Lineare Regression: Methode zur Auswahl von Variablen

Durch die Auswahl der Methode können Sie festlegen, wie unabhängige Variablen in die Analyse eingeschlossen werden. Anhand verschiedener Methoden können Sie eine Vielfalt von Regressionsmodellen mit demselben Set von Variablen erstellen.

  • Eingabetaste (Regression). Eine Prozedur für die Variablenauswahl, bei der alle Variablen eines Blocks in einem einzigen Schritt aufgenommen werden.
  • Schrittweise. Bei jedem Schritt wird die noch nicht in der Gleichung enthaltene unabhängige Variable mit der kleinsten F-Wahrscheinlichkeit aufgenommen, sofern diese Wahrscheinlichkeit klein genug ist. Bereits in der Regressionsgleichung enthaltene Variablen werden entfernt, wenn ihre F-Wahrscheinlichkeit hinreichend groß wird. Das Verfahren endet, wenn keine Variablen mehr für Aufnahme oder Ausschluss infrage kommen.
  • Entfernen. Ein Verfahren zur Variablenauswahl, bei dem alle Variablen eines Blocks in einem Schritt ausgeschlossen werden.
  • Rückwärtselimination. Eine Methode zur Variablenauswahl, bei der alle Variablen in die Gleichung aufgenommen und anschließend sequenziell ausgeschlossen werden. Die Variable mit der kleinsten Teilkorrelation zur abhängigen Variablen wird als erste für den Ausschluss in Betracht gezogen. Wenn sie das Ausschlusskriterium erfüllt, wird sie entfernt. Nach dem Ausschluss der ersten Variablen wird die nächste Variable mit der kleinsten Teilkorrelation in Betracht gezogen. Das Verfahren wird beendet, wenn keine Variablen mehr zur Verfügung stehen, die die Ausschlusskriterien erfüllen.
  • Vorwärtsauswahl. Ein Verfahren zur schrittweisen Variablenauswahl, in dem die Variablen nacheinander in das Modell aufgenommen werden. Die erste Variable, die in Betracht gezogen wird, ist die mit der größten positiven bzw. negativen Korrelation mit der abhängigen Variablen. Diese Variable wird nur dann in die Gleichung aufgenommen, wenn sie das Aufnahmekriterium erfüllt. Wenn die erste Variable aufgenommen wurde, wird als Nächstes die unabhängige Variable mit der größten partiellen Korrelation betrachtet. Das Verfahren endet, wenn keine verbliebene Variable das Aufnahmekriterium erfüllt.

Die Signifikanzwerte in Ihrer Ausgabe basieren auf der Berechnung eines einzigen Modells. Deshalb sind diese generell ungültig, wenn eine schrittweise Methode (schrittweise, vorwärts oder rückwärts) verwendet wird.

Alle Variablen müssen das Toleranzkriterium erfüllen, um unabhängig von der angegebenen Einschlussmethode in die Gleichung einbezogen zu werden. In der Standardeinstellung beträgt das Toleranzniveau 0,0001. Eine Variable wird auch dann nicht eingeschlossen, wenn dadurch die Toleranz einer Variablen im Modell unter das Toleranzkriterium abfallen würde.

Alle ausgewählten unabhängigen Variablen werden einem einzigen Regressionsmodell hinzugefügt. Sie können jedoch verschiedene Einschlussmethoden für unterschiedliche Subsets von Variablen angeben. Beispielsweise können Sie einen Block von Variablen durch schrittweises Auswählen und einen zweiten Block durch Vorwärtsselektion in das Regressionsmodell einschließen. Um einem Regressionsmodell einen zweiten Block von Variablen hinzuzufügen, klicken Sie auf Weiter.