations
were recognized. 

System action:  None. 

User response:  If the number of configurations is unexpected, check the CONFIG concatenations and contents. 

IPV0005I

Config number %i startup %s

Explanation:  During start or configuration refresh, the configuration specified an initial program to run. 

System action:  None. 

User response:  None. 

IPV0006W

System call rc=%i error=%s

Explanation:  A call to run a program according to a configuration failed. 

System action:  None. 

User response:  None. 

IPV0007W

Expected a portnumber integer. Received %s

Explanation:  The server expects an integer portnumber as the first parameter. 

System action:  The server attempts to continue starting, using port 2800. 

User response:  Check the invocation parameter for the server. 

IPV0008W

Expected AF_INET or AF_INET6. Received %s

Chapter 1. Messages

Explanation:  The server expects the address family type as the second parameter. 

System action:  The server attempts to continue starting, using the AF_INET family. 

User response:  Check the invocation parameter for the server. 

IPV0009I

Using address family %s.

Explanation:  The server is using the specified address family. 

System action:  None. 

User response:  None. 

IPV0010I

Using port %i.

Explanation:  The server is using the specified port number. 

System action:  None. 

User response:  None. 

IPV0011S

listen() error: %s

Explanation:  The listen call failed with the specified error. 

System action:  The server is shut down. 

User response:  Correct the listed error if possible and restart the server. 

IPV0012W

Spawn failure for %s. Error: %s __errno2 = %08x

Explanation:  The attempt to spawn the specified program failed with the listed error and error code. 

System action:  The server continues to run. 

User response:  Examine the error and possibly examine the CONFIG file ensuring that customization occurred correctly. 

IPV0013W

Missing value for keyword '%s'

Explanation:  While reading the CONFIG file, an expected value for a keyword was missing. 

System action:  The server continues to run. 

User response:  Check the CONFIG file for the specified keyword and specify an appropriate value. 

109

IBM Application Delivery Foundation for z Systems Common Components

110

IPV0014W

Failure to acquire storage for configuration instance %i

Explanation:  While preparing configurations, a failure to acquire storage occurred. 

System action:  The server attempts to continue to run. 

User response:  Check the REGION specification for the server. Increase and restart the server. 

IPV0015I

ADFzCC server Running on port %i.

Explanation:  Console message to indicate that the server is now accepting connections. 

System action:  None. 

User response:  None. 

IPV0016I

Established SSL environment.

Explanation:  The call to System SSL to initialize an environment was successful. 

System action:  None. 

User response:  None. 

IPV0017W

Unable to create temporary file %s. %s

Explanation:  The call to create a temporary file for a configuration failed. 

System action:  The server attempts to continue, however the configuration might be unusable. 

User response:  Examine the file path and error condition as shown. Correct the configuration file or update the directory
permissions and restart or refresh the server. 

IPV0018W

Unable to verify dsn %s

Explanation:  The existence of data set %s in a STEPLIB= value could not be verified. 

System action:  The server attempts to continue, however the configuration might be unusable. 

User response:  Examine the named data set and ensure that it is the correct name. If necessary, update the configuration
file and restart or refresh the server. 

Chapter 1. Messages

IPV0019W

Unable to open CONFIG %s

Explanation:  During startup, or a refresh command, the DD CONFIG was unable to be opened. 

System action:  If this occurs during initial start of the server, the server terminates. During a refresh, no new configurations
are loaded. 

User response:  Examine the error and the CONFIG data sets to ensure that they exist. If necessary, update the configuration
file and restart or refresh the server. 

IPV0020I

REFRESH completed, %i configs processed.

Explanation:  A REFRESH console command has now completed. The server has re-read the configurations as specified in
the CONFIG DD. 

System action:  None. 

User response:  None. 

IPV0021W

REFRESH found errors in new configs, not activated.

Explanation:  A REFRESH console command was issued, but during reading of the CONFIG DD, some errors occurred. 

System action:  The server continues with its prior configuration. 

User response:  Check the server output for possible further information on the problems that are found in the CONFIG
file(s) 

IPV0022S

Creation of key database at %s failed, error %s

Explanation:  The configuration specifies that the server create a certificate to be used, however an error as described
occurred when attempting to create the key database. 

System action:  The server terminates. 

User response:  f the error is an IO error, check the specified location for enough space (65KB). Otherwise, check that the
location is writeable. To specify an alternate location, set the configuration keyword WORKDIR to the directory to be used. 

IPV0023S

Creation of self-signed certificate failed, error %s

Explanation:  The configuration specifies that the server create a certificate to be used, however an error as described
occurred when attempting to create the self-signed certificate in the key database. 

System action:  The server terminates. 

111

IBM Application Delivery Foundation for z Systems Common Components

112

User response:  Check the listed error and check documentation for the gsk_create_self_signed_certificate API. 

IPV0024I

Traceon received, trace already active.

Explanation:  The Server received a modify command to turn on tracing, but it is already on. 

System action:  None. 

User response:  None. 

IPV0025I

Traceon received, trace turned on.

Explanation:  The Server received a modify command to turn on tracing and has done so. Trace output goes to the
IPVTRACE file(DD) if present, or to the STDOUT file if not. 

System action:  None. 

User response:  None. 

IPV0026I

Traceoff received, trace already off.

Explanation:  The Server received a modify command to turn off tracing but it is already off. 

System action:  None. 

User response:  None. 

IPV0027I

Traceoff received, trace turned off.

Explanation:  The Server received a modify command to turn off tracing and has done so. 

System action:  None. 

User response:  None. 

IPV0028I

Unrecognized modify command.

Explanation:  The Server received a modify command, but did not recognize it. 

System action:  None. 

User response:  Check that modify contained one of the valid requests; TRACEON, TRACEOFF, VER or REFRESH. 

Chapter 1. Messages

IPV0029W

Client config name %s not found in CONFIG DD content.

Explanation:  The Server received a client connection request for the named config, but no matching CONFIG=name
statement was found in the data that was contained in the CONFIG DD concatenation. 

System action:  The client connection request is refused. 

User response:  Check that the configurations referenced by the CONFIG DD for the server, contain a CONFIG=name section. 

IPV0030I

API start PID=processid

Explanation:  A process (processid) launched by the common server has invoked the common server subordinate API to
start the environment setup and handshake with client. 

System action:  None. 

User response:  None. 

IPV0031I

API closure PID=processid

Explanation:  A process has invoked the common server subordinate API to close the environment setup and client
connection. 

System action:  None. 

User response:  None. 

IPV0032I

ADFzCC server Release=%s PTF=%s

Explanation:  In response to the VER modify command, the server lists its release and PTF level information. 

System action:  None. 

User response:  None. 

IPV0033W

Unknown token %s with value %s for CONFIG=%s

Explanation:  While processing the configuration file, an unrecognized token/value pair was found. 

System action:  The invalid token is ignored and processing attempts to continue. 

User response:  Review the configuration file for the named token. Look for a misspelling or incorrect token or value. 

