
Python Reference Guide for IBM SPSS
Statistics

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
245.

Product Information

This edition applies to version 30, release 0, modification 0 of IBM® SPSS® Statistics and to all subsequent releases and
modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation .
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. Overview.. 1

Chapter 2. Python Integration Package.. 3
Introduction to Python Programs.. 3

Working with Python Program Blocks..4
Python Syntax Rules...7
Working with Multiple Versions of IBM SPSS Statistics ... 8
Python and IBM SPSS Statistics Working Directories... 9
Running IBM SPSS Statistics from an External Python Process... 9
Localizing Output from Python Programs..11

Python Functions and Classes...14
spss.ActiveDataset Function ...15
spss.AddProcedureFootnotes Function ..15
spss.BasePivotTable Class .. 16
spss.BaseProcedure Class .. 35
spss.CreateXPathDictionary Function .. 37
spss.Cursor Class ...37
spss.Dataset Class ...53
spss.DataStep Class .. 69
spss.DeleteXPathHandle Function ... 70
spss.EndDataStep Function .. 70
spss.EndProcedure Function .. 70
spss.EvaluateXPath Function ..70
spss.GetCaseCount Function .. 71
spss.GetDataFileAttributeNames Function .. 71
spss.GetDataFileAttributes Function ..71
spss.GetDatasets Function ... 71
spss.GetDefaultPlugInVersion Function ... 71
spss.GetFileHandles Function .. 72
spss.GetHandleList Function .. 72
spss.GetImage Function ... 72
spss.GetLastErrorLevel and spss.GetLastErrorMessage Functions ...73
spss.GetMultiResponseSetNames Function ...74
spss.GetMultiResponseSet Function .. 74
spss.GetOMSTagList Function ...74
spss.GetSetting Function .. 74
spss.GetSplitVariableNames Function ... 74
spss.GetSPSSLocale Function ...74
spss.GetSPSSLowHigh Function ... 75
spss.GetVarAttributeNames Function .. 75
spss.GetVarAttributes Function .. 75
spss.GetVariableCount Function ...75
spss.GetVariableFormat Function ...76
spss.GetVariableLabel Function ..76
spss.GetVariableMeasurementLevel Function ... 76
spss.GetVariableName Function ...77
spss.GetVariableRole Function ... 77
spss.GetVariableType Function ...77
spss.GetVarMissingValues Function ... 77
spss.GetWeightVar Function ... 78

 iii

spss.GetXmlUtf16 Function .. 78
spss.HasCursor Function ...78
spss.IsActive Function .. 78
spss.IsDistributedMode Function ... 79
spss.IsOutputOn Function .. 79
spss.Procedure Class .. 79
spss.PyInvokeSpss.IsUTF8mode Function .. 80
spss.PyInvokeSpss.IsXDriven Function ..80
spss.SetActive Function .. 80
spss.SetDefaultPlugInVersion Function ... 80
spss.SetMacroValue Function ... 81
spss.SetOutput Function ...81
spss.SetOutputLanguage Function ... 81
spss.ShowInstalledPlugInVersions Function ... 82
spss.SplitChange Function .. 82
spss.StartDataStep Function .. 83
spss.StartProcedure Function ...83
spss.StartSPSS Function ... 85
spss.StopSPSS Function ..86
spss.Submit Function .. 87
spss.TextBlock Class ... 87

Chapter 3. Scripting Guide... 89
Introduction to Python Scripts.. 89

Script Editor for the Python Programming Language.. 90
Class Hierarchy for Scripting Facility .. 90
Getting Started with Python Scripts.. 91

SpssClient Class ..94
CreateNewServer Method ... 94
Exit Method ..95
GetActiveDataDoc Method ..95
GetConfiguredServers Method ..95
GetCurrentDirectory Method ...95
GetCurrentServer Method ... 95
GetDataDocuments Method ..95
GetDefaultJCVersion Method ..96
GetDefaultServer Method ... 96
GetDesignatedOutputDoc Method ..96
GetDesignatedSyntaxDoc Method .. 96
GetExportOption Method .. 96
GetLocale Method ... 96
GetLocalServer Method ...97
GetOutputDocuments Method ..97
GetPreference Method .. 97
GetScriptContext Method ..97
GetSPSSOptions Method ...97
GetSPSSPath Method .. 98
GetSPSSVersion Method ... 98
GetSyntaxDocuments Method .. 98
GetUIAlerts Method .. 98
IsDataDocInUse Method ...98
IsDistributedMode ...99
IsOptionAvailable Method ...99
LogToViewer Method ... 99
NewDataDoc Method .. 100
NewOutputDoc Method ...100
NewSyntaxDoc Method ...100

iv

OpenDataDoc Method ...100
OpenOutputDoc Method ... 100
OpenSyntaxDoc Method ... 101
RunSyntax Method .. 101
SaveServers Method ... 102
ScriptParameter Method ...102
SetCurrentDirectory Method ...102
SetDefaultJCVersion Method ..103
SetExportOption Method .. 103
SetPreference Method .. 103
SetUIAlerts Method ...103
StartClient Method .. 104
StopClient Method ...104
_heartBeat Method ... 104

Datasets and Data Editor Windows...105
SpssDataDoc Class ..105
DataDocsList Class ..108
SpssDataUI Class .. 108

Output Documents and Viewer Windows... 112
SpssOutputDoc Class ..112
OutputDocsList Class .. 127
OutputItemList Class .. 127
SpssOutputUI Class .. 128

Syntax Documents and Syntax Editor Windows... 131
SpssSyntaxDoc Class .. 131
SyntaxDocsList Class .. 134
SpssSyntaxUI Class ...135

Output Items..138
SpssOutputItem Class .. 138
SpssChartItem Class ...145
SpssModelItem Class ..146
SpssHeaderItem Class ..147
SpssLogItem Class .. 148
SpssTextItem Class ... 149
SpssTitleItem Class ...150

Menus...150
MenuTableList Class ..150
SpssMenuItem Class ...151

Pivot Tables..151
Pivot Tables ... 151
SpssPivotTable Class ...152
SpssDataCells Class .. 168
SpssDimension Class .. 181
SpssFootnotes Class ... 183
SpssLabels Class ... 193
SpssLayerLabels Class .. 210
SpssPivotMgr Class ... 220

Managing Remote Servers...221
SpssServerConf Class ... 221
SpssServerConfList Class ..226

SpssScriptContext Class ...227
GetOutputDoc Method .. 227
GetOutputItem Method .. 227
GetOutputItemIndex Method ... 228

Appendix A. Variable Format Types ... 229

 v

Appendix B. Setting Color Values ...231

Appendix C. Export Options ...233

Appendix D. String Description of Numeric Formats ... 235

Appendix E. Preference Options .. 237

Appendix F. Python Extension Commands for SPSS Statistics............................. 241

Notices..245
Trademarks.. 246

Index.. 247

vi

Chapter 1. Overview

The IBM SPSS Statistics - Integration Plug-in for Python provides two interfaces for programming with
the Python language within IBM SPSS Statistics on Windows, Linux, macOS, and for IBM SPSS Statistics
Server.

Python Integration Package
The Python Integration Package provides functions that operate on the IBM SPSS Statistics processor,
extending IBM SPSS Statistics command syntax with the full capabilities of the Python programming
language. With this interface, you can access IBM SPSS Statistics variable dictionary information, case
data, and procedure output. You can submit command syntax to IBM SPSS Statistics for processing,
create new variables and new cases in the active dataset, or create new datasets. You can also create
output in the form of pivot tables and text blocks, all from within Python code.

Scripting Facility
The Scripting Facility provides Python functions that operate on user interface and output objects.
With this interface, you can customize pivot tables, and export items such as charts and tables in
various formats. You can also start IBM SPSS Statistics dialog boxes, and manage connections to
instances of IBM SPSS Statistics Server, all from within Python code.

The IBM SPSS Statistics - Integration Plug-in for Python is a part of the IBM SPSS Statistics product. It
also includes Python 3.10 on all supported operating systems (Windows, Linux, macOS, and UNIX for IBM
SPSS Statistics Server) and a set of extension commands that are implemented in Python that provide
capabilities beyond what is available with built-in SPSS Statistics procedures.

By default, the Integration Plug-in for Python uses the Python 3.10 distribution that are installed with
your IBM SPSS Statistics product. The distribution is installed to the Python3 directory under the
directory where SPSS Statistics is installed. You can specify to use a different installation of Python
3.10 on the File Locations tab on the Options dialog (Edit>Options). In distributed analysis mode (requires
IBM SPSS Statistics Server), the Python location on the remote server is set from the IBM SPSS Statistics
Administration Console. Contact your system administrator for assistance.

Note: The locations for extension commands that are listed in the output from the SHOW EXTPATHS
command are added to the Python search path when you are accessing Python from within IBM SPSS
Statistics. If you develop your own Python modules for use with IBM SPSS Statistics on your computer
then you can store your modules in one of those locations.

2 Python Reference Guide for IBM SPSS Statistics

Chapter 2. Python Integration Package

Introduction to Python Programs
The Python® Integration Package for IBM SPSS Statistics allows you to create Python programs that
control the flow of command syntax jobs, read and write data, and create custom procedures that
generate their own pivot table output. This feature requires the IBM SPSS Statistics - Integration Plug-in
for Python, which is installed by default with your IBM SPSS Statistics product.

A companion interface is available for creating Python scripts that operate on the IBM SPSS Statistics
user interface and manipulate output objects. See the topic “Introduction to Python Scripts” on page 89
for more information.

Python programming features described here are available inside BEGIN PROGRAM-END PROGRAM
program blocks in command syntax. A program block provides access to all the functionality of the Python
programming language, including the functions specific to IBM SPSS Statistics and provided in the Python
Integration Package for IBM SPSS Statistics. You can use program blocks to combine the programmability
features of Python with all the capabilities of IBM SPSS Statistics by building strings of command syntax
that are then executed by IBM SPSS Statistics.

You can also run IBM SPSS Statistics from an external Python process, such as a Python IDE or the Python
interpreter. See the topic “Running IBM SPSS Statistics from an External Python Process” on page 9 for
more information.

Within a program block, Python is in control, and it knows nothing about IBM SPSS Statistics commands.
When the Python Integration Package for IBM SPSS Statistics is loaded, Python knows about the
functions provided in the package, but standard IBM SPSS Statistics commands are basically invalid
within a program block. For example:

BEGIN PROGRAM PYTHON3.
FREQUENCIES VARIABLES=var1, var2, var3.
END PROGRAM.

will generate an error, because FREQUENCIES is not recognized by Python. But since the goal of a
program block is typically to generate some command syntax that IBM SPSS Statistics can understand,
there must be a way to specify command syntax within a program block. This is done by expressing syntax
commands, or parts of commands, as character strings, as in:

spss.Submit("FREQUENCIES VARIABLES=var1, var2, var3.")

The real power of program blocks comes from the ability to dynamically build strings of command syntax,
as in:

BEGIN PROGRAM PYTHON3.
import spss
string1="DESCRIPTIVES VARIABLES="
N=spss.GetVariableCount()
scaleVarList=[]
for i in range(N):
 if spss.GetVariableMeasurementLevel(i)=='scale':
 scaleVarList.append(spss.GetVariableName(i))
string2="."
spss.Submit([string1, ' '.join(scaleVarList), string2])
END PROGRAM.

• spss.GetVariableCount returns the number of variables in the active dataset.
• if spss.GetVariableMeasurementLevel(i)=="scale" is true only for variables with a scale

measurement level.
• scaleVarList.append(spss.GetVariableName(i)) builds a list of variable names that includes

only those variables with a scale measurement level.

• spss.Submit submits a DESCRIPTIVES command to IBM SPSS Statistics that looks something like
this:

DESCRIPTIVES VARIABLES=
scalevar1 scalevar2 scalevar3...etc.
.

Working with Python Program Blocks
Use SET PRINTBACK ON MPRINT ON to display the syntax generated by program blocks.

Example
SET PRINTBACK on MPRINT on.
* Get the employee data.sav file from samples/english under the SPSS installation directory and run the following code.

BEGIN PROGRAM PYTHON3.
import spss
scaleVarList=[]
catVarList=[]
varcount=spss.GetVariableCount()
for i in range(varcount):
 if spss.GetVariableMeasurementLevel(i) == 'scale':
 scaleVarList.append(spss.GetVariableName(i))
 elif spss.GetVariableMeasurementLevel(i) in ['nominal', 'ordinal']:
 catVarList.append(spss.GetVariableName(i))
if catVarList:
 spss.Submit(f"""FREQUENCIES
 /VARIABLES={" ".join(catVarList)}""")
if scaleVarList:
 spss.Submit(f"""DESCRIPTIVES
 /VARIABLES={" ".join(scaleVarList)}""")
END PROGRAM.

The generated command syntax is displayed in the log in the IBM SPSS Statistics Viewer:

225 M> FREQUENCIES
226 M> /VARIABLES=gender educ jobcat minority.
227 M> DESCRIPTIVES
228 M> /VARIABLES=id bdate salary salbegin jobtime prevexp.

Basic Specification for a Python Program Block
The basic specification for a Python program block is BEGIN PROGRAM PYTHON3 followed by one or
more Python statements, followed by END PROGRAM.

Note: The Python function sys.exit() is not supported for use within a program block.

• The first program block in a session should start with the Python function import spss, which imports
the spss module, providing access to the functions in the Python Integration Package for IBM SPSS
Statistics. See the topic “Python Functions and Classes” on page 14 for more information.

• Subsequent program blocks in the same session do not require import spss, and it is silently ignored
if the module has already been imported.

Example

DATA LIST FREE /var1.
BEGIN DATA
1
END DATA.
DATASET NAME File1.
BEGIN PROGRAM PYTHON3.
import spss
File1N=spss.GetVariableCount()
END PROGRAM.
DATA LIST FREE /var1 var2 var3.
BEGIN DATA
1 2 3
END DATA.
DATASET NAME File2.
BEGIN PROGRAM PYTHON3.
File2N=spss.GetVariableCount()
if File2N > File1N:
 message="File2 has more variables than File1."
elif File1N > File2N:
 message="File1 has more variables than File2."
else:
 message="Both files have the same number of variables."
print(message)
END PROGRAM.

4 Python Reference Guide for IBM SPSS Statistics

• The first program block contains the import spss statement. This statement is not required in the
second program block.

• The first program block defines a programmatic variable, File1N, with a value set to the number of
variables in the active dataset.

• Prior to the second program block, a different dataset becomes the active dataset, and the second
program block defines a programmatic variable, File2N, with a value set to the number of variables in
that dataset.

• Since the value of File1N persists from the first program block, the two variable counts can be compared
in the second program block.

Syntax Rules

• Within a program block, only statements recognized by the specified programming language are
allowed.

• Command syntax generated within a program block must follow interactive syntax rules.
• Within a program block, each line should not exceed 251 bytes (although syntax generated by those

lines can be longer).
• With the IBM SPSS Statistics Batch Facility (available only with IBM SPSS Statistics Server), use the -i

switch when submitting command files that contain program blocks. All command syntax (not just the
program blocks) in the file must adhere to interactive syntax rules.

Within a program block, the programming language is in control, and the syntax rules for that
programming language apply. Command syntax generated from within program blocks must always
follow interactive syntax rules. For most practical purposes this means command strings you build in
a programming block must contain a period (.) at the end of each command.

Scope and Limitations

• Programmatic variables created in a program block cannot be used outside of program blocks.
• Program blocks cannot be contained within DEFINE-!ENDDEFINE macro definitions.
• Program blocks can be contained in command syntax files run via the INSERT command, with the

default SYNTAX=INTERACTIVE setting.
• Program blocks cannot be contained within command syntax files run via the INCLUDE command.

• Python variables specified in a given program block persist to subsequent program blocks.
• Python programs (.py, .pyc) utilizing the spss module cannot be run as autoscripts, nor are they

intended to be run from Utilities>Run Script.

More information about Python programs and Python scripts is available from the IBM SPSS Statistics
Help system, and accessed from Core System>Scripting Facility.

Nested Program Blocks
From within Python, you can submit command syntax containing a BEGIN PROGRAM block, thus allowing
you to nest program blocks. This can be done by including the nested program block in a separate
command syntax file and submitting an INSERT command to read in the block. It can also be done by
submitting the nested program block from within a user-defined Python function.

Example: Nesting program blocks using the INSERT command
import spss
spss.Submit("INSERT FILE='/myprograms/nested_block.sps'.")

The file /myprograms/nested_block.sps would contain a BEGIN PROGRAM block, as in:

BEGIN PROGRAM PYTHON3.
import spss
<Python code>
END PROGRAM.

Chapter 2. Python Integration Package 5

Note: You cannot import a Python module containing code that nests a program block, such as the
above code that uses the INSERT command to insert a file containing a program block. If you wish to
encapsulate nested program blocks in a Python module that can be imported, then embed the nesting
code in a user-defined function as shown in the following example.

Example: Nesting program blocks with a user-defined Python function
import spss, myfuncs
myfuncs.demo()

• myfuncs is a user-defined Python module containing the function (demo) that will submit the nested
program block.

A Python module is simply a text file containing Python definitions and statements. You can create a
module with a Python IDE, or with any text editor, by saving a file with an extension of .py. The name of
the file, without the .py extension, is then the name of the module.

• The import statement includes myfuncs so that it is loaded along with the spss module. To be sure
that Python can find your module, you may want to save it to your Python "site-packages" directory,
typically /Python310/Lib/site-packages.

• The code myfuncs.demo() calls the function demo in the myfuncs module.

Following is a sample of the contents of myfuncs.

import spss
def demo():
 spss.Submit("""
BEGIN PROGRAM PYTHON3.
<Python code>
END PROGRAM.""")

• The sample myfuncs module includes an import spss statement. This is necessary since a function
in the module makes use of a function from the spss module--specifically, the Submit function.

• The nested program block is contained within a Python triple-quoted string. Triple-quoted strings allow
you to specify a block of commands on multiple lines, resembling the way you might normally write
command syntax.

• Notice that spss.Submit is indented but the BEGIN PROGRAM block is not. Python statements that
form the body of a user-defined Python function must be indented. The level of indentation is arbitrary
but must be the same for all statements in the function body. The BEGIN PROGRAM block is passed as
a string argument to the Submit function and is processed by IBM SPSS Statistics as a block of Python
statements. Python statements are not indented unless they are part of a group of statements, as in a
function or class definition, a conditional expression, or a looping structure.

Notes
• You can have up to five levels of nesting.
• Python variables specified in a nested program block are local to that block unless they are specified as

global variables. In addition, Python variables specified in a program block that invokes a nested block
can be read, but not modified, in the nested block.

• Nested program blocks can be Python program blocks or R program blocks.
• If a Submit function containing a triple quoted string nests a Python program block containing another

triple quoted string, use a different type of triple quotes in the nested block. For example, if the outer
block uses triple double quotes, then use triple single quotes in the nested block.

Unicode Mode
When IBM SPSS Statistics is in Unicode mode (controlled by the UNICODE subcommand of the SET
command) the following conversions are automatically done when passing and receiving strings through
the functions available with the spss module:

6 Python Reference Guide for IBM SPSS Statistics

• Strings received by Python from IBM SPSS Statistics are converted from UTF-8 to Python Unicode,
which is UTF-16.

• Strings passed from Python to IBM SPSS Statistics are converted from UTF-16 to UTF-8.

Note: Changing the locale and/or the unicode setting during an OMS request may result in incorrectly
transcoded text.

Command Syntax Files

Special care must be taken when working in Unicode mode with command syntax files. Specifically,
Python string literals used in command syntax files need to be explicitly expressed as UTF-16 strings. This
is best done by using the u() function from the spssaux module (installed with IBM SPSS Statistics). The
function has the following behavior:

• If IBM SPSS Statistics is in Unicode mode, the input string is converted to UTF-16.
• If IBM SPSS Statistics is not in Unicode mode, the input string is returned unchanged.

Note: If the string literals in a command syntax file only consist of plain roman characters (7-bit ascii), the
u() function is not needed.

The following example demonstrates some of this behavior and the usage of the u() function.

set unicode on locale=english.
BEGIN PROGRAM.
import spss, spssaux
from spssaux import u
literal = "âbc"
try:
 print("literal without conversion:", literal)
except:
 print("can't print literal")
try:
 print("literal converted to utf-16:", u(literal))
except:
 print("can't print literal")
END PROGRAM.

Following are the results:

literal without conversion: can't print literal
literal converted to utf-16: âbc

Truncating Unicode Strings

When working in Unicode mode, use the truncatestring function from the spssaux module to
correctly truncate a string to a specified maximum length in bytes. This is especially useful for truncating
strings to be used as IBM SPSS Statistics variable names, which have a maximum allowed length of 64
bytes.

The truncatestring function takes two arguments--the string to truncate, and the maximum number
of bytes, which is optional and defaults to 64. For example:

import spss, spssaux
newstring = spssaux.truncatestring(string,8)

Python Syntax Rules
Within a Python program block, only statements and functions recognized by Python are allowed. Python
syntax rules differ from IBM SPSS Statistics command syntax rules in a number of ways:

Python is case-sensitive. This includes variable names, function names, and pretty much anything
else you can think of. A variable name of myvariable is not the same as MyVariable, and the function
spss.GetVariableCount cannot be written as SPSS.getvariablecount.

Python uses UNIX-style path specifications, with forward slashes. This applies even for IBM SPSS
Statistics command syntax generated within a Python program block. For example:

spss.Submit("GET FILE '/data/somedata.sav'.")

Chapter 2. Python Integration Package 7

Alternatively, you can escape each backslash with another backslash, as in:

spss.Submit("GET FILE '\\data\\somedata.sav'.")

There is no command terminator in Python, and continuation lines come in two flavors:

• Implicit. Expressions enclosed in parentheses, square brackets, or curly braces can continue across
multiple lines without any continuation character. The expression continues implicitly until the closing
character for the expression.

• Explicit. All other expression require a backslash at the end of each line to explicitly denote
continuation.

Line indentation indicates grouping of statements. Groups of statements contained in conditional
processing and looping structures are identified by indentation, as is the body of a user-defined Python
function. There is no statement or character that indicates the end of the structure. Instead, the
indentation level of the statements defines the structure, as in:

for i in range(varcount):
 if spss.GetVariableMeasurementLevel(i)=="scale":
 ScaleVarList=ScaleVarList + " " + spss.GetVariableName(i)
 else:
 CatVarList=CatVarList + " " + spss.GetVariableName(i)
print CatVarList

Note: You should avoid the use of tab characters in Python code within BEGIN PROGRAM-END PROGRAM
blocks. For line indentation, use spaces.

Working with Multiple Versions of IBM SPSS Statistics
For versions 16.0 to 21.0, special considerations apply when multiple versions of the IBM SPSS Statistics
- Integration Plug-in for Python (each associated with a major version of IBM SPSS Statistics, such as 20
or 21) are installed on your computer.

Running Python Programs from Within IBM SPSS Statistics
Important: This section only applies to versions 16.0 to 21.0.

By default, Python programs run from within the last installed version of IBM SPSS Statistics will
automatically use the appropriate version of the plug-in. To run Python programs from within a different
version of IBM SPSS Statistics, use the spss.SetDefaultPlugInVersion function to set the default to a
different version (the setting persists across sessions). You can then run Python programs from within
the other version. If you are attempting to change the default version from 16.0 to 17.0, additional
configuration is required; please see the Notes below.

Running Python Programs from an External Python Process
Important: This section only applies to versions 16.0 to 21.0. For version 22 and higher, see “Running
IBM SPSS Statistics from an External Python Process” on page 9.

When you are driving the IBM SPSS Statistics backend from a separate Python process, such as the
Python interpreter or a Python IDE, the plug-in will drive the version of the IBM SPSS Statistics backend
that matches the default plug-in version specified for that version of Python. Unless you change it, the
default plug-in version for a given version of Python (such as Python 2.6) is the last one installed. You can
view the default version using the spss.GetDefaultPlugInVersion function and you can change the default
version using the spss.SetDefaultPlugInVersion function. The setting persists across sessions. If you are
attempting to change the default version from 16.0 to 17.0 please see the Notes below.

Note:

• If you are using the spss.SetDefaultPlugInVersion function to change the default from version
16.0 to version 17.0, you should also manually modify the file SpssClient.pth located in the Python 2.5
site-packages directory. Change the order of entries in the file so that the first line is SpssClient170.

8 Python Reference Guide for IBM SPSS Statistics

Windows. The site-packages directory is located in the Lib directory under the Python 2.5 installation
directory—for example, C:\Python25\Lib\site-packages.

Mac OS X 10.4 (Tiger). The site-packages directory is located at /Library/Frameworks/
Python.framework/Versions/2.5/lib/python2.5/site-packages.

Mac OS X 10.5 (Leopard). The site-packages directory is typically located at /Library/Python/2.5/site-
packages.

Linux and UNIX Server. The site-packages directory is located in the /lib/python2.5/ directory under
the Python 2.5 installation directory—for example, /usr/local/python25/lib/python2.5/site-packages.

• Beginning with version 15.0, a restructuring of the IBM SPSS Statistics - Integration Plug-in for Python
installation directory and changes to some class structures may affect Python code written for an earlier
version and used with a 15.0 or higher version. Specifically, the type of an object, as given by the Python
type function, may return a different result. For example:

cur=spss.Cursor()

print type(cur)

will return spss.cursors.Cursor when run with version 14.0,
spss.spss150.cursors.ReadCursor when run with version 15.0, and
spss.cursors.ReadCursor when run with a version higher than 15.0.

Python and IBM SPSS Statistics Working Directories
When running Python code that is within a BEGIN PROGRAM-END PROGRAM block and that contains
relative paths in file specifications, you will need to understand the notions of working directories,
both for Python and IBM SPSS Statistics. You may want to avoid the subtleties involved with working
directories by avoiding the use of relative paths and using full paths for file specifications.

• Relative paths used for file specifications in command syntax submitted from Python (with
spss.Submit) are relative to the IBM SPSS Statistics backend working directory. The IBM SPSS
Statistics backend working directory determines the full path used for file specifications in command
syntax in the case where only a relative path is provided. It can be changed with the CD command, but
is not affected by actions involving the file open dialogs, and it is private to the IBM SPSS Statistics
backend.

• Relative paths used when reading and writing files with built-in Python functions--such as open--are
relative to the Python current working directory. You can get the Python current working directory from
the getcwd function in the os module.

Running IBM SPSS Statistics from an External Python Process
You can run Python programs utilizing the spss module from any external Python process, such as a
Python IDE or the Python interpreter. In this mode, the Python program starts up a new instance of the
IBM SPSS Statistics processor without an associated instance of the IBM SPSS Statistics client. You can
use this mode to debug your Python programs using the Python IDE of your choice.

To drive the IBM SPSS Statistics processor from a Python IDE, simply include an import spss statement
in the IDE's code window, followed by a call to the spss.StartSPSS function. You can then call any
of the functions in the spss module, just like with program blocks in command syntax jobs, but you
do not need to wrap your Python code in BEGIN PROGRAM-END PROGRAM statements. Some initial
configuration may be required as described in the following sections.

Windows Users
You can start IDLE (the default IDE provided with Python) for Python 3.10 from All Programs > IBM SPSS
Statistics > Python 3.10 for IBM SPSS Statistics 30 > Python 3.10 IDLE(PythonGUI). This action starts
IDLE from the Python location that is specified on the File Locations tab in the Options dialog. You can
then use import spss to start driving the IBM SPSS Statistics processor.

Chapter 2. Python Integration Package 9

If you do not use IDLE to drive IBM SPSS Statistics, then you must modify the Python search path
to add the path to the spss module. You can add to the Python search path by modifying (or
creating) the sitecustomize.py module for the installation of Python 3.10 that you want to use.
The sitecustomize.py module, if it exists, is in the <PYTHON_HOME>\Lib\site-packages directory,
where <PYTHON_HOME> is the installation location of Python 3.10. If it does not exist then create it in that
location.

For Python 3.10, add the following lines to sitecustomize.py:

import sys
sys.path.insert(0,r'<SPSS_HOME>\Python3\Lib\site-packages')

In the preceding expressions, <SPSS_HOME> is the installation location of IBM SPSS Statistics; for
example, C:\Program Files\IBM\SPSS Statistics\30.

Linux Users
The statisticspython3 script, in the bin directory under the location where IBM SPSS Statistics is
installed, starts the Python interpreter from the Python location that is specified on the File Locations tab
in the Options dialog. You can then use import spss to start driving the IBM SPSS Statistics processor.

If you choose not to use this script, then you must modify the Python search path to add the path to the
spss module. You can add to the Python search path by modifying (or creating) the sitecustomize.py
module for the installation of Python 3.10 that you want to use. The sitecustomize.py module, if it
exists, is in the <PYTHON_HOME>/lib/python3.10/site-packages directory, where <PYTHON_HOME>
is the installation location of Python 3.10. If it does not exist then create it in that location.

For Python 3.10, add the following lines to sitecustomize.py:

import sys
sys.path.insert(0,'<SPSS_HOME>/Python3/lib/python3.10/site-packages')

In the preceding expression, <SPSS_HOME> is the installation location of IBM SPSS Statistics; for
example, /opt/IBM/SPSS Statistics/30.

You must also modify the LD_LIBRARY_PATH environment variable as follows:

export LD_LIBRARY_PATH=<PYTHON_HOME>/lib:<SPSS_HOME>/lib:$LD_LIBRARY_PATH

In the preceding expression, <PYTHON_HOME> is the location of the installation of Python 3.10 that you
want to use. For reference, for the version of Python 3.10 that is installed with IBM SPSS Statistics,
<PYTHON_HOME> is <SPSS_HOME>/Python3.

Mac Users
To drive the IBM SPSS Statistics processor from an external Python 3 process on Mac, start the Python3
for SPSS Statistics application, which are in the directory where IBM SPSS Statistics is installed. The
applications start IDLE from the Python location that is specified on the File Locations tab in the Options
dialog. You can then use import spss to start driving the IBM SPSS Statistics processor.

If you choose not to use the Python3 for SPSS Statistics application, then you must modify the Python
search path to add the path to the spss module. You can add to the Python search path by modifying (or
creating) the sitecustomize.py module for the installation of Python 3.10 that you want to use. The
sitecustomize.py module, if it exists, is in the <PYTHON_HOME>/lib/python3.10/site-packages
directory, where <PYTHON_HOME> is the installation location of Python 3.10. If it does not exist then
create it in that location.

For Python 3.10, add the following lines to sitecustomize.py:

import sys
sys.path.insert(0,'<INSTALLDIR>/Python3/lib/python3.10/site-packages')

10 Python Reference Guide for IBM SPSS Statistics

In the preceding expression, <INSTALLDIR> is the location of the IBM SPSS Statistics application
bundle; for example, /Applications/IBM SPSS Statistics/30.

You must also modify environment variables as follows:

export
DYLD_LIBRARY_PATH=<SPSS_HOME>/lib:<SPSS_HOME>/Library/Frameworks/Sentinel.framework/Versions/A:
<SPSS_HOME>/Library/Frameworks/SuperPro.framework/Versions/A
export PYTHONHOME=<PYTHON_HOME>

In the preceding expression, <SPSS_HOME> is the location of the Contents folder in the IBM SPSS
Statistics application bundle, and is given by <INSTALLDIR>/SPSSStatistics.app/Contents.
<PYTHON_HOME> is the location of the installation of Python 3.10 that you want to use. For
reference, for the version of Python 3.10 that is installed with IBM SPSS Statistics, <PYTHON_HOME>
is <INSTALLDIR>/Python3.

Related information
“spss.StartSPSS Function ” on page 85

Localizing Output from Python Programs
You can localize output, such as messages and pivot table strings, from extension commands
implemented in Python. The localization process consists of the following steps:

1. Modifying the Python implementation code to identify translatable strings
2. Extracting translatable text from the implementation code using standard Python tools
3. Preparing a translated file of strings for each target language
4. Installing the translation files along with the extension command

The process described here assumes use of the Python extension module, which is a part of the IBM
SPSS Statistics product.

Notes

• When running an extension command from within IBM SPSS Statistics, the language for extension
command output will be automatically synchronized with the IBM SPSS Statistics output language
(OLANG). When running an extension command from an external Python process, such as a Python IDE,
you can set the output language by submitting a SET OLANG command when IBM SPSS Statistics is
started. If no translation for an item is available for the output language, the untranslated string will be
used.

• Messages produced by the extension module, such as error messages for violation of the
specifications in the Syntax definition, are automatically produced in the current output language.
Exceptions raised in the extension command implementation code are automatically converted to a
Warnings pivot table.

• Translation of dialog boxes built with the Custom Dialog Builder is a separate process, but translators
should ensure that the dialog and extension command translations are consistent.

Additional Resources

Examples of extension commands implemented in Python with localized output are included with IBM
SPSS Statistics. The Python modules for these examples can be found in the location where extension
commands are installed on your computer. To view the location, run the SHOW EXTPATHS syntax
command. The output displays a list of locations under the heading "Locations for extension commands".
The files are installed to the first writable location in the list.

Information on creating extension commands is also available from the following sources:

• The article "Writing IBM SPSS Statistics Extension Commands", available from the IBM SPSS Predictive
Analytics community at https://www.ibm.com/community/spss-statistics .

• The chapter on Extension Commands in Programming and Data Management for IBM SPSS Statistics ,
which is also available from the IBM SPSS Predictive Analytics community.

Chapter 2. Python Integration Package 11

https://www.ibm.com/community/spss-statistics

Modifying the Python code
First, ensure that the text to be translated is in a reasonable form for translation.

• Do not build up text by combining fragments of text in code. This makes it impossible to rearrange
the text according to the grammar of the target languages and makes it difficult for translators to
understand the context of the strings.

• Avoid using multiple parameters in a string. Translators may need to change the parameter order.
• Avoid the use of abbreviations and colloquialisms that are difficult to translate.

Enclose each translatable string in a call to the underscore function "_". For example:

_("File not found: %s") % filespec

The _ function will fetch the translation, if available, when the statement containing the string is executed.
The following limitations apply:

• Never pass an empty string as the argument to _, i.e., _(""). This will damage the translation
mechanism.

• Do not use the underscore function in static text such as class variables. The _ function is defined
dynamically.

• The _ function, as defined in the extension module, always returns Unicode text even if IBM
SPSS Statistics is running in code page mode. If there are text parameters in the string as in the
example above, the parameter should be in Unicode. The automatic conversion used in the parameter
substitution logic will fail if the parameter text contains any extended characters. One way to resolve
this is as follows, assuming that the locale module has been imported.

if not isinstance(filespec, unicode):
 filespec = unicode(filespec, locale.getlocale()[1])
 _("File not found: %s") % filespec

Note: There is a conflict between the definition of the _ function as used by the Python modules
(pygettext and gettext) that handle translations, and the automatic assignment of interactively
generated expression values to the variable _. In order to resolve this, the translation initialization code
in the extension module disables this assignment.

Calls to the spss.StartProcedure function (or the spss.Procedure class) should use the
form spss.StartProcedure(procedureName,omsIdentifier) where procedureName is the
translatable name associated with output from the procedure and omsIdentifier is the language invariant
OMS command identifier associated with the procedure. For example:

spss.StartProcedure(_("Demo"),"demoId")

Extracting translatable text
The Python implementation code is never modified by the translators. Translation is accomplished by
extracting the translatable text from the code files and then creating separate files containing the
translated text, one file for each language. The _ function uses compiled versions of these files.

The standard Python distribution includes pygettext.py, which is a command line script that extracts
strings marked as translatable (i.e., strings wrapped in the _ function) and saves them to a .pot file. Run
pygettext.py on the implementation code, and specify the name of the implementing Python module
(the module containing the Run function) as the name of the output file, but with the extension .pot. If the
implementation uses multiple Python files, the .pot files for each should be combined into one under the
name of the main implementing module (the module containing the Run function).

• Change the charset value, in the msgstr field corresponding to msgid "", to utf-8.
• A pot file includes one msgid field with the value "", with an associated msgstr field containing

metadata. There must be only one of these.
• Optionally, update the generated title and organization comments.

12 Python Reference Guide for IBM SPSS Statistics

Documentation for pygettext.py is available from the topic on the gettext module in the Python help
system.

Translating the pot file
Translators enter the translation of each msgid into the corresponding msgstr field and save the result
as a file with the same name as the pot file but with the extension .po. There will be one po file for each
target language.

• po files should be saved in Unicode utf-8 encoding.
• po files should not have a BOM (Byte Order Mark) at the start of the file.
• If a msgstr contains an embedded double quote character (x22), precede it with a backslash (\). as in:

msgstr "He said, \"Wow\", when he saw the R-squared"
• msgid and msgstr entries can have multiple lines. Enclose each line in double quotes.

Each translated po file is compiled into a binary format by running msgfmt.py from the standard Python
distribution, giving the output the same name as the po file but with an extension of .mo.

Installing the mo files
When installed, the mo files should reside in the following directory structure:

lang/<language-identifier>/LC_MESSAGES/<command name>.mo

• <command name> is the name of the extension command in upper case with any spaces replaced with
underscores, and is the same as the name of the Python implementation module. Note that the mo files
have the same name for all languages.

• <language-identifier> is the identifier for a particular language. Identifiers for the languages supported
by IBM SPSS Statistics are shown in the section on Language Identifiers at the end of this topic.

For example, if the extension command is named MYORG MYSTAT then an mo file for French should be
stored in lang/fr/LC_MESSAGES/MYORG_MYSTAT.mo.

Manually installing translation files

If you are manually installing an extension command and associated translation files, then the lang
directory containing the translation files should be installed in the <command name> directory under the
directory where the Python implementation module is installed.

For example, if the extension command is named MYORG MYSTAT and the associated Python
implementation module (MYORG_MYSTAT.py) is located in the extensions directory (under the location
where IBM SPSS Statistics is installed), then the lang directory should reside under extensions/
MYORG_MYSTAT.

Using the example of a French translation discussed above, an mo file for French would be stored in
extensions/MYORG_MYSTAT/lang/fr/LC_MESSAGES/MYORG_MYSTAT.mo.

Deploying translation files to other users

If you are localizing output for a custom dialog or extension command that you intend to distribute to
other users, then you should create an extension bundle (requires IBM SPSS Statistics version 18 or
higher) to package your translation files with your custom components. Specifically, you add the lang
directory containing your compiled translation files (mo files) to the extension bundle during the creation
of the bundle (from the Translation Catalogues Folder field on the Optional tab of the Create Extension
Bundle dialog). When an end user installs the extension bundle, the directory containing the translation
files is installed in the extensions/<extension bundle name> directory under the IBM SPSS Statistics
installation location, and where <extension bundle name> is the name of the extension bundle with
spaces replaced by underscores. Note: An extension bundle that includes translation files for an extension
command should have the same name as the extension command.

Chapter 2. Python Integration Package 13

• If the SPSS_EXTENSIONS_PATH environment variable has been set, then the extensions directory (in
extensions/<extension bundle name>) is replaced by the first writable directory in the environment
variable.

• Information on creating extension bundles is available from the Help system, under Core
System>Utilities>Working with Extension Bundles.

Language Identifiers

de. German

en. English

es. Spanish

fr. French

it. Italian

ja. Japanese

ko. Korean

pl. Polish

pt_BR. Brazilian Portuguese

ru. Russian

zh_CN. Simplified Chinese

zh_TW. Traditional Chinese

Python Functions and Classes
The Python Integration Package for IBM SPSS Statistics contains functions and classes that facilitate the
process of using Python programming features with IBM SPSS Statistics, including those that:

Build and run command syntax

• spss.Submit

Get information about data files in the current IBM SPSS Statistics session

• spss.GetCaseCount
• spss.GetDataFileAttributes
• spss.GetFileHandles
• spss.GetMultiResponseSet
• spss.GetSplitVariableNames
• spss.GetVarAttributes
• spss.GetVariableCount
• spss.GetVariableFormat
• spss.GetVariableLabel
• spss.GetVariableMeasurementLevel
• spss.GetVariableName
• spss.GetVariableType
• spss.GetVarMissingValues
• spss.GetWeightVar

Get data, add new variables, and append cases to the active dataset

• spss.Cursor

Access and manage multiple datasets

14 Python Reference Guide for IBM SPSS Statistics

• spss.ActiveDataset
• spss.Dataset
• spss.GetDatasets
• spss.GetFileHandles
• spss.IsActive
• spss.SetActive

Get output results

• spss.EvaluateXPath
• spss.GetXmlUtf16

Create custom pivot tables and text blocks

• spss.BasePivotTable
• spss.TextBlock

Create macro variables

• spss.SetMacroValue

Get error information

• spss.GetLastErrorLevel
• spss.GetLastErrorMessage

Manage multiple versions of the IBM SPSS Statistics - Integration Plug-in for Python

• spss.GetDefaultPlugInVersion
• spss.SetDefaultPlugInVersion
• spss.ShowInstalledPlugInVersions

Locale and Output Language Settings

• spss.GetSPSSLocale
• spss.SetOutputLanguage

Brief descriptions of each function are available using the Python help function, as in:

BEGIN PROGRAM.
import spss
help(spss.Submit)
END PROGRAM.

spss.ActiveDataset Function
spss.ActiveDataset(). Returns the name of the active dataset.

• If the active dataset is unnamed, '*' is returned.

Example

import spss
name = spss.ActiveDataset()

spss.AddProcedureFootnotes Function
spss.AddProcedureFootnotes(footnote). Adds a footnote to all tables generated by a procedure. The
argument footnote is a string specifying the footnote.

• The AddProcedureFootnotes function can only be used within a StartProcedure-EndProcedure
block or within a custom procedure class based on the spss.BaseProcedure class.

Chapter 2. Python Integration Package 15

Example

import spss
spss.StartProcedure("mycompany.com.demoProc")
spss.AddProcedureFootnotes("A footnote")
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
table.SimplePivotTable(cells = [1,2,3,4])
spss.EndProcedure()

spss.BasePivotTable Class
spss.BasePivotTable(title,templateName,outline,isSplit,caption). Provides the ability to create custom
pivot tables that can be displayed in the IBM SPSS Statistics Viewer or written to an external file using the
IBM SPSS Statistics Output Management System.

• The argument title is a string that specifies the title that appears with the table. Each table associated
with a set of output (as specified in a StartProcedure-EndProcedure block) should have a unique
title. Multiple tables within a given procedure can, however, have the same value of the title argument as
long as they have different values of the outline argument.

• The argument templateName is a string that specifies the OMS (Output Management System) table
subtype for this table. It must begin with a letter and have a maximum of 64 characters. Unless you are
routing this pivot table with OMS, you will not need to keep track of this value, although you do have to
provide a value that meets the stated requirements.

Note: Specifying "Warnings" for templateName will generate an IBM SPSS Statistics Warnings table.
Unless you want to generate an IBM SPSS Statistics Warnings table, you should avoid specifying
"Warnings" for templateName. See the topic “Creating a Warnings Table ” on page 34 for more
information.

• The optional argument outline is a string that specifies a title, for the pivot table, that appears in the
outline pane of the Viewer. The item for the table itself will be placed one level deeper than the item for
the outline title. If omitted, the Viewer item for the table will be placed one level deeper than the root
item for the output containing the table.

• The optional Boolean argument isSplit specifies whether to enable split processing when creating pivot
tables from data that have splits. By default, split processing is enabled. To disable split processing for
pivot tables, specify isSplit=False. If you are creating a pivot table from data that has splits and you
want separate results displayed for each split group, you will want to make use of the spss.SplitChange
function. In the absence of calls to spss.SplitChange, isSplit has no effect.

• The optional argument caption is a string that specifies a table caption.

An instance of the BasePivotTable class can only be used within a StartProcedure-EndProcedure
block or within a custom procedure class based on the spss.BaseProcedure class. For an example of
creating a pivot table using spss.StartProcedure-spss.EndProcedure, see “Creating Pivot Tables
with the SimplePivotTable Method ” on page 17 . For an example of creating a pivot table using a class
based on the spss.BaseProcedure class, see “spss.BaseProcedure Class ” on page 35 .

The figure below shows the basic structural components of a pivot table. Pivot tables consists of one
or more dimensions, each of which can be of the type row, column, or layer. In this example, there is
one dimension of each type. Each dimension contains a set of categories that label the elements of
the dimension--for instance, row labels for a row dimension. A layer dimension allows you to display a
separate two-dimensional table for each category in the layered dimension--for example, a separate table
for each value of minority classification, as shown here. When layers are present, the pivot table can be
thought of as stacked in layers, with only the top layer visible.

Each cell in the table can be specified by a combination of category values. In the example shown here,
the indicated cell is specified by a category value of Male for the Gender dimension, Custodial for the
Employment Category dimension, and No for the Minority Classification dimension.

16 Python Reference Guide for IBM SPSS Statistics

Figure 1. Pivot table structure

Creating Pivot Tables with the SimplePivotTable Method
For creating a pivot table with a single row dimension and a single column dimension, the
BasePivotTable class provides the SimplePivotTable method. The arguments to the method provide
the dimensions, categories, and cell values. No other methods are necessary in order to create the table
structure and populate the cells. If you require more functionality than the SimplePivotTable method
provides, there are a variety of methods to create the table structure and populate the cells. See the topic
“General Approach to Creating Pivot Tables ” on page 18 for more information.

Example

import spss
spss.StartProcedure("mycompany.com.demoProc")
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.SimplePivotTable(rowdim = "row dimension",
 rowlabels = ["first row","second row"],
 coldim = "column dimension",
 collabels = ["first column","second column"],
 cells = [11,12,21,22])
spss.EndProcedure()

Result

Figure 2. Simple pivot table

• This example shows how to generate a pivot table within a spss.StartProcedure-
spss.EndProcedure block. The argument to the StartProcedure function specifies a name to
associate with the output. This is the name that appears in the outline pane of the Viewer associated
with the output--in this case, mycompany.com.demoProc. It is also the command name associated with
this output when routing output with OMS.

Note: In order that names associated with output do not conflict with names of existing IBM
SPSS Statistics commands (when working with OMS), it is recommended that they have the form
yourcompanyname.com.procedurename. See the topic “spss.StartProcedure Function ” on page 83 for
more information.

• You create a pivot table by first creating an instance of the BasePivotTable class and storing it to a
variable--in this case, the variable table.

Chapter 2. Python Integration Package 17

• The SimplePivotTable method of the BasePivotTable instance is called to create the structure of
the table and populate its cells. Row and column labels and cell values can be specified as character
strings or numeric values. They can also be specified as a CellText object. CellText objects allow
you to specify that category labels be treated as variable names or variable values, or that cell values be
displayed in one of the numeric formats used in IBM SPSS Statistics pivot tables, such as the format for
a mean. When you specify a category as a variable name or variable value, pivot table display options
such as display variable labels or display value labels are honored.

• Numeric values specified for cell values, row labels, or column labels, are displayed using the default
format for the pivot table. Instances of the BasePivotTable class have an implicit default format of
GeneralStat. You can change the default format using the SetDefaultFormatSpec method.

• spss.EndProcedure marks the end of output creation.

General Approach to Creating Pivot Tables
The BasePivotTable class provides a variety of methods for creating pivot tables that cannot be
created with the SimplePivotTable method. The basic steps for creating a pivot table are:

1. Create an instance of the BasePivotTable class.
2. Add dimensions.
3. Define categories.
4. Set cell values.

Once a cell value has been set, you can access its value. This is convenient for cell values that depend
on the value of another cell. See the topic “Using Cell Values in Expressions ” on page 22 for more
information.

Related information
“Step 1: Adding Dimensions ” on page 18
“Step 2: Defining Categories ” on page 19
“Step 3: Setting Cell Values ” on page 20

Step 1: Adding Dimensions
You add dimensions to a pivot table with the Append or Insert method.

Example: Using the Append Method

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
coldim=table.Append(spss.Dimension.Place.column,"coldim")
rowdim1=table.Append(spss.Dimension.Place.row,"rowdim-1")
rowdim2=table.Append(spss.Dimension.Place.row,"rowdim-2")

• The first argument to the Append method specifies the type of dimension, using one member
from a set of built-in object properties: spss.Dimension.Place.row for a row dimension,
spss.Dimension.Place.column for a column dimension, and spss.Dimension.Place.layer for
a layer dimension.

• The second argument to Append is a string that specifies the name used to label this dimension in the
displayed table.

• Although not required to append a dimension, it's good practice to store a reference to the newly
created dimension object in a variable. For instance, the variable rowdim1 holds a reference to the
object for the row dimension named rowdim-1. Depending on which approach you use for setting
categories, you may need this object reference.

Figure 3. Resulting table structure

18 Python Reference Guide for IBM SPSS Statistics

The order in which the dimensions are appended determines how they are displayed in the table. Each
newly appended dimension of a particular type (row, column, or layer) becomes the current innermost
dimension in the displayed table. In the example above, rowdim-2 is the innermost row dimension since
it is the last one to be appended. Had rowdim-2 been appended first, followed by rowdim-1, rowdim-1
would be the innermost dimension.

Note: Generation of the resulting table requires more code than is shown here.

Example: Using the Insert Method

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
rowdim1=table.Append(spss.Dimension.Place.row,"rowdim-1")
rowdim2=table.Append(spss.Dimension.Place.row,"rowdim-2")
rowdim3=table.Insert(2,spss.Dimension.Place.row,"rowdim-3")
coldim=table.Append(spss.Dimension.Place.column,"coldim")

• The first argument to the Insert method specifies the position within the dimensions of that type (row,
column, or layer). The first position has index 1 (unlike typical Python indexing that starts with 0) and
defines the innermost dimension of that type in the displayed table. Successive integers specify the
next innermost dimension and so on. In the current example, rowdim-3 is inserted at position 2 and
rowdim-1 is moved from position 2 to position 3.

• The second argument to Insert specifies the type of dimension, using one member
from a set of built-in object properties: spss.Dimension.Place.row for a row dimension,
spss.Dimension.Place.column for a column dimension, and spss.Dimension.Place.layer for
a layer dimension.

• The third argument to Insert is a string that specifies the name used to label this dimension in the
displayed table.

• Although not required to insert a dimension, it is good practice to store a reference to the newly created
dimension object to a variable. For instance, the variable rowdim3 holds a reference to the object for the
row dimension named rowdim-3. Depending on which approach you use for setting categories, you may
need this object reference.

Figure 4. Resulting table structure

Note: Generation of the resulting table requires more code than is shown here.

Step 2: Defining Categories
There are two ways to define categories for each dimension: explicitly, using the SetCategories method, or
implicitly when setting values. The explicit method is shown here. The implicit method is shown in “Step
3: Setting Cell Values ” on page 20.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

coldim=table.Append(spss.Dimension.Place.column,"coldim")
rowdim1=table.Append(spss.Dimension.Place.row,"rowdim-1")
rowdim2=table.Append(spss.Dimension.Place.row,"rowdim-2")

cat1=CellText.String("A1")
cat2=CellText.String("B1")
cat3=CellText.String("A2")
cat4=CellText.String("B2")
cat5=CellText.String("C")
cat6=CellText.String("D")
cat7=CellText.String("E")

table.SetCategories(rowdim1,[cat1,cat2])
table.SetCategories(rowdim2,[cat3,cat4])
table.SetCategories(coldim,[cat5,cat6,cat7])

• The statement from spss import CellText allows you to omit the spss prefix when specifying
CellText objects (discussed below), once you have imported the spss module.

Chapter 2. Python Integration Package 19

• You set categories after you add dimensions, so the SetCategories method calls follow the Append
or Insert method calls.

• The first argument to SetCategories is an object reference to the dimension for which the categories
are being defined. This underscores the need to save references to the dimensions you create with
Append or Insert, as discussed in the previous topic.

• The second argument to SetCategories is a single category or a sequence of unique category
values, each expressed as a CellText object (one of CellText.Number, CellText.String,
CellText.VarName, or CellText.VarValue). When you specify a category as a variable name or
variable value, pivot table display options such as display variable labels or display value labels are
honored. In the present example, we use string objects whose single argument is the string specifying
the category.

• It is a good practice to assign variables to the CellText objects representing the category names,
since each category will often need to be referenced more than once when setting cell values.

Figure 5. Resulting table structure

Note: Generation of the resulting table requires more code than is shown here.

Step 3: Setting Cell Values
There are two primary methods for setting cell values: setting values one cell at a time by specifying the
categories that define the cell, or using the SetCellsByRow or SetCellsByColumn method.

Example: Specifying Cells by Their Category Values

This example reproduces the table created in the SimplePivotTable example.

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"row dimension")
table.Append(spss.Dimension.Place.column,"column dimension")

row_cat1 = CellText.String("first row")
row_cat2 = CellText.String("second row")
col_cat1 = CellText.String("first column")
col_cat2 = CellText.String("second column")

table[(row_cat1,col_cat1)] = CellText.Number(11)
table[(row_cat1,col_cat2)] = CellText.Number(12)
table[(row_cat2,col_cat1)] = CellText.Number(21)
table[(row_cat2,col_cat2)] = CellText.Number(22)

• The Append method is used to add a row dimension and then a column dimension to the structure of
the table. The table specified in this example has one row dimension and one column dimension. Notice
that references to the dimension objects created by the Append method are not saved to variables,
contrary to the recommendations in the topic on adding dimensions. When setting cells using the
current approach, these object references are not needed.

• For convenience, variables consisting of CellText objects are created for each of the categories in the
two dimensions.

• Cells are specified by their category values in each dimension. In the tuple (or list) that specifies
the category values--for example, (row_cat1,col_cat1)--the first element corresponds to the first
appended dimension (what we have named "row dimension") and the second element to the second
appended dimension (what we have named "column dimension"). The tuple (row_cat1,col_cat1)
then specifies the cell whose "row dimension" category is "first row" and "column dimension" category
is "first column."

20 Python Reference Guide for IBM SPSS Statistics

• You may notice that the example does not make use of the SetCategories method to define the
row and column dimension category values. When you assign cell values in the manner done here--
table[(category1,category2)]--the values provided to specify the categories for a given cell are
used by the BasePivotTable object to build the set of categories for the table. Values provided in the
first element of the tuple (or list) become the categories in the dimension created by the first method
call to Append or Insert. Values in the second element become the categories in the dimension
created by the second method call to Append or Insert, and so on. Within a given dimension, the
specified category values must be unique. The order of the categories, as displayed in the table, is
the order in which they are created from table[(category1,category2)]. In the example shown
above, the row categories will be displayed in the order "first row," "second row."

• Cell values must be specified as CellText objects (one of CellText.Number, CellText.String,
CellText.VarName, or CellText.VarValue).

• In this example, Number objects are used to specify numeric values for the cells. Values
will be formatted using the table's default format. Instances of the BasePivotTable class
have an implicit default format of GeneralStat. You can change the default format using the
SetDefaultFormatSpec method, or you can override the default by explicitly specifying the format, as in:
CellText.Number(22,spss.FormatSpec.Correlation). See the topic “Number Class ” on page
31 for more information.

Example: Setting Cell Values by Row or Column

The SetCellsByRow and SetCellsByColumn methods allow you to set cell values for entire rows or
columns with one method call. To illustrate the approach, we will use the SetCellsByRow method to
reproduce the table created in the SimplePivotTable example. It is a simple matter to rewrite the example
to set cells by column.

Note: You can only use the SetCellsByRow method with pivot tables that have one column dimension
and you can only use the SetCellsByColumn method with pivot tables that have one row dimension.

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

rowdim = table.Append(spss.Dimension.Place.row,"row dimension")
coldim = table.Append(spss.Dimension.Place.column,"column dimension")

row_cat1 = CellText.String("first row")
row_cat2 = CellText.String("second row")
col_cat1 = CellText.String("first column")
col_cat2 = CellText.String("second column")

table.SetCategories(rowdim,[row_cat1,row_cat2])
table.SetCategories(coldim,[col_cat1,col_cat2])

table.SetCellsByRow(row_cat1,[CellText.Number(11),
 CellText.Number(12)])
table.SetCellsByRow(row_cat2,[CellText.Number(21),
 CellText.Number(22)])

• The SetCellsByRow method is called for each of the two categories in the row dimension.
• The first argument to the SetCellsByRow method is the row category for which values are to be set.

The argument must be specified as a CellText object (one of CellText.Number, CellText.String,
CellText.VarName, or CellText.VarValue). When setting row values for a pivot table with
multiple row dimensions, you specify a list of category values for the first argument to SetCellsByRow,
where each element in the list is a category value for a different row dimension.

• The second argument to the SetCellsByRow method is a list or tuple of CellText objects (one of
CellText.Number, CellText.String, CellText.VarName, or CellText.VarValue) that specify
the elements of the row, one element for each column category in the single column dimension. The
first element in the list or tuple will populate the first column category (in this case, col_cat1), the
second will populate the second column category, and so on.

• In this example, Number objects are used to specify numeric values for the cells. Values
will be formatted using the table's default format. Instances of the BasePivotTable class
have an implicit default format of GeneralStat. You can change the default format using the
SetDefaultFormatSpec method, or you can override the default by explicitly specifying the format, as in:
CellText.Number(22,spss.FormatSpec.Correlation). See the topic “Number Class ” on page
31 for more information.

Chapter 2. Python Integration Package 21

Using Cell Values in Expressions
Once a cell's value has been set, it can be accessed and used to specify the value for another cell.
Cell values are stored as CellText.Number or CellText.String objects. To use a cell value in an
expression, you obtain a string or numeric representation of the value using the toString or toNumber
method.

Example: Numeric Representations of Cell Values

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"row dimension")
table.Append(spss.Dimension.Place.column,"column dimension")

row_cat1 = CellText.String("first row")
row_cat2 = CellText.String("second row")
col_cat1 = CellText.String("first column")
col_cat2 = CellText.String("second column")

table[(row_cat1,col_cat1)] = CellText.Number(11)
cellValue = table[(row_cat1,col_cat1)].toNumber()
table[(row_cat2,col_cat2)] = CellText.Number(2*cellValue)

• The toNumber method is used to obtain a numeric representation of the cell with category values
("first row","first column"). The numeric value is stored in the variable cellValue and used to
specify the value of another cell.

• Character representations of numeric values stored as CellText.String objects, such as
CellText.String("11"), are converted to a numeric value by the toNumber method.

Example: String Representations of Cell Values

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"row dimension")
table.Append(spss.Dimension.Place.column,"column dimension")

row_cat1 = CellText.String("first row")
row_cat2 = CellText.String("second row")
col_cat1 = CellText.String("first column")
col_cat2 = CellText.String("second column")

table[(row_cat1,col_cat1)] = CellText.String("abc")
cellValue = table[(row_cat1,col_cat1)].toString()
table[(row_cat2,col_cat2)] = CellText.String(cellValue + "d")

• The toString method is used to obtain a string representation of the cell with category values
("first row","first column"). The string value is stored in the variable cellValue and used to
specify the value of another cell.

• Numeric values stored as CellText.Number objects are converted to a string value by the toString
method.

spss.BasePivotTable Methods
The BasePivotTable class has methods that allow you to build complex pivot tables. If you only
need to create a pivot table with a single row and a single column dimension then consider using the
SimplePivotTable method.

Append Method
.Append(place,dimName,hideName, hideLabels). Appends row, column, and layer dimensions
to a pivot table. You use this method, or the Insert method, to create the dimensions
associated with a custom pivot table. The argument place specifies the type of dimension:
spss.Dimension.Place.row for a row dimension, spss.Dimension.Place.column for a column
dimension, and spss.Dimension.Place.layer for a layer dimension. The argument dimName is a
string that specifies the name used to label this dimension in the displayed table. Each dimension
must have a unique name. The argument hideName specifies whether the dimension name is
hidden--by default, it is displayed. Use hideName=True to hide the name. The argument hideLabels
specifies whether category labels for this dimension are hidden--by default, they are displayed. Use
hideLabels=True to hide category labels.

22 Python Reference Guide for IBM SPSS Statistics

• The order in which dimensions are appended affects how they are displayed in the resulting table. Each
newly appended dimension of a particular type (row, column, or layer) becomes the current innermost
dimension in the displayed table, as shown in the example below.

• The order in which dimensions are created (with the Append or Insert method) determines the order
in which categories should be specified when providing the dimension coordinates for a particular cell
(used when Setting Cell Values or adding Footnotes). For example, when specifying coordinates using
an expression such as (category1,category2), category1 refers to the dimension created by the
first call to Append or Insert, and category2 refers to the dimension created by the second call to
Append or Insert.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
coldim=table.Append(spss.Dimension.Place.column,"coldim")
rowdim1=table.Append(spss.Dimension.Place.row,"rowdim-1")
rowdim2=table.Append(spss.Dimension.Place.row,"rowdim-2")

Figure 6. Resulting table structure

Examples of using the Append method are most easily understood in the context of going through the
steps to create a pivot table. See the topic “General Approach to Creating Pivot Tables ” on page 18 for
more information.

Caption Method
.Caption(caption). Adds a caption to the pivot table. The argument caption is a string specifying the
caption.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
table.Caption("A sample caption")

CategoryFootnotes Method
.CategoryFootnotes(dimPlace,dimName,category,footnote). Used to add a footnote to a specified
category.

• The argument dimPlace specifies the dimension type associated with the category, using one
member from a set of built-in object properties: spss.Dimension.Place.row for a row dimension,
spss.Dimension.Place.column for a column dimension, and spss.Dimension.Place.layer for
a layer dimension.

• The argument dimName is the string that specifies the dimension name associated with the category.
This is the name specified when the dimension was created by the Append or Insert method.

• The argument category specifies the category and must be a CellText object (one of
CellText.Number, CellText.String, CellText.VarName, or CellText.VarValue).

• The argument footnote is a string specifying the footnote.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"row dimension")
table.Append(spss.Dimension.Place.column,"column dimension")

row_cat1 = CellText.String("first row")
row_cat2 = CellText.String("second row")
col_cat1 = CellText.String("first column")
col_cat2 = CellText.String("second column")

Chapter 2. Python Integration Package 23

table.CategoryFootnotes(spss.Dimension.Place.row,"row dimension",
 row_cat1,"A category footnote")

DimensionFootnotes Method
.DimensionFootnotes(dimPlace,dimName,footnote). Used to add a footnote to a dimension.

• The argument dimPlace specifies the type of dimension, using one member from a set of built-in object
properties: spss.Dimension.Place.row for a row dimension, spss.Dimension.Place.column
for a column dimension, and spss.Dimension.Place.layer for a layer dimension.

• The argument dimName is the string that specifies the name given to this dimension when it was
created by the Append or Insert method.

• The argument footnote is a string specifying the footnote.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"row dimension")
table.Append(spss.Dimension.Place.column,"column dimension")
table.DimensionFootnotes(spss.Dimension.Place.column,
 "column dimension","A dimension footnote")

Footnotes Method
.Footnotes(categories,footnote). Used to add a footnote to a table cell. The argument categories is a list
or tuple of categories specifying the cell for which a footnote is to be added. Each element in the list or
tuple must be a CellText object (one of CellText.Number, CellText.String, CellText.VarName,
or CellText.VarValue). The argument footnote is a string specifying the footnote.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

rowdim=table.Append(spss.Dimension.Place.row,"rowdim")
coldim=table.Append(spss.Dimension.Place.column,"coldim")

table.SetCategories(rowdim,spss.CellText.String("row1"))
table.SetCategories(coldim,spss.CellText.String("column1"))

table[(spss.CellText.String("row1"),spss.CellText.String("column1"))] = \
 spss.CellText.String("cell value")
table.Footnotes((spss.CellText.String("row1"),
 spss.CellText.String("column1")),
 "Footnote for the cell specified by the categories row1 and column1")

• The order in which dimensions are added to the table, either through a call to Append or to Insert,
determines the order in which categories should be specified when providing the dimension coordinates
for a particular cell. In the present example, the dimension rowdim is added first and coldim second, so
the first element of (spss.CellText.String("row1"),spss.CellText.String("column1"))
specifies a category of rowdim and the second element specifies a category of coldim.

GetDefaultFormatSpec Method
.GetDefaultFormatSpec(). Returns the default format for CellText.Number objects. The returned value is
a list with two elements. The first element is the integer code associated with the format. Codes and
associated formats are listed in Table 1 on page 32. For formats with codes 5 (Mean), 12 (Variable),
13 (StdDev), 14 (Difference), and 15 (Sum), the second element of the returned value is the index of
the variable in the active dataset whose format is used to determine details of the resulting format. For all
other formats, the second element is the Python data type None. You can set the default format with the
SetDefaultFormatSpec method.

• Instances of the BasePivotTable class have an implicit default format of GeneralStat.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
print("Default format: ", table.GetDefaultFormatSpec())

24 Python Reference Guide for IBM SPSS Statistics

HideTitle Method
.HideTitle(). Used to hide the title of a pivot table. By default, the title is shown.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
table.HideTitle()

Insert Method
.Insert(i,place,dimName,hideName, hideLabels). Inserts row, column, and layer dimensions into a
pivot table. You use this method, or the Append method, to create the dimensions associated with
a custom pivot table. The argument i specifies the position within the dimensions of that type (row,
column, or layer). The first position has index 1 and defines the innermost dimension of that type
in the displayed table. Successive integers specify the next innermost dimension and so on. The
argument place specifies the type of dimension: spss.Dimension.Place.row for a row dimension,
spss.Dimension.Place.column for a column dimension, and spss.Dimension.Place.layer for a
layer dimension. The argument dimName is a string that specifies the name used to label this dimension
in the displayed table. Each dimension must have a unique name. The argument hideName specifies
whether the dimension name is hidden--by default, it is displayed. Use hideName=True to hide the
name. The argument hideLabels specifies whether category labels for this dimension are hidden--by
default, they are displayed. Use hideLabels=True to hide category labels.

