
IBM® Tivoli® Netcool/OMNIbus Probe for
JDBC
2.0

Reference Guide
July 20, 2017

IBM

SC27-5610-02

Notice

Before using this information and the product it supports, read the information in Appendix A, “Notices
and Trademarks,” on page 35.

Edition notice

This edition (SC27-5610-02) applies to version 2.0 of IBM Tivoli Netcool/OMNIbus Probe for JDBC and to all subsequent
releases and modifications until otherwise indicated in new editions.

This edition replaces the previous version SC27-5610-01.
© Copyright International Business Machines Corporation 2014, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this guide.. v
Document control page.. v
Conventions used in this guide.. v

Chapter 1. Probe for JDBC... 1
Summary.. 1
Installing probes.. 2
Example usage... 3
Data acquisition... 3

Connecting to an event source using JDBC... 4
Connecting through either IPv4 or IPv6.. 7
Authenticating with the data source..7
Configuring the probe to retrieve data from ISS Site Protector.. 9
Handling open-form SQL statement queries to retrieve data from the event source........................11
Configuring periodic resynchronization time intervals..12
Configuring partial resynchronization..13
Acquiring data from case-insensitive and case-sensitive databases...16
Running pre-selection and post-selection processing queries on the event source......................... 17
Specifying whether the probe writes SQL warning messages to the probe log file........................... 19
Displaying unicode and non-unicode characters.. 20
Customizing the timestamp that the probe adds to each event received.. 20
Specifying what the probe does during inactivity... 22
Reconnecting to the event source and the probe backoff strategy.. 22
Peer-to-peer failover functionality.. 22
Running the probe as a Windows service..24
Running multiple instances of the JDBC Probe...25

Properties and command line options.. 26
Properties and command line options provided by the Java Probe Integration Library (probe-sdk-

java) version 4.0..28
Elements.. 31
Error messages.. 31
ProbeWatch messages.. 34

Appendix A. Notices and Trademarks... 35
Notices... 35
Trademarks.. 36

 iii

iv

About this guide

The following sections contain important information about using this guide.

Document control page
Use this information to track changes between versions of this guide.

They documentation is provided in softcopy format only. To obtain the most recent version, visit the IBM®

Tivoli® Information Center:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.tivoli.namomnibus.doc/
welcome_ptsm.htm

Table 1. Document modification history

Document version Publication date Comments

SC27-5610-00 March 14, 2013 First IBM publication.

SC27-5610-01 March 7, 2014 “Summary” on page 1 updated.

Description for the DisablePidFileLock property added in
“Properties and command line options” on page 26.

Descriptions for the InitialResync and ResyncInterval
properties updated to ... “Properties and command line options
provided by the Java Probe Integration Library (probe-sdk-java)
version 4.0” on page 28.

SC27-5610-02 July 20, 2017 “Example usage” on page 3 added.

Conventions used in this guide
All probe guides use standard conventions for operating system-dependent environment variables and
directory paths.

Operating system-dependent variables and paths
All probe guides use standard conventions for specifying environment variables and describing directory
paths, depending on what operating systems the probe is supported on.

For probes supported on UNIX and Linux operating systems, probe guides use the standard UNIX
conventions such as $variable for environment variables and forward slashes (/) in directory paths. For
example:

$OMNIHOME/probes

For probes supported only on Windows operating systems, probe guides use the standard Windows
conventions such as %variable% for environment variables and backward slashes (\) in directory paths.
For example:

%OMNIHOME%\probes

For probes supported on UNIX, Linux, and Windows operating systems, probe guides use the standard
UNIX conventions for specifying environment variables and describing directory paths. When using the
Windows command line with these probes, replace the UNIX conventions used in the guide with Windows
conventions. If you are using the bash shell on a Windows system, you can use the UNIX conventions.

© Copyright IBM Corp. 2014, 2017 v

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.tivoli.namomnibus.doc/welcome_ptsm.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.tivoli.namomnibus.doc/welcome_ptsm.htm

Note : The names of environment variables are not always the same in Windows and UNIX environments.
For example, %TEMP% in Windows environments is equivalent to $TMPDIR in UNIX and Linux
environments. Where such variables are described in the guide, both the UNIX and Windows conventions
will be used.

Operating system-specific directory names
Where Tivoli Netcool/OMNIbus files are identified as located within an arch directory under NCHOME or
OMNIHOME, arch is a variable that represents your operating system directory. For example:

$OMNIHOME/probes/arch

The following table lists the directory names used for each operating system.

Note : This probe may not support all of the operating systems specified in the table.

Table 2. Directory names for the arch variable

Operating system Directory name represented by arch

AIX® systems aix5

Red Hat Linux® and SUSE systems linux2x86

Linux for System z linux2s390

Solaris systems solaris2

Windows systems win32

OMNIHOME location
Probes and older versions of Tivoli Netcool/OMNIbus use the OMNIHOME environment variable in many
configuration files. Set the value of OMNIHOME as follows:

• On UNIX and Linux, set $OMNIHOME to $NCHOME/omnibus.
• On Windows, set %OMNIHOME% to %NCHOME%\omnibus.

vi IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Chapter 1. Probe for JDBC

The Probe for JDBC extracts data from databases that support the JDBC standard.

This guide contains the following sections:

• “Summary” on page 1
• “Installing probes” on page 2
• “Example usage” on page 3
• “Data acquisition” on page 3
• “Properties and command line options” on page 26
• “Properties and command line options provided by the Java Probe Integration Library (probe-sdk-java)

version 4.0” on page 28
• “Elements” on page 31
• “Error messages” on page 31
• “ProbeWatch messages” on page 34

Summary
Each probe works in a different way to acquire event data from its source, and therefore has specific
features, default values, and changeable properties. Use this summary information to learn about this
probe.

Table 3. Summary

Probe target Databases that support the JDBC standard.

Probe executable name nco_p_jdbc

Probe installation package omnibus-arch-probe-nco-p-jdbc-version

Package version 2.0

Probe supported on For details of supported operating systems, see the following
Release Notice on the IBM Software Support Website: https://
www-304.ibm.com/support/docview.wss?uid=swg21665217

Properties file $OMNIHOME/probes/arch/jdbc.props

Rules file $OMNIHOME/probes/arch/jdbc.rules

Requirements For details of any additional software that this probe requires,
refer to the description.txt file that is supplied in its
download package.

Connection method JDBC

Remote connectivity The probe can connect to a remote database.

© Copyright IBM Corp. 2014, 2017 1

https://www-304.ibm.com/support/docview.wss?uid=swg21665217
https://www-304.ibm.com/support/docview.wss?uid=swg21665217

Table 3. Summary (continued)

Multicultural support Available

This probe supports multibyte characters. Whether the
database to which you are connecting supports multibyte
characters depends on the JDBC driver. Consult your JDBC
driver documentation for multibyte character support
information.

Peer-to-peer failover functionality Available

IP environment IPv4 and IPv6

Note : IPv6 support for the database connection depends on
the JDBC driver. Consult your JDBC driver documentation for
IPv6 support information.

Federal Information Processing
Standards (FIPS)

IBM Tivoli Netcool/OMNIbus uses the FIPS 140-2 approved
cryptographic provider: IBM Crypto for C (ICC) certificate 384
for cryptography. This certificate is listed on the NIST website at
http://csrc.nist.gov/groups/STM/cmvp/documents/
140-1/1401val2004.htm. For details about configuring Netcool/
OMNIbus for FIPS 140-2 mode, see the IBM Tivoli Netcool/
OMNIbus Installation and Deployment Guide.

Installing probes
All probes are installed in a similar way. The process involves downloading the appropriate installation
package for your operating system, installing the appropriate files for the version of Netcool/OMNIbus
that you are running, and configuring the probe to suit your environment.

The installation process consists of the following steps:

1. Downloading the installation package for the probe from the Passport Advantage Online website.

Each probe has a single installation package for each operating system supported. For details about
how to locate and download the installation package for your operating system, visit the following page
on the IBM Tivoli Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/
reference/install_download_intro.html

2. Installing the probe using the installation package.

The installation package contains the appropriate files for all supported versions of Netcool/OMNIbus.
For details about how to install the probe to run with your version of Netcool/OMNIbus, visit the
following page on the IBM Tivoli Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/
reference/install_install_intro.html

3. Configuring the probe.

This guide contains details of the essential configuration required to run this probe. It combines topics
that are common to all probes and topics that are peculiar to this probe. For details about additional
configuration that is common to all probes, see the IBM Tivoli Netcool/OMNIbus Probe and Gateway
Guide.

2 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2004.htm
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2004.htm
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_download_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_download_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_install_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_install_intro.html

Example usage
In this example, the JDBC Probe is used to read events from an Oracle database.

To use the JDBC Probe to read events from an Oracle database, you need to identify the equivalent of the
LastOccurrence field of the ObjectServer in the table that the JDBC Probe reads. You can then use this
field as the MarkerColumn property in the JDBC Probe properties file.

The select statement that you specify using the SelectSqlFile property must compare the
MarkerColumn with the local system time of the database. So that the JDBC Probe can use the
MarkerColumn, it must be converted to a number (if it is not a number already).

The following configuration assumes that LastOccurrence is a date field in the table ORACLE_TABLE on
the Oracle database <ORACLE_SID> on the server <ORACLE_SERVER_IP>. With the <probe-user>
having the correct permissions and settings to access the table:

1. Set the CLASSPATH environment variable to reflect the required Oracle JDBC client jar files:

CLASSPATH=/opt/instantclient/classes12.jar:/opt/instantclient/ojdbc14.jar
export CLASSPATH

2. Set the following properties in the jdbc.props file:

SelectSqlFile : ’$NCHOME/omnibus/probes/linux2x86/oracle11g_jdbc_probe.sql’
MessageLog : ’$NCHOME/omnibus/log/jdbc_probe_oracle11g.log’
PidFile : ’$NCHOME/omnibus/var/jdbc_probe_oracle11g.pid’
JdbcDriver : ’oracle.jdbc.driver.OracleDriver’
JdbcUrl : ’jdbc:oracle:thin:@<ORACLE_SERVER_IP>:1521:<ORACLE_SID>’
DBUsername : ’<probe-user>’
DBPassword : ’<probe-user-password>’
DataBackupFile : ’$NCHOME/omnibus/var/jdbc_probe_oracle11g’
MarkerColumn :
"TO_NUMBER(TO_CHAR(LASTOCCURRENCE ,’yyyymmddhh24miss’)) AS MARKER"

3. Define a select statement in the SQL file (oracle11g_jdbc_probe.sql) specified by the
SelectSqlFile property suitable for the target table ORACLE_ALERTS:

select TO_NUMBER(TO_CHAR(LASTOCCURRENCE ,’yyyymmddhh24miss’)) as MARKER,
IDENTIFIER, NODE, FIRSTOCCURRENCE, LASTOCCURRENCE from ORACLE_ALERTS

Data acquisition
Each probe uses a different method to acquire data. Which method the probe uses depends on the target
system from which it receives data.