113

IBM Application Delivery Foundation for z Systems Common Components

114

IPV0041W

Maximum user variables (500) reached when processing token %s, value %s in configuration %s

Explanation:  The limit of substitution values has been reached. 

System action:  The server attempts to continue, however the configurations might be unusable. 

User response:  Examine the number of $token=value pairs present in the configuration file and reduce to less than 500. 

IPV0042W

Unable to stat file %s.

Explanation:  The server is unable to check the configuration launch file entry. 

System action:  The server attempts to continue, however this launch configuration is unusable. 

User response:  Examine the file path and ensure that the setup was completed correctly. Most likely the file or directory
path is not owned or correctly permitted in order for this server instance to access the named file. The WORKDIR
configuration step of installation needs to be checked and rerun. 

IPV0043W

Not owner of launch file %s.

Explanation:  The server is not the owner of a configuration launch file entry. 

System action:  The server attempts to continue, however this launch configuration is unusable. 

User response:  Examine the file path and ensure that the setup was completed correctly. Correct the condition by ensuring
that the file owner is updated to the userid of the server. The file system that the file is mounted on needs to allow SETUID for
the owner to be changed with the chmod command. 

IPV0044W

Launch file %s is not marked as sticky.

Explanation:  A configuration launch file has not been created correctly. 

System action:  The server attempts to continue, however this launch configuration is unusable.  

User response:  Examine the file path and WORKDIR location. If the WORKDIR is correct, the installation configuration step
for the WORKDIR might need to be rerun.  

IPV0045S

Configuration specifies AT-TLS, but AT-TLS rule is missing or invalid.

Explanation:  The configuration specifies ATTLS=Y, but an AT-TLS rule for the inbound connection was not found or was not
'ApplicationControlled'. 

System action:  The ADFzCC server is shut down. 

Chapter 1. Messages

User response:  Contact your security administrator or system programmer to verify the AT-TLS configuration of your
installation. 

IPV0046S

AT-TLS specified, but no protocol provided by SSL_REQUIRED parameter.

Explanation:  The configuration specifies ATTLS=Y, but the SSL_REQUIRED parameter does not specify a protocol value. 

System action:  The ADFzCC server is shut down. 

User response:  Contact your security administrator or system programmer to verify that the ADFzCC server configuration of
your installation specifies a valid protocol that is supported by your AT-TLS configuration. 

IPV0047S

Insufficient storage available.

Explanation:  An attempt to acquire storage failed because insufficient storage was available. 

System action:  The ADFzCC server is shut down. 

User response:  Check your system for any task using excessive storage. Restart the server when sufficient storage is
available. 

IPV0048S

SYSOUT=* not permitted in configuration.

Explanation:  The configuration file specified by the CONFIG DD statement uses SYSOUT=*, which cannot be resolved by a
started session. 

System action:  The ADFzCC server is shut down. 

User response:  Change the configuration member to specify a valid SYSOUT class. 

IPV0049S

PASSTK parameter expresses an invalid timeout value

Explanation: The PASSTK parameter in CONFIG DD expresses an invalid value. The PASSTK value should express a positive
integer that specifies a timeout period in minutes for a client to use PassTickets following a successful log on. The default is
480 (8 hours).

System action: The ADFzCC server is shut down.

User response: Change configuration to use a valid PASSTK value.

IPV0050S

Attempt to verify PASSTICKET environment failed, rc=nn

Explanation: The attempt to verify PASSTICKET authority failed. The server does not have sufficient authority to generate
PASSTICKETs. nn is the return code from the PassTicket generation routine. A return code of 16 means the server is not APF
authorized.

115

IBM Application Delivery Foundation for z Systems Common Components

116

System action: The ADFzCC server is shut down.

User response: Ensure that the execution environment meets the prerequisites for PASSTICKET generation and then restart
the server.

IPV0051I

Verifying server PASSTICKET authority

Explanation: The server configuration indicates that PASSTK services are required. The server must verify that it has
sufficient authority to satisfy client PASSTK requests.

System action: The ADFzCC server verifies that it has PASSTICKET authority.

User response: None.

IPV0052I

Server PASSTICKET authority verification successful

Explanation: The ADFzCC server has verified that it has sufficient authority to satisfy client PASSTK requests.

System action: The ADFzCC server continues to run.

User response: None.

IPV0053S

APPLID parameter has an invalid value length

Explanation: APPLID configuration parameter value has an invalid length. The APPLID value should be between 1 and 8
characters. The value represents a resource name in the APPL class, and clients connecting to the ADFzCC server must have
READ access to this resource if the APPL class is active.

System action: The ADFzCC server is shut down.

User response: Change the configuration to use a valid APPLID value.

IPVLANGX messages
These messages are issued by the IPVLANGX program, which is used internally by Fault Analyzer or invoked by the user

when creating side files.

IDISF8001I

IPVLANGX Version version (Release release)

Explanation:  This message shows the IPVLANGX program identification, version, and release date. 

System action:  Processing continues. 

User response:  None 

Chapter 1. Messages

IDISF8002I

Output file: member_name DDname

Explanation:  This message identifies the file to which the extract data information is written by IPVLANGX.   The
member_name field is not included in the message if using a sequential file. 

System action:  Processing continues. 

User response:  None 

IDISF8003I

... scanning txt1

Explanation:  This message indicates that the information that was specified in txt1 is being read from the associated file
and processed. 

System action:  Processing continues. 

User response:  None 

IDISF8004I

... checking txt1

Explanation:  This message indicates that the information t at was specified in txt1 is checked for consistency. 

System action:  Processing continues. 

User response:  None 

IDISF8005I

txt1 Pass dec2 processing begins

Explanation:  This message indicates pass dec2 of the multi-pass processing task that is specified in txt1 is now being
performed. 

System action:  Processing continues. 

User response:  None 

IDISF8006I

Post-processing begins

Explanation:  This message indicates that all necessary information was read from the associated files, and post-processing
of this information is being performed. 

System action:  Processing continues. 

User response:  None 

117

IBM Application Delivery Foundation for z Systems Common Components

118

IDISF8007I

... matching txt1

Explanation:  This message indicates that the information that was specified in txt1 is now being correlated. 

System action:  Processing continues. 

User response:  None 

IDISF8008I

... performing txt1

Explanation:  This message indicates that the processing step specified in txt1 is now being performed. 

System action:  Processing continues. 

User response:  None 

IDISF8010I

txt1 records scanned: dec2

Explanation:  This message indicates that dec2 records were read from the txt1 file when the current compile unit was
processed by IPVLANGX. 

System action:  Processing continues. 

User response:  None 

IDISF8011I

...Symbols txt1.. dec2

Explanation:  This message indicates that the current compile unit contained dec2 symbols with characteristics of type txt1 

System action:  Processing continues. 

User response:  None 

IDISF8012I

...Long Name Resolution IDs: dec1

Explanation:  This message indicates that the current compile unit contained dec1 Long Name Resolution Identifiers. 

