
IBM Safer Payments
Version 6.5

Online Help Manual

IBM

BA21-8475-00

This edition applies to IBM® Safer Payments release 6.5.x, Program Number 5725-Z82, and to all subsequent releases
and modi ications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1994, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

IBM Safer Payments Manual

This manual describes the IBM Safer Payments software product. It has been
generated automatically from within the software itself.

The manual and its contents are confidential and may
only be used by the IBM Safer Payments licensee to
operate IBM Safer Payments within the scope of the
license agreement.

Licensed Materials - Property of IBM.
© Copyright IBM Corp. 2010, 2024
All Rights Reserved.
US Government Users Restricted Rights - Use, duplication
or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Licensees of this program who wish to have information
about it for the purpose of enabling:
(i) the exchange of information between independently
created programs and other programs (including this
one) and
(ii) the mutual use of the information which has been
exchanged, should contact

IBM Germany
Intellectual Property Department
IBM-Allee 1
D-71137 Ehningen
Germany.
Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

Contents

1. Introduction

1.1 Quick facts

1.2 IBM Safer Payments user access

2. Dashboard

2.1 Status alarm indicators

2.2 Key performance indicators

3. Report

3.1 Case class reports

3.1.1 Case class report definition

3.1.2 Case class report

3.2 Investigation reports

3.2.1 Investigation report definition

3.2.2 Daily investigation report

3.2.3 Hourly investigation report

3.3 Missed cases reports

3.3.1 Missed cases report definition

3.3.2 Missed cases report

3.4 Investigator reports

3.4.1 Investigator report definition

3.4.2 Investigator report

3.5 Transaction message report

3.6 Fraud marking reports

3.6.1 Fraud marking report definition

4. Investigation

4.1 Case selection

4.1.1 Investigation cases

4.2 Case search

4.3 Case investigation

4.3.1 Alarm data

4.3.2 Rules fired

4.3.3 Case history

4.3.4 Case actions

4.3.5 Case actions preview

4.3.6 Case action history

4.3.7 Audit trail section

4.3.8 Compliance list hits

4.3.9 Case attachments

4.4 Case creation

4.5 My working queues

4.6 Investigation query

4.6.1 Query data selection

4.6.2 Conditions

4.6.3 Query result

4.7 CPPs

4.7.1 CPP selection

4.7.2 CPP

4.8 Group by queries

4.8.1 Group by queries

4.8.2 Group by queries result

4.9 Reporting queries

4.9.1 Reporting queries

4.9.2 Reporting queries result

4.10 Masterdata query

4.10.1 Masterdata

4.11 Common point queries

4.11.1 Common point query

4.11.2 Common point query result

5. Monitoring

5.1 Compliance lists

5.1.1 Compliance list

5.1.2 Compliance search

5.1.3 Compliance ad hoc check

5.2 Defined risk lists

5.2.1 Defined risk list definition

5.2.2 Defined risk list entries

5.3 Merchant monitoring rules

5.3.1 Merchant monitoring rule

5.4 Index based evaluations

5.4.1 Index based evaluation

5.4.2 Evaluate multiple values

5.4.3 Calendar computations

5.4.4 Calendar computation

6. Model

6.1 Model revision selection

6.1.1 Mandator selection

6.1.2 Revision control

6.2 General revision settings

6.3 Model revision audit trail

6.3.1 Filter audit trail entries

6.3.2 Model revision compare

6.4 Modeling

6.4.1 Settings

6.4.2 Modeling workflows

6.4.3 Test sandbox

6.4.4 Simulation

6.4.5 Analyses

6.4.6 Model factory type selection

6.5 Input attributes

6.5.1 Own inputs

6.5.2 Inherited inputs

6.6 Output attributes

6.6.1 Own outputs

6.6.2 Inherited outputs

6.7 Categories

6.8 Input and output mappings

6.8.1 Mapping

6.8.2 Append constant right preprocessing

6.8.3 Auto decimal preprocessing

6.8.4 Concatenate preprocessing

6.8.5 Convert currency preprocessing

6.8.6 Counterfeit notes preprocessing

6.8.7 Crc32 preprocessing

6.8.8 Evaluate travel periods preprocessing

6.8.9 Replace preprocessing

6.8.10 Replace substring preprocessing

6.8.11 Substring preprocessing

6.8.12 Take if empty preprocessing

6.8.13 Timestamp preprocessing

6.8.14 Timestamp milliseconds preprocessing

6.9 External model mappings

6.10 Preprocessing rulesets

6.10.1 Preprocessing rulesets

6.11 Lists

6.11.1 List

6.11.2 Conditions

6.11.3 List attributes

6.12 Indexes

6.12.1 Index

6.12.2 Index sequence

6.13 Mergings

6.13.1 Merging

6.13.2 Conditions

6.13.3 Conclusions

6.14 Masterdatas

6.14.1 Masterdata

6.14.2 Conditions

6.14.3 Multi-relations workflow

6.15 Device identification

6.15.1 Example of XML transaction request message containing browser
information

6.15.2 Device identifications

6.15.3 Device identification

6.15.4 Conditions

6.15.5 Device identification attributes

6.15.6 Querying device information

6.16 Precedents

6.16.1 Precedent

6.16.2 Conditions

6.16.3 Precedents attributes

6.17 Calendar profiles

6.17.1 Calendar profile

6.17.2 Conditions

6.17.3 Calendar profile attributes

6.18 Patterns

6.18.1 Pattern

6.18.2 Conditions

6.18.3 Stencil

6.18.4 Pattern attributes

6.19 Counters

6.19.1 Counter

6.19.2 Conditions

6.19.3 Counter attributes

6.20 Events

6.20.1 Event

6.20.2 Conditions

6.20.3 Event attributes

6.21 Formulas

6.21.1 Formula

6.21.2 Formula attributes

6.22 Model components

6.22.1 Ruleset / scorecard

6.22.2 Decision tree

6.22.3 Neural network

6.22.4 Random forest

6.22.5 Boosted trees

6.22.6 Internal random forest

6.22.7 PMML model import

6.22.8 Data field mapping

6.22.9 Output field mapping

6.22.10 Transformation field mapping

6.22.11 External model

6.23 All rules

6.24 Final rulesets

6.24.1 Final ruleset

6.25 Collusions

6.25.1 Collusion

6.25.2 Conditions

6.26 Model revision golive

7. Administration

7.1 System configuration

7.1.1 Authentication settings

7.1.2 User accounts

7.1.3 Main memory sizing

7.1.4 Heartbeat settings

7.1.5 Deferred writing

7.1.6 Auto refresh

7.1.7 Direct transaction marking in queries

7.1.8 Message command interface

7.1.9 Application programming interface

7.1.10 IBM MQ interface

7.1.11 Kafka interface

7.1.12 Alert message interface

7.1.13 Serialize computation

7.1.14 Case investigation

7.1.15 Query

7.1.16 Monitoring

7.1.17 Compliance monitoring

7.1.18 Risk monitoring

7.1.19 Decision models

7.1.20 Modeling

7.1.21 Default xDC capacities

7.1.22 Deletion policy

7.1.23 Sampling

7.1.24 Application settings

7.1.25 Event log messages

7.1.26 Miscellaneous

7.1.27 Latency reporting

7.1.28 GDPR logging

7.1.29 Garante2 logging

7.2 Retention settings

7.2.1 Retention audit trail

7.2.2 Retention report

7.3 User roles

7.3.1 Role

7.4 User accounts

7.4.1 User account

7.5 User groups

7.5.1 User group

7.6 Master keys

7.6.1 Keygen master keys

7.6.2 KMIP master keys

7.7 Password safes

7.7.1 Password safe

7.8 Mandators

7.8.1 Structural configuration

7.8.2 Mandator

7.9 Charts

7.9.1 Chart

7.10 Status alarm indicators

7.10.1 Status alarm indicator

7.10.2 Status alarm indicator as email

7.10.3 Status alarm indicator as event log

7.11 Key performance indicators

7.11.1 Key performance indicator

7.12 Case states

7.12.1 Case state

7.13 Case close codes

7.13.1 Case close code

7.14 Case workflows

7.14.1 Case workflow

7.14.2 Case workflow transitions

7.14.3 Case workflow transition

7.15 Case classes

7.15.1 Case class

7.15.2 Case transitions

7.15.3 Case transition

7.15.4 Defined risk lists

7.16 Case groups

7.16.1 Case group

7.17 Case types

7.17.1 Case type

7.18 Working queues

7.18.1 Working queue

7.19 Case Action Inputs

7.20 Case actions

7.20.1 Case action

7.21 Text modules

7.21.1 Text module

7.22 External queries

7.22.1 External query

7.23 Job schedule

7.23.1 Job

7.23.2 Encrypted attributes export

7.23.3 Importing encrypted job files

7.24 Messages

7.24.1 Message

7.24.2 Transaction messages report

7.25 Notifications

7.25.1 Notification

7.26 Real-time intercept codes

7.26.1 Real-time intercept code

8. Cluster

8.1 Cluster settings

8.1.1 FastLink status

8.1.2 Cluster instance

8.2 Cluster management

8.2.1 Cluster settings

8.2.2 Operational cluster control

8.2.3 Add instance

8.2.4 Shutdown

8.2.5 Detach instance

8.2.6 Delete instance

8.2.7 Restore

8.2.8 Backup

8.2.9 Cluster golive

8.2.10 URID replication

8.2.11 Remote operation of IBM Safer Payments

8.3 System internals

8.3.1 Index internals

8.3.2 Latency violations

8.4 Browsing

8.4.1 Log entries

8.4.2 Log filter

8.5 Event logging

8.5.1 Event log messages

8.5.2 Event log message

8.6 Memory control

8.7 Maintenance functions

8.7.1 Cancel master key change

8.7.2 Check health of index

8.7.3 Cleanout revisions

8.7.4 Create conclusion expression pair list

8.7.5 Skip FLI messages

8.7.6 Fix milliseconds mapping

8.7.7 Rebuild indexes

8.7.8 Rebuild index

8.7.9 Rebuild index sequence

8.7.10 Reload API include files

8.7.11 Reset user preferences

8.7.12 Reset index

8.7.13 Reset outgoing FLI

8.7.14 Rewind FLI buffer

8.7.15 Rewrite risk lists to cluster

8.7.16 Rewrite element to disk

8.7.17 Set MDC/DDC sizes

8.8 Outgoing channel configuration

8.8.1 Outgoing channel configuration settings

8.8.2 Persistent connection targets

8.9 Inbound endpoint

8.9.1 Inbound endpoint settings

8.10 Startup parameters

9. Appendix

9.1 IBM Safer Payments architecture and integration

9.1.1 Interfaces overview

9.1.2 SSL settings

9.1.3 Storage architecture

9.2 Python code execution

9.3 IBM Safer Payments security

9.4 Miscellaneous

9.4.1 Conditions

9.4.2 Conclusions

9.4.3 Sampling

9.4.4 Case variable conditions

9.4.5 Message computation

9.4.6 Time representation

9.4.7 Benchmarking prevention performance

9.4.8 Create certificates with OpenSSL

9.4.9 Using content type multipart

9.4.10 Online Help

9.4.11 Levenshtein

9.5 Definitions

9.5.1 Service consumer

9.6 Notice summary

9.6.1 Notice panel view

9.6.2 Notice view all page

9.6.3 Creating a notice

1. Introduction

This chapter contains all you need to quickly get familiar with IBM Safer
Payments.
back to top

1.1 Quick facts

Some basics to introduce IBM Safer Payments:

What is IBM Safer Payments?

• IBM Safer Payments prevents fraud in cashless payment systems – such as
credit cards – by analyzing transaction streams and intercepting high-risk
transactions before they are completed.

• To detect fraud in transaction patterns and to differentiate fraudulent from
legitimate payment behavior, IBM Safer Payments analyses transaction
sequences and uses "if-then" rules to conclude for each transaction whether
or not to recommend authorization.

• IBM Safer Payments is a software program that runs at the authorization
center of banks and payment processors, or at switches. It is tied to the
existing authorization and card management systems and payment
gateways.

What kind of software is it?

• IBM Safer Payments runs on Red Hat Linux.

• IBM Safer Payments runs as a "server" component (daemon process).

• IBM Safer Payments is self-contained. Its database and application server are
embedded. To run IBM Safer Payments, you need hardware and an operating
system.

• The IBM Safer Payments user access interface is any standard web browser
supporting JavaScript.

• Other systems connect to IBM Safer Payments either via IP messages (real-
time) or batch files.

• For high-availability needs, IBM Safer Payments can be installed in a
clustered configuration.

What is the architecture of the IBM Safer Payments software?

IBM Safer Payments combines the advantages of a number of proven IT
architecture patterns:

• Internally IBM Safer Payments is based on a service oriented architecture
where each task to be performed is spun off as a separate service. Some of
these services are further split into multiple threads to support parallel
computation.

• Interfacing with other systems, IBM Safer Payments supports a service-
provider / service-consumer type interface pattern (similar to the SOAP
standard).

• Interfacing to users, IBM Safer Payments supports a lightweight,
JavaScript/AJAX based browser client that is based on the Model View
Controller architecture pattern.

What is there to an IBM Safer Payments installation?

• The IBM Safer Payments main server component is installed on a server
computer.

• The IBM Safer Payments client does not require any installation.
back to top

1.2 IBM Safer Payments user access

IBM Safer Payments user access is designed for productivity. While it follows
generally accepted look&feel and usage metaphors of web technology based
user interaction, there are a few "extras" IBM Safer Payments features,
which can greatly enhance productivity.

Top horizontal navigation bar

IBM Safer Payments is structured in five main functions:

• Dashboard
Quick overview on IBM Safer Payments vital functions.

• Report
Define and execute IBM Safer Payments standard reports.

• Investigation
Working cases and querying data.

• Model
Drill-down analysis of data and IBM Safer Payments performance. Creation of
model revisions.

• Administration
Configuration, settings, and administration functionality.

These functions can directly be navigated to by clicking on one of the five tabs
located at the left of the top navigation bar. Most functions, once selected, display
a second vertical navigation menu on the left side of the page. Navigation choices
are highlighted when the mouse pointer moves over them.

There are three more functions displayed as tabs on the right side of the top
navigation bar:

• New
Opens a new tab/window. See below for details.

• Help
Help on specific topics and generation of full IBM Safer Payments user
manual.

• Logout
Ends a session. Notice that while IBM Safer Payments logs you out after a
certain period of inactivity, some functions, such as automatic rule
generation will keep a session alive indefinitely. It is thus important to use
the logout function once you completed your work in IBM Safer Payments.

Multiple windows

For certain actions, you may prefer to view multiple aspects of IBM Safer
Payments, or work on multiple elements at once. For this, IBM Safer
Payments supports opening any number of tabs or browser windows on your
computer, sharing the same user session. To facilitate this process, the top
navigation bar offers the "New" tab that opens another browser tab or
window (depending on your browser settings) using the same session. IBM
Safer Payments is designed that you may work in multiple tabs/windows in
parallel.

Feedback

Most user actions that are executed on the IBM Safer Payments server return
a "feedback status". The statuses are:

• OK
Confirmations of successfully executed actions are indicated by a short
(green) text in the rightmost corner of the web page above the horizontal
navigation bar.

• Warning
Warnings are indicated by a short (orange) text in the rightmost corner of
the web page above the horizontal navigation bar. IBM Safer Payments issues
warnings when it needs to alert the user to circumstances relating to the
action executed, even though the action had been executed.

• Error
If the action could not be executed for reasons the user can change, IBM
Safer Payments responds with a dialog explaining the error. The dialog must
be closed before the user can continue.

• Fatal Error
The action could also not be executed, but IBM Safer Payments considers
that the user cannot change the circumstances for this error to occur. In
most cases, a fatal error indicates a software related problem that can only
be resolved with assistance from the manufacturer of IBM Safer Payments.

Notice that the "OK" and "warning" feedbacks are only displayed for a few
seconds. To see the last feedbacks, just click right at the position the
feedbacks usually appear to open a list of the past feedbacks.

Sections and toolbars

Each IBM Safer Payments page features one or more so-called sections. A
section is a rounded-edge frame with a title/toolbar tab. The toolbar icons
display a rectangular frame once the mouse pointer hovers over it to
visualize when they are in focus. After stopping the mouse pointer over a
toolbar icon, a tooltip-style pop-up explanation text of the toolbar action
appears.

Some toolbar actions are "one-off" triggers of a certain activity (for instance,
"save" actions); others are "toggles" and have an activated and a
deactivated state. The active state of a toggle is indicated by a "green light"
type indicator within the icon.

Tables

The IBM Safer Payments data tables are used on nearly every IBM Safer
Payments page. They have a number of productivity features:

1. The width of each column can be changed by dragging the separator between
the column headers. Note this behavior with tables that display a two-line
icon when hovering over the header borders.

2. The sequence of columns in a table (for most tables) can be changed by
dragging columns (header field) with the mouse. A red insert marker
indicates the "drop zone" for the column.

3. Each table has a maximum row size. If there are fewer rows than this size,
the table is displayed in full. Once the number of table rows exceeds the
number of maximum rows, the table is displayed in "paged" mode, where
page selectors automatically appear at the bottom of the table. In paged
mode, the maximum row size can be adapted by dragging the horizontal line
at the lower frame of the table.

4. You may sort the table by any column by simply clicking on the column head.
Clicking again toggles between ascending and descending order. Multi-criteria
sort is accomplished by sub-sequentially sorting different columns. To reset
sort settings, pagination, and column width and sequence, click on the "reset
table preferences" icon.

5. In most tables, you may highlight rows using a single left mouse click. In
some tables, you may highlight multiple consecutive rows by holding the
[Shift] key pressed and then clicking the start and end row subsequently.
Non-consecutive rows can be highlighted by holding the [Ctrl] key and
clicking the individual rows. Depending on the table, you can select the
checkboxes of one or more rows opens a context menu that provides direct
access to possible operations on the element represented in this row. On
certain tables, the actions for multiple vs. single highlighted rows are
different.

All settings listed above are stored as "preferences" with the user account.
Once you get back to the same table, the last settings you have chosen are
restored. Notice that you may reset all preferences at once from the "my
account page" and that you may reset the preferences of just one table by
clicking the "Reset table preferences" icon.

Keyboard shortcuts/accelerators

While IBM Safer Payments in using a web browser interface that is optimized
for mouse usage, IBM Safer Payments also offers a number of keyboard
shortcuts. Depending on the browser, shortcuts use the [Ctrl] key held and

then a keyboard letter pressed and/or the [Ctrl]-[Alt] key combination held
(press both) and a letter key:

• On most pages displaying a table of elements, the keyboard shortcut [Ctrl]-
[N] creates a new element. (When using the Chrome-Browser the shortcut
variant [Ctrl]-[Alt]-[N] has to be used)

• On most pages displaying an entry form, the keyboard shortcut [Ctrl]-[S]
saves the contents of the form and closes the form.

• On most pages displaying an entry form, the keyboard shortcut [Ctrl]-[D]
deletes the opened element (confirmation dialog).

• On most pages displaying a condition/conclusion entry form, the keyboard
shortcut [Ctrl]-[Shift]-[I] creates a new condition/conclusion as long as the
focus is on any entry field of the condition form.

Notice that you may use the tab key and shift-tab key combination to
navigate the fields of a form.

Useful hints

• The IBM Safer Payments user interface uses both modal and modeless
"dialog boxes" (windows that open within the browser window). A modal
dialog box requires the user to supply information, or cancel the dialog box,
before allowing the application to continue. A modeless dialog box allows the
user to supply information and return to the previous task without closing
the dialog box. IBM Safer Payments uses modeless dialog boxes for instances
with hyperlink query results and for exploring attribute values in counter/rule
generation. Notice that a quick way to close such dialogs is to use the [Esc]
key on your keyboard.

Remarks

• If for whatever reasons, the UI behaves "funny", refresh the page (e.g. hit
the [F5] key). Refreshing causes a complete restart and reload of the UI
without losing the user session. However, you may lose data entered on the
form and not saved yet.

back to top

2. Dashboard

The IBM Safer Payments dashboard provides a quick overview on IBM Safer
Payments operations.
back to top

2.1 Status alarm indicators

Status alarm indicators (SAI) constantly monitor operational parameters. The
traffic light coding, green for "OK", yellow for "warning", and red for "error"
in particular provide a one-glance overview on IBM Safer Payments'
operational health.

SAI are configured individually for each mandator. They display on the
dashboard and consist of different color blocks in which SAI types and values
appear. Typically an extended explanation text with more data is available as
tooltip when the mouse pointer rests over the short text. Depending on the
SAI's configuration, a state change from "OK" to "warning" or "error" may
have triggered the generation of an email or mobile text.

Multiple IBM Safer Payments instance installation

Most IBM Safer Payments installations involve multiple IBM Safer Payments
instances in a cluster. Since in such a setup, only one IBM Safer Payments
instance serves user access, SAI for all instances are accessible from each of
the IBM Safer Payments instances.

Notice that there are SAI that monitor parameters that are the same on all
instances (e.g. "open cases"), while there are others (e.g. "transaction
messages processed") that are different for each instance. For the latter, a
separate SAI is shown for each IBM Safer Payments instance. The ID of the
respective instance is shown in square brackets with the brief explanation
text.

Filter

The "filter" drop list box located in the header lets you restrict the SAI
shown:

• All
Shows SAI of any status and any cluster instance.

• Errors
Shows only SAI of "error" status for all cluster instances.

• Warnings
Shows only SAI of "warning" status for all cluster instances.

• W + E
Shows SAI of "error" and "warning" status for all cluster instances.

• IBM Safer Payments n
Shows SAI of any status only for cluster instance n.

Remarks

• Each SAI can only be a "warning" or an "error". If for a certain parameter,
both warning and error (with different thresholds) shall be displayed, they
are defined as two separate SAI.

back to top

2.2 Key performance indicators

Key performance indicators (KPI) constantly supervise operational
performance and plot them over time in one or more charts.

KPI are configured individually for each mandator. Their display on the
dashboard page consists of a curve and an entry in the legend right of the
respective chart. The exact values can be viewed when the mouse pointer
rests over the chart. In this case, the chart shows a red vertical line as time
cursor, and the exact values of the KPIs are shown in the legend. Notice that
if there are different time points for the KPIs, the legend value shows the
data point nearest to the cursor.

Multiple IBM Safer Payments instance installation

Most IBM Safer Payments installations involve multiple IBM Safer Payments
instances in a cluster. Since in such a setup, only one IBM Safer Payments
instance serves user access, KPIs for all instances are accessible from each
of the IBM Safer Payments instances.

Notice that there are KPIs that monitor parameters that are the same on all
instances (e.g. "open cases"), while there are others (e.g. "transaction
messages processed") that are different for each instance. For the latter, a
separate KPI is shown for each IBM Safer Payments instance. The ID of the
respective instance is shown in square brackets with the legend text.
back to top

3. Report

This chapter covers the report function of IBM Safer Payments.
back to top

3.1 Case class reports

The table below lists all defined case class reports. Case class reports
summarize case investigation activities on a per case class basis.
back to top

3.1.1 Case class report definition

Case class reports have the following settings:

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has
several submandators.

• Data range
Lets you specify the reporting time period.

• Case Conditions
You may further restrict the cases to those whose reporting attributes and
data satisfy certain criteria by defining conditions here. If no conditions are
defined, all cases satisfying the general settings (above) are included in the
case class report.

back to top

3.1.2 Case class report

The case class report provides a comparison of the individual case class
performance with respect to a number of key performance indicators (KPIs).
While delivering basis data to optimise case investigation operations, it also
provides valuable feedback to the fraud analysts that maintain the rules
generating cases. The report lists a row for every case class for which cases
are found in IBM Safer Payments. For each case class, the columns provide
different types of information:

Current state

The columns summarize for each case class how many cases currently exist
in IBM Safer Payments that were generated within the reporting period in the
respective case state.

Summary

In addition to case state statistics, the following information is provided:

• Due cases
Cases that have been postponed/forwarded that are due as of now.

• Bulk transitioned cases
Cases that were last processed using the bulk transition function.

• Not closed
Cases that have not been closed (sum of cases that are not closed).

• Total cases
Total number of cases in IBM Safer Payments in reporting period (sum of
cases in all states).

Created cases

Number of cases that were generated during the reporting period in this case
class (if the case class changed because of alarm aggregation the case is
reported in the last assigned case class).

Closed cases

Number of cases that were closed during the reporting period (regardless of
their generation date). The numbers are shown according to sub-criteria and
total columns:

• Fraud
Number of cases closed with a close code classified as "fraudulent"

• Genuine
Number of cases closed with a close code classified as "genuine"

• Unknown
Number of cases closed with a close code classified as "unknown.

• Total closed
Total number of cases closed (sum of the three previous columns)

Key Performance Indicators

The columns provide key performance indicators for fraud prevention
performance on cases generated during the reporting period:

• Investigation rate
Ratio of cases that could be closed with a close code classified as either
"fraudulent" or "genuine" (not "unknown"). A high investigation rate
indicates that investigators can successfully determine whether or not
generated cases are fraudulent.

• Hit rate
Ratio of cases that have been closed with a close code classified as
"fraudulent" versus all cases closed. It thus states what fraction of the cases
generated actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine"
divided by the number of cases closed as "fraudulent".

Timing

The columns provide key statistical benchmark data on the response speed
of investigation operations (based on cases generated during the reporting
period):

• Lead
Average time between case generation and first investigation (indicator of
how quickly investigators picks up on cases).

• Work
Average time between first investigation of a case and its closing

• Open
Average time between generation of a case and its closing

• Open fraud
is the same indicator as "open" but only considers cases that were later
identified as "fraudulent".

back to top

3.2 Investigation reports

The table below lists all defined investigation reports. Investigation reports
summarize case investigation activities on a daily or hourly basis, respectively.
back to top

3.2.1 Investigation report definition

Investigation reports have the following settings:

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has
several submandators.

• Type
Lets you select which type of report to be generated:

• Investigation daily/hourly report
This report provides an overview on case generation and case
investigation (closing) performance. Depending on the selected type
IBM Safer Payments shows one line per hour or one line per day.

• Reference parameter
Lets you specify whether the results should refer to generated cases or to

closed cases.

• Date range
Lets you specify the reporting time period.

• Case Conditions
You may further restrict the cases to those whose reporting attributes and
data satisfy certain criteria by defining conditions here. If no conditions are
defined, all cases satisfying the general settings (above) are included in the
case class report.

back to top

3.2.2 Daily investigation report

The daily investigation report provides a quick overview on daily operations
for all calendar days in the report period defined. Each day of the reporting
time period is printed as a row of the report. For each day, the following
information is provided:

Created cases

Number of cases that were generated on that date

First investigated cases

Number of cases that were first investigated on that date

Not closed cases

Number of cases that were generated on that date but not yet closed as of
now. For each case state, the number of cases is shown in the respective
column. In addition to case state statistics, the last row presents summary of
the previous rows.

Closed cases

Number of cases that were generated on that date and are closed as of now.
The numbers are shown according to sub-criteria and total columns:

• Fraud
Number of cases closed with a close code classified as "fraudulent"

• Genuine
Number of cases closed with a close code classified as "genuine"

• Unknown
Number of cases closed with a close code classified as "unknown"

• Total
Total number of cases closed (sum of the previous three columns)

• Total bulk closed
Total number of cases closed using bulk close functionality (part of the total
sum, includes all close code classifications)

Key Performance Indicators

The columns provide key performance indicators on fraud prevention
performance on cases generated on date:

• Investigation rate
Ratio of cases that could be closed with a close code classified as either
"fraudulent" or "genuine" (not "unknown"). A high investigation rate
indicates that investigators can successfully determine whether or not
generated cases are fraudulent.

• Hit rate
Ratio of cases that was closed with a close code classified as "fraudulent"
versus all cases closed. It thus states what fraction of the cases generated
actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine"
divided by the number of cases closed as "fraudulent".

Timing

The columns provide key statistical benchmark data on the response speed
of investigation operations (based on cases generated on date):

• Lead
Average time between case generation and first investigation (indicator of
how quickly investigators pick up on cases)

• Work
Average time between first investigation of a case and its closing

• Open
Average time between generation of a case and its closing

• Open fraud
is the same indicator as "open" but only considers cases that were later
identified as "fraudulent"

back to top

3.2.3 Hourly investigation report

The hourly investigation report provides a quick overview on daily operations
for all full hours that are defined in the report period. Each hour of the
reporting time period is printed as a row of the report. For each hour, the
following information is provided:

Created cases

Number of cases that were generated during that hour on that date.

First investigated cases

Number of cases that were first investigated during that hour on that date.

Not closed cases

Number of cases that were generated during that hour but not yet closed as
of now. For each case state, the number of cases is shown in the respective
column. In addition to case state statistics, the last column presents
summary of the previous columns.

Closed cases

Number of cases that were generated during that hour on that date and are
closed as of now. The numbers are shown according to sub-criteria and total
columns:

• Fraud
Number of cases closed with a close code classified as "fraudulent".

• Genuine
Number of cases closed with a close code classified as "genuine".

• Unknown
Number of cases closed with a close code classified as "unknown".

• Total
Total number of cases closed (sum of the previous three columns).

• Total bulk closed
Total number of cases closed using bulk close functionality (part of the total
sum, includes all close code classifications).

Key Performance Indicators

The columns provide key performance indicators on fraud prevention
performance on cases generated during that hour on that date:

• Investigation rate
Ratio of cases that could be closed with a close code classified as either
"fraudulent" or "genuine" (not "unknown"). A high investigation rate
indicates that investigators can successfully determine whether or not
generated cases are fraudulent.

• Hit rate
Ratio of cases that were closed with a close code classified as "fraudulent"
versus "genuine" or "unknown". It thus states what fraction of the cases
generated actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine"
divided by the number of cases closed as "fraudulent".

Timing

The columns provide key statistical benchmark data on the response speed
of investigation operations (based on cases generated during that hour on
that date):

• Lead
Average time between case generation and first investigation (indicator of
how quickly investigation picks up on cases).

• Work
Average time between a case was first investigated and its closing.

• Open
Average time between a case was generated and its closing.

• Open fraud
is the same indicator as "open" but only considers cases that later are
identified as "fraudulent".

back to top

3.3 Missed cases reports

The table lists all missed cases reports that are defined and for which you
have access privileges. A missed cases report provides information about
wrong decisions when closing a case.

The report will return a case if the following is fulfilled:

1. The case class of the case has a missed cases report index set i.e. an index
with sequence enabled and whose attribute is also selected as a reporting
attribute.

2. The case contains a value for the attribute of that index.

3. The case was closed as genuine or unknown, for example on 2021-05-01
12:00:00.

4. The case's generation timestamp or closed timestamp (depending on the
chosen reference parameter) lies within the configured date range.

5. The index sequence contains at least one fraudulent transaction and the
value of the timestamp meta attribute of this fraudulent transaction lies
within the defined time horizon relative to the closed timestamp of the case.
For example: If the transaction's timestamp is 2021-05-01 18:00:00 and the
horizon is defined as 10 hours before and after, the case closed on 2021-05-
01 12:00:00 would be returned. If the fraudulent transaction had a
timestamp of 2021-05-01 23:00:00, the case would not be returned as that
timestamp lies outside the time horizon.

back to top

3.3.1 Missed cases report definition

Missed cases reports have the following settings:

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has
several submandators.

• Reference parameter
Lets you specify whether the results should refer to generated cases or to
closed cases.

• Data range
Lets you specify the reporting time period.

• Case Classes
Only cases from the selected case classes will be included in this report.

• User accounts
Only cases closed by the selected user accounts will be included in this
report.

• Time horizon before
A case is considered "missed fraud" (and thus included in this report), if a
fraudulent transaction occurred within this time period before it was closed
"genuine" or "unknown".

• Time horizon after
A case is considered "missed fraud" (and thus included in this report), if a
fraudulent transaction occurred within this time period after it was closed
"genuine" or "unknown".

• Report Attribute Conditions
You may further restrict the cases to those whose reporting attributes satisfy
certain criteria by defining conditions here. If no conditions are defined, all
cases satisfying the general settings (above) are included in the case class
report.

back to top

3.3.2 Missed cases report

The missed cases reports provide information about wrong decisions when
closing a case. In order to learn from such wrong decisions the report lists all
the cases that had been closed as "genuine" or "unknown" but fraud is later
on reported on the account. The columns provide the following information:

• Case ID
Unique ID of a case

• Case Class
Case Class where the case was closed from

• Fraud Status
Status the case was closed with like "genuine" or "unknown"

• Closed on
Date when case was closed

• Closed by
User who closed the case

• Fraud on
Date of fraud

Each line refers to one case and a hyperlink function leads to the appropriate
case details.
back to top

3.4 Investigator reports

The table lists all investigator reports that are defined and for which you
have access privileges. Investigator reports summarise case investigation
activities on a per user and per case class basis.
back to top

3.4.1 Investigator report definition

Investigator reports have the following settings:

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has
several submandators.

• Users
Lets you restrict the report to a certain number of users being displayed.

• Case Classes
Lets you restrict the report to a certain amount of case classes being
displayed.

• Data range
Lets you specify the reporting time period.

• Case Conditions
You may further restrict the cases to those whose reporting attributes and
data satisfy certain criteria by defining conditions here. If no conditions are
defined, all cases satisfying the general settings (above) are included in the
case class report.

back to top

3.4.2 Investigator report

The investigator user report provides a comparison of the individual
performance of investigators. The report lists each user with an investigation
privilege as one row. For a user that had activity with cases generated in the
time period, a subsequent row is shown for any case class that had activity.
These rows are indented and the case class name is displayed in the left
column to provide a detailed breakdown of a user's activity. For each user,
different types of information are provided:

Investigation actions

Number of investigation actions per case state taken by the user within the
reporting period. For the case class detail rows, if the case class has changed
because of alarm aggregation, the case is reported in the last assigned case
class. Notice that each action is counted separately, that is, if a user opened
a case in one state, and changed the state by executing a transition, these
actions will be reflected in both state columns.

Investigation results

The columns detail the user's performance within the reporting period for
closed cases by the categories:

• Fraud
Number of cases closed as "fraudulent"

• Genuine
Number of cases closed as "genuine"

• Unknown
Number of cases closed as "unknown"

Key performance indicators

The columns provide key performance indicators derived from the
investigation results (shown in the columns to the left):

• Investigation rate
Ratio of cases that could be closed with a close code classified as either
"fraudulent" or "genuine" (not "unknown"). A high investigation rate
indicates that investigator could successfully determine whether or not
generated cases are fraudulent.

• Hit rate
Ratio of cases that was closed with a close code classified as "fraudulent"
versus "genuine" or "unknown". It thus states what fraction of the cases
generated actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine"
divided by the number of cases closed as "fraudulent".

back to top

3.5 Transaction message report

The table lists the volume of all messages of the different MTIDs by the time
period in which they were processed by IBM Safer Payments. It contains a
column for each MTID that was processed, and a row for each time period.

Integration with IBM License Metric Tool

IBM Safer Payments generates IBM Software License Metric Tag (SLMT) files.
Versions of IBM License Metric Tool that support IBM Software License Metric
Tag can generate License Consumption Reports. Read this section to interpret
these reports for IBM Safer Payments.

Each instance of a running IBM Safer Payments environment generates an
IBM Software License Metric Tag file. As there is no master instance, the
same SLMT file is created for each instance.

Customer has to select one SLMT file and ignore the others, as the data
provided in there is identical and each file covers the whole environment.

The metric type monitored is RVU. The value is refreshed at least once a day
within the end of day job.

About the RVU metric

The metric RVU has different subtypes.

• Subtype transactions
The value reported for this metric is the number of all transactions of all
instances per month. The counter resets at the beginning of every month.
This means, that even the time period of a single SLMT file is just one day,
transactions are counted from the beginning of the month.

• Subtype accounts
This subtype is currently not measured with IBM Safer Payments and
therefore no SLMT file is created for accounts.

The IBM Software License Metric Tag file is in the /rep directory of each
instance configuration.
back to top

3.6 Fraud marking reports

The Fraud Marking report shows all records where the fraud marking
changed over a certain time frame. It will also show which user changed the
fraud data.

The fraudData_[date].csv files are generated or updated when the users
mark records as fraud or genuine or run the API requests "markFraud" and
"unmarkFraud". These files are saved in the "fraudData" folder in the
instance' message report directory.

To run the fraud marking report, define a batch job in "Generate report" type
with the fraud marking report associated. When running the job, Safer
Payments looks in the "fraudData" folder and checks if there is any
fraudData_[date].csv file that contains the time frame defined in the fraud
marking report. If the file exists, Safer Payments generates the report based
on the file.
back to top

3.6.1 Fraud marking report definition

Fraud Marking reports have the following settings:

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• From
Lets you select a start date to filter the data.

• To
Lets you select an end date to filter the data.

• ..time
Lets you fine tune the time of day used in filtering the data on the From and
To dates.

• Columns
You are able to select custom columns to show in the final report output.
These are in addition to the URID, Timestamp, User Login, and Fraud value
columns, which will always be shown in the report output.
Note that if you include an encrypted attribute in your selected columns, the
attribute value will be masked in the report output.

Running the report
To run the report, you will need to schedule a job in the Administration-
>Jobs->Settings menu item. From the Job Schedule page, you can run the
report on demand and then use the download button to export the csv
report.

back to top

4. Investigation

This chapter covers the investigation function of IBM Safer Payments.
back to top

4.1 Case selection

This section enables a quick definition of selection criteria for investigation
cases to be displayed in the section below.

• Mandators
Defines which mandators' cases are to be displayed. This selection is only
shown when you have the privileges to see cases from multiple mandators.

• Case classes
Defines which case classes' cases are to be displayed. This selection is only
shown when you have the privileges to see cases from multiple case classes.

• Generation date
Restricts investigation cases shown to a specific generation date (time)
interval. Leaving an entry field empty implies no restriction on the generation
date.

• Case states
Restricts display of cases to certain states.

• Investigators
Defines which investigators' cases are to be displayed. Notice that not
assigned cases are always displayed. To change this, use the case state
selection criteria. Notice that this checkbox only appears if more than one
user is defined for this mandator.

• Working queues
Restricts display of cases to certain working queues. Cases that are not
associated with any working queue are always displayed. You can uncheck all
working queues to see not associated cases. Notice that this selection criteria
only appears if there are working queues defined for this mandator. Working
queues are defined on the page Administration -> Case management ->
Working queues.

• Case types
Restricts display of cases to certain case types. Only cases that fit all of the
selected case types will be included in the result table. A new column was
added to the table showing both the name and the color of the case type
belonging to each case. A case can match more than one case type but the
column will only show the one with the highest priority. The case type shown
is taken from all case types that have been defined, not only from the ones

that are selected here. Case types are defined on the page Administration ->
Case management -> Case types.

• Case score
Restricts investigation cases shown to a specific case score interval. Leaving
an entry field empty implies no restriction on the case score.

• Case selection conditions
Restricts investigation cases shown to all cases that satisfy the defined
conditions. All reporting attributes that belong to the selected case classes
and case variables can be used in case selection conditions.

Remarks

• Notice that with each choice, the investigation case table shown in the
section below is reloaded with the updated cases.

• Depending on the "auto-refresh" settings ("administration" tab, "system
configuration" page), this page reloads periodically to update with potentially
new cases.

• For all selections in this section, you will be presented either with a check
box list or a drop down multi-select box, depending on the number of
choices. You can define the number of choices above which the drop down
multi-select box is shown rather than the check box list as user preference
on the "my account" page.

• If you change the case class selection all previous defined conditions are
removed.

back to top

4.1.1 Investigation cases

The table shows all cases according to the selection criteria.

The following columns are always shown:

• Case ID
This is an internal identification number in IBM Safer Payments. Each case
will be assigned a unique value, a higher number always indicates a later
generation, although the numbers are not sequential. The main use of this
number is to provide a unique identification of a case.

• Case class
Name of the case class to which this case belongs.

• Mandator
Name of the mandator to which this case belongs (if there are multiple
mandators).

• Working queue
Name of the working queue this case is associated with.

• Investigator
Name of the investigating user to whom this case is assigned.

• Generated on
System timestamp of first alarm that is consolidated in this case.

• Last action on
System timestamp of the last action performed to this case.

• Case score
Highest case score meta attribute value of the alarms consolidated in this
case.

• Hits
Number of alarms consolidated in this case.

• Case state
Name of the current state of the case as defined per case workflow settings.

• Last case state
Name of the last state of the case.

• Memo
Free text memo containing information about the case which is edited by the
investigating user.

• Case close code
For cases that has been closed this column shows the case close code which
was used by the fraud investigator. Case close codes are defined on the page
Administration -> Case close codes.

• Fraud status
Each case close code is mapped to one of the principal fraud statuses
"fraudulent", "genuine", or "unknown". When a case is closed the respective
fraud status of the case close code is shown in this column.

• Case type
Name of the most fitting (highest priority) case type this case is associated
with.

The remaining columns are the reporting attribute values of all case classes
to which cases in this table belong.

To work on a case, you can either click on a row to open a full investigation
page, or you can select a checkbox of a respective row to list all actions for
which you have privileges to execute. Depending on your privileges, the
following actions are available:

Investigator actions

• View
Same as clicking on a row, but opens the investigation page in "view-only"
mode. The case will open in a new browser window if "Open investigation in
new window" is enabled for your account.

• Bulk view
This option is available when multiple cases have been selected and "Open
investigation in new window" is enabled for your account. Each case will be
opened in a separate browser window.

• Investigate case
Opens the investigation page (same as clicking on a row). The case will open
in a new browser window if "Open investigation in new window" is enabled
for your account.

• Bulk investigate
This option is available when "Open investigation in new window" is enabled
for your account and multiple cases have been selected, that you can
investigate. Each case will be opened in a separate browser window.

Supervisor actions

• Take over case
Takes over a case that is currently assigned to a different user. This action
can be executed on a single case at a time. The case will open in a new
browser window if "Open investigation in new window" is enabled for your
account.

• Interrupt case
Interrupts a case that is currently being investigated by a different user.
Interrupted cases are taken from their investigators and automatically set to
state "New". This action can be executed on multiple cases at once.

• Execute case transitions
You may click on rows using the pressed [Shift] or [Ctrl] keys to select
multiple rows individually or sequentially. When multiple rows are selected,
you may select multiple rows using the checkboxes in order to list available
bulk transitions that can be executed on all selected cases in one step (you
may select a series of sequential rows by holding the [Shift] key while
clicking the checkbox).

Remarks

• Notice that you can sort the investigation table by clicking on column
headers. Sorting preferences are stored with your user's account.

• The maximum number of cases shown on this table is limited by the general
IBM Safer Payments setting. You can change this setting from the system
configuration page.

back to top

4.2 Case search

The case search page lets you quickly find a case based on the value of one
of its reporting attributes. Simply select the reporting attribute from the
drop-down menu, and enter the value in the entry field right of the drop-
down menu. Formatting characters like digit group separator and decimal
separators will be removed automatically. The only exception here is when
you are searching by case id. The hyphen in case ids is mandatory.
back to top

4.3 Case investigation

This section contains all relevant case investigation actions. Depending on
the action, certain input fields below are used.

Action Description

1. Help Here.

2. Case assignment menu Two case assignment action avilable in this menu: take over case and interrupt
case. Take over case reassigns the case to the user that performs the action.
Interrupt case removes current user assignment and add it back to the queue as
new.

3. Case actions Case actions reveal a panel where you can perform various actions for the case.

4. Transition case Opens a panel where you can execute a case transition.

back to top

4.3.1 Alarm data

Depending on the type of case additional information might be available for
each alarm. Clicking on a table entry in the "Alarms" table will change the
displayed information of this section. Currently only cases created by Index
Based Evaluations support this.

Hit information

This section is displayed on the case investigation page for cases that are
created by an index based evaluation. It shows the following information:

• Node value
The value of the node that triggered the alarm.

• Hit Conditions
All relationship and alarm generation conditions of the index based
evaluation that created the alarm.

• Hit Condition Values
The exact values of the elements referenced in the hit conditions.

Calendar computation results

This section is displayed on the case investigation page for cases that are
created by an index based evaluation with calendar computations. It shows
the following information:

• Calendar computation results
Information about the defined calendar computations and the value they had
at the time of case creation.

• Calendar computation results - All associated nodes
When the index based evaluation used multiple value evaluation, calendar

computations are computed for every associated index node. The calculated
values can be seen in this table.

back to top

4.3.2 Rules fired

Lists all rules that have fired for this case. The table will include the
conditions of the fired rules if the user is assigned the global privilege to see
them.
back to top

4.3.3 Case history

The table in this section shows a list of all past cases with the same attribute
value as the current case (attribute name in section header).

Notice that you may click on any case row to jump to the investigation page
of that case. The case will be opened in a new browser window if "Open
investigation in new window" is enabled for your account.
back to top

4.3.4 Case actions

In this section all case actions of a case class are listed. You may send case
actions directly to the defined target by selecting different case actions and
then clicking the send case action button. For case actions with target
"SMTP", "HTTP" or "ODBC SQL" it is also possible to view a preview. Within
the preview dialog you may edit the email body or the SQL query as well. For
further information about editing the template please refer to the online help
page of the case actions preview dialog.

• Add transaction data
To add transaction data records to the case action select one or more rows of
a query table or the alerted transactions table, open the context menu by
selecting checkbox of the selected rows and choose "add to case action". A
new table will be displayed below the case actions list. Notice that it is not
possible to add records of different query tables or mix query results and
alerted transactions.

• Remove transaction data
You may remove some specific transaction data by selecting records in the
case actions transaction datatable, opening the context menu by selecting
checkboxes of the selected rows and executing the function "Delete records".
To remove all transaction data execute the function "Reset datatable".

back to top

4.3.5 Case actions preview

Templates

Within the body template or the SQL query, you can define several
placeholders for reporting attributes, query results (only for e-mail and sql),
masterdata, user data and case variables, which are filled when sending the
case action. Note, that if "Support HTML formatting" is enabled in an SMTP
(e-mail) case action, the preview window will not display its HTML content for
security reasons.

• Reporting attributes:
Placeholders for reporting attributes are defined with curly brackets
{attribute name}. You can use every attribute, that was defined when
creating the case and which was reachable by the mandator.

• Query results:
Placeholders for query results are defined with curly brackets. Query results
are only available in e-mail and sql-notifications. They can only be used for
case action previews and if query results were added to the case action
previously. It is necessary to define the selected columns as attribute names
in curly brackets too {{attribute A}{attribute B}{attribute C}}. This
would create following result table:
attribute A attribute B attribute C
A1 B1 C1
A2 B2 C2

The data has to be selected in case queries and added through the context
menu. There will be no query result, if there was no selected data before
sending the case action. Query results in e-mails will always be sent out as
CSV file and will be visible in the e-mail body.
For SQL Notifications, you can only use one attribute name between double
curly brackets {{attribute A}}. An example for SQL would be
UPDATE my_table SET column1='{{attribute A}}', column2='{{attribute B}}'
WHERE column3='{{attribute C}}'
If there are two entries added to the case action, this would perform two sql
database updates.

• Masterdata:
Placeholders for masterdata attributes are defined with double square
brackets [[masterdata attribute name]]. You can use every masterdata,
that is accessible by the mandator.

• User data variables:
Placeholders for user data are defined with single square brackets
[InvestigatingUserName]. You can switch between users by changing the
prefix

• [Investigating..]: The user, that is currently investigating the case.

• [Viewing..]: The user, that is viewing the case and sending the case
action.

• [Closedby..]: The user, that closed the case.

The prefix has to be combined with a user variable name. For example,
[..UserName] could be used as [InvestigatingUserName],
[ViewingUserName], [FollowupUserName] or [ClosedbyUserName]

• [..UserName]: The username as string.

• [..UserNameAndLogin]: The username, followed by the user login in
parenthesis.

• [..UserUid]: The system internal user UID.

• [..UserEmail]: The users e-mail address.

• [..UserPhone]: The users phone number.

• [..UserLocation]: The users location.

• [..UserMandator]: The users mandator name.

• [..UserMandatorUid]: The UID of the users mandator.

• Case variables:
Case variables are also defined with square brackets [GeneratedOn]. You
can use following placeholders:

• [CaseClass]: The name of the case class.

• [CaseClassUid]: The UID of the case class.

• [CaseClassId]: The ID of the case class.

• [GeneratedOn]: The generation date as ISO formatted date.

• [GeneratedOnTimestamp]: The generation date as UNIX timestamp.

• [ClosedOn]: The case close date as ISO formatted date.

• [ClosedOnTimestamp]: The case close date as UNIX timestamp.

• [FollowupOn]: The followup date as ISO formatted date.

• [FollowupOnTimestamp]: The followup date as UNIX timestamp.

• [LastActionOn]: The last action date as ISO formatted date.

• [LastActionOnTimestamp]: The last action date as UNIX timestamp.

• [StateChangedOn]: The case state change date as ISO formatted date.

• [StateChangedOnTimestamp]: The case state change date as UNIX
timestamp.

• [Score]: The case score.

• [Hits]: The case hits.

• [State]: The investigation state.

• [StateUid]: The UID of the investigation state.

• [ExtendedState]: The investigation state as visible in the case selection
table.

• [LastState]: The last investigation state.

• [LastStateUid]: The UID of the last investigation state.

• [FraudStatus]: The fraud status of the case close code, if the case was
closed.

• [CaseCloseCode]: The case close code, if defined.

• [CaseCloseCodeUid]: The UID of the case close code.

• [Mandator]: The case mandators name.

• [MandatorUid]: The case mandators UID.

• [CaseUid]: The case UID, as visible in the case selection table (1-123).

• [CaseUidRaw]: The case UID, as visible in url or in file system
(1000000000000123).

• [Memo]: The text value of memo field.

• [CaseAgeInDays]: The time since case generation in days.

• [CaseAgeInHours]: The time since case generation in hours.

• [CaseAgeInMinutes]: The time since case generation in minutes.

• [DaysSinceLastAction]: The time since last action in days.

• [HoursSinceLastAction]: The time since last action in hours.

• [MinutesSinceLastAction]: The time since last action in minutes.

• [DaysSinceStateChanged]: The time since case state changed in days.

• [HoursSinceStateChanged]: The time since case state changed in
hours.

• [MinutesSinceStateChanged]: The time since case state changed in
minutes.

back to top

4.3.6 Case action history

The case action history represents a filtered list on the audit trails
aggregated over all cases belonging to a given reporting attribute value e.g.
a given account number / PAN. The table only consists of rows and columns
related to case actions. An example use case could be to use case action to
contact customers by mail, SMS or other means and use the case action
history then to get an complete overview about all contacts that were made
with a cardholder.
back to top

4.3.7 Audit trail section

This section contains the following subsections:

Audit Trail

Every action on a case, whether by IBM Safer Payments (for instance,
creation of a case and aggregation of alarms) or by the investigator (for
instance, creating a memo, closing a case, reopening a case, forwarding a
case) is documented in an audit trail record. The audit trail records for this
case are shown in the top table of this section.

Reporting attributes

This checkable list of all reporting attributes lets you investigate audit trail
entries for all cases in which the checked attribute has the same value as the
current case.

Aggregated Audit Trails

This section displays one audit trail for every reporting attribute checked
above. These tables allow you to perform drill-down actions in investigation.
For instance, you may check which other actions have been performed with
the same merchant or terminal by selecting the reporting attribute that
represents the Id of this entity.
back to top

4.3.7.1 Audit trail

Every action on a case, whether by IBM Safer Payments (for instance,
creation of a case and aggregation of alarms) or by the investigator (for
instance, creating a memo, closing a case, reopening a case, forwarding a
case) is documented in an audit trail record. The audit trail records for this
case are shown in the top table of this section. The columns are:

• Timestamp
Date and time the action was performed (local time according to your time
zone settings, if the actions were not performed by someone with a different
time zone, the timestamp value reflects your time zone).

• User
User that performed the action (if IBM Safer Payments performed the action,
this is empty).

• Action performed
Description of the action performed to the case. This includes both user
actions and automated actions such as case generation, aggregation or
automatic transitions.

• Case state
State of the case in the audit trail entry after the action was triggered.

• Transition justification
Transition justification selected by the user when executing case transition.

• Comment
Comment entered by the user when performing the action.

• Follow up by
If the case is in exclusive state, this column identifies the user to which this
case is associated.

• Memo
Memo entered by the user when the action was performed.

• Fraud status
Status of the case in the audit trail entry after the action that triggered the
audit trail entry was performed.

• Hits
Number of alarms aggregated in case.

• Case score
Highest score value of alarms aggregated in this case. Alarm scores are set
as "case score" meta attribute values; defined by rules for rule triggered
alarms, defined by the collusion definition for collusion triggered alarms.

• Case class
Status of the case class in the audit trail entry after the action that triggered
the audit trail entry was performed.. Notice that cases may change their
class association if an alarm comes in and gets aggregated with a different
case class and a higher case score. Here the case changes its case class
association to the alarm with the highest case score (if the case score is the
same, the case class of the most recent alarm is used).

• CPP
CPP of the case. If a CPP was assigned to the case, its name is listed here. If
a CPP was removed, "CPP removed" is filled in.

Reporting attributes

This checkable list of all reporting attributes let you investigate audit trail
entries for all cases in which the checked attribute has the same value as the
current case.

This feature is mainly to perform drill-down actions in investigation. For
instance, you may check which other actions have been performed with the
same merchant or terminal by selecting the reporting attribute that
represents the Id of this entity.

Notice that for each checked reporting attribute, a separate table of audit
trail entries is shown.
back to top

4.3.7.2 Audit aggregation

This table is opened for each checked reporting attribute above. It lets you
investigate audit trail entries for all cases in which the checked attribute has
the same value as the current case.

This feature is mainly to perform drill-down actions in investigation. For
instance, you may check which other actions have been performed with the
same merchant or terminal by selecting the reporting attribute that
represents the Id of this entity.

Notice that for each checked reporting attribute, a separate table of audit
trail entries is shown.

The columns are:

Case ID
Unique IBM Safer Payments internal identification of a case (with current
case showing at top of page).

• Timestamp
Date and time the action was performed (local time according to your time
zone settings, if the actions were not performed by someone with a different
time zone, the timestamp value reflects your time zone).

• User
User that performed the action (if IBM Safer Payments performed the action,
this is empty).

• Action performed
Description of the action performed to the case. This includes both user
actions and automated actions such as case generation, aggregation or
automatic transitions.

• Case state
State of the case in the audit trail entry after the action was triggered.

• Transition justification
Transition justification selected by the user when executing case transition.

• Comment
Comment entered by the user when performing the action.

• Follow up by
If the case is in exclusive state, this column identifies the user to which this
case is associated.

• Memo
Memo entered by the user when the action was performed.

• Fraud status
Status of the case in the audit trail entry after the action that triggered the
audit trail entry was performed.

• Hits
Number of alarms aggregated in this case.

• Case score
Highest score value of alarms aggregated in this case. Alarm scores are set
as "case score" meta attribute values; defined by rules for rule triggered
alarms, defined by the collusion definition for collusion triggered alarms.

• Case class
Status of the case class in the audit trail entry after the action that triggered
the audit trail entry was performed. Notice that cases may change their class
association if an alarm comes in and gets aggregated with a different case
class and a higher case score. Here the case changes its case class
association to the alarm with the highest case score (if the case score is the
same, the case class of the most recent alarm is used).

Notice that you may click on an audit trail entry to jump to the investigation
page of the case to which this audit trail entry belongs. The case will open in
a new browser window if "Open investigation in new window" is enabled for
your account.
back to top

4.3.8 Compliance list hits

Lists all compliance list entries that matched the transaction and the
corresponding score.
back to top

4.3.9 Case attachments

Lists all files attached to this case. Attachments must be enabled in system
configuration.

Note that uploaded attachments will be available to other investigators, thus
it is crucial to prevent the upload of unverified files as case attachments.
Always verify the content of the file and never upload files from untrusted
sources. Failure to do so may result in spreading malicious files and may put
other users of the system at risk.

The case attachments table offers the following actions:

• Upload attachment
Uploads an attachment to the case. Maximum file size is limited by system
configuration.

• Delete attachment
Deletes an attachment from the case.

• View attachment (only for .gif/.png/.jpg files)
Displays an image file within a separate browser window.

back to top

4.4 Case creation

Manually created cases may be created with the following data:

• Mandator
Each case belongs to one mandator. The select allows you to choose the
mandator for the case. In order for a mandator to be selectable, you need
the role privilege to create cases.

• Case class
Each case in IBM Safer Payments is set with a case class. The select allows
you to choose the case class you want to assign to your case. You may select
all case classes that are available for the selected mandator and at the same
time enabled for manual case creation.

• Case score
The case score is a numerical value that indicates the importance of a case.
Default value is 100.

• Comment
An optional explanation that will be added to the case audit trails. For
instance, you may describe why the case has been created.

• Reporting attributes
With reporting attributes, you may provide attribute values that shall be
associated with the case. The values will be visible in case selection and
investigation.
Here, in case creation, you may freely set custom values for these reporting
attributes. You can select any attribute that is enabled as a reporting
attribute for the selected case class. Checking an attribute creates a new
input area where you can enter the desired value.

back to top

4.5 My working queues

This section provides statistical information about cases of the selected
working queues.

The following information is provided:

• Number of cases
Number of cases contained in the selected working queues.

• Oldest open case
The age of the oldest case in days contained in the selected working queues.

• Average age
Average age of cases in days contained in the selected working queues.

• Included case classes
Names of different case classes whose cases are included in the selected
working queues.

• Included case states
Names of different case states that are included in the selected working
queues.

back to top

4.6 Investigation query

Investigation queries have the following settings:

• Enabled
Lets you temporarily display or hide a query (notice that disabled queries are
not shown on other pages where queries can be selected; they are still
shown in the table below).

• Mandator
Each query belongs to one mandator. Once created, mandator ownership
does not change.

• Query type
IBM Safer Payments supports different types of queries:

• Ad hoc
This is the standard query type that returns all transaction records that
satisfy the criteria defined. In spite of its name, the "ad hoc" query is
always stored for future use when executed and must explicitly be
deleted if not wanted anymore.

• Index
The "index" query type in addition takes the value of an indexed
attribute as a parameter. It is typically used to define a transaction
table for case investigation where the parameter would be the
cardholder number or the merchant id. If you execute an "index" query
from this page, IBM Safer Payments prompts you for the parameter
value; if you execute such a query from another part of IBM Safer
Payments, the value is automatically provided.

• Hyperlink
This type of query is similar to an "index" query. It is automatically
executed when you click on an index value in a query result table.

• Index
For "index" and "hyperlink" type queries, this references the index to be
used.

• Name
Name that will be shown with the query results.

• Comment
Used to describe the query. The comment is displayed to users at various
places and may thus contain further explanations.

• Number of records
Limits the maximum number of records to be displayed to avoid excessive
query computation length. Also notice that depending on your network
infrastructure, the type of browser and computer used by the end user, the
amounts of data generated by IBM Safer Payments could be overwhelming. If
you have set IBM Safer Payments to use more than one thread to compute a
query, the final number of records shown may actually be larger than this
number.

• Include DDC
If enabled, the query will also use DDC, not just MDC. This may severely
impede query computational performance.

• Hide summary statistics
The summary statistics for the query table can be disabled by checking this
option.

• Highlight CPP attributes
If enabled, attribute values that occur in CPPs will be highlighted in the query
result table.

Query data selection

The data selection for queries allows for both choosing an interval and
additional conditions. Refer to the section help pages for more information.

Select columns / column sequence

Allows to select which columns are to be displayed with the result of the
query and how they should be arranged.

Extract template

Allows to define how the transaction data is put together in a string when a
user is using the context menu function "extract data" on the query result
table. Within the template fixed strings can be combined with variable
attribute values.

example:

Arcot | {Amount} | {Merchant Name}

This template appends the transaction amount and the merchant name to a
fixed string "Arcot", each separated by |.

A user could now select one or more rows in the query result table. By
clicking on the context menu function "extract data" a new dialog is opened
and displays a string in which the variable attributes of the template are
filled with the respective transaction data. This string can now be copied to
the clipboard [Ctrl]-[C].

Result set display

The results of a query when executed from this page are shown on a new
page. This page will be opened in a new browser window if "Open
investigation in new window" is enabled for your account. If a query is used
in another part of IBM Safer Payments ("embedded query"), the result table
is shown as part of that page. In both cases, you may define which columns
and in which sequence the columns should appear. The width of each column
can be modified in the query result table.
back to top

4.6.1 Query data selection

Data selection lets you choose which mandator's data shall be included (if a
choice from multiple mandators can be made) and lets you define interval
and additional conditions. The interval can be provided as:

• Records absolute (URID from-to interval)

• Records relative (records from-to with respect to last inserted record)

• Server time absolute (from-to timestamp interval)

• Timestamp relative

Notice that the timestamps are taken from IBM Safer Payments server time
at the time the record was created within IBM Safer Payments (meta
attribute "System time"), which is when the originating transaction was
received (either as transaction message via the IBM Safer Payments
message command interface (MCI) or as file record processed via the IBM
Safer Payments batch data interface (BDI)). If the record is later changed,
for instance as merging target, this record timestamp value is never
changed. When using timed based intervals (server time absolute,
timestamp relative) the result might include records that are outside the
actual data selection time due to performance reasons. If you need strict
restrictions on this, you can always define conditions that would filter those
out. Notice that these timestamps must thus not be the same as the time
when the transaction actually was made (typically the "point of sales" type
timestamp, a separate meta attribute "Timestamp" in IBM Safer Payments),
since the transaction may have been received by IBM Safer Payments later
(as in the case of batch data). If you instead require the "Timestamp" meta
attribute to be used as a condition for your data selection, you must define it
as a condition below. In this case, you should still consider using (applicable)
time limits for the meta attribute "System time" as this allows IBM Safer
Payments to sometimes significantly speed up the execution.

You may further restrict the records to be included using record specific
attribute value conditions. Refer to their section help pages for more
information.
back to top

4.6.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

4.6.3 Query result

The results of a query when executed from this page are shown on a new
page. If a query is used in another part of IBM Safer Payments ("embedded
query"), the result table is shown as part of this page. In both cases, you
may define which columns and in which sequence the columns should
appear. The width of each column can be modified in the query result table.

Values that are not stored or cannot be accessed by the query are displayed
using the following values:

• (): not stored text, empty string was used for computation

• (0): not stored numeric value, 0 was used for computation

• n/a: the record is out of range for that attribute

Manually mark fraud:

If you have the appropriate privileges, you can use the query result to mark
and unmark fraud. You can mark/unmark multiple transactions by selecting
multiple rows of the table. You may also select multiple records at once.

Create cases manually:

If you have the appropriate privileges, you can use the query result page to
create cases from transaction records by selecting a row in the table. You
may also select multiple rows at once.

Create CPPs with query result attribute values:

If you have the appropriate privileges, you can use the query result page to
create CPPs from transaction records by selecting a checkbox of respective
row in the table. To use attribute values of the transaction choose the
respective attribute. The value will be filled in automatically.

Extract data:

If you have the appropriate privileges and an extract template is defined, you
can use the query result page to extract transaction data into a String. First
select one or more rows, then execute the context menu function "extract
data". Then a new dialog displays a string in which the variable attributes of
the template are filled with transaction data. This string can now be copied to
the clipboard.

Execute common point queries:

To execute a common point query, you have to select a checkbox on a row
with a valid index value and click on "execute common point query". Make
sure that you click on an index attribute with an existing common point
query.
It is also possible to select multiple values with [shift] or [ctrl] + [mouse
click]. In this case, the common point query will be executed for the index
values of the selected records.
back to top

4.7 CPPs

The table shows all CPPs according to the selection criteria defined in the
selection above.

The following columns are always shown:

• Case group
Name of the case group the CPP belongs to.

• Mandator
Name of the mandator to which this CPP belongs (Mandator is determined by
case group).

• Name
Name of the CPP.

• Comment
Comment of the CPP.

• Status
Current status of the CPP:

• New
CPP has not been opened.

• Investigated
CPP is currently being worked on.

• Follow up
CPP has been postponed for later follow up.

• Due
CPP has been postponed for follow up and is due to be re-opened now,
or is overdue.

• Closed
CPP has been closed.

• Active
Indicates, if CPP is active or inactive.

• Inherit to submandators
Indicates, if case group of CPP inherits to submandators. If this is the case,
submandators of the listed mandator are able to view this CPP and create
CPPs for its case group.

• Created by
User that created the CPP.

• Created on
System timestamp of date the CPP was created.

• Created by
Last user that has edited the CPP.

• Created on
System timestamp of date the CPP was last edited.

• Associated cases
Amount of cases that are associated with the CPP.

• Closed as fraudulent
Amount of cases that are associated with the CPP and were closed with fraud
status "fraudulent" .

• Closed as genuine
Amount of cases that are associated with the CPP and were closed with fraud
status "genuine" .

• False alarms
Rate, that indicates how many associated cases have been closed with fraud
status "genuine" in proportion to cases the CPP is assigned to.

• Sum of evaluation attribute
In the case group definition of the CPP is an attribute specified as evaluation
attribute. This value refers to the sum of all values of this attribute that
occurred in associated cases that were closed as "fraudulent".

Remarks

• Additional columns are shown, if CPPs contain values for reporting attributes.

• Queries can be executed from within the table by clicking respective index
attributes.

• CPPs must be active to be used.

• Notice that you can sort the investigation table by clicking on column
headers. To sort for more than one column, simply click the columns in
sequence (the former "inner" sorting will remain). Sorting preferences are
stored with your user's account.

back to top

4.7.1 CPP selection

This section enables a quick definition of selection criteria for CPPs to be
displayed in the section below.

• Show all CPPs
If enabled, all CPPs are displayed.

• Case group
Defines which case groups' CPPs are displayed.

• Generation date
This criteria refers to the cases that are associated with the CPPs. Only CPPs
that are associated with cases that were created in the specified range are
shown

• Cases closed as "fraudulent"
Only CPPs that are associated with the specified amount of cases that were
closed as "fraudulent" are shown.

• Status
Restricts display of CPPs to certain status.

• Active
Depending on the selection, only CPPs that are active, inactive or both are
shown.

Remarks

• Notice that with each choice, the CPP table shown in the section below
is reloaded with the updated CPPs.

• For all selections in this section, you will be presented either with a
check box list or a drop down multi-select box, depending on the
number of choices. You can define the number of choices above which
the drop down multi-select box is shown rather than the check box list
as user preference on the "my account" page.

back to top

4.7.2 CPP

The configuration of CPPs

• Active
A CPP can be active or inactive. Inactive CPPs cannot be assigned to cases.

• Name
The name of the CPP.

• Case group
The case group the CPP belongs to. The mandator belonging of the CPP is
determined by the case group. Please note that the case group cannot be
changed afterwards.

• Status
The status of the CPP

• Comment
A comment which is added to the CPP. Comments do not influence
computation and are informational only.

• Reporting attributes
CPPs can have multiple reporting attributes. You can choose the attributes
you would like to assign and fill in values for each attribute in the appended
form fields. Please note that you have to choose a case group first.

back to top

4.8 Group by queries

The table in this section lists all group by queries that you can access.

Group by queries can be used to obtain statistical information about the
indicators of a certain attribute. For each distinct value of the defined
attribute that is stored in IBM Safer Payments' data caches, a statistical
summary will be created. It displays the number and amount of genuine and
fraudulent transactions as well as sums and averages. Additionally, it
provides the possibility to analyse which accounts were encountered for
which distinct value.

Group by queries can also be used to evaluate the performance of your
current models. You can do so by using the option "Rule performance". This
will collect the data of all rules that are defined with the setting "Performance
report".
back to top

4.8.1 Group by queries

On the upper part of the form, IBM Safer Payments provides a table of
existing group by query results. You can access past query results by clicking
on the respective row. The number of entries is limited and can configured.

Group by queries have the following settings:

• Name
Name that will be shown with the query results.

• Comment
Used to describe the group by query. The comment is displayed to users at
various places and may thus contain further explanations.

• Mandator
Each group by query belongs to one mandator. Once created, mandator
ownership does not change.

• Rule performance
If you would like to use this group by query to analyze the performance of
your model revisions, you can do this by enabling this setting. Enabling rule
performance analysis will override your group by attribute settings as these
are mutually exclusive. To select a rule for performance analysis, you need to
define the respective value on its definition form.

• Group by attribute
To analyze the fraud distribution among the values (categories) of any
attribute, you can select this attribute here.

• Account analysis
Account analysis will prepare a breakdown which accounts had transactions
containing the grouping value.

• Include DDC
If enabled, group by queries may access data that is available only on disk.
Note that this might have severe impact on performance and that it is thus
not recommended to activate this setting.

• Show graph
If enabled, a graph will be appended to the result table. It is recommended
not to use this setting for group by query results that have more than 10
groupings.

Timing analysis

The timing analysis setting will provide trending analysis for group by
queries. You can select both the timestamp attribute and the resolution of

the analysis:

• Timestamp criterion
This attribute will be used for the trending analysis. Typically, the meta
attribute timestamp is used here.

• Resolution
Select which resolution will be used for the timing analysis. The resolution is
calendar based, so if you select a daily resolution, all records that took place
on the same day will be treated identically.

Group by query data selection

The data selection for queries allows for both choosing an interval and
additional conditions. Refer to the section help pages for more information.
back to top

4.8.2 Group by queries result

The grouping query result table shows the number and amount of genuine
and fraudulent transactions as well as sums and averages for each
encountered value of the grouping attribute. To obtain information about the
affected accounts, you can click on the respective field in the account
column.

Note that the number of displayed accounts is limited due to performance
considerations.
back to top

4.9 Reporting queries

The table in this section lists all reporting queries that you can access.

Reporting queries can be used to obtain statistical information about the
indicators of a certain attribute. For each distinct value of the defined
attribute that is stored in IBM Safer Payments' data caches, a statistical
summary will be created. It displays the number, amount and average of
transactions defined by performance indicators. Additionally, it provides the
possibility to analyse which accounts were encountered for which distinct
value.

Reporting queries can also be used to evaluate the performance of your
current models. You can do so by using the option "Rule performance". This
will collect the data of all rules that are defined with the setting "Performance
report".
back to top

4.9.1 Reporting queries

On the upper part of the form, IBM Safer Payments provides a table of
existing reporting query results. You can access past query results by clicking
on the respective row. The number of entries is limited and can be
configured.

Reporting queries have the following settings:

• Name
Name that will be shown with the query results.

• Comment
Used to describe the reporting query. The comment is displayed to users at
various places and may thus contain further explanations.

• Mandator
Each reporting query belongs to one mandator. Once created, mandator
ownership does not change.

• Rule performance
If you would like to use this reporting query to analyze the performance of
your model revisions, you can do this by enabling this setting. Enabling rule
performance analysis will override your reporting attribute settings as these
are mutually exclusive. To select a rule for performance analysis, you need to
define the respective value on its definition form.

• Reporting attribute
To analyze the fraud distribution among the values (categories) of any
attribute, you can select this attribute here.

• Account analysis
Account analysis will prepare a breakdown which accounts had transactions
containing the grouping value.

• Include DDC
If enabled, reporting queries may access data that is available only on disk.
Note that this might have severe impact on performance and that it is thus
not recommended to activate this setting.

Timing analysis

The timing analysis setting will provide trending analysis for reporting
queries. You can select both the timestamp attribute and the resolution
of the analysis:

• Timestamp criterion
This attribute will be used for the trending analysis. Typically, the meta
attribute timestamp is used here.

• Resolution
Select which resolution will be used for the timing analysis. The
resolution is calendar based, so if you select a daily resolution, all
records that took place on the same day will be treated identically.

Reporting Query data selection

The data selection for queries allows for both choosing an interval and
additional conditions. Refer to the section help pages for more
information.

back to top

4.9.2 Reporting queries result

The reporting query result table shows the number, amount and average for
each encountered value of the grouping attribute for each defined
performance indicator. To obtain information about the affected accounts,
you can click on the respective field in the account column.

Note that the number of displayed accounts is limited due to performance
considerations.
back to top

4.10 Masterdata query

Masterdata query definitions have the following settings:

• Index attribute
Select the index dimension to which the masterdata element is associated.

• Value
Enter the value of the index attribute for which the masterdata should be
displayed. Formatting characters like digit group separator and decimal
separators will be removed automatically

back to top

4.10.1 Masterdata

The masterdata query lists all masterdata elements that are defined for an index.
The result table shows all current values for the entered value.
back to top

4.11 Common point queries

The table lists all common point queries that are defined for which you have
access privileges.

Common point queries can be used to find equal values in transactions for
certain index values.

Example:

There are three customer IDs 43211234, 12345678 and 87654321. The
attribute CustomerID is indexed and has a sequence. The index has five
entries for 43211234, three entries for 12345678 and two entries for
87654321.

CustomerID Amount MerchantID Fraud

43211234 7.20 B3456 false

43211234 7.20 B3456 false

43211234 7.20 B3456 false

43211234 7.20 X1234 false

43211234 57.20 A7890 true

12345678 7.20 A4321 false

12345678 7.20 X1234 false

12345678 57.20 A2345 true

87654321 7.20 X1234 false

87654321 57.20 A6578 true

A common point query would find following common points for the common
point attribute MerchantId:

MerchantID Common points Index values

X1234 3 3

B3456 3 1

A4321 1 1

A2345 1 1

A6578 1 1

A7890 1 1

X1234 was found in 3 transactions, it has 3 common points. All 3 common
points had different customer ID, so this entry has 3 index values.

B3456 was also found in 3 transactions, it has 3 common points too. But all
transaction had the same customer ID, so there is only 1 index value for
B3456.

All three customers have reported fraud for transactions with different
merchants, but they all have one transaction with merchant X1234 as
common point. It could be possible, that this merchant has leaked payment
information and was the root for the following three fraudulent transactions.
back to top

4.11.1 Common point query

Common point queries have the following settings:

• Enabled
Display or hide the common point query in query results. (Notice that
disabled common point queries are unavailable in query results; they are still
shown in the table below).

• Mandator
Each common point query belongs to one mandator. Once created, mandator
ownership does not change.

• Index
This references the index which used for your common point query.

• Name
Name that will be shown with the query results.

• Comment
Used to describe the query. The comment is displayed to users at various
places and may thus contain further explanations.

• Number of records
Limits the maximum number of records to be displayed to avoid display of
unneeded data. The result is sorted to discard values with low number of first
party index values.

• Limit index search depth
If disabled, the whole index sequence is used to search for common points.
Notice that unlimited search can result in long computation and in extensive
memory consumption.

• Index search depth
Limits the number of records per index that is used to search for common
points.

Query data selection

The data selection for queries allows for both choosing an interval and
additional conditions. Refer to the section help pages for more information.

Common point attributes

Those attributes will be searched for equal values. Each attribute will be
evaluated indenpendently and will be shown in its own section in the
common point result.

Columns for common point

Those columns will be shown for a common point. Click on 'common points'
in the common point result to open a new table with common points for a
common point value.

Columns sequence

The results of common ponts are shown on a new page when clicking on
'common points' in the common point result. The width of each column can

be modified in the query result table.
back to top

4.11.2 Common point query result

Common point queries can be used to find common points in transactions.

The common point query searches the index sequence for equal values.
Every record with equal values is counted as common point, so one index
value can have multiple common points for one attribute value. There is a
result table for every common point attribute. Every result shows the
attribute value, the number of common points and the number of distinct
index values.

The result is sorted first for number of distinct index values and secondary
for number of common points.
back to top

5. Monitoring

This chapter covers the monitoring function of IBM Safer Payments.
back to top

5.1 Compliance lists

IBM Safer Payments supports all five elements of AML/CTF detection relevant
to a payment processor:

1. Service risk classification

2. Customer profiling: hidden link analysis and usage classification

3. Geographical analyses

4. Transaction behavior

5. Monitoring of sanction/terrorist lists and politically exposed persons

While 1.-4. are implemented using standard IBM Safer Payments functionality
within the model itself, IBM Safer Payments provides a specific functionality to
monitor sanction and compliance lists. The details of this functionality are
provided within this documentation.

Configuration process

To set up monitoring of sanction and compliance lists, the following steps
have to be executed:

1. Activate monitoring: As a first step, monitoring has to be activated on the
page System Configuration. IBM Safer Payments supports the OFAC sanction
list, European sanction list, global watch list, United Nations sanction list,
Russian sanction list and the list of politically exposed persons. The
mentioned lists can be activated individually. For more information refer to
the online help of the respective section on the page System Configuration.

2. Specify raw data location: To be able to import activated sanction lists, the
local storage of the raw data has to be specified on the page Cluster.

3. Configure user privileges: Privileges to view, add and edit compliance lists
have to be granted to users. These settings are done on the page Roles.
Refer to the respective online documentation for further information.

4. Import raw data: Sanction lists are imported to IBM Safer Payments during
each startup. In addition, they can be (re-)loaded manually by clicking the
respective button on this page.

5. Define compliance lists: After these preliminary steps, users with respective
privileges are able to configure compliance lists both for processing real-time
transaction and compliance ad hoc checks. To add a new compliance list,
click on the button [New compliance list] to open a configuration form. Refer
to the online documentation of this form for detailed information about the
configuration of compliance lists.

Integration

Checks against imported sanction and compliance lists can be integrated into
the real-time computation of incoming messages (using the BDI and/or MCI)
or executed manually on demand by using the ad hoc check functionality. For
both, automatic real-time checks and ad hoc checks, it is possible to create
cases to further investigate alarms. In addition, notifications can be used to
send messages to other systems or to create emails to be sent via SMTP in
case matches are detected by IBM Safer Payments.

The workflow for automatic real-time checks is similar to defined risk lists. To
integrate those checks into the real-time computation path of incoming
messages the respective XML elements (or CSV columns) - such as name,
passport number, etc - have to be mapped to IBM Safer Payments input
attributes. An additional attribute is needed to assign the computed score to.
This attribute is then added to the incoming transaction and can be used
within models to create alarms, cases and notifications. Compliance lists are
defined for a specific mandator and can be restricted to types of messages
by using computation conditions.

Compliance ad hoc checks are executed manually. This allows users to check
people against sanction lists when this is needed. During ad hoc check, all
activated algorithms are executed and a final score is displayed in case of

hits. Refer to the online documentation of the page Compliance ad hoc
checks for detailed information.

Compliance search also provides the possibility to manually search for
sanction list entries. However, only the algorithm "starts-with" is executed
and no final score is computed. Refer to the online documentation of the
page Compliance search for detailed information.

Scoring process

When compliance checks are executed, names are used as primary keys to
search for entries matching the name. To find entries on sanction lists
matching the name sent within a message (or typed in manually for ad hoc
checks) the following algorithms can be used. Each algorithm is configured
with a score. In case an entry is found with more than one algorithm, the
highest score of all fired algorithms is used:

• Direct
This algorithm is always executed and cannot be deactivated. It creates a hit
when the incoming name matches a name on the respective sanction list.
The direct matching algorithm also uses some soft matching rules, e.g.
double characters are reduced to single characters ("ss"="s"), matching
similar characters ("z"="s", "w"="v", "c"="k"). See Remarks section for
additional matching logic.

• Starts with
As an example consider the entry Chris Smith. This entry will result in a
"starts-with" hit for both the input Christian Smith and Chris Smither.

• Metaphone
IBM Safer Payments provides the possibility to use a well-known phonetic
matching algorithm - Double Metaphone. Both names of list entries and
incoming names are translated to double metaphone keys. For example, both
Christoph and result in the double metaphone key KRST. Note that activating
double metaphone algorithm can result in a huge amount of alarms. It is
recommended to only use double metaphone only in combination with other
fields and to only create cases if other fields result in matches too.

• Levenshtein
The algorithm Levenshtein computes a similarity score based on the
levenshtein distance. The computed similarity score ranges from 0 (no
similarity) to 100 (direct match).

Remarks:

• The order of names (first/middle/last names) does not affect the result for
any of the activated algorithms. Hugo Christian Smith and Christian Hugo
Smith will result in a direct hit as well as Smith Christian Hugo. Names are
split at whitespaces and activated algorithms are executed on each part of
the name separately. Assume that lists contain complete names, incoming
names are considered a match when all parts of the incoming name result in
a match for an entry. Consider the list entry Hugo Christian Smith. All

subsets of these three names, such as Hugo Smith and Christian Smith will
result in direct hits, whereas Hugo Christian Alexander Smith will not.

• Activating algorithms may influence the latency of the real-time process
significantly. This depends mainly on the used algorithms and the size of the
raw lists.

• In case an entry is found by multiple algorithms, the highest score is used
for further computations.

After list entries were found using names as a primary key, additional fields are
checked if they are configured to be used. In case of matches for additional fields,
such as passport number or date of birth, the configured score is added to the
score which is computed during the check of the names. This results in a final
score for each matching entry. The final score of the compliance score, which is
assigned to the output attribute, is the maximum score of all matching entries. If
a case is generated, all matching entries will be displayed.

Transliteration

All Cyrillic letters are transliterated to Latin letters using the ICAO (2013)
standard. This is done for both, entries on sanction lists and incoming
messages. This allows comparisons regardless whether Cyrillic or Latin
letters are used.

Reload

During a reload of compliance lists, the raw data files (sanctions lists) for all
configured compliance lists are imported and previously imported lists are
deleted. Make sure that the respective files are available on all instances and
file paths are configured correctly on the page 'Administration -> Cluster'.
Note that a reload of compliance lists can take several minutes. Depending
on your settings, transaction processing might be interrupted during the
reload process of compliance lists. Only users with the respective privileges
for compliance lists can trigger a reload of compliance lists. Reload of
compliance lists is a global privilege that needs to be configured for each
user account.
back to top

5.1.1 Compliance list

This page describes the configuration of compliance lists. For more
information about compliance lists and their integration in the IBM Safer
Payments computation process, open the general online help page
Compliance.

• Enabled
Compliance lists can be enabled or disabled. Disabled compliance lists are
not executed for incoming messages. However, they can still be manually
executed using ad hoc checks.

• Name
Name of compliance list.

• Comment
Comments are for documentational purposes only. It is advisable to comment
the compliance list in a detailed way, so the decision logic remains easy to
understand.

• Priority
By using different priorities it is possible to control the execution sequence of
compliance lists. Similar to rulesets and rules, compliance lists are computed
in ascending order within each mandator.

• Behavior
Indicates whether it is online or offline. Offline compliance lists check the
masterdata against the chosen sanction list and are run through the job
scheduling function.

• Entity type
Within sanction lists entities are separated in individual and legal entities.

• Mandator
Each compliance list is assigned to a mandator. Similar to rules and profilings
compliance lists are only executed for messages which satisfy the mandator
conditions. In addition, only attributes which are accessible by the chosen
mandator can be used for compliance checks.

• Threshold
An integer value is needed in case it is an offline compliance list. If the
threshold is exceeded, a case will be created.

• Case Class
A case class is needed if it is an offline compliance list to create cases when
threshold is exceeded.

• Score
A score for the case needs to be defined in case it is an offline compliance
list.

• Type
The type of list that will be used for sanction screening. Different types of
lists can be configured under Administration -> System configuration.

• Output attribute
Specify an attribute which is used as an output attribute for this compliance
list. This attribute has to be defined in the model (as an input attribute) and
has to be accessible by the chosen mandator.

• Index
In case it is an offline compliance list, an index needs to be chosen to be able
to get the associated masterdata.

• Maximum number of hits
To limit the time which is needed by compliance checks, a maximum number
of hits can be defined. IBM Safer Payments will stop the computation of
compliance lists as soon as this number of hits is reached. Note that this can
reduce the latency significantly but it can lead to situations where some
potential hits are not recognized.

• Additional matching algorithms
There are other algorithms available in addition to the default matching

algorithm which is always executed and performs a string comparison
between the incoming (or typed in) names and names from the sanction
lists. These algorithms provide a "softer" matching for example to be able to
detect entries with a slightly different spelling. Note that the activation of
such algorithms has a big influence on the latency. Thus, contact the IBM
Safer Payments support before activating any additional algorithms:

• Levenshtein: A similarity score ranging from 0 (no similarity) to 100
(direct match) is computed using the levenshtein distance. When
activating Levenshtein, a similarity threshold has to be configured.
Entries with a similarity greater than the configured threshold are
considered as hits.

• Metaphone: Double metaphone keys are computed both for names
included in sanction lists and for incoming names. These keys are used
for comparison. Using (double) metaphone, it is possible to detect
names used with different spellings such as Chris and Kris. Note that
metaphone should only be used together with additional fields to avoid
a large number of (false) alarms.

• Starts with: Names are compared using the starts with operator.
Christian and Chris are considered to be a match when "starts-with" is
activated.

• Ignore weak akas
If enabled, akas which are flagged as "weak" are ignored. This setting is only
available for the OFAC sanction list.

• Attributes
This section lets you define which attributes should be used as name, street,
city, country, passport number, and date of birth. Note that the attributes
together with their mappings have to be defined before they can be used
within compliance checks. Values sent within these messages are used for
checks against the respective fields of the sanction list. Note that only name
is mandatory for compliance checks. All other fields are optional.

• Score settings
Each activated algorithm is assigned with a score (an Integer number greater
than 0). Usually the scores are descending with the "softness" (or matching
accuracy) of the algorithm. In case an entry was hit by multiple algorithms,
the maximum score is used. For each additional field (besides the field
name) a score is defined. This score is added to the already computed score.
In case an incoming message matches multiple entries on a compliance list,
the highest score of all matching compliance list entries is assigned to the
output attribute.

• Computation conditions
By using computation conditions, it is possible to restrict the execution of
this compliance list to specific messages satisfying the computation
conditions. With that, different compliance checks can be used for different
type of transactions.

back to top

5.1.2 Compliance search

This page provides the possibility to search within the raw data of all loaded
compliance lists. Unlike ad hoc checks the search functionality does not
require a name. For example, it is possible to search for all entries from a
specific country or with a specific passport number.

Compliance search always uses a starts with algorithm to find matching
entries. In case you want to use other search algorithms such as Levenshtein
please use the ad hoc check functionality.

• Include list for compliance search
Defines which lists should be used to search for entries. Before using a list
for compliance search the respective list has to be loaded to IBM Safer
Payments.

• Entity type
Defines whether individual or a legal entities should be listed.

• All other fields
Using all other fields you can restrict the search results to entries that match
the entered values. Leaving an entry field empty implies no restriction.

back to top

5.1.3 Compliance ad hoc check

You can execute ad hoc checks using compliance lists that are already
defined and imported to IBM Safer Payments. Unlike the search functionality
ad hoc checks evaluate the entered values in the same way as if they were
sent within a message. That includes the processing of all enabled algorithms
and the scoring logic. However, please note that the deactivation of
compliance lists is ignored for ad hoc checks as well as computation
conditions. To execute an ad hoc check at least a name is required. All other
fields are optional.

• Computed lists
Defines which lists should be computed. It is mandatory to select at least
one list to execute ad hoc checks.

• Name
You can enter the entity name to be checked against the selected lists.

• All other fields
Except the name field all fields are optional. If a value is provided in an
optional field it will be used for scoring and add to the overall score if there is
a match. Empty fields and fields that are not enabled in the compliance lists
will be ignored during computation.

back to top

5.2 Defined risk lists

The table lists, all defined risk list definitions for which you have access
privileges.

Defined risk lists provide the possibility to maintain attribute values (entities)
that are either associated with high risk (block lists) or low risk (allow lists).
While they are similar to model lists, there are a number of substantial
differences:

• Most importantly, defined risk lists are not bound to model revisions, their
entries exist independently. As a consequence, adding or deleting a defined
risk list entry becomes effective immediately.

• Defined risk list entries are typically maintained by users that are involved in
investigation tasks rather than by users that are involved in model
generation.

• While lists within the model provide multiple operators such as starts/ends
with, contains, or close to, defined risk list entries are only checked using the
equal to operator. However, it is possible to define additional conditions which
have to be satisfied for each entry individually.

• While model lists create a new model attribute, defined risk lists assign the
"output attribute value" to the "output attribute". The "output attribute" in
this definition typically is another model "input" attribute.

• It is possible to easily add a start and an end date for each entry. With that it
may be useful to have several entries with the same value. During
computation all entries of a list are evaluated.

• Each entry on a define risk list can be disabled/deleted individually.

• Defined risk lists are optimized for large sets of entries.

Whether or not a user can view/change entries in defined risk lists is
determined by the mandator roles the user is granted.

The following actions can be performed by using the context menu

• Open definition
Open the definition of a defined risk list at the below the table.

• Copy
Copy the definition of a defined risk list to create a new, similar defined risk
list.

• Enable/Disable
Enable/Disable selected defined risk lists.

• Delete
Delete selected defined risk lists. This can also be applied to multiple rows.
Please note that you can disable defined risk lists instead of deleting them if
you want to reuse them later.

back to top

5.2.1 Defined risk list definition

The following settings are available to configure a defined risk list:

• Name
Name that will be shown to access this defined risk list in the left navigation
menu of the monitoring section.

• Comment
Used to describe the defined risk list.

• Priority
Using priorities it is possible to control the sequence of defined risk lists
within a mandator. Defined risk lists within a mandator are evaluated in
ascending order of the priorities. Possible priorities ranging from 1 to 10,000.
Please note that first defined risk lists of mandators on higher levels within
the mandator hierarchy are evaluated. Priorities only influence the sequence
of defined risk lists within a mandator.

• Mandator
Each defined risk list belongs to one mandator. Once created mandator
ownership cannot be changed.

• Input attribute
Determines for which attribute the defined risk list is defined.

• Output attribute
Defines which attribute is set by the defined risk list. This is typically an
overwritable input attribute to the model revision.

• Enable category selection
If the output attribute has categories, it is possible to choose the output
attribute value per entry from the existing categories of the output attribute
by checking this checkbox . In this case the output attribute value that is
selected for this risk list, will be used as default output attribute value for
new entries.

• Output attribute value
Defines the value which is assigned to the output attribute if a transaction
matches the entry of the defined risk list.

• Expires
If enabled, each entry can be (optionally) configured together with an
expiration date. Expiration dates can be configured for each entry
individually.

• Default life time
If expiration dates are enabled, IBM Safer Payments provides the possibility
to configure a default life time. If new entries are added to a list, the default
expiration date will be the current date plus the configured default life time.

• Starts at
If enabled, each entry can be (optionally) configured together with a starting
date. Starting dates can be configured for each entry individually.

• Explanation
The explanation text is displayed for users maintaining the defined risk list.
You may thus use it to include specific instructions for the defined risk list.

• Limit access
If enabled, the access to the entries of this risk list is limited to certain users.

• Access authorized users
These are the users who may access the entries of the defined risk, if limited

access is enabled. The entries of the risk list are not visible to users who are
not selected here.

Enable for rule actions

Defined Risk lists can be enabled for rule actions. Using rule actions it is
possible to automatically add entries to this defined risk list. Rule actions can
be defined for any rule configured in the model. The following settings are
available for the generation of entries by rule actions:

• Comment
A comment which is added to each generated entry.

• Label
A label which is added to each generated entry facilitates the identification
for future search operations. (E.g. "Created by rule action")

• Enabled
Defines whether entries created by rule actions are enabled or disabled.
Disabled risk list entries are ignored during computation. You can disable
defined risk list entries instead of deleting them, if you need to re-use the
entry later.

• Replace existing entries
If this checkbox is enabled, existing entries with the same input attribute
value as a newly generated entry will be deleted and replaced by the new
entry. If disabled, it is possible to have multiple entries with the same value.

• Filter criteria
Each entry of a defined risk list can be configured with additional conditions.
Conditions that are defined in the section 'Filter Criteria' apply to generated
entries. If additional conditions are defined only transactions that match the
value for the input attribute and that satisfy all filter criteria are assigned
with the configured output value.

Remark

In case "Expires" is enabled for this defined risk list, make sure that a proper
default life time is defined since the default life time is applied as the
expiration date for all entries created by rule actions.
back to top

5.2.2 Defined risk list entries

This table lists the defined risk list entries.

Defined risk lists provide the possibility to maintain lists of attribute values
(entities) that are either associated with high risk (block lists) or low risk
(allow lists). While they are similar to model lists, there are a number of
substantial differences:

• Most importantly, defined risk lists are not bound to model revisions, their
entries exist independently. As a consequence, adding or deleting a defined
risk list entry becomes effective immediately.

• Defined risk list entries are typically maintained by users that are involved in
investigation tasks rather than by users that are involved in model
generation.

• While lists within the model provide multiple operators such as starts/ends
with, contains, or close to, defined risk list entries are only checked using the
equal to operator. However, it is possible to define additional conditions which
have to be satisfied for each entry individually.

• While model lists create a new model attribute, defined risk lists assign the
"output attribute value" to the "output attribute". The "output attribute" in
this definition typically is another model "input" attribute.

• It is possible to easily add a start and an end date for each entry. With that it
may be useful to have several entries with the same value. During
computation all entries of a list are evaluated.

• Each entry of a define risk list can be disabled/deleted individually.

• Defined risk lists are optimized for large sets of entries.

Defined risk lists offer several functions that are explained below:

• Import entries from a file
Importing alert lists provides the possibility to quickly add entries to a
defined risk list without manually creating them.

• Add a new entry
You can add a new defined risk list entry manually.

• Download table content as CSV-file
All entries that match the selection criteria of "Risk List Entries Selection" can
be exported to a CSV-file. In case the selection contains sensitive data the
CSV-File will be exported as part of an encrypted zip archive.

• Delete all entries that are currently shown
All entries that match the selection criteria of "Risk List Entries Selection" will
be deleted.

• (De)activate all entries that are currently shown
All entries that match the selection criteria of "Risk List Entries Selection" will
be (de)activated. Entries that are already (de)activated will stay
(de)activated.

• Audit trail
All changes made to a defined risk lists are stored within the audit trail.
Access to the audit trail is controlled by the respective mandator roles of
users.

Whether or not a user can view/change entries in defined risk lists is
determined by the mandator roles granted to users.

Remark:
The maximum number of rows which are displayed in the table is limited due
to browser limitations. The maximum number of displayed rows can be

configured on the page "Administration > System configuration > Defined
Risk Lists".
back to top

5.2.2.1 Risk list entries selection

This section enables a quick definition of selection criteria for defined risk list
entries to be displayed in the section below.

• Show all entries
Ignore all entered restrictions and display all entries of the defined risk list.

• Input attribute filter
Restricts entries shown to entries whose input attribute value starts with the
typed value. Leaving an entry field empty implies no restriction. In case the
defined risk list input attribute is encrypted you need the permission to view
unmasked data to use this filter.

• Comment
Restricts entries shown to entries with a comment that include the typed
value. Leaving an entry field empty implies no restriction.

• Label
Restricts entries shown to entries with a label that include the typed value.
Leaving an entry field empty implies no restriction.

• Last changed on
Restricts entries shown to a date (time) interval. All entries that have been
changed between the interval start value (inclusive) and the interval end
value (inclusive) will be displayed. Leaving an entry field empty implies no
restriction.

• Valid
Restricts entries shown to a date (time) interval. All entries that are valid
between the interval start value (inclusive) and the interval end value
(inclusive) will be displayed. Leaving an entry field empty implies no
restriction.

• Expires
Restricts entries shown to a date (time) interval. All entries that expire
between the interval start value (inclusive) and the interval end value
(inclusive) will be displayed. Leaving an entry field empty implies no
restriction.

• User
Defines which users' entries are to be displayed. Notice that an entry belongs
to the last user that changed the entry.
When no users are selected, entries by all users will be shown including
deleted ones or those that do not anymore have the privilege to edit risk
lists.

• Show enabled
If selected, enabled entries are shown.

• Show disabled
If selected, disabled entries are shown.

back to top

5.2.2.2 Defined risk list entry definition

The configuration of defined risk list entries

• Value
The value of the defined risk list entry. Please note that you cannot change
the value of an existing entry.

• Output attribute value
If the output attribute of the defined risk list has categories and category
selection was enabled in the defined risk list's definition, the output attribute
value can be chosen from the output attribute's categories per entry. The
preselected value is the default output attribute value of the defined risk list.

• Comment
A comment which is added to the entry. Comments do not influence
computation and are informational only.

• Label
A label which is added to the entry. Usually a label is used to provide
additional information. (E.g. "Import August 2013")

• Enabled
A defined risk list entry can be enabled or disabled. Disabled risk lists entries
are ignored during computation. You can disable defined risk list entries
instead of deleting them, if you want to re-use the entry later.

• Starts at
In case the 'start at' option is enabled for the defined risk list, this field
configures the starting date for the entry. The entry is valid once the starting
date is reached (inclusive). In case this field is empty, no starting date is
applied.

• Expires at
In case the expiration of entries is enabled for the risk list, this field
configures the expiration date for the entry. The entry is expired once the
expired date is reached (inclusive). In case this field is empty, no expiration
date is applied.

• Filter criteria
Each entry of a defined risk list can be configured with additional conditions.
If additional conditions are defined in the section 'Filter Criteria' only
transactions that match the value for the input attribute and that satisfy all
filter criteria are assigned with the configured output value.

back to top

5.2.2.3 Defined risk list import

Importing risk lists provides the possibility to quickly add entries to a defined
risk list without manually creating them. The import file is expected to have
one entry in every line and it has to be encoded in UTF-8. The input value

has either to be followed by a line break / space character or the value has
to be encapsulated in quotes. In case it is followed by a space character all
characters between the space character and the line break are ignored. A
header is not needed, in case a header exists it will be imported as a normal
line.

• Label
A label which is added to each entry facilitates the identification for future
search operations. (E.g. "Import August 2013")

• Comment
A Comment which is added to each entry.

• Enabled
A defined risk list entry can be enabled or disabled. Disabled risk list entries
are ignored during computation. You can disable defined risk list entries
instead of deleting them, if you need to re-use the entry later.

• Starts at
In case the start of entries is enabled for the risk list, this sets the starting
date of the entries. The entry is valid once the starting date is reached
(inclusive).

• Expires at
In case the expiration of entries is enabled for the risk list, this sets the
expiration date of the entries. The entry is expired once the expiration date
is reached (inclusive).

• Replace existing entries
If this option is activated, all existing entries with the same value will be
removed and replaced by the new entry. If this option is not activated,
another entry is added. In this case importing an already existing value to
the risk list will lead to multiple entries with the same value.

A click on the save button opens a window where the file to import can be
selected. Once the file is selected the import starts automatically. It is therefore
important to fill in all fields before you select the file.
back to top

5.2.2.4 Import risk list report

The report is a summary of the import, which lists the key numbers for the
import. For a detailed overview you can download the CSV-export, which lists
the changes per element.

The report shows four counters that are explained in the following:

• Number of added elements
All elements that have been successfully imported to the defined risk list.

• Number of replaced elements
In case the option overwrite is active and the risklist you are importing to
has already existing values with the same value, all existing values will be
replaced by the new one. The number of replaced elements describes the

total number of elements that have been replaced by the newly imported
ones.

• Number of skipped elements
If an entry cannot be imported, it counts as skipped element. (E.g. importing
a text-entry to a defined risk list with a numeric input attribute). For details
about the skipped element check the CSV-report.

• Number of times elements have been found in other lists
Count the number of times an element already occurs in another defined risk
list with the same input attribute. For details about the found elements check
the CSV-report.

back to top

5.3 Merchant monitoring rules

The table lists all merchant monitoring rules that are defined and for which
you have access privileges.

Merchant monitoring rules can be used to analyze merchants or acquirers by
means of certain rule criteria. An example would be to find merchants which
have been inactive (for which no transactions occurred) during a certain
number of consecutive calendar periods.

• A merchant monitoring rule in general uses calendar profiles or attributes,
time ranges and thresholds to calculate whether one or more merchants met
the rule.

• A rule uses one of several rule templates, each with its own input settings
and its own calculation logic.

• For rules that use calendar profiles, the rule calculation logic takes amounts
and / or frequencies of calendar profiles into account. For rules that use
attributes, the rule calculation logic calculates along a sequence of records.

• Users who have the privilege can add merchant monitoring rules to
"Administration/Jobs" when using "Generate report" as "Job type". With such
a job CSV exports can be created for the merchant monitoring rule. This
export then contains the merchant monitoring report. Multiple rules can be
added to a single job.

Whether or not a user can view/change entries in merchant monitoring rules
is determined by the mandator roles this user is granted.

The following actions can be performed by using the context menu

• Open definition
Open the definition of a merchant monitoring rule at the below table.

• Copy
Copy the definition of a merchant monitoring rule to create a new, similar
merchant monitoring rule.

• Delete
Delete selected merchant monitoring rules. This can also be applied to

multiple rows.
back to top

5.3.1 Merchant monitoring rule

The following settings are available to configure a merchant monitoring rule:

• Name
Name of the merchant monitoring rule. On CSV export it will be shown as "
<type of the rule>: <name>"

• Comment
Used to describe the merchant monitoring rule.

• Mandator
Each merchant monitoring rule belongs to one mandator. Once created
mandator ownership cannot be changed.

• Type

Select between several types of rules. Each type provides its own input
settings and follows its own rule calculation logic. In the rule types input
settings you can select an acquirer index, time range(s) and the
respective calendar profiles and thresholds or attributes. See the
specific type's help for details.

You can select between the following types:

{0}

back to top

5.4 Index based evaluations

The table lists all index based evaluations that are defined. Whether or not
you can view or change index based evaluations is determined by the
mandator roles you are granted.

Index based evaluations can be used to analyze historical data for each node
of a given index and create alarms when certain conditions are fulfilled.
Typically, the index either represents an account or a customer, so index
based evaluations can be used to implement KYC / AML procedures.

• An index based evaluation uses calendar profiles, events and masterdata to
define alarm generation conditions.

• Calendar profiles are not used directly but via calendar computations defined
within the index based evaluation.

• Index based evaluations also support multiple relations between two indexes
e.g. between customers and accounts. In such a setup the index based

evaluation runs through each primary index node (e.g customer) but checks
the alarm generation conditions for each of their associated index nodes
(e.g. accounts).

• Users who have the privilege can execute index based evaluations using a
Job of type "Execute index based evaluation". A single job can execute a
number of index based evaluations. Each evaluation will run isolated from
the others so there will be no interaction between them.

• Each index based evaluation must reference a case class of type "index
based evaluation".

• Created cases contain the result of each calendar computation defined
in this index based evaluation at job execution time.

The following actions can be performed by using the context menu

• Open definition
Open the definition of an index based evaluation.

• Copy
Copy the definition of an index based evaluation to create a new index based
evaluation with the same values.

• Delete
Delete selected index based evaluation. This can also be applied to multiple
rows.

back to top

5.4.1 Index based evaluation

This page describes the configuration of an index based evaluation.