• The argument i can take on the values 1, 2, ... , n+1 where n is the position of the outermost dimension
(of the type specified by place) created by any previous calls to Append or Insert. For example, after
appending two row dimensions, you can insert a row dimension at positions 1, 2, or 3. You cannot,
however, insert a row dimension at position 3 if only one row dimension has been created.

• The order in which dimensions are created (with the Append or Insert method) determines the order
in which categories should be specified when providing the dimension coordinates for a particular cell
(used when Setting Cell Values or adding Footnotes). For example, when specifying coordinates using
an expression such as (category1,category2), category1 refers to the dimension created by the
first call to Append or Insert, and category2 refers to the dimension created by the second call to
Append or Insert.

Note: The order in which categories should be specified is not determined by dimension positions as
specified by the argument i.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
rowdim1=table.Append(spss.Dimension.Place.row,"rowdim-1")
rowdim2=table.Append(spss.Dimension.Place.row,"rowdim-2")
rowdim3=table.Insert(2,spss.Dimension.Place.row,"rowdim-3")
coldim=table.Append(spss.Dimension.Place.column,"coldim")

Figure 7. Resulting table structure

Examples of using the Insert method are most easily understood in the context of going through the
steps to create a pivot table. See the topic “General Approach to Creating Pivot Tables ” on page 18 for
more information.

SetCategories Method
.SetCategories(dim,categories). Sets categories for the specified dimension. The argument dim is a
reference to the dimension object for which categories are to be set. Dimensions are created with the
Append or Insert method. The argument categories is a single value or a sequence of unique values, each

Chapter 2. Python Integration Package 25

of which is a CellText object (one of CellText.Number, CellText.String, CellText.VarName, or
CellText.VarValue).

• In addition to defining category values for a specified dimension, SetCategories sets the pivot table
object's value of the currently selected category for the specified dimension. In other words, calling
SetCategories also sets a pointer to a category in the pivot table. When a sequence of values is
provided, the currently selected category (for the specified dimension) is the last value in the sequence.
For an example of using currently selected dimension categories to specify a cell, see the SetCell
method.

• Once a category has been defined, a subsequent call to SetCategories (for that category) will set that
category as the currently selected one for the specified dimension.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

rowdim=table.Append(spss.Dimension.Place.row,"rowdim")
coldim=table.Append(spss.Dimension.Place.column,"coldim")

table.SetCategories(rowdim,[spss.CellText.String("row1"),
 spss.CellText.String("row2")])
table.SetCategories(coldim,[spss.CellText.String("column1"),
 spss.CellText.String("column2")])

Examples of using the SetCategories method are most easily understood in the context of going
through the steps to create a pivot table. See the topic “General Approach to Creating Pivot Tables ” on
page 18 for more information.

SetCell Method
.SetCell(cell). Sets the value for the cell specified by the currently selected set of category values. The
argument cell is the value, specified as a CellText object (one of CellText.Number, CellText.String,
CellText.VarName, or CellText.VarValue). Category values are selected using the SetCategories
method as shown in the following example.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

rowdim = table.Append(spss.Dimension.Place.row,"rowdim")
coldim = table.Append(spss.Dimension.Place.column,"coldim")

Define category values and set the currently selected set of
category values to "row1" for rowdim and "column1" for coldim.
table.SetCategories(rowdim,spss.CellText.String("row1"))
table.SetCategories(coldim,spss.CellText.String("column1"))

Set the value for the current cell specified by the currently
selected set of category values.
table.SetCell(spss.CellText.Number(11))

table.SetCategories(rowdim,spss.CellText.String("row2"))
table.SetCategories(coldim,spss.CellText.String("column2"))

Set the value for the current cell. Its category values are "row2"
for rowdim and "column2" for coldim.
table.SetCell(spss.CellText.Number(22))

Set the currently selected category to "row1" for rowdim.
table.SetCategories(rowdim,spss.CellText.String("row1"))

Set the value for the current cell. Its category values are "row1"
for rowdim and "column2" for coldim.

table.SetCell(spss.CellText.Number(12))

• In this example, Number objects are used to specify numeric values for the cells. Values
will be formatted using the table's default format. Instances of the BasePivotTable class
have an implicit default format of GeneralStat. You can change the default format using the
SetDefaultFormatSpec method, or you can override the default by explicitly specifying the format, as in:
CellText.Number(22,spss.FormatSpec.Correlation). See the topic “Number Class ” on page
31 for more information.

26 Python Reference Guide for IBM SPSS Statistics

Figure 8. Resulting table

SetCellsByColumn Method
.SetCellsByColumn(collabels,cells). Sets cell values for the column specified by a set of categories,
one for each column dimension. The argument collabels specifies the set of categories that defines
the column--a single value, or a list or tuple. The argument cells is a tuple or list of cell values.
Column categories and cell values must be specified as CellText objects (one of CellText.Number,
CellText.String, CellText.VarName, or CellText.VarValue).

• For tables with multiple column dimensions, the order of categories in the collabels argument is
the order in which their respective dimensions were added (appended or inserted) to the table. For
example, given two column dimensions coldim1 and coldim2 added in the order coldim1 and coldim2,
the first element in collabels should be the category for coldim1 and the second the category for
coldim2.

• You can only use the SetCellsByColumn method with pivot tables that have one row dimension.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
rowdim=table.Append(spss.Dimension.Place.row,"rowdim")
coldim1=table.Append(spss.Dimension.Place.column,"coldim-1")
coldim2=table.Append(spss.Dimension.Place.column,"coldim-2")

cat1=CellText.String("coldim1:A")
cat2=CellText.String("coldim1:B")
cat3=CellText.String("coldim2:A")
cat4=CellText.String("coldim2:B")
cat5=CellText.String("C")
cat6=CellText.String("D")

table.SetCategories(coldim1,[cat1,cat2])
table.SetCategories(coldim2,[cat3,cat4])
table.SetCategories(rowdim,[cat5,cat6])

table.SetCellsByColumn((cat1,cat3),
 [CellText.Number(11),
 CellText.Number(21)])
table.SetCellsByColumn((cat1,cat4),
 [CellText.Number(12),
 CellText.Number(22)])
table.SetCellsByColumn((cat2,cat3),
 [CellText.Number(13),
 CellText.Number(23)])
table.SetCellsByColumn((cat2,cat4),
 [CellText.Number(14),
 CellText.Number(24)])

• In this example, Number objects are used to specify numeric values for the cells. Values
will be formatted using the table's default format. Instances of the BasePivotTable class
have an implicit default format of GeneralStat. You can change the default format using the
SetDefaultFormatSpec method, or you can override the default by explicitly specifying the format, as in:
CellText.Number(22,spss.FormatSpec.Correlation). See the topic “Number Class ” on page
31 for more information.

Figure 9. Resulting table structure

Chapter 2. Python Integration Package 27

Examples of using the SetCellsByColumn method are most easily understood in the context of going
through the steps to create a pivot table. See the topic “General Approach to Creating Pivot Tables ” on
page 18 for more information.

SetCellsByRow Method
.SetCellsByRow(rowlabels,cells). Sets cell values for the row specified by a set of categories, one for
each row dimension. The argument rowlabels specifies the set of categories that defines the row--a
single value, or a list or tuple. The argument cells is a tuple or list of cell values. Row categories
and cell values must be specified as CellText objects (one of CellText.Number, CellText.String,
CellText.VarName, or CellText.VarValue).

• For tables with multiple row dimensions, the order of categories in the rowlabels argument is the order
in which their respective dimensions were added (appended or inserted) to the table. For example,
given two row dimensions rowdim1 and rowdim2 added in the order rowdim1 and rowdim2, the first
element in rowlabels should be the category for rowdim1 and the second the category for rowdim2.

• You can only use the SetCellsByRow method with pivot tables that have one column dimension.

Example

from spss import CellText

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

coldim=table.Append(spss.Dimension.Place.column,"coldim")
rowdim1=table.Append(spss.Dimension.Place.row,"rowdim-1")
rowdim2=table.Append(spss.Dimension.Place.row,"rowdim-2")

cat1=CellText.String("rowdim1:A")
cat2=CellText.String("rowdim1:B")
cat3=CellText.String("rowdim2:A")
cat4=CellText.String("rowdim2:B")
cat5=CellText.String("C")
cat6=CellText.String("D")

table.SetCategories(rowdim1,[cat1,cat2])
table.SetCategories(rowdim2,[cat3,cat4])
table.SetCategories(coldim,[cat5,cat6])

table.SetCellsByRow((cat1,cat3),
 [CellText.Number(11),
 CellText.Number(12)])
table.SetCellsByRow((cat1,cat4),
 [CellText.Number(21),
 CellText.Number(22)])
table.SetCellsByRow((cat2,cat3),
 [CellText.Number(31),
 CellText.Number(32)])
table.SetCellsByRow((cat2,cat4),
 [CellText.Number(41),
 CellText.Number(42)])

• In this example, Number objects are used to specify numeric values for the cells. Values
will be formatted using the table's default format. Instances of the BasePivotTable class
have an implicit default format of GeneralStat. You can change the default format using the
SetDefaultFormatSpec method, or you can override the default by explicitly specifying the format, as in:
CellText.Number(22,spss.FormatSpec.Correlation). See the topic “Number Class ” on page
31 for more information.

Figure 10. Resulting table

Examples of using the SetCellsByRow method are most easily understood in the context of going
through the steps to create a pivot table. See the topic “General Approach to Creating Pivot Tables ” on
page 18 for more information.

28 Python Reference Guide for IBM SPSS Statistics

SetDefaultFormatSpec Method
.SetDefaultFormatSpec(formatSpec,varIndex). Sets the default format for CellText.Number objects. The
argument formatspec is of the form spss.FormatSpec.format where format is one of those listed
in Table 1 on page 32--for example, spss.FormatSpec.Mean. The argument varIndex is the index
of a variable in the active dataset whose format is used to determine details of the resulting format.
varIndex is only used for, and required by, the following subset of formats: Mean, Variable, StdDev,
Difference, and Sum. Index values represent position in the active dataset, starting with 0 for the first
variable in file order. The default format can be retrieved with the GetDefaultFormatSpec method.

• Instances of the BasePivotTable class have an implicit default format of GeneralStat.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
table.SetDefaultFormatSpec(spss.FormatSpec.Mean,2)
table.Append(spss.Dimension.Place.row,"rowdim")
table.Append(spss.Dimension.Place.column,"coldim")

table[(CellText.String("row1"),CellText.String("col1"))] = \
 CellText.Number(2.37)
table[(CellText.String("row2"),CellText.String("col1"))] = \
 CellText.Number(4.34)

• The call to SetDefaultFormatSpec specifies that the format for mean values is to be used as the
default, and that it will be based on the format for the variable with index value 2 in the active dataset.
Subsequent instances of CellText.Number will use this default, so the cell values 2.37 and 4.34 will
be formatted as mean values.

SimplePivotTable Method
.SimplePivotTable(rowdim,rowlabels,coldim,collabels,cells). Creates a pivot table with one row
dimension and one column dimension.

• rowdim. An optional label for the row dimension, given as a string. If empty, the row dimension label is
hidden. If specified, it must be distinct from the value, if any, of the coldim argument.

• rowlabels. An optional list of items to label the rows. Each item must be unique and can be a
character string, a numeric value, or a CellText object (one of CellText.Number, CellText.String,
CellText.VarName, or CellText.VarValue). If provided, the length of this list determines the
number of rows in the table. If omitted, the number of rows is equal to the number of elements in the
argument cells.

• coldim. An optional label for the column dimension, given as a string. If empty, the column dimension
label is hidden. If specified, it must be distinct from the value, if any, of the rowdim argument.

• collabels. An optional list of items to label the columns. Each item must be unique and can be a
character string, a numeric value, or a CellText object (one of CellText.Number, CellText.String,
CellText.VarName, or CellText.VarValue). If provided, the length of this list determines the
number of columns in the table. If omitted, the number of columns is equal to the length of the first
element of cells. If cells is one-dimensional, this implies a table with one column and as many rows as
there are elements in cells. See the examples below for the case where cells is two-dimensional and
collabels is omitted.

• cells. This argument specifies the values for the cells of the pivot table. It consists of a one-
or two-dimensional sequence of items that can be indexed as cells[i] or cells[i][j]. For
example, [1,2,3,4] is a one-dimensional sequence, and [[1,2],[3,4]] is a two-dimensional
sequence. Each element in cells can be a character string, a numeric value, a CellText object (one
of CellText.Number, CellText.String, CellText.VarName, or CellText.VarValue), a Python
time.struct_time object, or a Python datetime.datetime object. Examples showing how the
rows and columns of the pivot table are populated from cells are provided below.

• The number of elements in cells must equal the product of the number of rows and the number of
columns.

Chapter 2. Python Integration Package 29

• Elements in the pivot table are populated in row-wise fashion from the elements of cells. For example,
if you specify a table with two rows and two columns and provide cells=[1,2,3,4], the first row will
consist of the first two elements and the second row will consist of the last two elements.

• Numeric values specified in cells, rowlabels, or collabels will be converted to CellText.Number objects
with a format given by the default. The default format can be set with the SetDefaultFormatSpec
method and retrieved with the GetDefaultFormatSpec method. Instances of the BasePivotTable
class have an implicit default format of GeneralStat.

• String values specified in cells, rowlabels, or collabels will be converted to CellText.String objects.

• When specifying cell values with Python time.struct_time or datetime.datetime objects, the
value will be displayed in seconds--specifically, the number of seconds from October 14, 1582.
You can change the format of a cell to a datetime format using the SetNumericFormatAt Python
Scripting method. This requires embedding Python Scripting code within your Python program. For more
information, see the Scripting Guide under Integration Plug-in for Python in the Help system.

Example: Creating a Table with One Column

import spss
spss.StartProcedure("mycompany.com.demoProc")

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
table.SimplePivotTable(rowdim="row dimension",
 rowlabels=["row 1","row 2","row 3","row 4"],
 collabels=["column 1"],
 cells = [1,2,3,4])
spss.EndProcedure()

Result

Figure 11. Pivot table with a single column

Example: Using a Two-Dimensional Sequence for Cells

import spss
spss.StartProcedure("mycompany.com.demoProc")

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
table.SimplePivotTable(rowdim="row dimension",
 coldim="column dimension",
 rowlabels=["row 1","row 2","row 3","row 4"],
 collabels=["column 1","column 2"],
 cells = [[1,2],[3,4],[5,6],[7,8]])
spss.EndProcedure()

Result

Figure 12. Table populated from two-dimensional sequence

Example: Using a Two-Dimensional Sequence for Cells and Omitting Column Labels

import spss
spss.StartProcedure("mycompany.com.demoProc")

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
table.SimplePivotTable(rowdim="row dimension",

30 Python Reference Guide for IBM SPSS Statistics

 coldim="column dimension",
 rowlabels=["row 1","row 2","row 3","row 4"],
 cells = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
spss.EndProcedure()

Result

Figure 13. Table populated from two-dimensional sequence without specifying column labels

TitleFootnotes Method
.TitleFootnotes(footnote). Used to add a footnote to the table title. The argument footnote is a string
specifying the footnote.

Example

table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.TitleFootnotes("A title footnote")

spss.CellText Class
spss.CellText. A class of objects used to create a dimension category or a cell in a pivot table. This class is
only for use with the spss.BasePivotTable class. The CellText class is used to create the following
object types:

• CellText.Number: Used to specify a numeric value.
• CellText.String: Used to specify a string value.
• CellText.VarName: Used to specify a variable name. Use of this object means that settings for the

display of variable names in pivot tables (names, labels, or both) are honored.
• CellText.VarValue: Used to specify a variable value. Use of this object means that settings for the display

of variable values in pivot tables (values, labels, or both) are honored.

Number Class
spss.CellText.Number(value,formatspec,varIndex). Used to specify a numeric value for a category
or a cell in a pivot table. The argument value specifies the numeric value. You can also pass
a string representation of a numeric value, a Python time.struct_time object, or a Python
datetime.datetime object to this argument. The optional argument formatspec is of the form
spss.FormatSpec.format where format is one of those listed in the table below--for example,
spss.FormatSpec.Mean. You can also specify an integer code for formatspec, as in the value 5 for
Mean. The argument varIndex is the index of a variable in the active dataset whose format is used to
determine details of the resulting format. varIndex is only used in conjunction with formatspec and is
required when specifying one of the following formats: Mean, Variable, StdDev, Difference, and
Sum. Index values represent position in the active dataset, starting with 0 for the first variable in file order.

• When formatspec is omitted, the default format is used. You can set the default format with the
SetDefaultFormatSpec method and retrieve the default with the GetDefaultFormatSpec method.
Instances of the BasePivotTable class have an implicit default format of GeneralStat.

• You can obtain a numeric representation of a CellText.Number object using the toNumber method,
and you can use the toString method to obtain a string representation.

• When specifying cell values with Python time.struct_time or datetime.datetime objects, the
value will be displayed in seconds--specifically, the number of seconds from October 14, 1582.

Chapter 2. Python Integration Package 31

You can change the format of a cell to a datetime format using the SetNumericFormatAt Python
Scripting method. This requires embedding Python Scripting code within your Python program. For more
information, see the Scripting Guide under Integration Plug-in for Python in the Help system.

Example

from spss import CellText
from spss import FormatSpec
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"rowdim")
table.Append(spss.Dimension.Place.column,"coldim")

table[(CellText.String("row1"),CellText.String("col1"))] = \
 CellText.Number(25.632,FormatSpec.Mean,2)
table[(CellText.String("row2"),CellText.String("col1"))] = \
 CellText.Number(23.785,FormatSpec.Mean,2)

In this example, cell values are displayed in the format used for mean values. The format of the variable
with index 2 in the active dataset is used to determine the details of the resulting format.

Table 1. Numeric formats for use with FormatSpec

Format name Code

Coefficient 0

CoefficientSE 1

CoefficientVar 2

Correlation 3

GeneralStat 4

Mean 5

Count 6

Percent 7

PercentNoSign 8

Proportion 9

Significance 10

Residual 11

Variable 12

StdDev 13

Difference 14

Sum 15

Suggestions for Choosing a Format

• Consider using Coefficient for unbounded, unstandardized statistics; for instance, beta coefficients
in regression.

• Correlation is appropriate for statistics bounded by –1 and 1 (typically correlations or measures of
association).

• Consider using GeneralStat for unbounded, scale-free statistics; for instance, beta coefficients in
regression.

• Mean is appropriate for the mean of a single variable, or the mean across multiple variables.
• Count is appropriate for counts and other integers such as integer degrees of freedom.
• Percent and PercentNoSign are both appropriate for percentages. PercentNoSign results in a

value without a percentage symbol (%).

32 Python Reference Guide for IBM SPSS Statistics

• Significance is appropriate for statistics bounded by 0 and 1 (for example, significance levels).
• Consider using Residual for residuals from cell counts.
• Variable refers to a variable’s print format as given in the data dictionary and is appropriate for

statistics whose values are taken directly from the observed data (for instance, minimum, maximum,
and mode).

• StdDev is appropriate for the standard deviation of a single variable, or the standard deviation across
multiple variables.

• Sum is appropriate for sums of single variables. Results are displayed using the specified variable’s print
format.

String Class
spss.CellText.String(value). Used to specify a string value for a category or a cell in a pivot table. The
argument is the string value. You can also pass a numeric value, and it will be converted to a string.

• You can obtain a string representation of a CellText.String object using the toString method.
For character representations of numeric values stored as CellText.String objects, such as
CellText.String("11"), you can obtain the numeric value using the toNumber method.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"rowdim")
table.Append(spss.Dimension.Place.column,"coldim")

table[(CellText.String("row1"),CellText.String("col1"))] = \
 CellText.String("1")
table[(CellText.String("row2"),CellText.String("col1"))] = \
 CellText.String("2")

VarName Class
spss.CellText.VarName(index). Used to specify that a category or cell in a pivot table is to be treated as
a variable name. CellText.VarName objects honor display settings for variable names in pivot tables
(names, labels, or both). The argument is the index value of the variable. Index values represent position
in the active dataset, starting with 0 for the first variable in file order.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
coldim=table.Append(spss.Dimension.Place.column,"coldim")
rowdim=table.Append(spss.Dimension.Place.row,"rowdim")
table.SetCategories(rowdim,[CellText.VarName(0),CellText.VarName(1)])
table.SetCategories(coldim,CellText.String("Column Heading"))

In this example, row categories are specified as the names of the variables with index values 0 and 1
in the active dataset. Depending on the setting of pivot table labeling for variables in labels, the variable
names, labels, or both will be displayed.

VarValue Class
spss.CellText.VarValue(index,value). Used to specify that a category or cell in a pivot table is to be
treated as a variable value. CellText.VarValue objects honor display settings for variable values in
pivot tables (values, labels, or both). The argument index is the index value of the variable. Index values
represent position in the active dataset, starting with 0 for the first variable in file order. The argument
value is a number (for a numeric variable) or string (for a string variable) representing the value of the
CellText object.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")
coldim=table.Append(spss.Dimension.Place.column,"coldim")
rowdim=table.Append(spss.Dimension.Place.row,"rowdim")

Chapter 2. Python Integration Package 33

table.SetCategories(rowdim,[CellText.VarValue(0,1),CellText.VarValue(0,2)])
table.SetCategories(coldim,CellText.String("Column Heading"))

In this example, row categories are specified as the values 1 and 2 of the variable with index value 0 in
the active dataset. Depending on the setting of pivot table labeling for variable values in labels, the values,
value labels, or both will be displayed.

toNumber Method
This method is used to obtain a numeric representation of a CellText.Number object or
a CellText.String object that stores a character representation of a numeric value, as in
CellText.String("123"). Values obtained from this method can be used in arithmetic expressions.
You call this method on a CellText.Number or CellText.String object.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"row dimension")
table.Append(spss.Dimension.Place.column,"column dimension")

row_cat1 = CellText.String("first row")
row_cat2 = CellText.String("second row")
col_cat1 = CellText.String("first column")
col_cat2 = CellText.String("second column")

table[(row_cat1,col_cat1)] = CellText.Number(11)
cellValue = table[(row_cat1,col_cat1)].toNumber()
table[(row_cat2,col_cat2)] = CellText.Number(2*cellValue)

• table[(row_cat1,col_cat1)].toNumber() returns a numeric representation of the CellText
object (recall that table cells are stored as CellText objects) for the cell with category values ("first
row","first column").

toString Method
This method is used to obtain a string representation of a CellText.String or CellText.Number
object. Values obtained from this method can be used in string expressions. You call this method on a
CellText.String or CellText.Number object.

Example

from spss import CellText
table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

table.Append(spss.Dimension.Place.row,"row dimension")
table.Append(spss.Dimension.Place.column,"column dimension")

row_cat1 = CellText.String("first row")
row_cat2 = CellText.String("second row")
col_cat1 = CellText.String("first column")
col_cat2 = CellText.String("second column")

table[(row_cat1,col_cat1)] = CellText.String("abc")
cellValue = table[(row_cat1,col_cat1)].toString()
table[(row_cat2,col_cat2)] = CellText.String(cellValue + "d")

• table[(row_cat1,col_cat1)].toString() returns a string representation of the CellText
object (recall that table cells are stored as CellText objects) for the cell with category values ("first
row","first column").

Creating a Warnings Table
You can create an IBM SPSS Statistics Warnings table using the BasePivotTable class by specifying
"Warnings" for the templateName argument. Note that an IBM SPSS Statistics Warnings table has a very
specific structure, so unless you actually want a Warnings table you should avoid using "Warnings" for
templateName.

Example

import spss
spss.StartProcedure("demo")
table = spss.BasePivotTable("Warnings ","Warnings")
table.Append(spss.Dimension.Place.row,"rowdim",hideLabels=True)
rowLabel = spss.CellText.String("1")

34 Python Reference Guide for IBM SPSS Statistics

table[(rowLabel,)] = spss.CellText.String("""First line of Warnings table content
Second line of Warnings table content""")

• The title argument is set to the string "Warnings ", It can be set to an arbitrary value but it cannot be
identical to the templateName value, hence the space at the end of the string.

• The templateName argument must be set to the string "Warnings", independent of the IBM SPSS
Statistics output language.

• A Warnings table has a single row dimension with all labels hidden and can consist of one or more rows.
In this example, the table has a single multi-line row, formatted with a Python triple-quoted string.

Result

Figure 14. Warnings table

spss.BaseProcedure Class
The spss.BaseProcedure class is used to create classes that encapsulate procedures. Procedures
can read the data, perform computations, add new variables and/or new cases to the active dataset,
and produce pivot table output and text blocks in the IBM SPSS Statistics Viewer. Procedures have
almost the same capabilities as built-in IBM SPSS Statistics procedures, such as DESCRIPTIVES
and REGRESSION, but they are written in Python by users. Use of the spss.BaseProcedure class
provides an alternative to encapsulating procedure code within a Python function and explicitly using
an spss.StartProcedure-spss.EndProcedure block for the procedure output. All classes that
encapsulate procedures must inherit from the BaseProcedure class.

The spss.BaseProcedure class has three methods: __init__, execProcedure, and
execUserProcedure. When creating procedure classes you always override the execUserProcedure
method, replacing it with the body of your procedure. You override the __init__ method if you need to
provide arguments other than the procedure name and the optional OMS identifier. You never override
the execProcedure method. It is responsible for calling execUserProcedure to run your procedure as
well as automatically making the necessary calls to spss.StartProcedure and spss.EndProcedure.

The rules governing procedure code contained within the execUserProcedure method are the same
as those for StartProcedure-EndProcedure blocks. See the topic “spss.StartProcedure Function ” on
page 83 for more information.

Example

As an example, we will create a procedure class that calculates group means for a selected variable
using a specified categorical variable to define the groups. The output of the procedure is a pivot
table displaying the group means. For an alternative approach to creating the same procedure, but
making explicit use of spss.StartProcedure-spss.EndProcedure and without the use of the
BaseProcedure class, see the example for the spss.StartProcedure function.

class groupMeans(spss.BaseProcedure):

 #Overrides __init__ method to pass arguments
 def __init__(self, procName, groupVar, sumVar):
 self.procName = procName
 self.omsIdentifier = ""
 self.groupVar = groupVar
 self.sumVar = sumVar

 #Overrides execUserProcedure method of BaseProcedure
 def execUserProcedure(self):
 #Determine variable indexes from variable names
 varCount = spss.GetVariableCount()
 groupIndex = 0
 sumIndex = 0
 for i in range(varCount):
 varName = spss.GetVariableName(i)
 if varName == self.groupVar:
 groupIndex = i
 continue
 elif varName == self.sumVar:
 sumIndex = i
 continue

Chapter 2. Python Integration Package 35

 varIndex = [groupIndex,sumIndex]
 cur = spss.Cursor(varIndex)
 Counts={};Totals={}

 #Calculate group sums
 for i in range(cur.GetCaseCount()):
 row = cur.fetchone()
 cat=int(row[0])
 Counts[cat]=Counts.get(cat,0) + 1
 Totals[cat]=Totals.get(cat,0) + row[1]

 cur.close()

 #Create a pivot table
 table = spss.BasePivotTable("Group Means",
 "OMS table subtype")
 table.Append(spss.Dimension.Place.row,
 spss.GetVariableLabel(groupIndex))
 table.Append(spss.Dimension.Place.column,
 spss.GetVariableLabel(sumIndex))

 category2 = spss.CellText.String("Mean")
 for cat in sorted(Counts):
 category1 = spss.CellText.Number(cat)
 table[(category1,category2)] = \
 spss.CellText.Number(Totals[cat]/Counts[cat])

• groupMeans is a class based on the spss.BaseProcedure class.
• The procedure defined by the class requires two arguments, the name of the grouping variable

(groupVar) and the name of the variable for which group means are desired (sumVar). Passing
these values requires overriding the __init__ method of spss.BaseProcedure. The values of the
parameters are stored to the properties groupVar and sumVar of the class instance.

• The value passed in as the procedure name is stored to the procName property. The
spss.BaseProcedure class allows for an optional omsIdentifier property that specifies the command
name associated with output from this procedure when routing the output with OMS (Output
Management System), as used in the COMMANDS keyword of the OMS command. If omsIdentifier is an
empty string then the value of procName is used as the OMS identifier. Although specifying a non-blank
value of the omsIdentifier property is optional, the property itself must be included.

Note:
• The body of the procedure is contained within the execUserProcedure method, which overrides that

method in spss.BaseProcedure. The procedure reads the data to calculate group sums and group
case counts and creates a pivot table populated with the group means.

• The necessary calls to spss.StartProcedure and spss.EndProcedure are handled by
spss.BaseProcedure.

Saving and Running Procedure Classes

Once you have written a procedure class, you will want to save it in a Python module on the Python
search path so that you can call it. A Python module is simply a text file containing Python definitions and
statements. You can create a module with a Python IDE, or with any text editor, by saving a file with an
extension of .py. The name of the file, without the .py extension, is then the name of the module. You can
have many classes in a single module. To be sure that Python can find your new module, you may want to
save it to your Python "site-packages" directory, typically /Python310/Lib/site-packages.

For the example procedure class described above, you might choose to save the class definition to a
Python module named myprocs.py. And be sure to include an import spss statement in the module.
Sample command syntax to instantiate this class and run the procedure is:

import spss, myprocs
spss.Submit("GET FILE='/examples/data/Employee data.sav'.")
proc = myprocs.groupMeans("mycompany.com.groupMeans","educ","salary")
proc.execProcedure()

• The import statement containing myprocs makes the contents of the Python module myprocs.py
available to the current session (assuming that the module is on the Python search path).

• The call to myprocs.groupMeans creates an instance of the groupMeans class. The variables educ
and salary in /examples/data/Employee data.sav are used as the grouping variable and the variable for
which means are calculated.

• Output from the procedure is associated with the name mycompany.com.groupMeans. This is the name
that appears in the outline pane of the Viewer associated with output produced by the procedure. It is
also the command name associated with this procedure when routing output from this procedure with

36 Python Reference Guide for IBM SPSS Statistics

OMS (Output Management System). In order that names associated with procedure output not conflict
with names of existing IBM SPSS Statistics commands (when working with OMS), it is recommended
that they have the form yourcompanyname.com.procedurename. See the topic “spss.StartProcedure
Function ” on page 83 for more information.

Result

Figure 15. Output from the groupMeans procedure

spss.CreateXPathDictionary Function
spss.CreateXPathDictionary(handle). Creates an XPath dictionary DOM for the active dataset that can
be accessed with XPath expressions. The argument is a handle name, used to identify this DOM in
subsequent spss.EvaluateXPath and spss.DeleteXPathHandle functions.

Example

handle='demo'
spss.CreateXPathDictionary(handle)

• The XPath dictionary DOM for the current active dataset is assigned the handle name demo. Any
subsequent spss.EvaluateXPath or spss.DeleteXPathHandle functions that reference this
dictionary DOM must use this handle name.

spss.Cursor Class
spss.Cursor(var, accessType, cvtDates, isBinary). Provides the ability to read cases, append cases, and
add new variables to the active dataset.

• The optional argument var specifies a tuple or a list of variable index values representing position in the
active dataset, starting with 0 for the first variable in file order. This argument is used in read or write
mode to specify a subset of variables to return when reading case data from the active dataset. If the
argument is omitted, all variables are returned. The argument has no effect if used in append mode.

• The optional argument accessType specifies one of three usage modes: read ('r'), write ('w'), and
append ('a'). The default is read mode.

• The optional argument cvtDates specifies a set of IBM SPSS Statistics variables with date or datetime
formats to convert to Python datetime.datetime objects when reading data from IBM SPSS
Statistics. The argument is a sequence of variable index values representing position in the active
dataset, starting with 0 for the first variable in file order. If the optional argument var is specified, then
cvtDates must be a subset of the index values specified for var. You can specify to convert all date or
datetime format variables with cvtDates='ALL', or by setting cvtDates to a list or tuple with the single
element 'ALL', as in cvtDates=['ALL']. When 'ALL' is specified in conjunction with var, it refers
to all variables specified in var. If cvtDates is omitted, then no conversions are performed. Variables
included in cvtDates that do not have a date or datetime format are ignored in terms of the conversion.
cvtDates applies to read and write mode and cannot be used in append mode.

Chapter 2. Python Integration Package 37

Note: Values of variables with date or datetime formats that are not converted with cvtDates are
returned as integers representing the number of seconds from October 14, 1582.

• The optional Boolean argument isBinary (introduced in version 22) specifies the method that is used by
the Cursor class to work with the data in the active dataset. It has no effect on Cursor functionality.
By default isBinary is set to True, which typically provides the best performance but might require more
temporary disk space. When isBinary is set to False, the Cursor class uses the same method for
working with the data as in versions before version 22.

• You cannot use the spss.Submit function while a data cursor is open. You must close or delete the
cursor first.

• Only one data cursor can be open at any point in the program block. To define a new data cursor, you
must first close or delete the previous one. If you need to concurrently work with the data from multiple
datasets, consider using the Dataset class.

• Instances of the Cursor class are implicitly deleted at the end of a BEGIN PROGRAM-END PROGRAM
block, and therefore they do not persist across BEGIN PROGRAM-END PROGRAM blocks.

• The Cursor class honors case filters specified with the FILTER or USE commands.

Read Mode
This is the default for the Cursor class and provides the ability to read case data from the active dataset.
Read mode is specified with spss.Cursor(accessType='r') or simply spss.Cursor().

Note: For users of a 14.0.x version of the plug-in who are upgrading to a newer version, this mode is
equivalent to spss.Cursor(n) in 14.0.x versions. No changes to your 14.0.x code for the Cursor class
are required to run the code with a newer version.

The Cursor methods fetchone, fetchmany, and fetchall are used to retrieve cases from the active
dataset.

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
oneRow=dataCursor.fetchone()
dataCursor.close()
i=[0]
dataCursor=spss.Cursor(i)
oneVar=dataCursor.fetchall()
dataCursor.close()
print("One row (case): ", oneRow)
print("One column (variable): ", oneVar)
END PROGRAM.

Result

One row (case): (11.0, 'ab', 13.0)
One column (variable): ((11.0,), (21.0,), (31.0,))

• Cases from the active dataset are returned as a single tuple for fetchone and a list of tuples for
fetchall.

• Each tuple represents the data for one case. For fetchall the tuples are arranged in the same order as
the cases in the active dataset.

• Each element in a tuple contains the data value for a specific variable. The order of variable values
within a tuple is the order specified by the optional argument var to the Cursor class, or file order if var
is omittted.

*System- and user-missing values.
DATA LIST LIST (',') /numVar (f) stringVar (a4).
BEGIN DATA
1,a
,b
3,,
4,d
END DATA.
MISSING VALUES stringVar (' ').
BEGIN PROGRAM.
import spss

38 Python Reference Guide for IBM SPSS Statistics

dataCursor=spss.Cursor()
print(dataCursor.fetchall())
dataCursor.close()
END PROGRAM.

Result

((1.0, 'a '), (None, 'b '), (3.0, None), (4.0, 'd '))

• String values are right-padded to the defined width of the string variable.
• System-missing values are always converted to the Python data type None.
• By default, user-missing values are converted to the Python data type None. You can use the

SetUserMissingInclude method to specify that user-missing values be treated as valid.

Write Mode
This mode is used to add new variables, along with their case values, to an existing dataset.
It cannot be used to append cases to the active dataset. Write mode is specified with
spss.Cursor(accessType='w').

• All of the methods available in read mode are also available in write mode.
• When adding new variables, the CommitDictionary method must be called after the statements
defining the new variables and prior to setting case values for those variables. You cannot add new
variables to an empty dataset.

• When setting case values for new variables, the CommitCase method must be called for each case that
is modified. The fetchone method is used to advance the record pointer by one case, or you can use
the fetchmany method to advance the record pointer by a specified number of cases.

Note: If a case filter (specified with the FILTER or USE command) is in effect,fetchone and
fetchmany advance the record pointer through the set of cases that have not been filtered out.

• Changes to the active dataset do not take effect until the cursor is closed.
• Write mode supports multiple data passes and allows you to add new variables on each pass. In the

case of multiple data passes where you need to add variables on a data pass other than the first, you
must call the AllocNewVarsBuffer method to allocate the buffer size for the new variables. When
used, AllocNewVarsBuffer must be called before reading any data with fetchone, fetchmany, or
fetchall.

• The Cursor methods SetVarNameAndType and SetOneVarNameAndType are used to add new
variables to the active dataset, and the methods SetValueChar and SetValueNumeric are used to set
case values.

Example

In this example, we create a new numeric variable and a new string variable and set their values for all
cases.

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['var4','strvar'],[0,8])
cur.SetVarFormat('var4',5,2,0)
cur.CommitDictionary()
for i in range(cur.GetCaseCount()):
 cur.fetchone()
 cur.SetValueNumeric('var4',4+10*(i+1))
 cur.SetValueChar('strvar','row' + str(i+1))
 cur.CommitCase()
cur.close()
END PROGRAM.

• An instance of the Cursor class in write mode is created and assigned to the variable cur.
• The SetVarNameAndType method is used to add two new variables to the active dataset. var4 is a

numeric variable and strvar is a string variable of width 8.

Chapter 2. Python Integration Package 39

• SetVarFormat sets the display format for var4. The integers 5, 2, and 0 specify the format type (5 is
standard numeric), the defined width, and the number of decimal digits respectively.

• The CommitDictionary method is called to commit the new variables to the cursor before populating
their case values.

• The SetValueNumeric and SetValueChar methods are used to set the case values of the new
variables. The CommitCase method is called to commit the changes for each modified case.

• fetchone advances the record pointer to the next case.

Example: Setting Values for Specific Cases

In this example, we create new variables and set their values for specific cases. The fetchone method is
used to advance the record pointer to the desired cases.

DATA LIST FREE /code (A1) loc (A3) emp (F) dtop (F) ltop (F).
BEGIN DATA
H NY 151 127 24
W CHI 17 4 0
S CHI 9 3 6
W ATL 12 3 0
W SDG 13 4 0
S ATL 10 3 7
S SDG 11 3 8
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['emp_est','dtop_est','ltop_est'],[0,0,0])
cur.SetVarFormat('emp_est',5,2,0)
cur.SetVarFormat('dtop_est',5,2,0)
cur.SetVarFormat('ltop_est',5,2,0)
cur.CommitDictionary()
for i in range(cur.GetCaseCount()):
 row=cur.fetchone()
 if (row[0].lower()=='s'):
 cur.SetValueNumeric('emp_est',1.2*row[2])
 cur.SetValueNumeric('dtop_est',1.2*row[3])
 cur.SetValueNumeric('ltop_est',1.2*row[4])
 cur.CommitCase()
cur.close()
END PROGRAM.

Example: Multiple Data Passes

In this example, we read the data, calculate a summary statistic, and use a second data pass to add a
summary variable to the active dataset.

DATA LIST FREE /var (F).
BEGIN DATA
57000
40200
21450
21900
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.AllocNewVarsBuffer(8)
total=0
for i in range(spss.GetCaseCount()):
 total+=cur.fetchone()[0]
meanVal=total/spss.GetCaseCount()
cur.reset()
cur.SetOneVarNameAndType('mean',0)
cur.CommitDictionary()
for i in range(spss.GetCaseCount()):
 row=cur.fetchone()
 cur.SetValueNumeric('mean',meanVal)
 cur.CommitCase()
cur.close()
END PROGRAM.

• Because we will be adding a new variable on the second data pass, the AllocNewVarsBuffer method
is called to allocate the required space. In the current example, we are creating a single numeric
variable, which requires eight bytes.

• The first for loop is used to read the data and total the case values.
• After the data pass, the reset method must be called prior to defining new variables.
• The second data pass (second for loop) is used to add the mean value of the data as a new variable.

40 Python Reference Guide for IBM SPSS Statistics

Append Mode
This mode is used to append new cases to the active dataset. It cannot be used to add new
variables or read case data from the active dataset. A dataset must contain at least one variable
in order to append cases to it, but it need not contain any cases. Append mode is specified with
spss.Cursor(accessType='a').

• The CommitCase method must be called for each case that is added.
• The EndChanges method must be called before the cursor is closed.
• Changes to the active dataset do not take effect until the cursor is closed.
• A numeric variable whose value is not specified (for a new case) is set to the system-missing value.
• A string variable whose value is not specified (for a new case) will have a blank value. The value will be

valid unless you explicitly define the blank value to be missing for that variable.
• The Cursor methods SetValueChar and SetValueNumeric are used to set variable values for new cases.

Example

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='a')
ncases=cur.GetCaseCount()
newcases=2
for i in range(newcases):
 cur.SetValueNumeric('var1',1+10*(ncases+i+1))
 cur.SetValueNumeric('var3',3+10*(ncases+i+1))
 cur.CommitCase()
cur.EndChanges()
cur.close()
END PROGRAM.

• An instance of the Cursor class in append mode is created and assigned to the variable cur.
• The SetValueNumeric method is used to set the case values of var1 and var3 for two new cases. No

value is specified for var2. The CommitCase method is called to commit the values for each case.
• The EndChanges method is called to commit the new cases to the cursor.

spss.Cursor Methods
Each usage mode of the Cursor class supports its own set of methods, as shown in the table below.
Descriptions of each method follow.

Table 2. Usage modes for Cursor class methods

Method Read mode Write mode Append mode

AllocNewVarsBuffer X

close X X X

CommitCase X X

CommitDictionary X

EndChanges X

fetchall X X**

fetchmany X X**

fetchone X X

GetCaseCount X X X

GetDataFileAttributeNames X X X

Chapter 2. Python Integration Package 41

Table 2. Usage modes for Cursor class methods (continued)

Method Read mode Write mode Append mode

GetDataFileAttributes X X X

GetMultiResponseSetNames X X X

GetMultiResponseSet X X X

GetVarAttributeNames X X X

GetVarAttributes X X X

GetVariableCount X X X

GetVariableFormat X X X

GetVariableLabel X X X

GetVariableMeasurementLevel X X X

GetVariableName X X X

GetVariableRole X X X

GetVariableType X X X

GetVarMissingValues X X X

IsEndSplit X X

reset X X X

SetFetchVarList X X

SetOneVarNameAndType X

SetUserMissingInclude X X

SetValueChar X X

SetValueNumeric X X

SetVarAlignment X

SetVarAttributes X

SetVarCMissingValues X

SetVarCValueLabel X

SetVarFormat X

SetVarLabel X

SetVarMeasureLevel X

SetVarNameAndType X

SetVarNMissingValues X

SetVarNValueLabel X

SetVarRole X

** This method is primarily for use in read mode.

Note

42 Python Reference Guide for IBM SPSS Statistics

The Cursor class Get methods (for instance, GetCaseCount, GetVariableCount, and so on) listed
above have the same specifications as the functions in the spss module of the same name. For
example, the specifications for the Cursor method GetCaseCount are the same as those for the
spss.GetCaseCount function. While a cursor is open, both sets of functions return information about
the current cursor and give identical results. In the absence of a cursor, the spss module functions
retrieve information about the active dataset. Refer to the entries for the corresponding spss module
functions for specifications of these Cursor methods.

AllocNewVarsBuffer Method
.AllocNewVarsBuffer(bufSize). Specifies the buffer size, in bytes, to use when adding new variables in the
context of multiple data passes. The argument bufSize is a positive integer large enough to accommodate
all new variables to be created by a given write cursor. Each numeric variable requires eight bytes. For
each string variable, you should allocate a size that is an integer multiple of eight bytes, and large enough
to store the defined length of the string (one byte per character). For example, you would allocate eight
bytes for strings of length 1–8 and 16 bytes for strings of length 9–16.

• This method is only available in write mode.
• AllocNewVarsBuffer is required in the case of multiple data passes when you need to add variables

on a data pass other than the first. When used, it must be called before reading any data with
fetchone, fetchmany, or fetchall.

• AllocNewVarsBuffer can only be called once for a given write cursor instance.
• Specifying a larger buffer size than is required has no effect on the result.

For an example of the AllocNewVarsBuffer method, see the example on multiple data passes in the
topic on “Write Mode ” on page 39.

close Method
.close(). Closes the cursor. You cannot use the spss.Submit function while a data cursor is open. You
must close or delete the cursor first.

• This method is available in read, write, or append mode.
• When appending cases, you must call the EndChanges method before the close method.
• Cursors are implicitly closed at the end of a BEGIN PROGRAM-END PROGRAM block.

Example

cur=spss.Cursor()
data=cur.fetchall()
cur.close()

CommitCase Method
.CommitCase(). Commits changes to the current case in the current cursor. This method must be called
for each case that is modified, including existing cases modified in write mode and new cases created in
append mode.

• This method is available in write or append mode.
• When working in write mode, you advance the record pointer by calling the fetchone method. To

modify the first case, you must first call fetchone.
• When working in append mode, the cursor is ready to accept values for a new record (using
SetValueNumeric and SetValueChar) once CommitCase has been called for the previous record.

• Changes to the active dataset take effect when the cursor is closed.

For an example of using CommitCase in write mode, see the topic on write mode “Write Mode ” on
page 39. For an example of using CommitCase in append mode, see the topic on append mode “Append
Mode ” on page 41.

Chapter 2. Python Integration Package 43

CommitDictionary Method
.CommitDictionary(). Commits new variables to the current cursor.

• This method is only available in write mode.
• When adding new variables, you must call this method before setting case values for the new variables.
• Changes to the active dataset take effect when the cursor is closed.

Example

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarLabel('numvar','New numeric variable')
cur.SetVarFormat('numvar',5,2,0)
cur.CommitDictionary()
for i in range(cur.GetCaseCount()):
 cur.fetchone()
 cur.SetValueNumeric('numvar',4+10*(i+1))
 cur.CommitCase()
cur.close()
END PROGRAM.

EndChanges Method
.EndChanges(). Specifies the end of appending new cases. This method must be called before the cursor
is closed.

• This method can only be called once for a given Cursor instance and is only available in append mode.
• Changes to the active dataset take effect when the cursor is closed.

For an example of using EndChanges, see the topic on append mode “Append Mode ” on page 41.

fetchall Method
.fetchall(). Fetches all (remaining) cases from the active dataset, or if there are splits, the remaining cases
in the current split. If there are no remaining rows, the result is an empty tuple.

• This method is available in read or write mode.
• When used in write mode, calling fetchall will position the record pointer at the last case of the active

dataset, or if there are splits, the last case of the current split.
• Cases from the active dataset are returned as a list of tuples. Each tuple represents the data for one

case, and the tuples are arranged in the same order as the cases in the active dataset. Each element in
a tuple contains the data value for a specific variable. The order of variable values within a tuple is the
order specified by the variable index values in the optional argument n to the Cursor class, or file order
if n is omitted. For example, if n=[5,2,7] the first tuple element is the value of the variable with index
value 5, the second is the variable with index value 2, and the third is the variable with index value 7.

• String values are right-padded to the defined width of the string variable.

• System-missing values are always converted to the Python data type None.
• By default, user-missing values are converted to the Python data type None. You can use the

SetUserMissingInclude method to specify that user-missing values be treated as valid.
• Values of variables with time formats are returned as integers representing the number of seconds from

midnight.
• By default, values of variables with date or datetime formats are returned as integers representing the

number of seconds from October 14, 1582. You can specify to convert values of those variables to
Python datetime.datetime objects with the cvtDates argument to the spss.Cursor function. See
the topic “spss.Cursor Class ” on page 37 for more information.

• If a weight variable has been defined for the active dataset, then cases with zero, negative, or missing
values for the weighting variable are skipped when fetching data with fetchone, fetchall, or

44 Python Reference Guide for IBM SPSS Statistics

fetchmany. If you need to retrieve all cases when weighting is in effect, then you can use the Dataset
class.

• The fetchone, fetchall, and fetchmany methods honor case filters specified with the FILTER or
USE commands.

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
dataFile=dataCursor.fetchall()
for i in enumerate(dataFile):
 print i
print dataCursor.fetchall()
dataCursor.close()
END PROGRAM.

Result

(0, (11.0, 'ab', 13.0))
(1, (21.0, 'cd', 23.0))
(2, (31.0, 'ef', 33.0))
()

fetchall with Variable Index

DATA LIST FREE /var1 var2 var3.
BEGIN DATA
1 2 3
1 4 5
2 5 7
END DATA.
BEGIN PROGRAM.
import spss
i=[0]
dataCursor=spss.Cursor(i)
oneVar=dataCursor.fetchall()
uniqueCount=len(set(oneVar))
print oneVar
print spss.GetVariableName(0), " has ", uniqueCount, " unique values."
dataCursor.close()
END PROGRAM.

Result

((1.0,), (1.0,), (2.0,))
var1 has 2 unique values.

fetchmany Method
.fetchmany(n). Fetches the next n cases from the active dataset, where n is a positive integer. If the value
of n is greater than the number of remaining cases (and the dataset does not contain splits), it returns
the value of all the remaining cases. In the case that the active dataset has splits, if n is greater than the
number of remaining cases in the current split, it returns the value of the remaining cases in the split. If
there are no remaining cases, the result is an empty tuple.

• This method is available in read or write mode.
• When used in write mode, calling fetchmany(n) will position the record pointer at case n of the active

dataset. In the case that the dataset has splits and n is greater than the number of remaining cases in
the current split, fetchmany(n) will position the record pointer at the end of the current split.

• Cases from the active dataset are returned as a list of tuples. Each tuple represents the data for one
case, and the tuples are arranged in the same order as the cases in the active dataset. Each element in
a tuple contains the data value for a specific variable. The order of variable values within a tuple is the
order specified by the variable index values in the optional argument n to the Cursor class, or file order
if n is omitted. For example, if n=[5,2,7] the first tuple element is the value of the variable with index
value 5, the second is the variable with index value 2, and the third is the variable with index value 7.

• String values are right-padded to the defined width of the string variable.

• System-missing values are always converted to the Python data type None.

Chapter 2. Python Integration Package 45

• By default, user-missing values are converted to the Python data type None. You can use the
SetUserMissingInclude method to specify that user-missing values be treated as valid.

• Values of variables with time formats are returned as integers representing the number of seconds from
midnight.

• By default, values of variables with date or datetime formats are returned as integers representing the
number of seconds from October 14, 1582. You can specify to convert values of those variables to
Python datetime.datetime objects with the cvtDates argument to the spss.Cursor function. See
the topic “spss.Cursor Class ” on page 37 for more information.

• If a weight variable has been defined for the active dataset, then cases with zero, negative, or missing
values for the weighting variable are skipped when fetching data with fetchone, fetchall, or
fetchmany. If you need to retrieve all cases when weighting is in effect, then you can use the Dataset
class.

• The fetchone, fetchall, and fetchmany methods honor case filters specified with the FILTER or
USE commands.

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
n=2
print dataCursor.fetchmany(n)
print dataCursor.fetchmany(n)
print dataCursor.fetchmany(n)
dataCursor.close()
END PROGRAM.

Result

((11.0, 'ab', 13.0), (21.0, 'cd', 23.0))
((31.0, 'ef', 33.0),)
()

fetchone Method
.fetchone(). Fetches the next row (case) from the active dataset. The result is a single tuple or the Python
data type None after the last row has been read. A value of None is also returned at a split boundary. In
this case, a subsequent call to fetchone will retrieve the first case of the next split group.

• This method is available in read or write mode.
• Each element in the returned tuple contains the data value for a specific variable. The order of variable

values in the tuple is the order specified by the variable index values in the optional argument n to the
Cursor class, or file order if n is omitted. For example, if n=[5,2,7] the first tuple element is the value
of the variable with index value 5, the second is the variable with index value 2, and the third is the
variable with index value 7.

• String values are right-padded to the defined width of the string variable.

• System-missing values are always converted to the Python data type None.
• By default, user-missing values are converted to the Python data type None. You can use the

SetUserMissingInclude method to specify that user-missing values be treated as valid.
• Values of variables with time formats are returned as integers representing the number of seconds from

midnight.
• By default, values of variables with date or datetime formats are returned as integers representing the

number of seconds from October 14, 1582. You can specify to convert values of those variables to
Python datetime.datetime objects with the cvtDates argument to the spss.Cursor function. See
the topic “spss.Cursor Class ” on page 37 for more information.

• If a weight variable has been defined for the active dataset, then cases with zero, negative, or missing
values for the weighting variable are skipped when fetching data with fetchone, fetchall, or

46 Python Reference Guide for IBM SPSS Statistics

fetchmany. If you need to retrieve all cases when weighting is in effect, then you can use the Dataset
class.

• The fetchone, fetchall, and fetchmany methods honor case filters specified with the FILTER or
USE commands.

DATA LIST FREE /var1 var2 var3.
BEGIN DATA
1 2 3
4 5 6
END DATA.
BEGIN PROGRAM.
import spss
dataCursor=spss.Cursor()
firstRow=dataCursor.fetchone()
secondRow=dataCursor.fetchone()
thirdRow=dataCursor.fetchone()
print("First row: ",firstRow)
print("Second row ",secondRow)
print("Third row...there is NO third row: ",thirdRow)
dataCursor.close()
END PROGRAM.

Result

First row: (1.0, 2.0, 3.0)
Second row (4.0, 5.0, 6.0)
Third row...there is NO third row: None

IsEndSplit Method
.IsEndSplit(). Indicates if the cursor position has crossed a split boundary. The result is Boolean—True
if a split boundary has been crossed, otherwise False. This method is used in conjunction with the
SplitChange function when creating custom pivot tables from data with splits.

• This method is available in read or write mode.
• The value returned from the fetchone method is None at a split boundary. Once a split has been

detected, you will need to call fetchone again to retrieve the first case of the next split group.
• IsEndSplit returns True when the end of the dataset has been reached. Although a split boundary and

the end of the dataset both result in a return value of True from IsEndSplit, the end of the dataset
is identified by a return value of None from a subsequent call to fetchone, as shown in the following
example.

Example

GET FILE='/examples/data/employee data.sav'.
SORT CASES BY GENDER.
SPLIT FILE LAYERED BY GENDER.

BEGIN PROGRAM.
import spss
i=0
cur=spss.Cursor()
while True:
 cur.fetchone()
 i+=1
 if cur.IsEndSplit():
 # Try to fetch the first case of the next split group
 if not None==cur.fetchone():
 print("Found split end. New split begins at case: ", i)
 else:
 #There are no more cases, so quit
 break
cur.close()
END PROGRAM.

reset Method
.reset(). Resets the cursor.

• This method is available in read, write, or append mode.
• In read and write modes, reset moves the record pointer to the first case, allowing multiple data

passes. In append mode, it deletes the current cursor instance and creates a new one.
• When executing multiple data passes, the reset method must be called prior to defining new variables

on subsequent passes. For an example, see the topic on write mode.

Chapter 2. Python Integration Package 47

Example

import spss
cur=spss.Cursor()
data=cur.fetchall()
cur.reset()
data10=cur.fetchmany(10)
cur.close()

SetFetchVarList
.SetFetchVarList(var). Resets the list of variables to return when reading case data from the active
dataset. The argument var is a list or tuple of variable index values representing position in the active
dataset, starting with 0 for the first variable in file order.

• This method is available in read or write mode.

Example

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor()
oneRow=cur.fetchone()
cur.SetFetchVarList([0])
cur.reset()
oneVar=cur.fetchall()
cur.close()
print("One row (case): ", oneRow)
print("One column (variable): ", oneVar)
END PROGRAM.

SetOneVarNameAndType Method
.SetOneVarNameAndType(varName,varType). Creates one new variable in the active dataset. The
argument varName is a string that specifies the name of the new variable. The argument varType is
an integer specifying the variable type of the new variable. You can create multiple variables with a single
call using the SetVarNameAndType method.

• This method is only available in write mode.
• Numeric variables are specified by a value of 0 for the variable type. String variables are specified with a

type equal to the defined length of the string (maximum of 32767).
• Use of the SetOneVarNameAndType method requires the AllocNewVarsBuffer method to allocate

space for the variable.

Example

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.AllocNewVarsBuffer(8)
cur.SetOneVarNameAndType('var4',0)
cur.SetVarFormat('var4',5,2,0)
cur.CommitDictionary()
for i in range(cur.GetCaseCount()):
 cur.fetchone()
 cur.SetValueNumeric('var4',4+10*(i+1))
 cur.CommitCase()
cur.close()
END PROGRAM.

SetUserMissingInclude Method
.SetUserMissingInclude(incMissing). Specifies the treatment of user-missing values read from the active
dataset. The argument is a Boolean with True specifying that user-missing values be treated as valid. A
value of False specifies that user-missing values should be converted to the Python data type None.

• By default, user-missing values are converted to the Python data type None.

48 Python Reference Guide for IBM SPSS Statistics

• System-missing values are always converted to None.
• This method is available in read or write mode.

In this example, we will use the following data to demonstrate both the default behavior and the behavior
when user missing values are treated as valid.

DATA LIST LIST (',') /numVar (f) stringVar (a4).
BEGIN DATA
1,a
,b
3,,
0,d
END DATA.
MISSING VALUES stringVar (' ') numVar(0).

This first BEGIN PROGRAM block demonstrates the default behavior.

BEGIN PROGRAM.
import spss
cur=spss.Cursor()
print cur.fetchall()
cur.close()
END PROGRAM.

Result

((1.0, 'a '), (None, 'b '), (3.0, None), (None, 'd '))

This second BEGIN PROGRAM block demonstrates the behavior when user-missing values are treated as
valid.

BEGIN PROGRAM.
import spss
cur=spss.Cursor()
cur.SetUserMissingInclude(True)
print cur.fetchall()
cur.close()
END PROGRAM.

Result

((1.0, 'a '), (None, 'b '), (3.0, ' '), (0.0, 'd '))

SetValueChar Method
.SetValueChar(varName,varValue). Sets the value for the current case for a string variable. The argument
varName is a string specifying the name of a string variable. The argument varValue is a string specifying
the value of this variable for the current case.

• This method is available in write or append mode.
• The CommitCase method must called for each case that is modified. This includes new cases created in

append mode.

Example

DATA LIST FREE /var1 (F) var2(F).
BEGIN DATA
11 12
21 22
31 32
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['strvar'],[8])
cur.CommitDictionary()
for i in range(cur.GetCaseCount()):
 cur.fetchone()
 cur.SetValueChar('strvar','row' + str(i+1))
 cur.CommitCase()
cur.close()
END PROGRAM.

Chapter 2. Python Integration Package 49

SetValueNumeric Method
.SetValueNumeric(varName,varValue). Sets the value for the current case for a numeric variable. The
argument varName is a string specifying the name of a numeric variable. The argument varValue specifies
the numeric value of this variable for the current case.

• This method is available in write or append mode.
• The CommitCase method must be called for each case that is modified. This includes new cases

created in append mode.
• The Python data type None specifies a missing value for a numeric variable.

• Values of numeric variables with a date or datetime format should be specified as Python
time.struct_time or datetime.datetime objects, which are then converted to the appropriate
IBM SPSS Statistics value. Values of variables with TIME and DTIME formats should be specified as the
number of seconds in the time interval.

Example

DATA LIST FREE /var1 (F) var2 (F).
BEGIN DATA
11 12
21 22
31 32
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['var3'],[0])
cur.SetVarFormat('var3',5,2,0)
cur.CommitDictionary()
for i in range(cur.GetCaseCount()):
 cur.fetchone()
 cur.SetValueNumeric('var3',3+10*(i+1))
 cur.CommitCase()
cur.close()
END PROGRAM.

SetVarAlignment Method
.SetVarAlignment(varName,alignment). Sets the alignment of data values in the Data Editor for a new
variable. It has no effect on the format of the variables or the display of the variables or values in other
windows or printed results. The argument varName is a string specifying the name of a new variable. The
argument alignment is an integer and can take on one of the following values: 0 (left), 1 (right), 2 (center).

• This method is only available in write mode.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarAlignment('numvar',0)
cur.CommitDictionary()
cur.close()

SetVarAttributes Method
.SetVarAttributes(varName,attrName,attrValue,index). Sets a value in an attribute array for a new
variable. The argument varName is a string specifying the name of a new variable. The argument attrName
is a string specifying the name of the attribute array. The argument attrValue is a string specifying the
attribute value, and index is the index position in the array, starting with the index 0 for the first element in
the array.

• This method is only available in write mode.
• An attribute array with one element is equivalent to an attribute that is not specified as an array.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarAttributes('numvar','myattribute','first element',0)
cur.SetVarAttributes('numvar','myattribute','second element',1)
cur.CommitDictionary()
cur.close()

50 Python Reference Guide for IBM SPSS Statistics

SetVarCMissingValues Method
.SetVarCMissingValues(varName,missingVal1,missingVal2,missingVal3). Sets user-missing values for
a new string variable. The argument varName is a string specifying the name of a new string variable.
The optional arguments missingVal1, missingVal2, and missingVal3 are strings, each of which can specify
one user-missing value. Use the SetVarNMissingValues method to set missing values for new numeric
variables.

• This method is only available in write mode.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['strvar'],[8])
cur.SetVarCMissingValues('strvar',' ','NA')
cur.CommitDictionary()
cur.close()

SetVarCValueLabel Method
.SetVarCValueLabel(varName,value,label). Sets the value label of a single value for a new string variable.
The argument varName is a string specifying the name of a new string variable. The arguments value and
label are strings specifying the value and the associated label. Use the SetVarNValueLabel method to set
value labels for new numeric variables.

• This method is only available in write mode.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['strvar'],[8])
cur.SetVarCValueLabel('strvar','f','female')
cur.CommitDictionary()
cur.close()

SetVarFormat Method
.SetVarFormat(varName,type,width,decimals). Sets the display format for a new variable. The argument
varName is a string specifying the name of a new variable. The argument type is an integer that specifies
one of the available format types (see Appendix A, “Variable Format Types ,” on page 229). The argument
width is an integer specifying the defined width, which must include enough positions to accommodate
any punctuation characters such as decimal points, commas, dollar signs, or date and time delimiters.
The optional argument decimals is an integer specifying the number of decimal digits for numeric formats.

Allowable settings for decimal and width depend on the specified type. For a list of the minimum and
maximum widths and maximum decimal places for commonly used format types, see Variable Types and
Formats in the Universals section of the Command Syntax Reference, available in PDF from the Help menu
and also integrated into the overall Help system.

• This method is only available in write mode.
• Setting the argument width for a string variable will not change the defined length of the string. If the
specified value does not match the defined length, it is forced to be the defined length.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarFormat('numvar',5,2,0)
cur.CommitDictionary()
cur.close()

SetVarLabel Method
.SetVarLabel(varName,varLabel). Sets the variable label for a new variable. The argument varName is a
string specifying the name of a new variable. The argument varLabel is a string specifying the label.

• This method is only available in write mode.

Chapter 2. Python Integration Package 51

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarLabel('numvar','New numeric variable')
cur.CommitDictionary()
cur.close()

SetVarMeasureLevel Method
.SetVarMeasureLevel(varName,measureLevel). Sets the measurement level for a new variable. The
argument varName is a string specifying the name of a new variable. The argument measureLevel is
an integer specifying the measurement level: 2 (nominal), 3 (ordinal), 4 (scale).

• This method is only available in write mode.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarMeasureLevel('numvar',3)
cur.CommitDictionary()
cur.close()

SetVarNameAndType Method
.SetVarNameAndType(varName,varType). Creates one or more new variables in the active dataset. The
argument varName is a list or tuple of strings that specifies the name of each new variable. The argument
varType is a list or tuple of integers specifying the variable type of each variable named in varName.
varName and varType must be the same length. For creating a single variable you can also use the
SetOneVarNameAndType method.

• This method is only available in write mode.
• Numeric variables are specified by a value of 0 for the variable type. String variables are specified with a

type equal to the defined length of the string (maximum of 32767).

Example

DATA LIST FREE /var1 (F) var2 (A2) var3 (F).
BEGIN DATA
11 ab 13
21 cd 23
31 ef 33
END DATA.
BEGIN PROGRAM.
import spss
cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['var4','strvar'],[0,8])
cur.SetVarFormat('var4',5,2,0)
cur.CommitDictionary()
for i in range(cur.GetCaseCount()):
 cur.fetchone()
 cur.SetValueNumeric('var4',4+10*(i+1))
 cur.SetValueChar('strvar','row' + str(i+1))
 cur.CommitCase()
cur.close()
END PROGRAM.

SetVarNMissingValues Method
.SetVarNMissingValues(varName,missingFormat,missingVal1,missingVal2,missingVal3). Sets user-
missing values for a new numeric variable. The argument varName is a string specifying the name of
a new numeric variable. The argument missingFormat has the value 0 for a discrete list of missing values
(for example, 0, 9, 99), the value 1 for a range of missing values (for example, 9–99), and the value 2 for
a combination of a discrete value and a range (for example, 0 and 9–99). Use the SetVarCMissingValues
method to set missing values for new string variables.

