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第1章

概要

IBM® SPSS® Amos™ は、 構造方程式モデリ ング (SEM) または共分散構造分析や因子

モデリ ングと も呼ばれる一般的なデータ分析手法を備えています。 この手法には、 特

別なケース と して、 一般線型モデルや共通因子分析など広く行われている従来の方法

が含まれています。

Amos (Analysis of Moment Structures: 積率構造分析 ) は、 SEM を視覚的に示す使

いやすいプログラムです。 簡単な描画ツールを使って、 モデルのグラフ ィ ッ クを

素早く指定、表示、変更できます。 続いてモデルの適合性を評価し、修正を行い、

最終モデルのグラフ ィ ッ ク を印刷物レベルの品質で印刷する こ とができます。

単にグラフ ィ ッ クでモデルを指定してください ( 左側 )。 Amos によ り素早く計算

が行われ、 結果が表示されます (右側 )。

視覚能力

視覚的認知力

空間視覚化力

方向認識力

語彙力

文書理解力

文理解力

err_v

err_c

err_l

err_p

err_s

err_w

言語能力

1

1

1

1

1

1

1

1

入力

視覚能力

視覚的認知力

.43

空間視覚化力

.54

方向認識力

.71

語彙力

.77

文書理解力

.68

文理解力

err_v

err_c

err_l

err_p

err_s

err_w

言語能力

.70

.65

.74

.88

.83

.84

.49

出力

Chi-square = 7.853 (8 df)
p = .448

パート 1: はじめに
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構造方程式モデリ ング (SEM) はしばしば、難解で習得して使用するのが難しいと考え

られています。 これは大きな間違いです。 実際、 データ分析で SEM の重要性が増して

いるのは、 使いやすさによる と ころが大きいのです。 以前は統計の専門家が必要だっ

た推定や仮説の検定に関する問題が、SEM によって専門家でなくても処理できるよ う

になってきました。 
Amos はも と も と、 強力で基本的には単純なこの方法を教授するためのツールと し

て設計されました。 このため、 この方法の使いやすさを示すこ とに力が注がれていま

す。 Amos は、使いやすいグラフ ィカル インターフェイスに SEM 用の高度な計算エン

ジンを統合させています。 印刷物レベルの品質を持つ Amos のパス図は、 学生や同僚

の研究者に対してモデルを明確に示します。 Amos に備わっている数値化方法は、最も

効果的で信頼性の高い方法です。

主要な方法

構造方程式モデルを推定するために、 Amos には以下の方法が備わっています。 

 最尤法

 重み付けのない最小 2 乗法

 一般化した最小 2 乗法

 Browne の漸近的分布非依存法

 尺度不変最小 2 乗法

 ベイジアン推定

欠損データがある場合、 Amos は、 リ ス ト ご とやペアごとの削除や中間補完のよ う な

アドホッ クな方法に頼るのではなく、 全情報の最尤を使った最新の方法によって推定

を実行します。 プログラムは、 複数の母集団のデータを一度に分析するこ とができま

す。 また、 回帰方程式で外因性の変数と切片の平均を推定するこ とができます。 
プログラムは、 ブース ト ラ ップ標準誤差と信頼区間を全てのパラ メータ推定、 有効

推定、 標本平均、 分散、 共分散、 および相関で使用可能にします。 また、 百分位数の

区間と偏位修正された百分位数の区間 (Stine、 1989)、 およびモデル検定に対するブー

ス ト ラ ップ手法 (Bollen - Stine、 1992) も備えています。

1 つの分析で複数のモデルが適合するこ とがあ り ます。 Amos はモデルのペアごと

に、 他のパラ メータに制限を加えるこ とによって 1 つのモデルを取得します。 プログ

ラムは、 こ う したモデルの比較に適したいくつかの統計をレポート します。 プログラ

ムは、 観測される各変数に対する変量の正規分布の検定と多変量の正規分布の検定を

備え、 外れ値の検出を試みます。

Amos はパス図をモデル仕様と して受け入れ、 パラ メータ推定値をパス図にグラ

フ ィ ッ クで表示します。 モデル仕様に使われるパス図やパラ メータ推定値を表示する

パス図は、 プレゼンテーシ ョ ン レベルの品質です。 直接印刷するこ と もできますし、

ワープロや DTP プログラム、 汎用のグラフ ィ ッ ク  プログラムなどのアプリ ケーシ ョ

ンにインポートするこ と もできます。
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チュー ト リ アルについて

チュート リ アルは、 Amos Graphics を起動して実行できるよ うに設計されています。

基本的な機能をカバーしてあ り、 初めての Amos 分析をガイ ド します。 
チュート リ アルをひと通り実行したら、 よ り高度な機能についてはオンライン ヘル

プで知るこ とができます。あるいは、用意されている例を引き続き実行して、Amos を
使った構造モデリ ングについてさらに学ぶこ とができます。

例について

多くの人は、実際に操作しながら学びたいと思っています。 これを踏まえて、Amos の
使用方法を実践的に示す多数の例を用意しました。 最初の数例では、 単一の問題に対

応できる  Amos の基本機能を紹介します。 どのボタンをク リ ッ クするのか、 サポート

されている各種データ形式にど うやってアクセスするのか、 出力をどのよ うに操作す

るのか、 といったこ とを学びます。 その後の例では、 プログラム インターフェイスの

問題よ り も、 モデリ ングの問題を詳し く扱います。 
例1 から  例4 では、 従来の分析、 つま り標準的な統計パッケージを使って実行でき

る分析を Amos を使って行う方法を示します。 これらの例では、 よ く ある問題に対し

て新しい手法を示しながら、Amos の基本機能を網羅しています。 平均や相関を推定す

る とか、 2 つの平均が同じである という仮説を検定する といった単純なこ とを行うの

にも、 Amos を使う と便利な場合があ り ます。 理由の 1 つと して、 Amos の欠損データ

処理機能を使用できる という こ とが挙げられます。 あるいは、Amos のブース ト ラ ップ

機能は、 特に信頼区間を取得するのに役立ちます。

例5 から  例8 は、 今日の構造モデリ ングで一般的に使われている基本的な方法を示

します。 

例 9 以降は、 利用価値があ りながら現時点ではまだそれほど使用されていない高度な

方法を示します。 こ う した方法と して、 たとえば以下のものがあ り ます。 

 複数の母集団のデータの同時分析。 

 回帰方程式における平均値と切片項の推定。

 欠損データがある場合の最尤推定。 

 標準誤差の推定値を取得するためのブート ス ト ラ ップ。 Amos ではこれらの方法を

特に使いやすく していますので、 よ り普及するこ とが期待されます。

 探索的モデル特定化。

 ベイジアン推定。

 欠損値の代入。

 打ち切りデータの分析。

 順序 - カテゴ リ カル データの分析。

 混在モデル。
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ヒ ン ト : Amos の特定の機能について質問がある場合はいつでも、プログラムで提供し

ている広範なオンライン ヘルプを参照できます。 

ド キュ メ ン ト について

Amos 30 には、 広範なドキュ メン トが付属しています。 オンライン ヘルプ、 ユーザー

ズ ガイ ド  ( 本書 )、 および Visual Basic、 C# または Python と  Amos API (Application
Programming Interface) の詳細な参考資料などがあ り ます。 標準的なインス トールを実

行する場合 は、%amosprogram%\Documentation\Programming Reference.pdf ファ イルに

ある。

その他の情報源

このユーザーズ ガイ ドには有益な解説が記載されていますが、構造モデリ ングの正し

く効果的な使い方の完全なガイ ド  ブッ ク とい うわけではあ り ません。 多くの優れた

SEM 解説文書が入手可能です。

 『Structural Equation Modeling: A Multidisciplinary Journal』 には、構造モデリ ングの

方法論的な記事および適用例が記載されています。 発行元は Taylor and Francis
(https://tandfonline.com) です。

 Carl Ferguson と  Edward Rigdon は、 Semnet という電子メーリ ング リ ス ト を設定し、

構造モデリングに関連する議論のフォーラムを提供しています。 Semnet 購読に関す

る情報は、 https://listserv.ua.edu/cgi-bin/wa?SUBED1=SEMNET&A=1 で得られます。
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謝辞

Amos の以前のバージ ョ ンと現行のバージ ョ ンをテス ト した多くのユーザーの皆様か

らいろいろなフ ィードバッ ク をいただき ま した。 Torsten B. Neilands は、 Joseph L.
Schafer の協力の元、本ユーザーガイ ドの例 26 から  31 までを記述しました。 Eric Loken
は例 32 および 33 をレビューしました。 彼はまた Amos の今後の開発における重要な

提案と同様に混在するモデルに対する貴重な考察を提供してくださいました。

1 つ注意点があ り ます。Amos Development Corporation と  SPSS は広範なプログラム

検定を行い、Amos が正し く動作するこ とを確認していますが、Amos を含む全ての複

雑なソフ ト ウェアには、 未検出のバグが含まれる可能性があ り ます。 我々は、 プログ

ラム エラーの修正に努力しています。 エラーを発見した場合は、 SPSS テクニカル サ
ポート  スタ ッフまでお知らせください。

James L. Arbuckle
日本語訳監修 ：井上哲浩

（慶應義塾大学大学院経営管理研究科教授）
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チ ュー ト リ アル : Amos Graphics のス

タ ー ト ア ッ プ  ガイ ド

概要

初めて統計の授業を受けたと き、 苦労して公式を覚え、 紙と鉛筆で一生懸命計算して

答を出しましたね。 教授の指示に従ってそ うする う ちに、 基本的な統計の概念を理解

するよ うになったこ とでし ょ う。 後に、 こ う した計算は全て、 計算機やソフ ト ウェア

プログラムであっという間にできてしま う こ とを知り ましたね。

このチュート リ アルは、 統計の入門ク ラスにやや似ています。 Amos Graphics には、

パス図を描いてラベルを付けるための効率的な方法が多数あ り ますが、 このユーザー

ズ ガイ ドの例をたどっていくか、オンライン ヘルプを参照する うちに、それらが見つ

かるでし ょ う。 このチュート リ アルの目的は、単に Amos Graphics の初歩的な使い方を

示すこ とです。 Amos の基本的な機能をカバーしてあ り、初めての Amos 分析をガイ ド

します。 
チュート リ アルをひと通り実行したら、 よ り高度な機能についてはオンライン ヘル

プで知るこ とができます。 あるいは、 用意されている例を引き続き実行して、 順序よ

く学ぶこ と もできます。

このチュート リ アルで作成するパス図は、 %amostutorial%\Startsps.amw ファ イルに

あ り ます。 このファ イルは、 SPSS Statistics データファ イルを使用しています。 同 じ
パス図が %amostutorial%\Getstart.amw にあ り、 Microsoft Excel ファ イルのデータを使

用しています。

ヒ ン ト : Amos には、 メニューから多くの同じタス クを実行するツールバーボタン と

キーボードのシ ョート カッ トがあ り ます。 このユーザーガイ ドでは、 メニューの使用

に重きが置かれています。 ツールバーボタンとキーボードのシ ョート カッ トの使用の

詳細については、 オンラインヘルプを参照してください。
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データについて