• Enabled
Only enabled index based evaluations will be executed by a job. Disabled
evaluations will be skipped and can't be selected for new jobs.

• Name
Name of the index based evaluation.

Note: The name must be unique.
• Comment

Comments are for documentational purposes only. It is advisable to comment
the index based evaluation in a detailed way, so that the decision logic
remains easy to understand.

• Mandator
Each index based evaluation is assigned to a mandator.

• Alarm type
Defines if the index based evaluation should create cases, notifications or
both.

• Case class
A case class of type "index based evaluation" must be selected to create
cases.

• Case score
A case score greater than or equal to 0 must be entered to create cases.

• Notification
The notification to be sent. The available options depend on the selected
mandator. Since index based evaluations are based on an index node, the
message template can only reference attributes (using {attribute name})
and masterdata (using [[masterdata attribute name]]) belonging to the
index or associated index (see section help for "Evaluate Multiple Values").

• Index
An index needs to be chosen. When not evaluating multiple values this index
decides which masterdata, events and calendar profiles are available.

• Evaluate Multiple Values
Enabling this allows you to evaluate multiple values for each node of the
primary index. A typical example would be to evaluate all customers and
their associated accounts. Please see the section help for further information.

• Calendar Computations
You may define one or more calendar computations to be used in the
conditions below. Calendar computations become available in the conditions
when all of their fields are filled with valid values.

• Alarm Generation Conditions
You may define one or more conditions that have to be met during execution
of the index based evaluation to determine if an alarm should be created or
not. You can use masterdata, events and calendar computations belonging
either to the index or, when evaluating multiple values, the associated index.

back to top

5.4.2 Evaluate multiple values

Enabling this allows you to evaluate multiple values for each node of the
primary index. A typical example would be to evaluate all customers and
their associated accounts. To do this you would select an index on the
customers as the primary index and use the additional options in this section
to set up the associated data to evaluate.

• Multiple value masterdata
Here you select a multiple value masterdata defined on the primary index
which stores the values you want to evaluate for each node of the primary
index. In our example you would select a masterdata containing all accounts
for each customer.

• Associated index
To find calendar profiles, events and masterdata associated with the values
stored in the multiple value masterdata, you need to select an associated
index to use. In our example this would be an index on the accounts. When
selecting a multiple value masterdata defined with an associated index this
field will be automatically filled out if it was empty before.

• Relationship Conditions
If the multiple value masterdata has relationship attributes you can define
conditions on those to limit the associated index nodes that are evaluated. In

our example you could use this to evaluate only accounts the customer is
actually the owner of. When no relationship condition is defined, all
associated index nodes belonging to the primary one will be evaluated.

Alarm Generation Conditions and Multiple Value Evaluation
When evaluating multiple values using the options above, alarm generation
conditions will be evaluated for each associated index node belonging to a
given primary index node. In our example all accounts for each customer
would be evaluated as long as they fulfill the relationship conditions, if there
are any. There are a few things to be noted:

• Calendar computations are calculated for each associated index node and
then combined using the aggregation type defined. Those final values are
then used to evaluate the alarm generation conditions.

• Masterdata and event values are evaluated for each associated index node.
An alarm generation condition is fulfilled when at least one of those nodes
matches it.

back to top

5.4.3 Calendar computations

Calendar computations are intermediate values based on calendar profiles
that can be used in the alarm generation conditions below. They become
available in the conditions once all fields have been filled with valid values.
Use the button [New calendar computation] to create new computations.
Once created, each computation can be deleted using the [Delete] button in
its top right corner.
back to top

5.4.4 Calendar computation

Calendar computations are intermediate values calculated using a calendar
profile. They can be used in the alarm generation conditions after all fields
are filled with valid values. They offer the following settings.

• Name
The name of the calendar computation.

Note: The name must be unique within this index based evaluation.
• Calendar profile

The calendar profile the computation uses. Only calendar profiles belonging
to the index or the associated index (when evaluating multiple values) are
available.

• Period value
Calendar computations can either use the amount or the frequency stored in
each period of the chosen calendar.

• Computation type
Defines how the values of different calendar periods are combined.

• Aggregation type
Only visible when evaluating multiple values. Defines how the computation
results for each associated index node will be combined.

• Past periods
The number of past periods this computation should use. Calendar periods
are denoted by numbers: the value "0" corresponds to the current period,
the value "1" to the first past period, and the value "(n-1)" corresponds to
the oldest period (n is the "number of periods" as set in all calendar profiles'
definitions). There are two ways you can define periods:

• n
If you just specify a single number, exactly this calendar period is used
for the rule calculation.

• n~m
If you specify a number interval, all calendar periods of this interval are
checked separately if they meet the rule. Notice that this interval is
inclusive, for instance, if you define "3~5", the calendar profiles' period
settings is (are) "monthly" and the most current transaction was in mid-
December, the periods checked in the rule would include the past
months July, August, and September of this year.

back to top

6. Model

This chapter covers the case model revision maintenance functions of IBM
Safer Payments.
back to top

6.1 Model revision selection

This section explains how a model revision is selected.
back to top

6.1.1 Mandator selection

The table below lists available mandators. Click on the respective row to
access all model revisions of the respective mandator.

The details of IBM Safer Payments revision control is described on the help
page of the model revision selection below.
back to top

6.1.2 Revision control

In IBM Safer Payments, all settings dealing with how decisions are made are
contained in a so-called "model". Therefore, changes to the model can have
significant effect on IBM Safer Payments operations. In order to control this,
model changes are "managed" by a revision control system to ensure that
changes can be audited and reverted. This section lets you perform actions
on all model revisions of this mandator.

Filter settings

Let you select which model revisions are to be shown in the table using the
drop-down list box above. Typically, the "Active" setting is the most
appropriate for everyday work as it hides all retired revisions.

Revision actions

To perform actions on a single model revision, click right on the respective
row to open a context menu that offers (some of) the following actions:

• View
Open revision in read-only mode.

• Edit
Open revision for edit (causes the revision to be automatically reserved for
the user until shared).

• Share
Removes the reservation for this user.

• Copy
Creates a copy of this revision as challenger.

• Golive
Initiates the promotion of this revision into production.

• Delete
Permanently deletes revision

• Compare revisions
To compare two model revisions, hold the [Ctrl] key and select the revisions
using left mouse clicks. Then click right to generate a report on the
differences.

You may also open a revision by left-clicking on the respective row. If this
revision was reserved for you, it will open in edit mode. Otherwise it will
open in view mode.

Revision control

In most IBM Safer Payments applications, the model revision is constantly
changed. Most changes are intended to counter emerging fraud patterns;

others can be for various reasons, such as changes in the data structure or
policy changes.

Nearly all such changes involve multiple elements, for instance a new
counter is defined, an existing calendar profile is adapted, and a few new
rules are inserted. If these changes were to come into effect immediately,
there could be unwanted side effects during the time that the changes are
made, and there would be no way to study the performance of the changed
model beforehand. For instance, a model change to catch a new fraud
pattern may in fact catch this fraud pattern well, but may generate an
excessive number of false alerts, if it cannot be changed in advance.

Therefore, IBM Safer Payments allows users to "accumulate" the element
changes within a so-called "challenger revision", and only accept them
together into productive usage once all changes are complete and – typically
– tested against past data to ensure that the challenger performs better than
the champion.

Revision lifecycle

A new IBM Safer Payments installation is created with one (top) mandator
and one champion revision of this mandator. With the champion revision, an
initial model revision is defined. To perform statistical analyses on sample
data and to check the performance of the model designed, IBM Safer
Payments provides simulation capabilities directly in the model maintenance
functionality.

Once the champion performs as desired, the so-called "golive" process is
started. This process involves two steps. First IBM Safer Payments creates a
"todo" list of every change this golive involves. These changes, and a
detailed description of their consequences, are printed out as a report for the
user. The user may now either accept and confirm the changes or cancel the
golive process. If the changes are confirmed, the challenger becomes the
champion. If the process is canceled, the challenger remains the challenger.

IBM Safer Payments always only executes the settings of the champion
revision. If no champion revision exists, IBM Safer Payments ignores this
mandator. If a challenger revision exists, the golive of a challenger promotes
this challenger to be the new champion, and demotes the champion to be
retired.

It is important to notice that if multiple challengers existed when one
challenger was promoted to champion, the respective other challengers are
invalidated. This is because once new challengers are derived from the now
new champion; these old challengers could be inconsistent.

At any given time, there can be any number of challengers and any number
of retired revisions per mandator, yet there can only be one champion
revision.

Only challenger revisions can be edited and simulated. Challengers can be
considered "candidates" that would be promoted to champions once they are
considered to improve performance.

Challengers are created either automatically from scratch (with the addition
of a new mandator), or as copies from champions or other challengers.

Because challengers are "work in progress", they can also be deleted. Any
revision that was ever in production (i.e. a champion) may never be deleted,
for auditing purposes.

The golive process in a cluster is described here.

Model inheritance

As pointed out in structural configuration, within a mandator structure,
model revisions inherit all elements of their head mandators (i.e. all
mandators on the path to the top mandator). Since each mandator in a
mandator structure, however, has its own revision sequence, this has some
implications:

• Mandator challengers only inherit elements of the champion revisions of their
head mandators.

• In a challenger of a head mandator, an element can only be deleted if it is
not used by any champion or challenger of its associated mandators.

Notice that the inheritable elements are listed in the table of the respective
element type.

Info bar

Once a revision is opened, a vertical navigation menu on the left side of the
page enables direct access to all elements of a model revision. While viewing
or editing a revision, a horizontal info bar also appears directly under the
main IBM Safer Payments navigation bar showing:

 Edit|View [RevisionNumber] RevisionName of MandatorName

so that users are never in doubt on which revision they are working.

Revision numbers

Within each mandator, all revisions are automatically numbered. The
numbers are generated sequentially for challengers at the time when they
are generated as copy of a champion or another challenger to ensure that
users have an easy way to tell the sequence of revisions generated.

Editing revisions

Each challenger can only be edited by one user at a time. For this, a user
must explicitly set a challenger into "edit" mode. From then on, the revision
remains locked to this user until the moment the user releases the lock
("share"). The locking is stored on disk, thus even a reboot of IBM Safer
Payments will not release the lock. There is no explicit way to force unlock of
a revision, however, the locked revision can always be copied as a new
challenger.

Import/export

Because of the complex relationships between mandator revisions, IBM Safer
Payments does not provide import/export features for revisions. To exchange
an IBM Safer Payments configuration, you will need to copy the entire
contents of the "cfg" directory.

Auditing

Each revision control action can be logged in the IBM Safer Payments audit
logs, where it is stored chronologically. In addition to this, the Revision
section of the Model page for each revision shows when and by whom a
revision:

• is currently being edited,

• was last changed,

• has been promoted to production ("golive"), and

• has been retired.

Challenger status

A challenger model revision is where all the analytical and model
generation/adaptation takes place. Because of some major computational
steps behind these steps, there are a number of status and status changes
considered with each challenger.

On IBM Safer Payments startup, all challenger revisions are put into Simulate
status (the same is true for a challenger revision that is generated as a copy
of the champion revision). In Simulate status, the MDC values for all profiling
output attributes are computed from the data of the input and profiling
output MDC of the current champion (notice that simulation is limited to MDC
available data to ensure that real-time performance is never compromised).
This step is called "simulation" as it simulates a situation in which the
respective attribute had always been there.

The typical usage for this is for a fraud analyst to devise for instance a new
counter, and via simulation, be able to perform analyses on this counter
output attribute value distribution, generate rules using this output attribute,
and simulate performance of the model revision including this new profiling
item.

During simulation, the model revision is not available for editing to avoid
user error based on incomplete data. Because simulation is only performed in
MDC, computation of simulation results is very fast.

If there are no profilings requiring simulations, the simulation step is
skipped, and the revision status is set to Analyse. Here distributions of all
attributes as well as rule performance statistics are generated. Because of
the IBM Safer Payments incremental sample estimation technology, results
are immediately available. Once the samples have reached 100%, the
revision status is set to Ready. In both statuses Analyse and Ready, the
decision logic revision can be edited. Any change to the revision that could
have computational impact, however, restarts Analyses, or – if simulation is
required – sets the status back to Simulate.

Once rule generation is started for a ruleset of a revision, the status is set to
Generate Rules, and – with the exception of the generated rules themselves,
no part of the decision logic can be edited until rule generation is completed.

Once a challenger is retired or promoted to champion, all simulation and
analyses results are automatically discarded.

Status bar

Whenever you work with a decision logic revision, the small dark gray
horizontal line under the main menu bar tabs is widened and provides quick
information about the revision you are working with. These are the
information parts for the various statuses:

• Performing simulation [n] RevisionName of Mandator
Computation of simulated attributes in progress, view only.

• Edit (analyzing) [n] RevisionName of Mandator
Computation of analyses in progress, editing possible.

• Edit [n] RevisionName of Mandator
Standard edit mode.

• Generating rules [n] RevisionName of Mandator
Rule generation in progress, view only.

• View [n] RevisionName of Mandator
View only, no simulation, and no rule generation.

Notice that the status bar does not automatically update.
back to top

6.2 General revision settings

The upper section of the "general" page of a model revision provides the
same actions for this revision in its toolbar as the context menu on the
revision in the model revision table of the model tab page:

• Save
Save name and comment settings.

• Share
Unblock this model revision (so that other users can edit it).

• Copy
Create a copy of this model revision (and reserve it for edit by me).

• Golive
Initiate golive process by checking the necessary modifications and providing
a report on all changes (this report must then be confirmed to initiate the
actual golive process).

• Model revision print view
Generate a model revision report in a new browser window. You can choose
the scope of the report.

• Delete
Deletion of this model revision.

Notice that the actions available depend on the status of the model revision
and your privileges. Refer to Revision Control for details.

The remainder of the section lets you name and comment this model
revision, and view its status, and when and by whom it was set to a certain
status.

xDC Statistics

The subsequent sections of the "general" page of a model revision provide an
overview on the main memory and disk memory usages of the model
revision.

The details on how IBM Safer Payments stores data is described in the
Storage Architecture help page.

Audit Trail

The section Audit Trail shows an overview of the last 10 changes made to the
currently viewed revision. Clicking the button in its toolbar shows a detailed
audit trail.
back to top

6.3 Model revision audit trail

This report lists the detailed changes made to this model revision. By clicking
on a row you will see the detailed changes made to the element. There are
four distinguishable types of changes:

• Added or removed elements are marked red.

• Changed elements that have an impact on computation are marked yellow.

• Changed elements that have no impact on computation are marked green.

• Unchanged elements aren't marked with a color.

A click on "Old Value"/"New Value" leads to the elements definition.

Note: Due to browser limitations and in terms of the overall usability of the
revision audit trail, only a certain number of detailed changes to categories
can be stored. Once there are more than x changes to the category list only
a summary will be stored. The maximum number of categories stored in the
audittrail can be changed under "Administration" -> "System configuration" -
> "Decision Models" -> "Maximum number of category changes". Changing
this parameter does not affect previously written entries.
back to top

6.3.1 Filter audit trail entries

Based on the selection criteria provided below the audit trail table will be
filtered. Press the execute button to apply your selection criteria and to
refresh the audit trail.

The following selection options are available:

• Element name
The search will check if this provided string is part of the element name.

• Type of change
Select a certain type of change that is displayed.

• Type of entry
Select the element type that is displayed.

• Editing users
Only display the changes done by certain users.

• Changed on
Only display changes that happened in the selected time frame.

back to top

6.3.2 Model revision compare

This report lists the differences between two model revisions. By clicking a
row the detailed differences for the selected element are displayed. There
are four distinguishable types of changes:

• Added or removed elements are marked red.

• Changed elements that have an impact on computation are marked yellow.

• Changed elements that have no impact on computation are marked green.

• Unchanged elements aren't marked with a color.

After opening the details table a click on the revision-name leads you to the
elements definition.

Note: The buttons " expand all / collapse all "are only available when the
option "Show unchanged model elements" in "My Account" is disabled. This
restriction is necessary due to performance reasons, because the browser
can only render a certain number of table rows at once.

Note: Due to browser limitations and in terms of the overall usability of the
revision compare function only a certain number of detailed changes to
categories can be displayed. Once there are more than x changes to the
category list only a summary will be displayed. The maximum number of
categories shown in the revision compare can be changed under
"Administration" -> "System configuration" -> "Decision Models" ->

"Maximum number of category changes". Changing this parameter affects
the compare revision function immediately.
back to top

6.4 Modeling

The process of creating model revisions assessing the likelihood of a
transaction being fraudulent is referred to as "modeling". This section thus
comprises all tools needed for this task:

• Test
Testing allows to create "real-world like" transactions in a spreadsheet type
metaphor, and have IBM Safer Payments compute its intermediate and
output attributes from this. It is thus a quick and easy tool to verify behavior
and to perform "what-if" type analyses.

• Simulation
Simulation allows for the computation of new and modified model elements
as if they had been in place with past time periods. In IBM Safer Payments,
simulation is complemented with a large number of analytical tools to let you
get a good understanding on how the model performs with the data.

• Analysis
Statistical evaluation of original transaction data, derived attributes, and rule
performance.

• Rule generation
Automatic and assisted rule generation let you generate complete models
from scratch or adapt existing models to emerging fraud patterns.

These functions are directly available from the navigation menu left
underneath the "Modeling" entry. The modeling page itself contains general
configuration items that are used in all modeling functions.

The attribute modeling section allows for each attribute to define how it shall
be used in:

• Test,

• Simulation,

• Analysis, and

• Rule generation.

To allow for attributes to be easily found even in models with multiple
hundreds of attributes, the toolbar contains filters:

• Show/hide inherited attributes (tool button)

• Filter for certain attributes (drop list selection)

Notice that the attribute drop list is divided into two sections "origin" and
"message attributes". If you check any of the "origin" entries, all attributes of

this origin are shown in the table below. By selecting any of the (mandator
defined) messages, all attributes that are mapped (with this model revision)
in the respective message are also shown in the table below. If you select
inputs as well as outputs in the origin section, the message section will be
hidden, since you implicitly already selected all messages.

To change the modeling settings for test, analysis, and rule generation in
details, simply click on the respective attribute row.

Remarks

Notice that you may select multiple rows in the table using the checkboxes to
open a context menu. The context menu lets you enable or disable the
selected attribute for any of the modeling uses. If no modeling selections for
an attribute had never been made for this attribute, IBM Safer Payments will
make an educated guess on the settings (that you can always change later);
if previously modeling selections were made, they are remembered.
back to top

6.4.1 Settings

This section covers modeling settings.
back to top

6.4.1.1 Modeling

Each modeling setting defines if and how both own and inherited attributes
are to be used in attribute analyses and rule generation (these settings do
not influence how IBM Safer Payments makes decisions).

The choice of analysis model usages depends on the attribute's data type
and on the nature of the attribute itself:

• Categoric
This is best suited for attributes that have values on a nominal scale. In
other words, the values just label concepts, and the order and absolute
values have no meaning outside this. Typical examples include: merchant
category codes, point of sale entry mode codes, country codes etc. The "max
computed indicators" field lets you specify the maximum number of
categories to be considered (to avoid overly lengthy computation times).

• Integer
This is typically used for attributes that represent a counter where the
number of events to be considered differently is not significantly higher than
a few dozen (in which case the interval model usage might be better suited).
The "max computed indicators" field lets you specify the maximum number

of values -- which then is also the highest value minus one -- to be
considered (to avoid overly lengthy computation times).

• Intervals
This is best suited for attributes with continuous values with a near uniform
distribution. For analyses and rule generation with this attribute, IBM Safer
Payments creates a number of equally sized intervals. The value range in
which the intervals are generated, and the size of the intervals, are specified
by the from/step/to settings.

• Logarithmic
Typically for all amount type numeric attributes. For analyses, this model
usage creates logarithmic intervals using predefined 16 intervals of non-
equal size.

• Quantiles
This is similar to the logarithmic model usage of analysis. However, while a
pre-defined log scale is best for the kind of exploration needed for analysis,
for rule generation, the model usage "quantiles" is more appropriate as it
creates intervals so that the total value of fraudulent transactions is roughly
the same for all intervals. Notice that this model usage cannot utilize multiple
CPU cores and may thus be significantly slower compared to other model
usages. If you experience substantial slowdown, you may consider using
custom intervals instead.

• Custom Categories
This model usage lets you pre-define which categories are to be used. If you
select this option, a section opens that lets you enter the values. This section
also contains a more detailed online help function.

• Custom Intervals
This model usage lets you pre-define which intervals are to be used. If you
select this option, a section opens that lets you enter the values. This section
also contains a more detailed online help function.

The setting "max selected indicators" lets you define how many (single)
indicators IBM Safer Payments would list in a proposed rule condition.
back to top

6.4.1.2 Custom categories

The custom category section allows you to define a number of categories
that are used as indicators (potential parts of a condition) for rule
generation:

• To add a category, select [New category] from above.

• To delete a category, select [Delete] left of each category line.

• The values entered are interpreted as text (even if the attribute is of type
"numerical"). Only matching text or numeric values of the model attribute
that match a value entered in this list are considered part of this indicator.
Notice that the list need not be sorted.

back to top

6.4.1.3 Custom intervals

The custom interval section allows you to freely define a set of intervals that
are used as indicators (potential parts of a condition) for rule generation:

• To add an interval, select [New interval] from above.

• To delete an interval, select [Delete] left of each interval line.

• Intervals need not be adjacent but have to be entered in sorted sequence.
However it is not possible to enter overlapping intervals. When you enter
adjacent intervals, this has the effect that the exact "to" value would always
not be included with the interval. For example, if the first interval is "200"-
"300" and the second is "300"-"400", and the record's attribute value is
"300", it would be considered to belong to the second interval.

back to top

6.4.2 Modeling workflows

Modeling workflows can be used to predefine workflows which can be
selected and executed on the simulation page.

The table below lists all defined modeling workflows. To add a new modeling
workflow click [new modeling workflow]. To view or change modeling
workflows, left click on the respective row in the table.
back to top

6.4.2.1 Modeling workflow

The definition of a modeling workflow involves a number of settings that are
made in this form. Rest the mouse pointer over a setting for details.

• Name
The name is used to identify the modeling workflow.

• Comment
The comment is used to describe the modeling workflow.

back to top

6.4.2.2 Available modeling workflow entries

Available modeling workflow entries are:

• Simulation

Simulation is always the first element of the workflow as it is the base
for all other elements. For loop creation it can also be selected in a later

stage of the workflow.

Simulation data selection is available on Simulation page.
• Analysis

It will execute enabled analyses.

• Initialize rule designer
It will execute the same functionality like clicking the Initialize rule designer
button of the Rule Generation section on the Rule generation page with the
default data selection. After execution the performance table, a collection of
statistical data about the rule generation process will be available in the
upper section of the rule generation page. Data selection will be the overlap
of simulation and rule generation data selection.

Example:
Simulation data range records absolute from URID 100 to URID 500,
rule generation data selection from URID 400 to URID 500, then the
data selection will be URID 400 to URID 500.
Same for simulation data range records absolute from URID 400 to
URID 500 and rule generation data selection URID 100 to 500.

back to top

6.4.3 Test sandbox

Each model revision contains a "sandbox" type playground to test the
revision's behavior against data. You may (manually) enter any number of
test records, name them, and provide them with any values for the attributes
involved in decision making. Clicking the [Compute] button causes IBM Safer
Payments to compute all non-entered values that are outputs of profiling or
rules.

Test data records are stored permanently with the respective model revision
(until they are manually deleted from the test page). The records are
therefore copied together with a model revision when it is generated as a
copy of another revision.

Records are strictly sorted by their "system time" meta attribute values
(therefore no two timestamp values may be the same). This allows for
profiling methods that consider time-sequences (calendar profiles, counters,
events) to be computed from the test data records. Test never considers
production data from the MDC/DDC for any of its computations.

Usage

• To create a new data record, click [New record] above.

• To enter values, double-click on the respective field.

• To erase a value, double-click on the field and just delete the value.

• Click [Compute] to calculate all records.

• Unset and uncalculated values are set to their default values, which are
indicated by round brackets.

• (OK) will be displayed in Test column to indicate the computation could be
evaluated.

• (FAILED) will be displayed in Test column to indicate the computation could
not be evaluated.

Mandators

The decision models of all mandators are taken into account when computing
the records.

Force profiling outputs

If you like to test the decision rule's computation to certain attribute value
conditions that involve complex profiling outputs to be computed, you do not
need to create all the records that result in specific profiling output attribute
values. You rather may "force" them to a value by simply entering a value in
the respective attribute's field.

Remarks

• As soon as more than one test record is defined the meta attribute "system
time" must be filled for every test record. All those timestamp values have to
differ by at least one second. This is because the test function must know the
sequence in which test records are to be considered. For a single test record
this is not necessary.

• All entered values must be formatted using the same rules as used for
transaction messages and batch file data. For instance, timestamp values
must be entered as "YYYY-MM-DD hh:mm:ss", and numbers using the period
as decimal character and no digit grouping symbols or dimension characters
(such as currency symbols) may be used. Boolean values must be entered as
"1" for 'true' and "0" for 'false'. Hexadecimal values can be entered using any
combination of both lower and upper caps letters, e.g. "F0C4", "f0C4", and
"f0c4".

• Computation considers the mandator hierarchy and mandator conditions:

• A test record is only computed if the mandator conditions are met

• If there are head mandators, their (champion) model revisions are
computed before this (challenger) revision

• Computed values are stored as well. To re-compute, for instance after a rule
change, click the [Compute] button on the test page. To remove all
computed values from the table, click the [Reset computed values] button.

back to top

6.4.4 Simulation

Simulation allows for the computation of new and modified model elements
as if they had been in place with past time periods. In IBM Safer Payments,
simulation is complemented with a large number of analytical tools to let you
get a good understanding on how the model performs with the data.

In a nutshell, simulation computes attributes and rules that have not been
present in the champion model for past transaction data as if they had been
present in the past. This includes both newly created and modified model
elements. When simulation is first enabled, it analyzes which model revision
elements must be computed to simulate the attributes and rules defined on
the modeling page. Once simulation is computed, and a model revision
element is changed, simulation is "stopped" automatically since results could
be incorrect. When simulation is restarted after a model revision change, it
detects which elements do require recomputation and only re-computes
these.

Control

While which elements are to be simulated is defined on the modeling page,
this page lets you control the actual simulation function using two
toolbuttons:

• Start simulation

• Stop simulation

The states of the icons represent the various states simulation can be in:

• Both icons disabled: simulation is locked since rule generation is under way.

• Only start icon enabled: simulation stopped and can be started.

• Only stop icon enabled: simulation is currently computed and can be
stopped.

• Both icons enabled: simulation is computed. Clicking [Start simulation]
refreshes the simulated data, clicking [Stop simulation] deletes all results
and frees memory resources.

Notice that during simulation, a progress bar appears next to the
toolbuttons. Rest the mouse pointer over the progress bar for details.

Simulation methods

IBM Safer Payments supports different simulation methods to complement
different simulation objectives.

• By record
This simulation method computes record by record so that any model
revision element using any earlier record attribute value as input or in a
condition, will be computed correctly. The disadvantage is that no parallel
computing is used which results, compared to the computation method "in

chunks", in a significantly lower simulation performance (speed in which
results are available).

• In chunks
This simulation method computes each record analogous to the method "by
record" but subsequent records are simulated in parallel. The number of
records which are computed in parallel is defined by the configurable number
of simulation threads. In most real-world applications, because of the
throughput of transaction messages, there should be so many "other"
transaction messages between those of the same cardholder or merchant
that feedback loops, for instance if a counter condition evaluates an output
attribute or a rule overwrites an (overwritable) input attribute, should be
fully represented. If this assumption is not valid for your application, you
should use the simulation method "per record" instead.

Remarks

• IBM Safer Payments creates so-called "simulation MDC" as temporary
storages for the simulated attribute's values that are released when
simulation is halted.

• An attribute is simulated when:

• it is enabled for simulation in modeling,

• has an impact change and lies in the path of a model revision element
that is simulated (e.g. a counter and its output attributes will be
simulated, if the counter was changed with computation impact
compared to the champion revision and the counter attribute is used in
a condition of a rule that is simulated),
note that the implicit simulation of elements in the path currently does
not apply to PMML models so make sure to simulate a PMML model
when needed by enabling one of its outputs for simulation,

• it is used in a conclusion of a rule that is enabled for analysis.

• While simulation may take a while to be completed, during computation of
the results, no partial results are available.

back to top

6.4.4.1 Simulation instance selection

Simulations can be run on remote instances and don't have to be executed
on the API instance. You can view information about each instance's status in
the table. To refresh its contents, use the button at the top of the section.
The select field below allows you to choose between the available instances.
Keep in mind, that before actually running the simulation an additional check
will be performed on the instance itself to make sure that it can actually fulfill
the needed memory requirements.
back to top

6.4.4.2 Model simulation data selection

Data selection lets you choose which mandator's data shall be included (if a
choice from multiple mandators can be made) and lets you define interval
conditions. The interval can be provided as:

• Records absolute (URID from-to interval)

• Server time absolute (from-to timestamp interval)

Notice that the timestamps are taken from IBM Safer Payments server time
at the time the record was created within IBM Safer Payments (meta
attribute "System time"), which is when the originating transaction was
received (either as transaction message via the IBM Safer Payments
message command interface (MCI) or as file record processed via the IBM
Safer Payments batch data interface (BDI)). If the record is later changed,
for instance as merging target, this record timestamp value is never
changed. Notice that these timestamps must thus not be the same as the
time when the transaction actually was made (typically the "point of sales"
type timestamp, a separate meta attribute "Timestamp" in IBM Safer
Payments), since the transaction may have been received by IBM Safer
Payments later (as in the case of batch data).
back to top

6.4.4.3 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.4.4.4 Simulation report

This report lists all actions that simulation will perform when you confirm this
report. The color icons denote the type of report message:

• This represents a situation in which there is potentially data missing. Only
proceed if you know that this does not render your simulation faulty.

• This represents a situation in which IBM Safer Payments feels that you
made sub-optimal choices. Only proceed when you know that this is what
you want.

• Describes an element that IBM Safer Payments has determined that
requires simulation and thus computational effort.

• No color icon represents an element that IBM Safer Payments has
determined that does not require any computational effort since it is already
available.

Notice that you may confirm simulation even if there are "red" marked
entries since there are situations in which this makes sense.
back to top

6.4.4.5 Simulation queries

The typical routine for adapting IBM Safer Payments to emerging fraud
patterns is for the fraud analysts to experiment with modified rules or
new/modified profilings. This activity is performed on a challenger model
revision to the current champion model revision. Simulation is different from
testing (on "test" page) as it involves (past) production data combined with
results of profiling. This is why there is an extra function for "simulation".

Simulation provides a query-type functionality that is different from
investigation queries in the sense that it combines all champion attributes
with the (new) attributes of the respective challenger model revision.

Simulation is enabled and disabled from a toolbutton. If enabled, all
applicable (new with this challenger) attributes are simulated. During
simulation, you may not edit the model revision to avoid inconsistencies.

Notice that once simulation results are computed, they are kept until you
disable simulation. Even if you have performed changes to the model
revision in the meantime. To re-compute, disable and enable simulation.

Remarks

• Simulation computation works as a snapshot. When computation is started,
the data record interval computed is from the current last record backwards.
You may therefore re-execute the simulation after a while to ensure that the
most current set of data is used for simulation.

• For champion model revisions, simulation is not available.

• Simulation requires IBM Safer Payments to create MDCs that exist while the
model revision is in challenger status. IBM Safer Payments checks that
sufficient main memory is available before it executes simulation and in
addition monitors main memory availability through the respective SAI,
however it should be kept in mind that improper use of simulation can
exhaust the main memory made available by the hosting server hardware.

back to top

6.4.4.5.1 Simulation query

Simulation queries have the following settings:

• Query type
IBM Safer Payments supports different types of queries:

• Ad hoc
This is the standard query type that returns all transaction records that
satisfy the criteria defined. In spite of its name, the "ad hoc" query is
always stored for future use when executed and must explicitly be
deleted if not wanted anymore.

• Hyperlink
This type of query is automatically executed when you click on an index
value in a query result table and takes the value of the attribute as an
additional parameter.

• Rule
The "rule" query type is executed when you select "Execute rule query"
from the context menu on the rules table or from the rules form. It
delivers all records from a valid simulation that are hit by the respective
rule.

• Rule report
The "rule report" query type is used for rule reports executed from the
rules form. Similar to the rule query it displays all records that are hit
by the respective rule. The rule report query result is embedded into
the generated rule report.

• Index
For "hyperlink" type queries, this references the index to be used.

• Name
Name that will be shown with the query results.

• Comment
Used to describe the query. The comment is displayed to users at various
places and may thus contain further explanations.

• Number of records
Limits the maximum number of records to be displayed to avoid excessive
query computation length. Also notice that depending on your network
infrastructure, the type of browser and computer used by the end user, the
amounts of data generated by IBM Safer Payments could be overwhelming.

• Use simulation data selection
If enabled, the query uses exactly the same data selection as defined for
simulation. Notice that editing the data selection is not possible as long as
this option is enabled.

• Include DDC
If enabled, the query will also use DDC, not just MDC. This may severely
impede query computational performance.

• Hide summary statistics
The summary statistics for the query table can be disabled by checking this
option.

• Highlight CPP attributes
If enabled, attribute values that occur in CPPs will be highlighted in the query
result table.

Query data selection

The data selection for queries allows for both choosing an interval and
additional conditions. Refer to the section help pages for more information.

Select columns / column sequence

Allows to select which columns are to be displayed with the result of the
query and how they should be arranged.

Extract template

Allows to define how the transaction data is put together in a string when a
user is using the context menu function "extract data" on the query result
table. Within the template fixed strings can be combined with variable
attribute values.

example:

Arcot | {Amount} | {Merchant Name}

This template appends the transaction amount and the merchant name to a
fixed string "Arcot", each separated by |.

A user could now select one or more rows in the query result table. By
clicking on the context menu function "extract data" a new dialog is opened
and displays a string in which the variable attributes of the template are
filled with the respective transaction data. This string can now be copied to
the clipboard [Ctrl]-[C].

Result set display

The results of a query when executed from this page are shown on a new
page. You may define which columns and in which sequence the columns
should appear. The width of each column can be modified in the query result
table.
back to top

6.4.4.5.2 Model revision simulation query

Data selection lets you choose which mandator's data shall be included (if a
choice from multiple mandators can be made) and lets you define interval
and additional conditions. The interval can be provided as:

• Records absolute (URID from-to interval)

• Server time absolute (from-to timestamp interval)

Notice that the timestamps are taken from IBM Safer Payments server time
at the time the record was created within IBM Safer Payments (meta
attribute "System time"), which is when the originating transaction was
received (either as transaction message via the IBM Safer Payments
message command interface (MCI) or as file record processed via the IBM

Safer Payments batch data interface (BDI)). If the record is later changed,
for instance as merging target, this record timestamp value is never
changed. When using timed based intervals (server time absolute,
timestamp relative) the result might include records that are outside the
actual data selection time due to performance reasons. If you need strict
restrictions on this, you can always define conditions that would filter those
out. Notice that these timestamps must thus not be the same as the time
when the transaction actually was made (typically the "point of sales" type
timestamp, a separate meta attribute "Timestamp" in IBM Safer Payments),
since the transaction may have been received by IBM Safer Payments later
(as in the case of batch data). If you instead require the "Timestamp" meta
attribute to be used as a condition for your data selection, you must define it
as a condition below. In this case, you should still consider using (applicable)
time limits for the meta attribute "System time" as this allows IBM Safer
Payments to sometimes significantly speed up the execution.

You may further restrict the records to be included using record specific
attribute value conditions. Refer to their section help pages for more
information.
back to top

6.4.4.5.3 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.4.5 Analyses

Using existing and simulated data of past transactions, IBM Safer Payments
lets you define multiple analyses. Each analysis has multiple aspects that are
computed and can be displayed by selecting the respective topic from the
navigation menu left (below the entry "Analyses"). In this context, an
"analysis" is a definition of a subset (or all) the data stored or simulated in
IBM Safer Payments.
While often, defining just one analysis is all you need, sometimes it can be highly
useful to have IBM Safer Payments compute multiple analyses at the same time:

• The definition of "training" and "verification" data selections is particularly
useful when you create a fraud prevention model. A significantly lower
performance of the model (or a part thereof) can for instance indicate
overfitting.

• Sometimes it is useful to separate your analyses by criteria as "transaction
type" (e.g. card not present vs card present, regions, merchant categories,
card types, issuers). Since IBM Safer Payments computes all analyses in
parallel, you simply can choose which analyses are to be compared in each
topic.

Note that only those records will be considered for analyses where meta
attribute timestamp is not empty.
back to top

6.4.5.1 Analysis

This form lets you define an analysis.

Notice that only enabled analyses are actually computed.

Analysis control

• Save modifications and start analysis
Saves all modifications you made to this analysis and (re)starts computation.
Previously computed results will be lost.

• Stop analysis
If an analysis is in status "Computing" or "Optimizing" this button lets you
stop the analysis without discarding the results. Notice that a stopped
analysis cannot be continued.

Settings

• Rulesets
Only selected rulesets will be included in this analysis. There are a number of
reasons for not including all rulesets:

• In certain applications, so-called "technical rules" are used. These are
rules that do not detect fraud patterns but aggregate data for different
purposes. There is thus no point in analyzing the correlation of such
rules with the occurrence of fraud and hence the ruleset containing such
rules typically are not included in modeling analyses.

• In large models, the number of rules and rulesets can be so
overwhelming that reducing the scope of a modeling analysis can be
beneficial.

Remarks:

• You may analyze also inherited and final rulesets.

• Only enabled rulesets are available for selection. Not enabled rulesets
are not being simulated and can therefore not be analyzed.

• During next simulation, all rules of the enabled rulesets and the
belonging conclusion attributes will be simulated. All other rules that
change the simulated output attributes will be simulated as well.

Additionally, other revision elements will be simulated, if they have
computation impact changes compared to the champion and are used in
conditions of simulated elements.

• Use simulation data selection
If enabled, the analysis uses exactly the same data selection as defined for
simulation. Notice that editing the data selection is not possible as long as
this option is enabled.

back to top

6.4.5.2 Summary statistics

Summary statistics provide a quick overview on the totals of the
simulation/analysis data selection.

The following formulas are used:

• Total:

(Genuine + Fraud)

• Average:

(Amount / Records)

• Fraud ratio:

The ratio is calculated in base points (BP):

(((Fraud * 100) / Genuine) * 100)

The statistics include all records of the data selection of the analysis. The
value of fraud is taken from the simulation result. Intercept, case queue,
notification and reminder are computed as follows:

• Summary/Marked intercepted/Marked not-intercepted: The value for
intercept is taken from production and is not altered by the current
simulation.

• Rule fired: Only hits of rules that are enabled for analysis are counted. The
hits are calculated based on the current simulation result.

• Intercepted by this model revision: The value of intercept is taken from the
current simulation result of the meta attribute intercept. Note that all
simulated rules have influence on this value, not only those which are
enabled for analysis.

• Alarms/Notifications/Reminders generated: The computation includes only
rules that are enabled for analysis. A record is counted, if there was at least
one hit of a rule that creates a rule action or the meta attribute is set after
the analyzed rules have hit.
Note that because only analysis enabled rules are taken into account,
resetting a meta attribute by a higher prioritized rule that is not included in
analysis, will not be reflected by the result.

back to top

6.4.5.3 Attribute analyses

Attribute analyses can be executed for all attributes which are defined in this
model revision.

Modeling parameters (and if attribute analyses is enabled or not) is
configured on the "modeling" page of this model revision.

Notice that attribute analyses use a sampling technique in which
extrapolated results are instantly shown even when only a fraction of the
records are analyzed.
back to top

6.4.5.3.1 Attribute analysis chart

Attribute statistics are displayed graphically using bar/line charts. The
options for these charts (display preferences, number of data points
displayed, sorting, etc.) can be set from the tools in the section header (from
left):

• The two show/hide bars/lines tool buttons let you choose how the analysis is
displayed.

• The "type of analysis" drop list lets you select what should be shown on the
vertical axes:

• Amount
Shows total amount of all records for this attribute value (record
amount defined by "amount" meta attribute).

• Records
Shows total number of records for this attribute value.

• Ratio amount
Shows ratio of total fraud record amounts divided by total amounts of
all records for this attribute value (BP: "basis point", equal to 1/100th
of a percent).

• Ratio record
Shows ratio of number of fraud records divided by number of all records
for this attribute value (BP: "basis point", equal to 1/100th of a
percent).

• Sorting criterion:

• With "amount"/"record" type analyses of categorical model usage
attributes, the displayed values can either be sorted by "fraud" or
"genuine" amounts/records.

• With analyses of categorical model usage attributes, the number of
categories to be displayed can be selected here. Notice that the number
of categories displayed can never be larger than the number of
categories defined in the modeling parameters of the attribute itself.

With dots, bar and line charts, blue indicates fraud (right scale) while yellow
indicates genuine (left scale). You may rest the mouse pointer over a
dot/bar/line to display the exact values.
back to top

6.4.5.4 Rule overlap

These statistics show the number of records from the selected analyses for
which the conditions of multiple rules have applied, several rules have
intervened, and alarms, notifications or reminders were generated by several
rules. A strong overlap (high numbers) indicates difficulty in attributing a
transaction interception to a single rule and thus should be avoided.
back to top

6.4.5.5 Rules performances

The rule performance analysis plots key performance figures for each rule
over time. The total time interval is defined by the analysis data selection
entered.

You may select individually for which of the rules you like to see the analysis
charted. Each defined ruleset therefore comes with its own checklist in which
you can either select "all" rules or individual rules.

back to top

6.4.5.5.1 Rule performance

The chart in this section plots the key performance figures you select on the
check list to the right-hand side over time. The time resolution can be
changed by the drop list box in the toolbar, the time period can be changed
by using the mouse to zoom into the period (highlight section with pointer or
use scroll wheel).

Remarks

• On the left-hand side, a scale is shown for any performance figured checked.
The grid of the chart, however, is only shown for the first selected
performance figure of the list.

• Hovering the mouse pointer over a data point gets you a readout of the exact
value

• With weekly time resolution, the date value shown on the horizontal axis is
the "Wednesday date" of the respective week. The week ranges from Sunday
00:00:00 before this Wednesday to Saturday 23:59:59 after this Wednesday.

back to top

6.4.5.6 Rule analysis

Single rule statistics benchmark the performance of each rule as if this rule
would be the only one existing.

There are several statistics available for each rule of the selected rulesets.
Note that you have to select a data range defined on the page 'Analysis'. All
of the following statistics are computed based on the selected data range.
IBM Safer Payments is using the mandatory meta attribute 'amount' to
compute statistics including amounts.

• Fraud transactions hit
Total number of fraudulent transactions hit by this rule.

• Genuine transactions hit
Total number of genuine transactions hit by this rule.

• Fraud amount hit
Total amount of fraudulent transactions hit by this rule.

• Genuine amount hit
Total amount of genuine transactions hit by this rule.

• Hit rate
Fraud amount hit by this rule divided by the total amount of fraudulent
transactions within the selected data range.

• False alarm ratio
Number of genuine transactions hit by this rule divided by the number of
fraudulent transactions hit by this rule.

• Saved amount per false alarm
Fraud amount hit by this rule divided by the number of genuine transactions
hit by this rule.

back to top

6.4.5.7 Rule optimization

Optimization analysis is based on single rule statistics. Hence optimization
analysis does not start before statistics are completed. In optimization
analysis, IBM Safer Payments simulates from the current set of rules, which
rules when taken away would "optimize" the false alarm ratio to what extent.

IBM Safer Payments utilizes three different scenarios to compute the account
based hit rate:

• After hit
Any fraudulent transaction that occurs after a fraudulent transaction of the
account was directly hit by an intercept is included in the calculation of the
fraud loss prevented.

• After intercept
Any fraudulent transaction that occurs after a transaction of the account was

hit by an intercept is included in the calculation of the fraud loss prevented.

• Any intercept
Purely account based calculation, the computed fraud losses sum up all
account fraud if any transaction of the account was hit.

back to top

6.4.5.8 Rule scoring

Most applications of IBM Safer Payments occur at the issuer or acquirer (or
its processor) where the authorization is processed completely, that is, where
an authorization request is received, processed, and responded to. In these
applications the output of IBM Safer Payments is a clear "recommending
authorization" or "recommending to decline" (some applications have
additional responses, such as "recommending voice referral"). There are,
however, certain applications where IBM Safer Payments should rather
assess the likelihood of a transaction being fraudulent on a scale (aka
"score"). Typical applications for this are when IBM Safer Payments is used at
a routing node of a payment scheme where authorization requests are not
finally responded to. Here IBM Safer Payments adds its fraud score to the
authorization request as it passes the routing node so that the (finally
deciding) issuer or acquirer can utilize this score to base its decision upon.

IBM Safer Payments generates a score from its rules by adding a conclusion
to all relevant rules that sets the score attribute with:

ScoreAttribute maximize with score

The ScoreAttribute is one that you may freely choose among all numeric type
output attributes and overwritable input attributes.

The "maximize with" operator ensures that if multiple rules fire that set the
ScoreAttribute, the highest score value is set to ScoreAttribute.

The score value is determined by the scoring type (see below).

Settings

The settings below control how IBM Safer Payments creates rule scoring.

• Scoring type
Determines how the score value is determined for each rule's conclusion:

• True positive rate
Computes the score as the estimated probability of this transaction
being fraudulent. This score ranges from "0.00" (0%) to "100.00"
(100%). For example, a value of "50.00" indicates that the rule was
analyzed to fire with the same number of fraudulent as genuine
transactions (corresponding to a false alarm ratio of "1"). Notice that
this score does not take into account the actual value of a transaction.

The score value is always generated with two decimals, regardless of
the number of decimals of ScoreAttribute.

• Saved amount per false alarm
Sets the score to the saved amount per false alarm value (in the
dimension of the meta attribute "amount").

• Use analysis data selection
Determines which analysis result is to be used to compute the score. The
selections have to be defined on the analyses page.

• Rulesets
Lets you select which rules are to be scored (all rules of the selected rulesets
will be scored).

• Score conclusion attribute
Numeric output or overwritable input attribute to be used for the scoring
conclusion.

Remarks

• When the rules selected already have a conclusion for the ScoreAttribute,
this conclusion is overwritten when you execute rules scoring.

• You may create scores for different ScoreAttributes. Notice that the
ScoreAttribute may or may not be defined as meta attribute "score".

back to top

6.4.5.8.1 Rule scoring results

The table of this section shows the results of the scoring process for all rules
that have been scored (it is the same as the rule analysis table with the
added "scoring" column).

You may commit the rules to effectively change the conclusions of the rules
of this revision. Rules that do not get committed, will not be changed.

Note that changing the rules (added/changed conclusions) invalidates the
simulation results. Restart simulation to re-compute the analytical results.
back to top

6.4.6 Model factory type selection

IBM Safer Payments offers several different types of element generators. In this
step you select one of them and then continue to the next step.
back to top

6.4.6.1 Automatic and assisted rule generation

Standard model generation involves using statistical analysis to discover
fraud patterns and a rule editor to create countermeasures. While this is well

supported by IBM Safer Payments, there are two more levels of rule
generation supported by IBM Safer Payments:

1. Manual model generation

2. Assisted model generation

3. Automatic model generation

For level 2. and 3., IBM Safer Payments employs a rule generating algorithm
that creates rulesets condition by condition and rule by rule. The actual
difference between level 2. and level 3. is that level 2. only suggests the next
generation step and lets you modify IBM Safer Payments' proposal or not
follow IBM Safer Payments' proposal at all, while level 3. assumes just an
acceptance of each proposal and stops only once one of the stop criteria
defined is reached. The remainder of this page provides some insight on how
rule generation works, the actual sections on the pages that contain the
respective rule generation functions have their own online help pages that
contain usage details.

Indicators

Indicators are the smallest fragment of a condition and essentially are the
possible values of an attribute (because a specific value of an attribute can
be an "indicator" of fraud or not). Examples of indicators are:

• "CountryCode = FR" (categorical)

• "NumTrx1h = 0" (linear) and

• "Amount = [1220; 1480]"

IBM Safer Payments rule generation creates a list of indicators of each model
attribute that can be viewed by clicking right on the respective row in the
rule design table and selecting from the pop-up menu. This opens a dialog
with a table where each row represents one of the indicators.

Conditions

A condition is an aggregate of one or more indicators. In simple terms, it
combines an attribute with one or more values, or an open or closed interval
(eg "MCC = 5141;5142", "MCC = 5142", "Amount > 1000", "Amount =
[100; 600]", etc.).

Because a condition is the combination of all indicators selected, the
condition can be seen and manipulated by selecting and deselecting
indicators.

For each step in the rule generation process, the rule generation function
assesses the individual quality of each indicator and derives a proposal for a

condition. This process always starts by selecting one "seed" indicator for the
attribute as the indicator with the highest quality.

Relaxation

The subsequent step is called "relaxation". Relaxation means to add
indicators to the condition. How relaxation is performed depends on the type
of attribute. With a categorical type attribute, any category is added that
improves the quality of the condition. With linear and quantised attributes,
only relaxation is only performed with "neighboring" values (if for instance an
intermediate linear attribute is used for model generation that counts
shopping transactions within the past 48 hours, it would not make sense to
add the indicator "Shopping=18" to "Shopping=12").

Condition selection

Rule generation proposes one of these actions:

• Commit condition
In the rule design table, the respective condition row is highlighted in yellow
and the [Commit condition] button is enabled. The IBM Safer Payments
recommendation is to add this condition to the currently designed rule.

• Commit rule
In the rule design table, no condition row is highlighted in yellow and the
[Commit rule] button is enabled. The IBM Safer Payments recommendation is
to add the rule as defined by the push pinned conditions to the ruleset and
start creating the next rule.

• No action
Both the [Commit condition] and [Commit rule] buttons are disabled in the
rule design section, and no rule is highlighted in the table. IBM Safer
Payments recommendation is to stop rule generation based on the defined
parameters.

Notice that automated rule generation can be enabled and disabled at any
time. As long as automatic rule generation is disabled, you may create rules
by selecting indicators for conditions, conditions for rules, and rules for the
ruleset.

Remarks

• Rule generation only uses the per-transaction fraud figures. Depending on
the specifics of the data, the per-account fraud figures may be quite
different. However, since in general, rules that are good in finding per-
transaction fraud are also good in finding per-account fraud, this should be
no problem in practical applications. To determine the exact numbers for per-
account fraud, use the account analysis function.

• Notice that all fraud figures shown in the generated rules table assume that
each subsequent rule is used in addition to the one before. If a rule is used
"alone", it can have significantly different performance. Use the ruleset
optimization analysis to find an optimized sequence and subset of the

generated rules. The rule generation function generates rules, the rule
analyzer shows optimal subsets of the rules for a decision logic.

• Generated rules are not automatically transferred to the decision logic as a
matter of precaution. You select the import function at the conclusion of the
rule generation.

back to top

6.4.6.2 Rule generation settings

The IBM Safer Payments rule generation function employs a number of
complex algorithms to propose and generate rule conditions and rules that
detect fraud with high accuracy. Since each application has its unique fraud
patterns and individual policy, the rule generation algorithms can be fine-
tuned to fit the specific needs by the parameters set in this form. Refer to
the Automatic and Assisted Rule Generation page for details on the approach
behind this. Notice that the parameters that control rule generation that
deliver the best results are highly dependent on your application, the
structure of your data and fraud patterns. Please consult the IBM Safer
Payments support for the best set of settings for your applications.

The settings on this page are:

Rule name / comment

These fields allow the entry of a text with variable elements that is used to
name and comment the generated rules. Variable elements include:

• {n}, {nn}, {nnn}
Number of rule in ruleset, {nn} fills it to two digits, {nnn} to three digits so
they can be sorted by name.

For comments only, variable elements also include:

• {localtimestamp}
ISO formatted timestamp of the rule generation in the time zone of the user.

• {revision}
Number of revisions.

• {timestamp}
ISO formatted timestamp of the rule generation in in UTC.

• {user}
Name of user.

Weighting (Default = 0.0, value range -0.999 to +10.0)

Weight determines how much IBM Safer Payments shall favor hit rate over
false positives. The value of 0 is the default settings in which IBM Safer
Payments tries to consider a good compromise between both a high hit rate
and a low false alarm ratio. If you decrease this value below zero, rules will

be preferred that have a low false alarm ratio. If you increase this value
above zero, rules will be preferred that have a high hit rate (Thus a ruleset
will have less rules the higher this value is).

Min false positives (Default = 1.0, value range 0.0 to 10.0)

In rule generation, sometimes indicators, conditions, or rules exhibit a very
low false alarm ratio. The reason for this is often overfitting because only a
few transactions are concerned. As a result of this very low false positive
rate, these elements would get a very high evaluation that would steer rule
generation "too much" toward these elements. Therefore, this setting allows
the setting of an "indifferency" zone: any false positive value below this
value is considered to be indifferent to this value by IBM Safer Payments.

Stop false positives (Default = 50.0, value range 1.0 to 500.0)

Automatic rule generation and rule generation proposals are stopped if the
last rule generated has false positives equal or greater than this setting. This
setting is mostly used as a stop criterion for automatic rule generation as the
creation of a rule with a very high false alarm ratio usually is a signal that no
good quality rules can be generated that improve the model performance.

Upper bound hit rate (Default = 50.0%, value range 1.0% to 100.0%)

Automatic rule generation and rule generation proposals are stopped if the
total of rules generated hit this percentage value in hit rate. This setting is
mostly used as stop a criterion for automatic rule generation.

Max number of conditions (Default = 6, value range 1 to 12)

Defining a max number of conditions that are generated for each rule avoids
the generation of overly complex rules. However, notice that IBM Safer
Payments rule generation may require that to get the false alarm ratio down
more conditions must be allowed. If the number of conditions is too limited,
IBM Safer Payments may not be able to generate rules with a sufficiently low
false alarm ratio.

Max hit (Default = 50.0, value range 0.1 to 100.0)

In rule generation, sometimes indicators, conditions, or rules exhibit a very
high hit rate. The reason for this is often overfitting because only a few
transactions are concerned. As a result of this very high hit rate, these
elements would get a very high evaluation that would steer rule generation
"too much" toward these elements. Therefore, this setting allows to set an
"indifferency" zone: any hit rate value above this setting is considered to be
indifferent to the value.

Max number of rules (Default = 50, value range 1 to 1000)

Number of rules to be generated as a stop condition.

Min sample size (Default = 0.01%, value range 0.0% to 10.0%)

Ensures that only conditions are considered that cover at least this
percentage of transactions of all training data transactions (genuine and
fraudulent). Increase this value if you experience that rules are generated
that fit only very few transactions and thus are prone to overfitting.

Min condition improvement (Default = 0.2, value range 0 to 10.0)

IBM Safer Payments uses a goal function for rule quality on a relative level.
Adding a condition to a rule changes the quality value determined by this
function. This setting defines the minimum improvement to the quality value
a new condition must bring to a rule for it to be considered. Having a non-
zero threshold ensures that conditions are only added to a rule if they
provide significant improvement of its performance. This ensures that rules
remain both easily readable by a human and avoids overfitting. Increasing
this value results in fewer conditions per rule and potentially lower quality
rules, decreasing this value results in more conditions and potentially
overfitting. If no condition would improve the current rule by this threshold,
no condition is selected.

Min population quantise (Default = 1000, value range 10 to 10,000,000)

If the model usage for a continuous variable (ratio measurement scale) is
"quantised" and a number of quantiles to be generated is defined (modeling),
the number of quantiles will automatically be reduced if the defined number
of transactions (genuine and fraudulent) is fewer than this setting. This
ensures that no indicators are generated (and conditions constructed from
them) that have so few records in them that overfitting is probable.

Min select hit rate (Default = 0.3%, value range 0.0% to 10.0%)

To avoid overfitting, rule generation will not recommend the selection, if the
condition catches less than the defined part of the total fraud. If none of the
model attributes contains indicators that can be used to design a condition
that catches more than the defined part of the total fraud, rule generation
proposes to end the construction of the rule. This criterion is hence crucial to
define how fine vs. coarse the generated rules shall be. By decreasing this
parameter, the rules generated will in general have a lower false alarm ratio
but you will need more rules to catch the same total of fraud and thus may
deliver better performance. Typically, the rules will have more conditions.
More rules with more conditions make a less easy to read rule base and bear

the risk of overfitting. The optimum setting of this value depends on the
structure of the fraud in your data.

Relax All Up Threshold (Default = 0.5, value range 0.0 to 10.0)

Some attributes represent indicators that are known to indicate a higher risk
the higher their value is. Examples for this are counters that identify risky
circumstances with previous transactions. Frequently, transaction histories
involving high scores of such indicators are rare. Therefore, even with large
simulation data volumes, the rule generation function will create condition
intervals with upper bounds for such attributes, even though an interval with
no upper bound would be more appropriate. Using a higher value for this
parameter will perform this “relax all up” function more often. Rule
generation compares the quality of the condition interval with and without an
upper bound. If removing the upper bound does not reduce quality by more
than the value of this parameter, the rule without the upper bound is used.
Notice that the unit of this parameter is the same as with the "min condition
improvement" parameter explained above.
back to top

6.4.6.2.1 Rule generation data selection

This section defines which data is to be used for rule generation. Notice that
you may return to this page from rule generation to either check your
settings or to change them. In the case that you change data selection
settings, the selection is recomputed, which may take some time.

Rule generation scenario

This setting defines the general scenario for which rules are generated:

• Ignore existing rules and ignore existing intercepts in records
Creates a fraud prevention model as if there were no records marked
"intercepted" in the data and no rules were already defined. Choose this
scenario if you are creating a completely new set of prevention rules ("from
scratch").

• Ignore existing intercepts but consider already defined rules of this
model revision
Choose this scenario if there are already defined rules in this model revision
that should be considered. This keeps IBM Safer Payments from creating
them (or similar rules) again.

• Consider already defined rules of this model revision and already
existing records intercepts
In addition to records that are already hit with existing rules, this scenario
also considers records that have a non-zero value of the "intercept" meta
attribute. Choose this scenario if you are in daily operations with IBM Safer
Payments and you want the rule generation to only suggest fraud
countermeasures (rules) based on the evaluation of records that have not

been intercepted in the past (with whatever model revision was in production
then) and that are not hit by rules already defined (and enabled) in this
model revision.

Verification

If enabled, IBM Safer Payments performs automatic verification of rule
generation results. Enabling this checkbox opens a second data selection
subsection for the verification data. Typically, you would select an initial
time/data period for training, and a subsequent time/data period for
verification.

Verification results are displayed in green next to the training results (in
black). Typically, verification results are not as good as training results. This
is because the fraud patterns in the verification data selection are somewhat
different to the fraud patterns of the training data selection, and thus, the
fraud countermeasures (rules) developed for the training data selection only
perform to a fraction for the verification data. This effect is called
"overfitting", meaning that the rules fit the training data better than the
verification data. It is an inevitable part of any model generation. However, it
is important that the degree of overfitting is within limits because otherwise
the models you create with training data will not be useful.

Which degree of overfitting is acceptable (i.e. must be lived with) strongly
depends on your application. Notice that overfitting is strongly influenced by
the rule generation settings and the profilings defined. Consult with the IBM
Safer Payments support to identify the proper settings and overfitting criteria
for your application.

Training/verification data selection

These subsections allow for the definition of exactly which data is to be used
for training/verification. The data range settings let you select a from/to type
range, and the attribute condition subsection lets you in addition to that also
define per-record criteria.

Remarks

• Notice that the "performance" section (top table) of the rule generation page
shows the totals resulting from this selection.

• More information on can be found on the Automatic and Assisted Rule
Generation online help page.

back to top

6.4.6.2.2 Rule generation

The upper section of the rule generation page shows the performance table,
a collection of statistical data about the rule generation process. It is only
displayed once all results are completed. As long as the results are still
computed, a progress bar is shown instead of the results. You may also
change the data selection and rule settings from here by clicking on the
[Change data selection settings] and [Rule settings] icon.

Notice that if verification is enabled, all respective values in the table are
shown underneath the training data values in green.

Columns

1. Total
Total amount (taken from the "amount" meta attribute) and number of all
records that are fitting the training data selection criteria defined.

2. Fraud
Total amount (taken from the "amount" meta attribute) and number of all
records marked as fraud (taken from "fraud" meta attribute) that are fitting
the training data selection criteria defined.

3. Genuine
Total amount (taken from the "amount" meta attribute) and number of all
records not marked as fraud (taken from "fraud" meta attribute) that are
fitting the training data selection criteria defined.

4. Statistics
Contains various derived performance indicators:

• Hit rate
Total fraud amount of this row's data selection divided by the total fraud
amount in all records fitting training data selection criteria.

• False positives
Number of genuine records falsely hit divided by number of fraud
records correctly hit in all records fitting training data selection criteria.

• Saved amount per false alarm
Monetary savings by fraud prevented for each false alarm endured
(refer to Benchmarking Prevention Performance for details).

• Intercept
Number of records hit divided all records fitting training data selection
criteria (displayed as "basis points", 100 BP equals 1%).

Rows

1. All
All records that are fitting the training data selection criteria defined. Notice
that the "hit rate" for this, by definition, is always 100%.

2. Marked intercepted in data
All records for which the "intercept" meta attribute is non-zero (in other
words, that IBM Safer Payments in the past had intercepted). Depending on
the rule generation settings, these records are missing from row 4.

3. Intercepted by existing rules
All records for which any rule in the current model revision (and any
inherited rules) fires (in other words, records that IBM Safer Payments would
mark intercepted with the current rules). Depending on the rule generation
settings, these records are missing from row 4.

4. Used for rule generation
All records that are used to generate the rules. These are either all records of
row 1., minus the records of row 2., minus the records of row 2. and 3.
(depending on the rule generation settings).

5. Intercepted by generated rules
Performance of the rules already generated (these are the rules listed in the
third section of this page). This row is only shown when rules are generated.

Remark
More information on can be found on the Automatic and Assisted Rule Generation
online help page.
back to top

6.4.6.2.3 Rule designer

The middle section of the rule generation page shows the rule design table,
where the actual rule generation mostly takes place.

Notice that even if verification is enabled, no verification data is shown. This
is because verification data is about verifying the rule design decisions, not
influencing them.

Toolbar

• [Commit condition]
If enabled, IBM Safer Payments proposes (yellow highlighting) a next
condition for the current rule (under construction). Clicking this icon adds the
condition to the rule.

• [Commit rule]
If enabled, IBM Safer Payments proposes to create a rule out of all conditions
that are pushpinned. Clicking this icon adds the rule to the set of newly
generated rules.

• [Start fully automated rule generation]
If enabled, IBM Safer Payments lets you activate the automated rule
generation mode in which each IBM Safer Payments proposal is accepted.
While the automated rule mode is running, the icon shows a small green dot.
Clicking on it again, stops the automated rule generation mode. You may
then either create rules manually or start the automated mode again.

• [Change rule generation settings]
Allows you to change the rule generation settings during rule generation.
Changing settings typically only results in minor re-computation efforts.

• [Reset condition]
If you have created one or more conditions of the current rule, you can
delete them by clicking this icon.

• [Hide/Show Attributes without selected indicators]
Adjusts the view of attributes to only show attributes with selected indicators
or show all.

Columns

1. Attributes
Name of the model attribute. Add model attributes or remove model
attributes by clicking the [Change attributes model usage] icon above. Left of
the attribute name, the blue arrow icon indicates that this attribute is
proposed by IBM Safer Payments to be used for the next condition (row is
also highlighted in yellow); a pushpin icon indicates that this attribute has
already been used as a condition attribute in the current rule.

2. Usage
Attribute usage as defined in the modeling settings. Click the [Change
attributes model usage] icon above to change.

3. Indicators
Delivers information about the indicators for this attribute:

• Selected
Number of indicators currently selected for the best condition IBM Safer
Payments proposes for this attribute.

• Total
Total number of indicators found and considered by IBM Safer Payments
for this attribute.

• Limit
Maximum number of indicators considered by IBM Safer Payments for
this attribute.

4. Condition
Best condition IBM Safer Payments proposes for the respective attribute:

• Op
The condition operator.

• Constant
The condition constant.

5. Total
Total amount (taken from the "amount" meta attribute) and number of all
records that are fitting the training data selection criteria defined.

6. Fraud
Total amount (taken from the "amount" meta attribute) and number of all
records marked as fraud (taken from "fraud" meta attribute) that are fitting
the training data selection criteria defined.

7. Genuine
Total amount (taken from the "amount" meta attribute) and number of all
records not marked as fraud (taken from "fraud" meta attribute) that are
fitting the training data selection criteria defined.

8. Statistics
Contains various derived performance indicators:

• Hit rate
Total fraud amount of this row's data selection divided by the total fraud
amount in all records fitting training data selection criteria.

• False positives
Number of genuine records falsely hit divided by number of fraud
records correctly hit in all records fitting training data selection criteria.

• Saved amount per false alarm
Monetary savings for fraud prevented for each false alarm endured
(refer to Benchmarking Prevention Performance for details).

• Intercept
Number of records hit divided all records fitting training data selection
criteria (displayed as "basis points", 100 BP equals 1%).

Rows

Each row represents one model attribute. The IBM Safer Payments rule
generation algorithm creates at each step a possible condition for each
attribute/row that it considers the best "it can make from this attribute".
Which of the conditions/rows it considers as best next steps is highlighted in
yellow.

You may now accept any of the conditions for the current rule by selecting a
row and using [Commit as condition] from the context menu, you may
accept the highlighted choice by clicking the [Select condition for
attributename] toolbar icon, or you may modify any of the conditions by
selecting [Explore all indicators] or [Explore performing indicators] from the
row' pop-up menu.

Notice that when you change any indicators of a condition in the "indicator"
dialog that opens from exploring, the effects become visible immediately in
the right columns of the row to provide immediate feedback on the action.

Remark
More information on can be found on the Automatic and Assisted Rule Generation
online help page.
back to top

6.4.6.2.4 Indicators

The table on this dialog shows the indicators for the respective attribute.

Notice that even if verification is enabled, no verification data is shown. This
is because verification data is about verifying the rule design decisions, not
influencing them.

Columns

1. Sel(ection)
Checkbox determines if this indicator is part of the condition for this
attribute. Notice that if you select/unselect any indicators, the changes to the
performance of the entire condition are immediately visualized in the rule
design table (from which the dialog was opened). Notice that for certain
usage types, only adjacent indicators may be selected (to avoid fragmented
conditions). Also notice that all changes made are immediately reflected in
the rule design table, so all you need to do is close the dialog once you have
made all desired changes.

2. Indicator
Value of the indicator.

3. Total
Total amount (taken from the "amount" meta attribute) and number of all
records that are fitting the training data selection criteria defined.

4. Fraud
Total amount (taken from the "amount" meta attribute) and number of all
records marked as fraud (taken from "fraud" meta attribute) that are fitting
the training data selection criteria defined.

5. Genuine
Total amount (taken from the "amount" meta attribute) and number of all
records not marked as fraud (taken from "fraud" meta attribute) that are
fitting the training data selection criteria defined.

6. Statistics
Contains various derived performance indicators:

• Hit rate
Total fraud amount of this row's data selection divided by the total fraud
amount in all records fitting training data selection criteria.

• False positives
Number of genuine records falsely hit divided by number of fraud
records correctly hit in all records fitting training data selection criteria.

• Saved amount per false alarm
Monetary savings by fraud prevented for each false alarm endured
(refer to Benchmarking Prevention Performance for details).

• Intercept
Number of records hit divided all records fitting training data selection
criteria (displayed as "basis points", 100 BP equals 1%).

Rows

Each row represents one indicator for an attribute and the statistical analysis
for that indicator. Since all indicators are non-overlapping (that is, any value
of an attribute can only be represented by one indicator) the record amounts
and numbers can be added when multiple indicators are selected.

Remark
More information can be found on the Automatic and Assisted Rule Generation
online help page.
back to top

6.4.6.2.5 Generated rules

The bottom section of the rule generation page shows the rules that have
already been designed. Notice that you may select multiple rules in this table
using the [Ctrl] key and clicking multiple individual rows, and the [Shift] key
and clicking an interval of rows. Then you can open a pop-up menu by
clicking right on a selected row. You may use this to either save the selected
rules to a new or an already existing ruleset, or to delete the selected rules.
If you use this to selectively delete rules that you do not want, you can then
use the toolbar [Conclude rule generation and save rules] to save the
remaining rules to a ruleset.

Notice that if verification is enabled, all respective values in the table are
shown underneath the training data value in green.

Toolbar

• [Restart rule generation from scratch]
Deletes all generated rules and restarts rule generation. This is quicker than
stopping and starting rule generation, as IBM Safer Payments can re-use
some of the computed data.

• [Conclude rule generation and save rules]
Enabled if there is any rule in the table. Saves all rules in the table below to
a ruleset and concludes rule generation.

• [Conclude rule generation without saving rules]
Concludes rule generation and discards any results.

Columns

1. Rule
Name of newly generated rule (the name is created according to the rule
generation settings).

2. Condition
Conditions (one per each line) for this rule.

3. Total
Total amount (taken from the "amount" meta attribute) and number of all
records that are fitting the training data selection criteria defined.

4. Fraud
Total amount (taken from the "amount" meta attribute) and number of all
records marked as fraud (taken from "fraud" meta attribute) that are fitting
the training data selection criteria defined.

5. Genuine
Total amount (taken from the "amount" meta attribute) and number of all
records not marked as fraud (taken from "fraud" meta attribute) that are
fitting the training data selection criteria defined.

6. Statistics
Contains various derived performance indicators:

• Hit rate
Total fraud amount of this row's data selection divided by the total fraud
amount in all records fitting training data selection criteria.

• False positives
Number of genuine records falsely hit divided by number of fraud
records correctly hit in all records fitting training data selection criteria.

• Saved amount per false alarm
Monetary savings by fraud prevented for each false alarm endured
(refer to Benchmarking Prevention Performance for details).

• Intercept
Number of records hit divided all records fitting training data selection
criteria (displayed as "basis points", 100 BP equals 1%).

Rows

Each row represents one rule. Notice that the performance values shown in
the right columns are always the incremental performance, i.e. the additional
performance with respect to the already existing rules.

Remark
More information on can be found on the Automatic and Assisted Rule Generation
online help page.
back to top

6.4.6.3 Random forest generation settings

The IBM Safer Payments model generation function employs standard
training algorithms to automatically generate random forest models to detect
fraud using historical data stored in the system. Since each application has
its unique fraud patterns and individual policy, the model generation
algorithms can be fine-tuned to fit these needs using the parameters
available in this form. In general the best values for each parameter depend
on your application, the structure of your data and which fraud patterns you
are interested in. Still we offer some default values that can be used as a
starting point. Please consult the IBM Safer Payments support for the best
set of settings for your applications.

The settings on this page are:

Random Forest Generator Settings

These settings affect the generation process of the random forest directly.
The available options are:

• Maximum depth of trees
This setting controls the maximum depth of each tree in the generated
forest. The deeper the tree, the more splits it has and it captures more
information about the data.

• Minimum sample required for split
If the number of samples in a node is less than this parameter then the node
will not be split.

• Number of trees
In random forest generation, a higher tree count usually gives better results.
However, if the number of trees becomes too large the accuracy gains from
more trees will be offset by the increase in computation time for evaluating
these additional trees for each transaction.

• Maximum features for best split
This is the size of the randomly selected subset of features at each tree
node, and they are used to find the best split(s). If you set it to 0 then the
size will be set to the square root of the total number of features.

• Truncate pruned branches
If set the pruned branches are removed from the trees, otherwise the
truncated trees are retained.

Model Settings

These settings affect the generated model component and can also be
changed after saving the generated model using the model components
page. The available options are:

• Model name
Enter the name for the generated random forest.

• Comment
Enter a comment for the generated random forest or leave it empty.

• Predicted value output
Select the output (or overwritable input) to store the predicted value.

• Probability fraud output
Select the output (or overwritable input) to store the probability of the
transaction being fraud.

• Probability genuine output
Select the output (or overwritable input) to store the probability of the
transaction being genuine.

back to top

6.4.6.3.1 Random forest generation

This step depends on the data selection and settings configured with in the
previous steps. This allows start, stop and save of the generated internal
model.

Options offered are:

• Start
Model generation is three phased process. Once model generation is started
in first two phases, the training data, verification data are prepared
respectively. In third and final phase model is trained and verified using data
prepared in first two phases.

• Stop
This does allow user to stop the model generation in asynchronous manner.
At the end of each phase, IBM Safer Payments checks if stop was requested.
If stop request is pending the model generation is aborted. Model training or
third phase is time consuming (depends on the size of the training dataset)
and stop triggered in this phase can be executed only once training is
finished.

• Save
On completion of model generation, various evaluation parameters are
computed. These parameters provide the insight into the quality of generated
model and further allow the trained model to be saved.

back to top

6.4.6.3.2 Model generation data selection

This section defines which data is to be used for model generation. Notice
that you may return to this page from rule generation to either check your
settings or to change them. In the case that you change data selection
settings, the selection is recomputed, which may take some time.

Model generation scenario

This setting defines the general scenario for which models are generated:

• Ignore existing models and ignore existing intercepts in records
Creates a fraud prevention model as if there were no records marked
"intercepted" in the data and no models were already defined. Choose this
scenario if you are creating a completely new prevention model ("from
scratch").

Verification

IBM Safer Payments performs automatic verification by finding the test
accuracy of the generated model.

Training/verification data selection

These subsections allow for the definition of exactly which data is to be used
for training/verification. The data range settings let you select a from/to type
range, and the attribute condition subsection lets you in addition to that also
define per-record criteria.

Remarks

• Notice that the model generation page shows the test accuracy of the
generated model resulting from this selection.

back to top

6.5 Input attributes

Each attribute whose value is delivered into IBM Safer Payments that shall be
used for real-time decision making or case investigation must be defined as
an input attribute.

Notice that if you use a mandator structure, the rules of this decision logic
may use all attributes defined in champion model revisions of mandators
above in the structure.

Each input attribute is specified by a set of definitions that are made on this
form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain. Notice that the attribute names do not need to
correspond to the variable names of data delivered to IBM Safer Payments;
you define the relation between IBM Safer Payments attributes and variable
names in "Mappings".

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for
analysis and rule generation should be in the MDC and DDC. Attributes that
you only need for investigation and queries should only be stored in the DDC.
Attributes that are only used for the evaluation of the current transaction and
for which you do not need any history do not need to be stored at all. Notice
that your storage options determine how much main and disk memory IBM
Safer Payments consumes (number of records times length/characters). You
find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Overwritable
If checked, rules may overwrite values of this input attribute.

• Data type
IBM Safer Payments supports the data types:

• Boolean
Stores values of type "true/false" (stored using one Bit). If this attribute
is not set its default value is "false". The default mapping for delivered
data is "1" for "true" and "0" for "false". The mapping of the boolean
values can be changed through preprocessings in "Mappings". Note:
MDC or DDC capacity for boolean type attributes must be a multiple of
8.

• Numeric
Variable Byte length (0..8) signed numeric values with variable (0..6)
decimals. Both settings determine the universe of the attribute that is
calculated in the same form. If this attribute is not set its default value
is "nil" for display and "0" for any computational use (as in a condition).
You may also explicitly check this attribute for "nil" (empty) values in
conditions.

• Text
Fixed length text values (configurable length). If this attribute is not set
its default value is "nil" for display and "" (empty string) for any
computational use (as in a condition). You may also explicitly check this
attribute for "nil" (empty) values in conditions.

• Hexadecimal
Hexadecimal values (configurable length). Notice that the hexadecimal
values can be up to twice as long as the Byte length defined. If this
attribute is not set its default value is "00..." for any computational use
(as in a condition) and for display.

• IPv4
IP address (e.g. 127.0.0.1) values (stored using 4 Bytes). Addresses
can be delivered and are displayed as a text of four-digit groups (0-
255) separated by dots. Internally they are efficiently stored as binary
information.

• Time interval
Two date and time values defining an inclusive interval (stored using 12
Bytes). Several types of date and time values are supported but both
sides of the interval must use the same one:

• Full timestamps

• Time only

• Day of the week only

• Day of the week with time

• Day of month and month only

• Day of month and month with time

• Day of month only

• Day of month with time

• Timestamp
Timestamp (date and time) values (stored using 5 Bytes).

• Formatted as
The formatting options are for display of values on the IBM Safer Payments
pages (for examples in queries or case investigation). Choices differ by data
type:

• Amount
Using digit group and decimal separators as defined for each user's
preferences (e.g. "12,345.67") for numeric attributes only.

• Decimals
Using decimal separators as defined for each user's preferences (e.g.
"12345.67") for numeric attributes only. This option does not use digit
group separators.

• ID
Using digit group separators as defined for each user's preferences (e.g.
"123,456,789") for numeric attributes only.

• PAN
Using dashed quadruple format typically used for primary account
numbers as embossed on cards (e.g. "1234-1243-1243-1243") for
numeric and text attributes only.

• No formatting
Shows data with no formatter applied.

Notice that timestamp type attributes are always formatted according to
user's preferences.

• Encrypted
Encrypted attributes are stored on disk only in PCI DSS compliant format.
User who do not have the privilege to view unmasked data (global user
privileges) will only see masked values of this attribute. Enabling encryption
will cause the attribute's DDC size to be increased to the next multiple of 16
unless the option to only encrypt the first 16 bytes is enabled (see below).

• Only encrypt first 16 bytes
If checked, only the first 16 bytes of each attribute value will be encrypted.
The DDC length will only be adjusted to be at least 16 bytes. For larger
attributes no adjustments will be made to the DDC length.

• Purge outdated entries securely
This setting allows for secure removal of all attribute data older than a
defined lifetime. Refer to the "Purge outdated entries securely" section below
for more details.

• Lifetime
This setting defines how long data stays in MDC and DDC before being
purged. See the "Purge outdated entries securely" section below for
details.

• Length/decimals
Quantifies text and numerical data types:

• Numeric
Byte length of internal storage, ranging from 1 to 8, and decimals
ranging from 0 to 6. The value range that the resulting attribute can
represent is computed live in the browser and displayed on the right.

• Text
Byte length of internal storage, with ASCII coded characters, this is
exactly the maximum number of characters that can fit into the
attribute. Since IBM Safer Payments supports UTF-8 coding, non-ASCII
characters may consume multiple bytes. For example, special
characters in non-English European languages, such as ä, ü, ö, ß, ê, é,
è etc. typically require two bytes; all characters of Greek, Cyrillic,
Coptic, Armenian, Hebrew, and Arabic require two bytes per character;
and Chinese/Japanese/Korean Unified Ideographs require three bytes
per character. You thus need to size the byte length of text attribute
values according to the UTF-8 character encoding byte space
requirements.

• Hexadecimal
Byte length of internal storage, thus any hexadecimal text value is
twice the number of characters. For instance, the hexadecimal value
"FF" would internally be stored by IBM Safer Payments using one Byte.

• Unit
Displayed with numeric values of this attribute. Typically used for currencies.

• Meta attribute
IBM Safer Payments needs to know which of your (freely configurable)
attributes represent certain fraud prevention standard attributes (aka "meta
attributes") to render certain functions. Some meta attributes are mandatory
(model revision will be refused for golive if missing), while others are
optional. In a mandator hierarchy certain meta attributes must be defined on
the top mandator. Because most meta attributes have pre-defined data
types, the choice of the meta attribute depends on the type:

• Boolean meta attributes

• Fraud (mandatory)
Used to mark transaction records as fraudulent. The value of 0 is
considered "not fraud", while any other value can represent fraud
or a fraud type. This attribute is read both for analyses and rule
generation, and can also be set by the investigation function.

• URID computation complete (mandatory for Serialize
Computation/Access protection)
The URID computation complete attribute is used internally by IBM
Safer Payments when processing mergings, to know whether it is
safe to use a transaction as a merging target.

• Numeric meta attributes

• Account
Used to identify payment entities, such as cardholders or account

owners. Typically, this attribute is the PAN or the account number.
This meta attribute can either be of numeric or text type.

• Amount (mandatory)
Used to identify the monetary value of a transaction record.

• External model connection ID
Used to dynamically select an outgoing channel configuration in
external model components. Notice that multiple inputs can be of
this type of meta attribute.

• Fraud (mandatory)
Used to mark transaction records as fraudulent. Using a numeric
attribute as this meta attribute, two general configuration options
are available. If no categories are defined for the attribute, the
value of 0 is considered "not fraud", while any other value can
represent fraud or a fraud type. As soon as one category is defined
for the attribute, all categories that have been defined to be a
fraud category are considered "fraud". In this case all other values
are considered "not fraud". This attribute is read both for analyses
and rule generation, and can also be set by the investigation
function.

• Message type ID (mandatory)
Used to differentiate different types of transaction records and
messages. Used for instance in "Mapping" to identify transaction
message types.

• Primary instance ID
Used in an IBM Safer Payments cluster to identify the IBM Safer
Payments instance that sets the primary URID (another meta
attribute). Notice that transaction records may have different
URIDs in each IBM Safer Payments instance. In order to uniquely
identify each record, the primary URID in combination with the
primary instance Id are used. Notice that the length of this meta
attribute is fixed at 1 (ID values from 1 to 127).

• Primary URID
URID set by the IBM Safer Payments instance that had processed
this record as primary instance. Notice that the length of this meta
attribute is fixed at 8.

• Hexadecimal meta attributes

• Account
Used to identify payment entities, such as cardholders or account
owners. Typically, this attribute is the PAN or the account number.
This meta attribute can either be of numeric or text type.

• Text meta attributes

• Account
Used to identify payment entities, such as cardholders or account
owners. Typically, this attribute is the PAN or the account number.
This meta attribute can either be of numeric or text type.

• Email
If you use email/text notifications, this meta attribute indicates

the attribute carrying the recipient's email address.

• Timestamp meta attributes

• Timestamp (mandatory)
This is the (IBM Safer Payments external) timestamp of the
transaction. Typically, this timestamp denotes the actual sale date
and time. This attribute is used by IBM Safer Payments to
understand the sequence of transactions irrespective of when they
actually arrived in IBM Safer Payments.

• System time (mandatory)
This stores the IBM Safer Payments system timestamp that is
automatically generated by IBM Safer Payments. This attribute is
used by IBM Safer Payments to understand exactly when the
transaction was processed.

• Discard Future Timestamp
If checked, an attribute of type "Timestamp" will be discarded, if the
timestamp is further in the future than the current timestamp plus the
defined offset. The offset's time format is a combination of days and hours in
which an upcoming timestamp is still regarded as valid.

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

Purge outdated entries securely

This setting can be used to enforce sensitive data retention in memory and
on disk by securely deleting data after a defined lifetime. Secure deletion of
data in memory is performed by overwriting the values with random data.
Secure deletion of data on disk is performed by overwriting the data to be
purged three times:

1. once with random data

2. once with ones

3. once with zeros

When purging is enabled, the deletion is done according to the specified
lifetime.

Lifetime

The lifetime describes the amount of time that data is stored in MDC and
DDC. After the lifetime expires, the data is securely purged. The purging
takes place in the end of day job and does not affect the size of the data
caches. The lifetime is configured differently depending on the retention
mode set on the Retention settings page. Since the application provides two
different retention settings, there are two different cases for the lifetime
available as well:

• Retention by records: The lifetime is defined in a separate "Lifetime" setting
field.

• Retention by time: The DDC retention acts as lifetime.

Example

Let's assume the number of expected records per day are 1000 for a specific
attribute with an associated lifetime of 5 days. This would result in a maximal
MDC/DDC capacity of 5000 records. Now, the actual daily transaction volume
ends up being lower than the expectation: only 500 per day.

Without purging being enabled, the data in MDC and DDC would now live
roughly 2 times longer than intended because the expected transaction
volume was 2 times higher than the reality. This is because the only way for
transaction data to be deleted without purging is by being overwritten with
new transaction data after the data cache's capacity was filled.

Enabling purging prevents this. The end of day job will securely erase the
outdated data in the end of day job regardless of whether the data cache is
full or not, thus enforcing the data's retention period properly.

Edge cases

Current edge cases for purging:

1. The last transaction record within the system is never purged.

Example: Imagine attributes are stored for 4 days. During the last 5
days, 10 transactions were loaded but no new transaction, afterwards.
The expectation is, that all transactions are purged because all of them
lie outside their retention period (lifetime). However, the 10th
transaction is not purged. This behaviour is intentional and due to the
purge implementation.

2. Rarely, the application does not purge the last transaction record
outside the retention period (lifetime).

Example: Imagine the same example from above, but a new transaction
is loaded during the day. The expectation is, that the previous 10

transactions are purged because all of them lie outside their retention
period (lifetime) and none of them is the last transaction record.
However, the 10th transaction might not be purged because it is the
most recent transaction just outside the retention period.

Both edge cases are very rare in a real production environment because new
transactions are constantly coming in. The second edge case can still happen
from time to time but the impact is very small because the next end of day
job will purge the previously left out transaction.

Important

Purging is different from the retention trimming performed by the end of day
job when retention by time is used. Retention trimming only marks outdated
records as "removed" but does not erase the data as purging does. Refer to
the Retention settings page for more details.

Remarks

• If you enlarge the size of an MDC (or enable MDC) in a challenger, during
golive, the "missing" data will be loaded from DDC to MDC.

• If you change the length or the number of decimals of an attribute all
stored information will be lost once you start a golive.

back to top

6.5.1 Own inputs

Input attributes shown in this section belong to this mandator and you may
add, delete, and change these input attributes if you have the necessary
privileges.

Notice that you must define mappings within this model revision to "connect"
these input attributes to transaction messages coming into IBM Safer
Payments for the attribute values to be populated.
back to top

6.5.2 Inherited inputs

Input attributes shown in this section are inherited from mandators that are
above this mandator within the mandator hierarchy. You may use these input
attributes in the same way as the ones you define yourself (shown in a
different section/table), but you may not change them.
back to top

6.6 Output attributes

Each attribute that shall be generated by the decision logic, whether actually
returned to the connected system(s) as a response to a request, or only to
be used within IBM Safer Payments, must be defined as an output attribute.

Notice that if you use a mandator structure, the rules of this decision logic
may use all attributes defined in champion mandator model revisions above
it in the structure.

Each output attribute is specified by a set of definitions that are made on this
form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain. Notice that the attribute names do not need to
correspond to the variable names of data delivered by IBM Safer Payments;
you define the relation between IBM Safer Payments attributes and variable
names in "Mappings".

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for
analysis and rule generation should be in the MDC and DDC. Attributes that
you only need for investigation and queries should only be stored in the DDC.
Attributes that are only used for the current transaction and for which you do
not need any history do not need to be stored at all. Notice that your storage
options determine how much main and disk memory IBM Safer Payments
consumes (number of records times length/characters). You find the memory
totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Data type
IBM Safer Payments supports the data types:

• Boolean
Stores values of type "true/false", "yes/no" and "1/0" (stored using one
Bit). If this attribute is not set by any rule conclusion its default value is
"false"/"no"/"0". Note: MDC or DDC capacity for boolean type attributes
must be a multiple of 8.

• Numeric
Variable Byte length signed numeric values with variable (0..6)
decimals. Both settings determine the universe of the attribute that is
calculated in the same form. If this attribute is not set by any rule
conclusion its default value is "nil" for display and "0" for any
computational use (as in a condition). You may also explicitly check this
attribute for "nil" (empty) values in conditions.

• Text
Fixed length text values (configurable length). If this attribute is not set
by any rule conclusion its default value is "nil" for display and "" (empty
string) for any computational use (as in a condition). You may also
explicitly check this attribute for "nil" (empty) values in conditions.

• Hexadecimal
Hexadecimal values (configurable length). Notice that the hexadecimal
values can be up to twice as long as the Byte length defined. If this
attribute is not set ´by any rule conclusion its default value is "00..." for
any computational use (as in a condition) and for display.

• Timestamp
Timestamp (date and time) values (stored using 5 Bytes).

• Formatted as
The formatting options are for display of values on the IBM Safer Payments
pages (for examples in queries or case investigation). Choices differ by data
type:

• Amount
Using digit group and decimal separators as defined for each user's
preferences (e.g. "12,345.67") for numeric attributes only.

• Decimals
Using decimal separators as defined for each user's preferences (e.g.
"12345.67") for numeric attributes only. This option does not use digit
group separators.

• ID
Using digit group separators as defined for each user's preferences (e.g.
"123,456,789") for numeric attributes only.

• PAN
Using dashed quadruple format typically used for primary account
numbers as embossed on cards (e.g. "1234-1243-1243-1243") for
numeric and text attributes only.

• No formatting
Shows data with no formatter applied.

Notice that timestamp type attributes are always formatted according to
user's preferences.

• Length/decimals
Quantifies text and numerical data types:

• Numeric
Byte length of internal storage, ranging from 1 to 8, and decimals
ranging from 0 to 6. The value range that the resulting attribute can
represent is computed live in the browser and displayed on the right.

• Text
Byte length of internal storage, with ASCII coded characters, this is
exactly the maximum number of characters that can fit into the
attribute. Since IBM Safer Payments supports UTF-8 coding, non-ASCII
characters may consume multiple bytes. For example, special
characters in non-English European languages, such as ä, ü, ö, ß, ê, é,
è etc. typically require two bytes; all characters of Greek, Cyrillic,
Coptic, Armenian, Hebrew, and Arabic require two bytes per character;
and Chinese/Japanese/Korean Unified Ideographs require three bytes
per character. You thus need to size the byte length of text attribute
values according to the UTF-8 character encoding byte space
requirements.

• Unit
Displayed with numeric values of this attribute. Typically used for currencies.

• Meta attribute
IBM Safer Payments needs to know which of your (freely configurable)
attributes represent certain fraud prevention standard attributes (aka "meta
attributes") to render certain functions. Some meta attributes are mandatory
(model revision will be refused for golive if missing), while others are
optional. In a mandator hierarchy certain meta attributes must be defined on
the top mandator. All output meta attributes have numeric data types:

• Numeric meta attributes

• Case class
The value of this attribute is used as reference to a case class for
a generated investigation case. At the same time, the value of this
attribute also identifies if a case shall be generated (if value larger
than zero/default). If no attribute is defined as this meta attribute,
case generation is disabled.

• Case score
Used to identify the relative importance of an alarm. If this meta
attribute is not assigned, all alarms/cases will be generated with a
score of 100.

• Intercept (mandatory)
Used to denote the real-time decision of IBM Safer Payments. The
value of 0 is considered "do not intercept" (assumed genuine
transaction), while any other value can represent different types of
real-time intervention (referral, decline etc.). IBM Safer Payments
uses this value to understand whether or not the decision logic
decides to intervene with a monetary transaction.

• Notification
The value of this attribute is used as reference to a notification
message to be generated. At the same time, the value of this
attribute also identifies if a notification shall be generated (if value
larger than zero/default).

• Reminder
The value of this attribute is used as reference to a reminder
message to be generated. At the same time, the value of this
attribute also identifies if a reminder shall be generated (if value
larger than zero/default). If no attribute is defined as this meta
attribute, reminders are disabled.

• Score
Using the respective conclusion operators for numeric attributes
("increment by", "decrement by", and "maximize with"), IBM Safer
Payments provides the possibility to configure a score-based
decision logic. The optional meta attribute "score" identifies the
numeric attributes that is used for this approach.

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

Remarks

• If you enlarge the size of an MDC (or enable MDC) in a challenger, during
golive, the "missing" data will be loaded from DDC to MDC.

• If you change the length or the number of decimals of an attribute all
stored information will be lost once you start a golive.

back to top

6.6.1 Own outputs

Output attributes shown in this section belong to this mandator and you may
add, delete, and change these output attributes if you have the necessary
privileges.

Notice that you must define mappings within this model revision to "connect"
these output attributes to transaction messages generated by IBM Safer
Payments for the attribute values to be included in message responses.
back to top

6.6.2 Inherited outputs

Output attributes shown in this section are inherited from mandators that are
above this mandator within the mandator hierarchy. You may use these
output attributes in the same way as the ones you define yourself (shown in
a different section/table), but you may not change them.
back to top

6.7 Categories

Categories can be defined for all boolean, numeric, and text type input and
output attributes with the formatting option "no formatting". They are
typically useful in situations where a numeric attribute is used with
predefined values. Examples for these attributes are the merchant category
code (MCC) and the numeric country code. The merchant category code
"6011" is used below as an example to illustrate the usage of categories.

Each category contains a set of four parameters which can be defined in the
corresponding columns of the table:

• Value (range start/end)
The values associated with the given category. For text attributes and
boolean attributes this is always a single value but for numeric attributes
intervals of values are supported. If you just want to use a single value use
the same value for the start and the end of the interval. The format of the
values should be the same as how they will be delivered to IBM Safer
Payments.
Example: 6011

• Label
Within the modeling and investigation process labels can be displayed in a
tooltip whenever the corresponding value is used. To display the label which
is defined for a value, just move the mouse over the value. Moreover, it is
possible to use the defined labels instead of the original values to create
conditions and rules in IBM Safer Payments.
Example: ATM

• Comment
Place for additional information.
Example: Automated Cash Disburse

• Color
Categories can be highlighted with a background color in the result tables of
investigation queries, simulation queries and masterdata queries. If no color
is selected the table cell uses its default color.

• Encoding
If enabled an encoded version of this category can be used within PMML
models, python functions in conditions and external model components. An
encoded category can be imagined as an additional boolean attribute without
additional memory requirements. This attribute will hold the value "true" if a
transaction contains the corresponding category value and "false" otherwise.

To delete a category select the corresponding row, open the context menu by
selecting a checkbox and select "Delete". Holding the [Ctrl]-key allows you to
select (and delete) multiple categories. If you want to delete all defined
categories, click on the corresponding button "Delete all categories of this
attribute" in the header of the category section.

Importing categories from a CSV file

All data within the CSV file should use characters in the ASCII range from 32
to 126 or UTF-8. The data should include one of the following sets of
headers:

• value, label, comment

• value, label, comment, fraud

The last column is only useful when importing categories for the fraud meta
attribute. It's values are expected to be either "true" or "false".

For numeric attributes it is possible to specify value intervals in the first
column. The intervals must have the format "XXX~YYY". Intervals are not
allowed to overlap with other intervals. If intervals are not needed you can
just use the format "XXX" instead.

Remark

Notice that categories must be unique. It is not possible to define multiple
labels for one value. For numeric attributes this extends to value intervals:
they must not overlap with each other. Category colors and encoding cannot
be imported.
back to top

6.8 Input and output mappings

In a typical IBM Safer Payments application, multiple data sources (and
drains) exist. Frequently the IBM Safer Payments input and output attributes
must be mapped (and sometimes pre-/post-processed) to the variables of
these data sources. IBM Safer Payments thus allows for the definition of any
number of messages from messages page on administration tab. For details
refer to IBM Safer Payments Messages Online Help.

For each message and each input/output attribute, you can define which
variable name and pre-/post-processing shall be used with the respective
message. The respective table entry consists for XML/CSV/nested XML
messages of alias [preprocessing(preprocessingParameters)] and for FCD
messages of [start: length] [preprocessing(preprocessingParameters)]. For
nested XML messages, the alias is represented by the sequence of elements
that lead to the value starting from the root element. The different elements
within the sequence are separated by a forward slash character
(root_element/child_element/sub_child). If you want to map attributes, you
would need to continue the sequence until the attribute
(root_element/child_element/sub_child/attribute_key). In case there are
array elements, they will be numbered starting from the 2nd element
(array_element/item_2).

The same applies to JSON, except that arrays are represented as [x] where x
is the position of the element in the array. (Example:
transaction/order/items[0]/categories[0]/[0] for {"transaction":{"order":
{"items":[{"categories":[["Books"]]}]}}})

Mappings for NACHA messages appear as a list of entries separated by a
semicolon. Each entry follows the format SEC Record FieldNumber or SEC
Record [start : length]. Information about the preprocessing follows after the
list. Contrary to other mappings, NACHA mappings cannot be directly edited
in the table.

In the table below, each row represents one IBM Safer Payments attribute.

Notes:

• Mappings of inherited attributes, recognizable through an entry in the
Inherited from column, are not editable here.

• You can filter the attributes shown in the table according to their origin by
selecting the respective option in the toolbar.

back to top

6.8.1 Mapping

Introduction

Mappings connect the values from different types of transaction messages
like CSV, FCD and XML to attributes within IBM Safer Payments. This way
Safer Payments is able to ingest several different data streams while allowing
the model to work on a single consolidated data layout optimized for
performance.

Settings for CSV and XML messages

Each CSV column and XML tag is mapped to a single attribute by defining the
name of the column or XML tag as an alias.

Settings for nested XML messages

For nested XML messages the alias you define has multiple parts separated
by a forward slash specifying the sequence of XML elements leading to the
value you're interested in e.g. "root_element/child_element/attribute_key".
When arrays are used, starting with the second element, you have to append
an underscore followed by the number of the element inside the array e.g.
"array_element/item_2".

Settings for JSON messages

For JSON messages the alias you define has multiple parts separated by a
forward slash specifying the sequence of JSON object properties leading to
the value you're interested in e.g. "root/child/attribute_key". When arrays
are used, you refer to their individual elements by using an index starting
with zero e.g. "array[0]" or even "array_of_arrays[0]/[0]" for multi-
dimensional arrays.

Settings for FCD messages

For FCD messages each attribute can map to one or more substrings of a
message. The substrings are identified by pairs of numbers denoting the
start of the substring and its length. If you define more than one of these
pairs, all substrings will be concatenated before performing the
preprocessing and continuing with the computation.

Settings for NACHA messages

NACHA (National Automated Clearing House Association) is a batch file
format. It contains different kinds of records each with a different set of field
definitions depending on the Standard Entry Class Code (SEC) provided in
the Batch Header Record. Safer Payments allows you to map each field to an
attribute by selecting the SEC, record type, and the field itself.

A single attribute can map to different SECs but for each SEC only to a single
field. If you need to combine values of different fields enable "substring
mapping". This option replaces the field selection with a list of pairs of
numbers each denoting a start position inside the record and the length of
the substring to extract. If you define more than one of these pairs, all
substrings will be concatenated before performing the preprocessing and
continuing with the computation.

IBM Safer Payments stores NACHA field values as they appear in the file
without changing them unless a preprocessing is manually selected. Usually
this means that you will have to use the "auto decimal" preprocessing for
amount fields to convert them from cents to USD or the "timestamp"
preprocessing for date and time fields to convert them into IBM Safer
Payments timestamps.

Addenda Records are a special type of record that can be provided for certain
SECs. For the CCD, CTX, PPD, and WEB entry classes Safer Payments only
supports a single Addenda Record. For the IAT entry class all mandatory and
optional Addenda Records are supported.

Preprocessings

Depending on the type of message and the type of the attribute several
preprocessings might be available but only one of them can be selected. The
processing happens after the value was read from the transaction message
and before it is used in subsequent stages of the model. The following
preprocessings are available:

• append constant right
Appends a constant to the right of this attribute.

• auto decimal
Any message value delivered with no decimal period gets a decimal period
inserted before the n-th character from the right.

• concatenate
Appends the values of the listed variable(s) to this attribute.

• convert currency
Converts the value using the integer variable value (alias) and converts it
according to the integer rate and decimals.

• counterfeit notes
Computes a score to be used in conditions based on a list of denominations
to be filtered, a specified score increment and a specified factor.

• crc32 hash
Concatenates the values of the listed variables(s) and computes a crc32
checksum over the result.

• evaluate travel periods
Allows to perform a simple allowlist check for location and dates.

• IP to hex
Converts dotted-decimal IP address notation (127.0.0.1) to hexadecimal
format (7F000001).

• replace
Defines n pairs of text values where the second text value replaces the first
text value.

• replace basic HTML entities
Replaces < > ' " & with < > ' " &. Other HTML entities
will not be changed.

• replace substring
Each occurrence of a given string is replaced with a user-defined string.

• substring
Cuts out the substring at a certain position with a certain length.

• take if empty
If the alias defined is either not delivered with the transaction message or if
it is delivered empty, a specific value is used instead.

• timestamp
Accepts timestamp values of other formats than the standard IBM Safer
Payments ISO format "YYYY- MM - DD hh: mm: ss".

• timestamp milliseconds
Accepts timestamp formats that include millisecond information and stores
them in a numeric attribute.

back to top

6.8.2 Append constant right preprocessing

Appends a constant to the right of this attribute. This preprocessing is only
available for FCD message.

The following parameter has to be set for append constant right
preprocessing:

• Constant
The constant to be appended on the right of the attribute value.

back to top

6.8.3 Auto decimal preprocessing

Any message value delivered with no decimal period gets a decimal period
inserted before n-th character from the right, where n is the specified number of
decimal places.

The following parameter has to be set for auto decimal preprocessing:

• Decimal places
The number of decimal places of the attribute value.

Examples:

• Specified decimal places: 2, incoming value: 456 -> 4.56

• Specified decimal places: 3, incoming value: 456 -> 0.456

• Specified decimal places: 2, incoming value: 45.6 -> 45.6

back to top

6.8.4 Concatenate preprocessing

Appends values of listed variables(s) to this attribute. This preprocessing is not
available for FCD message.

The following parameters have to be set for concatenate preprocessing:

• Variable
The variable to be concatenated.

• length
The minimum length of the value to be concatenated (If text value of the
variable is shorter than this length, it is filled with space characters from
left.).

• align left
The align left option will fill shorter text values with space characters from
the right (default: left). If it is longer, it is truncated.

To add a parameter to preprocessing click the[Add parameter] button above.

To delete a parameter from preprocessing click the respective [Delete]
button besides the row.
back to top

6.8.5 Convert currency preprocessing

Converts the value using the integer variable value (alias) and converts it
according to a rate and the specified decimals. This preprocessing is not available
for FCD message.

The following parameters have to be set for convert currency preprocessing:

• Rate
The rate to be used in the conversion. Has to be an alias name of an
attribute in this message.

• Decimals
The number of decimals to be used in the conversion. Has to be an alias
name of an attribute in this message.

Example: Assuming the following data delivered of an XML transaction message:
"…<Amount>10000</Amount><Rate>747495</Rate>
<Decimals>8</Decimals>…",
the value stored in the IBM Safer Payments attribute is computed as: 10000 *

747495 * 10-8 = 74.7495 (the number of decimals taken over by IBM Safer
Payments depends on the attribute's settings).