Acquiring data using the JDBC Probe consists of the following basic steps:

1. Setting the connection parameters.
2. Setting the authentication parameters.
3. Specifying an appropriate SELECT statement.
4. Setting the resynchronization parameters.

Note : Before running the probe, you must have installed the JDBC drivers for your operating system. A
list of the JDBC drivers is included in the Gateway for JDBC Reference Guide.

See the following page on the information center:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/gateways/
jdbcgw/jdbcgw/wip/reference/jdbcgw_db_support.html

Full details of how the probe acquires data are described in the following topics:

• “Connecting to an event source using JDBC” on page 4
• “Connecting through either IPv4 or IPv6” on page 7
• “Authenticating with the data source” on page 7

Chapter 1. Probe for JDBC 3

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/gateways/jdbcgw/jdbcgw/wip/reference/jdbcgw_db_support.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/gateways/jdbcgw/jdbcgw/wip/reference/jdbcgw_db_support.html

• “Configuring the probe to retrieve data from ISS Site Protector” on page 9
• “Handling open-form SQL statement queries to retrieve data from the event source” on page 11
• “Configuring periodic resynchronization time intervals” on page 12
• “Configuring partial resynchronization” on page 13
• “Acquiring data from case-insensitive and case-sensitive databases” on page 16
• “Running pre-selection and post-selection processing queries on the event source” on page 17
• “Specifying whether the probe writes SQL warning messages to the probe log file” on page 19
• “Displaying unicode and non-unicode characters” on page 20
• “Customizing the timestamp that the probe adds to each event received” on page 20
• “Specifying what the probe does during inactivity” on page 22
• “Reconnecting to the event source and the probe backoff strategy” on page 22
• “Peer-to-peer failover functionality” on page 22
• “Running multiple instances of the JDBC Probe” on page 25
• “Running the probe as a Windows service” on page 24

Connecting to an event source using JDBC
Connecting to an event source involves downloading and installing the JDBC driver, and specifying
appropriate values for the connection-related properties.

JDBC drivers
You must obtain the JDBC driver for the target database from the database vendor and install it according
to the vendor's instructions. The drivers are usually provided as Java™ archives (.jar).

Setting the CLASSPATH variable
Environment variables are specific preset values that establish the working environment of the probe.
From the environment variable specified, the probe receives path information for the directories in which
library files are present.

Set the CLASSPATH variable to the full path of the JDBC jar file that you installed for your datasource. For
example:

c:\\DB2\\db2jcc.jar

On UNIX or Linux operating systems, use the following command:

export CLASSPATH=/home/jdbc_driver

where jdbc_driver is the full path of the JDBC jar file that you installed for your datasource.

On Windows operating systems, use the following command:

set CLASSPATH=c:\jdbc_driver

where jdbc_driver is the full path of the JDBC jar file that you installed for your datasource.

Database connection properties
To enable the probe to communicate with the target database, you must specify values for the following
properties:

• JdbcDriver: This property specifies the JDBC driver required to connect the database.
• JdbcUrl: This property specifies the URL of the target database.
• DBUsername: This property specifies the user name for the target database.
• DBPassword: This property specifies the password for the target database.

4 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

The format in which you specify the JdbcDriver and JdbcUrl properties depend on the type of
database to which the probe is connecting.

The following table lists example values for the JdbcDriver and JdbcUrl properties for use with each
database supported by the probe. Consult your driver documentation for more information about setting
up database connections. Default values may be different depending on your setup.

Table 4. Example JDBC property values

DB2® LUW

JdbcDriver com.ibm.db2.jcc.DB2Driver

JdbcUrl jdbc:db2://host_name:port/db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. For example:

jdbc:db2://server.example.ibm.com:9999/
REPORTER

DB2 z/OS®

JdbcDriver com.ibm.db2.jcc.DB2Driver

JdbcUrl jdbc:db2://host_name:port/db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. For example:

jdbc:db2://server.example.ibm.com:9999/
REPORTER

Informix®

JdbcDriver com.informix.jdbc.IfxDriver

JdbcUrl jdbc:informix-sqli://host_name:port/
db_name:INFORMIXSERVER=server_name

Where host_name is the name of the database host machine,
port is the port number, db_name is the name of the database,
and server_name is the same as the host_name. For example:

jdbc:informix-sqli://
server.example.ibm.com:1433/
REPORTER:INFORMIXSERVER=server.example.ibm.com

Microsoft SQL Server

JdbcDriver com.microsoft.sqlserver.jdbc.SQLServerDriver

Chapter 1. Probe for JDBC 5

Table 4. Example JDBC property values (continued)

JdbcUrl jdbc:sqlserver://
host_name:port;databaseName=db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. The default port is 1433. For example:

jdbc:sqlserver://
server.example.ibm.com:1433;databaseName=REPOR
TER

MySQL

JdbcDriver com.mysql.jdbc.Driver

JdbcUrl jdbc:mysql://host_name[,failover_host]:port/
db_name[?param1=value1¶m2=value2]

Where host_name is the name of the database host machine,
failover_host is the name of the optional failover host, port is
the port number, db_name is the name of the database, and
param1 and param2 are optional parameters. The default
port is 3306. For example:

jdbc:mysql://server.example.ibm.com:3306/
alerts

Oracle

JdbcDriver oracle.jdbc.driver.OracleDriver

JdbcUrl jdbc:oracle:thin:@host_name:port:db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. The default port is 1521. For example:

jdbc:oracle:thin:@server.example.ibm.com:1521:
REPORTER

Sybase

JdbcDriver com.sybase.jdbc4.jdbc.SybDriver

JdbcUrl jdbc:sybase:Tds:host_name:port/db_name[?
property=value;]

Where host_name is the name of the database host machine,
port is the port number, db_name is the name of the database,
and property is an optional parameter. For example:

jdbc:sybase:Tds:server.example.ibm.com:1521/
REPORTER

6 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Connecting through either IPv4 or IPv6
The probe can be installed and run in either an IPv4 environment or in an IPv6 environment. The
environment that you are using and the database to which you are connecting determines the format that
you must use for the JdbcUrl property.

When you specify the URL for the database, you must include the details of both the IP address and the
database to which you are connecting. The format of the URL that you specify for the JdbcUrl property
depends on the type of database that you are using. The examples for IPv4 and IPv6 given in this topic
are for MS SQL databases. If you are using a different database, you must consult the documentation
supplied with that database for details of the format that you need to use for its URL.

Specifying the JdbcUrl for MS SQL databases when operating in an IPv4
environment
If you are running the probe in an IPv4 environment and connecting to MS SQL databases, you must
specify the JdbcUrl property in the following format:

JdbcUrl : "jdbc:sqlserver://ipv4_address:port;databaseName=database_name"

where:

• ipv4_address is the IP address of the machine on which the MS SQL database is running.
• port is the port number to which the probe connects.
• database_name is the name of the MS SQL database.

Example entry for MS SQL running in an IPv4 environment:

JdbcUrl : "jdbc:sqlserver://9.180.212.183:1433;databaseName=RealSecureDB"

Specifying the JdbcUrl for MS SQL databases when operating in an IPv6
environment
If you are running the probe in an IPv6 environment and connecting to MS SQL databases, you must
specify the JdbcUrl property in the following format:

JdbcUrl : "jdbc:sqlserver://;serverName=ipv6_address\
\instance_name;port=port_number;databaseName=database_name"

where:

• ipv6_address is the IP address of the machine on which the MS SQL database is running.
• instance_name is the name running instance of the MS SQL database.
• port_number is the port to which the probe connects.
• database_name is the name of the MS SQL database.

Example entry for MS SQL running in an IPv6 enviroment:

JdbcUrl : "jdbc:sqlserver://;serverName=2001:15f8:106:194:d173:eed2:ee3e:5143\
\MSSQLSERVER;port=1433;databaseName=RealSecureDB"

Authenticating with the data source
The probe uses the values specified by the DBUsername and DBPassword properties to authenticate
with the data source.

You can specify both the user name and password in plain text format, or you can use an encryption
algorithm to secure the entry made in the properties file.

To encrypt either the user name or password in the properties file, use the following steps:

1. Generate a key and store it in a key file using the nco_keygen utility.

Chapter 1. Probe for JDBC 7

2. Set the generic ConfigCryptoAlg property in the probe properties files to the encryption method
required.

3. Set the generic ConfigKeyFile property in the probe properties files to the path of the encryption
key file.

4. Encrypt the user name and password using the nco_aes_crypt utility.
5. Add the encrypted values for the DBPassword property and the DBUsername property generated by

the nco_aes_crypt utility to the probe properties file.

Note : If you run the probe in FIPS mode, you must either use no encryption, or you must use
nco_aes_crypt with the cipher (-c) option AES_FIPS. For example:

$NCHOME/omnibus/bin/nco_aes_crypt -c AES_FIPS -k key_file string_value

The cipher option used here must match the option specified by the ConfigCryptoAlg property.

For information about using nco_keygen and nco_aes_crypt to encrypt the user name and password,
see the following topics:

• “Generating a key in a key file” on page 8
• “Specifying the key file as a property” on page 8
• “Encrypting a string value with the key” on page 9
• “Adding an encrypted value to the properties file” on page 9

Generating a key in a key file
Run the nco_keygen utility to generate a key and store it in a key file. Command-line options are
available for you to either specify a hexadecimal value for the key, or to specify a length in bits for
automatic key generation.