System action:  Processing continues. 

User response:  None 

IDISF8013I

...Total symbols: dec1

Chapter 1. Messages

Explanation:  This message indicates that the current compile unit contained dec1 symbols. 

System action:  Processing continues. 

User response:  None 

IDISF8014I

Records written to output file: dec1

Explanation:  This message shows the number of records of extract data information which were written to the output file. 

System action:  Processing continues. 

User response:  None 

IDISF8015I

Operation completed for this compile unit

Explanation:  Processing was completed for the current compile unit. 

System action:  Processing continues if extra compile units are present. 

User response:  None 

IDISF8016I

txt1 member_name DDname

Explanation:  This message identifies the input file(s) which were processed by IPVLANGX   The txt1 field is normally “Input
file:” or “Input files:”.   The member_name field is not included in the message if using a sequential file. 

System action:  Processing continues. 

User response:  None 

IDISF8017I

Operation completed for this extract file

Explanation:  This message is the last message to be displayed by IPVLANGX, and indicates that processing is completed
for this IPVLANGX extract data file. 

System action:  Processing has completed. 

User response:  None 

IDISF8018I

txt1 bytes scanned: dec2

Explanation:  This message indicates that dec2 bytes of data were read from the txt1 file when the current compile unit was
processed by IPVLANGX. 

119

IBM Application Delivery Foundation for z Systems Common Components

120

System action:  Processing continues. 

User response:  None 

IDISF8020I

...Blocks of dead code eliminated....... dec1

Explanation:  This message indicates that dec1 blocks of code which had been removed by optimization by the compiler
have been identified. The source code and variables that are associated with these blocks have been eliminated from the
extract data. 

System action:  Processing continues. 

User response:  None 

IDISF8050W

Argument missing for txt1 option. txt2

Explanation:  The argument for IPVLANGX option txt1 was not found during processing of the IPVLANGX invocation
parameters. 

System action:  The default argument for the txt1 option is assumed. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

IDISF8051S

Argument/Option too long, "txt1"

Explanation:  The invocation parameter txt1 is not recognized as a valid IPVLANGX argument (or option). It exceeds the
maximum length of a valid argument (or option), and might be spelled incorrectly. 

System action:  Processing is terminated. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

IDISF8052S

Argument/Option not recognized, "txt1"

Explanation:  The invocation parameter txt1 is not recognized as a valid IPVLANGX argument (or option). 

System action:  Processing is terminated. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

Chapter 1. Messages

IDISF8055S

A left parenthesis was found inside options

Explanation:  An extra left parenthesis (after the initial left parenthesis which signals the start of the IPVLANGX options) was
encountered during processing of the IPVLANGX invocation parameters. 

System action:  Processing is terminated. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

IDISF8056S

No file name was specified

Explanation:  The PDS or PDSE data set member name of the primary program information file from which source and
variable data is to be extracted was not found during processing of the IPVLANGX invocation parameters. 

System action:  Processing is terminated. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

IDISF8057S

Argument/Option already specified, "txt1"

Explanation:  The argument (or option) txt1 was encountered more than once during processing of the IPVLANGX invocation
parameters. 

System action:  Processing is terminated. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

IDISF8058S

Argument/Option "txt1" conflicts with previous Argument/Option

Explanation:  A conflict between the argument (or option) txt1 and another previously specified argument (or option) was
detected during processing of the IPVLANGX invocation parameters. 

System action:  Processing is terminated. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

121

IBM Application Delivery Foundation for z Systems Common Components

122

IDISF8059I

Application language not specified, option "txt1" assumed

Explanation:  In the absence of an IPVLANGX option which explicitly specifies the application programming language, the
IPVLANGX option txt1 was assumed. 

System action:  Processing continues. 

User response:  If you are using IPVLANGX directly to create a side file, specify the invocation options as explained in
IPVLANGX compiler listing to side file conversion utility on page 86. If the message is issued during fault analysis, contact
your IBM® service representative. 

IDISF8100S

txt1 contains NO recognized records

Explanation:  The input file that was identified in txt1 did not contain the expected records. This could happen if, for example,
the IDIADATA DDname was accidentally directed at a compiler listing data set. 

System action:  Processing is terminated. 

User response:  Ensure that the input file that was used is correct. 

IDISF8103S

txt1 has unrecognized records following last valid section

Explanation:  The input file for IPVLANGX (the compiler listing) contains more output than just from the compile step. That
is, there might be precompiler or postcompiler output, such as from a DB2® precompiler step or a link-edit step. Once this
information is removed, the message is no longer be produced and the side file should be created as expected. 

System action:  Processing is terminated. 

User response:  Ensure that the input file that was used is correct. 

IDISF8110W

Compiler option(s) incorrectly specified

Explanation:  The format of the input file is insufficient for IPVLANGX processing because one or more of the required
compiler options have not been specified. 

System action:  Processing is terminated. 

User response:  Recompile the module with the required compiler options as specified in Preparing your programs on
page 32.  

IDISF8114S

txt1 required for source support - fatal

Explanation:  txt1 specifies the compiler options that are required for a successful IPVLANGX execution. Source code
information cannot be complete without these options. This message might be preceded by message IDISF8110W. 

Chapter 1. Messages

System action:  Processing is terminated. 

User response:  Recompile the module with the required compiler options as specified in Preparing your programs on
page 32.  

IDISF8115W

txt1 required for symbol support

Explanation:  txt1 specifies the compiler options that are required for a successful IPVLANGX execution. Source code
information cannot be complete without these options. This message is preceded by message IDISF8110W. 

System action:  Processing continues, however, the analysis report might be missing information. 

User response:  Recompile the module with the required compiler options as specified in Preparing your programs on
page 32.  

IDISF8116W

txt1 required for structure/union support

Explanation:  txt1 specifies the compiler options that are required for a successful IPVLANGX execution. Source code
information cannot be complete without these options. This message is preceded by message IDISF8110W. 

System action:  Processing continues, however, the analysis report might be missing information. 

User response:  Recompile the module with the required compiler options as specified in Preparing your programs on
page 32.  

IDISF8120W

txt1 detected. txt2 option assumed

Explanation:  The format of the input file indicates that the specified option is no longer in effect. 

System action:  Processing continues, assuming an appropriate option to match the format of the input file. 

User response:  Use the correct compiler option, or make the compiler directive which adjusted the compiler option visible to
IPVLANGX, as appropriate. If the problem persists, contact your IBM® service representative. 

IDISF8130S

File not found "txt1"

Explanation:  The IPVLANGX input compiler listing or SYSADATA file txt1 could not be found to allow IPVLANGX processing
to begin. 

System action:  Processing is terminated. 

User response:  Correct the file specification, or make the file available to IPVLANGX, as appropriate. If the problem persists,
contact your IBM® service representative. 

IDISF8131S

Files not found "txt1", and "txt2"

123

IBM Application Delivery Foundation for z Systems Common Components

124

Explanation:  The IPVLANGX extract data file could not be found using either the primary file identifier txt1, or the alternative
file identifier txt2 to allow IPVLANGX processing to begin. 