Note: In the above example the parameters would have been: Rate: Rate
and Decimals: Decimals
back to top

6.8.6 Counterfeit notes preprocessing

Computes a score to be used in conditions based on a list of denominations to be
filtered, a specified score increment and a specified factor.

The following parameters have to be set for counterfeit notes preprocessing:

• Denominations
A list of denominations to be filtered. (For example: 100, 500, 1000)

• Score increment
The value to be added to the score value if only one denomination is present
and this denomination is included in the defined list of denominations to be
filtered.

• Factor
If a denomination which is included in the defined list of risky denominations
occurs, the number of attempts is multiplied by this factor to result in a
score increment.

Examples: Assuming the following parameters:

• denominations: 100, 500, 1000

• score increment: 20

• factor: 5

and:

• an input of <denominations>100,9</denominations> (first value:
denomination, second value: number of attempts) the score would be
computed as 20 + 9*5 = 65.

• an input of <denominations>100,3;200,9</denominations> (first value:
denomination, second value: number of attempts) the score would be
computed as 3*5 = 15.

• an input of <denominations>100,9;500,13</denominations> (first value:
denomination, second value: number of attempts) the score would be
computed as 9*5 + 13*5= 110.

Note: If none of the defined denominations occur, the score will be 0.
back to top

6.8.7 Crc32 preprocessing

Computes a crc32 hash value of the concatenation of the selected
variables(s). This preprocessing is not available for FCD message.

The CRC transformation creates a rather unique value for any number of text
values of an XML message. It is used for example to create a unique ID from
any type of cookie string or any number of browser information data
elements with device identification.

Notice that there is no length limitation on the data element(s) transformed
by CRC.

“CRC” stands for “cyclic redundancy code” and is similar to the computation
of a hash value. In contrast to hash functions, CRC is faster to compute,
however, it cannot be considered a secure obfuscation of the original value.

The following parameters have to be set for crc32 preprocessing:

• Variable
The variable to be added to the input string for the hash computation.

• length
The minimum length of the value to be added to the input string for the hash
computation (If text value of the variable is shorter than this length, it is
filled with space characters from left.).

• align left
The align left option will fill shorter text values with space characters from
the right (default: left). If it is longer, it is truncated.

To add a parameter to preprocessing click the[Add parameter] button above.
back to top

6.8.8 Evaluate travel periods preprocessing

Allows to configure a simple location based allowlisting e.g. for travel times.
This preprocessing is not available for FCD message.

The evaluate travel periods preprocessing can be used to compare the
country code of a transaction and the transaction timestamp to a simplistic
allowlist sent within another transaction element.

The content of this element is the repetition of periods represented by a
tuple of a country code followed by a start and an end date (e.g.
"DE221210231210BE010115311215"). The output of the preprocessing is
"true" whenever one of the periods matches the country code and the date of
the transaction, otherwise it is false.

The following configuration parameters have to be set:

• Allowlist element
Name of the XML element that contains a string of multiple periods
consisting of a country code, a start, and an end date.

• Country code length
Specifies the length of the country codes within the allowlist element. For the
example above that would be "2".

• Start date format
Specifies the format of the start timestamps within the allowlist element.
Supported values for the timestamp format are:

• DD.MM.YYYY hh:mm:ss
Typical European timestamp format.

• YYYYMMDDhhmmss
Compact ISO format.

• YYYY-MM-DD
Date format.

• YYYYMMDD
Compact date format.

• YYMMDD

Compact short date format (21st century assumed). For example,
"150914" would be translated into "2015-09-14 00:00:00".

• DDMMYY

Compact short date format (21st century assumed). For example,
"150914" would be translated into "2014-09-15 00:00:00".

• YYFF (Valid From)
Converts a four-digit value ("YYMM") into a timestamp. For example,
"1409" would be translated into "2014-09-01 00:00:00".

• YYUU (Valid Until)
Converts a four-digit value ("YYMM") into a timestamp. For example,
"1409" would be translated into "2014-09-30 23:59:59".

• End date format
Specifies the format of the end timestamps within the allowlist element.
Supported values for the timestamp format are:

• DD.MM.YYYY hh:mm:ss
Typical European timestamp format.

• YYYYMMDDhhmmss
Compact ISO format.

• YYYY-MM-DD
Date format.

• YYYYMMDD
Compact date format.

• YYMMDD

Compact short date format (21st century assumed). For example,
"150914" would be translated into "2015-09-14 23:59:29".

• DDMMYY

Compact short date format (21st century assumed). For example,
"150914" would be translated into "2014-09-15 23:59:59".

• YYFF (Valid From)
Converts a four-digit value ("YYMM") into a timestamp. For example,
"1409" would be translated into "2014-09-01 00:00:00".

• YYUU (Valid Until)
Converts a four-digit value ("YYMM") into a timestamp. For example,
"1409" would be translated into "2014-09-30 23:59:59".

• Country code element
Name of the XML element containing the country code.

• Timestamp element
Name of the XML element containing the timestamp element. If this is left
blank, the system time will be used.

back to top

6.8.9 Replace preprocessing

Defines n pairs of text values where the second text value replaces the first text
value.

The following parameters have to be set for replace preprocessing:

• Replace
The string to be replaced.

• with
The string to be inserted.

Once a text value is replaced, no further replacements for this attribute of this
transaction message/record are performed.

To add a parameter to preprocessing click the [Add parameter] button above.

To delete a parameter from preprocessing click the respective [Delete]
button besides the row.
back to top

6.8.10 Replace substring preprocessing

Each substring texta is replaced with textb in the value.

The following parameters have to be set for replace substring preprocessing:

• To replace
The substring to be replaced.

• Replace with
The substring to be inserted.

back to top

6.8.11 Substring preprocessing

Cuts out the substring at a certain position with a certain length.

The following parameters have to be set for substring preprocessing:

• Position
The position the substring starts at.

• Length
The length of the substring to be cut out.

Please note: The first character's position is 1.
back to top

6.8.12 Take if empty preprocessing

If the alias defined is either not delivered with the transaction message or if it is
delivered empty, a specific value is used instead. This preprocessing is not
available for FCD message.

The following parameter has to be set for take if empty preprocessing:

• Value
The value to be used in case the defined alias is either not delivered or
delivered empty. Value can either be a constant, in which case it is a text,
timestamp, or numeric value in double quotes, or an alias name. For
example:

• "foo" fills in the text value 'foo' into the attribute.

• "123.45" fills in the numeric value 123.45 into the attribute.

• "2012-09-14 12:00:00" fills in the timestamp value 2012-09-14
12:00:00 into the attribute.

• AMOUNT fills in the value of the message variable AMOUNT into the
attribute.

back to top

6.8.13 Timestamp preprocessing

Accepts timestamp values of other formats than the standard IBM Safer Payments
ISO format "YYYY-MM-DD hh:mm:ss".

The following parameter has to be set for timestamp preprocessing:

• Timestamp format
The format of the timestamp to be accepted. Supported values for the
timestamp format are:

• DD.MM.YYYY hh:mm:ss
Typical European timestamp format.

• YYYYMMDDhhmmss
Compact ISO format.

• YYYY-MM-DD
Date format.

• YYYYMMDD
Compact date format.

• YYYYDDDhhmmss
Julian timestamp format.

• YYMMDD

Compact short date format (21st century assumed). For example,
"150914" would be translated into "2015-09-14 12:00:00".

• DDMMYY

Compact short date format (21st century assumed). For example,
"150914" would be translated into "2014-09-15 12:00:00".

• YYFF (Valid From)
Converts a four-digit value ("YYMM") into a timestamp. For example,
"1409" would be translated into "2014-09-01 00:00:00".

• YYUU (Valid Until)
Converts a four-digit value ("YYMM") into a timestamp. For example,
"1409" would be translated into "2014-09-30 23:59:59".

back to top

6.8.14 Timestamp milliseconds preprocessing

Accepts timestamp values of other formats than the standard IBM Safer
Payments ISO format "YYYY-MM-DD hh:mm:ss".

Note that this preprocessing is meant to be used with numeric attributes
only. It cannot be be used with attributes of type timestamp, because this
dataformat cannot store milliseconds.

The following parameter has to be set for timestamp milliseconds
preprocessing:

• Timestamp format
The format of the timestamp to be accepted. Supported values for the
timestamp format are:

• YYYY-MM-DD hh:mm:ss.ZZZ
ISO timestamp format with appended milliseconds.

• DD.MM.YYYY hh:mm:ss.ZZZ
Typical European timestamp format with appended milliseconds.

• YYYYMMDDhhmmssZZZ
Compact ISO format with appended milliseconds.

back to top

6.9 External model mappings

External model components can be set up to forward all inputs, outputs and
profiling outputs. When doing so, instead of manually configuring mappings
for all those attributes within the model component itself, the mappings
found on this page are used instead.

Mappings can be manually added or changed for any attribute owned by the
current revision by clicking on its table row. Mappings for inherited attributes
can only be viewed. Missing mappings will be automatically generated during
golive so that external model components can really forward every value
properly. Mappings generated like this use the attribute's name as the JSON
element name. The name is escaped according to JSON to avoid problems.

The JSON element name works exactly the same as it does for regular
mappings. Preprocessings are not available for external model mappings.
back to top

6.10 Preprocessing rulesets

Preprocessing rulesets are similar to rulesets but are computed before all
other elements (like indexes, lists, ...) are computed.

This way it is possible to use the output of these rulesets in an index or other
element and enable a more complex preprocessing of inputs as
preprocessing in mappings alone.
back to top

6.10.1 Preprocessing rulesets

Preprocessing rulesets once created are listed on the navigation menu left so
they can be quickly accessed. To access any of the rules of a Preprocessing
ruleset, click left on the respective rule name in the left navigation menu.

Notice that the conditions that you define for a Preprocessing ruleset will be
applied as if they would be defined the same for all individual rules of the
set.

Remarks

• With all the rules of this ruleset, a rule with higher priority is computed after
a rule with lower priority. This is because later rules can overwrite
conclusions of earlier rules.

back to top

6.11 Lists

Lists are used to aggregate data (categorization). A list thus generates a new
attribute, which is defined with the respective list. Each list has a number of
"values" that are set for the list attribute if the value condition(s) are met. It
can either be a text or numeric type attribute.

List data aggregation typically serves two purposes:

• Representation of defined risk using block/allow lists (i.e. known risky
merchants, known not risky terminals, etc.). In IBM Safer Payments, this
type of list is either represented with lists in a model revision, or as defined
risk (defined in the administration section). The difference is that lists in the
model revision are changed within revisions by fraud modeling personnel and
thus typically represent long-term data, while the defined risk lists can be
added and deleted during daily operations by fraud investigation personnel.

• Data aggregation of frequent mappings (MCC, ICA, POS codes, etc.). These
types of lists are represented as a specific type of rules that are executed
before other rules are executed.

back to top

6.11.1 List

Each list contains the definition of n values, where each value can have any
number of conditions. The conditions of the values are checked sequentially
and once a condition is satisfied, the respective value is assigned to the list
attribute.

Notice that value conditions are computed in the sequence the values are
displayed in this form (top->down). If the conditions of a value are all
satisfied, the value is applied to the output attribute and computation of this
list halts. This implies that you may define overlapping list areas. For
instance, assume that you define a value "gas station" to the condition "IF
MerchantCategory EQUAL_TO 5542" and below the value "shop" to the
condition "IF MerchantCategory EQUAL_TO 5000~5999", transactions with
the MerchantCategory value of 5542 would be assigned the list output
attribute value "gas station", while all other transactions with

MerchantCategory values from 5000 to 5999 would be assigned the list
output attribute value "shops".

Lists themselves do not require any memory resources, only the new
attribute according to its DDC/MDC settings.
back to top

6.11.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.11.3 List attributes

Each list data aggregation creates exactly one new attribute that it feeds its
computational result into.

Each list output attribute is specified by a set of definitions that are made on
this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for
analysis and rule generation should be in the MDC and DDC. Attributes that
you only need for investigation and queries should only be stored in the DDC.
Attributes that are only used for the evaluation of the current transaction and
for which you do not need any history do not need to be stored at all. Notice
that your storage options determine how much main and disk memory IBM
Safer Payments consumes (number of records times length/characters). You
find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This

setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Data type
IBM Safer Payments supports the data types:

• Boolean
Stores values of type "true/false", "yes/no" and "1/0" (stored using one
Bit). If this attribute is not set by any list value its default value is
"false"/"no"/"0". Note: MDC or DDC capacity for boolean type attributes
must be a multiple of 8.

• Numeric
Variable Byte length signed numeric values with variable (0..6)
decimals. Both settings determine the universe of the attribute that is
calculated in the same form. If this attribute is not set by any list value
its default value is "nil" for display and "0" for any computational use
(as in a condition). You may also explicitly check this attribute for "nil"
(empty) values in conditions.

• Text
Fixed length text values (configurable length). If this attribute is not set
by any list value its default value is "nil" for display and "" (empty
string) for any computational use (as in a condition). You may also
explicitly check this attribute for "nil" (empty) values in conditions.

• Hexadecimal
Hexadecimal values (configurable length). Notice that the hexadecimal
values can be up to twice as long as the Byte length defined. If this
attribute is not set by any list value its default value is "00..." for any
computational use (as in a condition) and for display.

• IPv4
IP address (e.g. 127.0.0.1) values (stored using 4 Bytes). Addresses
can be delivered and are displayed as a text of four-digit groups (0-
255) separated by dots. Internally they are efficiently stored as binary
information.

• Formatted as
The formatting options are for display of values on the IBM Safer Payments
pages (for examples in queries or case investigation). Choices differ by data
type:

• Amount
Using digit group and decimal separators as defined for each user's
preferences (e.g. "12,345.67") for numeric attributes only.

• Decimals
Using decimal separators as defined for each user's preferences (e.g.
"12345.67") for numeric attributes only. This option does not use digit
group separators.

• ID
Using digit group separators as defined for each user's preferences (e.g.
"123,456,789") for numeric attributes only.

• PAN
Using dashed quadruple format typically used for primary account
numbers as embossed on cards (e.g. "1234-1243-1243-1243") for
numeric and text attributes.

• No formatting
Shows data with no formatter applied.

• Length/decimals
Quantifies text and numerical data types:

• Numeric
Byte length of internal storage, ranging from 1 to 8, and decimals
ranging from 0 to 6. The value range that the resulting attribute can
represent is computed live in the browser and displayed on the right.

• Text
Byte length of internal storage, with ASCII coded characters, this is
exactly the maximum number of characters that can fit into the
attribute. Since IBM Safer Payments supports UTF-8 coding, non-ASCII
characters may consume multiple bytes. For example, special
characters in non-English European languages, such as ä, ü, ö, ß, ê, é,
è etc. typically require two bytes; all characters of Greek, Cyrillic,
Coptic, Armenian, Hebrew, and Arabic require two bytes per character;
and Chinese/Japanese/Korean Unified Ideographs require three bytes
per character. You thus need to size the byte length of text attribute
values according to the UTF-8 character encoding byte space
requirements.

• Unit
Displayed with numeric values of this attribute. Typically used for currencies.

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field

inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

back to top

6.12 Indexes

Indexes can be defined with reference to any text, numeric, hexadecimal, or
IPv4 type input attribute. They are used to quickly access records that have
the same value for the reference attribute as the current transaction
message. They are needed for any attribute that identifies a dimension into
which past transaction behavior shall be profiled by IBM Safer Payments for
real-time decisions.

Index types

IBM Safer Payments supports three types of indexes: standard, interval, and
peer. They all serve different purposes. For example:

• In issuer related fraud prevention, typically cardholder past behavior is
profiled, and thus a standard index is defined for the PAN (primary account
number) attribute.

• In acquirer related fraud prevention, typically merchant/terminal/ATM past
behavior is profiled, and thus one or more standard indexes are defined for
the attributes identifying merchant/terminal/ATM.

• With peer-to-peer payment systems (payment systems where each member
can be both a payer and a payee, such as ewallets, online banking, Visa
person-to-person, MasterCard MoneySend), the definition of a peer index
allows for each payer and payee of a transaction to be evaluated with respect
to both their payer and payee history.

• To represent standing data that is represented as interval ranges (e.g.
BIN/IIN range tables, IP location/intelligence tables), the definition of an
interval index allows to represent such data with the masterdata capabilities
of IBM Safer Payments, and to use them with any transaction.

Notice that you may define multiple (and also different type) indexes for the
same attribute. This is useful in rare situations where you for example need
evaluation sequences according to different sequence attributes.

All profilings are profiling past behavior and thus are defined alongside an
index. This is why in the navigation menu left, these index based profilings
are organized under "profilings".

Indexes and sequences

Indexes and sequences are working together to access the history of past
transaction records with profilings (and queries). The index itself always

points to the most recent transaction record with the respective index
attribute value while the sequence for each past transaction record points to
the transaction record (with the same index attribute value) before this one.

See index sequence help for further details.
back to top

6.12.1 Index

The remainder of this page describes some of the settings of an index and
the implications of them. There is also general help on indexes.

Index type

IBM Safer Payments supports different types on indexes that are described in
the general help on indexes.

(Source/Target) Attribute

For standard and interval type indexes, this selection the attribute for which
an index shall be created. With peer indexes, the source attribute indicates
the input attribute that identifies the payer, and the target attribute identifies
the payee. Source and target attributes must have the same data type and
length.

Notice that you may have multiple indexes for the same attribute (for
instance, using a different sequence attribute).

Size and minimum lifetime

Determines how many entries an index can hold simultaneously. Notice:

• Each index is fully stored both in MDC and DDC; there is thus no separate
setting of the capacities as with attribute records. (For memory consumption,
see below.)

• Once all entries in an index are filled, IBM Safer Payments will overwrite
entries that have not been accessed (read or write) within less time than
defined as "minimum lifetime". (Notice that there is no special scheme for
the overwriting of entries. Entries are overwritten on a "found first" basis.)

• If IBM Safer Payments cannot find an overwritable entry, that is, all existing
entries have been accessed last in less than the minimum lifetime, the new
entry will not be written and thus discarded. Since this may result in
incomplete indexes, this must be considered a severe sizing fault during IBM
Safer Payments configuration. IBM Safer Payments generates an event log in
the case of an "index overflow". There are special maintenance functions to
"re-fill" and index from stored transaction records. Contact the IBM Safer
Payments support on their usage. Notice that there are status alarm

indicators (SAI) that can alert to fill levels of indexes, which can be useful if
you are unsure on how large to size an index.

Resizing

There are two possible cases:

• Enlarge
Enlarging an index size is always possible. During golive of the revision with
the enlarged index, the respective memory sizes are automatically enlarged.

• Reduce
Reducing an index is only possible when the index area that would be
dropped as result of the reduction has not yet been used. This includes
outdated entries, so that a reduction is only possible if the index never grew
larger than the reduced size. The golive report checks this and only allows a
reduced index to go life if these conditions are met.

Purging

Purging allows for the automated removal of all index entries that are older
than a defined time period (last read or write access older than the
maximum lifetime). Purging is performed as part of the "end of day" jobs
configured in IBM Safer Payments system configuration. This function, for
instance, is necessary to be used with PCI-DSS compliant applications of IBM
Safer Payments. It also keeps track of purged nodes in order to speed up the
insertion process for new keys in an already filled index.

Memory consumption

Index size determines how many different values can be stored in an index.
This size is the same on disk as in memory. It is determined by:

(24 Byte + AttributeSize) * IndexSize

both for MDC and DDC (AttributeSize is 8 Bytes for numeric type attributes
and the character length for text type attributes).

Computation conditions

The optional definition of computation conditions allows for the creation of
partial indexes, that is, indexes that are only accessed for attribute values of
certain transaction messages. Attributes used in these conditions either need
to be stored or set by pre-processing rules or lists to allow recomputation of
index dependent elements after mergings.

Sequence

The sequence points to the previous transaction record (with respect to the
sequence attribute chosen) of each transaction record. Indexes using a

sequence are required for counters, mergings, precedents, patterns,
collusions and certain queries. See index sequence help for further details.

Insertion conditions

The optional definition of insert conditions allows to have index entries only
be generated by specific transaction messages.
back to top

6.12.2 Index sequence

Indexes and sequences

Indexes and sequences are working together to access the history of past
transaction records with profilings (and queries). The index itself always
points to the most recent transaction record with the respective index
attribute value while the sequence for each past transaction record points to
the transaction record (with the same index attribute value) before this one.

For example, assuming that IBM Safer Payments already has transaction
records for "PAN=1234-1234-1234-1234" with URID={20;70;100} (in this
time sequence). The current URID is 200. Now a transaction message with
"PAN=1234-1234-1234-1234" enters IBM Safer Payments:

• The "PAN Index" points to URID=100 as the most recent transaction record
stored for this PAN.

• The value of the sequence of the "PAN Index" for URID=100 points to
URID=70, which would be the transaction record before URID=100.

• The value of the sequence of the "PAN Index" for URID=70 points to
URID=20, which would be the transaction record before URID=70.

• The value of the sequence of the "PAN Index" for URID=20 points nowhere
as this is the oldest transaction record for this PAN in IBM Safer Payments.

Remarks

• While most standard index definitions include a sequence, there are cases in
which this is not needed. In these cases, it is more computationally and
memory efficient to not define sequences. Sequences are only needed if past
transaction histories shall be evaluated individually, as with merging,
precedent, pattern, counter, and collusion profilings.

• If you only need aggregated past transaction history evaluation on an index,
such as with masterdata, calendar profile, and event, the definition of an
index sequence is not necessary.

• Interval indexes usually do not need a sequence.

• Peer indexes must have two sequences: one in the history dimension of a
member as payer, one as payee.

Sequence settings

The index sequence points to the previous transaction record (with respect to
the sequence attribute chosen) of each transaction record. The size of the
sequence MDC/DDC should thus be made so the sequence can represent
sufficient data for the counters and investigation queries scope. The memory
requirement of the sequence attribute is 8 Bytes times the size of the MDC or
DDC.

The sequence depth setting determines how many transactions back an out-
of-sequence transaction message is sorted in sequence (because the index
points to the most recent transaction record; and each value of the sequence
attribute (URID value) points to the previous transaction in sequence).

Notice that for indexes that only support calendar profiles, masterdata, or
events, you do not need the actual sequence to be stored. In this case,
disabling the sequence saves memory space and computational effort. If,
however, the index should support counters, mergings, precedents, patterns,
collusions, or queries, (where the actual sequence is required), sequence
must be enabled.

Notice that with peer type indexes, there will be two instead of one sequence
generated for this index. With all profilings that are using such an index, you
can select whether you want the source (payer) or target (payee) evaluated,
and which of the two sequences is to be used.
back to top

6.13 Mergings

Mergings are used to merge multiple transaction messages into one
transaction record.

Business background

In payment fraud prevention, a single financial transaction – such as the
purchase of goods in a shop – can generate a multitude of different
transaction messages. In credit card processing, these typically are:

• Authorization request
A merchant asks an issuer whether they authorize a certain financial
transaction. The issuer returns an authorization code which guarantees the
transaction when it is later posted. In some cases, there will be no posting
transaction (which causes the actual financial funds transfer) for a granted
authorization. For example, car rental companies frequently use the
authorization to make a "reservation" of funds for potential coverage of
damages on their car. When the car is later returned without damage, the

authorization is either revoked or just times out. Any authorization,
regardless of whether or not there is a respective posting, reduces the
available balance of the cardholder.

• Advice
Often, IBM Safer Payments is called before the complete authorisation
process is finalised. In this case, an authorisation request may be answered
differently than the fraud prevention system has recommended. Because the
fraud prevention system needs to know about it, typically, a so-called
"advice" transaction message is generated that contains information about
this and sends it to the fraud prevention system.

• Posting
A merchant posts an actual financial transaction to an issuer. This typically
invokes the actual transfer of funds. There are also postings without
respective authorization requests. This is because merchants can also accept
financial transactions without previous authorization. (Whether or not, or to
what limit the merchant in this case is guaranteed his payment depends on
the individual contract.)

• Chargeback
If the cardholder disputes a transaction with their issuer, the issuer charges
back the amount to the acquirer, who in turn charges back the amount to the
merchant.

• Representment
If the merchant does not agree with the chargeback, they may represent the
transaction to their acquirer, who in turn represents the transaction to the
issuer. This starts a manual settlement process of the issue.

• Fraud
If a transaction was deemed to be fraudulent – which can come from multiple
sources – a fraud message is generated. This message is also required by
most credit card schemes to be delivered to the scheme. Fraud merging
requires merging at a later point in time because the fraud alerts typically
come in weeks after the actual transactions occurred.

Whilst it is important to differentiate all these transaction messages in
payment processing, for the purpose of fraud prevention, they all describe
one payment transaction.

Because of this, typically, all these transaction messages are merged into
one single transaction within the fraud prevention system. The additional
information some transaction messages provide are stored in attributes of
the fraud prevention system "transaction record".

Merging process

A complete description of how transactions are processed with IBM Safer
Payments is provided on the Message Computation page. Here this process is
only described as far as it is relevant to the actual merging process.

Once a transaction message is received in IBM Safer Payments (online or
batch), it is first determined which mandator conditions fit for this

transaction. Then for each mandator, first lists are computed, then mergings.

Notice that merging involves a merging source and a merging target. The
merging source is an incoming transaction message that satisfies the
merging source conditions. The merging target is always a transaction record
already stored in IBM Safer Payments' MDC/DDC.

Merging consists of the following computational steps:

1. Check merging source conditions on each incoming transaction message for
all mandators for which the mandator conditions are met. If the source
conditions of a merging are matched, search for matching targets (continue
subsequent steps). If the incoming message does not fulfill the source
conditions of any of the mergings, the transaction is considered not to be a
merging source and normal computation continues (merging ends here and
does nothing until next transaction/record arrives in IBM Safer Payments).

2. To find merging targets, first the value of the attribute of the index of this
merging is checked to identify all existing records in IBM Safer Payments
MDC/DDC that belong to the same target entity. Potential targets are all
records already stored in MDC (and DDC, if the option "Mergings may use
DDC" is enabled via the IBM Safer Payments system configuration and if the
respective checkbox is enabled for this merging). They are evaluated back in
time with respect to the sequence "timestamp" attribute of the index.

3. Next the (optional) time tolerance criterion ("enforce time" / "tolerance") is
checked. Only transaction records that are within the time tolerance specified
are considered further as potential targets (again the sequence "timestamp"
attribute of the index is used for this comparison). Notice that the time
tolerance is symmetrical, that is, the matching source may have a timestamp
before or after the matching target.

4. Then the "target conditions" are checked. Only data cache records that
satisfy all target conditions will be considered as merging targets.

5. Additionally, termination conditions can be added. The first potential target
record that satisfies all defined termination conditions will terminate the
computation of the merging. This transaction record is also the last record
that is evaluated as a merging target.

6. If exactly one data cache record satisfies all merging target criteria, this
record is considered the merging target. Depending on the merging settings,
values from the merging source are copied to the merging target and values
of the merging target are set to defined values (execution of conclusions). If
more than one data cache record satisfies all merging target criteria, the
behavior depends on the setting of "Merging method". In its default setting
("first found fitting target record"), only the first record that satisfies all
criteria is considered to be the merging target; and only for this merging
target, the merging conclusions are executed. In its "all fitting target
records" setting, all transaction records satisfying all criteria are merging
targets; and in its "closest amount target record" setting, only the data
cache record with the closest "amount" meta attribute value is considered to
be the merging target.

7. The "store source" option lets you determine under which conditions an
incoming transaction message that is identified as a merging source is stored

with its input attribute values in IBM Safer Payments' MDC/DDC.

8. If the "re-compute target" option is checked, the target record is recomputed
(if there are multiple target records, the latest one with respect to the
sequence "timestamp" attribute of the index) and the outputs of this
transaction record are passed back as transaction message responses. If this
option is not checked, empty/default values are sent back. This behavior
ensures that if for instance you match postings to authorization transactions,
the record is recomputed in case now a reaction should take place.

If a merging succeeded, which means that at least one target was found,
then no other mergings will be executed.

The sequence of mergings computed follows the mandator structure from the
top (like all other computations in IBM Safer Payments). That is, first the
mergings of the top mandator are computed, then the mergings of all
mandators down the path to the fitting mandator are computed (if there are
any). Within a mandatator's champion model revision, mergings are
computed in a determined sequence according to the priority of each
merging.

Merging example

The combination of settings for mergings is rather complex because this
feature is very powerful. In most applications, however, the mergings will
represent mixing data streams that in your environment must be merged to
form a single transaction history that enables fraud pattern detection and
fraud management, and this setting will not change after initial configuration
of your fraud prevention system.

An example of a merging setting frequently used in credit/debit card fraud
prevention is the matching of fraud messages that come from a card
management system or other sources. From a business point of view, the
authorization requests and postings that are already in the data cache should
be marked fraudulent once a fraud message for the respective transaction
comes in.

The first problem frequently faced in this scenario is that fraud messages are
generated not by the authorization system, but by an account management
or other separate systems. These systems usually do not share a unique
identifier with the authorization system so that there is no easy way to
identify which transaction corresponds to which fraud message. Therefore, a
specific merging definition must be used.

Typical settings would be:

1. Source condition
Typically, you would have one or more MTID values identifying a fraud
message. This would be set as source condition.

2. Index
Usually, you would use the index defined for the "account" meta attribute so
that IBM Safer Payments can quickly reduce its search for merging targets to
only the transactions of the cardholder. This reduces the search effort
significantly as typically only a small fraction of all transactions belong to this
one account. Notice that with peer type indexes, you also select which index
attribute (payer or payee) shall be used, and which sequence (source or
target).

3. Time tolerance
Frequently, fraud messages only have the calendar date of the original
transaction but not the timestamp. There can also be time shifts due to non-
standard conversions or manual processing errors of time zones with
international payment transactions. This is why most applications use a time
tolerance of 25 hours (or 1.1 days).

4. Target conditions
Here you would include conditions that define which data cache records
should be matched to which fraud messages. For instance, "MTID equal to
POS;ATH" could define that fraud messages should only be merged to
records in the data cache that represent authorization requests or postings.
Notice that unlike the source condition, the attribute "MTID" value in the
target conditions references the MTID value of the (potential) merging
target, not source.
If you were to perform fraud merging only with the index attribute value and
time tolerance criteria, matching would be rather inaccurate. Customers
frequently have more than one transaction within 25 hours so that the
transaction amount is usually used as another criterion for fraud matching.
Because of exchange rate fluctuations and sometimes fees included in
transaction message amounts, this criterion is also typically defined with a
tolerance. Unlike the time tolerance, however, the amount tolerance is not
defined by absolute value but rather by relative value. A typical target
condition for this would be "Amount close to_(by_5%) {Amount}".
You would also use a target condition to ensure that only currently unmerged
records are to be considered as merging targets. A condition "Fraud equal to
0" ensures that only data cache records not already marked as fraudulent
are considered. Fraud messages often also contain MCC and/or MerchantID
information. In many applications, however, this value is frequently wrong in
fraud messages so that it is rarely used as merging criterion. If in your case,
however, you do have such information of good quality, you can include it in
the target conditions.

5. Conclusions
All criteria above are used to identify if a transaction message is a merging
source and what merging targets exist. The Conclusions determine what
happens to the merging target record. Typically, the "fraud" meta attribute
would be set to a non-zero value. If a fraud type code exists in the fraud
message, you may like to copy this from the fraud message (merging
source) to the merging target record in a conclusion "Fraud is {Fraud}".

In this example, you would usually use "closest amount target record" as
"merging method" to ensure that if there are multiple merging targets for
one merging source, the merging target with the closest "amount" value is
chosen. Notice that if the "amount" value difference is outside of the "close

to interval", it will not be considered for merging. If two "amount" values are
exactly the same, the least recent data cache record will be selected. This is
based on the assumption that if there are two transactions by one customer
within a short period of time, for exactly the same amount, they are most
likely both fraudulent, so it is more meaningful if the first one is marked as
fraudulent. If for the other (later) transaction, a fraud message also exists, it
would be matched once the first fraud message is processed.

The store source option lets you define under which circumstances a merging
source is stored in the xDC.

The maximum target option defines an upper limit of evaluated target
records. If the merging reaches this limit prior to finding a fitting target, the
computation is aborted and a log message is created.

The "re-compute target" option enforces the target record to be recomputed
after the merging is completed (using the potentially changed record data),
and the result of this re-computation is sent back as transaction message
response to the merging message request (or in case of a batch file, stored
in the log data file). The target record is only recomputed in the mandator(s)
that are involved in computing the merging source record. If the option is
disabled, the default values of the output attributes are returned with the
message response.
back to top

6.13.1 Merging

To create a merging definition the following settings are available:

• Enabled
If checked, this merging is used in real-time transaction computation and
during simulations.

• Priority
Mergings of each model revision are evaluated in order of their priority. The
lower the priority value the earlier it is evaluated.

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comment
Comments are for documentational purposes only. It is advisable to comment
the merging fully, so the decision logic remains easy to understand.

• Index
A Merging is defined with an index to quickly reduce the search for merging
targets. Notice that with peer type indexes, you also select which index
attribute (payer or payee) shall be used, and which sequence (source or
target).

• Store source
This setting determines whether or not a transaction which is considered as a
merging source is stored within IBM Safer Payments data caches. The
following settings are available:

• always
All merging sources are stored in MDC/DDC.

• if no targets found
Only merging sources for which no merging targets could be found are
stored in MDC/DDC.

• never
All merging sources are discarded after the merging process has been
finished.

Note:
In case the merging finds no target record, a subsequent merging might find
a target. If that subsequent merging has 'Re-compute target' activated, the
source record will not be stored, irrespective of the 'store source' setting.

• Enforce time
If enabled, only transaction records with timestamps (sequence timestamp of
the index defined above) within the time tolerance are considered to be
potential merging targets (i.e timestamp of merging source message +/-
time tolerance).

• Merging method
If more than one data record satisfies all merging target criteria, this setting
determines which records are considered to be merging targets. Merging
conclusions are executed for all merging targets.

• all fitting target records
All records that satisfy all target criteria are considered to be merging
targets.

• closest amount target record
Only the record with the closest "amount" meta attribute value is
considered to be the merging target.

• first found fitting target record
Only the first record that satisfies all criteria is considered to be the
merging target.

• Max targets
The maximum target option defines an upper limit of evaluated target
records within the sequence of the index. If the merging reaches this limit
prior to finding a fitting target, the computation is aborted and a log
message is created.

• Re-compute target
If enabled, the merging target record is recomputed after the merging is
completed. The merging target record is only recomputed in the mandator(s)
that are involved in computing the merging source record. The result of this
recomputation is sent back as transaction message response to the merging
message request (or in case of a batch file, stored in the log data file). If
disabled, the default values of the output attributes are returned with the
message response. Note that all index computation conditions are evaluated

again when a transaction is recomputed. Only if the conditions are satisfied
for the target after applying the merging conclusions, index dependent
elements will be recomputed.

• Retry mergings
If enabled, then IBM Safer Payments will retry a merging when it doesn't find
a target. This can be necessary when you have merging source and target
messages that arrive close together while one of the instances is temporarily
unavailable. When the instance comes back online, then it is possible that
due to the high parallelism of the FLI the source and target messages could
arrive on the second instance in the wrong order, and the source would not
be able to find the target.
Note, this is an independent setting from the 'Access Protection' setting
under System Configuration -> Serialize Computation. That setting waits
until a merging target is completed processing before starting the
computation of the merging source and retries the specified number of
times. This setting will retry to find a merging target if no target can be
found. Note that if both settings are turned on then it can retry the combined
amount.

• Max Merging Tries
When 'Retry Mergings' is enabled, this setting determines how many
times it should try

• Retry Wait Time
When 'Retry Mergings' is enabled, this setting determines how long to
wait in between the retries (in msec)

• Update calendar profiles and events
If enabled, calendar profiles and events in all mandators will get updated,
when they meet the mergings conditions and have the option 'Update during
merging' enabled.

• Collusions
Selected collusions are triggered when this merging is executed. For further
information about collusions please refer to the respective online help page.

• Forward to external system
If enabled, sends a request to an external system and ingests the response
after conditions are evaluated and before the merging target is searched for.
The data and how it is mapped to attributes can be freely configured.

back to top

6.13.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.13.3 Conclusions

This element uses conclusions. You can find further information in the
conclusions chapter:
9.4.2 Conclusions

back to top

6.14 Masterdatas

It is often necessary to store certain data that is associated with index
attributes. This data could be customer data that can be used with a PAN,
merchant data that can be used with a MerchantID, or technical data (for
example countries that correspond to BIN ranges). Such data would not be
delivered with each transaction, but rather be delivered once and then stored
with the respective index attribute (PAN, MerchantID, BIN, etc.).

Such data is referred to within IBM Safer Payments as “masterdata”.
Masterdata can be delivered either by “normal” transactions/records that
also deliver a “real” transaction/record, or by “special” transactions/records
that only deliver the masterdata data (aka “non-monetary”
transactions/records). In both cases, a masterdata source transaction/record
is identified by the respective “Insertion Condition(s)” of the masterdata
definition. Often a specific TrxType or MTID attribute value defines a
masterdata source transaction/record. The “Store source” checkbox lets you
define whether or not a masterdata source transaction/record shall be
included in the data cache or not. Typically, if masterdata is delivered by
non-monetary transactions, you do not want these transactions to be stored
with the data cache.

There is no specific definition of masterdata targets since any
transaction/record that is processed after the masterdata source has set a
value of a masterdata attribute, this value is taken for processing of this
transaction/record.

Remarks

• To change a masterdata attribute value, you just send another
transaction/record with the new value. To delete a masterdata attribute
value, you just send another transaction/record with empty or zero value.
(note that this is true for normal masterdata, but when multi-value
masterdata is enabled you need to use the insertion and deletion conditions
to update a masterdata)

• If you have multiple masterdata attributes delivered with one
transaction/record, you just create multiple masterdata definitions. The
storage process of the masterdata attribute values to the index is valid for all
masterdata definitions.

• The masterdata attribute must be defined as an input attribute of the model
revision (own or inherited).

Once IBM Safer Payments detects a masterdata source transaction message,
it extracts the value of the referenced attribute and stores it alongside one
referenced index. Masterdata definitions require the sizing of DDC and MDC
with the same number of elements as the index to which they refer. The
memory requirement for normal (non multi-value masterdata) is thus the
referenced index capacity times the masterdata attribute length. See the
masterdata page for more information on sizing multi-value masterdata.
back to top

6.14.1 Masterdata

To create a masterdata definition, the following settings are available:

• Name
Name of masterdata definition. Often it is best to use the same name as the
masterdata attribute selected below.

• Comment
Comments to masterdata definition.

• Index
Masterdata is defined with an index. For instance, if the masterdata definition
is about cardholder data, the index that represents the cardholder (e.g.
"PAN" or "Issuer" index) must be chosen here.

• Masterdata attribute
Specify the attribute for which the masterdata definition is intended. This
must be an own or inherited input attribute. For all transactions for which the
insertion condition (below) is fulfilled, the value of the delivering transaction
of this attribute is stored in the masterdata cache ("write masterdata"); for
all transactions for which the insertion and deletion conditions are not
fulfilled, the value of the masterdata cache is written back into the
transaction; as if it would have always been part of the transaction ("read
masterdata"). When multiple values is enabled (see below) then only the first
value from the multi-value list will be written to the transaction. Notice that
for peer type indexes, the definition of a masterdata attribute for the source
and target part of the index is necessary.

• Store source
If checked, the masterdata source message is stored as a record in the IBM
Safer Payments data caches. If unchecked, the message is discarded after
(the potential) masterdata extraction is carried out. This is only applied to
transactions that satisfy the condition defined below.

Note:
For the record that is meant to be stored after masterdata was
computed a subsequent merging might find a target. If that merging
has 'Re-compute target' activated, the source record will not be stored,

irrespective of the 'store source' setting. This can only happen when
masterdata and merging source conditions overlap.

• Allow for multiple values
If checked, more than one masterdata value can be stored per index node.
Multi valued masterdata can be used in a few different ways. The simple case
is just to store multiple values of masterdata which are related to an index.
For example, you could store multiple addresses for a customer instead of
just their current address. Multi valued masterdata can also be used to
enable a multi-relations workflow. To read more about that see the Multi-
Relations section.
When using multiple valued masterdata the multiple values are not used in
calculations, due to the potential impact on latency. If the insertion
conditions for masterdata are not met and a value is copied from the
masterdata cache to a transaction, then it will always be the first value in the
multi value list. There is currently no way to select a different value to be
written or to not write a value to the transaction. This may result in
confusion when examining the resulting transactions if it does not make
sense that the first value in the list should be applied to the transaction.

• Capacity for multiple values
The capacity for multiple values is the overall number of additional elements
stored. This is the capacity for all elements in the multiple values storage, so
for example, if you had an index capacity of 10000 elements, and wanted to
store up to 5 elements per index node, you would set the capacity to 40000.
This would not mean that you are limited to 5 index entries per node, it is
possible to store 20 entries on some nodes and only 1 entry on other nodes,
but the full capacity (the sum of all the nodes) is allocated here.

• Associated index
The index which will be used to find relations in a multi-relations workflow.
When multiple value masterdata is displayed in a case then this index will be
searched using the values given in the multiple valued masterdata. For more
information see the Multi-Relations section. Note that this index is only used
to help display more information in user queries, it is not used in
computations. If you do not select an index then Safer Payments will attempt
to find the appropriate index based on the attribute which was selected.

• Relationship values
Attributes used to describe the relationship between each index node and
each masterdata value associated with it. When you have multiple values
enabled for masterdata then you may want to add extra information about
the relationship between the index node and the particular masterdata value.
For example, if you are storing multiple addresses for a customer, you may
want to also store the information about which one is the current address,
which can be stored in a relationship attribute (although, note that in this
example, you would also need to update the relationship description when a
new address was added)
Relationship attributes need to be passed in the same transaction as the
masterdata value they are related to and are only updated if the insertion
conditions for the masterdata are hit. Relationship attributes will always be
updated when that masterdata value is sent, so if you send empty
relationship values with an existing masterdata value then that will
effectively delete the existing relationship values.

• Insertion conditions
Insertion conditions decide if the masterdata cache value (the value that
"sticks") is written from the transaction to masterdata cache or read from
masterdata cache to the transaction. When multiple values are not enabled
then if the insertion conditions are hit then it will take the masterdata
attribute value from the incoming transaction and overwrite the existing
masterdata cache value in memory (so if an empty value is sent then it will
effectively delete the existing masterdata value). When multiple values are
enabled, then when the insertion condition is hit then it searches for the
value from masterdata attribute of the incoming transaction in the existing
list of multiple values. If the value from the incoming transaction is not found
in the list, then it is added to the end of the list along with any relationship
attributes. If the value is found, then only the relationship attributes will be
updated.

• Deletion conditions
Deletion conditions allow you to delete values from the masterdata when
using multiple values (although they can also be used for normal masterdata,
it may be simpler to just send empty values which will overwrite the existing
values). When a deletion condition is hit, then Safer Payments will search the
existing list of masterdata for the appropriate node and if it finds a matching
masterdata value, then it will remove it, along with any associated
relationship information. You should generally attempt to use non-
overlapping conditions for your insertion and deletion conditions, but if both
are hit, then the insertion will take precedence and the deletion will not be
performed.

• Forward to external system
If enabled, sends a request to an external system and ingests the response
after conditions are evaluated and before the masterdata is updated or
applied. The data and how it is mapped to attributes can be freely
configured.

Memory consumption

The size of masterdata is determined by a combination of index capacity and
multiple values capacity (if you have multiple values enabled). This size is
the same on disk as in memory (except when deferred writing or encryption
are enabled). The base masterdata size (without multiple values enabled) is
determined by:

AttributeLength * IndexCapacity

both for MDC and DDC (AttributeLength is configurable in the input attribute
setup). When multiple values are turned on the sizing of the masterdata is
more complex. If you turn multiple values on, then in addition to the base
masterdata size above it will also allocate:

((8 Bytes) * IndexCapacity) + ((8 Bytes + AttributeLength) *
MultipleValuesCapacity)

for MDC and DDC. In addition, if masterdata attribute is of type Hex or IP,
then an additional (1 bit * IndexCapacity) will be required.

Each relationship attribute also requires its own memory. Every relationship
attribute you add requires:

(RelationshipAttributeLength * IndexCapacity) +
(RelationshipAttributeLength * MultipleValuesCapacity)

back to top

6.14.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.14.3 Multi-relations workflow

Multi-relations in IBM Safer Payments

When transferring data into Safer Payments from your company's systems it
is often the case that you may have different types of identifiers for different
types of entities. For example, you may have accounts and customers, where
accounts represent a specific account type, and customers represent physical
or legal persons. In this situation it is possible that a single account may be
owned (or have a relation to) multiple customers, and individual customers
may own (or have a relation to) multiple accounts. In order to investigate
this within Safer Payments you will need to set up a multi-relations workflow
with a multiple mandator hierarchy and masterdata multiple values enabled.

Setting up the multiple mandator hierarchy for multi-relations

In order for Safer Payments to be able to investigate multiple relations you'll
need to enable 2 levels of multi-valued masterdata which can refer to each
other, which requires setting up masterdata on an index, which requires a
multi-level mandator hierarchy. In our example below we will assume that on
the top level mandator we will have the account information and on the
lower level mandator we will have the customer information, but it can also
be set up in the reverse order. In order to set up the multiple mandator
hierarchy follow the steps below:

1. On your top level mandator create the input attributes that you will need for
your account IDs and for your customer IDs. In addition, create a second
attribute with the same type as the account ID attribute. This second
attribute will be required for enabling the multi-relations investigation (it can
be set up to be mapped from the same input data, but Safer Payments
requires a separate attribute due to the message processing order)

2. Create an index on your account ID attribute

3. Create a new masterdata selecting the customer ID attribute as the
masterdata attribute, and using the index on the account ID that you just
created. Also, turn on the multiple values setting. Now with this setting
turned on you will be able to store multiple customers associated with a
single account.

4. Golive with the top level mandator and then create a new challenger with the
lower level mandator

5. On the lower level mandator create a new index, selecting the customer ID
attribute (the same attribute used for the masterdata in the top level
mandator). This needs to be done on the lower level mandator because of
the order of message processing within Safer Payments.

6. Still on the lower level mandator create a new masterdata, selecting the
second account ID attribute as the masterdata attribute, using the new
customer ID index you just created, and enabling multiple values. In
addition, select the top level account index as the associated index. With this
second multi-valued masterdata you will be able to store multiple accounts
associated to a single customer.

7. Golive with the lower level mandator and then create a new challenger with
the top level mandator

8. In the top level mandator, select the top level masterdata on the customer ID
that you created in step 3 and select the account index from the lower level
mandator for the associated index value.

9. Golive with the top level mandator

You should now be set up to investigate multi-relations with Safer Payments.
The steps above only discuss the absolute minimum requirements for
investigating multiple relations. It's likely that you will also want to set up
additional masterdata on your accounts and customers (i.e. account related
information such as account type, expiry, and customer related information
such as customer name, address, etc.) as well as relationship attributes to
describe the relations between customers and accounts. When setting up
relationships in a multi-relations workflow like above you will likely want to
use the same relationship attributes in both masterdatas (as the relationship
describes the relation in both directions between the customer and the
account i.e. a customer is the owner of an account, and an account has an
owner).

Adding multi-relations data to Safer Payments

Our recommendation for adding data to Safer Payments when using a
structure like the above is to set up 3 separate messages, where each will
deal with a specific type of masterdata. Safer Payments is very configurable
and can support other configurations, but the following setup is our
recommended setup as it is easy to reason about. With this setup you should
create 3 message types each with its own unique MTID under the
Administration->Messages page. You will have one message which will deal

with account related masterdata, one which will deal with customer related
masterdata, and one which will deal with the relationship masterdata. You
will want to go back to your model and set up the masterdata elements'
insertion conditions so that each masterdata element will be inserted from
the correct message type. You will also need to set up mappings for each
message type to the appropriate input attributes (ensuring you also setup
the account and customer ID attributes again for the relationship message).
The customer and account masterdata messages will be sent like any normal
masterdata transactions. They will have a single row per customer (or
account) and a column for each attribute you want to set (i.e. Customer
Name). The relationship masterdata will need to be sent with a single
relationship per row. So if you have a single customer associated with 5
accounts, then you would send 5 rows, each row would list the same
customer ID with a different account ID. For example you could have a file
like the following:

CustomerID AccountID Relationship
HG12561 55712399 Owner
HG12561 77193772 Signatory
HG12561 68445731 Beneficial Owner
DE92214 68445731 Owner
DE92214 17765438 Joint Owner
NN71622 17765438 Joint Owner
HC77901 68445731 Signatory

In the example data above, there is one customer, identified by ID HG12561,
that has access to three accounts. For one of these accounts, 68445731, this
customer is only the Beneficial Owner, and customer DE92214 is the owner.
In addition, as mentioned before, you could send additional information
about these customers in a separate message, which would contain all the
masterdata that is stored for a specific customer (i.e. Customer Name,
Customer Address).

One thing to note is that when using multiple value masterdata, the multi
value list is not evaluated at all during real time computation, due to the
potential impact on latency. It can be evaluated when using Index Based
Evaluations, but during real time computation a multi-valued masterdata will
behave exactly the same as a normal single valued masterdata. If there is no
value included for a masterdata attribute in a transaction, and the insertion
conditions of the masterdata do not hit, then that attribute will be filled with
the first value in the multi-value list. This may be confusing in some
situations as it will seem like a specific value was associated with a
transaction when that was not actually the case. If this is a problem with
your system it is recommended to include a dummy value instead of not

including a value, in which case Safer Payments will not overwrite the
dummy value.

Exploring multi-relations data

Once you have data added then you will want to be able to explore the data
and investigate the relationships between different customers and different
accounts. For example, using the data above, if you have an alert which is
triggered on account 68445731 you may want to be able to see that there
are 3 different customers associated with this account, so that you can notify
each of them about the issue with their account. You may also want to
investigate the other accounts that these customers are associated with to
ensure they don't have any additional issues. This is possible in Safer
Payments using the masterdata exploration view, which is shown in the
Cases page, on the Masterdata query page, and is shown when a user clicks
on the 'more...' link when a multi-value masterdata column is shown in a
query.

The masterdata exploration view is automatically shown when a user has
multiple valued masterdata displayed. In order to show it in a case, you
should select the multiple valued masterdata in the case class configuration
screen. Once it is displayed, it will display a tabbed structure, where each
sub tab represents an associated account or customer. Using the example
data above, if you had a case created for account 68445731 you would have
a main tab which displays all the masterdata information relating to the
account (i.e. Account Type, Account Expiry) as well as 3 sub tabs, each which
relate to a different customer ID (so one for each of HG12561, DE92214, and
HC77901). Each of these sub tabs will display the relationship that customer
has with the account above. Each of these sub tabs starts out collapsed, but
has the option to be expanded, in which case they will additionally show
masterdata information about the customer (i.e. Customer Name, Customer
Address, etc.). In addition, the customer tab will show all the accounts that
customer has a relationship to (including the account above, 68445731). So,
if you expanded the customer tab for customer HG12561 it would show 3
accounts: 68445731, 55712399, and 77193772. These account and
customer relationships can continue to be explored as deep as necessary by
a case investigator.

Safer Payments uses the 'Associated Index' value in the masterdata settings
to search these relationships between accounts and customers. Without this
index information, the masterdata list would just be a list of values with no
associated information. By adding the 'Associated Index' selection you allow
Safer Payments to take a value and search a separate index for that value,
and then show any other masterdata information that is associated with the
index node that it finds.

back to top

6.15 Device identification

When performing financial transactions with counterparties using the
Internet for access, certain types of risks specific to this access channel do
apply. One risk in particular is the lack of a physical device that identifies the
counterparty, such as a payment card of a customer or a terminal for a
merchant.

One way to mitigate this risk is to use so-called device identification
techniques (aka "device fingerprint" or "browser signature"). Unique and
reliable identification of the device can greatly assist in differentiating
fraudulent from genuine payment activity.

By the very nature of the Internet that is based on principles like
"informality" and "anonymity". For this reason, there is no inherent and
universal device identification mechanism available that is reliable and
ubiquitous. Today’s best business practices for Internet device identification
thus use a number of "indirect" identification techniques based on quite
different approaches. IBM Safer Payments implements all such techniques
that have demonstrated to perform well in real-world applications.

Fraud prevention usages

There are two things for which device identification is useful in payment
fraud prevention:

• Identify if the counterparty uses one of the same device that was used
before for the current transaction, and

• identify if the same device has been used within transactions of multiple
counterparties recently.

The first usage identifies low risk situations. If a counterparty has used the
device of the current transaction before, often, and since a while, it is rather
likely that the counterparty has the identity claimed. If the device seen
before would have been a fraudster’s one, there would have been a fraud
claim in the meantime. IBM Safer Payments features a specific device
identification profiling function that generates output attributes describing
how long and how often the counterparty’s device has been used before.

The second usage identifies a high risk situation. A device used within a
relative short amount of time with a significant number of transactions of
different counterparties, if no legitimate relationship between the
counterparties exists, usually is an indicator of criminal activity. This is

because many criminals, in particular the ones that create massive fraud
losses, not only impersonate one counterparty at the same time, but many.
IBM Safer Payments does not feature a specific type of profiling for this as its
standard functionality already allows for the detection of such cases. If you
like to identify this risk, simply create an index for the device ID CRC value
(see below) with a sequence. This index’s sequence provides a history of
usages of this device. You can now use a counter that computes the number
of different counterparties in a certain time period and use this as a risk
indicator.

Device identification techniques

Since the HTTP protocol used for any browser based access of Internet sites
itself is stateless, so-called "cookies" have been introduced to identify a
counterparty both within a web site session and between sessions. A cookie
essentially is a text string that can be set by the web site within the
browser’s private storage, and read only by the same web site when the user
visits again .

As such, this technique would be sufficient to support the fraud prevention
usages discussed above. Any browser that connects to your website is
checked if it had received a cookie from you before. If it has, the browser is
"identified". If the browser connecting had not yet received a cookie from
you before, it is now given a new one, and can from now on be identified.

However, just using cookies to identify devices in reality often is not enough:

• Some years ago, cookies have gotten a bad name in the public view as they
were (mostly for the wrong reasons) considered to be invasive to privacy.
While today this is rather a matter of the past, there are still users that
disable cookies with their browsers, and there are still websites that refrain
from using them.

• Cookies can only be read by the same website that wrote them. i.e. cookies
do not allow for the identification of devices from multiple websites.
Nevertheless, cookies are still a useful device for a lot of cases of application.

• It is easy for criminals to delete cookies between creating transactions
impersonating different counterparties. While it is more unlikely that genuine
counterparties purposely delete cookies, and thus low risk situation detection
(above) should not be affected, it is likely that criminals do delete cookies
and this high risk situation detection (above) is impeded.

To compensate for this, a number of additional device identification methods
exist. They mostly work by gathering information about the browser and the
physical device the browser runs on. IBM Safer Payments uses two types of
information, passive and active.

• Passive information is delivered by the browser without any specific querying
by the website. This information includes the HTTP GET/POST headers sent

by the counterparty’s browser.

• Active information uses Javascript on the browser to query information that
is available within the Javascript sandbox, such as screen resolution or
system fonts.

Notice that it is entirely up to you whether you use passive and/or active
information, and you may even individually decide which of the information
elements you are using with IBM Safer Payments device identification.

Integration

This section assumes that you integrate IBM Safer Payments device
identification within an existing architecture of a HTTP(s) server and a web
application (that handles your interaction with the counterparty’s web
browser. In this architecture, the web browser sends http requests to the
HTTP(s) server that are computed by the web application. At certain steps,
the web application asks IBM Safer Payments for fraud risk assessment by an
IBM Safer Payments request, and receives back the IBM Safer Payments
response.

Using passive information in IBM Safer Payments for device identification
requires that you include the data elements (plus the cookie, if you use
cookies to identify counterparties between sessions) in the IBM Safer
Payments request. It is up to you how you name these data elements in the
IBM Safer Payments request XML message (example), but you need to
create mappings (below) for these data elements in IBM Safer Payments.

Using active information works the same way, however, you have to to
integrate code on your web pages that execute Javascript functions querying
the information, and you have to pass this information back to the HTTP(s)
server, and - via the web application - to IBM Safer Payments as data
elements just as the passive information data elements (above). The best
way to integrate the Javascript functions with your web application is highly
depending on the detail architecture of your infrastructure. Rather than a

"closed" solution for this, we do provide you with a list of suitable HTTP
headers and Javascript "scriptlets" on this page that you can integrate with
your web pages according to your web application architecture.

Processing device information

Within IBM Safer Payments, the data elements can be used in different ways:

• You may use individual data elements directly in the decision model. For this
you have to define respective attributes and mappings in IBM Safer
Payments.

• You may also store individual data elements for integration testing purposes
in MDC and/or DDC.

• For the actual IBM Safer Payments device identification profiling, you have to
use either the cookie data element or a combination of the passive/active
data elements as inputs (best both). The crc32 hash defined in mappings
converts any number of XML message fields into one numeric value
(hexadecimal, length 4).

Business aspects

Device identification is a very useful and necessary tool to improve fraud
prevention performance with Internet originated payment transactions.
However, it is not sufficient to implement a fraud prevention solution. For
instance:

• Fraudsters will use more and better technology to disguise their activities.
For example, to avoid being visible with the same device generating
transactions impersonating multiple counterparties, fraudsters can use
proxies that filter out browser information or overwrite them with random
values. In this case, all transactions appear to come from different devices.
Each device appears as a new device without history, in which case this is
not considered a low risk situation, but the fact that the device appears as if
it was not "seen" before alone usually does not suffice to classify it as high
risk situation.

• Malware on a counterparty’s device that for instance manipulates the
recipient of a transaction to benefit the fraudster remains undetected by
device identification, since in this case, it is the "trusted" device of the
genuine counterparty that initiates the transaction.

• Each individual uses more and more different devices to access certain
services. These devices are changed and change in itself (updates, etc) more
and more frequently. Thus the number of "new" devices without any history
seen in transactions will increase.

• Changes to the device, such as installation of new software or using different
browsers on the same device will limit the precision of device identification.

For these reasons, you should never rely solely on device identification to
detect payment fraud. Only the combination with transaction profiling, as
featured by the other functionality of IBM Safer Payments, will allow you to
keep fraud levels permanently under control.

Supercookies

In addition to the (above) discussed passive and active information about the
counterparty’s browser, there are more effective (and more invasive)
techniques out there to permanently identify devices. So-called
"supercookies" (aka "zombie cookies") use browser and/or operating system
weaknesses to embed identification information deep in the counterparty’s
device for later re-identification.

Such techniques are heavily criticised by privacy advocates. Companies such
as Google that have used them in the past faced heavy criticism and have
stopped their usage. While passive information is "freely" provided by the
browser to the HTTP(s) server, and active information is at least "freely"
available to the Javascript that the counterparty has allowed to execute on
his device, using weaknesses of the device to place supercookies can usually
be considered to be not allowed by the counterparty, neither explicitly nor
implicitly.

If you intend to use such technology nevertheless, IBM Safer Payments will
use the identification string (after CRC transformation) just as it uses the one
that stems from passive/active information (and can even be combined with
it). We, however, do not provide the sample code for this (as we do with the
sample code to extract active information).
back to top

6.15.1 Example of XML transaction request message containing
browser information

IBM Safer Payments device identification requires that you include (passive
and/or active) information derived from the counterparty’s browser in the
transaction message requests that you like IBM Safer Payments to perform
device identification on.

This is an example of such a message:

<IRIS Version="1" Message="ModelRequest" MessageTypeId="1"
MessageId="0af87c75503b440">
 <Amount>103.88</Amount>
 <CountryCode>US</CountryCode>
 <MCC>5412</MCC>
 <MerchantID>0000454418440712</MerchantID>
 <PAN>5235004548843157</PAN>
 <POSEntry>901</POSEntry>
 <TerminalID>18461448</TerminalID>
 <TrxDateTime>2014-11-05 14:22:02</TrxDateTime>

 <UserAgent>Mozilla/5.0 (Windows NT 6.1; WOW64)</UserAgent>
 <HttpAccept>text/html, gzip,sdch en-US</HttpAccept>
 <Cookie>65CA04E74BB425342C01</Cookie>
 <ScreenResolution>2048x1152x24</ScreenResolution>
 <TimeZone>-120</TimeZone>
 <Plugins>Chrome PDF Viewer;Microsoft Office 2010;</Plugins>
 <SystemFonts>Agency FB, Aharoni, Algerian</SystemFonts>
</IRIS>

Notice that line feeds and spaces spaces in the example above have been
added for readability and may not be present in the actual XML transaction
message send to IBM Safer Payments.
back to top

6.15.2 Device identifications

IBM Safer Payments device identification keeps histories of up to 4 devices
per counterparty (user account). For each of these devices (browsers), the
following data is computed and stored:

• number of transactions with this device

• earliest and latest transaction date

• number of cookie and device ID mismatches

This information is made available from within the device identification
profiling profiling method. For each device identification, output attributes
carrying this information can be defined.

Notice that you can define multiple device identifications, for instance to
identify customer and merchant devices.
back to top

6.15.3 Device identification

To create a device identification definition, the following settings are
available:

• Enabled
If checked, this device identification is used in real-time transaction
computation and during simulations.

• Priority
Device identifications of each model revision are evaluated in order of their
priority. The lower the priority value the earlier it is evaluated.

• Name
The name of a device identification definition. It is used in all IBM Safer

Payments forms.

• Comment
A description of the device identification. This will be displayed in various
forms and allows to add a more verbose description of the device
identification.

• Index
Device identification is defined with an index. For instance, if the device
identification definition is meant to match devices in online banking, this
would be an index on account number. If a peer index is selected, the device
identification offers the additional computation method "last target
fingerprint".

• Timestamp
An attribute that contains timestamp information. This timestamp should be
the point in time when the device identification has been gathered on the
end-user device.

• Time unit
The time unit that will be applied to computation outputs.

• Cookie
An attribute that contains four byte of hexadecimal cookie data. This can be
the result of the crc32 hash transformation or any other four byte
hexadecimal attribute. As long as this value does not change between two
transactions the device identification will consider two devices to be the
same.

• Fingerprint
Another attribute that contains four byte of hexadecimal fingerprint data.
This can be the result of the crc32 hash transformation or any other four
byte hexadecimal attribute except the one used as "Cookie". As long as this
value does not change between two transactions the device identification will
consider two devices to be the same even when the cookie has changed.

• Computation Conditions
Computation conditions allow to define filters on incoming transaction data.
Only transactions that match all defined conditions are taken into account for
the device identification.

• Output attributes
Every device identification can compute one or more output attributes. For
detailed information refer to the respective help text.

Memory consumption

Device identifications are defined with reference to an index. Their memory
consumption is computed as:

80 Bytes * IndexSize

both for MDC and DDC. The memory consumption for all computed output
attributes has to be added.
back to top

6.15.4 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.15.5 Device identification attributes

Each device identification profiling creates one or more new attributes that it
feeds its computational results into. Notice that if you use a mandator
structure, the rules of this decision logic may use all attributes defined in
champion mandator revisions above it in the structure. Each of the device
identification output attributes is specified by a set of definitions that are
made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain. Notice that the attribute names do not need to
correspond to the variable names of data delivered to IBM Safer Payments;
you define the relation between IBM Safer Payments attributes and variable
names in "Mappings".

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for
analysis and rule generation should be in the MDC and DDC. Attributes that
you only need for investigation and queries should only be stored in the DDC.
Attributes that are only used for the evaluation of the current transaction and
for which you do not need any history do not need to be stored at all. Notice
that your storage options determine how much main and disk memory IBM
Safer Payments consumes (number of records times length/characters). You
find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the

values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Data type
Computations (see below) either deliver numeric, boolean, or hexadecimal
output depending on the chosen computation method. The formatting and
length of output attributes can only be adjusted for computations delivering
numeric output.

• Formatted as
The formatting options are for display of values on the IBM Safer Payments
pages (for examples in queries or case investigation). Choices differ by data
type:

• Amount
Using digit group and decimal separators as defined for each user's
preferences (e.g. "12,345.67") for numeric attributes only.

• Decimals
Using decimal separators as defined for each user's preferences (e.g.
"12345.67") for numeric attributes only. This option does not use digit
group separators.

• ID
Using digit group separators as defined for each user's preferences (e.g.
"123,456,789") for numeric attributes only.

• PAN
Using dashed quadruple format typically used for primary account
numbers as embossed on cards (e.g. "1234-1243-1243-1243") for
numeric and text attributes.

• No formatting
Shows data with no formatter applied.

• Length/decimals
Byte length of internal storage for numeric output attribute values, ranging
from 1 to 8, and decimals ranging from 0 to 6. The value range that the
resulting attribute can represent is computed live in the browser and
displayed on the right.

• Unit
Displayed with numeric values of this attribute. For all computations that
work on timestamps or durations this is set to the time unit defined in the
device identification definition.

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

• Computation
This setting determines how the output attribute is computed from the set of
transaction records selected by this device identification:

• Average number of uses per time unit
Computes the average number of uses per time unit for the matched
device. If no device is matched and a new device created, the output
value is (0).

• Cookie changed
Indicates that a device uses an unknown cookie. If the fingerprint
attribute matches, the new cookie is stored and the device identification
information is kept. If the fingerprint also changed a new device is
created (and an old device is potentially overwritten).

• Fingerprint changed
Indicates that a device uses an unknown fingerprint. If the cookie
attribute matches, the new fingerprint is stored and the device
identification information is kept. If the cookie also changed a new
device is created (and an old device is potentially overwritten).

• Last target fingerprint
This computation method is only available in combination with a peer
index: It computes the fingerprint of the last device used with the
target account of the current transaction.

• Number of cookie mismatches
Counts the number of times the cookie has been changed for a given
device. The number is incremented, whenever a device is matched only
by the fingerprint.

• Number of fingerprint mismatches
Counts the number of times the fingerprint has been changed for a
given device. The number is incremented, whenever a device is
matched by the device cookie but not by the fingerprint. This could
happen e.g. when the device configuration changes.

• Number of uses
The number of transactions that have been matched to the device.

• Time between first and previous use
The time between the initial use and the second most recent use of a
device with respect to the timestamp attribute.

• Time since first use
The time between the initial and the most recent use of a device with
respect to the timestamp attribute.

• Time since previous use
The time between the second most recent use and the most recent use
of a device.

Examples:

• The following table shows a sequence of transactions together with the
computed outputs:

Account
(Index)

Cookie Fingerprint Number
of uses

Number of
cookie

mismatches

Number of
fingerprint

mismatches

Cookie
changed

Fingerprint
changed

1 1234 0xAAAAAAAA 0xCCCCCCCC 1 0 0 Yes Yes

2 1234 0xAAAAAAAA 0xCCCCCCCD 2 0 1 No Yes

3 4321 0xBBBBBBBB 0xDDDDDDDD 1 0 0 Yes Yes

4 1234 0xAAAAAAAA 0xCCCCCCCD 3 0 1 No No

5 1234 0xAAAAAAAB 0xCCCCCCCD 4 1 1 Yes No

6 4321 0xBBBBBBBB 0xDDDDDDDD 2 0 0 No No

7 1234 0xAAAAAAAC 0xCCCCCCCC 1 0 0 Yes Yes

8 1234 0xAAAAAAAB 0xCCCCCCCD 5 1 1 No No

• Remarks:

• Please not that #3 and #6 are transactions for a different account.

• As long as either the cookie or the fingerprint of a device matches, the
device identification is updated with data from the current transaction.
The cookie is always matched first.

• In #7 a new device is created because neither cookie nor fingerprint
match the previous transaction for this account. As every device
identification has slots for up to four devices, the data from #5 is still
available and #8 can be matched to it.

• The following table shows a sequence of transactions together with the
computed outputs for time unit hours:

Account
(Index)

Cookie Fingerprint Timestamp Time
since

first use

Time since
previous

use

Time between
first and

previous use

Average
number of

uses per time
unit

1 1234 0xAAAAAAAA 0xCCCCCCCC 1970-01-01
00:00:00

0.00 0.00 0.00 (0)

2 1234 0xAAAAAAAA 0xCCCCCCCC 1970-01-01
01:00:00

1.00 0.00 0.00 2.00

3 1234 0xAAAAAAAA 0xCCCCCCCC 1970-01-01
03:00:00

3.00 2.00 1.00 1.33

4 1234 0xBBBBBBBB 0xDDDDDDDD 1970-01-01
06:00:00

0.00 0.00 0.00 (0)

5 1234 0xAAAAAAAA 0xCCCCCCCD 1970-01-01
09:00:00

9.00 6.00 3.00 0.44

6 1234 0xAAAAAAAA 0xCCCCCCCD 1970-01-01
12:00:00

12.00 3.00 9.00 0.42

• Remarks:

• The transaction in #4 affects the same account but is matched to a new
device because neither cookie nor fingerprint match.

• Transactions #5 can be matched to the first device via the cookie. #6 is
also matched to this device by cookie and fingerprint.

• The following table shows a sequence of transactions together with the
computed outputs:

Source Account (Index) Target Account (Index) Cookie Fingerprint Last target fingerprint

1 1234 0000 0xAAAAAAAA 0xCCCCCCCC 0x00000000

2 5678 0000 0xBBBBBBBB 0xDDDDDDDD 0x00000000

3 1234 5678 0xAAAAAAAA 0xCCCCCCCC 0xDDDDDDDD

• Remarks:

• The "last target attribute" computation is only available for peer
indexes.

• The output attribute is set to the last known fingerprint value for the
target account. If the target account does not have any fingerprint set
from a previous transaction, the output is "0x00000000". This
computation never changes the device identification for the target
account.

• The following table shows an example with transactions for one device that
are coming in out of sequence:

Account
(Index)

Cookie Fingerprint Timestamp Number
of uses

Time
since
first
use

Time
since

previous
use

Time
between
first and
previous

use

Average
number of
uses per
time unit

1 1234 0xAAAAAAAA 0xCCCCCCCC 1970-01-01
01:00:00

1 0.00 0.00 0.00 (0)

2 1234 0xAAAAAAAA 0xCCCCCCCC 1970-01-01
03:00:00

2 2.00 0.00 0.00 1.00

3 1234 0xAAAAAAAA 0xCCCCCCCC 1970-01-01
00:00:00

3 3.00 2.00 1.00 1.00

4 1234 0xAAAAAAAA 0xCCCCCCCC 1970-01-01
06:00:00

4 6.00 3.00 3.00 0.67

• Remark:
The computed output values for out-of-sequence transactions will always be
calculated with respect to the most current transaction (with respect to the
timestamp attribute). Therefore the "number of uses" in transaction #3 is
"3".

back to top

6.15.6 Querying device information

Passive device information is taken from the HTTP request that a customer
makes to the payment application. This information has to be extracted by
the payment application and forwarded to IBM Safer Payments. Because IBM

Safer Payments device identification is independent on how many and which
information is forwarded, we provide some suggestions for suitable HTTP
header information below:

HTTP accept headers

Accept

Accept-Encoding

Accept-Charset

Accept-Language

HTTP user agent

User-Agent

HTTP Cookie

Cookie

Client IP address

• the client IP address

• the client IP port

While all these HTTP headers will be useful in IBM Safer Payments, only
those headers that are unlikely to change between sessions should be
included in the hash transformation for the fingerprint attribute. Especially
the client IP and the HTTP cookie should not be included in the hash
computation for the device fingerprint, which is intended to be a third
identifier that is independent from the other two.

Active device information is queried from within the counterparty’s browser
using Javascript code. Because IBM Safer Payments device identification is
independent on how many and which of the data elements you decide to
query, we provide the individual Javascript "scriptlets" below:

Screen resolution

var screenResolution = JSON.stringify(window.screen);

Operating system

var operatingSystem = window.navigator.platform;

User agent

var userAgent = window.navigator.userAgent;

Cookies enabled

var allowsCookie = window.navigator.cookieEnabled;

Installed plugins

var plugins = {};
for(i = 0; i < window.navigator.plugins.length; i++) {
 var _data = {};
 _data['name'] = window.navigator.plugins[i]['name'];
 _data['fileName'] = window.navigator.plugins[i]['filename'];
 _data['description'] = window.navigator.plugins[i]['description'];
 _data['length'] = window.navigator.plugins[i]['length'];
 plugins['plugin_' + i] = _data;
}
var installedPlugins = JSON.stringify(plugins);

Java

var javaEnabled = window.navigator.javaEnabled();

Time zone

var timeZone = new Date().getTimezoneOffset();

Notice that you have to:

Ensure that these Javascript codes are executed (inline or as library) on the
counterparty’s browser before the HTTP(s) request that will require device
identification is sent to the HTTP(s) server.

Provide the code that adds the Javascript variables assigned with the
scriptlets above with the HTTP(s) request to the HTTP(s) server. Also, provide
code so the web application adds the data elements to the XML transaction
message request which is then sent to IBM Safer Payments.
back to top

6.16 Precedents

Precedents allow quick and easy access to values of the previous transaction
record's value by copying it into an attribute of this transaction message.

This for instance allows to define for attributes in this transaction message:

• Amount of last transaction of this cardholder.

• Amount of last transaction at this merchant.

• Amount of foreign last transaction of this cardholder.

• Amount of last transaction of this cardholder above $200.

Notice that a precedent only works when it is enabled. Precedents of each
model revision are evaluated in order of their priority. The lower the priority

value the earlier it is evaluated.
back to top

6.16.1 Precedent

A precedent copies the value of the "source attribute" of a previous
transaction record:

• of the most recent transaction record in the index dimension chosen,

• that satisfies the conditions (if defined)

and stores them into its output attribute.

Index

IBM Safer Payments searches for the preceding record in the dimension of an
index sequence. Only indexes that have sequences can be selected here.
Notice that with peer indexes, the preceding record can be searched for in
either the "direction" of the source (payer) or the target (payee) sequence.

Source attribute

Lets you select which attribute's value should be captured (and outputted) by
this precedent. Notice that the attribute type/length of the output attribute of
a precedent is exactly the type/length of this source attribute.

Max records

Maximum number of records alongside the sequence that are evaluated into
the past. You should define a reasonable limit here so that in case of very
long sequences and a precedent not being found, computation times do not
get too high.

Include DDC

Check to have IBM Safer Payments include data from disk with this
computation. Notice that this may significantly increase computation time.

Computation Conditions

The first record into the past (that is, back in sequence time from now into
the past) that satisfies this/these computation condition(s) is considered the
precedent. The source attribute value of this record will be taken as output
attribute of this precedent and is passed to the decision model with this
transaction message.
back to top

6.16.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.16.3 Precedents attributes

The output attribute of a precedent is of the same type, format, and length
(and if numeric, same decimals) as the source attribute defined above. The
required type/length(/decimals) settings are thus taken automatically from
the source attribute and are not shown or editable in this form. If categories
are defined for the source attribute, they will be assigned to the output
attribute of the precedent automatically. In this case the categories are
shown at the bottom of the page but are not editable.

It, however, typically has a different name and sometimes different storage
settings.

The settings of a precedent output attribute are hence:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and
mergings) or for analysis and rule generation should be in the MDC and DDC.
Attributes that you only need for investigation and queries should only be
stored in the DDC. Attributes that are only used for the evaluation of the
current transaction and for which you do not need any history do not need to
be stored at all. Notice that your storage options determine how much main
and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in
"General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

back to top

6.17 Calendar profiles

Calendar profiles provide aggregated counts of totals and transaction
message frequencies over calendar periods and store these alongside a
referenced index. The number of calendar periods held according to the
transaction message timestamp sequence can be set freely. The periods are
based on the values of the meta attribute "timestamp" of the transaction
message sequence. Each timestamp later than the last one received, moves
"transaction time" forward. This transaction time is the reference for the
calendar periods.

Within a calendar profile, new attributes can be defined that carry totals or
frequencies from any calendar period tracked by the profile.

Memory consumption for the bare calendar profile is computed as:

(12 Bytes * NumberOfPeriods) * IndexSize

When "support standard deviation" is enabled the memory consumption will
be:

(20 Bytes * NumberOfPeriods) * IndexSize

both for DDC and MDC. In addition, the new attributes memory consumption
must be added.

Computation of calendar profiles is a two-step task ("pre" and "post"). If the
profile shall include the current transaction, only input attributes and
list/precedent profiling output attributes can be used in its condition ("pre").
If the profile is defined to not include the current transaction, all other
attributes can be used as well in its conditions ("post"). Because the "other
attributes" are computed after the profile was (pre-)updated, in this case, a
(post-)update step takes place after the rules are computed. This allows
defining profiles on rule output attributes, for instance such as a profile for
transaction message intercepts or case generation alerts.
back to top

6.17.1 Calendar profile

For details on calendar profile definition, rest the mouse pointer over the
respective field to show tooltip style explanations and read below.

Each calendar profile is specified by a set of definitions that are entered on
this form:

• Enabled
If checked, this calendar profile is used in real-time transaction computation
and during simulations.

• Priority
Calendar profiles of each model revision are evaluated in order of their
priority. The lower the priority value the earlier it is evaluated.

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are for documentational purposes only. It is advisable to comment
the calendar profile fully, so the decision logic remains easy to understand.

• Index
Each calendar profile is computed with an index. For example, to profile
cardholder behavior, you would use an index on the primary account
number; to profile merchant behavior, you would use an index on the
merchant ID. Notice that the index chosen does not need to have a

sequence. If you selected a peer type index, you may also select which index
attribute (payer or payee) shall be used for profiling.

• Computation timestamp
Determines whether the reference time of the profile (explained below) or
the transaction time is used to compute the output attributes of the profile. If
set to "Reference time" period 0 is considered as the reference time (most
recent timestamp that has been seen in the meta attribute "timestamp"). If
set to "use other" period 0 is considered as the transaction time in the
selected timestamp attribute.

• Include current
If checked, the current transaction message data (including everything
computed) is used in the calendar profile's value.

• Update during merging
Update calendar profile when a merging with setting `update calendar
profiles and events` or a manual fraud mark has changed the profile's
conditions. Example:

• Transaction 1 amount: 100. Calendar total amount: 100

• Transaction 2 amount: 30. Calendar total amount: 100+30=130

• Merging changes the amounts of transaction 1 and 2 to 10

• Transaction 3 amount: 300. Calendar total amount: 10+10+300=320

Note: Make sure to activate `update calendar profiles and events` in all
mergings that have conclusions which use the calendar profile's amount
attribute or conditions attributes. If there are some of those mergings that
do have the option enabled and others that do not, it can lead to unexpected
values in the profile's output attribute(s).

• Support standard deviation

When enabled, standard deviation can be chosen as an output
attribute's computation. Note that this will change the memory
consumption for the bare calendar profile to:

(20 Bytes * NumberOfPeriods) * IndexSize

Changing this value will delete all calendar period data after golive.
• Decimal accuracy

Sets the decimal accuracy for standard deviation. The larger the value,
the more precise standard deviation can be calculated. In principle, this
is only necessary when the deviation output attribute shows more
decimals than the amount attribute uses. Enlarging the value comes at
a price, since very large values need to be saved for computing
deviation. Enlarging the accuracy enhances the probability that the
values cannot be saved in the 8 bytes integer anymore. Setting the
accuracy to "0" is good enough for most requirements.

Changing this value will delete all calendar period data after golive.

• Amount attribute
While the default of this is the amount meta attribute defined, you may
specify an alternative attribute to compute the calendar profile's amount
values (for instance, another currency).

• Time zone offset
Profiles are strictly calendrical. In order to decide to which calendar period a
transaction message is added, profiles use the timestamp meta attribute of
the model revision. If the transaction message's timestamp meta attribute
values are in a different time zone than the periods of the profile, you can
enter a non-zero value here. This value in seconds is added to the
transaction message's timestamp meta attribute value before the fitting
period is computed.

• Calendar period

Profiles are strictly calendrical and so are the calendar periods. Calendar
calculations for rollovers do not take into account when the calendar
was created. So for example, if yearly is selected, the profile will roll
over at the beginning of the next year, no matter when it was created in
the current year. Or in case biyearly is selected, the calendar will always
roll over for even years (e.g. 2022, 2024) regardless of the year it was
created in (e.g. 2021).

Changing this value will delete all calendar period data after golive.
• Number of periods

Number of calendar periods that are considered by the profile (including the
current period).

• Exclude zero periods
If checked, periods which have no fitting transaction, will be excluded from
computation.

• Timed rollover
If checked, the reference time for calendar periods will be updated to the
current time during the end of day job, as if a transaction with that
timestamp was processed. Enable it to have deterministic period numbers
independent of incoming transactions.

• Computation Conditions
Determine which transaction messages are included in the calendar profile.

• Output attributes
You may define one or more attributes that deliver calendar profile data to be
used in subsequent decision logic elements.

Example

Assuming a calendar profile is defined that counts all transaction messages
with an amount larger than or equal to $100.00 over calendar periods of 12
consecutive months, the figures below show how some sample transactions
are stored in a profile (assumed today is the 2011-12-14):

The green boxes depict transaction with their transaction timestamp and
their amount. Notice that the transaction timestamp denotes when the
transaction actually occurred at the point of sales (meta attribute
"timestamp"); this is not the system timestamp. The 12 gray containers
depict the 12 calendar periods for which the profile collects data. The periods
are numbered from "0" (this calendar period) to "11" (oldest recorded
period). Now six example transactions come in:

1. Counted in calendar period 0

2. Not counted because profile condition ("amount ≥ $100.00") not met

3. Counted in calendar period 1

4. Not counted because transaction timestamp is before the profile's calendar
periods

5. Counted in calendar period 0

6. Counted in calendar period 10

To exemplify how output attribute values are computed for this, assume
profile calendar periods more filled:

Notice that you may define any number of output attributes that are
computed differently from the same calendar periods. Assume that you want

to compare the last three months' performance to the performance of the
three months before. In this case, you would define an output attribute with
"past calendar period(s)" of "(0~2)/(3~5)" (most recent period first in
intervals). This would compute for number of transactions as:

(62 + 112 + 5) / (98 + 22 + 170) = 179 / 290 = 0.6172

Notice that when you define a ratio (such as above), you would probably
want to define an output attribute with decimals.

For the computation of total amounts the computation would be:

(2414.45 + 4623.30 + 371.55) / (4422.94 + 502.88 + 6708.02) =
7409.30 / 11633.84 = 0.6369

Because profiles are strictly calendrical, once a new calendar period starts, it
starts empty and is only filled during the period. If this is not wanted, IBM
Safer Payments can project the new period value (if "number of periods" is
greater than one). In order to do so, enable the "projection" function in a
profile output attribute (more details on profile output attribute online help
page). In this case, the above number of transaction computation for "past
calendar period(s)" of "(0~2)/(3~5)" would be:

((((62 * 14) + (112 * (31 - 14))) / 31) + 112 + 5) / (98 + 22 + 170)
= 0.7118

As time passes, eventually transaction messages come in that are past the
most recent calendar period. In this case the profile performs a so-called
"rollover", that is, the oldest period is discarded and a new period is created:

Notice that if the transaction would not have been January 2012 but March
2012, the profile would rollover three calendar periods at once. This implies
that if you would have a "freak transaction", that for instance references a
timestamp meta attribute value that is years into the future, the profile
would rollover all periods and thus delete all periods.

In certain applications, transactions are not sent to IBM Safer Payments in
ordered sequence with respect to the point-of-sales timestamps (timestamp
meta attribute). This is for instance the case, if you feed authorization
requests and posted transactions into IBM Safer Payments. Because
authorization requests are real-time and posted transactions are often
nightly batch feeds, transactions could come in that are for an earlier point in
time than the newest transactions that had arrived in IBM Safer Payments
until this point in time. IBM Safer Payments keeps track of the newest
transaction's timestamp and is also known as the "reference timestamp".
This has another use when it comes to the computation of the profile output
attributes. For the computation of these attributes, you may select if this
should consider "transaction time" or "reference time" (setting "computation
timestamp"). For transactions that come in sequence (each timestamp meta
attribute value of the subsequent transaction message is greater than or
equal to the one of the transactions before), this setting makes no difference
since the "reference time" is the same as the "transaction time". However,
for an "out-of-sequence" transaction, such as a posted transaction that
comes in a few hours after it was made at the point of sales, this setting
does make a difference. If set to reference timestamp, computation of the
said transaction uses the profile values (i.e. computes the profile's output
attributes) according to the reference timestamp which is the newest
timestamp that has been seen by Safer Payments (possibly considering
transactions that were made after the current one but arrived before). This
means that a period is considered a certain back period based on the
reference timestamp. If set to another timestamp attribute, computation of
the said transaction uses the profile values according to the value of the
selected timestamp attribute (e.g. meta attribute timestamp) of the
transaction. This means that a period is considered a certain back period
based on the timestamp of the transaction.

If the most recent transaction received by IBM Safer Payments had the
timestamp meta attribute value of 2011-12-14, and a new transaction comes
in with timestamp meta attribute value 2011-10-20, reference time
computation would compute calendar profiles exactly as exemplified above.
Transaction time computation, however, would re-create the result as
follows:

(5 + 98 + 22) / (170 + 9 + 25) = 0.6127

Notice that for past calendar periods, no projection is used and the full value
of the month of October was used.

Remarks

• When you enlarge the number of profile calendar periods into the past, the
"new" periods will initially not be filled but only fill up with the passage of

time.

• When you decrease the number of profile calendar periods into the past, the
periods not used anymore will be permanently deleted.

• When computing profiles for sandbox records, no rollovers are performed.
This means when testing old periods are not discarded but kept and still
included in the computation.

back to top

6.17.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.17.3 Calendar profile attributes

Each calendar profile creates one or more new attributes that it feeds its
computational results into.

Each of the calendar profile output attributes is specified by a set of
definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and
mergings) or for analysis and rule generation should be in the MDC and DDC.
Attributes that you only need for investigation and queries should only be
stored in the DDC. Attributes that are only used for the evaluation of the
current transaction and for which you do not need any history do not need to
be stored at all. Notice that your storage options determine how much main
and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in
"General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Data type
Calendar profile output attributes are either frequencies (numbers) of
records or amounts. Thus only the numeric data type exists. Frequently
frequencies are expressed by length 2 attributes, and amounts by length 4 /
decimals 2 attributes.

• Formatted as
The formatting options are for display of values on the IBM Safer Payments
pages (for examples in queries or case investigation). Choices are:

• Amount
Using digit group and decimal separators as defined for each user's
preferences (e.g. "12,345.67").

• Decimals
Using decimal separators as defined for each user's preferences (e.g.
"12345.67") for numeric attributes only. This option does not use digit
group separators.

• ID
Using digit group separators as defined for each user's preferences (e.g.
"123,456,789").

• PAN
Using dashed quadruple format typically used for primary account
numbers as embossed on cards (e.g. "1234-1243-1243-1243").

• No formatting
Shows data with no formatter applied.

• Length/decimals
Byte length of internal storage, ranging from 1 to 8, and decimals ranging
from 0 to 6. The value range that the resulting attribute can represent is
computed live in the browser and displayed on the right.

• Unit
Displayed with values of this attribute. Typically used for currencies.

• Extended logging
If enabled, this attribute will be specifically called out in a log message

during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

• Computation
Determines how the attribute shall be computed from the calendar profile.

• Past calendar period(s)
Selects how the value of this attribute is to be computed from the past
calendar periods defined. Periods are denoted by numbers: the value "0"
corresponds to the current period, the value "1" to the first past period, and
the value "(n-1)" corresponds to the oldest period (n is the "number of
periods" as set with the calendar profile definition above). There are multiple
types of computation you can define here:

• n
If you just specify a single number, the value of exactly this calendar
period is applied to this attribute.

• n~m
If you specify a number interval, the total value (sum) of all calendar
periods of this interval is applied to this attribute. Notice that this
interval is inclusive, for instance, if you define "3~5", the profile
calendar period is "monthly" and the current transaction is in mid-
December, the value applied to the profile output attribute would
include the past months July, August, and September of this year.

• min(n~m)
Computes the minimum of the calendar period values in the specified
interval.

• max(n~m)
Computes the maximum of the calendar period values in the specified
interval.

• avg(n~m)
Computes the average of the calendar period values in the specified
interval.

• (n~m)/(k~l)
Computes the ratio of the sum of the interval "n~m" divided by "k~l"
(intervals computed as above). Also supports entries such as "n/(k~l)",
"(n~m)/k", and "n/k". Notice that this value is not in percent, but is a
decimal.

• Projection

If checked, the value of the current calendar period (value "0" in "past
calendar period(s)" settings above) is computed as projection in respect
to the last period.

Projection is calculated according to formula

(valueLastPeriod * ((periodLength - timeSinceCurrentPeriodBegin)
/ periodLength)) + (valueCurrentPeriod *
(timeSinceCurrentPeriodBegin / periodLength))

The option is only available, if the "number of periods" as set with the
calendar profile definition above is above "1". Notice that when the period
"0" appears in intervals or ratios, and "projection" is checked, the current
period is also computed as projection.

The algorithm takes into account the fact that calendar months,
quarters and years are not of uniform length. It will use the respective
period’s true lengths for the projection.

Projection is not supported for standard deviation computation.
back to top

6.18 Patterns

Business background

Certain fraud schemes involve a certain sequence of transactions. For
instance, after one international purchase transaction, there would be a
domestic purchase transaction, and immediately after that domestic
transaction, an international ATM withdrawal follows. To detect such
schemes, IBM Safer Payments provides “pattern” profiling.

For details, see online help pattern.
back to top

6.18.1 Pattern

For the business background, see online help patterns.

Definition

Pattern definition consists of:

• Conditions that identify when pattern profiling is performed

• Stencils that describe each part of a pattern

• An output attribute generated by pattern profiling, indicating the pattern
being matched with the current transaction message.

One set of conditions is applied to each incoming transaction message
processed by IBM Safer Payments. Only if all conditions are met, IBM Safer
Payments will evaluate if the past transactions history of this transaction
message matches the pattern defined.

Each stencil is a combination of another set of conditions that a past
transaction record shall satisfy, and a range of “filler” transaction messages
(or a “filler time range”) that may occur after the condition matching record
had occurred. All stencils defined must be satisfied by the transaction record
sequence in order for the pattern to be matched.

The output attribute is fixed of type “boolean” (True/False, hereinafter
“1”/“0”), and of computation “occurs”. Pattern profiling only assigns values
“0” and “1” to it. “0” indicates that either the condition is not matched by the
current transaction message or that the stencil sequence is not matched by
previous transaction records. “1” indicates that both the condition is matched
for the current transaction message and that the stencil sequence is
matched.

Example

The example assumes this pattern definition:

In this example, the pattern output attribute is assigned the value of “1” if:

• There are two subsequent (“pure”) international purchase record that are
minimum 1 hour and maximum 6 hours apart (stencil 1 / records).

• Thereafter there are minimum 1 and maximum 5 records within minimum 3
and maximum 18 hours after the past international purchase record that do
not satisfy the records condition of stencil 2 of a domestic purchase record
(stencil 1 / filler).

• After these filler transactions, but also within maximum 18 hours, there is
one domestic purchase record (stencil 2 / records).

• Thereafter there are up to maximum 3 records of any kind plus the current
international ATM transaction (pattern conditions) which have to occur within
maximum 6 hours (stencil 2 / filler).

The following figure uses a number of sample sequences to exemplify how
patterns are computed:

Timelines for each example card with their transaction sequences are drawn
on a vertical arrow. Time moves from bottom to top. For illustration reasons,

all pattern condition matching – and thus computation triggering transaction
messages – are positioned all at 44:00h.

Dots mark transactions on the example cards timelines:

• Red: current transaction message satisfying the pattern conditions.

• Blue: past transaction record satisfying stencil 2 conditions.

• Green: past transaction record satisfying stencil 1 conditions.

• White: past transaction record that does not satisfy the current or next
stencil's conditions.

The “pattern occurs” value of the output attribute for the example
transaction sequences would be computed as:

1. There are two (green) transaction records satisfying stencil 1 records’
conditions. Thereafter, there are three (white) transaction records not
satisfying stencil 2 records’ conditions; these transaction records are within
the stencil 1 filler conditions of number 1 to 5 (there are 3 transaction
records) and time range 3 to 18 hours (11 hours) before the (blue) first
stencil 2 records’ condition satisfying transaction record. Finally, the current
transaction message satisfied the pattern conditions. The pattern occurs
value hence is “1”.

2. Different to card 1, in this example, there is one (white) not stencil 1 records
condition satisfying transaction record between the two (green) ones
satisfying it. Because the “pure” option is enabled for the stencil 1 records
definition, the non-satisfying transaction record causes stencil 1 to not apply
and hence the pattern occurs value is “0”. Notice that if the “pure” option
would not be enabled, the pattern occurs value would be “1”.

3. Same as card 1, only that there are three rather than two (green) stencil 1
records condition satisfying transaction records subsequent to each other.
Since the first two transaction records already satisfy the stencil 1 records
condition, the third (green) one is counted as a filler, and since 4 filler
transaction records are also within the number 1 to 5, and the time distance
between the last stencil 1 record and the first stencil 2 record is 13 hours
which is within the time range 3 to 18 hours. The pattern occurs value hence
is “1”.

4. The first two (green) transaction records satisfy stencil 1 records condition,
thus the third (green) transaction record, even though also satisfying this
condition is considered to be the first stencil 1 filler transaction record. The
next (blue) transaction record satisfies stencil 2 records condition, thus the
next (blue) stencil 2 records condition satisfying transaction record is
considered the first stencil 2 filler transaction record. However, since the time
between the first transaction record satisfying stencil 2 records condition and
the current transaction message is 10 hours, exceeding the stencil 2 filler
maximum time range of 6 hours, the pattern occurs output value is “0”.

5. Same as card 4, however, this time the stencil 2 filler maximum time
condition is met. The pattern occurs value hence is “1”.

6. Same as card 1, however, there is only one transaction record satisfying
stencil 1 records condition. The pattern occurs value hence is “0”.

7. Same as card 1, however, there is no transaction record satisfying stencil 2
records condition. The pattern occurs value hence is “0”.

8. Same as card 1, however, there are 6 stencil 1 filler transaction records. The
pattern occurs value hence is “0”.

9. Same as card 1, however, there are no stencil 1 filler transaction records.
The pattern occurs value hence is “0”.

10. Same as card 1, however, maximum number of allowed filler transactions
and maximum time ranges are assumed. The pattern occurs value hence is
“1”.

Remarks

• If you are in doubt how patterns compute, use the IBM Safer Payments test
function to create various transaction record sequences and check how they
are computed.

• All intervals (time ranges, filler numbers) are inclusive, that is, the “to” and
“from” values themselves are included in the interval.

• If the “pure” option is enabled for records of a stencil, the records satisfying
the conditions may not be interleaved by other records.

• If the record occurrence is set to “1”, the “pure” and “time range” options are
not available.

• The number of stencils is not limited.

• The filler time and filler transactions settings are logically “and”-ed. They
must both be satisfied for the pattern output attribute to be set to one.

• Occurrence defines how many transactions fitting a stencil’s condition must
occur. If there are less transaction messages than the defined number of
occurrences directly after another that all fit the conditions, the stencil is not
considered applying (and thus the pattern is not considered to match).

• Notice that a pattern only works when it is enabled. Patterns of each model
revision are evaluated in order of their priority. The lower the priority value
the earlier it is evaluated.

back to top

6.18.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.18.3 Stencil

A stencil is a combination of a condition that a past transaction record shall
satisfy, and a range of “filler” transaction messages (or a “filler time range”)
that may occur between two different stencils. All stencils defined must be

satisfied by the transaction record sequence in order for the pattern to be
matched.

More information on how stencils are computed is found on the Online Help
Pattern page.
back to top

6.18.3.1 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.18.4 Pattern attributes

Each pattern profiling creates exactly one new attribute that it feeds its
computational results into.

Each of the pattern output attributes is specified by a set of definitions that
are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and
mergings) or for analysis and rule generation should be in the MDC and DDC.
Attributes that you only need for investigation and queries should only be
stored in the DDC. Attributes that are only used for the evaluation of the
current transaction and for which you do not need any history do not need to
be stored at all. Notice that your storage options determine how much main
and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in
"General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

back to top

6.19 Counters

Counters are similar to calendar profiles, however they evaluate individual
transactions back using a referenced index. Thus counters are more flexible
than calendar profiles. They can be defined for a "rolling time period" rather
than calendar fixed time periods, and past transaction attribute values can be
compared to those of the current one (this for example enables defining a
counter for "number of transactions at the same ATM within the past 2
hours"). Also, there are more complex evaluation methods available than in
calendar profiles. The disadvantage of counters in comparison with profiles
is, that in particular with long-term evaluations, the large amount of
transactions that require evaluation can make counters perform significantly
more slowly than profiles.

Counter results are stored in one or more new attributes defined within the
counter. Counters themselves require a sequence but apart from this and the
new attribute have no memory consumption.

Notice that a counter only works when it is enabled. Counters of each model
revision are evaluated in order of their priority. The lower the priority value
the earlier it is evaluated.
back to top

6.19.1 Counter

A counter assembles a set of past transaction records that satisfy a time
range and a maximum number of evaluated and matching records criterion,
as well as a set of conditions, alongside an index sequence. As an option, the
current transaction is included in this set, if the “include current” checkbox is
checked.

Example

Assuming the following sequence of transactions:

Timestamp Amount Country Merchant Category

1 2010-01-10 14:00:00 114.13 US 5571

2 2010-01-16 12:00:00 83.03 US 5411

3 2010-01-18 08:00:00 200.00 US 6011

4 2010-01-18 09:00:00 400.00 MY 5813

5 2010-01-18 09:01:00 400.00 MY 5813

6 2010-01-18 09:02:00 400.00 MY 5813

7 2010-01-18 15:00:00 133.00 US 5812

8 2010-01-18 19:00:00 300.00 US 5933

9 2010-01-22 11:00:00 1018.19 MO 5541

10 2010-02-08 12:00:00 100.00 US 5973

11 2010-02-08 12:15:00 300.00 US 5973

Here, the last row #11 represents the current transaction. The following
counter definition examples would imply the following set of transactions:

• A
Include current: no
Max evaluated records: 100
Max matching records: 100
Time range: 21 to 0 days
Evaluation Conditions: none
=> past transaction records 7 to 10 counted

• B
Include current: no

Max evaluated records: 100
Max matching records: 100
Time range: 4 to 0 weeks
Evaluation Conditions: Country equal to US
=> past transaction records 2, 3, 7, 8, and 10 counted

• C
Include current: no
Max evaluated records: 3
Max matching records: 3
Time range: 4 to 0 weeks
Evaluation Conditions: Country equal to US
=> past transaction records 8 and 10 counted

• D
Include current: yes
Max evaluated records: 100
Max matching records: 100
Time range: 4 to 0 weeks
Evaluation Conditions: Country equal to US
=> past transaction records 2, 3, 7, 8, 10, and 11 counted

• E
Include current: yes
Max evaluated records: 100
Max matching records: 100
Time range: 1 to 0 weeks
Evaluation Conditions: none
=> past transaction records 10 and 11 counted

Based on this set of past (and potentially the current) transactions, a number
of output attributes is derived. For each output attribute, the "computation"
setting defines how this attribute shall be computed from the transaction set.
For details on computation methods, open the online help page of the output
attribute.

Remarks

Please notice, that the time range definition is inclusive, i.e. time range 3 to
0 hours means 0 <= x <= 3.
back to top

6.19.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.19.3 Counter attributes

Each counter profiling creates one or more new attributes that it feeds its
computational results into. Notice that if you use a mandator structure, the
rules of this decision logic may use all attributes defined in champion
mandator revisions above it in the structure. Each of the counter output
attributes is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain. Notice that the attribute names do not need to
correspond to the variable names of data delivered to IBM Safer Payments;
you define the relation between IBM Safer Payments attributes and variable
names in "Mappings".

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for
analysis and rule generation should be in the MDC and DDC. Attributes that
you only need for investigation and queries should only be stored in the DDC.
Attributes that are only used for the evaluation of the current transaction and
for which you do not need any history do not need to be stored at all. Notice
that your storage options determine how much main and disk memory IBM
Safer Payments consumes (number of records times length/characters). You
find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Data type
Computations (see below) either deliver numeric or text output (only if

computation is "most occurrence value" the output attribute of a counter
may be "text").

• Formatted as
The formatting options are for display of values on the IBM Safer Payments
pages (for examples in queries or case investigation). Choices differ by data
type:

• Amount
Using digit group and decimal separators as defined for each user's
preferences (e.g. "12,345.67") for numeric attributes only.

• Decimals
Using decimal separators as defined for each user's preferences (e.g.
"12345.67") for numeric attributes only. This option does not use digit
group separators.

• ID
Using digit group separators as defined for each user's preferences (e.g.
"123,456,789") for numeric attributes only.

• PAN
Using dashed quadruple format typically used for primary account
numbers as embossed on cards (e.g. "1234-1243-1243-1243") for
numeric and text attributes.

• No formatting
Shows data with no formatter applied.

• Length/decimals
Byte length of internal storage for numeric output attribute values, ranging
from 1 to 8, and decimals ranging from 0 to 6. The value range that the
resulting attribute can represent is computed live in the browser and
displayed on the right.

• Unit
Displayed with numeric values of this attribute.

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

• Computation
This setting determines how the output attribute is computed from the set of
transaction records selected by this counter:

• Simple counting methods
The simple counting methods include:

• Frequency
Number of transaction records selected.

• Total amount
Total amount of all transaction records selected.

• Average amount
Average amount of all transaction records selected.

• Maximum amount
Maximum amount of all transaction records selected.

• Minimum amount
Minimum amount of all transaction records selected.

• Multiple occurrences
The overly frequent occurrence of certain values for an attribute can be
a strong indicator of fraudulent behavior. IBM Safer Payments provides
different counting methods for this indicator:

• Most occurrence frequency
This counting method outputs the number of selected transaction
records that have the same value as the reference attribute
(defined above). If for instance this counter is used on MerchantID
with the index/sequence attribute PAN, this counting method
returns how many transactions the cardholder of the current
transactions had at most with the same MerchantID.

• Ratio of most occurrence
This is the normalized version of the previous. It is computed as
the most occurrence frequency value divided by the total number
of transaction records that satisfy the counter conditions
(frequency). If no transaction satisfies the counter conditions, this
value is zero. If the value occurs no more than once, this value is
also zero. Notice that this value is always in the interval [0; 1].
You should therefore define the respective counter output attribute
with decimals.