Run the nco_keygen utility to generate a key and store it in a key file. Command-line options are
available for you to either specify a hexadecimal value for the key, or to specify a length in bits for
automatic key generation.

To generate a key within a key file:

Run nco_keygen as follows. Optional entries are shown in square brackets.

$NCHOME/omnibus/bin/nco_keygen -o key_file [-l length | -k key]

In this command:

key_file represents the output file path and file name to which the key is saved.

length represents the length in bits of the key, as specified by you. This number must be divisible by 8 to
make a whole number of bytes. The default is 128. Only 128, 192, and 256 are valid key lengths for AES
encryption.

key represents the value of the key in hexadecimal digits, as specified by you. You can use either the -l
or -k command-line option, but not both.

If you use the -o command-line option to specify an output file name, and omit both the -l and -k
options, a randomly-generated 128-bit key is written to the file.

The nco_keygen utility writes the key to the file, using the format length:key, where length is the number
of bits in the key, represented as ASCII decimal numerals, and key is the key data.

Specifying the key file as a property
In the properties file in which you want to specify an encrypted string value, set the value of the
ConfigKeyFile property to the file path and file name of the key file that was generated by the
nco_keygen utility.

ConfigKeyFile is a generic Netcool/OMNIbus property in the probe properties file:

$OMNIHOME/probes/arch/probename.props

8 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Encrypting a string value with the key
Use the nco_aes_crypt utility to encrypt a string value with the key that was generated by the
nco_keygen utility.

To encrypt a string value:

Run nco_aes_crypt as follows:

$NCHOME/omnibus/bin/nco_aes_crypt -c cipher -k key_file string_value

In this command:

• cipher is the algorithm that is used to encrypt the string value. Specify one of the following values for
cipher, based on your mode of operation:

– FIPS 140–2 mode: Specify AES_FIPS.
– Non-FIPS 140–2 mode: Specify either AES_FIPS or AES. Use AES (the default) only if you need to

maintain compatibility with passwords that were encrypted using the tools provided in versions
earlier than Tivoli Netcool/OMNIbus V7.2.1.

• key_file is the file path and name of the key file. This value must match that specified for the
ConfigKeyFile property in the properties file.

• string_value is the user name or password that you want to encrypt.

The output is displayed in the console window in encrypted form, and is delimited with @ symbols. You
can now copy the output text, including the @ symbols, for use within the relevant properties file. For
example:

@44:CcnsqcefNPVeVIXFhflYv2z04lxNtvIPL5DKvP2QU+M=@

Adding an encrypted value to the properties file
After encrypting a string value, add it to the properties file within which you want to hide the actual value.

Add the properties whose values have been encrypted to the probe properties file along with the
corresponding encrypted values.

Set the generic Netcool/OMNIbus ConfigCryptoAlg property in the probe properties file to the
cryptographic algorithm to use when decrypting the string; for example, AES_FIPS or AES.

Note : This value must match that specified when you ran nco_aes_crypt with the -c setting, to
encrypt the string value.

Configuring the probe to retrieve data from ISS Site Protector
You can use the JDBC Probe to acquire events from ISS SiteProtector. To do so, you must use the
alternative rules file and some additional configuration files that have been written for this purpose.

To support ISS SiteProtector, you require the following files:

• iss_siteprotector.rules: This is the alternative rules file that you should specify in the
RulesFile property instead of jdbc.rules.

• sitepro.include.lookup: This file is referenced by the rules file.
• sitepro.post.include: This include file allows the probe to use a modified ObjectServer schema.
• select_rules.sql: This file contains the mandatory select query that the probe uses to acquire data

from ISS SiteProtector.

These files are supplied within the probes installation package. You should check the contents of the
select_rules.sql query and make any changes required to suit your environment.

You will also need to make various updates to the jdbc.props file.

Chapter 1. Probe for JDBC 9

To configure the connection to the ISS SiteProtector, set the following properties in the jdbc.props file:

DBPassword : 'password'
DBUsername : 'user_name'
JdbcDriver : 'com.microsoft.sqlserver.jdbc.SQLServerDriver'
JdbcUrl : 'jdbc:sqlserver://localhost:1433;databaseName=RealSecureDB'

To configure the probe to use the select query written for ISS SiteProtector, set the following property in
the jdbc.props file:

SelectSqlFile : 'C:\\IBM\\Tivoli\\Netcool\\omnibus\\var\\select_rules.sql'

To configure the probe to use the rules file written for ISS SiteProtector, set the following property in the
jdbc.props file:

RulesFile :
'C:\\IBM\\Tivoli\\Netcool\\omnibus\\probes\\win32\\iss_siteprotector.rules'

Updating the rules file
sitepro.include.lookup and sitepro.post.include are referenced from the
iss_siteprotector.rules file by include statements. You will need to update these include
statements to reflect full paths to these files in your probe installation. Open the rules file, search for the
two commented out include statements that reference sitepro.include.lookup and
sitepro.post.include and update their respective paths.

For example, on Windows operation systems, replace the commented out include statements with:

include "$OMNIHOME/probes/win32/sitepro.include.lookup"

include "$OMNIHOME/probes/win32/sitepro.post.include"

Where $OMNIHOME is the full path to the probe installation.

On Unix and Linux operating systems, replace the commented out include statements with:

include "$OMNIHOME/probes/includes/sitepro.include.lookup"

include "$OMNIHOME/probes/includes/sitepro.post.include"

Where $OMNIHOME is the full path to the probe installation.

Configuring the ObjectServer schema
The sitepro.post.include file contains the following set of field/element definitions that have been
commented out:

@NsProtocol = $NsProtocol
@NsEventType = $NsEventType
@NsClass = $NsClass
@NsCVE = $NsCVE
@NsThreatCategory = $NsThreatCategory
@NsThreatType = $NsThreatType
@NsVirusName = $NsVirusName
@NsVendor = $NsVendor
@NsProduct = $NsProduct
@NsVersion = $NsVersion
@NsPatch = $NsPatch
@NsRaw = $NsRaw
@NsScore = $NsScore
@NsConfidentiality = $NsConfidentiality
@NsIntegrity = $NsIntegrity
@NsAvailability = $NsAvailability
@NsRate = $NsRate

10 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

@NsAlertType = $NsAlertType
@NsAlertTypeDesc = $NsAlertTypeDesc

You must edit the sitepro.post.include file to uncomment these definitions and then create the
fields indicated in the ObjectServer. For details of creating fields, see the Netcool/OMNIbus Installation
and Deployment Guide.

Handling open-form SQL statement queries to retrieve data from the event
source

The probe can handle open-form SQL statement queries to retrieve data from the event source.

Mandatory SELECT statement
To enable the probe to receive any events from the data source, the SelectSqlFile property must be
set to a file containing an SQL SELECT statement. The way in which you configure and prepare that
SELECT statement depends on what table you are interested in and what data from that table you want to
receive as an event.

The mandatory query in the file specified by SelectSqlFile property must contain a SELECT statement
that can return data.

Note : The JDBC Probe only supports SQL files that have no more than 50,000 characters. If the SQL
query file contains more than 50,000 characters, the probe will write the following message to the error
log:

SQL file has exceeded the max characters limit..

Example SELECT statements
The following examples show simple SELECT statements.

Example 1

The following example returns events that contain the eventid, event_name, event_desc, severity,
and category fields from all records in the active_alarms table that have the resolved field set to 0.

SELECT eventid, event_name, event_desc, severity, category FROM active_alarms
WHERE resolved = 0;

Example 2

The following example retrieves all data from the SensorData1 table (the main table used by ISS
SiteProtector to store sensor data).

SELECT * FROM SensorData1;

The following examples retrieve data from the SensorData1 table, and enrich and convert it using SQL
clauses.

Example 3

This example uses convert clauses:

SELECT convert(int,SensorDataRowID) as SensorDataRowID,
convert(varchar(64),SensorDataID) as SensorDataID,
convert(varchar(120),AlertName) as AlertName, AlertDateTime, AlertID,
convert(varchar(100),SensorName) as SensorName, ProductID, AlertTypeID,
AlertPriority, AlertFlags, convert(varchar(10),SensorAddressInt) as
SensorAddressInt, convert(varchar(10),SrcAddressInt) as SrcAddressInt,
convert(varchar(10),DestAddressInt) as DestAddressInt, ProtocolID, SourcePort,
convert(varchar(64),SourcePortName) as SourcePortName,
convert(varchar(64),DestPortName) as DestPortName,
convert(varchar(64),UserName) as UserName, ProcessingFlag, Cleared, HostGUID,

Chapter 1. Probe for JDBC 11

convert(varchar(64),HostDNSName) as HostDNSName,
convert(varchar(64),HostNBName) as HostNBName,
convert(varchar(64),HostNBDomain) as HostNBDomain,
convert(varchar(64),HostOSName) as HostOSName,
convert(varchar(64),HostOSVersion) as HostOSVersion, HostOSRevisionLevel,
ObservanceID, VulnStatus, AlertCount, convert(varchar(64),ObjectName) as
ObjectName, ObjectType, OSGroupID, ComponentID, SensorGUID, LicModule,
convert(varchar(64),VLan) as VLan, convert(varchar(64),VirtualSensorName) as
VirtualSensorName from SensorData1

Example 4

This example uses CASE and INNER JOIN clauses.