System action:  Processing is terminated. 

User response:  Correct the file specification, or make the file available to IPVLANGX, as appropriate. If the problem persists,
contact your IBM® service representative. 

IDISF8132S

Input or Output file format invalid

Explanation:  The attributes or contents of a file have been found to be inappropriate, during IPVLANGX processing.   One or
more preceding messages identify the file which was being processed when the error occurred or the reason for the failure.
Reasons for this message might be error messages in the input compiler listing or missing required compiler options. For
details on required compiler options, refer to Preparing your programs on page 32.  

System action:  Processing is terminated. 

User response:  Correct the problem that was identified in the preceding message. If the problem persists, contact your
IBM® service representative. 

IDISF8133S

File DD not allocated "txt1"

Explanation:  The Data Definition (DD) for the txt1 file was found to be unallocated. 

System action:  Processing is terminated. 

User response:  Allocate the file, using a JCL DD statement, or TSO ALLOCATE statement, as appropriate. If the problem
persists, contact your IBM® service representative. 

IDISF8134S

File DDs not allocated "txt1", and "txt2"

Explanation:  The Data Definitions (DDs) for both the primary txt1 file and the alternative txt2 file were found to be
unallocated. 

System action:  Processing is terminated. 

User response:  Allocate the file, using a JCL DD statement, or TSO ALLOCATE statement, as appropriate. If the problem
persists, contact your IBM® service representative. 

IDISF8135S

txt1 file incorrectly defined

Explanation:  The attributes of the txt1 file have been examined, and found to be inappropriate. 

System action:  Processing is terminated. 

User response:  Ensure that the correct data set was specified in the txt1 file allocation. If the correct data set was specified,
the data set was allocated with incorrect attributes, in which case it must be reallocated. If the problem persists, contact your
IBM® service representative. 

Chapter 1. Messages

IDISF8136S

Premature txt1 End-of-File encountered

Explanation:  IPVLANGX had begun scanning the txt1 file data, but the file ended before all expected data records had been
scanned. 

System action:  Processing is terminated. 

User response:  Ensure that the correct data set was specified in the txt1 file allocation. If the correct data set was specified,
the file might have been truncated and must be replaced with the complete data. If the problem persists, contact your IBM®
service representative. 

IDISF8137S

txt1 disk/directory is full

Explanation:  There is insufficient space to write further records to the txt1 file. 

This might be caused by :

• PDS directory has no free entries
• data set has maximum number of extents
• insufficient free space on the DASD volume for another extent

System action:  Processing is terminated. 

User response:  Determine the resource which is exhausted, and correct as appropriate. If the problem persists, contact your
IBM® service representative. 

IDISF8138T

Insufficient virtual memory available

Explanation:  There is insufficient free storage for IPVLANGX to continue processing. 

System action:  Processing is terminated. 

User response:  Free up virtual storage which is in use, or make more virtual storage available, as appropriate. If the problem
persists, contact your IBM® service representative. 

Note: IPVLANGX uses storage above the 16MB line, if it is available.

IDISF8139S

File is TERSEd or PACKed "txt1"

Explanation:  The specified file was found to have a Fixed record format, and 1024-byte record length. It was likely
compressed using TERSE or COPYFILE. 

System action:  Processing is terminated. 

User response:  Restore the file to its original format, using the appropriate utility program. If the problem persists, contact
your IBM® service representative. 

125

IBM Application Delivery Foundation for z Systems Common Components

126

IDISF8150T

Maximum number of symbols exceeded

Explanation:  The maximum number of symbols that a single compile unit can contain is 65534. This limit is exceeded by the
current compile unit. 

System action:  Processing is terminated. 

User response:  Reduce the number of symbols below the limit. If the problem persists, contact your IBM® service
representative. 

IDISF8152W

Incomplete info for symbol "txt1" (ident: dec2)

Explanation:  During the extraction process, complete information was not available for the symbol shown. The extract data
for unrelated symbols and program source is not affected. 

System action:  Processing continues. 

User response:  Use IPVLANGX to format the extract data, and determine the missing information. Given this, examine
the IPVLANGX input file(s) and determine the cause of the problem. If the problem persists, contact your IBM® service
representative. 

IDISF8158T

Invalid COBOL source column indicators - fatal

Explanation:  Expected source column indicators were not found in the COBOL listing. 

System action:  Processing is terminated. 

User response:  Check if the attributes of file read have changed from those of the original compiler listing file. 

IDISF8231S

Missing txt1 ESD information

Explanation:  The name of a CSECT could not be determined. 

System action:  Processing continues but analysis might be incomplete. 

User response:  Ensure that CSECTs are named in accordance with the requirements in Preparing your programs on
page 32. 

IDISF8233S

Unable to determine identity of unnamed PC Section

Explanation:  The name of a CSECT could not be determined. 

System action:  Processing continues but analysis might be incomplete. 

Chapter 1. Messages

User response:  Ensure that CSECTs are named in accordance with the requirements in Preparing your programs on
page 32. 

IDISF8250A

SYSADATA input record record-number, invalid ESDID ignored

Explanation:  An invalid ESDID was encountered on a SYSADATA record read. The ESDID was ignored. 

System action:  Processing continues. 

User response:  None. 

IPVLANGX return codes
The following return codes are issued by IPVLANGX:

RC

Meaning

0

Operation successful, output file was written.

0xxx

Error was discovered while parsing arguments/options. xxx can have these values:

1

Token too long

2

Left parenthesis found inside options

3

Unknown option

1xyy or 2xyy

Error occurred during scan of compiler listing or SYSADATA file.

3xyy

Error occurred while writing output file.

For return codes 1xyy, 2xyy, and 3xyy, the values for xyy are:

0yy

yy is the return code from the file WRITE routine

1yy

yy is the return code from the file OPEN routine

127

IBM Application Delivery Foundation for z Systems Common Components

128

2yy

yy is the return code from the file READ routine

3yy

yy is the return code from the file WRITE routine

4yy

yy is the return code from the file POINT routine

5yy

yy is the return code from the memory ALLOCATE routine

6yy

yy is the return code from the memory FREE routine

7yy

yy is the return code from the file CLOSE routine

8yy

yy is the return code from the file NOTE routine

Examples of IPVLANGX return codes

0310

Compiler listing file is not in the expected format. A possible reason is that the required compiler options have

not been used.

1128

Input compiler listing file could not be found. A possible reason is that a member name of a PDS(E) data set

has not been specified, either in the parameters for IPVLANGX, or added to the data set name of the PDS(E).

3128

Output IPVLANGX file could not be found, or the attributes of an existing file do not match those required by

IPVLANGX (RECFM=VB and LRECL≥1562). Ensure the DDname used is IDILANGX.

3315

One or more records that were written to IPVLANGX were truncated due to insufficient logical record length.