• This method is only available in write mode.
• To specify LO and HI in missing value ranges, use the values returned by the spss.GetSPSSLowHigh

function.

52 Python Reference Guide for IBM SPSS Statistics

Table 3. Specifications for arguments to SetVarNMissingValues

missingFormat missingVal1 missingVal2 missingVal3

0 Discrete value (optional) Discrete value (optional) Discrete value (optional)

1 Start point of range End point of range Not applicable

2 Start point of range End point of range Discrete value

Examples

Specify the three discrete missing values 0, 9, and 99 for a new variable.

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarNMissingValues('numvar',0,0,9,99)
cur.CommitDictionary()
cur.close()

Specify the range of missing values 9–99 for a new variable.

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarNMissingValues('numvar',1,9,99)
cur.CommitDictionary()
cur.close()

Specify the range of missing values 9–99 and the discrete missing value 0 for a new variable.

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarNMissingValues('numvar',2,9,99,0)
cur.CommitDictionary()
cur.close()

SetVarNValueLabel Method
.SetVarNValueLabel(varName,value,label). Sets the value label of a single value for a new variable. The
argument varName is a string specifying the name of a new numeric variable. The argument value is
a numeric value and label is the string specifying the label for this value. Use the SetVarCValueLabel
method to set value labels for new string variables.

• This method is only available in write mode.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['numvar'],[0])
cur.SetVarNValueLabel('numvar',1,'female')
cur.CommitDictionary()
cur.close()

SetVarRole Method
.SetVarRole(varName,varRole). Sets the role for a new variable. The argument varName is a string
specifying the name of a new variable. The argument varRole is a string specifying the role: "Input",
"Target", "Both", "None", "Partition" or "Split".

• This method is only available in write mode.

Example

cur=spss.Cursor(accessType='w')
cur.SetVarNameAndType(['targetvar'],[0])
cur.SetVarRole('targetvar','Target')
cur.CommitDictionary()
cur.close()

spss.Dataset Class
spss.Dataset(name,hidden,cvtDates). Provides the ability to create new datasets, read from existing
datasets, and modify existing datasets. A Dataset object provides access to the case data and variable

Chapter 2. Python Integration Package 53

information contained in a dataset, and allows you to read from the dataset, add new cases, modify
existing cases, add new variables, and modify properties of existing variables.

An instance of the Dataset class can only be created within a data step or StartProcedure-
EndProcedure block, and cannot be used outside of the data step or procedure block in which it
was created. Data steps are initiated with the spss.StartDataStep function. You can also use the
spss.DataStep class to implicitly start and end a data step without the need to check for pending
transformations. See the topic “spss.DataStep Class ” on page 69 for more information.

• The argument name is optional and specifies the name of an open dataset for which a Dataset object
will be created. Note that this is the name as assigned by IBM SPSS Statistics or as specified with
DATASET NAME. Specifying name="*" or omitting the argument will create a Dataset object for the
active dataset. If the active dataset is unnamed, then a name will be automatically generated for it in
the case that the Dataset object is created for the active dataset.

• If the Python data type None or the empty string '' is specified for name, then a new empty dataset
is created. The name of the dataset is automatically generated and can be retrieved from the name
property of the resulting Dataset object. The name cannot be changed from within the data step. To
change the name, use the DATASET NAME command following spss.EndDataStep.

A new dataset created with the Dataset class is not set to be the active dataset. To make the dataset
the active one, use the spss.SetActive function.

• The optional argument hidden specifies whether the Data Editor window associated with the dataset is
hidden--by default, it is displayed. Use hidden=True to hide the associated Data Editor window.

• The optional argument cvtDates specifies whether IBM SPSS Statistics variables with date or datetime
formats are converted to Python datetime.datetime objects when reading data from IBM SPSS
Statistics. The argument is a boolean--True to convert all variables with date or datetime formats, False
otherwise. If cvtDates is omitted, then no conversions are performed.

Note: Values of variables with date or datetime formats that are not converted with cvtDates are
returned as integers representing the number of seconds from October 14, 1582.

• Instances of the Dataset class created within StartProcedure-EndProcedure blocks cannot be
set as the active dataset.

• The Dataset class does not honor case filters specified with the FILTER or USE commands. If you
need case filters to be honored, then consider using the Cursor class.

• For release 22 Fix Pack 1 and higher, the Dataset class supports caching. Caching typically improves
performance when cases are modified in a random manner, and is specified with the cache property of
a Dataset object.

The number of variables in the dataset associated with a Dataset instance is available using the len
function, as in:

len(datasetObj)

Note: Datasets that are not required outside of the data step or procedure in which they were accessed
or created should be closed prior to ending the data step or procedure in order to free the resources
allocated to the dataset. This is accomplished by calling the close method of the Dataset object.

Example: Creating a New Dataset

BEGIN PROGRAM.
import spss
spss.StartDataStep()
datasetObj = spss.Dataset(name=None)
datasetObj.varlist.append('numvar',0)
datasetObj.varlist.append('strvar',1)
datasetObj.varlist['numvar'].label = 'Sample numeric variable'
datasetObj.varlist['strvar'].label = 'Sample string variable'
datasetObj.cases.append([1,'a'])
datasetObj.cases.append([2,'b'])
spss.EndDataStep()
END PROGRAM.

• You add variables to a dataset using the append (or insert) method of the VariableList object
associated with the dataset. The VariableList object is accessed from the varlist property of the

54 Python Reference Guide for IBM SPSS Statistics

Dataset object, as in datasetObj.varlist. See the topic “VariableList Class ” on page 63 for more
information.

• Variable properties, such as the variable label and measurement level, are set through properties
of the associated Variable object, accessible from the VariableList object. For example,
datasetObj.varlist['numvar'] accesses the Variable object associated with the variable
numvar. See the topic “Variable Class ” on page 65 for more information.

• You add cases to a dataset using the append (or insert) method of the CaseList object associated
with the dataset. The CaseList object is accessed from the cases property of the Dataset object, as
in datasetObj.cases. See the topic “CaseList Class ” on page 60 for more information.

Example: Saving New Datasets

When creating new datasets that you intend to save, you'll want to keep track of the dataset names since
the save operation is done outside of the associated data step.

DATA LIST FREE /dept (F2) empid (F4) salary (F6).
BEGIN DATA
7 57 57000
5 23 40200
3 62 21450
3 18 21900
5 21 45000
5 29 32100
7 38 36000
3 42 21900
7 11 27900
END DATA.
DATASET NAME saldata.
SORT CASES BY dept.
BEGIN PROGRAM.
import spss
with spss.DataStep():
 ds = spss.Dataset()
 # Create a new dataset for each value of the variable 'dept'
 newds = spss.Dataset(name=None)
 newds.varlist.append('dept')
 newds.varlist.append('empid')
 newds.varlist.append('salary')
 dept = ds.cases[0,0][0]
 dsNames = {newds.name:dept}
 for row in ds.cases:
 if (row[0] != dept):
 newds = spss.Dataset(name=None)
 newds.varlist.append('dept')
 newds.varlist.append('empid')
 newds.varlist.append('salary')
 dept = row[0]
 dsNames[newds.name] = dept
 newds.cases.append(row)
Save the new datasets
for name,dept in dsNames.iteritems():
 strdept = str(dept)
 spss.Submit(r"""
 DATASET ACTIVATE %(name)s.
 SAVE OUTFILE='/mydata/saldata_%(strdept)s.sav'.
 """ %locals())
spss.Submit(r"""
DATASET ACTIVATE saldata.
DATASET CLOSE ALL.
""" %locals())
END PROGRAM.

• The code newdsObj = spss.Dataset(name=None) creates a new dataset. The name of the dataset
is available from the name property, as in newdsObj.name. In this example, the names of the new
datasets are stored to the Python dictionary dsNames.

• To save new datasets created with the Dataset class, use the SAVE command after calling
spss.EndDataStep. In this example, DATASET ACTIVATE is used to activate each new dataset, using
the dataset names stored in dsNames.

Example: Modifying Case Values

DATA LIST FREE /cust (F2) amt (F5).
BEGIN DATA
210 4500
242 6900
370 32500
END DATA.
BEGIN PROGRAM.
import spss
spss.StartDataStep()
datasetObj = spss.Dataset()
for i in range(len(datasetObj.cases)):
 # Multiply the value of amt by 1.05 for each case
 datasetObj.cases[i,1] = 1.05*datasetObj.cases[i,1][0]
spss.EndDataStep()
END PROGRAM.

Chapter 2. Python Integration Package 55

• The CaseList object, accessed from the cases property of a Dataset object, allows you to read
or modify case data. To access the value for a given variable within a particular case you specify the
case number and the index of the variable (index values represent position in the active dataset,
starting with 0 for the first variable in file order, and case numbers start from 0). For example,
datasetObj.cases[i,1] specifies the value of the variable with index 1 for case number i.

• When reading case values, results are returned as a list. In the present example we're accessing a single
value within each case so the list has one element.

See the topic “CaseList Class ” on page 60 for more information.

Example: Comparing Datasets

Dataset objects allow you to concurrently work with the case data from multiple datasets. As a simple
example, we'll compare the cases in two datasets and indicate identical cases with a new variable added
to one of the datasets.

DATA LIST FREE /id (F2) salary (DOLLAR8) jobcat (F1).
BEGIN DATA
1 57000 3
3 40200 1
2 21450 1
END DATA.
SORT CASES BY id.
DATASET NAME empdata1.
DATA LIST FREE /id (F2) salary (DOLLAR8) jobcat (F1).
BEGIN DATA
3 41000 1
1 59280 3
2 21450 1
END DATA.
SORT CASES BY id.
DATASET NAME empdata2.
BEGIN PROGRAM.
import spss
spss.StartDataStep()
datasetObj1 = spss.Dataset(name="empdata1")
datasetObj2 = spss.Dataset(name="empdata2")
nvars = len(datasetObj1)
datasetObj2.varlist.append('match')
for i in range(len(datasetObj1.cases)):
 if datasetObj1.cases[i] == datasetObj2.cases[i,0:nvars]:
 datasetObj2.cases[i,nvars] = 1
 else:
 datasetObj2.cases[i,nvars] = 0
spss.EndDataStep()
END PROGRAM.

• The two datasets are first sorted by the variable id which is common to both datasets.
• Since DATA LIST creates unnamed datasets (the same is true for GET), the datasets are named using
DATASET NAME so that you can refer to them when calling spss.Dataset.

• datasetObj1 and datasetObj2 are Dataset objects associated with the two datasets empdata1
and empdata2 to be compared.

• The code datasetObj1.cases[i] returns case number i from empdata1. The code
datasetObj2.cases[i,0:nvars] returns the slice of case number i from empdata2 that includes
the variables with indexes 0,1,...,nvars-1.

• The new variable match, added to empdata2, is set to 1 for cases that are identical and 0 otherwise.

cases Property
The cases property of a Dataset object returns an instance of the CaseList class. The CaseList class
provides access to the cases in the associated dataset, allowing you to read existing cases, modify case
values, and add new cases. See the topic “CaseList Class ” on page 60 for more information.

Example

import spss
spss.StartDataStep()
datasetObj = spss.Dataset('data1')
caseListObj = datasetObj.cases
spss.EndDataStep()

56 Python Reference Guide for IBM SPSS Statistics

name Property
The name property of a Dataset object gets the name of the associated dataset. The name cannot be
changed from within the data step. To change the name, use the DATASET NAME command following
spss.EndDataStep.

Example

import spss
spss.StartDataStep()
datasetObj = spss.Dataset('data1')
datasetName = datasetObj.name
spss.EndDataStep()

varlist Property
The varlist property of a Dataset object returns an instance of the VariableList class. The
VariableList class provides access to the variables in the associated dataset, allowing you to retrieve
the properties of existing variables, modify variable properties, and add new variables to the dataset. See
the topic “VariableList Class ” on page 63 for more information.

Example

import spss
spss.StartDataStep()
datasetObj = spss.Dataset('data1')
varListObj = datasetObj.varlist
spss.EndDataStep()

dataFileAttributes Property
The dataFileAttributes property of a Dataset object gets or sets datafile attributes for the dataset.
The dataFileAttributes property behaves like a Python dictionary in terms of getting, setting, and
deleting values. A Python dictionary consists of a set of keys, each of which has an associated value that
can be accessed simply by specifying the key. In the case of datafile attributes, each key is the name of an
attribute and the associated value is the value of the attribute, which can be a single value or a list or tuple
of values. A list or tuple of values specifies an attribute array.

• When setting attributes, attribute names and values must be given as quoted strings.

Retrieving Datafile Attributes. You retrieve datafile attributes for a dataset from the
dataFileAttributes property of the associated Dataset object. You can retrieve the value of a
particular attribute by specifying the attribute name, as in:

dsObj = spss.Dataset()
attr = dsObj.dataFileAttributes['attrName']

Attribute values are always returned as a tuple.

You can iterate through the set of datafile attributes using the data property, as in:

dsObj = spss.Dataset()
for attrName, attrValue in dsObj.dataFileAttributes.data.iteritems():
 print attrName, attrValue

Adding and Modifying Datafile Attributes. You can add new datafile attributes and modify existing ones.
For example:

dsObj.dataFileAttributes['attrName'] = 'value'

• If the attribute attrName exists, it is updated with the specified value. If the attribute attrName doesn't
exist, it is added to any existing ones for the dataset.

Resetting Datafile Attributes. You can reset the datafile attributes associated with a dataset. For
example:

dsObj.dataFileAttributes = {'attr1':'value','attr2':['val1','val2']}

Chapter 2. Python Integration Package 57

• You reset the datafile attributes by setting the dataFileAttributes property to a new Python dictionary.
Any existing datafile attributes are cleared and replaced with the specified ones.

Deleting Datafile Attributes. You can delete a particular datafile attribute or all of them. For example:

#Delete a specified attribute
del dsObj.dataFileAttributes['attrName']
#Delete all attributes
del dsObj.dataFileAttributes

multiResponseSet Property
The multiResponseSet property of a Dataset object gets or sets multiple response sets for the
dataset. The multiResponseSet property behaves like a Python dictionary in terms of getting, setting,
and deleting values. A Python dictionary consists of a set of keys, each of which has an associated value
that can be accessed simply by specifying the key. In the case of multiple response sets, each key is the
name of a set and the associated value specifies the details of the set.

• The multiple response set name is a string of maximum length 63 bytes that must follow IBM SPSS
Statistics variable naming conventions. If the specified name does not begin with a dollar sign ($), then
one is added. If the name refers to an existing set, the set definition is overwritten.

• When setting a multiple response set, the details of the set are specified as a list or tuple with the
following elements in the presented order.

mrsetLabel. A string specifying a label for the set. The value cannot be wider than the limit for IBM
SPSS Statistics variable labels.

mrsetCodeAs. An integer or string specifying the variable coding: 1 or "Categories" for multiple
category sets, 2 or "Dichotomies" for multiple dichotomy sets.

mrsetCountedValue. A string specifying the value that indicates the presence of a response for a
multiple dichotomy set. This is also referred to as the “counted” value. If the set type is numeric, the
value must be a string representation of an integer. If the set type is string, the counted value, after
trimming trailing blanks, cannot be wider than the narrowest elementary variable.

varNames. A tuple or list of strings specifying the names of the elementary variables that define the set
(the list must include at least two variables).

• When getting a multiple response set, the result is a tuple of 5 elements. The first element is the
label, if any, for the set. The second element specifies the variable coding--'Categories' or 'Dichotomies'.
The third element specifies the counted value and only applies to multiple dichotomy sets. The fourth
element specifies the data type--'Numeric' or 'String'. The fifth element is a list of the elementary
variables that define the set.

Retrieving Multiple Response Sets. You retrieve multiple response sets for a dataset from the
multiResponseSet property of the associated Dataset object. You retrieve the value of a particular set
by specifying the set name, as in:

dsObj = spss.Dataset()
mrset = dsObj.multiResponseSet['setName']

You can iterate through the multiple response sets using the data property, as in:

dsObj = spss.Dataset()
for name, set in dsObj.multiResponseSet.data.iteritems():
 print name, set

Adding and Modifying Multiple Response Sets. You can add new multiple response sets and modify
details of existing ones. For example:

dsObj.multiResponseSet['$mltnews'] = \
 ["News Sources",2,"1",["Newspaper","TV","Web"]]

• If the set $mltnews exists, it is updated with the specified values. If the set $mltnews doesn't exist, it is
added to any existing ones for the dataset.

58 Python Reference Guide for IBM SPSS Statistics

Resetting Multiple Response Sets. You can reset the multiple response sets associated with a dataset.
For example:

dsObj.multiResponseSet = \
{'$mltnews':["News Sources",2,"1",["Newspaper","TV","Web"]],
 '$mltent':["Entertainment Sources",2,"1",["TV","Movies","Theatre","Music"]]}

• You reset the multiple response sets by setting the multiResponseSet property to a new Python
dictionary. Any existing multiple response sets are cleared and replaced with the specified ones.

Deleting Multiple Response Sets. You can delete a particular multiple response set or all sets. For
example:

#Delete a specified set
del dsObj.multiResponseSet['setName']
#Delete all sets
del dsObj.multiResponseSet

cache Property
The cache property of a Dataset object specifies whether caching is used when cases in the associated
dataset are read or modified. Caching typically improves performance when cases are modified in a
random manner. It is not recommended when cases are read or modified sequentially.

• The cache property is Boolean, where True specifies that caching is used. The default is False.
• When cache=True, you cannot make the following changes: append or insert cases, add or delete

variables, change the variable type.
• The value of the cache property can be modified over the life of a Dataset object. Setting
cache=False commits any changes that were specified while cache was set to True.

• The cache property is available for release 22 Fix Pack 1 and higher.

Example

import spss
spss.StartDataStep()
datasetObj = spss.Dataset('data1')
datasetObj.cache = True
spss.EndDataStep()

optimized Property
Note: This property is deprecated for release 22 Fix Pack 1 and higher. Please use the cache property
instead.

close Method
.close(). Closes the dataset. This method closes a dataset accessed through or created by the Dataset
class. It cannot be used to close an arbitrary open dataset. When used, it must be called prior to
EndDataStep or EndProcedure.

• If the associated dataset is not the active dataset, that dataset is closed and no longer available in the
session. The associated dataset will, however, remain open outside of the data step or procedure in
which it was created if the close method is not called.

• If the associated dataset is the active dataset, the association with the dataset's name is broken. The
active dataset remains active but has no name.

Note: Datasets that are not required outside of the data step or procedure in which they were accessed
or created should be closed prior to ending the data step or procedure in order to free the resources
allocated to the dataset.

Example

import spss
spss.StartDataStep()
datasetObj1 = spss.Dataset()
datasetObj2 = datasetObj1.deepCopy(name="copy1")

Chapter 2. Python Integration Package 59

datasetObj1.close()
spss.EndDataStep()

deepCopy Method
.deepCopy(name). Creates a copy of the Dataset instance as well as a copy of the dataset associated with
the instance. The argument is required and specifies the name of the new dataset, as a quoted string.
The name cannot be the name of the dataset being copied or a blank string. If '*' is specified the copy
becomes the active dataset with a name that is automatically generated. You can retrieve the dataset
name from the name property of the new Dataset instance.

Example

import spss
spss.StartDataStep()
datasetObj1 = spss.Dataset()
Make a copy of the active dataset and assign it the name "copy1"
datasetObj2 = datasetObj1.deepCopy(name="copy1")
spss.EndDataStep()

CaseList Class
The CaseList class provides access to the cases in a dataset, allowing you to read existing cases, modify
case values, and add new cases. You get an instance of the CaseList class from the cases property of
the Dataset class, as in:

datasetObj = spss.Dataset('data1')
caseListObj = datasetObj.cases

The number of cases in a CaseList instance, which is also the number of cases in the associated
dataset, is available using the len function, as in:

len(caseListObj)

Note: An instance of the CaseList class can only be created within a data step, and cannot be used
outside of the data step in which it was created. Data steps are initiated with the spss.StartDataStep
function.

Looping through the cases in an instance of CaseList. You can loop through the cases in an instance of
the CaseList class. For example:

for row in datasetObj.cases:
 print row

• On each iteration of the loop, row is a case from the associated dataset.

Note: The CaseList class does not provide any special handling for datasets with split groups--it simply
returns all cases in the dataset. If you need to differentiate the data in separate split groups, consider
using the Cursor class to read your data, or you may want to use the spss.GetSplitVariableNames
function to manually process the split groups.

Accessing specific cases and case values. You can access a specific case or a range of cases, and you
can specify a variable or a range of variables within those cases. The result is a list, even if accessing the
value of a single variable within a single case.

• System-missing values are returned as the Python data type None.
• Values of variables with TIME and DTIME formats are returned as integers representing the number of

seconds in the time interval.
• By default, values of variables with date or datetime formats are returned as integers representing the

number of seconds from October 14, 1582. You can specify to convert values of those variables to
Python datetime.datetime objects with the cvtDates argument to the Dataset class. See the topic
“spss.Dataset Class ” on page 53 for more information.

Example: Accessing a Single Case

60 Python Reference Guide for IBM SPSS Statistics

Case values are accessed by specifying the case number, starting with 0, as in:

oneCase = datasetObj.cases[0]

Case values are returned as a list where each element of the list is the value of the associated variable.

Example: Accessing a Single Value Within a Case

You can access the value for a single variable within a case by specifying the case number and the index
of the variable (index values represent position in the active dataset, starting with 0 for the first variable in
file order). The following gets the value of the variable with index 1 for case number 0.

oneValue = datasetObj.cases[0,1]

Note that oneValue is a list with a single element.

Example: Accessing a Range of Values

You can use the Python slice notation to specify ranges of cases and ranges of variables within a case.
Values for multiple cases are returned as a list of elements, each of which is a list of values for a single
case.

Get the values for cases 0,1, and 2
data = datasetObj.cases[0:3]

Get the values for variables with index values 0,1, and 2
for case number 0
data = datasetObj.cases[0,0:3]

Get the value for the variable with index 1 for case numbers 0,1, and 2
data = datasetObj.cases[0:3,1]

Get the values for the variables with index values 1,2 and 3
for case numbers 4,5, and 6
data = datasetObj.cases[4:7,1:4]

Example: Negative Index Values

Case indexing supports the use of negative indices, both for the case number and the variable index. The
following gets the value of the second to last variable (in file order) for the last case.

value = datasetObj.cases[-1,-2]

Modifying case values. You can modify the values for a specific case or a range of cases, and you can set
the value of a particular variable or a range of variables within those cases.

• Values of None are converted to system-missing for numeric variables and blanks for string variables.

• Values of numeric variables with a date or datetime format should be specified as Python
time.struct_time or datetime.datetime objects, which are then converted to the appropriate
IBM SPSS Statistics value. Values of variables with TIME and DTIME formats should be specified as the
number of seconds in the time interval.

Example: Setting Values for a Single Case

Values for a single case are provided as a list or tuple of values. The first element corresponds to the first
variable in file order, the second element corresponds to the second variable in file order, and so on. Case
numbers start from 0.

datasetObj.cases[1] = [35,150,100,2110,19,2006,3,4]

Example: Setting a Single Value Within a Case

You can set the value for a single variable within a case by specifying the case number and the index of
the variable (index values represent position in the active dataset, starting with 0 for the first variable in

Chapter 2. Python Integration Package 61

file order). The following sets the value of the variable with index 0 for case number 12 (case numbers
start from 0).

datasetObj.cases[12,0] = 14

Example: Setting Ranges of Values

You can use the Python slice notation to specify ranges of cases and ranges of variables within a case.
Values for multiple cases are specified as a list or tuple of elements, each of which is a list or tuple of
values for a single case.

Set the values for cases 0,1, and 2
datasetObj.cases[0:3] = ([172,'m',27,34500],[67,'f',32,32500],
 [121,'f',37,23000])

Set the values for variables with index values 5,6, and 7 for
case number 34
datasetObj.cases[34,5:8] = [70,1,4]

Set the value for the variable with index 5 for case numbers 0,1, and 2
datasetObj.cases[0:3,5] = [70,72,71]

Set the values for the variables with index values 5 and 6 for
case numbers 4,5, and 6
datasetObj.cases[4:7,5:7] = ([70,1],[71,2],[72,2])

Example: Negative Index Values

Case indexing supports the use of negative indices, both for the case number and the variable index. The
following specifies the value of the second to last variable (in file order) for the last case.

datasetObj.cases[-1,-2] = 8

Deleting cases. You can delete a specified case from the CaseList object, which results in deleting that
case from the associated dataset. For example:

del datasetObj.cases[0]

append Method
.append(case). Appends a new case to the associated dataset and appends an element representing the
case to the corresponding CaseList instance. The argument case is a tuple or list specifying the case
values. The first element in the tuple or list is the value for the first variable in file order, the second is the
value of the second variable in file order and so on.

• The elements of case can be numeric or string values and must match the variable type of the
associated variable. Values of None are converted to system-missing for numeric variables and blanks
for string variables.

• Values of numeric variables with a date or datetime format should be specified as Python
time.struct_time or datetime.datetime objects, which are then converted to the appropriate
IBM SPSS Statistics value. Values of variables with TIME and DTIME formats should be specified as the
number of seconds in the time interval.

Example

DATA LIST FREE/numvar (F2) strvar (A1).
BEGIN DATA.
1 a
END DATA.
BEGIN PROGRAM.
import spss
spss.StartDataStep()
datasetObj = spss.Dataset()
Append a single case to the active dataset
datasetObj.cases.append([2,'b'])
spss.EndDataStep()
END PROGRAM.

62 Python Reference Guide for IBM SPSS Statistics

insert Method
.insert(case, caseNumber). Inserts a new case into the associated dataset and inserts an element
representing the case into the corresponding CaseList instance. The argument case is a tuple or list
specifying the case values. The first element in the tuple or list is the value for the first variable in file
order, the second is the value of the second variable in file order and so on. The optional argument
caseNumber specifies the location at which the case is inserted (case numbers start from 0) and can take
on the values 0,1,...,n where n is the number of cases in the dataset. If caseNumber is omitted or equal to
n, the case is appended.

• The elements of case can be numeric or string values and must match the variable type of the
associated variable. Values of None are converted to system-missing for numeric variables and blanks
for string variables.

• Values of numeric variables with a date or datetime format should be specified as Python
time.struct_time or datetime.datetime objects, which are then converted to the appropriate
IBM SPSS Statistics value. Values of variables with TIME and DTIME formats should be specified as the
number of seconds in the time interval.

Example

DATA LIST FREE/numvar (F2) strvar (A1).
BEGIN DATA.
1 a
3 c
END DATA.
BEGIN PROGRAM.
import spss
spss.StartDataStep()
datasetObj = spss.Dataset()
Insert a single case into the active dataset at case number 1
datasetObj.cases.insert([2,'b'],1)
spss.EndDataStep()
END PROGRAM.

VariableList Class
The VariableList class provides access to the variables in a dataset, allowing you to get and set
properties of existing variables, as well as add new variables to the dataset. You get an instance of the
VariableList class from the varlist property of the Dataset class, as in:

datasetObj = spss.Dataset('data1')
varListObj = datasetObj.varlist

The number of variables in a VariableList instance, which is also the number of variables in the
associated dataset, is available using the len function, as in:

len(varListObj)

Note: An instance of the VariableList class can only be created within a data step, and cannot be used
outside of the data step in which it was created. Data steps are initiated with the spss.StartDataStep
function.

Looping through the variables in an instance of VariableList. You can loop through the variables in
an instance of the VariableList class, obtaining a Variable object (representing the properties of a
single variable) on each iteration. For example:

for var in datasetObj.varlist:
 print var.name

• On each iteration of the loop, var is an instance of the Variable class, representing a particular
variable in the VariableList instance. The Variable class allows you to get and set variable
properties, like the measurement level and missing values. See the topic “Variable Class ” on page
65 for more information.

Chapter 2. Python Integration Package 63

Accessing a variable by name or index. You can obtain a Variable object for a specified variable in the
VariableList instance. The desired variable can be specified by name or index. For example:

#Get variable by name
varObj = datasetObj.varlist['salary']
#Get variable by index
varObj = datasetObj.varlist[5]

Deleting a variable. You can delete a specified variable from the VariableList instance, which results
in deleting it from the associated dataset. The variable to be deleted can be specified by name or index.
For example:

#Delete variable by name
del datasetObj.varlist['salary']
#Delete variable by index
del datasetObj.varlist[5]

append Method
.append(name,type). Appends a new variable to the associated dataset and appends a corresponding
Variable object to the associated VariableList instance. The argument name specifies the variable name.
The argument type is optional and specifies the variable type--numeric or string. The default is numeric.

• Numeric variables are specified by a value of 0 for the variable type. String variables are specified with a
type equal to the defined length of the string (maximum of 32767).

• The properties of the new variable are set using the Variable object created by the append method.
See the topic “Variable Class ” on page 65 for more information.

Example

DATA LIST FREE/numvar (F2).
BEGIN DATA.
1
END DATA.
BEGIN PROGRAM.
import spss
spss.StartDataStep()
datasetObj = spss.Dataset()
Append a string variable of length 1 to the active dataset
datasetObj.varlist.append('strvar',1)
spss.EndDataStep()
END PROGRAM.

insert Method
.insert(name,type,index). Inserts a new variable into the associated dataset and inserts a corresponding
Variable object into the associated VariableList instance. The argument name specifies the variable name.
The optional argument type specifies the variable type--numeric or string. If type is omitted, the variable
is numeric. The optional argument index specifies the position for the inserted variable and Variable
object (the first position has an index value of 0) and can take on the values 0,1,...,n where n is the
number of variables in the dataset. If index is omitted or equal to n, the variable is appended to the end of
the list.

• Numeric variables are specified by a value of 0 for the variable type. String variables are specified with a
type equal to the defined length of the string (maximum of 32767).

• The properties of the new variable are set using the Variable object created by the insert method.
See the topic “Variable Class ” on page 65 for more information.

Example

DATA LIST FREE/var1 (F2) var3 (A1).
BEGIN DATA.
1 a
END DATA.
BEGIN PROGRAM.
import spss
spss.StartDataStep()
datasetObj = spss.Dataset()
Insert a numeric variable at index position 1 in the active dataset
datasetObj.varlist.insert('var2',0,1)
spss.EndDataStep()
END PROGRAM.

64 Python Reference Guide for IBM SPSS Statistics

Variable Class
The Variable class allows you to get and set the properties of a variable. Instances of the Variable
class for each variable in the associated dataset are generated when the VariableList class is
instantiated. In addition, the append and insert methods of a VariableList object create associated
instances of the Variable class for appended and inserted variables. Specific variables can be accessed
by name or index (index values represent position in the dataset, starting with 0 for the first variable in file
order).

datasetObj = spss.Dataset('data1')
Create a Variable object, specifying the variable by name
varObj = datasetObj.varlist['bdate']
Create a Variable object, specifying the variable by index
varObj = datasetObj.varlist[3]

Note: An instance of the Variable class can only be created within a data step, and cannot be used
outside of the data step in which it was created. Data steps are initiated with the spss.StartDataStep
function.

alignment Property
The alignment property of a Variable object gets or sets the alignment of data values displayed in the
Data Editor. It has no effect on the format of the variables or the display of the variables or values in other
windows or printed results. The variable alignment is specified as an integer with one of the following
values: 0 (left), 1 (right), 2 (center).

Example

varObj = datasetObj.varlist['gender']
#Get the variable alignment
align = varObj.alignment
#Set the variable alignment
varObj.alignment = 1

attributes Property
The attributes property of a Variable object gets or sets custom variable attributes. It can also be
used to clear any custom attributes. The attributes property behaves like a Python dictionary in terms
of getting, setting, and deleting values. A Python dictionary consists of a set of keys, each of which has
an associated value that can be accessed simply by specifying the key. In the case of variable attributes,
each key is the name of an attribute and the associated value is the value of the attribute, which can be a
single value or a list or tuple of values. A list or tuple of values specifies an attribute array.

• When setting attributes, attribute names and values must be given as quoted strings.

Retrieving Variable Attributes. You retrieve custom variable attributes for a specified variable from the
attributes property of the associated Variable object. You retrieve the value of a particular attribute
by specifying the attribute name, as in:

varObj = datasetObj.varlist['gender']
attrValue = varObj.attributes['attrName']

Attribute values are always returned as a tuple.

You can iterate through the set of variable attributes using the data property, as in:

varObj = datasetObj.varlist['gender']
for attrName, attrValue in varObj.attributes.data.iteritems():
 print attrName, attrValue

Adding and Modifying Attributes. You can add new attributes and modify values of existing ones. For
example:

varObj = datasetObj.varlist['age']
varObj.attributes['AnswerFormat'] = 'Fill-in'

• If the attribute AnswerFormat exists, its value is updated to 'Fill-in'. If the attribute AnswerFormat
doesn't exist, it is added to any existing ones for the variable age.

Chapter 2. Python Integration Package 65

Resetting Attributes. You can reset the attributes to a new specified set. For example:

varObj = datasetObj.varlist['gender']
varObj.attributes = {'DemographicVars':'1','Binary':'Yes'}

• You reset the attributes by setting the attributes property to a new Python dictionary. Any existing
attributes for the variable are cleared and replaced with the specified set.

Deleting Attributes. You can delete a particular attribute or the entire set of attributes for a specified
variable. For example:

varObj = datasetObj.varlist['gender']
#Delete the attribute Binary
del varObj.attributes['Binary']
#Delete all attributes
del varObj.attributes

columnWidth Property
The columnWidth property of a Variable object gets or sets the column width of data values displayed
in the Data Editor. Changing the column width does not change the defined width of a variable. When
setting the column width, the specified value must be a positive integer.

Example

varObj = datasetObj.varlist['prevexp']
#Get the column width
width = varObj.columnWidth
#Set the column width
varObj.columnWidth = 3

format Property
The format property of a Variable object gets or sets the display format of a variable.

Example

varObj = datasetObj.varlist['id']
#Get the variable format
format = varObj.format
#Set the variable format
varObj.format = (5,5,0)

• When getting the format, the returned value is a string consisting of a character portion (in upper
case) that specifies the format type, followed by a numeric component that indicates the defined
width, followed by a component that specifies the number of decimal positions and is only included
for numeric formats. For example, A4 is a string format with a maximum width of four, and F8.2 is a
standard numeric format with a display format of eight digits, including two decimal positions and a
decimal indicator.

• When setting the format, you provide a tuple or list of three integers specifying the format type, width,
and the number of decimal digits (for numeric formats) in that order. The width must include enough
positions to accommodate any punctuation characters such as decimal points, commas, dollar signs, or
date and time delimiters. If decimal digits do not apply, use 0 for the third element of the list or tuple.
The available format types are listed in Appendix A, “Variable Format Types ,” on page 229.

Notes

• Allowable settings for decimal and width depend on the specified type. For a list of the minimum and
maximum widths and maximum decimal places for commonly used format types, see Variable Types
and Formats in the Universals section of the Command Syntax Reference, available in PDF from the Help
menu and also integrated into the overall Help system.

• Setting the width for a string variable will not change the defined length of the string. If the specified
value does not match the defined length, it is forced to be the defined length.

index Property
The index property of a Variable object gets the variable index. The index value represents position in
the dataset starting with 0 for the first variable in file order.

66 Python Reference Guide for IBM SPSS Statistics

Example

varObj = datasetObj.varlist['bdate']
index = varObj.index

label Property
The label property of a Variable object gets or sets the variable label.

Example

varObj = datasetObj.varlist['bdate']
#Get the variable label
label = varObj.label
#Set the variable label
varObj.label = 'Birth Date'

measurementLevel Property
The measurementLevel property of a Variable object gets or sets the measurement level of a
variable. The measurement level is specified as a string. When setting the measurement level the
allowed values are: "NOMINAL", "ORDINAL", and "SCALE". When getting the measurement level the
additional value "UNKNOWN" may be returned for numeric variables prior to the first data pass when
the measurement level has not been explicitly set, such as data read from an external source or newly
created variables. The measurement level for string variables is always known.

Example

varObj = datasetObj.varlist['minority']
#Get the measurement level
level = varObj.measurementLevel
#Set the measurement level
varObj.measurementLevel = "NOMINAL"

missingValues Property
The missingValues property of a Variable object gets or sets user-missing values. The missing values
are specified as a tuple or list of four elements where the first element specifies the missing value type:
0,1,2, or 3 for that number of discrete values, -2 for a range of values, and -3 for a range of values and
a single discrete value. The remaining three elements specify the missing values. When getting missing
values, the result is returned as a tuple with this same structure.

• For string variables, returned values are right-padded to the defined width of the string variable.
• To specify LO and HI in missing value ranges, use the values returned by the spss.GetSPSSLowHigh

function.

Table 4. Specifications for missing values

missingVals[0] missingVals[1] missingVals[2] missingVals[3]

-3 Start point of range End point of range Discrete value

-2 Start point of range End point of range None

0 None None None

1 Discrete value None None

2 Discrete value Discrete value None

3 Discrete value Discrete value Discrete value

Examples

In the following examples, varObj is an instance of the Variable class.

Chapter 2. Python Integration Package 67

Get the user-missing values.

missingVals = varObj.missingValues

Specify the discrete missing values 0 and 9 for a numeric variable.

varObj.missingValues = [2,0,9,None]

Specify the range of missing values 9–99 for a numeric variable.

varObj.missingValues = [-2,9,99,None]

Specify the range of missing values 9–99 and the discrete missing value 0 for a numeric variable.

varObj.missingValues = [-3,9,99,0]

Specify two missing values for a string variable.

varObj.missingValues = [2,' ','NA',None]

Clear all missing values

varObj.missingValues = [0,None,None,None]

name Property
The name property of a Variable object gets or sets the variable name.

Example

varObj = datasetObj.varlist['bdate']
#Get the variable name
name = varObj.name
#Set the variable name
varObj.name = 'birthdate'

role Property
The role property of a Variable object gets or sets the variable role. Valid values for getting and setting
are the following strings: "Input", "Target", "Both", "None", "Partition" or "Split".

Example

varObj = datasetObj.varlist['var1']
#Get the variable role
role = varObj.role
#Set the variable role
varObj.role = 'Target'

type Property
The type property of a Variable object gets or sets the variable type--numeric or string. The variable
type for numeric variables is 0. The variable type for string variables is an integer equal to the defined
length of the string (maximum of 32767).

Example

varObj = datasetObj.varlist['strvar']
#Get the variable type
type = varObj.type
#Set the variable type to a string of length 10
varObj.type = 10

valueLabels Property
The valueLabels property of a Variable object gets or sets value labels. It can also be used to clear
any value labels. The valueLabels property behaves like a Python dictionary in terms of getting, setting,
and deleting values. A Python dictionary consists of a set of keys, each of which has an associated value

68 Python Reference Guide for IBM SPSS Statistics

that can be accessed simply by specifying the key. In the case of value labels, each key is a value and the
associated value is the label.

• When setting value labels for string variables, values must be specified as quoted strings.

Retrieving Value Labels. You retrieve value labels for a specified variable from the valueLabels
property of the associated Variable object. You retrieve the label for a particular value by specifying
the value, as in the following, which retrieves the label for the value 1:

varObj = datasetObj.varlist['origin']
valLab = varObj.valueLabels[1]

You can iterate through the set of value labels for a variable using the data property, as in:

varObj = datasetObj.varlist['origin']
for val, valLab in varObj.valueLabels.data.iteritems():
 print val, valLab

Adding and Modifying Value Labels. You can add new value labels and modify existing ones. For
example:

varObj = datasetObj.varlist['origin']
varObj.valueLabels[4] = 'Korean'

• If a label for the value 4 exists, its value is updated to 'Korean'. If a label for the value 4 doesn't exist, it
is added to any existing value labels for the variable origin.

Resetting Value Labels. You can reset the value labels to a new specified set. For example:

varObj = datasetObj.varlist['origin']
varObj.valueLabels = {1:'American',2:'Japanese',3:'European',
 4:'Korean',5:'Chinese'}

• You reset the value labels by setting the valueLabels property to a new Python dictionary. Any existing
value labels for the variable are cleared and replaced with the specified set.

Deleting Value Labels. You can delete a particular value label or the entire set of value labels for a
specified variable. For example:

varObj = datasetObj.varlist['origin']
#Delete the value label for the value 1
del varObj.valueLabels[1]
#Delete all value labels
del varObj.valueLabels

spss.DataStep Class
The DataStep class implicitly starts and ends a data step without the need to explicitly call
StartDataStep and EndDataStep. In addition, it executes any pending transformations, eliminating
the need to check for them prior to starting a data step. The DataStep class is designed to be used with
the Python with statement as shown in the following example.

Example

BEGIN PROGRAM.
import spss
with spss.DataStep():
 datasetObj = spss.Dataset(name=None)
 datasetObj.varlist.append('numvar')
 datasetObj.varlist.append('strvar',1)
 datasetObj.varlist['numvar'].label = 'Sample numeric variable'
 datasetObj.varlist['strvar'].label = 'Sample string variable'
 datasetObj.cases.append([1,'a'])
 datasetObj.cases.append([2,'b'])
END PROGRAM.

• with spss.DataStep(): initiates a block of code associated with a data step. The data step is
implicitly started after executing any pending transformations. All code associated with the data step
should reside in the block as shown here. When the block completes, the data step is implicitly ended.

Chapter 2. Python Integration Package 69

spss.DeleteXPathHandle Function
spss.DeleteXPathHandle(handle). Deletes the XPath dictionary DOM or output DOM with the
specified handle name. The argument is a handle name that was defined with a previous
spss.CreateXPathDictionary function or an IBM SPSS Statistics OMS command.

Example

handle = 'demo'
spss.DeleteXPathHandle(handle)

spss.EndDataStep Function
spss.EndDataStep(). Signals the end of a data step.

• EndDataStep must be called to end a data step initiated with StartDataStep.

For an example that uses EndDataStep, see the topic on the Dataset class.

spss.EndProcedure Function
spss.EndProcedure(). Signals the end of pivot table or text block output.

• spss.EndProcedure must be called to end output initiated with spss.StartProcedure.

spss.EvaluateXPath Function
spss.EvaluateXPath(handle,context,xpath). Evaluates an XPath expression against a specified XPath
DOM and returns the result as a list. The argument handle specifies the particular XPath DOM and must
be a valid handle name defined by a previous spss.CreateXPathDictionary function or IBM SPSS
Statistics OMS command. The argument context defines the XPath context for the expression and should
be set to "/dictionary" for a dictionary DOM or "/outputTree" for an output XML DOM created by
the OMS command. The argument xpath specifies the remainder of the XPath expression and must be
quoted.

Example

#retrieve a list of all variable names for the active dataset.
handle='demo'
spss.CreateXPathDictionary(handle)
context = "/dictionary"
xpath = "variable/@name"
varnames = spss.EvaluateXPath(handle,context,xpath)

Example

*Use OMS and a Python program to determine the number of uniques values
 for a specific variable.
OMS SELECT TABLES
 /IF COMMANDs=['Frequencies'] SUBTYPES=['Frequencies']
 /DESTINATION FORMAT=OXML XMLWORKSPACE='freq_table'.
FREQUENCIES VARIABLES=var1.
OMSEND.

BEGIN PROGRAM.
import spss
handle='freq_table'
context="/outputTree"
#get rows that are totals by looking for varName attribute
#use the group element to skip split file category text attributes
xpath="//group/category[@varName]/@text"
values=spss.EvaluateXPath(handle,context,xpath)
#the "set" of values is the list of unique values
#and the length of that set is the number of unique values
uniqueValuesCount=len(set(values))
END PROGRAM.

Note: In the IBM SPSS Statistics documentation, XPath examples for the OMS command use a namespace
prefix in front of each element name (the prefix oms: is used in the OMS examples). Namespace prefixes
are not valid for EvaluateXPath.

Documentation for the output schema and the dictionary schema is available from the Help system.

70 Python Reference Guide for IBM SPSS Statistics

spss.GetCaseCount Function
spss.GetCaseCount(). Returns the number of cases (rows) in the active dataset. Returns a value of -1 if the
case count is not known.

Example

#build SAMPLE syntax of the general form:
#SAMPLE [NCases] FROM [TotalCases]
#Where Ncases = 10% truncated to integer
TotalCases=spss.GetCaseCount()
NCases=int(TotalCases/10)
command1="SAMPLE " + str(NCases) + " FROM " + str(TotalCases) + "."
command2="Execute."
spss.Submit([command1, command2])

spss.GetDataFileAttributeNames Function
spss.GetDataFileAttributeNames(). Returns the names of any datafile attributes, as a tuple, for the active
dataset.

Example

import spss
fileattrs = spss.GetDataFileAttributeNames()

spss.GetDataFileAttributes Function
spss.GetDataFileAttributes(attrName). Returns the attribute values, as a tuple, for the specified datafile
attribute. The argument attrName is a string that specifies the name of the attribute--for instance, a name
returned by GetDataFileAttributeNames.

Example

Build a Python dictionary of the datafile attributes
import spss
attrDict = {}
for name in spss.GetDataFileAttributeNames():
 attrDict[name] = spss.GetDataFileAttributes(name)

spss.GetDatasets Function
spss.GetDatasets(). Returns a list of the available Dataset objects. Each object in the list is an
instance of the Dataset class. The GetDatasets function is intended for use within a data step or a
StartProcedure-EndProcedure block and will return an empty list if used elsewhere. Data steps are
initiated with the spss.StartDataStep function and are used to create and manage multiple datasets.

Example

import spss
spss.StartDataStep()
Create a Dataset object for the active dataset
datasetObj1 = spss.Dataset()
Create a new and empty dataset
datasetObj2 = spss.Dataset(name=None)
datasetNames = [item.name for item in spss.GetDatasets()]
spss.EndDataStep()

spss.GetDefaultPlugInVersion Function
spss.GetDefaultPlugInVersion(). Returns the default version of the IBM SPSS Statistics - Integration
Plug-in for Python used for Python programs. The result is a string specifying a version--for example,
"spss170" for version 17.0--and is useful when working with multiple versions of the plug-in on a given
machine (see Note below). You can change the default using the spss.SetDefaultPlugInVersion function.

Note: For version 22 and higher, this function always returns the version of IBM SPSS Statistics from
which it was called.

Chapter 2. Python Integration Package 71

Example

import spss
version = spss.GetDefaultPlugInVersion()

Note: The functions for managing multiple versions of the plug-in (spss.GetDefaultPlugInVersion,
spss.SetDefaultPlugInVersion, and spss.ShowInstalledPlugInVersions) operate within a
given Python version, not across Python versions. For example, if you are driving IBM SPSS Statistics from
a Python IDE installed for Python 3.8 then you can view and control the versions of the plug-in installed
for Python 3.8.

spss.GetFileHandles Function
spss.GetFileHandles(). Returns a list of currently defined file handles. Each item in the list consists of the
following three elements: the name of the file handle; the path associated with the file handle; and the
encoding, if any, specified for the file handle. File handles are created with the FILE HANDLE command.

spss.GetHandleList Function
spss.GetHandleList(). Returns a list of currently defined dictionary and output XPath DOMs available for
use with spss.EvaluateXpath.

spss.GetImage Function
spss.GetImage(handle,imagename). Retrieves an image associated with an output XPath DOM. The
argument handle specifies the particular XPath DOM and must be a valid handle name defined by a
previous IBM SPSS Statistics OMS command. The argument imagename is the filename associated
with the image in the OXML output--specifically, the value of the imageFile attribute of the chart,
modelView or treeView element associated with the image.

The returned value is a tuple with 3 elements. The first element is the binary image. The second element
is the amount of memory required for the image. The third element is a string specifying the image type:
“PNG”, “JPG”, “BMP”.

Example

OMS
 /SELECT CHARTS
 /IF COMMANDS=['Frequencies']
 /DESTINATION FORMAT=OXML IMAGES=YES
 CHARTFORMAT=IMAGE IMAGEROOT='myimages' IMAGEFORMAT=JPG XMLWORKSPACE='demo'.

FREQUENCIES VARIABLES=jobcat
 /BARCHART PERCENT
 /ORDER=ANALYSIS.

OMSEND.

BEGIN PROGRAM.
import spss
imagename=spss.EvaluateXPath('demo','/outputTree',
 '//command[@command="Frequencies"]/chartTitle[@text="Bar Chart"]/chart/@imageFile')[0]
image = spss.GetImage('demo',imagename)
f = file('/temp/myimage.jpg','wb')
f.truncate(image[1])
f.write(image[0])
f.close()
spss.DeleteXPathHandle('demo')
END PROGRAM.

• The OMS command routes output from the FREQUENCIES command to an output XPath DOM with the
handle name of demo.

• To route images along with the OXML output, the IMAGES keyword on the DESTINATION subcommand
(of the OMS command) must be set to YES, and the CHARTFORMAT, MODELFORMAT, or TREEFORMAT
keyword must be set to IMAGE.

• The spss.EvaluateXPath function is used to retrieve the name of the image associated with the
bar chart output from the FREQUENCIES command. In the present example, the value returned by
spss.EvaluateXPath is a list with a single element, which is then stored to the variable imagename.

• The spss.GetImage function retrieves the image, which is then written to an external file.

72 Python Reference Guide for IBM SPSS Statistics

spss.GetLastErrorLevel and spss.GetLastErrorMessage Functions
spss.GetLastErrorLevel(). Returns a number corresponding to an error in the preceding Python Integration
Package for IBM SPSS Statistics function.

• For the spss.Submit function, it returns the maximum IBM SPSS Statistics error level for the
submitted command syntax. IBM SPSS Statistics error levels range from 1 to 5. An error level of 3
or higher causes an exception in Python.

• For other functions, it returns an error code with a value greater than 5.
• Error codes from 6 to 99 are from the IBM SPSS Statistics XD API.
• Error codes from 1000 to 1064 are from the Python Integration Package.

IBM SPSS Statistics error levels (return codes), their meanings, and any associated behaviors are shown
in the following table.

Table 5. IBM SPSS Statistics error levels

Value Definition Behavior

0 None Command runs

1 Comment Command runs

2 Warning Command runs

3 Serious error Command does not run, subsequent commands are
processed

4 Fatal error Command does not run, subsequent commands are not
processed, and the current job terminates

5 Catastrophic error Command does not run, subsequent commands are not
processed, and the IBM SPSS Statistics processor terminates

spss.GetLastErrorMessage(). Returns a text message corresponding to an error in the preceding Python
Integration Package for IBM SPSS Statistics function.

• For the spss.Submit function, it returns text associated with the highest level error for the submitted
command syntax.

• For other functions in the Python Integration Package, it returns the error message text from the IBM
SPSS Statistics XD API or from Python.

Example

DATA LIST FREE/var1 var2.
BEGIN DATA
1 2 3 4
END DATA.
BEGIN PROGRAM.
try:
 spss.Submit("""
COMPUTE newvar=var1*10.
COMPUTE badvar=nonvar/4.
FREQUENCIES VARIABLES=ALL.
""")
except:
 errorLevel=str(spss.GetLastErrorLevel())
 errorMsg=spss.GetLastErrorMessage()
 print("Error level " + errorLevel + ": " + errorMsg)
 print("At least one command did not run.")
END PROGRAM.

• The first COMPUTE command and the FREQUENCIES command will run without errors, generating error
values of 0.

• The second COMPUTE command will generate a level 3 error, triggering the exception handling in the
except clause.

Chapter 2. Python Integration Package 73

spss.GetMultiResponseSetNames Function
spss.GetMultiResponseSetNames(). Returns the names of any multiple response sets for the active
dataset.

Example

import spss
names = spss.GetMultiResponseSetNames()

spss.GetMultiResponseSet Function
spss.GetMultiResponseSet(mrsetName). Returns the details of the specified multiple response set. The
argument mrsetName is a string that specifies the name of the multiple response set--for instance, a
name returned by GetMultiResponseSetNames.

• The result is a tuple of 5 elements. The first element is the label, if any, for the set. The second
element specifies the variable coding--'Categories' or 'Dichotomies'. The third element specifies the
counted value and only applies to multiple dichotomy sets. The fourth element specifies the data
type--'Numeric' or 'String'. The fifth element is a list of the elementary variables that define the set.

Example

Build a Python dictionary of the multiple response sets
import spss
dict = {}
for name in spss.GetMultiResponseSetNames():
 dict[name]=spss.GetMultiResponseSet(name)

spss.GetOMSTagList Function
spss.GetOMSTagList(). Returns a list of tags associated with any active OMS requests. Each OMS request
has a tag which identifies the request. The tag is specified with the TAG subcommand of the OMS
command, or automatically generated if not specified.

spss.GetSetting Function
spss.GetSetting(setting,option). Returns the value of an options setting. Specifically, this function returns
values for options that can be set with the SET command.

• The argument setting is a string specifying the name of the subcommand (of the SET command), whose
value is desired--for example "OLANG". The case of the specified string is ignored.

Note: GetSetting does not support retrieving the value of the MTINDEX subcommand of the SET
command.

• The argument option is a string specifying an option associated with the value of the setting argument.
It only applies to the MIOUTPUT subcommand of SET, for which there is a separate setting for each
of the keywords "OBSERVED", "IMPUTED", "POOLED", and "DIAGNOSTICS". When setting equals
"MIOUTPUT", option can be set to any of those four keywords to obtain the associated value of the
keyword--'Yes' or 'No'. The case of the string specified for option is ignored.

spss.GetSplitVariableNames Function
spss.GetSplitVariableNames(). Returns the names of the split variables, if any, in the active dataset.

Example

import spss
splitvars = spss.GetSplitVariableNames()

spss.GetSPSSLocale Function
spss.GetSPSSLocale(). . Returns the current IBM SPSS Statistics locale.

74 Python Reference Guide for IBM SPSS Statistics

Example

import spss
locale = spss.GetSPSSLocale()

spss.GetSPSSLowHigh Function
spss.GetSPSSLowHigh(). Returns the values IBM SPSS Statistics uses for LO and HI as a tuple of two
values. The first element in the tuple is the value for LO and the second is the value for HI. These
values can used to specify missing value ranges for new numeric variables with the SetVarNMissingValues
method.

Example

import spss
spsslow, spsshigh = spss.GetSPSSLowHigh()

spss.GetVarAttributeNames Function
spss.GetVarAttributeNames(index). Returns the names of any variable attributes, as a tuple, for the
variable in the active dataset indicated by the index value. The argument is the index value. Index values
represent position in the active dataset, starting with 0 for the first variable in file order.

Example

#Create a list of variables that have a specified attribute
import spss
varList=[]
attribute='demographicvars'
for i in range(spss.GetVariableCount()):
 if (attribute in spss.GetVarAttributeNames(i)):
 varList.append(spss.GetVariableName(i))
if varList:
 print("Variables with attribute " + attribute + ":")
 print('\n'.join(varList))
else:
 print("No variables have the attribute " + attribute)

spss.GetVarAttributes Function
spss.GetVarAttributes(index,attrName). Returns the attribute values, as a tuple, for the specified
attribute of the variable in the active dataset indicated by the index value. The argument index is the
index value. Index values represent position in the active dataset, starting with 0 for the first variable in
file order. The argument attrName is a string that specifies the name of the attribute--for instance, a name
returned by GetVarAttributeNames.

Example

#Create a list of variables whose attribute array contains
#a specified value
import spss
varList=[]
attrName='demographicvartypes'
attrVal='2'
for i in range(spss.GetVariableCount()):
 try:
 if(attrVal in spss.GetVarAttributes(i,attrName)):
 varList.append(spss.GetVariableName(i))
 except:
 pass
if varList:
 print("Variables with attribute value " + attrVal + \
 " for attribute " + attrName + ":")
 print('\n'.join(varList))
else:
 print("No variables have the attribute value " + attrVal + \
 " for attribute " + attrName)

spss.GetVariableCount Function
spss.GetVariableCount(). Returns the number of variables in the active dataset.

Chapter 2. Python Integration Package 75

Example

#build a list of all variables by using the value of
#spssGetVariableCount to set the number of for loop interations
varcount=spss.GetVariableCount()
varlist=[]
for i in range(varcount):
 varlist.append(spss.GetVariableName(i))

spss.GetVariableFormat Function
GetVariableFormat(index). Returns a string containing the display format for the variable in the active
dataset indicated by the index value. The argument is the index value. Index values represent position in
the active dataset, starting with 0 for the first variable in file order.

• The character portion of the format string is always returned in all upper case.
• Each format string contains a numeric component after the format name that indicates the defined

width, and optionally, the number of decimal positions for numeric formats. For example, A4 is a string
format with a maximum width of four bytes, and F8.2 is a standard numeric format with a display
format of eight digits, including two decimal positions and a decimal indicator. The supported format
types are listed in Variable Format Types (the type code shown in the table does not apply to the
GetVariableFormat function).

Example

DATA LIST FREE
 /numvar (F4) timevar1 (TIME5) stringvar (A2) timevar2 (TIME12.2).
BEGIN DATA
1 10:05 a 11:15:33.27
END DATA.

BEGIN PROGRAM.
import spss
#create a list of all formats and a list of time format variables
varcount=spss.GetVariableCount()
formatList=[]
timeVarList=[]
for i in range(varcount):
 formatList.append(spss.GetVariableFormat(i))
 #check to see if it's a time format
 if spss.GetVariableFormat(i).find("TIME")==0:
 timeVarList.append(spss.GetVariableName(i))
print formatList
print timeVarList
END PROGRAM.

spss.GetVariableLabel Function
spss.GetVariableLabel(index). Returns a character string containing the variable label for the variable in
the active dataset indicated by the index value. The argument is the index value. Index values represent
position in the active dataset, starting with 0 for the first variable in file order. If the variable does not have
a defined variable label, a null string is returned.

Example

#create a list of all variable labels
varcount=spss.GetVariableCount()
labellist=[]
for i in range(varcount):
 labellist.append(spss.GetVariableLabel(i))

spss.GetVariableMeasurementLevel Function
spss.GetVariableMeasurementLevel(index). Returns a string value that indicates the measurement level
for the variable in the active dataset indicated by the index value. The argument is the index value. Index
values represent position in the active dataset, starting with 0 for the first variable in file order. The value
returned can be: "nominal", "ordinal", "scale", or "unknown".

• "Unknown" occurs only for numeric variables prior to the first data pass when the measurement level
has not been explicitly set, such as data read from an external source or newly created variables. The
measurement level for string variables is always known.

76 Python Reference Guide for IBM SPSS Statistics

Example

#build a string containing scale variable names
varcount=spss.GetVariableCount()
ScaleVarList=''
for i in range(varcount):
 if spss.GetVariableMeasurementLevel(i)=="scale":
 ScaleVarList=ScaleVarList + " " + spss.GetVariableName(i)

spss.GetVariableName Function
spss.GetVariableName(index). Returns a character string containing the variable name for the variable in
the active dataset indicated by the index value. The argument is the index value. Index values represent
position in the active dataset, starting with 0 for the first variable in file order.

Example

#get names of first and last variables in the file
#last variable is index value N-1 because index values start at 0
firstVar=spss.GetVariableName(0)
lastVar=spss.GetVariableName(spss.GetVariableCount()-1)
print firstVar, lastVar
#sort the data file in alphabetic order of variable names
varlist=[]
varcount=spss.GetVariableCount()
for i in range(varcount):
 varlist.append(spss.GetVariableName(i))
sortedlist=' '.join(sorted(varlist))
spss.Submit(
 ["ADD FILES FILE=* /KEEP ",sortedlist, ".", "EXECUTE."])

spss.GetVariableRole Function
spss.GetVariableRole(index). Returns a character string containing the role for the variable in the active
dataset indicated by the index value. The argument is the index value. Index values represent position
in the active dataset, starting with 0 for the first variable in file order. The value returned is one of the
following strings: "Input", "Target", "Both", "None", "Partition" or "Split".

Example

#Find the variable(s) with the role of "Target"
targets=[]
for i in range(spss.GetVariableCount()):
 if spss.GetVariableRole(i)=="Target":
 targets.append(spss.GetVariableName(i))
if len(targets):
 print("Target variables:")
 for i in range(len(targets)):
 print(targets[i])
else:
 print("No target variables found")

spss.GetVariableType Function
spss.GetVariableType(index). Returns 0 for numeric variables or the defined length for string variables
for the variable in the active dataset indicated by the index value. The argument is the index value. Index
values represent position in the active dataset, starting with 0 for the first variable in file order.

Example

#create separate strings of numeric and string variables
numericvars=''
stringvars=''
varcount=spss.GetVariableCount()
for i in range(varcount):
 if spss.GetVariableType(i) > 0:
 stringvars=stringvars + " " + spss.GetVariableName(i)
 else:
 numericvars=numericvars + " " + spss.GetVariableName(i)

spss.GetVarMissingValues Function
spss.GetVarMissingValues(index). Returns the user-missing values for the variable in the active dataset
indicated by the index value. The argument is the index value. Index values represent position in the active
dataset, starting with 0 for the first variable in file order.

Chapter 2. Python Integration Package 77

• The result is a tuple of four elements where the first element specifies the missing value type: 0 for
discrete values, 1 for a range of values, and 2 for a range of values and a single discrete value. The
remaining three elements in the result specify the missing values.

• For string variables, the missing value type is always 0 since only discrete missing values are allowed.
Returned values are right-padded to the defined width of the string variable.

• If there are no missing values, the result is (0,None,None,None).

Table 6. Structure of the result

tuple[0] tuple[1] tuple[2] tuple[3]

0 Discrete value or None Discrete value or None Discrete value or None

1 Start point of range End point of range None

2 Start point of range End point of range Discrete value

Example

#List all variables without user-missing values
nomissList=[]
for i in range(spss.GetVariableCount()):
 missing=spss.GetVarMissingValues(i)
 if (missing[0]==0 and missing[1]==None):
 nomissList.append(spss.GetVariableName(i))
if nomissList:
 print("Variables without user-missing values:")
 print('\n'.join(nomissList))
else:
 print("All variables have user-missing values")

spss.GetWeightVar Function
spss.GetWeightVar(). Returns the name of the weight variable, or None if unweighted.

Example

import spss
weightVar = spss.GetWeightVar()

spss.GetXmlUtf16 Function
spss.GetXmlUtf16(handle, filespec). Writes the XML for the specified handle (dictionary or output XML)
to a file or returns the XML if no filename is specified. When writing and debugging XPath expressions, it
is often useful to have a sample file that shows the XML structure. This function is particularly useful for
dictionary DOMs, since there are not any alternative methods for writing and viewing the XML structure.
(For output XML, the OMS command can also write XML to a file.) You can also use this function to retrieve
the XML for a specified handle, enabling you to process it with third-party utilities like XML parsers.

Example

handle = "activedataset"
spss.CreateXPathDictionary(handle)
spss.GetXmlUtf16(handle,'/temp/temp.xml')

spss.HasCursor Function
spss.HasCursor(). Returns an integer indicating whether there is an open cursor. A value of 0 indicates
there is no open cursor, and a value of 1 indicates there is an open cursor. Cursors allow you to read
data from the active dataset, create new variables in the active dataset, and append cases to the active
dataset. For information on working with cursors, see the topic on the Cursor class .

spss.IsActive Function
spss.IsActive(datasetObj). Indicates whether the specified dataset is the active one. The result is Boolean
—True if the specified dataset is active, False otherwise. The argument must be an instance of the

78 Python Reference Guide for IBM SPSS Statistics

Dataset class. The IsActive function is intended for use within a data step. Data steps are initiated
with the spss.StartDataStep function and are used to create and manage multiple datasets.

Example

import spss
spss.StartDataStep()
datasetObj = spss.Dataset(name="file1")
if not spss.IsActive(datasetObj):
 spss.SetActive(datasetObj)
spss.EndDataStep()

spss.IsDistributedMode Function
spss.IsDistributedMode(). Indicates whether IBM SPSS Statistics is in distributed mode. The result is
Boolean—True if SPSS Statistics is in distributed mode, False otherwise. The IsDistributedMode
function always returns False when an external Python process is controlling the SPSS Statistics backend.

Example

import spss
if spss.IsDistributedMode():
 print("SPSS Statistics is in distributed mode")
else:
 print("SPSS Statistics is not in distributed mode")

spss.IsOutputOn Function
spss.IsOutputOn(). Returns the status of IBM SPSS Statistics output display in Python. The result is
Boolean—True if output display is on in Python, False if it is off. See the topic “spss.SetOutput Function ”
on page 81 for more information.

Example

import spss
spss.SetOutput("on")
if spss.IsOutputOn():
 print("The current IBM SPSS Statistics output setting is 'on'.")
else:
 print("The current IBM SPSS Statistics output setting is 'off'.")

spss.Procedure Class
spss.Procedure(procName,omsIdentifier). The Procedure class implicitly starts and ends a user
procedure without the need to explicitly call StartProcedure and EndProcedure.

• The argument procName is a string and is the name that appears in the outline pane of the Viewer
associated with the output from the procedure. It has the same specifications as the procedureName
argument to the StartProcedure function.