• Most occurrence value
Delivers the value that occurred most. Can be used with text and
numeric type reference attributes. The respective counter output
attribute must have the same type as the referenced attribute. If
the value occurs no more than once, this computation delivers
zero for numeric type attributes and an empty text for text type
attributes. If more than one value occurs with the maximum same
frequency, the first value is outputted. Notice that with this
computation method, data type and length of the output attribute
gets taken from the reference attribute and may not be changed.
If categories are defined for the reference attribute, they will be
assigned to the output attribute of the counter automatically. In
this case the categories are shown at the bottom of the page but
are not editable.

Examples: Assume the following lists of values of the reference
attribute with transaction records that satisfy the counter
conditions:

Values of reference attribute Most occurrence frequency Ratio of most occurrence

{10; 20; 20; 30; 30; 30; 40; 50} 3 3/8=0.375

{} 0 0.000

{10} 1 0.000

{10; 10; 10} 3 1.000

{10; 10; 10; 10; 20; 20; 20; 20} 4 4/8=0.500

{10; 20; 30; 40; 50; 60; 70; 80} 1 0.000

{10; 20; 20; 30; 30; 30; 40; 10} 3 3/8=0.375

• Distinct values
Some fraud patterns can be identified by analyzing the number or ratio
of distinct values of the reference attribute in the past transaction
record sequence. IBM Safer Payments provides different counting
methods for this indicator:

• Number of distinct values
This counting method outputs the number of values of the
reference attribute of past transactions that are different from
each other.

• Ratio of distinct values
This is the normalized version of the previous counting method. It
is "0" for all values being the same (if more than one value is
counted), and "1" for all values being different from each other.

Examples: Assume the following lists of values of the reference
attribute with transaction records that satisfy the counter
conditions:

Values of reference attribute Number of distinct values Ratio of distinct values

{10; 20; 20; 30; 30; 30; 40; 50} 5 4/7=0.571

{} 0 1.000

{10} 1 1.000

{10; 10; 10} 1 0.000

{10; 20; 30} 3 2/2=1.000

{10; 10; 10; 10; 20; 20; 20; 20} 2 1/7=0.143

{10; 20; 30; 40; 50; 60; 70; 80} 8 7/7=1.000

{10; 20; 20; 30; 30; 30; 40; 10} 4 3/7=0.429

• Multiple values
Some fraud patterns can be identified by analyzing the number or ratio
of values of an attribute in the past transaction sequence that occur
more than once. IBM Safer Payments provides different counting
methods for this indicator:

• Number of multiple values
This counting method outputs the number of values of the
reference attribute of past transactions that occur more than once.

• Ratio of multiple values
This is the normalized version of the previous counting method.

Examples: Assume the following lists of values of the reference
attribute with transaction records that satisfy the counter
conditions:

Values of reference attribute Number of multiple values Ratio of multiple values

{10; 20; 20; 30; 30; 30; 40; 50} 2 2/8=0.250

{} 0 0.000

{10} 0 0.000

{10; 10; 10} 1 1/3=0.333

{10; 20; 30} 0 0.000

{10; 10; 10; 10; 20; 20; 20; 20} 2 2/8=0.250

{10; 20; 30; 40; 50; 60; 70; 80} 0 0.000

{10; 20; 20; 30; 30; 30; 40; 10} 3 3/8=0.375

• Distinct IP B/C Nets
This is a variant of "number of distinct values" designed to count the
number of different B/C IP nets used by a customer. For this, an
attribute holding the IP address must be specified as reference
attribute. The format of the IP address must be the "dotted" format,
such as "129.44.1.8". The subnet mask applied is "255.255.255.0" for
distinct C class nets and "255.255.0.0" for distinct B class nets. That is,
IP addresses "129.44.1.2", "129.44.1.255", "129.44.1.0", and
"129.44.1.144" would all be considered to be with the same C class net
as "129.44.1.8"; and thus not counted as distinct nets. Notice that the
IP address holding attribute must be of "text" type and have a minimum
length of 15 ("xxx.xxx.xxx.xxx").

back to top

6.20 Events

Events track how long ago (in transaction time) a certain occurrence
occurred. The occurrence is often a specific (non-monetary) transaction
message that is identified by the event's conditions. Each event contains a
new numeric type attribute definition that carries the result. The attribute
may have any numeric size.

Calendar profiles and events are a very powerful feature in advanced fraud
prevention. Whilst the data cache can only support the storage (and thus

subsequent access/evaluation by counters) of a limited number of
transactions, calendar profiles and events do not have a transaction limit.

Events are used to “remember” things that happened (possibly a long time
ago). Examples could be “account opened”, “new card imprinted”, “PIN OK
verified”, etc.

An event is a “normal” transaction, however, only the timestamp and event
condition attributes are used. The event conditions would typically be
implemented by defining (using the MTID meta attribute) an attribute, and
defining the condition, for example the MTID value for "PIN verified OK".

Any time a transaction comes in that fires the events condition, the
transactions timestamp is stored in the event. The event output attribute
reflects the time difference between each new transaction and the last
occurrence of the event transaction (for the event transaction itself, this time
difference is zero). The smallest unit for time differences is seconds. To make
the definition of events easier, minutes, hours, days and weeks can also be
used as definition units. In addition, attributes may use decimals,
representing for instance “2.4 days since last address change”.

Remarks

• While typically, event transactions are defined to only “trigger” the event,
this need not be the case. An event triggering transaction could also be a full
monetary transaction.

• Event transactions are (notwithstanding their event specific effects) just
“normal” transactions and are also stored within the transaction data or
shown in investigation reports.

• The output value of an event can also be negative in case of transaction
messages not always being in strict sequence. If for instance for one
cardholder, a posted transaction with a transaction date of yesterday comes
in shortly after an authorization request from a restaurant. If there would be
an event defining the last restaurant visit as an event, the posted transaction
of yesterday would get the value "-1 days" for the event since with respect to
the posted transaction, the last restaurant request occurred -1 days ago. Use
mathematical comparison operators in conditions to interpret this value in
the way you need it.

back to top

6.20.1 Event

The settings for each event are:

• Enabled
If checked, this event is used in real-time transaction computation and
during simulations.

• Priority
Events of each model revision are evaluated in order of their priority. The
lower the priority value the earlier it is evaluated.

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comment
Used in the model revision to describe the event.

• Index
Index this event is defined along to.

• Timestamp
Attribute used as reference for event computation.

• Time unit
Event time is computed using this time unit.

• Include current
If checked, the event evaluation includes the current transaction. For
instance, if this option is not checked, and no event conditions is provided,
the event output attribute lists the time since the previous transaction for
this index attribute value had arrived.

• Update during merging
Trigger an event or update its timestamp when a record meets the event's
conditions after a merging which uses setting `update calendar profiles and
events` or after a manual fraud mark.

Memory consumption

Events are defined with reference to an index. Their memory consumption is
computed as:

4 Bytes * IndexSize

both for MDC and DDC. In addition, the new numeric attributes memory
consumption must be added.
back to top

6.20.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.20.3 Event attributes

Each event profiling creates exactly one new attribute which is filled with the
time that has passed since the event last occurred. Occurrence is defined by

the conditions.

The event output attribute is specified by a set of definitions that are made
on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and
mergings) or for analysis and rule generation should be in the MDC and DDC.
Attributes that you only need for investigation and queries should only be
stored in the DDC. Attributes that are only used for the evaluation of the
current transaction and for which you do not need any history do not need to
be stored at all. Notice that your storage options determine how much main
and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in
"General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Data type
The event profiling output attribute is of numeric data type. Notice that the
value has the time unit set as "Time unit" above with the event. The
length/decimals settings should cover the value range that you are interested
at. Notice that if an event did not occur yet or did occur so long in the past

that the value cannot be represented in the universe of the attribute, the
value is clipped at the positive maximum of the universe.

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

back to top

6.21 Formulas

Formulas allow the use of mathematical expressions to generate a new
attribute from existing ones. While mathematical expressions can also be
used with conditions, using a formula to generate a new attribute can be
more efficient if this expression is used many times in the model revision.
The attribute may have any numeric size.

A formula is only computed when it is enabled. Formulas of each model
revision are evaluated in order of their priority. The lower the priority value
the earlier it is evaluated.

Note that rule conclusions that write a formula expression to an output
attribute are similar to Model/Formula.
back to top

6.21.1 Formula

For details on formula definition, rest the mouse pointer over the respective
field to show tooltip style explanations.

There are six operations each of which has two operands:

• (x + y)

• (x - y)

• (x * y)

• (x / y)

• geoDistanceKm(pos(latitudeA; longitudeA); pos(latitudeB; longitudeB))

• geoDistanceMiles(pos(latitudeA; longitudeA); pos(latitudeB; longitudeB))

The operands x, y, latitudeA, longitudeA, latitudeB and longitudeB may either
be:

• a numeric expression (decimal character is period, no spaces in numbers,
may have leading minus sign)

• an attribute of the same transaction (format: [attribute name]) or

• a math condition

In addition to all operations mentioned above, you can also make Python
function calls in your formulas. To get the list of available Python functions
you need to type "py" in the expression field. For more information about
Python code execution refer to the respective online help page.

Memory consumption of a formula is only the memory consumption of the
formula output attribute. There is no overhead.

pos is a placeholder formula to encode 2 values for geo distance processing.
It cannot be used without geoDistanceKm or geoDistanceMiles

geoDistanceKm / geoDistanceMiles computes the distance between two
geographical coordinates.

Following steps should be performed to achieve useful distance calculation
results:

• Define latitude/longitude masterdata for the respective index attribute.

• Define message type, and corresponding mapping to import geo locations

• Load geographical coordinates using a batch load job. The csv file should
contain following attributes: MTID, zip, latitude, longitude)

• Define three precedents to capture the data of the previous transaction:
previousLatitude, previousLongitude, previousTimestamp

• Define formula to compute distance:
geoDistanceKm(pos({previousLatitude}; {previousLongitude});
pos({latitude}; {longitude}))

• Define formula to compute time difference: sub({trxDateTime};
{previousTimestamp})

• Define rule(s), e.g. (zipDistanceKm ≥ 75) ; (zipTimeDifference ≤ 3600);
(trxType != eCommerce)

back to top

6.21.2 Formula attributes

Each formula creates exactly one new attribute which is filled with the result
of the calculation.

The formula output attribute is specified by a set of definitions that are made
on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for
analysis and rule generation should be stored in MDC and DDC. Attributes
that you only need for investigation and queries should only be stored in the
DDC. Attributes that are only used for the evaluation of the current
transaction and for which you do not need any history do not need to be
stored at all. Notice that your storage options determine how much main and
disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in
"General".

• MDC records
Number of records that should be stored of this attribute in main memory.
Because data in main memory is not persistent, the MDC is primed from the
DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e.
the number of records stored) must always be greater than or equal to the
MDC size. This setting is not available if retention by time is enabled.

• DDC records
Number of records that should be stored for this attribute on disk. This
setting is not available if retention by time is enabled.

• MDC retention
Number of days that this attribute should be retained in memory. This setting
is only available if retention by time is enabled. The configured retention
limits the lifetime of transaction records in the memory data cache. Older
records will be trimmed during the end of day job. Trimming removes the
values but does not securely delete them. If that is required, enable 'Purge
outdated entries securely' (only available for inputs).

• DDC retention
Number of days that this attribute should be retained on disk. This setting is
only available if retention by time is enabled. This configured retention limits
the lifetime of transactions records in the disk data cache. Older records will
be trimmed during the end of day job. Trimming removes the values but
does not securely delete them. If that is required, enable 'Purge outdated
entries securely' (only available for inputs).

• Data type
The data type of a formula output attribute is numeric.

• Length/decimals
Byte length of internal storage, ranging from 1 to 8, and decimals ranging

from 0 to 6. The value range that the resulting attribute can represent is
computed live in the browser and displayed on the right.

• Extended logging
If enabled, this attribute will be specifically called out in a log message
during query execution. This can be used to audit access to an attribute's
values.

• Garante2 log field
Use this select field to map this attribute to a specific Garante2 log field.
During query execution this attribute will then provide the value for the
selected Garante2 field. This option is only available for unencrypted
attributes that have extended logging enabled. If Garante2 logging is
disabled for the whole system, the setting is not shown.

• GDPR log client id field
If enabled, the values of this attribute will be used to fill the client id field
inside the GDPR log during query execution. This option is only available for
unencrypted attributes that have extended logging enabled. If GDPR logging
is disabled for the whole system, the setting is not shown.

back to top

6.22 Model components

This section defines modeling capabilities of IBM Safer Payments. Safer
Payments provides the possibility to combine multiple modeling types to
combat fraud effectively. While some of them (rulesets) can be created and
trained within Safer Payments itself, other model types can be imported to
Safer Payments in PMML (Predictive Model Markup Language) format. The
imported PMML models can be evaluated as a part of the overall model
alongside model components created within IBM Safer Payments. The
following model component types are supported:

• Ruleset / Scorecard

• Decision tree

• Neural network

• Random forest

• Boosted trees

• Internal random forest

• External model

General remarks

• With all the model components of this model revision, a model component
with higher priority is computed after a model component with lower priority.
This is because later model components can overwrite output of earlier
model components.

• First the model components of the "highest" mandator in the hierarchy are
computed, all model components of the current mandator are computed last.

This is equivalent to an automatically higher priority of the model
components of the current model revision, since model components in the
current model revision can overwrite any decision a model component of a
higher mandator's champion model revision has made. This implies that the
model component priorities only determine the computation line-up of model
components within a model revision.

The following diagram exemplarily shows an order of execution of model
components and final rulesets.

The model components and final rulesets are executed in the following order
(Assumption: current mandator = mandator 4):

1. All model components of the top mandator (mandator 1) according to their
priorities (A -> C -> B)

2. All model components of the head mandator (mandator 2) according to their
priorities (F -> D -> E)

3. All model components of the current mandator according to their priorities (J
-> I)

4. All final rulesets of the current mandator according to their priorities (FC ->
FD)

5. All final rulesets of the head mandator (mandator 2) according to their
priorities (FF -> FE)

6. All final rulesets of the top mandator (mandator 1) according to their
priorities (FB -> FA)

PMML specific remarks

• IBM Safer Payments supports import and execution of a subset of model
types and options defined in PMML version 4.3.

• Refer to the section help data field mapping to see how data field mappings
can be defined.

• Refer to the section help output field mapping to see how output field
mappings can be defined.

• Refer to the section help transformation field mapping to see how
transformation field mappings can be defined.

• Before uploading large PMML model files, you might need to adjust the
maximum post size setting on the system configuration page. Uploads that
exceed the maximum allowed post size will be rejected.

• Note that wildcard characters encountered in PMML predicates will be
interpreted according to their role in IBM Safer Payment's expressions.

PMML data types

Below you can find all supported PMML data types and their counterparts in
IBM Safer Payments to which a valid mapping can be defined.

PMML data type SP data type

string text, IPv4, hexadecimal, numeric, timestamp

integer numeric

float numeric

double numeric

boolean boolean

dateTime timestamp

PMML transformations

PMML transformations allow to derive new data fields from input data by
applying various functions on them. IBM Safer Payments supports a subset
of these transformations defined in PMML 4.3 standard.

• Field reference
Field references can be used to simply pass-through transaction data to the
model without any transformation.

• Constants
Can be used to define constant values which can be accessed and used from
within the model.

• Apply PMML built-in functions
The following built-in functions are supported in "Apply" transformations: +,
-, *, /, log10, ln, sqrt, abs, exp, pow, threshold, floor, ceil, round,
min, max, sum, avg, median, product.

• Normalize discrete values
Can be used to transform categorical string values into normalized discrete
numeric values. If transaction value equals to the value defined in
transformation, this returns 1.0 otherwise 0.0. The transformation value is
defined as PMML attribute "value".

• Normalize continuous values
Can be used to transform input values to specific value ranges, usually the

numeric range [0 .. 1], using piecewise linear interpolation. The
transformation value is determined by a sequence containing at least two
elements called LinearNorm. The LinearNorm elements must be strictly
sorted by ascending value of "orig". Given two points (a1, b1) and (a2, b2)
such that there is no other point (a3, b3) with a1 < a3 < a2, then the
normalized value is: b1 + (x - a1) / (a2 - a1) * (b2 - b1) for a1 ≤ x ≤ a2.
The input values not lying in the given range are treated as outliers and are
handled by the Outlier Treatment Method. Outlier Treatment Method can be
"asIs", "asMIssingValues" or "asExtremeValues". The default Outlier
Treatment Method is "asIs" and it extrapolates the normalized values form
the nearest interval. If "asMissingValues" method is set, it maps all the
outliers to the value of NormContinuous attribute "mapMissingTo" and if
"mapMissingTo" is not given, outliers are mapped to 0.0. "asExtremeValue"
method maps outliers to the normalized value from the nearest interval.

The table below provides an overview of the supported transformations per
PMML model type.

PMML decision tree PMML random forest PMML neural network PMML boosted trees

FieldRef Transformation
dictionary and outputs
with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Input layer,
transformation dictionary
and outputs with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Constant Transformation
dictionary and outputs
with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Input layer,
transformation dictionary
and outputs with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Apply Transformation
dictionary and outputs
with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Input layer,
transformation dictionary
and outputs with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

NormDiscrete Transformation
dictionary and outputs
with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Input layer,
transformation dictionary
and outputs with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

NormContinuous Transformation
dictionary and outputs
with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Input layer,
transformation dictionary
and outputs with feature
"transformedValue"

Transformation
dictionary and outputs
with feature
"transformedValue"

Discretize - - - -

MapValues - - - -

TextIndex - - - -

Aggregate - - - -

Lag - - - -

back to top

6.22.1 Ruleset / scorecard

Rulesets are a structuring aid for rules. Grouping rules into sets has a
number of advantages:

• Often, the representation of a certain fraud type or region specific fraud
cannot be done in one rule. Grouping them into a ruleset keeps them in one
place for easier reference and maintenance.

• Rulesets can be enabled and disabled entirely. This allows for a set of rules to
always be enabled and disabled at once.

• Rulesets can have additional conditions. Thus, if there are a number of rules
that share some conditions (such as region, merchant type, or similar), this
condition must only be formulated once as the ruleset condition, keeping the
actual rules conditions smaller and easier to maintain.

• Because each ruleset can be given a priority, grouping rules in sets can make
it easier to create and maintain a priority scheme for the entire rules of the
model revision.

Remarks

• Notice that the individual priorities of single rules in a ruleset are only
relevant for the order of execution within a ruleset.

• Also, notice that the conditions that you define for a ruleset will be applied as
if they would be defined the same for all individual rules of the set.

• In some applications, there are rules that need to be computed last (i.e. with
highest priority). If you need this, enable "Final rulesets" within the
mandator administration settings for the respective mandator(s). You find
more information on final rulesets on their online help page.

back to top

6.22.1.1 Rules

Rules are the core of the model revision as they combine values of input
attributes and attributes generated by the profiling methods listed before in
this section, to identify fraud patterns. Rules can also have any number of
conclusions that set or modify output attributes.

Rules can be entered manually, generated assisted/automatically or be
imported via a PMML scorecard.

• To manually enter a new rule, click on the [New rule] icon. To edit an existing
rule, click on the respective rule row. Extended rule options are available
from a context menu by clicking right on the respective row. You may also
select multiple rules using the [Ctrl] key with mouse clicks for individual
selection or the [Shift] key with mouse clicks for the selection of an interval.

• Information on assisted or automatic rule generation can be found on the
Automatic and Assisted Rule Generation online help page.

• To import rules via a PMML scorecard, click on the [Import PMML scorecard]
icon or drop the file directly on the icon. Further information on PMML
scorecard import can be found on the PMML online help page.

Remarks

With all the rules of this ruleset, a rule with higher priority is computed after
a rule with lower priority. This is because later rules can overwrite
conclusions of earlier rules.

Rules require no memory in MDC or DDC.
back to top

6.22.1.1.1 Rule

The definition of a rule involves a number of settings that are made in this
form. Rest the mouse pointer over a setting for details. Settings are:

• Enabled
If checked, this rule is active.

• Priority
Enter any value between 0 and 10,000 for the rule priority, the higher this
value is, the LATER the rule is computed within this ruleset (later
computation means it can overwrite computations by earlier computed
rules).

• Name
Name of this rule.

• Comment
Comments are informational only, however it is highly recommended that
you comment each item in IBM Safer Payments fully as these comments are
used in various places.

• Performance report
Includes this rule for performance report analysis performed using group by
queries. If you enable this setting, the rule will keep a record for which
transaction it was applied. Thus, this requires additional memory in MDC or
DDC. By default the amount of records stored (and the memory and disk
required) is based on the size of the SystemTime meta attribute. This can be
changed under the Retention settings page.

• Exclude from MCI responses
If checked, the rule will be excluded from the list of rules fired in the MCI
responses (but will be included in the counts of the number of rules fired).

• Collusions
Selected collusions are triggered if the rule conditions are met. For further
information about collusions please refer to the respective online help page.

• Hide from case investigators
Decides whether the rule is hidden on the case investigation page. By
default, it is visible for all users with the privilege to view rules fired (never
hidden), but can be hidden from lower mandator investigators or always be
hidden (e.g. for rules serving a merely technical purpose).

• Conditions
The conclusions of a rule are executed when all defined conditions are
satisfied. If no condition is defined, the conclusions of a rule will be applied
to all transaction messages.

• Conclusions
The conclusions of a rule are executed when all defined conditions are
satisfied.

• Actions
The actions of a rule are executed when all defined conditions are satisfied.

If a rule query is defined, you can execute it on a specific rule by selecting
"Execute rule query" from the context menu or the form. A rule query
delivers all records, that are hit by the selected rule. This function requires
an active and valid simulation. Further information on simulation queries can
be found here.

Selecting "Execute Rule Analysis" from the form starts a single rule analysis
in order to get statistics about this specific rule. Further information on rule
analysis can be found here.

Information about the rule report can be found here.
back to top

6.22.1.1.2 Rule analysis

Single rule analysis results show the fraud prevention performance for this
rule based on the selected analysis. Further information on rule analysis can
be found here.
back to top

6.22.1.1.3 Rule report

Important: To start a rule report a rule report query has to be defined and
the simulation of the meta attribute intercept has to be enabled in the
modeling section. Beside that the executing user needs to have simulation
memory for the mandator of this revision.

The rule report provides information about the performance of a rule. There
are two options to start the rule report:

• With context
The complete decision model is considered. To start the rule report with
context it is required to have a valid simulation already. The summary takes
only those records into account where the rule, the report is generated for,
fired. However, the relative amount and share against the entire Simulation
are shown in the summary as well. The absolute numbers for the entire
Simulation can be found in the report header. Note that this option is only
available if the ruleset and the rule are enabled.

• Without context
Only the selected rule is simulated. In case you start a report "without
context", all your previous simulation and analysis results will be invalid.
Notice that results will be lost as soon as you close the form. The executing

user needs to have memory assigned to his user account for the mandator of
this revision.

The report consists of three parts:

• Report Settings
The basic information about the report is listed here. Beside that the
definition of the rule set and the rule itself is shown.

• Summary
This section summarizes the number of generated alarms dissected by the
return value (meta-attribute intercept). The summary is computed using the
simulation the report based on, not the original transaction data.

• Record list
The record list shows the records where the rule fired. It is defined as a rule
report query. The record list is computed using the simulation the report
based on, not the original transaction data.

back to top

6.22.1.1.4 PMML scorecard import

PMML (short for Predictive Model Markup Language) is a XML-based file
format used to describe and exchange models produced by data mining and
machine learning algorithms. One of the supported models is the scorecard
model which you can use to import rules into IBM Safer Payments.

XML schema

The PMML scorecard model has the following xml schema:

To import rules into IBM Safer Payments from a PMML scorecard you have to
upload a valid XML file, corresponding to the schema above, via a browser.
To that purpose you can click on the [Import PMML scorecard] icon in the
ruleset form or drop the file directly on the icon.

Example

An example for a valid XML file would be following scorecard definition:

A tabular representation of this scorecard would look like this:

IBM Safer Payments compatible scorecards

In order to be able to be imported into IBM Safer Payments a scorecard has
to fulfill certain conditions:

• Attribute 'name' of every element 'DataField' has to correspond to an IBM
Safer Payments model attribute name available to the ruleset where the
scorecard shall be imported to.

• Attribute 'dataType' and attribute 'optype' of every element 'DataField' have
to correspond to the respective IBM Safer Payments model attribute
definitions. See PMML data types table in the model components online help
for supported data types and mappings.

• Attribute 'name' of every element 'MiningField' has to correspond to an IBM
Safer Payments model attribute name available to the ruleset where the
scorecard shall be imported to.

• Attribute 'name' of every element 'OutputField' has to correspond to an IBM
Safer Payments model attribute name that can be overwritten by conclusions
of the ruleset where the scorecard shall be imported to.

• Attribute 'dataType' and attribute 'optype' of every element 'OutputField'
have to correspond to the respective IBM Safer Payments model attribute
definitions. See PMML data types table in the model components online help
for supported data types and mappings.

• Valid values for the attribute 'operator' of every element 'SimplePredicate'
are:

• isMissing

• isNotMissing

• greaterThan

• lessThan

• greaterOrEqual

• lessOrEqual

• equal

• notEqual

The value has to correspond to the respective IBM Safer Payments model
attribute definition (i.e. no 'greaterThan' operator for text values). Values not
known to IBM Safer Payments will be imported per default as 'equal'.

• For the attribute 'booleanOperator' of element 'CompoundPredicate' only the
value 'and' is being supported. When any other value is given, the whole rule
will be ignored (not imported).

• Operators isMissing and isNotMissing are supported only for text, numeric,
and date/timestamp values.

Remarks

• For supported PMML data types and their counterparts in IBM Safer
Payments, see PMML data types table in the model components online help.

• IBM Safer Payments model attributes are only matched to scorecard
variables if the attribute 'usageType' of element 'MiningField' is 'active'.

• If the scorecard is compatible to IBM Safer Payments, all existing rules in
the ruleset will be erased and replaced by rules corresponding to the
imported PMML file.

•

In the example above the created rules would be:

• Scorecards are usually only used for rules which change a score. Therefore,
all imported rules will have a conclusion with an 'increment by' operator,
where the score value will be incremented by the value specified in the
respective 'partialScore' attribute of an 'Attribute' element.

back to top

6.22.1.1.5 Rule actions

Rule actions are performed on incoming transaction when all conditions of
the rule are met. There are 4 different types of rule actions:

• Add alarm
Adds an alarm for a case class. The data of an incoming transaction will be
used to create an alarm for the selected case class. This is an alternative to
define a conclusion with the meta attribute "case class".

• Add entry
Adds an entry for a defined risk list. If an incoming transaction contains the
input attribute of the selected defined risk list, an entry will be created with
the transaction's attribute value. Further settings for the creation of defined
risk list entries via rule actions can be found in the configuration of the
respective defined risk list.

• Add notification
Adds a notification. Choose a predefined notification that will be send when
the rule fires. This is an alternative to define a conclusion with the meta
attribute "notification".

• Set masterdata
Overwrites the stored value of the selected masterdata element. You can
either use constant values (e.g. "5") or the value of an attribute of the

current transaction by using the reference to this attribute (e.g.
{CustomerName}).

Remark

It is possible to define multiple rule actions of the same type. If for example
several actions of the type "Add alarm" for different case classes are defined,
an alarm will be created for each case class. However using the same case
class several times does not create multiple alarms for that case class and
thus has the same effect as using it only once. Performing a "Set
Masterdata" action on the same masterdata element several times,
overwrites its value each time.
back to top

6.22.2 Decision tree

Decision trees are one of the most standard and commonly used statistical
models. The model is organized into a hierarchical tree structure which
combines multiple nodes. Scoring of a transaction against a decision tree
starts from its root node and descends into child nodes. Each node has a
logical predicate that determines the evaluation path, for example,
processing is continued within a child whose predicate is evaluated to true.
This process is continued until a leaf node is reached. The latest score in the
evaluation path serves as the predicted value for the evaluated message.
Note that scores are defined by the attribute score on the tree nodes.

IBM Safer Payments supports both multi-node trees and binary trees. The
type of the model is specified by the attribute splitCharacteristic of TreeModel
element. The supported options for the splitCharacteristic attribute are:

• multiSplit (default)
Each non-leaf node in the tree model may have an unrestricted number of
children. If the attribute is not explicitly set, this value will be used as the
default value.

• binarySplit
Each non-leaf node in the tree model should have exactly two children.

It might happen that none of the child nodes evaluates to true while
evaluating a tree model. In that case the optional noTrueChildStrategy
attribute should indicate how to treat such situations (see section "No true
child strategy" for the usage and supported options).

Score distribution

Scoring nodes in a decision tree define an attribute score whose value serves
as the predicted value if a transaction message chooses the node. In addition

to the predicted value, PMML also allows us to define a so-called
ScoreDistribution element within each scoring node. This element specifies
the probability distribution for each class that the model can predict. This
means that scoring nodes can also compute probabilities of each class based
on the record count of who voted for a particular class and the total record
count. For more information about score distribution, refer to the official
PMML standard.

Calculation of numeric predicates:

Note: Inside a PMML file, a numeric constant in a predicate can have many
decimals. Safer Payments will however allow a maximum of 8 decimals, so
the decimal will potentially be cut off.

If a constant has more decimals than the attribute in the predicate, then a
predicate can potentially return an unexpected boolean value for very large
numeric attribute values.

Example: The predicate in PMML is defined as

<SimplePredicate field="AMOUNT" operator="lessOrEqual"
value="0.0000068500000000002">

The AMOUNT attribute in this example has a length of 8 bytes (64 bits) and 2

decimals. It can therefore store values up to (263 -1) / 102 =
92,233,720,368,547,758.07 (or the equivalent negative values).

The decimal will be cut to 0.00000685.

However since the predicate is compared with 64 bit integers and the
decimal precision is 8 due to the constant, the predicate can only be
guaranteed to return expected boolean results for absolute AMOUNT values

less or equal to (263 -1) / 108 = 92,233,720,368.54
When the constant has less decimals, the AMOUNT values can be larger
accordingly.

No true child strategy

Defined as noTrueChildStrategy attribute in TreeModel element, this attribute
defines how to treat situations where none of the child nodes evaluates to
true. The supported options for this attribute are:

• Return null predication
Tree model returns no prediction.

• Return last predication
In case one of the parent nodes scored already, the last score is taken,
otherwise no prediction.

Ideally, every decision tree will provide a score. However, there might be
situations where the main predicate in a decision tree node evaluates to
unknown. For situations like this, IBM Safer payments will always evaluate to
false.
back to top

6.22.3 Neural network

A neural network is represented as a set of neurons arranged in neural
layers. It is comprised of one input layer, one or more hidden layers (usually
simply referred to as layers) and one output layer. All layers are
interconnected and each neuron receives signals from neurons of the
previous layer and processes them. IBM Safer Payments only supports
execution of feedforward fully connected neural networks as a part of its
model components.

Inputs and data transformations

The initial inputs are defined in the input layer. Input values are derived from
transaction data by applying transformations to the attributes defined in the
data field mapping section or by simply using their values directly. For the list
of supported transformations, refer to the generic online help page of model
components.

Activation of neurons

Each neuron activates the signal received from the previous layer. IBM Safer
Payments supports all group 1 activation functions which take a linear
combination X of weights, inputs and a bias. These activation functions are
listed below:

• threshold
activation = 1 if X > threshold, otherwise 0

• logistic

activation = 1 / (1 + e-X)

• tanh

activation = (1 - e-2X) / (1 + e-2X)

• identity
activation = X

• exponential

activation = eX

• reciprocal
activation = 1 / X

• square

activation = X2

• Gauss

activation = e-(X2)

• sine
activation = sin(X)

• cosine
activation = cos(X)

• Elliott
activation = X / (1 + |X|)

• arctan
activation = 2 * arctan(X) / PI

• rectifier
activation = max(0, X)

Outputs

The activations of the last (hidden) layer are the final scores of the neural
network. These are mapped to IBM Safer Payments attributes as defined in
the output field mapping section in the exact same order in which neurons
appear. The highest score always determines the predicted value. Notice that
no normalization such as simplemax or softmax will be applied.
back to top

6.22.4 Random forest

A random forest combines multiple decision tree models in one statistical
model using segmentation approach. This approach implies that multiple tree
models are grouped inside of a Segmentation element. Scoring takes place
by evaluating each decision tree separately, independent of others and then
aggregating all outputs across all decision trees. Hence, it is model
generator's responsibility to specify how multiple models should be used and
how scores should be aggregated by defining a multiple model method (see
below for the usage and supported options).

Model combination methods

Defined as multipleModelMethod attribute in Segmentation element, this
attribute defines an aggregation/combination method. The supported options
are:

• Majority vote
Selecting the score for which the highest number of tree models voted. For
example, assuming that we have a random forest containing three trees and
trees have predicted "NON_FRAUD", "FRAUD" and "FRAUD" respectively, the
final output will be "FRAUD" (2:1). In case of two trees (two predictions

"FRAUD" vs. "NON_FRAUD") this method can become ambiguous. The
probability of predicted values is calculated by the number of trees voted for
this predicted value divided by the total number of trees.

• Average and weighted average
Probabilities are computed as the (weighted) average of probabilities
predicted by each model. The final predicted value would be the winning
class which has the highest combined probability. The predicted probabilities
are defined by a node element ScoreDistribution (see "Score distribution"
section of decision trees for additional details).

• Select first
Selecting the first model score. Having the above example with three trees,
the final output in this case will be "NON_FRAUD".

back to top

6.22.5 Boosted trees

Boosting is a machine learning technique in which models are built
incrementally in a stage-wise fashion, by learning from errors of previous
models. Every subsequent model is grown to fit the error residuals of a
previous model. The combination of individual models results in a strong
ensemble model.

There are various tools available on the market which can be used to train
boosted tree models. There can be slight variations in the resulting PMML
when exporting them.

Safer Payments allows execution of specific variants of externally trained
boosted tree models via PMML. PMML boosted tree models are expected to
contain one or more decision trees, usually followed by a PMML regression
model at the last layer. The tree models and the regression model are
expected to reside inside a "Segmentation" node which has an aggregation
method "modelChain". This implies that the output of one model serves as
an input for the next model. It is also possible to have one "Segmentation"
node inside another "Segmentation" node which is also a common pattern for
various PMML model generators.
back to top

6.22.6 Internal random forest

A random forest combines multiple decision tree models in one statistical
model using a segmentation approach. This approach implies that multiple
tree models are grouped inside of a Segmentation element. Scoring takes
place by evaluating each decision tree separately, independent of others, and
then aggregating all outputs across all decision trees.

The random forest model generated by IBM Safer Payments uses majority
voting as the combination method to aggregate the output of the multiple
trees. The model selects the score for which the highest number of trees
voted. For example, assuming that we have a random forest containing three
trees and they have predicted "NON_FRAUD", "FRAUD" and "FRAUD"
respectively, the final output will be "FRAUD" (2:1). In the case of two trees
(two predictions, "FRAUD" vs. "NON_FRAUD") this method can become
ambiguous. The probability of predicted values is calculated by the number
of trees which voted for this predicted value divided by the total number of
trees. The predicted value and the two probability values are written to the
output attributes that can be configured for each internal random forest.
back to top

6.22.7 PMML model import

This section lets you import statistical models in PMML format. To do so, you
can click on the upload button [PMML Model Import] of this section.

PMML version compatibility

IBM Safer Payments supports import and execution of a subset of model
types and options defined in PMML version 4.3.
back to top

6.22.8 Data field mapping

This section lets you define mappings between attributes that are used in the
PMML model and IBM Safer Payments revision attributes.

The labels of the select fields are defined by PMML model attribute names
and their data types within brackets. In the select field, model revision
attributes are listed, and you can select which model revision attribute will be
mapped to which PMML model attribute. Model revision attributes are filtered
by data type and preselected if attribute names match or are similar. The
similarity is measured using the Levenshtein algorithm.

For numeric PMML model attributes, IBM Safer Payments provides the
possibility to assign encoded categories of numeric and text attributes to it.
If no category is selected, the numeric value of the attribute will be used in
the computation. For text attributes, the category is mandatory.

PMML data types table lists all supported PMML data types and their
counterparts in IBM Safer Payments.
back to top

6.22.9 Output field mapping

This section lets you define mappings between output attributes.

On the left-hand side of the section you will find PMML model output attribute
names and data types (in brackets). On the right-hand side model revision
attributes are listed to which the imported attributes should be mapped.
Model revision attributes are filtered by data type and preselected if attribute
names match or are similar. The similarity is measured using the Levenshtein
algorithm.

PMML data types table lists all supported PMML data types and their
counterparts in IBM Safer Payments.
back to top

6.22.10 Transformation field mapping

This section lets you define mappings between PMML transformation fields
(aka derived fields) and IBM Safer Payments revision attributes.

Defining mappings for transformation fields is optional as these values are
used during internal computations only. In case you want to store the PMML
transformed values alongside the transaction message, you can select one
overwritable attribute for each transformation field which needs to be stored.

PMML data types table lists all supported PMML data types and their
counterparts in IBM Safer Payments.
back to top

6.22.11 External model

To enable the distribution of data to other systems or enhance the scoring
model with contributions from external models, Safer Payments (SP) utilizes
the external model components elements, which act as a proxy for external
systems. When the current model decides that it needs extra information
(e.g., another SP instance, another transaction processing system), it
triggers an external model component. The external model component, then,
sends a request to that system and halts the transaction until it either
receives a response or it times out. Therefore, it guarantees real-time
transaction computation. Configuring the time-out and a set of recipients for
the request is handled by the outgoing channel configuration.

The request is an HTTP JSON message whose HTTP headers are defined in
the HTTP headers section. The JSON message comprises a set of attributes

values whose paths are defined in the request mappings sections. The format
of the request message including the HTTP header is as follows:
POST / HTTP/1.1
content-length: $message length$"content-type: text/json; charset=UTF-8
<custom headers>
x-sp-message-id: $message-id$

{"IRIS":{"Version":$transaction version$,"Message":"ModelRequest","MessageI
SystemTime:$time of sending request$},<custom JSON elements>}

Such that

• $message length$: is the length of the message content calculated by the
external model.

• <custom headers>: represents the list of manually configured HTTP
headers (see next paragraph).

• $message-id$: is a unique id for this request that the external model
expects to find in the response message to match the response for its
corresponding request.

• $transaction version$: is the version of the transaction being computed.

• $time of sending request$: is the time at which the message was sent.

• <custom JSON elements>: represents JSON elements calculated from the
request mappings and the attributes values in the computation cache.

Each request is assigned a unique $message-id$ that the external model
component uses to match the response to its corresponding request.
Therefore, both the request and response need to include this id. The
request message contains the id in its HTTP header "x-sp-message-id" as
well as its JSON body, as shown above. The external model component
expects the response to be a JSON object with the id being either delivered
in the "x-sp-message-id" HTTP header or inside the JSON payload with key
"MessageId".

HTTP headers

This section lets you define the custom HTTP headers of the request
message. The HTTP headers will be added to the request message in the
same order defined here. As mentioned in the previous paragraph some
additional HTTP headers will also be included in the message being sent.

Request Message Mappings

This section lets you define mappings from attributes values to JSON fields in
the request message. The mapping specify which attribute (Attribute) to
include its value and its corresponding JSON path within the request
message (JSON Element).

The JSON path is similar to that defined in input/output mappings. For
example:
transaction/order/items[0]/categories[0]/[0]
maps to:

{
 "transaction": {
 "order": {
 "items":[{
 "categories":[["Books"]]
 }]
 }
 }
}

Connection Settings

This section lets you define which persistent connection is used to connect to
the external system.

The first option is to use a static persistent connection for all messages.
Disable the "Select persistent connection through id attribute" toggle for this
and select the desired persistent connection using the "Outgoing channel
configuration" field.

The second option is to dynamically select a persistent connection for every
transaction message. Enable the "Select persistent connection through id
attribute" toggle and select an attribute in the "Attribute storing persistent
connection id" field. Only attributes with the meta attribute "external model
connection ID" are available. During computation of a transaction, the
external model component will read the value of the selected attribute from
that transaction and tries to find a persistent connection with that ID value.
If this fails, a log message will be printed and the external model component
will be skipped.

Forward all inputs, outputs, and profiling outputs

In a cascaded horizontal scaling setup, where the external model component
is used to forward the whole transaction message to another Safer Payments
instance, the setting "Forward all inputs, outputs, and profiling outputs" can
be enabled. This will hide the request mappings of the model component.
Instead the external model mappings found on the mappings page are used
to send out all inputs, outputs and profiling outputs.

Response Message Mappings

This section lets you define mappings from JSON fields in the response
message to attributes values in the Computation cache (CDC). The mapping

specifies which JSON path within the response message (JSON Element) is
mapped to which attribute.

The JSON path is similar to that defined in input/output mappings. For
example:
transaction/order/items[0]/categories[0]/[0]
maps to:

{
 "transaction": {
 "order": {
 "items":[{
 "categories":[["Books"]]
 }]
 }
 }
}

Include external response metadata in local response

When data is forwarded to an external model component, the external
component may send a response back. When the JSON response contains an
"IRIS" key, as it is the case when the external model component is another
Safer Payments instance, the relevant part of the metadata (the data
associated with the "IRIS" and "RulesFired" keys) is extracted and saved.
The metadata saved from the external model responses is later included in
the JSON response of the primary Safer Payments cluster. Note that the
cluster's own response will only contain the metadata from the external
system if it produces a response in JSON format itself. Such a response data
enrichment has the following structure:
"EMC_RESPONSES": [{
 "EMC_NAME": "emc_1",
 "EMC_UID": "11223",
 "EMC_RESPONSE_DATA": {
 "IRIS": {...}
 }
}]

This is how it looks when "RulesFired" is also found in the external response:
"EMC_RESPONSES": [{
 "EMC_NAME": "emc_1",
 "EMC_UID": "11223",
 "EMC_RESPONSE_DATA": {
 "IRIS": {...},
 "RulesFired": [...]
 }
}]
back to top

6.23 All rules

Rules are the core of the model revision as they combine values of input
attributes and attributes generated by the profiling methods listed before in
this section, to identify fraud patterns. Rules can also have any number of
conclusions that set or modify output attributes.

Rules can either be entered manually or generated assisted/automatically.

This page shows all existing rules that match the filter criteria. We provide
two filters, one for active / inactive rules and one for inherited / own rules.
Both filters can be combined. The filters are defined as follows:

• Active
A rule is considered as active if both the ruleset and the rule itself are active.
In all other cases it is considered as inactive.

• Inactive
A rule is inactive if either the ruleset or the rule itself is inactive.

• Inherited
Inherited rules are rules from mandators that are above this mandator within
the mandator hierarchy. You may use these input rules in the same way as
the ones you define yourself, but you may not change them.

• Own
Own rules are the rules that are defined for this mandator in this revision.

back to top

6.24 Final rulesets

Final rulesets are similar to rulesets but are computed after all rulesets are
computed.

Also while rulesets are computed "top-down", that is first the rulesets of the
"highest" mandator in the hierarchy are computed and rulesets of this
mandator are computed last, this sequence is reversed with final rulesets.
This is to ensure that because the rulesets of the highest mandator are
computed last, they will win out on any conflicting rules with a lower level
mandator's model revision.
back to top

6.24.1 Final ruleset

Final rulesets once created are listed on the navigation menu left so they can
be quickly accessed. To access any of the rules of a final ruleset, click left on

the respective rule name in the left navigation menu.

Notice that the conditions that you define for a final ruleset will be applied as
if they would be defined the same for all individual rules of the set.

Remarks

• With all the rules of this ruleset, a rule with higher priority is computed after
a rule with lower priority. This is because later rules can overwrite
conclusions of earlier rules.

back to top

6.25 Collusions

Business background

Collusion is the process where card information is copied from transactions
made at one or more terminals at the merchant site ("common point of
purchase", aka CPP or "point of compromise", aka POC), over a defined
period of time, and later used to create fraudulent transactions.

A traditional way of fighting this type of fraud is to replace all cards that have
been used at the POC during the affected period. This is a costly process
involving customer disruption. It also only works after a point of compromise
is detected and verified.

IBM Safer Payments provides a much better way to deal with this type of
fraud. Using collusion processing, IBM Safer Payments constantly analyses
past transactions for indicators that a set of cards has been compromised
and is now used for fraudulent transactions. Special investigation cases are
generated for potential points of compromise. These investigation cases
provide the possibility to protect compromised cards even before they are
used for fraudulent transactions. In addition, collusions not only detect
potential points of compromise but also provide further information such as a
skimming time range.

In this way, collusion fraud can be prevented even before a POC is known,
and POCs themselves can be found.

Collusion processing can be triggered by rules, if the respective conditions
are met, or when mergings are executed. With that it is possible to execute a
collusion processing automatically in all cases where cards seem to be used
fraudulently after being compromised in order to protect other cards before
collusion fraud takes place. Collusions are triggered within the real-time
processing of incoming messages but are executed in parallel to the real-

time execution of messages. Using this technology collusion processings will
not influence the computation time of incoming transactions.

In addition, to the automatic execution of collusions it is possible to run
collusions manually for a predefined data selection.

For reasons of generality, what in the standard situation described above is
the "card" or the "account" is referred to as "first party", what is the
"merchant" or the "terminal" is the counterparty".

Analytical process

The analytical process is as follows:

1. Analyze the transaction record history for the first party. Collect all
transaction records of this history that satisfy the “counterparty time
criterion” and “counterparty conditions”. The counterparty time criterion is a
time interval (from/to) relative to the value of the meta attribute
'Timestamp'.

2. For the resulting set of past transaction records, create a set of
counterparties involved with these transaction records.

3. For each counterparty, select what other first parties had transaction records
with the counterparty, with the transaction records satisfying the “connivance
time criterion” (relative to the transaction message timestamp found in step
2. above) and the “connivance conditions”.

4. Count how many of these first parties satisfy the compromised criteria within
the compromised time range (with respect to the reference timestamp) after
they made the first transaction at the counterparty within the connivance
time period; and do not satisfy the compromised criteria before. If no
compromised conditions are defined the compromised criteria includes
fraudulent transaction. If additional compromised conditions are defined, first
parties are counted as affected first parties if either "fraud-criterion" or the
compromised conditions are satisfied within the compromised time range.

5. For each counterparty where more first parties than defined as "Threshold
first parties" are counted, generate the defined “point of compromise
suspicion case” (as defined as case class).

Example

Assuming the conditions of a rule that indicates fraudulent behavior induced
by a POC are satisfied, the respective rule triggers a collusion. This
transaction is marked red and the previous transactions are shown with their
counterparty value in the figure below left:

Now the sequence of past transaction records is analyzed: the "counterparty
time range" identifies the sub-sequence (within dotted green lines) in which
merchants are considered that had transaction records with first party B. In
the figure above right, these were the counterparties 2, 4, 6, and 7 (marked
dark grey). Counterparties 3 and 5 do not fulfil the counterparty conditions.

Next the past transaction record sequences of all four counterparties are
analyzed as potential POCs. The next figure shows the POC analysis for the
first counterparty 7:

The figure shows the first party transaction record histories (vertical lines)
for each first party that had transactions with the counterparty 7 within the
connivance period. Fraudulent transaction records are marked in red,
transaction records involving counterparty 7 that match the connivance
conditions are marked dark grey. The counterparty values are printed in the
hexagons.

The first party transaction record sequences are evaluated:

• First party A: The first party had one transaction record at counterparty 7
within the connivance period and fraud within the compromised time range
after the first transaction record at counterparty 7 and no fraud before the

first transaction record at counterparty 7. It is thus counted as potential POC
induced fraud.

• First party B: This is the first party whose transaction message is
currently/originally evaluated. Since the first transaction record at
counterparty 7 occurred after the connivance period, this first party is not
considered further.

• First party C: The first party has a transaction record within the connivance
period at counterparty 7, no fraud before the first transaction record at
counterparty 7, and at least one fraud transaction record within the
compromised time range after the first transaction record at counterparty 7.
It is thus counted as potential POC induced fraud.

• First party D: The first party has a transaction record within the connivance
period at counterparty 7, but fraud occurred before the first transaction
record at counterparty 7. This first party is not considered further.

• First party E: The first party has a transaction record within the connivance
period at counterparty 7, but no fraud occurred. This first party is not
considered further since no additional compromised conditions are defined.

• First party F: The "connivance conditions" are not satisfied for the transaction
record at counterparty 7. This first party is not considered further.

• First party G: Same as first party D. This first party is not considered further.

• First party H: The first transaction record at the counterparty that satisfies
the connivance conditions is fraudulent. It is thus counted as potential POC
induced fraud.

• First party I: Fraud occurred within the compromised time range after the
first transaction record with the counterparty. It is thus counted as potential
POC induced fraud.

• First party J: Even though the first fraud occurred after the first transaction
record at the counterparty and within the compromised time range, this first
counterparty transaction record was outside the connivance period. This first
party is not considered further.

The same analysis is performed on all four counterparties. The example
results of this are:

Counterparty 2 4 6 7

First parties that indicate potential POC 14 33 1 4

All first parties that fit connivance criteria 22 193 5 9

Ratio 38.89% 17.10% 1.85% 44.44%

This concludes the analytical part of collusions. Based on the results:

• POC investigation cases are generated through the generation of alarms, and

• the indicators computed are displayed within the newly created cases or
updated if the generated alarm is aggregated with an already existing case
for the found potential point of compromise.

A POC alarm is generated for each counterparty where the result is higher
than pre-defined threshold:

• Threshold first parties
Absolute number of first parties that indicate potential POC.

In addition to the detected potential POC the following information are
provided within the generated cases:

• number of affected first parties

• number of generated alarms

• skimming time range

Remarks

• Collusion alarms also contain a list of potentially affected first parties. These
are displayed on the case investigation page in a separate section and can be
drilled down for their past transaction record sequence.

• Besides the time ranges mentioned above there are also limits available for
first parties and counterparties which are included in the collusion
processings. This allows to control the computation time of collusions.

• Manually executed collusions do not generate cases. Instead a summary is
displayed where all detected potential POCs are displayed together with
further information such as number of affected first parties and the
respective skimming time range. This information can be used for further
investigations.

back to top

6.25.1 Collusion

Each collusion searches within past transactions whether there is an
accumulation of fraud with accounts/cards that could indicate that a common
point of purchase has been used to extract account/card information. Refer
to the online help function for collusions above for details on the
computation. Each collusion comprises a number of definitions:

In order to include a collusion within the real-time processing of transactions,
the respective checkbox has to be enabled for a rule or a merging.

To simulate a collusion processing press the green button on top of the form.
This will start a simulation of the respective collusion using the data selection
configured on the page "Simulation". Results of manually executed collusions
are provided in a table on the bottom of this page. It is recommended to
simulate collusions before they are taken into production to avoid a large
number of generated alarms or unexpected results. Manually executed
collusions can be aborted at any time during computation by clicking the
respective red button.

• Name
The name is used in all IBM Safer Payments forms and should be chosen
from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to
comment the attributes extensively, so the decision logic remains easy to
understand.

• First party (index)
Index of the attribute (must have a sequence) that shall be used as first
party. This would typically be the attribute that identifies the card or the
account.

• Threshold first parties
Threshold for the absolute number of cards that indicate a potential POC. If
this threshold is reached for a counter party, a collusion alarm is generated.

• Counterparty (index)
Index of the attribute (must have a sequence) that identifies the
counterparties to be evaluated. This would typically be the attribute that
identifies the merchant or the terminal.

• Counterparty time range
Time interval, relative to the value of the meta attribute 'Timestamp', in
which counterparties that had transactions with the first party are
considered. Only counterparties are considered as points of compromise that
had transactions with the first party during this time period and that also
satisfy the "counterparty conditions" (below). Please notice, that the time
range definition is inclusive, i.e. time range 3 to 0 hours means 0 <= x <=
3. Please also notice that the sequence timestamp attribute of the first party
index is used for this evaluation.

• Max counterparties
The maximum number of counterparties that will be evaluated.

• Connivance time range
Time before and after the transaction at the counterparty, in which other first
parties are considered that had transactions with a counterparty and that
also satisfy the "connivance conditions" (below). Please notice, that the time
range definition is inclusive, i.e. time range 3 to 0 hours means 0 <= x <=
3. Please also notice that the sequence timestamp attribute of the
counterparty index is used for this evaluation.

• Max first parties
The maximum number of first parties, that will be evaluated for each
counterparty.

• Compromised time range
Time interval, relative to the current reference timestamp, in which the
compromised criterion (below) has to be satisfied. The reference timestamp
is the most recent timestamp that is available for the meta attribute
'Timestamp'. Please note that in case no compromised conditions are
defined, only fraudulent transactions are considered as indicators for a
compromised account.

• Generate alarms
An alarm is generated for each counterparty that is considered a potential
point of compromise:

• Case class
Id of case class that the generated alarm(s) shall belong to. Please note
that only case classes of type "collusion" are selectable.

• Case score
Value of the meta attribute "case score" which determines the
importance of the generated alarm(s).

For help on the sections, refer to their individual online help pages.

Notice that the online help page for collusions (from the top section)
describes the collusion evaluation process in detail.
back to top

6.25.2 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

6.26 Model revision golive

As the first step of the golive process, this report is generated which
summarises the changes that a golive implies. If you confirm golive, these
changes are carried out.

Golives can be classified into two categories: Structural and Logical.
Structural changes are changes which require changes to memory (e.g.
adding new attributes, changing the MDC or DDC size of existing attributes,
changing the length of attributes, etc.). Logical changes are changes to the
message computation (e.g. changes to conditions, addition or deletion of
rules (when rule performance report is not enabled for those rules), etc.).

When "Enable Logical Golives" is enabled, the structural golives and logical
golives are processed differently. Structural golives require message
processing on an instance to be temporarily stopped in order to update the
internal memory structures (however message processing for the cluster can
continue by enabling the MCI Bypass). When a logical golive occurs, the
message processing does not need to be stopped. The internal references
can be updated and message processing can continue immediately.

When "Enable logical golives" is not enabled, all golives are processed as
structural golives.

Golive report
Golive report provides important information and details about the current
golive before execution. Information is provided in the following sections

• Warning
Provides details about how IBM Safer Payments is going to handle the
execution of the current golive according to the status of the other instances
in the cluster.

• Operation
Describes the operation which is happening on the current revision.

• Storage Info
Provides details about memory used for the retiring champion and memory
required by the new champion.

• Maintenance Mode
Describes the current maintenance mode for the instance.

• Golive Type
Describes how IBM Safer Payments is going to handle execution of current
golive, it could be a structural golive or logical golive.

• Status
Describes a summary about golive report results.

back to top

7. Administration

This chapter covers the administration functions of IBM Safer Payments.
back to top

7.1 System configuration

This page contains all settings that are the same for all IBM Safer Payments
instances in a cluster. Their settings are described by tooltip style
explanations when you rest the mouse pointer over the respective label.

Typically, these settings have been made during installation of IBM Safer
Payments by or with the assistance of IBM Safer Payments consultants. Only
perform changes on this page when you know what you are doing as
improper settings can cause IBM Safer Payments to not work as excepted.

Notice that some changes will come into effect immediately, while others
come into effect only when IBM Safer Payments reboots. This can cause
different IBM Safer Payments instance in a cluster to behave differently when
re-booted at different times.

Because the subjects of the different sections of this page are highly divers,
detailed help is provided from within each section for some of the sections.

When in doubt, contact the IBM Safer Payments support to assist with the
configuration.

Tools

The toolbar of this section contains some utilities:

• Saves the system configuration (replicated via FLI to all instances of the
cluster).

• Lets you download an archive file with configuration and log data to your
local computer (to be used with issue analysis).

• Creates a full report with respect to the PCI DSS compliance of the current
IBM Safer Payments system configuration and settings.

back to top

7.1.1 Authentication settings

IBM Safer Payments supports the following authentication methods:

• Local
Only the IBM Safer Payments stored password is checked.

• LDAP
Only the LDAP password is checked.

• Local and LDAP
First the local password is checked, if it does not fit the LDAP server is
checked.

• OIDC claim
The specified username attribute inside the OIDC token is checked for
existence within IBM Safer Payments

It also provides the following session binding settings:

• Use IP address for session binding.
The default value is True, which means if the IP address of an authenticated
user changes, the session will be terminated.
By default, the IP will be checked for each request to ensure that the caller is
who they say they are. For some clients, their IP may be changed between
requests preventing them from using Safer Payments. Setting it to false will
allow the server admin to disable the IP check for sessions.

• Use HTTP Header X-Forwarded-For for session binding.
The default value is True, which means if the value of the X-Forwarded-For
changes, the session will be terminated.
Most application servers can leverage the X-Forwarded-For header with the
source IP address for logging or blocklisting. For some clients, the X-
Forwarded-For may be changed between requests by a proxy server
preventing them from using Safer Payments. Setting it to false will allow a
server admin to disable the X-Forwarded-For check for sessions for that
scenario.

LDAP authentication

IBM Safer Payments supports LDAP (lightweight directory access protocol)
servers as an alternative means of user access authentication. The LDAP
server is not part of IBM Safer Payments, you must install and operate it
separately from IBM Safer Payments.

Configuration of the LDAP server involves the following settings:
Use Active Directory

Use Active Directory authentication method (username@domain)

Allow Single Sign On
Allow a user to automatically login using their windows credentials. For more info
please see Setup required to enable Single Sign On.

Automatically Re-login
Allow a user to automatically sign in after their session expires (this setting is only
available when Single Sign On is enabled).

LDAP hosts
IP address or domain name of LDAP server (for example "iris.ldap.intranet"). You
can also enter multiple hosts by separating them with commas (i.e.
"iris.ldap.intranet,iris2.ldap.intranet"). In this case IBM Safer Payments will try
and connect to any backup hosts in the order they are listed if it cannot contact
the first host.

LDAP base DN
Base of distinguished name (for example "OU=Users,DC=company,DC=local").

Active Directory domain
Active Directory domain for login (username@domain).

LDAP port
IP port of LDAP server (typically "389" or "636" for SSL access).

LDAP encryption over SSL
Enables encrypted communication between IBM Safer Payments and LDAP
host.The LDAP SSL connection settings are configured outside of Safer Payments.
Safer Payments is using the shared library of OpenLDAP to implement the LDAP
authentication. The SSL/TLS settings are not done in Safer Payments, they need
to be applied to the OpenLDAP configuration file, which can be found under
/etc/openldap/ldap.conf. Please refer to the OpenLDAP manual for the necessary
settings and options to set up the certificates. Please note that you have to restart
Safer Payments after every change of configuration files on operating system level
for the changes to take effect in Safer Payments.

LDAP timeout
LDAP timeout (time to wait to connect to LDAP server)

Notice that in each case, a user account in IBM Safer Payments must exist
for a user to log on.

If LDAP only authentication is enabled, all administrators are also
authenticated only by the LDAP host. If this authentication fails, the
administrator is locked out. Any change of the OS LDAP setting, (for example
changing the LDAP SSL setting), requires a restart of the instance for the
change to take effect.

OIDC authentication

IBM Safer Payments also supports a token based Single Sign On (SSO) login
based on the OpenID Connect protocol. In this case, Safer Payments is
presented with a OIDC token containing a login name. This token is provided
by an external server, which is not a part of IBM Safer Payments and must
be operated separately. For PCI compliant usage, you must address all PA-
DSS and PCI DSS requirements for this server on you own.

The configuration of the OIDC token based authentication involves the
following settings:

• Token name
In this field, you need to specify the name of the HTTP header field that
contains the OIDC claims token.

• Username attribute
The username attribute identifies the attribute of the OIDC claim that is used
for authentication.

Example token:

{
"login_name": "jsmith@exampleMail.com",
"last_name": "Smith",
"first_name": "Jane",
"id": "cl.jsmith",
"internal_id": "25",
"emails": {
"personal": "jsmith@personalMail.com",
"business": "jsmith@businessMail.com"
},
"phone_numbers": {
"business": "555-555-1234"
}
}

If this login method is used, you must ensure that the username submitted
via the OIDC claim token exists as a user inside IBM Safer Payments. If this
is not the case, a login is not possible.
back to top

7.1.1.1 Setup required to enable Single Sign On

When you have configured Safer Payments to use LDAP (with either the
'LDAP' setting or 'local then LDAP') you also have the option to turn on Single
Sign On (SSO) allowing your users to be automatically logged in by

authenticating the account that they've logged in with on their machine. In
order to do this the Safer Payments server uses the Kerberos authentication
method and some additional set up steps will be required on your LDAP
server, on the Safer Payments server and on each individual's client machine.
The first set of steps will describe how to set up SSO assuming you are using
Active Directory as an LDAP server. If you are using a Linux KDC then see
the steps at the bottom for instructions.

The steps below need to be performed for the Safer Payments server where
your API is running. If you would like SSO to be available and if your API
changes servers, then you will need to perform the steps on each other
server where the API can run. The steps below will assume that you are just
setting up kerberos on the single Safer Payments server where the API is
running, and so will refer to this server as the Safer Payments server.

Creating the Kerberos keytab on Active Directory

First, go to your Active Directory server and add a new user which will be
used by the service (if you are using a Linux KDC see the bottom of this
document for instructions). In our examples below we will assume that the
user is named SPServiceUser with the password Password123. Ensure that
this user's password will not expire, since it will only be used by the service.
We will also assume that you have another user that will be used to login to
Safer Payments called AdminUser with a password of your choosing.

Next open a command prompt as administrator and run the following 2
commands to associate the service principal with the username and create
the keytab:

setspn -A HTTP/SaferPaymentsServerWithDomain Username

ktpass -out OutputPath -princ
HTTP/SaferPaymentsServerWithDomain@DomainNameInCaps -
mapUser Username -mapOp set -pass Password -crypto RC4-HMAC-NT
-pType KRB5_NT_PRINCIPAL

For example, if your Safer Payments server is on a machine called SPServer
and is part of the domain internal.example.com and you used the username
and password mentioned previously you would run the following commands

setspn -A HTTP/SPServer.internal.example.com SPServiceUser

ktpass -out c:\krb5.keytab -princ
HTTP/SPServer.internal.example.com@INTERNAL.EXAMPLE.COM -

mapUser SPServiceUser -mapOp set -pass Password123 -crypto RC4-
HMAC-NT -pType KRB5_NT_PRINCIPAL

You should now have a keytab file created at c:\krb5.keytab. Copy this file to
your Safer Payments server where your API is running using a secure
method.

Configuring Kerberos on the Safer Payments Server

Next you will do the required Kerberos configuration steps on the Safer
Payments Server. First, you want to ensure that you can reach the Active
Directory server from your Safer Payments server with the fully qualified
domain name (i.e. assuming the Active Directory server is named ADServer
and continuing with the example above you would run ping
ADServer.internal.example.com). If you can't reach the Active Directory
server then you'll need to either configure your hosts file or your local DNS
server so that you can.

After ensuring that your Safer Payments server can connect to your Active
Directory server you will set up the /etc/krb5.conf file to point to your
domain. Open the /etc/krb5.conf file in your editor and change the
default_realm to point to your realm, and then change the [realms] section
to point to your Active Directory server and the [domain_realm] section to
point to your realm. For example, continuing with the example above the file
would look like this (all the logging and libdefaults settings other than the
default_realm can potentially be changed).

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = INTERNAL.EXAMPLE.COM
dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true

[realms]
INTERNAL.EXAMPLE.COM = {
kdc = ADServer.internal.example.com

admin_server = ADServer.internal.example.com
}

[domain_realm]
.internal.example.com = INTERNAL.EXAMPLE.COM
internal.example.com = INTERNAL.EXAMPLE.COM

You can now test that your kerberos settings are correct and you can connect
to your Active Directory by running the kinit command. Continuing with the
example above you would run the command

kinit AdminUser

Followed by the user's password. If no errors occur then you can run the klist
command which should show a ticket for the username which you just
entered. If you had an error while running the kinit command, check the
connectivity between the machines (in both directions) and ensure that there
were no errors in either of the configuration files you set up in the previous
steps

Next copy the keytab file you created from the previous section to
/etc/krb5.keytab

Since keytab files contain highly sensitive information, notably encryption
keys, it is imperative to ensure proper access controls to these files.
Assuming that your Safer Payments service runs under a unique username,
the keytab file should be modified so it is readable only by that username.

You can now test that the keytab was created correctly. Run the following
command and ensure that it lists the service principal which you created in
the steps above.

klist -k -t /etc/krb5.keytab

With our example above, the command should show the principal
HTTP/SPServer.internal.example.com@INTERNAL.EXAMPLE.COM

Next you can test that you can authenticate the keytab by running the
following command (followed by entering the user's password that you set
up previously):

kinit -k -t /etc/krb5.keytab HTTP/SaferPaymentsServerWithDomain

For example, continuing with the example above you would enter:

kinit -k -t /etc/krb5.keytab HTTP/SPServer.internal.example.com

Followed by the password Password123. If this command does not give any
error then your keytab is set up correctly and Kerberos is correctly

configured on the machine.

Setting up Safer Payments

In order to use the Single Sign On feature you need select the 'LDAP' or
'local then LDAP' settings in the system configuration. Once you have
selected one of those options you will have the option to 'Allow Single Sign
On' which will allow the users to be automatically logged in with the same
user account that they used to log in to their machine when they load any
Safer Payments page. The Single Sign On feature assumes that the
usernames are the exact same between Safer Payments and the Active
Directory server, just like the LDAP feature.

Setting up the client

Finally, before a client can use the Single Sign On feature you will need to
run some set up steps on your client machine to allow your authorization
credentials to be sent through the browser.

First, obviously you will need to ensure that the machine is connected to the
domain and that you are logged in as a domain user who also has a
username in Safer Payments

Next you will need to set up the browser. Follow the steps below depending
on which browser you are using.

Internet Explorer and Google Chrome on Windows

1. Open Control Panel and select Internet Options and then the Security tab.

2. Select the Trusted sites zone and then select the Custom level... button

3. In the settings dialog navigate to the User Authentication section and change
the Logon setting to Automatic logon with current user name and password
and hit OK

4. Finally, back on the Trusted sites zone, hit the Sites button and add the
website of your Safer Payments instance to the Trusted sites (using its fully
qualified domain name). Following with our previous example we would add
http://SPServer.internal.example.com (if your Safer Payments site only uses
HTTP and not HTTPS you will need to unselect the box at the bottom
requiring HTTPS)

5. You can now hit ok to close the settings dialog and save the settings

Firefox

1. Open a new Firefox tab and in the URL bar navigate to about:config and click
the I'll be careful, I Promise! button

2. In the search dialog search for negotiate and then open the
network.negotiate-auth.trusted-uris value and enter the fully qualified
domain name (following with our previous example you would enter
SPServer.internal.example.com)

3. You can now close the about:config tab

After configuring the browser, ensure you are logged on to your machine with
a user account that has a matching username in Safer Payments, and then
you should be able to open a new web page pointing to Safer Payments and
be automatically logged in.

Creating the Kerberos keytab on Linux

The information below will describe how to create a keytab using the MIT
KDC implementation, however there should be equivalent commands in other
implementations.

Ideally you should set up your Iris server to access the KDC before running
the steps below, so that you can run the remote version of kadmin on your
Iris server. To do that, follow the steps above under Configuring Kerberos on
the Safer Payments Server until after you run the kinit AdminUser command.
Alternatively, you can also run the kadmin.local command on your KDC
server, but it is recommended to run it on the Iris server so you do not need
to transfer the keytab over the network.

First you will need to create a principal for the service. Run the kadmin
command to enter the kadmin CLI, then run the following commands to add
a service principal and then create a keytab.

kadmin

addprinc
HTTP/SaferPaymentsServerWithDomainInLowercase[@RealmNameInCaps]

ktadd -k OutputPath
HTTP/SaferPaymentsServerWithDomainInLowercase[@RealmNameInCaps]

To use our example names from above you would do the following
commands:

kadmin

addprinc
HTTP/spserver.internal.example.com@INTERNAL.EXAMPLE.COM

ktadd -k /home/dev/KDCServer.keytab
HTTP/spserver.internal.example.com@INTERNAL.EXAMPLE.COM

You will now have the keytab file available on the Iris server (or, if you ran
kadmin.local on the KDC machine, transfer the keytab file to the Iris server using
a secure method) and you can follow the remaining steps from Configuring
Kerberos on the Safer Payments Server above
back to top

7.1.2 User accounts

The settings of this section enable fine control on how IBM Safer Payments
handles user accounts and password policies:

• Maximum failed logins
If a user has more consecutive failed login attempts, the account is
automatically disabled. An administrator must then re-enable this user
manually.

• Old passwords rejected
Number of passwords previously used that are rejected as new passwords. It
is not possible to select a previously stored password.

• Password validity
Time period in days that a password shall be valid until IBM Safer Payments
forces the user to change it. The user cannot have access to the API until
this user selects a new valid password.

• Password minimum length
Any password with less than these number of characters is rejected.

• Password must contain lower case
Any password that does not contain lower case characters is rejected.

• Password must contain upper case
Any password that does not contain upper case characters is rejected.

• Password must contain digits
Any password that does not contain at least one digit character is rejected.

• Password must contain special character
Any password that does not contain at least one special character is rejected.

• User account deletion
If checked, user accounts can be permanently deleted.

• Enable extended authentication
Enable two factor authentication by sending a random one-time-password via
email and requesting it before login.

• Enable system account
Enables definition of system accounts that do not allow for a "real" user
access via the web user interface but rather for the execution of API
commands by script or third party software products There is no CSRF
protection or extended authentication for these kind of user accounts.

• Maximum User Inactivity Period
This is the number of days a user account is allowed to be inactive before it

is automatically disabled. Set it to 0 days for an unlimited time.

• Allow system users to have API access from these IP addresses
Restricts requests for system account to the defined ip addresses. You can
enter a comma-separated list of IP addresses.

back to top

7.1.3 Main memory sizing

IBM Safer Payments draws part of its high transaction message processing,
simulation, and model generation performance from the fact, that it caches
most of the data used for computation in main memory. IBM Safer Payments
uses main memory for different purposes:

• Production memory data cache
For each data holding attribute, index, calendar profile, etc in IBM Safer
Payments, the part most relevant to real-time processing (aka "production")
is kept in this cache area for expedited access. In most IBM Safer Payments
applications, the total main memory requirement of the production memory
data caches requires the dominant part of the main memory available on the
server hardware. How much memory is used depends on the individual
settings of all champions' model elements. For details, refer to IBM Safer
Payments storage architecture.

• Simulations memory data cache
During simulation, IBM Safer Payments needs to build up temporary memory
data caches for simulated elements. For instance, if a new element was
added or changed, and its result is to be simulated, IBM Safer Payments uses
caching so that the results are immediately available for analyses and model
generation.

• Miscellaneous
While most other functions of IBM Safer Payments also use main memory
during computation, this amount is significantly smaller compared to the
MDC memory used for production and simulation.

Notice that the operating system will deliver IBM Safer Payments with nearly
any amount of memory, yet once physical RAM memory is exhausted, the
operating system will start offload RAM pages to disk (swapping). This
diminishes IBM Safer Payments performance by multiple orders of magnitude
to a level where the entire computer can become so busy with swapping,
that it does not react anymore to user input or transaction messages.

It is obvious that this situation must be avoided at all costs. IBM Safer
Payments has a number of features to configure the amount of main memory
accessible to data caches and simulation as well as means to help monitor
the key health figures of the installation:

• Sizing

• Main memory usage limit
The maximum reserved memory consumption of each IBM Safer
Payments instance can be limited to this amount.

• Mandator simulation memory limit
For each mandator the maximum of simulation memory that can be
accessed for analyses, simulations and model generation can be limited.

• Alarming

• Status Alarms Indicators
IBM Safer Payments provides various Status Alarm Indicators to
monitor the memory consumption of an IBM Safer Payments
installation. The monitoring is performed on instance level and can be
accumulated per cluster. For details, refer to Status Alarm Indicators.

back to top

7.1.4 Heartbeat settings

IBM Safer Payments server instances continuously broadcast their own status
in the cluster. If no message is received from an instance for a while, it is
considered to be down. With this mechanism, the tasks can be assigned
more efficiently.

There are two heartbeat related settings:
- Period: The time interval in milliseconds between two heartbeats. This setting

should be smaller than the Threshold setting.

- Threshold: If no new heartbeat from the remote instance is received within
this threshold time in milliseconds and if there were 3 unsuccessful heartbeat
sending attempts in a row, the remote instance is considered unreachable.

The receive timeout for heartbeat messages is 1000 milliseconds. As it is
required to have 3 timed-out sending attempts, the minimum threshold is
considered to be at least 3000 milliseconds. Smaller values can be set but
those will not result in faster status changes.
back to top

7.1.5 Deferred writing

The IBM Safer Payments storage architecture involves both an in-memory
data cache layer (MDC) and a disk data cache layer (DDC). The standard IBM
Safer Payments data access logic is the following:

• Read access
For any kind of computation need, transaction data available in MDC is read
from MDC. Data not available in MDC is optionally read from DDC (the latter
should be used not in real-time decisioning, such as in profiling counters or
mergings, and its use can be enabled or disabled in the system
configuration).

• Write access
Data is both written to the MDC and the DDC immediately (if it falls within
the limits of the respective storage capacity).

High performance applications

For high-performance applications of IBM Safer Payments, with a very large
number of online or offline transactions to be processed (multiple thousands
per second), the immediate (synchronous) writing of each data element into
the DDC can be "deferred". This way, multiple DDC write operations are
combined (so that they can be written to disk more efficiently) and are
written a short time later (asynchronous).

If deferred writing is enabled, IBM Safer Payments does only write data (that
the MDC can hold) into the MDC (and not the DDC immediately). Rather a
separate service thread continuously stores all unsaved data (data in MDC
but not in DDC) in a round robin fashion. That is, first all unsaved records for
each attribute are saved at once, then all indexes.

It should be noted that even though this approach of storing IBM Safer
Payments data on disk in the end transfers the same total amount of data
compared to the IBM Safer Payments standard data access logic that stores
each record's data individually and immediately, however, since storing larger
chunks of data rather than many small elements is by orders of magnitude
more efficient.

Deferred writing thus enables using IBM Safer Payments in high performance
applications while it ensures that data loss is minimal in case of a non-
orderly shutdown.

Deferred writing options

Optionally a deferred writing time gap can be defined. If this period is set to
larger than zero, this time period will never be saved to disk. This option is
useful for operations of IBM Safer Payments in applications where the actual
decision on whether or not to authorized a transaction is made after IBM
Safer Payments has assessed the transaction, and IBM Safer Payments is
informed of the (final) authorisation decision by advices. Since such advices
messages would come into IBM Safer Payments with a certain delay (usually
seconds), deferred writing should wait a period somewhat larger than the
advice delay, so that the merging operation can be performed while the data
is still in main memory. Notice that if the advice for whatever reason comes
later and the respective data range has already been written to disk, the
merging is still carried out correctly, yet because the merging target writes
are into an region where the main memory attributes are already stored on

disk, the merging targets would induce direct disk writes, that can severely
slow down transaction processing.

Another deferred writing option is the setting of a safety margin. Since IBM
Safer Payments continues to process transactions while the data from main
memory is written to disk, not the full MDC cache size is available for
deferred write caching. This setting defines how many MDC record positions
are not used for deferred writing caching. The value should be set as the
maximum number of transactions (messages and records) processed by IBM
Safer Payments in the time it takes to write the MDC cached data to DDC.

Deferred writing disk usage limits

Depending on the performance of the disk subsystem, IBM Safer Payments
can overuse caches and control mechanisms. It is therefore useful to limit
the bandwidth of IBM Safer Payments deferred writing operation. This limit is
facilitated by writing data in chunks of 'disk chunk size' and wait the 'disk
chunk delay' amount of time after each chunk was written.

For most purposes, the optimum chunk size is 64 KB (65,536 Bytes). The
disk chunk delay can then be computed by the following formula:

disk chunk delay = ((1/SET) - (1/NET)) * disk chunk size
where

• SET is the desired maximum write performance, and

• NET is the maximum sustained writer performance of the disk subsystem.

Assuming a NET performance of 128 MB/s and a desired IBM Safer Payments
write performance of 48 MB/s, as well as a disk chunk size of 64 KB, the disk
chunk delay would compute to about 1 millisecond.

Notice that for technical reasons, the minimum wait time is 1 millisecond, if
the write performance should be higher, the disk chunk size would have to be
increased from 64 KB.

Since data elements smaller than the defined disk chunk size are written at
once, it can be useful to define a pause after IBM Safer Payments has written
an element (e.g. an attribute, an index, a masterdata) to provide the disks
some time to perform other tasks. The typical setting for the 'pause after
element' is the same wait time as the disk chunk delay.

Deferred writing shadow commit options
There are currently two options for the deferred writing shadow commit:

• shadow commit chunk size
If greater than 0, transaction computation will get smoother as between
chunks, computation continues.

• shadow commit chunk delay
Time shadow commit waits at least between chunks for transaction
computation (if greater than zero).

Remarks

• If deferred writing is enabled, IBM Safer Payments starts a separate service
thread that continuously subsequently writes all attributes, all indexes, all
masterdatas, all events, and all calendar profiles. This implies that depending
on the wait times for the disk subsystem, this thread alone can pretty much
use the computing resources of an entire CPU. You will thus observe CPU
load on IBM Safer Payments even if IBM Safer Payments does not perform
any other task.

• While with attributes, only the period (record interval) between the last MDC
to DDC save operation is stored, indexes are stored at once. Since the actual
MDC to DDC save operation takes too much time for transaction processing
to wait for its completion, write operations to the
index/masterdata/event/calendar profile are cached in a temporary MDC
(aka "shadow") during the MDC to DDC save operation. Once this save
operation is completed, the temporary MDC will be committed at once to the
respective index/masterdata/event/calendar profile (to the MDC, where it is
saved in the next deferred write iteration).

• The time it takes to have written all attributes' deltas and indexes depends
on the number of transactions IBM Safer Payments processes and the
performance of the hardware being used; in particular its disk subsystem
performance. This is a self-regulating process as the higher the transaction
volume gets, the larger the stored chunks of data get (and thus the
efficiency of the save operation increases. It is not possible to deliver more
transactions to IBM Safer Payments as the deferred writer can save in a
typical hardware configuration.

• When IBM Safer Payments stops to compute transactions (offline and online),
the to be cached record intervals for the attributes eventually reaches zero
and the indexes have no changes. An orderly shutdown will also ensure that
all cached data is stored from MDC to DDC before IBM Safer Payments stops
operation.

• Enabling deferred writing in operation will not cause any disruption of service
as the individual data element writing is just disabled and the asynchronous
deferred writing service thread is started.

• Disabling deferred writing in operation causes IBM Safer Payments to dump
all data not yet saved in DDC at once. This operation will disrupt computation
and can take a few minutes, depending on the amount of data that must be
written.

• In case of a non-orderly shutdown, all data not saved from MDC to DDC is
lost. If the respective IBM Safer Payments instance is restarted later, this
missing data will not automatically be restored. If you need to restore this
data, you will have to restore the entire IBM Safer Payments instance.

• If retention by time is enabled, every golive will automatically take the
"minimum MDC size" setting of this section into account. That also implies
that changing the minimum MDC size while retention by time is enabled
might be problematic in that it could automatically change the memory
requirements of all champion model revisions. To avoid this, changes to the

minimum MDC size are delayed until a commit is performed on the
"Retention settings" page which will perform the necessary checks and
resizes in a controlled manner during the end of day job.

back to top

7.1.6 Auto refresh

The settings of this section involve the automatic page refreshing.

Following pages can be refreshed automatically:

• Dashboard
Enter a refresh interval for the dashboard page. While being viewed, it will be
refreshed whenever the specified interval of seconds expires.

• Investigation
Enter a refresh interval for the investigation page. While being viewed, the
investigation cases table will be refreshed whenever the specified interval of
seconds expires.

• Work case
Enter a refresh interval for the work case page. If there are no investigation
cases available, the work case page will be refreshed whenever the specified
interval of seconds expires and the content will be updated as soon as a new
case is available for the investigator.

• Analyses
Enter a refresh interval for the analyses page. While being viewed, the
analyses results during analyses computation will be refreshed whenever the
specified interval of seconds expires.

• Job schedule
Enter a refresh interval for the job schedule page. While being viewed, the
job table will be refreshed whenever the specified interval of seconds
expires.

• Model element generation
Enter a refresh interval for the model element generation page. While being
viewed, it will be refreshed whenever the specified interval of seconds
expires.

• Model golive
Enter a refresh interval for the model revision selection page during model
golive in progress. While being viewed, it will be refreshed whenever the
specified interval of seconds expires.

• Cluster administration
Enter a refresh interval for the cluster administration page. While being
viewed, it will be refreshed whenever the specified interval of seconds
expires.

• Encryption keys
Enter a refresh interval for the encryption keys page. While being viewed, it
will be refreshed whenever the specified interval of seconds expires.

• Query result
Enter a refresh interval for the query result page. While being viewed, it will

be refreshed whenever the specified interval of seconds expires.

• Memory management
Enter a refresh interval for the memory management page. While being
viewed, it will be refreshed whenever the specified interval of seconds
expires.

• Session countdown
Enter a refresh interval for the session countdown. If multiple tabs of IBM
Safer Payments are in use, their session countdowns will be synchronized
whenever the specified interval of seconds expires. This ensures that actions
in one tab affect the countdown of the other tab. Consider that this is
executed permanently and everywhere in IBM Safer Payments, so do not
choose a value too small. The countdowns may differ from each other by the
specified time. If 0 is set as value, the countdowns are only synchronized
when the countdown expires.

• Notice
Enter a refresh interval for the notices feature. The client will contact the
server to see if there are any new notices whenever the specified interval of
seconds expires.

If you do not want a page to be refreshed automatically, enter 0 as value.
back to top

7.1.7 Direct transaction marking in queries

The following settings allow an investigator to mark transactions as fraud
directly inside a query result by using a drop-down list in each row of the
result table. When enabled, the default timestamp chosen by the user will be
applied to the transaction.

Default Fraud Timestamp
Default fraud timestamp to be applied when a transaction is marked as fraud.

back to top

7.1.8 Message command interface

The MCI (Message Command Interface) is the interface for incoming
transactions.

Close during golive

If enabled, IBM Safer Payments will close all MCI connections during golive
and does not accept new MCI connections until golive is finished. It will also
deactivate the MQ and Kafka interfaces during the golive.

Use only printable ASCII

If enabled, IBM Safer Payments will only print ASCII (range 32-127)
characters in MCI responses. Other characters will be escaped with '_'

Use custom end-of-message marker

If enabled, the users can define a custom end-of-message marker for MCI
messages. This is necessary if users want to send custom messages to the
MCI interface other than XML. This option is only to be used in association
with a custom library parser and after implementing the necessary
operations.

Get custom response

If enabled, the users can define a custom response for MCI messages. This
option is only to be used in association with a custom parser after
implementing the necessary operations.
back to top

7.1.9 Application programming interface

The Application Programming Interface involves following settings:

• Session timeout
Enter a value in seconds for the maximum session time. The user is logged
out automatically after this time, if the API is not used actively. Additionally
this is the time any user editable object is locked for editing by this user (if
IBM Safer Payments detects that a user navigates away from a page/section
where this user could edit the object, it immediately unlocks the Object. This
timeout normally applies when for whatever reason, IBM Safer Payments did
not detect the user navigating away). The remaining time of the session is
displayed by the session timeout countdown in the upper right section. Using
the API actively resets the countdown just as clicking on the countdown
itself.

• Session timeout countdown threshold
Enter a value in seconds for the threshold of the session timeout countdown.
If the threshold is reached, the remaining time will be highlighted to warn
the user about being logged out soon.

• Use maximum session time
If enabled, user sessions are terminated once the maximum session time is
reached, even if the user has been actively using the API. Logged in users
will be warned as soon as half of the maximum session time has expired for
their session. Additionally, a warning message will be shown to an active user
one minute, 20 seconds, and ten seconds before they are being logged out.
The lowest possible value for the maximum session time is 60 seconds with
the lowest recommended value being 300 seconds. Whenever a smaller value
is entered, the system will display a warning.

• Cross-site request forgery protection
If enabled, CSRF protection is enabled by using a cookie-stored session
variable to avoid session hijacking.

• Disable UI downloads
If enabled, all the buttons for exporting content of data tables will be hidden
system wide. Note that this setting does not affect the visibility of other

download buttons such as the ones for the configuration or attachment
downloads. The users would still be able to copy & paste the content of data
tables.

• Use custom HTTP headers
Enabling this option will allow the usage of modified HTTP headers for API
requests. This option should only be used if the default HTTP headers do not
suffice.

• Use HSTS HTTP header
If enabled, add HSTS entry to HTTP headers. Do only enable this, if you have
a valid HTTPS connection and don't need a fallback in case of certificate
expiration. Enabling will add 'Strict-Transport-Security: max-age=31536000;
includeSubDomains' to HTTP headers.

• Enable gzip for API requests
If enabled, HTTP gzip compression is used for API requests, if web browser
supports compression (results in faster loading times of the IBM Safer
Payments pages).

• Enable keep-alive for API requests
If enabled, HTTP 1.1 keep-alive is used for API requests, if client is able to
use keep-alive. If not, every API-Request needs one connection which is
closed after sending.

• Download requests
If enabled, the download of all previous requests of the current user is
enabled.

• Maximum post request size
Enter a value in MB for the maximum size of a HTTP POST request.

• Server name in header of HTTP responses
Enter the server name that shall be used in the header of HTTP responses.
When no name provided, the server name will be omitted in the header.

back to top

7.1.10 IBM MQ interface

The IBM MQ interface facilitates transaction message deliveries through IBM
MQ servers. To support integrating IBM Safer Payments into an IBM MQ
environment, the following logging settings are available:

• Dump message data
When enabled, all messages received or sent through the IBM MQ interface
will be printed to the console or to individual files in the "log" subdirectory of
the receiving instance. This can severely slow down performance so it should
only be used to investigate problems with message processing. When several
messages are processed in one second, they all will be written into the same
file.

• Dump malformatted messages
Setting this to a number different from zero causes IBM Safer Payments to
dump malformatted requests into individual files in the local "log" directory.
The number input here will be the maximum number of malformatted
requests which will be written to the file. This setting should never be

enabled in a production environment and only be used to investigate
problems during integration.

back to top

7.1.11 Kafka interface

The Kafka message interface facilitates transaction message deliveries
through an external Kafka cluster. To support integrating IBM Safer Payments
into an external Kafka cluster, the following logging settings are available:

• Dump message data
When enabled, all messages received from the external Kafka cluster through
the Kafka inbound endpoint or sent back to the external Kafka cluster as a
response will be printed to the console or to individual files in the "log"
subdirectory of the receiving instance. This can severely slow down
performance so it should only be used to investigate problems with message
processing. When several messages are processed in one second, they all
will be written into the same file. This setting does not affect messages sent
through a Kafka Outgoing Channel Connection

• Dump malformatted messages
Setting this to a number different from zero causes IBM Safer Payments to
dump malformatted requests into individual files in the local "log" directory.
The number input here will be the maximum number of malformatted
requests which will be written to the file. This setting should never be
enabled in a production environment and only be used to investigate
problems during integration.

back to top

7.1.12 Alert message interface

IBM Safer Payments has an outgoing message interface for alert messages.
Alert messages include:

• Status alarm indicator (SAI) alert messages

• Investigation alert messages (Case actions, External Queries)

• Processing alert messages (Notifications)

Alert messages are sent by IBM Safer Payments using one of the following
protocols:

• file system (plain text)

• file system (docx)

• HTTP message

• IP message

• ODBC SQL

• SMTP (email, SMS)

For each of these protocols IBM Safer Payments uses a dedicated outgoing queue,
which sends the produced messages using asynchronous, parallel processing. The
AMI is an outgoing interface. While it is possible to work with responses and
response codes, the AMI does not provide any functionality to connect to Safer
Payments from external applications, such as mail or database servers. To send
information to IBM Safer Payments, use the BDI, MCI, or MQI.

Because it is assumed that all IBM Safer Payments instances use the same
SMTP server, its configuration is made in the "settings.iris" file
(administration system configuration page) rather than in the "cluster.iris"
file (cluster administration page). This configuration will then also be offered
as a template to all outgoing channel configurations using the SMTP protocol.
Activation and de-activation of the AMI or specific protocols are controlled by
the cluster administration page and stored individually for every instance.

Configuration

SMTP access is configured on this page via the settings:

• IP Address
Address of the mail server, either as name ("smtp.mybank.co.uk") or as
numeric address ("192.168.119.4").

• IP Port
Port of mail server, typically "25" for unencrypted SMTP and "465" for SSL.

• Username/password
If provided, IBM Safer Payments uses the "AUTH LOGIN" approach to log into
the SMTP server.

• Use SSL
If provided, IBM Safer Payments uses SSL encryption to authenticate and
send emails. The SMTP server needs a valid certificate to establish a
connection.

• From
The sender address used for the email. The recipient of the IBM Safer
Payments emails will "see" this as the default sender's email address by
default, if the system alarm indicator or case class specific entry is left
empty.

• Send Interval
IBM Safer Payments periodically sends out all emails that have been
generated since the last successful sent operation. This entry specifies the
interval in seconds. A typical value would be 30 seconds.

• Retry Interval
The amount of time IBM Safer Payments will wait before trying to re-send
messages, which could not be delivered in the previous attempt.

• Archive
If this flag is enabled, IBM Safer Payments does not delete messages sent
via the alert message interface, but just moves them to archive directory.

Numeric values in messages

Messages sent through the alert message interface e.g. in notifications,
external queries, or case actions can contain formatted numeric values.
Depending on the format of the attribute, those numeric values will utilize
the decimal separator and digit group separator specified in this section.
Formatting is only applied if the sent element enables Format values in its
configuration.

Report generation jobs

Report generation jobs can send the generated reports through outgoing
channel configurations. These outgoing messages utilize the decimal and
field separator configured in this section. The appearance of encrypted
attribute data depends on the masking setting of the used outgoing channel
configuration. Reports downloaded through the user interface utilize the
requesting user's separator and masking settings.

Query Tables in Message Templates

Case actions can contain query results in the form of tables. When those
tables are used in combination with target types "HTTP", "Message" and
"File" they will be written as plain text using special characters to separate
the columns and rows. Those characters are defined globally in this section:

• Query table column separator
The special character to be used to separate table columns from each other.
The options are the same as for field separators.

• Query table row separator
The special character to be used to separate table rows from each other. The
options are the same as for column separators with an additional "new line"
option. This option will result in either a CRLF on Windows or a LF on Linux.

SMS

IBM Safer Payments does not distinguish between Emails and SMS (short
message system). Whether an alert message is distributed as Email or as
SMS depends on the environment or local SMTP relay settings.

Remarks

• The IBM Safer Payments outgoing alert message interface does not support
any authentication other than AUTH LOGIN. If this is needed, it must be
configured with the local SMTP relay.

• Alert messages can be sent to multiple email/SMS addresses.

• Alert messages and outgoing channel configuration messages are generated
by their respective sources and then stored as JSON formatted files and are
stored in the "eml" directory of each IBM Safer Payments instance.

• The actual delivery of messages is farmed out in separate (yet embedded)
IBM Safer Payments service threads that constantly attempt to deliver all
unsent messages. Once a messages is successfully sent, it will be either

deleted or moved to archive directory, depending on the setting of the
archive flag in system configuration. The number of threads (per protocol
that is available in outgoing channel configurations) can be adjusted in the
"number of parallel threads" section on this page. All outgoing channel
configurations using the same protocol will share a common thread pool.

back to top

7.1.13 Serialize computation

Serialize computation
Serialize computation of critical areas. Enabling can result in a slow
computation of incoming records. If not enabled, doublet detection and
mergings will not work correctly for parallel incoming transactions.

Access protection
If enabled IBM Safer Payments prevents records that are still being
computed from being overwritten by merging sources, retrying the merging
source until the computation is complete.
If you are having issues with merging synchronization you may also want to
turn on the 'Retry mergings' setting for individual mergings which are having
issues, which is an independent setting from this one. This setting waits until
a merging target is completed processing before starting the computation of
the merging source and retries the specified number of times. That setting
will retry to find a merging target if no target can be found. Note that if both
settings are turned on then it can retry the combined amount.

• Maximum attempts
If 'Access Protection' is enabled then this setting determines how many times
it will try before failing or continuing (depending on the 'Fail on timeout'
setting below)

• Retry wait time
If 'Access Protection' is enabled then this setting determines how long to wait
in between the retries (in msec)

• Fail on timeout
If 'Access Protection' is enabled then this setting determines whether or not a
transaction should fail if it exceeds the number of retries, or if it should
continue with the write (potentially corrupting the data)

back to top

7.1.14 Case investigation

The settings of this section involve the case investigation workflow build into
IBM Safer Payments.

Configuration involves the following settings:

• Manual fraud value
If no categories are defined for the "fraud" meta attribute, this value is
assigned to the records that are manually marked as fraudulent.

• Remote fraud flag retries
Number of retries, if the remote fraud flag couldn't be set on the remote
instance, for example due to FLI synchronization issues. 0 means no re-try,
just send the fraud marking once.

• Fraud flag retry every
Number of seconds to wait each time the remote fraud flag couldn't be
set on the remote instance, for example due to FLI synchronization
issues. While waiting, the FLI is not receiving further FLI message from
the instance that was previously trying to set the fraud flag.

• Maximum cases shown on selection table
Maximum number of cases that are sent from the IBM Safer Payments server
to the browser as a result of a case search or a case selection. This is to limit
the load time of the page.

• Maximum cases shown in history
Maximum number of cases that are sent as case history query of the case
investigation page. This is to limit the load time of the page.

• Archive cases after [days]
Automatically archives cases that have been generated and not been worked
on since at least the defined number of days.

• Clear reporting attribute caches after [days]
Automatically clears the reporting attributes cache of cases that have been
generated and not been worked on since at least the defined number of
days. The cache is built when viewing cases. It contains attributes that have
been added to the case class after the case has been created and attributes
from other case classes when case selection is viewed for several case
classes with different sets of attributes. Only attributes from other case
classes are cleared.

• Case consolidation starts every [seconds]
Enter a time period in seconds in which case consolidation job should
periodically start.

• Case escalation starts every [seconds]
Enter a time period in seconds in which case escalation job should
periodically start.

• Case dispatching starts every [seconds]
Enter a time period in seconds in which case dispatching job should
periodically start.

• Enable attachments
If checked, investigators can attach files to cases from their computers.
Caution! Uploaded files are not screened for potentially harmful contents by
IBM Safer Payments. When enabling attachments, be aware of the potential
risk of spreading malicious files among different users and, if needed, set up
file screening mechanisms or upload policies outside of IBM Safer Payments.

• Maximum case attachment size
If case attachments are enabled, this parameter defines the maximum
size of attached files in MB.

• Update calendar profiles and events by manual fraud marks
When enabled, setting manual fraud marks will update calendar profile
periods or events. This can have effects on a calendar profile when it uses
"fraud" attribute as "amount attribute" or in its conditions. It can affect an
event when it uses "fraud" attribute in its conditions.

• Resolve uncached reporting attributes
When Safer Payments loads cases it will cache the values of the reporting
attributes into memory, however if reporting attributes are later added to the
case class, cases from before these attributes were added will display blank
columns for the new attributes. By enabling this option the transactions of
the case will be examined in order to load values for these attributes,
however this can have a significant performance impact when loading the
cases table. Whether or not this is enabled, if the cases table contains
reporting attributes which do not exist for a certain case class, those
columns will be blank. This functionality can also affect a few other places
where reporting attributes are used, such as Masterdata which is displayed in
the case, Defined Risk List Entries created from a case or displayed in the
case, CPPs created from a case, and the "to" field of emails sent from a case.
If these are not showing up for you after disabling this setting then you need
to add the appropriate attribute as a reporting attribute of the case class. In
addition, there are some places where reporting attributes are used (like
when executing case actions) where this setting is ignored and the system
will always retrieve the attribute value.

• Include DDC to resolve uncached reporting attributes
When loading reporting attributes for a case, by default the DDC is not
accessed. By enabling this option, the DDC can also be accessed, which can
significantly affect the system performance.

• Include DDC in case creation
If checked, data available on disk will be included when creating cases from
query.

• Case aggregation history
If checked, aggregated alarms will be stored in the case.

Case archiving details

IBM Safer Payments creates cases from alarms. They are both created
internally in RAM and on disk as a separate file for each case. All cases are
stored in subdirectories of the "inv" directory, whose location is defined by a
registry entry for IBM Safer Payments. Within this "inv" directory, there is an
"INVxxx" and "ARCxxx" subdirectory for each mandator. "xxx" is the unique
ID of the mandator. There is a readme text file within each directory detailing
the originating mandator. The "INVxxx" directories contain the active cases,
while the "ARCxxx" directories contain the archived cases.

Each case file name follows the convention (example):

investigation_case_2011-08-08_10-53-13_000000000000441700.iris

(The timestamp value denotes the case generation and the number is the
unique internal case ID of IBM Safer Payments).

The format in which cases are stored is JSON, like all non-binary IBM Safer
Payments files. Unlike the IBM Safer Payments configuration files, however,
in case files, the references to any IBM Safer Payments object (such as
attributes, case classes, rules etc.) are also included in clear text. This
enables reading the case files also outside IBM Safer Payments. The files use
UTF-8 for non-English characters. To increase readability for JSON files, use a
formatter such as www.jsonlint.com.

Archiving is carried out once per day in a service thread spun off by IBM
Safer Payments. This thread identifies all cases that shall be archived,
removes them from its main memory caches, and moves the case file from
the respective "INVxxx" directory to the "ARCxxx" directory.

Remarks

• IBM Safer Payments never erases cases from the "ARCxxx" directories. It is
the responsibility of the administrator to ensure that files in these directories
are moved to a safe place or deleted after they are not needed anymore.

• Once a case file is archived, IBM Safer Payments cannot display it or search
for it anymore. Also its audit trail entries are not accessible anymore from
within IBM Safer Payments.

back to top

7.1.15 Query

The following settings configure queries in general to avoid displaying
problems and excessive query computation length:

• Records warning at
Some (mostly older) browsers have problems loading query tables with very
large content. For this reason, the number of records may be limited for the
display. If a user defines a query in which the number of records exceeds this
value, IBM Safer Payments will show a warning dialog.

• Records limit at
To avoid excessive query computation length this value defines queries
maximum record limit. If a user defines a query in which the number of
records exceeds this value the validator will show an error.

• Group by query accounts limit
Some (mostly older) browsers have problems loading query tables with very
large content. For this reason, the number of records may be limited for the
display. IBM Safer Payments will never print more accounts than this number,
even if a group by query result contains more.

• DDC may be enabled
If checked, users may define queries that also use data from the disk data
cache (DDC). Attributes which are only stored in DDC, may be used within
queries and their conditions. This may result that a query computation
requires more time.

• Result lifetime
Defines the time a query result is stored. After expiration of this time period,
IBM Safer Payments has to recompute query results.

• Common point result lifetime
Defines the time a common point query result is stored. After expiration of
this time period, IBM Safer Payments has to recompute query results.

• CSV export nil value
Defines which value should be printed in query result exports in case there is
either no value provided or it is not accessible in MDC/DDC. There is an
individual setting for data type numeric, text and timestamp. If "Original
value" is chosen, the usual value for CSV exports in IBM Safer Payments is
printed, which is "0" for empty numeric values, "" for empty text and
timestamp and "" when a value is not available in MDC/DDC. Choosing
"Empty value", no value will be printed for empty values and values not
available in MDC/DDC.

Single API queries provide an external interface to IBM Safer Payments index
query results. They are sent with HTTP GET, have no session, no CSRF
protection and need to validate the password on every query. If they are not
used, they should be disabled in IBM Safer Payments. If needed, it is
recommended to restrict them to system users (see user accounts).

The following settings restrict access to single API query configuration:

• Access to single API query
The access can be enabled for all users, restricted to system users or
completely disabled

back to top

7.1.16 Monitoring

This section deals with general settings for monitoring which includes both
monitoring of compliance lists and defined risk lists.

For more information about specific settings for compliance and defined risk
lists please refer to the online help pages of the respective subsections.

Result lifetime

For both compliance and defined risk lists IBM Safer Payments provides a
search functionality. Using the search functionality users are able to easily
find entries even within large lists. The setting "Result lifetime" specifies the
time in seconds a search result is available for users when closing and
reopening the respective page.
back to top

7.1.17 Compliance monitoring

IBM Safer Payments supports the upload of several sanction lists and
provides all necessary functionality to monitor those lists in real-time. Due to
the large number of entries in some compliance lists you can decide whether
or not a list should be available in IBM Safer Payments. Below you can
enable the lists which should be imported and available in IBM Safer
Payments. As a prerequisite to use compliance list, you have to specify the
raw-data's location within the cluster administration. Notice that those files
will be re-loaded during each start-up and have to be available on each
instance. It is also possible to manually reload the files without restarting
IBM Safer Payments. This can be done in the monitoring section of IBM Safer
Payments itself.

The following lists can be used within IBM Safer Payments:

• European sanction list
Activates the European sanction list for monitoring purposes. The European
sanction lists are published on the website of the EEAS at
http://eeas.europa.eu/. IBM Safer Payments uses the consolidated list of
persons, groups and entities subject to EU financial sanctions. You may
download current version of the file from said website.

• OFAC sanction list
Activates the OFAC sanction list for monitoring purposes. The OFAC sanction
lists are published and provided by the US department of the treasury. IBM
Safer Payments uses the xml version of the SDN list which can be found at
https://www.treasury.gov/resource-center/sanctions/SDN-
List/Pages/sdn_data.aspx.

• United Nations list
Activates the United Nations list for monitoring purposes.

• Political exposed persons list
Activates the political exposed person list for monitoring purposes. The
political exposed person list is a proprietary list and is not freely accessible.
If you are interested in using the political exposed person list contact the IBM
Safer Payments support for further information.

• Global watch list
Activates the global watch list for monitoring purposes. The global watch list
is a proprietary list and is not freely accessible. If you are interested in using
the global watch list contact the IBM Safer Payments support for further
information.

• Russian sanction list
Activates the Russian sanction list for monitoring purposes. The list is
provided by the Russian central bank and has to be converted to a csv file
before it can be used by IBM Safer Payments. If you are interested in using
the Russian sanction list contact the IBM Safer Payments support for further
information.

