One-Class SVM node Expert
On the Expert tab of the One-Class SVM node, you can choose from Simple mode or Expert mode. If you choose Simple, all parameters are set with the default values as shown below. If you select Expert, you can specify custom values for these parameters. For further detail about these options, see http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM.
Stopping criteria. Specify the tolerance for stopping criteria. Default is 1.0E-3 (0.001).
Regression precision (nu). Bound on the fraction of training errors and support vectors. Default is 0.1.
Kernel type. The kernel type to use in the algorithm. Options include RBF, Polynomial, Sigmoid, Linear, or Precomputed. Default is RBF.
Specify Gamma. Select this option to specify the Gamma, Coef0, and Degree values. The Gamma setting is only available for the RBF, Polynomial, and Sigmoid kernel types, Coef0 is only available for the Polynomial and Sigmoid kernel types, and Degree is only available for the Polynomial kernel type.
Use the shrinking heuristic. Select this option to use the shrinking heuristic. This option is deselected by default.
Specify the size of the kernel cache (in MB). Select this option to specify the size of the kernel cache. This option is deselected by default. When selected, the default value is 200 MB.
Set random seed. Select this option to set the random number seed to use when shuffling the data for probability estimation. This option is deselected by default.
| Parameter name | Script name (property name) | Python API parameter name |
|---|---|---|
| Stopping criteria | stopping_criteria | tol |
| Regression precision | precision | nu |
| Kernel type | kernel | kernel |
| Gamma | gamma | gamma |
| Coef0 | coef0 | coef0 |
| Degree | degree | degree |
| Use the shrinking heuristic | shrinking | shrinking |
| Specify the size of the kernel cache (number input box) | cache_size | cache_size |
| Random seed | random_seed | random_state |