The minimum required logical record length for the IPVLANGX data set is 1562 bytes. Unpredictable results

might occur if attempting to use the truncated side file as input.

Appendix B. Troubleshooting

Error scenarios and tracing
If the installed library has not been added to program control, this message appears in the JESMSGLG for the server task:

ICH420I PROGRAM IPVSRV FROM LIBRARY IPV.V1R8.SIPVMODA CAUSED
THE ENVIRONMENT TO BECOME UNCONTROLLED. BPXP014I ENVIRONMENT MUST
BE CONTROLLED FOR SERVER (BPX.SERVER) PROCESSING.

Messages similar to the following might be generated if the user connecting to the server does not have read access to the

SIPVMODA library:

ICH408I USER(BILLMAN) GROUP(USERCOD) NAME(MANDELLA, BILL) 218
IPV.V1R8.SIPVMODA CL(DATASET) VOL(COD035)
INSUFFICIENT ACCESS AUTHORITY
FROM IPV.V1R8.* (G)
ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
IEC150I 913-38,IFG0194E,BILLMAN,OS390,ISP19502,8E10,COD035,IPV.V1R8.SIPVMODA

Messages on SYSLOG at the time of attempted connection, like the ones that are shown here, are generated when the

relevant CONFIG contains an invalid library, or is missing a library from the SPAWN_STEPLIB statement:

IEA995I SYMPTOM DUMP OUTPUT
SYSTEM COMPLETION CODE=EC6 REASON CODE=0B26C032
 TIME=11.37.04 SEQ=38113 CPU=0000 ASID=00ED
 PSW AT TIME OF ERROR 070C3000 82C44CE8 ILC 2 INTC 0D
 NO ACTIVE MODULE FOUND
 NAME=UNKNOWN
 DATA AT PSW 02C44CE2 - C06C18F2 0A0D41B0 D4D0180B
 AR/GR 0: 00000000/00000026_00000648 1: 00000000/00000000_04EC6000
 2: 01FF000C/00000000_0B26C032 3: 00000000/00000000_8286F5B8
 4: 00000000/00000000_00000000 5: 00000000/00000000_00000000
 6: 01FF000C/00000000_00000700 7: 01FF000C/00000000_09BFC3F8
 8: 00000000/00000000_11F4B610 9: 00000000/00000000_163031FF
 A: 00000000/00000000_11F4B610 B: 01FF000C/00000000_7FFC3A00
 C: 00000000/00000000_02C47AC0 D: 00000000/00000000_16302200
 E: 00000000/00000000_82C44CB0 F: 00000000/00000000_0B26C032
 END OF SYMPTOM DUMP

If the above are not occurring, but connections are still not successful, shutdown the server and start it again with tracing

active. If using the supplied sample, this can be done on the start command. For example, S IPVSRV1,TRACE=D. This

produces trace entries in the server task on the IPVTRACE DD.

A typical trace, with SSL active, before connections are made, looks similar to the one shown here. The main entries of

interest confirming start up was successful are highlighted:

2018-11-29-10:54:39.442 [IPVSRV:266] Server built at: Nov 29 2018 10:54:03
2018-11-29-10:54:39.601 [IPVSRV:952] Record in length:1903
2018-11-29-10:54:39.601 [IPVSRV:969] Token: CONFIG Value: DEFAULT
2018-11-29-10:54:39.601 [IPVSRV:989] Config DEFAULT allocated.
2018-11-29-10:54:39.601 [IPVSRV:969] Token: SSL_REQUIRED Value: YES
2018-11-29-10:54:39.601 [IPVSRV:969] Token: WORKDIR Value: /etc/ipv/v18/ipvsrv1
2018-11-29-10:54:39.602 [IPVSRV:1070] Confirmed temporary write access ok dir=/etc/ipv/v18/ipvsrv1.

129

IBM Application Delivery Foundation for z Systems Common Components

130

2018-11-29-10:54:39.602 [IPVSRV:969] Token: SPAWN_STEPLIB Value: IPV18SVC.BUILD.LOAD ...
2018-11-29-10:54:39.602 [IPVSRV:969] Token: CONFIG Value: FM
2018-11-29-10:54:39.602 [IPVSRV:989] Config FM allocated.
2018-11-29-10:54:39.602 [IPVSRV:969] Token: SPAWN_PROGRAM Value: FMNCSEP
2018-11-29-10:54:39.602 [IPVSRV:1089] Creating temp filename.
2018-11-29-10:54:39.602 [IPVSRV:1106] Created temporary spawn image file ok.
2018-11-29-10:54:39.602 [IPVSRV:1116] spawn_program /etc/ipv/v18/ipvsrv1/FMNCSEP
2018-11-29-10:54:39.602 [IPVSRV:1117] spawn_fn FMNCSEP
2018-11-29-10:54:39.602 [IPVSRV:969] Token: SPAWN_JOBNAME Value: FMCLIENT
2018-11-29-10:54:39.602 [IPVSRV:969] Token: SPAWN_STEPLIB Value: FMN.V14R1M21.OPTIONS...
2018-11-29-10:54:39.602 [IPVSRV:969] Token: SPAWN_PARMS_SECTION Value:
2018-11-29-10:54:40.495 [IPVSRV:1956] Environment open rc=0 Handle=16AB09A8 Ha=16AA6490
2018-11-29-10:54:40.495 [IPVSRV:1965] Set SSLV2 off rc=0
2018-11-29-10:54:40.495 [IPVSRV:1973] Set SSLV3 off rc=0
2018-11-29-10:54:40.495 [IPVSRV:1982] Set TLSV1 on rc=0
2018-11-29-10:54:40.495 [IPVSRV:1997] Certfile=/etc/ipv/v18/ipvsrv1/IPVSRVC3-IPVCERT.kdb
2018-11-29-10:54:40.495 [IPVSRV:1998] Set keyring rc=0
2018-11-29-10:54:40.495 [IPVSRV:2006] Set pw rc=0
2018-11-29-10:54:40.511 [IPVSRV:2014] Environment init rc=0 Handle=16AB09A8
2018-11-29-10:54:40.511 [IPVSRV:281] Mixed case password support is off
2018-11-29-10:54:40.512 [IPVSRV:1902] Set socket linger rc=0
2018-11-29-10:54:40.512 [IPVSRV:1906] Set socket reuseaddr rc=0
2018-11-29-10:54:40.512 [IPVSRV:1910] Set socket keepalive rc=0
2018-11-29-10:54:40.512 [IPVSRV:301] Launching accept thread socket 0, listen code 0
2018-11-29-10:54:40.512 [IPVSRV:513] Acceptor thread running.
2018-11-29-10:54:40.512 [IPVSRV:527] About to accept.

If the highlighted statements are similar to the example that is shown here, all rc=0, then try to connect.

Several trace entries that are created by the server are similar to the ones that are shown here. Again, those that are of

interest are highlighted.