Hamilton (1990) は、 21 州のそれぞれについて、 いくつかの測定を行いました。 この

チュート リ アルでは、 以下の 3 つの測定を使用します。 

 SAT の平均得点

 1 人当たりの所得 (単位は $1,000) 

 25 才以上の居住者の教育の中央値

これらのデータは、 Tutorial ディ レク ト リの Excel 8.0 ワークブッ ク  Hamilton.xls 内の

Hamilton という ワークシートにあ り ます。 データは以下のとおりです。

次のパス図は、 これらのデータのモデルを示しています。

SAT 所得 教育

899 14.345 12.7
896 16.37 12.6
897 13.537 12.5
889 12.552 12.5
823 11.441 12.2
857 12.757 12.7
860 11.799 12.4
890 10.683 12.5
889 14.112 12.5
888 14.573 12.6
925 13.144 12.6
869 15.281 12.5
896 14.121 12.5
827 10.758 12.2
908 11.583 12.7
885 12.343 12.4
887 12.729 12.3
790 10.075 12.1
868 12.636 12.4
904 10.689 12.6
888 13.065 12.4
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これは単純な回帰モデルで、観測される  1 つの変数SAT は、観測される他の 2 つの変

数 "教育 " と  "所得 " の線型結合と予測されます。 ほぼ全ての経験データから、 この予

測は完全ではあ り ません。 変数 "その他 " は、 変数 "教育 " と  "所得 " 以外で SAT に影

響する変数を表します。

片方向の各矢印は、 回帰係数を表わします。 図の 1 とい う数字は、 SAT の予測で

"その他 " の係数が 1 であるこ とを指定します。 モデルを識別するために、 こ う した制

約をいくつか設ける必要があ り ます。 これは、 Amos に認識させる必要のあるモデル

の特徴の 1 つです。

Amos Graphics の起動

Amos Graphics は、 以下のいずれの方法でも起動できます。

 Windows の [ スター ト ] メニューを開いて、IBM SPSS Amos 30 Graphics を検索し

ます。 

 Windows のエクスプローラでパス図 (*.amw) をダブルク リ ッ ク します。

 Windows のエクスプローラからパス図 (*.amw) を [Amos Graphics] ウ ィンド ウにド

ラ ッグします。

 SPSS Statistics 内で、 メニューから  [Analyze][IBM SPSS Amos]の順にク リ ッ ク し

ます。
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新しいモデルの作成

E メニューから、 [ フ ァ イル ]  [ 新規作成 ] の順にク リ ッ ク します。 

作業領域が表示されます。 右側の大きな領域は、パス図を描く場所です。 左側のツール

バーからは 、 よ く使用するコマン ドに 1 回のク リ ッ クでアクセスできます。 ツール

バーかメニュー コマンドを使って、 ほとんどの操作を行う こ とができます。
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データ  フ ァ イルの指定

次のステップは、 Hamilton のデータが保存されているファ イルを指定するこ とです。

このチュート リ アルでは Microsoft Excel 8.0 (*.xls) ファ イルを使いますが、 Amos で
は、 SPSS Statistics *.sav ファ イルなどいくつかの一般的なデータベース形式をサポー

ト しています。 SPSS Statistics の [Add-ons] メニューから  Amos を起動する場合、SPSS
Statistics で開いているファ イルが自動的に使用されます。

E メニューから、 [ フ ァ イル ] [ データ  フ ァ イル ] の順にク リ ッ ク します。

E [ データ  フ  ァ  イル ] ダ イ  ア ロ  グ で、 [ フ  ァ  イル名 ] を ク  リ  ッ  ク  し  ます。

E [ 開 く ] ダイアログで、ファ イル名 「%tutorial%\hamilton.xls」 を入力し、[ 開 く ]ボタンを

ク リ ッ ク します。 

E [ データ  フ  ァ  イル ] ダ イ  ア ロ  グで、 [OK] を ク  リ  ッ  ク  し  ます。 

モデルの指定と変数の描画

次のステップは、 モデルに変数を描く こ とです。 観測される変数を表す 3 つの長方形

をまず描き、 続いて観測されない変数を表す 1 つの楕円形を描きます。 

E メニューから、 [ 図 ] [ 観測される変数を描 く ] の順にク リ ッ ク します。

E 描画領域で、"教育 " の長方形を表示する場所にマウス  ポインタを移動します。 ク リ ッ

ク  アンド  ド ラ ッグして長方形を描きます。 長方形の位置やサイズは後で変更できるの

で、 正確でなくてもかまいません。 

E 同じ方法で、 "所得 " と  SAT 用に 2 つの長方形を描きます。 

E メニューから、 [ 図 ] [ 直接観測されない変数を描 く ] の順にク リ ッ ク します。

E 描画領域で、 3 つのの長方形の右にマウス  ポインタを移動してク リ ッ ク し、 ド ラ ッグ

して楕円を作成します。 

描画領域内のモデルは、 次のよ うになるはずです。
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変数の命名

E 描画領域で左上の長方形を右ク リ ッ ク し、ポップアップ メニューから  [ オブジ ェ ク ト の

プロパテ ィ ] を選択します。 

E [ テキス ト ] タブをク リ ッ ク します。

E [変数名 ] テキス ト  ボッ クスに、 「教育」 と入力します。

E 同じ方法を使って、残りの変数に名前を付けます。 [オブジェク ト  プロパティ ] ダイア

ログ ボッ クスを閉じます。 

パス図は次のよ うに描かれているはずです。
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矢印の描画

次の図のモデルを参考にして、 パス図に矢印を加えます。

E メニューから、 [ 図 ][ パス図を描 く ] の順にク リ ッ ク します。

E ク リ ッ ク  アンド  ド ラ ッグして、 " 教育 " と  SAT の間に矢印を描きます。 

E この方法を使って、 残りの片方向矢印を描きます。 

E メニューから、 [ 図 ] [ 共分散を描 く ] の順にク リ ッ ク します。

E ク リ ッ ク  アンド  ド ラ ッグして、" 所得 " と  " 教育 " の間に双方向矢印を描きます。 矢印の

カーブは後で調整できるので、 正確でなくてもかまいません。

パラ メ ータの制約

回帰モデルを識別するには、 潜在変数 " その他 " のスケールを定義する必要があ り ま

す。 そのためには、 "その他 " の分散または "その他 " から  SAT へのパス定数を正の値

で固定します。 パス係数を 1 で固定する方法を次に示します。 

E 描画領域で " その他 " と  SAT の間の矢印を右ク リ ッ ク し、 ポップアップ メニューから  [
オブジ ェ ク ト のプロパテ ィ ] を選択します。

E [ パラ メ ータ ] タブをク リ ッ ク します。

E [係数 ] テキス ト  ボッ クスに 「1」 と入力します。 
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E [オブジェク ト  プロパティ ] ダイアログ ボッ クスを閉じます。 

" その他 " と  SAT の間の矢印の上に 1 が表示されます。 パス図が完成しましたが、 必要

に応じて表示を変更できます。 次のよ うに描かれているはずです。

パス図の表示の変更

パス図の表示を変更するには、 オブジェク トの移動やサイズ変更を行います。 こ う し

た変更は単に視覚上の変更で、 モデルの仕様には影響しません。 

オブジ ェ ク ト を移動するには

E メニューから、 [ 編集 ][ 移動 ] の順にク リ ッ ク します。

E 描画領域で、 オブジェク ト をク リ ッ ク して新しい位置にド ラ ッグします。

オブジ ェ ク ト や双方向矢印の形を変更するには

E メニューから、 [ 編集 ] [ オブジ ェ ク ト の形を変更 ] の順にク リ ッ ク します。

E 描画領域で、 オブジェク ト をク リ ックして希望のサイズと形になるよ う ドラッグします。
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オブジ ェ ク ト を削除するには

E メニューから、 [ 編集 ] [ 消去 ] の順にク リ ッ ク します。

E 描画領域で、 削除するオブジェク ト をク リ ッ ク します。 

動作を元に戻すには

E メニューから、 [ 編集 ][ 元に戻す ] の順にク リ ッ ク します。

動作をやり直すには

E メニューから、 [ 編集 ][ やり直し ] の順にク リ ッ ク します。

オプシ ョ ン出力の設定

Amos には、オプシ ョ ンの出力がいくつかあ り ます。 このステップでは、分析後にどの

オプシ ョ ン出力部分を表示するかを選択します。 

E メニューから、 [ 表示 ] [ 分析のプロパテ ィ ] の順にク リ ッ ク します。

E [ 出力 ] タブをク リ ッ ク します。

E [ 最小化履歴 ]、[ 標準化推定値 ]、および [ 重相関係数の平方 ] の各チェッ ク  ボッ クスをオン

にします。
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E [分析のプロパティ ] ダイアログ ボッ クスを閉じます。 
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分析の実行

残っている作業は、 モデル適合の計算を実行するこ とだけです。 パラ メータ推定値を

最新に保つには、 モデル、 データ、 または [ 分析のプロパティ ] ダイアログ ボッ クス

のオプシ ョ ンを変更するたびにこの作業を行う必要があ り ます。

E メニューから、 [ 分析 ][ 推定値を計算 ] の順にク リ ッ ク します。 

E まだファイルを保存していないので、[名前を付けて保存 ] ダイアログ ボッ クスが表示

されます。 ファ イルの名前を入力して [ 保存 ] をク リ ッ ク します。 

モデル推定値が計算されます。パス図の左側にあるパネルに計算の結果が表示されます。

出力の表示

計算が完了したら、 出力を表示するオプシ ョ ンと して、 テキス ト とグラフ ィ ッ クスの

2 つがあ り ます。

テキス ト 出力を表示するには

E メニューから、 [ 表示 ] [ テキス ト 出力の表示 ] の順にク リ ッ ク します。

[Amos 出力 ] ウ ィンド ウの左上ウ ィンド ウ枠のツ リー図で、 表示するテキス ト出力部

分を選択します。
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E パラ メータ推定値を表示するには、 [ 推定値 ] をク リ ッ ク します。
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グラ フ ィ ッ クス出力を表示するには

E [ 出力パス図の表示 ] ボタン  をク リ ッ ク します。

E 描画領域の左にある  [パラメータ形式] ウィンドウ枠で、[標準推定値] をク リ ック します。

パス図は次のよ うにな り ます。

0.49 という値は、 「教育」 と 「所得」 の間の相関を示します。 値 0.72 と  0.11 は、 標準

化係数です。 0.60 という値は、 SAT と 「教育」 および 「所得」 の重相関係数の平方を

示します。

E 描画領域の左にある  [パラ メータ形式 ] ウ ィンド ウ枠で、 [ 非標準化推定値 ] をク リ ッ ク

します。

パス図は次のよ うに描かれているはずです。
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パス図の印刷