Similar to the golive wait factor, IBM Safer Payments provides the possibility to
control a delayed reload of lists on remote instances:

• Reload wait factor
During a manual reload of lists within an IBM Safer Payments cluster, lists
are first reloaded on the instance with active API. The first reload on a
remote instance is triggered immediately after reload has been finished
successfully on the primary instance. The second remote reload will wait for
the reload time of the first primary reload multiplied by this wait factor. "0"
for immediate transmission to all instances after successful reload on primary
instance. If the wait factor is "0" IBM Safer Payments will not interrupt the
transaction processing while reloading. Instead the previous lists are used
until the reload is finished. Please note that this process will use additional
memory. A wait factor greater than "1" for a cascaded reload, if all instances
need the same time for a reload. A cascaded load will stop the transaction
processing on all instances that are currently reloading. It will however not
use additional memory. It is recommended to use "1.05" to have an
additional wait of 5% to avoid having a simultaneous reloads on 2 machines.

Depending on the lists that are selected, different amounts of memory are
required to load such lists. You can define the initial amount of memory allocated
as well as the amount of memory by which IBM Safer Payments should increase
the allocation in case the initial amount was not sufficient.

• Initial memory allocation size
When lists are initially loaded IBM Safer Payments will allocate the defined
amount of memory. We recommend to allocate 50 MB in case you do not use
the political exposed person list. In case you do use the political exposed
person list you should allocate 700MB. In case you frequently encounter log
message 828 that indicates the initial memory allocation was not sufficient
you should increase this value.

• Memory allocation increase
In case the initial memory allocation size is too low and IBM Safer Payments
needs additional memory to load the compliance lists to memory it will
restart the load and increase the memory allocation by the amount of bytes
defined here.

back to top

7.1.18 Risk monitoring

Due to the large number of entries that can be part of a defined risk list, IBM
Safer Payments provides several functionalities that allow you to maintain
those lists in a more convenient way. Please not that some of the
functionalities can only be executed by users with appropriate privileges.

• Permanent deletion of defined risk lists
Deactivating this option defined risk lists cannot be deleted anymore, instead
just disabling a defined risk lists is possible. In case a defined risk list is
deleted the associated audit trail will be deleted as well. Therefore if you
want to keep the audit trail deactivate this option. In terms of computation
there is no difference between a deleted and a deactivated defined risk list.

• Bulk deletion
Enables a function that allows to delete all entries that match certain

selection criteria. It is recommended to activate this option if you use the
automatic import of risk lists. It allows users, that own the necessary right,
to manage defined risk lists in an easier way.

• Bulk (de)activate
Enables a function that allows to (de)activate all entries that match selection
certain criteria. Deactivated entries are not used for computation, deactivate
entries in case you want to use them later on again. It is recommended to
activate this option if you use the automatic import of risk lists. It allows
users, that own the necessary right, to manage defined risk lists in an easier
way.

• Defined risk list entry consolidation starts every
This is the time period in seconds in which defined risk list entry
consolidation is periodically started for entries that were created by rule
actions.

• Maximum number of displayed table entries
Browsers have certain limits in displaying a large number of table rows.
Therefore we limit the number of displayed table entries by default. You can
change these settings to a higher/lower number if required. Don't change
these settings if you are not sure that your browser can handle it. It can lead
to unexpected behavior of the graphical user interface (e.g. browser freeze).

back to top

7.1.19 Decision models

The following general settings deal with the management of model revisions:

• Remote golive wait factor
The remote golive wait factor only applies to logical golives. Structural
golives no longer use the remote golive wait factor. In order to ensure cluster
processing capability during a structural golive, please see the "Enable
interlock" functionality.

The remote golive wait factor is a wait time to be applied before a remote
golive gets transmitted. The first golive of a remote instance is triggered
immediately after the primary golive. The second remote golive will wait for
the time of the first primary golive, multiplied by this wait factor. "0" for
immediate transmission to all instances after successful golive. "1" for a
cascaded golive, if all instances need the same time for a golive. It is
recommended to use "1.05" to have an additional wait of 5% to avoid having
a simultaneous golive on 2 machines.

• Enable logical golive
Golives can be classified into two categories: Structural and Logical.

Structural changes are changes which require changes to memory (e.g.
adding new attributes, changing the MDC or DDC size of existing attributes,
changing the length of attributes, etc.). Logical changes are changes to the
message computation (e.g. changes to conditions, addition or deletion of
rules (when rule performance report is not enabled for those rules), etc.).

When "Enable Logical Golives" is enabled, the structural golives and logical

golives are processed differently. Structural golives require message
processing on an instance to be temporarily stopped in order to update the
internal memory structures (however message processing for the cluster can
continue by enabling the MCI Bypass). When a logical golive occurs, the
message processing does not need to be stopped, the internal references can
be updated and message processing can continue immediately.

When "Enable logical golives" is not enabled, all golives are processed as
structural golives.

• Treat golive warnings as errors
If enabled, all golive warnings will be treated as errors and thus prevent the
user from going live with the revision.

• Merchant monitoring rules may use DDC
If checked, users may define merchant monitoring rules that also evaluate
data from the disk data cache (DDC). It is still optionally selectable per rule
if the rule will include DDC when evaluating its results, and only certain rule
types can include DDC.

• Enforce peer confirmation
If checked, the user that has last edited a model revision may not be the
same one that confirms golive. On the retention settings page the user that
saved the last set of pending settings cannot be the one that commits them
(generating a report and confirming that report).

• Rebuild Indexes
If you change the settings of an index in a way that enables a sequence to
access more records, IBM Safer Payments needs to rebuild this index in
order to access the complete history of the respective index values. Enabling
the rebuild index options triggers a complete index rebuild during golive. All
elements that depend on the indexes structure are rebuilt as well.

• Profilings may use DDC
If checked, users may define counters and index sequencings that also
evaluate data from the disk data cache (DDC).

• Mergings may use DDC
If checked, mergings can access data of merging targets that is only
available in the disk data cache (DDC). This also affects the availability of
attributes in the merging target and termination conditions. Without this
setting only attributes that are stored in the memory data cache (MDC) are
usable.

• Maximum number of category changes
Due to browser limitations and in terms of the overall usability of the revision
audit trail only a certain number of detailed changes to categories can be
stored. Once there are more than x changes to the category list only a
summary will be stored. The same effect applies for the compare revision
function. Changing this parameter does not affect previously written entries.
Thus we recommend not to change the default value.

• Number of stored champion and retention audit trail entries
IBM Safer Payments archives champion audit trail entries once a certain
number of entries is reached to minimize unnecessary memory consumption.
The number is initialized with the recommended settings by the IBM Safer
Payments team but can be changed based on the IBM Safer Payments
licensee's requirements. The audit trail entries will be archived during the

end of day job.

This parameter is also used to limit the number of retention audit trail entries
that are stored. Please note that retention audit trails are not archived.

This feature is optional, using zero as maximum number of stored audit trail
entries will disable the archive function.

• Number of displayed champion and retention audit trail entries
To match the previously mentioned browser limitations the number of
displayed audit trail entries for champion and retention settings is limited as
well. The feature is optional and can be disabled by using zero as maximum
number of displayed audit trail entries. All changes to this parameter will
apply immediately.

• Number of displayed collusion simulation results
Collusion simulation creates result records to give a fraud analyst an idea of
how well a collusion definition is going to perform. This setting limits the
number of displayed results to a manageable amount. Increasing this value
has direct impact on the rendering performance of the collusion pages and
can even cause timeouts if the value is too high for a certain browser.

back to top

7.1.20 Modeling

The following settings deal specifically with modeling:

• Simulation may access DDC
If checked, simulation may access data stored only in the disk data cache
(this will slow down simulation significantly).

• Max computed indicators
This setting defines how many indicators shall be considered in computation,
set it to the maximum number.

back to top

7.1.21 Default xDC capacities

The following settings configure, which default capacities are suggested for
new attributes and sequences:

• Storage type
Default storage type suggested for new attributes.

• DDC capacity
Default disk data cache (DDC) capacity suggested for new attributes and
sequences.

• MDC capacity
Default memory data cache (MDC) capacity suggested for new attributes and
sequences.

back to top

7.1.22 Deletion policy

The following settings configure, which status a model revision has to have
to allow for permanent deletion:

• Challenger
If checked, challenger model revisions may be deleted by users with
appropriate privileges/roles.

• Invalidated
If checked, invalidated model revisions may be deleted by users with
appropriate privileges/roles.

• Retired
If checked, retired model revisions may be deleted by users with appropriate
privileges/roles.

back to top

7.1.23 Sampling

You can control on which pages sampling techniques can be accessed.

• Query
Allows usage of sampling techniques for investigation and group-by queries.

• Simulation
Allows usage of sampling techniques for simulation, simulation query, and
analysis data selection.

• Rule generation
Allows usage of sampling techniques for the training and verification data
selection of rule generation.

• Data export job
Allows usage of sampling techniques for export job to extract data from
Safer Payments' data storage to CSV-files.

back to top

7.1.24 Application settings

This section contains general settings for the application.

Application name

Name of this IBM Safer Payments application as it appears (for all instances)
in the browser tab.

Server time zone

Defines in which time zone server related timestamps are displayed. Read
about time representation in IBM Safer Payments as background information.

Changing server time zone value has direct impact on the calculation of the
meta attribute SystemTime. It also has an effect on the following operations:
- Defined Risk Lists Expiration & Start
- Manual fraud marking
- RDI operations
- Retention by time
- Index and Attribute purging

Changing server time zone value does not impact on:
- Profilings as long as the meta attribute systemTime is not used for the
computation timestamp or as the sequence attribute of the used index
back to top

7.1.25 Event log messages

Default view period

The default time period of latest log messages shown in IBM Safer Payments
system and audit log (user interface).

Enable all event log messages

If checked, the configuration of event log messages is ignored and all
messages are created in the system log

Enable operating system logging

If checked, messages will be sent to the operating system event log (event
log in windows and syslog in linux systems)

Syslog facility

This is the RFC 3164 facility value for the syslog message (only visible if
operating system is linux)

Syslog template

The template for messages to send to the operating system logging. The
{<value>} fields are replaced with the log message values:

• {instanceId} - the cluster id of the IBM Safer Payments instance

• {dateIso} - the date (server time) of the log message in ISO 8601 YYYY-MM-
DD hh:mm:ss format

• {nanoSeconds} - additional nano seconds of the last second

• {level} - the log message level as single character shortcut (C,D,I,W,E,F,A,X)

• {number} - the log message id

• {user} - the login name of the user which produced this log messages, if
available. If not there will be whitespaces. This string is at least 8 chars long.

• {message} - additional information for the log message.

• {ipData} - 'IP' and 'forwardedFor' information. This is only available, if the
user login is known and if the 'audit log' is enabled for this log message.

back to top

7.1.26 Miscellaneous

This section lets you perform miscellaneous settings:

Start End of Day (EoD) job

This is the start time for End-of-day jobs. These jobs will archive old cases
and erase unneeded data. Make sure these jobs start at low traffic times.
The job will start cascaded on the IBM Safer Payments cluster. It will wait at
least 30 seconds on each instance. Before start, IBM Safer Payments will
wait for other instances End-of-day-jobs to finish. Note that the timezone of
your input corresponds to the timezone configured on your "My Account"
page. The configured server time zone on the other hand is not taken into
account.
Example: The server is in timezone UTC+3. End of day jobs should start at
23:00 o'clock (server time zone). On "My Account" page the time zone is
configured as UTC+1. For end of day jobs to start at 23:00 o'clock (server
time zone) 21:00 has to be entered here.

Enable End of Day (EoD) job

This setting is used to enable or disable running the End-of-day job.

Note: Do not disable this setting without consulting IBM Support. In
general, the setting should always be left enabled, as the End-of-day job is
required for optimal system performance. However, in some situations it
may be necessary to delay the End-of-day job over multiple days and this
setting can be used then, but it should only be disabled temporarily and then
re-enabled afterwards.

Notices expiration

This is the number of days that each notice expires in, calculated from the
date when the notice was sent. An end of day job will find any notice that
has expired and delete them from all users' lists and storage.

Shutdown grace period

The shutdown grace period is the time period in seconds between an
instance receiving a shutdown request and actually shutting down. In this
time period IBM Safer Payments waits for its (spun off) service threads to
end after they have been notified of the shutdown request. After this period
IBM Safer Payments forces the threads to end.

Update interval instance status file

Stores instance status information in a file. Deprecated feature, only use
when instructed by IBM.

Report limit at

If a user defines a report with a maximum number of records larger than the
value defined, IBM Safer Payments limits the result.

Check indexes on startup

Checks structural consistency of indexes upon startup. This will significantly
slow down start process.

Check for other instances

Protect DDC against usage from other instances by locking a file from DDC
during startup. Will only protect the own DDC folder. Other files or folders will
not be protected and there will be no check if another Safer Payments
process is running.

Fill files with zeros

Enforces the filling of the end of files with zeros on resize. This has an
influence on the creation of files in sparse file systems. Recommended is "Do
not fill" for Windows and "Only fill when initializing" for Unix systems.

Sanitize values in csv exports

If enabled, all text values in csv exports starting with '=', '+', '-', '@', 'tab' or
'return' will be prepended with a single quote to avoid csv injection attacks in
spreadsheet applications. You can disable this if you are sure that users that
download csv files don't have any application installed that performs remote
code execution due to csv injection attacks.

Wipe DDC position

If enabled the DDC write position of an encrypted attribute will be wiped
before writing a new value.

Size of computation thread buffer elements

This value determines the size of each buffer element in a computation
thread. These elements are used to provide memory to the custom parser.
The element size should be at least as large as the largest mapped attribute
of an incoming message.

Index Search in multiple relations query

If enabled, a multiple relations masterdata query will automatically search
for fitting indexes to query additional data to be displayed in the query
result. This could have heavy impact on query duration.

SSL Cipher List

The SSL Cipher List contains a list of SSL cipher settings for all SSL-
encrypted interfaces, similar to the Apache setting 'SSLCipherSuite'.

Typical setting for the cipher list:

ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-
GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-GCM-SHA384

If the cipher list contains errors, there will be a log entry and the SSL cipher
list will be set to 'HIGH'.

SSL use certificate chain

Change behavior of configured SSL/TLS server certificates. If selected, a
certificate chain file will be used instead of a simple certificate file.

Enable configuration change journal

If enabled, all changes to elements within IBM Safer Payments will be written
to configuration change journals in clear text. The configuration change
journals are stored in local directories as configured in the "Optional log
directories"-section in Cluster>System monitoring>Settings for each IBM
Safer Payments instance.

Note that the target file path needs to be set for each individual instance in
the IBM Safer Payments cluster.

Important: Configuration change journals are written in clear text. The
setting should only be enabled if absolutely necessary. If the setting is
enabled, the configuration change journal directories must be protected
against unauthorized access.

Python function timeout strategy

Controls whether python functions are interrupted after a certain amount of
time.

Possible settings are:

• No Timeout
Python functions are never interrupted. No overhead.

• Soft Timeout
Python functions are interrupted at the next interruption point after their
time is up. Almost no overhead.

• Hard Timeout
Python functions are interrupted immediately after their time is up.
Considerable overhead.

When soft timeout is selected and a python function takes too long, Safer
Payments signals the Python interpreter to raise a KeyboardInterrupt
exception. The Python interpreter periodically checks for pending exceptions
and finally raises them. These checks are only done on bytecode boundaries,
so if the interpreter hangs (e.g. due to deadlocks, blocking I/O, long running
functions implemented in extensions not written in Python, ...) the exception
is never raised and the function execution is never interrupted. Use this if no
Python function uses blocking I/O, mutexes, long running functions
implemented in extensions or anything else that keeps the interpreter from
moving to a different line of Python code.
The hard timeout mitigates these shortcomings by creating a new OS thread
for each call to a Python function. The function is then called within this new
thread using the same interruption technique as the soft timeout. This
ensures that Safer Payments can continue even when the Python function
never returns. This solution has the overhead of creating a new thread and
bears the risk of accumulating a number of background threads being stuck
in a Python function. The number of currently active background threads can
be monitored using Status Alarm Indicators. Threads that completely hang
while executing a Python function can only be stopped by restarting the
Safer Payments instance.
In any case, as Python functions are interrupted by injecting a
KeyboardInterrupt exception, they must never catch and ignore exceptions of
this type or of type BaseException.
When a Python function is interrupted, a message with ID 756 is added to
the system log.

Python function timeout

Maximum time a callout to a python function may take.

Allow python function timeout override

Allow overriding the maximum execution time of python functions on a per
python module basis.

Enable interlock

If interlock is enabled, certain activities will never be performed on multiple
instances at the same time. They are queued and run in sequence instead. In
addition they will only be performed when the number of active instances is
equal to or greater than the defined number of minimum active instances.
These activites include structural golives, updating mandators, updating
messages, updating working queues, executing index (sequence) rebuilds,
retiring a champion without promoting a new champion and End of day jobs.
An instance is considered to be active if it is currently not performing any of
the above named actions itself and is currently not involved in a restore or
master key change. If for example a structural golive is triggered while the
number of active instances is below the defined minimum, the golive will
start but wait with its execution until the required minimum of instances
have become active again. In addition, "MCI bypass" requires this setting to
be enabled in order to activate.

Minimum active instances

Controls the minimum number of instances in the cluster to be active
(available to score transactions), before allowing any instance to enter
maintenance mode. The instance entering maintenance mode is not
considered active. That means if this value is equal to or greater than the
number of instances in cluster, no instance is allowed to enter the
maintenance mode at all.
back to top

7.1.27 Latency reporting

The following settings cover the reporting of latency violations in system
internals and log files:

• Log latency violation details

If enabled, detailed processing times will be captured for transactions
that violate the configured latency threshold. The latency threshold can
be configured per message. If the processing time exceeds the
threshold, a latency violation report will be generated. The report can be
retrieved from "System Internals" and optionally from a file.
Latency violation reports are processed in a separate thread to reduce
the impact on message processing times.

• Restrict to most time consuming elements

Capturing and writing the latencies for every single element (e.g. rules,
counters, etc) will grow the latency report file quickly. Typically, only the
most time consuming elements are of importance and it is possible to
limit the number of top time consuming elements with this setting.

• Log "misc wait" time details

A lot of technical transaction processing steps, like writing attributes
from memory to disk, are collected in the "misc wait" latency report
category. If the processing time of this category is particularly high,
enabling this option will break down the details.

• Log latencies also for FLI

By default latency reporting is only done on the primary instance, so for
messages received via MCI or BDI. With this option the reporting will
also be done for messages received via FLI. When "Write reports to file"
is enabled they will also be written to disk on such instance(s).

• Write reports to file

If enabled, latency reports will be written to a file inside the
log/latencies folder. This allows to persist reports that would otherwise
be overwritten in "System Internals", due to the limited number of
available report slots there. A new file is generated per day. To save
space, the report file does not contain a full description of processing
elements, like the reports that can be found in "System Internals".
Instead, there is a supplementary file called 'latency_log_element_map'
which contains these descriptions for every element ID. Latency reports
can be downloaded under "System Internals"/"General Information".
Note: An excessive number of latency violations can lead to large file
sizes of log files. Report files should be cleaned up regularly.

• Monitor violations buffer every

This setting determines the interval in which the latency violations
buffer is checked for new entries that will then be transformed into
reports.

• Latency violations buffer size

Since latency violations are transformed into reports in a separate
thread there is a buffer that keeps the unprocessed latency data. This
setting defines the maximum number of entries in the buffer. Entries are
removed from the buffer after they have been transformed into reports.
Note: If there are more latency violations than the system is able to
process and the buffer is able to take, new latency violation entries will
be discarded until buffer capacity is freed.

• Process violations in chunks of size

Determines how many entries in the latency violation buffer are
processed at once. When "Write reports to file" is enabled, the bigger
the chunk size, the longer the disk subsystem is busy writing data at
once, potentially blocking other write operations. Chunk sizes that are
too small make writing to disk less efficient. There is no rule of thumb
for a good chunk size as it depends on too many factors. It needs to be
optimized if performance becomes an issue. A good starting point is
1/10th of the buffer size.

• Wait time between chunks

The wait time in milliseconds between processing of chunks. When
"Write reports to file" is enabled, the wait time gives the disk subsystem
the opportunity to perform other write operations. There is no rule of
thumb for a good setting as it depends on too many factors. It needs to
be experimentally optimized in case performance becomes an issue. A
good starting point is 50ms.

• Maximum reports in system internals

This is the limit of latency violation reports that are stored in memory
for display in "System Internals". Newer reports will overwrite old ones.
This setting has no impact on how many reports are written to disk. The
maximum value here is 5000.

back to top

7.1.28 GDPR logging

If this setting is enabled Safer Payments generates the GDPR complied logs. Note
that GDPR logging needs to be enabled at the mandator level, for this setting to
be effective. The settings in the section allow us to use the values needed for log
generation.

• GDPR log id

Fixed value to be used as identifier of the logs.
• GDPR application code

The AAM code of the Safer Payments.
• GDPR operation category

Operating category of the logs generated

back to top

7.1.29 Garante2 logging

If this setting is enabled Safer Payments generates the Garante2 complied
logs. Note that Garante2 logging needs to be enabled at the mandator level,
for this setting to be effective. The settings in the section allow us to use the
values needed for log generation.

• Garante2 log id

Fixed value to be used as identifier of the logs.
• Garante2 application code

The AAM code of the Safer Payments.
• Garante2 company code

Fixed number to be used as company code in the logs.
• Garante2 request type

Request type of the logs
• Garante2 function

Function of the logs

back to top

7.2 Retention settings

Overview
Starting with Safer Payments 6.2 the retention of attributes can be specified
in number of days instead of number of records. This offers a more business-
centric view on data retention than older versions provided. Configuring
retention in terms of days allows Safer Payments to restrict data access for
queries and profilings looking into past transactions, e.g. if a Counter is
looking 10 days into the past, but the attribute it is looking at is only
retained for 5 days, the Counter will only be able to see these 5 days worth
of data, no matter how many records or days might be available due to
technical reasons.

Workflow
When retention by time is enabled, changing any other setting on this page
increases or decreases the memory and disk space required by every model
revision. Because of this impact, retention settings can only be changed by
following a workflow with the following steps:

1. Save changes: A user enters the necessary changes into the form and clicks
the "Save" button. Once saved, further changes are not possible until the
saved settings are applied or reset.

2. Commit changes: After settings have been saved, they have to be
committed. A report is generated first showing the effects on memory and
disk requirements using the currently active champion revisions. If the report
determines that the system cannot fulfill these requirements, confirming the
report is not possible. If the "System configuration" page specifies that
golives have to be performed using peer confirmation, the commit report
must be initiated by a different account than the one that saved the changes.

3. Confirm retention report: If the system can satisfy the memory and disk
requirements according to the new retention settings, the report can be
confirmed. Similar to golives we differentiate between two types of changes:

• A "logical" change happens when the retention mode is changed i.e.
when switching from retention by time to retention by records or the
other way around. When confirming this kind of report, the changes will
be applied immediately since they will not change the memory required
by any model revision. During this, the retention page will be locked. An
indicator at the top informs about the ongoing operation. Log message
number 803 and a new entry in the retention page's audit trail will be
printed once the changes have been completed.

• A "structural" change happens when retention by time is used and any
of its settings have been changed. Confirming the report will schedule
the retention changes to be applied during the next end of day job. The
end of day job will then perform the necessary adjustments to the
champion revisions increasing or decreasing MDC and DDC as needed.
Before doing so it will perform another check to see if the system can
satisfy the new memory and disk requirements. In the rare event that it
cannot, the end of day job will not apply the changes, print out log
message number 805 and add an entry to the retention page's audit
trail.

4. Reset: When settings have been saved, a report has been generated or
changes have been scheduled to be applied during the next end of day job, it
is still possible to reset the workflow by using the respective button.

Page sections

• Retention mode
This setting specifies whether to use retention by time or retention by
records. If retention by records is used this page does not offer any
additional settings and won't be needed to operate IBM Safer Payments at
all.

• Active settings
This section shows the retention settings currently in use by the system.

• New settings
This is where new settings are entered to be saved. See below for a
description of each setting.

• Pending settings
After saving new settings, they will be shown in this section and cannot be
edited anymore unless a reset is performed.

• Committed settings
When a commit schedules changes to be applied during the next end of day

job, they will be shown in this section. The values cannot be changed
anymore but a reset is still possible until the end of day job actually starts to
run.

Retention by time settings
The following settings are available if retention by time is used:

• Contingencies
Over the course of a year there might be times in which more transactions
go through the system than normally. These peaks can cause the number of
daily transactions to deviate from the value calculated using "transaction
volume per year". The shorter the retention time of an attribute, the more
problematic these peaks can be since the unexpected number of transactions
might fill up the MDC and DDC, leading to less days being stored than were
specified. That's why we allow the specification of contingencies. These allow
the available MDC and DDC space to be increased by a relative amount. We
offer three different contingency values to account for the fact that attributes
with shorter retention are more likely to be affected by short peaks than
attributes with longer retention.

• Annual transaction volume
The number of transactions that are expected per mandator to be processed
by Safer Payments over the course of one year. Even though data retention is
now specified in terms of days, for technical reasons Safer Payments still
needs to calculate a fixed size for MDC and DDC of each attribute. The
calculation is heavily based on the annual transaction volume so the numbers
should be as accurate as possible.

• Minimum MDC size
This setting can only be changed on the "System configuration" page if
deferred writing is enabled. If it is changed while retention by time is active,
that change will be delayed until the next retention commit and appear in
this field. This behavior is because retention by time automatically takes this
setting into account when calculating MDC and DDC capacities. If we did not
delay the change, every golive could end up becoming a "structural" golive
because of this even if only a rule was changed.

Calculation of MDC/DDC capacity
With retention by time enabled, calculating the size of an attribute's MDC and
DDC involves the following steps:

1. We determine which contingency value to use depending on the attribute's
retention setting: contingency

2. We calculate the expected transactions per day: tpd = tpy ÷ 365

3. We multiply the transactions per day with the specified retention:
capacityBase = tpd × retention

4. Finally we add the contingency: capacity = capacityBase × contingency
÷ 100

Enabling retention by time
When switching from retention by records to retention by time, always make
sure to enter accurate values for the aforementioned settings, especially the

annual transaction volume. When switching the retention mode, MDC and
DDC won't be changed. The system will just take whatever size the data
caches currently have for each attribute and compute their retention values
based on this. If the retention by time settings are off by too much, the
retention values of attributes become unreasonable, negatively affecting
queries and profilings. Example: If you have an attribute with an MDC
capacity of 2,000,000 records and enable retention by time with an annual
transaction volume of 365 record (1 record per day) the attribute's retention
would end up being 2,000,000 days, which is not a retention that will make a
whole lot of sense for most applications.

Manually set rule performance data cache sizes
When enabled, the MDC/DDC capacities (in retention by records) or retention
values (in retention by time) of rule performance reports can be manually
adjusted, reducing the MDC and DDC size requirements for the rule
performance report storage. When this setting is not enabled the MDC and
DDC size for the rule performance reports will be based on the size of the
SystemTime meta attribute. Note that when retention mode is being
changed, these settings are disabled and new values will be computed
automatically. Any changes to these settings are a structural change, and are
thus applied during the next end of day job.

Effects of time retention on data access

When retention by time is used, the MDC and DDC retention periods of an
attribute limit the lifetime of transaction records within the data caches of
that attribute i.e. an attribute that is only stored for 5 days in MDC and DDC
will not provide a value for any transaction record older than that according
to the record's system time. This affects queries as well as profiling elements
looking at past transactions.

To not negatively affect computation performance, the data caches of each
attribute are cleaned up during the end of day job in a process we refer to as
'trimming'. This process only removes the outdated entries. The size of the
data caches is not affected. Log message #844 provides information about
the number of outdated entries that were removed from the data caches of
each attribute.

Trimming is also applied to rule and final rule performance caches in the
same way as long as retention by time is used. It does not matter if
'Manually set rule performance data cache sizes' is used or not.

Right after a Safer Payments instance was started up the MDCs of attributes
and rules might contain transaction records outside the MDC retention
period. This is because the priming mechanism copies all the records from

the DDC that fit into the MDC's capacity without taking the retention setting
into account. The next end of day job trimming will remove these outdated
records.

Important: Trimming does not securely delete the outdated data. If this is
required the "Purge outdated entries securely" option of the attribute needs
to be enabled. Refer to the Input attributes help page for details.
back to top

7.2.1 Retention audit trail

Since retention settings affect the memory and disk space consumption of
the whole system, each action performed will be logged in an audit trail, with
the most recent entry appearing at the top. Changes to the page itself will be
displayed with a yellow icon. If an error happened when applying changes, a
red icon will be shown while a green icon is used if no errors were
encountered.
back to top

7.2.2 Retention report

The retention report shows the effects on memory and disk requirements using
the currently active champion revisions. If the report determines that the system
cannot fulfill these requirements, confirming the report is not possible. If the
"System configuration" page specifies that golives have to be performed using
peer confirmation, the commit report must be initiated by a different account than
the one that saved the changes.
back to top

7.3 User roles

To complement the flexibility of IBM Safer Payments' mandator hierarchy,
user privileges are managed using a role model that allows the definition and
granting of roles for each mandator individually. In addition to this, each user
account is tied to an ("associated") mandator, which also determines which
data a user may access ("access" comprises the privilege to view individual
transactions in query results or investigation screens, as well as in
simulation, analysis and rule generation). The inner workings of this are
explained in the remainder of this section.

Role definitions

The number of roles is not limited. Roles are defined for a specific mandator
and can be inherited by sub mandators. Roles can be viewed/changed by
users with the respective privileges. Refer to the help page of the section
below for details on the definition of roles.

Grants

Once roles are defined, they can be "granted" to each user account assigned
to a fitting mandator (depends on the setting whether or not roles are
inherited). Refer to the online help page on "user accounts" for more details
back to top

7.3.1 Role

Each role is the combination of a number of privileges that are either enabled
or not (check boxes). The privileges are organized in a hierarchy, where the
privileges on lower levels of the hierarchy can only be enabled if the
respective upper level privilege is enabled. To provide a clear overview of all
enabled privileges, privileges that cannot be enabled because the upper level
privilege is not enabled are hidden. All privileges displayed with "..." expand
to additional privileges when checked. Right of the privileges, a more
detailed explanation of the respective privilege is provided.

In most cases the upper level privilege is a "view" function privilege. Once
this is enabled, either "change" or "add/edit/delete" privileges become
selectable (and visible).

Whether the privileges superseding "view" are combined to "change" or split
up to "add/edit/delete" privileges depends on the specifics of the respective
IBM Safer Payments function.

Roles are associated with a mandator. Use the "inherit" option to make roles
available with sub mandators as well. Otherwise, this role can only be used
for setting mandator privileges of the mandator this role is associated with.

These privileges available in IBM Safer Payments are described on the page
itself.

• View dashboard
View the IBM Safer Payments dashboard with its status alarm indicators and
KPI charts.

• Reports...
View Report tab.

• Case Class...
View and generate case class reports that have already been defined.

• Change
Add, edit, and delete case class reports.

• Investigation...
View and generate investigation reports that have already been defined.

• Change
Add, edit, and delete investigation reports.

• Missed Cases...
View and generate missed cases reports that have already been
defined.

• Change
Add, edit, and delete missed cases reports.

• Investigator...
View and generate investigator reports that have already been defined.

• Change
Add, edit, and delete investigator reports.

• Fraud Marking...
View and generate fraud marking reports that have already been
defined.

• Change
Add, edit, and delete fraud marking reports.

• Investigation...
Investigation of cases generated for suspicious transactions.

• Query...
View and execute queries that have already been defined.

• Change
Add, edit, and delete queries.

• Change Extract Template
Add and edit extract template of a query.

• Common point query...
View and execute common point queries that have already been
defined.

• Change
Add, edit, and delete common point queries.

• Create Cases
User may create cases right from a query result table.

• Fraud marking
Manual flagging of fraudulent transactions in transaction tables of
investigation queries.

• Cases...
Investigate cases.

• Investigation supervisor...
User may see case selection and execute case search.

• Take over
Take over investigation cases that are reserved (follow up)
for other users.

• Interrupt
Interrupt investigation cases that are currently worked by
other users.

• View other users' cases
View cases that are being investigated by another user.

• Bulk transitions
Execute bulk case transitions via context menu.

• Change CPP
Add, edit, and delete CPP of cases.

• Send case actions
User may send case actions.

• Modify case actions
User may modify case actions before sending.

• Execute external queries
User may execute external queries.

• Masterdata
User may query masterdata.

• Change masterdata values
Change or enter masterdata in investigation cases or masterdata
queries.

• Group by queries...
View and generate group by queries that have already been defined.

• Change
Add, edit, and delete group by queries.

• CPPs...
View CPPs.

• Change
Add and edit CPPs.

• Monitoring...
View Monitoring tab.

• Compliance lists...
User may view the compliance list definitions.

• Change
User may change the compliance list definitions.

• Ad hoc check
User may perform compliance ad hoc checks.

• Defined risk lists...
User may view the defined risk list definitions.

• Change
User may change the defined risk list definitions.

• Defined risk list entries...
User may view the entries to defined risk lists.

• Import
User may import entries to defined risk lists.

• Change
User may change the entries to defined risk lists.

• Bulk delete
Bulk delete defined risk list entries.

• Bulk (de)activate
Bulk (de)activate defined risk list entries.

• View defined risk list audit trail
User may view defined risk list audit trail.

• Model...
View model tab.

• Decision models...
View model revisions and their components.

• Edit...
Edit model revision.

• Take over
Take over a model revision that is reserved for other users.

• Data caches
Edit disk and memory data cache sizes.

• Indexes
Edit index definitions.

• Masterdata
Edit masterdata definitions.

• Modeling
Activation and configuration of test modeling functions.

• Simulation
Activation and configuration of simulation and analysis
modeling functions.

• Rule
Activation and configuration of rule generations.

• Random Forest
Activation and configuration of random forest
model generations.

• Export simulation data
Export simulation data to disk.

• Change simulation instance
Allows the selection of an instance using a button
on top of the simulation and simulation report
pages.

• View preprocessing rulesets and rules
View preprocessing rulesets and rules, and execute rule
analysis and query.

• Change
Add, edit, and delete preprocessing rulesets and rules.

• Profiling
Activation and configuration of profiling functions.

• View device identification...
View device identifications.

• Change
Add or delete device identifications and edit
existing device identification parameters.

• View precedents...
View precedents.

• Change
Add or delete precedents and edit existing
precedent parameters.

• View calendars...
View calendars.

• Change
Add or delete calendars and edit existing profiles.

• View patterns...
View patterns.

• Change
Add or delete patterns and edit existing pattern
parameters.

• View counters...
View counters.

• Change
Add or delete counters and edit existing counter
parameters.

• View events...
View events.

• Change
Add or delete events and edit existing event
parameters.

• View formulas...
View formulas.

• Change
Add or delete formulas and edit existing formula
parameters.

• Inputs/outputs
Change model revision inputs and outputs.

• Change I/O encryption
Enable/disable encryption of input/output attributes.

• Change I/O purging
Enable/disable purging of outdated entries of
input/output attributes.

• Model Components
View model components.

• View rulesets and rules
View rulesets and rules, and execute rule analysis and
query.

• Change
Add, edit, delete, enable, and disable rulesets and
rules.

• View PMML
View PMML model (decision tree, neural network,
random forest, and boosted tree) components.

• Change
Add, edit, delete, enable, and disable PMML model
components.

• View External Model
View external model components.

• Change
Add, edit, delete, enable, and disable external
model components.

• View Internal Model
View internal random forest model components.

• Change
Add, edit, delete, enable, and disable internal
random forest model components.

• Change rule settings
Change various settings within the rules form. This option
does not grant any privileges on its own. Only the
subprivileges grant users privileges to perform actions.

• Change rule performance reporting
Add/remove rule from performance report.

• Change conclusion intercept meta attribute
Add, edit, and remove conclusions with the intercept
meta attribute.

• Change set alarm action
Add, edit, and remove alarm rule actions.

• Change set masterdata action
Add, edit, and remove masterdata rule actions.

• Change set notification action
Add, edit, and remove notification rule actions.

• Change set defined risk list action
Add, edit, and remove defined risk list rule actions.

• Message mapping...
View mapping of message variables to model revision
attributes.

• Change
Add, edit, and delete message mappings.

• Mergings
Change mergings of messages to records.

• View final rulesets and rules
View final rulesets and rules, and execute rule analysis and
query.

• Change
Add, edit, and delete final rulesets and rules.

• Copy
Copy model revisions.

• Initialize golive...
Initialize a new model revision to golive (mark challenger down to
become champion).

• Confirm Golive
Confirm golive of a new model revision (golive of challenger
to champion).

• Re-golive
Re-golive of a model revision that is already retired

• Retire champion
Retire a model revision in status champion without promoting
another revision to status champion.

• Delete
Deletion of a model revision.

• Administration...
Access administration tab.

• Mandators...
View mandator administration.

• Edit
Add, edit, and delete mandators.

• Roles...
View role definitions, their privileges, and mandator associations.

• Change
Add, edit, and delete role definitions.

• Case actions...
View case action definitions.

• Change
Add, edit, and delete case action definitions.

• Change SQL
Add, edit, and delete case actions definitions that execute
SQL commands.

• Run Test
Test case action definitions.

• User groups...
View user group definitions.

• Change
Add, edit, and delete user groups.

• Case states...
View case states.

• Change
Add, edit, and delete case states.

• Case workflows...
View case workflows.

• Change
Add, edit, and delete case workflows.

• Case close codes...
View case close code definitions.

• Change
Add, edit, and delete case close code definitions.

• Case classes...
View case classes.

• Change
Add, edit, and delete case classes.

• Working queues...
View working queues.

• Change
Add, edit, and delete working queues.

• Case groups...
View case groups.

• Change
Edit and add case groups.

• Notifications...
View alarm notification definitions.

• Change
Add, edit, and delete notification definitions.

• Change SQL
Add, edit, and delete SQL notification definitions that execute
SQL commands.

• Run Test
Test notification definitions.

• Text modules...
View text module definitions.

• Change
Add, edit, and delete text module definitions.

• External queries...
View external query definitions.

• Change
Add, edit, and delete external query definitions.

• Run Test
Test external queries definitions.

• Reminders...
View reminder definitions.

• Change
Add, edit, and delete reminder definitions.

• Status alarm indicators...
View status alarm indicators.

• Change
Add, edit, and delete status alarm indicators.

• Charts and KPI...
View chart and key performance indicator definitions.

• Change
Add, edit, and delete charts and key performance indicators.

• Charts and KPI...
View chart and key performance indicator definitions.

• Change
Add, edit, and delete charts and key performance indicators.

• Cluster...
View Cluster Tab.

• Memory management...
View memory consumption of simulations.

• Stop simulations
Stop simulations of other users.

• Outgoing channel configuration
View outgoing channel configuration.

• Change
Add, edit, and delete outgoing channel configuration definitions.

• Change Basic Authentication
Edit settings of Basic Authentication.

• Run Test
Test outgoing channel configuration definitions.

back to top

7.4 User accounts

The table below lists all user accounts for which you have access privileges.

Depending on your privileges, you may change (edit/add/delete) user
accounts. You may also select from the toolbar whether or not disabled
accounts shall be shown. Notice that depending on the IBM Safer Payments
settings, you may or may not delete user accounts permanently (non-
deletion is to ensure that all audit trails will lead back to a user account).
back to top

7.4.1 User account

User administration

IBM Safer Payments is designed to support large scale applications with
many hundred users belonging to a large number of mandators. For details
on processing structured portfolios with mandator structures, visit the
structural configuration help page.

IBM Safer Payments provides a two-dimensional privilege system allowing
efficient but fine-grained control over which areas users can access and what
operations they can perform:

• Global privileges
These privileges are granted independently from the mandator structure.

One of these global privileges is the "user account maintenance" privilege
that enables a user to create/change user accounts. A user with this privilege
can grant other accounts more privileges than the privileges this user has.

• Mandator privileges
Each role is a set of privileges assembled for a specific "user role" in IBM
Safer Payments. Roles are granted to user accounts always on a per-
mandator basis. The privileges of the roles are thus only applied to this
mandator.

Remarks

• Each user account is associated to one mandator. A user with the global
privilege to change user accounts may only create user accounts for their
associated mandator and its sub mandators.

• Each user account is associated to one mandator. A user's privilege to change
their own mandator privileges applies to that mandator and its sub
mandators.

• Roles can be passed on to sub mandators by enabling a checkbox next to the
mandator-role association.

• A user that has been granted the role privilege to change or view one
mandator also has the same privilege for its sub mandators even without
explicitly passing the role to those sub mandators. This is an exception to all
other mandator privileges that are strictly limited to the mandator granted.

• A user that has been granted the change privilege for a particular type of
element (e.g. case actions) for one mandator is able to view this type of
element for all mandators up the hierarchy. This is necessary to avoid
creating duplicate elements on different levels of the hierarchy.

• A user's login may never be changed once the account has been created.

• For certain settings default values can be configured on the system
configuration page to make setting up new accounts easier.

back to top

7.4.1.1 Global privileges

These privileges are granted independently from the mandator structure as
they cover access privileges to the general functionality of IBM Safer
Payments:

• User accounts
Defines which user account management actions may be performed by the
user for other user's accounts.

• No privileges: May not see other user accounts.

• View: May view settings and privileges of other user accounts but not
change them.

• Reset password: May change another user's password in addition to
viewing their settings and privileges.

• Manage login: May change another user's password and enforce
password changes in addition to viewing their settings and privileges.
May also enable or disable accounts.

• Change: May change another user's privileges and settings including
passwords. May also enable or disable accounts.

• User self service
Defines which user account self service actions may be initiated by the user
(user changes settings of his own account).

• System configuration
Defines which system configuration actions may be performed by the user. If
the user has no rights for system configuration, the right 'export
configuration' cannot be activated.

• Retention administration
This privilege controls access to the retention settings page which allows
enabling and configuring retention by time. To configure retention by time an
annual transaction volume has to be entered for every mandator within the
system. The retention page displays the names of all mandators as well as
their parent-child relationship to each other. Keep this in mind when granting
this privilege to a user.

• Real-time intercept codes
Defines which real-time intercept codes management actions may be
initiated by the user.

• Messages
Defines which message management actions may be initiated by the user.

• Cluster
Privileges of this user account with respect to cluster management.

• Event log messages
Privileges of this user account with respect to the configuration of event log
messages.

• Jobs
Privileges of this user account with respect to the configuration and
execution of jobs.

• Password safes
Defines which password safes management actions may be initiated by the
user.

• Compliance list
Privileges of this user account with regard to reloading compliance lists and
searching/viewing compliance list entries.

• Key entry
Defines if and which part of a public encryption key may be entered by the
user.

• Key management
Defines which key management actions may be initiated by the user.

• View system internals
User may view the details of IBM Safer Payments' internal data structure.

• View unmasked data
User may view encrypted data unmasked (if encryption is enabled).

• Change memory limits
User may change memory limits of mandators.

• Export configuration
User may export configuration.

• View system log messages
User may view the system log messages.

• View audit log messages
User may view the audit log messages.

• View transaction reports
User may view transaction reports.

• View rules fired
User may view the rules that created an alarm.

• View conditions of rules fired
User may view the conditions of the rules that created an alarm.

• View manual icon
View the manual icon in each help dialog.

• View private working queue
User may view investigation cases of his private working queue.

• Set all user preference defaults
If enabled, this user may set the defaults for all user's preferences.

• Use configuration import API
If enabled, this user may use the "importRevisionChanges" and
"saveWithUid" API requests. These API endpoints are mainly used when
transferring configuration information between separate clusters. In addition
to having the "Use configuration import API" privilege, a user still will need
all the individual role privileges which are used to create the various
elements. It is recommended that the user account with "Use configuration
import API" privilege be given full privileges.

back to top

7.4.1.2 Maintenance functions

Maintenance functions are special API requests. Their functionality is
assumed to not be used during standard IBM Safer Payments operations, but
rather for highly specific maintenance functions, such as issues analyses,
benchmarking, or facilitating automated testing. Maintenance functions can
be enabled separately:

• Index functions
Enables functions to reset an index (including all its related calendar profiles,
events and masterdata) and to rebuild an entire index (erases existing one)
using all records stored.

• Reset user preferences.
Enables a function to reset preferences, searchfilter, table sizes and column
orders for all users.

• Rewrite element to disk
Enables a function to store a serializable object of an IBM Safer Payments

installation on disk.

• Cleanout Revisions
Enables a function that unloads all non-champion revisions from IBM Safer
Payments and moves their file representation from the "cfg" to the "arc"
directories of all IBM Safer Payments instances.

• Set MDC/DDC sizes
Enables a function to change size of the specified xDC.

• Check health of index
Enables a function to check specified index for issues. During execution of
this maintenance function no other access to this index is possible.

• Reset FLI
Enables functions to reset all outgoing FLI connections and rewind the FLI
buffer's read position to the first unacknowledged FLI message.

• Create conclusion expression pair list
Shows expression values used in rule conclusions. Can be used if rules are
defined for mapping an attribute onto another one.

• Cancel master key change
Enables a function to cancel a master key change.

• Convert attribute data
Enables a function to convert an integer value in format
YYYYMMDDhhmmssZZZ to a timestamp in milliseconds since 1970-01-01
00:00:00.

• Rewrite risk lists
Enables a function to rewrite a risk list to the cluster from this instance, so it
will be synchronized on all instances.

back to top

7.4.1.3 Mandator privileges

In this section, you may grant any number of roles to this user account for
exactly one mandator. You may create multiple grants to associate multiple
roles for one mandator or multiple mandators.
back to top

7.4.1.4 Simulation memory

In this section, you may define how much memory the user can use for
simulations belonging to a specific mandator on each instance that is enabled
to run simulations. A user can never use up more simulation memory on a
given instance than this setting permits.
back to top

7.5 User groups

The table below lists all user groups for which you have access privileges.

User groups can be used for configuring privileges of case transitions and
notices. The definition of a user group involves selection of multiple users
from the list of potential case investigators and users who can send notices.
The same user can belong to more than one group at the same time.
The selected users will be then privileged to execute certain case transitions
on investigation cases. Once user groups are defined, they should be
assigned to case transitions from the case class definition.
The users in the group will also be able to send notices to other members in
the group if they have the “Send notices” global privilege enabled.
back to top

7.5.1 User group

User groups have the following settings:

• Name
Used to identify the user group.

• Comment
Used to describe the user group. You may use this field to explain what this
user group is used for.

• Mandator
Each user group belongs to one mandator. Once created, mandator
ownership does not change.

• Users
Here you will find all users that are associated with the selected mandator or
with submandators and have investigation privileges. The selected users will
belong to the user group and will be privileged to execute certain case
transitions on investigation cases if the user group is assigned to case
transitions from the case class definition. Users will also be able to send
notices to other users in this group if they have the “send notices” global
privilege configured.

• Additional users who can send notices
Select users outside this user group who will be able to send notices to this
user group.

• Other user groups that can send notices
Select other user groups that will be able to send notices to this user group.

back to top

7.6 Master keys

IBM Safer Payments supports PCI DSS compliant encryption of transaction
data (e.g. PAN) and related configuration settings. Data encryption keys are

referred to as master keys within IBM Safer Payments. At any given point in
time only one master key can be active, but multiple master keys can exist
within IBM Safer Payments to facilitate key rotation and failover.

Types of master keys

IBM Safer Payments utilizes AES-256 encryption for sensitive data and
configuration options. Two sources of master keys are supported: keygen
and KMIP.

Keygen master keys are generated by an external tool called "keygen". This
tool is delivered as part of the IBM Safer Payments installation. Refer to the
Keygen master key help page for more details.

KMIP master keys are stored and managed on an external server and
retrieved by IBM Safer Payments using the Key Management Interoperability
Protocol (KMIP) version 1.1. Refer to the KMIP master key help page for
more details.

Enabling encryption

Encryption must first be enabled globally on the system configuration page.
Once enabled, a master key must be activated to allow IBM Safer Payments
to actually perform encryption and decryption operations. Afterwards data
encryption can be enabled inside the model for each input attribute. If
encryption is enabled for an attribute the following protections apply:

• Only users with the proper global privilege are able to see values of that
attribute in clear text. Other user accounts can be set up to either not be
able to see any values at all or only see masked values. In masked values all
characters are replaced with an X except the first 6 and last 4. If the value is
only 10 or less characters long, everything will be replaced with an X.

• The DDC file of that attribute is encrypted with AES-256.

• User preferences and configuration elements using the attribute or values
associated with it are encrypted on disk and when being synchronized over
the FLI.

Encryption consumes considerable computational resources. Depending on
the encryption settings and length of an attribute the disk space required by
it might also increase. You should thus keep encryption to only the attributes
where you really need it.

Key activation

Both types of master keys are activated through the IBM Safer Payments
user interface. At any point in time only one key can be active and that key
is then used for all data encryption and decryption.

For performance reasons the cleartext data encryption key is kept in memory
as long as IBM Safer Payments requires it. The key is placed in a secure heap
to protect it against access from other processes, memory swaps or dumps,
and memory walking.

Cluster operations

Once a master key has been activated within a cluster, individual IBM Safer
Payments instances can be stopped and started without having to re-activate
the key again. Instances starting up will utilize the ECI to gather the active
master key from the other instances and activate it automatically.

If the whole IBM Safer Payments cluster was shut down while encryption was
active, instances will enter a "waiting for key" state the next time they are
started. In this state, data has not been read yet and all data interfaces are
still closed. The previously used master key has to be activated manually on
one instance for the cluster to continue starting up and become fully
functional.

Limited validity of master keys

All master keys are only valid for a limited amount of time. The master key
lifetime can be configured on the system configuration page.

Important: When the active master key expires, IBM Safer Payments closes
all incoming data connections on all instances. Transaction processing or
changing the master key lifetime are then no longer possible. It is strongly
recommended to add a status alarm indicator which warns the administrator
before a master key expires so that a master key change can be performed
in time.

Master key change

A master key change rotates the current data encryption key i.e. it replaces
it with a different one. This requires IBM Safer Payments to decrypt and re-
encrypt all sensitive data and configuration settings. This can take a long
time. To ensure that transaction processing is not interrupted during a
master key change, IBM Safer Payments allows a cascaded key change.

A cascaded master key change delays the re-encryption on remote instances.
The delay depends on the master key change wait factor which can be
configured in system configuration. For a wait factor of "0" the key change is
executed immediately on all instances. While this is the fastest way to
change a master key it prevents IBM Safer Payments from scoring
transactions during the key change.

If the wait factor is greater than "0" the key change is executed on the
instance with the active API first. Once the first instance finished, the remote
instances are sorted according to their FLI buffer fill levels and written to a
list. The next key change will be executed on the remote instance with the
lowest fill level.

The other instances start the key change after a certain delay, which is
defined as list position multiplied by master key change wait factor multiplied
by the time it took to re-encrypt everything on the first instance. For a wait
factor greater than "1" this leads to a cascaded master key change where
only one instance re-encrypts at the same time. We recommend a wait factor
of "1.05" to have an additional wait of 5% and to avoid having a
simultaneous re-encryption on two instances.

To trigger a master key change, just follow the process of activating a master
key while another one is already active. The figure below illustrates the
process of a master key change:

Once the master key change is triggered all cluster instances enter a passive
state. The information that the cluster is going to change the master key is
sent via SCI to ignore possible filled FLI buffers. Every instance performs the
following steps to prepare itself for a key change:

• Disable the API and BDI.

• Stop the case consolidation. Alarms are still generated but will not be
aggregated until the master key change is finished.

• Stop forwarding of notifications via FLI. Notifications are still created and will
be sent as long as the AMI is active on the generating instance. If there is no
active AMI on the generation instance the notifications will be stored and
forwarded once the key change is finished.

• Stop the reminder controller.

• Stop the end of day job controller.

• Write a "ready for key change message" to the FLI buffer that confirms the
previous steps are completed.

The instance that had the active API waits in the passive state until it has
received the "ready for key change message" from all other instances and
has sent its own. Afterwards the instance prepares itself for the re-
encryption by disabling the MCI and the incoming FLI. In case deferred
writing is enabled the deferred writing service is stopped as well and all files
are dumped to disk. The re-encryption starts and the instance status is
changed to "master key change active".

During this re-encryption the instance dumps all configuration files, the
encrypted DDC attributes, all active cases and all unsent notifications. Once
the re-encryption was successful, the API instance notifies the other
instances to start the key change according to the previously described wait
factor. The instance enters status "finalize" and reactivates itself again as
follows.

• Activate MCI and BDI. It is possible to process transactions.

• Activate incoming FLI. The outgoing FLI will send all messages that were
encrypted with the "old" key. Messages that are encrypted with the new key
are only sent if the receiving instance has finished re-encryption as well.

• Activate API and start reminder controller.

• Write all stored notifications and emails to FLI buffer and allow forwarding of
alert messages.

• Start the end of day job controller.

Every instance reports when it has received all messages that were
encrypted with the previous master key. As soon as all instances have
finished the key change and received all old messages, the instances revoke
the previous keys and switch the status from "finalize" to "ok". The master
key change finished successfully.

Possible error scenarios
There are several error scenarios during a master key change:

• A remote instance is shutdown or crashes during the key change.
If a remote instance becomes unreachable the master key change continues
on the other instances, but the instances will wait until this instance is
available again before leaving status finalize. Only instances in status
"invalidated" are ignored. Once the instance is restarted it will start in status

"invalidated" and allow the other instances to finish the key change. The
restarted instance has to be restored.

• The master instance crashes during key change.
It depends at which point the instance crashes. If the re-encryption is
finished on the remote instances, the master instance can be restarted in
status "invalidated" and the key change will finish successfully. If the
instance crashes before the re-encryption was successful the remote instance
will stay in status "passive", but can be set to status "ok" using the
maintenance function.

• The network communication to one instance is lost.
IBM Safer Payments will wait indefinitely for instances that are unreachable.
If necessary, the other instances can be set to status "ok" via maintenance
function to finish the master key change manually.

Maintenance functions
The master key change implements a special maintenance function to cancel
a master key change on one instance. The function is bound to a special user
privilege. It allows to cancel a master key change and set the new instance
status to �invalid� or �ok� after cancellation.
back to top

7.6.1 Keygen master keys

Keygen master keys are created by an external tool called "keygen". This
tool is delivered as part of the IBM Safer Payments installation. The tool
produces configuration files that must be manually distributed to all IBM
Safer Payments instances to be usable.

Keygen master keys and their subkeys

Keygen master keys are associated with one or more encryption keys. These
encryption keys represent "key triplets" consisting of the following subkeys.

• Private key

• Left public key

• Right public key

Note that the terminology of public and private keys used here, deviates
from that used in asymmetric encryption. To activate a keygen master key all
three subkeys of one triplet must be present.

The private subkey of a triplet is stored in a file called "key_no.iris" in the
IBM Safer Payments "key" directory. The public keys are kept secretly by
human keyholders. Because of this we also sometimes refer to them as the
left and right passphrases of an encryption key.

IBM Safer Payments allows multiple active and non-active key triplets to
exist for each master key. While only one of the key triplets can be active at
a time, it makes no difference which of the key triplets for a given master
key is the active one.

Key triplets are differentiated by their number.

Adding new keys

Keygen master keys and encryption keys / key triplets can only be created
by the external tool called "keygen". This tool is part of the IBM Safer
Payments installation but should never be executed on the same machine
that hosts IBM Safer Payments.

The main output of the "keygen" tool are key triplet files named
"key_no.iris". These files must be distributed to the key directories of all IBM
Safer Payments instances. Use the [Reload private keygen keys from disk]
button on the master keys table to load these new files into IBM Safer
Payments. The new keys will appear in their respective tables and can be
used accordingly.

The following paragraphs describe the concepts behind generating master
keys and key triplets. For instructions on how to create master keys or key
triplets, refer to the implementation guide.

Keygen master key generation

The following figure exemplifies the computational actions involved in master
key generation:

The actual master key used by IBM Safer Payments to en-/decrypt data is
generated by using two sets of random keystrokes hashed by MD5,

delivering a 256 bit length root key. This master key is never stored or made
accessible to users. Rather, using the two passphrases of the keyholders, the
master key is encrypted using the AES-256 algorithm.

It is important to notice that (dotted line in the figure above) using the two
passphrases, the encrypted master key can be decrypted.

This encrypted master key is therefore stored in a safe place and is
subsequently used � together with the passphrases of the keyholders � to
create the triplets that are the only keys used during IBM Safer Payments
operations.

This is also the reason why the key generator is provided as a separate utility
program rather than an integral part of IBM Safer Payments. Not even the
encrypted master key should ever be on the IBM Safer Payments server
host. Rather you may use any other computer to create the encrypted
master key, store it in a safe place, and generate triplets from this whenever
needed.

Keygen key triplet generation

Key triplet generation requires the left and right master key passphrases �
thus the presence of the respective keyholders � plus two keyholders for the
two public subkeys of each triplet. The keyholders may be the same people.

The figure below illustrates the process:

First the encrypted master key is read from file and using the two master
passphrases gets decrypted in main memory only. From this unencrypted
version of the master key now each triplet is derived by encrypting the
master key with a new pair of passphrases / public keys.

The result of this process is the private triplet subkey. This must be stored in
the "key" directory of the IBM Safer Payments installation. Because the file
system of the IBM Safer Payments server host is a protected area, this
provides an added level of security.

A good practice with key generation is to generate a number of key triplets in
advance and then use them as they are needed.

It is important to notice that from each private triplet subkey, by decryption
using the two public keys, IBM Safer Payments can reconstruct the master
key in main memory for its operations.

Key activation

To activate a keygen master key both keyholders must enter their public
keys for the same encryption key / key triplet. The encryption keys can be
found in a second table after selecting a master key. Each keyholder needs to
click on the encryption key to open a form allowing them to enter their public
key. After both public keys have been entered the key can be activated by
any user with the appropriate global privilege.

The privileges have been designed in such a way, that no single user account
can be used to enter both public keys.

To activate a master key on all IBM Safer Payments instances simultaneously,
the public keys are synchronized between instances through the ECI. The
private key is never transferred.

Check key

After both public keys have been entered for a given encryption key / key
triplet, the key can be checked using a button in the form toolbar. This
validates if the entered passphrases are correct.

Encryption key lifetime

Encryption keys have a globally configured lifetime similar to master keys.

Important: When the active encryption key expires, IBM Safer Payments
closes all incoming data connections on all instances. Transaction processing
or changing the encryption key lifetime are then no longer possible. It is
strongly recommended to add a status alarm indicator which warns the

administrator before an encryption key expires so that a different encryption
key can be activated.

Key revocation

Keygen encryption keys can be revoked to mark them as unusable e.g. at
the end of their lifetime. Revoking a keygen encryption key removes it from
the encryption keys table and writes it into the "revoked_keys.iris" file to
prevent any future activation attempts.

Key revocation is performed as part of a master key change, but can also be
triggered manually. The automatic revocation during a master key change is
only done, when Reuse keys is disabled in the system configuration.
Otherwise, keys are only marked as inactive but can be activated again.
back to top

7.6.2 KMIP master keys

KMIP master keys are stored on and retrieved from an external server using
the Key Management Interoperability Protocol (KMIP). KMIP servers need to
support certificate based authentication and KMIP version 1.1 to be usable.

Connecting to the KMIP server

The configuration of a KMIP key within IBM Safer Payments consists of
information about which server to connect to and which certificates to use for
authentication. The server is specified as either an IP address or hostname,
and a port number. IBM Safer Payments authenticates the KMIP server by
using a CA certificate file and sends out a client certificate to allow the KMIP
server to authenticate IBM Safer Payments.

To facilitate encrypted communication a client certificate private key must
also be provided. It is assumed that this file is stored protected by a
passphrase. Thus, whenever a KMIP connection is triggered by the user, e.g.
when activating the master key, a dialog will be shown asking for the client
certificate private key passphrase.

Only the instance on which the user activates the key issues KMIP operations
to the server. Therefore, this instance is the only one strictly requiring the
certificate and private key files. Nevertheless, it is recommended to keep
those files on all instances for failover.

Key creation

IBM Safer Payments can either use already existing AES-256 keys or create
its own. This depends on whether or not the Key ID field has been filled out

before activating or checking the key. If no ID was provided, IBM Safer
Payments will create and activate a new AES-256 key on the KMIP server.
The created key's lifetime will be set according to the maximum master
key life configured in the system configuration. The ID of the created key is
stored in the KMIP master key configuration within IBM Safer Payments.

Note that IBM Safer Payments assumes a new key to be automatically
activated on the KMIP server after creation. Therefore, if the KMIP server
does not perform such a transition automatically, the key must be manually
activated on the KMIP server.

Key activation and checking

Activating a KMIP master key means that IBM Safer Payments retrieves the
key from the KMIP server and stores it internally in secure memory. Data
encryption and decryption are performed by IBM Safer Payments itself. The
KMIP server is not involved for performance reasons.

When activating, IBM Safer Payments first verifies that the key stored on the
KMIP server is an active AES-256 symmetric key, enabled for both decryption
and encryption. If that is not the case, activation will fail. The same checks
can be triggered without performing an activation by using the check
functionality offered in the form toolbar. If no key ID was configured,
checking will create a key on the KMIP server before performing the checks.

To activate a KMIP master key on all IBM Safer Payments instances
simultaneously, the raw data encryption key is synchronized between
instances through the ECI. Only the API instance performs KMIP operations.

KMIP master key lifetime

For KMIP master keys the lifetime is managed by the KMIP server. Keys
created by IBM Safer Payments will set the key's lifetime according to the
value configured in the system configuration.

Key revocation

KMIP master keys can be revoked to mark them as unusable e.g. at the end
of their lifetime. Revoking a KMIP master key deactivates it on the KMIP
server which will prevent any future activation attempts. Key revocation can
only be triggered manually.
back to top

7.7 Password safes

The table lists all password safes. A password safe is automatically generated
for private keys which are located in the password safes folder.

Provide the correct password to activate a key. Once activated, it can be
selected in an encrypted job to decrypt a file that contains an aes password.
Using this aes password the encrypted job can be executed.

You will find further details for the encrypted job import in Importing
encrypted job files.
back to top

7.7.1 Password safe

Password safes have the following settings:

• Name
Descriptive name. Can be selected in settings of an encrypted job.

• Password
A private key itself should be protected with a password. Provide the correct
password to activate the key. Once activated, it can be selected in an
encrypted job to decrypt a file that contains an aes password. Using this aes
password the encrypted job can be executed. You will find further details for
the encrypted job import in Importing encrypted job files.

• Comment
Used to describe the password safe.

back to top

7.8 Mandators

IBM Safer Payments can be configured to operate sub-portfolios in a different
way. For details, refer to the online help page on structural configuration.
New mandators are created by clicking on the [New mandator] button.

If this capability is not needed, simply leave the default head mandator and
do not define any more mandators here.

Notice that for any IBM Safer Payments function that is mandator specific, a
choice of mandators is not shown (but implicitly selected) when there is only
one mandator, regardless whether there is only one mandator defined or the
user only has access privileges for one mandator.
back to top

7.8.1 Structural configuration

Structural configuration involves empowering IBM Safer Payments to work
for multiple sub-portfolios from within a single installation. This configuration
is made by defining a mandator structure on this page.

Structured portfolios

In the past, most payment processing centre environments were designed to
serve a homogenous portfolio of cardholders or merchants. All users could
access all data, and one single model revision served all transactions. Even
when the portfolio actually consisted of multiple sub-portfolios, the same
users of the payment processing centre accessed all data, and if
individualization of the model was required for different sub-portfolios,
specific decision rules were introduced into the model. Previous generations
of IBM Safer Payments served these needs well.

However, needs have changed. Today, most payment processing centres
serve multiple portfolios, either of "internal" or "external customers".
Customers in this sense can be lines of business of the same organization the
processing centre belongs to ("internal"), or ("external") customers (issuers,
acquirers) that are consumers for the processing services. What also has
changed in the recent years is that fraud prevention has moved from a task
that was perceived as a "black box" by the customers and typically
performed by a few specialists of the payment processing centre, to a
business process that customers want to control by themselves. Thus, it has
become commonplace that the customers of the payment processing centres
require to access IBM Safer Payments functionality directly.

To cater for these new needs, earlier versions of the software introduced a
"mandator" concept for structured portfolios, in which one installation could
operate a portfolio consisting of sub-portfolios of multiple mandators, where
each mandator could define its own model revision and work its own case
classes.

IBM Safer Payments promotes this concept to an entire new level. IBM Safer
Payments not only supports multiple mandators, it also supports any
structure of mandators. Thus, the payment processing centre can run a
single IBM Safer Payments installation that serves a number of its
mandators, yet each of its mandators can optionally also serve
submandators (and so forth). Each mandators can access IBM Safer
Payments as if it is its own fraud prevention system, having its portfolio data
"Chinese-walled" from the other mandators.

The mandator structure in IBM Safer Payments encompasses all aspects of
fraud prevention. For instance the payment processing centre can define a
"vanilla" fraud prevention model that deals with all standard fraud patterns.

If a mandator feels that it needs to add (or subtract) any decision rules or
other elements to (from) a model, it can do so without any effect on all other
mandators. Since typically these "individualizations" involve only a small
fraction of the settings of the "vanilla" fraud prevention model, much work is
saved. The result is a standardized solution where any level of
individualization can be made with minimum effort.

It should be noticed that using multiple IBM Safer Payments installations for
a structured portfolio is a bad choice. Not only do administration and
operation cost increase significantly, but the different installations cannot
share important information in real-time. For instance, in a structured
portfolio involving multiple issuers, if a merchant-side point of compromise is
detected, this information would only be available with one IBM Safer
Payments installation. And even if one would install cross-communication
channels for such information, the problem remains that detecting certain
fraud patterns is much harder (and much slower) when each IBM Safer
Payments system only "sees" a fraction of the transaction volume. Therefore,
the only viable choice for a structured portfolio is to run fraud prevention on
a single installation, so that the pattern recognition algorithm can use all
data to verify fraud patterns.

Hierarchical mandator structure

IBM Safer Payments can be configured to support any number of mandators
within a tree type structure. This structure follows a number of rules:

• A first mandator is already pre-defined when installing IBM Safer Payments.
It is defined as the "top" node of the mandator hierarchy ("Infinity
Processing Corp" in the example below).

• There may only be one top node in an IBM Safer Payments configuration. In
situations where there are multiple "top-level mandators", the top node must
be defined and considered a "virtual node", and the multiple mandators are
defined right below it.

• For the definition of each subsequent mandator ("submandator"), the next
upper node of this new mandator must be selected as "head mandator" to
form a hierarchy.

• Mandators may be added later at any position, even "in-flight", without IBM
Safer Payments operation halting. Mandators may also be deleted, once all of
its references in IBM Safer Payments have been deleted or deactivated (not
top mandator).

• Because the mandator structure is key to all IBM Safer Payments operations,
the hierarchy does not allow for moving of mandators to different heads.

For illustrational purposes, now assume the following example hierarchy with
8 mandators:

The example assumes that IBM Safer Payments is operated in the data
center of Infinity Processing Corp that provides issuer and acquirer services
for the 3 mandators: Goldhausen, Rich Int'l, and United Banks. Goldhausen
itself owns Trust Bank. United Banks is a legal construction over
Savings&Loans, Corporate Int’l, and CountryBank. United Banks thus has no
own card portfolios.

There are a number of implications with such a hierarchy:

Inheritance

Within the mandator structure, a mandator below the top mandator inherits
certain properties from mandators in the direct path "above" it. For instance,
CountryBank inherits from United Banks and Infinity Processing Corp.
Properties inherited include model revision elements, such as:

• attributes,

• profiling, and

• rules.

This allows defining model revisions in a "top-down" approach. For instance,
all "standard" attributes would be defined with Infinity Processing Corp, so
they are available with all mandators. Assuming that the three submandators
of United Banks require additional attributes, they would be defined with the
model of United Banks. This way the additional attributes would be visible
and available with United Banks, Savings&Loans, Corporate Int'l, and
CountryBank (An "inherited" attribute can be used just like any "local"
attribute. It, however, can only be edited from within the mandator it belongs
to).

Typically "general purpose" profilings (e.g. "Revenue past 24h", "Number
ATM withdrawals past 30 min at this ATM"), and thus their output attributes,
would also be defined on a high hierarchy level – most likely the top
mandator.

With rulesets and rules, inheritance can be used even more effectively by
defining "general fraud rules" in the top mandator and rules addressing
portfolio specific fraud patterns in mandators down the hierarchy; there can
also be rules that revert a decision made by a rule in a higher node.

Mandator conditions

In a mandated configuration, it must be defined which mandator "owns" a
transaction message/record. For this, each mandator is associated with so-
called "mandator conditions". Typically these conditions involve IIN-Ranges
("Institute Identification Number") or other criteria that define "ownership" of
records.

Mandator conditions are defined on the form that opens below this section
when you select a mandator or create a new mandator using the respective
button of the toolbar. They may use any attribute present in any of the
mandator champions available to this mandator.

IBM Safer Payments interpretation of the mandator conditions follows the
hierarchy: IBM Safer Payments starts with the top mandator and evaluates
the conditions of all its submandators. For each of these submandators, IBM
Safer Payments starts the evaluation of the submandators of this mandator
(if the conditions of submandators of the same mandator are overlapping,
IBM Safer Payments will compute all submandators and continue their path).

Mandator ownership of a transaction message/record is essential for various
access and computational decisions that IBM Safer Payments makes. These
are described in detail below.

Computation

For any kind of IBM Safer Payments transaction message computation
(online or batch), IBM Safer Payments must determine which model revisions
are applied to it. IBM Safer Payments handles this the following way:

• Determine owning mandator (cf. above).

• Find path up to top mandator from owning mandator.

• Apply all champion models from top of the path (i.e. first top mandator, last
owning mandator. This ensures that a submandator is always computed after
a mandator, ensuring that the more "further down" a mandator model is, the
more it has the "last word" on decisions).

Because the owner mandator champion model is always computed last, it
can overrule decisions made by head mandators.

While the principle that the lower mandator in the hierarchy always overrules
the higher one is the correct one for most types of computation in a model,
there is an exception. For instance, there may be rules for which the
mandator up higher in the hierarchy should overrule the lower one. These
rules are located in the "final rulesets" of a model revision. Since only certain
applications do require this, whether or not final rulesets are available is
defined on a per-mandator level in the mandator settings.

Data access

In structured portfolios data access is only granted to authorized users. Data
access comprises – if the respective role privileges are granted – the
following functions:

• view transaction details in query result tables and investigation pages,

• use data for simulation and analysis, and

• use data for rule generation.

In IBM Safer Payments, a user is authorized to view all data that is owned by
the mandator and its submandators the user is associated to.

For ease of use, in each of the functions listed above, the mandators whose
data shall be included in the function can be selected in a checkbox list. For
instance, if a user is associated with United Banks, this user will be
presented with the choice of United Banks, Savings&Loans, Corporate Int'l,
and CountryBank. It is important to notice that the United Banks choice in
this case comprises all transaction records that satisfy the United Banks
conditions and none of the submandators' conditions.

Mandator maintenance

A user that has change privileges for a mandator may create, change, and
delete any submandator "below". A user, however, may not change or delete
a mandator if this user has no change privileges of the head mandator.

This ensures that a user with change privileges for its own mandator cannot
change the mandator conditions for example to expand its ownership of
data.

There is one exception to this for the top mandator. A user with change
privileges for the top mandator can change the top mandator's properties.
Notice that the top mandator cannot be deleted and does not have data
conditions.

Mandator deletion

Because mandator deletion can have disastrous effects when performed
unintentionally, change privileges for mandators shall be granted only to
users that understand these implications well. Even then, it is advisable to
use a separate user account for such activities.

As a matter of precaution, the mandator deletion confirmation dialog
requires the user to re-type the name of the mandator to ensure that the
user is well aware of the action taken.

Granted roles

The access and change privileges to entities associated to a mandator are
controlled by "roles" that are granted to a user for each mandator separately.
For details, refer to user accounts.
back to top

7.8.2 Mandator

Each mandator represents a logical (often also physical) unit that combines
model revisions, access privileges, investigation, users, query and reports. It
typically represents either a customer of a processor or a sub-portfolio. For
details on IBM Safer Payments mandator hierarchies, refer to the online help
page on structural configuration. Each of the counter output attributes is
specified by a set of definitions that are made on this form:

Settings

• Head
Determines (for a new mandator) to which existing mandator it is attached
(as submandator). Notice that you may not change this once a mandator is
created.

• Name
The name is used in all IBM Safer Payments pages and functions.

• Comments
Comments are only for documentational purposes. It is advisable to fully
comment the mandators.

• Remote lookup index
If you are unsure what index to choose, please get in contact with services.
It is a prerequisite to define a remote look up index that holds a value for
every transaction when using the case investigation capabilities of Safer
Payments for the following reasons:

• If you are using the IBM Safer Payments case investigation or query
capabilities, you may flag (and unflag) individual transactions as
fraudulent (or not). When this feature is used in a clustered
configuration, the other instances must follow this flagging. For them to
identify the correct transaction this index is used.

• In order to always see all expected attribute values in case
investigation, external queries, OCCs and CPPs, a remote look up index
needs to be defined in a way that it provides a value for every
transaction. Otherwise, it is possible that certain attribute values cannot
be retrieved from transactional data and appear as empty values.

• Final rulesets
Enables an additional set of rules that are (1) computed after all other
rulesets are computed, and (2) are computed in a sequence "upward" the
mandator hierarchy. This implies that, unlike with normal rulesets, final
rulesets of a higher mandator are computed after a lower mandator, and thus
can override the decisions of mandators located lower in the hierarchy.

• Allow investigation user report
This option enables evaluation of individual investigation user efficiency.

• Include profiling and component statistics in model responses
Enabling this will cause model responses to include counts of how many of
each type of model element were executed on this mandator for that
transaction. In order to be executed for a transaction, that transaction must
satisfy the computation conditions of the model element. (Some model
elements have other restrictions on execution. For example, calendars will
not be executed for transactions with no timestamp.) The model elements
counted this way are: calendars, counters, device identifications, events,
formulas, patterns, precedents, PMML boosted trees, PMML neural networks,
PMML random forests, and rules.

• Simulation memory
The absolute maximum amount of simulation memory available on each
instance for this mandator. Notice that IBM Safer Payments may decline
simulation requests even when this limit is not reached, if the total memory
on this IBM Safer Payments instance does not suffice to serve the simulation
request. Please notice that the memory limit of a certain mandator may not
exceed the memory limit of its head mandator.

• Enable Garante2 logging
This option enables the Garante2 complied logs for the mandator. This option
is only considered, if the Garante2 logging is enabled at the global level in
the misc settings.

• Enable GDPR logging
This option enables the GDPR complied logs for the mandator. This option is
only considered, if the GDPR logging is enabled at the global level in the misc
settings.

Doublet detection

Lets you configure which transactions of this mandator shall be considered
doublets:

• Enabled
Activates doublet detection for this mandator.

• Include DDC
Allows access to DDC values for the evaluation of doublets. This might have
catastrophic effects on performance.

• Index
Defines which index should be used for doublet detection. Usually, this
should be the most distinctive index of your configuration.

• Attributes
Choose a number of attributes, that characterize a unique transaction record.
The number of attributes selected here should be kept to a minimum as this
affects computational performance.

• Send output attributes
Send available output attributes of the found doublet in the message
response.

• Access protection for outputs
Protect access of doublets in order to retrieve outputs in case that those

values are currently accessed by another transaction and therefore could be
modified. If there is still no success to safely access the transaction after the
defined number of attempts, the response will be returned without including
any output values.

• Attempts to retrieve output value
Number of attempts to safely access the doublet in order to return outputs.
If there is still no success after this number of attempts, the response will be
returned without including any output values and will have error code 1011.

• Wait ms between attempts
Wait this amount of milliseconds in between the defined number of attempts.

Doublet detection analyses the sequence of an index entry. If it encounters a
transaction records, that has identical values for all selected attributes, the
currently processed transaction is discarded.

Status alarm indicators in dashboard

Lets you define how status alarms for users of this mandator are shown:

• Explanation text
This text is shown below the header at all times.

• Explanation tooltip
This text is shown as tooltip if the mouse pointer rests over the "Alarm"
header.

• Online help type
Lets you enable default or custom help texts in the header of the status
alarm section.

• custom online help only
This option allows entering of a custom help text. Only the custom help
text will be displayed.

• custom and default online help
This option allows entering of a custom help text. Both, the custom help
text and the default help text, will be displayed.

• no online help
No help text will be displayed

• default online help only
Only the default help text will be displayed.

• Custom online help
If you selected custom help text to be displayed (above), you may enter it
here.

Mandator conditions

For all non-top mandators, these conditions define the data ownership.

Notice that the definition must comprise all data that shall be owned by
submandators of this mandator. Data that satisfies the mandator conditions
of a submandator is not considered to be owned by this mandator.

Mandator custom CSS layout configuration

IBM Safer Payments enables hierarchical customization of its user interface.
All CSS definitions entered here are applied to this mandator and all its
members (and their members).
back to top

7.8.2.1 Conditions

This element uses conditions. You can find further information in the
conditions chapter:
9.4.1 Conditions

back to top

7.9 Charts

The table lists all charts that are defined and for which you have access
privileges.

Charts are displayed on the IBM Safer Payments dashboard page and allow
for key performance indicators ("KPIs") be defined within them.
back to top

7.9.1 Chart

Charts have the following settings:

• Enabled
Lets you temporarily display or hide charts.

• Position
Lets you define in which sequence multiple charts are shown. Smaller
numbers are top positions.

• Mandator
Each chart belongs to one mandator. Once created, mandator ownership
does not change.

• Name
Name that will be shown on the "dashboard" page of IBM Safer Payments.

• Comment
Used to describe the case chart. The comment is also displayed to users on
the "dashboard" page and may thus contain further explanations.

• Explanation text
This text is shown below the header of this chart at all times.

• Explanation tooltip
This text is shown as tooltip if the mouse pointer rests over the chart's
header.

• Online help type
Lets you enable default or custom help texts in the header of the status
alarm section.

• Custom online help
If you selected custom help text to be displayed (above), you may enter
it here.

back to top

7.10 Status alarm indicators

The table lists all status alarm indicators ("SAI"). SAI can be configured to
monitor all important system and health parameter of an IBM Safer
Payments installation (single-instance or clustered). They are displayed on
the dashboard page and may be configured differently for each mandator.
back to top

7.10.1 Status alarm indicator

Status alarm indicators ("SAI") monitor internal or external parameter values
of IBM Safer Payments operations. They can be defined as either "warnings"
or "errors". If a defined threshold is reached, the SAI shows its warning/error
status on the dashboard and (if enabled) sends out an email or mobile text
message.

Configuration

The definition of a SAI involves a number of settings:

• Enabled
Lets you enable/disable SAI without the need to deleting and re-entering
them.

• Position
Numerical value that identifies the relative position of the SAI on the
dashboard. The smaller the number, the higher the position.

• Name
Used to identify the SAI; can be taken into the SAI alert messages (below).

• Comment
Used to describe the SAI; can be taken into the SAI alert messages (below).

• Mandator
Each SAI strictly belongs to one mandator (this ownership cannot be
changed once the SAI is created). You may choose from any SAI that you

have SAI change privileges for. Notice that users will only see SAIs on their
dashboard page that belong to the mandator the user belongs to as well.

• Alarm type
Defines the type of alarm. Depending on the type of alarm, different
subsections containing alarm type specific settings are shown. The alarm
types are:

• Cases in investigation [#]
Monitors number of cases satisfying the specified settings:

• Data from mandators
Restricts the cases monitored to the mandators specified.

• Case state
Restricts the cases monitored to the case state specified.

• Case close code
Restricts the cases monitored to the case close codes specified.

• Case conditions
Restricts the cases monitored to those that satisfy all conditions
defined.

Notice that since cases are replicated within a cluster, this SAI will
show only once on the dashboard.

• Emails unsent [#]
Total number of emails and mobile text messages queued for sending
out (total for all mandators defined in IBM Safer Payments). Since each
IBM Safer Payments instance sends out its Emails and texts individually,
this SAI will be shown for each cluster instance on the dashboard.

• Externally delivered data
Reads SAI value from an external source. The additional setting is:

• External file name
Path and file name of the data delivered.

For details on the file format, scroll to the end of this page.
• Fastlink buffer usage [%]

Monitors utilization of the FastLink outgoing buffer. This SAI will be
shown for each cluster instance on the dashboard.

• Fastlink messages unsent [#]
Monitors backlog of the FastLink outgoing buffer. This SAI will be shown
for each cluster instance on the dashboard.

• IBM Safer Payments memory consumption [GB]
Current memory consumption of IBM Safer Payments in Gigabytes. This
SAI will be shown for each cluster instance on the dashboard.

• IBM Safer Payments reserved memory [%]
Current reserved memory of IBM Safer Payments in percentage of
memory usage limit. Reserved Memory is the sum of simulation,
analysis, rule generation and MDC memory of all champions. This SAI
will be shown for each cluster instance on the dashboard.

• IBM Safer Payments peak memory consumption [GB]
Peak memory consumption of IBM Safer Payments in Gigabytes. Same
as before, only peak value as monitored by the operating system. Only
available on Windows platforms. This SAI will be shown for each cluster
instance on the dashboard.

• Last error log message [h]
Time since last error log message was generated by this instance. This
SAI will be shown for each cluster instance on the dashboard.

• Last fatal error log message [h]
Time since last fatal error log message was generated by this instance.
This SAI will be shown for each cluster instance on the dashboard.

• Last warning log message [h]
Time since last warning log message was generated by this instance.
This SAI will be shown for each cluster instance on the dashboard.

• Encryption Key active since [d]
Time since current encryption keys was activated. This SAI will be
shown for each cluster instance on the dashboard. Since encryption
keys are replicated within a cluster, this SAI will show only once on the
dashboard. *deprecated* use "encryption key valid until"

• Remaining lifetime of key [d]
Time until current encryption key will expire and shutdown incoming
interfaces. This SAI will be shown for each cluster instance on the
dashboard. Since encryption keys are replicated within a cluster, this
SAI will show only once on the dashboard.

• Master Key active since [d]
Time since current master key was activated. This function is
deprecated and will be removed in a later release

• Master Key valid until [d]
Time until current master key will expire and IBM Safer Payments will
force a re-encryption. This SAI will be shown for each cluster instance
on the dashboard. Since encryption keys are replicated within a cluster,
this SAI will show only once on the dashboard.

• Free disk space [GB]
The application will measure the number of available disk space in GB
of this folder. On Linux for example, "statvfs" will be used to calculate
the number of available blocks.

• Oldest open case [d]
Monitors the age of the oldest unclosed case for the mandators defined.
Since cases are replicated within a cluster, this SAI will show only once
on the dashboard.

• Index fill level [%]
Maximum fill level (calculated as the number of distinct entries
currently stored in the index divided by the capacity of the respective
index) of all indexes selected.

• MCI average latency [ms]
Average internal latency in the selected period of time for messages in
the Message Command Interface without network communication.

• MCI maximum latency [ms]
Maximum internal latency measured in the selected period of time for

messages in the Message Command Interface without network
communication.

• MCI latency violations [%]
Percentage of transactions that take longer to calculate than the
maximum latency in settings.

• Number of Python background threads [#]
Number of OS threads currently executing a Python function in the
background. High numbers indicate potential issues with slow or
hanging Python functions. Search for system log ID 756. Hanging
Python functions can only be stopped by restarting the Safer Payments
instance.

• Retention usage [%]
Compares actual total number of transactions in MDC against expected
number of transactions per year in case retention by time is enabled.
Shows the result as a percentage of the expected transactions per year,
so 100% means the actual total number of transactions per year
exactly matches the expected number of transactions per year.

• Operating system total physical memory usage [%]
Percentage of physical RAM used on server. This includes IBM Safer
Payments, the operating system, and all other software that runs on the
server. If the available physical RAM is low, IBM Safer Payments
operation may slow down to a degree that renders stable operations
impossible. Only available on Windows platforms. This SAI will be
shown for each cluster instance on the dashboard.

• Transaction message rate [1/s]
Monitors number of transaction messages satisfying the specified
settings:

• Data from mandators
Restricts the transaction messages monitored to the mandators
specified.

• Data points
Lets you define a number of past periods used to average the
value. Averaging is important with transaction message streams
that have a high degree of fluctuation. The total period considered
is printed for information right of the field (data points * check
each).

• Transaction message condition
Lets you restrict transaction messages according to attribute
values.

This SAI will show for each cluster instance on the dashboard.

• Users logged on [#]
Number of users currently logged on.

• Data from mandators
Restricts the users monitored to the mandators specified.

Notice that since users are served from only one instance within a
cluster, this SAI will show only once on the dashboard.

• Check each
Frequency this SAI is checked.

• Alarm status
Each SAI can be defined to either indicate an "error" or a "warning". If you
like both a warning and an error for an alarm status, define two SAIs with
different thresholds.

• Alert above/below
If "below" or "above" are checked, their respective threshold entry fields
become visible and allow for the entry of values that if exceeded cause the
SAI to go into alarm state

• Dashboard messages
Specify how SAI are shown on the dashboard page:

• Display text
Template for text shown on the dashboard with each SAI line. Because
of the limited space, you may want to keep this text short. You may use
the message variables explained below to include dynamic contents.

• Display tooltip
Template for text shown as "tooltip" style pop-up message when the
mouse pointer hovers over the display text. Because the tooltip is not
hard limited on size, you may use this to display more details about the
alarm than with the display text. You may use the message variables
explained below to include dynamic contents.

• Alert by Email
Enables SMTP delivery of email or text message. Once enabled, more fields
are shown below:

• Email from
Email address (name@domain.com) that should be displayed as the
sender of the alert. If this field is not set, the default email from
address of the IBM Safer Payments settings is used.

• Email to
Email address (name@domain.com) of the recipient of the alert.
Multiple recipients can be entered if separated by comma or semicolon.

• Email subject
Text template for the subject line of the email send out. You may use
the message variables explained below to include dynamic contents.

• Email body
Text template for the email body send out. You may use the message
variables explained below to include dynamic contents.

Template variables

Within the display text/tooltip and the email subject/body templates, you
may use the following variable fields:

• {externalMessage}
With all external alarms, the delivering file can contain a "message text".

This variable field is replaced with that text. Notice that if this "message
text" contains any of the other variable fields, they will be filled in as well.

• {name}
This variable field is replaced with the name of the SAI. If the name text
contains any of the other variable fields, they will be filled in as well.

• {comment}
This variable field is replaced with the comment of the SAI. If the name text
contains any of the other variable fields, they will be filled in as well.

• {value}
This variable field is replaced with the current (numeric) value of the SAI
using 3 decimals (when it was last computed).

• {integerValue}
This variable field is replaced with the current (numeric) value of the SAI
using no decimals (when it was last computed).

• {thresholdAbove}
This variable field is replaced with the (numeric) value of the "above"
threshold.

• {thresholdBelow}
This variable field is replaced with the (numeric) value of the "below"
threshold.

• {lastUpdateTimestamp}
This variable field is replaced with timestamp the SAI was last computed
(and the current value of {value} was derived).

• {alarmTimestamp}
This variable field is replaced with timestamp the last alarm was triggered.

• {mandator}
This variable field is replaced with the name of the mandator to which the
SAI belongs.

• {instanceId}
This variable field is replaced with the instance ID of the IBM Safer Payments
instance.

• {instanceName}
This variable field is replaced with the instance name of this IBM Safer
Payments instance.

Template conditions

Before the template variables are filled in (above), you may define
conditional text elements that are displayed only if the last computed value
of the SAI meets defined criterion.

The format of these conditions is:
 IF(value op value:text)

As op (operators) you may use: "<", ">", "<=", ">=", and "=". value is the
last computed value of this SAI and text is the text that is filled in instead of
this condition when the condition is met.

For example:
 IF(value < 0.5:Last Warning {value}h ago)IF(value>=0.5:No warning
within 0.5h)
will get replaced with the text "Last Warning 0.3h ago" if the value of the SAI
was 0.3 and will get replaced with "No warning within 0.5h" if the value was
5.9.

Remarks

• All SAIs are computed periodically, each within its own IBM Safer Payments
service thread.

• Each SAI computes/updates according to its frequency settings. If an alert
(email/text) is generated, it is generated at exactly this time. The dashboard
page refreshes according to its own refresh setting, or respectively, the user
refresh actions, not necessarily synchronous to the SAI computational
updates.
With email generation, the email is generated when the alarm is first
triggered. As long as the alarm remains active, the periodic computation
does not trigger further alarms. Another alarm would only be generated if
the alarm condition is first no longer valid, but then becomes valid again.

• There are no emails generated for the alarm condition being no longer valid.

• Explanation texts and online help options/texts to be displayed on the
dashboard with SAI can be defined with the mandator administration
settings.

• SAIs that monitor via a time series of data points are stored in memory only.
After a restart of IBM Safer Payments, they must build up the time series
before the reading is accurate.

External alarms

The alarm type "external" allows for external systems to deliver SAIs into the
IBM Safer Payments dashboard and email alerting mechanisms. If alarm type
is set to "external", a text entry "external file name" opens in which the path
and file name of the file containing the external indicator values is defined.
The file format is fixed-length text where each line corresponds to one value
delivery. The "frequency" setting defines how often this file is read (last line
only).

The format of each line is:
 YYYY-MM-DD hh:mm:ss S mmm
where S is the status (0: OK, 1: warning/error), and mmm the (variable size)
message that optionally can be included with display and email messages as
detailed above. The timestamp value is taken as the "alarmTimestamp" and can
also be included in messages. Since IBM Safer Payments only reads the last line of
the file, the delivering software program can safely append each alert to the file so
that an audit trail gets created.
back to top

7.10.2 Status alarm indicator as email

If "alert by email" is enabled, each status alarm indicator alert will be also
generated as email.

Subject and body of the email may contain the same variables as in the
display text/tooltip of the status alarm indicator itself.
back to top

7.10.3 Status alarm indicator as event log

If "alert by event log message" is enabled, each status alarm indicator alert
will be also generated as log entry with the event log message number
"474".

The log message shown can be defined in the "log message template", in
which you can use the same variables as in the display text/tooltip of the
status alarm indicator itself.

To enable this event log message for any logging target
(system/audit/external), open the log message number 474 on the "event
log message" administration page.
back to top

7.11 Key performance indicators

The table lists all key performance indicators ("KPI") that are defined and
that you have access privileges for. KPI are displayed in charts on the IBM
Safer Payments dashboard page.

KPI are similar to status alarm indicators. Their differences are:

• KPI trace their indicators as time series and display them as time series
charts on the IBM Safer Payments dashboard.

• KPI do not generate alarms or show alarm status. You may define both a SAI
and a KPI for any indicator that you like both to be shown as time series and
have (an) alert(s) associated to.

• KPI are also used to represent long-term data. They are thus stored both in
main memory (for dashboard display) and on disk, so historical KPI data is
automatically loaded when IBM Safer Payments boots.

back to top

7.11.1 Key performance indicator

The definition of a key performance indicator (KPI) involves a number of
settings:

• Enabled
Sets the KPI definition active. Notice that for each enabled KPI, a separate
IBM Safer Payments service thread is started.

• Chart
Selects in which chart this KPI is to be displayed.

• Position
Numerical value that identifies the relative position of the KPI on the
dashboard chart it is defined in. The smaller the number, the higher the
position. The position values must not to be in sequence.

• Name
This name is used to identify the KPI in the chart legend. The name should
thus be kept short to not consume too much space. The chart legend
displays for each time series: "name [unit/timeunit]" or "name [unit]".

• Comment
This name is used to describe the KPI in the chart legend's tooltip.

• KPI type
Defines the type of KPI. Depending on the type of KPI, different subsections
containing KPI type specific settings are shown. The KPI types are:

• External file
External KPIs are read from disk to allow including data from other
systems to be displayed with the IBM Safer Payments dashboard.
Specific settings are:

• External file name
Path and file name of the data delivered.

• Value unit
Unit of the values of the data delivered (e.g. "trx/min", "cases",
"%"). Will be printed as unit on the chart's diagram.

For details on the file format, scroll to the end of this page.
• Investigation Activities

Monitors investigation activities that can be filtered with the following
specific settings:

• Data from mandators
Restricts the cases monitored to the mandators specified.

• Case actions
Restricts the cases monitored to selected investigation actions.

• Case close codes
If the case actions (above) to be monitored include closed cases,
this selection opens and let you further restricts the closed cases
monitored to the case close codes specified.

• Case classes
Restricts the cases monitored to the case classes specified.

• Time unit
Unit in which the KPI is computed and displayed.

• Data points
Lets you define a number of past periods used to average the
value. Averaging is important with transaction message streams
that have a high degree of fluctuation. The total period considered
is printed for information right of the field (data points * check
each).

• Case conditions
Restricts the cases monitored to those that satisfy all conditions
defined.

Notice that since cases are replicated within a cluster, this KPI will
show only once on the dashboard.

• Logged on users
Number of users currently logged on.

• Data from mandators
Restricts the users monitored to the mandators specified.

Notice that since users are served from only one instance within a
cluster, this KPI will show only once on the dashboard.

• Notifications generated
Monitors number of notifications generated satisfying the specified
settings:

• Data from mandators
Restricts the notifications monitored to the mandators specified.

• Time unit
Unit in which the KPI is displayed.

• Data points
Lets you define a number of past periods used to average the
value. Averaging is important with notification streams that have a
high degree of fluctuation. The total period considered is printed
for information right of the field (data points * check each).

• Transaction message condition
Lets you restrict notifications according to attribute values of their
transaction message.

This KPI will show for each cluster instance on the dashboard.

• Number of cases
Counts number of cases by case classes and status.

• Data from mandators
Restricts the cases monitored to the mandators specified.

• Case state
Restricts the cases monitored to the case states specified.

• Case close codes
If the case state (above) to be monitored include closed cases,
this selection opens and let you further restricts the closed cases
monitored to the case close codes specified.

• Case classes
Restricts the cases monitored to the case classes specified.

• Case conditions
Restricts the cases monitored to those that satisfy all conditions
defined.

• Average latency MCI
Monitors average latency of transaction messages in milliseconds.

• Maximum latency MCI
Monitors maximum latency of transaction messages in milliseconds.

• MCI latency violation
Monitors percentage of transactions that have required
processing/latency of more than the defined threshold in configuration
settings.

• Transaction message rate
Monitors number of transaction messages satisfying the specified
settings:

• Data from mandators
Restricts the transaction messages monitored to the mandators
specified.

• Time unit
Unit in which the KPI is computed and displayed.

• Data points
Lets you define a number of past periods used to average the
value. Averaging is important with transaction message streams
that have a high degree of fluctuation. The total period considered
is printed for information right of the field (data points * check
each).

• Transaction message conditions
Lets you restrict transaction messages according to attribute
values.

This KPI will show for each cluster instance on the dashboard.

• FastLink message rate
Monitors number of transaction messages from incoming FastLink
interface satisfying the specified settings:

• Data from mandators
Restricts the transaction messages monitored to the mandators
specified.

• Time unit
Unit in which the KPI is computed and displayed.

• Data points
Lets you define a number of past periods used to average the
value. Averaging is important with transaction message streams
that have a high degree of fluctuation. The total period considered
is printed for information right of the field (data points * check
each).

• Transaction message conditions
Lets you restrict transaction messages according to attribute
values.

This KPI will show for each cluster instance on the dashboard.

• Retention usage
Compares actual total number of transactions in MDC against expected
number of transactions per year in case retention by time is enabled.
Shows the result as a percentage of the expected transactions per year,
so 100% means the actual total number of transactions per year
exactly matches the expected number of transactions per year.

• MCI thread status
Monitors the number of MCI threads in a state specified by the MCI
thread status settings described below. Due to technical reasons, the
numbers of threads may not always add up correctly. When a thread
transitions from one state to the other (e.g. finishes processing and
starts writing the response), it could be counted for both states for a
short amount of time.

• MCI endpoint
Lets you select the MCI endpoint to be monitored.

• MCI thread status
Lets you select the MCI thread status to be monitored.

• Frequency
Frequency this KPI is checked in seconds.

• Period
Time period for which data points shall be kept in days.

• Auto scale
If checked, the chart scales its own minimum and maximum according
to the data range displayed. It not checked, you may enter a minimum
and a maximum vertical axis value.

• Representation
Lets you select which type of chart is to be used to visualize this KPI.

Remarks

• All KPIs are computed periodically within each its own IBM Safer
Payments service thread.

• Each KPI updates according to its frequency settings. The dashboard
page refreshes according to its own refresh setting, or the user refresh
actions (whatever occurs first).

• KPI are stored in memory for the time period specified only. On disk,
they are stored for an unlimited amount of time. After a reboot, past
data is pre-loaded so that past performance data is shown as well.

• KPI data outside the defined time period is removed from memory once
per day during the end of day gardening job (also for external KPI data
files).

External alarms

The KPI type "external file" allows for external systems to deliver KPIs
into the IBM Safer Payments dashboard. If KPI type is set to "external
type", a text entry field "File name" opens in the form in which the file
name of the file containing the external KPI is defined. Each external
KPI corresponds to a text file named "kpi_FileName.iris" in the "KpiPath"
directory. Each update cycle, the new contents of this file is read.

The format of each line is:

YYYY-MM-DD hh:mm:ss value

where value is the KPI value in floating point representation (for
instance either "9.4150e+002" or "941.5"). The timestamp value is
used to plot the time series data.

back to top

7.12 Case states

The table lists all case states that are defined and that you have access
privileges for.

Case states are part of case workflow elements and allow to add new
investigation stages. Case states are defined on a per mandator basis and
are inherited downwards within the mandator hierarchy. An arbitrary number
of case states can be created and once created, they can be used in case
workflows (Administration -> Case management -> Case workflows). Cases
are worked according to the case workflow definition and through the states
selected from here.

Remarks

Notice that case states "New", "Closed" and "Followup" are default and thus
cannot be changed or deleted.
back to top

7.12.1 Case state

The definition of case states involves a number of settings that are made in
this form.

• Name
Used to identify the case state.

• Comment
Used to describe the case state. You may use this field to explain what this
state is used for.

• Mandator
Each case state belongs to one mandator. Once created, mandator ownership
does not change.

• Exclusive state
Determines whether or not the case state is exclusive. In exclusive state a
case is assigned an investigator and can only be worked by that investigator.
Cases that are in exclusive state are not available to other investigators. Any
case transition to exclusive state will require an investigating user as manual
input.

back to top

7.13 Case close codes

The table lists all case close codes that are defined and that you have access
privileges for.

Case close codes are the choices fraud investigators have when they close a
case in investigation.
back to top

7.13.1 Case close code

Case close codes have the following settings:

• Name
Name that will be shown as standard to the fraud investigator on the "case"
page of case investigation.

• Mandator
Each case close code belongs to one mandator. Once created, mandator
ownership does not change.

• Comment
Used to describe the case close code. The comment is also displayed to users
that work investigation cases. You may thus use it to include case class
specific investigation instructions.

• Fraud status
Each case close code must map to one of the "principal" fraud statuses so
that IBM Safer Payments can interpret case closings for its reporting and
statistical analysis. Available fraud statuses are "fraudulent", "genuine", and
"unknown".

• Case actions
Lets you choose which case actions are triggered when a case is closed using
this case close code.

back to top

7.14 Case workflows

The table lists all case workflows that are defined and that you have access
privileges for.

IBM Safer Payments allows defining freely configurable case investigation
workflows. Case workflows are created on a per mandator basis and are
inherited downwards within the mandator hierarchy. Once created, case
workflows should be used in case classes indicating how cases of each case
class should be worked.

Definition

Case workflow definition consists of:

• case states, and

• case transitions that allow to switch between these states and apply certain
actions on a case.

Each case transition has source states and a target state (from/to).
Execution of a transition will change the state of a case to the target state
specified in the transition settings. In addition to that, there are a number of
other configuration parameters for case transitions.

Once case transitions are defined, they can be executed on cases:

• manually by the fraud investigator, or

• automatically if auto escalation conditions are defined and fulfilled.

Both case transition privileges and auto escalation conditions are configured
from the case class settings when making case workflow selection.

Remarks

When creating a new case workflow, you need to make sure it contains the
two mandatory states ("New" and "Closed") and valid transitions between
the defined case states. Newly created cases are set to state "New". The final
investigation state is "Closed", where cases are considered as closed. While
these two states are mandatory in every case management workflow in IBM
Safer Payments, it is possible to add an arbitrary number of investigation
states in between.

Please notice that you need to update case class settings every time you add
a new transition to case workflow because otherwise the newly created
transitions will be available neither for manual nor for automatic execution.

If this capability of defining new case workflows is not needed, simply use
the default case workflow which comes with IBM Safer Payments installation.
Please note that the default workflow may not be changed.
back to top

7.14.1 Case workflow

The definition of case workflows involves a number of settings that are made
in this form.

• Enabled
Allows you to temporarily enable/disable case workflows.

• Name
Used to identify the case workflow.

• Comment
Used to describe the case workflow. You may use this field to describe how
case investigation will be carried out when using this case workflow.

• Mandator
Each case workflow belongs to one mandator. Once created, mandator
ownership does not change.

• Case states
Lets you select case states that will be used in this case workflow.

• Transitions
You may define one or more transitions between case states selected above.

back to top

7.14.2 Case workflow transitions

Case transitions allow to switch between case states. You can define case
transitions below.
back to top

7.14.3 Case workflow transition

The definition of case transitions involves the following settings that are
made in this form.

• Name
Used to identify the transition.

• Comment
Used to describe the transition.

• Justification codes
Justification codes (aka "reason codes") are the choices fraud investigators
have when executing case transitions. All codes entered here as free text will
be available in the transition form for selection. You can leave this field
empty if no justification is required for executing a certain transition.

• Justification mandatory
If enabled, the investigator will be required to select a justification code
(defined above) when executing the case transition.

• Comment allowed
If enabled, the transition form shown to the investigator will contain an
additional free text field where the user can enter his comments.

• Comment mandatory
If comments for the transition allowed, determines whether or not the
comment is mandatory.

• Bulk transition
If enabled, the following transition can be executed by investigation
supervisors (if appropriate privilege is granted) and working queue managers
via context menu on a single case or on multiple cases in one step. Notice
that if this option is not enabled, the transition will not be available for
execution via context menu.

• Source states
Lets you specify all possible case states from which this transition can
happen.

• Target case class
This option allows you to change the case class of a case when executing the
transition. There are two options for this field available "current" and
"definable".

• Current
Case class will remain the same when the transition is executed. If you
do not want to change case class, simply leave selection on "current"
and specify target state for the transition in the following field.

• Definable
This option will let you choose a target case class and a target state
later from the case class definition when making case workflow
selection.