SELECT CASE WHEN sd.SensorDataID IS NULL THEN '-1' ELSE sd.SensorDataID END AS
'SensorDataID',CASE WHEN sd.AlertName IS NULL THEN '' ELSE sd.AlertName END AS
'AlertName',CASE WHEN sd.AlertDateTime IS NULL THEN '-1' ELSE sd.AlertDateTime
END AS 'AlertDateTime',CASE WHEN sd.AlertID IS NULL THEN '-1' ELSE sd.AlertID
END AS 'AlertID',CASE WHEN sd.AlertPriority IS NUL L THEN '-1' ELSE
sd.AlertPriority END AS 'AlertPriority',case WHEN sd.Cleared IS NULL THEN ''
ELSE sd.Cleared END AS 'Cleared',CASE WHEN sd.ProtocolID IS NULL THEN '-1' ELSE
sd.ProtocolID END AS 'ProtocolID',CASE WHEN sd.SrcAddressInt IS NULL THEN '-1'
ELSE sd.SrcAddressInt END AS 'SourceAddressLong',CASE WHEN sd.DestAddressInt IS
NULL THEN '-1' ELSE sd.DestAddressInt END AS 'DestAddressLong',CASE WHEN
sd.SourcePort IS NULL THEN '-1' ELSE sd.SourcePort END AS 'SourcePort',CASE
WHEN sd.ObjectName IS NULL THEN '' ELSE sd.ObjectName END AS 'ObjectName',CASE
WHEN sd.SensorName IS NULL THEN '' ELSE sd.SensorName END AS 'SensorName',CASE
WHEN sd.SensorAddressInt IS NULL THEN '-1' ELSE sd.SensorAddressInt END AS
'SensorAddressLong',CASE WHEN secchk.ChkName IS NULL THEN '' ELSE
secchk.ChkName END AS 'ChkName',CASE WHEN secchk.ChkBriefDesc IS NULL THEN ''
ELSE secchk.ChkBriefDesc END AS 'ChkBriefDesc',CASE WHEN secchk.SecChkID IS
NULL THEN '-1' ELSE secchk.SecChkID END AS 'SecChkID' FROM SensorData sd INNER
JOIN Observances obs ON sd.ObservanceID = obs.ObservanceID INNER JOIN
SecurityChecks secchk ON obs.SecChkID = secchk.SecChkID

Optional SQL statements
As well as the mandatory SELECT statement, you can also specify SQL statements for the probe to
perform before and after this statement. This processing is optional. You can specify what SQL
statements the probe performs using the following properties:

• PreSqlFile - allows you to specify a file containing an SQL statement to perform before the
mandatory SELECT statement.

• PostSqlFile - allows you to specify a file containing an SQL statement to perform after the mandatory
SELECT statement.

Configuring periodic resynchronization time intervals
You can configure the probe to perform a resynchronization with the data source at startup, or at regular
intervals while the probe is running.

If you set the InitialResynch property to true, the probe requests all active alarms from the data
source at startup.

The ResynchInterval property controls the interval (in seconds) at which the probe requests to receive
outstanding active alarms. If you set this property to 0, the probe will not make periodic requests to
receive outstanding active alarms.

Note : To enable the probe to receive any alarms from the data source, you must set the
InitialResynch property to true, or the ResynchInterval property to a value greater than 0.

12 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Configuring partial resynchronization
The probe can perform a partial resynchronization by selecting all active alarms that have not yet been
retrieved. This resynchronization is based on a timestamp associated with the alarms.

To enable the probe to perform a partial resynchronization, you must specify an appropriate column from
the source database to act as a marker using the MarkerColumn property.

Before deciding which marker column to select, bear in mind the following guidelines:

• The column that you specify must be either an integer or a unix timestamp.
• The column should be an incremental row indicator or an incremental timestamp in the table.
• If the source database is not ordered by the column that you specify, you must order the records

retrieved by this column.
• You must either include the column explicitly in the SELECT statement specified by the
SelectSqlFile property, or it must be selected by a wildcard within the SELECT statement, for
example:

SELECT * from TABLE table_name

For details about specifying the SELECT statement, see “Handling open-form SQL statement queries to
retrieve data from the event source” on page 11.

• Ensure that the marker column is unique and do not duplicate the name in query SQL.
• Do not use comments /* */ inside the SELECT query.
• Define only one SQL query in the SQL file.
• Define only one marker indicator within the SQL query.
• Define only one marker column.
• If you need to configure a marker column as a conversion (using CONVERT, CAST, DATEDIFF, or
DATEADD), you must use it with the AS keyword; for example:

CONVERT(int, marker) AS marker_column

The probe can be configured to perform a partial resynchronization based on the last resynchronization
marker stored in a data backup file. To do so, the probe uses the DataBackupFile property and the
MarkerColumn property together. The probe records the last read alarm (as defined by the marker
column specified by the MarkerColumn property) in the file specified by the DataBackupFile property.
Before performing a resynchronization, the probe reads the data backup file and retrieves only those
alarms that have been created since the previous resynchronization. If the data backup file is empty (as it
will be during the initial run of probe), the probe will do a full resynchronization. If a marker column has
not been specified, the probe ignores the DataBackupFile property.

Example configuration 1: Using a simple SELECT statement
By default, the probe will add a where clause for the marker column to the end of the mandatory SELECT
statement.

For example, suppose the file specified by the SelectSqlFile property contains the following SQL
command:

SELECT * from SensorData1

and the MarkerColumn property is set to SensorDataRowID

The probe will execute the following SQL command:

SELECT * from SensorData1 WHERE SensorDataRowID > ?

Where ? is a dynamic value retrieved from the last resynchronization cycle. If there have been no
resynchronization cycles yet, the probe sets ? to 0.

Chapter 1. Probe for JDBC 13

Example configuration 2: Using a SELECT statement that contains a WHERE clause
If you are using a query that already contains a where clause, the probe will add a where clause for the
marker column to the end of the mandatory SELECT statement.

Suppose the file specified by the SelectSqlFile property contains the following SQL command:

SELECT * from SensorData1 WHERE AlertPriority > 2

and the MarkerColumn property is set to SensorDataRowID

The probe will execute the following SQL command:

SELECT * from SensorData1 WHERE AlertPriority > 2 AND SensorDataRowID > ?

This will work in the same way as Example 1, but will only include alerts whose priority is greater than 2.

Example configuration 3: Using a marker indicator with the SELECT statement
If you are using a more complex query in which a where clause for the marker column cannot be added to
the end of the query, you must include the indicator ::marker_column in the SELECT query. This
indicates to the probe where the where clause should be expanded.

For example, suppose the file specified by the SelectSqlFile property contains the following SQL
command:

SELECT sp.sup_name, sp.street, sp.city, sp.zip, sp.sup_id FROM suppliers
sp ::marker_column order by sp.sup_id

and the MarkerColumn property is set to sp.sup_id

The probe will execute the following SQL command:

SELECT sp.sup_name, sp.street, sp.city, sp.zip, sp.sup_id FROM suppliers sp
WHERE sp.sup_id > ? order by sp.sup_id

Example configuration 4: Using a more complex SELECT statement
Suppose the file specified by the SelectSqlFile property contains the following SQL command:

SELECT a.name, a.id, b.salary, b.increment FROM employee a, emp_salary b WHERE
a.id = b.id ::marker_column AND n.name is NOT NULL order by a.id

and the MarkerColumn property is set to b.salary

The probe will execute the following SQL command:

SELECT a.name, a.id, b.salary, b.increment FROM employee a, emp_salary b WHERE
a.id = b.id AND b.salary > ? AND a.name is NOT NULL order by a.id

Note : You must place the marker indicator within the SQL statement in a location that will produce valid
SQL when the WHERE clause is expanded. That location will be either directly after the WHERE keyword or
after a completed WHERE clause. For example:

SELECT * from SensorData1 WHERE ::marker_column ObservanceID > 0 order by
SensorDataRowID

or

SELECT * from SensorData1 WHERE ObservanceID > 0 ::marker_column order by
SensorDataRowID

Example configuration 5: Converting a column to unix timestamp format
If you want to select a DateTime field in the source database as the marker column, you must convert it
into unix timestamp format using the AS keyword within the SELECT statement.

14 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

For example, suppose you are using MySQL and the file specified by the SelectSqlFile property
contains the following SQL command:

SELECT unix_timestamp(ts) AS timex, no_id from T1

Where the ts column is of type DateTime in the source table, and the unix_timestamp() function is
converting this column to unix timestamp format.

Note : If you are using a database other than MySQL, you may need to use a different SQL conversion
function. See the documentation supplied with your database for details.

The MarkerColumn property should be set to unix_timestamp(ts) AS timex.

The probe will execute the following SQL command:

SELECT unix_timestamp(ts), no_id from T1 WHERE unix_timestamp(ts) > ?

Where ? is a dynamic value retrieved from the last resynchronization cycle or from the recovery file
specified by the DataBackupFile property.

Example configuration 6: Converting a column using DATEDIFF
You can convert a marker column using the DATEDIFF function.

For example, suppose the file specified by the SelectSqlFile property contains the following SQL
command:

SELECT *, DATEDIFF(s, '19700101', AlertDateTime) AS AlertDateTime from
SensorData1

The MarkerColumn property should be set to “DATEDIFF(s, '19700101', AlertDateTime) AS
AlertDateTime”.

The probe will execute the following SQL command:

SELECT *, DATEDIFF(s, '19700101', AlertDateTime) AS AlertDateTime from
SensorData1 WHERE DATEDIFF(s, '19700101', AlertDateTime) > ?

Where ? is a dynamic value retrieved from the last resynchronization cycle or from the recovery file
specified by the DataBackupFile property.

Other examples
Suppose the MarkerColumn is set to: “a_emp_id”

You could use the following SQL command in the file specified by the SelectSqlFile property:

“SELECT a.emp_id as a_emp_id, b.emp_id as b_emp_id FROM table a, table b WHERE
a.class_id = b.emp_id”

But you could not use following SQL command in the file specified by the SelectSqlFile property:

“SELECT a.emp_id, b.emp_id FROM table a, table b WHERE a.class_id = b.emp_id”

Suppose the MarkerColumn is set to: “DATEDIFF(s, '19700101', sd.AlertDateTime) AS
AlertDateUnixTime”

You could use following SQL command in the file specified by the SelectSqlFile property:

“Select DATEDIFF(s, '19700101', sd.AlertDateTime) AS AlertDateUnixTime,
sd.AlertDateTime from SensorData1 sd”

Suppose the MarkerColumn is set to: “DATEDIFF(s, '19700101', sd.AlertDateTime) AS
AlertDateTime”

You could not use following SQL command in the file specified by the SelectSqlFile property:

“Select DATEDIFF(s, '19700101', sd.AlertDateTime) AS AlertDateTime,
sd.AlertDateTime from SensorData1 sd”

Chapter 1. Probe for JDBC 15

Acquiring data from case-insensitive and case-sensitive databases
The probe supports database that operate in either a case-sensitive environment or in a case-insensitive
environment.