E メニューから、 [ フ ァ イル ] [ 印刷 ] の順にク リ ッ ク します。

[印刷 ] ダイアログ ボッ クスが表示されます。 

 

E [ 印刷 ] をク リ ッ ク します。

パス図のコ ピー

Amos Graphics では、Microsoft Word など他のアプリ ケーシ ョ ンにパス図を簡単にエク

スポートするこ とができます。 

E メニューから、 [ 編集 ] [ ク リ ッ プボー ドへコ ピー ] の順にク リ ッ ク します。

E 他のアプリケーションに切り替えて、貼り付け機能を使ってパス図を挿入します。 Amos
Graphics からエクスポート されるのは図のみで、 背景はエクスポート されません。

テキス ト 出力のコ ピー

E Amos Output ウ ィンド ウで、 コピーするテキス ト を選択します。 

E 選択したテキス ト を右ク リ ッ ク し、ポップアップ メニューから  [ コ ピー] を選択します。

E 他のアプリ ケーシ ョ ンに切り替えて、 貼り付け機能を使ってテキス ト を挿入します。
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分散および共分散の推定

概要

この例では、 母集団の分散と共分散を推定する方法について説明します。 また、 Amos
の入力および出力の一般的な書式についても説明します。

データについて

Attig (1983) は、 40 人の被験者に数ページの広告を含む小冊子を示しました。 次に、

各被験者に対して、 3 つの記憶力検定を実施しました。

Attig は、 記憶力を向上させるための ト レーニングを行った後で、 再び同じ  40 名の被

験者にこの検定を実施しました。 したがって、 ト レーニングの前と後でそれぞれ 3 つ
の成績が測定されます。 さ らに、 Attig は年齢、 性別、 教育水準に加えて、 語彙試験の

スコアも記録しました。 Attig のデータ ファイルは、Amos に付属している  Examples フォ

ルダに入っています。

変数 説明

記憶
被験者には、できるだけ多くの広告を思い出してもらいました。 この変数で

の被験者のスコアは、 正し く思い出せた広告の数と しました。

ヒ ン ト
被験者にいくつかのヒ ン ト を与え、 できるだけ多くの広告を思い出しても

らいました。 被験者のスコアは、 正し く思い出せた広告の数と しました。

掲載位置記憶

被験者に小冊子に掲載されていた広告のリ ス ト を与え、 それぞれの広告の

掲載ページを思い出してもらいました。 この検定の被験者のスコアは、掲載

位置を正し く思い出せた広告の数と しました。

パート 1: 例
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データの取り込み

E メニューから、 [ フ ァ イル ] [ 新規作成 ] を選択します。 

E メニューから、 [ フ ァ イル ]  [ データ  フ ァ イル ] を選択します。

E [ データ  フ  ァ  イル ] ダ イ  ア ロ  グで、 [ フ  ァ  イル名 ] を ク  リ  ッ  ク  し  ます。

E [ 開 く ] ダイアログで、ファ イル名 「%examples%\UserGuide.xls」 を入力し、 [ 開 く ]ボタ

ンをク リ ッ ク します。 

E [ デー タ  表を選択 ] ダ イ  ア  ロ  グで、 [Attg_yng] を選択 し  、 [ デー タの表示 ] を  ク
リ  ッ  ク  し  ます。
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Attg_yng データ  ファ イルの Excel ワークシートが開きます。

ワークシート をスク ロールする と、 Attig の調査のすべての検定変数を参照できます。

この例では、 記憶1 (事前記憶検定 )、 記憶2 (事後記憶検定 )、 掲載位置記憶1 (事前掲

載位置記憶検定 )、 掲載位置記憶 2 ( 事後掲載位置記憶検定 ) の変数のみを使用してい

ます。

E データを確認したら、 データ  ウ ィンド ウを閉じます。 

E [データ  ファ イル ] ダイアログ ボッ クスで、 [OK] をク リ ッ ク します。

データの分析

この例の分析では、 ト レーニング前後の記憶変数と掲載位置記憶変数の分散および共

分散の推定を行います。 

モデルを指定する

E メニューから、 [ 図 ] [ 観測される変数を描 く ] を選択します。

E 描画領域で、 四角形を最初に表示する場所にマウス  ポインタを移動します。 ク リ ッ ク

アンド  ド ラ ッグして長方形を描きます。 

E メニューから、 [ 編集 ] [ 複写 ] を選択します。

E ク リ ッ ク し、 最初の四角形から複製をド ラ ッグします。 マウス  ボタンを離して、 複製

を配置します。
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E 4 つの四角形が並ぶまで、 さ らに 2 つの複製の四角形を作成します。 

ヒ ン ト : 四角形を移動する場合は、 メニューから  [ 編集 ]  [ 移動 ] を選択し、 四角形を

新しい位置にド ラ ッグします。

変数に名前を付ける

E メニューから、 [ 表示 ]  [ データ セ ッ ト に含まれる変数 ] を選択します。

[データセッ トに含まれる変数 ] ダイアログ ボッ クスが表示されます。

E リ ス トから変数記憶1 をク リ ッ ク して、 描画領域の最初の四角形にド ラ ッグします。

E 同じ方法で、 記憶2、 掲載位置記憶1、 掲載位置記憶2 の各変数にも名前を付けます。

E [データセッ トに含まれる変数 ] ダイアログ ボッ クスを閉じます。
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フ ォ ン ト の変更

E 変数を右ク リ ッ ク し、 ポップアップ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択

します。 

[オブジェク トのプロパティ ] ダイアログ ボッ クスが表示されます。

E [ テキス ト ] タブをク リ ッ ク し、 希望に応じてフォン ト属性を調整します。 

共分散の設定

パス図をそのままの状態にした場合、Amos Graphics は、 4 つの変数の分散を推定しま

すが、変数間の共分散の推定は行われません。 Amos Graphics では、矢印で結ばれてい

ない 2 つの変数に対しては相関または共分散は 0 である と想定されます。 観測変数間

の共分散を推定するには、最初にすべてのペアを双方向の矢印で結ぶ必要があ り ます。 

E メニューから、 [ 図 ] [ 共分散を描 く ] を選択します。

E ク リ ッ ク し、 ド ラ ッグして、 各変数と他の変数を結ぶ矢印を描画します。 
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パス図には 6 つの双方向矢印が描かれている必要があ り ます。

分析の実行

E メニューから、 [ 分析 ] [ 推定値を計算 ] を選択します。 

まだファイルを保存していないので、[名前を付けて保存 ] ダイアログ ボッ クスが表示

されます。

E ファ イルの名前を入力して、 [ 保存 ] をク リ ッ ク します。 

グラ フ ィ ッ ク出力を表示する

E [ 出力パス図の表示 ] ボタン  をク リ ッ ク します。

出力パス図がパラ メータ推定値と共に表示されます。

出力パス図で、 ボッ クスの横に表示される数が分散推定値で、 双方向矢印の横に表示

される数が共分散推定値です。 たとえば、 記憶1 の分散は 5.79 と推定され、 掲載位置

記憶1 の分散は 33.58 と推定されます。 この 2 つの変数間の共分散推定値は 4.34 です。
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テキス ト 出力の表示

E メニューから、 [ 表示 ][ テキス ト 出力の表示 ] の順にク リ ッ ク します。

E [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠のツ リー図で、 [ 推定値 ] を選択します

最初に表示されている推定値は、 記憶1 と記憶2 間の共分散です。 共分散は 2.56 と推

定されています。 その推定値の右横の、 [標準誤差 ] 列に、共分散の標準誤差の推定値、

1.16 が表示されています。 推定値 2.56 は、母集団の共分散を中心に、約 1.16 の標準偏

差でほぼ正規分散している乱数変数の観測値です。すなわち、セクシ ョ ン 32 ページの

「Amos モデルの分布の仮定」 の仮定が満たされている場合の値です。 たとえば、 これ

らの数値を使用して、  を計算するこ とによって、

母集団共分散の 95% の信頼区間を設定するこ とができます。 この後で、 Amos を使用

する と、 共分散のほかにも さ まざまな種類の母集団パラ メータを推定できる こ と、

また、 そのいずれの信頼区間でも同じ手順で設定できるこ とを紹介します。

標準誤差の隣の [ 検定統計量 ] 列には、 共分散推定値を標準誤差

 で割って算出された検定統計量が表示されます。 この検定統計

量は、 Attig の 40 名の被験者が属する母集団において記憶1 と記憶2 間の共分散が 0 で
ある という帰無仮説に関連しています。 この仮説が真であり、 依然と して 32 ページの

「Amos モデルの分布の仮定」 セクシ ョ ンの仮定の下にある場合、検定統計量は、近似的

に標準正規分布を持つ乱数変数の観測値を表します。 したがって、0.05 の有意確率を使

用した場合、 1.96 よ り大きい検定統計量を有意であるといいます。 この例では、 2.20 は
1.96 よ り大きいため、記憶1 と記憶2 の間の共分散は 0.05 レベルでは 0 と有意な差があ

ると言えます。

2.56 1.96 1.160 2.56 2.27=

2.20 2.56 1.16= 

_Ref76537719
_Ref76537719
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[検定統計量 ] の右の [P] 列には、 パラ メータ値が母集団で 0 である という帰無仮説

を検定するための、 両側近似 p 値が示されます。 この表は、  によ り、 記憶1
と記憶 2 間の共分散が 0 と有意の差があるこ とを示しています。 P の計算では、 パラ

メータ推定値が正規分散している と仮定していますが、 これは大きな標本でのみ正し

いこ とです。 詳細については、 付録 A を参照してください。

パラ メータ推定値が正規分散している とい う断定は、 近似値に過ぎません。 また、

[標準誤差 ] 列で報告されている標準誤差も近似値に過ぎず、最適でない場合があ り ま

す。 結果的に、今説明した信頼区間および仮説検定も近似値になり ます。 これは、 これ

らの結果の根拠となる理論が漸近的であるためです。 漸近的とは、 希望する任意の精

度で適用するこ とができるが、 有意に大きな標本を使用した場合に限られるこ とを意

味します。 Amos を使用して実行できるその他のさまざまな種類の分析に対して結論

を一般化するこ とはできないので、 現在の標本数で近似値が満足できるものであるか

ど うかについては、検討しないこ とにします。 ただし、記憶1 と記憶2 に相関がないと

い う帰無仮説を再検討し、 近似検定の意味するものを確認するする こ とはできます。

先に、 2.20 は 1.96 よ り も大きいため、共分散は 0 と有意の差がある という結論に達し

ました。 2.20 の標準正規分布に関連する  p 値は 0.028 (両側 )であ り、 もちろん 0.05 よ
り小さい値です。 これに対して、 従来の t 統計量 (Runyon & Haber, 1980, p. 226 など )
は自由度が 38 で 2.509 です 。 この例では、どちらの p 値も  0.05 未満であ

るため、 どちらの検定でも  0.05 レベルでの帰無仮説を棄却する点では一致していま

す。 ただし、 この状況では、 2 つの p 値は 0.05 の反対側にある可能性があ り ます。 こ
の点は特に深刻にと らえる必要はあ り ません。 いずれにせよ、 2 つの検定では異なる