• Target state
If target case class "current" is selected, you need to specify target state for
this transition.

back to top

7.15 Case classes

The table lists all case classes that are defined for this mandator.

Case generation

In most applications of IBM Safer Payments, the reaction to a suspected
fraudulent transaction is:

• intercepting with the transaction in real-time (typical means of interceptions
are declining a transaction or referring it to a call center for security
screening), and/or

• creation of an investigation case.

Both reactions are triggered by the model revision output attributes, and
carried out by IBM Safer Payments according to its configuration.

With intercepting, the real-time interception codes are defined on the real-
time interception codes page on the admin tab.

Alarms

The creation of investigation cases is a bit more complex. The first step is the
creation of alarms. Each transaction message that is computed with a
CaseClass meta attribute non-zero value is considered an alarm. Alarms are
organized per mandator.

When an alarm is generated, IBM Safer Payments checks if there are
unworked (new) cases for the "same payment entity" to which this alarm is
consolidated. Because this check may take a while (a few milliseconds), this
check is not performed within the (potentially real-time) message
computation. Instead, each alarm generated is fabricated into a case (that
looks as if there was no other case to consolidate with) and put into an
"alarm" class for each mandator.

These not-yet-checked-for-consolidation cases are not displayed with any of
IBM Safer Payments investigation functions. Instead, a scheduled "case
loading" service periodically (as defined with IBM Safer Payments settings)
works this "alarm" class for each mandator and checks for each alarm if it
can be consolidated or not. If it can, consolidation is performed, if not, the
case is put to the "case" class for the respective mandator so it becomes
available to all IBM Safer Payments investigation functions.

Case consolidation

Case consolidation for regular cases (aka "aggregation") is performed
whenever the new alarm hits on an entity (cardholder, merchant) for which
an already unworked case exists. The case score and case class as well as
the reporting attribute values of the "aggregated" case are taken from either
the case or the alarm, whichever has the higher case score. If two alarms
have the same case score, the newer one "wins" the consolidation, as it is
assumed that "newer" means "more current" and thus "more accurate" to
describe the case in the IBM Safer Payments investigation workflow.
Collusion cases are always aggregated with respect to potential points of
compromise. Compromised and affected first parties are consolidated and
skimming time ranges are updated during case aggregation. If a case has
already been worked on it is not used as a target for case consolidation.

Automated case transitions

IBM Safer Payments allows to automate execution of case transitions by
defining a number of conditions on case variables and on reporting attributes
as selected in case class setting. Conditions can be added to each case
transition that is marked as automated. Scheduled jobs will constantly
monitor cases of each case class and fitting cases will be escalated in a
timely manner. You can also setup to send case actions with the execution of
case transitions which could be used to notify investigation supervisors or to
send reminders to investigators, for example. By default, all fitting cases are
escalated every minute. You can change this setting from the system
configuration page.
back to top

7.15.1 Case class

The definition of a case class involves a number of settings that are made in
this form. Two different types of case classes are available to provide specific
information both for "regular" and "collusion" cases. Rest the mouse pointer
over a setting for details. Settings are:

• Enabled
Allows you to temporarily enable/disable case classes without needing to
redefine them or change model rules.

• Case class ID
If a transaction message is computed with a non-zero "case class" value, IBM
Safer Payments checks if any of the case classes bears this number, and if
so, creates an alarm for this case class. Please notice that you may not re-
use numbers of inherited case classes.

• Mandator
Each case class belongs to one mandator. Once created, mandator ownership
does not change.

• Name
Used to identify the case class.

• Comment
Used to describe the case class. The comment is also displayed to users that
work on a case of this case class. You may thus use it to include case class
specific investigation instructions.

• Case workflow
Each case class must define one investigation workflow. Cases of this case
class will be modeled according to the selected workflow.

• Type
There are three different types of case classes available. Regular case classes
for "normal" investigation cases generated by rules, specific collusion cases
generated by collusion processes, and Index Based Evaluation cases for
monitoring.

• Regular
For regular case classes the following additional settings are available:

• Reporting attributes
Selects attributes to be displayed with the investigation case list.
Typically you would choose attributes that described the case for
users to quickly identify it. If you want to enable additional
reporting attributes after cases have already been created for this
case class, you should consider to use a remote lookup index (see
mandator configuration for more information).

• Missed cases report index
This indexes' sequence is used during missed cases reports to
search for fraudulent transactions in the history of a given case's
entity. Only indexes whose attributes were selected as reporting
attributes are available. Cases belonging to case classes without a
missed cases index will be ignored by missed cases reports.

• Enabled for case creation
Allows you to use this case class for case creation. It will be
possible to create cases with this case class even if the case class
itself is disabled. In this case you'll have to enable the case class
first in order to see the created cases for investigation.

• Column sequence
Lets you choose how reporting attributes shall be shown in the
investigation case table. Notice that this table is shown when you
select "case investigation" from the "investigation tab".

• Case consolidation
If enabled, a new alarm can be aggregated into an existing case if
both the alarm's aggregation conditions and the case's
aggregation conditions are fulfilled. When the alarm and case
belong to different case classes only one set of aggregation
conditions is evaluated for each side: For the target's case class
only the first set is evaluated while for the alarm's case class only
the second set is considered.

• Aggregation conditions for target cases
This condition set is evaluated for the potential consolidation
target. It compares the data of the target case on the left side
with the alarm's data on the right. The set can have multiple
groups of conditions. A set is considered fulfilled if any of its
groups are fulfilled or if the set is empty.

• Aggregation conditions for alarms to be consolidated
This condition set is evaluated for the alarm to be consolidated. It
compares the data of the alarm on the left side with the target
case's data on the right. The set can have multiple groups of
conditions. A set is considered fulfilled if any of its groups are
fulfilled or if the set empty.

• Index based evaluation
For index based evaluation case classes the following additional settings
are available:

• Case consolidation
If enabled, alarms can be aggregated into an existing case of this
case class if the case is not yet closed and if both the alarm and
case contain the same value or values for the configured
aggregation index.

• Aggregation index
If case consolidation is enabled this field specifies which index is
used to perform case aggregation. In a typical use case an index
based evaluation would use a customer index as the primary index
and an account index as the associated index. When enabling case
aggregation using the associated index all associated index values
are evaluated meaning that an alarm for customer 1 with accounts
A and B will only be aggregated to a case that also has accounts A
and B and only those. When choosing aggregation on the
associated index, cases from index based evaluations that
do not use an associated index will never be aggregated.

• Collusion
Collusion cases provide information about the detected (potential) point
of compromise, compromised first parties and potentially affected first
parties. Instead of reporting attributes there are additional case
attributes, such as First skimming transaction and Last skimming
transaction. During aggregation all such case attributes are updated.
Collusion alarms are always aggregated for detected potential points of
compromise.

• Visible to submandator investigators
If disabled this case class and cases belonging to the case class are hidden
from submandator investigators. Cases that already belonged to the private
working queues of submandator investigators are reset to state "New" and
put into an applicable public working queue. This setting also affects visibility
of case classes in the case class table on the administration tab for
administrators associated with submandators. This setting does not affect
the visibility of the case class on the model and report tabs.

• Aggregation trailing
Lets you enable or disable logging of alarm aggregation in case audit trail. If
disabled, alarm aggregation logs will not be added to case audit trail.

• Limit the number of loaded audit trails
If enabled, allows you to specify the number of audit trail entries to be stored
in memory. The remaining audit trail entries will be available on disk and can
be loaded on demand from the case investigation page.

• Number of audit trail entries per case
The maximum number of audit trail entries per case to be stored in memory.
If currently there are more audit trail entries in the memory than the number
specified here, these entries will be dumped to the disk within the end of day
job (being executed once a day). Please note that increasing this number will
not result to immediate load of audit trail entries from disk but will only
affect new audit trails to be added to a case. If you want the increased
parameter to become effective for all existing cases, you need to restart the
application.

• Queries
Lets you choose which of the index queries defined are automatically
displayed on the case investigation "case" page for cases of this case class.
Please note that only one fitting index query (with respect to counterparty
and first party indexes) is displayed for potential points of compromise and
affected first parties for cases of type collusion.

• Highlight case alarms in queries
If enabled, all transactions belonging to a case will be highlighted in query
results.

• Masterdata
Lets you choose which masterdata values are to be included with cases of
this case class. For more information on masterdata, refer to the help page
on the masterdata definition page. Please note that only masterdata
attributes linked to the counterparty index are displayed for cases of type
collusion.

• Case Actions
Lets you choose which case action values are to be included with cases of
this case class.

• Case Close Codes
Lets you choose which close codes can be used to close a case of this case
class.

• Case Transitions
This section contains all case transitions populated from the selected case
workflow that can be executed on cases of this case class. Please note that
transitions listed here need to be configured before you can use them in the
case investigation module.

back to top

7.15.2 Case transitions

Below you can find all case transitions of the selected case workflow. You need to
update some of the settings by adding user groups and/or auto escalation
conditions for each transition before using the transitions in the case investigation
module.
back to top

7.15.3 Case transition

Every case transition from the selected workflow needs the following settings
to be defined.

• Case actions
Allows you to select case actions that will be send automatically when this
case transition is executed.

• Case close codes
Allows you to select case close codes, which can be used with this transition.

• User groups
Specify which user groups are privileged to execute this case transition. If
left empty, only investigation supervisors and working queue managers will
be privileged execute this case transition.

• Automated transition
If enabled, the following transition can be executed automatically by the
system (if auto escalation conditions below are defined and fulfilled).

• Case close code
You need to specify a case close code for automated closing case transitions.
Cases will be closed with the selected code.

• Followup user
You need to select an investigator for automated transitions to exclusive
state. Cases will be added to the working queue of the selected user when
the transition is executed.

• Auto escalation conditions
In addition to manual execution of case transitions, it is also possible to
trigger case transitions automatically by defining a number of case
conditions. Each condition will be evaluated, and cases that satisfy all
conditions defined will be escalated. If you define no condition here, the
transition will be executed.

• Exit case investigation screen after transition
If enabled, after executing the transition, the investigator will be returned to
the page from which the case was opened, i.e. case selection, case search or
work case. Note that it may happen that work case pulls the same case again
after the transition such that despite this option being enabled, the
investigator effectively stays on the same page. Transitions ending in
exclusive states or in closed state do not offer this setting and always behave
as if it was enabled.

Remarks

Please note that cases that have already been closed (case state "Closed")
are not considered as escalation targets and thus no automated transition
can be executed on these.
back to top

7.15.4 Defined risk lists

Information about defined risk list entries can now be integrated into the
case investigation screen. When opening a case a new section will be
displayed showing you all the risk lists for which an entry exists related to
the currently viewed case. If an investigator has the proper privilege they
can use this new section to add entries to risk lists, change existing entries
or remove them.

The defined risk lists that are shown for a given case have to be selected
within the case class definition. Only the lists selected there will be available
to an investigator. Every investigator will be able to see existing risk list
entries but only investigators with a special privilege will be able to add, edit
or remove risk list entries from within the case. The case class definition
offers the following options for risk lists:

• Defined risk list: This selects a risk list to be available for this case class.
Note that every risk list is only allowed to appear once in this whole section.

• Color: Inside the case a color will be displayed right next to a risk list entry.
This can be helpful for investigators to gather certain information at a glance
without having to read through the details.

back to top

7.16 Case groups

Case Groups are used as a mechanism to assign CPPs to specific
investigation cases, and that also means to assign to a mandator because a
case group must be defined based on one mandator. Once a case group is
defined it is available in the CPP selection application. When adding a new
CPP the case group it belongs to must be selected. The table shows all case
groups.

The following columns are always shown:

• Mandator
Name of the mandator to which the case group belongs.

• Name
Name of the case group.

• Enabled
Indicates, if the case group is enabled.

• Comment
Comment of the CPP.

• Inherit to submandators
Indicates, if the case group inherits to submandators. If this is the case,
submandators of the listed mandator are able to view and create CPPs of/for
the case group.

• Evaluation attribute
An attribute of closed fraudulent cases that are connected with a CPP. It will
be added up and displayed in the CPP table.

Remarks

• Case groups must be defined and enabled to create and use CPPs.

• Notice that you can sort the investigation table by clicking on column
headers. To sort for more than one column, simply click the columns in
sequence (the former "inner" sorting will remain). Sorting preferences are
stored with your user's account.

back to top

7.16.1 Case group

The configuration of case groups.

• Enabled
A case group can be enabled or disabled. CPPs cannot be assigned to
disabled case groups. If a case group that contains CPPs gets disabled, the
belonging CPPs are not displayed in the CPP table anymore and cannot be
assigned to cases.

• Inherit to submandators
CPPs of case groups that inherit to submandators are visible to
submandators. Furthermore, submandators are able to assign CPPs to the
case group and view and change belonging CPPs.

• Name
The name of the case group.

• Comment
A comment which is added to the case group. Comments do not influence
computation and are informational only.

• Mandator
The mandator the case group belongs to.

• Evaluation attribute
Choose an attribute that will be added up and displayed in the CPP table, if it
belongs to a case that was closed as fraudulent and is connected with a CPP.
The CPP list displays the sum of values in the column 'Sum of evaluation
attribute' from all the cases to which the CPP is assigned to.

back to top

7.17 Case types

The table lists all case types that are defined and that you have access
privileges for.

Case types allow a way to highlight all cases that match conditions selected
by the investigator.

Definition

Each case type defines insertion conditions and an associated color with it.
Cases that satisfy the insertion conditions are highlighted with the chosen
color on the Case Selection page.
back to top

7.17.1 Case type

Case types have the following settings:

• Name
Used to identify the case type.

• Comment
Used to describe the working queue. You may use this field to explain what

this working queue is used for.

• Color
Allows you to select a color to highlight all cases of given case type, on the
Case Selection page.

• Priority
Numeric value ranging from 1 to 10,000 indicating the priority of the case
type. Evaluation is performed in ascending order of the priorities. That
means the higher the number, the LATER the case type is evaluated within a
mandator.

• Mandator
Each case type belongs to one mandator. Once created, mandator ownership
does not change.

• Insertion conditions
You may further restrict the cases to be added to the case type to those
whose reporting attributes and data satisfy certain criteria by defining
conditions here.

back to top

7.18 Working queues

The table lists all working queues that are defined and that you have access
privileges for.

Working queues provide a queuing and prioritization mechanism for
investigation cases. Cases are constantly evaluated and sent off to working
queues. By this way cases are becoming available to investigators assigned
to the working queues.

Definition

Each working queue defines insertion conditions and selection of users
assigned to the queue. Cases satisfying the insertion conditions are being
added to the working queue. Investigators can then work cases by pulling
them from the queues they are assigned to. Besides having assigned users,
working queues might also have queue managers who besides doing case
investigation, can also see the list of cases available in the working queue. In
addition to that, working queue managers will be privileged to:

• Take over investigation cases that are reserved (follow up) for other
investigators

• Interrupt investigation cases that are currently worked by other investigators

• View cases that are being investigated by another investigator

• Execute bulk case transitions via context menu

It is possible to prioritize working queues by assigning a numeric value to it.
This prioritization indicator is used when evaluating cases, and when pulling

a case from the queue.

Remarks

Notice that working queue prioritization only influences the sequence of
working queues within a mandator. That means that first working queues of
mandators on higher levels within the mandator hierarchy are evaluated.
back to top

7.18.1 Working queue

Working queues have the following settings:

• Enabled
Allows you to temporarily enable/disable the working queue.

• Priority
Numeric value ranging from 1 to 10,000 indicating the priority of the working
queue. Evaluation is performed in ascending order of the priorities. That
means the higher the number, the LATER the working queue is evaluated
within a mandator.

• Name
Used to identify the working queue.

• Comment
Used to describe the working queue. You may use this field to explain what
this working queue is used for.

• Mandator
Each working queue belongs to one mandator. Once created, mandator
ownership does not change.

• Cases from mandators
Restricts cases to be added to the working queue to the mandators specified.

• Users
Selection of users assigned to the working queue. The assigned users will be
able to pull investigation cases from the working queue.

• Queue managers
Queue managers can see the list of all cases associated with the working
queue. They will also be privileged to perform all supervisor actions (taking
over cases, interrupting, viewing cases of the working queue users and
executing bulk transitions).

• Show closed cases
Additionally, take on board closed cases (to inspect forepassed activities).

• Insertion conditions
You may further restrict the cases to be added to the working queue to those
whose reporting attributes and data satisfy certain criteria by defining
conditions here.

back to top

7.19 Case Action Inputs

Case action inputs are user-configured input fields to be used within case
action message templates. These inputs are intended to be manually filled
out by the investigator before sending the case action or to be automatically
filled with a default value configured for each input.

Case action inputs are intended to be used in case actions that use a
simplified view. The simplified view will contain a field for every case action
input in the case action's message template. The field will be displayed
according to the label and type settings of the case action input. The
following types are supported:

• Numeric value: Displays a numeric input to the investigator. The field can
be left empty or filled with numbers. The number of supported decimals can
be configured inside the case action input and all numbers entered by a user
will automatically be adjusted to follow this setting. This means that when
setting up a case action input with two decimals every number entered will
appear with two decimals in the preview and sent message even if the
investigator entered them with less decimals or more.

• Text value: The investigator is presented with a text input that can hold
strings of arbitrary length.

• Date selection: This option presents a date picker to the investigator. The
selected date is translated into an ISO timestamp (YYYY-MM-DD HH:MM:SS)
with the hours, minutes and seconds being set to zero. The timestamp is
sent out exactly as the user configures it without any timezone settings
being taken into account.

• Date and time selection: Similar to the previous type just with an
additional field for selecting a time value. The selected values are again
translated into ISO timestamps and sent out exactly as the investigator
selects them without any timezone adjustments being made.

• Toggle: Displays a toggle component to the investigator. Toggles can either
be enabled or disabled which is translated to the numbers 1 or 0 in the
preview and sent message.

• Dropdown: Use this option if the investigator should be able to select one of
several pre-defined values. Each option can be configured in the case action
input form with at least one option being necessary to allow saving. Each
dropdown option has a value and a label. The label is what's displayed to the
investigator while the value is what will show up in the preview or message
being sent. Note that no formatting is applied to the values and that each
value and label has to be unique within its case action input.

For almost every type of input a default value can be configured. Default
values can be left empty and are then treated as being nil. Such case action
inputs show up as empty fields in the simplified view. The value used for
previews and sent messages depends on the nil value settings of the

outgoing channel configuration the case action belongs to. For dropdowns the
first dropdown option is considered to be the default value.

Case action inputs can be used in case actions without a simplified view. If
no preview functionality is present the case action input placeholder will be
replaced by the input's default value or an empty string if there is none. For
more information on previews and the simplified view refer to the online help
for case actions.
back to top

7.20 Case actions

Case actions are messages sent by IBM Safer Payments to other systems
during case investigation. Once case actions are defined, they can be
configured for inclusion both for case classes and case close codes. (All these
configurations are available from the administration tab.) Notice that you
first have to define case actions, before they can be enabled for inclusion
with case classes and case close codes.

With case close codes, the enabled case actions are automatically executed
when a case is closed with the respective case close code.

With case classes, the enabled case actions are available for manual trigger
(by the fraud investigator) during the investigation of a case.

The uses for case actions are manifold. Here are some examples:

• With a case closed as fraud verified, the respective case close code could
also send a case action to the cardholder management system to close the
account and invoke the embossing of a new card.

• During the investigation of a case, case actions can be used to send emails
to the cardholder or merchant involved with the case.

back to top

7.20.1 Case action

The definition of a case action involves a number of settings that are made in
this form. Rest the mouse pointer over a setting for details. Settings are:

• Enabled
Allows you to temporarily enable/disable case actions without the need of
redefining them or change model rules.

• Requires confirmation
Allows you to require an additional confirmation when manually sending
certain case actions. When sending one or more case actions from the case

investigation screen an additional confirmation dialog will be shown if at least
one of the selected actions has this setting enabled. The confirmation dialog
displays all the selected case actions, highlighting the case actions that need
confirmation. When canceled, no case action is executed including the ones
that do not require confirmation. When confirmed, all the selected case
actions are executed. Automatic case actions executed as part of case
transitions will not be impacted.

• Name
Used to identify the case action. The name does not appear in the generated
message.

• Comment
Used to describe the case action. The comment does not appear in the
generated message.

• Mandator
Each case action belongs to the mandator of the selected outgoing channel
configuration. Once created, mandator ownership does not change.

• Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the case
action message. Outgoing channel configurations can be defined in the
"cluster" tab and then referenced here. Depending on the type of the chosen
outgoing channel configuration, the remainder of the form changes to display
protocol specific settings. The values in the form will be pre-filled by default
settings defined in the outgoing channel configuration, but offer to overwrite
the values for the case action.

• SMTP
Case actions shall be sent by email using a SMTP type email service.
SMTP case actions are queued and are sent out periodically (defined in
IBM Safer Payments configuration) as batch. If the SMTP service is
temporary unavailable, IBM Safer Payments attempts re-sending them
also periodically. SMTP case actions are also stored on disk to ensure
that unsent SMTP case actions will be attempted to be resent after a
hard stop of IBM Safer Payments. This choice allows the following
entries:

• Format values
Format/unformat values which are inserted in the message
template.

• Email "from" address
The sender address used for the outgoing SMTP case actions.

• Recipient address
Lets you choose between a "constant" recipient address (entered
below) or taking the string value of the email meta attribute by
choosing the option "variable from meta attribute" of the current
transaction message. The latter allows for sending emails to
individual cardholders, merchants, or acquirers.

• Constant email "to" address
If the recipient address is "constant", all outgoing SMTP messages
are sent to this address. You may use multiple email addresses
here, just separate them by semicolon.

• Subject template
Text template for the subject line of the outgoing SMTP message
(see below).

• Body template
Text template for the message body of the outgoing SMTP
message (see below).

• Support HTML formatting
When activated, mails send HTML formatted text as well as plain
text (inside one message). Provide HTML formatted text through
"HTML body template" box and plain text through "Body template"
box.

• Encode HTML body base64
When activated, the HTML body text will be base64 encoded. Note
that some more complicated HTML formatting might not be
rendered correctly with base64 encoding. Please try with test
notification first.

• HTML body template
HTML formatted text template for the message body of the
outgoing SMTP message (see below).

• Message or HTTP Message
Case actions shall be sent by IP message to any other system.
Analogous to SMTP case actions, message case actions are stored until
they can be sent successfully. These choices allow the following entries:

• Format values
Format/unformat values which are inserted in the message
template.

• Content type (HTTP only)
The content type that will be used in the HTTP header. For
additional information on how to use multipart forms, click here.

• Message template
Text template for the message (see below).

• File
Case action shall be stored as a file. There will be one file per each case
action and the file name includes the system time with microseconds.
This choice allows the following entries:

• Format values
Format/unformat values which are inserted in the message
template.

• File name prefix
Allows to define a file name prefix to distinguish messages from
different case actions using the same outgoing channel
configuration.

• Message template
Text template for the message (see below).

• SQL
Case action shall be executed as ODBC SQL. You have to install and
configure a valid ODBC connector on all machines with active AMI. Make

sure, that you can reach your database with your ODBC connector,
before configuring ODBC SQL actions. The integration should be
compatible with mySQL, postgreSQL and oracle ODBC connectors. The
following settings are available for this type:

• Format values
Format/unformat values which are inserted in the message
template.

• SQL Query
SQL template for the message (see below).
This could be for example:

INSERT INTO fraud VALUES ({PAN}, sysdate, 'REASON_1');

{call iris.Update_Status({PAN}, {Trx_Id}, 'REASON_2',
{Trx_Time})}

• Template file (.docx)
With word template file (.docx) case actions it is possible to generate
template based word documents automatically from a case. First a
suitable .docx template file has to be created with Microsoft Word
(version 2010 or higher) and uploaded.

Within the .docx template document it is possible to define placeholders
for reporting attributes, query results, masterdata, user data case
variables, and text modules which are filled when sending the case
action. The values will be formatted according to their data type and
"format" setting.

You can apply different font styling options to your placeholders. Please
note that you might need to choose a specific font family for some
placeholders to make sure the filled text is rendered correctly. For
example, if the replacement text contains Thai characters, font family
for the corresponding placeholder could be set to "Browallia New" or to
any other font family that includes Thai characters.

When a template file (.docx) case action is sent from a case, the
investigator may decide if the generated template file (.docx) document
shall be downloaded or if the document shall be attached directly to the
case. To add a template file (.docx) document directly to the case, case
attachments have to be activated for investigation.

• URI
With URI case actions it is possible to generate URI calls from a case.

• URI template
URI template for the message (see below).
This could be for example:

skype:{CUSTOMER_PHONE}?call

• Encode values
Choose whether the replaced values need to be encoded with
percent-encoding.

• Simplified view for investigators
Enables the simplified view for this case action. Refer to the "Simplified view"
section below for more details.

Text templates

The message, subject and body templates configured for different types of
case actions support a wide range of placeholders that are filled dynamically
when sending the case action. The following placeholders are available:

• Reporting attributes:
Placeholders for reporting attributes are defined with curly brackets
{attribute name}. You can use every attribute, that was defined when
creating the case and which was reachable by the mandator. For cases
created by an index based evaluation you can also use curly brackets to
reference "Hit Condition Values" by their name.

• Query results:
There are two different types of query result placeholders, depending on the
type of case action they are used in.

• Placeholder for e-mail or sql-notifications:
Placeholders for query results are defined with curly brackets. They can
only be used for case action previews and if query results were added
to the case action previously. It is necessary to define the selected
columns as attribute names in curly brackets too {{attribute A}
{attribute B}{attribute C}}. This would create following result table:
attribute A attribute B attribute C
A1 B1 C1
A2 B2 C2

The data has to be selected in case queries and added through the
context menu. There will be no query result, if there was no selected
data before sending the case action. Query results in e-mails will always
be sent out as CSV file and will be visible in the e-mail body.
For SQL Notifications, you can only use one attribute name between
double curly brackets {{attribute A}}. An example for SQL would be
UPDATE my_table SET column1='{{attribute A}}', column2='{{attribute B}}'
WHERE column3='{{attribute C}}'
If there are two entries added to the case action, this would perform
two sql database updates.

• Placeholder for types File, HTTP and Message:
The template syntax, usage and resulting content are the same as for
SQL and e-mail case actions. Instead of using HTML to format the table,
its rows and columns are separated by characters which can be selected
in the system configuration. An example could be to separate the
columns using semicolons and the rows using a line break. The result
would look like this:
attribute A;attribute B;attribute C
A1;B1;C1
A2;B2;C2

• Placeholder for word template file (.docx) documents:
Placeholders for query results are defined by creating a table inside the
Word document with at least one table row. Within the table header the

selected columns can be defined with attribute names inside curly
brackets. The first table row defines if the column will be filled with
transaction data of the case action or not. In the case that the column
should be filled, add an opening and closing curly bracket "{}" in the
first table row in the respective column.
This could be for example:
{TrxDateTime} {Amount} {Merchant ID}
{} {} {}

Query results can only be used when query results were added to the
case action previously. The data has to be selected in case queries and
added via context menu. There will be no query result, if there was no
selected data before sending the case action.

• Case alarm tables:
The system configuration option "case aggregation history" causes cases to
store a list of all aggregated alarms belonging to it. Those alarms behave
identical to query results in that they can be added to the case action section
and be referenced using the exact same placeholders. However, it's not
possible to add both case alarms and query results to case actions at
the same time!

• Masterdata:
Placeholders for masterdata attributes are defined with double square
brackets [[masterdata attribute name]]. You can use every masterdata,
that is accessible by the mandator.

• User data variables:
Placeholders for user data are defined with single square brackets e.g.
[InvestigatingUserName]. You can switch between users by changing the
prefix

• [Investigating..]: The user, that is currently investigating the case.

• [Viewing..]: The user, that is viewing the case and sending the case
action.

• [Closedby..]: The user, that closed the case.

The prefix has to be combined with a user variable name. For example,
[..UserName] could be used as [InvestigatingUserName],
[ViewingUserName] or [ClosedbyUserName]. The following user
variable names are available:

• [..UserName]: The username as string.

• [..UserNameAndLogin]: The username, followed by the user login in
parenthesis.

• [..UserUid]: The system internal user UID.

• [..UserEmail]: The users e-mail address.

• [..UserPhone]: The users phone number.

• [..UserLocation]: The users location.

• [..UserMandator]: The users mandator name.

• [..UserMandatorUid]: The UID of the users mandator.

• Case variables:
Case variables are also defined with square brackets [GeneratedOn]. You

can use following placeholders:

• [CaseClass]: The name of the case class.

• [CaseClassUid]: The UID of the case class.

• [CaseClassId]: The ID of the case class.

• [GeneratedOn]: The generation date as ISO formatted date.

• [GeneratedOnTimestamp]: The generation date as UNIX timestamp.

• [ClosedOn]: The case close date as ISO formatted date.

• [ClosedOnTimestamp]: The case close date as UNIX timestamp.

• [FollowupOn]: The followup date as ISO formatted date.

• [FollowupOnTimestamp]: The followup date as UNIX timestamp.

• [LastActionOn]: The last action date as ISO formatted date.

• [LastActionOnTimestamp]: The last action date as UNIX timestamp.

• [StateChangedOn]: The case state change date as ISO formatted date.

• [StateChangedOnTimestamp]: The case state change date as UNIX
timestamp.

• [Score]: The case score.

• [Hits]: The case hits.

• [State]: The investigation state.

• [StateUid]: The UID of the investigation state.

• [ExtendedState]: The investigation state as visible in the case selection
table.

• [LastState]: The last investigation state.

• [LastStateUid]: The UID of the last investigation state.

• [FraudStatus]: The fraud status of the case close code, if the case was
closed.

• [CaseCloseCode]: The case close code, if defined.

• [CaseCloseCodeUid]: The UID of the case close code.

• [Mandator]: The case mandators name.

• [MandatorUid]: The case mandators UID.

• [CaseUid]: The case UID, as visible in the case selection table (1-123).

• [CaseUidRaw]: The case UID, as visible in url or in file system
(1000000000000123).

• [Memo]: The text value of memo field.

• [CaseAgeInDays]: The time since case generation in days.

• [CaseAgeInHours]: The time since case generation in hours.

• [CaseAgeInMinutes]: The time since case generation in minutes.

• [DaysSinceLastAction]: The time since last action in days.

• [HoursSinceLastAction]: The time since last action in hours.

• [MinutesSinceLastAction]: The time since last action in minutes.

• [DaysSinceStateChanged]: The time since case state changed in days.

• [HoursSinceStateChanged]: The time since case state changed in
hours.

• [MinutesSinceStateChanged]: The time since case state changed in
minutes.

• [Firstparty]: Not compromised first party, only available for collusion
type case classes.

• [Counterparty]: Counterparty of the case, only available for collusion
type case class.

• Text modules:
Text modules are defined as [TextModule]. An investigator may choose one
text module when they send a case action during case investigation. If one
was chosen, the placeholder in the message is replaced by the text template
of the text module. Otherwise the placeholder is removed from the case
action message. Notice, text module placeholders can only be used in the
body template. In the subject template, the placeholders for text modules
are not replaced. Please notice as well that text module placeholders can
only be used in case actions of type SMTP, SQL and template file (.docx).

• Loop construct for regular cases:
The loop construct allows to print out query results or alerted transactions,
that were added to the case action section on the case investigation page in
a flexible format in contrast to the query results placeholder that always
returns a table. They are available for case action types "File", "HTTP",
"Message", and "SMTP". The general syntax is:
{[][]}
The first set of square brackets contains a text template that can contain
references to attributes, case variables, text modules and masterdata. This
text template will be repeated and evaluated for each query result or alerted
transaction. In case no data was added to the case action section, all alerted
transactions will be iterated through. The second set of square brackets is
optional and can contain a string that separates the outputs of each iteration.
Example: Assuming we have a case for PAN "1111222211112222" with two
alarms: one with an "Amount" value of "1.0" and another with a value of
"2.0". We now could define a template like this:
{[{PAN} | {Amount}][\n]}
The result would be:
1111222211112222 | 1.0
1111222211112222 | 2.0

• Loop construct for index based evaluation cases:
Index based evaluations that used multiple value evaluation can have several
associated index nodes in one case. To retrieve information specific to those
index nodes like the value itself or associated masterdata a loop construct
was introduced for case actions of type "File", "HTTP", "Message", and
"SMTP". The general syntax is:
{[][]}
The first set of square brackets contains a text template that can contain
references to attributes, case variables, text modules and masterdata. This
text template will be repeated and evaluated for each associated index node
in the case. The second set of square brackets is optional and can contain a
string that separates the outputs of each associated index node. Example:
Assuming we have a case for customer "A" and accounts "1" and "2". We
now could define a template like this:

{[{PAN} | [[Account Type]]][\n]}
Assuming account "1" is a private account and "2" is a business account, the
result would be:
1 | private
2 | business
Please note that the "Account Type" masterdata is defined on the "PAN"
index and therefore changes in each iteration of the loop. This is a special
behaviour of index based evaluation cases. In regular cases only the
masterdata values associated with the current alarm (the one that is
highlighted in the alerted transactions table) will be used.

• Index based evaluation variables:
Index based evaluations offer special fields and placeholders:

• [HitNodeValue]: The node value that triggered the alarm.

• [HitAssociatedNodeValue]: The associated node value that triggered the
alarm. If none is present the placeholder will be replaced with an empty
string.

• [CalendarComputationName]: Only usable in a loop construct (see
above). Retrieves the calendar computation names for the current
associated index node duplicating the line if needed.

• [CalendarComputationValue]: Only usable in a loop construct (see
above). Retrieves the calendar computation values for the current
associated index node duplicating the line if needed.

• Case action inputs:
Placeholders for case action inputs are defined with two angular brackets on
each side of the case action input name e.g. <<My case action input>>. A
case action can refer to any case action input that either belongs to the same
mandator or one of its parents. Please refer to the online help for case action
inputs for more details.

Previews

Case actions of type HTTP, SMTP and SQL can be previewed before sending.
Once an investigator selects one of these to send, a new form is added to the
case action section of the case investigation screen. Using the form,
investigators can preview the contents of the message being sent and adjust
it if necessary. The top of the form offers several fields depending on the
type of case action:

• Recipient emails: Only shown for SMTP case actions. The email addresses
that the message should be delivered to separated by commas.

• Comment: A multiline text that will be added to the audit trail entry created
when sending the case action.

• Text module: Only available for case actions of type SMTP and SQL and only
if the message template actually contains the "[TextModule]" placeholder.

Below these fields two tabs are shown. In the first one, Edit, an investigator
can view and change the message template of the case action. For SMTP
case actions both the subject template and body template are shown. The

second tab, Preview, shows a read-only preview of the message i.e. the
message template but all placeholders are replaced with the values taken
from the case. Changes to the templates on the first tab are visible on the
second tab and will be applied when sending the case action.

When the case action uses a simplified view (see below), the simplified view
replaces the template fields in the Edit tab. The preview tab is not affected
and will take the changes made on the simplified view into account.

Investigators need to have the role privilege to modify case actions to be
able to edit any field in the preview section except the comment. Without
this privilege, the investigator can only view a read-only version of the fields,
templates and preview. They can still send the case action.

Simplified view

Case actions using a simplified view can be edited by an investigator before
being sent. This is similar to the preview functionality that some types of
case actions already offer but simplified views are available for all types of
case actions except template file (.docx) and they do not require the
investigator to directly edit the message template.

When an investigator selects a case action with simplified view to be sent a
new form is displayed inside the case action section of the case. This form
contains an input field for each placeholder found within the message
template. The following types of placeholders are supported by the simplified
view:

• Reporting attributes

• Masterdata

• User data variables

• Case variables

• Case action inputs

Other placeholder types will not show up in the simplified view but will
continue to be filled according to the rules outlined in the "Text templates"
section above. For SMTP case actions the simplified view will include
placeholders from the subject template as well as the body template.

Placeholders for which the case does not have a reporting attribute stored
might not appear in the simplified view if the case is not able to reconstruct
that reporting attribute's value from the transaction record that created the
case. This can happen for reporting attribute or masterdata placeholders
when there is no fraud mark index set up in the mandator or when the
transaction record was already evicted from the data caches.

Reporting attribute and masterdata placeholders for which the system has
stored nil as a value show up as empty fields in the simplified view. If the
investigator leaves the field empty the nil value settings of the outgoing
channel configuration will be applied when previewing or sending.

Nil values are also possible for some case variables like
[InvestigatingUserName] or [ClosedByUserName]. If a case cannot fill
such a variable, e.g. because the case has not been closed yet, the simplified
view will show an empty field. When previewing or sending the message the
nil value settings of the outgoing channel configuration are then applied.

For case action inputs the concept of nil values does not apply. If the
investigator leaves the simplified view empty for a case action input, that
placeholder will be replaced by an empty string in the preview or when
sending the message. This behavior applies to numeric, text, dropdown, date
and date and time inputs.

Investigators without the role privilege to modify case actions are presented
with a read-only version of the simplified view. The fields still show the
values taken from the case or the default values for the case action inputs so
the investigator can review those before sending.

Testing case actions

The [Save and create test case action] toolbar button above creates a
sample case action. You can either use an existing case to fill the message
template or create a case action using an empty template. Please note that
reporting attributes, query results and masterdata will not be included in
message templates when testing case actions.
back to top

7.21 Text modules

Text modules can be used to predefine text templates which can be added to
case actions. IBM Safer Payments provides case actions to send messages to
other systems during case investigation. For the case actions types "SMTP",
"SQL" and "Word (.docx)" a placeholder for text modules can be defined by
adding the keyword [TextModule] into the body template. An investigator
may choose one of the text modules when sending a case action during case
investigation. If one text module is selected, the placeholder of the message
is replaced by the text template of the text module. Otherwise the
placeholder is removed from the case action message.

The table below lists all defined text modules. To add a new text module click
[new text module]. To view or change text modules, left click on the
respective row in the table.
back to top

7.21.1 Text module

The definition of a text module involves a number of settings that are made
in this form. Rest the mouse pointer over a setting for details. Settings are:

• Enabled
Allows you to temporarily enable/disable text modules.

• Name
Used to identify the text module. The name is used to choose the text which
should be added to the case action.

• Comment
Used to describe the text module.

• Mandator
Each text module belongs to one mandator. Once created, mandator
ownership does not change.

• Text template
Used to define a text which can be added to a case action (of the type SMTP
or document) during case investigation.

back to top

7.22 External queries

External queries are means of requesting data from another system for case
investigation purposes. They are used to ensure that the data used to
evaluate a case is up to date.

External queries can be sent as IP or HTTP messages and are triggered either
while loading a case or upon user request.

External queries within IBM Safer Payments are modeled using the same
template mechanism as case actions or notifications. The response is parsed
according to the definition and displayed within the case. It is even possible
to update the stored data of the case using the received data.
back to top

7.22.1 External query

The definition of an external query involves a number of settings that are
made in this form. Rest the mouse pointer over a setting for details. Settings
are:

• Enabled
Allows you to temporarily enable/disable external queries without the need of
redefining them.

• Name
Used to identify the external query. The name does not appear in the
generated message.

• Comment
Used to describe the external query. The comment does not appear in the
generated message.

• Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the external
query. Outgoing channel configurations can be defined in the "cluster" tab
and then referenced here. External queries support outgoing channel
configurations of the types "HTTP" and "message".

• Mandator
Each external query belongs to one mandator defined in the outgoing
channel configuration. This mandator can not be changed.

• Format values
Format/unformat values which are inserted in the message template.

• Content type (HTTP only)
The content type that will be used in the HTTP header.

• Message template
This is the template which is used to generate the request. You can use any
reporting attribute within IBM Safer Payments by just putting its name within
curly brackets. IBM Safer Payments will replace that part of the message
with its actual value from the case.

• Response mapping
IBM Safer Payments expects XML or JSON responses and can map the values
to reporting attributes or masterdata. This setting tells IBM Safer Payments
which XML tag or JSON key will be used to fill which reporting attribute. It is
defined as a list of pairs, where each pair is separated by a ';'. The values
are expected as 'attributename:XML-tag' or 'attributename:JSON-key',
where: attributename is the name of an attribute as defined in IBM Safer
Payments, XML-tag is the name of the tag without '<' or '>' characters, and
JSON-key is the name of the key without quotation marks. See below for
some examples.

• Overwrite case values
The mapped response values can be used to overwrite the values stored
within the case. Note that when masterdata is mapped, the masterdata
values are always overwritten, as they are not part of this specific case. If
you have data which just needs to be displayed, then you can display it using
the display data format (see examples below).

Expected Data Format

IBM Safer Payments supports two response formats (XML and JSON), and
two versions of each.

Version 1 supports update data only. Update data contains values
representing input attributes and masterdata from the Safer Payments
model. The response mapping (see above) is applied to these attributes only.

Version 2 supports both update data and/or display data. Display data
comprises attributes which are not stored within IBM Safer Payments — in
other words, data whose purpose is solely to be displayed in one or more
tables of the external-query section of a case.

XML, version 1

Version 1 is used to update reporting attributes and masterdata within
the case with the results from the external system. The XML response
should have exactly one tag at the outer-most level. For single-attribute
responses, having just the attribute tag with its value is sufficient. For
multi-attribute responses, a container tag should be used to encapsulate
all the attributes.

Format 1

<attribute name>attribute value</attribute name>

Example 1

<cash>99.99</cash>

Example of a potential corresponding response mapping

Amount:cash

Format 2

<xml><attribute name 1>attribute value 1</attribute name
1><attribute name 2>attribute value 2</attribute name 2>
</xml>

Example 2

<xml><cash>99.99</cash><time>2020-12-
31T17:00:00Z</time><age>42</age>
<country>Canada</country></xml>

Example of a potential corresponding response mapping

Amount:cash;Trx Timestamp:time;Cardholder Age
mda:age;Cardholder Country:country

XML, version 2

In addition to supporting the functionality of version 1, version 2 also
allows data to be displayed within the case that is not present within
Safer Payments. This data can be displayed in a table, and the number
of rows and columns of this table is determined by the external-query
response. The XML response expects the following tag names:
SP_EXTERNAL_QUERY_RESPONSE, SP_UPDATE_DATA,
SP_DISPLAY_DATA, SP_TABLE, SP_TABLE_TITLE, SP_TABLE_HEADER,
SP_TABLE_ROW, SP_CELL. SP_EXTERNAL_QUERY_RESPONSE,
SP_UPDATE_DATA, SP_DISPLAY_DATA, and SP_TABLE_HEADER should
only occur once — however, if more than one of these tag pairs is
provided, then the last set will be used. When sending the version 2
SP_UPDATE_DATA format, you need to ensure that it is sent in a flat
xml format, where all the xml elements are direct descendants of the
SP_UPDATE_DATA element, unlike version 1 where it was possible to
have additional nesting.

Format

<SP_EXTERNAL_QUERY_RESPONSE><UPDATE_DATA>
<attribute name 1>attribute value 1</attribute name 1>
<attribute name 2>attribute value 2</attribute name 2>
</UPDATE_DATA><DISPLAY_DATA><SP_TABLE>
<SP_TABLE_TITLE>table title</SP_TABLE_TITLE>
<SP_TABLE_HEADER><SP_CELL>header 1</SP_CELL>
<SP_CELL>header 2</SP_CELL><SP_TABLE_HEADER>
<SP_TABLE_ROW><SP_CELL>row value 1a</SP_CELL>
<SP_CELL>row value 2a</SP_CELL></SP_TABLE_ROW>
<SP_TABLE_ROW><SP_CELL>row value 2a</SP_CELL>
<SP_CELL>row value 2b</SP_CELL></SP_TABLE_ROW>
</SP_TABLE><SP_TABLE><SP_TABLE_HEADER>
<SP_CELL>header value 3</SP_CELL><SP_CELL>header
value 4</SP_CELL><SP_TABLE_HEADER>
<SP_TABLE_ROW><SP_CELL>row value 3a</SP_CELL>
<SP_CELL>row value 4a</SP_CELL></SP_TABLE_ROW>
<SP_TABLE_ROW><SP_CELL>row value 3b</SP_CELL>
<SP_CELL>row value 4b</SP_CELL></SP_TABLE_ROW>
</SP_TABLE></DISPLAY_DATA>
</SP_EXTERNAL_QUERY_RESPONSE>

Example

<SP_EXTERNAL_QUERY_RESPONSE><UPDATE_DATA>
<cash>99.99</cash><time>2020-12-
31T17:00:00Z</time><age>42</age>
<country>Canada</country></UPDATE_DATA>

<DISPLAY_DATA><SP_TABLE>
<SP_TABLE_TITLE>Favorites</SP_TABLE_TITLE>
<SP_TABLE_HEADER><SP_CELL>Favorite Color</SP_CELL>
<SP_CELL>Favorite Food</SP_CELL><SP_TABLE_HEADER>
<SP_TABLE_ROW><SP_CELL>Blue</SP_CELL>
<SP_CELL>Pizza</SP_CELL></SP_TABLE_ROW>
<SP_TABLE_ROW><SP_CELL>Red</SP_CELL>
<SP_CELL>Noodles</SP_CELL></SP_TABLE_ROW>
</SP_TABLE><SP_TABLE><SP_TABLE_HEADER>
<SP_CELL>Favorite Pet</SP_CELL><SP_CELL>Favorite
Band</SP_CELL><SP_CELL>Favorite Singer</SP_CELL>
<SP_TABLE_HEADER><SP_TABLE_ROW>
<SP_CELL>Dogs</SP_CELL><SP_CELL>The
Beetles</SP_CELL><SP_CELL>Michael Jackson</SP_CELL>
</SP_TABLE_ROW><SP_TABLE_ROW>
<SP_CELL>Cats</SP_CELL><SP_CELL>The Rolling
Stones</SP_CELL><SP_CELL>Elvis Presley</SP_CELL>
</SP_TABLE_ROW></SP_TABLE></DISPLAY_DATA>
</SP_EXTERNAL_QUERY_RESPONSE>

Example of a potential corresponding response mapping

Amount:cash;Trx Timestamp:time;Cardholder Age
mda:age;Cardholder Country:country

JSON, version 1

Version 1 is used to update reporting attributes and masterdata within
the case with the results from the external system. The JSON response
expects all the update-data attributes at the root level of a JSON object
as keys, and their corresponding values as strings, numbers, or
booleans.

Format

{"attribute name 1": "STRING","attribute name 2":
NUMBER,"attribute name 3": BOOLEAN}

Example

{"cash": 99.99,"time": "2020-12-31T17:00:00Z","age": 42,
"country": "Canada"}

Example of a potential corresponding response mapping

Amount:cash;Trx Timestamp:time;Cardholder Age
mda:age;Cardholder Country:country

JSON, version 2

In addition to supporting the functionality of version 1, version 2 also
allows data to be displayed within the case that is not present within
Safer Payments. This data can be displayed in a table, and the number
of rows and columns of this table is determined by the external-query
response. The JSON response expects the following key names:
SP_EXTERNAL_QUERY_RESPONSE, SP_UPDATE_DATA,
SP_DISPLAY_DATA, SP_TABLES, SP_TABLE_HEADER, SP_TABLE_ROWS.

Format

{"SP_EXTERNAL_QUERY_RESPONSE": {"SP_UPDATE_DATA":
{"attribute name 1": "STRING","attribute name 2":
NUMBER,"attribute name 3": BOOLEAN},
"SP_DISPLAY_DATA": {"SP_TABLES": [{"SP_TABLE_TITLE":
"table title", "SP_TABLE_HEADER": ["header 1", "header 2"],
"SP_TABLE_ROWS": [["Value 1a", "Value 2a"], ["Value 1b",
"Value 2b"]]}]}}}

Example

{"SP_EXTERNAL_QUERY_RESPONSE": {"SP_UPDATE_DATA":
{"cash": 99.99,"time": "2020-12-31T17:00:00Z","age": 42,
"country": "Canada"}, "SP_DISPLAY_DATA": {"SP_TABLES":
[{"SP_TABLE_TITLE": "Favorites", "SP_TABLE_HEADER":
["Favorite Color", "Favorite Food"], "SP_TABLE_ROWS":
[["Blue", "Pizza"], ["Red", "Noodles"]]},
{"SP_TABLE_HEADER": ["Favorite Pet", "Favorite Band",
"Favorite Singer"], "SP_TABLE_ROWS": [["Dogs", "The
Beetles", "Michael Jackson"], ["Cats", "The Rolling Stones",
"Elvis Presley"]]}]}}}

Example of a potential corresponding response mapping

Amount:cash;Trx Timestamp:time;Cardholder Age
mda:age;Cardholder Country:country

back to top

7.23 Job schedule

The table lists all jobs that have been defined. Because of the status
information provided an auto-refresh time interval (on the "system
configuration" page) can be defined which causes this page to reload
periodically.

To view or change job details and parameters, left click on the respective row
in the table.

Use the context menu to execute or stop one (or in new user interface
multiple) job(s), or to generate reports when report generation jobs are
selected.

List of status and errors that a job can have:

• Aborted: The export job is stopped by the user while it is running.

• Batch data interface was deactivated on executing instance

• Batch data interface is not active

• Curtailing masterdata: The job is curtailing masterdata.

• Error: The job failed with error. Contact support for clarification.

• Finished with errors, check log: The job is finished but with errors.
Contact support for clarification.

• Finished OK: The job is finished successfully.

• Forcibly interrupted: The job that was running, when the BDI instance is
crashed or forcefully shutdown, is changed to this status. An interrupted job
will continue, even if the job had been suspended in the meantime,
suspending only inhibits the next start

• Nothing to do: There is no file to load in the batch job's incoming directory.

• Recessed: The job is stopped by the user while it is running.

• Running...: The job is running.

• Suspended: The recurring automatic execution of this job is suspended. The
job can still be executed manually.

• Throttled...: The job is throttled as the BDI instance' outgoing FLI buffer fill
level is above the "job processing freeze at" threshold defined in System
configuration.

• Waiting...: The job is waiting for semaphore file.

For more details, read the background help page on IBM Safer Payments
interfaces that is available from the main help page.
back to top

7.23.1 Job

Each job represents a manually or periodically executable task. There are
different types of jobs available. The following settings are common for all of
them:

• Name
Used to identify the job.

• Comment
Used to describe the job.

• Job type
Select which kind of job you would like to define (see below for type specific
settings). Currently these types are available:

• Load file
The standard way of loading a batch of files into IBM Safer Payments.
For more details, read the BDI (batch data interface) overview.

• Generate report
Job type to generate reports. The results can be downloaded using the
button at the top of the form.

• Evaluate sanction list
Job type used to perform offline compliance checks.

• Execute index based evaluation
Job type used to execute index based evaluations. Important: While
index based evaluations are executed, the used indexes are locked
against changes, so message computations affecting those indexes will
be halted until the job finishes. Because of this, index based evaluation
jobs should be run on an instance that does not process incoming
transactions.

• Export data
Job type used to export transactional data.

• Priority
The priority for the operation system to execute the job. Notice that the
maximum priority is limited by the general IBM Safer Payments setting
(system configuration page). The higher this priority, the more computational
resources will be given by IBM Safer Payments to the computation of this
job.

• Maximum threads
Maximum number of parallel threads (if available from the overall BDI thread
pool size as configured) that IBM Safer Payments attempts to employ for the
processing of this job. The higher this number, the more parallel computing
resources will be given by IBM Safer Payments to the computation of this
job. If the total number of currently available BDI threads (as configured on
the system configuration page minus the ones currently used by other jobs)
is lower than the maximum number of threads set here, IBM Safer Payments
will only use the available number of threads for the entire duration of its job
processing.

• Recurrence
Select if a job should be executed manually, daily, weekly, monthly or
periodically using a defined time interval. Notice that for jobs repeated in a
defined time interval, IBM Safer Payments sets the next time the job runs in
alignment to full hours. If you, for instance, create a job at 15:43, the next
run would be at 16:00, if you set the time interval to 20, 30 or 60 minutes. If
you set the interval to 10 minutes, the next run would be at 15:50.

• Suspended
If checked, the recurring automatic execution of this job is suspended; it can
still be executed manually.

• Day of week
Select on which day of the week (user time) a weekly job shall be executed.
When the user is not in the UTC timezone then the job may be executed on a

different day in UTC. Example: The user is in UTC-1 (user timezone) and sets
the job's execution to Sunday at 23:45. These settings would result in a
weekly job execution at Monday 00:45 UTC.

• Day of month
Select on which day of the month (user time) a monthly job shall be
executed. Numbers 1 to 31 are valid. If the chosen day doesn't exist in a
given month, for example 30 and 31 in February, the job is executed on the
last day of the month. When the user is not in the UTC timezone then the
job may be executed on a different day in UTC. Example: The user is in
UTC+1 (user timezone) and sets the job's execution to the 1st of every
month at 00:15. These settings would result in a monthly job execution at
the last day of every month at 23:15 UTC.

• Daytime
Select the user time at which daily, weekly or monthly jobs shall be
executed.

• Repeat every
Specifies the interval after which a job should be restarted.

The following settings are only available for job type "Load file":

• Wait for semaphore file
If selected, execution of a job waits until a semaphore file is delivered to
ensure that partial file deliveries are not processed.

• Create log file
If checked, a log file is created during file processing; the log will contain a
row for each record containing the (XML formatted) response of the
computation.

• Curtail masterdata
If checked, all masterdata elements, that have an MTID meta attribute insert
condition for the message type ID of this job and are not updated with this
job, are deleted (set to nil value) upon completion of the job. Note: Not
available for messages using the NACHA format.

• Parameter
Customer specific processing options can be entered here. These options are
provided by the IBM Safer Payments team.

• Message
This message will be associated with all messages coming from this job. The
meta attribute "Message type ID" will automatically be filled with the
respective MTID of the selected message.

• Continue after error
If enabled, rows in which format errors are detected will be skipped and
event log messages will be generated; if disabled, job halts at error

• Check row length
If enabled, only rows that have the expected length will be processed. For
FCD messages the expected length is computed using the defined mappings.
For NACHA messages the row length is checked to be 94 characters. Note:
Only available for messages using FCD or NACHA format.

• Validate NACHA batches
If enabled, the job ignores batches where the number of parsed Entry Detail
Records and Addenda Records does not match the number specified in the

Batch/Control Record. Enabling this reduces performance as message
computation can only start after the batch was validated. Note: Only
available for messages using the NACHA format.

• Incoming directory
Directory for the files to be loaded by this job. According to the type of the
selected message only certain types of files will be read in alphabetical order
during the job. See the following table for an overview of expected file
extensions. In case you want to use other types of files, please choose the
custom message type and make sure you have the custom parser library in
place.

Message type File extension

CSV format .csv

FCD format .fcd

JSON format format .json

XML format .xml

nested XML format .xml

NACHA format .ach .nacha .txt

• Archive directory
Directory to which files that have successfully been loaded into IBM Safer
Payments are moved

• Error directory
Directory to which files that have not successfully been loaded into IBM Safer
Payments are moved

• Enable encrypted delivery
If selected, delivery of encrypted job files is activated. Job files need to be
encrypted with the key from encrypted aes key path. You will find further
details for the encrypted job import in Importing encrypted job files.

• Use AES CTR
It is highly recommended to enable AES CTR. We may remove this checkbox
in later releases and implicitly use AES CTR. If enabled, an AES-256-CTR
cipher will be used to decrypt the job file. Additionally, this will also use
PBKDF2 with a sha256 as digest to hash the encrypted file and OAEP as
padding for the RSA encryption. If disabled, an AES-256-CBC algorithm will
be used, which might have known security issues depending on its use case.
A description on how to encrypt your files with AES-256-CTR can be found in
the online help in Password Safe.

• Password safe
Choose the activated rsa decryption key from password safe here. This key
will be used to decrypt the encrypted aes key.

• Aes key path
Path to the encrypted aes key, which is used to decrypt the job file(s). The
key itself will be decrypted with the activated rsa key from password safe.

• Re-create interval index
If enabled, selected interval indexes will be reset and recreated during the
execution of the job. Use this feature to update interval indexes while loading
masterdata. Note: Not available for messages using the NACHA format. The
recreation will be performed on each instance.

Note: The job will only run cascaded if interlock is enabled. If interlock is not
enabled, the job will run on the API first, and then on the rest of the cluster
at the same time.

• Mandators
Select the mandators whose indexes should be recreated.

• Indexes
Select the interval indexes that should be recreated.

The following settings are only available for job type "Generate report":

• Mandators
Select the mandators that should be included in the report generation
job.

• Reports
Select the reports to be executed for the report generation job.
Currently, group by queries, merchant monitoring rules and reports
from the report section that are defined for the selected mandators will
be available for selection here.

• Use outgoing channel configuration
If checked, the report(s) will be sent via outgoing channel configuration
when the job is executed.

• Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the
report(s). Outgoing channel configurations can be defined in the
"cluster" tab and then referenced here. Depending on the type of
the chosen outgoing channel configuration, the remainder of the
form changes to display protocol specific settings. The values in
the form will be pre-filled by default settings defined in the
outgoing channel configuration, but offer to overwrite the values
for the job.

• SMTP
SMTP messages are queued and are sent out periodically
(defined in IBM Safer Payments configuration) as batch. If
the SMTP service is temporary unavailable, IBM Safer
Payments attempts re-sending them also periodically. SMTP
messages are also stored on disk to ensure that unsent SMTP
messages will be attempted to be resent after a hard stop of
IBM Safer Payments. This choice allows the following entries:

• Email "from" address
The sender address used for the outgoing SMTP
notification.

• Email "to" address type
Lets you choose between a "constant" recipient address
(entered below) or taking the string value of the "email"
meta attribute of the current transaction message. The
latter allows for sending emails to individual
cardholders, merchants, or acquirers.

• Constant email "to" address
The recipient address is "constant", all outgoing SMTP
messages are sent to this address. You may use
multiple email addresses here, just separate them by
semicolon.

• Subject template
Text template for the subject line of the outgoing SMTP
message.

• Body template
Text template for the message body of the outgoing
SMTP message.

• File
There will be one file per each report and the file name
includes the system time with microseconds. This choice
allows the following entries:

• File name prefix
Allows to define a file name prefix to distinguish
messages from different jobs using the same outgoing
channel configuration.

The following settings are only available for job type "Evaluate sanction
list":

• Mandators
Select the mandators from which compliance lists will be selectable.

• Compliance lists
Select the compliance lists for the sanction list job. Only offline
compliance lists defined for the selected mandators will be available.

The following settings are only available for job type "Execute index
based evaluation":

• Mandators
Select the mandators from which index based evaluations will be
selectable.

• Index based evaluations
Select the index based evaluations to execute. Only index based
evaluations defined for the selected mandators will be available. Each
index based evaluation will be executed isolated from the others so
there is no interaction or dependency between them.

The following settings are only available for job type "export data job":

• Export type
Type of exported data stream. Currently only CSV format is supported.

• Target file
Directory and name of the file where exported data will be written. It is
highly recommended to use a different disk subsystem to avoid
severe performance impacts. You may include the following variable
fields in the file name which will be replaced with actual values:

• {name}
This variable field is replaced with the name of the job.

• {comment}
This variable field is replaced with the comment of the job.

• {dateIso}
This variable field is replaced with execution date.

• {instanceId}
This variable field is replaced with the instance ID of the IBM Safer
Payments instance.

• {instanceName}
This variable field is replaced with the instance name of the IBM
Safer Payments instance.

• Decimal separator
Specify which character should be used to as decimal separator.

• Field separator
Specify which character should be used to separate values in exported
CSV file.

• Salt
A random token which will be used to hash encrypted attributes. You
can use the pre-generated salt, or you can enter a new one.

• Include DDC
If enabled, the job will use data available on the disk data cache (DDC).

• Export data selection
The data selection allows for both choosing an interval and additional
conditions. Refer to the section help pages for more information.

• Attributes
Allows to select which columns are to be included in the exported data
file.

• Encrypted attributes export
This section lets you define how encrypted attributes should be
exported. Refer to the section help for more information.

Notice that when using multiple threads for data export, the data is
processed in chunks and thus the sequence of records is not preserved.
If you want to preserve the sequence you should execute single
threaded data export.

back to top

7.23.2 Encrypted attributes export

When exporting encrypted attributes from IBM Safer Payments using its
export engine, you must define for every attribute how the stored value
should be exported. Each encrypted attribute can be exported as plain text,
and/or can be hashed or masked.

By default, plain text values of encrypted attributes are exported. However,
you can deselect the plain text column, or add the hashed and masked
variants of the value. Including hashed/masked variants of the value will
introduce additional columns in the data export file named by attribute name
+ "_hashed" and attribute name + "_masked" respectively.

For exporting the hashed variant of an encrypted attribute, export engine
uses a so-called salt, which is a random token used by the encryption
algorithm to "safeguard" sensitive exports. You can use the pre-generated
salt, or you can enter a new one in the field above.
back to top

7.23.3 Importing encrypted job files

If "Job encryption enabled" is activated in system settings in section "Batch
data interface", encrypted job files can be imported through the BDI
interface. To achieve the encrypted processing of batch data IBM Safer
Payments chooses a combination of RSA and AES encryption. In order for the
import to work, job files have to be encrypted with the following
specification:

• Encryption system: AES (Advanced Encryption Standard)

• Cipher: aes-256-ctr

• Hash function: sha-256

Key derivation: pbkdf2 with 100000 iterations

It is expected that job files may be encrypted by a different person than the
one importing the encrypted files in IBM Safer Payments. Therefore,
encrypted job files and the AES password (which is used to encrypt the job
files) need to be exchanged somehow. In order to exchange the AES
password securely, IBM Safer Payments uses public / private key encryption
using the RSA encryption system (Rivest, Shamir and Adleman).

Creating a RSA public and private key file
The person operating IBM Safer Payments has to create a private / public key pair.
This can for example be done using openssl with the following command:

RSA_PASSWORD=myRsaPassword123

openssl genrsa 4096 | openssl pkcs8 -topk8 -out privateKey.pem -v2
aes256 -v2prf hmacWithSHA256 -passout pass:$RSA_PASSWORD

openssl rsa -in privateKey.pem -out publicKey.pem -outform PEM -
pubout -passin pass:$RSA_PASSWORD

A private key 'privateKey.pem' and a public key 'publicKey.pem' are then
written to disk. The private key is secured with the "RSA_PASSWORD" and
can only be used in combination with this password.

The private key stays at IBM Safer Payments and will be used in the
following process to decrypt the AES password (see description below). The
public key should be transferred to a person encrypting the job file.

Encrypting the job file

The person encrypting the job file can generate a 32 byte AES password
(key) randomly with the following command.

AES_PASSWORD=$(< /dev/urandom tr -dc _A-Z-a-z-0-9 | head -c32)

While not recommended, the key can be defined manually instead of being
randomly generated.

The AES password can be used to encrypt a job file with the following
command:

openssl enc -aes-256-ctr -md sha256 -pbkdf2 -iter 100000 -in
unencryptedJobFile.csv -out encryptedJobFile.csv -pass
pass:$AES_PASSWORD

The encrypted job file "encryptedJobFile.csv" is then written to disk.

Encrypting the AES password

With the RSA public key the unencrypted AES password can then be
encrypted and written to disk with the following command:

printf $AES_PASSWORD | openssl pkeyutl -encrypt -pkeyopt
rsa_padding_mode:oaep -pkeyopt rsa_oaep_md:sha256 -pkeyopt
rsa_mgf1_md:sha256 -inkey publicKey.pem -pubin -out aesKey.ssl

The AES password is then written encrypted to the file "aesKey.ssl"

Preparing the encrypted import

The person who encrypted the job file sends the IBM Safer Payments
operating user

• the encrypted job file ("encryptedJobFile.csv" in the example, or multiple
files if more than one were encrypted with the same password). The person
operating IBM Safer Payments places this file in the "Incoming directory"
folder which shall be used for the job.

• the file which contains the encrypted AES password ("aesKey.ssl" in the
example). The person operating IBM Safer Payments places this file in a
folder of the machine running the instance with the "Batch data interface".

The person operating IBM Safer Payments then places the previously created
RSA private key (privateKey.pem) inside the password safe folder (by default
the folder "/pws") of each IBM Safer Payments instance. It is important, that
the key is available on all instances, in order to activate it. Also, the BDI
needs to be active on at least one instance. The key must then be activated
in 'administration/password safe' by selecting it in the table, providing the
password RSA_PASSWORD from above and saving. Once the key is activated
it will be marked with a green status symbol in the password safe table. See
password safe for further details.

In case you want to manually test if the encryption worked correctly on file
level, you can run following commands to decrypt the file and display first 5
lines unencrypted:

AES_PASSWORD=`openssl pkeyutl -decrypt -pkeyopt
rsa_padding_mode:oaep -pkeyopt rsa_oaep_md:sha256 -pkeyopt
rsa_mgf1_md:sha256 -inkey privateKey.pem -in aesKey.ssl -passin
pass:$RSA_PASSWORD`

openssl enc -aes-256-ctr -md sha256 -pbkdf2 -iter 100000 -in
encryptedJobFile.csv -pass pass:$AES_PASSWORD -d | head -n 5

Importing the encrypted job file

To import the encrypted job file a job has to be created with "Load file job"
as job type and the option "Enable encrypted import" needs to be activated.
The password safe, which was activated in the previous step needs to be
selected from the drop down in the field "Password safe". The path to the
AES key file ("aesKey.ssl" in the example) needs to be provided in the field
"Aes key path" and the path to the encrypted job file needs to be provided in
the field "Incoming directory". Running the job then imports the encrypted
job file. It is possible to import multiple encrypted job files, when these are
placed inside the job file folder. Note that these files need to be encrypted
with the same AES password in order for the decryption to succeed.
back to top

7.24 Messages

Transaction data enters and leaves IBM Safer Payments as "messages":

• online transaction messages (those that require an immediate response such
as authorization requests) use IBM Safer Payments' message control
interface (MCI), while

• offline transaction messages use IBM Safer Payments' batch data interface
(BDI).

More information on these interfaces can be found at the Interfaces
Overview.

In a typical IBM Safer Payments application, multiple data sources (and
drains) exist that all send transaction message requests to IBM Safer
Payments. Since these messages typically stem from different source
systems, they typically contain different data fields that require mapping of
message variables to IBM Safer Payments input and output attributes. They
sometimes even contain different data formats and hence require (possibly
different) preprocessing.

Messages and mappings

IBM Safer Payments comprises full management capabilities for messages
and mappings. Because the message definitions themselves are model
revision independent, messages are defined on a mandator basis within IBM
Safer Payments administration. Messages are inherited downwards within the
mandator hierarchy. Based on the own and inherited messages defined,
within each model revision, the mapping of message variables to IBM Safer
Payments attributes and any pre-/post-processing is defined.

The various data source messages are identified by a MessageTypeId (aka
MTID), which is a (mandatory) IBM Safer Payments meta attribute of
numeric data type. Typical message types in an IBM Safer Payments
application could include: authorization requests, masterdata delivery
transactions, posted transaction notifications, fraud alerts, chargeback
notifications etc. Each different message can have its own variable-attribute
mappings and its own pre-/post-processing settings.
back to top

7.24.1 Message

Each message is defined for one Message type ID. An incoming transaction
message (via MCI or BDI) will be associated to a message if its Message type
ID value fits the Message type ID.

The settings for each message are:

• Mandator
Each message belongs to a mandator and is inherited to all mandators that
belong to it. Notice that you cannot change mandator ownership of a
message once created.

• Name
Used in the model revision mappings to identify the message.

• Comment
Used in the model revision mappings to describe the message.

• MTID
Message type ID for this message as used with MCI transactions.

• Storage and processing
Used to configure whether a message is creating transaction records.

• Create transaction records
Create a transaction record for this message. Can be overwritten by
mergings and masterdata that are configured to store sources.

• Do not create transaction records
Do not create a transaction record for this message. Can be overwritten
by mergings and masterdata that are configured to store sources.

• Compute monitoring lists only
Do not create a transaction record for this message and compute
monitoring lists only. Cannot be overwritten.

• Latency threshold

The maximum latency IBM Safer Payments may take for the processing
of a transaction. This setting will be used by key performance, status
alarm indicators and system internals.

• Monitor latency
Monitor latency as key performance indicator or in latency report, if
available. Only messages with this checkbox enabled will be considered as
latency violation for KPIs and will be added to the latency report in system
internals. The latency report is archived in the "log" directory and can be
downloaded with the configuration in "System Internals" page.

• Offline via Batch Data Interface

• Type
Used to identify if a message is used online (MCI) or offline (BDI). In case of
offline messages, the message can either be a CSV, FCD, JSON, NACHA, XML
or flat XML file. The MCI interface accepts XML, flat XML, JSON, FCD, and
custom defined messages. For custom messages, please make sure you have
the custom parser library in place.

• Charging message
Used to configure whether transactions of this message are to be charged.
Only charging messages will be counted in the transaction message report.

• Fixed entry size
Used to determine how many characters need to be read from file per
line/entry. If -1, then no fixed sized will be applied, and it will be read till end
of line.

• Character encoding conversion
Safer Payments expects incoming messages to be encoded in UTF-8. This
setting allows to ingest messages with a different character encoding.
Incoming messages are converted to UTF-8 prior to processing. Responses
are converted back to the specified character encoding before being sent.
Dumping of incoming messages to disk is always performed after conversion.
Responses are dumped before being converted back to the specified
character encoding.
Conversion is done using the "iconv" utility provided by the operating
system. The full list of supported encodings can be found by issuing the

command "iconv --list" in a console. Examples are "ISO-8859-1", "SHIFT-JIS"
or "UTF-32".

• Online via Message Command Interface
IBM Safer Payments uses these values to estimate bandwidth required for
replicating and processing of MCI data. Please enter the expected values in
the respective fields.

• Average volume
Total number of transaction messages within a long time period
(typically a year).

• Peak volume
Peak number of transaction messages to be processed (typically defined
as per second).

• Offline via Batch Data Interface
IBM Safer Payments uses these values to estimate bandwidth required for
replicating and processing of BDI data. Please enter the expected values in
the respective fields.

• Records per file
Number of records on average per file.

• Volume
Number of files delivered per time unit.

• Processing time
Time in minutes one of the delivered files shall be processed within.

Settings exclusive to AVRO message type

• Schema Registry URLs
URLs that are used to connect to schema registry server from which schemas
for AVRO messages will be fetched. It is possible to define multiple schema
registry instance URLs and thereby have a method for failover. If multiple
URLs are provided, Safer Payments will try to establish a connection in a
round-robin fashion until it succeeds.

More information about AVRO could be found under Cluster/Interfaces/KMI.
back to top

7.24.2 Transaction messages report

This report shows an overview of all messages' data streams.
back to top

7.24.2.1 Transaction message report

The message report provides aggregated and computed information on a
message type. Each message type can come into IBM Safer Payments as
online and/or offline data streams. Open the respective help pages of the
subsection(s) for more detail.

This information is intended to provide assistance with IBM Safer Payments
sizing and the implementation of interfaces to IBM Safer Payments.
back to top

7.24.2.1.1 Online via message command interface

For messages that are defined to receive online transaction messages via
MCI, the estimated lengths of the messages are shown plus example
messages (with variable formatting and additional information). In addition,
bandwidth requirements are computed from the volume settings provided
from the message definition. The MCI interface accepts the XML or JSON
format by default. In case you want to send other formats, please configure
the MCI settings accordingly and make sure you have the custom parser
library in place.

Message samples

The samples provided illustrate how messages to and from IBM Safer
Payments should look like. Notice that there are a number of placeholders
used:

• The MessageId value is exemplary.

• 'xxxx' denotes hexadecimal values (number of characters represents
maximum length).

• 'aaaa' denotes text values (number of characters represents maximum
length).

• '1' denotes Boolean values.

• Numeric values have placeholders showing the maximum positive number
that the IBM Safer Payments attribute can take.

• IPv4 values are denoted by an exemplary IP address.

• '....' is a placeholder for value of unknown type (for instance, if used by a
processing function).

• 'YYYY-MM-DD hh:mm:ss' is a placeholder for a timestamp value (depending
on processings, there could be different formats).

Refer to the reference on the MCI (Message Command Interface) for a
complete reference on messages sent to and received from IBM Safer
Payments.

Message samples view options

The different view options to the message sample are:

• condensed
If the placeholders are replaced with the true values, this is exactly the
format of the message IBM Safer Payments expects to receive or will send.

Since this format does now allow for line feeds, the example can be rather
long and you might have to scroll the page to the right.

• pretty
Different to 'condensed', this option uses line feeds and space characters to
make the sample message easier to read.

• pretty plus warnings (only XML)
Also shows when different IBM Safer Payments attributes feed from the same
XML variable.

• pretty plus warnings and comments (only XML)
Provides additional information on which IBM Safer Payments attributes feed
from the XML variables.

back to top

7.24.2.1.2 Offline via batch data interface

For messages that are defined to be delivered with batch file data, the
estimated length of records is computed. In addition, bandwidth
requirements are computed from the volume settings provided from the
message definition.

FCD columns format

This section provides an exact overview on what data all mandators extract
from an FCD file, in case the FCD format is enabled for this message.

For each data element extracted, the exact positions of extraction are listed
and the attributes that feed from it. The color icon indicates potential
warnings or errors with the definition. Positions within the FCD record that
are not extracted are also listed.

FCD record sample

This section provides an example record using the following placeholders:

• Boolean
A Boolean value is indicated by the '0' placeholder character.

• Numeric
A numeric value is indicated by '1' placeholder character(s).

• Hexadecimal
A hexadecimal value is indicated by 'x' placeholder character(s).

• IPv4
An IP address value is indicated by 'i' placeholder character(s).

• Text
A text value is indicated by 'a' placeholder character(s).

• Timestamp
A timestamp value is indicated by its complete format placeholder (e.g.
'YYYYMMDD').

Notice that positions within the FCD record that are not extracted by any
mandator's mapping are indicated by '_' characters, and positions extracted
to multiple attributes are indicated as '?'.
back to top

7.25 Notifications

Notifications (typically sent via email, mobile text, or fax media) are a
potential reaction to a transaction message. IBM Safer Payments creates a
notification the same way as it generates alarms for investigation cases.

There are many similarities to case classes. Notifications are defined on a
mandator basis and are triggered by the "notification" meta attribute value
being non-zero. The value of the "notification" meta attribute determines
which of the notifications defined is generated for the transaction message.

Notice that notifications can be generated in parallel to cases, reminders and
real-time reactions, such as to intercept a transaction.
back to top

7.25.1 Notification

The definition of a notification involves a number of settings that are made in
this form. Rest the mouse pointer over a setting for details. Settings are:

• Enabled
Allows you to temporarily enable/disable notifications without the need of
redefining them or change model rules.

• Notification ID
Value of the "notification" meta attribute that triggers this notification.

• Name
Used to identify the notification. The name does not appear in the generated
notification message.

• Comment
Used to describe the notification. The comment does not appear in the
generated notification message.

• Mandator
Each notification belongs to the mandator of the selected outgoing channel
configuration. Once created, mandator ownership does not change.

• Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the
notification message. Outgoing channel configurations can be defined in the
"cluster" tab and then referenced here. Depending on the type of the chosen
outgoing channel configuration, the remainder of the form changes to display
protocol specific settings. The values in the form will be pre-filled by default

settings defined in the outgoing channel configuration, but offer to overwrite
the values for the notification.

• SMTP
Notification shall be sent by email using a SMTP type email service.
SMTP notifications are queued and are sent out periodically (defined in
IBM Safer Payments configuration) as batch. If the SMTP service is
temporary unavailable, IBM Safer Payments attempts re-sending them
also periodically. SMTP notifications are also stored on disk to ensure
that unsent SMTP notifications will be attempted to be resent after a
hard stop of IBM Safer Payments. This choice allows the following
entries:

• Format values
Format/unformat values which are inserted in the message
template.

• Email "from" address
The sender address used for the outgoing SMTP notification.

• Email "to" address type
Lets you choose between a "constant" recipient address (entered
below) or taking the string value of the "email" meta attribute of
the current transaction message. The latter allows for sending
emails to individual cardholders, merchants, or acquirers.

• Constant email "to" address
If the recipient address is "constant", all outgoing SMTP messages
are sent to this address. You may use multiple email addresses
here, just separate them by semicolon.

• Subject template
Text template for the subject line of the outgoing SMTP message
(see below).

• Support HTML formatting
When activated, mails send HTML formatted text as well as plain
text (inside one message). Provide HTML formatted text through
"HTML body template" box and plain text through "Body template"
box.

• Encode HTML body base64
When activated, the HTML body text will be base64 encoded. Note
that some more complicated HTML formatting might not be
rendered correctly with base64 encoding. Please try with test
notification first.

• Body template
Text template for the message body of the outgoing SMTP
message (see below).

• HTML body template
HTML formatted text template for the message body of the outgoing
SMTP message (see below).

• Message or HTTP Message
Notification shall be sent by IP message to any other system. Analogous to
SMTP notifications, message notifications are stored until they can be sent
successfully. These choices allow the following entries:

• Format values
Format/unformat values which are inserted in the message template.

• Content type (HTTP only)
The content type that will be used in the HTTP header. For additional
information on how to use multipart forms, click here.

• Message template
Text template for the message (see below).

• File
Notification shall be stored as a file. There will be one file per each
notification and the file name includes the system time with microseconds.
This choice allows the following entries:

• Format values
Format/unformat values which are inserted in the message template.

• File name prefix
Allows to define a file name prefix to distinguish messages from
different case actions using the same outgoing channel configuration.

• Message template
Text template for the message (see below).

• SQL
Notification shall be executed as ODBC SQL. You have to install and configure
a valid ODBC connector on all machines with active AMI. Make sure, that you
can reach your database with your ODBC connector, before configuring ODBC
SQL actions. The integration should be compatible with mySQL, postgreSQL
and oracle ODBC connectors.

It is not possible to parse return values or to import data by SQL into
IBM Safer Payments.
This choice allows the following entries:

• Format values
Format/unformat values which are inserted in the message template.

• SQL Query
SQL template for the message (see below).
This could be for example:

INSERT INTO fraud VALUES ({PAN}, sysdate, 'REASON_1');

{call iris.Update_Status({PAN}, {Trx_Id}, 'REASON_2',
{Trx_Time})}

Text templates

Within the text templates, each transaction record attribute value can be
filled in. Just put the attribute name (as it appears in the model) in curly
brackets. IBM Safer Payments automatically fills in the appropriate value and
formats it according to the attribute settings. When using a notification inside
an index based evaluation all special template placeholders for index
based evaluations are available.

Testing notifications

The [Save and create test notification] toolbar button above creates a
sample notification. You can either use a specific record to fill the defined
message template, or create a notification using an empty template.
back to top

7.26 Real-time intercept codes

The table lists all real-time intercept codes ("RIC") that are defined and for
which you have access privileges.

Real-time intercept codes are the values of the "intercept" meta attribute
that control the real-time decision IBM Safer Payments feeds back. Typically,
the authorization system that receives this value carries out the action
recommended by IBM Safer Payments
back to top

7.26.1 Real-time intercept code

Real-time intercept codes have the following settings:

• Name
Descriptive name as used for IBM Safer Payments reports.

• Comment
Used to describe the real-time intercept code. The comment is also displayed
to users on selected reports.

• Interval
Defines the value(s) for the meta attribute "intercept" that fall into this real-
time intercept code. Notice that if the real-time intercept code is only one
value, you may enter only this value both as "from" and "to" as the interval
definition is inclusive.

• Intercept
There are three different types of intercepts:

• authorize
IBM Safer Payments has no objection to authorize this transaction.

• refer
IBM Safer Payments recommends to refer this transaction to an
investigator.

• decline
IBM Safer Payments recommends to decline this transaction.

Note that all transactions with an intercept code 'refer' or 'decline' are
considered as 'marked intercepted' within analyses.

back to top

8. Cluster

This section covers cluster management related administration functions of
IBM Safer Payments.
back to top

8.1 Cluster settings

This page describes the cluster settings table. General information is found
on the IBM Safer Payments cluster management page.

Table rows

Each instance of the IBM Safer Payments cluster is shown in one table row.
For each row, the values in the columns show various status information
(details below). A left click on a row opens a detailed form with all relevant
settings for this instance; select a checkbox to open a context menu with
shortcuts to frequently used actions.

Table actions

While all actions on an IBM Safer Payments instance are available from the
instance form that opens when you left click on the respective row, select a
checkbox to open a context menu with shortcuts for the respective IBM Safer
Payments instances. Refer to operational cluster control for details.

Table columns

• Instance Id
IBM Safer Payments instances are numbered from 1. The instance that you
are currently using to access this page is marked with an asterisk (*).

• Status

This value can be of:

• Unreachable
Instance is not running or cannot be reached by the current IBM Safer
Payments instance.

• [Unreachable|Invalidated] (detached)
Instance has been detached. No outgoing FLI queues have been created
for this instance. This instance is out of sync and needs to be restored.

• Startup
Instance is currently starting (this may take a few minutes since during
this phase, IBM Safer Payments loads its memory data cache from the
disk data cache). In this status, the IBM Safer Payments instance has
no open interfaces with the exception of the status and command
interface (SCI) and is not responding to direct user interface requests
(you will thus only see this status from another IBM Safer Payments
instance). This is a transient status. If it remains for an unusual long
time, check system health and event log message files. Once all startup
actions are completed, the IBM Safer Payments instance will attempt
synchronization of its data repository from the other IBM Safer
Payments instances.

• Synchronizing
Instance tries to obtain missing transaction and configuration data from
other cluster instances. You should see the progress of this effort from
the FastLink status table (above this table). If the links are down,
ensure that the FastLink interface (FLI) on the synchronizing instance is
enabled and active.

• OK
Instance is up and running.

• Waiting for synchronization
Same as startup, but with a hotstart rather than a cold start (hotstart
can for instance be triggered from this table's action menu; in contrast
to a cold start, the IBM Safer Payments process is not terminated).

• Error
Instance startup failed not available due to a severe error during
startup. Check event log message files for details.

• Invalidated
A failure on this instance has caused its data to be corrupted. To protect
integrity, this instance has closed its interfaces. You need to restore this
instance from another one. For details, see restore process.

• Lockdown
There are 2 ways that an instance can go into lockdown status. The first
is during a restore: once a restore is started, the donor instance closes
all its interfaces and waits until all its outgoing FastLink interface (FLI)
buffers are drained. During this period, the donor IBM Safer Payments
instance is in lockdown status. For details, see restore process.
The second way an instance can go into lockdown status is if the FLI
buffer reaches capacity and overflows. In this case the instance will
lockdown to prevent further data loss on other instances. It will change
again to a healthy status after restart. To recover the data loss on the
other instances, it is recommended to restore all other instances with
that instance selected as donor, which previously had the lockdown
status. For details, see restore process.

• Restoring: donor
This is the donor instance of a restore process and a restore is currently
under way. For details, see restore process.

• Restoring: recipient
This is the recipient instance of a restore process and a restore is
currently under way. For details, see restore process.

• Restore failed
Restore failed on this instance. Check event log message files for
reasons. For details, see restore process.

• Starting services
This is (typically) a short transient status during startup where IBM
Safer Payments spins of its various service threads. If this status
remains for an unusual long time, check system health and event log
message files.

• Undetermined
Startup did not conclude with a "real" status. Check system health and
event log message files.

• Waiting for key
The instance cannot start since encryption keys are not entered and
activated, and cannot be obtained from other IBM Safer Payments
instances. Enter and activate keys to continue the startup process.

• Offline
All interfaces except Encrypted Communication Interface (ECI) and
Status Control Interface (SCI) are inactive and all pending data has
been written to disk. This state is suitable to create file backups.

This value also reflects the status of the instance regarding maintenance
mode. Maintenance mode is a mode of IBM Safer Payments instance
operation such that processing transactions is halted, as well as other
functionalities like deferred writing, MCI (if it is configured to close during
golive), etc..IBM Safer Payments instance requires to enter maintenance
mode for each of the following operations:

• adding / updating a Mandator

• adding / updating a WorkingQueue

• adding / updating a Message

• recreate indexes

• rebuild indexes / index sequences

• structural golive

• retire champion

If cluster interlock is enabled, an IBM Safer Payments instance moves
through the following states:

• OK (checking cluster interlock)
The instance is checking that no other instance in the cluster is
currently in maintenance mode, and the configured minimum number of
instances is available.

• OK (entering maintenance mode)
During this state, the instance waits until all the currently processing
transactions are finished.

• OK (in maintenance mode)
All the conditions to enter maintenance mode have been satisfied and
the instance is in maintenance mode. The instance executes the
corresponding operation.

• Finally, the instance exits the maintenance mode, then the status of the
instance is displayed without the additional maintenance mode
information in the brackets.

• Name

Name defined for this IBM Safer Payments instance.
• Comment

Comment defined for this IBM Safer Payments instance.
• Message command interface (MCI)

Status of MCI (Message Command Interface) on this IBM Safer
Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the
status in detail. Momentary load (10 second average) is provided in
brackets.

• Application programming interface (API)

Status of API (Application Programming Interface) on this IBM Safer
Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the
status in detail. Momentary load (10 second average) and number of
active user sessions are provided in brackets.

• Batch data interface (BDI)

Status of BDI (Batch Data Interface) on this IBM Safer Payments
instance. if the status is as set, if not, and no icon if interface is
disabled and not active. A text next to the icon explains the status in
detail. Momentary load (10 second average) is provided in brackets.

• FastLink interface (FLI)

Status of FLI (FastLink Interface) on this IBM Safer Payments instance.
 if the status is as set, if not, and no icon if interface is disabled and

not active. A text next to the icon explains the status in detail.
Momentary load (10 second average) is provided in brackets.

• Encrypted communication interface (ECI)

Status of ECI (Encrypted Communication Interface) on this IBM Safer
Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the
status in detail.

• Alert message interface (AMI)

Status of AMI (Alert message interface) on this IBM Safer Payments
instance. if the status is as set, if not, and no icon if interface is

disabled and not active. A text next to the icon explains the status in
detail.

• Heartbeat Debugging Status

This value is similar to Status column, it is used for debugging
purposes.

back to top

8.1.1 FastLink status

The pivot table of this section shows the status of the FLI (FastLink Interface)
connections between the IBM Safer Payments instances of a cluster.

Each row represents the sending instance, while each column represents a
receiving instance. Since no instance connects to itself, the diagonal fields
are empty. The other fields show the status of the respective connections. A
color coding scheme enables a quick overview:

• This represents a link which is currently down. Detailed information is
provided on how much data is currently held in the FLI buffer, and if there is
any data for which the target has not yet acknowledged receipt.

• This represents a link which is still transmitting data, yet the receiving
instance is slower in receiving (and processing) the replicated messages than
they are build up. There is also detailed information about how many
messages are stored and how many are outstanding and not yet
acknowledged.

• Like before, but the number of stored/outstanding messages is below the
threshold defined on the system configuration page at which IBM Safer
Payments considers an FLI "synchronized".

• No color icon represents a link that IBM Safer Payments cannot determine
the status for. E.g. the respective IBM Safer Payments instance may not be
reachable.

The detailed information in each field is:

• Not acknowledged: number of messages that the sending IBM Safer
Payments instance has already transmitted, yet not received
acknowledgment of their receipt.

• Buffered: number of unsent messages in the outgoing buffer of the sending
IBM Safer Payments instance.

• Total: number of all stored messages in the outgoing buffer of the sending
IBM Safer Payments instance (buffered plus not acknowledged).

• Used: percentage of memory of outgoing buffer of the sending IBM Safer
Payments instance used.

Notice that all information displayed in this table is transmitted via SCI and
thus current. To update the display, you can select "cluster" again from the

navigation menu left. You may also set an auto-refresh interval on the
system configuration page. There are no controls in this section, all data is
display only.
back to top

8.1.2 Cluster instance

The IBM Safer Payments instance form both lets you configure and control an
instance in a cluster. Control is provided by the toolbar actions that are
described on the operational cluster control help page.

Form settings

The form lets you define a number of settings for this instance of an IBM
Safer Payments cluster. Notice that most settings do not become effective
immediately. The settings are:

• Instance Id
Unique identification number for each IBM Safer Payments instance in a
cluster. Typically starts with 1 and is incremented for each instance.

• Name
Name of this IBM Safer Payments instance (choose it to differentiate the
instance's location).

• Comment
Description of this IBM Safer Payments instance (e.g. its physical and/or
logical location, its function, etc.).

• Can run model simulations
To better utilize cluster memory, simulations of model revisions can be run
on different instances. Check this option if you want to make this instance
available to run simulations including analyses and rule generation
workloads.

• MCI (Message Command Interface) settings
Typically the MCI is active on all IBM Safer Payments instances in a cluster to
allow for the connected system to use either of the instances (redundancy).
If you intend to take down one IBM Safer Payments instance of a cluster, you
might want to disable the MCI interface before so that the connecting
systems will stop sending this instance transaction request messages. (If you
just shut down an instance without closing the MCI before, it will
automatically be closed on shutdown.) Because the MCI is an IP based
interface, you must define IP address and port for it (the definition of an IP
address for each IBM Safer Payments interface supports server hardware
with multiple network interfaces). The MCI also supports connection filtering
that is enabled by unchecking the "all connections" box. If unchecked, an
entry field opens that lets you enter a (comma separated) list of IP
addresses for which the MCI accepts connections.

• API (Application Programming Interface) and user interface settings
The API is fully active only on one IBM Safer Payments instance in a cluster.
However, even on a disabled API, each IBM Safer Payments instance still

serves basic administrational capabilities so that in case the currently API
enabled instance of an IBM Safer Payments cluster becomes unavailable, the
administrator can use each other instance of the cluster to perform
administration tasks and even to fully enable the API interface of this
instance. If you intend to take down the IBM Safer Payments instance of a
cluster that has the API enabled for user access, you might want to enable
the API on another instance so that the API on this instance automatically
gets disabled. Because the API is an IP based interface, you must define IP
address and port for it (the definition of an IP address for each IBM Safer
Payments interface supports server hardware with multiple network
interfaces). The API also supports connection filtering that is enabled by
unchecking the "all connections" box. If unchecked, an entry field opens that
lets you enter a (comma separated) list of IP addresses for which the API
accepts connections. Because the API uses the HTTP protocol, the port is
typically "80".

• BDI (Batch Data Interface) settings
The BDI is also only fully active on one IBM Safer Payments instance in a
cluster. In the case that the IBM Safer Payments instance where the BDI is
active is to be taken down, similar to the API, the BDI of another IBM Safer
Payments instance should be enabled first, so that the batch data processing
function is carried out by the other instance.

• FLI (FastLink Interface) settings
The incoming FLI is where an IBM Safer Payments instance receives the
replication messages of all other IBM Safer Payments instances of the cluster.
Disabling the FLI of an instance causes the replication messages being
temporarily buffered in the outgoing FLI of the other IBM Safer Payments
instances. Outgoing FLI are not explicitly defined as the cluster definition is
available to all IBM Safer Payments instances and this tells the instance
which other instances to connect to with their outgoing FLI connections.

• SCI (Status Control Interface) settings
The SCI is always active on all IBM Safer Payments instances in a cluster.
This is because the SCI is the central lifeline between the IBM Safer
Payments instance to exchange health and status information. As an IP
interface, you may define IP address and port here. The SCI will only accept
connections from the other (defined) IBM Safer Payments instances, thus no
connection filtering settings are necessary.

• ECI (Encrypted Communication Interface) settings
The ECI is used between IBM Safer Payments instances of a cluster to
exchange AES encryption keys. It is not needed for an unencrypted IBM
Safer Payments installation. If deactivated, no exchange of encrypted keys is
possible. As an IP interface, you may define IP address and port here. The
SCI will only accept connections from the other (defined) IBM Safer
Payments instances, thus no connection filtering settings are necessary.

• AMI (Alert Message Interface) settings
The AMI is an outgoing interface for alert messages. It can be active on all
instances. If deactivated, a generated alert message (e.g. SAI or email) will
be routed to another instance with active AMI. If there is no active AMI, the
alert message will be discarded.

• KMI (Kafka Message Interface) settings
The KMI can be enabled on multiple IBM Safer Payments instances but for
each Kafka Topic only one instance will establish a connection. If that

instance becomes unable to process messages, the failover configuration of
each Kafka Topic can lead to another instance taking over but only if the KMI
is enabled on that instance as well. That's why the KMI should usually be
enabled on multiple if not all instances of the IBM Safer Payments cluster.

IP Addresses and Ports

All interfaces (API, ECI, FLI, MCI and SCI) of all cluster instances must use a
unique combination of IP address and port. This is checked server-side to
avoid invalid configurations. Host names are resolved to IP addresses but we
recommend to directly use IP addresses to make the cluster operation
independent of the DNS. When choosing ports for the interfaces it is
recommended to not choose a port in the ephemeral port range. You can
check the configured range on your system by running sysctl -A | grep
ip_local_port_range, and can update the range if necessary. It is
especially important to not use this range in test environments if you have
multiple Safer Payments instances on a single machine. Both IPv4 and IPv6
addresses are valid but ECI, FLI and SCI must each use the same protocol
version on all instances to function properly. The loopback addresses
'127.0.0.1' and '::1' are only considered equal to themselves (not to each
other or any other local IP address). Link-local IPv6 addresses (addresses
starting with fe80::) are not supported.

Accepting Connections From Specified Systems

The API and MCI can be set up to only accept connections from specified
hosts or addresses. Both IPv4 and IPv6 addresses as well as host names can
be used. When the external system has several IP addresses, we recommend
to either enter all of them or use the host name if possible.

Change Certificates

• Copy new certificate to ./key folder - do not overwrite old certificates.

• Open cluster instance settings of currently active IBM Safer Payments
instance

• Change paths of certificate

• Save instance
back to top

8.1.2.1 Local storage

This section lets you define the location of the directories where IBM Safer
Payments stores its internal data.

Notice that every change you perform is not executed before you
restart the IBM Safer Payments instance.
back to top

8.1.2.2 Local storage of optional logs

This section lets you define the location of the directories where IBM Safer
Payments stores its optional logs like Garante2 and GDPR logs or
configuration change journals.

Configuration change journal directory

If the writing of configuration changes to journals is activated globally by
enabling the checkbox "Enable configuration change journal" in
Administration>System>Configuration>Misc, a file path needs to be provided
in this field to set the storage location of the journals. The file path must be
specified for each IBM Safer Payments instance separately. In case the file
path is missing for an instance, the writing of journal files for that particular
instance will be skipped and an error will be logged.

Important: Configuration change journals are written in clear text, so the
directory must be protected against unauthorized access.
back to top

8.1.2.3 Local storage of compliance lists

This section lets you define the location of the compliance list raw data files.
IBM Safer Payments will only load lists which are enabled in system
configuration. More information about compliance lists can be found here.

Notice that changes are executed immediately.
back to top

8.2 Cluster management

IBM Safer Payments is "cluster-ready" out of the box. This help page
introduces you to the issues involved with cluster configuration and
operation.

Availability

For most applications, a single IBM Safer Payments instance is sufficient
because IBM Safer Payments can run 24/7 without any maintenance or batch
window (batch operations and maintenance are spun off as separate services
by IBM Safer Payments and are executed fully in parallel to operations).
While the systems connected to IBM Safer Payments with a real-time
interface (for instance, authorization systems) need a response from IBM
Safer Payments within milliseconds to include IBM Safer Payments advice on

intercepting with a high-risk authorization request, they continue after a
timeout period with their operation without the IBM Safer Payments advice if
IBM Safer Payments does not respond. Thus, non-availability of IBM Safer
Payments never halts the authorization process.

Availability business case

However, while IBM Safer Payments is not available, fraud otherwise
detected by IBM Safer Payments would go unprevented while IBM Safer
Payments is not available. Availability of the IBM Safer Payments system
thus becomes a cost comparison between the cost of increasing availability
and the losses associated with fraud that occurs during the non-availability
period. Assuming your platform with IBM Safer Payments would provide 99%
availability, which translates to 87.6 hours of downtime per year, and IBM
Safer Payments saving 50% of your losses of – without IBM Safer Payments
– $10 Million per year, the fraud loss increase resulting from the 1%
downtime is $50,000. With 99.9% availability, this would equal to losses of
$5,000 and with 99.999% availability it would be $50.

Because the diminishing returns with higher availability and the over
proportionally increasing cost of providing systems with such a low
downtime, a decision on which level of availability is best for your enterprise
can only be made using the numbers for your enterprise.

It is also far from trivial to compute the estimated downtime for a given
setup. The process involves experience, educated guesses and often comes
out as somewhat of a "black art".

Numbers game

The way IBM Safer Payments provides higher levels of availability is by
setting up multiple IBM Safer Payments systems on multiple computer
servers, and connecting them to a cluster. Because each IBM Safer Payments
instance in an IBM Safer Payments cluster must be sized to process the full
system load, all IBM Safer Payments functions are available as long as one
IBM Safer Payments instance is available. Assuming three IBM Safer
Payments instances with an availability of each 99% and the cause of
outages random, the probability that all three IBM Safer Payments instances
are down at the same time is 0.0001% ((100% - (100% - 99%)³) =
99.9999%).

All availability calculations in this section are only to illustrate the basic
considerations. In real world cases, calculations of availability are far more
complex. However, the general rule that more IBM Safer Payments instances
provide a higher level of availability stands.

There also might be other reasons for using multiple IBM Safer Payments
instances, such as that you may have two active data centers each running
an authorization system, and a third one as disaster recovery. In such a
situation it would be imperative to have an IBM Safer Payments instance in
each data center; regardless of availability considerations.

Performance gains

In most other applications, clustering is a technique to increase the
throughput performance of a system. With IBM Safer Payments applications,
this is typically not the case. Because IBM Safer Payments makes its
decisions based on past transaction data, each IBM Safer Payments instance
must store and compute all transactions. If you for instance have two
authorization systems in two data centers each with a "local" IBM Safer
Payments instance, and you route transactions "round robin" to each of these
authorization systems, the two IBM Safer Payments instances need to update
each other on the transactions they missed out on. Because this "background
update" process requires about the same computational resource in IBM
Safer Payments as processing the transaction, adding IBM Safer Payments
instances in a cluster does not increase total throughput performance.

Because transaction processing throughput of a single IBM Safer Payments
instance on standard hardware already suffices for even ultra large scale
applications, this non-scaling-up characteristic of an IBM Safer Payments
cluster is not typically a drawback.

Operations and control

Using multiple IBM Safer Payments instances in a cluster is completely
supported by IBM Safer Payments. Each IBM Safer Payments instance
contains the administrational functionality to control all instances in a cluster.
The administrational processes associated with the operation of an IBM Safer
Payments cluster are described below. First the installation of an IBM Safer
Payments cluster is described.

IBM Safer Payments instances

While IBM Safer Payments is capable of running in a cluster with any number
of IBM Safer Payments instances, the practical numbers of IBM Safer
Payments instances in a cluster are 1, 2, or 3. One is not really a cluster, but
in many applications, a single IBM Safer Payments instance suffices. Also
notice that one IBM Safer Payments instance can support any number of
authorization systems. If you are using one IBM Safer Payments instance,
you will have downtime in the following cases:

1. Computer server hardware malfunction

2. Operating system malfunction

3. IBM Safer Payments update

4. IBM Safer Payments software malfunction

On the subject of updates, notice that with "normal" updates, all you need to
do is to stop IBM Safer Payments, install the new release over the existing
one, and restart it. The "new" IBM Safer Payments release will come up
exactly where the old one has left off. Only major releases may imply
additional administrator actions. In this case, we would inform you about this
well in advance, and assist you, if required.

Using two IBM Safer Payments instances provides you with full redundancy in
standard operations. While one IBM Safer Payments instance is unavailable,
the other IBM Safer Payments instance takes over full load. Once the second
IBM Safer Payments instance becomes responsive again, the first IBM Safer
Payments instance updates ("synchronises") the second IBM Safer Payments
instance on what it missed out on. The operational details of this are
explained below. Using two IBM Safer Payments instances also allows you to
have scheduled downtime, for instance to replace computer hardware,
update the operating system or update IBM Safer Payments without any
service interruption.

However, during scheduled downtime, IBM Safer Payments does not operate
redundantly. If you take down one IBM Safer Payments instance, and the
other one fails during this period, IBM Safer Payments service is interrupted.
To have redundant operations even in this case, three IBM Safer Payments
instances are needed. Using three instances has the additional advantage
that after a complete loss of an individual instance (e.g. because of hardware
failure) it can be restored from another instance without service interruption
(see below). During restoration, the third instance ensures full availability of
IBM Safer Payments.

Whilst you may use four or more instances, there typically is no practical
advantage to be gained from this.

Maintenance

To make cluster management as easy and integrated as possible, all
maintenance functions are provided from the same IBM Safer Payments
pages as all other user access. Therefore, even IBM Safer Payments
instances whose API is not enabled, provide access to the cluster
administration page. Hence each IBM Safer Payments instance in a cluster
can be used to manage the entire cluster.

If the one IBM Safer Payments instance with the API enabled should fail, this
feature ensures that as long as there is still one operating IBM Safer

Payments instance in the cluster, the administrator can use this instance to
perform all maintenance tasks.

Normal operations

This section exemplifies a configuration of an IBM Safer Payments cluster
with 3 instances. The sketch below shows the 3 instances with their external
and internal interfaces. The external interfaces are the MCI (Message
Command Interface) for online transaction request/responses, the BDI
(Batch Data Interface) for transaction message file delivery, and the API
(Application Programming Interface) for user access. Both BDI and API can
only be active on one of the IBM Safer Payments instances at the same time,
though they can each be set active on different instances. The example
assumes that both interfaces are active on instance 1 only.

The MCI can be enabled on each instance and each IBM Safer Payments
instance can assume the full transaction load as delivered by the
authorization system. This is the normal operating condition. The
authorization system must have functionality to turn to the next IBM Safer
Payments instance in the cluster once it has determined that the IBM Safer
Payments instance it currently uses is not responsive or down. Not-
responsiveness is typically detected by a watchdog timer in the authorization
system that kicks in once a transaction request message has not been
responded to within an allotted timeframe. If the authorization system
experiences that the IBM Safer Payments instance it connects to drops the
connection, it can assume that the IBM Safer Payments instance or the
network route to it went down. In this case, the authorization system should
immediately turn to the next instance.

Notice that each IBM Safer Payments instance has three internal interfaces,
the SCI (Status Control Interface) for status control commands, the ECI
(Encrypted Communication Interface) to exchange encryption keys and login
credentials, and the FLI (FastLink Interface) for transaction and configuration
data. Because the FLI must tolerate connection or instance outages, each
outgoing FLI interface is FIFO disk buffered. The size of the FLI buffer files
are fixed and defined on the system configuration page. The best size is
determined by the transaction message frequency in relation to the outage
time the buffers shall cover.