Database case-sensitivity considerations for when specifying the select query
Most databases treat table column names as case-insensitive. However, some databases, for example
Sybase, treat table column names as case-sensitive. When defining the query that the probe will use to
select events from the database, you must make sure that you do not use the same column name twice in
different cases; for example, the query cannot contain both ColumnName and COLUMNNAME.

Case-insensitive and case-sensitive databases
Setting the MarkerColumnSensitive property correctly allows you to use the JDBC Probe to acquire
data from both types of database. In most cases, you will set the MarkerColumnSensitive property set
to false. This will support situations in which the probe compares the column of the result set returned
with the marker column, ignoring the case when matching.

The examples in the rest of this topic describe various scenarios and how to set the
MarkerColumnSensitive property in each situation.

Example configuration 1: Case-insensitive environment, query matching case of
marker column
Suppose the database operates in a case-insensitive environment (for example: Microsoft SQL), and the
query result is in the same case as the marker column selected.

For example, suppose the MarkerColumn is set to:

“DATEDIFF(s, '19700101', sd.AlertDateTime) AS UnixTime”

And the file specified by the SelectSqlFile property contains the following SQL command:

“SELECT DATEDIFF(s, '19700101', sd.AlertDateTime) AS UnixTime, SensorDataRowID
FROM SensorData1 sd”

The probe will try to match the marker column UnixTime with the query result returned. MySQL will
return the result as UnixTime and so the probe can find the marker column correctly.

In this scenario, it does not matter whether the MarkerColumnSensitive property is set to either TRUE
or FALSE. This is because the probe can match the marker column either case-sensitive or case-
insensitive. So leave this property set to its default value of FALSE.

Example configuration 2: Case-insensitive environment, query not matching case of
marker column
Suppose the database operates in a case-insensitive environment (for example: DB2) and the query result
is in a different case to that of the marker column selected.

For example, suppose the MarkerColumn is set to:

“(timestampdiff(2, char(lastmodified - timestamp('1970-01-01-00.00.00')))) AS
unixtime”

And the file specified by the SelectSqlFile property contains the following SQL command:

“SELECT (timestampdiff(2, char(lastmodified -
timestamp('1970-01-01-00.00.00')))) AS unixtime, user_id FROM user”

The probe will try to match the marker column unixtime with the query result returned. However, DB2
will return the query result in full capital case, that is: UNIXTIME, which is the standard behaviour of DB2.

16 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

In this scenario, you should set the MarkerColumnSensitive property to FALSE. This is because the
probe will try to match the marker column unixtime with the returned result UNIXTIME, so must do so
case-insensitive. In this case, probe able to find the matchable marker column with the query result that
enable the partial resync performing correctly.

If the MarkerColumnSensitive property had been set to TRUE. The probe will be unable to match the
marker column unixtime with the returned result UNIXTIME. The probe will write a warning message to
the probe log and it will perform a full resynchronization (because the probe is unable to find a matchable
marker column to use with the query result).

Example configuration 3: Case-sensitive environment, query not matching case of
marker column
Suppose the database operates in a case-sensitive environment (for example: Sybase) and the query
selects the same name but in a different case.

For example, suppose the MarkerColumn is set to: “a.Identifier”

And the file specified by the SelectSqlFile property contains the following SQL command:

“Select a.Identifier, as.IDENTIFIER, a.AlarmID FROM Alarm a, AlarmStatus as
WHERE a.AlarmID = as.AlarmID”

In a case-sensitive environment, the probe must compare the marker column case-sensitive.

In this scenario, you should set the MarkerColumnSensitive property to TRUE This will enable the
probe to match the marker column Identifier with the correct case Identifier in the returned
result, and will prevent the probe from mistakenly matching it with the wrong case IDENTIFIER.

Running pre-selection and post-selection processing queries on the event
source

The probe can perform SQL queries on the source data before and after it has been selected by the query
specified by the SelectSqlFile property. You specify appropriate queries to run using the PreSqlFile
and PostSqlFile properties, respectively.

To specify a query that the probe performs before selecting events from the data source, use the
PreSqlFile property. To specify a query that the probe performs after selecting events from the data
source, use the PostSqlFile property.

The pre-selection and post-selection queries can contain any of the following SQL statements:

• INSERT
• UPDATE
• DELETE
• INSERT INTO ... SELECT
• CREATE TABLE ... SELECT
• ALTER
• TRUNCATE
• DROP

Within the pre-selection or post-selection queries, you cannot use SELECT ... FROM ... statements
that return a result set. But you can use INSERT into ... SELECT or SELECT INTO statements that
select from, or query, an existing table and insert new rows into that table.

If either the PreSqlFile or PostSqlFile query fails, the probe will still run the SelectSqlFile
query, but will also write a ProbeWatch message to the log file. If the SelectSqlFile query fails, the
probe will not run the PostSqlFile query.

Note : The complexity of the queries that you can specify using the PreSqlFile or PostSqlFile
properties depends on the database from which the probe is extracting data. For example, if you are

Chapter 1. Probe for JDBC 17

connecting to MS SQL, you can specify files that contain multiple queries. However, if you are connecting
to DB2, you can only specify files that contain a single query. If you are connecting to DB2 and you specify
either a pre-selection file or post-selection file that contains multiple queries, the queries will fail and the
probe will log the error.

Note also that the JDBC Probe only supports SQL files that have no more than 50,000 characters. If any of
your SQL query files contains more than 50,000 characters, the probe will write the following message to
the error log:

SQL file has exceeded the max characters limit..

Example 1: Performing an insert and a delete
The following example performs an insert and a delete:

The PreSQLFile query inserts an event with a SensorDataRowID of 8881 into the database table.

The SelectSQLFile query checks that the event has been created in the database table.

The PostSQLFile query deletes the event from the database table.

The query specified by PreSQLFile contains the following code:

SET IDENTITY_INSERT SensorData1 ON
INSERT INTO SensorData1
(SensorDataRowID,SensorDataID,AlertName,AlertDateTime,AlertID,SensorName,ProductID,
AlertTypeID,AlertPriority,AlertFlags,SensorAddressInt,SrcAddressInt,
VALUES (8881,8882,'TEST_INSERT','','','',1,2,3,4,1,2,3,4,5,'','','',1,'','','','',
'','','','',1,2,3,'',1,2,3,'','','','',1,'',1,2,3,4,1,2,3,4,5,'','')
SET IDENTITY_INSERT SensorData1 OFF

The query specified by SelectSQLFile contains the following code:

SELECT * FROM SensorData1 WHERE SensorDataRowID='8881'

The query specified by PostSQLFile contains the following code:

DELETE FROM SensorData1 WHERE SensorDataRowID='8881'

Example 2: Performing an update and then performing a second an update
The following example performs an update and then performs a second update:

The PreSQLFile query updates existing events that have AlertName set to TEST_UPDATE, to
TEST_UPDATE_HAS_BEEN_UPDATED.

The SelectSQLFile query selects the total number of events that have been updated.

The PostSQLFile query updates value of the AlertName column of the updated events to
FLUSHED_TO_JDBC_PROBE.

The query specified by PreSQLFile contains the following code:

UPDATE SensorData1 SET AlertName='TEST_UPDATE_HAS_BEEN_UPDATED'
WHERE AlertName='TEST_UPDATE'

The query specified by SelectSQLFile contains the following code:

SELECT COUNT(AlertName) AS TOTAL_UPDATED_ALERT FROM SensorData1
WHERE AlertName='TEST_UPDATE_HAS_BEEN_UPDATED'

The query specified by PostSQLFile contains the following code:

UPDATE SensorData1 SET AlertName='FLUSHED_TO_JDBC_PROBE'
WHERE AlertName='TEST_UPDATE_HAS_BEEN_UPDATED'

18 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Example 3: Creating a new table and deleting its contents
The following example creates a new database table, then deletes its contents:

The PreSQLFile query creates a simple database table.

The SelectSQLFile query checks that events are populated in the new table.

The PostSQLFile query clears all the data in the new table at the end of each resynchronization interval.

The query specified by PreSQLFile contains the following code:

CREATE TABLE new_table
(
P_Id int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The query specified by SelectSQLFile contains the following code:

SELECT * FROM new_table

The query specified by PostSQLFile contains the following code:

DELETE FROM new_table

Example 4: Creating and dropping a new table
The following example creates a new database table, then drops it:

The PreSQLFile query creates a simple database table.

The SelectSQLFile query checks that events are populated in the new table.

The PostSQLFile query drops the new table at the end of each resynchronization interval.

The query specified by PreSQLFile contains the following code:

CREATE TABLE Persons
(
P_Id int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The query specified by SelectSQLFile contains the following code:

SELECT * FROM Persons

The query specified by PostSQLFile contains the following code:

DROP TABLE Persons

Specifying whether the probe writes SQL warning messages to the probe log
file

The probe can handle SQL queries for the selection of events from the source data. The probe can also
perform SQL queries on the data before and after it has been selected. You can specify that any database-
specific warning messages that are generated as a result of running SQL queries are written to the probe
log file.

To specify that the probe writes any database-specific warning messages that result from running SQL
queries to the probe log file, set the SqlWarnings property to true. By default, the SqlWarnings

Chapter 1. Probe for JDBC 19

property is set to true. If you do not want the probe to write the SQL messages to the log file, set the
SqlWarnings property to false.

Each vendor has its own conditions that trigger SQL warnings. If you set the SqlWarnings property to
true, which messages are written to the log file depends on which database the probe is extracting data
from. If you set the SqlWarnings property to false, the probe will write no database-specific warning
messages regardless of the success or failure of the SQL queries specified by the SelectSqlFile,
PreSqlFile, and PostSqlFile properties.

Displaying unicode and non-unicode characters
The probe can support multibyte characters and so can display both unicode and non-unicode characters.

Before using the probe to process data that contains multibyte characters, perform the following steps:

1. Check that your database is configured to enable multibyte characters. See the documentation
supplied with your database for details of multibyte character support.