結果になる可能性があるのですから。 どちらの検定の方が優れているかについては疑

いの余地があってはなり ません。 t 検定は、標本数に関係なく、観測値の正規性および

独立性の仮定に直接基づいています。 Amos では、検定統計量に基づく検定は同じ仮定

に依存していますが、 有限の標本では、 検定は近似値になり ます。

注 : Amos の多くのユニークな利用法では、正確確率検定、正確な標準誤差、 または正

確な信頼区間は使用できません。

明るい面を挙げれば、 従来の推定値が存在するモデルの当てはめにおいて、 最尤法の

ポイン ト推定値 ([推定値 ] 列の数値など ) は一般的に従来の推定値と同じです。

p 0.03=

p 0.016= 
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E こ こで、 [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠にある  [ モデルについての注釈 ]
をク リ ッ ク します。

次の表は、 すべての Amos の分析において重要な役割を果たします。

[ 独立な標本積率の数 ] とは、 標本の平均値、 分散、 および共分散です。 現在の分析を

含むほとんどの分析において、 Amos では平均値が無視され、 標本の積率は 4 つの変

数 (記憶1、 記憶2、 掲載位置記憶1、 掲載位置記憶2) の標本分散および標本共分散と

な り ます。 4 つの標本分散および 6 つの標本共分散があるため、標本の積率の数は合計

で 10 とな り ます。 
[ 独立な推定パラ メータの数 ] は、 対応する母集団の分散および共分散です。 4 つの

母集団分散と  6 つの母集団共分散があるため、推定パラ メータの数は 10 とな り ます。 
[自由度 ] は、標本の積率が推定パラ メータの数よ り も大きい数量です。 この例では、

標本の積率と推定パラ メータ間に 1 対 1 対応があるため、 自由度が 0 になるのは当然

です。

例 2 で分かるよ うに、 パラ メータに関する非明示的な帰無仮説では、 推定する必要

のあるパラ メータの数が少なくな り ます。 その結果、自由度は正の値になり ます。 こ こ

では、 検定する帰無仮説はあ り ません。 検定する帰無仮説がない場合、 次の表はあま

り意味があ り ません。

異なる標本の積率の数 10
推定される異なるパラ メータの数 10

自由度 (10 – 10) 0

カイ  2 乗 = 0.00
自由度 = 0
確率水準の計算はできません。



30

例 1

この例で検定される仮説があった場合、 カイ  2 乗値は、 データが仮説と矛盾している

度合いの測定値になっていました。 カイ  2 乗値が 0 の場合、通常は、帰無仮説から逸脱

していないこ とを示します。 ただし、 この例では、 0 という自由度および 0 という カイ

2 乗値は、 そもそも帰無仮説がなかったという事実を反映しているに過ぎません。

この行は、 Amos が分散および共分散を正常に推定できたこ とを示しています。 時に

よっては、 Amos のよ うな構造モデリ ング プログラムで推定値が検出されないこ とが

あ り ます。 通常、 Amos が失敗するのは、解がない、 または一意の解がないという問題

が生じた場合です。 たとえば、 線型に従属している観測変数を使用して最尤法の推定

を実行しよ う と した場合、 そのよ うな分析は原理上実行できないため Amos は失敗し

ます。 一意の解がないという問題については、 識別可能性のテーマでこのユーザーズ

ガイ ドの別の場所で説明します。 それほど多くはあ り ませんが、 推定の問題が難解過

ぎて Amos が失敗するこ と もあ り ます。 このよ う な失敗の可能性は、 積率構造の分析

のプログラムでは一般的なこ とです。 Amos で使用している計算方法は効率の良いも

のですが、 Amos が実行する種類の分析をあらゆるケースで約束できるコンピュータ

プログラムはあ り ません。

オプシ ョ ン出力

これまで、Amos がデフォルトで生成する出力について説明してきました。 追加の出力

も要求できます。 

標準化推定値の計算

Amos では相関ではな く共分散の推定値が表示されるこ とを知る と、 驚くかも しれま

せん。 測定尺度が任意であった り、 実質的な関心がない場合、 相関は共分散に比べて

説明的な意味合いが強くな り ます。 それでもなお、Amos や類似プログラムでは、共分

散の推定を主張します。 また、すぐに分かるよ うに、Amos には共分散については仮説

検定用の単純な方法が用意されていますが、相関についてはあ り ません。 これは主に、

共分散の方がプログラムの記述が容易である とい う理由によ り ます。 一方、 関連する

分散および共分散の推定が完了した後で、 相関推定値を導き出すこ とは難し くあ り ま

せん。 標準化推定値を計算するには、 次の操作を行います。

E メニューから、 [ 表示 ]  [ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。

E [ 標準化推定値 ] チェッ ク  ボッ クスをオンにします。

最小値に達しました
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E [分析のプロパティ ] ダイアログ ボッ クスを閉じます。

分析の再実行

[分析のプロパティ ] ダイアログ ボッ クスでオプシ ョ ンを変更したため、分析を再実行

する必要があ り ます。 

E メニューから、 [ モデル適合度 ] [ 推定値を計算 ] を選択します。 

E [ 出力パス図の表示 ] ボタンをク リ ッ ク します。 

E 描画領域の左の [パラ メータ形式 ] ウ ィンド ウ枠で、[ 標準化推定値 ] をク リ ッ ク します。

相関推定値のテキス ト 出力と し ての表示

E メニューから、 [ 表示 ] [ テキス ト 出力の表示 ] を選択します。
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E [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠のツ リー図で、[ 推定値 ]、[ スカ ラー] を選

択し、 [ 相関係数 ] をク リ ッ ク します 

Amos モデルの分布の仮定

仮説の検定手順、 信頼区間、 および最尤法推定または一般化最小 2 乗法推定における

効率性の要求は、 特定の仮定に依存します。 第一に、 観測値は独立している必要があ

り ます。 たとえば、 Attig の調査の 40 名の若い被験者は、 若者という母集団から独立

して選択する必要があ り ます。 次に、 観測変数は特定の分布の要件を満たす必要があ

り ます。 観測変数に多変量の正規分散がある場合は、それで十分です。 すべての観測変

数の多変量正規性は、 多数の構造方程式モデリ ングおよび因子分析アプリ ケーシ ョ ン

における標準分布の仮定です。

最尤法推定を実行できる、 別のよ り一般的な状況があ り ます。 一部の外生変数が固

定されている場合 ( すなわち、 事前に判明しているか、 誤差なしで測定されている場

合 )、 その分布は以下の条件で、 任意の形状になり ます。

 固定変数の値パターンの場合、残りの (乱数 ) 変数は (条件付き ) 正規分布となり ます。

 乱数変数の (条件付き ) 分散-共分散行列は、固定変数のすべてのパターンに対して

同じです。

 乱数変数の (条件付き ) 期待度数は、 固定変数の値に線型に依存します。

固定変数の代表的な例には、 回答者をそれぞれ実験群と統制群に分類する試験的な治

療があ り ます。 その他の外生変数が調査ケース と対照ケースで同様に正規分布し、 条

件付き分散共分散行列が同じである限り、 治療は非正規分布であっても構いません。

回帰分析における予測変数 (例4 を参照 ) は、 広く固定変数と も呼ばれます。
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正規性と独立性の観測要件は多数の従来の手順では通例の要件であるため、 多くの

人がこれらの要件には慣れています。 ただし、Amos を使用する場合は、 これらの要件

を満たしていても、漸近結論 (すなわち、大型の標本で近似的に真である結論 ) につな

がるだけであるこ とに留意する必要があ り ます。

VB.NET でのモデル作成

Visual Basic、 C# または Python でプログラムを記述するこ とによってモデルを指定し、

当てはめるこ とができます。 プログラムの記述は、 Amos Graphics による、 パス図を描

画したモデルの指定に代わるものです。 このセクシ ョ ンでは、 Visual Basic プログラム

を記述して 例1 の分析を実行する方法について説明します。 後のセクシ ョ ンでは、同じ

こ とを C# と  Python で行う方法について説明します。 
Amos には、Visual Basic プログラムおよび C# プログラム用の独自の組み込みエディ

タが付随しています。 このエディ タには Windows の [ スタート ] メニューからアクセ

スできます。 例1 で組み込みエディ タを使用するには

E Windowsの [ ス ター ト ] メニューを開いて、IBM SPSS Amos 30 Program Editor を検索し

ます。

E [Program Editor] ウ ィンド ウから、 [ フ ァ イル ] [ 新規 VB プログラム ] を選択します。
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E 「‘Your code goes here」 とい う コ メン トの代わりに、 モデルを指定し当てはめるための

Visual Basic コードを入力します。 次の図は、プログラムを完全に入力した後のプログ

ラム エディ タを示しています。

注 : %examples% ディ レク ト リには、このユーザガイ ドに記載されたすべての例に対応

する事前作成された Visual Basic プログラム と  Python プログラムが格納されていま

す。 このディ レク ト リには、 例 1 用 の C# プログラムも入っています。 

この例の Visual Basic ファ イルを開くには

E [Program Editor} ウ ィンド ウから、 [ フ ァ イル ] [ 開 く ] を選択します。

E [ 開 く ] ダイアログで、ファ イル名「%examples%\Ex01.vb」 を入力し、[開く ]ボタンをク

リ ッ ク します。
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次の表には、 プログラムの 1 行ごとの説明が示されています。

E 分析を実行するには、 メニューから  [ フ ァ イル ]  [ 実行 ] を選択します。

追加出力の生成

一部の AmosEngine メ ソッ ドでは追加出力が生成されます。 たとえば、 Standardized メ
ソッ ドは標準化推定値を表示します。 次の図は、 Standardized メ ソ ッ ドの使用を示して

います。

プログラムのステート メン ト 説明

Dim Sem As New AmosEngine

Sem を AmosEngine 型のオブジェ ク ト と して宣言し

ています。 Sem オブジェ ク ト の メ ソ ッ ド とプロパ

ティは、モデルを指定し当てはめるために使用され

ます。

Sem.TextOutput
分析の結果を格納する出力ファ イルを作成します。

分析が終わる と、出力ファイルの内容が別のウ ィン

ド ウに表示されます。

Sem.BeginGroup …

単一のグループ ( すなわち単一の母集団 ) のモデル

の指定を開始します。 この行は、 Excel ワークブッ

ク  UserGuide.xls 内の Attg_yng ワークシートに入

力データが格納されている こ と も指定しています。

Sem.AmosDir() は、 Amos プログラム ディレク ト リ の

場所です。

Sem.AStructure("recall1")
Sem.AStructure("recall2")
Sem.AStructure("place1")
Sem.AStructure("place2")

モデルを指定します。 4 つの AStructure ステート メ

ン トは、記憶1、記憶2、掲載位置記憶1 および掲

載位置記憶 2 の分散をフ リー パラ メータ と して宣

言します。 Attg_yng データ  ファ イルのその他の 8
個の変数は、 この分析では除外されます。 Amos プ
ログラムでは (Amos Graphics とは異なり )、 4 つの