2018-11-29-10:55:02.943 [IPVSRV:543] Connect received.
2018-11-29-10:55:02.943 [IPVSRV:549] Set client socket linger rc=0
2018-11-29-10:55:02.944 [IPVSRV:570] Thread launch
2018-11-29-10:55:02.944 [IPVSRV:527] About to accept.
2018-11-29-10:55:02.944 [IPVSRV:428] Conversation thread started.
2018-11-29-10:55:02.944 [IPVSRV:451] Server and peer on different hosts.
2018-11-29-10:55:02.944 [IPVSRV:1461] Outgoing message length=111, message=SSL=Y,
SERVERVERSION=01.01,SERVERNAME=IPVSRVC3,SYSNAME=z/OS,NODENAME=FMD2,
RELEASE=11.00,VERSION=01,MACHINE=2094
2018-11-29-10:55:02.944 [IPVSRV:1524] Sent 115 bytes
2018-11-29-10:55:02.945 [IPVSRV:2028] gsk_secure_socket_open rc=0
2018-11-29-10:55:02.945 [IPVSRV:2040] Set native socket rc=0
2018-11-29-10:55:02.945 [IPVSRV:2049] Set keyring label ADFzCC Server Certificate rc=0
2018-11-29-10:55:02.945 [IPVSRV:2058] Set session type rc=0
2018-11-29-10:55:03.980 [IPVSRV:2081] Secure socket init rc=0
2018-11-29-10:55:03.980 [IPVSRV:1328] RecvSSL
2018-11-29-10:55:04.191 [IPVSRV:1360] Header indicates length 50
2018-11-29-10:55:04.722 [IPVSRV:1423] Incoming message: >>user=PROWSE3 pass=AXXXXXXX
config=UTCAPI DEBUG=YES<<
2018-11-29-10:55:04.723 [IPVSRV:1640] Uppercasing password 8 chars
2018-11-29-10:55:04.723 [IPVSRV:588] process_launch trying to match config UTCAPI.
2018-11-29-10:55:04.723 [IPVSRV:657] Parms: SOCKETH=00000001
2018-11-29-10:55:04.723 [IPVSRV:658] Steplib: STEPLIB=IPV16SVC ...
2018-11-29-10:55:04.723 [IPVSRV:1828] Authenticated ok for user PROWSE3.
2018-11-29-10:55:04.724 [IPVSRV:1461] Outgoing message length=7, message=AUTH=Y
2018-11-29-10:55:04.724 [IPVSRV:1524] Sent 11 bytes
2018-11-29-10:55:05.282 [IPVSRV:702] gsk_secure_socket_close okay
2018-11-29-10:55:05.285 [IPVSRV:739] Spawned /etc/ipv/v18/ipvsrv1/IDIGMAIN Process 83886421
2018-11-29-10:55:05.285 [IPVSRV:745] Close client sock rc=0

Chapter 2. Troubleshooting

If the Spawned trace line is present, check the SYSLOG at the time of the spawn for any messages that are issued by a

started task. If there are no log messages, then look for output that is produced by the spawned user. For instance, in the

example that is shown here, the user PROWSE3 has generated some output. Once you have this information, and the server's

IPV TRACE output, contact IBM® support.

131

132

Appendix C. Support resources
Use these resources to find product details, fixes, and support.

Search knowledge bases

• Program DirectoryDownload a Program Directory from the IBM Publications Center.

• Get up-to-date details about installing, customizing, and using these products:

◦ Application Delivery Foundation for z/OS Common Components Customization Guide and User Guide

◦ Fault Analyzer User's Guide and Reference

◦ File Manager Customization Guide

◦ File Manager User’s Guide and Reference

◦ File Manager User’s Guide and Reference for DB2

◦ File Manager User’s Guide and Reference for CICS

◦ File Manager User’s Guide and Reference for IMS

Get the latest PTFs

• ADFz Common Components

• Fault Analyzer for z/OS

• File Manager for z/OS

• z/OS Debugger

• IBM Developer for z/OS Enterprise Edition

• Application Performance Analyzer for z/OS

Collect diagnostic data

Before you contact Support, be ready to answer these questions:

• What software versions are you running?

• Do you have logs, traces, and messages related to the problem?

• Can you re-create the problem? If so, how do you re-create the problem?

• Did you make hardware, operating system, or networking software changes?

• Do you have a workaround for the problem?

Contact Support

Open a case, chat with Support, or connect to resources and communities through https://www.ibm.com/mysupport.

https://www.ibm.com/resources/publications
https://help.blueproddoc.com/adfz_common_components/welcome/index.html
https://help.blueproddoc.com/faultanalyzer/welcome/index.html
https://help.blueproddoc.com/filemanager/14.1.21/en/cust/index.html
https://help.blueproddoc.com/filemanager/14.1.21/en/base/index.html
https://help.blueproddoc.com/filemanager/14.1.21/en/db2/index.html
https://help.blueproddoc.com/filemanager/14.1.21/en/cics/index.html
https://help.blueproddoc.com/filemanager/14.1.21/en/ims/index.html
http://www.ibm.com/support/docview.wss?uid=swg21612547
http://www-01.ibm.com/support/docview.wss?uid=swg21171963
http://www-01.ibm.com/support/docview.wss?uid=swg21170609
http://www.ibm.com/support/docview.wss?uid=swg27049405
http://www.ibm.com/support/docview.wss?uid=swg27048755
http://www-01.ibm.com/support/docview.wss?uid=swg21213431
https://www.ibm.com/mysupport

cxxxiii

Notices

IBM File Manager for z/OS License Materials - Property of IBM Corp. and HCL Technologies Ltd. © Copyright IBM

Corporation 2000, 2016. © Copyright HCL Technologies Limited 2017, 2023

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document in other countries. Consult your local

IBM representative for information on the products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used.

Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of

this document does not give you any license to these patents. You can send license inquiries, in writing, to:license inquiry

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your

country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/

or changes in the product(s) and/or the program(s) described in this document at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as

an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and

use of those websites is at your own risk.

cxxxiv

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the exchange of information

between independently created programs and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms

of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products.

Statements regarding future direction or intent of IBM File Manager for z/OS are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely

as possible, the examples include the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on

various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application

programming interface for the operating platform for which the sample programs are written. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages

arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. and/or

cxxxv

HCL Ltd. sample programs.

© Copyright IBM Corp. 2000, 2016. © Copyright HCL Ltd. 2017, 2023.

Programming interface information
This documentation describes intended Programming Interfaces that allow the customer to write programs to obtain the

services of File Manager.

Trademarks
IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International Business Machines

Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or

other companies. A current list of IBM® trademarks is available on the web at "Copyright and trademark information" at

www.ibm.com/legal/copytrade.shtml.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM® website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are

preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the

express consent of IBM®.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary

notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these

publications or any portion thereof outside your enterprise, without the express consent of IBM®.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied,

to the publications or any information, data, software or other intellectual property contained therein.