2. Consult your JDBC driver documentation to confirm whether your driver supports multibyte characters
and whether you need to make any changes to the environment settings of your server or workstation.

Note : You specify to which database the probe connects using the JdbcUrl property. When
processing data that contains multibyte characters, some JDBC drivers require you to specify explicitly
UTF-8 encoding within URLs, others automatically detect character encoding. This will affect how you
set the JdbcUrl property. See the documentation supplied with your JDBC driver for details of how
you should specify URLs for databases that support multibyte characters.

3. Check that the probe server has UTF-8 support enabled and that the correct locale is set; for example,
set the locale to Chinese.

On Windows operating systems, use the following steps:

a. Access the Region and Language section of the Control Panel.
b. Select the Formats tab.
c. Select Format > Chinese (Simplified, PRC)
d. Select the Administrative tab.
e. Select Change system locale
f. Select Current system locale > Chinese (Simplified, PRC)

g. Click OK.
h. Click OK.

On UNIX and Linux operating systems, set the system locale using the LANG and LC_ALL environment
variables:

export LANG=zh_CN.utf8
export LC_ALL=zh_CN.utf8

4. Configure the ObjectServer to enable the insertion of UTF-8 encoded data. See the Netcool/OMNIbus
Installation and Deployment Guide.

5. If you are running the probe on a Windows operating system, you must use the -utf8enabled
command-line option each time you start the probe.

Customizing the timestamp that the probe adds to each event received
The probe can create a timestamp for each event received. This consists of two steps: specifying the
column name from the source data that the probe will use to create the timestamp and specifying the
format that the probe will use for the timestamp.

By default, Netcool/OMNIbus uses the FirstOccurrence and LastOccurence fields to indicate event
timestamps. These two fields are in UTC UNIX timestamp format. Whatever column from the data source
you choose to assign to these default OMNIbus fields, you must be format them as a timestamp using

20 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

either SQL or the rules file. You can specify that the probe uses one of the following formats for the
timestamp:

• UNIX timestamp format - expressed as the number of seconds that have elapsed since Jan 1, 1970
• General textual representation format - expressed in a customizable combination of years, months,

days, hours, minutes, and seconds; for example: 2013-01-29 10:45:00

There are two ways in which you can define the format of the timestamp: within the probe rules file or
within the SQL SELECT statement. The method that you chose depends on how you want to convert or
format the timestamp.

• Scenario 1: The column that you are using for the timestamp is in a general textual representation
format and you want convert it to UNIX timestamp format. In this scenario, you can specify the
timestamp using the rules file method or the SQL method.

• Scenario 2: The column that you are using for the timestamp is in UNIX timestamp format and want to
convert it to a general textural representation format. In this scenario, you must use the rules file
method.

• Scenario 3: The column that you are using for the timestamp is in a general textual representation
format and you want to convert it to a different general textual representation format. In this scenario,
you can either use SQL to convert to UNIX format and then use the rules file method to convert the
timestamp to a different general textual representation format, or you can use SQL method.

Both methods are described at the end of this topic.

Method 1: Defining the format of the timestamp within the probe rules file
To define the format of the timestamp as described in Scenario 1 within the probe rules file, use the
following steps:

1. Configure the SQL statement in the file specified by the SelectSqlFile property to specify the name
of the column that the probe will use to create a timestamp for each event. For example, the following
MS SQL command selects, and makes available for converting into a timestamp, the AlertDateTime
from ISS SiteProtector:

Select AlertDateTime, SensorDataID, AlertName from SensorData1
2. Configure the rules file to specify the format that the probe will use for each timestamp field. For

example, the following code in the rules file instructs the probe to convert the selected column from a
yyyy-MM-dd hh:mm:ss textual representation into UNIX timestamp format:

if(exists ($AlertDateTime)) {
AlertDateTime original format "yyyy-MM-dd hh:mm:ss",
for example: 2013-01-29 10:45:00
$AlertDateTime = datetotime($AlertDateTime, "yyyy-MM-dd hh:mm:ss")
@FirstOccurrence =$AlertDateTime
@LastOccurrence = $AlertDateTime
}

Note : In Scenario 2, you can use the same method, but using the timetodate function instead of the
datetotime function.

For details about using the datetotime function and the timetodate function within the probe rules
file, see the Netcool/OMNIbus Probe and Gateway Guide.

Method 2: Defining the format of the timestamp within the SQL SELECT statement
To define the format of the timestamp as described in Scenario 1 within the SQL SELECT statement, use
the following steps:

1. Configure the SQL statement in the file specified by the SelectSqlFile property to specify the name
of the column that the probe will use to create a timestamp and to convert it into UNIX timestamp
format. For example, the following MS SQL command selects AlertDateTime and converts it into
UNIX timestamp format:

Chapter 1. Probe for JDBC 21

Select DATEDIFF(s, '19700101', AlertDateTime) AS UTC_AlertDateTime,
SensorDataID, AlertName from SensorData1

2. Map the converted UNIX timestamp onto a Netcool/OMNIbus field. For example, the following code
maps $UTC_AlertDateTime to a Netcool/OMNIbus field:

if(exists ($UTC_AlertDateTime)) {
AlerDateTime original format in UTC
@FirstOccurrence =$UTC_AlertDateTime
@LastOccurrence = $UTC_AlertDateTime
}

Note : In Scenario 3, you can use the same method, but using the CONVERT() function instead of the
DATEDIFF() function. For example, to convert AlertDateTime from yyyy-MM-dd hh:mm:ss format to
MMM dd yyyy hh:mmAM(or PM) format, use the following MS SQL SELECT statement:

SELECT CONVERT(VARCHAR(24),AlertDateTime,100) AS AlertDateTime FROM SensorData1

Specifying what the probe does during inactivity
The probe has a timeout facility that allows it to disconnect from the data source if it fails to receive the
next alarm data within a predefined amount of time.

To specify how long the probe waits before disconnecting, use the Inactivity property. After this
length of time, the probe disconnects from the data source, and flushes any outstanding events to the
ObjectServer.

If you set the Inactivity property to 0, the probe never disconnects from the data source regardless of
whether there is a period of inactivity.

Reconnecting to the event source and the probe backoff strategy
The reconnection functionality allows you to specify how the probe behaves if it loses its connection to
the event source. You can specify whether the probe attempts to reconnect to the data source, the
maximum number of reconnection attempts the probe makes, and the frequency with which the probe
makes those attempts.

You configure the reconnection functionality using the RetryCount and RetryInterval properties.

To specify how many times the probe attempts to reconnect to the data source, use the RetryCount
property. If you set the RetryCount property to 0 and the probe fails to establish a connection or loses
an existing connection to the data source, the probe will not attempt to reconnect to the data source.

To specify the frequency (in seconds) with which the probe attempts to reconnect to the data source, use
the RetryInterval property. If you set the RetryInterval property to 0 and the probe fails to
establish a connection or loses an existing connection to the data source, the probe reverts to a backoff
strategy. The probe tries to reestablish a connection after one second, then two seconds, then four
seconds, then eight seconds, and so on, up to a maximum of 4096 seconds.

Note : If the probe has previously connected to the database, attempted a resynchronization, and
subsequently lost its connection, the probe will not attempt to the reconnect to the event source. This is
because there may be a problem with the SELECT statement specified to retrieve events. The probe will
write an error message to the log file and shut down. You will need to consult the error log to determine
why the probe disconnected from the data source.

Peer-to-peer failover functionality
The probe supports failover configurations where two probes run simultaneously. One probe acts as the
master probe, sending events to the ObjectServer; the other acts as the slave probe on standby. If the
master probe fails, the slave probe activates.

While the slave probe receives heartbeats from the master probe, it does not forward events to the
ObjectServer. If the master probe shuts down, the slave probe stops receiving heartbeats from the master
and any events it receives thereafter are forwarded to the ObjectServer on behalf of the master probe.

22 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

When the master probe is running again, the slave probe continues to receive events, but no longer sends
them to the ObjectServer.

Configuring peer-to-peer functionality

When configuring two probes in a failover pair, you should specify unique values for the following
properties so that the two probe instances do not attempt to overwrite each others files:

• PidFile
• PropsFile
• DataBackupFile

You should also specify a different rules file for each instance using the RulesFile property. You should,
however, specify the same values for the following properties, because these properties relate to the
database from which the two probes acquire events and how they acquire those events:

• SelectSqlFile
• DBPassword
• DBUsername
• JdbcDriver
• JdbcUrl
• MarkerColumn
• InitialResynch
• ResynchInterval

Example property file settings
You set the peer-to-peer failover mode in the properties files of the master and slave probes. The settings
differ for a master probe and slave probe.

The following example shows the peer-to-peer settings from the properties file of a master probe:

Mode : "master"
DataBackupFile : "C:\\IBM\\Tivoli\\Netcool\\omnibus\\var\\RecoveryFile_master"
RulesFile : "master_rules_file"
MessageLog : "master_log_file"
PeerHost : "slave_hostname"
PeerPort : 9988 # [communication port between master and slave probe]
PidFile : "C:\\IBM\\Tivoli\\Netcool\\omnibus\\var\\jdbc_m.pid"

The following example shows the peer-to-peer settings from the properties file of the corresponding slave
probe:

Mode : "slave"
DataBackupFile : "C:\\IBM\\Tivoli\\Netcool\\omnibus\\var\\RecoveryFile_slave"
RulesFile : "slave_rules_file"
MessageLog : "slave_log_file"
PeerHost : "master_hostname"
PeerPort : 9988 # [communication port between master and slave probe]
PidFile : "C:\\IBM\\Tivoli\\Netcool\\omnibus\\var\\jdbc_s.pid"

Chapter 1. Probe for JDBC 23

Running the probe as a Windows service
The Windows version of the probe can be run as a Windows service. Configuring the probe to run as a
Windows service is a two-part process: First you need to register the probe as a Windows service, then
you need to start the probe using the Services window within Windows Control Panel.

Setting the path to jvm.dll in the Windows environment
Before running any probe as a Windows service, you must have the path to jvm.dll set in the probe
environment. This file forms a part of your Java installation and its location depends on the version of
Java that you are running.