変数間で 6 つの共分散を推定できるよ うに、観測外

生変数はデフォル ト で相関がある ものと仮定され

ます。
Sem.FitModel() モデルを当てはめます。

Sem.Dispose()

Sem オブジェ ク ト によって使用された リ ソースを

解放します。 プログラムで、 別の AmosEngine オブ

ジェク ト を作成する前に AmosEngine オブジェク ト

の Dispose メ ソ ッ ド を使用する こ とは特に重要で

す。 プロセスでは、 1 度に 1 つの AmosEngine オブ

ジェク トのインスタンスしか許可されません。

Try/Finally/End Try
Try ブロ ッ クは、 プログラムの実行中にエラーが発

生した場合でも、 Dispose メ ソ ッ ドが呼び出される

こ とを保証します。
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C# によるモデリ ング

C# での Amos プログラムの記述も、Visual Basic の場合と同様です。 Amos の組み込み

プログラム エディ タで新しい C# プログラムを開始するには

E [ フ ァ イル ]  [新規 C# プログラム ] を選択します ([ フ ァ イル ]  [ 新規 VB プログラム ] の代

わりに )。

E [ フ ァ イル ]  [ 開 く ] を選択して Ex01.cs を開きます。これは、Ex01.vbの Visual Basic プ
ログラムの C# バージ ョ ンです。

Python でのモデリ ング

Amos には Python プログラム対応のエディ タは組み込まれていませんが、 優れた

Python エディ タや GUI は数多くあ り ます。どれを使用しても  Amos API を使う  Python
プログラムを作成するこ とができます。 %examples% フォルダには、 このユーザガイ

ドに記載された各例の Python プログラムが入っています。

その他のプログラム開発ツール

このユーザーズ ガイ ド全般を通じて、Visual Basic と  C# で Amos プログラムの記述に

は Amos の組み込みプログラム エディ タが使用されています。 ただし、 好きな開発

ツールを使用するこ と もできます。 Examples フォルダの VisualStudio サブフォルダに

は、 例1 用の Visual Basic および C# ソ リ ューシ ョ ンが収録されています。
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例2
仮説の検定

概要

この例では、 Amos を使用して、 分散および共分散に関する単純な仮説を検定する方

法について説明します。 また、 適合度のカイ  2 乗検定を紹介し、 自由度の概念につい

ても詳し く説明します。

データについて

例1 で説明した Attig (1983) の空間記憶データを使用します。 こ こでも、 例1 と同じパ

ス図から説明を始めます。 さまざまなデータ フォーマッ ト を使用できる  Amos の機能を

示すため、 この例では、Excel ファ イルの代わりに SPSS Statistics データ  ファ イルを使

用します。 

パラ メ ータ制約条件

例1 のパス図を次に示します。 変数オブジェク トは、Amos がパラ メータを推定したら

入力される小さな箱 (分散を表す ) を周囲に持っている と考えるこ とができます。 

Amos に入力させるのではなく、 自分でこれらの箱に入力するこ と もできます。
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分散の制約

記憶1 の分散を 6 に記憶2 の分散を 8 に設定する と します。 

E 描画領域で、記憶1 を右ク リ ッ ク し、 ポップアップ メニューから  [ オブジ ェ ク ト のプロ

パテ ィ ] を選択します。

E [ パラ メ ータ ] タブをク リ ッ ク します。

E [分散 ] テキス ト  ボッ クスに 「6」 と入力します。

E [オブジェク トのプロパティ ] を開いたままで、 記憶2 をク リ ッ ク し、 その分散を 「8」

に設定します。 

E ダイアログ ボッ クスを閉じます。

パス図に、 指定したパラ メータの値が表示されます。

6 と  8 とい う数字は任意に選択したに過ぎないため、 これはあま り現実的ではあ り ま

せん。 有意なパラ メータ制約条件には、 おそら くは理論や以前の同様のデータの分析

に基づいた理論的な根拠が必要です。
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等しいパラ メ ータの指定

母集団において 2 つのパラ メータが等しいかど うかの検定に関心を持つこ とがあ り ま

す。 たとえば、 分散に対する特定の値を念頭に置かずに、 記憶 1 と記憶 2 の分散が等

しいと考えたと します。 この可能性を調査するには、 以下の手順を実行します。 

E 描画領域で、記憶1 を右ク リ ッ ク し、ポップアップ メニューから  [ オブジ ェ ク ト のプロ

パテ ィ ] を選択します。 

E [ パラ メ ータ ] タブをク リ ッ ク します。

E [分散 ] テキス ト  ボッ クスに 「v_recall」 と入力します。

E 記憶2 をク リ ッ ク し、 その分散に 「v_recall」 という ラベルを付けます。

E 同じ方法で、 掲載位置記憶1 と掲載位置記憶2 の各分散にも 「v_recall」 という ラベル

を付けます。

どのラベルを使用するかは問題ではあ り ません。 重要なこ とは、 強制的に等し くする

各分散に対して同じ ラベルを入力する こ とです。 同じ ラベルを使用する こ との効果

は、 あらかじめ値を指定しなくても、 どちらの分散にも同じ値を持たせるこ とです。

等しいパラ メ ータの指定の利点

モデル パラ メータにさ らに制約条件を追加する前に、 記憶1 と記憶2 の分散、 または

掲載位置記憶 1 と掲載位置記憶 2 の分散など、 2 つのパラ メータが等し くなるよ う指

定するのかを検討してみまし ょ う。 次の 2 つの利点があ り ます。

 母集団で 2 つのパラ メータが等し くなるよ うに指定し、 この指定を正し く行った

場合、 等しいパラ メータだけでな く、 通常は他のパラ メータについても、 よ り正

確な推定値を得る こ とができます。 パラ メータが等しいこ とが分かっていた場合

は、 これが唯一の利点です。

 2 つのパラ メータの等しさが単に仮説に過ぎない場合、その推定値が等し くなるよ

うに要求するこ とによ り、 その仮説を検定するこ とにな り ます。 

共分散の制約

モデルにはパラ メータの分散以外に制限も含まれている場合があ り ます。 たとえば、

記憶 1 と掲載位置記憶 1 間の共分散が記憶 2 と掲載位置記憶 2 間の共分散に等しいと

仮定します。 この制約を適用するには、 次の手順を実行します。 

E 描画領域で、記憶1 と掲載位置記憶1 を結ぶ2 方向の矢印を右ク リ ッ ク し、ポップアッ

プ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択します。 
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E [ パラ メ ータ ] タブをク リ ッ ク します。

E [共分散 ] テキス ト  ボッ クスに、 「cov_rp」 などの非数値型の文字列を入力します。

E 同じ方法で、 記憶2 と掲載位置記憶2 間の共分散を cov_rp に設定します。

オブジ ェ ク ト の移動と書式設定

小さな例では横のレイアウ トで十分ですが、 さ らに複雑な分析の場合は実用的ではあ

り ません。 次に、 これまで使用してきたパス図の別のレイアウ ト を示します。

以下のツールを使用して、 上記のよ うな図になるまでパス図の配置を変更できます。 
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 オブジェク ト を移動するには、メニューから  [ 編集 ]  [ 移動 ] を選択し、オブジェク

ト を新しい場所にド ラ ッグします。 また、[ オブジ ェ ク ト を移動 ] ボタンを使用して、

矢印の終点をド ラ ッグするこ と もできます。 

 1 つのオブジェク トから別のオブジェク トに書式をコピーするには、メニューから

[ 編集 ]  [ プロパテ ィ を ド ラ ッ グ ] を選択し、 適用するプロパティを選択して、 1 つ
のオブジェク トから別のオブジェク トにド ラ ッグします。 

[プロパティをド ラ ッグ] 機能に関する詳細は、オンライン ヘルプを参照してください。 

データの入力

E メニューから、 [ フ ァ イル ] [ データ  フ ァ イル ] の順にク リ ッ ク します。

E [データ  ファ イル ] ダイアログ ボッ クスで、 [ フ ァ イル名 ] をク リ ッ ク します。

E %examples% フ  ォルダを参照し  ます。 

E [ ファ イルの種類 ] リ ス ト で、 [IBM SPSS Statistics (*.sav)] を選択し、 [Attg_yng] をク

リ ッ ク して、 [ 開 く ] をク リ ッ ク します。 

E SPSS Statistics がインス トールされている場合、 [データ  ファ イル ] ダイアログ ボッ ク

スで [ データの表示 ] ボタンをク リ ッ ク します。 SPSS Statistics ウ ィンド ウが開き、デー

タが表示されます。

E データを確認し、 データ  ビューを閉じます。

E [データ  ファ イル ] ダイアログ ボッ クスで、 [OK] をク リ ッ ク します。
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分析の実行

E メニューから、 [ 分析 ] [ 推定値を計算 ] を選択します。 

E [名前を付けて保存 ] ダイアログ ボッ クスでファイルの名前を入力し、[ 保存 ] をク リ ッ

ク します。 

モデル推定値が計算されます。 

テキス ト 出力の表示

E メニューから、 [ 表示 ] [ テキス ト 出力の表示 ] の順にク リ ッ ク します。 

E パラ メータ推定値を表示するには、[Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠のツ

リー図で、 [ 推定値 ] をク リ ッ ク します

等し くなるよ うに指定されたパラ メータの推定値が実際に等しいこ とが分かり ます。

この場合の標準誤差は、例 1 で得た標準誤差よ り も一般的に小さ く な り ます。 また、

パラ メータに制約条件が設定されているため、 自由度は正の値になっています。 
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E [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠で、 [ モデルについての注釈 ] をク リ ッ ク

します

標本の分散および共分散は 10 個あ り ますが、 推定パラ メータの数は 7 個だけです。

7 という数は次のよ うにして得られました。記憶1 と記憶2 の分散には v_recall という

ラベルが付けられ、 等し くなるよ うに制約されているため、 1 つのパラ メータ と して

カウン ト されています。 掲載位置記憶 1 と掲載位置記憶 2 の分散 (v_place という ラベ

ルが付けられている ) も、 も う  1 つの単一パラ メータ と してカウン ト されています。

3 つ目のパラ メータは等共分散記憶1 <>掲載位置記憶1 および記憶2 <>掲載位置記憶

2 (cov_rp という ラベル )に相当します。 これら  3 つのパラ メータに 4 つのラベルがな

く制限されていない共分散を加えて、 推定パラ メータは全部で 7 つになり ます。

自由度 ( ) も、 元の 10 個の分散および共分散に設定された制約の数と考

えるこ とができます。

オプシ ョ ン出力

これまで説明した出力は、 すべてデフォルトで生成されます。 追加の出力も要求でき

ます。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [ 出力 ] タブをク リ ッ ク します。

10 7 3=–
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E [ 最小化履歴 ]、[ 標準化推定値 ]、[ 標本の積率 ]、[ モデルの積率 ]、および [ 残差積率 ] のチェッ