• The optional argument omsIdentifier specifies the OMS identifier for output from this procedure and has
the same specifications as the omsIdentifier argument to the StartProcedure function. omsIdentifier
is only necessary when creating procedures with localized output so that the procedure name can be
localized but not the OMS identifier. See the topic “Localizing Output from Python Programs” on page 11
for more information.

The Procedure class is designed to be used with the Python with statement as shown in the following
example.

Example

BEGIN PROGRAM.
import spss
with spss.Procedure("demoProc"):
 table = spss.BasePivotTable("Table Title",
 "OMS table subtype")

 table.SimplePivotTable(rowdim = "row dimension",
 rowlabels = ["first row","second row"],
 coldim = "column dimension",
 collabels = ["first column","second column"],
 cells = [11,12,21,22])
END PROGRAM.

Chapter 2. Python Integration Package 79

• with spss.Procedure("demoProc"): initiates a block of code associated with a procedure named
demoProc and implicitly starts the procedure. All code associated with the procedure should reside in
the block as shown here. When the block completes, the procedure is implicitly ended.

spss.PyInvokeSpss.IsUTF8mode Function
spss.PyInvokeSpss.IsUTF8mode(). Indicates whether IBM SPSS Statistics is running in Unicode mode or
code page mode. The result is 1 if IBM SPSS Statistics is in Unicode mode, 0 if IBM SPSS Statistics is in
code page mode.

Example

import spss
isUTF8 = spss.PyInvokeSpss.IsUTF8mode()
if isUTF8==1:
 print("IBM SPSS Statistics is running in Unicode mode.")
else:
 print("IBM SPSS Statistics is running in code page mode.")

spss.PyInvokeSpss.IsXDriven Function
spss.PyInvokeSpss.IsXDriven(). Checks to see how the IBM SPSS Statistics backend is being run. The
result is 1 if Python is controlling the IBM SPSS Statistics backend or 0 if IBM SPSS Statistics is controlling
the backend.

Example

import spss
spss.Submit("""
GET FILE
 '/examples/data/employee data.sav'.
""")
isxd = spss.PyInvokeSpss.IsXDriven()
if isxd==1:
 print("Python is driving IBM SPSS Statistics.")
else:
 print("IBM SPSS Statistics is driving Python.")

spss.SetActive Function
spss.SetActive(datasetObj). Sets the specified dataset as the active one. The argument must be an
instance of the Dataset class. The SetActive function can only be used within a data step. Data
steps are initiated with the spss.StartDataStep function and are used to create and manage multiple
datasets.

Example

Set a newly created dataset to be active
spss.StartDataStep()
ds1 = spss.Dataset(name=None)
spss.SetActive(ds1)
spss.EndDataStep()

spss.SetDefaultPlugInVersion Function
Note: This function is deprecated in release 22. See the topic “Working with Multiple Versions of IBM
SPSS Statistics ” on page 8 for more information.

spss.SetDefaultPlugInVersion(value). Sets the default version of the IBM SPSS Statistics - Integration
Plug-in for Python used for Python programs. This function is useful when working with multiple
versions of the plug-in on a given machine (see Note below). The value of the argument is a
quoted string or an integer specifying a plug-in version--for example, "spss160" or 160 for version
16.0. The strings representing the installed versions of the plug-in are available from the function
spss.ShowInstalledPlugInVersions.

• For versions 17.0 to 21.0, SetDefaultPlugInVersion also sets the default version of the IBM
SPSS Statistics - Integration Plug-in for Python used for Python scripts (Python code that utilizes the
SpssClient module).

80 Python Reference Guide for IBM SPSS Statistics

Example

import spss
spss.SetDefaultPlugInVersion("spss160")

Note: The functions for managing multiple versions of the plug-in (spss.GetDefaultPlugInVersion,
spss.SetDefaultPlugInVersion, and spss.ShowInstalledPlugInVersions) operate within a
given Python version, not across Python versions. For example, if you are driving IBM SPSS Statistics from
a Python IDE installed for Python 3.8 then you can view and control the versions of the plug-in installed
for Python 3.8.

spss.SetMacroValue Function
spss.SetMacroValue(name, value). Defines a macro variable that can be used outside a program block
in command syntax. The first argument is the macro name, and the second argument is the macro value.
Both arguments must resolve to strings.

• The argument specifying the macro value cannot contain the characters \ or ^ unless they are
contained within a quoted string.

Example

DATA LIST FREE /var1 var2 var3 var4.
begin data
1 2 3 4
end data.
VARIABLE LEVEL var1 var3 (scale) var2 var4 (nominal).

BEGIN PROGRAM.
import spss
macroValue=[]
macroName="!NominalVars"
varcount=spss.GetVariableCount()
for i in range(varcount):
 if spss.GetVariableMeasurementLevel(i)=="nominal":
 macroValue.append(spss.GetVariableName(i))
spss.SetMacroValue(macroName, macroValue)
END PROGRAM.
FREQUENCIES VARIABLES=!NominalVars.

spss.SetOutput Function
spss.SetOutput("value"). Controls the display of IBM SPSS Statistics output in Python when running
IBM SPSS Statistics from Python. Output is displayed as standard output, and charts and classification
trees are not included. When running Python from IBM SPSS Statistics within program blocks (BEGIN
PROGRAM-END PROGRAM), this function has no effect. The value of the argument is a quoted string:

• "on". Display IBM SPSS Statistics output in Python.
• "off". Do not display IBM SPSS Statistics output in Python.

Example

import spss
spss.SetOutput("on")

spss.SetOutputLanguage Function
spss.SetOutputLanguage("language"). Sets the language that is used in IBM SPSS Statistics output. The
argument is a quoted string specifying one of the following languages: "English", "French", "German",
"Italian", "Japanese", "Korean", "Polish", "Russian", "SChinese" (Simplified Chinese), "Spanish", "TChinese"
(Traditional Chinese), or "BPortugu" (Brazilian Portuguese). The setting does not apply to simple text
output.

Example

import spss
spss.SetOutputLanguage("German")

Chapter 2. Python Integration Package 81

spss.ShowInstalledPlugInVersions Function
Note: This function is deprecated in release 22. See the topic “Working with Multiple Versions of IBM
SPSS Statistics ” on page 8 for more information.

spss.ShowInstalledPlugInVersions(). Displays the installed versions of the IBM SPSS Statistics -
Integration Plug-in for Python. This function displays the installed versions of the plug-in--for example,
"spss200" and "spss210" for versions 20.0 and 21.0--and is useful when working with multiple
versions of the plug-in on a given machine (see Note below). Use an identifier from this list as the
argument to the spss.SetDefaultPlugInVersion function.

Example

import spss
spss.ShowInstalledPlugInVersions()

Note: The functions for managing multiple versions of the plug-in (spss.GetDefaultPlugInVersion,
spss.SetDefaultPlugInVersion, and spss.ShowInstalledPlugInVersions) operate within a
given Python version, not across Python versions. For example, if you are driving IBM SPSS Statistics from
a Python IDE installed for Python 3.8 then you can view and control the versions of the plug-in installed
for Python 3.8.

spss.SplitChange Function
spss.SplitChange(outputName). Used to process splits when creating pivot tables from data that have
splits. The argument outputName is the name associated with the output, as specified on the associated
call to the StartProcedure function. See the topic “spss.StartProcedure Function ” on page 83 for
more information.

• This function should be called after detecting a split and reading the first case of the new split. It should
also be called after reading the first case in the active dataset.

• The creation of pivot table output does not support operations involving data in different split groups.
When working with splits, each split should be treated as a separate set of data.

• Use the SPLIT FILE command to control whether split-file groups will be displayed in the same
table or in separate tables. The SPLIT FILE command should be called before the StartProcedure
function.

• The IsEndSplit method from the Cursor class is used to detect a split change.

Example

In this example, a split is created and separate averages are calculated for the split groups. Results for
different split groups are shown in a single pivot table. In order to understand the example, you will
need to be familiar with creating pivot tables using the BasePivotTable class and creating output with the
spss.StartProcedure function.

import spss
from spss import CellText
from spss import FormatSpec

spss.Submit(r"""
GET FILE="/examples/data/employee data.sav".
SORT CASES BY GENDER.
SPLIT FILE LAYERED BY GENDER.
""")

spss.StartProcedure("spss.com.demo")

table = spss.BasePivotTable("Table Title","OMS table subtype")
table.Append(spss.Dimension.Place.row,"Minority Classification")
table.Append(spss.Dimension.Place.column,"coldim",hideName=True)

cur=spss.Cursor()
salary = 0; salarym = 0; n = 0; m = 0
minorityIndex = 9
salaryIndex = 5

row = cur.fetchone()
spss.SplitChange("spss.com.demo")
while True:
 if cur.IsEndSplit():
 if n>0:
 salary=salary/n
 if m>0:
 salarym=salarym/m

82 Python Reference Guide for IBM SPSS Statistics

 # Populate the pivot table with values for the previous split group
 table[(CellText.String("No"),CellText.String("Average Salary"))] = \
 CellText.Number(salary,FormatSpec.Count)
 table[(CellText.String("Yes"),CellText.String("Average Salary"))] = \
 CellText.Number(salarym,FormatSpec.Count)
 salary=0; salarym=0; n = 0; m = 0
 # Try to fetch the first case of the next split group
 row=cur.fetchone()
 if not None==row:
 spss.SplitChange("spss.com.demo")
 else:
 #There are no more cases, so quit
 break
 if row[minorityIndex]==1:
 salarym += row[salaryIndex]
 m += 1
 elif row[minorityIndex]==0:
 salary += row[salaryIndex]
 n += 1
 row=cur.fetchone()

cur.close()
spss.EndProcedure()

• The spss.Submit function is used to submit command syntax to create a split on a gender variable.
The LAYERED subcommand on the SPLIT FILE command indicates that results for different split
groups are to be displayed in the same table. Notice that the command syntax is executed before calling
spss.StartProcedure.

• The spss.SplitChange function is called after fetching the first case from the active dataset. This is
required so that the pivot table output for the first split group is handled correctly.

• Split changes are detected using the IsEndSplit method from the Cursor class. Once a split change is
detected, the pivot table is populated with the results from the previous split.

• The value returned from the fetchone method is None at a split boundary. Once a split has been
detected, you will need to call fetchone again to retrieve the first case of the new split group,
followed by spss.SplitChange. Note: IsEndSplit returns True when the end of the dataset has
been reached. Although a split boundary and the end of the dataset both result in a return value of True
from IsEndSplit, the end of the dataset is identified by a return value of None from a subsequent call
to fetchone, as shown in this example.

spss.StartDataStep Function
spss.StartDataStep(). Signals the beginning of a data step. A data step allows you to create and manage
multiple datasets.

• You cannot use the following classes and functions within a data step: the Cursor class, the
BasePivotTable class, the BaseProcedure class, the TextBlock class, the StartProcedure
function, the Submit function, and the StartDataStep function (data steps cannot be nested).

• The StartDataStep function cannot be used if there are pending transformations. If you need to
access case data in the presence of pending transformations, use the Cursor class.

• To end a data step, use the EndDataStep function.

For an example of using StartDataStep, see the topic on the Dataset class.

To avoid the need to check for pending transformations before starting a data step, use the DataStep
class. It implicitly starts and ends a data step and executes any pending transformations.

spss.StartProcedure Function
spss.StartProcedure(procedureName,omsIdentifier). Signals the beginning of pivot table or text block
output. Pivot table and text block output is typically associated with procedures. Procedures are user-
defined Python functions or custom Python classes that can read the data, perform computations, add
new variables and/or new cases to the active dataset, create new datasets, and produce pivot table
output and text blocks in the IBM SPSS Statistics Viewer. Procedures have almost the same capabilities as
built-in IBM SPSS Statistics procedures, such as DESCRIPTIVES and REGRESSION, but they are written
in Python by users. You read the data and create new variables and/or new cases in the active dataset
using the Cursor class, or create new datasets with the Dataset class. Pivot tables are created using the
BasePivotTable class. Text blocks are created using the TextBlock class.

Chapter 2. Python Integration Package 83

• The argument procedureName is a string and is the name that appears in the outline pane of the Viewer
associated with the output. If the optional argument omsIdentifier is omitted, then procedureName is
also the command name associated with this output when routing it with OMS (Output Management
System), as used in the COMMANDS keyword of the OMS command.

• The optional argument omsIdentifier is a string and is the command name associated with this output
when routing it with OMS (Output Management System), as used in the COMMANDS keyword of the OMS
command. If omsIdentifier is omitted, then the value of the procedureName argument is used as the
OMS identifier. omsIdentifier is only necessary when creating procedures with localized output so that
the procedure name can be localized but not the OMS identifier. See the topic “Localizing Output from
Python Programs” on page 11 for more information.

• In order that names associated with output not conflict with names of existing IBM SPSS
Statistics commands (when working with OMS), it is recommended that they have the form
yourcompanyname.com.procedurename.

• Within a StartProcedure-EndProcedure block you cannot use the spss.Submit function. You
cannot nest StartProcedure-EndProcedure blocks.

• Within a StartProcedure-EndProcedure block, you can create a single cursor instance.
• Instances of the Dataset class created within StartProcedure-EndProcedure blocks cannot be

set as the active dataset.
• Output from StartProcedure-EndProcedure blocks does not support operations involving data in

different split groups. When working with splits, each split should be treated as a separate set of
data. To cause results from different split groups to display properly in custom pivot tables, use the
SplitChange function. Use the IsEndSplit method from the Cursor class to determine a split change.

• spss.StartProcedure must be followed by spss.EndProcedure.

Note: You can use the spss.Procedure class to implicitly start and end a procedure without the need
to call StartProcedure and EndProcedure. See the topic “spss.Procedure Class ” on page 79 for
more information.

Example

As an example, we will create a procedure that calculates group means for a selected variable using a
specified categorical variable to define the groups. The output of the procedure is a pivot table displaying
the group means. For an alternative approach to creating the same procedure, but with a custom class,
see the example for the spss.BaseProcedure class.

def groupMeans(groupVar,sumVar):

 #Determine variable indexes from variable names
 varCount = spss.GetVariableCount()
 groupIndex = 0
 sumIndex = 0
 for i in range(varCount):
 varName = spss.GetVariableName(i)
 if varName == groupVar:
 groupIndex = i
 continue
 elif varName == sumVar:
 sumIndex = i
 continue

 varIndex = [groupIndex,sumIndex]
 cur = spss.Cursor(varIndex)
 Counts={};Statistic={}

 #Calculate group sums
 for i in range(cur.GetCaseCount()):
 row = cur.fetchone()
 cat=int(row[0])
 Counts[cat]=Counts.get(cat,0) + 1
 Statistic[cat]=Statistic.get(cat,0) + row[1]

 cur.close()

 #Call StartProcedure
 spss.StartProcedure("mycompany.com.groupMeans")

 #Create a pivot table
 table = spss.BasePivotTable("Group Means","OMS table subtype")
 table.Append(spss.Dimension.Place.row,
 spss.GetVariableLabel(groupIndex))
 table.Append(spss.Dimension.Place.column,
 spss.GetVariableLabel(sumIndex))

 category2 = spss.CellText.String("Mean")
 for cat in sorted(Counts):
 category1 = spss.CellText.Number(cat)

84 Python Reference Guide for IBM SPSS Statistics

 table[(category1,category2)] = \
 spss.CellText.Number(Statistic[cat]/Counts[cat])

 #Call EndProcedure
 spss.EndProcedure()

• groupMeans is a Python user-defined function containing the procedure that calculates the group
means.

• The arguments required by the procedure are the names of the grouping variable (groupVar) and the
variable for which group means are desired (sumVar).

• The name associated with output from this procedure is mycompany.com.groupMeans. The output
consists of a pivot table populated with the group means.

• spss.EndProcedure marks the end of output creation.

Saving and Running Procedures

To use a procedure you have written, you save it in a Python module on the Python search path so that
you can call it. A Python module is simply a text file containing Python definitions and statements. You can
create a module with a Python IDE, or with any text editor, by saving a file with an extension of .py. The
name of the file, without the .py extension, is then the name of the module. You can have many functions
in a single module. To be sure that Python can find your new module, you may want to save it to your
Python "site-packages" directory, typically /Python310/Lib/site-packages.

For the example procedure described above, you might choose to save the definition of the groupMeans
function to a Python module named myprocs.py. And be sure to include an import spss statement in
the module. Sample command syntax to run the function is:

import spss, myprocs
spss.Submit("get file='/examples/data/Employee data.sav'.")
myprocs.groupMeans("educ","salary")

• The import statement containing myprocs makes the contents of the Python module myprocs.py
available to the current session (assuming that the module is on the Python search path).

• myprocs.groupMeans("educ","salary") runs the groupMeans function for the variables educ
and salary in /examples/data/Employee data.sav.

Result

Figure 16. Output from the groupMeans procedure

spss.StartSPSS Function
spss.StartSPSS(hide, show, notes, nfc, nl). Starts a session of IBM SPSS Statistics.

• This function starts a session of IBM SPSS Statistics, for use when driving IBM SPSS Statistics from
Python. The function has no effect if a session is already running. Note: The spss.Submit function
automatically starts a session of IBM SPSS Statistics.

Chapter 2. Python Integration Package 85

• This function has no effect when running Python from IBM SPSS Statistics (within program blocks
defined by BEGIN PROGRAM-END PROGRAM).

• The optional argument hide specifies types of output items that are omitted from generated output.
The value is one or more characters that specify the output types to hide. Do not include spaces when
multiple types are specified. For example, to hide warnings and text output, specify hide='WT'. See
the table that follows for the allowed values.

• The optional argument show specifies types of output items that are included in generated output. The
value is one or more characters that specify the output types to show. Do not include spaces when
multiple types are specified. For example, to show notes tables and output titles, specify show='NE'.
See the table that follows for the allowed values.

• The optional argument notes specifies whether notes tables are included in generated output. The
value is a Boolean and the default is False, which specifies that notes tables are not included. Setting
notes=True is equivalent to setting show='N'.

• The optional argument nfc specifies whether footnotes and captions are included in the generated
output for tables. The value is a Boolean and the default is True, which specifies that footnotes and
captions are included in the output.

• The optional argument nl specifies whether all layers of a multi-layer table are included in the
generated output. The value is a Boolean and the default is True, which specifies that all layers are
included in the output. The value False specifies that only the first layer is included in the output.

Table 7. Arguments and display defaults for output items

Output Item Description Value for show or
hide argument

Displayed by
default?

Warnings Warning messages that occurred
when the procedure was run

W Yes

Note Information about how the output
was created

N No

Output title Title connected to the output of a
procedure

E No

Page title Title connected to a page G No

Pivot table Tabular statistical output P Yes

Text output Output not displayed in pivot tables T Yes

spss.StopSPSS Function
spss.StopSPSS(). Stops IBM SPSS Statistics, ending the session.

• This function is ignored when running Python from IBM SPSS Statistics (within program blocks defined
by BEGIN PROGRAM-END PROGRAM).

• When running IBM SPSS Statistics from Python, this function ends the IBM SPSS Statistics session, and
any subsequent spss.Submit functions that restart IBM SPSS Statistics will not have access to the
active dataset or to any other session-specific settings (for example, OMS output routing commands)
from the previous session.

Example: Running IBM SPSS Statistics from Python

import spss
#start a session and run some commands
#including one that defines an active dataset
spss.Submit("""
GET FILE '/examples/data/employee data.sav'.
FREQUENCIES VARIABLES=gender jobcat.
""")
#shutdown the session
spss.StopSPSS()
#insert a bunch of Python statements
#starting a new session and running some commands without defining
#an active dataset results in an error
spss.Submit("""

86 Python Reference Guide for IBM SPSS Statistics

FREQUENCIES VARIABLES=gender jobcat.
""")

Example: Running Python from IBM SPSS Statistics

BEGIN PROGRAM.
import spss
#start a session and run some commands
#including one that defines an active dataset
spss.Submit("""
GET FILE '/examples/data/employee data.sav'.
FREQUENCIES VARIABLES=gender jobcat.
""")
#following function is ignored
spss.StopSPSS()
#active dataset still exists and subsequent spss.Submit functions
#will work with that active dataset.
spss.Submit("""
FREQUENCIES VARIABLES=gender jobcat.
""")
END PROGRAM.

spss.Submit Function
spss.Submit(command text). Submits the command text to IBM SPSS Statistics for processing. The
argument can be a quoted string, a list, or a tuple.

• The argument should resolve to one or more complete IBM SPSS Statistics commands.
• For lists and tuples, each element must resolve to a string.
• You can also use the Python triple-quoted string convention to specify blocks of IBM SPSS Statistics

commands on multiple lines that more closely resemble the way you might normally write command
syntax.

• If IBM SPSS Statistics is not currently running (when driving IBM SPSS Statistics from Python),
spss.Submit will start the IBM SPSS Statistics backend processor.

• Submitted syntax for MATRIX-END MATRIX and BEGIN DATA-END DATA blocks cannot be split across
BEGIN PROGRAM-END PROGRAM blocks.

• The following commands are not supported by Submit when driving IBM SPSS Statistics from Python:
OUTPUT EXPORT, OUTPUT OPEN and OUTPUT SAVE.

Example

BEGIN PROGRAM.
import spss
#run a single command
spss.Submit("DISPLAY NAMES.")
#run two commands
spss.Submit(["DISPLAY NAMES.", "SHOW $VARS."])

#build and run two commands
command1="FREQUENCIES VARIABLES=var1."
command2="DESCRIPTIVES VARIABLES=var3."
spss.Submit([command1, command2])
END PROGRAM.

Example: Triple-Quoted Strings

BEGIN PROGRAM.
import spss
file="/examples/data/demo.sav"
varlist="marital gender inccat"
spss.Submit("""
GET FILE='%s'.
FREQUENCIES VARIABLES=%s
 /STATISTICS NONE
 /BARCHART.
""" %(file,varlist))
END PROGRAM.

Within the triple-quoted string, %s is used for string substitution; thus, you can insert Python variables
that resolve to strings in the quoted block of commands.

spss.TextBlock Class
spss.TextBlock(name,content,outline). Creates and populates a text block item in the Viewer. The
argument name is a string that specifies the name of this item in the outline pane of the Viewer. The
argument content is a string that specifies the text. The string may include the escape sequence \n to

Chapter 2. Python Integration Package 87

specify line breaks, but must otherwise be specified as plain text (HTML and rich text formatting are not
supported). You can also add lines using the append method. The optional argument outline is a string
that specifies a title for this item that appears in the outline pane of the Viewer. The item for the text block
itself will be placed one level deeper than the item for the outline title. If outline is omitted, the Viewer
item for the text block will be placed one level deeper than the root item for the output containing the text
block.

An instance of the TextBlock class can only be used within a StartProcedure-EndProcedure block
or within a custom procedure class based on the spss.BaseProcedure class.

Example

import spss
spss.StartProcedure("mycompany.com.demo")
textBlock = spss.TextBlock("Text block name",
 "A single line of text.")
spss.EndProcedure()

Figure 17. Sample text block

• This example shows how to generate a text block within a spss.StartProcedure-
spss.EndProcedure block. The output will be contained under an item named mycompany.com.demo
in the outline pane of the Viewer.

• The variable textBlock stores a reference to the instance of the text block object. You will need this
object reference if you intend to append additional lines to the text block with the append method.

append Method
.append(line,skip). Appends lines to an existing text block. The argument line is a string that specifies
the text. The string may include the escape sequence \n to specify line breaks, but must otherwise be
specified as plain text (HTML and rich text formatting are not supported). The optional argument skip
specifies the number of new lines to create when appending the specified line. The default is 1 and results
in appending the single specified line. Integers greater than 1 will result in blank lines preceding the
appended line. For example, specifying skip=3 will result in two blank lines before the appended line.

Example

import spss
spss.StartProcedure("mycompany.com.demo")
textBlock = spss.TextBlock("Text block name",
 "A single line of text.")
textBlock.append("A second line of text.")
textBlock.append("A third line of text preceded by a blank line.",skip=2)
spss.EndProcedure()

88 Python Reference Guide for IBM SPSS Statistics

Chapter 3. Scripting Guide

Introduction to Python Scripts
The Scripting Facility for IBM SPSS Statistics helps to create Python ® scripts that operate on the IBM
SPSS Statistics user interface, manipulate output objects, and run command syntax. This feature requires
the IBM SPSS Statistics - Integration Plug-in for Python, which is installed by default with your IBM SPSS
Statistics product.

A companion interface is available for creating Python programs that enable you to control the flow of
command syntax jobs, read and write data, and create custom procedures. See the topic “Introduction to
Python Programs” on page 3 for more information.

Scope
You can run Python scripts directly from within IBM SPSS Statistics, from within Python programs, or from
an external Python process, such as a Python IDE or the Python interpreter.

Python Script Run from IBM SPSS Statistics. You can run a Python script from Utilities>Run Script or
from the Python script editor which is launched when opening a Python file (.py) from File>Open>Script.
Scripts run from the Python editor that is launched from IBM SPSS Statistics operate on the IBM SPSS
Statistics client that launched the editor. This allows you to debug your Python code from a Python editor.

Python Script Run from an External Python Process. You can run a Python script from any external
Python process, such as a Python IDE that is not launched from IBM SPSS Statistics, or the Python
interpreter. The script will attempt to connect to an existing IBM SPSS Statistics client. If more than one
client is found, a connection is made to the most recently launched one. If an existing client is not found,
the Python script starts up a new instance of the IBM SPSS Statistics client. By default, the Data Editor
and Viewer are invisible for the new client. You can choose to make them visible or work in invisible mode
with datasets and output documents.

• Mac. To run a Python script from an external Python process on Mac, launch the Programmability
External Python Process application, located in the directory where IBM SPSS Statistics is installed.
The application launches IDLE (the default IDE provided with Python) and sets environment variables
necessary for driving IBM SPSS Statistics.

Python Script Run from Python Program. You can run a Python script from a Python program by
importing the Python module containing the script and calling the function in the module that implements
the script. You can also call Python script methods directly from within a Python program. See the topic
“Running Python Scripts from Python Programs” on page 93 for more information.

• This feature is not available when running a Python program from an external Python process or
when running a Python program from the IBM SPSS Statistics Batch Facility (available with IBM SPSS
Statistics Server).

• When running Python scripting code from a Python program in distributed mode, you may need to
configure your firewall to allow access from the remote server to which you are connected.

Limitations
• The interfaces exposed by the spss module (the module used for Python programs) cannot be used in a

Python script.
• Calling methods in the SpssClient module with keyword arguments--in other words, keyword =

value--is not supported.

Help
General information on the Scripting Facility for IBM SPSS Statistics and additional information on Python
scripts is available from Core System > Scripting Facility in the Help system .

Script Editor for the Python Programming Language
For the Python programming language, the default editor is IDLE, which is provided with Python. IDLE
provides an integrated development environment (IDE) with a limited set of features. Many IDE's are
available for the Python programming language. For instance, on Windows you might choose to use the
freely available PythonWin IDE.

To change the script editor for the Python programming language:

1. Open the file clientscriptingcfg.ini, located in the directory where IBM SPSS Statistics is installed.

Note: clientscriptingcfg.ini must be edited with a UTF-16 aware editor, such as SciTE on Windows or
the TextEdit application on Mac.

2. Under the section that is labeled [Python3], change the value of EDITOR_PATH to point to the file
that starts the editor. The specifications for Python 3 are independent.

3. In that same section, change the value of EDITOR_ARGS to handle any arguments that need to be
passed to the editor. If no arguments are required, remove any existing values.

Class Hierarchy for Scripting Facility
The following diagram shows the hierarchy of classes available to Python scripts.

90 Python Reference Guide for IBM SPSS Statistics

Getting Started with Python Scripts
The basic structure of a Python script is:

import SpssClient
SpssClient.StartClient()
<Python language statements>
SpssClient.StopClient()

• The import SpssClient statement imports the Python module containing the IBM SPSS Statistics
classes and methods available in the Python scripting interface.

• SpssClient.StartClient() provides a connection to the associated IBM SPSS Statistics client,
enabling the script to retrieve information from the client and to perform operations on objects
managed by the client, such as pivot tables. Whether the script connects to an existing client or starts

Chapter 3. Scripting Guide 91

up a new client depends on how the script was invoked. See the topic “Introduction to Python Scripts”
on page 89 for more information.

• SpssClient.StopClient() terminates the connection to the IBM SPSS Statistics client and should
be called at the completion of each Python script.

Note: If you're running a Python script from an external Python process that starts up a new client, call
SpssClient.Exit() before SpssClient.StopClient().

Example

This script accesses the designated output document and sets each of the pivot tables as selected.

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT:
 OutputItem.SetSelected(True)
SpssClient.StopClient()

Target for Standard output

The Python print statement writes output to Python's standard output. When you run a Python script
from Utilities>Run Script, Python's standard output is directed to a log item in the IBM SPSS Statistics
Viewer.

Getting Started with Autoscripts in Python
Autoscripts are scripts that run automatically when triggered by the creation of specific pieces of output
from selected procedures and typically require a reference to the object that triggered the script. They
may also require a reference to the associated output document and possibly the index of the output item
in the output document. These values are obtained from the SpssScriptContext object, as shown in
this example of an autoscript that transposes the rows and columns of a pivot table.

import SpssClient
SpssClient.StartClient()

SpssScriptContext = SpssClient.GetScriptContext()
SpssOutputItem = SpssScriptContext.GetOutputItem()
SpssPivotTable = SpssOutputItem.GetSpecificType()
SpssPivotMgr = SpssPivotTable.PivotManager()
SpssPivotMgr.TransposeRowsWithColumns()

SpssClient.StopClient()

• SpssClient.GetScriptContext returns an SpssScriptContext object that provides values for
use by the autoscript.

• The GetOutputItem method of the SpssScriptContext object returns the output item that
triggered the current autoscript--in this example, the pivot table whose rows and columns are to be
transposed.

Although not used in this example, the GetOutputDoc method of the SpssScriptContext object
returns the associated output document, and the GetOutputItemIndex method returns the index (in
the associated output document) of the output item that triggered the autoscript.

General information on autoscripts is available from Core System>Scripting Facility in the Help system.

Detecting When a Script is Run as an Autoscript

Using the GetScriptContext method, you can detect when a script is being run as an autoscript. This
allows you to code a script so that it functions in either context (autoscript or not). This trivial script
illustrates the approach.

import SpssClient
SpssClient.StartClient()

SpssScriptContext = SpssClient.GetScriptContext()
if SpssScriptContext == None:
 print("I'm not an autoscript")
else:
 print("I'm an autoscript")

92 Python Reference Guide for IBM SPSS Statistics

SpssClient.StopClient()

• When a script is not run as an autoscript, the GetScriptContext method will return a value of None.
• Given the if-else logic in this example, you would include your autoscript-specific code in the else

clause. Any code that is not to be run in the context of an autoscript would be included in the if clause.
Of course you can also include code that is to be run in either context.

Running Python Scripts from Python Programs
You can run Python scripts from Python programs and you can call Python script methods from within
a Python program. This allows you to write Python programs that operate on user interface and output
objects.

• This feature is only available when running a Python program from the IBM SPSS Statistics client--
within a BEGIN PROGRAM-END PROGRAM block in command syntax or within an extension command. It
is not available when running a Python program from an external Python process.

• When running Python scripting code from a Python program in distributed mode, you may need to
configure your firewall to allow access from the remote server to which you are connected.

Example: Calling a Python Script from a Python Program

This example shows a Python program that creates a custom pivot table and calls a Python script to make
the column labels of the table bold.

BEGIN PROGRAM.
import spss, MakeColsBold
spss.StartProcedure("Demo")
table = spss.BasePivotTable("Sample Table","OMS subtype")
table.SimplePivotTable(rowlabels = ["1","2"],
 collabels = ["A","B"],
 cells = ["1A","1B","2A","2B"])
spss.EndProcedure()
MakeColsBold.Run("Sample Table")
END PROGRAM.

• Python programs use the interface exposed by the Python spss module, so the first line of the program
contains an import statement for that module. The Python script is assumed to be contained in a
Python module named MakeColsBold, so the import statement also includes that module.

• The code from spss.StartProcedure to spss.EndProcedure creates a pivot table titled "Sample
Table".

• MakeColsBold.Run("Sample Table") calls the Run function in the MakeColsBold module and
passes the value "Sample Table" as the argument. The Run function implements the Python script to
make the column labels of the specified table bold.

The content of the MakeColsBold module is as follows:

import SpssClient

def Run(tableName):
 SpssClient.StartClient()
 OutputDoc = SpssClient.GetDesignatedOutputDoc()
 OutputItems = OutputDoc.GetOutputItems()
 for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT \
 and OutputItem.GetDescription() == tableName:
 PivotTable = OutputItem.GetSpecificType()
 ColumnLabels = PivotTable.ColumnLabelArray()
 for i in range(ColumnLabels.GetNumColumns()):
 ColumnLabels.SelectLabelAt(1,i)
 PivotTable.SetTextStyle(SpssClient.SpssTextStyleTypes.SpssTSBold)
 SpssClient.StopClient()

• The import SpssClient statement is needed to access the classes and methods available in the
Python scripting interface.

• The module contains a single function named Run, which implements the script. It takes a single
argument that specifies the name of the table to modify. There is nothing special about the name
Run and the module is not limited to a single function. You can create a module that contains many
functions, each of which implements a different script.

Chapter 3. Scripting Guide 93

• The Run function calls SpssClient.StartClient() to provide a connection to the associated IBM
SPSS Statistics client and SpssClient.StopClient() to terminate the connection at the completion
of the script.

Example: Calling Python Scripting Methods Directly from a Python Program

This example shows a Python program that creates a custom pivot table and makes direct calls to Python
scripting methods to make the title of the table italic.

BEGIN PROGRAM.
import spss, SpssClient
spss.StartProcedure("Demo")
table = spss.BasePivotTable("Sample Table","OMS subtype")
table.SimplePivotTable(cells = ["A","B","C","D"])
spss.EndProcedure()

SpssClient.StartClient()
OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()
OutputItem = OutputItems.GetItemAt(OutputItems.Size()-1)
PivotTable = OutputItem.GetSpecificType()
PivotTable.SelectTitle()
PivotTable.SetTextStyle(SpssClient.SpssTextStyleTypes.SpssTSItalic)
SpssClient.StopClient()
END PROGRAM.

• The import spss, SpssClient statement provides access to the classes and methods available for
Python programs (spss) as well as those for Python scripts (SpssClient).

• The code from spss.StartProcedure to spss.EndProcedure is the Python program code that
creates the pivot table.

• The code from SpssClient.StartClient() to SpssClient.StopClient() is the Python script
code that makes the title italic.

SpssClient Class
The SpssClient class is the top level class for the IBM SPSS Statistics Python scripting interface. From
an SpssClient object you can:

• Access the current data, syntax, or output document.
• Open and access a saved data, syntax, or output document.
• Create and access a new data, syntax, or output document.
• Obtain a list of all open data, syntax, or output documents.
• Run command syntax.
• Get and set options available from Edit>Options in the user interface.
• Get and set export options for exporting output.
• Get values pertinent to an autoscript, such as the output item that triggered the autoscript.
• Obtain information about configured instances of IBM SPSS Statistics Server and configure new

instances.

The SpssClient object is always available to a script, but you must call SpssClient.StartClient to
establish a connection to the IBM SPSS Statistics client before you can use any of the other methods in
the class. See the topic “Getting Started with Python Scripts” on page 91 for more information.

CreateNewServer Method
Creates a new server configuration and returns an SpssServerConf object. To add this server to the
list of configured servers, use the Add method in the SpssServerConfList class. You can obtain
an instance of SpssServerConfList from the GetConfiguredServers method in the SpssClient
class.

Syntax

SpssServerConf=SpssClient.CreateNewServer(serverName,port,desc)

Parameters

94 Python Reference Guide for IBM SPSS Statistics

serverName. The machine name or IP address of the IBM SPSS Statistics Server machine

port. Port number for IBM SPSS Statistics Server

desc. Textual description of the server

Exit Method
Terminates the instance of the IBM SPSS Statistics client associated with the current script. This method
is intended for use when running a script from an external Python process (such as a Python IDE or
the Python interpreter), and will terminate the instance of the IBM SPSS Statistics client associated with
the script. The method has no effect when called from a script that is run from within the IBM SPSS
Statistics client, either through Utilities>Run Script or from a Python IDE launched from File>Open>Script
or File>New>Script.

Syntax

SpssClient.Exit()

GetActiveDataDoc Method
Returns the active dataset as an SpssDataDoc object.

Syntax

SpssDataDoc=SpssClient.GetActiveDataDoc()

GetConfiguredServers Method
Returns the list of configured servers as an SpssServerConfList object. The list consists of
SpssServerConf objects for each of the configured servers, including the local computer.

Syntax

SpssServerConfList=SpssClient.GetConfiguredServers()

GetCurrentDirectory Method
Returns the current working directory of the IBM SPSS Statistics client.

Syntax

SpssClient.GetCurrentDirectory()

GetCurrentServer Method
Returns an SpssServerConf object representing the current server (may be an instance of IBM SPSS
Statistics Server or the local computer).

Syntax

SpssServerConf=SpssClient.GetCurrentServer()

GetDataDocuments Method
Returns the list of open datasets as a DataDocsList object. Each item in the list is an SpssDataDoc
object.

Syntax

DataDocsList=SpssClient.GetDataDocuments()

Chapter 3. Scripting Guide 95

GetDefaultJCVersion Method
Returns a string specifying the default version of the IBM SPSS Statistics - Integration Plug-in for Python
used for Python scripts--for example, "SpssClient170" for version 17.0. This method is useful when
working with multiple versions of the plug-in on a given machine (see Note below). You can change the
default using the SetDefaultJCVersion method.

Syntax

SpssClient.GetDefaultJCVersion()

Note: The methods for managing multiple versions of the plug-in
(SpssClient.GetDefaultJCVersion, and SpssClient.SetDefaultJCVersion) operate within a
given Python version, not across Python versions. For example, if you are driving IBM SPSS Statistics from
a Python IDE installed for Python 3.8 then you can view and control the versions of the plug-in installed
for Python 3.8.

GetDefaultServer Method
Returns an SpssServerConf object representing the default server (may be an instance of IBM SPSS
Statistics Server or the local computer).

Syntax

SpssServerConf=SpssClient.GetDefaultServer()

GetDesignatedOutputDoc Method
Returns an SpssOutputDoc object representing the designated output document.

• If you have more than one open output document, output is routed to the designated one.

Syntax

SpssOutputDoc=SpssClient.GetDesignatedOutputDoc()

GetDesignatedSyntaxDoc Method
Returns an SpssSyntaxDoc object representing the designated syntax document.

• If you have more than one open syntax document, command syntax is pasted into the designated one.

Syntax

SpssSyntaxDoc=SpssClient.GetDesignatedSyntaxDoc()

GetExportOption Method
Returns the value of the specified export option, as a string.

Syntax

SpssClient.GetExportOption(option)

Parameters

The value of option is the identifier SpssClient.ExportOptions, followed by a period (.) and the name
of the option--for example, SpssClient.ExportOptions.GraphExportType. See Export Options for
the available list of options.

GetLocale Method
Returns a string specifying the current locale. The locale consists of the language, country and char set
information.

Syntax

96 Python Reference Guide for IBM SPSS Statistics

SpssClient.GetLocale()

GetLocalServer Method
Returns an SpssServerConf object representing the local computer.

Syntax

SpssServerConf=SpssClient.GetLocalServer()

GetOutputDocuments Method
Returns the list of open output documents as an OutputDocsList object. Each item in the list is an
SpssOutputDoc object.

Syntax

OutputDocsList=SpssClient.GetOutputDocuments()

GetPreference Method
Returns the value of the specified preference option, as a string.

Syntax

SpssClient.GetPreference(option)

The value of option is the identifier SpssClient.PreferenceOptions, followed by a period (.) and the
name of the option--for example, SpssClient.PreferenceOptions.VariableListDisplay. See
Preference Options for the available list of options.

GetScriptContext Method
Returns an SpssScriptContext object that allows you to determine the context in which a script is being
run--as an autoscript, or not.

• When the script is being run as an autoscript, the returned SpssScriptContext object provides
access to the output item that triggered the autoscript as well as the associated output document.

• When the script is not being run as an autoscript, GetScriptContext returns None.

Syntax

SpssScriptContext=SpssClient.GetScriptContext()

GetSPSSOptions Method
Returns a string which is a concatenation of three-letter abbreviations for each of the licensed options.
You can determine if a specified option is available from the IsOptionAvailable method.

Syntax

options=SpssClient.GetSPSSOptions()

The options and associated three-letter abbreviations are as follows:

Bas. Base

Pro. Regression

Adv. Advanced Statistics

Cyt. Exact Test

Cat. Categories

Mva. Missing Values

Con. Conjoint

Chapter 3. Scripting Guide 97

Msa. Custom Tables

Csp. Complex Samples

Tre. Decision Trees

Vld. Data Preparation

Trd. Forecasting

Pes. Statistics Adaptor

Neu. Neural Networks

Rfm. RFM

GetSPSSPath Method
Returns a string specifying the path to the IBM SPSS Statistics installation directory.

Syntax

path=SpssClient.GetSPSSPath()

GetSPSSVersion Method
Returns a string specifying the IBM SPSS Statistics version.

Syntax

version=SpssClient.GetSPSSVersion()

GetSyntaxDocuments Method
Returns the list of open syntax documents as a SyntaxDocsList object. Each item in the list is an
SpssSyntaxDoc object.

Syntax

SyntaxDocsList=SpssClient.GetSyntaxDocuments()

GetUIAlerts Method
Returns the current setting of UI alerts for the client. The result is Boolean.

Syntax

SpssClient.GetUIAlerts()

Returns

True. Alerts are displayed in the UI

False. UI alerts are suppressed

IsDataDocInUse Method
Indicates whether a specified data file is in use by another instance of IBM SPSS Statistics. The result is
Boolean. The argument is a string specifying the path to the data file. Note: This method is not supported
on Mac and Linux.

Syntax

SpssClient.IsDataDocInUse(fileName)

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

98 Python Reference Guide for IBM SPSS Statistics

IsDistributedMode
Indicates whether the scripting process is being run in distributed mode. The result is Boolean.

Syntax

SpssClient.IsDistributedMode()

IsOptionAvailable Method
Checks if the IBM SPSS Statistics client is licensed for a specified optional component. The result is
Boolean. You can obtain a list of all available options from the GetSPSSOptions method.

Syntax

SpssClient.IsOptionAvailable(licOption)

Parameters

The parameter licOption specifies the option.

Table 8. Option values

Value Description

SpssClient.LicenseOption.BASE Base

SpssClient.LicenseOption.PRO_STATS Regression

SpssClient.LicenseOption.ADVANCED_STATS Advanced Statistics

SpssClient.LicenseOption.CYTEL Exact Test

SpssClient.LicenseOption.MARKET_RESEARCH Categories

SpssClient.LicenseOption.MISSING_VALUES Missing Values

SpssClient.LicenseOption.CONJOINT Conjoint

SpssClient.LicenseOption.CUSTOM_TABLES Custom Tables

SpssClient.LicenseOption.COMPLEX_SAMPLE Complex Samples

SpssClient.LicenseOption.TREEVIEW Decision Trees

SpssClient.LicenseOption.VALIDATEDATA Data Preparation

SpssClient.LicenseOption.TRENDS Forecasting

SpssClient.LicenseOption.PES Statistics Adaptor

SpssClient.LicenseOption.NEURAL_NETWORK Neural Networks

SpssClient.LicenseOption.RFM RFM

Returns

True. The option is available.

False. The option is not available or the license for the option has expired.

LogToViewer Method
Writes the specified content to the designated output document as a log item. The content is appended to
the last log item in the output document.

Syntax

SpssClient.LogToViewer(content)

Chapter 3. Scripting Guide 99

Parameters

content. A string

NewDataDoc Method
Creates a new dataset and makes it the active dataset. The method returns an SpssDataDoc object
associated with the new dataset.

Syntax

SpssDataDoc=SpssClient.NewDataDoc()

NewOutputDoc Method
Creates a new output document and makes it the designated output document. The method returns an
SpssOutputDoc object associated with the new output document.

Syntax

SpssOutputDoc=SpssClient.NewOutputDoc()

NewSyntaxDoc Method
Creates a new syntax document and makes it the designated syntax document. The method returns an
SpssSyntaxDoc object associated with the new syntax document.

Syntax

SpssSyntaxDoc=SpssClient.NewSyntaxDoc()

OpenDataDoc Method
Opens the specified data document and makes it the active dataset. The method returns an SpssDataDoc
object.

• This method is not available when called from a Python program in distributed mode (Python programs
make use of the interface exposed by the Python spss module).

Syntax

SpssDataDoc=SpssClient.OpenDataDoc(fileName,password=None)

Parameters

fileName. The path and file name of the data document, as a string.

password. A string specifying the password required to open the file. Only applies to encrypted data files.
The password can be specified as encrypted or unencrypted. Encrypted passwords are created when
pasting command syntax, for an encrypted file, from the Save Data As dialog.

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

OpenOutputDoc Method
Opens the specified output document and makes it the designated output document. The method returns
an SpssOutputDoc object. By default, the associated Viewer window is invisible. Use the SetVisible
method from the SpssOutputUI class to make the Viewer window visible. You get an SpssOutputUI
object using the GetOutputUI method of the SpssOutputDoc object.

Syntax

SpssOutputDoc=SpssClient.OpenOutputDoc(fileName,password=None)

100 Python Reference Guide for IBM SPSS Statistics

Parameters

fileName. The path and file name of the output document, as a string.

password. A string specifying the password required to open the file. Only applies to encrypted output
files. The password can be specified as encrypted or unencrypted. Encrypted passwords are created
when pasting command syntax, for an encrypted file, from the Save Output As dialog.

Example

import SpssClient
SpssClient.StartClient()
outputDoc = SpssClient.OpenOutputDoc(r"fileName")
outputUI = outputDoc.GetOutputUI()
outputUI.SetVisible(True)
SpssClient.StopClient()

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

OpenSyntaxDoc Method
Opens the specified syntax document and makes it the designated syntax document. The method
returns an SpssSyntaxDoc object. By default, the associated Syntax Editor window is invisible. Use
the SetVisible method from the SpssSyntaxUI class to make the Syntax Editor window visible. You get
an SpssSyntaxUI object using the GetSyntaxUI method of the SpssSyntaxDoc object.

Syntax

SpssSyntaxDoc=SpssClient.OpenSyntaxDoc(fileName,password=None)

Parameters

fileName. The path and file name of the syntax document, as a string.

password. A string that specifies the password that is required to open the file. This setting applies only
to encrypted syntax files. The password can be specified as encrypted or unencrypted. For reference,
passwords are always encrypted in pasted syntax.

Example

import SpssClient
SpssClient.StartClient()
syntaxDoc = SpssClient.OpenSyntaxDoc(r"fileName")
syntaxUI = syntaxDoc.GetSyntaxUI()
syntaxUI.SetVisible(True)
SpssClient.StopClient()

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

RunSyntax Method
Executes a set of syntax commands.

• The submitted commands are executed synchronously with any other submitted command syntax.
• This method cannot be called within a script that is run from the SCRIPT command. It is also not

available when called from a Python program in distributed mode (Python programs make use of the
interface exposed by the Python spss module).

Syntax

SpssClient.RunSyntax(syntaxCommands)

Chapter 3. Scripting Guide 101

Parameters

syntaxCommands. A string specifying command syntax. If the string is empty, no error is returned and the
script continues. Commands must end in a period (command terminator).

Example

SpssClient.RunSyntax("GET FILE='/examples/data/Employee data.sav'.")

To specify multiple commands, separate each command by the escape sequence for a linefeed, "\n", or
enclose the set of commands in a triple-quoted string, as in:

SpssClient.RunSyntax(r"""
GET FILE='/examples/data/Employee data.sav'.
SORT CASES BY gender.
SPLIT FILE
 LAYERED BY gender.
DESCRIPTIVES
 VARIABLES=salary salbegin jobtime prevexp
 /STATISTICS=MEAN STDDEV MIN MAX.
SPLIT FILE OFF.
""")

• The triple double quotes enclose a block of command syntax that is submitted for processing, retaining
the line breaks. You can use either triple single quotes or triple double quotes, but you must use the
same type (single or double) on both sides of the command syntax block.

• Notice that the triple-quoted expression is prefixed with the letter r. The r prefix to a string specifies
Python's raw mode. In raw mode, Python treats all backslashes in the string as the backslash character
and not as the start of an escape sequence.

SaveServers Method
Saves the set of configured servers so that new server configurations added during the current session
will persist across sessions.

Syntax

SpssClient.SaveServers()

ScriptParameter Method
Retrieves a parameter passed to the script when calling the script from a SCRIPT command within
command syntax. Only a single parameter can be passed and it must be a quoted string.

Syntax

SpssClient.ScriptParameter(0)

SetCurrentDirectory Method
Sets the current working directory of the IBM SPSS Statistics client to a specified value.

Syntax

SpssClient.SetCurrentDirectory(newDir)

Parameters

newDir. The absolute path to the new working directory, as a string.

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

102 Python Reference Guide for IBM SPSS Statistics

SetDefaultJCVersion Method
Sets the default version of the IBM SPSS Statistics - Integration Plug-in for Python used for Python
scripts. This method is useful when working with multiple versions of the plug-in on a given machine
(see Note below). The value of the argument is a quoted string or an integer specifying a plug-in
version--for example, "SpssClient160" or 160 for version 16.0. You can view the default using the
GetDefaultJCVersion method.

• SetDefaultJCVersion also sets the default version of the IBM SPSS Statistics - Integration Plug-in
for Python used for Python programs (Python code that utilizes the spss module).

Syntax

SpssClient.SetDefaultJCVersion(version)

Note: The methods for managing multiple versions of the plug-in
(SpssClient.GetDefaultJCVersion, and SpssClient.SetDefaultJCVersion) operate within a
given Python version, not across Python versions. For example, if you are driving IBM SPSS Statistics from
a Python IDE installed for Python 3.8 then you can view and control the versions of the plug-in installed
for Python 3.8.

SetExportOption Method
Sets the value of the specified export option to the value provided.

Syntax

SpssClient.SetExportOption(option,value)

Parameters

value. A string

For a list of the available export options and associated settings, see . The value of option is the identifier
SpssClient.ExportOptions, followed by a period (.) and the name of the option--for example,
SpssClient.ExportOptions.GraphExportType.

SetPreference Method
Sets the value of the specified preference option to the value provided.

Syntax

SpssClient.SetPreference(option,value)

Parameters

value. A string

For a list of the available preference options and settings, see Appendix
E, “Preference Options ,” on page 237. The value of option is the identifier
SpssClient.PreferenceOptions, followed by a period (.) and the name of the option--for example,
SpssClient.PreferenceOptions.VariableListDisplay.

SetUIAlerts Method
Specifies the setting of UI alerts for the IBM SPSS Statistics client.

Syntax

SpssClient.SetUIAlerts(showUIAlerts)

Parameters

showUIAlerts. True if alerts are to be displayed in the UI and False if UI alerts are to be suppressed.

If False is specified, any alerts triggered by script operations are propagated to the script as an exception.

Chapter 3. Scripting Guide 103

StartClient Method
Establishes a connection to the IBM SPSS Statistics client and is required for every Python script.

• If the script is run from an external Python process (such as a Python IDE or the Python interpreter),
an attempt is made to connect to an existing IBM SPSS Statistics client. If more than one client is
found, a connection is made to the most recently launched one. If an existing client is not found, a new
and invisible instance of the IBM SPSS Statistics client is started and a connection to it is established.
You can make the associated Data Editor window visible using the SetVisible method from the
SpssDataUI class.

• SpssClient.StopClient() should be called at the completion of the script. To ensure that
StopClient() is called, it is recommended to include the call in the finally clause of a try
statement--for example, by including the body of the script in a try statement. If the script is being
run from an external Python process that starts up a new client, call SpssClient.Exit() before
SpssClient.StopClient().

Syntax

SpssClient.StartClient()

Example

import SpssClient
SpssClient.StartClient()
dataDoc = SpssClient.OpenDataDoc(r"fileName")
dataUI = dataDoc.GetDataUI()
dataUI.SetVisible(True)
SpssClient.StopClient()

StopClient Method
Terminates the connection to the IBM SPSS Statistics client. This method should be called at the
completion of each Python script. To ensure that StopClient() is called, it is recommended to include
the call in the finally clause of a try statement--for example, by including the body of the script in a
try statement.

Syntax

SpssClient.StopClient()

_heartBeat Method
The _heartBeat method is a utility function for use with thread-aware debuggers that pause all threads
at a breakpoint. If you are using such a debugger, then you will need to disable the SpssClient
heartbeat function (which is enabled by default) during debugging; otherwise the scripting session may
terminate at a breakpoint due to a failed heartbeat.

Syntax

To set the heartbeat status, use:

SpssClient._heartBeat(status)

To get the heartbeat status, use:

SpssClient._heartBeat()

Parameters

status. True to enable the heartbeat function, False to disable the heartbeat function.

Returns

True. The heartbeat function is enabled.

False. The heartbeat function is disabled.

104 Python Reference Guide for IBM SPSS Statistics

Datasets and Data Editor Windows

SpssDataDoc Class
The SpssDataDoc class represents an open dataset.

Example: Obtaining the Active Dataset

import SpssClient
SpssClient.StartClient()
ActiveDataDoc = SpssClient.GetActiveDataDoc()

• The variable ActiveDataDoc is an SpssDataDoc object for the active dataset.

Example: Obtaining the First Opened Dataset

import SpssClient
SpssClient.StartClient()
DataDocsList = SpssClient.GetDataDocuments()
FirstDataDoc = DataDocsList.GetItemAt(0)

• SpssClient.GetDataDocuments() returns a DataDocsList object, which provides access to all
open datasets.

• The GetItemAt method from the DataDocsList class is used to get the dataset with index 0 (the first
opened dataset) from the list of open datasets. The variable FirstDataDoc is an SpssDataDoc object for
this dataset.

CloseDocument Method
Closes the dataset. If the dataset is the last open dataset then the instance of the IBM SPSS Statistics
client associated with the current script is terminated.

Syntax

SpssDataDoc.CloseDocument()

GetCaseCount Method
Returns the number of cases in the dataset.

Syntax

SpssDataDoc.GetCaseCount()

GetDatasetName Method
Returns the dataset name. If the dataset is unnamed, an empty string is returned.

Syntax

SpssDataDoc.GetDatasetName()

GetDataUI Method
Returns an SpssDataUI object representing the Data Editor window of the associated dataset, if one
exists.

Syntax

SpssDataUI=SpssDataDoc.GetDataUI()

GetDocumentPath Method
Returns the path and file name of the data file associated with this dataset object, or the empty string if
the dataset is not associated with a file.

Chapter 3. Scripting Guide 105

Syntax

SpssDataDoc.GetDocumentPath()

Note: If you reopen a data file that is currently open, the GetDocumentPath method will return the
empty string when called on the SpssDataDoc object associated with the reopened instance of the file.

GetMenuTable Method
Returns a MenuTableList object containing the list of available menu items for the data document.

Syntax

MenuTableList = SpssDataDoc.GetMenuTable()

GetVariableCount Method
Returns the number of variables in the associated dataset.

Syntax

SpssDataDoc.GetVariableCount()

IsActiveDataDoc Method
Indicates if this dataset is the active one. The result is Boolean--True if the dataset is the active one, False
otherwise.

Syntax

SpssDataDoc.IsActiveDataDoc()

IsEqualTo Method
Indicates if this dataset object is the same object as a specified dataset object. The result is Boolean--
True if the two objects are identical, False otherwise.

Syntax

SpssDataDoc.IsEqualTo(dataDoc)

Parameters

dataDoc. An SpssDataDoc object

IsModified Method
Indicates whether the dataset has been modified. The result is Boolean--True if the dataset has been
modified, False otherwise.

Syntax

SpssDataDoc.IsModified()

IsPromptToSave Method
Indicates if the 'prompt to save' flag is set for this dataset object. The result is Boolean--True if the
'prompt to save' flag has been set, False otherwise.

Syntax

SpssDataDoc.IsPromptToSave()

SaveAs Method
Saves the dataset to the specified file.

106 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssDataDoc.SaveAs(fileName,password=None)

Parameters

fileName. The path and file name of the data file, as a string.

password. An optional string specifying the password that will be required to open the file. Only applies
if you want to encrypt the data file. Passwords are limited to 10 characters and are case-sensitive. All
spaces, including leading and trailing spaces, are retained.

Note: The save operation is carried out asynchronously, which means that execution continues without
waiting for the save operation to complete. If you require subsequent access to the saved file using the
Python open function, you can attempt to open the file from a try block within a while loop, continuing
to loop until the open operation succeeds.

Creating strong passwords

• Use eight or more characters.
• Include numbers, symbols and even punctuation in your password.
• Avoid sequences of numbers or characters, such as "123" and "abc", and avoid repetition, such as
"111aaa".

• Do not create passwords that use personal information such as birthdays or nicknames.
• Periodically change the password.

Warning: Passwords cannot be recovered if they are lost. If the password is lost the file cannot be opened.

Note: Encrypted data files and output documents cannot be opened in versions of IBM SPSS Statistics
prior to version 21. Encrypted syntax files cannot be opened in versions prior to version 22.

SetAsActiveDataDoc Method
Sets this dataset as the active one.

Syntax

SpssDataDoc.SetAsActiveDataDoc()

SetDatasetName Method
Sets the dataset name. The argument is a string.

Syntax

SpssDataDoc.SetDatasetName(name)

SetModified Method
Sets the modified status of the dataset.

Syntax

SpssDataDoc.SetModified(modified)

Parameters

modified. True to set the status to modified, False otherwise.

SetPromptToSave Method
Sets the 'prompt to save' flag for this dataset object.

Syntax

SpssDataDoc.SetPromptToSave(promptToSave)

Chapter 3. Scripting Guide 107

Parameters

promptToSave. True to set the prompt to save flag, False otherwise.

DataDocsList Class
The DataDocsList class provides access to the list of open datasets. You obtain a DataDocsList
object from the GetDataDocuments method of the SpssClient class.

A DataDocsList object is not an iterable Python object. In order to iterate over the items in the list, use
a for loop, as in:

for index in range(DataDocsList.Size()):

For an example that uses the DataDocsList class, see the examples for the SpssDataDoc class.

GetItemAt Method
Returns an SpssDataDoc object representing the dataset with the specified index. The index
corresponds to the order in which the datasets were opened, with the first opened document having
an index of 0.

Syntax

SpssDataDoc=DataDocsList.GetItemAt(index)

Size Method
Returns the number of open datasets.

Syntax

DataDocsList.Size()

SpssDataUI Class
The SpssDataUI class represents the Data Editor window associated with an open dataset. You obtain
an SpssDataUI object from the GetDataUI method of an SpssDataDoc object.

Example: Get the SpssDataUI Object Associated with the Active Dataset

import SpssClient
SpssClient.StartClient()
ActiveDataDoc = SpssClient.GetActiveDataDoc()
DataUI = ActiveDataDoc.GetDataUI()

• The variable DataUI is an SpssDataUI object for the Data Editor window associated with the active
dataset.

GetHeight Method
Returns the height of the associated Data Editor window in units of pixels.

Syntax

SpssDataUI.GetHeight()

GetLeft Method
Returns the horizontal screen position of the associated Data Editor window's upper left corner. The result
is in units of pixels.

Syntax

SpssDataUI.GetLeft()

108 Python Reference Guide for IBM SPSS Statistics

GetShowGridLines Method
Return the setting for showing grid lines in the associated Data Editor window. The result is Boolean--True
if grid lines are visible, False otherwise.

Syntax

SpssDataUI.GetShowGridLines()

GetShowValueLabels Method
Return the setting for displaying value labels in the associated Data Editor window. The result is Boolean--
True if value labels are displayed, False otherwise.

Syntax

SpssDataUI.GetShowValueLabels()

GetTitleText Method
Returns the title bar text of the associated Data Editor window.

Syntax

SpssDataUI.GetTitleText()

GetTop Method
Returns the vertical screen position of the associated Data Editor window's upper left corner. The result is
in units of pixels.

Syntax

SpssDataUI.GetTop()

GetVisible Method
Indicates if the associated Data Editor window is visible. The result is Boolean--True if the Data Editor
window is visible, False otherwise.

Syntax

SpssDataUI.GetVisible()

GetWidth Method
Returns the width of the associated Data Editor window in units of pixels.

Syntax

SpssDataUI.GetWidth()

GetWindowState Method
Returns the state of the associated Data Editor window.

Syntax

SpssDataUI.GetWindowState()

Returns

Table 9. Window states

Value Description

SpssClient.SpssWindowStates.SpssMinimized Minimized

Chapter 3. Scripting Guide 109

Table 9. Window states (continued)

Value Description

SpssClient.SpssWindowStates.SpssMaximized Maximized

SpssClient.SpssWindowStates.SpssNormal Normal

InvokeDialog Method
Invokes a dialog and returns the syntax generated from that dialog, if any.

Syntax

syntax = SpssDataUI.InvokeDialog(menuItemPath,desktopParent)

Parameters

menuItemPath. Menu or menu item with path of the dialog to invoke. See below for detailed description.

desktopParent. True specifies that the dialog is parented off the desktop. False specifies that the dialog is
parented off an IBM SPSS Statistics window.

Note: For release 19.0.0.2 and higher, the bSync parameter (available in previous releases) is deprecated.
The InvokeDialog method always runs synchronously, meaning that the scripting process waits until
the dialog has been dismissed. Older scripts containing the bSync parameter will continue to function in
release 19.0.0.2 and higher, but the value of the parameter will be ignored.

Specifying The Menu Item Path

The value of the menuItemPath parameter is a string specifying the menu path to the desired dialog--
for example "analyze>survival>life tables". The greater-than sign (>) is used to separate a menu, its
submenus and the menu item. The menu string must correspond exactly to the text on the menus,
submenus, and menu items, and is language specific.

PrintDataDoc Method
Prints the document.

Syntax

SpssDataUI.PrintDataDoc()

SetHeight Method
Sets the height of the associated Data Editor window.

Syntax

SpssDataUI.SetHeight(height)

Parameters

height. An integer representing the height in pixels.

SetLeft Method
Sets the horizontal screen position of the associated Data Editor window's upper left corner.

Syntax

SpssDataUI.SetLeft(leftPosition)

Parameters

leftPosition. An integer representing the position in pixels.

110 Python Reference Guide for IBM SPSS Statistics

SetShowGridLines Method
Specify the setting for showing grid lines in the associated Data Editor window.

Syntax

SpssDataUI.SetShowGridLines(isGridLines)

Parameters

isGridLines. True if grid lines are to be displayed, False otherwise.

SetShowValueLabels Method
Specify the setting for displaying value labels in the Data Editor window.

Syntax

SpssDataUI.SetShowValueLabels(isValueLabels)

Parameters

isValueLabels. True if value labels are to be displayed, False otherwise.

SetTop Method
Sets the vertical screen position of the associated Data Editor window's upper left corner.

Syntax

SpssDataUI.SetTop(topPosition)

Parameters

topPosition. An integer representing the position in pixels.

SetVisible Method
Sets the visibility of the associated Data Editor window.

Syntax

SpssDataUI.SetVisible(isVisible)

Parameters

isVisible. True to set the Data Editor window as visible, False otherwise.

SetWidth Method
Sets the width of the associated Data Editor window.

Syntax

SpssDataUI.SetWidth(width)

Parameters

width. An integer representing the width in pixels.

SetWindowState Method
Set the state of the associated Data Editor window.

Syntax

SpssDataUI.SetWindowState(newState)

Chapter 3. Scripting Guide 111

Table 10. Window states

Value Description

SpssClient.SpssWindowStates.SpssMinimized Minimized

SpssClient.SpssWindowStates.SpssMaximized Maximized

SpssClient.SpssWindowStates.SpssNormal Normal

Output Documents and Viewer Windows

SpssOutputDoc Class
The SpssOutputDoc class represents an open output document.

Example: Obtaining the Designated Output Document

import SpssClient
SpssClient.StartClient()
DesignatedOutputDoc = SpssClient.GetDesignatedOutputDoc()

• The variable DesignatedOutputDoc is an SpssOutputDoc object for the designated output document.

Example: Obtaining the First Opened Output Document

import SpssClient
SpssClient.StartClient()
OutputDocsList = SpssClient.GetOutputDocuments()
FirstOutputDoc = OutputDocsList.GetItemAt(0)

• SpssClient.GetOutputDocuments() returns an OutputDocsList object, which provides access
to all open output documents.

• The GetItemAt method from the OutputDocsList class is used to get the output document with
index 0 (the first opened output document) from the list of open output documents. The variable
FirstOutputDoc is an SpssOutputDoc object for this output document.

Example: Create a New Output Document and Set it as the Designated One

import SpssClient
SpssClient.StartClient()
NewOutputDoc = SpssClient.NewOutputDoc()
NewOutputDoc.SetAsDesignatedOutputDoc()

• The variable NewOutputDoc is an SpssOutputDoc object for the new output document.