If you want to use IBM Java that is supplied with Netcool/OMNIbus V7.4.0, enter the following commands
on the command line:

set OMNIBUS_JVM_DLL=C:\IBM\Tivoli\Netcool\platform\win32\jre_1.6.7\jre\bin\j9vm
\jvm.dll

If you want to use another version of Java (for example, Sun Oracle Java) you must set the path to the
location of the jvm.dll file within that Java environment. To identify the path to set, search for jvm.dll
using Windows Explorer or consult the documentation supplied with your version of Java.

Note : If you do not set OMNIBUS_JVM_DLL, the nco_p_jdbc.bat script will use the default jvm.dll
delivered with Netcool/OMNIbus in the following location %NCHOME%\platform\arch\jre_version.

Registering the probe as a Windows service and running the probe
To register the probe as a Windows service, run the following command:

%OMNIHOME%\probes\win32\probe_name /INSTALL /CMDLINE "command_line_options"

Where probe_name is the name of the probe, for example nco_p_jdbc.bat.

Note : You must include double quotes ("") after /CMDLINE for the command line arguments, otherwise
the Windows service will not work as expected.

To run the probe as a Windows service, use the following steps:

1. Configure the probe properties file.
2. Select Control Panel > Administrative Tools.
3. Double-click on Services.

The Services window opens. This window lists all of the services that are currently installed on your
machine.

4. Search for the probe by its name in the list of services.

Note : If you did not specify an instance name within the command line options, the probe instance
will appear in the list of services as NCONcoPJdbcProbe.

5. Click on its name and select Start.

To remove the probe service, run the following command:

%OMNIHOME%\probes\win32\probe_name /REMOVE

Running multiple instances of the probe as a Windows service
When you run multiple instances of the probe as a Windows service, you should use separate properties
files and rules file. You should also specify different files for the PidFile and DataBackupFile
properties.

To create a second JDBC probe instance as windows service, use one of the following methods:

Method 1

24 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

1. Make a copy of the jdbc.props and jdbc.rules files naming them JDBCProbe2.props file and a
JDBCProbe2.rules respectively.

2. Edit the rulesfile property of the JDBCProbe2.props file to reference JDBCProbe2.rules.
3. Run the following command:

nco_p_jdbc.bat /INSTALL /INSTANCE JDBCProbe2 /CMDLINE "-name JDBCProbe2"

Note : The -name JDBCProbe2 option determines that the files JDBCProbe2.props and
JDBCProbe2.rules will be used and that the instance of the probe will be called JDBCProbe2; the
probe instance will appear in the list of services as JDBCProbe2.

Method 2

1. Make a copy of the jdbc.props and jdbc.rules files naming them jdbc2.props file and a
jdbc2.rules respectively.

2. Edit the rulesfile property of the jdbc2.props file to reference jdbc2.rules.
3. Run the following command:

nco_p_jdbc.bat /INSTALL /INSTANCE JDBCProbe2 /CMDLINE "-propsfile
jdbc2.props"

Removing a running instance of the probe
To remove a probe instance, run the following command:

nco_p_jdbc.bat /REMOVE /INSTANCE instance_name

For example:

nco_p_jdbc.bat /REMOVE /INSTANCE JDBCProbe2

Running multiple instances of the JDBC Probe
You can run multiple instances of the probe on a single machine. This allows you to retrieve events from
more than one event source.

When running multiple instances on a single host, you should specify unique values for the following
properties so that the individual instances do not attempt to overwrite each others files:

• PidFile - this file stores the process ID of the probe.
• PropsFile - this is the properties file that the probe uses.
• DataBackupFile - this is the file the probe uses to record which events have already been retrieved.

You should also specify a different rules file for each instance using the RulesFile property. For each
probe instance, you should customize the @Summary and @Identifier fields of its rules file so that you
can differentiate between the events from the various data sources.

For example, suppose you have name two probe instances: master1 and master2. If you change the
@Summary and @Identifier fields in the rules file for master1 to the following values:

@Summary = "master 1 == " + $AlertName +
@Identifier = "master1" + $AlertID + ..

and change the @Summary and @Identifier fields in the rules file for master2 to the following values:

@Summary = "master 2 == " + $AlertName +
@Identifier = "master2" + $AlertID + ..

The probe will precede all alarms acquired by master1 with master 1 and will precede alarms acquired
by master2 with master 2.

Chapter 1. Probe for JDBC 25

Properties and command line options
You use properties to specify how the probe interacts with the device. You can override the default values
by using the properties file or the command line options.

The following table describes the properties and command line options specific to this probe. For
information about default properties and command line options, see the IBM Tivoli Netcool/OMNIbus
Probe and Gateway Guide.

Table 5. Properties and command line options

Property name Command line option Description

DBPassword string -dbpassword string Use this property to specify the
password associated with the
DBUsername that the probe uses to log
into the source database.

The default is "".

DBUsername string -dbusername string Use this property to specify the user
name that the probe uses to log into the
source database.

The default is "".

DisablePidFileLock string -disablepidfilelock
string

If you are running the probe on
Windows, set this property to true to
instruct the probe to overwrite any
existing PID file when the probe starts.
If you are running the probe on
Windows and set this property to
false, and if a PID file already exits for
this probe in the %OMNIHOME%\var
directory, the probe will fail to start.

The default is false.

JdbcDriver string -jdbcdriver string Use this property to specify the JDBC
driver that the probe uses to connect to
the event source.

The default is "".

JdbcUrl string -jdbcurl string Use this property to specify the URL of
the target database.

The default is "".

Note : When you specify the URL for the
database, you must include the details
of both the IP address and the database
to which you are connecting. The format
of the URL that you specify for this
property depends on the type of
database that you are using. You must
consult the documentation supplied
with your database for details of the
format that you need to use for its URL.

26 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Table 5. Properties and command line options (continued)

Property name Command line option Description

MarkerColumn string -markercolumn string Use this property to specify the name of
the column in the database that acts as
a marker for partial resynchronization.

The default is "".

MarkerColumnSensitive
string

-markercolumnsensitive
string

Use this property to specify whether the
criteria specified by the mandatory
SELECT statement is treated as case-
sensitive when used to select data from
the marker column.

The default is false (which indicates
that the criteria specified is case-
insensitive).

Note : In most situations, you should
set this property to false. However,
some databases (for example, Sybase)
select data using case-sensitive criteria.
For such databases, set this property to
true.

PostSqlFile string -postsqlfile string Use this property to specify the file
name of SQL statement file used to
perform a post-SQL action after the
mandatory SELECT statement.

The default is "".

PreSqlFile string -presqlfile string Use this property to specify the file
name of the SQL statement file used to
perform a pre-SQL action before the
mandatory SELECT statement.

The default is "".

ResyncBatchSize integer -resyncbatchsize integer Use this property to specify the
maximum number of alarms retrieved in
each batch of resynchronization alarms.

The default is 100.

SelectSqlFile string -selectsqlfile string Use this property to specify the file
name of SQL statement file used to
perform the mandatory SELECT
statement to retrieve events from the
data source.

The default is "".

Chapter 1. Probe for JDBC 27

Table 5. Properties and command line options (continued)

Property name Command line option Description

SqlWarnings string -sqlwarnings string Use this property to specify whether the
probe outputs non-critical database
specific warnings to the log file. This
property takes the following values:

• false: The probe does not output non-
critical database specific warnings to
the log file.

• true: The probe outputs non-critical
database specific warnings to the log
file.

The default is true.

Properties and command line options provided by the Java Probe
Integration Library (probe-sdk-java) version 4.0

All probes can be configured by a combination of generic properties and properties specific to the probe.

The following table describes the properties and command line options that are provided by the Java
Probe Integration Library (probe-sdk-java) version 4.0.

Note : Some of the properties listed may not be applicable to your probe.

Table 6. Properties and command line options

Property name Command line option Description

CommandPort integer -commandport integer Use this property to specify the port to
which users can Telnet to communicate
with the probe using the Command Line
Interface (CLI) supplied.

The default is 6970.

CommandPortLimit integer -commandportlimit integer Use this property to specify the
maximum number of Telnet
connections that can be made to the
probe.

The default is 10.

DataBackupFile string -databackupfile string Use this property to specify the path to
the file that stores data between probe
sessions.

The default is "".

Note : Specify the path relative to
$OMNIHOME/var.

28 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Table 6. Properties and command line options (continued)

Property name Command line option Description

HeartbeatInterval integer -heartbeatinterval
integer

Use this property to specify the
frequency (in seconds) with which the
probe checks the status of the host
server.

The default is 60.

Inactivity integer -inactivity integer Use this property to specify the length
of time (in seconds) that the probe
allows the port to receive no incoming
data before disconnecting.

The default is 0 (which instructs the
probe to not disconnect during periods
of inactivity).

InitialResync string -initialresync string Use this property to specify whether the
probe requests all active alarms from
the host server on startup. This
property takes the following values:

false: The probe does not request
resynchronization on startup.

true: The probe requests
resynchronization on startup.

For most probes, the default value for
this property is false.

If you are running the JDBC Probe, the
default value for the InitialResync
property is true. This is because the
JDBC Probe only acquires data using
the resynchronization process.

MaxEventQueueSize integer -maxeventqueue
sizeinteger

Use this property to specify the
maximum number of events that can be
queued between the non native process
and the ObjectServer.

The default is 10000.

Note : You can increase this number to
increase the event throughput when a
large number of events is generated.

Chapter 1. Probe for JDBC 29

Table 6. Properties and command line options (continued)

Property name Command line option Description

ResyncInterval integer -resyncinterval integer Use this property to specify the interval
(in seconds) at which the probe makes
successive resynchronization requests.

For most probes, the default value for
this property is 0 (which instructs the
probe to not make successive
resynchronization requests).

If you are running the JDBC Probe, the
default value for the ResyncInterval
property is 60. This is because the
JDBC Probe only acquires data using
the resynchronization process.

RetryCount integer -retrycount integer Use this property to specify how many
times the probe attempts to retry a
connection before shutting down.

The default is 0 (which instructs the
probe to not retry the connection).

RetryInterval integer -retryinterval integer Use this property to specify the length
of time (in seconds) that the probe
waits between successive connection
attempts to the target system.