ク  ボッ クスがオンになっているこ とを確認してください。

E メニューから、 [ 分析 ] [ 推定値を計算 ] を選択します。 

モデルの推定値が再計算されます。

分散共分散行列推定値

E 行列に収集された標本の分散および共分散を参照するには、 メニューから  [ 表示 ] 
[ テキス ト 出力の表示 ] を選択します。

E [Amos出力 ] ウ ィンド ウの左上隅のツ リー図で、 [ 標本の積率 ] をク リ ッ ク します 
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標本の共分散行列を次に示します。

E ツ リー図で、 [ 推定値 ] を展開し、 [ 行列 ] をク リ ッ ク します。 

モデルの共分散の行列を次に示します。

標本の共分散行列とモデルの共分散行列の違いに注意して ください。 モデルでは共分

散構造に 3 つの制約条件が設定されるため、 モデルの分散および共分散は標本の値と

は異なっています。 たとえば、掲載位置記憶1 の標本の分散は 33.58 ですが、モデルの

分散は 27.53 です。 残差共分散 (標本の共分散からモデルの共分散を引いたもの ) の行

列を得るには、 [ 出力 ] タブで [ 残差積率 ] の横にチェッ ク  マークを入れ、分析を再実行

します。

残差共分散の行列を次に示します。
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共分散および分散推定値のパス図への表示

例1 のよ うに、 パス図に共分散および分散推定値を表示するこ とができます。 

E [ 出力パス図の表示 ] ボタンをク リ ッ ク します。 

E 描画領域の左にある  [パラ メータ形式] ウ ィンド ウ枠で、[非標準化推定値] をク リ ッ ク し

ます。 または、 [ 標準化推定値 ] をク リ ッ ク して、パス図で相関推定値を要求するこ と も

できます。

相関が表示されたパス図を次に示します。

出力のラベル付け

表示された値が共分散または相関のどちらであるかを覚えておくのが、 困難な場合も

あ り ます。 この問題を避けるため、Amos を使用して出力にラベルを付けるこ とができ

ます。 

E ファ イル Ex02.amw を開きます。 

E パス図でキャプシ ョ ンを右ク リ ッ ク し、ポップアップ メニューから  [ オブジ ェ ク ト のプ

ロパテ ィ ] を選択します。



47

仮説の検定

E [ テキス ト ] タブをク リ ッ ク します。

図のキャプシ ョ ンの一番下の行に 「¥format」 とい う語が表示されています。 ¥format の
よ うに ¥ 記号で始まる語を、 テキス ト  マクロ といいます。 Amos では、 テキス ト  マク

ロは現在表示されているモデルに関する情報で置き換えられます。 テキス ト  マク ロ

¥format は、表示されるパス図のバージ ョ ンによって、「モデル特定化」、 「非標準化推定

値」、 および 「標準化推定値」 のいずれかの見出しで置き換えられます。

仮説の検定

モデルの共分散は、帰無仮説の下での母集団の分散および共分散の最適な推定値です。

( 帰無仮説とは、等しい推定値になるよ う要求されたパラ メータが母集団において真に

等しい場合です。 ) 例1 から分かるよ うに、標本の共分散は、母集団の値に関する仮定

を行わずに得られる最適な推定値です。 これらの 2 つの行列の比較は、 帰無仮説が正

しいかど うかとい う問題に関連しています。 帰無仮説が正しい場合、 モデルの共分散

と標本の共分散は両方と も、 対応する母集団の値の最尤推定値とな り ます ( モデルの

共分散の方が良い推定値ではあ り ますが )。 したがって、 2 つの行列は互いに似ている

と予想されます。 これに反して、 帰無仮説が誤っている場合、 標本の共分散のみが最

尤推定値とな り、 モデルの共分散と似ているこ とを期待する根拠はあ り ません。

カイ  2 乗統計量は、 モデルの共分散が標本の共分散とどの程度異なっているかの全

体的な測定値とな り ます。

カイ  2 乗 = 6.276
自由度 = 3
確率水準 = 0.099
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一般的に、 モデルの共分散が標本の共分散から異なっていればいるほど、 カイ  2 乗統

計量も大き くな り ます。 例 1 のよ うに、 モデルの共分散が標本の共分散と同じである

場合は、 カイ  2 乗統計量は 0 になったはずです。 カイ  2 乗統計量を使用して、 等しい

推定値を持つよ う要求されているパラ メータが、 実際に母集団で等しいという帰無仮

説を検定するこ とができます。 ただし、 単にカイ  2 乗統計量が 0 かど うかを確認する

だけの問題ではあ り ません。 モデルの共分散および標本の共分散は単なる推定値に過

ぎないため、 同一である と予想するこ とができるのです ( 両方と も同じ母集団の共分

散の推定値であったと しても )。 実際には、 帰無仮説が真であった場合でも、 自由度の

近辺でカイ  2 乗を生成する程度には異なる と予想できます。 言い換える と、 帰無仮説

が真の場合でも、3 という カイ  2 乗値は異常ではあ り ません。 それどころか、帰無仮説

が真の場合、カイ  2 乗値 (6.276) は、自由度が 3 の近似カイ  2 乗分布を持つ乱数変数の

単一の観測値です。 確率は約 0.099 で、 そのよ う な観測値は 6.276 とな り ます。 した

がって、 帰無仮説が真であるかど うかは、 0.05 レベルでは有意ではあ り ません。

パス図へのカ イ  2 乗統計量の表示

パス図の図のキャプシ ョ ンに表示されるカイ  2 乗統計量とその自由度を得るには、

テキス ト  マクロ  ¥cmin および ¥df を使用します。 このテキス ト  マクロは、 カイ  2 乗統

計量とその自由度の数値で置き換えられます。 テキス ト  マクロ  ¥p を使用する と、カイ

2 乗分布下 の対応する右側の確率を表示するこ とができます。 

E メニューから、 [ 図 ] [ 図のキャ プシ ョ ン ] を選択します。 

E パス図上で、 図のキャプシ ョ ンを表示する場所をク リ ッ ク します。 

[図のキャプシ ョ ン ] ダイアログ ボッ クスが表示されます。

E [図のキャプシ ョ ン ] ダイアログ ボッ クスで、 次のよ うに、 「¥cmin」、 「¥df」、 「¥p」 の各

テキス ト  マクロを含むキャプシ ョ ンを入力します。
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このキャプシ ョ ンを含むパス図が、 次のよ うに表示されます。
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VB.NET でモデルを作成する

次のプログラムは、 例2 の制約されたモデルを当てはめます。
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次の表には、 プログラムの 1 行ごとの説明が示されています。

E 分析を実行するには、 メニューから  [ フ ァ イル ]  [ 実行 ] を選択します。

プログラムのステート メン ト 説明

Dim Sem As New AmosEngine

Sem を AmosEngine 型のオブジェ ク ト と して宣

言しています。 Sem オブジェ ク ト のメ ソ ッ ド と

プロパティは、 モデルを指定し当てはめるため

に使用されます。

Sem.TextOutput
分析の結果を格納する出力ファ イルを作成しま

す。 分析が終わる と、 出力ファ イルの内容が別

のウ ィンド ウに表示されます。
Sem.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ResidualMoments()

標準化推定値、モデルの共分散、標本の共分散、

および残差共分散を表示します。

Sem.BeginGroup …

単一のグループ (すなわち単一の母集団) のモデ

ルの特定を開始します。 この行は、

SPSS Statistics フ ァ イル Attg_yng.sav に入力

データが格納されている こ と も指定していま

す。 Sem.AmosDir() は、 Amos プログラム ディ レ

ク ト リの場所です。

Sem.AStructure("recall1 (v_recall)")
Sem.AStructure("recall2 (v_recall)")
Sem.AStructure("place1 (v_place)")
Sem.AStructure("place2 (v_place)")
Sem.AStructure("recall1 <>place1 (cov_rp)")
Sem.AStructure("recall2 <>place2 (cov_rp)")

モデルを指定し ます。 最初の 4 つの AStructure
ステート メ ン トは、 パラ メータ名をかっこで囲

んで使用するこ とによ り、 観測変数の分散を制

約します。 記憶 1 と記憶 2 の分散には両方と も

v_recall という ラベルが付いているため、これら

は同じ分散になる必要があ り ます。 掲載位置記

憶 1 と掲載位置記憶 2 の分散も、 同様に等し く

なる よ う に制約されています。 最後の 2 つの

AStructure 行は、 それぞれ共分散を表していま

す。 2 つの共分散はどちら も  cov_rp とい う名前

です。 したがって、 これらの共分散は等し く な

るよ う制約されています。
Sem.FitModel() モデルを当てはめます。

Sem.Dispose()

Sem オブジェク トによって使用された リ ソース

を解放します。 プログラムで、別の AmosEngine
オブジェ ク ト を作成する前に AmosEngine オブ

ジェ ク ト の Dispose メ ソ ッ ド を使用する こ とは

特に重要です。 プロセスでは、 1 度に 1 つの

AmosEngine オブジェ ク ト のインスタンスしか

許可されません。

Try/Finally/End Try
Try ブロ ッ クは、プログラムの実行中にエラーが

発生した場合でも、Dispose メ ソ ッ ドが呼び出さ

れるこ とを保証します。
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タ イ ミ ングがすべて

AStructure 行は BeginGroup の後に来る必要があ り ます。そ うでないと、AStructure 行で指

定されている変数が attg_yng.sav データ セッ トの観測変数である と認識されません。

一般的に、 Amos のプログラムでは、 ステート メン トの順序が重要です。 Amos プロ

グラムの編成では、 メ ソ ッ ドは 3 つの一般的なグループに分かれます。1

グループ 1 - 宣言用のメ ソ ッ ド

Amos に計算および表示する結果を教え る メ ソ ッ ド のグループです。 TextOutput、

Standardized、 ImpliedMoments、 SampleMoments、および ResidualMoments はグループ 1 のメ

ソ ッ ドです。 この例で使用されていない、 他のグループ 1 のメ ソ ッ ドについては、

『Amos 30 Programming Reference Guide』 に記載されています。

グループ 2 - データおよびモデル指定用のメ ソ ッ ド

データ記述コマン ドおよびモデル特定コマン ドのグループです。 BeginGroup および

AStructure はグループ 2 の メ ソ ッ ドです。 その他の メ ソ ッ ドについては、 『Amos 30
Programming Reference Guide』 に記載されています。

グループ 3 - 結果取得用のメ ソ ッ ド

結果を取得するためのコマンドです。 これまで、 グループ 3 のメ ソ ッ ドはまだ使用し

ていません。 グループ 3 の メ ソ ッ ド使用例については、 『Amos 30 Programming
Reference Guide』 に記載されています。