The SCI and ECI are not buffered since a FIFO buffer would not guarantee
that the status information provided is current. For the same reason, the
replication of the cluster configuration (the contents of the "cluster.iris" file)
is handled via the SCI.

Instance shutdown

Certain operational conditions require the scheduled shutdown of an IBM
Safer Payments instance. This is for instance the case if the server hardware
or software of one IBM Safer Payments instance is updated. Shutdown and
restart of this IBM Safer Payments instance is straightforward and involves
the following steps.

Assuming IBM Safer Payments 1 is to be shut down, the administrator
disables the MCI, BDI, API and incoming FLI interfaces. The BDI interface
will, upon being disabled, complete the computation of the currently
processed record (for each job running), and then interrupt all jobs. They will
later start at the next record position when the BDI is enabled again on any
IBM Safer Payments instance connected. The other interfaces, upon being
disabled, will refuse any connection opening requests, will complete the
computation of the currently processed transaction message, and then shut
down the connections that were open.

In this example, it is further assumed that BDI and API were activated on
IBM Safer Payments 3, while the authorization system chooses to route its
transaction message requests to IBM Safer Payments 2 when it finds the MCI
interface on IBM Safer Payments 1 disabled. When the FLI incoming interface
of IBM Safer Payments 1 disables, the FLI outgoing interfaces of IBM Safer
Payments instances 2 and 3 receive a connection close from IBM Safer
Payments 1 and start buffering all transaction message copies and all
configuration data copies into their file buffers.

Once IBM Safer Payments 1 is restarted, and its incoming FLI is activated,
IBM Safer Payments instances 2 and 3 automatically discover this as they
are periodically testing IBM Safer Payments 1 for responsiveness. Once they
find IBM Safer Payments 1 to be receiving FLI data again, they will feed all
buffered transactions to the IBM Safer Payments 1 instance in sequence.

Once "synchronised", that is, IBM Safer Payments 1 being up to date with
transaction and configuration data, the MCI, API, and BDI interfaces of IBM
Safer Payments 1 can be activated, if IBM Safer Payments 1 should now re-
assume these tasks at this time.

Instance failure (hot start)

Safer Payments will detect if a previous shutdown wasn't successful. The
reason for the previous improper shutdown doesn't matter to Safer Payments
- this could be a hardware or software failure or even a recovery from a
backup of an instance that was not shutdown during backup. Once Safer
Payments detects such an unfinished shutdown, it will startup in status
"Invalid". Although Safer Payments tries to reduce the amount of data loss to
be minimal - depending on the configuration, the data loss can be high
enough to impact proper computation of messages negatively. In particular,
this is the case when using multi-value masterdata or deferred writing, as
those configuration settings might result in bad index sequences or bad
masterdata entries if data wasn't written completely during shutdown.

To avoid message computation or case generation with bad indexes or
masterdata, the instance starts up without active API, MCI, BDI, or FLI. To
recover all data, it is required to restore the instance that wasn't able to
shutdown completely. Login to one of the instances and navigate to cluster

settings. Click on that instance and click on the 'restore' button. This will
request to select a donor and a recipient. All data of the recipient will be
wiped automatically before the restore operation starts. Both instances will
be unavailable for case investigation, model changes and message
computation for the whole time of the restore.

If you are not using deferred writing or multi-value masterdata, you might
check with IBM support if a restore is really required or if it can be skipped
for this specific instance failure.
In case a restore is not required, it is possible to startup an instance without a
restore (however this process is not recommended without confirmation from IBM
support): The administrator logs onto either of the remaining operational
instances, navigates to the cluster settings and clicks on the invalidated instance
and on the button 'force startup after crash'. After that, the administrator moves
BDI and API to an operational IBM Safer Payments instance or waits until the
instance finishes its synchronization, and full operation resumes.

If a second instance becomes non-available during downtime, the recovery
process is the same, only that once the last operational IBM Safer Payments
instance fails, IBM Safer Payments cluster operation is down.

As soon as any IBM Safer Payments instance comes back operational, the
remaining instances automatically synchronise this IBM Safer Payments
instance with the contents of their FLI buffers, and once synchronised, the
IBM Safer Payments instance becomes a fully functional member of the
cluster again.

Instance failure (cold start)

In the cases discussed before, whether scheduled or non-scheduled
shutdown of an IBM Safer Payments instance occurs, it is assumed that the
data on disk of these instances survives. This would normally be the case. In
case of a scheduled shutdown, where typically part of the infrastructure is
replaced or the operating system or IBM Safer Payments itself is updated,
disk data remains intact. In case of a non-scheduled shutdown, data is rarely
lost because IBM Safer Payments instances are typically installed on fault-
tolerant RAID disk subsystems.

There are, however, rare possible situations in which disk data on an IBM
Safer Payments instance can be lost. In this case, the recovery processes
described before cannot be used because the data stored in the outgoing FLI
buffers would not be sufficient to synchronise the IBM Safer Payments
instance. In this case, a more complex ("cold start") recovery process must
be employed.

Also, there is the situation of the FLI buffer exhaustion of the other IBM
Safer Payments instances. This can happen if during the outage of an IBM

Safer Payments instance the amount of data stored for synchronisation in the
FLI buffers exceeds the allocated buffer size. In this case, the FLI buffers
cannot restore the non-active IBM Safer Payments instance anymore when it
would start up later, so the FLI buffers are dropped, and the non-active IBM
Safer Payments instance must be "cold started". Notice that there are buffer
management functions within the FLI to prevent this situation from
occurring.

In the three-instance configuration discussed in this example, if one IBM
Safer Payments instance disk data is lost, or the FLI buffer of another
instance feeding this IBM Safer Payments instance are dropped, this IBM
Safer Payments instance must be "restored". This process and related other
operational processes are described in detail on the online help cluster
instance page.

Startup Parameters

Startup parameters for IBM Safer Payments are described in detail on the
online help startup parameters page.
back to top

8.2.1 Cluster settings

This page describes the cluster settings table. General information is found
on the IBM Safer Payments cluster management page.

Table rows

Each instance of the IBM Safer Payments cluster is shown in one table row.
For each row, the values in the columns show various status information
(details below). A left click on a row opens a detailed form with all relevant
settings for this instance; select a checkbox to open a context menu with
shortcuts to frequently used actions.

Table actions

While all actions on an IBM Safer Payments instance are available from the
instance form that opens when you left click on the respective row, select a
checkbox to open a context menu with shortcuts for the respective IBM Safer
Payments instances. Refer to operational cluster control for details.

Table columns

• Instance Id
IBM Safer Payments instances are numbered from 1. The instance that you
are currently using to access this page is marked with an asterisk (*).

• Status

This value can be of:

• Unreachable
Instance is not running or cannot be reached by the current IBM Safer
Payments instance.

• [Unreachable|Invalidated] (detached)
Instance has been detached. No outgoing FLI queues have been created
for this instance. This instance is out of sync and needs to be restored.

• Startup
Instance is currently starting (this may take a few minutes since during
this phase, IBM Safer Payments loads its memory data cache from the
disk data cache). In this status, the IBM Safer Payments instance has
no open interfaces with the exception of the status and command
interface (SCI) and is not responding to direct user interface requests
(you will thus only see this status from another IBM Safer Payments
instance). This is a transient status. If it remains for an unusual long
time, check system health and event log message files. Once all startup
actions are completed, the IBM Safer Payments instance will attempt
synchronization of its data repository from the other IBM Safer
Payments instances.

• Synchronizing
Instance tries to obtain missing transaction and configuration data from
other cluster instances. You should see the progress of this effort from
the FastLink status table (above this table). If the links are down,
ensure that the FastLink interface (FLI) on the synchronizing instance is
enabled and active.

• OK
Instance is up and running.

• Waiting for synchronization
Same as startup, but with a hotstart rather than a cold start (hotstart
can for instance be triggered from this table's action menu; in contrast
to a cold start, the IBM Safer Payments process is not terminated).

• Error
Instance startup failed not available due to a severe error during
startup. Check event log message files for details.

• Invalidated
A failure on this instance has caused its data to be corrupted. To protect
integrity, this instance has closed its interfaces. You need to restore this
instance from another one. For details, see restore process.

• Lockdown
There are 2 ways that an instance can go into lockdown status. The first
is during a restore: once a restore is started, the donor instance closes
all its interfaces and waits until all its outgoing FastLink interface (FLI)
buffers are drained. During this period, the donor IBM Safer Payments
instance is in lockdown status. For details, see restore process.
The second way an instance can go into lockdown status is if the FLI
buffer reaches capacity and overflows. In this case the instance will
lockdown to prevent further data loss on other instances. It will change

again to a healthy status after restart. To recover the data loss on the
other instances, it is recommended to restore all other instances with
that instance selected as donor, which previously had the lockdown
status. For details, see restore process.

• Restoring: donor
This is the donor instance of a restore process and a restore is currently
under way. For details, see restore process.

• Restoring: recipient
This is the recipient instance of a restore process and a restore is
currently under way. For details, see restore process.

• Restore failed
Restore failed on this instance. Check event log message files for
reasons. For details, see restore process.

• Starting services
This is (typically) a short transient status during startup where IBM
Safer Payments spins of its various service threads. If this status
remains for an unusual long time, check system health and event log
message files.

• Undetermined
Startup did not conclude with a "real" status. Check system health and
event log message files.

• Waiting for key
The instance cannot start since encryption keys are not entered and
activated, and cannot be obtained from other IBM Safer Payments
instances. Enter and activate keys to continue the startup process.

• Offline
All interfaces except Encrypted Communication Interface (ECI) and
Status Control Interface (SCI) are inactive and all pending data has
been written to disk. This state is suitable to create file backups.

This value also reflects the status of the instance regarding maintenance
mode. Maintenance mode is a mode of IBM Safer Payments instance
operation such that processing transactions is halted, as well as other
functionalities like deferred writing, MCI (if it is configured to close during
golive), etc..IBM Safer Payments instance requires to enter maintenance
mode for each of the following operations:

• adding / updating a Mandator

• adding / updating a WorkingQueue

• adding / updating a Message

• recreate indexes

• rebuild indexes / index sequences

• structural golive

• retire champion

If cluster interlock is enabled, an IBM Safer Payments instance moves
through the following states:

• OK (checking cluster interlock)
The instance is checking that no other instance in the cluster is

currently in maintenance mode, and the configured minimum number of
instances is available.

• OK (entering maintenance mode)
During this state, the instance waits until all the currently processing
transactions are finished.

• OK (in maintenance mode)
All the conditions to enter maintenance mode have been satisfied and
the instance is in maintenance mode. The instance executes the
corresponding operation.

• Finally, the instance exits the maintenance mode, then the status of the
instance is displayed without the additional maintenance mode
information in the brackets.

• Name

Name defined for this IBM Safer Payments instance.
• Comment

Comment defined for this IBM Safer Payments instance.
• Message command interface (MCI)

Status of MCI (Message Command Interface) on this IBM Safer
Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the
status in detail. Momentary load (10 second average) is provided in
brackets.

• Application programming interface (API)

Status of API (Application Programming Interface) on this IBM Safer
Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the
status in detail. Momentary load (10 second average) and number of
active user sessions are provided in brackets.

• Batch data interface (BDI)

Status of BDI (Batch Data Interface) on this IBM Safer Payments
instance. if the status is as set, if not, and no icon if interface is
disabled and not active. A text next to the icon explains the status in
detail. Momentary load (10 second average) is provided in brackets.

• FastLink interface (FLI)

Status of FLI (FastLink Interface) on this IBM Safer Payments instance.
 if the status is as set, if not, and no icon if interface is disabled and

not active. A text next to the icon explains the status in detail.
Momentary load (10 second average) is provided in brackets.

• Encrypted communication interface (ECI)

Status of ECI (Encrypted Communication Interface) on this IBM Safer
Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the
status in detail.

• Alert message interface (AMI)

Status of AMI (Alert message interface) on this IBM Safer Payments
instance. if the status is as set, if not, and no icon if interface is
disabled and not active. A text next to the icon explains the status in
detail.

• Heartbeat Debugging Status

This value is similar to Status column, it is used for debugging
purposes.

back to top

8.2.2 Operational cluster control

Operating a running IBM Safer Payments cluster involves a number of
activities that are each described on a separate help page:

• Add IBM Safer Payments instance
Operational processes to add another IBM Safer Payments instance to a
running cluster.

• Shutdown
Shutdown process for a single IBM Safer Payments instance or an entire IBM
Safer Payments cluster.

• Detach
Detaching an instance from the cluster disables replication to this instance.
Use it when you want to take down an instance for a longer period of time.

• Attach
Attaching an instance forces to add an instance to the replication mechanism
of the cluster, without synchronizing it.

• Delete
Permanently removes an IBM Safer Payments instance from the cluster.

• Restore
Recreates a new or existing IBM Safer Payments instance from another IBM
Safer Payments instance during operations.

Notice that setting up an IBM Safer Payments cluster, and starting it for the
first time is described in the IBM Safer Payments Installation Manual that is
available from our IBM Safer Payments support site from where you can also
download IBM Safer Payments releases and find related support information.

These functions are available from the cluster administration page instance
form.

While an IBM Safer Payments cluster can restore its instances in operations
from itself, there is also traditional backup within an IBM Safer Payments
cluster.

Notice that you may also perform operational control remotely.

The golive process in a cluster is described here.

Startup parameters for IBM Safer Payments are described on the online help
startup parameters page.
back to top

8.2.3 Add instance

You may add an IBM Safer Payments instance to a cluster at any time during
full operations. The process involves a number of steps:

1. Click [Add instance] from the cluster settings table toolbar. This opens a form
to configure the new IBM Safer Payments instance. Enter the relevant
information. Only activate the FastLink interface. Save your settings.

2. Install the new IBM Safer Payments instance on its platform.

3. Manually copy the file "cfg/cluster.iris" from one of the existing IBM Safer
Payments instances to the new instance, overwriting the file that was part of
the "empty" installation.

4. Manually copy the "key" folder if certificates or encryption keys were added.
These files will not be transmitted by network.

5. Enable the ECI interface.

6. Open the file "cfg/iris.iris" with a text editor and change its contents to:

{"iris":{"status":"New"}}

7. Start the new IBM Safer Payments instance and observe on the cluster page
of another IBM Safer Payments instance its startup. Once started up, the
status of the new IBM Safer Payments instance will be shown as
"invalidated".

8. Perform a restore operation on the new instance to synchronize it with the
other IBM Safer Payments instances.

9. Once the restore operation is complete, the new IBM Safer Payments
instance has become a full member of the cluster and can now be configured
to perform any of the cluster's services.

back to top

8.2.4 Shutdown

There are multiple reasons for shutting down one IBM Safer Payments
instance of a cluster:

• Software or hardware maintenance of the hosting server.

• Update of an IBM Safer Payments instance.

Whatever the reason, if you follow the process steps detailed below, you will
be able to restart the IBM Safer Payments instance later and not have lost
any data.

Isolation

Before the IBM Safer Payments instance can be shut down, you must
transfer its functions to the other IBM Safer Payments instances. How this is
done, depends on the interface:

• BDI (Batch Data Interface)
By disabling the BDI on the instance you want to shut down, all data from
file loading processes are halted. To resume them from another IBM Safer
Payments instance, enable the BDI on this instance. If you have not disabled
the BDI on the first IBM Safer Payments instance already, enabling the BDI
on the second instance will automatically disable it on the first one (to
ensure that at each time only one IBM Safer Payments instance performs
batch data loading).

• API (Application Programming Interface)
By disabling the API on the instance you want to shut down, all user sessions
on this API are terminated. This excludes users with cluster administration
privileges for cluster control functions, so while you are performing a
shutdown process, this will not affect your session. To allow user access from
another IBM Safer Payments instance, enable the API on this instance. If you
had not disabled the API on the first IBM Safer Payments instance already,
enabling the API on the second instance will automatically disable it on the
first one (to ensure that at each time users access IBM Safer Payments only
through one IBM Safer Payments instance).

• FLI (FastLink Interface)
By disabling the FLI on the instance you want to shut down, all replication
data from the other IBM Safer Payments instances are now buffered within
their FLI outgoing queue buffers. This ensures that when the IBM Safer
Payments instance that you want to shut down starts up again, and FLI is
enabled again, the buffers deliver all the production and configuration data to
this IBM Safer Payments instance it had missed when it was not running.

• MCI (Message Command Interface)
By disabling the MCI on the instance you want to shut down, all service
consumers re-route their transaction message requests to another IBM Safer
Payments instance in the cluster. Notice that if you shut down an IBM Safer
Payments instance without having disabled the MCI before, the MCI will be
disabled automatically during shutdown. It is, however, still a good policy to
first manually disable the MCI before shutting down an instance. For
example, if the MCI is automatically disabled during shutdown, there is a
grace period IBM Safer Payments waits for all transactions to be terminated
before it closes all MCI connections. This grace period is typically defined
long enough that all computation is completed, yet if for whatever reasons, it
is not, you may interrupt computation of a transaction before it is completed.

Once you have disabled all these interfaces to IBM Safer Payments, no new
production or configuration data is generated in this instance. However, since
data could have been built in the FLI outgoing queues of this IBM Safer
Payments instance, you must check the FastLink status section on the cluster
administration page to ensure that all outgoing queues of this instance have
emptied.

Shutdown sequence

Now you may initiate shutdown by clicking on the respective [Shutdown]
tool icon on the cluster instance form of this instance, or from the context
menu of the respective row of the instance in the cluster settings table. After
clicking on the respective button, you will see a shutdown dialog. You can
select if you want to shutdown this instance immediately or at a particular
time. If you want to shutdown this instance earlier, you may select an earlier
shutdown. Please notice that a started shutdown cannot be interrupted.

The actual shutdown sequence empties all internal buffers of IBM Safer
Payments and terminates its service threads before it ends the main IBM
Safer Payments instance process. This entire sequence typically takes a few
seconds.

The cluster settings table should show the status "unreachable" for this
instance with a red icon once the sequence is completed.

You should now inspect the system event log to verify that there were no
errors during shutdown.

Remarks

• You may also initiate a shutdown on the IBM Safer Payments instance you
are currently connected to. In particular, if you intend to shut down an entire
IBM Safer Payments cluster, the last IBM Safer Payments instance you shut
down is the one you are working on. Since in this case, it is impossible to
view the system event log from within IBM Safer Payments, you should
inspect the latest system event log instead on file level.

• To re-start an IBM Safer Payments instance after a shutdown (and potentially
maintenance operation on the instance or its server), you cannot use any
function from within IBM Safer Payments, you will have to turn to the
method used in your IBM Safer Payments setup to start the instance. Notice
that you have a certain time window for restarting, since the FLI outgoing
queue buffers of the other IBM Safer Payments instances only have a finite
capacity. If you have exceeded this capacity, and you re-start the IBM Safer
Payments instance, it will detect that it cannot be synchronized to the
current state of the other instances via FLI and require you to restore this
instance.

back to top

8.2.5 Detach instance

If you detach an IBM Safer Payments Instance, it will effectively be taken out
of the IBM Safer Payments cluster replication mechanism. The outgoing FLI
queues of all other instances to this instance will be closed and their contents
will be discarded.

This ensures that if the detached IBM Safer Payments instance is not coming
back up for an extended time, no FLI outgoing queue will overfill. When this
IBM Safer Payments instance comes back, it needs to be "restored" to make
good for the missed replication.

The attach of an instance forces to reopen the outgoing queues without
recovering the discarded contents. An attached instance will not be in sync
any more.

Notice that the delete IBM Safer Payments instance operation also executes a
detach.
back to top

8.2.6 Delete instance

Deletion of an IBM Safer Payments instance first invokes detaching it from
the cluster, and then to delete it from the cluster configuration.

Remarks

• You may delete an IBM Safer Payments instance of a cluster in full
operations.

• The deleted IBM Safer Payments instance is only deleted from the cluster,
not physically from its hardware platform. If you want to remove the IBM
Safer Payments instance from its hardware platform, you need to uninstall it
after you deleted it from the cluster.

back to top

8.2.7 Restore

Restores this instance from a donor. This function is needed in a number of
cases:

• A new instance is added to the cluster.

• An IBM Safer Payments instance suffered from a major fault involving data
loss (golive fault etc.).

• A FastLink queue to an instance broke (i.e. due to a buffer overfill situation).

• The disk subsystem of the host computer of an IBM Safer Payments instance
suffered from data loss.

In these situations, no data on the instance can be used anymore and the
instance must be restored. Restoration is a data transplantation process in
which the IBM Safer Payments instance to be restored (aka "recipient")
obtains all data from another IBM Safer Payments instance (aka "donor").
Notice that full IBM Safer Payments operations resume if you have 3 or more
instances in a cluster because when donor and recipient are both unavailable
during the restore process, there is still one more IBM Safer Payments
instance to process transaction messages, batch data, and user requests
(aka "operational").

Restore process

The restore process consists of a number of steps:

1. Invocation: open the edit form for the recipient instance. Click the restore
button. Confirm your choice. Select the donor instance. The remained of the
process is now performed automatically by the cluster. Do not interrupt until
complete.

2. Signaling: within the IBM Safer Payments cluster, the instances are now
informed about their role in the restoration process (donor, recipient, or
operational). Within the instances table, the status of the recipient is now
signaled as "Synchronisation: Recipient".

3. Lockdown: the donor closes all its incoming interfaces (message command
interface, application programming interface, batch data interface, FastLink
interface) and waits until its outgoing FastLink buffers are drained. The
recipient status shows "Lockdown" until this part of the process is completed.

4. Postparation: all operational instances discard their FastLink outgoing buffer
to the recipient and clone the FastLink outgoing buffer to the donor for the
recipient. This buffer is continuously filling up during the restoration process
since the donor has disabled its incoming FastLink interface for the duration.
The operational instances now fill both the buffers (donor and recipient) with
all data since the donor closed its interfaces. This effectively ensures that
donor and recipient are both provided with the (now static) data of the donor
and the (accumulating) contents of the Fast Link buffers which ensures them
to be up to date and synchronized. In addition, the FastLink outgoing buffer
of the donor to the recipient is discarded.

5. Transfer: all data stored on files from the donor is now copied to the
recipient. This step can take considerable time, depending on the size of the
data and the bandwidth of the network involved. This step is signaled by the
donor status being displayed as "Synchronisation: Donor".

6. The following are carried out in parallel:

• Hotstart: the recipient now restarts with the donor data. This step is
signaled by the recipient status being displayed as "Startup".

• Incoming FastLink interface for recipient set active so that it starts
being updated by the operational instances. The progress of this step
can be followed by the FastLink status display.

7. Synchronisation: incoming FastLink interfaces of donor instance activated,
causing donor to be delivered with all data that was held in the FastLink
buffers since lockdown of the donor. The progress of this step can be
followed by the FastLink status display.

8. Finish: both donor and recipient monitor the FastLink buffers that feed them.
Once they all are considered "in-sync", the respective message command
interfaces are activated and the instance becomes fully operational again.

The following UML sequence chart exemplifies the message flow
between the instances during a restore procedure in detail:

back to top

8.2.8 Backup

IBM Safer Payments cluster installation is inherently fail-resilient. Each IBM
Safer Payments instance serves as a backup to all the others, and since data
stored in IBM Safer Payments is typically also stored in other systems as
well, there is little need to revert back to an older status of the application.
Thus many IBM Safer Payments applications do not require any additional
backup process.

Backup background

If this is not the case in your application, and you must implement backup
processes for IBM Safer Payments, there are certain aspects to consider.

First notice that an IBM Safer Payments instance cannot be backed up during
operations, because while IBM Safer Payments operates, it constantly
changes file contents. In particular IBM Safer Payments requires constant
and exclusive read and write access for certain files, to ensure round-the-
clock real-time processing of transactions. IBM Safer Payments must be
taken offline (all interfaces disabled) so that its disk data remains unchanged
during any backup process. Notice that it is not necessary to shut down the
IBM Safer Payments instance for backup, only all incoming interfaces have to
be disabled during backup.

If your application requires periodical backups, it could be advantageous to
install a separate IBM Safer Payments instance dedicated to this task. This
IBM Safer Payments instance would only have FastLink interface (FLI)
activated, and FLI would be suspended each time a backup from this
instance is made.

An alternative to this is to use a backup software that supports "snapshot
technology", able to even back up open files. Because of the typical (large)
size of the IBM Safer Payments DDC files, the overhead involved with this
approach could be prohibitively large.

Restoring from backup

Restoring from a backup is simple. You may also use one instance's backup
to restore another or all IBM Safer Payments instances in a cluster.

Notice that there is a restore function in IBM Safer Payments that restores
one IBM Safer Payments instance from another in live operations.
back to top

8.2.9 Cluster golive

During the actual golive of a model revision, IBM Safer Payments has to
reconfigure its model and, if there were changes on the data storage
configuration, the data storage objects. During this reconfiguration, IBM
Safer Payments cannot compute transaction message requests. In a typical
golive involving only changes of profiling and rules, this time period typically
only lasts a few milliseconds. If new attributes or profiling output attributes
are added to the model, this time period typically still remains in a sub-
second range. In some rare cases, however, the time period can be
significantly longer, for instance, if a large DDC requires encryption or
decryption, or if major DDC resizes of all attributes have to be performed as
part of the golive.

The golive report that is created as part of the golive process before the
process actually gets started attempts to estimate this time period in
advance. This is important as any golive for one mandator will exclude
golives of other mandator at the same time. Typically this never results in
bottleneck situations as even with hundreds of mandators, most mandator's
golives will be very quick, as the mandator's users would not be privileged to
perform the aforementioned major changes to the data store configuration.
Also notice that the quality of the golive estimation depends on how accurate
the performance factors (entered on the system configuration page) have
been benchmarked for exactly the server platform used.

It is important to notice that in an IBM Safer Payments cluster setup, the
non-availability of one instance for the duration of its golive does not
translate to non-availability of the functioning of the entire IBM Safer
Payments cluster. The cluster interlock ensures that no more than one
instance can perform a golive at any given time. The golive is performed in
sequence on all instances in the cluster. When the service consumer detects
that one instance is not computing transaction messages, it can redirect
them to another instance in the cluster. If MCI bypass is configured, this
redirection is done internally by IBM Safer Payments and is completely
transparent to the service consumer.

In addition, the cluster interlock checks that enough instances in the cluster
are available to compute transaction messages. This helps mitigating risks of
outages outside the control of IBM Safer Payments, such as power outages
or host OS maintenance. On occasions, this can cause the golive execution to
be queued until enough instances are available again, this state is reflected
in the revision selection table by an extra '(queued)' block next to the
revision status. Once enough instances are available, the golive is executed.
back to top

8.2.10 URID replication

Within each IBM Safer Payments instance, each transaction record stored is
assigned a unique record Id (URID). URIDs are assigned incrementally; the
first record thus has an URID of zero. Since URID counting is never
restarted, each transaction ever processed by IBM Safer Payments is
uniquely identifiable.

This is however more complex in a clustered IBM Safer Payments installation.
Because each IBM Safer Payments instance must be able to operate
autonomously, it is impossible for IBM Safer Payments instances to negotiate
URID values before they store a transaction record. Thus URID are only
unique within an IBM Safer Payments instance. If the authorization system
uses three IBM Safer Payments instance in a round-robin scheme, the first
transaction record would be URID=0 on instance 1, the second URID=0 on
instance 2, and so forth.

Hence in a cluster, a transaction record is only uniquely identified by the
instance Id and URID of the ("primary") IBM Safer Payments instance that
initially received the transaction message (or processed the batch data
record). Therefore, two attributes "Primary instance ID" and "Primary URID"
must be created with each model revision as meta attributes in a clustered
configuration. Each primary IBM Safer Payments instance then adds the
primary URID and its instance Id to the FLI message passed to the other IBM
Safer Payments instances, where they get stored with the transaction record
in addition to the ("secondary") URID of this specific IBM Safer Payments
instance.

The unique identification of transaction records is needed both for auditing
purposes and also with the flagging of transactions as fraud during
investigation. In the latter case, the primary URID and instance Id values are
used to ensure that the same transaction is flagged (or un-flagged) as fraud
on all IBM Safer Payments instance in a cluster.
back to top

8.2.11 Remote operation of IBM Safer Payments

While all operational processes and maintenance tasks are supported from
within IBM Safer Payments, they can also be operated remotely from any
central data center environment using the IBM Safer Payments API
(Application Programming Interface).

The remainder of this page exemplifies the use of the API for typical
operational processes and maintenance tasks. Notice that the operations can
be executed on all IBM Safer Payments server instances, regardless on

whether or not their API is set active. Contact the IBM Safer Payments
support for a complete API reference manual.

Ping

The API ping can be used on any IBM Safer Payments server instance to test
if the instance is responsive. No valid user session (login) is required for this.
Load balancing / failover switching gear between the IBM Safer Payments
server instances and user access can use this API request to determine the
API active IBM Safer Payments server instance.

Login/logout

All API requests (other than "ping") require authentication. Typically, a
specific user account is created for such remote operations.

The user account should be created with the "enforce password changes"
option disabled. Once the "login" request is responded to, the session
remains active for the specified timeout period. The session cookie must be
retrieved from the response, as it must be sent back to the API with all
subsequent API requests.

Cluster status

A complete status overview can be obtained with the "getInstancesTable"
request.

Switching active API

To enable the API on an instance (and automatically disable it on all other),
send the "enableApi" request.

Taking an instance offline (e.g. for backup)

To disable/close all interfaces on an IBM Safer Payments server instance (for
example: before executing a shutdown or to isolate an instance for non-
shadow copy enabled backup), send the "setOffline" request.

This request disables/closes the MCI, API, BDI, and incoming FLI interfaces
of the respective IBM Safer Payments server instance. Notice that you must
first activate the API on another IBM Safer Payments server instance for
users to still have access to the IBM Safer Payments cluster (user sessions
lost during switching active API). The SCI interface remains enabled/open
since it is used by the IBM Safer Payments cluster instances to exchange
necessary control and status information even with an offline IBM Safer
Payments server instance. Since the operating SCI does not change any file
stored data, it can safely be kept open for instance during a backup of the
instance.

Taking an instance online (e.g. after a backup)

To re-activate all enabled interfaces after having taken it offline, send the
"setOnline" request.

Shutdown

To initiate the shutdown of an instance (and automatically disable it on all
other), send the "shutdown" request.

Notice that you do not need to shut down an IBM Safer Payments server
instance for certain maintenance tasks, such as backup without shadow
copies: taking the instance offline is sufficient.
back to top

8.3 System internals

System Internals contain IBM Safer Payments system information that the
administrators and supports can use to get an overview of the IBM Safer
Payments system and troubleshoot issues, such as latencies. It has the
following tabs with information from different aspects:

• General Information: Contains general system information. Each item is
explained by its tooltip.

• Data Caches Internals: Contains status variables of all attributes stored in
MDC and DDC.

• Index Internals: Contains general information of all indexes. See below for
further explanation.

• Memory Usage Internals: Displays memory usage of all stored elements.

• Latest Latency Violations: Displays recently occurred latency violations.
See below for further explanation.

back to top

8.3.1 Index internals

The Index Internals table contains a summary of all indexes. It has the
following columns:

• Attribute: Index attribute name.

• Available Nodes: A container with slots that can be used to insert new
index entries. Available nodes are only created, if "Purge outdated entries" is
enabled in the index definition. Safer Payments will insert all slots, that are
freed during purging, into available nodes. It will also add all other free
nodes during startup of the Safer Payments instance. Picking a free slot from
available nodes is the quickest way to find a free slot during index insertion.

• Capacity: The defined number of slots to store index entries. It can be
changed in the index definition in model revision.

• Distinct: The current fill level of the index. These are the index entries that
are currently used and have not exceeded the maximum lifetime defined for
the index. If the distinct value gets close to "Capacity", the index might be
running out of free slots. This value decreases during purging and increases
when inserting new entries.

• Maximum fill level: The highest fill level the index ever had. This value
never decreases as it is the maximum number of distinct entries.

• Index-UID: Unique ID (UID) of the index.

• Last Insert: The slot that was used as latest insert position. If "Purge
outdated entries" is disabled in index definition, this is usually [Distinct - 1]
for a healthy index. If it is a slot in the middle of an index instead, it
indicates that the index insertion had to search for a position that may
induce latencies. If there are "Available Nodes", "Last Insert" being in the
middle of the index is an expected behaviour and is not an indicator for
latencies.

• Mandator: The mandator that the index belongs to.

• Max Deletion Tries: The maximum attempts it has ever taken for this index
to find a free slot by deleting old entries that have reached their minimum
lifetime. If this value is high, it indicates that free slots could only be found
by deleting old entries that have reached their minimum lifetime and it might
lead to latencies.

• Root: Id of current root node of the index tree.

• Sequence: Indicates if the sequence is enabled or not in the index
definition.

• Sequence Depth: The sequence depth set in the index definition.

• Sequence DDC Size: Index sequence DDC size.

• Sequence MDC Size: Index sequence MDC size.

• Tree Depth: Current (maximum) depth of the index tree.

• Type: Type of the index.
back to top

8.3.2 Latency violations

The Latest Latency Violations table contains the most recent latency violation
records in the instance. The maximum number of records that this table can
display is defined in System Configuration -> Misc -> Log latency violation
details -> Maximum reports in system internals (violations).

This table includes the following information of each violated record:

• URID: The URID (unique record ID) of the violated record in the instance.

• Latency: The time it took Safer Payments to compute the record.

• System Time [timestamp]: The time when the record was computed.

Detailed computation of each violated record can be expanded/collapsed by
clicking the arrow sign at the end of each row in the table. The expanded
computation detail contains two sections:

• Time per element (URID): This sub-table lists all elements (or the top
time consuming elements depending on the system setting for latencies)
with their UIDs that are involved in the message computation and the time
taken to compute each element.

• Time per computation (URID): This sub-table lists the time taken to
compute each element type, such as index, calendar profile, counter, etc. All
other computation time is counted as Misc Wait (aka. Storage Overhead). If
the setting Log "misc wait" time details is enabled, an additional table "Misc
Wait Times" is also displayed. This table list further detail about misc wait
computation, such as the time taken to write the message to CDC or
compute rule actions, etc.

back to top

8.4 Browsing

This section covers event message browsing.
back to top

8.4.1 Log entries

This page lets you view log messages:

• Which of the generated log messages are displayed depends on the filter
settings above.

• How and which log messages are generated depends on the event log
message settings.

• The columns displayed are:

• Instance
IBM Safer Payments optionally (system configuration) implements
centralized logging. In this case, all IBM Safer Payments instances
replicate all locally generated log messages to all other instances within
the IBM Safer Payments cluster. This column identifies the IBM Safer
Payments cluster instance this log message was originated on.

• Timestamp
Timestamp log message was generated (system time of originating
instance), including microseconds. Notice that the actual resolution of
the computer clock might not represent microseconds.

• Log level
The log level is a classification involving the levels:

• Debug
Analysis and troubleshooting information mostly used during

integration and testing of an IBM Safer Payments installation.

• Copyright
Delivers release information.

• Informational
Describes certain activities within IBM Safer Payments.

• Warning
Potentially troublesome incidents.

• Error
Problems presumably resolvable by user/administrator.

• Fatal
Problems presumably resolvable only by IBM. If you encounter
them, please contact IBM Safer Payments support to analyze.

• ID
The log message ID is a unique identification within IBM Safer
Payments. Notice that the same log message (same ID) can have
different log message texts depending on what is intended to express.

• User
For all log messages that are generated with respect to an explicit
action of a user, the user login (and name) is provided here.

• Message
Text describing the actual event. Notice that with the audit log, the IP
address from which a request is received is included after message text.
For requests that were forwarded to IBM Safer Payments by a (reverse)
proxy, the originating IP address(es) are also provided.

• Comment
This text provides further explanation of the log message and may
contain information on how to provide remedy for a problem.

Notice that you may change log level and comment of each log message
from the event log message page.

back to top

8.4.2 Log filter

The settings of this section enable filtering of log entries displayed in the
section below. A log entry must satisfy all filter conditions to be displayed.
The filter conditions are:

• Date/time
Lets you define a time interval.
By default this is defined as the time period from now into the past using the
number of seconds defined in system configuration setting 'Event log
messages - Default view period'.

• Log levels
Lets you select which log levels should be displayed.

• Instances
In a multi-instance cluster installation with centralized logging enabled, you

may select instances for which log entries shall be shown.

• Users
Select only log messages that are associated to a specific user. Notice that "
[IBM Safer Payments]" is a placeholder for log messages that are not
associated to a user.

All changes to filter criteria are executed immediately, that is, as soon as the
entry focus leaves an entry field, the content of the log entries table below
refreshes according to the new filter criteria.

The button Refresh table with default view period (new user interface
only) will refresh the table with the default timespan mentioned under
'Date/time' above.
back to top

8.5 Event logging

This section covers IBM Safer Payments event log message configuration.
back to top

8.5.1 Event log messages

IBM Safer Payments comes with a fully configurable event log engine that is
configured from the event log message page on the admin tab. The page
lists all available event log messages.

The log messages are programmed into IBM Safer Payments, you may thus
not add or delete from this list. Click on a row to view details and to change
settings.

Notice that all settings that are user overwritten are indicated with an
asterisk behind the value.
back to top

8.5.2 Event log message

This section shows settings of the log message identified in the section title:

• PCI DSS mandated
To comply with PCI DSS, certain log messages must be included in the audit
logs. This is indicated for each log message and cannot be changed by the
user. However, this indication is not mandatory and should be considered a
recommendation. You may choose to follow this recommendation or not.

• Comment
Comments are informational only, yet it is highly recommended that you

comment each item in IBM Safer Payments well as these comments are used
at various places.

• Level
To associate a log level to the message to make it easier to read large log
files.

Log targets

Log target configuration allows enabling/disabling the event log message for
the four possible targets:

• System event log
Enable or disable IBM Safer Payments internal system logs, which are stored
in daily files in the "log" directory of the IBM Safer Payments installation and
can be read from the respective pages on the cluster tab. Reset to default
button is used to reset system log to default value.

• Audit event log
Enable or disable IBM Safer Payments internal audit logs, which are stored in
daily files in the "log" directory of the IBM Safer Payments installation and
can be read from the respective pages on the cluster tab. Reset to default
button is used to reset audit log to default value.

• Operating system event log
Enable or disable external operating system logs. On UNIX operating systems
the external logging device is syslog, event log messages are delivered as
"syslog" messages. Reset to default button is used to reset operating system
event log to default value.

• Console event log
Enable or disable console logging. console is usually re-routed to journald
when using systemd. Reset to default button is used to reset console log to
default value.

Reset to default

When the log target or log level has been changed from the default value,
then a "Reset to default" button will appear beside it, allowing you to reset to
the default value. If you don't see this button, then the log message is still
using the default value for that setting.

Log levels

The log level is a classification involving the levels:

• Debug
Analysis and troubleshooting information mostly used during integration and
testing of an IBM Safer Payments installation.

• Copyright
Delivers release information.

• Informational
Describes certain activities within IBM Safer Payments.

• Notice
Describes events that are unusual but are no error condition.

• Warning
Potentially troublesome incidents.

• Error
Problems presumably resolvable by user/administrator.

• Fatal error
Problems presumably resolvable only by IBM. If you encounter them, please
contact IBM Safer Payments support to analyze.

• Emergency
System is unusable.

• Alert
Action must be taken immediately.

The comment of the log message is displayed only in log tables. It gives
additional information about the general circumstances of a log event and
how to resolve certain situations. Please notice that this is not the actual
message that is printed to the system or audit event logs.
back to top

8.6 Memory control

Certain modeling simulations of model revisions require IBM Safer Payments
to create temporary data objects. For instance, if you define a new or
modified counter in a model revision and enable simulation for it, IBM Safer
Payments must create temporary data objects to represent the output
attributes of the counter. Since simulation is mostly performed out of main
memory (rather than disk memory) for performance reasons, and since main
memory is a scarce resource, once the main memory available to simulations
is exhausted, IBM Safer Payments has to decline further requests for
simulation.

The memory control page first provides an overview on the memory
consumption of all simulations running and the information when this model
revision was last touched by the user. Second, users with respective
privileges may stop simulations of users to free their memory for other
simulations. This ensures that there are no "forgotten" simulations that
consume the otherwise dearly needed memory.

To create a partial list of simulations, you may filter the table for both
mandators and users.
back to top

8.7 Maintenance functions

This section covers specific maintenance functions for IBM Safer Payments.
back to top

8.7.1 Cancel master key change

This maintenance function cancels a master key change on the executing
instance. Only use this function when you know what you are doing as
improper use can cause IBM Safer Payments to not work as excepted. When
in doubt, contact IBM Safer Payments support to assist with the execution.

The following parameters have to be set:

• Invalidate instance
If set the instance is invalidated otherwise the status is set to "Ok". Usually
an instance should be invalidated if a key change is canceled.

back to top

8.7.2 Check health of index

This maintenance function checks the specified index for issues. During
execution of this maintenance function no other access to this index is
possible. This function can only be executed on an IBM Safer Payments
instance that does not process any transaction messages or API requests
(MCI, FLI, and BDI must be disabled on the instance).

The following parameters have to be set:

• Mandator
The mandator the index to be checked belongs to.

• Index
The index to be checked.

If no issue is found a log message of type 0 (debug) will be generated. In
case there are issues error messages will be displayed.

This function can detect issues of the form:

• Wrong number of index entries

• Wrong splitting of links

back to top

8.7.3 Cleanout revisions

Unloads all non-champion revisions from IBM Safer Payments and moves
their file representation from the "cfg" to the "arc" directories of the current
IBM Safer Payments instance.

This function is typically used in the implementation phase of an IBM Safer
Payments installation, where when the staging moves from the
test/QA/verification environment to the production environment to eliminate
the potentially numerous iterations of revisions made during earlier stages.

Notice that if there is no champion revision for a mandator, one revision is
not deleted to serve as copy source.
back to top

8.7.4 Create conclusion expression pair list

If there are one or more rules with at least two conclusions in each rule, and
all rules use the same output attributes on the left side of the conclusion,
then this function returns the expression values of the conclusions.

This can be used if rules are defined for a mapping, where one Attribute is
the mapping code and the other the mapping value.
For example if you have two attributes CODE with uid 123 and VALUE with
uid 124 and there are following rules:

Rule 1 has conclusions:

CODE is Code_X
VALUE is Value_A

Rule 2 has conclusions:

CODE is Code_Y
VALUE is Value_B

Rule 3 has conclusions:

CODE is Code_Y
VALUE is Value_C

then, when providing the attribute uids 123 as Unique Id and 124 as
Expression attribute, the output is:

values:{[{"Code_X":["Value_A"]},{"Code_Y":["Value_B","Value_C"]}]}
back to top

8.7.5 Skip FLI messages

Permanently skip potentially blocking outgoing FLI messages.
The function will try to skip constantly failing or blocking outgoing FLI
messages from the local Safer Payments instance that were scheduled to the
selected instance. You may need to login on another Safer Payments instance
and perform the maintenance function there, if you need to modify the
outgoing FLI buffer of another instance. The function will try to skip a single
blocking configuration message first. Multiple FLI messages may be skipped
if it's not possible to identify a single blocking FLI message. Running this
function will cause data loss in most cases, as the information of the skipped
FLI message will be discarded. Only run this function on production if advised
by IBM support. It may be possible that there may be additional error
messages after performing this maintenance function if the cancelled FLI
message was processed normally on the remote instance and the current
instance is receiving a response. In some cases, it also may cause further
synchronization issues if newer FLI messages rely on the skipped messages.
Make sure to never skip a golive, as further model or configuration changes
may invalidate other instances that do not have performed this golive yet.
back to top

8.7.6 Fix milliseconds mapping

The maintenance function will be triggered during the next golive of the
selected mandator.

Takes an integer Value in format YYYYMMDDhhmmssZZZ converts it to a
timestamp value in milliseconds since 1970-01-01 00:00:00.

The attribute requires at least a length of 5 and needs to be unencrypted.
This will apply this conversion mapping to all data once. This will increase the
execution time of the next golive. It is not possible to undo this operation.
This maintenance request will also be synchronized via FLI to other
instances.
back to top

8.7.7 Rebuild indexes

This function recreates all defined indexes from scratch. For every index it
performs the following actions:

1. Erases index in MDC and DDC.

2. The rebuild starts on the beginning (earliest record) in DDC and fills the
index (and its sequences) from scratch (only in index MDC).

3. Dumps index MDC to index DDC at once.

Remarks

• Since with indexes (unlike attributes), MDC and DDC sizes are always the
same. Thus, the rebuild index function can create the "new" index only in
MDC and then dump it at once to DDC; which is much faster compared to
creating the index in parallel in MDC and DDC.

• The rebuilt index only contains entries for transaction records stored in DDC;
all entries that are not stored in DDC will not be part of the rebuilt index.

• Depending on the size of the MDC/DDC, the execution of this function may
take a significant amount of time during which this instance is not computing
transaction messages.

• All index-oriented elements (calendar profiles, events) are recomputed as
well.

back to top

8.7.8 Rebuild index

Re-creates an entire index based on transaction data stored.

This function can only be executed on an IBM Safer Payments instance that
does not process any transaction messages or API requests (MCI, FLI, and
BDI must be disabled on the instance). It performs the following actions:

1. Erases index in MDC and DDC.

2. The rebuild starts on the beginning (earliest record) in DDC and fills the
index (and its sequences) from scratch (only in index MDC).

3. Dumps index MDC to index DDC at once.

Remarks

• Since with indexes (unlike attributes), MDC and DDC sizes are always the
same. Thus, the rebuild index function can create the "new" index only in
MDC and then dump it at once to DDC; which is much faster compared to
creating the index in parallel in MDC and DDC.

• The rebuilt index only contains entries for transaction records stored in DDC;
all entries that are not stored in DDC will not be part of the rebuilt index.

• Depending on the size of the MDC/DDC, the execution of this function may
take a significant amount of time during which this instance is not computing
transaction messages.

• All index-oriented elements (calendar profiles, events) are recomputed as
well.

back to top

8.7.9 Rebuild index sequence

Re-creates the sequence of an index based on transaction data stored. The
tree structure of the index nodes is not changed by this maintenance
function.

This function can only be executed on an IBM Safer Payments instance that
does not process any transaction messages or API requests (MCI, FLI, and
BDI must be disabled on the instance). It performs the following actions:

1. Resets the sequence start of every index node.

2. The rebuild starts on the beginning (earliest record) in DDC and searches the
correct index node for each URID. If a node is found, it inserts the URID into
the index sequence.

Remarks

• The rebuilt index sequence only contains entries for transaction records
stored in the DDC of the index attribute and index sequence attribute; all
entries that are not stored in DDC will not be part of the rebuilt index
sequence.

• Depending on the size of the MDC/DDC, the execution of this function may
take a significant amount of time during which this instance is not computing
transaction messages.

• To speed up the process, this function may be executed multi-threaded
based on the value entered for the number of threads. Each thread rebuilds a
certain interval of index nodes in parallel.

back to top

8.7.10 Reload API include files

Reload API include files from disk.

This function may be useful, when applying small javascript patches or when
using a customized user interface.
back to top

8.7.11 Reset user preferences

Resets preferences, searchfilter, table sizes and column orders for all users.
Perform this action, if there are problems with previous preferences, or if this is
recommended as part of an IBM Safer Payments update.
back to top

8.7.12 Reset index

Resets the internal storage of an index and all of its dependent elements
such as masterdata, calendar profiles and events.

This function can only be executed on an IBM Safer Payments instance that
does not process any transaction messages or API requests (MCI, FLI, and
BDI must be disabled on the instance).
back to top

8.7.13 Reset outgoing FLI

Resets all outgoing FLI connections and rewinds FLI buffer read position to
first unacknowledged FLI message. This can be useful, if the outgoing FLI is
not connecting to other instances anymore.
back to top

8.7.14 Rewind FLI buffer

Rewinds FLI buffer read position to first unacknowledged FLI message. This
can be useful, if the FLI is still sending but the unsent buffer size is not
decreasing.
back to top

8.7.15 Rewrite risk lists to cluster

Rewrites the risk list to the cluster from this instance, so it will be
synchronized on all instances.

• Mandator
Select mandator to which this maintenance function shall be applied to.

• Risk List
Select risk list to which this maintenance function shall be applied to
(depending on mandator selection).

back to top

8.7.16 Rewrite element to disk

Stores a serializable object of an IBM Safer Payments installation on disk.
back to top

8.7.17 Set MDC/DDC sizes

Sets size of xDC for all attributes of a specific revision of a specific mandator
to the specified size.

• Set size for
Select for which xDC this maintenance function shall be applied.

• Set size to
New size of xDC.

• Mandator
Select mandator to which this maintenance function shall be applied to.

• Revision
Select revision to which this maintenance function shall be applied to
(depending on mandator selection).

back to top

8.8 Outgoing channel configuration

Outgoing Channel Configurations for the Alert Message Interface have been
introduced in Safer Payments 5.5 to enable users to define reusable
connections for case actions, external queries, and notifications. Instead of
defining targeted servers for mails, IP connections, or SQL queries within
each Alert Message definition, it is now possible to create one Outgoing
Channel Configuration and use it within multiple case actions, external
queries, and notifications.

An Outgoing Channel Configuration is meant to encapsulate all technical
details of a connection, while the contents of outgoing messages are still
defined on the case action, external query, and notification forms.
back to top

8.8.1 Outgoing channel configuration settings

General settings
The definition of an outgoing channel configuration involves a number of
settings that are made in this form. Rest the mouse pointer over a setting for
details. All outgoing channels shared the following settings:

• Enabled
Allows you to temporarily enable/disable outgoing channel configurations
without the need of redefining them or change model rules. When an
outgoing channel configuration gets disabled, it has to be decided if pending
messages should be stopped or still delivered. If they are stopped, they will
be discarded/archived with the next delivery attempt. Note, that if the
outgoing channel configuration gets enabled again before all pending
messages could be discarded/archived, they will be tried to be delivered
again.

• Name
Used to identify the outgoing channel configuration. The name is used to
identify the outgoing channel configuration, e.g. in case actions, external
queries or notifications.

Note: The name must be unique.
• Comment

Used to describe the outgoing channel configuration.

• Mandator
Each outgoing channel configuration belongs to one mandator. Once created,
mandator ownership does not change.

• Mask values
Allows to control whether encrypted values that are inserted into message
template via placeholders will be sent masked or unmasked. This will not
affect the preview of case actions, which is controlled by user privileges in
the API.

• Nil value numeric
This setting determines what is sent when a numeric value is not available /
"not in list" (nil). There are three options: "Empty value", "Original value"
and "Configurable". With the option "Empty value", an unavailable numeric
value will not print to anything. With the option "Original value", an
unavailable numeric value will be printed as "(0)". With the option
"Configurable", you can set a custom value through a separate input field.

• Custom nil value numeric
This setting is only available when "Nil value numeric" is set to
"Configurable". Here you can type in any custom text which shall be printed
for unavailable numeric values.

• Nil value text
This setting determines what is sent when a text value is not available / "not
in list" (nil). There are three options: "Empty value", "Original value" and
"Configurable". With the option "Empty value", an unavailable text value will
not print to anything. With the option "Original value", an unavailable text
value will be printed as "()". With the option "Configurable", you can set a
custom value through a separate input field.

• Custom nil value text
This setting is only available when "Nil value text" is set to "Configurable".
Here you can type in any custom text which shall be printed for unavailable
text values.

• Nil value timestamp
This setting determines what is sent when a timestamp value is not available
/ "not in list" (nil). There are two options: "Empty value" and "Configurable".
With the option "Empty value", an unavailable timestamp value will not print
to anything. With the option "Configurable", you can set a custom value
through a separate input field.

• Custom nil value timestamp
This setting is only available when "Nil value timestamp" is set to
"Configurable". Here you can type in any custom text which shall be printed
for unavailable timestamp values.

• Target
Target of outgoing channel configuration. Once created, target type does not
change. Depending on the choices, the remainder of the form changes. The
following describe the different options available for the different target
types.

File
Outgoing messages are stored as a file. The following settings are available:

• Send via
Allows to specify the cluster instance that should send out the message. The
recommended choice is "local" in which case the instance that generates the
message will directly send it. However, if for example only one instance can
reach a specific server, it is possible to select an instance by id.

• Format values
Declare default value: Format/unformat values which are inserted in the
message template. Notice that this value can be overwritten in outgoing
channel configuration templates, e.g. in case actions, external queries or
notifications.

• Target directory
The directory path in which files shall be stored.

HTTP message
Messages are stored until they can be sent successfully. The following
settings are available:

• Retry interval
Determines the interval that Safer Payments will wait before retrying to send
a message that could not be delivered.

• Retry attempts
Determines the number of retry attempts before the message will be
archived. The message will then no longer be sent, but a log message will be
written indicating this.

• Send via
Allows to specify the cluster instance that should send out the message. The
recommended choice is "local" in which case the instance that generates the
message will directly send it. However, if for example only one instance can
reach a specific server, it is possible to select an instance by id.

• Relay
Determines whether or not a message should be handed over to the next
instance with AMI and the respective protocol enabled if sending it on the
selected instance fails.

• Format values
Declare default value: Format/unformat values which are inserted in the
message template. Notice that this value can be overwritten in outgoing
channel configuration templates, e.g. in case actions, external queries or
notifications.

• Message target IP address
The IP address used for the outgoing channel configuration.

• Message target IP port
The IP port used for the outgoing channel configuration.

• HTTP resource (HTTP only)
The HTTP target resource that handles the message. For example "mvc.php?
model=card&action=update"

• Content type
The content type that will be used in the HTTP header. For additional
information on how to use multipart forms, click here.

• Use SSL
If enabled, IBM Safer Payments uses SSL to authenticate the remote server
and encrypt communication with it. The remote server needs to send out a
valid certificate to establish a connection.

• Server CA certificate file
A file containing Certificate Authority certificates to validate the remote
server's certificate against.

• Use client certificate
If enabled, IBM Safer Payments will use a client certificate when
sending out messages.

• Client certificate file
Use this client certificate PEM file to authenticate at the remote
server. This file has to exist on the sending IBM Safer Payments
instance.

• Client certificate key file
The private key of the client certificate in PEM format. This file has
to exist on the sending IBM Safer Payments instance. This can be
the same PEM file as the client certificate file.

• Client certificate passphrase
Determines what type of private key shall be used. The options
are:

• passphrase input by text input
Use a text input field to insert the password. The passphrase
will be stored encrypted and never exposed to the client, if
encryption is enabled globally.

• read passphrase from file
Read the passphrase from a file, short time before sending it.
This file has to exist on the sending IBM Safer Payments
instance.

• use unencrypted private key
Use an unencrypted private key file for the client certificate.

• Private client key passphrase
Use this passphrase to decrypt the private client certificate key.

• Private client key passphrase file
Read the private client certificate key passphrase from this
unencrypted file.

• Use authentication
If provided, IBM Safer Payments uses Basic Authentication (RFC 2617) as

HTTP authentication. The service is rejected, if username/password is not
valid.

• Username
The username used for Basic Authentication.

• Password
The user's password for Basic Authentication. This password is stored
encrypted if the encryption is activated globally.

Message
Messages are stored until they can be sent successfully. The following
settings are available:

• Retry interval
Determines the interval that Safer Payments will wait before retrying to send
a message that could not be delivered.

• Retry attempts
Determines the number of retry attempts before the message will be
archived. The message will then no longer be sent, but a log message will be
written indicating this.

• Send via
Allows to specify the cluster instance that should send out the message. The
recommended choice is "local" in which case the instance that generates the
message will directly send it. However, if for example only one instance can
reach a specific server, it is possible to select an instance by id.

• Relay
Determines whether or not a message should be handed over to the next
instance with AMI and the respective protocol enabled if sending it on the
selected instance fails.

• Format values
Declare default value: Format/unformat values which are inserted in the
message template. Notice that this value can be overwritten in outgoing
channel configuration templates, e.g. in case actions, external queries or
notifications.

• Message target IP address
The IP address used for the outgoing channel configuration.

• Message target IP port
The IP port used for the outgoing channel configuration.

• Use SSL
If enabled, IBM Safer Payments uses SSL to authenticate the remote server
and encrypt communication with it. The remote server needs to send out a
valid certificate to establish a connection.

• Server CA certificate file
A file containing Certificate Authority certificates to validate the remote
server's certificate against.

• Use client certificate
If enabled, IBM Safer Payments will use a client certificate when
sending out messages.

• Client certificate file
Use this client certificate PEM file to authenticate at the remote
server. This file has to exist on the sending IBM Safer Payments
instance.

• Client certificate key file
The private key of the client certificate in PEM format. This file has
to exist on the sending IBM Safer Payments instance. This can be
the same PEM file as the client certificate file.

• Client certificate passphrase
Determines what type of private key shall be used. The options
are:

• passphrase input by text input
Use a text input field to insert the password. The passphrase
will be stored encrypted and never exposed to the client, if
encryption is enabled globally.

• read passphrase from file
Read the passphrase from a file, short time before sending it.
This file has to exist on the sending IBM Safer Payments
instance.

• use unencrypted private key
Use an unencrypted private key file for the client certificate.

• Private client key passphrase
Use this passphrase to decrypt the private client certificate key.

• Private client key passphrase file
Read the private client certificate key passphrase from this
unencrypted file.

ODBC SQL
You have to install and configure a valid ODBC connector on all machines
with active AMI. Make sure, that you can reach your database with your
ODBC connector, before configuring ODBC SQL actions. The integration
should be compatible with mySQL, postgreSQL and oracle ODBC connectors.

It is not possible to parse return values or to import data by SQL into IBM
Safer Payments.

The following settings are available:

• Retry interval
Determines the interval that Safer Payments will wait before retrying to send
a message that could not be delivered.

• Retry attempts
Determines the number of retry attempts before the message will be
archived. The message will then no longer be sent, but a log message will be
written indicating this.

• Send via
Allows to specify the cluster instance that should send out the message. The
recommended choice is "local" in which case the instance that generates the

message will directly send it. However, if for example only one instance can
reach a specific server, it is possible to select an instance by id.

• Relay
Determines whether or not a message should be handed over to the next
instance with AMI and the respective protocol enabled if sending it on the
selected instance fails.

• Format values
Declare default value: Format/unformat values which are inserted in the
message template. Notice that this value can be overwritten in outgoing
channel configuration templates, e.g. in case actions, external queries or
notifications.

• DSN name (ODBC)
This is the Data Source Name (DSN) of the ODBC connector on the IBM Safer
Payments server; for example: If the complete connector would be
"uid=iris;pwd=myIrisPassword;dsn=myDataBase" the DSN name parameter
would be "myDataBase".

• DSN user
This is the user name, that is used by ODBC to login into your database; if
the complete connector would be
"uid=iris;pwd=myIrisPassword;dsn=myDataBase" the password parameter
would be "myIrisPassword".

• DSN password
The user's password for the database; if the complete connector would be
"uid=iris;pwd=myIrisPassword;dsn=myDataBase" the user name parameter
would be "iris". This password is stored encrypted if the encryption is
activated globally.

SMTP
SMTP messages are queued and are sent out periodically (defined in IBM
Safer Payments configuration) as batch. If the SMTP service is temporary
unavailable, IBM Safer Payments attempts re-sending them also periodically.
SMTP messages are also stored on disk to ensure that unsent SMTP
messages will be attempted to be resent after a hard stop of IBM Safer
Payments. The following settings are available:

• Retry interval
Determines the interval that Safer Payments will wait before retrying to send
a message that could not be delivered.

• Retry attempts
Determines the number of retry attempts before the message will be
archived. The message will then no longer be sent, but a log message will be
written indicating this.

• Send via
Allows to specify the cluster instance that should send out the message. The
recommended choice is "local" in which case the instance that generates the
message will directly send it. However, if for example only one instance can
reach a specific server, it is possible to select an instance by id.

• Relay
Determines whether or not a message should be handed over to the next

instance with AMI and the respective protocol enabled if sending it on the
selected instance fails.

• Format values
Declare default value: Format/unformat values which are inserted in the
message template. Notice that this value can be overwritten in outgoing
channel configuration templates, e.g. in case actions, external queries or
notifications.

• Email "from" address
The sender address used for the SMTP outgoing channel configuration.

• Recipient address
Lets you choose between a "constant" recipient address (entered below) or
taking the string value of the email meta attribute by choosing the option
"variable from meta attribute" of the current transaction message. The latter
allows for sending emails to individual cardholders, merchants, or acquirers.

• Constant email "to" address
If the recipient address is "constant", all outgoing SMTP messages are
sent to this address. You may use multiple email addresses here, just
separate them by semicolon.

Kafka topic
Messages can be pushed to a Kafka Topic served by multiple Kafka brokers.
The following settings are available:

• Kafka brokers list
The Kafka brokers to try to connect to. A list of IP addresses and ports
separated by a comma e.g 192.168.0.1:8001,192.168.10.1:8002

• Kafka topic name
Name of the Kafka Topic for which messages should be produced.

• Advanced producer configuration
Allows to manually specify advanced options related to the Kafka producer
that Safer Payments will create in the back-end. For a list of the possible
configuration options visit
https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md.

• Use SSL
If enabled, IBM Safer Payments uses SSL to authenticate the remote server
and encrypt communication with it. The remote server needs to send out a
valid certificate to establish a connection.

• Server CA certificate file
A file containing Certificate Authority certificates to validate the remote
server's certificate against.

• Use client certificate
If enabled, IBM Safer Payments will use a client certificate when
sending out messages.

• Client certificate file
Use this client certificate PEM file to authenticate at the remote
server. This file has to exist on the sending IBM Safer Payments
instance.

• Client certificate key file
The private key of the client certificate in PEM format. This file has
to exist on the sending IBM Safer Payments instance. This can be
the same PEM file as the client certificate file.

• Client certificate passphrase
Determines what type of private key shall be used. The options
are:

• passphrase input by text input
Use a text input field to insert the password. The passphrase
will be stored encrypted and never exposed to the client, if
encryption is enabled globally.

• read passphrase from file
Read the passphrase from a file, short time before sending it.
This file has to exist on the sending IBM Safer Payments
instance.

• use unencrypted private key
Use an unencrypted private key file for the client certificate.

• Private client key passphrase
Use this passphrase to decrypt the private client certificate key.

• Private client key passphrase file
Read the private client certificate key passphrase from this
unencrypted file.

Persistent connection
A persistent connection is kept open to a list of service consumers (can be
another IBM Safer Payments instance or an external system), such that a
message is sent as soon as possible. The following settings are available:

• Persistent connection ID
Optional, unique identifier of the persistent connection by which it can be
referenced in the dynamic selection of the OCC in an external model
component.

• Number of connections
Determines the number of connections that IBM Safer Payments will
establish to each address in the message address list.

• Number of threads
Determines the number of threads that IBM Safer Payments will use to
process the tasks in the persistent outgoing channel configuration. A
reasonable value is equal to or less than the number of connections.

• Message target addresses
A list of service consumers' addresses.

• Message target IP address
The IP address of the service consumer.

• Message target IP port
The IP port address of the service consumer.

• Message target address priority
IBM Safer Payments sends the message to the service consumer following

the order defined in this list.

• Timeout
Determines the time that IBM Safer Payments will wait before retrying
to send the message to the next message target.

• Threshold for reset
IBM Safer Payments will reset the connection to this message target
when the number of sending failures reaches this value.

• Time frame for the reset threshold
Determines the time frame for counting the number of sending failures
to this message target, the number of sending failures is reset each
time frame.

• Use SSL
If enabled, IBM Safer Payments uses SSL to authenticate the remote server
and encrypt communication with it. The remote server needs to send out a
valid certificate to establish a connection.

• Server CA certificate file
A file containing Certificate Authority certificates to validate the remote
server's certificate against.

• Use client certificate
If enabled, IBM Safer Payments will use a client certificate when
sending out messages.

• Client certificate file
Use this client certificate PEM file to authenticate at the remote
server. This file has to exist on the sending IBM Safer Payments
instance.

• Client certificate key file
The private key of the client certificate in PEM format. This file has
to exist on the sending IBM Safer Payments instance. This can be
the same PEM file as the client certificate file.

• Client certificate passphrase
Determines what type of private key shall be used. The options
are:

• passphrase input by text input
Use a text input field to insert the password. The passphrase
will be stored encrypted and never exposed to the client, if
encryption is enabled globally.

• read passphrase from file
Read the passphrase from a file, short time before sending it.
This file has to exist on the sending IBM Safer Payments
instance.

• use unencrypted private key
Use an unencrypted private key file for the client certificate.

• Private client key passphrase
Use this passphrase to decrypt the private client certificate key.

• Private client key passphrase file
Read the private client certificate key passphrase from this

unencrypted file.

• Template file (.docx)
With word template file (.docx) it is possible to generate template based
word (.docx) documents automatically. First a suitable .docx template file
can be created with Microsoft Word (version 2010 or higher) and uploaded.
Within the .docx template document it is possible to define some
placeholders for reporting attributes, query results, masterdata, user data
case variables, and text modules which are filled when sending the message.
You can apply different font styling options to your placeholders. Please note
that you might need to choose a specific font family for some placeholders to
make sure the filled text is rendered correctly. For example, if the
replacement text contains Thai characters, font family for the corresponding
placeholder could be set to "Browallia New" or to any other font family that
includes Thai characters. When a template file (.docx) case action is sent
from a case, the investigator may decide, if the generated template file
(.docx) document shall be downloaded or if it shall be attached directly to
the case. To add a template file (.docx) document directly to the case, case
attachments have to be activated for investigation.

Testing an outgoing channel configuration
The [Save and create test outgoing channel configuration] toolbar button
above creates a sample message. Please note that reporting attributes,
query results and masterdata will not be included in message templates
when testing outgoing channel configurations.

Note: For information on how to create SSL certificates refer to: Create
certificates with OpenSSL.
back to top

8.8.2 Persistent connection targets

Message target addresses

IBM Safer Payments establishes persistent connections to the service
consumers, whose target addresses are specified in this section. To achieve
the minimum latency, these service consumers can have different priorities
for each IBM Safer Payments instance.

Message target address priority

When a persistent connection outgoing channel receives a message to send,
it sends the message to the first target address on its priority list. If there is
no response within the time constraint, it will send to the next target address
and so on. In the worst case, the total waiting time is equal to the

summation of the timeout settings values (Ti) for each of (n) target

addresses, total-timeout = T1 + T2 + ... + Tn.
back to top

8.9 Inbound endpoint

Inbound endpoints have been introduced in Safer Payments 6.2 to enable users to
define reusable connection settings for incoming interfaces, e.g. Message
Command Interface. Instead of defining thread pool sizes, timeout settings and
message type for each Safer Payments instance, it is now possible to create one
Inbound Endpoint and use it across several Safer Payments instances.
back to top

8.9.1 Inbound endpoint settings

The definition of an inbound endpoint involves a number of settings that are made
in this form. Rest the mouse pointer over a setting for details. Settings are:

• Name
The name is used to identify the inbound endpoint on the cluster page.

• Comment
Used to describe the inbound endpoint.

• Interface
Select which kind of interface endpoint you would like to define (see below
for type specific settings). Currently these types are available:

• Message Command Interface (MCI)

• Kafka Message Interface (KMI)

• Message type
IBM Safer Payments message type delivered to this inbound endpoint. This
can either be a message type defined in Administration/Messages or have the
type "dynamic". The message selection defines the type of parsing which will
be done for the incoming message.

• Conflicting MTID strategy
A message type selected within an inbound endpoint already defines a
message type id (MTID) but incoming messages can also send in a MTID of
their own. This setting controls how Safer Payments handles cases in which
the two MTIDs differ. The following options are available:

• Reject message (default)
Reject message in case MTID defined in inbound endpoint is not the
same like in the message.

• Use inbound endpoint MTID
Use MTID defined by message in inbound endpoint in case of conflicting
MTIDs.

• Use message MTID
Use MTID included in the message in case of conflicting MTIDs.

• Threads priority
The priority for the operation system to process the message. Notice that the
maximum priority is limited by the general IBM Safer Payments Message
Command Interface thread priority setting (system configuration page). The
higher this priority, the more computational resources will be given by IBM
Safer Payments to the computation related to this inbound endpoint.

• Number of threads
Maximum number of parallel threads (if available from the overall thread
pool size as configured) that IBM Safer Payments attempts to employ for
processings related to this inbound endpoint for every instance with this
inbound endpoint selected. The higher the number, the more parallel
computing resources will be given by IBM Safer Payments to the computation
related to this inbound endpoint.

Settings exclusive to MCI Inbound Endpoints

• Suppress meta information in JSON
This setting is only available for message types supporting JSON. If enabled,
the meta information within the JSON response will be suppressed.

• Asynchronous
If enabled, message processing will be asynchronous. Further information
can be found on the cluster page.

• Network connection idle timeout
Maximum time before which an idle MCI connection is closed. Timing starts
after the first few bytes of a message are received. Connections will be
closed if the timeout is reached.

• Processing timeout settings
If enabled, processing timeout duration can be set. When processing of a
message exceeds this threshold, a timeout error response is sent to the
client. Further information can be found on the cluster page.

• Number of timeout response generation threads
IBM Safer Payments uses these threads to generate the processing timeout
response. The suggested value is max(3, 0.1 * number of threads).

Settings exclusive to KMI Inbound Endpoints

• Topic name
Name of the Kafka Topic to retrieve messages from. Each Inbound Endpoint
corresponds to a single topic to read from.

• Group ID
Group ID of the Kafka Topic.

• Size of unit work
Maximum number of messages that IBM Safer Payments will buffer internally
for this topic. If this number is reached IBM Safer Payments will wait until at
least one of the messages has been finished before pulling the next
message. For maximum throughput this number should be at least the same
as the number of threads, however, these messages can be lost if the
instance crashes, so a higher number does increase the chance of lost
messages.

• Read from
Specifies if IBM Safer Payments should read messages from the beginning or
the end of the Kafka Topic when it first connects to the topic.

• Advanced consumer configuration
Allows to manually specify advanced options related to the Kafka consumer
that Safer Payments will create in the back-end. These settings take
precedence over the settings above. For a list of the possible configuration
options visit
https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md.

• Kafka instance failover priority
By selecting an IBM Safer Payments instance in this list, the Kafka Topic is
enabled on that instance and will be used by the Kafka Endpoint of that
instance if the KMI is enabled. By sorting the list of checked instances the
priority of each instance for this topic can be adjusted.
Only one instance will connect to a Kafka Topic at any given point in time.
The first available instance in the list that has the KMI enabled will be the
one establishing a connection to the topic. If that instance is not able to
process messages anymore e.g. due to being shut down, the next instance in
the list with enabled KMI will take over.
It is recommended to enable the KMI on all instances that are enabled for at
least one Kafka Topic so that the failover mechanism works as expected.
Instances that are only used for Kafka failover will show up in the cluster
settings table with a red marker since the KMI is enabled but usually not
active (i.e. no connection to a topic has been made). This status is therefore
not an error.

• Produce response
If enabled, IBM Safer Payments will write the model responses to a Kafka
Topic specified in this section.

• Response topic
The name of the topic to write responses to.

• Advanced producer configuration
Allows to manually specify advanced options related to the Kafka producer
that Safer Payments will create in the back-end. For a list of the possible
configuration options visit
https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md.

back to top

8.10 Startup parameters

When starting an instance of IBM Safer Payments, there are various
command line parameters that may be entered to alter its behavior.

• id=<instance ID> - Required for normal use. The ID of the instance to be
started.

• rootpath=<path> - Recommended for normal use. The path to the
configuration directory. If you don't specify the rootpath it will default to the
parent directory to the binary, or the current directory if there is no parent
directory to the binary.

• console - Causes log messages to be printed to the console in real time as
the instance runs.

• createinstances=<number of instances> - Generate a cluster.iris file for
the configuration. Performed during configuration setup.

• cluster_id=<ID> - Sets the cluster ID for the instance. The value must be
within 0 and 999 inclusive. Without entering this parameter, the default is 0.
The cluster ID will be prepended to all UIDs of elements created on this
instance. The cluster ID can be used to ensure that all elements which are
created in a development cluster will not conflict with elements in a
production cluster, by ensuring that all UIDs are unique even between
clusters. The cluster ID can be used in combination with the export
configuration feature to migrate configuration changes from development
clusters to production. All instances should have the same cluster ID in a
running cluster. The cluster IDs of two or more instances in a cluster may
differ temporarily during setup, but configuration changes through the UI
should be avoided during this time.

• release - Prints the release string and immediately exits, without starting
the instance.

• wait - Prevent startup until input is given to console to continue.

Debug Parameters

The following parameters are debug parameters which should only
be used in non-production environments, or under the
recommendation of IBM Support. Using these settings in production
can cause non-recoverable corruption to an instance.

• after_crash=<behavior> - This setting should not be used in
production unless advised by IBM Support to do so. Defines startup
behavior after crash. Behaviors include the following:

• invalidate - Default behavior. The instance will be invalidated on
startup.

• forceHealthy - This setting should not be used in production
unless advised by IBM Support to do so, as this may cause
instance corruption. Forces the instance to start in a healthy state, as
if it had never crashed, and re-attaches the instance if it was detached.
Using this may result in data loss or further synchronization problems.

• restore - This setting should not be used in production unless
advised by IBM Support to do so. It is generally recommended to
do a restore through the UI instead. Selects the last instance that
does not have its API enabled as a donor, and restores the instance if a
donor is available.

• ignore - Ignores crash workflow advice from remote instances.

• start - Start up the instance as normal without changing the status.

• limit_mdc=<limit> - Do not use in production as this may cause
instance corruption. Sets a maximum amount of memory that can be
taken up by the Memory Data Cache.

• limit_ddc=<limit> - Do not use in production as this may cause
instance corruption. Sets a maximum amount of storage space that can be
taken up by the Disk Data Cache.

• limit_index=<limit> - Do not use in production as this may cause
instance corruption. Sets the maximum capacity of an index.

• limit_multi_value_masterdata=<value> - Do not use in production as
this may cause instance corruption. Sets the maximum capacity of multi-
value master data.

• freeze_user_account_settings - This setting should not be used in
production unless advised by IBM Support to do so. When updating
settings, user account settings will not be changed.

• create_no_xdc - Do not use in production as this may cause instance
corruption. Disables the use of data caches such as the Memory Data Cache
(MDC) and Disk Data Cache (DDC).

• quiet - This setting should not be used in production. Used to bypass
several 'press ENTER to continue' console prompts when using certain
optional arguments.

• ignore_encryption - Do not use in production as this may cause
instance corruption. If encryption is enabled, bypass key entry by using a
default key. Encrypted data will not be correctly displayed.

• ignore_python_errors - Do not use in production as this may cause
instance corruption. Prevents errors being produced by the instance due to
errors in python scripts.

• ignore_pmml_errors - Do not use in production as this may cause
instance corruption. Prevents errors being produced by the instance due to
parser errors of pmml models or due to missing pmml model files.

• print_fli - When using this argument, it must come after the rootpath
argument. Prints the contents of the FLI buffer, then immediately exits
without starting the instance.

back to top

9. Appendix

This chapter contains various reference sections.
back to top

9.1 IBM Safer Payments architecture and integration

This section introduces various aspects of IBM Safer Payments architecture
and IBM Safer Payments integration.
back to top

9.1.1 Interfaces overview

The IBM Safer Payments service provides multiple Interfaces:

• MCI (Message Command Interface) real-time

• API (Application Programming Interface) user access

• BDI (Batch Data Interface) files

• SCI (Status Control Interface) cluster control

• ECI (Encrypted Communication Interface) exchanging secrets

• FLI (FastLink Interface) redundancy

• RDI (Relational Database Interface) database

• AMI (Alert Message Interface) outgoing channels

• MQI (WebSphere MQ Interface) message queueing

• KMI (Kafka Message Interface) message queueing

While MCI, API, SCI, FLI, AMI, MQI and KMI are IP message based message
interfaces, BDI and RDI interfaces are file based for batch data.

The MCI, API and FLI interfaces operate in "service mode", where each
communication is initiated by the outside party and IBM Safer Payments
replies to each request. With these interfaces, the IP connections typically
stay open for more than one request (for reasons of efficiency). This rather
simple communication scheme keeps interfacing to IBM Safer Payments
easy. It follows the time tested model of most Internet protocols, where the
service consumer (often a browser) polls data from the service provider
(often an HTTP server) whenever it needs to. For performance reasons, all
three IP based interfaces use thread pool technology.

The BDI interface is quite different from the others because it involves
transferring data in and out of IBM Safer Payments via files. Because this
requires IBM Safer Payments to become active at specific times to check if
data to be imported is available or if data should be delivered to other
systems, IBM Safer Payments features a job schedule function.

While MCI and BDI are "external" interfaces in the sense that they connect
IBM Safer Payments to systems of the customer, API and FLI are "internal"
interfaces in the sense that they connect IBM Safer Payments components.
The API connects the IBM Safer Payments client and the IBM Safer Payments
server, the FLI connects different IBM Safer Payments instances within a
cluster.

The RDI is a batch file interface using SQL statements to transfer IBM Safer
Payments data into a relational database.

The AMI uses outgoing channels to send messages or queries to users,
administrators, customers, and cardholders/merchants. It currently supports
sending messages to SMTP (email), HTTP, IP, ODBC (database), and file
targets.

The MQI allows to connect to existing IBM WebSphere MQ message queueing
environments and read queue message data.

The KMI allows to connect to an existing Kafka cluster to read queued
messages from various Kafka Topics and brokers.

All interfaces are described in detail on separate help pages that opens when
you click on the respective interface hyperlink above.
back to top

9.1.1.1 Doublet detection

This feature allows IBM Safer Payments to detect transaction messages
(received by both MCI and API) that have already been stored in IBM Safer
Payments' MDC/DDC and to not store them again.

Configuration

How IBM Safer Payments detects doublets (once enabled), is configured be
the following settings:

• Include DDC
If enabled, also data from DDC is used to compare the current transaction
message with (may substantially slow down real-time performance).

• Index
To deliver meaningful performance, doublet detection is only performed
alongside an index. Choose the index that has the largest number of entries
for best performance. Typically this would be an index for the cardholder as
there are typically less transactions to check as potential doublets for each
cardholder than for each merchant or terminal.

• Attributes
Select all attributes that IBM Safer Payments shall compare to determine if
two transactions are the same (it is implicit that selected index value must
be the same).

Notice that doublet detection reduces run-time performance.

Behavior

If doublet detection is enabled, a detected doublet message will not be
stored in MDC/DDC and will not be computed (that is, calendar
profiles/events are not updated), and the response (sent back with MCI
transaction messages and stored in the .log files with BDI transaction

messages) contains the error message "Doublet detected, message
discarded" and generates the event log message 284.
back to top

9.1.1.2 Message command interface overview

The message command interface ("MCI") connects IBM Safer Payments to
authorization systems, card management systems and related data sources
(aka service consumer).

The MCI uses TCP/IP message passing, either as "naked" XML messages or
XML messages wrapped in HTTP. While in both cases, you may open a
connection, send the request, wait for the response and close the connection
immediately thereafter, we highly recommend keeping the connection open
between request/response pairs, since such "persistent connections" allow
for a much higher transaction message throughput and lower resource
consumption.

The MCI also supports connection filtering that is enabled by unchecking the
"all connections" box. If unchecked, an entry field opens that lets you enter a
(comma separated) list of IP addresses for which the API accepts
connections. Maximum number of allowed incoming connections per IP
address can be configured by enabling the "Enable incoming connection
limit" box.

For messages wrapped into HTTP the following header fields are necessary

• Content-Length (length of the message included in the request)

• X-SP-Message-Type-Id (messageTypeId which represents the message type
defined in SP and will be used to identify the parser to interpret the
message)

• X-SP-Message-Id (The MessageId is an alphanumerical string value that is
generated by the systems connected to IBM Safer Payments to identify a
response. (Identifying messages can be useful if multiple connections to IBM
Safer Payments are used in parallel.) IBM Safer Payments does not use this
response for any computational purposes; it only echoes it back in its
response (it also uses the MessageId in case of errors to document the
offending message). The "MessageId" may contain up to 16 Bytes and
consist of any ASCII character between 32 and 126, with the exception of
">", "/", "<" characters.)

• X-SP-Protocol-Version (protocol version of SP, currently it is fixed to 1)

• X-SP-Request-Type (optional) defines what kind of request is send
((default)ModelRequest / StatusRequest)

For messages sent via IP a binary header is needed, which consists of 64
Bytes and includes the same header information as for HTTP.

• first 8 bytes define the Content-Length

• next 4 bytes define the X-SP-Message-Type-Id

• next 16 bytes define the X-SP-Message-Id

• the next byte defines the X-SP-Protocol-Version

• the next byte defines the X-SP-Request-Type (0 for ModelRequest/ 1 for
StatusRequest)

• the last 34 bytes are reserved for future use

Message examples

This is an example of an XML request message sent by the service consumer
to IBM Safer Payments:

<IRIS><PAN>1234567890123456</PAN><TrxDateTime>2014-04-22
21:04:56</TrxDateTime><Amount>123.45</Amount>
<MCC>5512</MCC><CC>BE</CC></IRIS>

An example XML response message by IBM Safer Payments would be:

<IRIS Version="1" Message="ModelResponse"
MessageId="000af87c75503b4401" ErrorCode="0">
<Intercept>1</Intercept></IRIS>

This is an example of an HTTP POST wrapped XML request message sent by
the service consumer to IBM Safer Payments:

POST /path/script.cgi HTTP/1.0
From: test@mybank.com
User-Agent: HTTPTool/1.0
Content-Type: text/xml
Content-Length: 188
X-SP-Message-Type-Id: 101
X-SP-Message-Id: 000af87c75503b4401
X-SP-Protocol-Version: 1
X-SP-Request-Type: ModelRequest

<IRIS><PAN>1234567890123456</PAN><TrxDateTime>2014-04-22
21:04:56</TrxDateTime><Amount>123.45</Amount>
<MCC>5512</MCC><CC>BE</CC></IRIS>

An example HTTP POST wrapped XML response message by IBM Safer
Payments would be:

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/xml; charset=utf-8
Content-Length: 275

<IRIS Version="1" Message="ModelResponse"
MessageId="000af87c75503b4401" ErrorCode="0">
<Intercept>1</Intercept></IRIS>

Notice that IBM Safer Payments auto-detects formats, if your response
contains an HTTP POST wrapper, it will be responded to with an HTTP
response wrapper.

Connections

In a typical IBM Safer Payments application, the service consumer will open
multiple connections at once. The maximum number of connections that can
be opened with IBM Safer Payments at the same time is defined by the
inbound endpoints thread size setting. The maximum number of threads per
instance is defined on the IBM Safer Payments system configuration page.
Because IBM Safer Payments uses a separate computational service thread
for each connection, using multiple connections in parallel increases the
transaction throughput of IBM Safer Payments.

Notice that, in case the asynchronous checkbox is disabled in the selected
inbound endpoint, within each connection, all transaction request messages
are processed and responded to in exactly the sequence they arrive
(synchronous). There is no guaranteed sequence of processing and
responding between multiple connections (asynchronous).

Asynchronous message computation

Starting with version 6.2 IBM Safer Payments supports asynchronous
message processing. If enabled, external systems do not need to wait for the
response of the current message before sending in a new one. Responses are
not guaranteed to be in the same order as incoming messages.

Status request

To test if the MCI is active on a specific port, you can send the request:

<IRIS Version="1" Message="StatusRequest"></IRIS>

which will be responded with:

<IRIS Version="1" Message="StatusResponse" InstanceStatus="Ok"
ErrorCode="0"/>

Notice that this request can also be sent wrapped as HTTP POST.

You can also send the status request in JSON format by setting the header X-
SP-Request-Type as StatusRequest. And the message body is:

{}

To get the response in JSON format, the header X-SP-Message-Type-Id needs
to be set to a JSON message type used in the inbound endpoint. And the
responde will be:

{
"IRIS": {
"Version": 1,
"Message": "StatusResponse",
"InstanceStatus": "Ok",
"ErrorCode": 0
}
}

Error handling

In normal operations, once IBM Safer Payments has started up, it opens a
listener socket on the port(s) defined for the MCI (on the cluster page). For
each connection opened by the service consumer, IBM Safer Payments uses
one of its pooled computational threads to serve the transaction message
requests. If the service consumer does not need IBM Safer Payments any
more, it can close a connection, and later, when necessary, re-open it.
Typically the service consumer keeps the connection open for its entire
uptime, if no error occurs. In normal operating conditions, IBM Safer
Payments will never close a connection.

There are, however, certain error conditions in which IBM Safer Payments
closes a connection. For instance if a message is so malformed that IBM
Safer Payments cannot detect its end, it must close the connection because it
cannot know when the next message starts and can thus not parse it. Also if
a FastLink buffer is filled above a critical threshold (defined on systems
configuration page), IBM Safer Payments drops its MCI connection to avoid
data inconsistency within a cluster, thereby forcing the service consumer to
switch to the next IBM Safer Payments instance of the cluster. If IBM Safer
Payments experiences a severe operational problem and shuts down, it will
also close all open MCI connections.

Redundancy and load balancing

In an IBM Safer Payments cluster, under normal operating conditions, all IBM
Safer Payments instances accept transaction messages via their MCI. The
service consumer is thus completely free in its decision to which instance to
send its data to. The IBM Safer Payments instances of a cluster replicate data
internally.

In order to ensure redundancy, either the MCI bypass setting can be used or
the service consumer must use a watchdog mechanism for each transaction

message request sent. If IBM Safer Payments has not replied to request
within the allotted time (or closes the connection), the service consumer
must re-send the message to the next available IBM Safer Payments
instance.

Notice that because each IBM Safer Payments instance must completely
compute a transaction message whether it has been the one instance the
service consumer has sent the message to ("primary" IBM Safer Payments),
or whether it had received this message from another IBM Safer Payments
instance as replication (via FastLink), very little can be gained from using any
load balancing techniques when sending transaction message requests to
IBM Safer Payments.

Network connection idle timeout

Maximum time before which an idle MCI connection is closed.

Network connection read timeout

Maximum time to receive a complete message. Timing starts after the first
few bytes of a message are received. Connections will be closed if the
timeout is reached.

Processing Timeout

Processing timeout can be enabled or disabled on inbound endpoint level. If
enabled and processing of a message is not finished within the specified
timeout, a timeout response will be sent. The original message processing is
not interrupted, so any attributes are still written.

Bypass

Certain operations within IBM Safer Payments, like end of day job or
structural golives cause the MCI to be disabled temporarily. If bypass is
enabled, incoming messages are forwarded to another instance of the same
cluster. For each instance, a priority list of backup instances can be
configured. Incoming messages are then forwarded to the same endpoint of
the active instance. After a bypassed message finishes computation, the
response is then sent back via the instance that forwards the message.
Bypass requires the "Enable interlock" setting to be enabled, otherwise, the
bypass feature will not activate. Each incoming message must include a
unique MessageId, otherwise, the message cannot be bypassed.

XML format

It is important to notice that IBM Safer Payments' MCI supports only a
subset of the XML format (for performance reasons). Thus MCI requests

must exactly follow the format laid out in this section to avoid request
interpretation errors. The XML format rules are:

• Never use whitespaces in messages. No spaces between elements or any
other "filler" characters (such as tabs), carriage returns or line feeds. If the
IBM Safer Payments XML data format calls for space characters – for
instance between an element name and an attribute name – you must use
exactly this one space character. If the alias name used in the mapping
definition of a message contains space characters, they may be present in
the respective XML element.

• Only use standard quote characters (ASCII value 34), no single quotes, no
italic quotes.

• The XML format is case sensitive.

• If an attribute value of your request message is empty, do not use
<aliasName/>. Use <aliasName></aliasName> or skip this attribute entirely
from the message.

• Only use characters in the ASCII range from 32 to 126 or UTF-8 encoded
values.

• CDATA sections are not supported

• Predeclared entities & < > ' " are supported.

• XML declarations are not supported and must not be added to the beginning
of IRIS XML messages.

All requests are contained within <IRIS> elements so that their start and
end can be identified with the open connection data stream (persistent
connection). This is an example of a standard IBM Safer Payments request
transaction message:

<IRIS Version="..." Message="..." MessageTypeId="..."
MessageId="...">...</IRIS>

Mandatory attributes in the opening <IRIS> element or in the header with
any request are:

• Version (X-SP-Protocol-Version)
The "Version" attribute is used to differentiate different sub-types of request
messages. Version="1" is the standard IRIS XML message version, other
version numbers are used for customer specific implementations.

• Message (X-SP-Request-Type)
Identifies the type of message:

• "ModelRequest" sends data from the service consumer to IBM Safer
Payments for computation.

• "StatusRequest" asks IBM Safer Payments for basic health parameters
and can also be used to "ping" if an MCI port (or the IBM Safer
Payments instance serving it is responsive).

For "ModelRequest" requests, the following attributes must be present in the
opening <IRIS> element or in the header of the message:

• MessageTypeId (X-SP-Message-Type-Id)
The "MessageTypeId" is the (numeric) value used by IBM Safer Payments to
identify the type of transaction message (messages are created and
maintained in their own section on the administration tab, see the IBM Safer
Payments online help for messages for details).

• MessageId (X-SP-Message-Id)
The MessageId is an alphanumerical string value that is generated by the
systems connected to IBM Safer Payments to identify a response.
(Identifying messages can be useful if multiple connections to IBM Safer
Payments are used in parallel.) IBM Safer Payments does not use this
response for any computational purposes; it only echoes it back in its
response (it also uses the MessageId in case of errors to document the
offending message). The "MessageId" may contain any ASCII character
between 32 and 126, with the exception of ">", "/", "<" characters.

For "StatusRequest" requests, there are no other attributes in the opening
<IRIS> element. The "StatusRequest" request hence is always like this:

<IRIS Version="1" Message="StatusRequest"></IRIS>

No specific sequence of the attributes listed above within the <IRIS>
element is required. Attributes provided in a request but not listed above are
ignored by IBM Safer Payments. Notice that in future releases, we may add
attributes and change their sequence.

Responses are also contained within <IRIS> elements. Which attributes are
present in the opening IRIS XML element is defined on the "IBM Safer
Payments System Configuration" page. This is an example of a
"ModelResponse":

<IRIS Version="..." Message="ModelResponse" IrisInstance="..."
MessageTypeId="..." SystemTime="..." UniqueRecordId="..."
"MessageId="..." Mandator_n="..." Revision_n="..." Merging="..."
InstanceStatus="..." Error="..." ErrorCode="...">...</IRIS>

If the value of "Respond max fired rules" is defined as non-zero value (on the
"IBM Safer Payments System Configuration" page), the attribute value
elements are rather contained within the <Output> elements. Here the
<RulesFired> element contains the attribute NumRulesFired that returns the
number of rules that actually fired. Between the opening and closing
<RulesFired> elements, a <Rule> element for each fired rule is provided.
Here is an example:

<Rule><Mandator>...</Mandator><Revision>...</Revision>
<RuleID>...</RuleID><RuleName>...</RuleName>
<RuleComment>...</RuleComment><RuleSetPriority>...
</RuleSetPriority><RulePriority>...</RulePriority></Rule>

This is an example of a "StatusResponse":

<IRIS Version="..." Message="StatusResponse" InstanceStatus="..."
ErrorCode="..."/>

The opening <IRIS> element of a response (depending on the settings on
the "IBM Safer Payments System Configuration" page) may contain the
attributes:

• Message
Type of message:

• "ModelResponse" contains IBM Safer Payments computed result for the
model request.

• "StatusResponse" is what IBM Safer Payments sends back to a
"StatusRequest".

• IrisInstance
The name of the IBM Safer Payments instance that has computed the
response as defined in the cluster settings.

• MessageTypeId
Echoed from "ModelRequest".

• SystemTime
System timestamp of the IBM Safer Payments instance that has computed
the response (taken from the IBM Safer Payments instance hosting server) in
the format "YYYY-MM-DD hh:mm:ss".

• UniqueRecordId
This is the internal unique indentifier of the (primary) IBM Safer Payments
instance that has responded to the request. It is delivered with all responses
since there are IBM Safer Payments applications where the service consumer
sending the request needs to keep the exact reference of the transaction
message as stored in IBM Safer Payments. Notice that the value is "-1" if the
transaction message request did not result in the creation of a transaction
record in IBM Safer Payments (e.g. fraud alerts or postings that merged to
existing records, or transaction messages delivering customer standing data
(masterdata)). This attribute is of numeric type and in the range from 0 to
9,223,372,036,854,775,808.

• MessageId
Echoed from "ModelRequest".

• Mandator_n / Revision_n
These pairs of attributes are contained for each mandator model that
participated in the computation of the response. The numbers n are simple
roll numbers, the Mandator_n mandator name is provided as the name of the
mandator as defined in IBM Safer Payments, the respective champion
revision is provided as the revision number rnum. Both values can be used
by the service consumer if it needs to exactly record which decision model
revisions had an influence in the computation of the response.

• Merging
If the request was a merging source, Merging="1" is returned.

• InstanceStatus
Status of this instance. Possible values are: "Ok", "StartingServices", "Error",
"Startup", "RestoringDonor", "RestoringRecipient", "Invalidated",

"Unreachable", "Undetermined", "Lockdown", "WaitingForSynchronization",
"Synchronizing", "WaitingForKey", "RestoreFailed", "Reencryption", "Golive",
"ShutdownRequested", "Dumping". Only in status "Ok" and
"ShutdownScheduled" IBM Safer Payments processes ModelRequests. Status
"ShutdownScheduled" indicates a situation in which the service consumer
should switch over to another IBM Safer Payments cluster instance as this
one will soon become unavailable.

• Error/ErrorCode
If the value of "ErrorCode" is non-zero (and the text value of "Error" is not
empty), IBM Safer Payments has encountered an error situation that was not
severe enough so that IBM Safer Payments had to actually close the
connection (see above; for instance, if because of malformattings, IBM Safer
Payments is unsure where the current transaction message ends and the
next one begins, it must close the connection). Errors are listed in the table
below:

ErrorCode Error Comment

1000 No message defined for MessageTypeId=n

1001 Doublet detected, message discarded Only available if doubled detection is enabled in IBM
Safer Payments

1002 Parsing error in transaction message 'IRIS'
element

1003 Incoming transaction message of unknown
type

1004 Parsing error in transaction message
variables

1005 The attribute 'MessageTypeId' of the XML
IRIS element is missing from request

1006 Unknown version

1007 Endpoint timeout Message processing reached the timeout defined in
the appropriate inbound endpoint

1008 Conflicting message type id Message type defined in appropriate inbound endpoint
is not the same like message type id of the message

1099 Error message passed through

Notice that in future releases, we may add attributes and change their
sequence.

XML value formats

IBM Safer Payments supports different data types for which the following
formatting rules apply:

• Numeric
All numeric values may or not contain the period (".") as decimal separator.
Negative values are proceeded with the minus ("-"). No exponential format,
no currency character(s), and no digit group separators may be present. The
number of decimals used from the values delivered, and the minimum and
maximum value depend on the settings of the respective attribute in the
model. Values higher or lower than the limits are clipped to the respective
limit.

• Text
All characters between the opening and closing variable element is
considered text value. The characters &, <, >, ' and " must be escaped using
predeclared entities & < > ' ". Characters must also be
in the ASCII range from 32 to 126 or 128 to 255. Values longer than defined
with the respective model attribute are clipped to this length.

• Timestamp
All timestamp values must be ISO-formatted, that is follow exactly the
"YYYY-MM-DD hh:mm:ss" format ("YYYY": year in four digits, "MM": month in
two digits, "DD": day in two digits, "hh": 24-hour in two digits, "mm":
minutes in two digits, and "ss": seconds in two digits). If you need to enter a
date as a timestamp, add " 12:00:00" to the ISO date format. Milliseconds
are not supported.

• Time interval
All time interval values use a format similar to ISO 8601 for each side of the
interval and the "~" symbol to separate them. Several types of date and time
information are supported but both sides of the interval must use the same
type:

• Full timestamps: Both sides are formatted exactly as you would when
sending just a single timestamp. Example: "2018-03-01
09:00:00~2018-03-15 12:00:00".

• Time only: Both sides consist of a time only. Possible formats are
"hh:mm:ss", "h:mm:ss", "hh:mm" and "h:mm".

• Day of the week only: Both sides use the English names of the
weekdays either in full or abbreviated. Case does not matter. Example:
"mon~wed".

• Day of the week with time: Combines the type above with a time. All
time formats mentioned above can be used. Example: "mon 9:00~wed
12:00:00".

• Day of month and month only: Both sides appear similar to full
timestamps but with a "-" instead of the year and without a time.
Example: "--03-01~--03-15".

• Day of month and month with time: Combine the type above with a
time. All time formats mentioned above can be used. Example: "--03-
01 9:00~--03-15 12:00:00".

• Day of month only: Both sides appear similar to full timestamps but
with a "-" instead of the year and the month and without a time.
Example: "----01~----15".

• Day of month with time: Combines the type above with a time. All time
formats mentioned above can be used. Example: "----01 9:00~----15
12:00:00".

JSON Format

The MCI allows sending messages in JSON format.

• Because array elements are referenced in the mapping with "[number]", "["
and "]" are forbidden characters in element names.

• If the alias name used in the mapping definition of a message contains space
characters, they may be present in the respective XML element.

Example of a JSON message request:

{"Message": {"Amount": 5497558138.88,"Payer": {"PAN":
36028797018963968},"Array": ["Value1","Value2"],"Timestamp":
"YYYY-MM-DD hh:mm:ss"}}

Nested elements can be accessed by writing the path into the alias in
mappings, where "/" separates the keys. For example to access the element
Amount you need to set Message/Amount as mapping alias. To access the
second element in the array, it would be "Message/Array[1]".

Example of a JSON message response:

{
"IRIS": {
"Version": 1,
"Message": "ModelResponse",
"IrisInstance": "InstanceName",
"MessageTypeId": 11,
"SystemTime": "2014-04-22 21:05:18",
"UniqueRecordId": 123456,
"MessageId": "0af87c75503b4401",
"Mandator": [
{
"Mandatorname": "MyBank",
"Revision": 144
}
],
"Merging": true,
"InstanceStatus": "Ok",
"Latency": 0.71,
"Error": "",
"ErrorCode": 0
},
"Outputs": {
"transactionOut": {
"computedOut": {
"values": [
"aaaa",
"aaaa"
]
},
"hexValue": "xxxxxxxxxxxxxxxx"

}
},
"RulesFired": {
"NumRulesFired": 1,
"Rules": [
{
"Mandator": "MyBank",
"Revision": 144,
"RuleID": 2014,
"RuleName": "ATM Skimming",
"RuleComment": "In connection with skimmed card data from ATMs.",
"RuleSetPriority": 1000.0,
"RulePriority": 750
}
]
}
}

The response has the same information as for XML responses. All output
attributes mapped for the message are written in the element "Outputs". You
can also use the mapping to nest all outputs, with the same syntax, which is
used for incoming messages. If array elements are skipped, for example only
output attribute with mapping array[3] is enabled for the message, then
positions 0 to 2 are filled with empty strings.

HTTP capabilities

The MCI also supports transaction message requests as HTTP POST requests.
While persistent connections (as defined in HTTP 1.1) are supported,
chunked transfer-encoding is not supported. Notice that none of the POST
header values including the path value will be evaluated by IBM Safer
Payments. IBM Safer Payments only evaluates the request's contents
enclosed with the <IRIS> elements.

Direction

The MCI interface is an incoming interface, each connection is initiated by
the service consumer and also terminated by it.

Custom Messages

The MCI allows sending custom messages and receiving custom responses.
To send custom messages through the MCI interface, you would need to
define a custom header in the HTTP request with the key being "parser" and
value "custom". You would also need to configure the MCI configuration
settings accordingly and make sure you have the custom parser library in

place. The default flat XML format only supports a single layer of elements
under the IRIS tag, with no support for nested elements.

FCD format

When sending FCD messages over the MCI, the responses always contain the
following message header in addition to the HTTP or binary headers
mentioned before.

Name Offset Length Type Description

Content Length 0 8 Binary Length of content in bytes, excluding this header

Version 8 1 Binary Version of response format (always 1)

Message 9 13 ASCII The string "ModelResponse"

Instance ID 22 1 Binary

MTID 23 8 Binary

System Time 31 19 ASCII ISO 8601 format (YYYY-MM-DD HH:MM:SS)

URID 50 8 Binary

Message ID 58 16 ASCII

Mandator UID 74 8 Binary UID of the mandator owning the transaction

Revision UID 82 8 Binary UID of the champion revision belonging to the owning
mandator

Merging
Indicator

90 1 Binary

Instance Status 91 1 Binary Number indicating instance status. 0 means "OK".

Latency 92 8 Binary (IEEE 754
double)

Milliseconds

Error Code 100 4 Binary Error code as described above.

Reserved 104 24 Not used currently.

Total 128

After this header, the output attributes follow according to their mapping
definitions. The mapping definitions do not take the response header into
account. Mapping an output to offset "0" means that the output's value will
start immediately after the response header.

Notice that further information on the MCI is provided at the IBM Safer
Payments support.
back to top

9.1.1.3 Application programming interface overview

The Application Programming Interface (aka "user access interface")
connects the IBM Safer Payments server component to the IBM Safer
Payments client component used by end users (via browser software) and to
third-party software components (the term "Third-party components" in this
context is used to summarize any other software component that accesses or

extends IBM Safer Payments functionality. These components are in the
sense optional that IBM Safer Payments in itself contains all standard
functionality for fraud prevention applications. Many IBM Safer Payments
users, however, like to expand, customize or integrate IBM Safer Payments
with their systems).

The API also supports connection filtering that is enabled by unchecking the
"all connections" box. If unchecked, an entry field opens that lets you enter a
(comma separated) list of IP addresses for which the API accepts
connections. Maximum number of allowed incoming connections can be
configured by enabling the "Enable incoming connection limit" box.

Cluster installation

Since IBM Safer Payments is typically installed in a clustered environment
involving multiple IBM Safer Payments server instance nodes, the connection
from the IBM Safer Payments clients (running in the users' browsers) to the
cluster can be facilitated in different ways.

In an IBM Safer Payments server cluster, only one instance serves user
requests at a time ("active API"). The API of all other instances of the cluster
remains deactivated. This is necessary as otherwise multiple users logged on
to different instances could change the same data object in a non-consistent
way.

As long as all instances are in synchronization, the administrator can freely
switch the API activation between IBM Safer Payments server instances from
the cluster settings page or remotely from scripts. Notice that when the API
is activated on another instance -- deactivating the API on the current
instance -- all user sessions are terminated as a consequence of this, and all
unsaved data of users is lost.