The default is 0 (which instructs the
probe to use an exponentially
increasing period between successive
connection attempts, for example, the
probe will wait for 1 second, then 2
seconds, then 4 seconds, and so forth).

RotateEndpoint string -rotateendpoint string Use this property to specify whether the
probe attempts to connect to another
endpoint if the connection to the first
endpoint fails.

This property takes the following
values:

false: The probe does not attempt to
connect to another endpoint if the
connection to the first endpoint fails.

true: The probe attempts to connect to
another endpoint if the connection to
the first endpoint fails.

The default is false.

30 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Elements
The probe breaks event data down into tokens and parses them into elements. Elements are used to
assign values to ObjectServer fields; the field values contain the event details in a form that the
ObjectServer understands.

The elements that the probe generates depend on the source table from which the probe is retrieving
data. The probe generates the element names from the columns names of that source table. Each field
from each row of the source table becomes an element in the alarm. So the elements that the probe
generates will differ from source table to source table.

Error messages
Error messages provide information about problems that occur while running the probe. You can use the
information that they contain to resolve such problems.

The following table describes the error messages specific to this probe. For information about generic
Netcool/OMNIbus error messages, see the IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide.

Table 7. Error messages

Error Description Action

Probe is connecting to
JDBC data source

The probe is attempting to
connect to the data source using
JDBC with the credentials
specified by the DBUsername,
DBPassword, JdbcUrl, and
JdbcDriver properties.

The probe was started by the user
and is now connecting to the data
source.

Probe is disconnecting
from JDBC data source

Probe is attempting to disconnect
from the data source.

The shutting down process was
initiated.

Probe is shutting
down ...

The probe is shutting down. The shutting down process was
initiated.

JDBC probe is an
accessor probe. Please
configure either
InitialResync or
ResyncInterval to
enable the probe to be
run and receiving data.

The probe could not acquire data
from the data source because the
InitialResync property is set
to false and the
ResyncInterval property is set
to 0.

Either set the InitialResync
property to true or set the
ResyncInterval property to a
value greater than 0.

SelectSqlFile is empty
or not configured.
Please configure
SelectSqlFile to enable
the probe to be run and
receiving data.

The SelectSqlFile property
has either been omitted or the file
specified does not contain a valid
SQL SELECT statement.

Set the SelectSqlFile property
to a file containing an SQL SELECT
statement that retrieves events
from the required table in the data
source.

Could not read the
contents of sql file

The probe failed to read the SQL
file specified by the
SelectSqlFile property.

Check that the file specified by the
SelectSqlFile property is not
corrupt. Check also that you have
specified the correct path and file
name.

Chapter 1. Probe for JDBC 31

Table 7. Error messages (continued)

Error Description Action

SQL file not found or
unable to open

The probe failed to read the SQL
file specified by the
SelectSqlFile property.

Check the path of the file specified
by the SelectSqlFile property
and check that the file specified is
not corrupt.

Probe is unable to
connect to JDBC data
source

The probe attempted to connect
to the JDBC data source, but
failed.

Check that you have set the
JdbcDriver, JdbcUrl,
DBUsername, and DBPassword
properties correctly. See
“Connecting to an event source
using JDBC” on page 4.

Exception occured
during retrieve probe
property from service
provider.

The probe failed to load property
services from the OIDK library.

Check your probe environment to
ensure that your property file has
been configured correctly. If the
problem persists, contact IBM
software support.

Data backup file
features requires to
work pairly with
MarkerColumn property.
Please refer to the
References Guide on how
to set the MarkerColumn
& DataBackupFile
accordingly

The data recovery and backup
functionality has not been
configured correctly using the
DataBackupFile and
MarkerColumn properties. Both
properties need to be set correctly
for the probe to be able to perform
partial resynchronization.

Check the values set for the
DataBackupFile and
MarkerColumn properties See
“Configuring partial
resynchronization” on page 13.

Probe may not able to
perform partial resync
due to could not find
the matchable marker
column. Please ensure
the column name is
existed in both
MarkerColumn property
and the mandatory
query.

The probe could not find the
matchable marker column
specified by the MarkerColumn
property within the mandatory
select query result. The marker
column name must exist in, and be
in the same case as, the results
returned by the select query
specified by the SelectSqlFile
property.

Check the values set for the
MarkerColumn property and
SelectSqlFile property. See
“Configuring partial
resynchronization” on page 13.

Please double check
your query and make
sure the column name is
correct

The marker column specified by
the MarkerColumn property is
not included in the results
returned by the mandatory SQL
SELECT statement.

Check the query specified by the
SelectSqlFile property and
make sure that the column name
is correct. See “Configuring partial
resynchronization” on page 13.

32 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Table 7. Error messages (continued)

Error Description Action

MarkerColumnSensitive
property has been set
to true. Please ensure
the column name defined
in MarkerColumn is the
same with the result
return by select query
with case-sensitive.

The MarkerColumnSensitive
property has been set to true.

Check that the column name
specified by the MarkerColumn
property is the same as the result
returned by, and in the same case
as, the SELECT statement in the
file specified by the
SelectSqlFile property. See
“Acquiring data from case-
insensitive and case-sensitive
databases” on page 16.

MarkerColumnSensitive
property value is true.
Please set it to false
if you required the
marker column to be
compared in ignored-
case (case-
insensitive).

The value of the
MarkerColumnSensitive
property has been set to true but
the probe could not find the
matched marker column.

You may need to set the
MarkerColumnSensitive
property it to false if the
database operates in a case-
insensitive environment. See
“Acquiring data from case-
insensitive and case-sensitive
databases” on page 16.

Probe unable to find
the JDBC Driver class,
please set JdbcDriver
property and your
environment CLASSPATH.

The probe could not find the JDBC
driver class specified by the
JdbcDriver property.

Check that the JdbcDriver
property is set to the path to the
JDBC drivers and set the
$CLASSPATH or %CLASSPATH%
environment variable to include
the path to the JDBC drivers. See
“Connecting to an event source
using JDBC” on page 4.

Probe encountered SQL
exception during pre-
sql process. Please
check your pre-sql
query configured in
PreSqlFile property.

Probe has encountered an SQL
exception during the pre-SQL
selection processing.

Check the pre-SQL query specified
by the PreSqlFile property.

Probe encountered SQL
exception during post-
sql process. Please
check your post-sql
query configured in
PostSqlFile property.

Probe has encountered an SQL
exception during the post-SQL
selection processing.

Check the post-SQL query
specified by the PostSqlFile
property.

Probe will skip the
pre-sql process due to
the file is blank

The probe skipped the pre-sql
process because the file specified
by the PreSqlFile property is
blank.

Change the value of the
PreSqlFile property to specify a
valid pre-SQL query.

Probe will skip the
post-sql process due to
the file is blank

The probe skipped the post-sql
process because the file specified
by the PostSqlFile property is
blank.

Change the value of the
PostSqlFile property to specify
a valid post-SQL query.

Chapter 1. Probe for JDBC 33

ProbeWatch messages
During normal operations, the probe generates ProbeWatch messages and sends them to the
ObjectServer. These messages tell the ObjectServer how the probe is running.

The following table describes the ProbeWatch messages that the probe generates. For information about
generic Netcool/OMNIbus ProbeWatch messages, see the IBM Tivoli Netcool/OMNIbus Probe and
Gateway Guide.

Table 8. ProbeWatch messages

ProbeWatch message Description Triggers or causes

Running The probe is running normally. The probe was started by the user.

Unable to execute pre-
SQL query

The probe encountered errors and
failed to process the pre-SQL
query statements.

The execution of the pre-SQL
query specified by the
PreSqlFile property contains
errors.

Unable to execute post-
SQL query

The probe encountered erros and
failed to process the post-SQL
query statements.

The execution of the post-SQL
query specified by the
PostSqlFile property contains
errors.

Unable to load jdbc
driver class

The probe encountered errors
when loading the JDBC driver
class.

Either the CLASSPATH
environment variable is missing or
incorrect, or the path to the JDBC
driver jars file has not been set.

Unable to get events
during
resynchronization

The probe encountered errors
during the resynchronization
process and unable to retrieve
events from the data source.

The probe could not run the
resynchronization correctly.
Ensure that the connection related
properties and the mandatory
select query property are correctly
configured.

34 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Appendix A. Notices and Trademarks
This appendix contains the following sections:

• Notices
• Trademarks

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA

© Copyright IBM Corp. 2014, 2017 35

3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, ibm.com, AIX, Tivoli, zSeries, and Netcool are trademarks of International Business
Machines Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based trademarks are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other
countries, or both.

36 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Appendix A. Notices and Trademarks 37

38 IBM Tivoli Netcool/OMNIbus Probe for JDBC: Reference Guide

IBM®

SC27-5610-02

	Contents
	About this guide
	Document control page
	Conventions used in this guide

	Chapter 1. Probe for JDBC
	Summary
	Installing probes
	Example usage
	Data acquisition
	Connecting to an event source using JDBC
	Connecting through either IPv4 or IPv6
	Authenticating with the data source
	Generating a key in a key file
	Specifying the key file as a property
	Encrypting a string value with the key
	Adding an encrypted value to the properties file

	Configuring the probe to retrieve data from ISS Site Protector
	Handling open-form SQL statement queries to retrieve data from the event source
	Configuring periodic resynchronization time intervals
	Configuring partial resynchronization
	Acquiring data from case-insensitive and case-sensitive databases
	Running pre-selection and post-selection processing queries on the event source
	Specifying whether the probe writes SQL warning messages to the probe log file
	Displaying unicode and non-unicode characters
	Customizing the timestamp that the probe adds to each event received
	Specifying what the probe does during inactivity
	Reconnecting to the event source and the probe backoff strategy
	Peer-to-peer failover functionality
	Configuring peer-to-peer functionality

	Running the probe as a Windows service
	Running multiple instances of the JDBC Probe

	Properties and command line options
	Properties and command line options provided by the Java Probe Integration Library (probe-sdk-java) version 4.0
	Elements
	Error messages
	ProbeWatch messages

	Appendix A. Notices and Trademarks
	Notices
	Trademarks