Accessing Output Items in an Output Document

You access individual output items, within an output document, from an OutputItemList object. You
obtain an OutputItemList object from the GetOutputItems method of the SpssOutputDoc class. See
the topic “SpssOutputItem Class ” on page 138 for more information.

ClearSelection Method
Deselects all selected output items or pivot table elements.

Syntax

SpssOutputDoc.ClearSelection()

CloseDocument Method
Closes the output document.

Syntax

SpssOutputDoc.CloseDocument()

112 Python Reference Guide for IBM SPSS Statistics

Copy Method
Copies selected items to the clipboard. Use this method with caution because it overwrites clipboard
content. To improve performance when copying large pivot tables, consider using the CopySpecial
method.

To select individual items, use the SetSelected method. You can also select all items of a given type, such
as all tables using the SelectAllTables method.

Syntax

SpssOutputDoc.Copy()

CopySpecial Method
Copies selected items to the clipboard in a set of specified formats. Use this method with caution because
it overwrites clipboard content. This method is especially useful when copying large pivot tables since you
can limit the output to just the formats you need. In that regard, the Copy method generates output in all
available formats.

To select individual items, use the SetSelected method. You can also select all items of a given type, such
as all tables using the SelectAllTables method.

Syntax

SpssOutputDoc.CopySpecial(formats)

Table 11. Format specifications

Format Identifier Description

SpssClient.CopySpecialFormat.Text plain text

SpssClient.CopySpecialFormat.Rtf rich text format

SpssClient.CopySpecialFormat.Image image

SpssClient.CopySpecialFormat.Emf Windows enhanced metafile

SpssClient.CopySpecialFormat.Biff excel worksheet in biff5 format

• The image format is a java raster image and is handled differently by different applications.
• The Windows enhanced metafile (emf) format is only supported when selecting a single output item to

copy to the clipboard.

Table 12. Available formats for each output type

Type Formats

SpssClient.OutputItemType.CHART rich text, image or emf

SpssClient.OutputItemType.LOG plain text, rich text or biff

SpssClient.OutputItemType.MODEL image or emf

SpssClient.OutputItemType.NOTE plain text, rich text, image, emf or biff

SpssClient.OutputItemType.PAGETITLE plain text, rich text or biff

SpssClient.OutputItemType.PIVOT plain text, rich text, image, emf or biff

SpssClient.OutputItemType.TEXT plain text, rich text or biff

SpssClient.OutputItemType.TITLE plain text, rich text or biff

SpssClient.OutputItemType.TREEMODEL rich text or image

SpssClient.OutputItemType.WARNING plain text, rich text, image, emf or biff

Chapter 3. Scripting Guide 113

• If a specified format is not supported for a selected item then the format is ignored for that item. For
example, you select a Log item and a Chart item and specify the plain text and image formats. The
clipboard contains the Log item in plain text format and the Chart item as an image.

Example

The following copies a pivot table to the clipboard in rich text format only.

SpssOutputDoc.CopySpecial([SpssClient.CopySpecialFormat.Rtf])

CreateHeaderItem Method
Returns an SpssOutputItem object for a new header item. To insert the header item into the output
document, use the InsertChildItem method in the SpssHeaderItem class.

Syntax

SpssOutputItem=SpssOutputDoc.CreateHeaderItem(label)

Parameters

label. A string specifying the label for the header item. The value can be specified as plain text, HTML,
or rich text format. For HTML, embed markup in a <html></html> block. For rich text format, specify the
string as a raw string to avoid unintentional escape sequences.

CreateImageChartItem Method
Returns an SpssOutputItem object for a new chart item associated with an external image. This allows
you to insert an external image of type png, jpg, or gif into an output document. To insert the chart item
into the output document, use the InsertChildItem method in the SpssHeaderItem class.

Syntax

SpssOutputItem=SpssOutputDoc.CreateImageChartItem(fileName,label)

Parameters

fileName. Full path to the image file.

label. A string specifying the label for the chart item. The value can be specified as plain text, HTML, or
rich text format. For HTML, embed markup in a <html></html> block. For rich text format, specify the
string as a raw string to avoid unintentional escape sequences.

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

CreateTextItem Method
Returns an SpssOutputItem object for a new text item. To insert the text item into the output document,
use the InsertChildItem method in the SpssHeaderItem class.

Syntax

SpssOutputItem=SpssOutputDoc.CreateTextItem(content)

Parameters

content. A string specifying the content of the text item. The value can be specified as plain text, HTML,
or rich text format. For HTML, embed markup in a <html></html> block. For rich text format, specify the
string as a raw string to avoid unintentional escape sequences.

CreateTitleItem Method
Returns an SpssOutputItem object for a new title item. To insert the title item into the output
document, use the InsertChildItem method in the SpssHeaderItem class.

114 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssOutputItem=SpssOutputDoc.CreateTitleItem(title,pageBreak)

Parameters

title. A string specifying the title. The value can be specified as plain text, HTML, or rich text format. For
HTML, embed markup in a <html></html> block. For rich text format, specify the string as a raw string to
avoid unintentional escape sequences.

pageBreak. True if this title item is to be a page title item, False otherwise.

Cut Method
Removes the selected data or text and places them on the clipboard. Use this method with caution
because it overwrites clipboard content.

Syntax

SpssOutputDoc.Cut()

Delete Method
Deletes the selected items.

Syntax

SpssOutputDoc.Delete()

Demote Method
Demotes selected output items down one level within the hierarchy of the output tree.

• You cannot demote an item that is at the deepest level in the output tree and you cannot demote an
item if there are unselected items at the same level immediately preceding it in the output tree.

• If the item has children, the children are also demoted.
• You cannot demote the root item.

Syntax

SpssOutputDoc.Demote()

You can promote items up one level with the Promote method.

ExportCharts Method
Exports charts from this output document.

Syntax

SpssOutputDoc.ExportCharts(subSet,filePrefix,format)

Parameters

subSet. Specifies whether all charts, all visible charts, or all selected charts are exported. See available
choices below.

filePrefix. Full path and file name prefix for the files containing the exported charts. Each chart is exported
to a separate file.

format. Specifies the export format. See available choices below.

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

Chapter 3. Scripting Guide 115

Table 13. Subset specifications

Value Description

SpssClient.SpssExportSubset.SpssSelected All selected charts

SpssClient.SpssExportSubset.SpssVisible All visible charts

SpssClient.SpssExportSubset.SpssAll All charts

Table 14. Image formats

Format Description

SpssClient.ChartExportFormat.bmp Windows bitmap

SpssClient.ChartExportFormat.emf Enhanced metafile

SpssClient.ChartExportFormat.eps Enhanced postscript

SpssClient.ChartExportFormat.jpg JPG file

SpssClient.ChartExportFormat.png PNG file

SpssClient.ChartExportFormat.tiff Tagged image file

ExportDocument Method
Exports items from this output document.

• If the items to be exported include charts, then they are exported in the last selected graphics format.
The graph export type can be set from the SetExportOption method in the SpssClient class.

• Use the SetOutputOptions method to set export options for export to Word, Excel, or PowerPoint.

Syntax

SpssOutputDoc.ExportDocument(subSet,fileName,format)

Parameters

subSet. Specifies whether all items, all visible items, or all selected items are exported. See available
choices below.

fileName. Full path and file name for the file containing the exported items.

format. Specifies the export format. See available choices below.

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

Table 15. Specifications for subsets

Value Description

SpssClient.SpssExportSubset.SpssSelected All selected items

SpssClient.SpssExportSubset.SpssVisible All visible items

SpssClient.SpssExportSubset.SpssAll All items

Table 16. Export formats

Format Description

SpssClient.DocExportFormat.SpssFormatHtml Html

116 Python Reference Guide for IBM SPSS Statistics

Table 16. Export formats (continued)

Format Description

SpssClient.DocExportFormat.SpssFormatDoc Word

SpssClient.DocExportFormat.SpssFormatXls Excel

SpssClient.DocExportFormat.SpssFormatXlsx Excel (xlsx)

SpssClient.DocExportFormat.SpssFormatText Text

SpssClient.DocExportFormat.SpssFormatPdf PDF

SpssClient.DocExportFormat.SpssFormatPpt PowerPoint

GetCurrentItem Method
Returns an SpssOutputItem object for the current output item--as indicated by a red arrow next to the
item in the outline pane.

Syntax

SpssOutputItem=SpssOutputDoc.GetCurrentItem()

GetDocumentPath Method
Returns the path and file name of the output file associated with this output document object, or the
empty string if the output document is not associated with a file.

Syntax

SpssOutputDoc.GetDocumentPath()

GetFooterText Method
Returns the footer text for printed pages. The value is returned as plain text.

Syntax

SpssOutputDoc.GetFooterText()

GetHeaderText Method
Returns the header text for printed pages. The value is returned as plain text.

Syntax

SpssOutputDoc.GetHeaderText()

GetMenuTable Method
Returns a MenuTableList object containing the list of available menu items for the output document.

Syntax

MenuTableList = SpssOutputDoc.GetMenuTable()

GetOutputItems Method
Returns a list of items in the output document as an OutputItemList object. Each item in the list is an
SpssOutputItem object.

Syntax

OutputItemList=SpssOutputDoc.GetOutputItems()

Chapter 3. Scripting Guide 117

GetOutputOptions Method
Returns the value of the specified export option for this output document, as a string.

Syntax

SpssOutputDoc.GetOutputOptions(option)

Parameters

The available values for the option parameter are (specify the value without quotes):

SpssClient.DocExportOption.ExcelSheetNames. Specifies the name of the sheet to which items will be
exported. This option only applies when exporting to Excel.

SpssClient.DocExportOption.ExcelStartingCell. Specifies the starting cell for exporting to Excel. Applies
when SpssClient.DocExportOption.ExcelLocationOptions is set to “OverwriteAtCellRef”.

SpssClient.DocExportOption.ExcelOperationOptions. Specifies whether a new workbook is created, a
new worksheet is created, or an existing worksheet is modified. This option only applies when exporting
to Excel.

• "CreateWorkbook". A new workbook is created. If the specified file exists, it is overwritten.
• "CreateWorksheet". A new worksheet is created within the specified workbook. The name of the sheet

is given by the setting of SpssClient.DocExportOption.ExcelSheetNames. If a worksheet with
the specified name already exists, that worksheet is overwritten. If the specified file does not exist, a
new file is created with a worksheet with the specified name.

• "ModifyWorksheet". Modifies the contents of an existing worksheet. The name of the sheet is given by
the setting of SpssClient.DocExportOption.ExcelSheetNames. Export of charts, model views,
and tree diagrams is not supported with "ModifyWorksheet".

SpssClient.DocExportOption.ExcelLocationOptions. Specifies how items will be added to a worksheet.
This option only applies when exporting to Excel.

• "AddColumns". Specifies that items will be added after the last column, starting in the first row, without
modifying any existing contents.

• "AddRows". Specifies that items will be added after the last row, starting in the first column, without
modifying any existing contents.

• "OverwriteAtCellRef". Specifies that items will be written to the location specified in
SpssClient.DocExportOption.ExcelStartingCell. Any existing content in the area where the
exported items are added will be overwritten.

SpssClient.DocExportOption.WideTablesOptions. Specifies the treatment of pivot tables that are too
wide for the document width (the specified page width minus the left and right margins). This option only
applies when exporting to Word or PowerPoint.

• "WT_Wrap". Specifies that tables are divided into sections that will fit within the defined document
width. Row labels are repeated for each section of the table. If the row labels are too wide for the
defined document width, the table is exported without wrapping and will appear truncated in the
document.

• "WT_Shrink". Specifies that font size and column width are reduced so that tables fit within the
document width.

• "WT_Extend". Specifies that tables that are too wide for the document width will appear truncated. All
of the table content, however, is retained so expanding the document width will display additional table
content.

The following options apply when exporting to Word or PowerPoint.

SpssClient.DocExportOption.ItemsPageHeight. A character representation of a
positive number representing the page height, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

118 Python Reference Guide for IBM SPSS Statistics

SpssClient.DocExportOption.ItemsPageWidth. A character representation of a
positive number representing the page width, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsTopMargin. A character representation of a
positive number representing the top margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsBottomMargin. A character representation of a
positive number representing the bottom margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsRightMargin. A character representation of a
positive number representing the right margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsLeftMargin. A character representation of a
positive number representing the left margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsMeasurementUnits. The units for specifying page dimensions and
margins: "IExportOptions.MeasurementUnits.Inches", "IExportOptions.MeasurementUnits.Millimeters",
"IExportOptions.MeasurementUnits.Centimeters", and "IExportOptions.MeasurementUnits.PrintPoints"
(1/72 inch).

GetOutputUI Method
Returns an SpssOutputUI object representing the Viewer window associated with the output document,
if one exists.

Syntax

SpssOutputUI=SpssOutputDoc.GetOutputUI()

GetPrintOptions Method
Returns the value of the specified print option, as a string.

Syntax

SpssOutputDoc.GetPrintOptions(printOption)

Table 17. Print options

Option Description

SpssClient.PrintOptions.LeftMargin Left margin

SpssClient.PrintOptions.TopMargin Top margin

SpssClient.PrintOptions.RightMargin Right margin

SpssClient.PrintOptions.BottomMargin Bottom margin

SpssClient.PrintOptions.Orientation Orientation (portrait or landscape)

SpssClient.PrintOptions.StartingPageNumber Starting page number

SpssClient.PrintOptions.SpaceBetweenItems Space between items

SpssClient.PrintOptions.PrintedChartSize Printed chart size (as is, full page,
half page, or quarter page)

• All margin settings and Space Between Items are in units of points (1/72 inch).
• For Orientation, 1 corresponds to Portrait and 2 corresponds to Landscape.

Chapter 3. Scripting Guide 119

• For Printed Chart Size, 0 corresponds to As Is, 1 to Full Page, 2 to Half Page, and 3 to Quarter Page.

InsertTable Method
Inserts an empty pivot table after the item designated as the current item. The inserted table is populated
with default row, column and layer labels, and becomes the current item. Note: You can use the
SetCurrentItem method to designate an item as the current item.

Syntax

index=SpssOutputDoc.InsertTable(heading,nrows,ncolumns,nlayers)

Parameters

heading. A string specifying the heading for this table in the outline pane of the Viewer.

nrows. An integer specifying the number of rows in the table. Specifying zero will result in a table with one
row.

ncolumns. An integer specifying the number of columns in the table. Specifying zero will result in a table
with one column.

nlayers. An integer specifying the number of layers in the table.

Return Value

index. The index of the new table item. The index corresponds to the order of the items in the output
document, starting with 0 for the root item.

Example

This example inserts a pivot table with four rows, three columns and no layers. The table is inserted after
the root item.

import SpssClient
SpssClient.StartClient()
OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()
OutputItem = OutputItems.GetItemAt(0)
OutputItem.SetCurrentItem()
index = OutputDoc.InsertTable("Sample table",4,3,0)

IsDesignatedOutputDoc Method
Indicates if this output document is the designated one. The result is Boolean--True if the output
document is the designated one, False otherwise.

• If you have more than one open output document, output is routed to the designated one.

Syntax

SpssOutputDoc.IsDesignatedOutputDoc()

IsEqualTo Method
Indicates if this output document object is the same object as a specified output document object. The
result is Boolean--True if the two objects are identical, False otherwise.

Syntax

SpssOutputDoc.IsEqualTo(outputDoc)

Parameters

outputDoc. An SpssOutputDoc object

IsModified Method
Indicates whether the output document has been modified. The result is Boolean--True if the output
document has been modified, False otherwise.

120 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssOutputDoc.IsModified()

IsPromptToSave Method
Indicates if the 'prompt to save' flag is set for this output document object. The result is Boolean--True if
the 'prompt to save' flag has been set, False otherwise.

Syntax

SpssOutputDoc.IsPromptToSave()

Paste Method
Pastes the clipboard content after the current item.

Syntax

SpssOutputDoc.Paste()

PasteBefore Method
Pastes the clipboard content before the current item.

Syntax

SpssOutputDoc.PasteBefore()

PrintRange Method
Sets the print range for the output document.

Syntax

SpssOutputDoc.PrintRange(range)

Parameters

range. An integer specifying the print range: 0 for all expanded output, 1 for all selected items.

You can specify print options using the SetPrintOptions method. You print an output document using the
PrintOutputDoc method from the SpssOutputUI class.

Promote Method
Promotes selected output items up one level within the hierarchy of the output tree.

• You cannot promote an item to the root level and you cannot promote an item if there are unselected
items at the same level immediately following it in the output tree.

• If the item has children, the children are also promoted.

Syntax

SpssOutputDoc.Promote()

You can demote items down one level with the Demote method.

SaveAs Method
Saves the output document to the specified file.

Syntax

SpssOutputDoc.SaveAs(fileName,password=None)

Parameters

Chapter 3. Scripting Guide 121

fileName. The path and file name of the output file, as a string.

password. An optional string specifying the password that will be required to open the file. Only applies
if you want to encrypt the output file. Passwords are limited to 10 characters and are case-sensitive. All
spaces, including leading and trailing spaces, are retained.

Creating strong passwords

• Use eight or more characters.
• Include numbers, symbols and even punctuation in your password.
• Avoid sequences of numbers or characters, such as "123" and "abc", and avoid repetition, such as
"111aaa".

• Do not create passwords that use personal information such as birthdays or nicknames.
• Periodically change the password.

Warning: Passwords cannot be recovered if they are lost. If the password is lost the file cannot be opened.

Note: Encrypted data files and output documents cannot be opened in versions of IBM SPSS Statistics
prior to version 21. Encrypted syntax files cannot be opened in versions prior to version 22.

SelectAll Method
Selects all items in the output document.

Syntax

SpssOutputDoc.SelectAll()

SelectAllCharts Method
Selects all chart items in the output document. This includes standard charts, graphboard charts, and R
graphics.

Syntax

SpssOutputDoc.SelectAllCharts()

SelectAllLogs Method
Selects all log items in the output document.

Syntax

SpssOutputDoc.SelectAllLogs()

SelectAllModels Method
Selects all Model Viewer items in the output document.

Syntax

SpssOutputDoc.SelectAllModels()

SelectAllNotes Method
Selects all notes items in the output document.

Syntax

SpssOutputDoc.SelectAllNotes()

SelectAllNotesEx Method
Note: This method is deprecated for release 20 and higher. Please use the “SelectAllNotes Method ” on
page 122 instead.

122 Python Reference Guide for IBM SPSS Statistics

Selects all notes items in the output document.

Syntax

SpssOutputDoc.SelectAllNotesEx()

SelectAllOther Method
Selects all non-IBM SPSS Statistics items in the output document.

Syntax

SpssOutputDoc.SelectAllOther()

SelectAllTables Method
Selects all pivot tables in the output document.

Syntax

SpssOutputDoc.SelectAllTables()

SelectAllTablesEx Method
Note: This method is deprecated for release 20 and higher. Please use the “SelectAllTables Method ” on
page 123 instead.

Selects all pivot tables in the output document.

Syntax

SpssOutputDoc.SelectAllTablesEx()

SelectAllText Method
Selects all text items in the output document.

Syntax

SpssOutputDoc.SelectAllText()

SelectAllTitles Method
Selects all title items in the output document.

Syntax

SpssOutputDoc.SelectAllTitles()

SelectAllWarnings Method
Selects all warnings in the output document.

Syntax

SpssOutputDoc.SelectAllWarnings()

SelectAllWarningsEx Method
Note: This method is deprecated for release 20 and higher. Please use the “SelectAllWarnings Method ”
on page 123 instead.

Selects all warnings in the output document.

Syntax

SpssOutputDoc.SelectAllWarningsEx()

Chapter 3. Scripting Guide 123

SelectLastOutput Method
Selects all items generated by the last executed procedure.

Syntax

SpssOutputDoc.SelectLastOutput()

SetAsDesignatedOutputDoc Method
Sets this output document as the designated output document.

• If you have more than one open output document, output is routed to the designated one.

Syntax

SpssOutputDoc.SetAsDesignatedOutputDoc()

SetFooterText Method
Sets the footer text for printed pages. The value can be specified as plain text, HTML, or rich text format.
For HTML, embed markup in a <html></html> block. For rich text format, specify the string as a raw string
to avoid unintentional escape sequences.

Syntax

SpssOutputDoc.SetFooterText(text)

SetHeaderText Method
Sets the header text for printed pages. The value can be specified as plain text, HTML, or rich text format.
For HTML, embed markup in a <html></html> block. For rich text format, specify the string as a raw string
to avoid unintentional escape sequences.

Syntax

SpssOutputDoc.SetHeaderText(text)

SetModified Method
Sets the modified status of the output document.

Syntax

SpssOutputDoc.SetModified(modified)

Parameters

modified. True to set the status to modified, False otherwise.

SetOutputOptions Method
Sets export options for this output document. These options apply when exporting with the
ExportDocument method from the SpssOutputDoc class as well as the ExportToDocument method
from the SpssOutputItem class.

Syntax

SpssOutputDoc.SetOutputOptions(option,setting)

Parameters

The available values for the option parameter as well as the allowed values of the associated setting are
(specify the name of the option without quotes):

SpssClient.DocExportOption.ExcelSheetNames. The setting is a string specifying the name of the sheet
to which items will be exported. Sheet names cannot exceed 31 characters and cannot contain forward
or back slashes, square brackets, question marks, or asterisks. If the specified worksheet doesn't exist in

124 Python Reference Guide for IBM SPSS Statistics

the Excel file, a new worksheet with that name will be created. This option only applies when exporting to
Excel. The default worksheet is "Sheet1".

SpssClient.DocExportOption.ExcelStartingCell. The setting is a string specifying the starting cell,
as in "B3". Applies when SpssClient.DocExportOption.ExcelLocationOptions is set to
"OverwriteAtCellRef". Only applies when exporting to Excel. The default starting cell is A1.

SpssClient.DocExportOption.ExcelOperationOptions. The setting is a string specifying whether a new
workbook is created, a new worksheet is created, or an existing worksheet is modified. This option only
applies when exporting to Excel.

• "CreateWorkbook". A new workbook is created. This is the default. If the specified file exists, it is
overwritten.

• "CreateWorksheet". A new worksheet is created within the specified workbook. The name of the sheet
is given by the setting of SpssClient.DocExportOption.ExcelSheetNames. If a worksheet with
the specified name already exists, that worksheet is overwritten. If the specified file does not exist, a
new file is created with a worksheet with the specified name.

• "ModifyWorksheet". Modifies the contents of an existing worksheet. The name of
the sheet is given by the setting of SpssClient.DocExportOption.ExcelSheetNames.
Use SpssClient.DocExportOption.ExcelLocationOptions and
SpssClient.DocExportOption.ExcelStartingCell to specify location in the sheet. Export of
charts, model views, and tree diagrams is not supported with "ModifyWorksheet".

SpssClient.DocExportOption.ExcelLocationOptions. A string specifying how items will be added to a
worksheet. This option only applies when exporting to Excel.

• "AddColumns". Specifies that items will be added after the last column, starting in the first row, without
modifying any existing contents. This is the default.

• "AddRows". Specifies that items will be added after the last row, starting in the first column, without
modifying any existing contents.

• "OverwriteAtCellRef". Specifies that items will be written to the location specified in
SpssClient.DocExportOption.ExcelStartingCell. Any existing content in the area where the
exported items are added will be overwritten.

SpssClient.DocExportOption.WideTablesOptions. A string specifying the treatment of pivot tables that
are too wide for the document width (the specified page width minus the left and right margins). This
option only applies when exporting to Word or PowerPoint.

• "WT_Wrap". Specifies that tables are divided into sections that will fit within the defined document
width. This is the default. Row labels are repeated for each section of the table. If the row labels are too
wide for the defined document width, the table is exported without wrapping and will appear truncated
in the document.

• "WT_Shrink". Specifies that font size and column width are reduced so that tables fit within the
document width.

• "WT_Extend". Specifies that tables that are too wide for the document width will appear truncated. All
of the table content, however, is retained so expanding the document width will display additional table
content.

The following options apply when exporting to Word or PowerPoint.

SpssClient.DocExportOption.ItemsPageHeight. A character representation of a
positive number representing the page height, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsPageWidth. A character representation of a
positive number representing the page width, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsTopMargin. A character representation of a
positive number representing the top margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

Chapter 3. Scripting Guide 125

SpssClient.DocExportOption.ItemsBottomMargin. A character representation of a
positive number representing the bottom margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsRightMargin. A character representation of a
positive number representing the right margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsLeftMargin. A character representation of a
positive number representing the left margin, in units specified by
SpssClient.DocExportOption.ItemsMeasurementUnits.

SpssClient.DocExportOption.ItemsMeasurementUnits. A string specifying the units
for page dimensions and margins: "IExportOptions.MeasurementUnits.Inches",
"IExportOptions.MeasurementUnits.Millimeters", "IExportOptions.MeasurementUnits.Centimeters",
and "IExportOptions.MeasurementUnits.PrintPoints" (1/72 inch). The default is
"IExportOptions.MeasurementUnits.Inches".

Example

This example assumes that OutputDoc is an SpssOutputDoc object and exports all pivot tables to an
existing Excel worksheet beginning at a specified location.

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelSheetNames,"mysheet")
OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelStartingCell,"B6")
OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelLocationOptions,
 "OverwriteAtCellRef")
OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelOperationOptions,
 "ModifyWorksheet")
OutputItems = OutputDoc.GetOutputItems()
for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT:
 OutputItem.SetSelected(True)
OutputDoc.ExportDocument(SpssClient.SpssExportSubset.SpssSelected,
 "/output/myexport.xls",
 SpssClient.DocExportFormat.SpssFormatXls)

SetPrintOptions Method
Sets the value of the specified print option.

Syntax

SpssOutputDoc.SetPrintOptions(printOption,value)

Table 18. Print options

Option Description

SpssClient.PrintOptions.LeftMargin Left margin

SpssClient.PrintOptions.TopMargin Top margin

SpssClient.PrintOptions.RightMargin Right margin

SpssClient.PrintOptions.BottomMargin Bottom margin

SpssClient.PrintOptions.Orientation Orientation (portrait or landscape)

SpssClient.PrintOptions.StartingPageNumber Starting page number

SpssClient.PrintOptions.SpaceBetweenItems Space between items

SpssClient.PrintOptions.PrintedChartSize Printed chart size (as is, full page,
half page, or quarter page)

The parameter value is a string. Following are the available settings:

• All margin settings and Space Between Items are in units of points (1/72 inch).
• For Orientation, 1 corresponds to Portrait and 2 corresponds to Landscape.

126 Python Reference Guide for IBM SPSS Statistics

• For Printed Chart Size, 0 corresponds to As Is, 1 to Full Page, 2 to Half Page, and 3 to Quarter Page.

You can specify the print range using the PrintRange method. You print an output document using the
PrintOutputDoc method from the SpssOutputUI class.

SetPromptToSave Method
Sets the 'prompt to save' flag for this output document object.

Syntax

SpssOutputDoc.SetPromptToSave(promptToSave)

Parameters

promptToSave. True to set the prompt to save flag, False otherwise.

OutputDocsList Class
The OutputDocsList class provides access to the list of open output documents. You obtain an
OutputDocsList object from the GetOutputDocuments method of the SpssClient class.

An OutputDocsList object is not an iterable Python object. In order to iterate over the items in the list,
use a for loop, as in:

for index in range(OutputDocsList.Size()):

For an example that uses the OutputDocsList class, see the examples for the SpssOutputDoc class.

GetItemAt Method
Returns an SpssOutputDoc object representing the output document with the specified index. The index
corresponds to the order in which the output documents were opened, with the first opened document
having an index of 0.

Syntax

SpssOutputDoc=OutputDocsList.GetItemAt(index)

Size Method
Returns the number of open output documents.

Syntax

OutputDocsList.Size()

OutputItemList Class
The OutputItemList class provides access to the list of items in an open output document. You obtain
an OutputItemList object from the GetOutputItems method of an SpssOutputDoc object.

An OutputItemList object is not an iterable Python object. In order to iterate over the items in the list,
use a for loop, as in:

for index in range(OutputItemList.Size()):

For an example that uses the OutputItemList class, see the example for the SpssOutputItem class.

GetItemAt Method
Returns an SpssOutputItem object corresponding to the output item with the specified index. The index
corresponds to the order of the items in the output document, starting with 0 for the root item.

Syntax

Chapter 3. Scripting Guide 127

SpssOutputItem=OutputItemList.GetItemAt(index)

Size Method
Returns the number of items in the associated output document.

Syntax

OutputItemList.Size()

SpssOutputUI Class
The SpssOutputUI class represents the Viewer window associated with an open output document. You
obtain an SpssOutputUI object from the GetOutputUI method of an SpssOutputDoc object.

Example: Get the SpssOutputUI Object Associated with the Designated Output Document

import SpssClient
SpssClient.StartClient()
DesignatedOutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputUI = DesignatedOutputDoc.GetOutputUI()

• The variable OutputUI is an SpssOutputUI object for the Viewer window associated with the
designated output document.

GetHeight Method
Returns the height of the associated Viewer window in units of pixels.

Syntax

SpssOutputUI.GetHeight()

GetLeft Method
Returns the horizontal screen position of the associated Viewer window's upper left corner. The result is
in units of pixels.

Syntax

SpssOutputUI.GetLeft()

GetSplitterPosition Method
Returns the position of the splitter bar in the associated Viewer window. The result is in units of pixels.
The splitter bar determines how large the outline area is.

Syntax

SpssOutputUI.GetSplitterPosition()

GetTitleText Method
Returns the title bar text of the associated Viewer window.

Syntax

SpssOutputUI.GetTitleText()

GetTop Method
Returns the vertical screen position of the associated Viewer window's upper left corner. The result is in
units of pixels.

Syntax

SpssOutputUI.GetTop()

128 Python Reference Guide for IBM SPSS Statistics

GetVisible Method
Indicates if the associated Viewer window is visible. The result is Boolean--True if the Viewer window is
visible, False otherwise.

Syntax

SpssOutputUI.GetVisible()

GetWidth Method
Returns the width of the associated Viewer window in units of pixels.

Syntax

SpssOutputUI.GetWidth()

GetWindowState Method
Returns the state of the associated Viewer window.

Syntax

SpssOutputUI.GetWindowState()

Returns

Table 19. Window states

Value Description

SpssClient.SpssWindowStates.SpssMinimized Minimized

SpssClient.SpssWindowStates.SpssMaximized Maximized

SpssClient.SpssWindowStates.SpssNormal Normal

InvokeDialog Method
Invokes a dialog and returns the syntax generated from that dialog, if any.

Syntax

syntax = SpssOutputUI.InvokeDialog(menuItemPath,desktopParent)

Parameters

menuItemPath. Menu or menu item with path of the dialog to invoke. See below for detailed description.

desktopParent. True specifies that the dialog is parented off the desktop. False specifies that the dialog is
parented off an IBM SPSS Statistics window.

Note: For release 19.0.0.2 and higher, the bSync parameter (available in previous releases) is deprecated.
The InvokeDialog method always runs synchronously, meaning that the scripting process waits until
the dialog has been dismissed. Older scripts containing the bSync parameter will continue to function in
release 19.0.0.2 and higher, but the value of the parameter will be ignored.

Specifying The Menu Item Path

The value of the menuItemPath parameter is a string specifying the menu path to the desired dialog--
for example "analyze>survival>life tables". The greater-than sign (>) is used to separate a menu, its
submenus and the menu item. The menu string must correspond exactly to the text on the menus,
submenus, and menu items, and is language specific.

PrintOutputDoc Method
Prints the document.

Chapter 3. Scripting Guide 129

Syntax

SpssOutputUI.PrintOutputDoc()

You can specify the print range using the PrintRange method. You can specify print options using the
SetPrintOptions method.

SetHeight Method
Sets the height of the associated Viewer window.

Syntax

SpssOutputUI.SetHeight(height)

Parameters

height. An integer representing the height in pixels.

SetLeft Method
Sets the horizontal screen position of the associated Viewer window's upper left corner.

Syntax

SpssOutputUI.SetLeft(leftPosition)

Parameters

leftPosition. An integer representing the position in pixels.

SetSplitterPosition Method
Sets the position of the splitter bar in the associated Viewer window. The splitter bar determines how
large the outline area is.

Syntax

SpssOutputUI.SetSplitterPosition(position)

Parameters

position. An integer representing the position in pixels.

SetTop Method
Sets the vertical screen position of the associated Viewer window's upper left corner.

Syntax

SpssOutputUI.SetTop(topPosition)

Parameters

topPosition. An integer representing the position in pixels.

SetVisible Method
Sets the visibility of the associated Viewer window.

Syntax

SpssOutputUI.SetVisible(isVisible)

Parameters

isVisible. True to set the Viewer window as visible, False otherwise.

130 Python Reference Guide for IBM SPSS Statistics

SetWidth Method
Sets the width of the associated Viewer window.

Syntax

SpssOutputUI.SetWidth(width)

Parameters

width. An integer representing the width in pixels.

SetWindowState Method
Sets the state of the associated Viewer window.

Syntax

SpssOutputUI.SetWindowState(newState)

Table 20. Window states

Value Description

SpssClient.SpssWindowStates.SpssMinimized Minimized

SpssClient.SpssWindowStates.SpssMaximized Maximized

SpssClient.SpssWindowStates.SpssNormal Normal

Syntax Documents and Syntax Editor Windows

SpssSyntaxDoc Class
The SpssSyntaxDoc class represents an open syntax document.

Example: Obtaining the Designated Syntax Document

import SpssClient
SpssClient.StartClient()
DesignatedSyntaxDoc = SpssClient.GetDesignatedSyntaxDoc()

• The variable DesignatedSyntaxDoc is an SpssSyntaxDoc object for the designated syntax document.

Example: Obtaining the First Opened Syntax Document

import SpssClient
SpssClient.StartClient()
SyntaxDocsList = SpssClient.GetSyntaxDocuments()
FirstSyntaxDoc = SyntaxDocsList.GetItemAt(0)

• SpssClient.GetSyntaxDocuments() returns a SyntaxDocsList object, which provides access to
all open syntax documents.

• The GetItemAt method from the SyntaxDocsList class is used to get the syntax document with
index 0 (the first opened syntax document) from the list of open syntax documents. The variable
FirstSyntaxDoc is an SpssSyntaxDoc object for this syntax document.

Example: Create a New Syntax Document and Set it as the Designated One

import SpssClient
SpssClient.StartClient()
NewSyntaxDoc = SpssClient.NewSyntaxDoc()
NewSyntaxDoc.SetAsDesignatedSyntaxDoc()

• The variable NewSyntaxDoc is an SpssSyntaxDoc object for the new syntax document.

Chapter 3. Scripting Guide 131

CloseDocument Method
Closes the syntax document.

Syntax

SpssSyntaxDoc.CloseDocument()

GetDocumentPath Method
Returns the path and file name of the syntax file associated with this syntax document object, or the
empty string if the syntax document is not associated with a file.

Syntax

SpssSyntaxDoc.GetDocumentPath()

GetMenuTable Method
Returns a MenuTableList object containing the list of available menu items for the syntax document.

Syntax

MenuTableList = SpssSyntaxDoc.GetMenuTable()

GetSyntax Method
Returns the syntax contained in the associated syntax document, as a unicode string.

Syntax

SpssSyntaxDoc.GetSyntax()

GetSyntaxUI Method
Returns an SpssSyntaxUI object representing the syntax window associated with the syntax document.

Syntax

SpssSyntaxUI=SpssSyntaxDoc.GetSyntaxUI()

IsDesignatedSyntaxDoc Method
Indicates if this syntax document is the designated one. The result is Boolean--True if the syntax
document is the designated one, False otherwise.

• If you have more than one open syntax document, command syntax is pasted into the designated one.

Syntax

SpssSyntaxDoc.IsDesignatedSyntaxDoc()

IsEqualTo Method
Indicates if this syntax document object is the same object as a specified syntax document object. The
result is Boolean--True if the two objects are identical, False otherwise.

Syntax

SpssSyntaxDoc.IsEqualTo(syntaxDoc)

Parameters

syntaxDoc. An SpssSyntaxDoc object

132 Python Reference Guide for IBM SPSS Statistics

IsModified Method
Indicates whether the syntax document has been modified. The result is Boolean--True if the syntax
document has been modified, False otherwise.

Syntax

SpssSyntaxDoc.IsModified()

IsPromptToSave Method
Indicates if the 'prompt to save' flag is set for this syntax document object. The result is Boolean--True if
the 'prompt to save' flag has been set, False otherwise.

Syntax

SpssSyntaxDoc.IsPromptToSave()

RunSyntax Method
Runs all of the syntax in the associated syntax document.

• The submitted commands are executed synchronously with any other submitted command syntax.
• This method cannot be called within a script that is run from the SCRIPT command. It is also not

available when called from a Python program in distributed mode (Python programs make use of the
interface exposed by the Python spss module).

Syntax

SpssSyntaxDoc.RunSyntax()

SaveAs Method
Saves the syntax document to the specified file.

Syntax

SpssSyntaxDoc.SaveAs(fileName,password=None)

Parameters

fileName. The path and file name of the syntax file, as a string. If you are encrypting the file with a
password then specify .spsx as the file extension.

password. An optional string that specifies the password that is required to open the file. This setting
applies only if you want to encrypt the syntax file. Passwords are limited to 10 characters and are
case-sensitive. All spaces, including leading and trailing spaces, are retained.

Creating strong passwords

• Use eight or more characters.
• Include numbers, symbols and even punctuation in your password.
• Avoid sequences of numbers or characters, such as "123" and "abc", and avoid repetition, such as
"111aaa".

• Do not create passwords that use personal information such as birthdays or nicknames.
• Periodically change the password.

Warning: Passwords cannot be recovered if they are lost. If the password is lost the file cannot be opened.

Note: Encrypted data files and output documents cannot be opened in versions of IBM SPSS Statistics
prior to version 21. Encrypted syntax files cannot be opened in versions prior to version 22.

SetAsDesignatedSyntaxDoc Method
Sets this syntax document as the designated syntax document.

Chapter 3. Scripting Guide 133

• If you have more than one open syntax document, command syntax is pasted into the designated one.

Syntax

SpssSyntaxDoc.SetAsDesignatedSyntaxDoc()

SetModified Method
Sets the modified status of the syntax document.

Syntax

SpssSyntaxDoc.SetModified(modified)

Parameters

modified. True to set the status to modified, False otherwise.

SetPromptToSave Method
Sets the 'prompt to save' flag for this syntax document object.

Syntax

SpssSyntaxDoc.SetPromptToSave(promptToSave)

Parameters

promptToSave. True to set the prompt to save flag, False otherwise.

SetSyntax Method
Specifies the content of the associated syntax document and replaces any existing content.

Syntax

SpssSyntaxDoc.SetSyntax(syntax)

Parameters

syntax. A string specifying the syntax. You can include line breaks using the escape sequence "\n", and
you can use a triple-quoted string as shown in the example.

Example

SpssSyntaxDoc.SetSyntax(r"""DESCRIPTIVES
 VARIABLES=salary salbegin jobtime prevexp
 /STATISTICS=MEAN STDDEV MIN MAX.""")

• Using a triple-quoted string--as in this example--allows you to specify a block of syntax commands on
multiple lines. You can use either triple single quotes or triple double quotes, but you must use the
same type (single or double) on both sides of the specified string.

• Notice that the triple-quoted expression is prefixed with the letter r. The r prefix to a string specifies
Python's raw mode. In raw mode, Python treats all backslashes in the string as the backslash character
and not as the start of an escape sequence.

SyntaxDocsList Class
The SyntaxDocsList class provides access to the list of open syntax documents. You obtain a
SyntaxDocsList object from the GetSyntaxDocuments method of the SpssClient class.

A SyntaxDocsList object is not an iterable Python object. In order to iterate over the items in the list,
use a for loop, as in:

for index in range(SyntaxDocsList.Size()):

For an example that uses the SyntaxDocsList class, see the examples for the SpssSyntaxDoc class.

134 Python Reference Guide for IBM SPSS Statistics

GetItemAt Method
Returns an SpssSyntaxDoc object representing the syntax document with the specified index. The index
corresponds to the order in which the syntax documents were opened, with the first opened document
having an index of 0.

Syntax

SpssSyntaxDoc=SyntaxDocsList.GetItemAt(index)

Size Method
Returns the number of open syntax documents.

Syntax

SyntaxDocsList.Size()

SpssSyntaxUI Class
The SpssSyntaxUI class represents the Syntax Editor window associated with an open syntax
document. You obtain an SpssSyntaxUI object from the GetSyntaxUI method of an SpssSyntaxDoc
object.

Example: Get the SpssSyntaxUI Object Associated with the Designated Syntax Document

import SpssClient
SpssClient.StartClient()
DesignatedSyntaxDoc = SpssClient.GetDesignatedSyntaxDoc()
SyntaxUI = DesignatedSyntaxDoc.GetSyntaxUI()

• The variable SyntaxUI is an SpssSyntaxUI object for the Syntax Editor window associated with the
designated syntax document.

GetHeight Method
Returns the height of the associated Syntax Editor window in units of pixels.

Syntax

SpssSyntaxUI.GetHeight()

GetLeft Method
Returns the horizontal screen position of the associated Syntax Editor window's upper left corner. The
result is in units of pixels.

Syntax

SpssSyntaxUI.GetLeft()

GetTitleText Method
Returns the title bar text of the associated Syntax Editor window.

Syntax

SpssSyntaxUI.GetTitleText()

GetTop Method
Returns the vertical screen position of the associated Syntax Editor window's upper left corner. The result
is in units of pixels.

Syntax

SpssSyntaxUI.GetTop()

Chapter 3. Scripting Guide 135

GetVisible Method
Indicates if the associated Syntax Editor window is visible. The result is Boolean--True if the Syntax Editor
window is visible, False otherwise.

Syntax

SpssSyntaxUI.GetVisible()

GetWidth Method
Returns the width of the associated Syntax Editor window in units of pixels.

Syntax

SpssSyntaxUI.GetWidth()

GetWindowState Method
Returns the state of the associated Syntax Editor window.

Syntax

SpssSyntaxUI.GetWindowState()

Table 21. Window states

Value Description

SpssClient.SpssWindowStates.SpssMinimized Minimized

SpssClient.SpssWindowStates.SpssMaximized Maximized

SpssClient.SpssWindowStates.SpssNormal Normal

InvokeDialog Method
Invokes a dialog and returns the syntax generated from that dialog, if any.

Syntax

syntax = SpssSyntaxUI.InvokeDialog(menuItemPath,desktopParent)

Parameters

menuItemPath. Menu or menu item with path of the dialog to invoke. See below for detailed description.

desktopParent. True specifies that the dialog is parented off the desktop. False specifies that the dialog is
parented off an IBM SPSS Statistics window.

Note: For release 19.0.0.2 and higher, the bSync parameter (available in previous releases) is deprecated.
The InvokeDialog method always runs synchronously, meaning that the scripting process waits until
the dialog has been dismissed. Older scripts containing the bSync parameter will continue to function in
release 19.0.0.2 and higher, but the value of the parameter will be ignored.

Specifying The Menu Item Path

The value of the menuItemPath parameter is a string specifying the menu path to the desired dialog--
for example "analyze>survival>life tables". The greater-than sign (>) is used to separate a menu, its
submenus and the menu item. The menu string must correspond exactly to the text on the menus,
submenus, and menu items, and is language specific.

PrintSyntaxDoc Method
Prints the document.

Syntax

136 Python Reference Guide for IBM SPSS Statistics

SpssSyntaxUI.PrintSyntaxDoc()

SetHeight Method
Sets the height of the associated Syntax Editor window.

Syntax

SpssSyntaxUI.SetHeight(height)

Parameters

height. An integer representing the height in pixels.

SetLeft Method
Sets the horizontal screen position of the associated Syntax Editor window's upper left corner.

Syntax

SpssSyntaxUI.SetLeft(leftPosition)

Parameters

leftPosition. An integer representing the position in pixels.

SetTop Method
Sets the vertical screen position of the associated Syntax Editor window's upper left corner.

Syntax

SpssSyntaxUI.SetTop(topPosition)

Parameters

topPosition. An integer representing the position in pixels.

SetVisible Method
Sets the visibility of the associated Syntax Editor window.

Syntax

SpssSyntaxUI.SetVisible(isVisible)

Parameters

isVisible. True to set the Syntax Editor window as visible, False otherwise.

SetWidth Method
Sets the width of the associated Syntax Editor window.

Syntax

SpssSyntaxUI.SetWidth(width)

Parameters

width. An integer representing the width in pixels.

SetWindowState Method
Set the state of the associated Syntax Editor window.

Syntax

SpssSyntaxUI.SetWindowState(newState)

Chapter 3. Scripting Guide 137

Table 22. Window states

Value Description

SpssClient.SpssWindowStates.SpssMinimized Minimized

SpssClient.SpssWindowStates.SpssMaximized Maximized

SpssClient.SpssWindowStates.SpssNormal Normal

Output Items

SpssOutputItem Class
The SpssOutputItem class represents any item in an output document. You get an SpssOutputItem
object from an OutputItemList object.

Example: Exporting the First Pivot Table to HTML

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItemList = OutputDoc.GetOutputItems()

for index in range(OutputItemList.Size()):
 OutputItem = OutputItemList.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT:
 OutputItem.ExportToDocument("/myfiles/mypivot",
 SpssClient.DocExportFormat.SpssFormatHtml)
 break
SpssClient.StopClient()

• SpssClient.GetDesignatedOutputDoc() gets an SpssOutputDoc object for the designated
output document. In this example, the variable OutputDoc is an SpssOutputDoc object.

• The GetOutputItems method of an SpssOutputDoc object returns an OutputItemList object. In
this example, the variable OutputItemList is an OutputItemList object.

• The for loop iterates through all of the objects in the OutputItemList object--one object for
each item in the output document. On each iteration of the loop, the variable OutputItem is an
SpssOutputItem object.

• The GetType method from the SpssOutputItem class returns the type of the output item. Pivot tables
have an output item type of SpssClient.OutputItemType.PIVOT.

• You export the pivot table using the ExportToDocument method from the SpssOutputItem class.
• The break statement terminates the loop if a pivot table is found.

ConvertToStdTable Method
This method is obsolete for release 20 and higher. Note: Lightweight tables created in IBM SPSS Statistics
release 19 automatically have full support for pivoting and editing in release 20 or later.

ExportToDocument Method
Exports this output item in the specified document format.

• This method cannot be used for exporting chart items. To export a chart item, use the ExportToImage
method.

• See SetOutputOptions for options available when exporting to Word, Excel, or PowerPoint.

Syntax

SpssOutputItem.ExportToDocument(fileName,format)

138 Python Reference Guide for IBM SPSS Statistics

Table 23. Export formats

Format Description

SpssClient.DocExportFormat.SpssFormatHtml Html

SpssClient.DocExportFormat.SpssFormatDoc Word

SpssClient.DocExportFormat.SpssFormatXls Excel

SpssClient.DocExportFormat.SpssFormatXlsx Excel (xlsx)

SpssClient.DocExportFormat.SpssFormatText Text

SpssClient.DocExportFormat.SpssFormatPdf PDF

SpssClient.DocExportFormat.SpssFormatPpt PowerPoint

ExportToImage Method
Exports this output item in the specified image format.

• This method can only be used for exporting charts, trees, and Model Viewer items. To export other item
types, use the ExportToDocument method.

• When used for a Model Viewer item, the method exports the view displayed in the Viewer. You can
export all views using the “ExportAllViews Method ” on page 146.

Syntax

SpssOutputItem.ExportToImage(fileName,format)

Table 24. Image formats

Format Description

SpssClient.ChartExportFormat.bmp Windows bitmap

SpssClient.ChartExportFormat.emf Enhanced metafile

SpssClient.ChartExportFormat.eps Enhanced postscript

SpssClient.ChartExportFormat.jpg JPG file

SpssClient.ChartExportFormat.png PNG file

SpssClient.ChartExportFormat.tiff Tagged image file

GetAlignment Method
Returns the alignment for this output item.

Syntax

SpssOutputItem.GetAlignment()

Returns

Table 25. Alignment types

Type Description

SpssClient.OutputItemAlignment.Left Left

SpssClient.OutputItemAlignment.Center Center

SpssClient.OutputItemAlignment.Right Right

Chapter 3. Scripting Guide 139

When testing for a particular alignment type with the return value from GetAlignment, you can also use
the following integer type codes: 0 (Left), 1 (Center), 2 (Right). For example:

if SpssOutputItem.GetAlignment() == 0:

GetDescription Method
Returns the name of this output item as it appears in the outline pane of the Viewer.

Syntax

SpssOutputItem.GetDescription()

GetHeight Method
Returns the height of this output item in units of points (1/72 inch).

• This method is not available for header items or root items.

Syntax

SpssOutputItem.GetHeight()

GetPageBreak Method
Indicates whether a page break is set before this item. The result is Boolean--True if the page break is set,
False otherwise.

Syntax

SpssOutputItem.GetPageBreak()

GetParentItem Method
Returns an SpssOutputItem object representing the parent item of this output item.

Syntax

SpssOutputItem.GetParentItem()

GetProcedureName Method
Returns the name of the IBM SPSS Statistics procedure that generated this output item. The value is the
OMS command identifier associated with the procedure.

Syntax

SpssOutputItem.GetProcedureName()

GetSpecificType Method
Returns an object of a specific output type, such as a pivot table or header item. You will need to
call this method before using methods specific to that type of output item. For example, before you
can use the methods available for a pivot table, you must call GetSpecificType on the associated
SpssOutputItem object. The set of output types is listed in the description of the GetType method.

Syntax

object=SpssOutputItem.GetSpecificType()

For an example of using the GetSpecificType method, see “SpssPivotTable Class ” on page 152.

GetSubType Method
Returns the OMS (Output Management System) sub type identifier, if any, of this output item.

140 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssOutputItem.GetSubType()

GetTreeLevel Method
Returns the level of this item within the hierarchy of the output tree. For instance, the root item is at level
0, and header items beneath the root are at level 1.

Syntax

SpssOutputItem.GetTreeLevel()

GetType Method
Returns the type associated with this output item.

Syntax

SpssOutputItem.GetType()

Table 26. Type codes

Type Type Code

SpssClient.OutputItemType.UNKNOWN 0

SpssClient.OutputItemType.CHART 1

SpssClient.OutputItemType.HEAD 2

SpssClient.OutputItemType.LOG 3

SpssClient.OutputItemType.NOTE 4

SpssClient.OutputItemType.PIVOT 5

SpssClient.OutputItemType.ROOT 6

SpssClient.OutputItemType.TEXT 7

SpssClient.OutputItemType.WARNING 8

SpssClient.OutputItemType.TITLE 9

SpssClient.OutputItemType.PAGETITLE 11

SpssClient.OutputItemType.TREEMODEL 13

SpssClient.OutputItemType.GENERIC 14

SpssClient.OutputItemType.MODEL 15

SpssClient.OutputItemType.LIGHTNOTE 18

SpssClient.OutputItemType.LIGHTPIVOT 19

SpssClient.OutputItemType.LIGHTWARNING 20

When testing for a particular output type with the return value from GetType, you can use the integer
type code or the textual specification of the type. For an example of using the GetType method, see
“SpssPivotTable Class ” on page 152.

Notes

• Standard charts, graphboard charts, and R graphics all have the type
SpssClient.OutputItemType.CHART. To distinguish between these chart types, use the
SPSSSubtype method on the associated SpssChartItem object.

Chapter 3. Scripting Guide 141

• Objects of type SpssClient.OutputItemType.ROOT (the root object in an output document) or
SpssClient.OutputItemType.HEAD are SpssHeaderItem objects.

• Objects of type SpssClient.OutputItemType.TREEMODEL are SpssChartItem objects.
• The object types SpssClient.OutputItemType.LIGHTNOTE, SpssClient.OutputItemType.LIGHTPIVOT, and

SpssClient.OutputItemType.LIGHTWARNING are obsolete for release 20 and higher. Lightweight
Notes items, lightweight Pivot Table items, and lightweight Warnings items created in release 19
will have the output types SpssClient.OutputItemType.NOTE, SpssClient.OutputItemType.PIVOT and
SpssClient.OutputItemType.WARNING respectively when accessed in release 20 or higher.

GetTypeString Method
Returns the type string of this output item. The returned value is not translated.

Syntax

SpssOutputItem.GetTypeString()

Returns

Returns one of the following strings: "Chart", "Log", "Notes", "Table", "Text", "Warning", "Title", "PageTitle",
"TreeDiagram", "Model".

Notes

• Standard charts, graphboard charts, and R graphics all have the type string 'Chart'. To distinguish
between these chart types, use the SPSSSubtype method on the associated SpssChartItem object.

• Lightweight Notes items, lightweight Pivot Table items, and lightweight Warnings items created in
release 19 will have the type strings Notes, Table, and Warning respectively when accessed in release
20 or higher.

GetWidth Method
Returns the width of this output item in units of points (1/72 inch).

• This method is not available for header items or root items.

Syntax

SpssOutputItem.GetWidth()

GetXML Method
Returns the XML representation for an SpssChartItem or SpssModelItem, as a Unicode string.

Syntax

SpssOutputItem.GetXML()

You can set the XML for a chart item using the SetXML method from the SpssChartItem class. You can
set the XML for a Model Viewer item using the SetXML method from the SpssModelItem class.

IsCurrentItem Method
Indicates if this output item is the current item--as indicated by a red arrow next to the item in the outline
pane. The result is Boolean--True if the item is the current item, False otherwise.

Syntax

SpssOutputItem.IsCurrentItem()

IsEditable Method
Indicates whether this output item can be edited. The result is Boolean--True if the item can be edited,
False otherwise.

142 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssOutputItem.IsEditable()

IsEqualTo Method
Indicates if this output item object is the same object as a specified output item object. The result is
Boolean--True if the two objects are identical, False otherwise.

Syntax

SpssOutputItem.IsEqualTo(outputItem)

Parameters

outputItem. An SpssOutputItem object

IsSelected Method
Indicates whether the current output item is selected. The result is Boolean--True if the item is currently
selected, False otherwise. Use the SetSelected method to select an item.

Syntax

SpssOutputItem.IsSelected()

IsVisible Method
Indicates if this output item is visible. The result is Boolean--True if the item is visible, False if it is hidden.

Syntax

SpssOutputItem.IsVisible()

SetAlignment Method
Sets the alignment for this output item.

Syntax

SpssOutputItem.SetAlignment(alignment)

Table 27. Alignment types

Type Description

SpssClient.OutputItemAlignment.Left Left

SpssClient.OutputItemAlignment.Center Center

SpssClient.OutputItemAlignment.Right Right

SetCurrentItem Method
Sets the item as the current item--as indicated by a red arrow next to the item in the outline pane.

Syntax

SpssOutputItem.SetCurrentItem()

SetDescription Method
Sets the name of this output item. This is the name that is displayed in the outline pane of the Viewer.
The value can be specified as plain text, HTML, or rich text format. For HTML, embed markup in a
<html></html> block. For rich text format, specify the string as a raw string to avoid unintentional escape
sequences.

Chapter 3. Scripting Guide 143

Syntax

SpssOutputItem.SetDescription(desc)

SetHeight Method
Sets the height of this output item in units of points (1/72 inch).

• This method is not available for pivot tables, header items, or the root item.

Syntax

SpssOutputItem.SetHeight(height)

SetPageBreak Method
Sets or clears a page break before this item.

Syntax

SpssOutputItem.SetPageBreak(pageBreak)

Parameters

pageBreak. True to set a page break, False to clear a page break.

SetProcedureName Method
Sets the procedure name associated with this output item. The argument is a string and is not translated.

Syntax

SpssOutputItem.SetProcedureName(procName)

SetSelected Method
Specifies whether the current output item is set as selected. You can use the IsSelected method to
determine if a given item is already selected.

Syntax

SpssOutputItem.SetSelected(selected)

Parameters

selected. True to set this item as selected, False to set it as not selected.

SetSubType Method
Sets the OMS (Output Management System) sub-type identifier of this output item.

Syntax

SpssOutputItem.SetSubType(subType)

Parameters

subType. A string

SetTreeLevel Method
Sets the level of this item within the hierarchy of the output tree. For instance, the root item is at level 0,
and header items beneath the root are at level 1.

Syntax

SpssOutputItem.SetTreeLevel(level)

Parameters

144 Python Reference Guide for IBM SPSS Statistics

level. An integer

SetVisible Method
Specifies whether this output item is visible.

Syntax

SpssOutputItem.SetVisible(visible)

Parameters

visible. True to set the item as visible, False to set it as hidden.

SetWidth Method
Sets the width of this output item in units of points (1/72 inch).

• This method is not available for pivot tables, header items, or the root item.

Syntax

SpssOutputItem.SetWidth(width)

SpssChartItem Class
The SpssChartItem class represents a chart item in an output document. You get an SpssChartItem
object from the collection of output items in an output document.

Example: Getting Chart Items

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.CHART:
 ChartItem = OutputItem.GetSpecificType()

• Chart items have an output item type of SpssClient.OutputItemType.CHART.
• Once an output item has been identified as a chart item, you get an SpssChartItem object by

calling the GetSpecificType method on the output item object. In this example, ChartItem is an
SpssChartItem object.

SetXML Method
Sets the chart XML from a UTF-8 (Unicode Transformation Format, 8 bit) string.

Syntax

SpssChartItem.SetXML(xml)

You can get the XML for a chart item using the GetXML method from the SpssOutputItem class. You can
also use chart XML (OXML) created by the OMS command as the source for SetXML. To do so, extract the
visualization element from the OXML, decode the resulting string to "UTF-8" (e.g., with the Python
decode string method), and use the decoded string as the argument to SetXML.

SPSSSubtype Method
Returns a string specifying the type of chart.

Syntax

SpssChartItem.SPSSSubtype()

Chapter 3. Scripting Guide 145

Table 28. Chart types

Type Description

CHART Standard chart

GRAPHBOARD Graphboard chart

IMAGE R graphic

TREEMODEL Tree model

SpssModelItem Class
The SpssModelItem class represents a Model Viewer item in an output document. You get an
SpssModelItem object from the collection of output items in an output document.

Example: Getting Model Viewer Items

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.MODEL:
 ModelItem = OutputItem.GetSpecificType()

• Model Viewer items have an output item type of SpssClient.OutputItemType.MODEL.
• Once an output item has been identified as a Model Viewer item, you get an SpssModelItem object

by calling the GetSpecificType method on the output item object. In this example, ModelItem is an
SpssModelItem object.

ExportAllViews Method
Exports all views of this Model Viewer item in the specified image format.

Syntax

SpssModelItem.ExportAllViews(filePrefix,format)

Parameters

The argument filePrefix is the full path and file name prefix for the files containing the exported views.
Each view is exported to a separate file.

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

Table 29. Image formats

Format Description

SpssClient.ChartExportFormat.bmp Windows bitmap

SpssClient.ChartExportFormat.emf Enhanced metafile

SpssClient.ChartExportFormat.eps Enhanced postscript

SpssClient.ChartExportFormat.jpg JPG file

SpssClient.ChartExportFormat.png PNG file

SpssClient.ChartExportFormat.tiff Tagged image file

You can export the view displayed in the Viewer using the “ExportToImage Method ” on page 139.

146 Python Reference Guide for IBM SPSS Statistics

SetXML Method
Sets the XML for the Model Viewer item from a UTF-8 (Unicode Transformation Format, 8 bit) string.

Syntax

SpssModelItem.SetXML(xml)

You can get the XML for a Model Viewer item using the GetXML method from the SpssOutputItem class.
You can also use model XML (OXML) created by the OMS command as the source for SetXML.

SpssHeaderItem Class
The SpssHeaderItem class represents a header item in an output document. You get an
SpssHeaderItem object from the collection of output items in an output document.

Example: Getting Header Items

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.HEAD:
 HeaderItem = OutputItem.GetSpecificType()

• Header items have an output item type of SpssClient.OutputItemType.HEAD.
• Once an output item has been identified as a header item, you get an SpssHeaderItem object by

calling the GetSpecificType method on the output item object. In this example, HeaderItem is an
SpssHeaderItem object.

Note: The root item is an SpssHeaderItem object.

GetChildCount Method
Returns the child item count for this header item.

Syntax

SpssHeaderItem.GetChildCount()

GetChildItem Method
Returns an SpssOutputItem object for the child item at the specified index. Index values start from 0.

Syntax

SpssOutputItem=SpssHeaderItem.GetChildItem(index)

InsertChildItem Method
Inserts a child item--at the specified index--under the current header item in the associated output
document. Index values start from 0 and are relative to the current header item.

• Use this method to insert header items, text items, and title items created with the
CreateHeaderItem, CreateTextItem, and CreateTitleItem methods from the SpssOutputDoc
class.

Syntax

SpssHeaderItem.InsertChildItem(item,index)

Parameters

item. An SpssOutputItem object

Chapter 3. Scripting Guide 147

index. The index position of the new child item in the header item's child list. Index values start from 0. To
append an item to the end of the child list, use an index value equal to the current child count.

Example: Appending a new header item containing a child text item

This example appends a new header item under the root item. A text item is added under the new header
item.

import SpssClient
SpssClient.StartClient()
doc = SpssClient.GetDesignatedOutputDoc()
itemlist = doc.GetOutputItems()
Get the root header item
root = itemlist.GetItemAt(0).GetSpecificType()
Create a new header item
newHeader = doc.CreateHeaderItem("New header")
Append the new header to the root item
root.InsertChildItem(newHeader,root.GetChildCount())
Get the new header item
newHeaderItem = root.GetChildItem(root.GetChildCount()-1).GetSpecificType()
Create a new text item
newText = doc.CreateTextItem("New text")
Append the new text item to the new header item
newHeaderItem.InsertChildItem(newText,0)
SpssClient.StopClient()

Example: Inserting a text item under an existing header item

This example inserts a text item at index position 1, under a header item identified by the description
string "Demo".

import SpssClient
SpssClient.StartClient()
doc = SpssClient.GetDesignatedOutputDoc()
OutputItems = doc.GetOutputItems()
for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.HEAD \
 and OutputItem.GetDescription() == "Demo":
 HeaderItem = OutputItem.GetSpecificType()
 newText = doc.CreateTextItem("My inserted text")
 HeaderItem.InsertChildItem(newText,1)
SpssClient.StopClient()

IsExpanded Method
Indicates whether the associated header item is expanded. The result is Boolean--True if the header item
is expanded, False otherwise.

Syntax

SpssHeaderItem.IsExpanded()

RemoveChildItem Method
Removes the child item at the specified index. Index values start from 0.

Syntax

SpssHeaderItem.RemoveChildItem(index)

SetExpanded Method
Sets whether the associated header item is expanded.

Syntax

SpssHeaderItem.SetExpanded(expand)

Parameters

expand. True to expand the item, False to collapse the item.

SpssLogItem Class
The SpssLogItem class represents a log item in an output document. You get an SpssLogItem object
from the collection of output items in an output document.

148 Python Reference Guide for IBM SPSS Statistics

Example: Getting Log Items

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.LOG:
 LogItem = OutputItem.GetSpecificType()

• Log items have an output item type of SpssClient.OutputItemType.LOG.
• Once an output item has been identified as a log item, you get an SpssLogItem object by calling the
GetSpecificType method on the output item object. In this example, LogItem is an SpssLogItem
object.

Append Method
Appends the specified text to the contents of the associated log output item.

Syntax

SpssLogItem.Append(text)

GetTextContents Method
Returns the contents of the associated log output item. The value is returned as plain text.

Syntax

SpssLogItem.GetTextContents()

SetTextContents Method
Sets the contents of the associated log output item, replacing any existing content. The value can be
specified as plain text, HTML, or rich text format. For HTML, embed markup in a <html></html> block. For
rich text format, specify the string as a raw string to avoid unintentional escape sequences. For multiple
lines, use "\n" to specify line breaks.

Syntax

SpssLogItem.SetTextContents(contents)

SpssTextItem Class
The SpssTextItem class represents a text item in an output document. You get an SpssTextItem
object from the collection of output items in an output document.

Example: Getting Text Items

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.TEXT:
 TextItem = OutputItem.GetSpecificType()

• Text items have an output item type of SpssClient.OutputItemType.TEXT.
• Once an output item has been identified as a text item, you get an SpssTextItem object by calling the
GetSpecificType method on the output item object. In this example, TextItem is an SpssTextItem
object.

GetTextContents Method
Returns the contents of the associated text output item. The value is returned as plain text.

Chapter 3. Scripting Guide 149

Syntax

SpssTextItem.GetTextContents()

SetTextContents Method
Sets the contents of the associated text output item, replacing any existing content. The value can be
specified as plain text, HTML, or rich text format. For HTML, embed markup in a <html></html> block. For
rich text format, specify the string as a raw string to avoid unintentional escape sequences. For multiple
lines, use "\n" to specify line breaks.

Syntax

SpssTextItem.SetTextContents(contents)

SpssTitleItem Class
The SpssTitleItem class represents a title item in an output document. You get an SpssTitleItem
object from the collection of output items in an output document.

Example: Getting Title Items

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.TITLE:
 TitleItem = OutputItem.GetSpecificType()

• Title items have an output item type of SpssClient.OutputItemType.TITLE.
• Once an output item has been identified as a title item, you get an SpssTitleItem object by

calling the GetSpecificType method on the output item object. In this example, TitleItem is an
SpssTitleItem object.