IBM® reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is

detrimental to its interest or, as determined by IBM®, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations,

including all United States export laws and regulations.

http://www.ibm.com/legal/us/en/copytrade.shtml

cxxxvi

IBM® MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-

IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED

WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies or other

technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end

user, or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some

of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses

cookies to collect personally identifiable information, specific information about this offering's use of cookies is set forth

below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable

information from end users via cookies and other technologies, you should seek your own legal advice about any laws

applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see IBM's Privacy Policy

at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the section

entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products and Software-as-a-Service Privacy

Statement” at http://www.ibm.com/software/info/product-privacy.

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Index
A

ABO
see  Automatic Binary Optimizer LANGX
file update utility  

activity tracing commands 13
add ports to TCPIP reservation list 25
address space timeout

check 25
ADFzCC server
 9

customizing 17
IPV
SRV1 sample procedure
 12
messages 107
overview 12
startup, shutdown, and trace commands 13

assembler programs
preparing 82

assembling programs for ADFz 82
ATTLS configuration parameter 13
authorizations

required 17

B
breakpoints

Deferred Breakpoints Feature 93
build process

updating 31

C
C program

preparing 74
sample JCL to compile with TEST 76

C++ program
preparing 74
sample JCL to compile 79

changes
summary vii

COBOL for MVS and VM
compiling programs for 41

COBOL II programs
preparing 46
sample JCL for compiling 47

COBOL program
sample JCL to compile 50

COBOL programs
optimizing with Automatic Binary Optimizer
LANGX file update utility 100
preparing 38, 42, 49
sample JCL to compile 43

COBOL SCLM example 90
comments

in options 27
compiler listing to side file conversion
utility 86
compiler options for ADFz 30
Compiling for ADFz family of products 30
compiling programs

COBOL for MVS and VM 41
Enterprise COBOL for z/OS Version 3 37
Enterprise COBOL for z/OS Version 4 33
Enterprise COBOL for z/OS Version 5 33
Enterprise COBOL for z/OS Version 6 32
Enterprise PL/I for z/OS Version 3.5 and
earlier 62
Enterprise PL/I for z/OS Version 3.5 and
Version 3.6 57

Enterprise PL/I for z/OS Version 3.7 and
later 51
OS/VS COBOL 49
PL/I for MVS and VM 67
VS COBOL II 45
z/OS XL C and C++ 70

Compiling programs for ADFz 30
CONFIG configuration parameter 13
configuration file keyword descriptions 13
customizing the
ADFzCC server
 17

D
Deferred Breakpoints Feature 93

E
edition notice iii
encrypted communications

setting SSL 20
Enterprise COBOL

preparing (Ver 4) 34
sample JCL to compile (Ver 3) 39
sample JCL to compile (Ver 4) 36

Enterprise COBOL for z/OS Version 3
compiling programs for 37

Enterprise COBOL for z/OS Version 4
compiling programs for 33

Enterprise COBOL for z/OS Version 5
compiling programs for 33

Enterprise COBOL for z/OS Version 6
compiling programs for 32

Enterprise PL/I
preparing (Ver 3.4 and earlier) 63
preparing (Ver 3.6 and Ver 3.6) 58
preparing (Ver 3.7 and later) 53
sample JCL to compile (Ver 3.4 or
earlier) 65
sample JCL to compile (Ver 3.5 and Ver
3.6) 60
sample JCL to compile (Ver 3.7 or later) 55

Enterprise PL/I for z/OS Version 3.4 and
earlier

compiling programs for 62
Enterprise PL/I for z/OS Version 3.5 and
Version 3.6

compiling programs for 57
Enterprise PL/I for z/OS Version 3.7 and later

compiling programs for 51
error scenarios and tracing 129

F
file keyword descriptions

configuration 13

H
High Level Assembler SCLM example 89

I
ICSF

permitting protected resources 20
IDISCMPS sample member 86
Interactive Panel Viewer 10
introduction 9
IPV
CONFG

update sample 22
IPVLANGO Automatic Binary Optimizer
LANGX file update utility

see  Automatic Binary Optimizer LANGX
file update utility  

IPVLANGO feature 10
IPVLANGP 92

Deferred Breakpoints Feature 93
IPVLANGP feature 10
IPVLANGX 86

creating side files 86
invocation parameters 88
return code examples 128
return codes 127

IPVLANGX feature 10
IPVOPTLM configuration-options module 28
IPVOPTLM sample member 28
IPVSCLMA sample member 89
IPVSCLMC sample member 90
IPVSFILE sample member 87
IPV
SRV1 sample procedure
 12

L
license inquiry cxxxiii
listings

creating side file 87
storing 86

Locale option 28

M
messages

ADFzCC server
 107

MIXEDCASEPASS configuration parameter 13
MODIFY commands 13
multicultural support 28
multifactor authentication (MFA) 19, 19

O
options 27

general description 27
Locale 28
purpose 27

OS/VS COBOL
compiling programs for 49

overview
server 12

P
PassTickets 19, 19
PASSTK configuration parameter 13, 19, 19
PL/I for MVS and VM

compiling programs for 67
PL/I program

preparing 68
sample JCL to compile 69

ports to TCPIP reservation lists
add 25

Preparing programs for ADFz 30
production environment 31
program

sample JCL for assembling 83
Program Directory 132
programs

compiling 86
preparing 32

R
RACF

example commands 18

137

indexid318821708
indexid318821708
indexid318821708
indexid318821708

required authorizations 17
return codes from IPVLANGX 127

S
sample data set members

IDISCLMA 89
IDISCLMC 90
IDISCMPS 86
IPVOPTLM 28
IPVSFILE 87

sample
IPV
CONFG

update 22
sample JCL

assembling program 83
compile C program with TEST 76
compile C++ program 79
compile COBOL II program 47
compile COBOL program 43, 50
compile Enterprise COBOL programs (Ver
3) 39
compile Enterprise COBOL programs (Ver
4) 36
compile Enterprise PL/I 65
compile Enterprise PL/I (Ver 3.5 and Ver
3.6) 60
compile Enterprise PL/I program (Ver 3.7 or
later) 55
compile PL/I program 69

SCLM
including IPVLANGX step in translator 89

server messages 107
server overview 12
server procedure

sample 12
side file formatting utility 92
side files

creating from listing 87
creating with IPVLANGX 86
storing 86, 86

SOCKETFIONBIO configuration parameter 13
Software Configuration and Library Manager

see  SCLM  
source information files 30
source support 30
SPAWN_* configuration parameters 13
SSL encrypted communications

setting 20
SSL_* configuration parameters 13
startup and shutdown commands 13
summary of changes vii

T
test environment 31
TRACEON|TRACEOFF commands 13
troubleshooting 129
TSO_CMD configuration parameter 13