ヒ ン ト : Amos プログラムを記述する場合、 Amos エンジンのメ ソ ッ ドを呼び出す順序

に細心の注意を払う こ とが重要です。 グループ 1、 グループ 2、 そして最後にグループ

3 の順序で記述する必要があ り ます。

ルールのタイ ミ ングの詳細と メ ソ ッ ドおよびそのメ ソ ッ ドがどのグループに所属する

かについての完全な リ ス トは、 『Amos 30 Programming Reference Guide』 を参照してく

ださい。

1  Initialize メ ソ ッ ドのみで構成される、 4 番目の特殊なグループもあ り ます。 オプシ ョ ンの Initialize メ ソ ッ

ドを使用する場合、 グループ 1 のメ ソ ッ ド よ り前に指定する必要があ り ます。
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その他の仮説の検定

概要

この例では、 2 つの変数に相関がないとい う帰無仮説の検定方法を説明し、 自由度の

概念について詳し く解説し、漸近的に正確な検定の意味するものを具体的に示します。

データについて

この例では、 Attig (1983) の空間記憶調査の被験者グループと、 年齢およびボキャブラ

リの 2 つの変数を使用します。 タブ区切り テキス ト  ファ イルと して書式設定された

データを使用します。

データの取り込み

E メニューから、 [ フ ァ イル ][ 新規作成 ] を選択します。

E メニューから、 [ フ ァ イル ][ データ  フ ァ イル ] の順にク リ ッ ク します。

E [データ  ファ イル ] ダイアログ ボッ クスで、 [ フ ァ イル名 ] を選択します。

E %examples% フ  ォルダを参照し  ます。 

E [ ファ イルの種類 ] リ ス トで、 [ テキス ト  (*.txt)] を選択し、 [Attg_old.txt] をク リ ッ ク し

て、 [ 開 く ] をク リ ッ ク します。 

E [データ  ファ イル ] ダイアログ ボッ クスで、 [OK] をク リ ッ ク します。 
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2 つの変数に相関がないとい う仮説の検定

Attig の 40 名の年長の被験者では、 年齢とボキャブラ リ間の標本の相関は、 0.09 です

(0 からそれほど乖離していません )。 とは言え、この相関は著し く有意である と言える

でし ょ うか。 それを調べるために、 この 40 人の被験者の属する母集団において、年齢

とボキャブラ リ間の相関が 0 である という帰無仮説を検定するこ とにします。 年齢と

ボキャブラ リに相関がないという制約の下で、 分散共分散行列を推定します。 

モデルを指定する

例1 で学習した方法を使用して、 パス図で 2 つの観測変数年齢とボキャブラ リ を描画

し、 名前を付けるこ とから始めます。

Amos では、年齢とボキャブラ リ間の共分散が 0 であるこ とを指定するための 2 つの方

法があり ます。 最も明白な方法は、単に 2 つの変数を結ぶ双方向の矢印を描画しないこ

とです。 2 つの外生変数を結ぶ双方向の矢印がないという こ とは、 相関がないこ とを意

味しています。 したがって、何も描かなければ、上記の単純なパス図で指定されたモデ

ルは年齢とボキャブラ リ間の共分散 (ひいては相関 ) が 0 であるこ とを指定します。

共分散パラ メータを制約する  2 つ目の方法は、 例1 と例2 で紹介された、 よ り一般

的な手順です。

E メニューから、 [ 図 ]  [ 共分散を描 く ] の順にク リ ッ ク します。

E ク リ ッ ク し、 ド ラ ッグして、 ボキャブラ リ と年齢を結ぶ矢印を描きます。 

E 矢印を右ク リ ッ ク し、 ポップアップ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択

します。 

E [ パラ メ ータ ] タブをク リ ッ ク します。

E [共分散 ] テキス ト  ボッ クスに 「0」 と入力します。

E [オブジェク ト  プロパティ ] ダイアログ ボッ クスを閉じます。 
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パス図は次のよ うにな り ます。

E メニューから、 [ 分析 ] [ 推定値を計算 ] を選択します。

[名前を付けて保存 ] ダイアログ ボッ クスが表示されます。

E ファ イルの名前を入力して、 [ 保存 ] をク リ ッ ク します。 

モデル推定値が計算されます。 
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テキス ト 出力の表示

E メニューから、 [ 表示 ][ テキス ト 出力の表示 ] の順にク リ ッ ク します。

E [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠のツ リー図で、 [ 推定値 ] を選択します

パラ メータ推定値はこの分析の主要な目的ではあ り ませんが、以下のよ うにな り ます。 

この分析では、 年齢とボキャブラ リに相関がないという  1 つの制約条件に対応する  
1 つの自由度があ り ます。 自由度 は、 次のテキス トで表示されている計算によっても

得られます。 この計算を表示するには、 次の手順を実行します。

E [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠で、 [ モデルについての注釈 ] をク リ ッ ク

します

3 つの標本の積率は、 年齢の分散、 ボキャブラ リの分散、 およびこれらの共分散です。

2 つの独立な推定パラ メータは、 2 つの母集団の分散です。 共分散はこのモデルでは

0 に固定されており、 標本の情報からは推定されません。
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グラ フ ィ ッ ク出力の表示

E [ 出力パス図の表示 ] ボタンをク リ ッ ク します。

E 描画領域の左にある  [パラ メータ形式 ] ウ ィンド ウ枠で、 [ 非標準化推定値 ] をク リ ッ ク

します。

非標準化推定値のパス図の出力、 および年齢とボキャブラ リに相関がないという帰無

仮説の検定を次に示します。

この大きさの逸脱が偶発的に帰無仮説から得られる確率は 0.555 です。 従来の有意水

準では、 帰無仮説は棄却されません。

この帰無仮説検定用の通常の t 統計量は 0.59 ( 、  両側 ) です。 t 統
計量に関連する確率水準は正確です。 有限標本では正確なカイ  2 乗分布がないため、

カイ  2 乗統計量の確率水準 0.555 は外れています。 この場合でも、 0.555 という確率水

準は悪くはあ り ません。

こ こで興味深い問題が生じます。 Amos によって表示された確率水準を使用して

0.05 レベルまたは 0.01 レベルで帰無仮説を検定した場合、真の帰無仮説を棄却する実

際の確率はど うなるのでし ょ うか。 この帰無仮説の場合、 標本数によって異な り ます

が、 回答があ り ます。 次の表の第 2 列は、 複数の標本数について、 Amos を使用して

0.05 レベルでゼロの相関の帰無仮説を検定した場合の、 実際のタイプ I の誤りの確率

を示しています。 3 番目の列は、0.01 の有意水準を使用した場合の実際のタイプ I の誤

りの確率を示しています。 この表は、 標本数が多くなればなるほど、 真の有意水準が

予想値に近づく こ とを示しています。 非常に残念ながら、Amos を使用して検定できる

df 38= p 0.56=
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すべての仮説について、 このよ う な表を作成するこ とはできません。 しかし、 次のこ

とはこ う した表のどれについてもあてはま り ます。 上から下に向かって、 0.05 列の数

値は 0.05 に近づき、0.01 列の数値は 0.01 に近くなっていきます。 最尤法理論に基づく

仮説検定が漸近的に正しいというのは、 このこ とを意味しています。

次の表は、 Amos を使用して 2 つの変数間に相関がないという仮説を検定した場合

の、 タイプ I の誤りの実際の確率を示しています。

標本数
名義有意水準

0.05 0.01
3 0.250 0.122
4 0.150 0.056
5 0.115 0.038

10 0.073 0.018
20 0.060 0.013
30 0.056 0.012
40 0.055 0.012
50 0.054 0.011

100 0.052 0.011
150 0.051 0.010
200 0.051 0.010

>500 0.050 0.010
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VB.NET でのモデル作成

以下は、 この例の分析を実行するためのプログラムです。

Structure メ ソ ッ ドは、共分散を定数 0 で固定して制約します。 このプログラムでは、年

齢とボキャブラ リの分散を明示的には参照していません。 Amos のデフォル トの動作

は、それらの制約条件なしで分散を推定するこ とです。 プログラムで明示的に制約され

ている分散を除き、 すべての外生変数の分散はフリー パラメータ と して扱われます。
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来の線型回帰

概要

この例では、 3 個の観測変数の線型結合と して単一の観測変数を予測する、 従来の線

型回帰分析について説明します。 特定可能性の概念についても説明します。

データについて

Warren、 White、 および Fuller は、 98 名の農場共同組合長を対象に調査を行いました

(1974) 。 こ こでは次の 4 つの測定値を使用します。

5 つ目の測定値である past_training も報告されていますが、 こ こでは使用しません。

この例では、 %examples% フォルダにある  UserGuide.xls ファ イルの Excel ワーク

シート  Warren5v を使用します 

変数 説明

成果
「計画、 組織、 制御、 調整、 および指導」 に関する実績の 24 項
目の変数

知識
「収益を目標と した管理の経済局面および製品知識」 に関する

知識の 26 項目の検定

価値
「経済的目標を達成するための手段を合理的に評価する傾向」

の 30 項目の検定

満足度 「管理的役割を果たすこ とによる満足度」 の 11 項目の検定



62

例 4

標本分散と標本共分散を次に示します。

Warren5v には標本の平均値も含まれます。 生データは使用できませんが、 標本の積率

(平均、 分散、 および共分散 ) が提供される限り、 Amos による大部分の分析では必要

あ り ません。 実際に、 この例では標本分散と標本共分散のみ必要です。 差し当たって

Warren5v では標本の平均値は必要ないので、 Amos はそれらの値を無視します。

データの分析

知識、価値、および満足度の得点を使用して成果を予測する場合を考えてみまし ょ う。

具体的には、 知識、 価値、 および満足度の線型結合によって成果の得点の近似値を求

めるこ とができる と考えます。 ただし、 この予測は完全ではないので、 モデルに誤差

変数を含める必要があ り ます。

この関係の初期パス図を次に示します。

一方向の矢印は線型従属を表します。 たとえば、 知識から成果を指す矢印は、 成果の

得点が一部知識に依存するこ とを示します。 変数誤差は直接観測されないため、 円で

囲まれています。 誤差が表すのは、 測定エラーによる成果の得点のランダムな変動だ

けではあ り ません。 誤差は、 年齢構成、 社会経済状況、 言語能力、 その他成果が依存
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する要素でこの調査では測定されなかった要素も表します。 パス図には、 成果の得点