GetTextContents Method
Returns the contents of the associated title output item. The value is returned as plain text.

Syntax

SpssTitleItem.GetTextContents()

SetTextContents Method
Sets the contents of the associated title output item, replacing any existing content. The value can be
specified as plain text, HTML, or rich text format. For HTML, embed markup in a <html></html> block. For
rich text format, specify the string as a raw string to avoid unintentional escape sequences.

Syntax

SpssTitleItem.SetTextContents(contents)

Menus

MenuTableList Class
The MenuTableList class provides access to the list of available menu items for a data, output,
or syntax document. You obtain a MenuTableList object from the GetMenuTable method of an
SpssDataDoc, SpssOutputDoc, or SpssSyntaxDoc object.

150 Python Reference Guide for IBM SPSS Statistics

A MenuTableList object is not an iterable Python object. In order to iterate over the items in the list, use
a for loop, as in:

for index in range(MenuTableList.Size()):

For an example that uses the MenuTableList class, see the example for the SpssMenuItem class.

GetItemAt Method
Returns an SpssMenuItem object representing the menu item with the specified index.

Syntax

SpssMenuItem=MenuTableList.GetItemAt(index)

Size Method
Returns the number of items in a MenuTableList object.

Syntax

MenuTableList.Size()

SpssMenuItem Class
The SpssMenuItem class represents a menu item in a data, output, or syntax document. You get an
SpssMenuItem object from the GetItemAt method of a MenuTableList object.

Example: Getting a List of Menu Items

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
MenuTableList = OutputDoc.GetMenuTable()
strMenuItemList = []
for i in range(MenuTableList.Size()):
 item = MenuTableList.GetItemAt(i)
 strMenuItemList.append(item.GetTextContents())

GetTextContents Method
Returns the name of the menu item (as a string) associated with an SpssMenuItem object.

Syntax

SpssMenuItem.GetTextContents()

Pivot Tables

Pivot Tables
The scripting facility allows you to do most of the things you can do in the pivot table editor, through
use of the SpssPivotTable class. There are two general approaches for working with pivot tables from
scripting:

• Select groups of cells (results or labels) or other elements (such as footnotes) and apply methods that
modify the entire selection. For example, you can change the foreground color for selected cells.

• Access a subset of the pivot table, such as its data cells or row labels, and modify a particular element
in the subset. For example, you can access the data cells and call a method to set the foreground color
for a specified cell.

Generally speaking, if you want to modify a number of elements in the same manner, the first approach is
faster.

Areas of a Pivot Table

Chapter 3. Scripting Guide 151

(Red labels indicate accessible objects.)

Available Objects

The SpssPivotTable object provides access to the following objects:

• SpssDataCells Provides access to the data cells.
• SpssLabels Provides access to the row and column labels.
• SpssFootnotes Provides access to all of the table's footnotes.
• SpssLayerLabels Provides access to labels in any layer dimensions.
• SpssPivotMgr Provides access to row, column, and layer dimensions.
• SpssDimension Provides access to the properties of a particular dimension.

Compatibility with previous releases
Legacy tables (referred to as full-featured tables in release 19) are tables that are fully compatible with
IBM SPSS Statistics releases prior to 20. Legacy tables may render slowly and are only recommended
if compatibility with releases prior to 20 is required. You can specify that tables are rendered as
legacy tables by calling the SpssClient.SetPreference method with the TableRender option set to
"full". See the topic “SetPreference Method ” on page 103 for more information. You can also specify
legacy table creation with the command syntax SET TABLERENDER = FULL.

• Tables, other than legacy tables, created in IBM SPSS Statistics release 20 or later and lightweight
tables in output documents that are modified in release 20 or later (but created in release 19)
cannot be viewed or accessed through scripting in releases prior to 19.0.0.2. Such tables are viewable
and accessible through scripting in release 19.0.0.2, where they are rendered as lightweight tables;
however, they may not render the same as in release 20 or later.

• Lightweight tables created in IBM SPSS Statistics release 19 automatically have full support for pivoting
and editing in release 20 or later.

SpssPivotTable Class
The SpssPivotTable class allows you to operate on the table as a whole as well as providing access to
objects for working with the footnotes, data cells, row or column labels, and layer labels associated with
the table. Pivot tables are output items and are accessed from the list of output items associated with an
output document.

Example: Getting Pivot Tables

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)

152 Python Reference Guide for IBM SPSS Statistics

 if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT:
 PivotTable = OutputItem.GetSpecificType()

• Pivot tables have an output item type of SpssClient.OutputItemType.PIVOT.
• Once an output item has been identified as a pivot table, you get an SpssPivotTable object by

calling the GetSpecificType method on the output item object. In this example, PivotTable is an
SpssPivotTable object.

Example: Getting the First Selected Pivot Table

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT \
 and OutputItem.IsSelected():
 PivotTable = OutputItem.GetSpecificType()

Example: Getting the First Pivot Table Labeled "Statistics"

import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
 OutputItem = OutputItems.GetItemAt(index)
 if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT \
 and OutputItem.GetDescription() == "Statistics":
 PivotTable = OutputItem.GetSpecificType()

Autofit Method
Recalculates the size of all cells in the entire table to accommodate label lengths or the lengths of both
labels and data values.

• To specify how the cells are to be recalculated (labels only or labels and data), use the SetPreference
method from the SpssClient class and specify SpssClient.PreferenceOptions.ColumnWidth
as the option.

Syntax

SpssPivotTable.Autofit()

ClearSelection Method
Deselects all selected output items or pivot table elements.

• All Select methods add the current item(s)/element(s) to what has been previously selected. Always
clear selections before you start selecting output items or table elements.

Syntax

SpssPivotTable.ClearSelection()

ColumnLabelArray Method
Returns an SpssLabels object representing the column labels.

Syntax

SpssLabels=SpssPivotTable.ColumnLabelArray()

DataCellArray Method
Returns an SpssDataCells object representing the data cells of the pivot table.

Syntax

Chapter 3. Scripting Guide 153

SpssDataCells=SpssPivotTable.DataCellArray()

DisplayTableByRows Method
Specifies whether to display the table n rows at a time, where n is set with the
SetRowsToDisplayRowCount method. The argument is Boolean--True to display the table n rows at a
time, False otherwise.

Note: This method is only available for legacy tables. See the topic “Compatibility with previous releases”
on page 152 for more information.

Syntax

SpssPivotTable.DisplayTableByRows(boolean)

FootnotesArray Method
Returns an SpssFootnotes object representing the table footnotes.

Syntax

SpssFootnotes=SpssPivotTable.FootnotesArray()

GetCaptionText Method
Returns the caption text for the current table.

Syntax

SpssPivotTable.GetCaptionText()

GetFootnoteMarkersPosition Method
Gets the current position--superscript or subscript--for footnote markers for the pivot table.

Syntax

SpssPivotTable.GetFootnoteMarkersPosition()

Table 30. Returned values

Value Description

SpssClient.SpssFootnoteMarkerTypes.SpssFtSuperscript Superscript

SpssClient.SpssFootnoteMarkerTypes.SpssFtSubscript Subscript

GetFootnoteMarkersStyle Method
Gets the current style--alphabetic or numeric--for footnote markers for the pivot table.

Syntax

SpssPivotTable.GetFootnoteMarkersStyle()

Table 31. Returned values

Value Description

SpssClient.SpssFootnoteMarkerTypes.SpssFtAlphabetic Alphabetic

SpssClient.SpssFootnoteMarkerTypes.SpssFtNumeric Numeric

GetHeight Method
Returns the height of the pivot table. The unit is the point (1/72 inch).

154 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssPivotTable.GetHeight()

GetRotateColumnLabels Method
Indicates if category labels closest to the data (that is, categories of the column dimension with the
largest index) are rotated. The result is Boolean.

Syntax

SpssPivotTable.GetRotateColumnLabels()

Returns

True. The column labels closest to the data are displayed vertically

False. The column labels closest to the data are displayed horizontally

GetRotateRowLabels Method
Indicates if the labels of all but the last row dimension (that is, the row dimension with the largest index)
are rotated. The result is Boolean.

Syntax

SpssPivotTable.GetRotateRowLabels()

Returns

True. The outer row labels are displayed vertically

False. The outer row labels are displayed horizontally

GetSigMarkersType Method
Gets the type of the significance indicators that are used for the pivot table. The method returns None
when the table has no significance indicators. Significance indicators are created for custom tables
(CTABLES) when pairwise comparisons of column proportions or column means are calculated. The
GetSigMarkersType method returns the type only when the indicators are merged into the main table.

Syntax

SpssPivotTable.GetSigMarkersType()

Table 32. Returned values

Value Description

SpssClient.SpssSigMarkerTypes.SpssSigSimple Simple indicators

SpssClient.SpssSigMarkerTypes.SpssSigAPA APA-style indicators

None The table has
no significance
indicators

GetTitleText Method
Returns the text of the title for the table.

Syntax

SpssPivotTable.GetTitleText()

Chapter 3. Scripting Guide 155

GetUpdateScreen Method
Returns whether changes in the pivot table are refreshed immediately. The result is Boolean--True if
changes are refreshed immediately, False otherwise.

• By default, changes are refreshed immediately. Use the SetUpdateScreen method to specify that
changes are not to be refreshed immediately.

Syntax

SpssPivotTable.GetUpdateScreen()

GetVarNamesDisplay Method
This method returns the setting for how variable names are displayed in the pivot table: as variable
names, as variable labels, or both.

Note: This method is not supported for legacy tables.

Syntax

SpssPivotTable.GetVarNamesDisplay()

Table 33. Returned values

Value Description

SpssClient.VarNamesDisplay.Names Names

SpssClient.VarNamesDisplay.Labels Labels

SpssClient.VarNamesDisplay.Both Names and labels

GetVarValuesDisplay Method
This method gets the setting for how variable values are displayed in the pivot table: as values, as value
labels, or both.

Note: This method is not supported for legacy tables.

Syntax

SpssPivotTable.GetVarValuesDisplay()

Table 34. Returned values

Value Description

SpssClient.VarValuesDisplay.Values Values

SpssClient.VarValuesDisplay.Labels Labels

SpssClient.VarValuesDisplay.Both Values and labels

GetWidowOrphanLines Method
Returns the number of allowable widow/orphan lines when pivot tables are printed.

• Widow lines are the last few lines of a paragraph printed at the top of the next page; orphan lines are the
first few lines of a paragraph printed at the bottom of the previous page.

Syntax

SpssPivotTable.GetWidowOrphanLines()

GetWidth Method
Returns the width of the pivot table. The unit is the point (1/72 inch).

156 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssPivotTable.GetWidth()

Group Method
Groups selected category labels or group labels, creates a grouping level, and inserts a grouping label.

• The selection must be category or group labels.
• After the execution of this method, the inserted grouping label is selected and has the default label of

Group Label.
• If a new group level is inserted, labels on the same and lower levels are demoted one level. (For column

labels, the row index increases by one; for row labels, the column index increases by one.)

Syntax

SpssPivotTable.Group()

Example

This example assumes that PivotTable is an SpssPivotTable object, selects category column labels
Clerical and Custodial, and groups them under the label of Non-Managerial.

ColumnLabels = PivotTable.ColumnLabelArray()

#Select the category column labels Clerical and Custodial:
PivotTable.ClearSelection()
for i in range(ColumnLabels.GetNumRows()):
 for j in range(ColumnLabels.GetNumColumns()):
 if ColumnLabels.GetValueAt(i,j) in ["Clerical","Custodial"]:
 ColumnLabels.SelectLabelAt(i,j)

#Group the categories and assign a group label:
PivotTable.Group()
for i in range(ColumnLabels.GetNumRows()):
 for j in range(ColumnLabels.GetNumColumns()):
 if ColumnLabels.GetValueAt(i,j)=="Group Label":
 ColumnLabels.SetValueAt(i,j,"Non-Managerial")

HideCaption Method
Hides the caption of the current table.

Syntax

SpssPivotTable.HideCaption()

HideFootnote Method
Hides the selected footnotes or all the footnotes referenced by the selected cell.

Syntax

SpssPivotTable.HideFootnote()

HideTitle Method
Hides the title of a pivot table.

Syntax

SpssPivotTable.HideTitle()

InsertFootnote Method
Inserts a footnote to the selected data or label cell.

• If multiple data cells or labels are selected, the footnote is attached to the first selected item.
• To set a footnote for corner text, first set the corner text with the SpssPivotTable.SetCornerText

method.

Chapter 3. Scripting Guide 157

Syntax

SpssPivotTable.InsertFootnote(string)

Parameters

string. Text of the footnote

IsDisplayTableByRows Method
Indicates whether the table is being displayed a fixed number of rows at a time. The result is Boolean--
True if the table is being displayed a fixed number of rows at a time, False otherwise. Use the
DisplayTableByRows method to change the setting.

Note: The feature to display a table a fixed number of rows at a time is only available for legacy tables. See
the topic “Compatibility with previous releases” on page 152 for more information.

Syntax

SpssPivotTable.IsDisplayTableByRows()

IsLegacyTableCompatible Method
Indicates whether row and column labels are indexed in the same manner as for legacy tables. The result
is Boolean--True if row and column labels are indexed in the same manner as for legacy tables, False
otherwise.

• By default, row and column labels are indexed in the same manner as for legacy tables.
• IsLegacyTableCompatible always returns True for legacy tables.

Syntax

SpssPivotTable.IsLegacyTableCompatible()

LayerLabelArray Method
Returns an SpssLayerLabels object representing all layer labels.

Syntax

SpssLayerLabels=SpssPivotTable.LayerLabelArray()

NavigateToFirstRow Method
Displays the first block of rows of the table when displaying the table a fixed number of rows at a time.
Use the DisplayTableByRows method to display the table a fixed number of rows at a time.

Note: This method is only available for legacy tables. See the topic “Compatibility with previous releases”
on page 152 for more information.

Syntax

SpssPivotTable.NavigateToFirstRow()

NavigateToLastRow Method
Displays the last block of rows of the table when displaying the table a fixed number of rows at a time. Use
the DisplayTableByRows method to display the table a fixed number of rows at a time.

Note: This method is only available for legacy tables. See the topic “Compatibility with previous releases”
on page 152 for more information.

Syntax

SpssPivotTable.NavigateToLastRow()

158 Python Reference Guide for IBM SPSS Statistics

NavigateToNextRows Method
Displays the next block of rows of the table when displaying the table a fixed number of rows at a time.
Use the DisplayTableByRows method to display the table a fixed number of rows at a time.

Note: This method is only available for legacy tables. See the topic “Compatibility with previous releases”
on page 152 for more information.

Syntax

SpssPivotTable.NavigateToNextRows()

NavigateToPreviousRows Method
Displays the previous block of rows of the table when displaying the table a fixed number of rows at a
time. Use the DisplayTableByRows method to display the table a fixed number of rows at a time.

Note: This method is only available for legacy tables. See the topic “Compatibility with previous releases”
on page 152 for more information.

Syntax

SpssPivotTable.NavigateToPreviousRows()

NumericFormat Method
Sets the display format for numeric values in the selected cells of the current table.

SpssPivotTable.NumericFormat(format,decimal)

Parameters
format

The string description of the format.

Note: When using custom currencies, use CCA through CCE for the format parameter instead of the
format strings in the CellFormat panel.

decimal
Number of decimal places.

For a listing of the format types, see Appendix D, “String Description of Numeric Formats ,” on page 235.

PivotManager Method
Returns an SpssPivotMgr object, providing access to the Pivot Manager.

Syntax

SpssPivotMgr=SpssPivotTable.PivotManager()

RowLabelArray Method
Returns an SpssLabels object representing the row labels.

Syntax

SpssLabels=SpssPivotTable.RowLabelArray()

SelectAllFootnotes Method
Selects all footnotes in the pivot table, in addition to what has already been selected.

Syntax

SpssPivotTable.SelectAllFootnotes()

Chapter 3. Scripting Guide 159

SelectCaption Method
Selects the caption of the pivot table, in addition to all previously selected elements.

Syntax

SpssPivotTable.SelectCaption()

SelectCorner Method
Selects the corner of the pivot table, in addition to all previously selected elements.

Syntax

SpssPivotTable.SelectCorner()

SelectTable Method
Selects all the elements of a pivot table for modification.

Syntax

SpssPivotTable.SelectTable()

SelectTableBody Method
Selects the body of the pivot table (labels and data cells) for modification.

Syntax

SpssPivotTable.SelectTableBody()

SelectTitle Method
Selects the title of the pivot table for modification.

Syntax

SpssPivotTable.SelectTitle()

SetBackgroundColor Method
Sets the background color of the selected element(s) in the current pivot table.

Syntax

SpssPivotTable.SetBackgroundColor(color)

Parameters

color. Integer representation of the color

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetBottomMargin Method
Sets the bottom margin of the selected cells in the current pivot table.

Syntax

SpssPivotTable.SetBottomMargin(margin)

Parameters

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetCaptionText Method
Sets the caption text for the current table.

160 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssPivotTable.SetCaptionText(string)

Parameters

string. Caption text

SetCornerText Method
Sets the corner text.

Syntax

SpssPivotTable.SetCornerText(string)

Parameters

string. Corner text

SetDataCellWidths Method
Sets the width of all data cells of the current table.

Syntax

SpssPivotTable.SetDataCellWidths(width)

Parameters

width. An integer. The unit is the point (1/72 inch).

SetFootnoteMarkers Method
Sets the style of footnote markers for the entire table.

Syntax

SpssPivotTable.SetFootnoteMarkers(type)

Table 35. Footnote marker types

Type Description

SpssClient.SpssFootnoteMarkerTypes.SpssFtSuperscript Superscript

SpssClient.SpssFootnoteMarkerTypes.SpssFtSubscript Subscript

SpssClient.SpssFootnoteMarkerTypes.SpssFtAlphabetic Alphabetic

SpssClient.SpssFootnoteMarkerTypes.SpssFtNumeric Numeric

SetForegroundColor Method
This method is deprecated in release 17.0. Use the SetTextColor method instead.

SetHAlign Method
Sets the horizontal alignment of the selected elements in the current table.

Syntax

SpssPivotTable.SetHAlign(alignment)

Table 36. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

Chapter 3. Scripting Guide 161

Table 36. Horizontal alignment types (continued)

Type Description

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

SetHDecDigits Method
Sets the number of decimal digits for the selected cells of the pivot table.

Syntax

SpssPivotTable.SetHDecDigits(number)

Parameters

number. Number of decimal digits

SetLeftMargin Method
Sets the left margin of the selected cells in the pivot table.

Syntax

SpssPivotTable.SetLeftMargin(margin)

Parameters

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetLegacyTableCompatible Method
Sets whether row and column labels are indexed in the same manner as for legacy tables. The argument
is Boolean--True if row and column labels are indexed in the same manner as for legacy tables, False
otherwise.

• By default, row and column labels are indexed in the same manner as for legacy tables.
• For tables with hidden rows or columns, you might need to specify
SetLegacyTableCompatible(False).

• SetLegacyTableCompatible has no effect on legacy tables.

Syntax

SpssPivotTable.SetLegacyTableCompatible(boolean)

SetRightMargin Method
Sets the right margin for the selected cells in the pivot table.

Syntax

SpssPivotTable.SetRightMargin(margin)

Parameters

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetRotateColumnLabels Method
Rotates the category labels closest to the data (that is, categories of the column dimension with the
largest index).

162 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssPivotTable.SetRotateColumnLabels(boolean)

Parameters

True. The column labels closest to the data are displayed vertically

False. The column labels closest to the data are displayed horizontally

SetRotateRowLabels Method
Rotates the labels of all but the last row dimension (that is, the row dimension with the largest index).

Syntax

SpssPivotTable.SetRotateRowLabels(boolean)

Parameters

True. The outer row labels are displayed vertically

False. The outer row labels are displayed horizontally

SetRowsToDisplayRowCount Method
Sets the number of rows to be displayed at a time for the current pivot table. Note that you must also call
the DisplayTableByRows method with an argument of True to specify that the table is to be displayed a
fixed number of rows at a time.

Note: This method is only available for legacy tables. See the topic “Compatibility with previous releases”
on page 152 for more information.

Syntax

SpssPivotTable.SetRowsToDisplayRowCount(number)

Parameters

number. An integer specifying the number of rows to display at a time.

SetRowsToDisplayTolerance Method
Sets the widow/orphan tolerance to be used when displaying the table a fixed number of rows at a time
(as set by the DisplayTableByRows method). The default is 0.

• If a break between blocks of rows leaves widow rows equal to or less than the specified tolerance, then
the break point is shifted up in the table to display those rows in the next block.

• If a break between blocks of rows leaves orphan rows equal to or less than the specified tolerance, then
the break point is shifted down in the table to display those rows in the previous block.

• If a break between blocks of rows leaves both widow and orphan rows equal to or less than the
specified tolerance, then the break point is shifted up in the table to display the widow rows in the next
block.

Note: This method is only available for legacy tables. See the topic “Compatibility with previous releases”
on page 152 for more information.

Syntax

SpssPivotTable.SetRowsToDisplayTolerance(number)

Parameters

number. An integer specifying the widow/orphan tolerance.

SetTableLook Method
Applies a predefined table look.

Chapter 3. Scripting Guide 163

Syntax

SpssPivotTable.SetTableLook(filename)

Parameters

filename. Path to the TableLook (.stt) file

On Windows, it is recommended to use raw strings for file paths, or replace backslashes with forward
slashes (IBM SPSS Statistics accepts a forward slash for any backslash in a file specification). Raw strings
are specified by prefacing the string with r, as in r'c:\examples\mydata.sav'. In raw mode, Python treats all
backslashes in the string as the backslash character and not as the start of an escape sequence.

SetTextColor Method
Sets the color of the text in the selected cells of the pivot table.

Syntax

SpssPivotTable.SetTextColor(color)

Parameters

color. Integer representation of the color

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetTextFont Method
Sets the font of the text in the selected cells of the pivot table.

Syntax

SpssPivotTable.SetTextFont(fontname)

Parameters

fontname. Name of the font family, as a string. Available fonts are accessed from Format>Table Properties
in the pivot table editor.

SetTextHidden Method
Sets the hidden effect of the text in the selected cells of the pivot table.

Syntax

SpssPivotTable.SetTextHidden(boolean)

Parameters

True. Hidden

False. Not hidden

SetTextSize Method
Sets the font size of the text in the selected cells of the pivot table.

Syntax

SpssPivotTable.SetTextSize(size)

Parameters

size. Size in points (integer)

SetTextStyle Method
Sets the bold or italic style of the text in the selected cells of the pivot table.

164 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssPivotTable.SetTextStyle(style)

Table 37. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

SetTextUnderlined Method
Sets the underlined effect of the text in the selected cells of the pivot table.

Syntax

SpssPivotTable.SetTextUnderlined(boolean)

Parameters

True. Underlined

False. Not underlined

SetTitleText Method
Sets the text of the title for the pivot table.

Syntax

SpssPivotTable.SetTitleText(title)

Parameters

title. Text of the title

SetTopMargin Method
Sets the top margin of the selected cells in the pivot table.

Syntax

SpssPivotTable.SetTopMargin(margin)

Parameters

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetUpdateScreen Method
Sets whether changes in the pivot table are refreshed immediately. The argument is Boolean--True if
changes are refreshed immediately, False otherwise.

• By default, changes are refreshed immediately.

Syntax

SpssPivotTable.SetUpdateScreen(boolean)

Example

Chapter 3. Scripting Guide 165

This example assumes that PivotTable is an SpssPivotTable object, and stops refreshing while looping
through the row labels and making changes.

PivotTable.SetUpdateScreen(False)
rowlabels = PivotTable.RowLabelArray()
for i in range(rowlabels.GetNumRows()):
 for j in range(rowlabels.GetNumColumns()):
 if rowlabels.GetValueAt(i,j)=="Female":
 rowlabels.SetValueAt(i,j,"Women")
PivotTable.SetUpdateScreen(True)

Note: Setting the immediate refresh off (parameter set to False) prevents flashing when you make
changes to individual cells in a loop (in internal scripting), but it may also prevent you assessing the
results immediately. A better way is to avoid making changes cell by cell but select the cells and change
the selection using a method on the pivot table object. This is also a faster way.

SetVAlign Method
Sets the vertical alignment of the text in the selected cells of the pivot table.

Syntax

SpssPivotTable.SetVAlign(alignment)

Table 38. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

SetVarNamesDisplay Method
This method sets how variable names are displayed in the pivot table: as variable names, as variable
labels, or both.

Note: This method is not supported for legacy tables.

Syntax

SpssPivotTable.SetVarNamesDisplay(display)

Table 39. Settings for display

Value Description

SpssClient.VarNamesDisplay.Names Names

SpssClient.VarNamesDisplay.Labels Labels

SpssClient.VarNamesDisplay.Both Names and labels

SetVarValuesDisplay Method
This method sets how variable values are displayed in the pivot table: as values, as value labels, or both.

Note: This method is not supported for legacy tables.

Syntax

SpssPivotTable.SetVarValuesDisplay(display)

166 Python Reference Guide for IBM SPSS Statistics

Table 40. Settings for display

Value Description

SpssClient.VarValuesDisplay.Values Values

SpssClient.VarValuesDisplay.Labels Labels

SpssClient.VarValuesDisplay.Both Values and labels

SetWidowOrphanLines Method
Sets the number of allowable widow/orphan lines when pivot tables are printed.

• Widow lines are the last few lines of a paragraph printed at the top of the next page; orphan lines are the
first few lines of a paragraph printed at the bottom of the previous page.

Syntax

SpssPivotTable.SetWidowOrphanLines(number)

Parameters

number. Line limit (integer). The valid range is 1 to 100.

ShowAll Method
Shows all labels and data.

Syntax

SpssPivotTable.ShowAll()

ShowAllFootnotes Method
Shows all footnotes associated with the pivot table.

Syntax

SpssPivotTable.ShowAllFootnotes()

ShowCaption Method
Shows the caption of the pivot table.

Syntax

SpssPivotTable.ShowCaption()

ShowFootnote Method
Shows the hidden footnote(s) referenced by the selected label(s), data cell(s) or title.

• Ignored if no hidden footnote is referenced.

Syntax

SpssPivotTable.ShowFootnote()

ShowTitle Method
Shows the title of the pivot table.

Syntax

SpssPivotTable.ShowTitle()

Chapter 3. Scripting Guide 167

Ungroup Method
Deletes selected group labels and ungroups the category or group labels in the deleted group(s).

• If all group labels on one level are removed, labels on the lower levels are promoted one level. (For
column labels, the row index increases by one; for row labels, the column index increases by one.)

• Selection must be group labels.

Syntax

SpssPivotTable.Ungroup()

SpssDataCells Class
The SpssDataCells object provides access to the data cells of a pivot table. In most pivot tables, the
data cells contain the results of the statistical analysis. You need to use the SpssDataCells object if
you want to highlight significant values in the output (for example, making bold all correlation coefficients
that are greater than a specified value) or to retrieve specific statistics from the output (for example, the
means and standard deviations of each group or variable).

The SpssDataCells object represents a 2-dimensional array of the data cells you can view in a pivot
table. If there are no layer dimensions, all of the cells will be accessible; otherwise, the table must be
pivoted in order to fully access the data currently in layer dimensions.

The data cells array has the same number of rows as the row labels array and the same number of
columns as the column labels array. That is to say, row indexes for the row labels and column indexes for
the column labels respectively correspond to the row and column indexes for the data cells.

Note: If the current table has been set to display blocks of rows--either using SET ROWSBREAK or by
checking Display the table as blocks of rows on the Pivot Tables tab of the Options dialog box--then
methods of the SpssDataCells class that access specific cells, such as GetTextColorAt, will only
have access to the first block of rows. Exceptions to this behavior are the GetValueAt, SetValueAt, and
GetUnformattedValueAt methods, which can access all rows of the pivot table, regardless of whether
the table is displayed in blocks of rows.

You get an SpssDataCells object from the DataCellArray method of an SpssPivotTable object, as in:

SpssDataCells = SpssPivotTable.DataCellArray()

Example: Modifying Specific Cells

This example assumes that PivotTable is an SpssPivotTable object, and sets the background color
to red for all data cells containing a value below 0.01.

DataCells = PivotTable.DataCellArray()
for i in range(DataCells.GetNumRows()):
 for j in range(DataCells.GetNumColumns()):
 try:
 val = float(DataCells.GetValueAt(i,j))
 if val < 0.01:
 DataCells.SetBackgroundColorAt(i,j,255)
 except:
 pass

• The value returned from GetValueAt is a unicode string. If the value is a representation of a numeric
value, it is converted to a float, otherwise an exception is raised and control passes to the except
clause. Since the except clause only contains a pass statement, execution continues.

GetBackgroundColorAt Method
Returns the background color of the specified data cell.

Syntax

SpssDataCells.GetBackgroundColorAt(row,column)

Parameters

168 Python Reference Guide for IBM SPSS Statistics

row. Row index

column. Column index

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

GetBottomMarginAt Method
Returns the bottom margin of the specified data cell. The unit is the point (1/72 inch).

Syntax

SpssDataCells.GetBottomMarginAt(row,column)

Parameters

row. Row index

column. Column index

GetForegroundColorAt Method
This method is deprecated in release 17.0. Use the GetTextColorAt method instead.

GetHAlignAt Method
Returns the horizontal alignment of the specified data cell.

Syntax

SpssDataCells.GetHAlignAt(row,column)

Parameters

row. Row index

column. Column index

Returns

Table 41. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

GetHDecDigitsAt Method
Returns the number of decimal digits allowed in decimal alignment for the specified data cell.

Syntax

SpssDataCells.GetHDecDigitsAt(row,column)

Parameters

row. Row index

column. Column index

Chapter 3. Scripting Guide 169

GetLeftMarginAt Method
Returns the left margin of the specified data cell. The unit is the point (1/72 inch).

Syntax

SpssDataCells.GetLeftMarginAt(row,column)

Parameters

row. Row index

column. Column index

GetNumColumns Method
Returns the number of columns in the SpssDataCells object.

Syntax

SpssDataCells.GetNumColumns()

GetNumericFormatAt method
Returns the display format for the numeric value in the specified data cell.

SpssDataCells.GetNumericFormatAt(row,column)

Parameters

row. Row index

column. Column index

Return Value

The string description of the format. For a listing of the format types, see Appendix D, “String Description
of Numeric Formats ,” on page 235.

Note: To obtain detailed format information for custom currency formats use the
GetNumericFormatAtEx method.

GetNumericFormatAtEx method
Returns an SpssNumericFormat object from which you can obtain detailed formatting information for a
specified data cell, such as the prefix, separator, and suffix for a cell with a custom currency format.

SpssNumericFormat=SpssDataCells.GetNumericFormatAtEx(row,column)

Parameters

row. Row index

column. Column index

The SpssNumericFormat object supports two methods. GetFormatListSize indicates the number of
format items available for retrieval--3 if the current cell has a custom currency format, and 1 otherwise.
GetFormatStringAt retrieves a specified format item. It takes an integer (zero based) that specifies the
index of the format item to retrieve.

GetFormatStringAt(0). If the list size is 3 then the returned value is the prefix of the value in
the associated data cell; otherwise the returned value is the same as that returned from the
GetNumericFormatAt method.

GetFormatStringAt(1). Returns the separator character of the format for the value in the associated data
cell. Only available when the list size is greater than 1.

GetFormatStringAt(2). Returns the suffix of the value in the associated data cell. Only available when the
list size is greater than 2.

170 Python Reference Guide for IBM SPSS Statistics

GetNumRows Method
Returns the number of rows in the SpssDataCells object.

Syntax

SpssDataCells.GetNumRows()

GetReferredFootnotesAt Method
Returns an SpssFootnotes object, which allows access to all the footnotes referred to by the specified
data cell.

• The footnotes array is a subset of the Footnotes object you can get from the pivot table. You can
manipulate the subset using the same properties and methods, but the index of a footnote in this array
is in no way related to the index of the same footnote when accessed from the pivot table.

Syntax

SpssFootnotes=SpssDataCells.GetReferredFootnotesAt(row,column)

Parameters

row. Row index

column. Column index

Example

This example gets the footnotes associated with the cell in the first row and first column of the data cell
array and sets the text color and text style of the first footnote (index value 0) to red and bold respectively.
It assumes that PivotTable is an SpssPivotTable object.

DataCells = PivotTable.DataCellArray()
Footnotes = DataCells.GetReferredFootnotesAt(0,0)
Footnotes.SetTextStyleAt(0,SpssClient.SpssTextStyleTypes.SpssTSBold)
Footnotes.SetTextColorAt(0,255)

GetRightMarginAt Method
Returns the right margin of the specified data cell. The unit is the point (1/72 inch).

Syntax

SpssDataCells.GetRightMarginAt(row,column)

Parameters

row. Row index

column. Column index

GetSigMarkersAt method
Returns the significance indicators, if any, for the specified data cell. Significance indicators are created
for custom tables (CTABLES) when pairwise comparisons of column proportions or column means are
calculated. The GetSigMarkersAt method returns significance indicators only when the indicators are
merged into the main table.

SpssDataCells.GetSigMarkersAt(row,column)

Parameters
Row

Row index.
Column

Column index.

Chapter 3. Scripting Guide 171

Return Value
Simple indicators

When simple indicators are used, the returned value is a Python dictionary. The keys of the dictionary
are the case-preserved values of the indicators for the specified cell. The value for each key is the
number of the column, in the column label array, whose alphabetic identifier matches the key.

• When multiple statistics are specified for the custom table, the column number for each key is the
column for the statistic that was used for the comparison.

• If two significance levels are specified for the pairwise comparisons, capital letters (for the
indicators) are used to identify significance values less than or equal to the smaller level. Lowercase
letters (for the indicators) are used to identify significance values less than or equal to the larger
level.

APA-style indicators
When APA-style indicators are used, the returned value is a string that consists of the indicator for the
specified cell.

You can get the indicator type from the SpssPivotTable.GetSigMarkersType method.

GetTextColorAt Method
Returns the color of the text in the specified data cell.

Syntax

SpssDataCells.GetTextColorAt(row,column)

Parameters

row. Row index

column. Column index

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

GetTextFontAt Method
Returns the font of the text in the specified data cell, as a string.

Syntax

SpssDataCells.GetTextFontAt(row,column)

Parameters

row. Row index

column. Column index

GetTextHiddenAt Method
Returns the hidden effect of the text in the specified data cell. The result is Boolean.

Syntax

SpssDataCells.GetTextHiddenAt(row,column)

Parameters

row. Row index

column. Column index

Returns

172 Python Reference Guide for IBM SPSS Statistics

True. Hidden

False. Not hidden

GetTextSizeAt Method
Returns the font size of the text in the specified data cell.

Syntax

SpssDataCells.GetTextSizeAt(row,column)

Parameters

row. Row index

column. Column index

GetTextStyleAt Method
Returns the bold or italic style of the text in the specified data cell.

Syntax

SpssDataCells.GetTextStyleAt(row,column)

Parameters

row. Row index

column. Column index

Returns

Table 42. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

GetTextUnderlinedAt Method
Returns the underlined effect of the text in the specified data cell. The result is Boolean.

Syntax

SpssDataCells.GetTextUnderlinedAt(row,column)

Parameters

row. Row index

column. Column index

Returns

True. Underlined

False. Not underlined

GetTopMarginAt Method
Returns the top margin of the specified data cell. The unit is the point (1/72 inch).

Syntax

Chapter 3. Scripting Guide 173

SpssDataCells.GetTopMarginAt(row,column)

Parameters

row. Row index

column. Column index

GetVAlignAt Method
Returns the vertical alignment of the specified data cell.

Syntax

SpssDataCells.GetVAlignAt(row,column)

Parameters

row. Row index

column. Column index

Returns

Table 43. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

GetUnformattedValueAt Method
Returns the unformatted value of the specified data cell, as a unicode string. This allows you to obtain all
available digits for a cell that contains a numeric value. In addition, any footnote markers associated with
the cell are removed in the returned value. To obtain the value of the cell, formatted in the same manner
as it appears in the pivot table, use the GetValueAt method.

Syntax

SpssDataCells.GetUnformattedValueAt(row,column)

Parameters

row. Row index

column. Column index

GetValueAt Method
Returns the value of the specified data cell, as a unicode string, and formatted in the same manner as it
appears in the pivot table. To obtain an unformatted version of the cell, use the GetUnformattedValueAt
method.

Syntax

SpssDataCells.GetValueAt(row,column,includeFootnotes)

Parameters

row. Row index

column. Column index

includeFootnotes. Optional Boolean specifying whether to include footnote markers in the returned value.
The default is True.

174 Python Reference Guide for IBM SPSS Statistics

HideFootnotesAt Method
Hides all footnotes referenced by the specified data cell.

Syntax

SpssDataCells.HideFootnotesAt(row,column)

Parameters

row. Row index

column. Column index

InsertNewFootnoteAt Method
Inserts a new footnote for the specified data cell.

Syntax

index=SpssDataCells.InsertNewFootnoteAt(row,column,string)

Parameters

row. Row index

column. Column index

string. New footnote text

Return Value

index. Integer (to be used to insert the footnote in other cells if it is a shared footnote)

Example

This example inserts a footnote for the cell in the first row and first column of the data cell array and
inserts a shared footnote for each cell whose value is identical to this one. It assumes that PivotTable
is an SpssPivotTable object.

DataCells = PivotTable.DataCellArray()
val = DataCells.GetUnformattedValueAt(0,0)
index = DataCells.InsertNewFootnoteAt(0,0,"My footnote")
for i in range(DataCells.GetNumRows()):
 for j in range(DataCells.GetNumColumns()):
 if DataCells.GetUnformattedValueAt(i,j) == val:
 DataCells.InsertSharedFootnoteAt(i,j,index)

InsertSharedFootnoteAt Method
Inserts a shared footnote (a footnote that applies to multiple data cells and/or labels) for the specified
data cell.

Syntax

SpssDataCells.InsertSharedFootnoteAt(row,column,index)

Parameters

row. Row index.

column. Column index

index. The index (in the footnote array) of the desired footnote.

Note: When inserting a shared footnote along with a new footnote created with the
InsertNewFootnoteAt method, you can use the index value returned by the InsertNewFootnoteAt
method. See the topic “InsertNewFootnoteAt Method ” on page 175 for more information.

ReSizeColumn Method
Resets the width of the current column.

Chapter 3. Scripting Guide 175

Syntax

SpssDataCells.ReSizeColumn(column,width)

Parameters

column. Column index

width. An integer. The unit is the point (1/72 inch).

SelectCellAt Method
Selects the specified data cell, in addition to previously selected elements.

Syntax

SpssDataCells.SelectCellAt(row,column)

Parameters

row. Row index

column. Column index

SelectReferredFootnotesAt Method
Selects all the footnotes referenced by the specified data cell, in addition to previously selected elements.

Syntax

SpssDataCells.SelectReferredFootnotesAt(row,column)

Parameters

row. Row index

column. Column index

Note: This method is not available for legacy tables. To modify footnotes associated with a particular
data cell in a legacy table, use the GetReferredFootnotesAt method to get an SpssFootnotes object
containing the footnotes. You can then use the methods of the SpssFootnotes object to make the
desired modifications.

SetBackgroundColorAt Method
Sets the background color of the specified data cell.

Syntax

SpssDataCells.SetBackgroundColorAt(row,column,color)

Parameters

row. Row index

column. Column index

color. Integer representation of the color

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetBottomMarginAt Method
Sets the bottom margin of the specified data cell.

Syntax

SpssDataCells.SetBottomMarginAt(row,column,margin)

Parameters

176 Python Reference Guide for IBM SPSS Statistics

row. Row index

column. Column index

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetForegroundColorAt Method
This method is deprecated in release 17.0. Use the SetTextColorAt method instead.

SetHAlignAt Method
Sets the horizontal alignment of the specified data cell.

Syntax

SpssDataCells.SetHAlignAt(row,column,alignment)

Parameters

row. Row index

column. Column index

Table 44. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

SetHDecDigitsAt Method
Sets the number of decimal digits for the specified data cell.

Syntax

SpssDataCells.SetHDecDigitsAt(row,column,number)

Parameters

row. Row index

column. Column index

number. Number of decimal digits

SetLeftMarginAt Method
Sets the left margin of the specified data cell.

Syntax

SpssDataCells.SetLeftMarginAt(row,column,margin)

Parameters

row. Row index

column. Column index

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

Chapter 3. Scripting Guide 177

SetNumericFormatAt method
Sets the display format for the numeric value in the current cell.

SpssDataCells.SetNumericFormatAt(row,column,format)

Parameters
row

Row index.
column

Column index.
format

The string description of the format.

Note: When using custom currencies, use CCA through CCE for the format parameter instead of the
format strings in the CellFormat panel.

For a listing of the format types, see Appendix D, “String Description of Numeric Formats ,” on page 235.

SetNumericFormatAtWithDecimal method
Sets the display format for the numeric value in the current cell.

SpssDataCells.SetNumericFormatAtWithDecimal(row,column,format,decimal)

Parameters

row. Row index

column. Column index

format. The string description of the format.

decimal. Number of decimal places. The default is 0.

For a listing of the format types, see Appendix D, “String Description of Numeric Formats ,” on page 235.

SetRightMarginAt Method
Sets the right margin of the specified data cell.

Syntax

SpssDataCells.SetRightMarginAt(row,column,margin)

Parameters

row. Row index

column. Column index

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetTextColorAt Method
Sets the color of the text in the specified data cell.

Syntax

SpssDataCells.SetTextColorAt(row,column,color)

Parameters

row. Row index

column. Column index

color. Integer representation of the color

178 Python Reference Guide for IBM SPSS Statistics

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetTextFontAt Method
Sets the font of the text in the specified data cell.

Syntax

SpssDataCells.SetTextFontAt(row,column,fontname)

Parameters

row. Row index

column. Column index

fontname. Name of the font family, as a string. Available fonts are accessed from Format>Cell Properties
in the pivot table editor.

SetTextHiddenAt Method
Sets the hidden effect of the text in the specified data cell.

Syntax

SpssDataCells.SetTextHiddenAt(row,column,boolean)

Parameters

row. Row index

column. Column index

boolean. True for hidden, False for not hidden

SetTextSizeAt Method
Sets the font size of the text in the specified data cell.

Syntax

SpssDataCells.SetTextSizeAt(row,column,size)

Parameters

row. Row index

column. Column index

size. Size in points (integer)

SetTextStyleAt Method
Sets the bold or italic style of the text in the specified data cell.

Syntax

SpssDataCells.SetTextStyleAt(row,column,style)

Parameters

row. Row index

column. Column index

Table 45. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

Chapter 3. Scripting Guide 179

Table 45. Text style types (continued)

Type Description

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

SetTextUnderlinedAt Method
Sets the underlined effect of the text in the specified data cell.

Syntax

SpssDataCells.SetTextUnderlinedAt(row,column,boolean)

Parameters

row. Row index

column. Column index

boolean. True for underlined, False for not underlined

SetTopMarginAt Method
Sets the top margin of the specified data cell.

Syntax

SpssDataCells.SetTopMarginAt(row,column,margin)

Parameters

row. Row index

column. Column index

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetVAlignAt Method
Sets the vertical alignment of the specified data cell.

Syntax

SpssDataCells.SetVAlignAt(row,column,alignment)

Parameters

row. Row index

column. Column index

Table 46. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

SetValueAt Method
Sets the value of the specified data cell.

180 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssDataCells.SetValueAt(row,column,value)

Parameters

row. Row index

column. Column index

value. Value as a string

ShowFootnotesAt Method
Displays all the footnotes referenced by the specified data cell.

Syntax

SpssDataCells.ShowFootnotesAt(row,column)

Parameters

row. Row index

column. Column index

SpssDimension Class
The SpssDimension class provides access to a pivot table's dimensions. A pivot table can have
three types of dimensions: column dimensions, row dimensions, and layer dimensions. Using an
SpssDimension object you can obtain the name of a dimension, change the current category, or pivot
the dimension.

Table Dimensions

The following is an illustration of the three types of dimension in a pivot table. To see the pivot table with
all its labels (as shown in the figure), double-click it and select View>Show All from the menus in the pivot
table editor.

To display the pivot trays (if they are not on the screen), select Pivot >Pivoting Trays from the menus.

Getting an SpssDimension Object

You get an SpssDimension object from the GetColumnDimension, GetLayerDimension, or
GetRowDimension method of an SpssPivotMgr object. The SpssPivotMgr object is obtained from
the SpssPivotTable object. For example, the following gets an SpssDimension object for the row
dimension with index 1:

SpssPivotMgr = SpssPivotTable.PivotManager()
SpssDimension = SpssPivotMgr.GetRowDimension(1)

Example

Chapter 3. Scripting Guide 181

This example assumes that PivotTable is an SpssPivotTable object and moves the "Statistics" row
dimension to the first column dimension.

PivotManager = PivotTable.PivotManager()
Search for the row dimension named "Statistics" and pivot it to
the first column dimension.
for i in range(PivotManager.GetNumRowDimensions()):
 RowDim = PivotManager.GetRowDimension(i)
 if RowDim.GetDimensionName() == "Statistics":
 RowDim.MoveToColumn(0)
 break

GetCategoryValueAt Method
Returns the label associated with the current category.

Syntax

SpssDimension.GetCategoryValueAt(index)

Parameters

index. Category index within the column or row dimension

GetCurrentCategory Method
Returns the index for the current category.

Syntax

SpssDimension.GetCurrentCategory()

GetDimensionName Method
Returns the dimension name.

Syntax

SpssDimension.GetDimensionName()

GetFullDimensionLabel Method
Returns the value of the label for the dimension, which is a concatenation of the dimension name, all the
group labels (if any), and the label for the current category.

Syntax

SpssDimension.GetFullDimensionLabel()

GetNumCategories Method
Returns the number of categories in the dimension.

Syntax

SpssDimension.GetNumCategories()

HideLabel Method
Hides the dimension label.

Syntax

SpssDimension.HideLabel()

MoveToColumn Method
Pivots the dimension to the column, placing it before the specified column dimension.

Syntax

182 Python Reference Guide for IBM SPSS Statistics

SpssDimension.MoveToColumn(index)

Parameters

index. Column dimension index

MoveToLayer Method
Pivots the dimension to the layer, placing it before the specified layer dimension.

Syntax

SpssDimension.MoveToLayer(index)

Parameters

index. Layer dimension index

MoveToRow Method
Pivots the dimension to the row, placing it before the specified row dimension.

Syntax

SpssDimension.MoveToRow(index)

Parameters

index. Row dimension index

SetCurrentCategory Method
Sets the specified category as current.

Syntax

SpssDimension.SetCurrentCategory(index)

Parameters

index. Category index

SetDimensionName Method
Sets the dimension name.

Syntax

SpssDimension.SetDimensionName(name)

SpssFootnotes Class
The SpssFootnotes class provides access to all of the footnotes contained in a pivot table. The index of
a footnote does not correspond to the footnote marker but to the order of their references in the table.
The index is returned when you insert a new footnote.

You get an SpssFootnotes object from the FootnotesArray method of an SpssPivotTable object, as
in:

SpssFootnotes = SpssPivotTable.FootnotesArray()

An SpssFootnotes object is also returned by the GetReferredFootnotesAt method of an
SpssDataCells or SpssLabels object. The footnote collection thus returned contains only the
footnotes referred to by the specified data cell or label. The indexes for the returned collection are in
the ordinal order of the references in the referring cell. IBM SPSS Statistics does not provide a method to
go from a footnote referred to by a cell to the same footnote contained in the footnote array of the table.

Example

Chapter 3. Scripting Guide 183

This example assumes that PivotTable is an SpssPivotTable object and sets the background color to
yellow for all data cells that have footnotes.

Footnotes = PivotTable.FootnotesArray()
PivotTable.ClearSelection()
for i in range(Footnotes.GetCount()):
 Footnotes.SelectCellAt(i)
PivotTable.SetBackgroundColor(65535)

ChangeMarkerToRegular Method
Changes the marker of the current footnote to the regular marker. The marker is either alphabetic
or numeric. The footnote marker type is set from the SetFootnoteMarkers method in the
SpssPivotTable class.

Syntax

SpssFootnotes.ChangeMarkerToRegular(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

ChangeMarkerToSpecial Method
Changes the marker of the current footnote to the special marker.

Syntax

SpssFootnotes.ChangeMarkerToSpecial(index,newmarker)

Parameters

index. Index of the footnote

newmarker. Special marker for the footnote. The value is a string with a maximum length of two
characters.

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

GetBackgroundColorAt Method
Returns the background color of the specified footnote.

Syntax

SpssFootnotes.GetBackgroundColorAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

Note: This method is not available for legacy tables.

GetBottomMarginAt Method
Returns the bottom margin of the specified footnote. The unit is the point (1/72 inch).

184 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssFootnotes.GetBottomMarginAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Note: This method is not available for legacy tables.

GetCount Method
Returns the number of footnotes associated with the current pivot table.

Syntax

SpssFootnotes.GetCount()

GetForegroundColorAt Method
This method is deprecated in release 17.0 and obsolete for legacy tables in release 20 and higher. Use the
GetTextColorAt method instead.

GetHAlignAt Method
Returns the horizontal alignment of the specified footnote.

Syntax

SpssFootnotes.GetHAlignAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Returns

Table 47. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

Note: This method is not available for legacy tables.

GetLeftMarginAt Method
Returns the left margin for the specified footnote. The unit is the point (1/72 inch).

Syntax

SpssFootnotes.GetLeftMarginAt(index)

Parameters

Chapter 3. Scripting Guide 185

index. Index of the footnote.

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Note: This method is not available for legacy tables.

GetRightMarginAt Method
Returns the right margin of the specified footnote. The unit is the point (1/72 inch).

Syntax

SpssFootnotes.GetRightMarginAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Note: This method is not available for legacy tables.

GetTextColorAt Method
Returns the color of the text of the specified footnote.

Syntax

SpssFootnotes.GetTextColorAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

GetTextFontAt Method
Returns the font of the text in the specified footnote, as a string.

Syntax

SpssFootnotes.GetTextFontAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

GetTextHiddenAt Method
Returns the hidden effect of the specified footnote. The result is a Boolean.

Syntax

SpssFootnotes.GetTextHiddenAt(index)

Parameters

index. Index of the footnote

186 Python Reference Guide for IBM SPSS Statistics

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Returns

True. Hidden

False. Not hidden

GetTextSizeAt Method
Returns the font size of the specified footnote.

Syntax

SpssFootnotes.GetTextSizeAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

GetTextStyleAt Method
Returns the bold or italic style of the text for specified footnote.

Syntax

SpssFootnotes.GetTextStyleAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Returns

Table 48. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

GetTextUnderlinedAt Method
Returns the underlined effect of the specified footnote. The result is a Boolean.

Syntax

SpssFootnotes.GetTextUnderlinedAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Returns

True. Underlined

Chapter 3. Scripting Guide 187

False. Not underlined

Note: This method is not available for legacy tables.

GetTopMarginAt Method
Returns the top margin of the specified footnote. The unit is the point (1/72 inch).

Syntax

SpssFootnotes.GetTopMarginAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Note: This method is not available for legacy tables.

GetVAlignAt Method
Returns the vertical alignment of the specified footnote.

Syntax

SpssFootnotes.GetVAlignAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Returns

Table 49. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

Note: This method is not available for legacy tables.

GetValueAt Method
Returns the value associated with the specified footnote, as a unicode string.

Syntax

SpssFootnotes.GetValueAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

RenumberFootnotes Method
Renumbers all footnotes.

Syntax

188 Python Reference Guide for IBM SPSS Statistics

SpssFootnotes.RenumberFootnotes()

SelectCellAt Method
Selects the data or label cell associated with the specified footnote, in addition to previously selected
elements.

Syntax

SpssFootnotes.SelectCellAt(index)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

SetBackgroundColorAt Method
Sets the background color of the specified footnote.

Syntax

SpssFootnotes.SetBackgroundColorAt(index,color)

Parameters

index. Index of the footnote

color. Integer representation of the color

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

Note: This method is not available for legacy tables. You can set the background color of all footnotes
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetBackgroundColor method.

SetBottomMarginAt Method
Sets the bottom margin of the specified footnote.

Syntax

SpssFootnotes.SetBottomMarginAt(index,margin)

Parameters

index. Index of the footnote

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Note: This method is not available for legacy tables. You can set the bottom margin of the footnote area
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetBottomMargin method.

SetForegroundColorAt Method
This method is deprecated in release 17.0 and obsolete for legacy tables in release 20 and higher. Use the
SetTextColorAt method instead.

Chapter 3. Scripting Guide 189

SetHAlignAt Method
Sets the horizontal alignment of the specified footnote.

Syntax

SpssFootnotes.SetHAlignAt(index,alignment)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Table 50. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

Note: This method is not available for legacy tables. You can set the horizontal alignment of all footnotes
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetHAlign method.

SetLeftMarginAt Method
Sets the left margin for the specified footnote.

Syntax

SpssFootnotes.SetLeftMarginAt(index,margin)

Parameters

index. Index of the footnote.

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Note: This method is not available for legacy tables. You can set the left margin of the footnote area
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetLeftMargin method.

SetRightMarginAt Method
Sets the right margin of specified footnote.

Syntax

SpssFootnotes.SetRightMarginAt(index,margin)

Parameters

index. Index of the footnote

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

190 Python Reference Guide for IBM SPSS Statistics

Note: This method is not available for legacy tables. You can set the right margin of the footnote area
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetRightMargin method.

SetTextColorAt Method
Sets the color of the text of the specified footnote.

Syntax

SpssFootnotes.SetTextColorAt(index,color)

Parameters

index. Index of the footnote

color. Integer representation of the color

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetTextFontAt Method
Sets the font of the text in the specified footnote.

Syntax

SpssFootnotes.SetTextFontAt(index,fontname)

Parameters

index. Index of the footnote

fontname. Name of the font family, as a string. Available fonts are accessed from Format>Cell Properties
in the pivot table editor.

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

SetTextHiddenAt Method
Sets the hidden effect of the specified footnote.

Syntax

SpssFootnotes.SetTextHiddenAt(index,boolean)

Parameters

index. Index of the footnote

boolean. True for hidden, False for not hidden

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

SetTextSizeAt Method
Sets the font size of the specified footnote.

Syntax

SpssFootnotes.SetTextSizeAt(index,size)

Parameters

index. Index of the footnote

Chapter 3. Scripting Guide 191

size. Size in points (integer)

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

SetTextStyleAt Method
Sets the bold or italic style of the text for the specified footnote.

Syntax

SpssFootnotes.SetTextStyleAt(index,style)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Table 51. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

SetTextUnderlinedAt Method
Sets the underlined effect of the specified footnote.

Syntax

SpssFootnotes.SetTextUnderlinedAt(index,boolean)

Parameters

index. Index of the footnote

boolean. True for underlined, False for not underlined

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Note: This method is not available for legacy tables. You can set the underlined effect of all footnotes
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetTextUnderlined method.

SetTopMarginAt Method
Sets the top margin of the specified footnote.

Syntax

SpssFootnotes.SetTopMarginAt(index,margin)

Parameters

index. Index of the footnote

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

192 Python Reference Guide for IBM SPSS Statistics

Note: This method is not available for legacy tables. You can set the top margin of the footnote area
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetTopMargin method.

SetVAlignAt Method
Sets the vertical alignment of the specified footnote.

Syntax

SpssFootnotes.SetVAlignAt(index,alignment)

Parameters

index. Index of the footnote

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

Table 52. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

Note: This method is not available for legacy tables. You can set the vertical alignment of all footnotes
in a legacy table by selecting all footnotes with the SpssPivotTable.SelectAllFootnotes method and then
calling the SpssPivotTable.SetVAlign method.

SetValueAt Method
Sets the value associated with the specified footnote.

Syntax

SpssFootnotes.SetValueAt(index,value)

Parameters

index. Index of the footnote

value. String

The index of a footnote does not correspond to the footnote marker but to the order of their references in
the table.

SpssLabels Class
The SpssLabels class provides access to the row labels and column labels contained in a pivot table.
You need to use this object to format column or row labels (for example, making all "Total" labels bold)
or to change labels (for example, changing the "Column %", "Row %" or "Total %" label). Generally
speaking, you need to get the specified column or row label in order to locate specific statistics in an
SpssDataCells object.

The row and column labels are represented as 2-dimensional arrays, referred to as the row labels array
and column labels array. The arrays contain all row and column labels for the pivot table, including
hidden labels. The row labels array has the same number of rows as the data cells array and the column
labels array has the same number of columns as the data cells array. Row indexes for the row labels and
column indexes for the column labels respectively correspond to the row and column indexes for the data
cells.

Column Labels Array

Chapter 3. Scripting Guide 193

The following diagrams illustrate how the column labels array is indexed. Note that where you see only
one label (such as the dimension name Statistics) in the pivot table, the label can be accessed in all cells
corresponding to the categories under it. In the case of Statistics, you can access it using (0,0), (0,1),
(0,2), (0,3), (0,4) or (0,5) and any change you make to one cell is reflected in all these cells.

Figure 18. Column labels (after Showing All)

Figure 19. Column labels array indexing

Each column dimension in the column labels array is represented by a set of levels. The first level is the
dimension label, the last level contains the category labels, and all the levels in between (if any) contain
group labels.

Row Labels Array

The following diagrams illustrate how the row labels array is indexed. Note that where you see only one
label (such as the dimension name Statistics) in the pivot table, the label can be accessed in all cells
corresponding to the categories under it. In the case of Statistics, you can access it using (0,0), (1,0),
(2,0), (3,0), (4,0) and (5,0) and any change you make to one cell is reflected in all these cells.

194 Python Reference Guide for IBM SPSS Statistics

Figure 20. Row labels (after showing all)

Figure 21. Row labels array indexing

Each row dimension in the row labels array is represented by a set of levels. The first level is the
dimension label, the last level contains the category labels, and all the levels in between (if any) contain
group labels.

Notes

• To see all row and column labels in a pivot table, double-click on it and select View>Show All in the
pivot table editor.

• Blank cells in the row label or column label arrays indicate that some categories (or subgroups) are not
grouped.

Getting an SpssLabels Object

You get an SpssLabels object from the RowLabelArray or ColumnLabelArray method of an
SpssPivotTable object, as in:

SpssLabels = SpssPivotTable.RowLabelArray()

Examples

Chapter 3. Scripting Guide 195

This example assumes that PivotTable is an SpssPivotTable object, selects all row labels and bolds
the text.

RowLabels = PivotTable.RowLabelArray()
for i in range(RowLabels.GetNumRows()):
 for j in range(1,RowLabels.GetNumColumns()):
 RowLabels.SetTextStyleAt(i,j,
 SpssClient.SpssTextStyleTypes.SpssTSBold)

This example assumes that PivotTable is an SpssPivotTable object, selects all column labels and
bolds the text.

ColLabels = PivotTable.ColumnLabelArray()
for i in range(1,ColLabels.GetNumRows()):
 for j in range(ColLabels.GetNumColumns()):
 ColLabels.SetTextStyleAt(i,j,
 SpssClient.SpssTextStyleTypes.SpssTSBold)

BreakHere Method
Sets the break location for printing large pivot tables. The break occurs after a specified row or column
label and only applies to the innermost row or column labels. Breaks are specified for a particular row or
column label and do not apply to any repeated versions of the specified label.

Syntax

SpssLabels.BreakHere(index)

Parameters

index. For row labels, the index of the row (to break on) in the row labels array. For column labels, the
index of the column (to break on) in the column labels array.

GetBackgroundColorAt Method
Returns the background color of the specified row/column label.

Syntax

SpssLabels.GetBackgroundColorAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

GetBottomMarginAt Method
Returns the bottom margin of the specified row/column label. The unit is the point (1/72 inch).

Syntax

SpssLabels.GetBottomMarginAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetColumnLabelWidthAt Method
Returns the width of the column labels for the level containing the current label. The unit is the point
(1/72 inch).

196 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssLabels.GetColumnLabelWidthAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetForegroundColorAt Method
This method is deprecated in release 17.0. Use the GetTextColorAt method instead.

GetHAlignAt Method
Returns the horizontal alignment of the specified row/column label.

Syntax

SpssLabels.GetHAlignAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Returns

Table 53. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

GetLeftMarginAt Method
Returns the left margin of the specified row/column label. The unit is the point (1/72 inch).

Syntax

SpssLabels.GetLeftMarginAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetNumColumns Method
Returns the number of columns in the row/column labels object.

Syntax

SpssLabels.GetNumColumns()

GetNumRows Method
Returns the number of rows in the row/column labels object.

Chapter 3. Scripting Guide 197

Syntax

SpssLabels.GetNumRows()

GetReferredFootnotesAt Method
Returns an SpssFootnotes object, which allows access to all the footnotes referred to by the specified
label cell.

• The returned footnotes array is a subset of the array returned by the FootnotesArray method of
the SpssPivotTable class. You can manipulate the subset using the same properties and methods,
but the index of a footnote in this array is in no way related to the index of the same footnote when
accessed from the pivot table.

Syntax

SpssFootnotes=SpssLabels.GetReferredFootnotesAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Example

This example gets the footnotes for the column label with row index 1 and column index 1 (in the column
label array) and sets the text color and text style of the first footnote (index value 0) to red and bold
respectively. It assumes that PivotTable is an SpssPivotTable object.

Labels = PivotTable.ColumnLabelArray()
Footnotes = Labels.GetReferredFootnotesAt(1,1)
Footnotes.SetTextStyleAt(0,SpssClient.SpssTextStyleTypes.SpssTSBold)
Footnotes.SetTextColorAt(0,255)

GetRightMarginAt Method
Returns the right margin of the specified row/column label. The unit is the point (1/72 inch).

Syntax

SpssLabels.GetRightMarginAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetRowLabelWidthAt Method
Returns the width of the row labels for the level containing the current label. The unit is the point (1/72
inch).

Syntax

SpssLabels.GetRowLabelWidthAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetTextColorAt Method
Returns the color of the text in the specified row/column label.

Syntax

198 Python Reference Guide for IBM SPSS Statistics

SpssLabels.GetTextColorAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

GetTextFontAt Method
Returns the font of the text in the specified row/column label, as a string.

Syntax

SpssLabels.GetTextFontAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetTextHiddenAt Method
Returns the hidden effect of the text for the specified row/column label. The result is a Boolean.

Syntax

SpssLabels.GetTextHiddenAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Returns

True. Hidden

False. Not hidden

GetTextSizeAt Method
Returns the font size of the text for the specified row/column label.

Syntax

SpssLabels.GetTextSizeAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetTextStyleAt Method
Returns the bold or italic style of the text in the specified row/column label.

Syntax

SpssLabels.GetTextStyleAt(row,column)

Parameters

row. Row index in the label array

Chapter 3. Scripting Guide 199

column. Column index in the label array

Returns

Table 54. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

GetTextUnderlinedAt Method
Returns the underlined effect of the text in the specified row/column label. The result is a Boolean.

Syntax

SpssLabels.GetTextUnderlinedAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Returns

True. Underlined

False. Not underlined

GetTextWidthAt Method
Returns the width of the text in the indexed row/column label, as if the text were unwrapped. The unit is
the point (1/72 inch).

Syntax

SpssLabels.GetTextWidthAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetTopMarginAt Method
Returns the top margin of the specified row/column label. The unit is the point (1/72 inch).

Syntax

SpssLabels.GetTopMarginAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

GetVAlignAt Method
Returns the vertical alignment of the specified row/column label.

Syntax

200 Python Reference Guide for IBM SPSS Statistics

SpssLabels.GetVAlignAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Returns

Table 55. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

GetValueAt Method
Returns the value of the specified row/column label, as a unicode string.

Syntax

SpssLabels.GetValueAt(row,column,includeFootnotes)

Parameters

row. Row index in the label array

column. Column index in the label array

includeFootnotes. Optional Boolean specifying whether to include footnote markers in the returned value.
The default is True.

HideAllLabelsInDimensionAt Method
Hides all labels in the same dimension as the specified label.

Syntax

SpssLabels.HideAllLabelsInDimensionAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

HideFootnotesAt Method
Hides all footnotes referenced by the specified row/column label.

Syntax

SpssLabels.HideFootnotesAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

HideLabelsInDimensionAt Method
Hides all instances of the specified label within the dimension containing the label.

Syntax

Chapter 3. Scripting Guide 201

SpssLabels.HideLabelsInDimensionAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

HideLabelsWithDataAt Method
Hides all instances of the specified label and all data associated with those instances. Only applies to the
innermost labels.

Syntax

SpssLabels.HideLabelsWithDataAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

InsertBefore Method
Moves the selected column(s) or rows before a specified column or row. (The data are moved together
with the labels.)

• The selected and specified labels must be in the same dimension and must be either category or group
labels. (That is, they cannot be dimension names.)

• If no labels in the same dimension are selected, the method is ignored.