V
VER command 13
VS COBOL II

compiling programs for 45

W
WORKDIR

match by running
IPVMKDIR
 24

WORKDIR configuration parameter 13

Z

z/OS XL C and C++
compiling programs for 70

138

	IBM Application Delivery Foundation for z Systems Common Components
	Contents
	PDF documentation
	Preface
	Summary of changes
	December 2023
	June 2023
	February 2023
	November 2022
	June 2022
	March 2021
	October 2020
	March 2020
	SC27-9050-07: September 2019
	SC27-9050-06: June 2019
	SC27-9050-05: March 2019
	SC27-9050-04: December 2018
	SC27-9050-03: September 2018
	SC27-9050-02: March 2018
	SC27-9050-01: December 2017
	SC27-9050-00: September 2017

	Chapter 1. Introduction to IBM ADFz Common Components
	ADFzCC server
	IPVLANGX, IPVLANGP, and IPVLANGO
	Interactive Panel Viewer

	Chapter 2. ADFzCC server overview
	Sample server procedure
	Startup, shutdown, and activity tracing
	Configuration file keyword descriptions

	Chapter 3. Customizing the ADFzCC server
	Required authorizations
	Example commands for RACF®

	Multi-Factor Authentication (MFA)
	Using PassTickets
	Setting SSL encrypted communications
	Using AT-TLS for encrypted communications
	Update sample IPVCONFG
	Create matching WORKDIR by running job IPVMKDIR
	Check address space timeout
	Add ports to TCPIP reservation list
	Configuration considerations for IBM® Explorer for z/OS® (z/OS® Explorer)
	Configuring TCP/IP stack affinity

	Chapter 4. Options
	Option descriptions
	EventProcessingExit
	Locale

	Using an IPVOPTLM configuration-options module

	Chapter 5. Quick start guide for compiling and assembling programs for use with IBM ADFz products
	Updating your build process
	Updating your promotion process
	Preparing your programs
	Enterprise COBOL for z/OS® Version 6 or later programs
	Enterprise COBOL for z/OS® Version 5 programs
	Enterprise COBOL for z/OS® Version 4 programs
	Preparing Enterprise COBOL for z/OS® Version 4 programs
	Sample JCL for compiling Enterprise COBOL for z/OS® Version 4 programs

	Enterprise COBOL for z/OS® Version 3 and COBOL for OS/390® and VM programs
	Preparing Enterprise COBOL for z/OS® Version 3 and COBOL for OS/390® and VM programs
	Sample JCL for compiling Enterprise COBOL for z/OS® Version 3 programs

	COBOL for MVS™ and VM programs
	Preparing COBOL for MVS™ and VM programs
	Sample JCL for compiling COBOL for MVS™ and VM programs

	VS COBOL II programs
	Preparing VS COBOL II programs
	Sample JCL for compiling VS COBOL II programs

	OS/VS COBOL programs
	Preparing OS/VS COBOL programs
	Sample JCL for compiling OS/VS COBOL programs

	Enterprise PL/I Version 3.7 and later programs
	Preparing Enterprise PL/I Version 3.7 and later programs
	Sample JCL for compiling Enterprise PL/I for z/OS® Version 3.7 or later programs

	Enterprise PL/I Version 3.5 and Version 3.6 programs
	Preparing Enterprise PL/I Version 3.5 and Version 3.6 programs
	Sample JCL for compiling Enterprise PL/I Version 3.5 or Version 3.6 programs

	Enterprise PL/I Version 3.4 and earlier programs
	Preparing Enterprise PL/I Version 3.4 and earlier programs
	Sample JCL for compiling Enterprise PL/I for z/OS® Version 3.4 or earlier programs

	PL/I for MVS™ and VM and OS PL/I programs
	Preparing PL/I for MVS™ and VM programs and OS PL/I programs
	Sample JCL for compiling PL/I for MVS™ and VM programs

	z/OS® XL C and C++ programs
	Preparing z/OS® XL C and C++ programs
	Sample JCL for compiling z/OS® C programs with TEST
	Sample JCL for compiling z/OS® C++ programs

	Assembler programs
	Preparing Assembler programs
	Sample JCL for assembling a program

	Chapter 6. IPVLANGX compiler listing to side file conversion utility
	Creating side files using IPVLANGX
	IPVLANGX parameters

	Including an IPVLANGX step in your SCLM translator
	High Level Assembler SCLM example
	COBOL SCLM example

	Chapter 7. IPVLANGP side file formatting utility
	Deferred Breakpoints Feature

	Chapter 8. IPVLANGO Automatic Binary Optimizer LANGX file update utility
	Chapter 9. Maintaining ADFz Common Components
	Chapter 10. ADFzCC event processing
	Sender load module IPVEPSND
	Usage
	Example

	Receiver load module IPVEPRCV
	IPVCNF00 option EVENTPROCESSINGEXIT
	The Event Processing user exit
	Example customer event processing user exit

	Appendix A. Messages
	ADFzCC server messages
	IPV0001I
	IPV0002I
	IPV0003S
	IPV0004I
	IPV0005I
	IPV0006W
	IPV0007W
	IPV0008W
	IPV0009I
	IPV0010I
	IPV0011S
	IPV0012W
	IPV0013W
	IPV0014W
	IPV0015I
	IPV0016I
	IPV0017W
	IPV0018W
	IPV0019W
	IPV0020I
	IPV0021W
	IPV0022S
	IPV0023S
	IPV0024I
	IPV0025I
	IPV0026I
	IPV0027I
	IPV0028I
	IPV0029W
	IPV0030I
	IPV0031I
	IPV0032I
	IPV0033W
	IPV0041W
	IPV0042W
	IPV0043W
	IPV0044W
	IPV0045S
	IPV0046S
	IPV0047S
	IPV0048S
	IPV0049S
	IPV0050S
	IPV0051I
	IPV0052I
	IPV0053S

	IPVLANGX messages
	IDISF8001I
	IDISF8002I
	IDISF8003I
	IDISF8004I
	IDISF8005I
	IDISF8006I
	IDISF8007I
	IDISF8008I
	IDISF8010I
	IDISF8011I
	IDISF8012I
	IDISF8013I
	IDISF8014I
	IDISF8015I
	IDISF8016I
	IDISF8017I
	IDISF8018I
	IDISF8020I
	IDISF8050W
	IDISF8051S
	IDISF8052S
	IDISF8055S
	IDISF8056S
	IDISF8057S
	IDISF8058S
	IDISF8059I
	IDISF8100S
	IDISF8103S
	IDISF8110W
	IDISF8114S
	IDISF8115W
	IDISF8116W
	IDISF8120W
	IDISF8130S
	IDISF8131S
	IDISF8132S
	IDISF8133S
	IDISF8134S
	IDISF8135S
	IDISF8136S
	IDISF8137S
	IDISF8138T
	IDISF8139S
	IDISF8150T
	IDISF8152W
	IDISF8158T
	IDISF8231S
	IDISF8233S
	IDISF8250A

	IPVLANGX return codes
	Examples of IPVLANGX return codes

	Appendix B. Troubleshooting
	Error scenarios and tracing

	Appendix C. Support resources
	Search knowledge bases
	Get the latest PTFs
	Collect diagnostic data
	Contact Support

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights

	IBM Online Privacy Statement

	Index