Notice that all instances with deactivated API are still accessible via its API
for certain administrational tasks (in particular, cluster administration). This
ensures that if IBM Safer Payments server instance with the active API
becomes unavailable, the administrators can use any other IBM Safer
Payments server instance to switch the active API.

• Simple implementation
The most simple implementation of user access in a cluster installation thus
is to have IBM Safer Payments users use one "dedicated" IBM Safer
Payments server instance that has its API activated. In the case of failure,
update, or any other kind of scheduled maintenance that requires this
instance to be taken down, if users shall be able to continue their work, the
API must be activated on another IBM Safer Payments server instance, and
the users must resume working on this instance. For IBM Safer Payments
cluster installations with very few users (for example, installations not using
the case investigation, analysis, and reporting capability of IBM Safer

Payments), or installations in which the user access is not 24/7, this
approach often is sufficient.

• Failover implementation
With larger number of users, telling them to use different servers becomes a
burden. In this case, you may use an external fail-over switch to route user
requests automatically to the active API IBM Safer Payments instance. This
makes all IBM Safer Payments instances API ports visible under the same IP
address and ports for all users. If the administrator now switches the active
API to another instance, users can continue their work after they logged in
again. The administrator intervention can be from within IBM Safer Payments
(administration/cluster page), or remotely manually or automatically.

IBM Safer Payments client

The API uses a subset of HTTP (or HTTPS) as transfer protocol: URL encoded
HTTP requests to send information from the browser to the IBM Safer
Payments server as AJAX, and JSON formatted data for the response sent
back from the IBM Safer Payments server to the browser.

The IBM Safer Payments client component is implemented as a set of
JavaScript libraries that runs entirely within each user PC's web browser (the
libraries are automatically loaded (and cached) by the web browser from the
IBM Safer Payments server on an as-needed basis). Its internal architecture
follows the MVC (Model View Controller) approach that decouples data from
its representation. Therefore, the communication between IBM Safer
Payments server and client is strictly data based (simply put: no HTML). The
MVC sends AJAX requests to IBM Safer Payments describing the action that
needs to be performed by IBM Safer Payments or the data needed and
receives back status information and data in JSON format.

The same technology is used by third-party software components to access
IBM Safer Payments functions and data.

To serve the needs of both the IBM Safer Payments client and third-party
components, the IBM Safer Payments API comprises a superset of API calls
(AJAX request types). The API does not differentiate between functions for
the IBM Safer Payments client and third-party components, thus third-party
components may access the full IBM Safer Payments client functionality. The
IBM Safer Payments API hence is comprehensive and for instance would

even allow for third parties to write a completely different user access
interface.

In addition to the IBM Safer Payments API requests, the IBM Safer Payments
client also requests a number of static files from IBM Safer Payments (these
static files are contained in the "inc" subdirectory of the IBM Safer Payments
installation), including JavaScript libraries, CSS and image files.

Because of the HTTP transport layer used by the IBM Safer Payments API,
the IBM Safer Payments server typically is configured to listen to requests on
the HTTP port that by default is 80.

Request/response formats

The IBM Safer Payments API is based on AJAX technology. AJAX typically
refers to a combination of techniques, including the use of JavaScript on the
browser side, HTTP as transport layer/protocol and XML as format for the
responses. The IBM Safer Payments client and API implementation differs
from this in one respect. Responses from IBM Safer Payments are not XML,
but JSON formatted. The primary reason for it is that JSON is more succinct
than XML, however, since both formats can be transferred easily back and
forth, the choice of JSON over XML for the AJAX responses has no practical
consequences.

API port ping

To test if the API is active on a specific port, the request:

iris.mybank.com?{"request":"ping"}

can be sent to the API. If the API is active, this request is responded with:

{"responseStatus":["OK","API_ACTIVE"],"reloadUserProfile":false}

even when the requesting party has not established a valid session. Notice
that it is not necessary or recommended to ping the API port. This
functionality is provided only for testing and for certain load balancing /
failover equipment.

API base path

The API base path parameter is used to allow Safer Payments to be used
with a reverse proxy. For example, if you would like Safer Payments to be
accessible at:

http://[URL]/[Basepath]

instead of:

http://[URL]/

then you can use the base path parameter, however you need to use a
reverse proxy in order to use the base path.

The base path should be specified using the form:

/sp/

(with a leading and trailing slash)
This will result in all Safer Payments file and API requests being sent to:
http://[URL]/sp/ where they need to be received by a reverse proxy server
and forwarded to the Safer Payments server without the base path included.

WARNING: Be careful when saving the base path setting. After saving, then
Safer Payments will no longer be available at the original root path, and you
will need to access this instance of Safer Payments through the reverse
proxy instead. If you do end up saving an invalid basepath configuration,
which is not accessible through your reverse proxy, then you will need to
login to another instance in order to change the path back.

Note: Each instance has its own base path setting, so this setting needs to
be changed on every instance which you want to be accessible behind the
reverse proxy

Requests

IBM Safer Payments API requests have one JSON object after the IBM Safer
Payments installation URL. Here is an example:

iris.mybank.com?
{"request":"save","uid":-1,"type":"","mandator":1033,"revision":1051,"ruleset"
{}}

Of these JSON variables, only the first one "request" is mandatory. If the
other variables must be provided or not, depends on the type of request. If
they are provided, they must be provided in this sequence:

• request
This variable identifies the request type as text value. It must always be
present for IBM Safer Payments to understand what it is asked to do.

• uid
Many requests reference an IBM Safer Payments element identified by a UID.
For these requests, the UID is provided with this JSON variable. For requests
that save settings of an IBM Safer Payments element, the value "-1"
indicates that this IBM Safer Payments element has not yet been created in
IBM Safer Payments and therefore must first be created before saved. IBM
Safer Payments in this case generates a new unique ID (UID) for it.

• type
Some requests exist in variants. In this case, the type variable denotes this
variant.

• mandator
For all requests that target mandator specific actions, this variable transmits
the UID of the respective mandator.

• revision
For all requests that target model revision specific actions, this variable
transmits the UID of the respective revision.

• ruleset
For all requests that target ruleset specific actions, this variable transmits the
UID of the respective ruleset.

• data
Some requests, mostly the ones that save an entire IBM Safer Payments
element, need to deliver structured data to the IBM Safer Payments server.
In this case, the data variable delivers a JSON object with this data.

The IBM Safer Payments API supports only GET type requests. There must
not be space or other "filler" characters outside text values in quotes.

Responses

All responses from IBM Safer Payments to the browser are JSON formatted.
All JSON variable names in IBM Safer Payments start with small caps and – if
name is combined – use camel case thereafter. They all first contain the
(optional) actual responseData followed by the variable "responseStatus"
describing the status of the response:

{ responseData, "responseStatus": ["status", "feedbacktext"],
"reloadUserProfile" : true|false, "csrfToken": csrfToken }

With the variable "responseStatus", an array containing one or two (first one
mandatory) values, depending on the response status:

• OK with optional feedback
status is "OK" and feedbacktext may contain informational feedback that can
be shown to a user (if the request was from a UI) or a log file (if the request
was from a third party component).

• Warning
status is "W" and feedbacktext contains an warning feedback that can be
shown to a user (if the request was from a UI) or a log file (if the request
was from a third party component).

• Error
status is "E" and feedbacktext contains an error feedback that can be shown
to a user (if the request was from a UI) or a log file (if the request was from
a third party component). Such an error should be alerted to the user with a
modal dialog box.

• Fatal
status is "F" and feedbacktext contains an error feedback that can be shown
to a user (if the request was from a UI) or a log file (if the request was from
a third party component). The difference to the "Error" is that "Fatal" is for
errors that are assumed to be not correctable by the user. They typically are
assumed internal software (UI-service) mismatches or the result of improper

API requests (that could for instance also be the result of a user
manipulating HTTP requests). Because "Fatals" are not expected to ever be
shown to a user, they are in English language and not translated into any
language.

• Session Expired
status is "SEX" and feedbacktext contains an informational feedback that can
be shown to a user (if the request was from a UI) or a log file (if the request
was from a third party component).

With many IBM Safer Payments API requests, there is no responseData,
leaving "responseStatus" the only returned variable.

The "csrfToken" is provided to protect IBM Safer Payments against "cross site
request forgery" (constant for a session).

Sessions

All API access, whether by users or by third-party components, is granted
only within a valid IBM Safer Payments session and thus require a user
account to be associated with (Because the JavaScript code in the browser
cannot be fully protected against manipulation, the session Id is stored and
checked to be valid on the IBM Safer Payments server, where it cannot be
manipulated). In addition, all API requests are subject to the user/group
privilege model of IBM Safer Payments. Thus, the first step using API
requests is to initiate a session with the IBM Safer Payments server.

How this is done differs a bit between user access and third-party component
access. User access requires one first step before because users are able to
access the IBM Safer Payments server from a standard web browser with no
additional software installed.

Typical web sites use an HTTP server to deliver HTML pages to the browser
upon its requests. These HTML pages may be static or server-generated. IBM
Safer Payments uses a radically different approach.

When users access IBM Safer Payments via the installation URL, the
embedded HTTP service function of IBM Safer Payments delivers an HTML
page to the browser that only contains links to JavaScript libraries (In other
words, the HTML page only contains a header with the links to the JS
libraries and the body contains the call to the JS library main function. It is –
with the exception of the links – empty). These libraries contain the entire
user access component of IBM Safer Payments that from that moment on
run user access to IBM Safer Payments. No other HTML page is loaded after
this.

Once the JS libraries are loaded (depending on the environment, this process
typically takes less than a second), the IBM Safer Payments MVC (model

view controller) in the web browser is started. Detecting that no session is
valid; the controller first invokes the log-in process. Then, depending on the
user actions, the controller moderates the communication between the
browser and IBM Safer Payments via AJAX requests. For third-party
component IBM Safer Payments API access, a session starts directly with the
invocation of the login process.

The API identifies a session through a browser cookie. The response to a
successful login request contains an HTTP cookie that is stored with the
browser. For third-party component access, this cookie is set for instance by
the line:

Set-Cookie: sessionIdn=sessionId;path=/; HttpOnly

contained in the HTTP header of the IBM Safer Payments response.

Notice n corresponds to the instance ID of the respective IBM Safer
Payments instance (as defined in the "id=n" command line parameter). This
enables multiple sessions with different IBM Safer Payments instances on the
same browser.

Now every request from the browser or the third-party component must
send the sessionId as cookie in its HTTP request header, for instance by
including the line:

Cookie: sessionIdn=sessionId

in its header. The session ID value remains the same during the session.

If enabled in its settings, IBM Safer Payments uses a second session token to
prevent CSRF (cross-site request forgery) attacks. This token is submitted as
part of each API response as JSON variable "csrfToken" explained above. Its
value must be passed back with each subsequent request as the HTTP
header element:

CsrfToken: csrfToken

Remarks

• The sequence of JSON request objects and variables must exactly follow the
sequence specified. There may be objects/variables missing (if the default
value applied would work), and there may be additional objects/variables
(which will be ignored), but the defined objects/variables must always be
provided in the specified sequence.

• Notice that whitespaces and linefeeds are added in this documentation for
readability with any printed JSON example. The actual responses of the IBM
Safer Payments API may not have these for reasons of efficiency.

• The "reloadUserProfile"=true variable indicates if an administration change
impacts the current user session. If this variable is present, the user profile –

if cached – should be updated from IBM Safer Payments to avoid errors from
actions for which no privileges exist.

A full reference on all API requests and responses can be obtained from the
IBM Safer Payments support.

Multi-user capabilities

IBM Safer Payments is designed for a large number of concurrent users. It
thus keeps locks for viewed-/edited contents at a minimum to ensure
maximum productivity. Different lock mechanisms are used for different
parts of IBM Safer Payments:

• Administrative functions
Most administration pages have a table that lists the number of existing
items. Clicking on an entity opens an entry form below that lets the user
view the properties of the respective item. Users with edit privileges for this
item in addition get a "New XYZ" button above the table to open the entry
form empty for the creation of a new item, and when they click on an
existing item, the form opens editable and "Save"/"Delete" buttons are
presented. To avoid that multiple users edit the same item, the first user that
opens an item in editable form implicitly reserves the item (the "reservation"
is kept until the "lock timeout" period, as defined in this section, is not
expired). Each other user that clicks on the item in the table will only get the
form in non-editable mode. Because with all items the item names must be
unique, the uniqueness of the item name is checked right within the
JavaScript code in the form. However, because multiple users with edit
privileges can simultaneously create new items, the unlikely case that two
users simultaneously create two items with the same name, there is a
second check for name doublets when the item properties are actually saved.

• Decision model maintenance
Locking of model revisions is described on the online help page of the
revision selection on the "model" tab page.

• Case investigation
Locking of cases is described on the online help page of the "investigation"
tab page.

Direction

The API interface is an incoming interface, each connection is initiated and
terminated by the web browser, its (reverse) proxy, or a third-party
application.
back to top

9.1.1.4 Batch data interface overview

The batch data interface ("BDI") is used for various purposes in IBM Safer
Payments. In essence, it is a vehicle to get data in and out of IBM Safer
Payments as data files. The two primary uses of this interface are:

• Ad hoc

• Periodical

Typical ad hoc use cases are to get analysis data into IBM Safer Payments,
for example as part of a feasibility study or offline model generation, or to
extract data from IBM Safer Payments for use in other systems. The job
scheduling page (administration tab) provides a one-glance overview on all
jobs scheduled and their status.

Data format

IBM Safer Payments supports multiple formats for batch files:

• CSV
Character separated value ("CSV") format with the following formatting
rules:

• Text format files, using LF (line feed) or CRLF (carriage return and line
feed) as record delimiters.

• Field separators are either commas, semicolons, or tab control
characters. Notice that IBM Safer Payments interprets the file separator
used in the header line and utilizes this for the entire file. You may thus
not mix delimiters.

• The first row contains all mapping definition alias names of the message
of the load job, separated by the field separator.

• Notice that the data files must have the ".csv" suffix in their file names.

• FCD
Fixed column data ("FCD") format using text format files with fixed length
data ranges (no delimiters). Unlike CSV files, such data files do not contain a
header row that identifies which variables are contained in each data row and
what their sequence is. This information must be provided with format
definitions from mappings. In this case, the start and length of each variable
to be mapped to an IBM Safer Payments attribute are defined directly with
the respective message mapping.

• JSON
Messages can also be imported in the JSON format. Every line must
represent one complete JSON message, which can be parsed. "[" and "]" are
forbidden characters for fieldnames, because these are used in the mapping
to access array elements of the JSON

• XML
Messages can also be imported in the XML format. Every line must represent
one complete XML message, which can be parsed.

Value format

IBM Safer Payments supports different data types for which the following
formatting rules apply:

• Numeric
All numeric values may or not contain the period (".") as decimal separator.

Negative values are preceded with the minus ("-"). No exponential format,
no currency character(s), and no digit group separators may be present. The
number of decimals used from the values delivered, and the minimum and
maximum value depend on the settings of the respective attribute in the
model. Values higher or lower than the limits are clipped to the respective
limit.

• Text
Must be put within quotes ("). All characters between the opening and
closing quote are considered text value. The quote characters " may not be
part of a batch data delivered value. Characters must also be in the ASCII
range from 32 to 126 or 128 to 255. Values longer than defined with the
respective model attribute are clipped to this length.

• Timestamp
All timestamp values must be ISO-formatted, that is follow exactly the
"YYYY-MM-DD hh:mm:ss" format ("YYYY": year in four digits, "MM": month in
two digits, "DD": day in two digits, "hh": 24-hour in two digits, "mm":
minutes in two digits, and "ss": seconds in two digits). If you need to enter a
date as a timestamp, add " 12:00:00" to the ISO date format. Milliseconds
are not supported.

• Time interval
All time interval values use a format similar to ISO 8601 for each side of the
interval and the "~" symbol to separate them. Several types of date and time
information are supported but both sides of the interval must use the same
type:

• Full timestamps: Both sides are formatted exactly as you would when
sending just a single timestamp. Example: "2018-03-01
09:00:00~2018-03-15 12:00:00".

• Time only: Both sides consist of a time only. Possible formats are
"hh:mm:ss", "h:mm:ss", "hh:mm" and "h:mm".

• Day of the week only: Both sides use the English names of the
weekdays either in full or abbreviated. Case does not matter. Example:
"mon~wed".

• Day of the week with time: Combines the type above with a time. All
time formats mentioned above can be used. Example: "mon 9:00~wed
12:00:00".

• Day of month and month only: Both sides appear similar to full
timestamps but with a "-" instead of the year and without a time.
Example: "--03-01~--03-15".

• Day of month and month with time: Combine the type above with a
time. All time formats mentioned above can be used. Example: "--03-
01 9:00~--03-15 12:00:00".

• Day of month only: Both sides appear similar to full timestamps but
with a "-" instead of the year and the month and without a time.
Example: "----01~----15".

• Day of month with time: Combines the type above with a time. All time
formats mentioned above can be used. Example: "----01 9:00~----15
12:00:00".

If files are to be used as inputs for IBM Safer Payments that do not comply
with these settings, they must be converted outside IBM Safer Payments.

Semaphore files

Data files used in the BDI typically are relatively large, so that it can take
some time to write them in the incoming directory. If a load job would be
started while the data is not fully transmitted, the load job could fail to load
all records. Therefore, the BDI supports "semaphore files". These files have
the same name as the respective data file, but the suffix ".sem" . If the "Wait
for semaphore file" checkbox of a respective job is checked, the loading of
the data file will not start before the respective semaphore file is found in the
incoming directory. Notice that the contents of the semaphore file is ignored;
it thus is typically empty.

Interruptions and logging

During loading of a data file, a ".log" file is created that has the same name
as the data file loaded. It contains a response entry for each record (line) of
the data file that was successfully loaded. Each response entry is terminated
by a line feed.

The response entry contains the output attributes and their values (if defined
with the attribute mappings of the model revision), plus:

• the timestamp of the system time (UTC) the record was processed,

• the URID that IBM Safer Payments has associated the record with, and

• the computation (error) status.

If loading of a file ever gets interrupted during file loading, IBM Safer
Payments uses the information of the log file to commence file loading where
it was stopped.

Notice that processing of batch files can be interrupted (and later restarted)
after each record. This allows shutting down an IBM Safer Payments instance
before all jobs are completed and resume them at a later point in time.

However, if "Curtail masterdata" or "Re-create interval index" is enabled, the
job will not be resumed after interruption. Instead, this will lead to a re-
execution of the whole job. Interruption may not only be performed manually
and when shutting down the instance but also during golives, saving of
various elements (e.g. case classes, notifications, reminders...), updating of
mandators, rebuilding of indexes, reloading of compliance lists. It is thus
recommended to perform these kinds of jobs when there is low activity on
the cluster.

Archiving and error handling

Once a data file is processed without errors, it is moved together with its
".log" and – if exists – its ".sem" file to the archive directory specified for this
job.

If an error occurs, the respective file is moved to the error directory specified
for this job. In this case, the records processed up to the moment the error
manifests itself are logged in the ".log" file. If any of the archive or error
directory paths is empty, the move is suppressed.

Messages

Records in a batch file are considered transaction messages just as those
handled by the MCI. The "Message type ID" is the same (numeric) value
used by IBM Safer Payments to identify the type of transaction message
(messages are created and maintained in their own section on the
administration tab, see messages for details). Message type ID can be
associated with the BDI job either for the entire file, or read for each record
(for more details, refer to jobs).

Importing encrypted job files

If "Job encryption enabled" is activated, encrypted job files can be imported
through the BDI interface. See Importing encrypted job files for further
details.
back to top

9.1.1.5 Status control interface overview

The SCI is used between IBM Safer Payments instances of a cluster to
exchange status information and to dispatch control commands. It is hence
the only IBM Safer Payments interface that cannot be deactivated.

During operation, each IBM Safer Payments instance can send
"irisInstanceStatusRequest" type JSON formatted requests to all the other
IBM Safer Payments instances to form a "complete picture" of the entire IBM
Safer Payments cluster.

Direction

The SCI consists of both an incoming interface and an outgoing interface for
each other IBM Safer Payments instance in the cluster. While you may
enable/disable the incoming interface, the outgoing interface always remains
enabled. If the target instance's incoming SCI is unreachable or disabled, the
sender IBM Safer Payments instance considers this target instance as non-
reachable (and displays this accordingly on the cluster page).
back to top

9.1.1.6 Encrypted communication interface overview

The ECI is used between IBM Safer Payments instances of a cluster to
exchange AES encryption keys. It is not needed for an unencrypted IBM
Safer Payments installation. If deactivated, no exchange of encrypted keys is
possible.

Direction

The ECI consists of both an incoming interface and an outgoing interface for
each other IBM Safer Payments instance in the cluster. While you may
enable/disable the incoming interface, the outgoing interface always remains
enabled. If the target instance's incoming ECI is unreachable or disabled, the
sender IBM Safer Payments instance considers this target instance as non-
reachable (and displays this accordingly on the cluster page).
back to top

9.1.1.7 FastLink interface overview

The FLI (FastLink Interface) is used between IBM Safer Payments instances
of a cluster to exchange configuration data and transaction data for keeping
all IBM Safer Payments instances of a cluster at the same configuration and
data level. It uses JSON (JavaScript Object Notation) formatted messages
over IP networking. It transfers different types of messages:

• Cc-ed transactions

• Configuration and model revision updates

• System and audit event log messages

Buffering

Each IBM Safer Payments instance creates an outgoing queue that can
temporarily store (buffer) the messages to be sent to the respective other
IBM Safer Payments instance.

The queue buffer needs to be sized large enough that it can store messages
for even multi-hour or multi-day outages or non-reachability of instances.
During operations, each IBM Safer Payments instance writes all its messages
that require replication to the other IBM Safer Payments instances (cf. list
above) into this disk buffer. A separate service thread for each queue
continuously reads from this buffer and transmits the messages to the target
IBM Safer Payments instance. Once the target IBM Safer Payments instance
has received and processed the message, it acknowledges this to the sending
queue, which in turn erases the message from its buffer.

In normal operational conditions, there should thus only be a few messages
"in transit". Thus, a threshold can be specified with IBM Safer Payments
settings which defines when IBM Safer Payments considers the number of
messages in transit to be so low that it considers the IBM Safer Payments
instances "in sync".

There are a number of situations in which messages can build up in the FLI
outgoing queue buffers:

• Peak load
FLI processes all replication messages with the configured number of parallel
threads. Only configuration updates, investigation cases and risk lists, where
the strict sequence of messages is critical, will be processed single threaded.
In most IBM Safer Payments installations, however, there are multiple MCI
connections and there may be multiple BDI jobs performing in parallel. It
could thus be that the total throughout of messages processed by one IBM
Safer Payments instance is (temporarily) higher than the FLI can process. In
this case, messages can build up in the buffer. As soon as the total
throughput decreases, the buffered messages are transferred to the target
faster than new ones come in and the buffer empties over time. Notice that
any IBM Safer Payments installation must be sized so that the average
transaction load does not exceed the FLI throughput as otherwise the buffers
will overflow.

• Downtime
Non-availability of an IBM Safer Payments instance in a cluster can stem
from various causes, such as network outages, server/infrastructure
hardware/software trouble, or from maintenance tasks. Certain maintenance
tasks require an IBM Safer Payments instance to be taken offline or down:

• Backup
Certain backup strategies require the files of the IBM Safer Payments
instance to be backed up to remain unchanged during backup, thus
requiring temporary disablement of all incoming interface of this
instance.

• IBM Safer Payments live updates
Certain IBM Safer Payments software updates can be made during full
live operation of the IBM Safer Payments cluster. In this case, one
instance by one is taken offline and shutdown, and restarted with the
new software release.

• Operating system updates/upgrades

• Server hardware updates/upgrades

In all such cases, where one IBM Safer Payments instance is temporarily
unavailable, the respective FLI outgoing queues buffer the replication
messages so that once the IBM Safer Payments instance becomes available
again, the FLI connections are automatically reestablished and the buffer
contents is transmitted. As soon as the number of messages in transit is
below the defined threshold, the IBM Safer Payments instance is considered

in sync. There are two timing parameters that can be set on the system
configuration page to control the timing behavior of this process.

Buffer sizing

The size of the FLI outgoing queue buffer can also be set on the system
configuration page. It must be large enough to hold the replication messages
for the maximum duration of an IBM Safer Payments instance non-
availability you need to be covered for. If your configuration is using the
deferred writing option, keep in mind that you will need the configured
amount of memory both on disk and in main memory. Please consult with
the IBM Safer Payments support if you are unsure about how to determine
the correct size for your application.

Buffer management

If an IBM Safer Payments FLI outgoing queue buffer overflow occurs, e.g. if
the outage of an IBM Safer Payments instance takes longer than sizing
assumed, the IBM Safer Payments cluster has no means anymore to
synchronize the non-available IBM Safer Payments instance. The outgoing
queue buffers of the other IBM Safer Payments instances are thus dropped,
and the non-available IBM Safer Payments instance must be re-created from
the other instance; must be "recovered" as described as "cold start"
procedure in cluster management.

To reduce the risk of a buffer overflow, IBM Safer Payments automatically
takes certain measures when buffer space becomes scarce:

• BDI brake
Within the Fastlink interface section on the system configuration page, you
may define a percentage threshold ("Job processing freeze at"). If the buffer
filling level of at least one FLI outgoing buffers passes this threshold, the
batch data loading jobs on this instance will be frozen This ensures that the
FLI buffers are not used up by data that is already stored on disk. All jobs
continue loading once the threshold is no longer exceeded. Typical values for
this threshold range between 10% and 50%.

• Stopping online message processing
With the FastLink interface section on the system configuration page, you
may define another percentage threshold for when the online message
processing interfaces (MCI, MQ, Kafka) should close ("Stop online message
processing interfaces at"). This threshold is typically set between 75% to
95% and thus much higher than the BDI brake threshold and once the buffer
filling level of at least one FLI outgoing buffers passes this threshold,
message command interface connections are closed and MQ and Kafka stop
pulling messages. In a typical IBM Safer Payments cluster setup, this would
cause the connected systems to route their transaction messages to the
message command interface of another instance that may have its FLI
buffers less filled. If this is not the case, the connected systems will not find
an IBM Safer Payments instance in the cluster that will accept their

transaction messages and will react accordingly. In this situation, transaction
messages may get lost. Yet it is important to "reserve" a small amount of
buffer space for replication messages that deal with configuration changes. If
such messages get lost because of a buffer overflow, the IBM Safer Payments
instance concerned must be recovered in a complex process.

Notice that there are status alarm indicators that let you monitor the FLI
buffers and that can alert administrators to potential buffer overflows before
they occur.

Direction

The FLI consists of both an incoming interface and outgoing interfaces
(queues) for each other IBM Safer Payments instance in the cluster. While
you may enable/disable the incoming interface, the outgoing interface always
remains enabled. If the target instance's incoming FLI is unreachable or
disabled, the outgoing interfaces automatically buffer all data and resend it
once the target's incoming FLI becomes responsive again.

Instance authentication via checksums

During startup cluster instances exchange an encryption key via the ECI.
When sending FLI messages, a checksum for each message is computed,
encrypted and also sent. The receiving instance uses the key to decrypt the
checksum and validate it. The validation of checksums can be deactivated in
the "System configuration". When enabled only authorized systems (i.e. the
cluster instances) can send out FLI messages and change the cluster.
back to top

9.1.1.8 Relational database interface

The RDI is optional. During standard operation, IBM Safer Payments only
uses its multi-tiered, cached data repositories (aka CDC, MDC, DDC) and
thus is self-contained. From these repositories, data can conveniently be
retrieved using IBM Safer Payments' query function.

However, IBM Safer Payments data storage has been optimized for IBM Safer
Payments' real-time and analytical needs. Thus, customers seeking the type
of access to their IBM Safer Payments data that a relational database
management system provides can connect any standard database
management system (DBMS) to IBM Safer Payments.

To ensure that DBMS operations can never disturb IBM Safer Payments real-
time operations, the RDI is designed as a file interface, where IBM Safer
Payments generates SQL DML (data manipulation language) statements that

can be read by a DBMS. The necessary DBMS loading scripts are not part of
the IBM Safer Payments product.

An example of such a statement could look like (depending on the
configuration) as follows:

INSERT INTO DEFAULT_TRANSACTIONS (`PRIMARY_URID`,
`PRIMARY_INSTANCE_ID`, `SYSTEM_TIMESTAMP`,
`INPUT_ATTRIBUTE_1`, `INPUT_ATTRIBUTE_2`, …,
`OUTPUT_ATTRIBUTE_1`, …) VALUES (101, 1, '2016-09-01 09:45:00',
'Input_Value_1', Input_Value_2, …, 'Output_Value_1', …)

For table definition for cases see below

Configuration

• To ensure the correct syntax and escaping choose the database format from
the list of currently supported formats.

• The encrypted values can be masked in the SQL DML statements by enabling
the checkbox.

• The file creation interval can be selected for file per (second/minute/hour).
Standard is one file per hour.

• If needed, a line break can be added after a defined number of characters. To
enable this, enter the number of characters after which at least a line break
should be set. If a text values length is greater than the set value, it will be
truncated by defined line break length - 2, because the quotes need to be
considered here. If it is set to zero, no line breaks will be added. There will
always be a line break after each statement

Transaction data configuration

• The RDI can be enabled for transactions with the checkbox. There will only
be SQL DML transactions statements created for mandators that have
'Transaction Settings' enabled.

• Only the selected attributes will be included in the SQL DML statements.

• The table name for transactions has to be the same name as the table in
your database. The default name is "DEFAULT_TRANSACTIONS" but you can
choose a different name.

• The SQL DML files for transaction data will be saved in the location of the
delivery path.

Cases data configuration

• The RDI can be enabled for cases with the checkbox. There will only be SQL
DML cases statements created for mandators that have 'Cases Settings'
enabled. Some data will be exported into separate tables, like Audit Trail,
Reporting Attributes, Blocklist hits, hitting Urid, collusions fired, first parties
and rules fired.

• The table name for cases has to be the same name as the table in your
database. The default name is "DEFAULT_CASES" but you can choose a

different name.

• The SQL DML files for case data will be saved in the location of the delivery
path.

File name convention

All SQL files generated have the name "sp_transaction_data_i_m_YYYY-MM-
DD_hh-mm-ss.sql" where i is the IBM Safer Payments instance id, m is the
name of the mandator and YYYY-MM-DD_hh-mm-ss is the timestamp the file
was generated.

Remarks

• Each INSERT and UPDATE statement is terminated by a line feed.

• Attribute names are converted to SQL standard (all caps, whitespaces
replaced by underscore characters, leading numbers preceded by
underscores, etc.). Best observe some IBM Safer Payments generated SQL
statements to verify that the attribute names are what you expect them to
be.

• All selected attributes are included in the INSERT and UPDATE statements if
they are not null (value was set by either the delivered transaction
message/record or computed by profiling or rule conclusion). Exceptions to
this are the selected Boolean, IP and Hexadecimal attributes which will be
included in any case. Null value attributes are not included so that the
respective values in the database are also null.

• The "Primary Urid" and "Primary Instance Id" attributes are always delivered
with each SQL DML statement, even though they are not explicitly defined
attributes in IBM Safer Payments.

• Notice that the IBM Safer Payments generated SQL files require the database
structure to be already established within the DBMS.

• The selected input/output attribute names of the champion are used as
column names.

• A new file is generated according to the settings every second, minute or
hour. The file name timestamp thus indicates that exact time. If there was no
SQL DML statement for a certain second, the respective file is not generated.

• There is no removal function for outdated SQL files in IBM Safer Payments.
You thus need to use for instance a script for feeding the files' contents into
the DBMS and archive/delete them.

Table definition for cases

back to top

9.1.1.9 Alert message interface overview

IBM Safer Payments has an outgoing message interface for alert messages.
Alert messages include:

• Status alarm indicator (SAI) alert messages

• Investigation alert messages (Case actions, External Queries)

• Processing alert messages (Notifications)

Alert messages are sent by IBM Safer Payments using one of the following
protocols:

• file system (plain text)

• file system (docx)

• HTTP message

• IP message

• ODBC SQL

• SMTP (email, SMS)

For each of these protocols IBM Safer Payments uses a dedicated outgoing queue,
which sends the produced messages using asynchronous, parallel processing. The
AMI is an outgoing interface. While it is possible to work with responses and
response codes, the AMI does not provide any functionality to connect to Safer
Payments from external applications, such as mail or database servers. To send
information to IBM Safer Payments, use the BDI, MCI, or MQI.

Because it is assumed that all IBM Safer Payments instances use the same
SMTP server, its configuration is made in the "settings.iris" file
(administration system configuration page) rather than in the "cluster.iris"
file (cluster administration page). This configuration will then also be offered
as a template to all outgoing channel configurations using the SMTP protocol.
Activation and de-activation of the AMI or specific protocols are controlled by
the cluster administration page and stored individually for every instance.
back to top

9.1.1.10 WebSphere MQ interface

The WebSphere MQ Interface ("MQI") connects IBM Safer Payments to the
messaging solution WebSphere MQ.

WebSphere MQ enables IBM Safer Payments to receive transactions from a
queue and write responses to another. The application writing the
transactions and reading the response is independent of IBM Safer
Payments.

Notice that further information on WebSphere MQ is provided in the
appropriate WebSphere MQ documentation.

System Requirements

To use WebSphere MQ Interface, you need an existing MQ environment. This
includes a MQ server installation in your network and a MQ client version
8.0.0.5 (or later) installed on your IBM Safer Payments machine. In order to
enable IBM Safer Payments to make use of the client installation,
"libmqic_r.so" has to be located on (or linked to) the library search part of
your IBM Safer Payments installation. It is not possible to use WebSphere MQ
Interface without an existing MQ installation.

Troubleshooting

The MQI will print out event log message 648 whenever it connects to a
queue manager or a queue. Errors during message processing are reported
with event log messages 184 and 441. If a connection is not possible, event
log message 649 will be printed containing MQ reason codes. Please visit the
IBM MQ Knowledge Base for more information about those codes.
back to top

9.1.1.10.1 WebSphere MQ queue manager

Before it is possible to receive transactions via WebSphere MQ Interface, you need
to configure a connection to at least one existing queue manager and its
associated objects, particularly one or more message queues.

Form Settings

• Queue Manager
Name of WebSphere MQ queue manager. Ensure that no other queue
manager has the same name.

Note: The queue manager name is case sensitive.
• Channel

An authentication channel on the WebSphere MQ queue manager.

• Protocol
The protocol of the WebSphere MQ queue manager.

• IP
The IP address of the WebSphere MQ server running the queue manager.

• Port
The port used by the WebSphere MQ queue manager.

• Use Fallback
Allows you to temporarily enable/disable a fallback queue manager. IBM
Safer Payments will try to connect to the fallback queue manager if it is not
possible to connect to the primary one.

• Fallback IP
The IP address of the fallback WebSphere MQ server running a queue
manager using the same name as the primary queue manager.

• Fallback Port
The port of the fallback WebSphere MQ queue manager.

• Reconnect Interval
The time interval (in seconds) IBM Safer Payments waits before trying to
reconnect to the primary queue manager or, if enabled, to switch to the
fallback queue manager after a disconnect.

• Use SSL encryption
Allows you to configure SSL encryption for MQ connections and to enter the
SSL settings matching those of the appropriate queue manager.

• Key repository path
The path to the MQ client key repository on disk.

• SSL cipher specification
The cipher specification used for SSL encryption between the
WebSphere MQ client and queue manager.

• Responder URL
The OCSP responder URL for SSL encryption between the WebSphere
MQ client and queue manager.

back to top

9.1.1.10.2 WebSphere MQ queue

Before it is possible to receive transactions from the above queue manager via the
WebSphere MQ Interface, you need to enter information about at least one
existing queue.

Form Settings

• Queue
Name of the WebSphere MQ queue to access.

• Message
IBM Safer Payments message type that is used to decide how to parse the
messages delivered by the queue. The message selection here only defines
the type of parsing. The MTID still needs to be defined in the incoming
messages delivered by the queue and it can be from different MTIDs. This
can either be an XML message defined in Administration/Messages or have
the type "dynamic", when a custom parser implementation is used with IBM
Safer Payments.

• Use Respond Queue
Allows you to enable/disable a respond queue, which IBM Safer Payments
sends responses to. Currently all responses will use XML as the output
format.
Note: In order to work with IBM Safer Paymnets the respond queue has be
configured on the same queue manager as the corresponding input queue.

• Respond Queue
Name of WebSphere MQ queue IBM Safer Payments sends responses to
if enabled.

• MQGET Timeout
The MQGET timeout (in milliseconds) defines how long the connection to a
queue will be kept open, when no more messages are available. As soon as
the queue is empty and this timeout has expired, IBM Safer Payments will
close the connection to the queue and re-open it after the reconnect interval
defined for the queue manager. Note that shutdown will be delayed for the
duration of the MQGET timeout.

• Number of processing threads
The number of parallel threads used to process the messages recived as a
unit of work.

• Size of unit of work
The number of messages that is read from the queue and processed in one
batch. Increasing this number will increase the processing speed but also

increase the number of messages that are potentially lost on an instance
faliure.

back to top

9.1.1.11 Kafka message interface

The Kafka message interface ("KMI") connects IBM Safer Payments to an
external Kafka cluster. Safer Payments can read transactions from multiple
Kafka Topics running on different brokers. For each of these topics responses
can be written to another topic.

Kafka Topics are set up as Inbound Endpoints. Each Inbound Endpoint
defines one Kafka Topic to receive messages from and one optional Kafka
Topic to write responses to.

Message types

The Kafka interface can ingest the following types of messages. The message
formats are the same as for the other data interfaces of Safer Payments
(e.g. MCI and MQI) except AVRO message type which is exclusive for KMI.

• XML (flat and nested)

• JSON

• AVRO

• FCD

• Custom

AVRO

Kafka Message Interface supports AVRO message type with Schema Registry.
To be able to use AVRO with KMI new message of type AVRO needs to be
created under Administration/Messages. When creating AVRO message type
Schema Registry URL needs to be added to the message definition. KMI will
use Schema Registry to fetch the schema for AVRO message from Schema
Registry server and will validate incoming AVRO message against it.

AVRO with SSL: To set up SSl connection to Schema Registry server CA
bundle certificate should be added to OS.

Steps to add CA bundle certificate to Red Hat Linux:

1. Copy ca-cert.crt to /etc/pki/ca-trust/source/anchors

2. Run update-ca-trust extract

3. Verify that secure SSL connection could be establish with Schema Registry
Server with curl --cacert SSL_SCHEMA_REGISTRY_URL:PORT

Once CA bundle was added to OS Safer Payments will be able to establish
secure SSL connection with Schema Registry Server.

Kafka endpoint

Connections to a Kafka cluster are established by Kafka endpoints. The
endpoint specifies which brokers it wishes to connect to and which Kafka
Topics to read messages from.

To protect the communication between Safer Payments and the Kafka
brokers, SSL settings can be configured. Safer Payments can validate the
server certificate sent by the Kafka brokers against a provided Certificate
Authority. Safer Payments can also send out a client certificate to the Kafka
brokers to authenticate itself.

Note: At the moment only a single Kafka endpoint is supported per Safer
Payments instance. It will always connect to all the topics that are enabled
for its Safer Payments instance.

Failover mechanism

Each Kafka Topic specifies a sorted list of IBM Safer Payments instances
describing the priority in which the instances should connect to the topic. An
instance can only connect to a Kafka Topic and process its messages if it is
the highest instance on the list that has the KMI enabled. In case the
currently active instance cannot process Kafka messages anymore e.g. due
to being shut down, the next instance in the list with an enabled KMI will
take over.

Typically the KMI should be enabled on all IBM Safer Payments instances that
are enabled in at least one Kafka Topic to make sure that the failover
mechanism for all topics works as configured. If the KMI is enabled on an
instance but no topic connections have been made, the cluster settings table
will show the KMI on that instance as enabled but not active indicating that
this instance is only used for Kafka Topic failover. Please refer to the Inbound
Endpoint help page for a description of the available settings.
back to top

9.1.2 SSL settings

This section lets you define the SSL settings for this interface.

IBM Safer Payments needs two external contents to support an encrypted
connection: certificate and private key files. In PEM format, both contents
can be in the same file. If you are using encrypted certificates, IBM Safer
Payments needs its passphrase to unlock the certificate. You may choose to

either have IBM Safer Payments ask the operator for this passphrase each
time it starts up, or a (secure) file location where the passphrase is stored.

Form Settings

• Certificate file
The server certificate file in PEM format. This file has to fit with the Interface
IP address, if the certificate validation is enabled

• Certificate private key file
The private key file of server certificate in PEM format. This file can be the
same file, as the server certificate file.

• Diffie Hellman file
(Optional) The static diffie hellman file. This file is only needed, if you like to
have a static diffie hellman key exchange.

• Certificate passphrase entry

• Passphrase input via console during startup:
You will have to insert the passphrase over console, every time IBM
Safer Payments starts.

• Read passphrase from file during startup:
IBM Safer Payments will read the passphrase from an unencrypted file
on startup.

• Use unencrypted private key:
The private key of the server certificate is unencrypted. No need to
insert a passphrase.

• Reject TLS 1.0
Reject encrypted connections using TLS 1.0. Reject TLS 1.0 is recommended
as countermeasure against the known "BEAST" vulnerability in CBC ciphers.

• Reject TLS 1.1
Reject encrypted connections using TLS 1.1.

• Validate server certificate
(Only in ECI) Validate the server certificate of outgoing connections against
RFC 2818.

• Server CA certificate file
(Only in ECI) The certificate of a remote server (in outgoing connections)
must be signed by this Certificate Authority.

• Server CRL file / path
(Only in ECI) The certificate of a remote server (in outgoing connections)
must not be rejected by this Certificate Revocation List (CRL). This CRL is
one file, that contains all revoked certificates.

• Validate client certificate
Validate the client certificate of incoming connections.

• Validate client certificate CN (API)
Checks if the installed client certificate's Common Name (CN) fits with the
users "login". The login is rejected with "login failed", if the CN does not
match the user's login.

• Validate client certificate CN (MCI)
Allows a MCI connection only if the client certificate's common name (CN) is

found in the list of valid common names. This validation is case sensitive.

• Valid common names (MCI only)
The list of Common Names (CN) used to validate MCI connections. Only MCI
connections whose client certificate's common name is found in this list will
be allowed.

• Client certificate file
(Only in ECI) The client certificate file in PEM format. This file is used for
outgoing connections and will be verified by another IBM Safer Payments
instance.

• Client Certificate private key file
(Only in ECI) The private key file of the client certificate in PEM format. This
file can be the same file, as the client certificate file.

• Client Certificate passphrase entry
(Only in ECI)

• Passphrase input via console during startup:
You will have to insert the passphrase over console, every time IBM
Safer Payments starts.

• Read passphrase from file during startup:
IBM Safer Payments will read the passphrase from an unencrypted file
on startup.

• Use unencrypted private key:
The private key of the client certificate is unencrypted. No need to
insert a passphrase.

• Client CA certificate file
The certificate of an incoming connection must be signed by this Certificate
Authority

• Client CRL file / path
The certificate of an incoming connection must not be rejected by this
Certificate Revocation List (CRL). This CRL is one file, that contains all
revoked client certificates.

Remarks

• Since IBM Safer Payments often is operated as a Windows service or as a
UNIX daemon, a console (window) for password entry is often not available
to IBM Safer Payments. In this case, the password must be read from a file.

• If you store the passphrase in a separate file, this file must be protected
from any access other than the IBM Safer Payments process.

• Notice that the SSL settings are individual for each IBM Safer Payments
instance. This is also because different instances of IBM Safer Payments
running on different computers with different IP addresses will require
different certificates.

• Enabling/disabling of SSL (above) and saving your settings is immediately
carried out.

Certificate validation

To avoid man-in-the-middle attacks, it is recommended to use certificate
validation.

• Server certificate validation

The server certificate validation is to validate the IBM Safer Payments
server. Without this check, the client software cannot distinguish
between a real IBM Safer Payments connection, and a man-in-the-
middle connection.

For the API and the MCI, the server certificate is verified by the client
software (web-browser or message system). This means that you have
to verify that the IBM Safer Payments certificate can be validated by
your client software. This is usually a check against the configured CA of
the client software and a check of the IP (or domain) against the CN
field of the IBM Safer Payments server certificate
For the ECI, the server certificate is checked by IBM Safer Payments
against RFC 2818. This means, that the IP-address of the ECI and the
CN field in the certificate of the IBM Safer Payments instance must be
the same. Every ECI interface needs its own certificate with the fitting
IP of the network interface. It is helpful, to name your certificate after
the IP address to distinguish the different certificates of different
instances.

• Client certificate validation

The client certificate validation is to validate incoming connections.

• API: The client certificate validation can act as a "two-factor-
authentication" token. Every user can get its own client certificate,
which is checked against the CA and the CRL in IBM Safer Payments. All
API connections without valid client certificate will be rejected in IBM
Safer Payments, if the certificate is expired or not fitting the
requirements.

• MCI: The client certificate validation verifies, that no other system is
sending transaction messages to the IBM Safer Payments MCI.

• ECI: No other system should send "change encryption key commands"
to IBM Safer Payments. The client certificate validation checks incoming
ECI connections are sent from a valid IBM Safer Payments instance.

back to top

9.1.3 Storage architecture

IBM Safer Payments uses a "three plus one" layer storage architecture to
deliver exceptional real-time performance as well as ultra-fast simulation and
rule generation results:

• A computational data cache (CDC) caches one complete transaction message
or record during the entire computation. Once completed, the CDC content is
copied to both the MDC and the DDC. Because the CDC uses the same binary
data representation as the MDC/DDC, this copy operation is computationally
very efficient. This enables effective parallelization of all computation tasks,
so that IBM Safer Payments fully exploits the power of today's multi-core
computing hardware. The configuration of the CDC for MCI, BDI, and
simulation/rule generation is made by respective settings in the IBM Safer
Payments configuration.

• A memory data cache (MDC) stores data for two purposes:

1. providing recent records for profiling (counter computation etc.) needed
for real-time operations and

2. providing data for simulation, analysis and model generation. Like the
CDC, the MDC stores data in RAM.

• A disk data cache (DDC) stores data for two purposes:

1. to provide a longer time period or more attributes than the MDC
(mostly for case investigation) and

2. to prime the MDC upon IBM Safer Payments startup.

Because the DDC stores data in files, it is much slower than the MDC but it
can be much larger.

• A relational database (RDB) can be optionally added with later releases of
IBM Safer Payments. While it is not necessary for IBM Safer Payments
operations, it can provide IBM Safer Payments users with the capability to
run custom long-term analyses and reports without any disturbance to IBM
Safer Payments operations. IBM Safer Payments only delivers data to this
storage layer, even though data can be exported from the RDB and re-
imported into IBM Safer Payments.

Notice that IBM Safer Payments calls its disk storage facility a "cache". This
is because – like any cache – it only stores data for a specified amount of
time. The reasons for this, and the techniques used, are described below.

Test data

In addition to the CDC/MDC/DDC layered cache structure, IBM Safer
Payments also has a data cache for test data, called the SDC (Sandbox Data
Cache). This is not linked to the CDC/MDC/DDC that deal with real
(production) data, but linked to a challenger model revision where it serves
the purpose of testing the model behavior with test data. SDC data is
therefore stored with a model revision and since it has no connection with
the other data caches, it is not explained further here.

Interaction of caches

While MDC and DDC are structured by records, the CDC is structured by
computational threads. This is because the purpose of the CDC is to

maximize utilization of computer hardware with a large number of cores.
Without CDC, each message computation would have to access attribute
values in the MDC many hundred times during the computation of the
message. This would limit the number of parallel computing threads. Using a
CDC, each message computation thread is completely independent up to the
moment when it dumps into the MDC. Since this is only one single time per
message, the number of computational processes that can perform in parallel
is thus orders of magnitude higher.

While the CDC stores only one record, but n times for n computational
threads, the MDC and DDC store multiple records, but just once for all
threads.

The cooperation between MDC and DDC can be configured through the
deferred writing option.

Sizing example

For illustration, a possible sizing of an IBM Safer Payments installation is
considered:

• The DDC is sized to 180 days of data. This is a typical maximum time period
transaction data is required for case investigation purposes. The DDC also
holds all attributes.

• The MDC is sized to 60 days of data and only the subset of DDC attributes.
This is because it typically takes about 30 days to have the majority of
fraudulent transactions flagged, and this information is essential for analysis
and model generation.

Notice:

• MDC/DDC sizing can be different for every attribute.

• The DDC size must always be greater than or equal to the MDC size, because
to ensure fast startup, the MDC is primed with data from the DDC. Because
both data caches use the same binary data representation, this priming is
very fast.

• Because the DDC is on disk, memory is usually available in abundance.
However, access to data within the DDC is significantly slower.

• The kind of fast access provided by the MDC is typically necessary for the
computation of counters or the merging of transactions. Because here, a
sequence of up to many hundred previous transactions must be evaluated,
disk access for each of these transactions would make this operation too
slow. It can therefore be defined with the respective model revision profiling
method whether or not evaluation should consider DDC transactions in case
the MDC stored transactions are not exhaustive.

• If the optional RDB layer shall be employed, IBM Safer Payments creates SQL
insert scripts that can be loaded into a database. Following database systems
can be used to import the SQL commands: IBM DB2, Oracle, MS SQL,
MySQL.

Unique record ID

Messages that enter IBM Safer Payments either via the MCI or the BDI are
stored as records in the cache (if they are no merging or masterdata
sources). At the moment IBM Safer Payments creates a new record for this
message, it associates it with a so-called "unique record ID" (urid). This ID is
a number that starts with 0 for the first record and is then incremented with
each new record.

The urid is used everywhere in IBM Safer Payments where a record must be
identified. Internally it is used to address records in MDC and DDC. The urid
are also provided externally so that each record can be uniquely referenced.

Data cache sizing

IBM Safer Payments lets you exactly configure how it shall use its disk and
main memory resources to cache data. Because of these many degrees of
freedom, some planning ahead is required to obtain optimum balance
between resource usage and computational performance. This section
explains the background to IBM Safer Payments disk caching that must be
considered when planning data cache sizing.

Of the many data cache layers of IBM Safer Payments, only the MDC and
DDC layer require sizing by the user. The other caches are managed by IBM
Safer Payments internally and their resource consumption is typically orders
of magnitude below MDC and DDC.

MDC and DDC both hold individual transaction data. They can be configured
for each attribute and each index.

Attributes

With attributes, configuration is relatively easy:

• Attributes that you do not want to store in the MDC or DDC do not require
any sizing and do not consume any resources. Examples of such attributes
are profiling output attributes that in many cases are not needed anymore
after a transaction is processed, and input attributes that are only used
during the processing of a transaction. You may later recreate such attributes
for analytical purposes using IBM Safer Payments’ simulation capabilities.

• Attributes that you do not need in real-time processing, that is, attributes for
which you do not plan to define counter or merging conditions/conclusions,
typically do not need to be stored in the MDC at all. You may enable counter
and merging conditions/conclusions to be defined for DDC stored records in
the IBM Safer Payments settings. In this case, the full history of the DDC
becomes available for real-time processing; however, computational
performance can significantly suffer as a result. If you size MDC for these
attributes, query and other access to these attributes will be faster and main
memory consumption will increase. To determine the DDC size for such

attributes, take the number of records your processing generates each day
and multiply it by the number of days you would like IBM Safer Payments to
be able to access this attribute. While IBM Safer Payments allows you to
define the DDC sizes differently for each attribute, it is common practice to
define the same DDC size for all attributes that are stored in the DDC. This is
different to the MDC because typically disk storage is not as scarce as main
memory.

• Attributes that you want to access in real-time processing typically get stored
in the MDC and DDC. MDC storage always implies DDC storage because the
MDC gets primed with data upon startup from the DDC. Typically, the MDC is
sized smaller – as main memory is more costly than disk space – and reflects
the time period that counters or mergings would need to access this attribute
into the past. Because of the costliness of main memory, MDC sizes are not
commonly the same for all attributes. MDC sizes are "sized to fit".

While IBM Safer Payments allows you to define different MDC and DDC sizes
for each attribute, this can be confusing. Thus, it could be preferred to
decide:

1. for a time period that you want certain attributes to be available in counter
or merging conditions/conclusions and rule generation; and

2. for a time period you want certain attributes to be available for case
investigation, queries, analyses, and simulation.

Multiplying each time period with the number of records results in (1.) the
unified size for the MDC and (2.) the unified size of the DDC. You then divide
attributes in the same three categories as presented before – not stored /
only DDC / MDC and DDC – and can you apply these settings. If later you
find that for certain attributes you need longer or shorter historical
evaluation, you can then modify the MDC size.

Indexes

Sizing indexes is different because they do not store historical records, but
index value entries, such as card numbers, account numbers or merchant
identifiers. While these types of indexes are mostly used to allow IBM Safer
Payments to evaluate transaction sequences of the value entries, indexes can
also be used to profile general entries, such as country codes, merchant
categories or POS entry codes. In the latter case, indexes would not have
sequences.

The index itself is sized to fit the total expected entry values that occur
during the lifetime of the index. This value is the same for MDC and DDC,
and each index by definition is stored in both MDC and DDC because IBM
Safer Payments must always store the entire index both on MDC and DDC.
Notice that unlike attributes, index entries cannot just leave the cache
because they are eventually overwritten by new records. Unlike with
attributes, the "age" of an index entry is not when it was entered into the

ring buffer, but when it was last accessed. The latter, however, is in no
relation to the position of the entry. Thus, simple overwriting of data cannot
work. Therefore, each index entity is given a "lifetime" in days. Once an
entry has not been accessed (there was no transaction on this entry) for
longer than this time period, IBM Safer Payments can overwrite this entry.
This ensures that indexes are not constantly growing but contain all data
needed for operations.

Such an index can be used for calendar profiles, masterdata, and events.

If you also need to evaluate transaction sequences for the index entries, that
is to evaluate counters and mergings along these index entries, you need to
enable the sequence feature of an index. The sequence is similar to an
attribute as it is also stored on a record basis and always points (for this
index) to the record "before" the current one.

It is for this reason that sequences have MDC and DDC sizes like attributes.
Typically you want the index to reach over the entire time period of the MDC
and DDC, respectively. In this case, you would define the MDC to be the
maximum of all attribute MDC sizes, and the DDC to be the maximum of all
DDC sizes.
back to top

9.2 Python code execution

Introduction

It is possible to use the Python interpreter within IBM Safer Payments. This
allows you to create your own scripts (aka "modules") and define calls to the
functions of those scripts directly from within IBM Safer Payments' decision
model. Being able to execute Python code provides a lot of flexibility and
freedom in defining additional transaction processing capabilities where the
whole power of the Python language can be used in conjunction with other
model element types. You have full control over defining arbitrary functions
specifically tailored for your needs which includes defining formulas but is not
limited to performing much more complex operations. Transaction and
profiling attribute data can be easily made accessible to your Python scripts.
This is explained in more detail in the subsequent paragraphs.

System requirements

In order to use Python within IBM Safer Payments you need to have one of
the supported Python versions installed on the host machine. Supported

Python versions are 2.7 and any version of Python 3 starting with 3.2. The
currently loaded Python version can be seen on the system internals page.

IBM Safer Payments will automatically detect and link to the highest
supported Python version during start-up. For this it searches the operating
system's standard library paths for one of the following files:

• libpython3.so

• libpython3.5.so.1.0

• libpython3.5.so

• libpython2.7.so.1.0

• libpython2.7.so

The first of these is special as it represents the so-called stable ABI version
of Python 3. Any version starting with 3.2 includes this file in its installation.
By loading the stable ABI version, IBM Safer Payments can support Python
3.2 and any version above.

Note: On Red Hat Enterprise Linux 7 the recommended way of installing
Python 3 is by using software collections. However, installing Python 3 this
way will place its files into a location that Safer Payments does not search in
by default. Because of this you will have to create a symbolic link for the
Python 3 library file. Assuming you installed Python 3.8 the command for
creating the symbolic link looks something like this:

sudo ln -s /opt/rh/rh-python38/root/lib64/libpython3.so.rh-python38
/usr/lib64/libpython3.so

Please note that the example uses the stable ABI version of the Python 3.8
software collection. Since its filename is slightly different than the one that
Safer Payments looks for, we adjust the name of the softlink accordingly.

Enabling Python execution

Python execution can be enabled or disabled on a per mandator level. By
default this setting is disabled and you can leave it disabled if this
functionality is not needed. When enabled, Python scripts created offline can
be directly uploaded into IBM Safer Payments using the respective subsection
in the mandator form, and calls to these functions can be defined in model
revisions of that mandator. Additionally, you can make each Python script
also available in submandators, and thus in the model revisions of
submandators respectively. By default, the use of each Python module is
restricted within the target mandator only. However, it can be easily
extended to its submandators if decided to do so by ticking the respective
checkbox next to the uploaded Python module name.

Structuring your Python code

IBM Safer Payments loads all functions that are found in the uploaded Python
modules and makes them available to be used in model revisions. You thus
need to wrap your code in functions. Each module can contain one or more
functions. There is no limitation on using any of Python packages available
on the host machine in your scripts. However, these packages have to be
available at the moment of uploading the module otherwise the module will
not be loaded and its functionality will not be available. Below you can find
an example of a script containing a simple Python function that calculates the
length of a given string:

def calculateStringLength(inputString):
"""
This function takes a string as an input and calculates its length.
Returns the number of characters in the input string.
"""
return len(inputString)

It is generally useful to comment your Python functions and by that provide
cues to other users of the system on what is each Python function doing
exactly. To achieve that, you can use the Python comment notation and add
function description as shown in the example above. You might want to
provide general information about what arguments does function take, how
does it process data and what is the return value. These comments are
informational only and will be later shown the in the model revision where
calls to Python function are to be defined.

Defining a call to Python function

Python functions can be used in rule conclusions and formulas. In order to
define a call, you need to type the function name in the expression field. It is
sufficient to type "py" in the expression field to get the list of all available
Python functions. Function calls are defined in the following format:

py.{module_name}.{function_name}(arg1; arg2; ... ; argn)

Below you can find an example showing how the call definition for the
aforementioned example will look like:

py.string_operations.calculateStringLength({Customer Name})

Similarly, you can define Python function calls that take constant values as
input along with attribute data. Below you can find an example call how to
pass a constant string:

py.string_operations.calculateStringLength("John Jakob Jones")

Python formulas can also be used as arguments to mathematical operations
as for example:

(10 - py.string_operations.calculateStringLength({Customer Name}))

The result of a Python call is written to either an expression attribute or
formula output attribute, depending on where the function call was used. In
general, any numeric overwritable IBM Safer Payments attribute can be used
for that.

Uploading new modules and updating the existing ones

Each Python module should have a unique name in the mandator hierarchy.
To upload a module you can click the upload button of the respective section
in the mandator form or simply use the drag and drop function to upload one
or multiple modules. The uploaded modules are directly loaded and made
available for use.

Updating an existing Python module requires some additional steps. You
need to do your modifications to the desired functions locally to the desired
script. Then you can upload a new version of your script. Since module
names should be unique, you can include version number in your filenames
such as "string_operations_v1.py", "string_operations_v2.py", etc. Note that
uploading a new version of your module will not update old functions. You
need to manually update Python function usages in a challenger revision so
that functions of the new module are called. After updating all usages in the
challenger revision you need to promote it to be the new champion.

Data exchange and data type mapping

In order to pass data to a Python function, IBM Safer Payments will need to
handle the data type conversion, i.e. all data types of passed arguments in a
function call will be converted to their counterparts in Python. Data type
conversion will be handled according to the following table.

SP data type Python data type

Numeric (with decimals) Float

Numeric (without decimals) Long

Timestamp Long

Text, IP*, Hexadecimal String

Boolean Bool

Similar to passing data to Python, the same rules of data type conversion
apply when data is received from Python call-outs (return values). Each
Python data type can only be stored in a matching IBM Safer Payments
attribute as shown in the table above.

* While it is possible to pass IP attribute data to Python as "String" data
type, it is not possible to use IP attributes for storing Python outputs of type

"String".
back to top

9.3 IBM Safer Payments security

Software products in payment systems must be protected against security
breaches that allow a non-authorized person to:

1. access payment and customer data

2. manipulate data, models, and audit trails

3. sabotage the function of IBM Safer Payments

4. use IBM Safer Payments to perform malicious actions to the user

While IBM Safer Payments has multiple interfaces that could potentially be
abused for such security breaches, only the API is typically configured to be
accessible outside the data center.

Because the API is connected to the user computer’s browser, it is a potential
door to intrusion for manipulation. If IBM Safer Payments is deployed over
the internet to users in other companies, the circle of potential contact points
that could access the API can thus not be limited to trusted people. And even
if the people can be trusted, their computers could be compromised.

Therefore, IBM Safer Payments contains various measures of protection
against such manipulation on different levels:

• Application Server
A potential intrusion scenario is to utilize a weak point in the application
server to inject malicious code. Because IBM Safer Payments does not use a
standard application server, but a fully embedded, custom designed function,
standard weaknesses do not exist.

• Buffer Overflow
Another intrusion scenario is to exploit unprotected buffer resources in a
software program. The application serving function in IBM Safer Payments
uses fully protected buffers and thus does not expose such vulnerabilities.

• SQL Injection
This technique uses flaws in a software program so that SQL instructions are
passed directly and uncontrolled from the program’s application logic to the
underlying SQL database. Because SQL is a powerful execution environment,
such an attack could cause significant damage. IBM Safer Payments is fully
protected against this as it does not use any SQL engine.

• HTML Injection
This summarizes any technique in which character sequences are passed to
the software program (typically as user entries) that when later displayed
back to the user either execute some HTML command or Javascript
commands. To protect from any such attack, the IBM Safer Payments server
escapes HTML reserved characters in user inputs.

• Cross-site request forgery (CSRF)
Cross-site request forgery, also known as a one-click attack or session riding,
is a type of malicious exploit of a website whereby unauthorized commands
are transmitted from a user that the website trusts. Unlike cross-site
scripting (XSS), which exploits the trust a user has for a particular site, CSRF
exploits the trust that a site has in a user's browser. IBM Safer Payments
supports session-specific cookie values that it checks with each request to
protect against CSRF attacks.

Escaping

To ensure that no "unsafe" characters can be injected into its data elements,
IBM Safer Payments employs a set of cascaded escaping mechanisms:

1. The IBM Safer Payments client (aka browser component) uses standard URL
encoding to escape special characters like quote, curly/square bracket, or
space with a percentage character followed by a two-character hexadecimal
value of the single-character UTF-8 value. For instance, a quote is escaped to
%22 and a space to %20. Language specific characters are encoded to two
such values; the letter Ü for instance in encoded to %C3%9C. Within values
of text entries all quotes are escaped as %5C%22, which corresponds to ".
This is necessary because quotes are the termination characters for text
values in the JSON format used by the IBM Safer Payments client to send
HTTP requests to the IBM Safer Payments server.

2. The IBM Safer Payments server decodes all these URL encodings with the
exception of the quotes within text values. The " are also present when any
IBM Safer Payments element is stored on disk as JSON because JSON uses
quotes as text delimiters.

3. The IBM Safer Payments server responds to the IBM Safer Payments client
using only JSON data streams. In these, the characters & # < > () are
escaped as & # < > () Quotes within text
values remain escaped as \".

4. These escape sequences are decoded within the IBM Safer Payments client
for display and in text entry fields.

This escaping mechanism ensures that an attacker cannot introduce
potentially malicious code from both an IBM Safer Payments text entry field
or as HTTP API request.
back to top

9.4 Miscellaneous

This section covers topics that did not fit into any other chapter.
back to top

9.4.1 Conditions

Condition format

Conditions in IBM Safer Payments follow the format:

attribute operator expression

where attribute is either an input attribute or an output attribute of one of
the previous elements, operator is a comparator, and expression is either a
single element, or a list of the following elements: A constant value
(singleton), a wildcarded constant value, an interval, a mathematical formula
or the reference to another attribute (special conditions like index based
evaluation also allow masterdata, event and calendar computation as
reference elements).

In a list of expressions you can combine all above elements. They will be
computed with the operator OR. For example, you can define a single
condition that checks if an attribute value is within a list of constants, or
equals any attribute of a list of attributes, or equals the result of any of
multiple formulas.

Both the attribute and the operator can be selected via a drop-down menu.
The expressions can either be typed in manually or by using the context
menu. To open the context menu, press the space key while the expression
field is activated. All available types of expressions are listed in the context
menu and can be selected directly. Furthermore, parts of the expression can
be rearranged via drag-and-drop. This provides a quick and comfortable way
to define conditions in IBM Safer Payments.

Operator overview

The table below shows a row for each operator. The columns explain which
attribute data types for this operator are supported (empty field indicates
that this combination is not supported; rest mouse over field to view details
for certain operator/expressions).

Operator Expression (single item or list of items)

Singleton Interval Attribute of same/current
record

Math
expression

[not] equal to numeric / text / timestamp /
hexadecimal / IPv4

numeric / text /
timestamp

numeric / text / timestamp /
boolean / hexadecimal

numeric /
timestamp

greater than / less
than [or equal to]

numeric / text / timestamp numeric / text / timestamp numeric /
timestamp

[not] close to numeric (±tolerance) / text
(distance) / timestamp
(±tolerance)

numeric ([x-tol; y+tol])
/ timestamp ([x-tol;
y+tol])

numeric (±tolerance) / text
(distance) / timestamp
(±tolerance)

numeric /
timestamp

[not] starts /ends
with

numeric / text numeric / text numeric / text numeric /
timestamp

[not] contains numeric / text numeric / text numeric /
timestamp

prefix [not] equal
to

numeric / text numeric / text numeric / text numeric /
timestamp

[not] empty This operator has no expression. Any value is considered 'empty' if it is not delivered.

is true/is false This operator is available for boolean attributes only and has no expression.

same / distinct B /
C net

These operators are available for IPv4 attributes only and expect an IP address or a list of IP
addresses as expression.

Remarks

• Time interval attributes can only be used on the right side of a condition
and can only be compared to timestamps. All operators available to
timestamps are supported.

• Condition with a numeric attribute "equal to" 0 is true, if the value of this
numeric attribute is 0 or empty.

• With the "[not] close to" operator, the "tolerance" setting is in percent for
numeric type attributes. The "distance" setting for "text" types is the
minimum Levenshtein distance for the condition to be satisfied. For
timestamp attributes the "tolerance" is a number without decimals. Its unit
can be selected separately and is one of "seconds", "minutes", "hours" and
"days".

• With the "prefix [not] equal to" operator, the number of characters
considered to be the prefix characters is defined in a separate field of the
condition row.

• IBM Safer Payments provides additional options for text type attributes.
These are listed in a separate field of the condition row:

• Case sensitive/Ignore cases
Decides whether there is a difference between "TeSt" and "test" or not.

• Maximum/Minimum number of consecutive digits
Example: The maximum number of consecutive digits in "te123st45" is
equal to 3 while the minimum number of consecutive digits is equal to
2.

• When any of the following operators "greater than", "greater than or equal
to", "less than", "less than or equal to" is used with text attributes,
lexicographical comparison will be applied. If the text attributes contain
numeric values and the two numbers have the same number of leading
zeroes, they are compared according to their value as if converted to an
integer type. But if they have a different number of leading zeroes, then the
one with more leading zeroes is "less than" the one with fewer leading
zeroes.

Expressions using categories

If categories are defined for the attribute, the categories are accessible via
the context menu. Each defined category leads to an entry in the context
menu. Each entry is marked with an icon and has the format "Label
orignalValue".

To use a category in a condition, you can either select the category in the
context menu or type the original value directly in the expression field. In

both cases the original value will be written in the expression field. To display
the corresponding label, move the mouse over the value in the expression
field. Notice that it is not possible to type in the label in the expression field.
This will be treated as a constant.

Timestamp expressions

Timestamp attribute conditions have a few more options to define
expressions:

• Daytime expressions
Examples: "22:00~6:00", "22:00 ~ 06:00" or "06:00~22:00". Daytimes
must always be intervals and they must use the 24h scheme (no "am/pm").
The first hour can be a single digit for times earlier than 10:00. Daytimes
may either be expressed with or without seconds. If expressed with seconds,
the format is hh:mm:ss. If the seconds are not expressed, they are set to
"00" for-from daytimes and to "59" for to-daytimes. The interval
"9:00~9:00" thus is equivalent to "9:00:00~9:00:59". Notice that minutes
are not optional and the colon is the only supported delimiter.

• Weekday expressions
Examples: "Monday~Friday", "Friday", or "sat ~sun". For the weekday, you
may either use the unabridged "Monday" .. "Sunday" (first letter capitalized
or not), or the three-letter abbreviation "mon" .. "sun" (first letter capitalized
or not). It is important to notice that the begin of the from-weekday is
considered 00:00:00 and the end of the to-weekday 23:59:59. Therefore, if
you define "sun~sun" (or just "sun"), it translates to the entire Sunday.

• Weektime expressions
Examples: "Monday 16:14~Friday 07:21". Weekday must be separated from
daytime by a space character. The first hour can be a single digit for times
earlier than 10:00.

There may be a list of these values (value pairs) in timestamp attribute
conditions. The list may also combine singletons and intervals (e.g. "2009-
12-22 05:22:53; sat~sun; Wednesday 14:09 ~ Wednesday 16:56;
00:10~00:20; 2010-01-02 00:00:00 ~ 2010-01-02 00:03:00" would be a
valid timestamp attribute expression).

Wildcard expressions

The "[not] equal to" operator allows the use of wildcard characters for text
and numeric type attributes. Possible wildcard constructs are:

• Starts with
If the condition was "attribute equal_to text*", all attribute values that starts
with "text" hit the condition. Note that this is equal to the condition "attribute
starts_with text".

• Ends with
If the condition was "attribute equal_to *text", all attribute values that ends
with "text" hit the condition. Note that this is equal to the condition "attribute
ends_with text".

• Contains
If the condition was "attribute equal_to *text*", all attribute values that
contain the substring "text" hit the condition. Note that this is equal to the
condition "attribute contains text".

• Bounded by
If the condition was "attribute equal_to te*xt", all attribute values that starts
with "te" and ends with "xt" hit the condition.

• Single wildcard characters
If the condition was "attribute equal_to A???in", each value that has the
non-? Characters the same as the expression hits the condition (for instance
"Austin"). Shorter words would not hit the condition.

The "[not] equal to" and "same / distinct B / C net" operators allow the use
of wildcard characters for IPv4 type attributes. A single "*" can be used
instead of a numeric block to include all 256 possible values for this block.

Remarks

• This implies that constants in combination with the "[not] equal to" operator
may not contain characters "* ? ; ~", as they are used to mark wildcards, list
elements, and intervals.

• In combination with other operators, wildcard characters ("*,?") are
considered as "normal" characters in a text type constant.

• Double and single quotes are considered as "normal" characters in a text
type constant. They will not be removed. White spaces are ignored.

References to another attribute

There are two different methods which reference to an attribute:

•

{attribute name} - attribute of the current transaction
•

[attribute name] - attribute of the same transaction

In situations in which only the current transaction is evaluated (example:
rules) the two methods are equivalent. However, there is a difference
whenever a sequence of transactions is evaluated (examples: counters,
precedents, collusions, etc). The following example demonstrates the
functionality of these methods:

Assuming the following sequence of transactions:

Timestamp Attribute1 Country Attribute3

1 2010-01-10 14:00:00 114 US 114

2 2010-01-16 12:00:00 8303 US 8300

3 2010-01-18 08:00:00 2000 GB 2000

Here, the last row #3 represents the current transaction. The left table below
(red) illustrates which values are compared when the condition Attribute1
equal to {Attribute3} is evaluated for the sequence. The right table (blue)
shows which values are compared when the condition Attribute1 equal to
[Attribute3] is evaluated for the sequence.

Math expressions

All basic mathematical operations can be used in IBM Safer Payments in an
intuitive way. Please notice that mathematical expressions must be
surrounded by round brackets.

• (Exp1 + Exp2)

• (Exp1 - Exp2)

• (Exp1 * Exp2)

• (Exp1 / Exp2)

The operands Exp1 and Exp2 may either be:

• a numerical constant (may have leading minus sign)

• an absolute timestamp in the format YYYY-MM-DD hh:mm:ss

• an attribute of the current transaction (attribute name must be surrounded
by curly brackets {attribute name})

• an attribute of the same transaction (attribute name must be surrounded by
squared brackets [attribute name])

• a math expression itself

Formulas can be applied to numeric and timestamp type attributes. If values
are used in conjunction with timestamp type attributes, the unit of
expression values is seconds. Because when large time intervals shall be
represented, this can be cumbersome, the letters "m", "h", "d" and "w" can
be added to the value, indicating "minutes", "hours", "days" and "weeks",
respectively. For instance:

TrxTimeStamp less_than (51w + {EmbossingDate})

hits when the current transaction is within less than 51 weeks after the
embossing date of the card.

Remarks

Notice that each mathematical expression must contain exactly two
operands. That means that (a + b +c) must be defined as (a + (b + c)).

Geographical Distances

In addition to the basic computation methods mentioned above, IBM Safer
Payments is able to calculate the geographical distance between to
geographical points. The format for this computation method is

• geoDistanceKm(pos(latitudeA;longitudeA);pos(latitudeB;longitudeB)) and

• geoDistanceMiles(pos(latitudeA;longitudeA);pos(latitudeB;longitudeB))

The operands latitudeA, longitudeA, latitudeB, and longitudeB are GPS
coordinates in a floating point format (WGS84).

Example: geoDistanceKm(pos(55.7522;37.6156);pos(48.8667;2.3333))
computes the distance (in km) between Moscow and Paris.
back to top

9.4.2 Conclusions

Conclusion format

Conclusions in IBM Safer Payments follow the format:

attribute operator expression

where attribute is any model attribute, operator is an assignment, and
expression is either a constant value or the reference to another attribute.

Operators

If the element's conclusion is applied (all its conditions are evaluated to
being true) with operator:

• is
the value of expression is applied to attribute (all attribute types).

• is (if not empty)
the value of expression is applied to attribute (not for bool, hexadecimal and
IP). If the value of the expression is empty, the value of the attribute will not
be changed.

• increment by
the value of attribute is incremented by the value of expression (numeric and
timestamp type attributes).

• decrement by
the value of attribute is decremented by the value of expression (numeric
and timestamp type attributes).

• append
the value of the attribute (derived by computation of the transaction

message so far) is appended to the value of expression (text type
attributes). Notice that you may use this also to add delimiters to a list of
items created by multiple applications of "append". Simply add another
"append" conclusion with the delimiter as constant below the one appending
the list item.

• reset
the value of the attribute is reset to "nil", which computationally is
interpreted as "0" for numeric type attributes, and as an empty string for
text type attributes (all attribute types).

• maximize with
the value of attribute is set to the maximum of value of attribute and value
of expression (numeric attributes). This is usually used for scores. For
example: The conclusion is "Score maximize with 60". For a Score of 50
before the element's execution this would mean Score is set to 60 and for a
Score of 70 this would mean nothing changes (i.e. Score remains 70).

Attribute values as expression

A conclusion may also copy the value of an attribute of the source
transaction message to the target transaction record. For this, the source
transaction attribute name is put in curly brackets into the expression field.

For instance, to transfer the value of an attribute "FraudReasonCode" from
the merging source transaction message to the same attribute of the
merging target transaction record, enter:

FraudReasonCode is {FraudReasonCode}

In merging conclusions, it is also possible to copy the value of an attribute of
the merging target transaction message to another attribute of the merging
target transaction record, if the attribute in the expression is put in square
brackets.

You may also use this to transfer (or increment, decrement, and append) the
value of a different attribute of the source transaction message to the target
transaction record. Notice that in this case, the attribute types must be
identical. Different length or decimals are corrected by IBM Safer Payments
automatically.

Formulas and Python function calls

You can also use all basic mathematical operations, geographical operations
and Python functions in rule conclusions. To get the list of available Python
functions you need to type "py" in the expression field. For more information
refer to the online help.
back to top

9.4.3 Sampling

Data selection lets you choose which mandator's data shall be included (if a
choice from multiple mandators can be made) and lets you define interval
and additional conditions. The interval can be provided as:

• Records absolute (URID from-to interval)

• Server time absolute (from-to timestamp interval)

Notice that the timestamps are taken from IBM Safer Payments server time
at the time the record was created within IBM Safer Payments (meta
attribute "System time"), which is when the originating transaction was
received (either as transaction message via the IBM Safer Payments
message command interface (MCI) or as file record processed via the IBM
Safer Payments batch data interface (BDI)). If the record is later changed,
for instance as merging target, this record timestamp value is never
changed. When using timed based intervals (server time absolute,
timestamp relative) the result might include records that are outside the
actual data selection time due to performance reasons. If you need strict
restrictions on this, you can always define conditions that would filter those
out. Notice that these timestamps must thus not be the same as the time
when the transaction actually was made (typically the "point of sales" type
timestamp, a separate meta attribute "Timestamp" in IBM Safer Payments),
since the transaction may have been received by IBM Safer Payments later
(as in the case of batch data). If you instead require the "Timestamp" meta
attribute to be used as a condition for your data selection, you must define it
as a condition below. In this case, you should still consider using (applicable)
time limits for the meta attribute "System time" as this allows IBM Safer
Payments to sometimes significantly speed up the execution.

You may further restrict the records to be included using record specific
attribute value conditions. Refer to their section help pages for more
information.
back to top

9.4.4 Case variable conditions

Below you can find all case variables that can be used to define case
conditions.

• Important dates:

• [GeneratedOn]: The generation date as ISO formatted date.

• [GeneratedOnTimestamp]: The generation date as UNIX timestamp.

• [ClosedOn]: The case close date as ISO formatted date.

• [ClosedOnTimestamp]: The case close date as UNIX timestamp.

• [FollowupOn]: The followup date as ISO formatted date.

• [FollowupOnTimestamp]: The followup date as UNIX timestamp.

• [LastActionOn]: The last action date as ISO formatted date.

• [LastActionOnTimestamp]: The last action date as UNIX timestamp.

• [StateChangedOn]: The case state change date as ISO formatted date.

• [StateChangedOnTimestamp]: The case state change date as UNIX
timestamp.

• Timing metrics:

• [CaseAgeInDays]: The time since case generation in days.

• [CaseAgeInHours]: The time since case generation in hours.

• [CaseAgeInMinutes]: The time since case generation in minutes.

• [DaysSinceLastAction]: The time since last action in days.

• [HoursSinceLastAction]: The time since last action in hours.

• [MinutesSinceLastAction]: The time since last action in minutes.

• [DaysSinceStateChanged]: The time since case state changed in days.

• [HoursSinceStateChanged]: The time since case state changed in
hours.

• [MinutesSinceStateChanged]: The time since case state changed in
minutes.

• User information:

• [Investigating..]: The user, that is currently investigating the case.

• [Viewing..]: The user, that is viewing the case and sending the case
action.

• [Closedby..]: The user, that closed the case.

• [..UserName]: The username as string.

• [..UserNameAndLogin]: The username, followed by the user login in
parenthesis.

• [..UserUid]: The system internal user UID.

• [..UserEmail]: The users e-mail address.

• [..UserPhone]: The users phone number.

• [..UserLocation]: The users location.

• [..UserMandator]: The users mandator name.

• [..UserMandatorUid]: The UID of the users mandator.

• Other variables:

• [CaseClass]: The name of the case class.

• [CaseClassUid]: The UID of the case class.

• [CaseClassId]: The ID of the case class.

• [Mandator]: The case mandators name.

• [MandatorUid]: The case mandators UID.

• [Score]: The case score.

• [Hits]: The case hits.

• [FraudStatus]: The fraud status of the case close code, if the case was
closed.

• [CaseCloseCode]: The case close code, if defined.

• [CaseCloseCodeUid]: The UID of the case close code.

• [State]: The investigation state.

• [StateUid]: The UID of the investigation state.

• [LastState]: The last investigation state.

• [LastStateUid]: The UID of the last investigation state.

• [CaseUid]: The case UID, as visible in the case selection table (1-123).

• [CaseUidRaw]: The case UID, as visible in url or in file system
(1000000000000123).

• [Memo]: The text value of memo field.
back to top

9.4.5 Message computation

Computing responses to message requests is the essential function of IBM
Safer Payments message request processing. The flow chart below illustrates
this non-trivial process:

For more detailed message computation flow chart, check the technote:
https://www.ibm.com/support/pages/node/6446233

The steps in this computation process are:

1. IBM Safer Payments receives transaction messages either from XML requests
via its IP port (real-time requests), WebSphere MQ via message queues or
from data files (batch requests). With real-time requests, the message type
Id is derived from the respective <IRIS> element attribute "MessageTypeId";
with batch requests, the message type Id is taken from the job configuration.

2. From the message type Id, IBM Safer Payments concludes the message
definition to be applied. The message definition contains the alias names that
IBM Safer Payments should look for in the transaction message received, and
defines the function preprocessing to be applied.

3. Now all input attribute values are stored in the computational data cache
(CDC) of the computational thread that performs the computation of this

transaction message. The CDC contains storage positions also for the model
output attributes and the output attributes of the profiling elements.

4. Next IBM Safer Payments assembles a list of mandators that shall be applied
to compute this transaction message. For this, IBM Safer Payments first
identifies the mandator this transaction belongs to, and then creates a list of
all mandators on the path to the top mandator from there. This list is then
computed top-down, that is starting with the top mandator to the transaction
owning mandator. This computational sequence with respect to mandators is
applied to all subsequent model element computation steps (lists, indexes,
masterdata, calendar profiles, events, counters, formulas, and
rulesets/rules).

5. Now IBM Safer Payments computes model lists.

6. Next IBM Safer Payments checks if the transaction message satisfies any of
the merging source conditions of any applicable mandator. If so, it checks if
any of the applying mergings has "insert" merging source activated. If so, an
URID is allocated for the transaction message, the merging(s) is/are
executed, the merging source transaction message as stored in the CDC is
stored (permanently) into the MDC/DDC, a response message is generated,
and the response message is sent. If none of the applying mergings has
"insert" merging source activated, the merging(s) is/are executed, and a
response message is generated and sent. This concludes the processing of a
merging source transaction message.

7. Otherwise, the transaction message is checked if it satisfies any of the
masterdata conditions. This process is analogous to the merging process.

8. If the transaction message is no merging and no masterdata source, it is a
"normal" transaction and thus an URID is allocated for it. Then all model
elements are computed, each for all applicable mandators. The generated
output attribute values of all elements are stored in the CDC.

9. Once all computation is completed, IBM Safer Payments checks of the
"CaseClass" meta attribute is set (nonzero). If so, an alarm is generated and
this alarm is queued for case consolidation. Case consolidation is performed
asynchronously by a separate computational thread dedicated to just case
consolidation. Only after case consolidation, the case becomes "visible" in
case investigation.

10. Finally the CDC gets "dumped" to the MDC/DDC, which renders the
transaction message permanent as record. If the "Timestamp" meta attribute
value of the transaction is later/higher than the one of the previous
transactions, the IBM Safer Payments internal "transaction time" is updated.
This time is used for period computation. Then the response message is
generated with all status and output attributes of all applicable mandator
models, and sent back to the service consumer (if it was a real-time
transaction message) or written to the ".log" file (if it was a batch transaction
message).

back to top

9.4.6 Time representation

IBM Safer Payments is designed to work in a world environment, where
transactions can come from any region (and thus time zone) as well as
users. Therefore, IBM Safer Payments uses three time representations:

• UTC (universal time coordinated)
IBM Safer Payments uses UTC timestamps internally for all its representation
of date/time data. UTC is also used between the IBM Safer Payments server
and the IBM Safer Payments client (via the API), where the IBM Safer
Payments client recomputes the local date/time for display.

• Local time
Local time is used in any display and entry of date/time information by the
user according to his preference settings. Therefore, users in different time
zones will see different date/time values.

• Server time
Server time is used for display of any server relevant date/time information
and as a reference for the actual transaction message computation.

back to top

9.4.7 Benchmarking prevention performance

To measure the performance of a fraud prevention system, two performance
indicators are most relevant:

• Fraud detected

• False alarms

A fraud prevention system is better, if it detects more fraud and generates
fewer false alarms. Unfortunately, both objectives are mutually exclusive in
real world fraud prevention. Tuning a fraud prevention system to catch more
fraud will also increase the number of false alarms and tuning it to decrease
the number of false alarms will decrease the amount of fraud detected.

Therefore, tuning a fraud prevention system is always about finding the best
compromise between fraud detection rate and false alarms. The analytical
features of IBM Safer Payments assist you in this task.

Frequently your tuning task will be determined by external constraints. For
example, you may be in a situation where you are only allowed to a certain
alarm rate.

Multiple definitions of the benchmarks listed above exist. The remainder of
this document uses the following definitions:

Fraud detected

Fraud detected is measured either for individual rules, rulesets or analysis
categories as a percentage of the total fraud amount. If there is $1000 of

fraud in a given set of data, and a rule would hit $10 of it, the fraud
detection would be 1%.

Therefore, if you get the result that a given ruleset will deliver you 50%
fraud detection, you would have saved half of your fraud losses if this logic
would have been used.

False Alarms

False alarms are measured by the ratio of false alarms that are generated for
any correct alarm (hit). If the false alarm ratio is 5, there would be 5 false
alarms for any hit.

Notice that in the example above, a total of 6 alarms is generated.

Also notice that fraud detected is using "amount" as reference, while false
alarms uses "number of transactions" as reference. This is because for fraud
detected shall reflect the monetary savings while false alarms shall reflect
customer disturbance. While monetary savings are expressed by the loss
amount saved, customer disturbance is expressed by the number of genuine
transactions that are intercepted.

Savings per false alarm

"Fraud detected" is measured either for individual rules, rulesets or analysis
categories as a percentage of the total fraud amount. If there is $1000 of
fraud in a given set of data, and a rule would hit $10 of it, the fraud
detection would be 1%.

However, "fraud detected" cannot be the only performance measure of rules
and rulesets. A rule may "catch" a lot of fraud, but if it at the same time
generates too many false alarms, it is not a "good" rule. Therefore, it has
become customary to use a second benchmark figure, dubbed "false
positive". False positives are typically measured as the number of false
alarms that are generated to generate one correct alarm.

Notice that while "fraud detected" uses the amount of the transactions as
measure unit, the "false positive" use the number of transactions.

Tuning a decision logic always takes these two benchmark figures into
account, and you will find them on many pages in IBM Safer Payments.
Always one implies the other. In theory, you can catch all fraud if you
intercept with every transaction. This would at the same time result the
worst result for false positives. No false positives are generated if you never
intercept with any transaction at all. It is obvious that the setting you want
your decision logic to have should be somewhere between these extremes.
The question is, where.

Often you have constraints with one of the two benchmark figures. You may
be in a situation where you are only allowed to intercept with one in a
thousand transactions. With your false positives limited to this figure, you
now try to get the best fraud detected rate possible for the interceptions
permitted. Or you have a fraud savings target, in which case you try to
achieve this target with the minimum number of (false positive)
interceptions.

Whatever situation you are in, however, a good rule is always one with a high
"fraud detected" rate and low "false positives". In this situation it is beneficial
to use a single performance indicator to express how "good" a rule really is.
IBM Safer Payments introduces a new performance indicator to rules,
rulesets and decision logics, the so-called "Saved amount per false alarm".
This performance indicator is a monetary figure. If the value for a rule or a
decision logic for this benchmark is "$10", it means that for each false alarm,
you save $10. This performance indicator does not say whether this rule only
saves $10 and generates one single false alarm or whether it saves
$1,000,000 and generates 100,000 false alarms. It is a "relative"
benchmark.

What this performance indicator is good for, is to sort rules with respect to
their quality. IBM Safer Payments' analytical capabilities let you generate a
list of all your rules, sorted by the "Saved amount per false alarm" (SAPFA).
If you now select rules starting with the highest value, you are always sure
that you prefer the rules that generate most fraud savings for the false
alarms ("most bang for the buck").
back to top

9.4.8 Create certificates with OpenSSL

Create certificates with openSSL

Please ask your security expert to review and perform all these steps. We
take no guarantee for security, as these steps may differ on different
platforms.

Source: http://codeghar.wordpress.com/2008/03/17/create-a-certificate-
authority-and-certificates-with-openssl/

Content of conf/caconfig.cnf:
#..................................
[ca]
default_ca = CA_default

[CA_default]
dir = .

certs = $dir/certs
crl_dir = $dir/crl
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certificate = $dir/certs/cacert.pem
serial = $dir/serial
crl = $dir/crl/crl.pem
private_key = $dir/private/cakey.pem
#RANDFILE = $dir/private/.rand
x509_extensions = usr_cert
crl_extensions = crl_ext
default_days = 3650
#default_startdate = YYMMDDHHMMSSZ
#default_enddate = YYMMDDHHMMSSZ
default_crl_days = 183
#default_crl_hours = 24
default_md = sha256
preserve = no
#msie_hack
policy = policy_match

[policy_match]
countryName = match
#stateOrProvinceName = match
#localityName = match
organizationName = match
commonName = supplied
emailAddress = optional

[req]
default_bits = 4096 # Size of keys
default_keyfile = key.pem # name of generated keys
distinguished_name = req_distinguished_name
default_md = sha256 # message digest algorithm
attributes = req_attributes
x509_extensions = v3_ca
#input_password
#output_password
string_mask = nombstr # permitted characters
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = DE
countryName_min = 2
countryName_max = 2
#stateOrProvinceName = State or Province Name (full name)
#stateOrProvinceName_default = RLP
#localityName = Locality Name (city, district)
#localityName_default = Coblence
organizationName = Organization Name (company)
organizationName_default = IBM

organizationalUnitName = Organizational Unit Name (department,
division)
organizationalUnitName_default = Fraud Prevention
commonName = Common Name (hostname, IP, or user name)
commonName_max = 64
commonName_default = 192.168.1.1
emailAddress = Email Address
emailAddress_max = 40
emailAddress_default = support@iris.de

[req_attributes]
#challengePassword = A challenege password
#challengePassword_min = 4
#challengePassword_max = 20
#unstructuredName = An optional company name

[usr_cert]
basicConstraints= CA:FALSE
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always
#nsComment = ''OpenSSL Generated Certificate''
#nsCertType = client, email, objsign for ''everything including object
signing''
subjectAltName=email:copy
issuerAltName=issuer:copy
#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl =
#nsRenewalUrl =
#nsCaPolicyUrl =
#nsSslServerName =
#authorityInfoAccess = OCSP;URI:http://

[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3_OCSP]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = OCSPSigning

[v3_ca]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always
basicConstraints = CA:TRUE
#keyUsage = cRLSign, keyCertSign
#nsCertType = sslCA, emailCA
#subjectAltName=email:copy
#issuerAltName=issuer:copy
#obj=DER:02:03

[crl_ext]

#issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always,issuer:always
#..................................

Create CA
$ mkdir ~/myca
$ cd ~/myca
$ mkdir private certs newcerts conf crl
$ echo "01" > serial
$ touch index.txt
$ vim conf/caconfig.cnf # see above
$ openssl req -new -x509 -extensions v3_ca -keyout private/cakey.pem -
out certs/cacert.pem -days 3650 -config conf/caconfig.cnf
-> PW: test

Create signed server certificate and private server key
$ openssl req -new -nodes -config conf/caconfig.cnf -out
SERVER_IP.req.pem -keyout private/SERVER_IP.key.pem
-> CN: SERVER_IP
$ openssl ca -config conf/caconfig.cnf -out
newcerts/SERVER_IP.cert.pem -infiles SERVER_IP.req.pem

Create certificate revocation list (CRL)
$ openssl ca -config conf/caconfig.cnf -gencrl -out crl/crl.pem

Create signed client certificate and private client key
$ openssl req -new -nodes -out client.req.pem -keyout
private/client.key.pem -days 3650 -config conf/caconfig.cnf
(for MCI) -> CN: CLIENT_IP_OR_NAME
(for ECI) -> CN: INSTANCE_SERVER_NAME
(for Browser) -> CN: USERNAME
$ openssl ca -out newcerts/client.cert.pem -days 3650 -config
conf/caconfig.cnf -infiles client.req.pem

Configure client side certificates in web-browsers:

Convert pem certificate to p12:
pkcs12 -export -out newcerts/client.cert.p12 -inkey
private/client.key.pem -in newcerts/client.cert.pem -certfile
certs/cacert.pem

Internet Explorer 10:

• Settings

• Internet options

• Content (tab)

• Certificates

• Import (button)

• Certificate Wizard (see below)*

Chrome 26:

• Chrome Settings

• Settings

• Advanced Options

• HTTP/SSL

• Certificate Administration

• Certificate Wizard (see below)*

Certificate Wizard*:

• Next

• Browse (button)

• Change "X.509 Certificate" Dropdown to "Personal Information Exchange
(p12)"

• Select Certificate on file system

• Click Open

• Next

• Enter Password

• Next

• Place certificate into personal store

• Next

• Finish

Firefox 19:

• Red Firefox Dropdown

• Settings

• Settings

• Extended Tab

• Encryption (tab)

• Show Certificates

• Own Certificates (tab)

• Import

• Select p12 Certificate on file system

• Open

• Enter Password

• Ok

back to top

9.4.9 Using content type multipart

When selecting multipart/form-data you will also need to specify the
Content-Type header ending in the "Content type addition" field. This value
should be the unique field boundary which will be used to separate the form
fields in the content and will be appended to the Content-Type field.
For example, if you entered the value:

; boundary=-----------1bc7wg37x8z7gf

in the Content type addition field, then the HTML header would contain

Content-Type: multipart/form-data; boundary=----------
-1bc7wg37x8z7gf

Note that you need to specify the trailing semi-colon and also need to choose
a boundary value which will be unique and will not occur in the message
template.
You will then use the boundary value in the message template to separate
the different form inputs.
back to top

9.4.10 Online Help

IBM Safer Payments offers three ways to access online help:

1. Context help
Context sensitive help is directly available from the toolbar of the most page
section by clicking on the respective icon.

2. Topic help
Generic topic help is available either from context help pages or from the
links below.

3. Search help
If you need help to any subject, just type in the keyword(s) in the light blue
box in the upper right hand corner of this (and any) help window. As soon as
you type in three letters or more, a drop list of suggested choices appears.
Pressing the return key opens a full page of search results.

Usage hints

• All online help pages appear within the browser window you opened for IBM
Safer Payments. To quickly identify help pages, their header uses bright
green background color.

• They always appear over the IBM Safer Payments page and can be moved by
dragging the header bar with the mouse.

• To change the size of a help page, use the drag bars at the right side and
bottom of the help page. Help pages scroll only vertically.

• Notice that each help page's position and size settings are stored individually
in your user account preferences. Thus, next time you open the same help
page, it will open at the same position and with the same size.

• A new browser window with a printer optimized formatting opens by clicking
on the toolbutton at the right side of the help page header. Use the print
function of your browser to print the page.

• Help pages are closed by clicking on the toolbutton at the right side of the
help page header, or by pressing the [Esc] key.

• Links to other help pages are shown in blue; underlining appears when the
mouse pointer rests over them. If you click on a link, the new help page is
displayed on top of the others. IBM Safer Payments keeps all online help
pages open until you manually close them, even when you navigate to
another IBM Safer Payments page. Notice that there is no "back" navigation
in help pages as the browser "back" function is tied to the IBM Safer
Payments page itself.

IBM Safer Payments manual

You may generate a printable version of all online help pages, formatted and
structured as a manual by clicking on the " + " button at the right side of
this help page header. The IBM Safer Payments manual opens in a new
browser window. You may either print it from there or import it to a word
processing software for further processing. For example, to import the
manual into Microsoft Word, click into the manual browser window, press
[Ctrl]-[A] to mark the entire text, press [Ctrl]-[C] to copy it to the clipboard,
and press [Ctrl]-[V] in a new empty Word document. Notice that Word
understands the document structure, allowing you to set format template
and automatically create a full table of contents.

Generic topics help pages

• Quick facts

• User access

• Cluster management

• Operational cluster control

• Interfaces overview

• Storage architecture

• Structural configuration

• PCI DSS encryption

• IBM Safer Payments security

• Revision control

• Automatic and assisted rule generation

• Benchmarking prevention performance

• Message computation

• Time representation

• Device identification

• Notices
back to top

9.4.11 Levenshtein

IBM Safer Payments uses the Levenshtein algorithm to determine the
closeness of two text values.

In information theory and computer science, the Levenshtein distance is a
string metric for measuring the amount of difference between two
sequences. The term edit distance is often used to refer specifically to
Levenshtein distance.

The Levenshtein distance between two strings is defined as the minimum
number of edits needed to transform one string into the other, with the
allowable edit operations being insertion, deletion, or substitution of a single
character. It is named after Vladimir Levenshtein, who considered this
distance in 1965.

The table below lists some exemplary Levenshtein distances.

Value 1 Value 2 Levenshtein distance

Godot God0t 1

Müller Mueller 2

Jon Jones J. Jones 2

Pete Black G. Peter Black 4

Marylin Monroe MarylinManson 4

John Jakob Jones John Jones 6

Chris Thomas Nick Pye 11

A. Mueller Mueller, Anton 10

A. Müller Mueller, Anton 12

back to top

9.5 Definitions

This section explains some of the specific terminology used in the IBM Safer
Payments documentation.
back to top

9.5.1 Service consumer

When discussing integration of IBM Safer Payments with other systems, we
use the following terminology:

• Service provider
In all integration scenario, we refer to IBM Safer Payments as the "service

provider", providing decision services to the service consumer.

• Service consumer
We refer to any system that is connected to IBM Safer Payments as a
"service consumer". This includes authorization systems, card management
systems, automatic calling systems, etc. From the IBM Safer Payments
server component point of view, also the IBM Safer Payments client (via the
API) is a service consumer.

back to top

9.6 Notice summary

The Notice feature allows a user to send a notice to other users in the Safer
Payments application. Notices are fully managed within the application to
avoid sending any sensitive data outside of Safer Payments. A notice can
have embedded links that can link to internal application objects such as a
case or to an external link such as a corporate or Internet location.

Permissions to send notices are on a user basis and the option is off by
default. A system administrator will need to enable the ability to send a
notice on a user-by-user basis. Once a user's permission is set, they will be
able to send a notice to anyone in their user groups. There is a group
permission that can be set in order to allow the receipt of notices from other
users and groups.

The notice message text is encrypted on disk if the encryption setting is set
to true in the system configuration.

Notices are accessed through the Notice panel via the bell icon in the
main top navigation bar. A small white dot on the bell icon indicates that
there are new notices that have recently arrived. From here, users will be
able to access all their notices via the “View all” link on the panel window.

Notices will be deleted as part of the end-of-day processing job after a
predefined period of days. This setting can be found here: “Administration-
>System->Configuration->Misc->Miscellaneous->Notices expiration (days)”.

• Notice panel quick access

• Viewing all Notices

• Creating a Notice

back to top

9.6.1 Notice panel view

The notice panel is accessible from the bell icon in the main top menu. A
small white dot on the bell icon indicates that there are new notices that
have recently arrived. Pressing the bell icon will open the panel window so
that you can easily see new notices. You will have the options to dismiss a
notice, create a notice and view all notices from this panel. Navigate to the
notice overview page for more information about this feature.

• Notice list
If there are new notices they will show as a list with the first two lines
showing. You can click the notice to expand the contents of the notice. In
addition, if you have many notices in the list, you will be able to scroll
through the list of notices.

• Create a notice
Click the plus icon to create a notice.

• Dismissing a notice
You can dismiss an individual notice by pressing the x icon or dismiss all
notices using the Dismiss all link. Dismissing a notice only removes them
from the panel view and all notices will still be available in the “View all”
notice page.

• View all notices
By pressing the View all link you will be taken to a new page to see all your
notices.

back to top

9.6.2 Notice view all page

The “View all” notices page shows all notices that a user has received, sent
and those that are queued to be sent. Notices are grouped in the order they
are received or sent by: Today, Yesterday and Older. The user can filter the
list of notices by: the text of a notice, a date range to search, the status of a
notice and a combination of senders of a notice. In addition, a user is able to
create a notice from this page. Navigate to the notice overview page for
more information about this feature.

Folder Left Menu

• Received Folder
This folder shows all the notices that you have received from other users.
While in this folder, users are able to toggle the read/unread status of a
notice by selecting the eye icon

• Sent Folder
This folder shows all the notices that you have sent to other users and
groups.

• Queued Folder
This folder shows all the messages that you have created and are queued to

be sent.

Filtering Options

• What are you looking for today?
You can select a phrase or keyword to narrow down the list of notices

• Date Range
Select a to and from date to narrow the list of notices shown.

• Status
You can select only the read or unread notices with this filter

• Senders
This is a multi-select option box to narrow down the list of notices by user
and/or groups.

back to top

9.6.3 Creating a notice

Create a notice by filling in this form. Click send to send the notice at the
scheduled date and time. A notice set to send now will be sent immediately,
and a notice set to be sent in the future will be queued to be sent at the
scheduled date and time. Navigate to the notice overview page for more
information about this feature.

• Send to
Use the multiselect box to add user(s) and/or group(s) to send a notice to.

• Send now
Selecting this checkbox will send the notice immediately when you press the
Send button. You will not have the option to edit the notice once it is sent. If
you wish to send a notice at a future date/time, then uncheck this option.

• Scheduled date
You can schedule a notice to be sent at a future date and time by unchecking
the “Send now” checkbox and selecting a date and time. Once the Send
button is pressed, the notice is queued to be sent and visible in the Queued
folder in the UI. You are able to delete queued notices if you do not want to
send them anymore.

• ..time
Create a time using the hh:mm:ss format. A notice will be sent when this
time is reached on the scheduled date.

• Message
The text of the message can contain any alphanumeric characters, including
special characters.

back to top

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1994, 2024

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, JBoss®, OpenShift®, Fedora®, Hibernate®, Ansible®, CloudForms®, RHCA®, RHCE®, RHCSA®,
Ceph®, and Gluster® are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the
United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

 IBM Safer Payments Version 6.5.x: Release Notes

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein. IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above
instructions are not being properly followed. You may not download, export or re-export this information
except in full compliance with all applicable laws and regulations, including all United States export laws
and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices

	Contents
	1. Introduction
	2. Dashboard
	3. Report
	4. Investigation
	5. Monitoring
	6. Model
	7. Administration
	8. Cluster
	9. Appendix