Syntax

SpssLabels.InsertBefore(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

InsertNewAfter Method
Inserts a new row or column, after the specified row or column, in the pivot table. To insert a new row,
use this method with the row labels array. To insert a new column, use this method with the column
labels array. The particular row or column is specified by providing the indexes of its associated label in
the labels array. For example, to insert a column after the column whose label is "Mean", you provide the
indexes of the label "Mean" in the column labels array.

• A plus sign "+" is inserted in the first cell of the new row or column to prevent the row or column from
being automatically hidden because it is empty.

• In a table with nested or layered dimensions, a column or row is inserted at every corresponding
dimension level.

Note: This method is not supported for legacy tables.

Syntax

SpssLabels.InsertNewAfter(row,column,label=None)

Parameters

row. Row index in the label array

column. Column index in the label array

label. An optional label for the new row or column. If omitted, a plus sign "+" is used for the label.

202 Python Reference Guide for IBM SPSS Statistics

InsertNewBefore Method
Inserts a new row or column, before the specified row or column, in the pivot table. To insert a new row,
use this method with the row labels array. To insert a new column, use this method with the column labels
array. The particular row or column is specified by providing the indexes of its associated label in the
labels array. For example, to insert a column before the column whose label is "Mean", you provide the
indexes of the label "Mean" in the column labels array.

• A plus sign "+" is inserted in the first cell of the new row or column to prevent the row or column from
being automatically hidden because it is empty.

• In a table with nested or layered dimensions, a column or row is inserted at every corresponding
dimension level.

Note: This method is not supported for legacy tables.

Syntax

SpssLabels.InsertNewBefore(row,column,label=None)

Parameters

row. Row index in the label array

column. Column index in the label array

label. An optional label for the new row or column. If omitted, a plus sign "+" is used for the label.

InsertNewFootnoteAt Method
Inserts a new footnote for the specified row/column label.

Syntax

index=SpssLabels.InsertNewFootnoteAt(row,column,string)

Parameters

row. Row index in the label array

column. Column index in the label array

string. New footnote text

Return Value

index. Integer (to be used to insert the footnote in other cells if it is a shared footnote)

Example

This example inserts a footnote for the column label with row index 1 and column index 1 (in the column
label array), and it also inserts a shared footnote for the column label with row index 1 and column index
2. It assumes that PivotTable is an SpssPivotTable object.

Labels = PivotTable.ColumnLabelArray()
index = Labels.InsertNewFootnoteAt(1,1,"My footnote")
Labels.InsertSharedFootnoteAt(1,2,index)

InsertSharedFootnoteAt Method
Inserts a shared footnote (a footnote that applies to multiple labels and/or data cells) for the specified
row/column label.

Syntax

SpssLabels.InsertSharedFootnoteAt(row,column,index)

Parameters

row. Row index in the label array.

Chapter 3. Scripting Guide 203

column. Column index in the label array

index. The index (in the footnote array) of the desired footnote.

Note: When inserting a shared footnote along with a new footnote created with the
InsertNewFootnoteAt method, you can use the index value returned by the InsertNewFootnoteAt
method. See the topic “InsertNewFootnoteAt Method ” on page 203 for more information.

KeepTogether Method
Prevents a page break from occurring within the specified range when printing large pivot tables.

Syntax

SpssLabels.KeepTogether(from,to)

Parameters

from. For row labels, the index of the starting row in the row labels array. For column labels, the index of
the starting column in the column labels array.

to. For row labels, the index of the ending row in the row labels array. For column labels, the index of the
ending column in the column labels array.

RemoveBreakHere Method
Clears a previously set break location.

Syntax

SpssLabels.RemoveBreakHere(index)

Parameters

index. For row labels, the index of the row (in the row labels array) for which the break was set. For
column labels, the index of the column (in the column labels array) for which the break was set.

RemoveKeepTogether Method
Negates the effects of a previous call to KeepTogether.

Syntax

SpssLabels.RemoveKeepTogether(from,to)

Parameters

from. For row labels, the index of the starting row in the row labels array. For column labels, the index of
the starting column in the column labels array.

to. For row labels, the index of the ending row in the row labels array. For column labels, the index of the
ending column in the column labels array.

SelectDataUnderLabelAt Method
Selects the data under the indexed label (but not the label), in addition to whatever has been selected
previously.

Syntax

SpssLabels.SelectDataUnderLabelAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

204 Python Reference Guide for IBM SPSS Statistics

SelectLabelAt Method
Selects the indexed label, in addition to previously selected elements.

Syntax

SpssLabels.SelectLabelAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

SelectLabelDataAt Method
Selects the indexed label and all corresponding data in the category, in addition to whatever has been
selected previously.

Syntax

SpssLabels.SelectLabelDataAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

SelectReferredFootnotesAt Method
Selects all the footnotes referenced by the specified label cell, in addition to previously selected
elements.

Syntax

SpssLabels.SelectReferredFootnotesAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Note: This method is not available for legacy tables. To modify footnotes associated with a particular
label in a legacy table, use the GetReferredFootnotesAt method to get an SpssFootnotes object
containing the footnotes. You can then use the methods of the SpssFootnotes object to make the
desired modifications.

SetBackgroundColorAt Method
Sets the background color of the specified row/column label.

Syntax

SpssLabels.SetBackgroundColorAt(row,column,color)

Parameters

row. Row index in the label array

column. Column index in the label array

color. Integer representation of the color

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetBottomMarginAt Method
Sets the bottom margin of the specified row/column label.

Chapter 3. Scripting Guide 205

Syntax

SpssLabels.SetBottomMarginAt(row,column,margin)

Parameters

row. Row index in the label array

column. Column index in the label array

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetColumnLabelWidthAt Method
Sets the width of the specified column label. This property will also set the widths of all column labels
and data cells that are in the same column of the table as the specified label. To set column widths
independently, use the ReSizeColumn method in the SpssDataCells class.

Syntax

SpssLabels.SetColumnLabelWidthAt(row,column,width)

Parameters

row. Row index in the label array

column. Column index in the label array

width. An integer. The unit is the point (1/72 inch).

SetForegroundColorAt Method
This method is deprecated in release 17.0. Use the SetTextColorAt method instead.

SetHAlignAt Method
Sets the horizontal alignment of the specified row/column label.

Syntax

SpssLabels.SetHAlignAt(row,column,alignment)

Parameters

row. Row index in the label array

column. Column index in the label array

Table 56. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

SetLeftMarginAt Method
Sets the left margin of the specified row/column label.

Syntax

SpssLabels.SetLeftMarginAt(row,column,margin)

206 Python Reference Guide for IBM SPSS Statistics

Parameters

row. Row index in the label array

column. Column index in the label array

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetRightMarginAt Method
Sets the right margin of the specified row/column label.

Syntax

SpssLabels.SetRightMarginAt(row,column,margin)

Parameters

row. Row index in the label array

column. Column index in the label array

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetRowLabelWidthAt Method
Sets the width of the specified row label. This method will also set the widths of all row labels that are in
the same column of the row label array as the specified label.

Syntax

SpssLabels.SetRowLabelWidthAt(row,column,width)

Parameters

row. Row index in the label array

column. Column index in the label array

width. An integer. The unit is the point (1/72 inch).

SetTextColorAt Method
Sets the color of the text in the specified row/column label.

Syntax

SpssLabels.SetTextColorAt(row,column,color)

Parameters

row. Row index in the label array

column. Column index in the label array

color. Integer representation of the color

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetTextFontAt Method
Sets the font of the text in the specified row/column label.

Syntax

SpssLabels.SetTextFontAt(row,column,fontname)

Parameters

row. Row index in the label array

column. Column index in the label array

Chapter 3. Scripting Guide 207

fontname. Name of the font family, as a string. Available fonts are accessed from Format>Cell Properties
in the pivot table editor.

SetTextHiddenAt Method
Sets the hidden effect of the text for the specified row/column label.

Syntax

SpssLabels.SetTextHiddenAt(row,column,boolean)

Parameters

row. Row index in the label array

column. Column index in the label array

boolean. True for hidden, False for not hidden. True hides the cell associated with the label.

SetTextSizeAt Method
Sets the font size of the text for the specified row/column label.

Syntax

SpssLabels.SetTextSizeAt(row,column,size)

Parameters

row. Row index in the label array

column. Column index in the label array

size. Size in points (integer)

SetTextStyleAt Method
Sets the bold or italic style of the text in the specified row/column label.

Syntax

SpssLabels.SetTextStyleAt(row,column,style)

Parameters

row. Row index in the label array

column. Column index in the label array

Table 57. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

SetTextUnderlinedAt Method
Sets the underlined effect of the text in the specified row/column label.

Syntax

SpssLabels.SetTextUnderlinedAt(row,column,boolean)

Parameters

208 Python Reference Guide for IBM SPSS Statistics

row. Row index in the label array

column. Column index in the label array

boolean. True for underlined, False for not underlined.

SetTopMarginAt Method
Sets the top margin of the specified row/column label.

Syntax

SpssLabels.SetTopMarginAt(row,column,margin)

Parameters

row. Row index in the label array

column. Column index in the label array

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetVAlignAt Method
Sets the vertical alignment of the specified row/column label.

Syntax

SpssLabels.SetVAlignAt(row,column,alignment)

Parameters

row. Row index in the label array

column. Column index in the label array

Table 58. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

SetValueAt Method
Sets the value of the specified row/column label.

Syntax

SpssLabels.SetValueAt(row,column,value)

Parameters

row. Row index in the label array

column. Column index in the label array

value. String

ShowAllLabelsAndDataInDimensionAt Method
Shows all labels and data in the dimension that contains the specified label.

Syntax

SpssLabels.ShowAllLabelsAndDataInDimensionAt(row,column)

Parameters

Chapter 3. Scripting Guide 209

row. Row index in the label array

column. Column index in the label array

ShowAllLabelsInDimensionAt Method
Shows all labels in the dimension that contains the specified label.

Syntax

SpssLabels.ShowAllLabelsInDimensionAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

ShowFootnotesAt Method
Displays all the footnotes referenced by the specified row/column label.

Syntax

SpssLabels.ShowFootnotesAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

ShowHiddenDimensionLabelAt Method
Shows the hidden dimension label for the dimension that contains the specified label.

Syntax

SpssLabels.ShowHiddenDimensionLabelAt(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

Swap Method
Swaps the selected column(s) or rows with a specified column or row. The data are swapped together
with the labels.

• The selected and specified labels must be in the same dimension and must be either category or group
labels. (That is, they cannot be dimension names.)

• If no labels in the same dimenison are selected, the method is ignored.

Syntax

SpssLabels.Swap(row,column)

Parameters

row. Row index in the label array

column. Column index in the label array

SpssLayerLabels Class
The SpssLayerLabels class provides access to the layer labels contained in a pivot table. You need to
use this object to format or change layer labels.

210 Python Reference Guide for IBM SPSS Statistics

Layer Labels Array

The layer labels are represented as a 2-dimensional array, referred to as the layer labels array. Each row
corresponds to the current category of one layer dimension. The first column is a concatenation of all the
labels in the row, the second column is the dimension name, and the last column is the category label.
Any columns between the second and last are group labels. You access other categories of the dimension
from the SpssDimension object.

Figure 22. Layer labels displayed in a pivot table

Figure 23. Layer labels array indexing

Each layer dimension in the layer labels array is represented by a set of levels. The first level is the
dimension name, the last level contains the current category label, and all the levels in between (if any)
contain group labels. Blank cells in the layer labels array indicate that there are different numbers of
levels in different layer dimensions.

Getting an SpssLayerLabels Object

You get an SpssLayerLabels object from the LayerLabelArray method of an SpssPivotTable object,
as in:

SpssLayerLabels = SpssPivotTable.LayerLabelArray()

Example

This example assumes that PivotTable is an SpssPivotTable object and sets the background color of
the label for the first layer dimension to yellow.

LayerLabels = PivotTable.LayerLabelArray()
LayerLabels.SetBackgroundColorAt(0,65535)

GetBackgroundColorAt Method
Returns the background color of the specified layer label.

Syntax

SpssLayerLabels.GetBackgroundColorAt(index)

Parameters

index. Index of the layer dimension

Chapter 3. Scripting Guide 211

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

GetBottomMarginAt Method
Returns the bottom margin of the specified layer label. The unit is the point (1/72 inch).

Syntax

SpssLayerLabels.GetBottomMarginAt(index)

Parameters

index. Index of the layer dimension

GetForegroundColorAt Method
This method is deprecated in release 17.0. Use the GetTextColorAt method instead.

GetHAlignAt Method
Returns the horizontal alignment of the specified layer label.

Syntax

SpssLayerLabels.GetHAlignAt(index)

Parameters

index. Index of the layer dimension

Returns

Table 59. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

GetLeftMarginAt Method
Returns the left margin of the label for the specified layer dimension. The unit is the point (1/72 inch).

Syntax

SpssLayerLabels.GetLeftMarginAt(index)

Parameters

index. Index of the layer dimension

GetNumDimensions Method
Returns the number of labels in the Layers (equal to the number of dimensions in the layers).

Syntax

SpssLayerLabels.GetNumDimensions()

212 Python Reference Guide for IBM SPSS Statistics

GetNumLabelsWide Method
Returns the width (number of columns) of the Layer Labels array. The width equals the maximum depth of
layer dimensions plus one.

Syntax

SpssLayerLabels.GetNumLabelsWide()

GetRightMarginAt Method
Returns the right margin of the label for the specified layer dimension. The unit is the point (1/72 inch).

Syntax

SpssLayerLabels.GetRightMarginAt(index)

Parameters

index. Index of the layer dimension

GetTextColorAt Method
Returns the color of the text in the label of the specified layer dimension.

Syntax

SpssLayerLabels.GetTextColorAt(index)

Parameters

index. Index of the layer dimension

Returns

The color is returned as an integer. See the topic Appendix B, “Setting Color Values ,” on page 231 for
more information.

GetTextFontAt Method
Returns the font of the text in the specified layer dimension, as a string.

Syntax

SpssLayerLabels.GetTextFontAt(index)

Parameters

index. Index of the layer dimension

GetTextHiddenAt Method
Returns the hidden effect of the specified layer dimension. The result is a Boolean.

Syntax

SpssLayerLabels.GetTextHiddenAt(index)

Parameters

index. Index of the layer dimension

Returns

True. Hidden

False. Not hidden

Chapter 3. Scripting Guide 213

GetTextSizeAt Method
Returns the font size of the label for the specified layer dimension.

Syntax

SpssLayerLabels.GetTextSizeAt(index)

Parameters

index. Index of the layer dimension

GetTextStyleAt Method
Returns the bold or italic style of the text for the specified layer dimension.

Syntax

SpssLayerLabels.GetTextStyleAt(index)

Parameters

index. Index of the layer dimension

Returns

Table 60. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

GetTextUnderlinedAt Method
Returns the underlined effect of the specified layer dimension. The result is a Boolean.

Syntax

SpssLayerLabels.GetTextUnderlinedAt(index)

Parameters

index. Index of the layer dimension

Returns

True. Underlined

False. Not underlined

GetTopMarginAt Method
Returns the top margin of the label for the specified layer dimension. The unit is the point (1/72 inch).

Syntax

SpssLayerLabels.GetTopMarginAt(index)

Parameters

index. Index of the layer dimension

GetVAlignAt Method
Returns the vertical alignment of the label for the specified layer dimension.

214 Python Reference Guide for IBM SPSS Statistics

Syntax

SpssLayerLabels.GetVAlignAt(index)

Parameters

index. Index of the layer dimension

Returns

Table 61. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

GetValueAt Method
Returns the value associated with the specified layer and column from the layer labels array, as a unicode
string.

Syntax

SpssLayerLabels.GetValueAt(index,column)

Parameters

index. Index of the layer dimension

column. Column index of the cell in the layer labels array

HideFootnotesAt Method
Hides all footnotes referenced by the specified layer label.

Syntax

SpssLayerLabels.HideFootnotesAt(index)

Parameters

index. Index of the layer dimension

InsertNewFootnoteAt Method
Inserts a new footnote for the specified layer dimension.

Syntax

index=SpssLayerLabels.InsertNewFootnoteAt(index,string)

Parameters

index. Index of the layer dimension

string. New footnote text

Return Value

index. Integer (to be used to insert the footnote in other cells if it is a shared footnote)

Example

Chapter 3. Scripting Guide 215

This example inserts a footnote for the layer dimension with index 0 (in the layer label array), and
then inserts a shared footnote for the layer dimension with index 1. It assumes that PivotTable is an
SpssPivotTable object.

Labels = PivotTable.LayerLabelArray()
index = Labels.InsertNewFootnoteAt(0,"My footnote")
Labels.InsertSharedFootnoteAt(1,index)

InsertSharedFootnoteAt Method
Inserts a shared footnote (a footnote that applies to multiple labels and/or data cells) for the specified
layer dimension.

Syntax

SpssLayerLabels.InsertSharedFootnoteAt(dim,index)

Parameters

dim. Index of the layer dimension

index. The index (in the footnote array) of the desired footnote.

Note: When inserting a shared footnote along with a new footnote created with the
InsertNewFootnoteAt method, you can use the index value returned by the InsertNewFootnoteAt
method. See the topic “InsertNewFootnoteAt Method ” on page 215 for more information.

SelectLabelAt Method
Selects the specified label, in addition to previously selected elements.

Syntax

SpssLayerLabels.SelectLabelAt(index)

Parameters

index. Index of the layer dimension

SelectReferredFootnotesAt Method
Selects all the footnotes referenced by the current layer label, in addition to previously selected elements.

Syntax

SpssLayerLabels.SelectReferredFootnotesAt(index)

Parameters

index. Index of the layer dimension

Note: This method is not available for legacy tables.

SetBackgroundColorAt Method
Sets the background color of the specified layer label.

Syntax

SpssLayerLabels.SetBackgroundColorAt(index,color)

Parameters

index. Index of the layer dimension

color. Integer representation of the color

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

216 Python Reference Guide for IBM SPSS Statistics

SetBottomMarginAt Method
Sets the bottom margin of the specified layer label.

Syntax

SpssLayerLabels.SetBottomMarginAt(index,margin)

Parameters

index. Index of the layer dimension

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetForegroundColorAt Method
This method is deprecated in release 17.0. Use the SetTextColorAt method instead.

SetHAlignAt Method
Sets the horizontal alignment of the specified layer label.

Syntax

SpssLayerLabels.SetHAlignAt(index,alignment)

Parameters

index. Index of the layer dimension

Table 62. Horizontal alignment types

Type Description

SpssClient.SpssHAlignTypes.SpssHAlLeft Left

SpssClient.SpssHAlignTypes.SpssHAlRight Right

SpssClient.SpssHAlignTypes.SpssHAlCenter Center

SpssClient.SpssHAlignTypes.SpssHAlMixed Mixed

SpssClient.SpssHAlignTypes.SpssHAlDecimal Decimal

SetLeftMarginAt Method
Sets the left margin of the label for the specified layer dimension.

Syntax

SpssLayerLabels.SetLeftMarginAt(index,margin)

Parameters

index. Index of the layer dimension

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetRightMarginAt Method
Sets the right margin of the label for the specified layer dimension.

Syntax

SpssLayerLabels.SetRightMarginAt(index,margin)

Parameters

index. Index of the layer dimension

Chapter 3. Scripting Guide 217

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetTextColorAt Method
Sets the color of the text in the label of the specified layer dimension.

Syntax

SpssLayerLabels.SetTextColorAt(index,color)

Parameters

index. Index of the layer dimension

color. Integer representation of the color

For information on setting color values, see Appendix B, “Setting Color Values ,” on page 231.

SetTextFontAt Method
Sets the font of the text in the specified layer dimension.

Syntax

SpssLayerLabels.SetTextFontAt(index,fontname)

Parameters

index. Index of the layer dimension

fontname. Name of the font family, as a string. Available fonts are accessed from Format>Cell Properties
in the pivot table editor.

SetTextHiddenAt Method
Sets the hidden effect of the label for the specified layer dimension.

Syntax

SpssLayerLabels.SetTextHiddenAt(index,boolean)

Parameters

index. Index of the layer dimension

boolean. True for hidden, False for not hidden

SetTextSizeAt Method
Sets the font size of the label of the specified layer dimension.

Syntax

SpssLayerLabels.SetTextSizeAt(index,size)

Parameters

index. Index of the layer dimension

size. Size in points (integer)

SetTextStyleAt Method
Sets the bold or italic style of the text for the specified layer dimension.

Syntax

SpssLayerLabels.SetTextStyleAt(index,style)

Parameters

218 Python Reference Guide for IBM SPSS Statistics

index. Index of the layer dimension

Table 63. Text style types

Type Description

SpssClient.SpssTextStyleTypes.SpssTSRegular Regular

SpssClient.SpssTextStyleTypes.SpssTSItalic Italic

SpssClient.SpssTextStyleTypes.SpssTSBold Bold

SpssClient.SpssTextStyleTypes.SpssTSBoldItalic Bold Italic

SetTextUnderlinedAt Method
Sets the underlined effect of the label for the specified layer dimension.

Syntax

SpssLayerLabels.SetTextUnderlinedAt(index,boolean)

Parameters

index. Index of the layer dimension

boolean. True for underlined, False for not underlined.

SetTopMarginAt Method
Sets the top margin of the label for the specified layer dimension.

Syntax

SpssLayerLabels.SetTopMarginAt(index,margin)

Parameters

index. Index of the layer dimension

margin. An integer. The unit is the point (1/72 inch). The maximum value is 36.

SetVAlignAt Method
Sets the vertical alignment of the label for the specified layer dimension.

Syntax

SpssLayerLabels.SetVAlignAt(index,alignment)

Parameters

index. Index of the layer dimension

Table 64. Vertical alignment types

Type Description

SpssClient.SpssVAlignTypes.SpssVAlTop Top

SpssClient.SpssVAlignTypes.SpssVAlBottom Bottom

SpssClient.SpssVAlignTypes.SpssVAlCenter Center

ShowFootnotesAt Method
Displays all the footnotes referenced by the label of the specified layer dimension.

Syntax

Chapter 3. Scripting Guide 219

SpssLayerLabels.ShowFootnotesAt(index)

Parameters

index. Index of the layer dimension

SpssPivotMgr Class
The SpssPivotMgr class provides access to the row, column, and layer dimensions contained in a pivot
table. By pivoting row dimensions to column dimensions, or column dimensions to layer dimensions, you
can find the best way to present the results of the statistical analyses.

You get an SpssPivotMgr object from the PivotManager method of an SpssPivotTable object, as in:

SpssPivotMgr = SpssPivotTable.PivotManager()

For an example of using the SpssPivotMgr class, see “SpssDimension Class ” on page 181.

GetColumnDimension Method
Returns an SpssDimension object for the specified column dimension.

Syntax

SpssDimension=SpssPivotMgr.GetColumnDimension(index)

Parameters

index. Index of the column dimension, where the value 0 refers to the innermost column dimension.

GetLayerDimension Method
Returns an SpssDimension object for the specified layer dimension.

Syntax

SpssDimension=SpssPivotMgr.LayerDimension(index)

Parameters

index. Index of the layer dimension

GetNumColumnDimensions Method
Returns the number of column dimensions.

Syntax

SpssPivotMgr.GetNumColumnDimensions()

GetNumLayerDimensions Method
Returns the number of layer dimensions.

Syntax

SpssPivotMgr.GetNumLayerDimensions()

GetNumRowDimensions Method
Returns the number of row dimensions.

Syntax

SpssPivotMgr.GetNumRowDimensions()

220 Python Reference Guide for IBM SPSS Statistics

GetRowDimension Method
Returns an SpssDimension object for the specified row dimension.

Syntax

SpssDimension=SpssPivotMgr.GetRowDimension(index)

Parameters

index. Index of the row dimension, where the value 0 refers to the innermost row dimension.

MoveLayersToColumns Method
Moves all dimensions in layers to the outermost columns.

Syntax

SpssPivotMgr.MoveLayersToColumns()

MoveLayersToRows Method
Moves all dimensions in layers to the outermost rows.

Syntax

SpssPivotMgr.MoveLayersToRows()

TransposeRowsWithColumns Method
Moves all dimensions in the rows to the columns and moves all dimensions in the columns to the rows.

Syntax

SpssPivotMgr.TransposeRowsWithColumns()

Managing Remote Servers

SpssServerConf Class
The SpssServerConf class represents the configuration information for a server machine (may be an
instance of IBM SPSS Statistics Server or the local computer). From the SpssClient object you can get
an SpssServerConf object for the current server, the default server, the local computer, or you can get a
list of SpssServerConf objects for all configured servers (includes the local computer).

Example: Connecting to a Server

import SpssClient
SpssClient.StartClient()
SpssServerConf = SpssClient.CreateNewServer("myservername",3016,"")
SpssServerConf.Connect("","myuserID","mypassword")
SpssClient.StopClient()

• The CreateNewServer method from the SpssClient class creates a new server configuration object
for a server with a specified name (or IP address) on a specified port. It returns an SpssServerConf
object.

• The Connect method of an SpssServerConf object establishes a connection to the server using the
specified domain, user ID, and password.

Example: Configuring a New Server and Saving the Configuration

import SpssClient
SpssClient.StartClient()
ServerConfList = SpssClient.GetConfiguredServers()
SpssServerConf = SpssClient.CreateNewServer("myservername",3016,"")
ServerConfList.Add(SpssServerConf)
SpssServerConf = ServerConfList.GetItemAt(ServerConfList.Size()-1)
SpssServerConf.SetUserId("myuserID")
SpssServerConf.SetPassword("mypassword")
SpssServerConf.SetUserDomain("mydomain")

Chapter 3. Scripting Guide 221

SpssServerConf.SetPasswordSaved(True)
SpssClient.SaveServers()
SpssClient.StopClient()

• SpssClient.GetConfiguredServers() gets an SpssServerConfList object that allows you to
manage the list of configured servers.

• The CreateNewServer method from the SpssClient class creates a new server configuration object.
The variable SpssServerConf is an SpssServerConf object.

• To add a new server configuration to the list, you use the Add method of the SpssServerConfList
object.

• The user ID, password, and domain are set using the SetUserId, SetPassword, and SetUserDomain
methods of the SpssServerConf object. The SetPasswordSaved method specifies that the
password is to be saved for future use.

• The SaveServers method from the SpssClient class saves all server configurations so that they are
available in future sessions.

Example: Connecting to a Server Using a Saved Configuration

import SpssClient
SpssClient.StartClient()
ServerConfList = SpssClient.GetConfiguredServers()
for i in range(ServerConfList.Size()):
 server = ServerConfList.GetItemAt(i)
 if server.GetServerName()=="myservername":
 server.ConnectWithSavedPassword()
SpssClient.StopClient()

• SpssClient.GetConfiguredServers() gets an SpssServerConfList object that provides
access to the list of configured servers.

• The GetItemAt method of an SpssServerConfList object returns the SpssServerConf object at
the specified index. Index values start from 0 and represent the order in which the servers were added
to the list.

• The ConnectWithSavedPassword method uses the connection information (domain, user ID, and
password) to connect to the server.

Connect Method
Attempts to connect to the associated instance of IBM SPSS Statistics Server using the provided domain,
user ID, and password. Any existing connection to an instance of IBM SPSS Statistics Server is terminated.

Note: This method is not available when called from a Python program in distributed mode (Python
programs make use of the interface exposed by the Python spss module).

Syntax

SpssServerConf.Connect(domain,userID,password)

Parameters

domain. A string specifying the domain of the user ID. Enter a blank string if the domain is not required.

userID. A string specifying the user ID.

password. A string specifying the password.

ConnectWithSavedPassword Method
Attempts to connect to the associated instance of IBM SPSS Statistics Server using the stored user
domain, user ID, and password.

Note: This method is not available when called from a Python program in distributed mode (Python
programs make use of the interface exposed by the Python spss module).

Syntax

SpssServerConf.ConnectWithSavedPassword()

222 Python Reference Guide for IBM SPSS Statistics

Disconnect Method
Disconnects from the associated instance of IBM SPSS Statistics Server.

• The method has no effect when called on the local server.
• After calling the Disconnect method, you must connect to another server before calling other

methods in the SpssClient module.
• It is not necessary to disconnect before connecting to a new server.

Note: This method is not available when called from a Python program in distributed mode (Python
programs make use of the interface exposed by the Python spss module).

Syntax

SpssServerConf.Disconnect()

GetDescription Method
Returns the description text for the associated server.

Syntax

SpssServerConf.GetDescription()

GetServerName Method
Returns the machine name or IP address for the associated instance of IBM SPSS Statistics Server.

Syntax

SpssServerConf.GetServerName()

GetServerPort Method
Returns the port number for the associated instance of IBM SPSS Statistics Server.

Syntax

SpssServerConf.GetServerPort()

GetUserDomain Method
Returns the domain for the current user ID.

Syntax

SpssServerConf.GetUserDomain()

GetUserId Method
Returns the user ID if it is saved as part of the associated server configuration.

Syntax

SpssServerConf.GetUserId()

GetUseSSL Method
Indicates if SSL (Secure Sockets Layer) is in use for the associated instance of IBM SPSS Statistics
Server. SSL is a commonly used protocol for managing the security of message transmission on the
Internet. The result is Boolean--True if SSL is in use, False otherwise.

Syntax

SpssServerConf.GetUseSSL()

Chapter 3. Scripting Guide 223

IsDefaultServer Method
Indicates whether the associated instance of IBM SPSS Statistics Server is set as the default server. The
result is Boolean--True if this is the default server, False otherwise.

Syntax

SpssServerConf.IsDefaultServer()

IsEqualTo Method
Indicates if this server configuration object is the same object as a specified server configuration object.
The result is Boolean--True if the two objects are identical, False otherwise.

Syntax

SpssServerConf.IsEqualTo(serverConf)

Parameters

serverConf. An SpssServerConf object

IsLocalServer Method
Indicates whether the associated instance of IBM SPSS Statistics Server represents the local server. The
result is Boolean--True if this server is the local server, False otherwise.

Syntax

SpssServerConf.IsLocalServer()

IsPasswordSaved Method
Indicates whether the password is saved in the server configuration. The result is Boolean--True if the
password is saved, False otherwise.

Syntax

SpssServerConf.IsPasswordSaved()

SetDefaultServer Method
Specifies whether the associated instance of IBM SPSS Statistics Server is set as the default server.

Syntax

SpssServerConf.SetDefaultServer(defaultServerFlag)

Parameters

defaultServerFlag. True to set as the default server, False otherwise.

SetDescription Method
Sets the description text for the associated server configuration.

Syntax

SpssServerConf.SetDescription(description)

SetPassword Method
Sets the password to be used by this server configuration.

Syntax

SpssServerConf.SetPassword(password)

224 Python Reference Guide for IBM SPSS Statistics

SetPasswordSaved Method
Specifies whether the password is saved in the server configuration.

Syntax

SpssServerConf.SetPasswordSaved(savePassword)

Parameters

savePassword. True if the password is to be saved for future use, False otherwise.

SetServerName Method
Sets the machine name or IP address for the associated instance of IBM SPSS Statistics Server.

Syntax

SpssServerConf.SetServerName(serverName)

SetServerPort Method
Sets the port number for the associated instance of IBM SPSS Statistics Server.

Syntax

SpssServerConf.SetServerPort(port)

Parameters

port. An integer

SetUserDomain Method
Sets the domain for the current user ID.

Syntax

SpssServerConf.SetUserDomain(domain)

domain. A string

SetUserId Method
Sets the user ID for the associated server configuration.

Syntax

SpssServerConf.SetUserId(userId)

SetUseSSL Method
Specifies the setting for using SSL (Secure Sockets Layer) with the associated instance of IBM SPSS
Statistics Server. SSL is a commonly used protocol for managing the security of message transmission on
the Internet.

Syntax

SpssServerConf.SetUseSSL(useSSL)

Parameters

useSSL. True to use SSL, False otherwise.

Chapter 3. Scripting Guide 225

SpssServerConfList Class
The SpssServerConfList class allows you to manage the list of configured servers, which includes the
local computer. You obtain an SpssServerConfList object from the GetConfiguredServers method of
the SpssClient class.

An SpssServerConfList object is not an iterable Python object. In order to iterate over the items in the
list, use a for loop, as in:

for index in range(SpssServerConfList.Size()):

For an example that uses the SpssServerConfList class, see the example for the SpssServerConf
class.

Add Method
Adds a server configuration to the list of available servers.

Syntax

SpssServerConfList.Add(serverConf)

Parameters

serverConf. An SpssServerConf object.

Server configuration objects are created with the CreateNewServer method in the SpssClient class.

Clear Method
Clears the list of server configurations, including the local computer.

Syntax

SpssServerConfList.Clear()

Contains Method
Indicates if the specified server configuration is a member of the list of available server configurations.
The result is a Boolean--True if the specified server configuration object is equal to a member of the list of
available server configuration objects, False otherwise.

Syntax

SpssServerConfList.Contains(serverConf)

Parameters

serverConf. An SpssServerConf object

GetItemAt Method
Returns an SpssServerConf object corresponding to the server configuration with the specified index.
The index corresponds to the order in which the server configurations were created.

Syntax

SpssServerConf=SpssServerConfList.GetItemAt(index)

Remove Method
Removes the first occurrence of the specified server configuration from the list of available server
configurations. There is no effect if the list does not contain the specified server configuration object.

Syntax

SpssServerConfList.Remove(serverConf)

226 Python Reference Guide for IBM SPSS Statistics

Parameters

serverConf. An SpssServerConf object

RemoveItemAt Method
Removes the server configuration with the specified index from the list of available server configurations.
The index corresponds to the order in which the server configurations were created.

Syntax

SpssServerConfList.RemoveItemAt(index)

Size Method
Returns the number of configured servers, including the local computer.

Syntax

SpssServerConfList.Size()

SpssScriptContext Class
The SpssScriptContext class provides access to the object that triggers an autoscript as well as the
associated output document object. Autoscripts are scripts that run automatically when triggered by the
creation of specific pieces of output from selected procedures. Scripts are specified as autoscripts and
associated with output items (that trigger them) from the Scripts tab of the Options dialog.

SpssScriptContext objects are only for use when writing a script that will be used as an autoscript.
They have a value of None if referenced by a script that is not being run as an autoscript.

You get an SpssScriptContext object from the GetScriptContext method of the SpssClient object.

Example: Get the Output Item that Triggered an Autoscript

import SpssClient
SpssClient.StartClient()
SpssScriptContext = SpssClient.GetScriptContext()
SpssOutputItem = SpssScriptContext.GetOutputItem()

The GetOutputItem method of the SpssScriptContext object returns the output item
(SpssOutputItem object) that triggered the current autoscript.

GetOutputDoc Method
Returns an SpssOutputDoc object representing the output document associated with the current
autoscript.

Syntax

SpssOutputDoc=SpssScriptContext.GetOutputDoc()

GetOutputItem Method
Returns an SpssOutputItem object representing the output item that triggered the current autoscript.

Syntax

SpssOutputItem=SpssScriptContext.GetOutputItem()

Note: To obtain an object of a specific output type, such as a pivot table or header item, from an
SpssOutputItem object, call the GetSpecificType method of the SpssOutputItem object.

Chapter 3. Scripting Guide 227

GetOutputItemIndex Method
Returns the index, in the associated output document, of the output item that triggered the current
autoscript. The index corresponds to the order of the items in the output document, starting with 0 for the
root item.

Syntax

SpssScriptContext.GetOutputItemIndex()

228 Python Reference Guide for IBM SPSS Statistics

Appendix A. Variable Format Types

Table 65. Variable format types supported by IBM SPSS Statistics

Type Description

1 A. Standard characters.

2 AHEX. Hexadecimal characters.

3 COMMA. Numbers with commas as the grouping symbol and a period as the decimal
indicator. For example: 1,234,567.89.

4 DOLLAR. Numbers with a leading dollar sign ($), commas as the grouping symbol, and a
period as the decimal indicator. For example: $1,234,567.89.

5 F. Standard numeric.

6 IB. Integer binary.

7 PIBHEX. Hexadecimal of PIB (positive integer binary).

8 P. Packed decimal.

9 PIB. Positive integer binary.

10 PK. Unsigned packed decimal.

11 RB. Real binary.

12 RBHEX. Hexadecimal of RB (real binary).

15 Z. Zoned decimal.

16 N. Restricted numeric.

17 E. Scientific notation.

20 DATE. International date of the general form dd-mmm-yyyy.

21 TIME. Time of the general form hh:mm:ss.ss.

22 DATETIME. Date and time of the general form dd-mmm-yyyy hh:mm:ss.ss.

23 ADATE. American date of the general form mm/dd/yyyy.

24 JDATE. Julian date of the general form yyyyddd.

25 DTIME. Days and time of the general form dd hh:mm:ss.ss.

26 WKDAY. Day of the week.

27 MONTH. Month.

28 MOYR. Month and year.

29 QYR. Quarter and year of the general form qQyyyy.

30 WKYR. Week and year.

31 PCT. Percentage sign after numbers.

32 DOT. Numbers with periods as the grouping symbol and a comma as the decimal indicator.
For example: 1.234.567,89.

33 CCA. Custom currency format 1.

Table 65. Variable format types supported by IBM SPSS Statistics (continued)

Type Description

34 CCB. Custom currency format 2.

35 CCC. Custom currency format 3.

36 CCD. Custom currency format 4.

37 CCE. Custom currency format 5.

38 EDATE. European date of the general form dd.mm.yyyy.

39 SDATE. Sortable date of the general form yyyy/mm/dd.

85 MTIME. Time of the general form mm:ss.ss.

86 YMDHMS. Date and time of the general form yyyy-mm-dd hh:mm:ss.ss.

230 Python Reference Guide for IBM SPSS Statistics

Appendix B. Setting Color Values

Color values are expressed as integers. If you're accustomed to specifying colors in RGB format, you can
convert to the associated integer using the following:

integer color value = R + G*(256) + B*(256^2)

where R, G, and B are the RGB values. For reference, following are some of the most common colors and
their integer values:

Table 66. Color codes

Color Integer Value

Black 0

Blue 16711680

Cyan 16776960

Green 65280

Magenta 16711935

Red 255

White 16777215

Yellow 65535

232 Python Reference Guide for IBM SPSS Statistics

Appendix C. Export Options

Export options are retrieved from the GetExportOption method of the SpssClient class and
set from the SetExportOption method of that class. The option identifiers have the form
SpssClient.ExportOptions.<option>, where the available option values are listed below--for
example, SpssClient.ExportOptions.GraphExportType. All of the settings are strings.

Table 67. Specifications for export options

Option Valid Settings

ObjectsToExport "all", "visible", "selected"

DocExportType "excel", "html", "pdf", "plain", "utf8", "utf16",
"word_rtf", "none" (graphics only)

DocFilePath Export document file path

GraphExportType "bmp", "emf", "eps", "jpg", "png", "tiff"

GraphFilePath Export graph file path

XLSLayers "all", "honor" (honors print layer setting), "visible"

XLSFootnotes "No", "Yes"

HTMLayers "all", "honor" (honors print layer setting), "visible"

HTMFootnotes "No", "Yes"

WordRTFLayers "all", "honor" (honors print layer setting), "visible"

WordRTFFootnotes "No", "Yes"

TXTPlainTabsOrSpaces "tabs", "spaces"

TXTPlainColumnWidthType "autofit", "custom"

TXTPlainNoOfChars Character representation of integer

TXTPlainRowBorderChar Row border character

TXTPlainColBorderChar Column border character

TxtPlainLayersInPivotTable "all", "honor" (honors print layer setting), "visible"

TXTPlainFootnoteCaption "No", "Yes"

TXTPlainInsertPageBreak "No", "Yes"

TXTUTF8TabsOrSpaces "tabs", "spaces"

TXTUTF8ColumnWidthType "autofit", "custom"

TXTUTF8NoOfChars Character representation of integer

TXTUTF8RowBorderChar Row border character

TXTUTF8ColBorderChar Column border character

TxtUTF8LayersInPivotTable "all", "honor" (honors print layer setting), "visible"

TXTUTF8FootnoteCaption "No", "Yes"

TXTUTF8InsertPageBreak "No", "Yes"

TXTUTF16TabsOrSpaces "tabs", "spaces"

Table 67. Specifications for export options (continued)

Option Valid Settings

TXTUTF16ColumnWidthType "autofit", "custom"

TXTUTF16NoOfChars Character representation of integer

TXTUTF16RowBorderChar Row border character

TXTUTF16ColBorderChar Column border character

TxtUTF16LayersInPivotTable "all", "honor" (honors print layer setting), "visible"

TXTUTF16FootnoteCaption "No", "Yes"

TXTUTF16InsertPageBreak "No", "Yes"

PDFOptimize "No", "Yes"

PDFEmbedBookmarks "No", "Yes"

PDFEmbedFonts "No", "Yes"

PDFLayers "all", "honor" (honors print layer setting), "visible"

JPEGSize Character representation of image size in percent

JPEGGreyScale "No", "Yes"

BMPSize Character representation of image size in percent

BMPCompressImage "no", "yes"

PNGSize Character representation of image size in percent

PNGColorDepth "current" (current screen depth), "bw" (black and
white), "256gray", "16color", "256color", "24bit"
(true color), "32bit" (true color)

TIFSize Character representation of image size in percent

EPSSize "physical_size" (same aspect ratio), "current_size"

EPSPercent Character representation of image size in percent.
Applies to "current_size".

EPSWidthPoints Character representation of image width in points.
Applies to "physical_size".

EPSPreviewImage "no", "yes"

EPSFont "replace_font", "use_font_ref"

234 Python Reference Guide for IBM SPSS Statistics

Appendix D. String Description of Numeric Formats

If you are using a localized version of IBM SPSS Statistics, use the strings displayed in the Format list box
on the Format Value tab (accessed from Format>Cell Properties in the pivot table editor).

Table 68. Specifications for numeric formats

String Example / Description

#.# 1234.567

#.#;#.##E-# 1234.567(scientific notation if the cell is not wide
enough)

#,###.## 1,234.567

#.###,## 1.234,567

#.##E+## 1.23E+03

##.#% 56.7%

dd.mmm.yy 28-OCT-94

dd-mmm-yyyy 28-OCT-1994

mm/dd/yy 10/28/94

mm/dd/yyyy 10/28/1994

dd.mm.yy 28.10.94

dd.mm.yyyy 28.10.1994

yy/mm/dd 94/10/28

yyyy/mm/dd 1994/10/28

yyddd 94301 (Julian date)

yyyyddd 1994301 (Julian date)

q Q yy 4 Q 94

q Q yyyy 4 Q 1994

mmm yy OCT 94

mmm yyyy OCT 1994

ww WK yy 43 WK 94

ww WK yyyy 43 WK 1994

dd-mmm-yyyy hh:mm 28-OCT-1994 08:03

dd-mmm-yyyy hh:mm:ss 28-OCT-1994 08:03:00

yyyy-mm-dd hh:mm 1994-10-28 08:03

yyyy-mm-dd hh:mm:ss 1994-10-28 08:03:00

ddd.hh.mm 301 20:03

ddd.hh/mm.ss.## 301 20:03:00.04

Monday, Tuesday... Friday

Table 68. Specifications for numeric formats (continued)

String Example / Description

January, February... October

mm:ss 03:00

hh:mm 08:03

hh:mm:ss.## 08:03:00.04

$#,###.## $1,234.56

You can create up to five custom currency display formats that can include special prefix and suffix
characters and special treatment for negative values. The five custom currency format names are CCA,
CCB, CCC, CCD, and CCE. The string can be used to specify the currency formats.

236 Python Reference Guide for IBM SPSS Statistics

Appendix E. Preference Options

Preference options are retrieved from the GetPreference method of the SpssClient class
and set from the SetPreference method of that class. The option identifiers have the form
SpssClient.PreferenceOptions.<option>, where the available option values are listed below--for
example, SpssClient.PreferenceOptions.VariableListDisplay. All of the settings are strings.

Table 69. General Options

Option Valid Settings

VariableListDisplay "labels", "names"

VariableListSort "alphabetical", "file", "measurement"

MeasurementSystem "points", "inches", "centimeters"

Language "Russian", "French", "German", "English", "Italian",
"Japanese", "Korean", "Polish", "SChinese",
"Spanish", "TChinese",

AutoRaise "true", "false"

OutputScroll "true", "false"

OutputSound "system_beep", "none", "sound"

OutputSoundFile Path to a custom sound file

ScientificNotation "true", "false"

DigitGrouping Option associated with SET/SHOW
DIGITGROUPING. Settings are "true" or "false".

OpenSyntaxAtStartup "true", "false"

OnlyOneDataset "true", "false"

OXMLVersion Option associated with SET/SHOW XVERSION.
Settings are "default" or the Output XML schema
version.

OutputAttributes Option associated with SET/SHOW OATTRS.
Settings are "olang", "eng", or "both".

Table 70. Viewer Options

Option Valid Settings

TitleFont Font name, e.g. "Serif"

TitleFontSize Character representation of integer

TitleFontBold "true", "false"

TitleFontItalic "true", "false"

TitleFontUnderline "true", "false"

TitleFontColor Character representation of integer color

PageTitleFont Font name, e.g. "Serif"

PageTitleFontSize Character representation of integer

Table 70. Viewer Options (continued)

Option Valid Settings

PageTitleFontBold "true", "false"

PageTitleFontItalic "true", "false"

PageTitleFontUnderline "true", "false"

PageTitleFontColor Character representation of integer color

TextOutputFont Font name, e.g. "Serif"

TextOutputFontSize Character representation of integer

TextOutputFontBold "true", "false"

TextOutputFontItalic "true", "false"

TextOutputFontUnderline "true", "false"

TextOutputFontColor Character representation of integer color

DisplayCommandsLog "Off", "On"

LogContents "hidden", "shown"

WarningsContents "hidden", "shown"

WarningsJustification "align_left", "align_center", "align_right"

NotesContents "hidden", "shown"

NotesJustification "align_left", "align_center", "align_right"

TitleContents "hidden", "shown"

TitleJustification "align_left", "align_center", "align_right"

PageTitleContents "hidden", "shown"

PageTitleJustification "align_left", "align_center", "align_right"

PivotTableContents "hidden", "shown"

PivotTableJustification "align_left", "align_center", "align_right"

ChartContents "hidden", "shown"

ChartJustification "align_left", "align_center", "align_right"

TextOutputContents "hidden", "shown"

TreeModelContents "hidden", "shown"

GenericJustification "align_left", "align_center", "align_right"

Orientation 1 (portrait), 2 (landscape)

LeftMargin Character representation of positive number in
units of MeasurementSystem

RightMargin Character representation of positive number in
units of MeasurementSystem

TopMargin Character representation of positive number in
units of MeasurementSystem

BottomMargin Character representation of positive number in
units of MeasurementSystem

238 Python Reference Guide for IBM SPSS Statistics

Table 71. Data Options

Option Valid Settings

TransformationMergeOptions "calculate_before_used", "calculate_immediately"

RandomNumberGenerator "MC" (compatible with SPSS 12 and earlier), "MT"
(Mersenne Twister)

DisplayFormatWidth Character representation of integer between 1 and 40.

DisplayFormatDecimal Character representation of integer between 0and 15.

ReadingExternalData Character representation of integer between 1 and 40.

CenturyRangeValue "Automatic", "custom"

CenturyRangeBeginYear Character representation of integer between 1582 and
9900.

Table 72. File Locations

Option Valid Settings

RecordSyntax "false", "true"

RecordMode "append", "overwrite"

SessionJournalFile Path to journal file

TempDir Path to temp directory

RecentFiles Recently used file list. Character representation of
integer between 0 and 9.

DataFiles Path to startup folder for data files on Open and
Save dialogs

OtherFiles Path to startup folder for other files on Open and
Save dialogs

SpecifiedAndLastFolder "true" (last folder used), "false" (specified folder)

Table 73. Currency Options

Option Valid Settings

CustomOutputFormat "CCA", "CCB", "CCC", "CCD", "CCE"

AllValuesPrefix All values prefix

AllValuesSuffix All values suffix

NegativeValuesPrefix Negative values prefix

NegativeValuesSuffix Negative values suffix

DecimalSeparator "comma", "period"

Table 74. Output Options

Option Valid Settings

OutlineVariables "Names", "Labels", "Both"

OutlineVariableValues "Values", "Labels", "Both"

Appendix E. Preference Options 239

Table 74. Output Options (continued)

Option Valid Settings

PivotTableVariables "Names", "Labels", "Both"

PivotTableVariableValues "Values", "Labels", "Both"

OutputDisplay "ModelViewer", "Tables"

Table 75. Chart Options

Option Valid Settings

ChartTemplate "On", "Off"

ChartTemplateFile Path to chart template file

ChartAspectRatio Chart aspect ratio

ChartFont Font name, e.g. "Arial"

ChartFrameInner "true", "false"

ChartFrameOuter "true", "false"

GridLineScale "true", "false"

GridLineCategory "true", "false"

StyleCyclePref "ColorsOnly", "PatternsOnly"

Table 76. Pivot Table Options

Option Valid Settings

ColumnWidth "Labels", "Both" (labels and data)

EditingMode "all_tables", "large_tables", "open_tables_window"

TableRender "full", "fast", "light" (alias for "fast")

Note: For the TableRender option, "light" is deprecated for release 20 and higher, and has the same
effect as "fast".

240 Python Reference Guide for IBM SPSS Statistics

Appendix F. Python Extension Commands for SPSS
Statistics

The IBM SPSS Statistics product includes a set of extension commands that are implemented in Python
and that provide capabilities beyond what is available with built-in SPSS Statistics procedures. Each
extension command has an associated dialog box that generates command syntax for the command
and is available from the SPSS Statistics menus. The extension commands can also be run from SPSS
Statistics command syntax in the same manner as any built-in command such as FREQUENCIES.

Table 77. Listing of Python extension commands

Menu location Command name Description

Utilities > Format Correlation
Matrix

FormatCorrelations Provides various options for appearance
of correlation matrix.

Data > Case Control Matching FUZZY Performs exact or fuzzy case-control
matching.

File > General Open GeneralOpen Opens a data, syntax, or output file from
a single dialog box.

Analyze > Regression > Partial
Least Squares

PLS Estimates partial least squares
regression models.

Data > Propensity Score
Matching

STATS PSM Calculates propensity score matching
for cases and controls.

Utilities > Censor Table SPSSINC CENSOR TABLES Censors cells of a pivot table that are
based on the values of a test statistic.

Transform > Create Dummy
Variables

SPSSINC CREATE DUMMIES Creates a set of dummy variables that
represent the values of one or more
variables and interaction terms.

File > Open > Internet Data SPSSINC GETURI DATA Opens an SPSS, Excel, SAS, or Stata
dataset from a web url.

Utilities > Modify Output
Titles

SPSSINC MODIFY OUTPUT Modifies output titles and other aspects
of objects in the Viewer.

Utilities > Modify Table
Appearance

SPSSINC MODIFY TABLES Modifies the appearance of data cells
and row and column labels of pivot
tables.

Analyze > Descriptive
Statistics > Population
Descriptives

STATS POP DESCRIPTIVES Calculates Descriptive Statistics for
Populations.

Utilities > Process Data Files SPSSINC PROCESS FILES Applies a file of syntax to a set of
data files that defines file handles and
macros for using in the syntax file, and
provides various options for handling
viewer and data output.

Edit > Search Data Files SPSSINC PROCESS FILES
SEARCH

Searches the cases in a set of SPSS
Statistics sav data files.

Table 77. Listing of Python extension commands (continued)

Menu location Command name Description

Analyze > Nonparametric
Tests > Quade Nonparametric
ANCOVA

Quade Nonparametric
ANCOVA

Produces the Quade test of equality
of conditional population distributions
based on a rank analysis of covariance.

Data > Rake Weights SPSSINC RAKE Calculates weights to control totals in
up to 10 dimensions by rim weighting,
that is, raking.

Transform > Extended Recode SPSSINC RECODEEX Provides advanced capabilities for
recoding.

Utilities > Define Variable
Macro

SPSSINC SELECT
VARIABLES

Defines a macro listing variables that
are selected according to variable
dictionary properties.

Data > Split into Files SPSSINC SPLIT DATASET Splits a dataset into a separate set
of sav files according to one or more
splitting variables.

Transform > Programmability
Transformation

SPSSINC TRANS Applies a Python function to the cases in
the active dataset and saves the results
to one or more new or existing variables.

Analyze > Descriptive
Statistics > TURF Analysis >

SPSSINC TURF Performs a TURF (Total Unduplicated
Reach and Frequency) analysis, which
finds groups of response variables that
have the highest coverage in a sample.

Data > Adjust String Widths
Across Files

STATS ADJUST WIDTHS Adjusts the widths of selected string
variables across a set of files or
datasets.

Analyze > Correlate >
Canonical Correlation

STATS CANCORR Calculates canonical correlations for
two sets of variables.

Analyze > Tables > Define
Category Order >

STATS CATEGORY ORDER Creates a macro or multiple dichotomy
set with a specified variable order.

Analyze > Classify > Cluster
Silhouettes

STATS CLUS SIL Computes and optionally plots
silhouette measures useful in assessing
the quality of a cluster analysis.

Graphs > Regression Variable
Plots

STATS REGRESS PLOT Provides plots that are useful in
assessing regression relationships.

Graphs > Compare Subgroups STATS SUBGROUP PLOTS Graphically compares the distributions
of a set of variables across a partition of
the data.

Utilities > Calculate with Pivot
Table

STATS TABLE CALC Calculates values by using cells in a
pivot table and saves the result in
existing or new columns and rows of the
table.

Graphs > Weibull Plot STATS WEIBULL PLOT Creates a Weibull probability plot for
data on item failures and suspensions.

Utilities > Create Text Output TEXT Creates a block of text in the Viewer
for comments and annotations of the
output.

242 Python Reference Guide for IBM SPSS Statistics

Table 77. Listing of Python extension commands (continued)

Menu location Command name Description

File > Make Variable Catalog STATS MAKE CATALOG Builds a dataset of variable information
from multiple datasets.

Analyze > Tables > Convert
Multiple Category Set

STATS MCSET CONVERT Converts a multiple category set to a
multiple dichotomy set representing the
same information.

Analyze > Classify > Ntile
Analysis

STATS NTILE ANALYSIS Tabulates the ntile statistics for a
variable holding predicted probabilities
and produces charts of the distribution
statistics.

Extensions > Install Python
and R Modules

STATS PACKAGE INSTALL Installs or upgrades packages that are
needed by extensions or programs but
that are not installed with them.

Notes
• Help for each of the Python extension commands is available by clicking Help on the associated dialog

box. The help is not, however, integrated with the SPSS Statistics Help system.
• Complete syntax help for each of the extension commands is available by positioning the cursor within

the command (in a syntax window) and pressing the F1 key. It is also available by running the command
and including the /HELP subcommand. For example:

 STATS TABLE CALC /HELP.

However, the command syntax help is not integrated with the SPSS Statistics Help system and is not
included in the Command Syntax Reference.

Note: The F1 mechanism for displaying help is not supported in distributed mode.
• If the menu location that is specified for an extension command is not present in your IBM SPSS

Statistics product, then look on the Extensions menu for the associated dialog.
• The dialogs were created with the Custom Dialog Builder in IBM SPSS Statistics. You can view the

design for any of the dialogs and you can customize them using the Custom Dialog Builder. It is available
from Extensions>Utilities>Custom Dialog Builder (Compatibility mode).... To view the design for a
dialog, choose File>Open Installed from within the Custom Dialog Builder.

• The implementation code (Python modules) and XML specification files for each of the Python extension
commands can be found in the location where extension commands are installed on your computer.
To view the location, run the SHOW EXTPATHS syntax command. The output displays a list of locations
under the heading "Locations for extension commands". The files are installed to the first writable
location in the list.

• Other extension commands that are not included in IBM SPSS Statistics are available for download from
the Extension Hub, accessible from Extensions>Extension Hub. The Extension Hub also displays any
updates that are available for the extension commands included with IBM SPSS Statistics in addition to
updates for any other extensions that you installed.

• If you are installing extensions on SPSS Statistics Server, you can use a script to install multiple
extensions at once. For information, see Core System > Extensions> Installing local extension
bundles > Batch installation of extension bundles in the Help system.

Appendix F. Python Extension Commands for SPSS Statistics 243

244 Python Reference Guide for IBM SPSS Statistics

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© Copyright IBM Corp. 2021. Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. 1989 - 2021. All rights reserved.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

246 Python Reference Guide for IBM SPSS Statistics

http://www.ibm.com/legal/us/en/copytrade.shtml

Index

A
active dataset

appending cases 37, 41
creating new variables 37, 39, 48, 52
name 15
reading into Python 37, 38
setting 80

ActiveDataset 15
Add method

SpssServerConfList class 226
AddProcedureFootnotes 15
alignment

cells 161, 169, 177, 197, 206
decimal 162, 169, 177
foonotes 185, 190, 212, 217
labels 169, 177, 185, 190, 197, 206, 212, 217
vertical 166, 174, 180, 188, 193, 200, 209, 214, 219

alignment property
Variable class 65

AllocNewVarsBuffer method 43
append method

CaseList class 62
TextBlock class 88
VariableList class 64

Append method
SpssLogItem class 149

Append method (BasePivotTable class) 22
areas

background color 160
attributes property

Variable class 65
Autofit method

SpssPivotTable class 153
autoscripts

Python 92

B
BasePivotTable class

Append method 18, 22
Caption method 23
CategoryFootnotes method 23
CellText class 31
DimensionFootnotes method 24
Footnotes method 24
GetDefaultFormatSpec method 24
HideTitle method 25
Insert method 18, 25
SetCategories method 19, 25
SetCell method 26
SetCellsByColumn method 20, 27
SetCellsByRow method 20, 28
SetDefaultFormatSpec method 29
SimplePivotTable method 17, 29
TitleFootnotes method 31
Warnings table 34

BaseProcedure class 35
BEGIN PROGRAM (command) 3
BreakHere method

SpssLabels class 196

C
cache property

Dataset class 59
Caption method 23
case count 71
CaseList class

append method 62
insert method 63

cases property
Dataset class 56

CategoryFootnotes method 23
CellText class

Number class 31
String class 33
toNumber method 34
toString method 34
VarName class 33
VarValue class 33

ChangeMarkerToRegular method
SpssFootnotes class 184

ChangeMarkerToSpecial method
SpssFootnotes class 184

Clear method
SpssServerConfList class 226

ClearSelection method
SpssOutputDoc class 112
SpssPivotTable class 153

close method
Dataset class 59

CloseDocument method
SpssDataDoc class 105
SpssOutputDoc class 112
SpssSyntaxDoc class 132

colors
setting color values 231

column width
getting and setting 66

ColumnLabelArray method
SpssPivotTable class 153

columnWidth property
Variable class 66

CommitCase method 43
CommitDictionary method 44
Connect method

SpssServerConf class 222
ConnectWithSavedPassword method

SpssServerConf class 222
Contains method

SpssServerConfList class 226
Copy method

SpssOutputDoc class 113

Index 247

CopySpecial method
SpssOutputDoc class 113

CreateHeaderItem method
SpssOutputDoc class 114

CreateImageChartItem method
SpssOutputDoc class 114

CreateNewServer method
SpssClient class 94

CreateTextItem method
SpssOutputDoc class 114

CreateTitleItem method
SpssOutputDoc class 114

CreateXPathDictionary 37
Cursor class

AllocNewVarsBuffer method 43
append mode 41
close method 43
CommitCase method 43
CommitDictionary method 44
EndChanges method 44
fetchall method 44
fetchmany method 45
fetchone method 46
IsEndSplit method 47
read mode 38
reset method 47
SetFetchVarList method 48
SetOneVarNameAndType method 48
SetUserMissingInclude method 48
SetValueChar method 49
SetValueNumeric method 50
SetVarAlignment method 50
SetVarAttributes method 50
SetVarCMissingValues method 51
SetVarCValueLabel method 51
SetVarFormat method 51
SetVarLabel method 51
SetVarMeasureLevel method 52
SetVarNameAndType method 52
SetVarNMissingValues method 52
SetVarNValueLabel method 53
SetVarRole method 53
write mode 39

Cut method
SpssOutputDoc class 115

D
data

accessing variable properties 63
appending cases 37, 41, 62
appending new variables 64
copying datasets 60
creating new variables 37, 39
fetching data in Python 37, 38
inserting cases 63
inserting new variables 64
modifying cases 60
reading active dataset into Python 37, 38
reading case data 60

data regions
height and width 154, 156

data step
accessing existing datasets 53

data step (continued)
accessing variable properties 63
appending cases 62
appending new variables 64
copying datasets 60
creating new datasets 53
ending 70
inserting cases 63
inserting new variables 64
modifying cases 60
reading case data 60
starting 83

data types 68, 77
DataCellArray method

SpssPivotTable class 153
DataCellWidths method

SpssPivotTable class 161
DataDocsList class

GetItemAt method 108
Size method 108

datafile attributes
retrieving 57, 71
setting 57

dataFileAttributes property
Dataset class 57

Dataset class
cache property 59
cases property 56
close method 59
dataFileAttributes property 57
deepCopy method 60
multiResponseSet property 58
name property 57
varlist property 57

DataStep class 69
deepCopy method

Dataset class 60
Delete method

SpssOutputDoc class 115
DeleteXPathHandle 70
Demote method

SpssOutputDoc class 115
dictionary

CreateXPathDictionary 37
reading dictionary information from Python 70
writing to an XML file 78

Dimension class
LayerDimension method 220

DimensionFootnotes method 24
Disconnect method

SpssServerConf class 223
DisplayTableByRows method

SpssPivotTable class 154

E
EndChanges method 44
EndDataStep 70
EndProcedure 70
error messages 73
EvaluateXPath 70
executing command syntax from Python 87
Exit method

SpssClient class 95

248 Python Reference Guide for IBM SPSS Statistics

ExportAllViews method
SpssModelItem class 146

ExportCharts method
SpssOutputDoc class 115

ExportDocument method
SpssOutputDoc class 116

ExportToDocument method
SpssOutputItem class 138

ExportToImage method
SpssOutputItem class 139

extension commands 11

F
fetchall method 44
fetching data in Python 37, 38
fetchmany method 45
fetchone method 46
file handles 72
Footnotes method 24
FootnotesArray method

SpssPivotTable class 154
format of variables 66, 76
format property

Variable class 66
frames

background color 160

G
GetActiveDataDoc method

SpssClient class 95
GetAlignment method

SpssOutputItem class 139
GetBackgroundColorAt method

SpssDataCells class 168
SpssFootnotes class 184
SpssLabels class 196
SpssLayerLabels class 211

GetBottomMarginAt method
SpssDataCells class 169
SpssFootnotes class 184
SpssLabels class 196
SpssLayerLabels class 212

GetCaptionText method
SpssPivotTable class 154

GetCaseCount 71
GetCaseCount method

SpssDataDoc class 105
GetCategoryValueAt method

SpssDimension class 182
GetChildCount method

SpssHeaderItem class 147
GetChildItem method

SpssHeaderItem class 147
GetColumnDimension method

SpssPivotMgr class 220
GetColumnLabelWidthAt method

SpssLabels class 196
GetConfiguredServers method

SpssClient class 95
GetCount method

SpssFootnotes class 185

GetCurrentCategory method
SpssDimension class 182

GetCurrentDirectory method
SpssClient class 95

GetCurrentItem method
SpssOutputDoc class 117

GetCurrentServer method
SpssClient class 95

GetDataDocuments method
SpssClient class 95

GetDataFileAttributeNames 71
GetDataFileAttributes 71
GetDatasetName method

SpssDataDoc class 105
GetDatasets 71
GetDataUI method

SpssDataDoc class 105
GetDefaultFormatSpec method 24
GetDefaultJCVersion method

SpssClient class 96
GetDefaultPlugInVersion 71
GetDefaultServer method

SpssClient class 96
GetDescription method

SpssOutputItem class 140
SpssServerConf class 223

GetDesignatedOutputDoc method
SpssClient class 96

GetDesignatedSyntaxDoc method
SpssClient class 96

GetDimensionName method
SpssDimension class 182

GetDocumentPath method
SpssDataDoc class 105
SpssOutputDoc class 117
SpssSyntaxDoc class 132

GetExportOption method
SpssClient class 96

GetFileHandles 72
GetFooterText method

SpssOutputDoc class 117
GetFootnoteMarkersPosition method

SpssPivotTable class 154
GetFootnoteMarkersStyle method

SpssPivotTable class 154
GetForegroundColorAt method

SpssDataCells class 169
SpssFootnotes class 185
SpssLabels class 197
SpssLayerLabels class 212

GetFullDimensionLabel method
SpssDimension class 182

GetHAlignAt method
SpssDataCells class 169
SpssFootnotes class 185
SpssLabels class 197
SpssLayerLabels class 212

GetHandleList 72
GetHDecDigitsAt method

SpssDataCells class 169
GetHeaderText method

SpssOutputDoc class 117
GetHeight method

SpssDataUI class 108

Index 249

GetHeight method (continued)
SpssOutputItem class 140
SpssOutputUI class 128
SpssPivotTable class 154
SpssSyntaxUI class 135

GetImage 72
GetItemAt method

DataDocsList class 108
MenuTableList class 151
OutputDocsList class 127
OutputItemList class 127
SpssServerConfList class 226
SyntaxDocsList class 135

GetLastErrorlevel 73
GetLastErrorMessage 73
GetLeft method

SpssDataUI class 108
SpssOutputUI class 128
SpssSyntaxUI class 135

GetLeftMarginAt method
SpssDataCells class 170
SpssFootnotes class 185
SpssLabels class 197
SpssLayerLabels class 212

GetLocale method
SpssClient class 96

GetLocalServer method
SpssClient class 97

GetMenuTable method
SpssDataDoc class 106
SpssOutputDoc class 117
SpssSyntaxDoc class 132

GetMultiResponseSet 74
GetMultiResponseSetNames 74
GetNumCategories method

SpssDimension class 182
GetNumColumnDimensions method

SpssPivotMgr class 220
GetNumColumns method

SpssDataCells class 170
SpssLabels class 197

GetNumDimensions method
SpssLayerLabels class 212

GetNumericFormatAt method
SpssDataCells class 170

GetNumericFormatAtEx method
SpssDataCells class 170

GetNumLabelsWide method
SpssLayerLabels class 213

GetNumLayerDimensions method
SpssPivotMgr class 220

GetNumRowDimensions method
SpssPivotMgr class 220

GetNumRows method
SpssDataCells class 171
SpssLabels class 197

GetOMSTagList 74
GetOutputDoc method

SpssScriptContext class 227
GetOutputDocuments method

SpssClient class 97
GetOutputItem method

SpssScriptContext class 227
GetOutputItemIndex method

GetOutputItemIndex method (continued)
SpssScriptContext class 228

GetOutputItems method
SpssOutputDoc class 117

GetOutputOptions method
SpssOutputDoc class 118

GetOutputUI method
SpssOutputDoc class 119

GetPageBreak method
SpssOutputItem class 140

GetParentItem method
SpssOutputItem class 140

GetPreference method
SpssClient class 97

GetPrintOptions method
SpssOutputDoc class 119

GetProcedureName method
SpssOutputItem class 140

GetReferredFootnotesAt method
SpssDataCells class 171
SpssLabels class 198

GetRightMarginAt method
SpssDataCells class 171
SpssFootnotes class 186
SpssLabels class 198
SpssLayerLabels class 213

GetRotateColumnLabels method
SpssPivotTable class 155

GetRotateRowLabels method
SpssPivotTable class 155

GetRowDimension method
SpssPivotMgr class 221

GetRowLabelWidthAt method
SpssLabels class 198

GetScriptContext method
SpssClient class 97

GetServerName method
SpssServerConf class 223

GetServerPort method
SpssServerConf class 223

GetSetting 74
GetShowGridLines method

SpssDataUI class 109
GetShowValueLabels method

SpssDataUI class 109
GetSigMarkersAt method

SpssDataCells class 171
GetSigMarkersType method

SpssPivotTable class 155
GetSpecificType method

SpssOutputItem class 140
GetSplitterPosition method

SpssOutputUI class 128
GetSplitVariableNames 74
GetSPSSLocale 74
GetSPSSLowHigh 75
GetSPSSOptions method

SpssClient class 97
GetSPSSPath method

SpssClient class 98
GetSPSSVersion method

SpssClient class 98
GetSubType method

SpssOutputItem class 140

250 Python Reference Guide for IBM SPSS Statistics

GetSyntax method
SpssSyntaxDoc class 132

GetSyntaxDocuments method
SpssClient class 98

GetSyntaxUI method
SpssSyntaxDoc class 132

GetTextColorAt method
SpssDataCells class 172
SpssFootnotes class 186
SpssLabels class 198
SpssLayerLabels class 213

GetTextContents method
SpssLogItem class 149
SpssMenuItem class 151
SpssTextItem class 149
SpssTitleItem class 150

GetTextFontAt method
SpssDataCells class 172
SpssFootnotes class 186
SpssLabels class 199
SpssLayerLabels class 213

GetTextHiddenAt method
SpssDataCells class 172
SpssFootnotes class 186
SpssLabels class 199
SpssLayerLabels class 213

GetTextSizeAt method
SpssDataCells class 173
SpssFootnotes class 187
SpssLabels class 199
SpssLayerLabels class 214

GetTextStyleAt method
SpssDataCells class 173
SpssFootnotes class 187
SpssLabels class 199
SpssLayerLabels class 214

GetTextUnderlinedAt method
SpssDataCells class 173
SpssFootnotes class 187
SpssLabels class 200
SpssLayerLabels class 214

GetTextWidthAt method
SpssLabels class 200

GetTitleText method
SpssDataUI class 109
SpssOutputUI class 128
SpssPivotTable class 155
SpssSyntaxUI class 135

GetTop method
SpssDataUI class 109
SpssOutputUI class 128
SpssSyntaxUI class 135

GetTopMarginAt method
SpssDataCells class 173
SpssFootnotes class 188
SpssLabels class 200
SpssLayerLabels class 214

GetTreeLevel method
SpssOutputItem class 141

GetType method
SpssOutputItem class 141

GetTypeString method
SpssOutputItem class 142

GetUIAlerts method

GetUIAlerts method (continued)
SpssClient class 98

GetUnformattedValueAt method
SpssDataCells class 174

GetUpdateScreen method
SpssPivotTable class 156

GetUserDomain method
SpssServerConf class 223

GetUserId method
SpssServerConf class 223

GetUseSSL method
SpssServerConf class 223

GetVAlignAt method
SpssDataCells class 174
SpssFootnotes class 188
SpssLabels class 200
SpssLayerLabels class 214

GetValueAt method
SpssDataCells class 174
SpssFootnotes class 188
SpssLabels class 201
SpssLayerLabels class 215

GetVarAttributeNames 75
GetVarAttributes 75
GetVariableCount 75
GetVariableCount method

SpssDataDoc class 106
GetVariableFormat 76
GetVariableLabel 76
GetVariableMeasurementLevel 76
GetVariableName 77
GetVariableRole 77
GetVariableType 77
GetVarMissingValues 77
GetVarNamesDisplay method

SpssPivotTable class 156
GetVarValuesDisplay method

SpssPivotTable class 156
GetVisible method

SpssDataUI class 109
SpssOutputUI class 129
SpssSyntaxUI class 136

GetWeightVar 78
GetWidoworphanLines method

SpssPivotTable class 156
GetWidth method

SpssDataUI class 109
SpssOutputItem class 142
SpssOutputUI class 129
SpssPivotTable class 156
SpssSyntaxUI class 136

GetWindowState method
SpssDataUI class 109
SpssOutputUI class 129
SpssSyntaxUI class 136

GetXML method
SpssOutputItem class 142

GetXmlUtf16 78
graphboard chart 122, 141, 142, 145
Group method

SpssPivotTable class 157

Index 251

H
HasCursor 78
HideAllLabelsInDimensionAt method

SpssLabels class 201
HideCaption method

SpssPivotTable class 157
HideFootnote method

SpssPivotTable class 157
HideFootnotesAt method

SpssDataCells class 175
SpssLabels class 201
SpssLayerLabels class 215

HideLabel method
SpssDimension class 182

HideLabelsInDimensionAt method
SpssLabels class 201

HideLabelsWithDataAt method
SpssLabels class 202

HideTitle method
SpssPivotTable class 157

I
index property

Variable class 66
insert method

CaseList class 63
VariableList class 64

Insert method 18, 25
InsertBefore method

SpssLabels class 202
InsertChildItem method

SpssHeaderItem class 147
InsertFootnote method

SpssPivotTable class 157
InsertNewAfter method

SpssLabels class 202
InsertNewBefore method

SpssLabels class 203
InsertNewFootnoteAt method

SpssDataCells class 175
SpssLabels class 203
SpssLayerLabels class 215

InsertSharedFootnoteAt method
SpssDataCells class 175
SpssLabels class 203
SpssLayerLabels class 216

InsertTable method
SpssOutputDoc class 120

InvokeDialog method
SpssDataUI class 110
SpssOutputUI class 129
SpssSyntaxUI class 136

IsActive 78
IsActiveDataDoc method

SpssDataDoc class 106
IsCurrentItem method

SpssOutputItem class 142
IsDataDocInUse method

SpssClient class 98
IsDefaultServer method

SpssServerConf class 224
IsDesignatedOutputDoc method

IsDesignatedOutputDoc method (continued)
SpssOutputDoc class 120

IsDesignatedSyntaxDoc method
SpssSyntaxDoc class 132

IsDisplayTableByRows method
SpssPivotTable class 158

IsDistributedMode 79
IsDistributedMode method

SpssClient class 99
IsEditable method

SpssOutputItem class 142
IsEndSplit method 47
IsEqualTo method

SpssDataDoc class 106
SpssOutputDoc class 120
SpssOutputItem class 143
SpssServerConf class 224
SpssSyntaxDoc class 132

IsExpanded method
SpssHeaderItem class 148

IsLegacyTableCompatible method
SpssPivotTable class 158

IsLocalServer method
SpssServerConf class 224

IsModified method
SpssDataDoc class 106
SpssOutputDoc class 120
SpssSyntaxDoc class 133

IsOptionAvailable method
SpssClient class 99

IsOutputOn 79
IsPasswordSaved method

SpssServerConf class 224
IsPromptToSave method

SpssDataDoc class 106
SpssOutputDoc class 121
SpssSyntaxDoc class 133

IsSelected method
SpssOutputItem class 143

IsVisible method
SpssOutputItem class 143

K
KeepTogether method

SpssLabels class 204

L
label property

Variable class 67
labels

variable 67, 76
LayerDimension method

Dimension class 220
LayerLabelArray method

SpssPivotTable class 158
legacy tables 152
localizing output 11
LogToViewer method

SpssClient class 99

252 Python Reference Guide for IBM SPSS Statistics

M
macro variables in Python 81
measurement level

getting and setting 67
measurementLevel property

Variable class 67
MenuTableList class

GetItemAt method 151
Size method 151

missing values
getting and setting 67
retrieving user missing value definitions 77
setting missing values from Python 51, 52
when reading data into Python 38

missingValues property
Variable class 67

Model Viewer item 122, 141, 142
MoveLayersToColumns method

SpssPivotMgr class 221
MoveLayersToRows method

SpssPivotMgr class 221
MoveToColumn method

SpssDimension class 182
MoveToLayer method

SpssDimension class 183
MoveToRow method

SpssDimension class 183
multiple response sets

retrieving 58, 74
setting 58

multiResponseSet property
Dataset class 58

N
name property

Dataset class 57
Variable class 68

names of variables 68, 77
NavigateToFirstRow method

SpssPivotTable class 158
NavigateToLastRow method

SpssPivotTable class 158
NavigateToNextRows method

SpssPivotTable class 159
NavigateToPreviousRows method

SpssPivotTable class 159
nested program blocks 4, 5
NewDataDoc method

SpssClient class 100
NewOutputDoc method

SpssClient class 100
NewSyntaxDoc method

SpssClient class 100
Number class 31
number of cases (rows) 71
number of variables 75
numeric variables 68, 77
NumericFormat method

SpssPivotTable class 159

O
OpenDataDoc method

SpssClient class 100
OpenOutputDoc method

SpssClient class 100
OpenSyntaxDoc method

SpssClient class 101
output

reading output results from Python 70
OutputDocsList class

GetItemAt method 127
Size method 127

OutputItemList class
GetItemAt method 127
Size method 128

OXML
reading output XML in Python 70

P
Paste method

SpssOutputDoc class 121
PasteBefore method

SpssOutputDoc class 121
pivot tables

legacy tables 152
PivotManager method

SpssPivotTable class 159
PrintDataDoc method

SpssDataUI class 110
PrintOutputDoc method

SpssOutputUI class 129
PrintRange method

SpssOutputDoc class 121
PrintSyntaxDoc method

SpssSyntaxUI class 136
Procedure class 79
Promote method

SpssOutputDoc class 121
PyInvokeSpss.IsUTF8mode 80
PyInvokeSpss.IsXDriven 80
Python

autoscripts 92
debugging 104
file specifications 7
syntax rules 7

Python functions and classes
ActiveDataset 14, 15
AddProcedureFootnotes 14, 15
BaseProcedure class 14, 35
CaseList class 14, 53, 60
CreateXPathDictionary 14, 37
Cursor class 14, 37, 41
Dataset class 14, 53
DataStep class 14, 69
DeleteXPathHandle 14, 70
EndDataStep 14, 70
EndProcedure 14, 70
EvaluateXPath 14, 70
GetCaseCount 14, 71
GetDataFileAttributeNames 14, 71
GetDataFileAttributes 14, 71
GetDatasets 14, 71

Index 253

Python functions and classes (continued)
GetDefaultPlugInVersion 14, 71
GetFileHandles 14, 72
GetHandleList 14, 72
GetImage 14, 72
GetLastErrorlevel 14, 73
GetLastErrorMessage 14, 73
GetMultiResponseSet 14, 74
GetMultiResponseSetNames 14, 74
GetOMSTagList 14, 74
GetSetting 14, 74
GetSplitVariableNames 14, 74
GetSPSSLocale 14, 74
GetSPSSLowHigh 14, 75
GetVarAttributeNames 14, 75
GetVarAttributes 14, 75
GetVariableCount 14, 75
GetVariableFormat 14, 76
GetVariableLabel 14, 76
GetVariableMeasurementLevel 14, 76
GetVariableName 14, 77
GetVariableRole 14, 77
GetVariableType 14, 77
GetVarMissingValues 14, 77
GetWeightVar 14, 78
GetXmlUtf16 14, 78
HasCursor 14, 78
IsActive 14, 78
IsDistributedMode 79
IsOutputOn 14, 79
Procedure class 14, 79
PyInvokeSpss.IsUTF8mode 14, 80
PyInvokeSpss.IsXDriven 14, 80
SetActive 14, 80
SetDefaultPlugInVersion 14, 80
SetMacroValue 14, 81
SetOutput 14, 81
SetOutputLanguage 14, 81
ShowInstalledPlugInVersions 14, 82
SplitChange 14, 82
StartDataStep 14, 83
StartProcedure 14, 83
StartSPSS 14, 85
StopSPSS 14, 86
Submit 14, 87
TextBlock class 14, 87
Variable class 14, 53, 65
VariableList class 14, 53, 63

R
R graphics 112, 122, 138, 141, 142, 145
Remove method

SpssServerConfList class 226
RemoveBreakHere method

SpssLabels class 204
RemoveChildItem method

SpssHeaderItem class 148
RemoveItemAt method

SpssServerConfList class 227
RemoveKeepTogether method

SpssLabels class 204
RenumberFootnotes method

SpssFootnotes class 188

reordering labels 210
reset method 47
ReSizeColumn method

SpssDataCells class 175
role property

Variable class 68
roles 53, 68, 77
row count 71
RowLabelArray method

SpssPivotTable class 159
running command syntax from Python 87
RunSyntax method

SpssClient class 101
SpssSyntaxDoc class 133

S
SaveAs method

SpssDataDoc class 106
SpssOutputDoc class 121
SpssSyntaxDoc class 133

SaveServers method
SpssClient class 102

ScriptParameter method
SpssClient class 102

SelectAll method
SpssOutputDoc class 122

SelectAllCharts method
SpssOutputDoc class 122

SelectAllFootnotes method
SpssPivotTable class 159

SelectAllLogs method
SpssOutputDoc class 122

SelectAllModels method
SpssOutputDoc class 122

SelectAllNotes method
SpssOutputDoc class 122

SelectAllOther method
SpssOutputDoc class 123

SelectAllTables method
SpssOutputDoc class 123

SelectAllText method
SpssOutputDoc class 123

SelectAllTitles method
SpssOutputDoc class 123

SelectAllWarnings method
SpssOutputDoc class 123

SelectCaption method
SpssPivotTable class 160

SelectCellAt method
SpssDataCells class 176
SpssFootnotes class 189

SelectCorner method
SpssPivotTable class 160

SelectDataUnderLabelAt method
SpssLabels class 204

SelectLabelAt method
SpssLabels class 205
SpssLayerLabels class 216

SelectLabelDataAt method
SpssLabels 205

SelectLastOutput method
SpssOutputDoc class 124

SelectReferredFootnotesAt method

254 Python Reference Guide for IBM SPSS Statistics

SelectReferredFootnotesAt method (continued)
SpssDataCells class 176
SpssLabels class 205
SpssLayerLabels class 216

SelectTable method
SpssPivotTable class 160

SelectTableBody method
SpssPivotTable class 160

SelectTitle method
SpssPivotTable class 160

SetActive 80
SetAlignment method

SpssOutputItem class 143
SetAsActiveDataDoc method

SpssDataDoc class 107
SetAsDesignatedOutputDoc method

SpssOutputDoc class 124
SetAsDesignatedSyntaxDoc method

SpssSyntaxDoc class 133
SetBackgroundColor method

SpssPivotTable class 160
SetBackgroundColorAt method

SpssDataCells class 176
SpssFootnotes class 189
SpssLabels class 205
SpssLayerLabels class 216

SetBottomMargin method
SpssPivotTable class 160

SetBottomMarginAt method
SpssDataCells class 176
SpssFootnotes class 189
SpssLabels class 205
SpssLayerLabels class 217

SetCaptionText method
SpssPivotTable class 160

SetCategories method 19, 25
SetCell method 26
SetCellsByColumn method 20, 27
SetCellsByRow method 20, 28
SetColumnLabelWidthAt method

SpssLabels class 206
SetCornerText method

SpssPivotTable class 161
SetCurrentCategory method

SpssDimension class 183
SetCurrentDirectory method

SpssClient class 102
SetCurrentItem method

SpssOutputItem class 143
SetDatasetName method

SpssDataDoc class 107
SetDefaultFormatSpec method 29
SetDefaultJCVersion method

SpssClient class 103
SetDefaultPlugInVersion 80
SetDefaultServer method

SpssServerConf class 224
SetDescription method

SpssOutputItem class 143
SpssServerConf class 224

SetDimensionName method
SpssDimension class 183

SetExpanded method
SpssHeaderItem class 148

SetExportOption method
SpssClient class 103

SetFetchVarList method 48
SetFooterText method

SpssOutputDoc class 124
SetFootnoteMarkers method

SpssPivotTable class 161
SetForegroundColor method

SpssPivotTable class 161
SetForegroundColorAt method

SpssDataCells class 177
SpssFootnotes class 189
SpssLabels class 206
SpssLayerLabels class 217

SetHAlign method
SpssPivotTable class 161

SetHAlignAt method
SpssDataCells class 177
SpssFootnotes class 190
SpssLabels class 206
SpssLayerLabels class 217

SetHDecDigits method
SpssPivotTable class 162

SetHDecDigitsAt method
SpssDataCells class 177

SetHeaderText method
SpssOutputDoc class 124

SetHeight method
SpssDataUI class 110
SpssOutputItem class 144
SpssOutputUI class 130
SpssSyntaxUI class 137

SetLeft method
SpssDataUI class 110
SpssOutputUI class 130
SpssSyntaxUI class 137

SetLeftMargin method
SpssPivotTable class 162

SetLeftMarginAt method
SpssDataCells class 177
SpssFootnotes class 190
SpssLabels class 206
SpssLayerLabels class 217

SetLegacyTableCompatible method
SpssPivotTable class 162

SetMacroValue 81
SetModified method

SpssDataDoc class 107
SpssOutputDoc class 124
SpssSyntaxDoc class 134

SetNumericFormatAt method
SpssDataCells class 178

SetNumericFormatAtWithDecimal method
SpssDataCells class 178

SetOneVarNameAndType method 48
SetOutput 81
SetOutputLanguage 81
SetOutputOptions method

SpssOutputDoc class 124
SetPageBreak method

SpssOutputItem class 144
SetPassword method

SpssServerConf class 224
SetPasswordSaved method

Index 255

SetPasswordSaved method (continued)
SpssServerConf class 225

SetPreference method
SpssClient class 103

SetPrintOptions method
SpssOutputDoc class 126

SetProcedureName method
SpssOutputItem class 144

SetPromptToSave method
SpssDataDoc class 107
SpssOutputDoc class 127
SpssSyntaxDoc class 134

SetRightMargin method
SpssPivotTable class 162

SetRightMarginAt method
SpssDataCells class 178
SpssFootnotes class 190
SpssLabels class 207
SpssLayerLabels class 217

SetRotateColumnLabels method
SpssPivotTable class 162

SetRotateRowLabels method
SpssPivotTable class 163

SetRowLabelWidthAt method
SpssLabels class 207

SetRowsToDisplayRowCount method
SpssPivotTable class 163

SetRowsToDisplayTolerance method
SpssPivotTable class 163

SetSelected method
SpssOutputItem class 144

SetServerName method
SpssServerConf class 225

SetServerPort method
SpssServerConf class 225

SetShowGridLines method
SpssDataUI class 111

SetShowValueLabels method
SpssDataUI class 111

SetSplitterPosition method
SpssOutputUI class 130

SetSubType method
SpssOutputItem class 144

SetSyntax method
SpssSyntaxDoc class 134

SetTableLook method
SpssPivotTable class 163

SetTextColor method
SpssPivotTable class 164

SetTextColorAt method
SpssDataCells class 178
SpssFootnotes class 191
SpssLabels class 207
SpssLayerLabels class 218

SetTextContents method
SpssLogItem class 149
SpssTextItem class 150
SpssTitleItem class 150

SetTextFont method
SpssPivotTable class 164

SetTextFontAt method
SpssDataCells class 179
SpssFootnotes class 191
SpssLabels class 207

SetTextFontAt method (continued)
SpssLayerLabels class 218

SetTextHidden method
SpssPivotTable class 164

SetTextHiddenAt method
SpssDataCells class 179
SpssFootnotes class 191
SpssLabels class 208
SpssLayerLabels class 218

SetTextSize method
SpssPivotTable class 164

SetTextSizeAt method
SpssDataCells class 179
SpssFootnotes class 191
SpssLabels class 208
SpssLayerLabels class 218

SetTextStyle method
SpssPivotTable class 164

SetTextStyleAt method
SpssDataCells class 179
SpssFootnotes class 192
SpssLabels class 208
SpssLayerLabels class 218

SetTextUnderlined method
SpssPivotTable class 165

SetTextUnderlinedAt method
SpssDataCells class 180
SpssFootnotes class 192
SpssLabels class 208
SpssLayerLabels class 219

SetTitleText method
SpssPivotTable class 165

SetTop method
SpssDataUI class 111
SpssOutputUI class 130
SpssSyntaxUI class 137

SetTopMargin method
SpssPivotTable class 165

SetTopMarginAt method
SpssDataCells class 180
SpssFootnotes class 192
SpssLabels class 209
SpssLayerLabels class 219

SetTreeLevel method
SpssOutputItem class 144

SetUIAlerts method
SpssClient class 103

SetUpdateScreen method
SpssPivotTable class 165

SetUserDomain method
SpssServerConf class 225

SetUserId method
SpssServerConf class 225

SetUserMissingInclude method 48
SetUseSSL method

SpssServerConf class 225
SetVAlign method

SpssPivotTable class 166
SetVAlignAt method

SpssDataCells class 180
SpssFootnotes class 193
SpssLabels class 209
SpssLayerLabels class 219

SetValueAt method

256 Python Reference Guide for IBM SPSS Statistics

SetValueAt method (continued)
SpssDataCells class 180
SpssFootnotes class 193
SpssLabels class 209

SetValueChar method 49
SetValueNumeric method 50
SetVarAlignment method 50
SetVarAttributes method 50
SetVarCMissingValues method 51
SetVarCValueLabel method 51
SetVarFormat method 51
SetVarLabel method 51
SetVarMeasureLevel method 52
SetVarNameAndType method 52
SetVarNamesDisplay method

SpssPivotTable class 166
SetVarNMissingValues method 52
SetVarNValueLabel method 53
SetVarRole method 53
SetVarValuesDisplay method

SpssPivotTable class 166
SetVisible method

SpssDataUI class 111
SpssOutputItem class 145
SpssOutputUI class 130
SpssSyntaxUI class 137

SetWidoworphanLines method
SpssPivotTable class 167

SetWidth method
SpssDataUI class 111
SpssOutputItem class 145
SpssOutputUI class 131
SpssSyntaxUI class 137

SetWindowState method
SpssDataUI class 111
SpssOutputUI class 131
SpssSyntaxUI class 137

SetXML method
SpssChartItem class 145
SpssModelItem class 147

ShowAll method
SpssPivotTable class 167

ShowAllFootnote method
SpssPivotTable class 167

ShowAllLabelsAndDataInDimensionAt method
SpssLabels class 209

ShowAllLabelsInDimensionAt method
SpssLabels class 210

ShowCaption method
SpssPivotTable class 167

ShowFootnote method
SpssPivotTable class 167

ShowFootnotesAt method
SpssDataCells class 181
SpssLabels class 210
SpssLayerLabels class 219

ShowHiddenDimensionLabelAt method
SpssLabels class 210

ShowInstalledPlugInVersions 82
ShowTitle method

SpssPivotTable class 167
SimplePivotTable method 17, 29
Size method

DataDocsList class 108

Size method (continued)
MenuTableList class 151
OutputDocsList class 127
OutputItemList class 128
SpssServerConfList class 227
SyntaxDocsList class 135

split-file processing
creating pivot tables from data with splits 82
reading datasets with splits in Python 47
split variables 74

SplitChange 82
SpssChartItem class

SetXML method 145
SPSSSubtype method 145

SpssClient class
_heartBeat method 104
CreateNewServer method 94
Exit method 95
GetActiveDataDoc method 95
GetConfiguredServers method 95
GetCurrentDirectory method 95
GetCurrentServer method 95
GetDataDocuments method 95
GetDefaultJCVersion method 96
GetDefaultServer method 96
GetDesignatedOutputDoc method 96
GetDesignatedSyntaxDoc method 96
GetExportOption method 96
GetLocale method 96
GetLocalServer method 97
GetOutputDocuments method 97
GetPreference method 97
GetScriptContext method 97
GetSPSSOptions method 97
GetSPSSPath method 98
GetSPSSVersion method 98
GetSyntaxDocuments method 98
GetUIAlerts method 98
IsDataDocInUse method 98
IsDistributedMode method 99
IsOptionAvailable method 99
LogToViewer method 99
NewDataDoc method 100
NewOutputDoc method 100
NewSyntaxDoc method 100
OpenDataDoc method 100
OpenOutputDoc method 100
OpenSyntaxDoc method 101
RunSyntax method 101
SaveServers method 102
ScriptParameter method 102
SetCurrentDirectory method 102
SetDefaultJCVersion method 103
SetExportOption method 103
SetPreference method 103
SetUIAlerts method 103
StartClient method 104
StopClient method 104

SpssDataCells class
GetBackgroundColorAt method 168
GetBottomMarginAt method 169
GetForegroundColorAt method 169
GetHAlignAt method 169
GetHDecDigitsAt method 169

Index 257

SpssDataCells class (continued)
GetLeftMarginAt method 170
GetNumColumns method 170
GetNumericFormatAt method 170
GetNumericFormatAtEx method 170
GetNumRows method 171
GetReferredFootnotesAt method 171
GetRightMarginAt method 171
GetSigMarkersAt method 171
GetTextColorAt method 172
GetTextFontAt method 172
GetTextHiddenAt method 172
GetTextSizeAt method 173
GetTextStyleAt method 173
GetTextUnderlinedAt method 173
GetTopMarginAt method 173
GetUnformattedValueAt method 174
GetVAlignAt method 174
GetValueAt method 174
HideFootnotesAt method 175
InsertNewFootnoteAt method 175
InsertSharedFootnoteAt method 175
ReSizeColumn method 175
SelectCellAt method 176
SelectReferredFootnotesAt method 176
SetBackgroundColorAt method 176
SetBottomMarginAt method 176
SetForegroundColorAt method 177
SetHAlignAt method 177
SetHDecDigitsAt method 177
SetLeftMarginAt method 177
SetNumericFormatAt method 178
SetNumericFormatAtWithDecimal method 178
SetRightMarginAt method 178
SetTextColorAt method 178
SetTextFontAt method 179
SetTextHiddenAt method 179
SetTextSizeAt method 179
SetTextStyleAt method 179
SetTextUnderlinedAt method 180
SetTopMarginAt method 180
SetVAlignAt method 180
SetValueAt method 180
ShowFootnotesAt method 181

SpssDataDoc class
CloseDocument method 105
GetCaseCount method 105
GetDatasetName method 105
GetDataUI method 105
GetDocumentPath method 105
GetMenuTable method 106
GetVariableCount method 106
IsActiveDataDoc method 106
IsEqualTo method 106
IsModified method 106
IsPromptToSave method 106
SaveAs method 106
SetAsActiveDataDoc method 107
SetDatasetName method 107
SetModified method 107
SetPromptToSave method 107

SpssDataUI class
GetHeight method 108
GetLeft method 108

SpssDataUI class (continued)
GetShowGridLines method 109
GetShowValueLabels method 109
GetTitleText method 109
GetTop method 109
GetVisible method 109
GetWidth method 109
GetWindowState method 109
InvokeDialog method 110
PrintDataDoc method 110
SetHeight method 110
SetLeft method 110
SetShowGridLines method 111
SetShowValueLabels method 111
SetTop method 111
SetVisible method 111
SetWidth method 111
SetWindowState method 111

SpssDimension class
GetCategoryValueAt method 182
GetCurrentCategory method 182
GetDimensionName method 182
GetFullDimensionLabel method 182
GetNumCategories method 182
HideLabel method 182
MoveToColumn method 182
MoveToLayer method 183
MoveToRow method 183
SetCurrentCategory method 183
SetDimensionName method 183

SpssFootnotes class
ChangeMarkerToRegular method 184
ChangeMarkerToSpecial method 184
GetBackgroundColorAt method 184
GetBottomMarginAt method 184
GetCount method 185
GetForegroundColorAt method 185
GetHAlignAt method 185
GetLeftMarginAt method 185
GetRightMarginAt method 186
GetTextColorAt method 186
GetTextFontAt method 186
GetTextHiddenAt method 186
GetTextSizeAt method 187
GetTextStyleAt method 187
GetTextUnderlinedAt method 187
GetTopMarginAt method 188
GetVAlignAt method 188
GetValueAt method 188
RenumberFootnotes method 188
SelectCellAt method 189
SetBackgroundColorAt method 189
SetBottomMarginAt method 189
SetForegroundColorAt method 189
SetHAlignAt method 190
SetLeftMarginAt method 190
SetRightMarginAt method 190
SetTextColorAt method 191
SetTextFontAt method 191
SetTextHiddenAt method 191
SetTextSizeAt method 191
SetTextStyleAt method 192
SetTextUnderlinedAt method 192
SetTopMarginAt method 192

258 Python Reference Guide for IBM SPSS Statistics

SpssFootnotes class (continued)
SetVAlignAt method 193
SetValueAt method 193

SpssHeaderItem class
GetChildCount method 147
GetChildItem method 147
InsertChildItem method 147
IsExpanded method 148
RemoveChildItem method 148
SetExpanded method 148

SpssLabels
SelectLabelDataAt method 205

SpssLabels class
BreakHere method 196
GetBackgroundColorAt method 196
GetBottomMarginAt method 196
GetColumnLabelWidthAt method 196
GetForegroundColorAt method 197
GetHAlignAt method 197
GetLeftMarginAt method 197
GetNumColumns method 197
GetNumRows method 197
GetReferredFootnotesAt method 198
GetRightMarginAt method 198
GetRowLabelWidthAt method 198
GetTextColorAt method 198
GetTextFontAt method 199
GetTextHiddenAt method 199
GetTextSizeAt method 199
GetTextStyleAt method 199
GetTextUnderlinedAt method 200
GetTextWidthAt method 200
GetTopMarginAt method 200
GetVAlignAt method 200
GetValueAt method 201
HideAllLabelsInDimensionAt method 201
HideFootnotesAt method 201
HideLabelsInDimensionAt method 201
HideLabelsWithDataAt method 202
InsertBefore method 202
InsertNewAfter method 202
InsertNewBefore method 203
InsertNewFootnoteAt method 203
InsertSharedFootnoteAt method 203
KeepTogether method 204
RemoveBreakHere method 204
RemoveKeepTogether method 204
SelectDataUnderLabelAt method 204
SelectLabelAt method 205
SelectReferredFootnotesAt method 205
SetBackgroundColorAt method 205
SetBottomMarginAt method 205
SetColumnLabelWidthAt method 206
SetForegroundColorAt method 206
SetHAlignAt method 206
SetLeftMarginAt method 206
SetRightMarginAt method 207
SetRowLabelWidthAt method 207
SetTextColorAt method 207
SetTextFontAt method 207
SetTextHiddenAt method 208
SetTextSizeAt method 208
SetTextStyleAt method 208
SetTextUnderlinedAt method 208

SpssLabels class (continued)
SetTopMarginAt method 209
SetVAlignAt method 209
SetValueAt method 209
ShowAllLabelsAndDataInDimensionAt method 209
ShowAllLabelsInDimensionAt method 210
ShowFootnotesAt method 210
ShowHiddenDimensionLabelAt method 210
Swap method 210

SpssLayerLabels class
GetBackgroundColorAt method 211
GetBottomMarginAt method 212
GetForegroundColorAt method 212
GetHAlignAt method 212
GetLeftMarginAt method 212
GetNumDimensions method 212
GetNumLabelsWide method 213
GetRightMarginAt method 213
GetTextColorAt method 213
GetTextFontAt method 213
GetTextHiddenAt method 213
GetTextSizeAt method 214
GetTextStyleAt method 214
GetTextUnderlinedAt method 214
GetTopMarginAt method 214
GetVAlignAt method 214
GetValueAt method 215
HideFootnotesAt method 215
InsertNewFootnoteAt method 215
InsertSharedFootnoteAt method 216
SelectLabelAt method 216
SelectReferredFootnotesAt method 216
SetBackgroundColorAt method 216
SetBottomMarginAt method 217
SetForegroundColorAt method 217
SetHAlignAt method 217
SetLeftMarginAt method 217
SetRightMarginAt method 217
SetTextColorAt method 218
SetTextFontAt method 218
SetTextHiddenAt method 218
SetTextSizeAt method 218
SetTextStyleAt method 218
SetTextUnderlinedAt method 219
SetTopMarginAt method 219
SetVAlignAt method 219
ShowFootnotesAt method 219

SpssLogItem class
Append method 149
GetTextContents method 149
SetTextContents method 149

SpssMenuItem class
GetTextContents method 151

SpssModelItem class
ExportAllViews method 146
SetXML method 147

SpssOutputDoc class
ClearSelection method 112
CloseDocument method 112
Copy method 113
CopySpecial method 113
CreateHeaderItem method 114
CreateImageChartItem method 114
CreateTextItem method 114

Index 259

SpssOutputDoc class (continued)
CreateTitleItem method 114
Cut method 115
Delete method 115
Demote method 115
ExportCharts method 115
ExportDocument method 116
GetCurrentItem method 117
GetDocumentPath method 117
GetFooterText method 117
GetHeaderText method 117
GetMenuTable method 117
GetOutputItems method 117
GetOutputOptions method 118
GetOutputUI method 119
GetPrintOptions method 119
InsertTable method 120
IsDesignatedOutputDoc method 120
IsEqualTo method 120
IsModified method 120
IsPromptToSave method 121
Paste method 121
PasteBefore method 121
PrintRange method 121
Promote method 121
SaveAs method 121
SelectAll method 122
SelectAllCharts method 122
SelectAllLogs method 122
SelectAllModels method 122
SelectAllNotes method 122
SelectAllOther method 123
SelectAllTables method 123
SelectAllText method 123
SelectAllTitles method 123
SelectAllWarnings method 123
SelectLastOutput method 124
SetAsDesignatedOutputDoc method 124
SetFooterText method 124
SetHeaderText method 124
SetModified method 124
SetOutputOptions method 124
SetPrintOptions method 126
SetPromptToSave method 127

SpssOutputItem class
ExportToDocument method 138
ExportToImage method 139
GetAlignment method 139
GetDescription method 140
GetHeight method 140
GetPageBreak method 140
GetParentItem method 140
GetProcedureName method 140
GetSpecificType method 140
GetSubType method 140
GetTreeLevel method 141
GetType method 141
GetTypeString method 142
GetWidth method 142
GetXML method 142
IsCurrentItem method 142
IsEditable method 142
IsEqualTo method 143
IsSelected method 143

SpssOutputItem class (continued)
IsVisible method 143
SetAlignment method 143
SetCurrentItem method 143
SetDescription method 143
SetHeight method 144
SetPageBreak method 144
SetProcedureName method 144
SetSelected method 144
SetSubType method 144
SetTreeLevel method 144
SetVisible method 145
SetWidth method 145

SpssOutputUI class
GetHeight method 128
GetLeft method 128
GetSplitterPosition method 128
GetTitleText method 128
GetTop method 128
GetVisible method 129
GetWidth method 129
GetWindowState method 129
InvokeDialog method 129
PrintOutputDoc method 129
SetHeight method 130
SetLeft method 130
SetSplitterPosition method 130
SetTop method 130
SetVisible method 130
SetWidth method 131
SetWindowState method 131

SpssPivotMgr class
GetColumnDimension method 220
GetNumColumnDimensions method 220
GetNumLayerDimensions method 220
GetNumRowDimensions method 220
GetRowDimension method 221
MoveLayersToColumns method 221
MoveLayersToRows method 221
TransposeRowsWithColumns method 221

SpssPivotTable class
Autofit method 153
ClearSelection method 153
ColumnLabelArray method 153
DataCellArray method 153
DataCellWidths method 161
DisplayTableByRows method 154
FootnotesArray method 154
GetCaptionText method 154
GetFootnoteMarkersPosition method 154
GetFootnoteMarkersStyle method 154
GetHeight method 154
GetRotateColumnLabels method 155
GetRotateRowLabels method 155
GetSigMarkersType method 155
GetTitleText method 155
GetUpdateScreen method 156
GetVarNamesDisplay method 156
GetVarValuesDisplay method 156
GetWidoworphanLines method 156
GetWidth method 156
Group method 157
HideCaption method 157
HideFootnote method 157

260 Python Reference Guide for IBM SPSS Statistics

SpssPivotTable class (continued)
HideTitle method 157
InsertFootnote method 157
IsDisplayTableByRows method 158
IsLegacyTableCompatible method 158
LayerLabelArray method 158
NavigateToFirstRow method 158
NavigateToLastRow method 158
NavigateToNextRows method 159
NavigateToPreviousRows method 159
NumericFormat method 159
PivotManager method 159
RowLabelArray method 159
SelectAllFootnotes method 159
SelectCaption method 160
SelectCorner method 160
SelectTable method 160
SelectTableBody method 160
SelectTitle method 160
SetBackgroundColor method 160
SetBottomMargin method 160
SetCaptionText method 160
SetCornerText method 161
SetFootnoteMarkers method 161
SetForegroundColor method 161
SetHAlign method 161
SetHDecDigits method 162
SetLeftMargin method 162
SetLegacyTableCompatible method 162
SetRightMargin method 162
SetRotateColumnLabels method 162
SetRotateRowLabels method 163
SetRowsToDisplayRowCount method 163
SetRowsToDisplayTolerance method 163
SetTableLook method 163
SetTextColor method 164
SetTextFont method 164
SetTextHidden method 164
SetTextSize method 164
SetTextStyle method 164
SetTextUnderlined method 165
SetTitleText method 165
SetTopMargin method 165
SetUpdateScreen method 165
SetVAlign method 166
SetVarNamesDisplay method 166
SetVarValuesDisplay method 166
SetWidoworphanLines method 167
ShowAll method 167
ShowAllFootnote method 167
ShowCaption method 167
ShowFootnote method 167
ShowTitle method 167
Ungroup method 168

SpssScriptContext class
GetOutputDoc method 227
GetOutputItem method 227
GetOutputItemIndex method 228

SpssServerConf class
Connect method 222
ConnectWithSavedPassword method 222
Disconnect method 223
GetDescription method 223
GetServerName method 223

SpssServerConf class (continued)
GetServerPort method 223
GetUserDomain method 223
GetUserId method 223
GetUseSSL method 223
IsDefaultServer method 224
IsEqualTo method 224
IsLocalServer method 224
IsPasswordSaved method 224
SetDefaultServer method 224
SetDescription method 224
SetPassword method 224
SetPasswordSaved method 225
SetServerName method 225
SetServerPort method 225
SetUserDomain method 225
SetUserId method 225
SetUseSSL method 225

SpssServerConfList class
Add method 226
Clear method 226
Contains method 226
GetItemAt method 226
Remove method 226
RemoveItemAt method 227
Size method 227

SPSSSubtype method
SpssChartItem class 145

SpssSyntaxDoc class
CloseDocument method 132
GetDocumentPath method 132
GetMenuTable method 132
GetSyntax method 132
GetSyntaxUI method 132
IsDesignatedSyntaxDoc method 132
IsEqualTo method 132
IsModified method 133
IsPromptToSave method 133
RunSyntax method 133
SaveAs method 133
SetAsDesignatedSyntaxDoc method 133
SetModified method 134
SetPromptToSave method 134
SetSyntax method 134

SpssSyntaxUI class
GetHeight method 135
GetLeft method 135
GetTitleText method 135
GetTop method 135
GetVisible method 136
GetWidth method 136
GetWindowState method 136
InvokeDialog method 136
PrintSyntaxDoc method 136
SetHeight method 137
SetLeft method 137
SetTop method 137
SetVisible method 137
SetWidth method 137
SetWindowState method 137

SpssTextItem class
GetTextContents method 149
SetTextContents method 150

SpssTitleItem class

Index 261

SpssTitleItem class (continued)
GetTextContents method 150
SetTextContents method 150

StartClient method
SpssClient class 104

StartDataStep 83
StartProcedure 83
StartSPSS 85
StopClient method

SpssClient class 104
StopSPSS 86
String class 33
string variables 68, 77
Submit 87
Swap method

SpssLabels class 210
SyntaxDocsList class

GetItemAt method 135
Size method 135

T
table breaks 196
TextBlock class

append method 88
TitleFootnotes method 31
toNumber method 34
toString method 34
TransposeRowsWithColumns method

SpssPivotMgr class 221
type property

Variable class 68

U
Ungroup method

SpssPivotTable class 168
Unicode

Python programs 80
Unicode mode 4, 6
unknown measurement level 76

V
value labels

getting and setting 68
valueLabels property

Variable class 68
variable alignment

getting and setting 65
variable attributes

retrieving 65, 75
setting 50, 65

Variable class
alignment property 65
attributes property 65
columnWidth property 66
format property 66
index property 66
label property 67
measurementLevel property 67
missingValues property 67
name property 68

Variable class (continued)
role property 68
type property 68
valueLabels property 68

variable count 75
variable format

getting and setting 66
variable label

getting and setting 67
variable names

getting and setting 68
variable type

getting and setting 68
VariableList class

append method 64
insert method 64

varlist property
Dataset class 57

VarName class 33
VarValue class 33
versions

managing multiple versions 8, 71, 80, 82, 96, 103

W
weight variable 78

X
XPath expressions 70

262 Python Reference Guide for IBM SPSS Statistics

IBM®

	Contents
	Chapter 1. Overview
	Chapter 2. Python Integration Package
	Introduction to Python Programs
	Working with Python Program Blocks
	Basic Specification for a Python Program Block
	Nested Program Blocks
	Unicode Mode

	Python Syntax Rules
	Working with Multiple Versions of IBM SPSS Statistics
	Python and IBM SPSS Statistics Working Directories
	Running IBM SPSS Statistics from an External Python Process
	Localizing Output from Python Programs
	Modifying the Python code
	Extracting translatable text
	Translating the pot file
	Installing the mo files

	Python Functions and Classes
	spss.ActiveDataset Function
	spss.AddProcedureFootnotes Function
	spss.BasePivotTable Class
	Creating Pivot Tables with the SimplePivotTable Method
	General Approach to Creating Pivot Tables
	Step 1: Adding Dimensions
	Step 2: Defining Categories
	Step 3: Setting Cell Values
	Using Cell Values in Expressions

	spss.BasePivotTable Methods
	Append Method
	Caption Method
	CategoryFootnotes Method
	DimensionFootnotes Method
	Footnotes Method
	GetDefaultFormatSpec Method
	HideTitle Method
	Insert Method
	SetCategories Method
	SetCell Method
	SetCellsByColumn Method
	SetCellsByRow Method
	SetDefaultFormatSpec Method
	SimplePivotTable Method
	TitleFootnotes Method

	spss.CellText Class
	Number Class
	String Class
	VarName Class
	VarValue Class
	toNumber Method
	toString Method

	Creating a Warnings Table

	spss.BaseProcedure Class
	spss.CreateXPathDictionary Function
	spss.Cursor Class
	Read Mode
	Write Mode
	Append Mode
	spss.Cursor Methods
	AllocNewVarsBuffer Method
	close Method
	CommitCase Method
	CommitDictionary Method
	EndChanges Method
	fetchall Method
	fetchmany Method
	fetchone Method
	IsEndSplit Method
	reset Method
	SetFetchVarList
	SetOneVarNameAndType Method
	SetUserMissingInclude Method
	SetValueChar Method
	SetValueNumeric Method
	SetVarAlignment Method
	SetVarAttributes Method
	SetVarCMissingValues Method
	SetVarCValueLabel Method
	SetVarFormat Method
	SetVarLabel Method
	SetVarMeasureLevel Method
	SetVarNameAndType Method
	SetVarNMissingValues Method
	SetVarNValueLabel Method
	SetVarRole Method

	spss.Dataset Class
	cases Property
	name Property
	varlist Property
	dataFileAttributes Property
	multiResponseSet Property
	cache Property
	optimized Property
	close Method
	deepCopy Method
	CaseList Class
	append Method
	insert Method

	VariableList Class
	append Method
	insert Method

	Variable Class
	alignment Property
	attributes Property
	columnWidth Property
	format Property
	index Property
	label Property
	measurementLevel Property
	missingValues Property
	name Property
	role Property
	type Property
	valueLabels Property

	spss.DataStep Class
	spss.DeleteXPathHandle Function
	spss.EndDataStep Function
	spss.EndProcedure Function
	spss.EvaluateXPath Function
	spss.GetCaseCount Function
	spss.GetDataFileAttributeNames Function
	spss.GetDataFileAttributes Function
	spss.GetDatasets Function
	spss.GetDefaultPlugInVersion Function
	spss.GetFileHandles Function
	spss.GetHandleList Function
	spss.GetImage Function
	spss.GetLastErrorLevel and spss.GetLastErrorMessage Functions
	spss.GetMultiResponseSetNames Function
	spss.GetMultiResponseSet Function
	spss.GetOMSTagList Function
	spss.GetSetting Function
	spss.GetSplitVariableNames Function
	spss.GetSPSSLocale Function
	spss.GetSPSSLowHigh Function
	spss.GetVarAttributeNames Function
	spss.GetVarAttributes Function
	spss.GetVariableCount Function
	spss.GetVariableFormat Function
	spss.GetVariableLabel Function
	spss.GetVariableMeasurementLevel Function
	spss.GetVariableName Function
	spss.GetVariableRole Function
	spss.GetVariableType Function
	spss.GetVarMissingValues Function
	spss.GetWeightVar Function
	spss.GetXmlUtf16 Function
	spss.HasCursor Function
	spss.IsActive Function
	spss.IsDistributedMode Function
	spss.IsOutputOn Function
	spss.Procedure Class
	spss.PyInvokeSpss.IsUTF8mode Function
	spss.PyInvokeSpss.IsXDriven Function
	spss.SetActive Function
	spss.SetDefaultPlugInVersion Function
	spss.SetMacroValue Function
	spss.SetOutput Function
	spss.SetOutputLanguage Function
	spss.ShowInstalledPlugInVersions Function
	spss.SplitChange Function
	spss.StartDataStep Function
	spss.StartProcedure Function
	spss.StartSPSS Function
	spss.StopSPSS Function
	spss.Submit Function
	spss.TextBlock Class
	append Method

	Chapter 3. Scripting Guide
	Introduction to Python Scripts
	Script Editor for the Python Programming Language
	Class Hierarchy for Scripting Facility
	Getting Started with Python Scripts
	Getting Started with Autoscripts in Python
	Running Python Scripts from Python Programs

	SpssClient Class
	CreateNewServer Method
	Exit Method
	GetActiveDataDoc Method
	GetConfiguredServers Method
	GetCurrentDirectory Method
	GetCurrentServer Method
	GetDataDocuments Method
	GetDefaultJCVersion Method
	GetDefaultServer Method
	GetDesignatedOutputDoc Method
	GetDesignatedSyntaxDoc Method
	GetExportOption Method
	GetLocale Method
	GetLocalServer Method
	GetOutputDocuments Method
	GetPreference Method
	GetScriptContext Method
	GetSPSSOptions Method
	GetSPSSPath Method
	GetSPSSVersion Method
	GetSyntaxDocuments Method
	GetUIAlerts Method
	IsDataDocInUse Method
	IsDistributedMode
	IsOptionAvailable Method
	LogToViewer Method
	NewDataDoc Method
	NewOutputDoc Method
	NewSyntaxDoc Method
	OpenDataDoc Method
	OpenOutputDoc Method
	OpenSyntaxDoc Method
	RunSyntax Method
	SaveServers Method
	ScriptParameter Method
	SetCurrentDirectory Method
	SetDefaultJCVersion Method
	SetExportOption Method
	SetPreference Method
	SetUIAlerts Method
	StartClient Method
	StopClient Method
	_heartBeat Method

	Datasets and Data Editor Windows
	SpssDataDoc Class
	CloseDocument Method
	GetCaseCount Method
	GetDatasetName Method
	GetDataUI Method
	GetDocumentPath Method
	GetMenuTable Method
	GetVariableCount Method
	IsActiveDataDoc Method
	IsEqualTo Method
	IsModified Method
	IsPromptToSave Method
	SaveAs Method
	SetAsActiveDataDoc Method
	SetDatasetName Method
	SetModified Method
	SetPromptToSave Method

	DataDocsList Class
	GetItemAt Method
	Size Method

	SpssDataUI Class
	GetHeight Method
	GetLeft Method
	GetShowGridLines Method
	GetShowValueLabels Method
	GetTitleText Method
	GetTop Method
	GetVisible Method
	GetWidth Method
	GetWindowState Method
	InvokeDialog Method
	PrintDataDoc Method
	SetHeight Method
	SetLeft Method
	SetShowGridLines Method
	SetShowValueLabels Method
	SetTop Method
	SetVisible Method
	SetWidth Method
	SetWindowState Method

	Output Documents and Viewer Windows
	SpssOutputDoc Class
	ClearSelection Method
	CloseDocument Method
	Copy Method
	CopySpecial Method
	CreateHeaderItem Method
	CreateImageChartItem Method
	CreateTextItem Method
	CreateTitleItem Method
	Cut Method
	Delete Method
	Demote Method
	ExportCharts Method
	ExportDocument Method
	GetCurrentItem Method
	GetDocumentPath Method
	GetFooterText Method
	GetHeaderText Method
	GetMenuTable Method
	GetOutputItems Method
	GetOutputOptions Method
	GetOutputUI Method
	GetPrintOptions Method
	InsertTable Method
	IsDesignatedOutputDoc Method
	IsEqualTo Method
	IsModified Method
	IsPromptToSave Method
	Paste Method
	PasteBefore Method
	PrintRange Method
	Promote Method
	SaveAs Method
	SelectAll Method
	SelectAllCharts Method
	SelectAllLogs Method
	SelectAllModels Method
	SelectAllNotes Method
	SelectAllNotesEx Method
	SelectAllOther Method
	SelectAllTables Method
	SelectAllTablesEx Method
	SelectAllText Method
	SelectAllTitles Method
	SelectAllWarnings Method
	SelectAllWarningsEx Method
	SelectLastOutput Method
	SetAsDesignatedOutputDoc Method
	SetFooterText Method
	SetHeaderText Method
	SetModified Method
	SetOutputOptions Method
	SetPrintOptions Method
	SetPromptToSave Method

	OutputDocsList Class
	GetItemAt Method
	Size Method

	OutputItemList Class
	GetItemAt Method
	Size Method

	SpssOutputUI Class
	GetHeight Method
	GetLeft Method
	GetSplitterPosition Method
	GetTitleText Method
	GetTop Method
	GetVisible Method
	GetWidth Method
	GetWindowState Method
	InvokeDialog Method
	PrintOutputDoc Method
	SetHeight Method
	SetLeft Method
	SetSplitterPosition Method
	SetTop Method
	SetVisible Method
	SetWidth Method
	SetWindowState Method

	Syntax Documents and Syntax Editor Windows
	SpssSyntaxDoc Class
	CloseDocument Method
	GetDocumentPath Method
	GetMenuTable Method
	GetSyntax Method
	GetSyntaxUI Method
	IsDesignatedSyntaxDoc Method
	IsEqualTo Method
	IsModified Method
	IsPromptToSave Method
	RunSyntax Method
	SaveAs Method
	SetAsDesignatedSyntaxDoc Method
	SetModified Method
	SetPromptToSave Method
	SetSyntax Method

	SyntaxDocsList Class
	GetItemAt Method
	Size Method

	SpssSyntaxUI Class
	GetHeight Method
	GetLeft Method
	GetTitleText Method
	GetTop Method
	GetVisible Method
	GetWidth Method
	GetWindowState Method
	InvokeDialog Method
	PrintSyntaxDoc Method
	SetHeight Method
	SetLeft Method
	SetTop Method
	SetVisible Method
	SetWidth Method
	SetWindowState Method

	Output Items
	SpssOutputItem Class
	ConvertToStdTable Method
	ExportToDocument Method
	ExportToImage Method
	GetAlignment Method
	GetDescription Method
	GetHeight Method
	GetPageBreak Method
	GetParentItem Method
	GetProcedureName Method
	GetSpecificType Method
	GetSubType Method
	GetTreeLevel Method
	GetType Method
	GetTypeString Method
	GetWidth Method
	GetXML Method
	IsCurrentItem Method
	IsEditable Method
	IsEqualTo Method
	IsSelected Method
	IsVisible Method
	SetAlignment Method
	SetCurrentItem Method
	SetDescription Method
	SetHeight Method
	SetPageBreak Method
	SetProcedureName Method
	SetSelected Method
	SetSubType Method
	SetTreeLevel Method
	SetVisible Method
	SetWidth Method

	SpssChartItem Class
	SetXML Method
	SPSSSubtype Method

	SpssModelItem Class
	ExportAllViews Method
	SetXML Method

	SpssHeaderItem Class
	GetChildCount Method
	GetChildItem Method
	InsertChildItem Method
	IsExpanded Method
	RemoveChildItem Method
	SetExpanded Method

	SpssLogItem Class
	Append Method
	GetTextContents Method
	SetTextContents Method

	SpssTextItem Class
	GetTextContents Method
	SetTextContents Method

	SpssTitleItem Class
	GetTextContents Method
	SetTextContents Method

	Menus
	MenuTableList Class
	GetItemAt Method
	Size Method

	SpssMenuItem Class
	GetTextContents Method

	Pivot Tables
	Pivot Tables
	Compatibility with previous releases

	SpssPivotTable Class
	Autofit Method
	ClearSelection Method
	ColumnLabelArray Method
	DataCellArray Method
	DisplayTableByRows Method
	FootnotesArray Method
	GetCaptionText Method
	GetFootnoteMarkersPosition Method
	GetFootnoteMarkersStyle Method
	GetHeight Method
	GetRotateColumnLabels Method
	GetRotateRowLabels Method
	GetSigMarkersType Method
	GetTitleText Method
	GetUpdateScreen Method
	GetVarNamesDisplay Method
	GetVarValuesDisplay Method
	GetWidowOrphanLines Method
	GetWidth Method
	Group Method
	HideCaption Method
	HideFootnote Method
	HideTitle Method
	InsertFootnote Method
	IsDisplayTableByRows Method
	IsLegacyTableCompatible Method
	LayerLabelArray Method
	NavigateToFirstRow Method
	NavigateToLastRow Method
	NavigateToNextRows Method
	NavigateToPreviousRows Method
	NumericFormat Method
	PivotManager Method
	RowLabelArray Method
	SelectAllFootnotes Method
	SelectCaption Method
	SelectCorner Method
	SelectTable Method
	SelectTableBody Method
	SelectTitle Method
	SetBackgroundColor Method
	SetBottomMargin Method
	SetCaptionText Method
	SetCornerText Method
	SetDataCellWidths Method
	SetFootnoteMarkers Method
	SetForegroundColor Method
	SetHAlign Method
	SetHDecDigits Method
	SetLeftMargin Method
	SetLegacyTableCompatible Method
	SetRightMargin Method
	SetRotateColumnLabels Method
	SetRotateRowLabels Method
	SetRowsToDisplayRowCount Method
	SetRowsToDisplayTolerance Method
	SetTableLook Method
	SetTextColor Method
	SetTextFont Method
	SetTextHidden Method
	SetTextSize Method
	SetTextStyle Method
	SetTextUnderlined Method
	SetTitleText Method
	SetTopMargin Method
	SetUpdateScreen Method
	SetVAlign Method
	SetVarNamesDisplay Method
	SetVarValuesDisplay Method
	SetWidowOrphanLines Method
	ShowAll Method
	ShowAllFootnotes Method
	ShowCaption Method
	ShowFootnote Method
	ShowTitle Method
	Ungroup Method

	SpssDataCells Class
	GetBackgroundColorAt Method
	GetBottomMarginAt Method
	GetForegroundColorAt Method
	GetHAlignAt Method
	GetHDecDigitsAt Method
	GetLeftMarginAt Method
	GetNumColumns Method
	GetNumericFormatAt method
	GetNumericFormatAtEx method
	GetNumRows Method
	GetReferredFootnotesAt Method
	GetRightMarginAt Method
	GetSigMarkersAt method
	GetTextColorAt Method
	GetTextFontAt Method
	GetTextHiddenAt Method
	GetTextSizeAt Method
	GetTextStyleAt Method
	GetTextUnderlinedAt Method
	GetTopMarginAt Method
	GetVAlignAt Method
	GetUnformattedValueAt Method
	GetValueAt Method
	HideFootnotesAt Method
	InsertNewFootnoteAt Method
	InsertSharedFootnoteAt Method
	ReSizeColumn Method
	SelectCellAt Method
	SelectReferredFootnotesAt Method
	SetBackgroundColorAt Method
	SetBottomMarginAt Method
	SetForegroundColorAt Method
	SetHAlignAt Method
	SetHDecDigitsAt Method
	SetLeftMarginAt Method
	SetNumericFormatAt method
	SetNumericFormatAtWithDecimal method
	SetRightMarginAt Method
	SetTextColorAt Method
	SetTextFontAt Method
	SetTextHiddenAt Method
	SetTextSizeAt Method
	SetTextStyleAt Method
	SetTextUnderlinedAt Method
	SetTopMarginAt Method
	SetVAlignAt Method
	SetValueAt Method
	ShowFootnotesAt Method

	SpssDimension Class
	GetCategoryValueAt Method
	GetCurrentCategory Method
	GetDimensionName Method
	GetFullDimensionLabel Method
	GetNumCategories Method
	HideLabel Method
	MoveToColumn Method
	MoveToLayer Method
	MoveToRow Method
	SetCurrentCategory Method
	SetDimensionName Method

	SpssFootnotes Class
	ChangeMarkerToRegular Method
	ChangeMarkerToSpecial Method
	GetBackgroundColorAt Method
	GetBottomMarginAt Method
	GetCount Method
	GetForegroundColorAt Method
	GetHAlignAt Method
	GetLeftMarginAt Method
	GetRightMarginAt Method
	GetTextColorAt Method
	GetTextFontAt Method
	GetTextHiddenAt Method
	GetTextSizeAt Method
	GetTextStyleAt Method
	GetTextUnderlinedAt Method
	GetTopMarginAt Method
	GetVAlignAt Method
	GetValueAt Method
	RenumberFootnotes Method
	SelectCellAt Method
	SetBackgroundColorAt Method
	SetBottomMarginAt Method
	SetForegroundColorAt Method
	SetHAlignAt Method
	SetLeftMarginAt Method
	SetRightMarginAt Method
	SetTextColorAt Method
	SetTextFontAt Method
	SetTextHiddenAt Method
	SetTextSizeAt Method
	SetTextStyleAt Method
	SetTextUnderlinedAt Method
	SetTopMarginAt Method
	SetVAlignAt Method
	SetValueAt Method

	SpssLabels Class
	BreakHere Method
	GetBackgroundColorAt Method
	GetBottomMarginAt Method
	GetColumnLabelWidthAt Method
	GetForegroundColorAt Method
	GetHAlignAt Method
	GetLeftMarginAt Method
	GetNumColumns Method
	GetNumRows Method
	GetReferredFootnotesAt Method
	GetRightMarginAt Method
	GetRowLabelWidthAt Method
	GetTextColorAt Method
	GetTextFontAt Method
	GetTextHiddenAt Method
	GetTextSizeAt Method
	GetTextStyleAt Method
	GetTextUnderlinedAt Method
	GetTextWidthAt Method
	GetTopMarginAt Method
	GetVAlignAt Method
	GetValueAt Method
	HideAllLabelsInDimensionAt Method
	HideFootnotesAt Method
	HideLabelsInDimensionAt Method
	HideLabelsWithDataAt Method
	InsertBefore Method
	InsertNewAfter Method
	InsertNewBefore Method
	InsertNewFootnoteAt Method
	InsertSharedFootnoteAt Method
	KeepTogether Method
	RemoveBreakHere Method
	RemoveKeepTogether Method
	SelectDataUnderLabelAt Method
	SelectLabelAt Method
	SelectLabelDataAt Method
	SelectReferredFootnotesAt Method
	SetBackgroundColorAt Method
	SetBottomMarginAt Method
	SetColumnLabelWidthAt Method
	SetForegroundColorAt Method
	SetHAlignAt Method
	SetLeftMarginAt Method
	SetRightMarginAt Method
	SetRowLabelWidthAt Method
	SetTextColorAt Method
	SetTextFontAt Method
	SetTextHiddenAt Method
	SetTextSizeAt Method
	SetTextStyleAt Method
	SetTextUnderlinedAt Method
	SetTopMarginAt Method
	SetVAlignAt Method
	SetValueAt Method
	ShowAllLabelsAndDataInDimensionAt Method
	ShowAllLabelsInDimensionAt Method
	ShowFootnotesAt Method
	ShowHiddenDimensionLabelAt Method
	Swap Method

	SpssLayerLabels Class
	GetBackgroundColorAt Method
	GetBottomMarginAt Method
	GetForegroundColorAt Method
	GetHAlignAt Method
	GetLeftMarginAt Method
	GetNumDimensions Method
	GetNumLabelsWide Method
	GetRightMarginAt Method
	GetTextColorAt Method
	GetTextFontAt Method
	GetTextHiddenAt Method
	GetTextSizeAt Method
	GetTextStyleAt Method
	GetTextUnderlinedAt Method
	GetTopMarginAt Method
	GetVAlignAt Method
	GetValueAt Method
	HideFootnotesAt Method
	InsertNewFootnoteAt Method
	InsertSharedFootnoteAt Method
	SelectLabelAt Method
	SelectReferredFootnotesAt Method
	SetBackgroundColorAt Method
	SetBottomMarginAt Method
	SetForegroundColorAt Method
	SetHAlignAt Method
	SetLeftMarginAt Method
	SetRightMarginAt Method
	SetTextColorAt Method
	SetTextFontAt Method
	SetTextHiddenAt Method
	SetTextSizeAt Method
	SetTextStyleAt Method
	SetTextUnderlinedAt Method
	SetTopMarginAt Method
	SetVAlignAt Method
	ShowFootnotesAt Method

	SpssPivotMgr Class
	GetColumnDimension Method
	GetLayerDimension Method
	GetNumColumnDimensions Method
	GetNumLayerDimensions Method
	GetNumRowDimensions Method
	GetRowDimension Method
	MoveLayersToColumns Method
	MoveLayersToRows Method
	TransposeRowsWithColumns Method

	Managing Remote Servers
	SpssServerConf Class
	Connect Method
	ConnectWithSavedPassword Method
	Disconnect Method
	GetDescription Method
	GetServerName Method
	GetServerPort Method
	GetUserDomain Method
	GetUserId Method
	GetUseSSL Method
	IsDefaultServer Method
	IsEqualTo Method
	IsLocalServer Method
	IsPasswordSaved Method
	SetDefaultServer Method
	SetDescription Method
	SetPassword Method
	SetPasswordSaved Method
	SetServerName Method
	SetServerPort Method
	SetUserDomain Method
	SetUserId Method
	SetUseSSL Method

	SpssServerConfList Class
	Add Method
	Clear Method
	Contains Method
	GetItemAt Method
	Remove Method
	RemoveItemAt Method
	Size Method

	SpssScriptContext Class
	GetOutputDoc Method
	GetOutputItem Method
	GetOutputItemIndex Method

	Appendix A. Variable Format Types
	Appendix B. Setting Color Values
	Appendix C. Export Options
	Appendix D. String Description of Numeric Formats
	Appendix E. Preference Options
	Appendix F. Python Extension Commands for SPSS Statistics
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