に影響するすべての変数が示される と考えられるので、 この変数は不可欠です。 この

円がない場合、 このパス図は成果が知識、 価値、 および満足度と厳密な線型結合であ

る という あ りえない関係を示すこ とになり ます。

パス図の双方向の矢印は、 相関する可能性がある変数を結びます。 誤差とその他の

変数を結ぶ双方向矢印が存在しないのは、 誤差は他のすべての予測変数と無相関であ

る と仮定されるこ とを示します (線型回帰における基本的仮定 )。 成果もその他の変数

と双方向矢印で結ばれていませんが、 この理由は異なり ます。 成果はその他の変数に

依存するため、 必然的にそれらの変数と相関する可能性があ り ます。 

モデルを指定する

これまでの 3 つの例で学習したこ とを使用して、 次の操作を行います。

E 新しいパス図を開始します。

E 分析されるデータ  セッ トが UserGuide.xls ファ イルの Excel ワークシート  Warren5v に
あるこ とを指定します。

E 4 つの四角形を作成し、 知識、 価値、 満足度、 および成果のラベルを付けます。

E 誤差変数用の楕円を作成します。

E 外生または予測変数 ( 知識、価値、満足度、および誤差 ) から内生または応答変数

(成果 ) を指す一方向矢印を作成します。 

注 : 少なく と も  1 つの一方向矢印が内生変数を指している必要があり ます。 これに対し

外生変数は一方向矢印の起点となるだけで、 指されるこ とはあり ません。

E 観測外生変数 (知識、 満足度、 および 価値 ) を結ぶ 3 つの双方向矢印を作成します。

作成されたパス図は次のよ うにな り ます。



64

例 4

特定

この例では、 誤差に対する成果の回帰の係数が推定できず、 誤差の分散も推定できま

せん。 これは、 「全部で 5 ドルの道具を買った」 と聞いただけで、 購入した道具それぞ

れの価格と購入した道具の数とを推定しよ う とするよ う なものです。 価格と数を推定

するには情報が不十分です。

成果を予測する際に誤差に適用される係数、 または誤差変数自体の分散をゼロ以外

の任意の値に固定するこ とによ り、 この特定問題を解決できます。 係数を 1 に固定し

てみまし ょ う。 これによ り、 従来の線型回帰と同じ推定値が得られます。

係数を固定する

E 誤差から成果を指す矢印を右ク リ ッ ク し、ポップアップ メニューから  [ オブジ ェ ク ト の

プロパテ ィ ] を選択します。 

E [ パラ メ ータ ] タブをク リ ッ ク します。

E [係数 ] ボッ クスに 「1」 と入力します。

すべての誤差変数の係数を 1 に設定するのは面倒です。 幸いにして、Amos Graphics に
は大部分の場合に適用できる方法があらかじめ用意されています。
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E [ 既存の変数に固有の変数を追加 ] ボタンをク リ ッ ク します。

E 内生変数をク リ ッ ク します。

誤差変数が自動的に追加され、 係数が 1 に固定されます。 内生変数を繰り返し ク リ ッ

クする と、 誤差変数の位置が変わり ます。

テキス ト 出力を表示する

最尤法の推定値を次に示します。

パス成果 <— 誤差の値はデフォルト値 1 に固定されているので表示されません。 異な

る定数を選択する と他の推定値がどのよ う な影響を受けるかを確認して ください。 こ
のよ うな変更の影響を受けるのは誤差の分散の推定値だけであるこ とがわかり ます。

次の表に、成果<—誤差 係数にさまざまな値を選択した場合の分散の推定値を示します。

固定係数 推定される誤差の分散

0.5 0.050
0.707 0.025
1.0 0.0125
1.414 0.00625
2.0 0.00313
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このパスの係数を 1 ではなく  2 に固定した場合を考えてみまし ょ う。 この場合、 分散

の推定値は係数 4 で割られます。 パス係数に固定係数を掛ける と と もに、 誤差分散を

同じ係数の平方根で割る とい う規則を当てはめる こ とができます。 これを拡張する

と、 係数の 2 乗の積と誤差分散が常に一定になり ます。 これが、 係数 ( と誤差分散 ) が
特定不能である とい う こ とです。 これらのいずれかに値を割り当てる と も う一方を推

定できますが、 同時に両方を推定するこ とはできません。

これまで説明した特定可能性の問題は、 変数の分散と、 それに関連付けられた係数

が、 変数の測定単位に応じて異なる とい う事実によって発生します。 誤差は非観測変

数なので、 自然な方法で測定単位を指定するこ とはできません。 誤差の測定単位を間

接的に選択する方法と して、 誤差に関連付けられた係数に任意の値を割り当てる方法

が考えられます。 すべての非観測変数にはこの特定不能性の問題があ り、 測定単位を

決定する何らかの制約を設けるこ とによって問題を解決する必要があ り ます。

非観測変数誤差の単位を変更しても、 全体的なモデルの適合度は変わ り ません。

すべての分析で、 次の出力が得られます。

4 個の標本分散と  6 個の標本共分散で、 合計 10 個の標本の積率があ り ます。 3 個の回

帰パス、 4 個のモデル分散、 3 個のモデル共分散で、 合計 10 個のパラ メータを推定す

る必要があ り ます。 このため、モデルの自由度はゼロになり ます。 このよ うなモデルは

しばしば飽和モデルまたは識別可能モデルと呼ばれます。

標準化された係数の推定値には、 次のものがあ り ます。

標準化された係数と相関は、 すべての変数を測定する単位から独立しているので、

識別制約の選択による影響を受けません。

カイ  2 乗 = 0.00
自由度 = 0
確率水準の計算はできません。



67

従来の線型回帰

重相関の 2 乗も測定単位から独立しています。 Amos では、内生変数ごとに重相関係

数の平方が表示されます。 

注 : 変数の重相関係数の平方は、 予測変数が分散に占める割合にな り ます。 上の例で

は、 知識、 価値、 および満足度が成果の分散の 40% を占めています。

グラ フ ィ ッ ク出力を表示する

次のパス図の出力には、 標準化されていない値が示されています。
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標準化された解は次のとおりです。

その他のテキス ト 出力を表示する

E [Amos 出力 ] ウ ィンド ウの左上のウ ィンド ウ枠にあるツ リー図で、 [ 変数の要約 ] をク

リ ッ ク します。
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内生変数は一方向矢印によって指される変数であ り、 他の変数に依存します。 外生変

数は一方向矢印によって指されない変数であ り、 他の変数に依存しません。

上のリ ス トの確認は、入力ファイルで最もよ く見られる  (不注意による ) エラーであ

る、 入力エラーの検出に役立ちます。 「成果」 と  2 回入力しよ う と して、 その内 1 回
は誤って 「製菓」 と入力してしまった場合、 両方の語がリ ス トに表示されます。

E こ こで、 [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠にある  [ モデルについての注釈 ]
をク リ ッ ク します。

次の出力は、 パス図にフ ィードバッ ク  ループがないこ とを示しています。

後ほど、 変数を選択し、 一方向の矢印に沿って ト レースするこ とによ り、 同じ変数に

戻るパスを含むパス図を示します。

注 : フ ィードバッ ク  ループのあるパス図は非再帰と呼ばれます。 フ ィードバッ ク  ルー

プのないパス図は再帰と呼ばれます。 
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VB.NET でモデルを作成する

この例のモデルは、 単一の回帰式で構成されています。 パス図の一方向矢印は、 それ

ぞれ係数を表します。 これらの係数を推定するためのプログラムを次に示します。

Sem.BeginGroup の後の 4 行は、 Amos Graphics のパス図の一方向矢印に対応します。 最
後の AStructure 行の (1) によ り、 誤差係数を定数 1 に固定します。



71

従来の線型回帰

外生変数間の相関に関する仮定

プログラムの実行時に、 Amos が外生変数間の相関を仮定します。 これらの相関は

Amos Graphics では仮定されません。 これらの仮定は、多くのモデル、特にパラ メータ

があるモデルの指定を単純化します。 Amos Graphics でのモデルの指定とプログラム

によるモデルの指定の相違は次のとおりです。

 Amos Graphics は完全に WYSIWYG (What You See Is What You Get) です。 2 個の

外生変数の間に双方向矢印を作成する場合 (制約なし )、Amos Graphics はそれらの

共分散を推定します。 2 個の外生変数が双方向矢印で接続されていない場合、Amos
Graphics はそれらの変数は無相関である と仮定します。

Amos プログラムのデフォルトの仮定は次のとおりです。

 固有の変数 (他の 1 個の変数にのみ影響する非観測外生変数 ) は相互に無相関であ

り、 他のすべての外生変数と も無相関である と仮定されます。

 固有の変数以外の外生変数は、 それらの変数間で相関がある と仮定されます。

Amos プログラムでは、 これらのデフォルトの仮定が、 従来の線型回帰分析の標準の

仮定に反映されます。 このため、 この例では、 予測変数知識、 価値、 および満足度は

相関があ り、 誤差はこれらの予測変数と無相関である と仮定されます。
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AStructure メ ソ ッ ドの式形式

AStructure メ ソ ッ ドでは、 式形式でモデルを指定できます。 たとえば、 次のプログラム

に含まれる  1 つの Sem.AStructure ステート メン トによ り、 70 ページ のプログラムと同

じモデルを 1 行で指定でき ます。 このプロ グ ラ ムは、 Examples デ ィ レ ク ト リ に

Ex04-eq.vb という名前で保存されています。

上の AStructure 行では、 各予測変数 (式の右側 ) が推定される係数と関連付けられてい

るこ とに注意して ください。 次のよ うに空のかっこを使用するこ とによ り、 これらの

係数を明示できます。

Sem.AStructure(" 成果 = () 知識 + () 価値 + () 満足度 + 誤差 (1)")

空のかっこはオプシ ョ ンです。 デフォルトでは、 各予測変数の係数が自動的に推定さ

れます。
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概要

この例では、 非観測変数を使用した回帰分析について説明します。

データについて

前の例の変数は、 信頼性にある程度の問題があるこ とは否定できません。 成果の信頼

性が不明であるため、 予測変数が成果の分散に占める割合が 39.9% に過ぎないという

事実の解釈において若干の問題が発生します。 検定の信頼性が非常に低い場合、 その

事実自体が成果の得点を正確に予測できない原因にな り ます。 一方で、 予測変数の信

頼性の低さによ り、 係数の推定値が偏る可能性があるので、 よ り深刻な問題が発生し

ます。

Rock 等 の調査 (1977) に基づく この例では、 前の分析に含まれる  4 つの検定の信頼

性を評価します。 完全に信頼できる、 仮想の 4 つの検定用に係数の推定値も取得しま

す。 Rock 等は、 前の例で説明した Warren、 White、 および Fuller のデータ  (1974) を再

調査しました。 こ こでは各検定をランダムに 2 分割し、 それぞれの得点を個別に記録

しています。

入力変数の一覧を次に示します。

変数名 説明

1成果 成果役割の 12 項目のサブセッ ト

2成果 成果役割の 12 項目のサブセッ ト

1知識 13-知識の 13 項目のサブセッ ト

2知識 13-知識の 13 項目のサブセッ ト

1価値 15-価値方向の 15 項目のサブセッ ト

2価値 15-価値方向の 15 項目のサブセッ ト

1満足度 5-満足度役割の 5 項目のサブセッ ト

2満足度 6-満足度役割の 5 項目のサブセッ ト
past_training 学校教育のレベル
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この例では、Lotus データ  ファ イルの Warren9v.wk1 を使用して、 これらのサブセッ ト

の標本分散と標本散を取得します。 ファ イルに表示される標本の平均値は、 この例で

は使用しません。 このファ イルには学校教育 (past_training) に関する統計も存在しま

すが、 この分析には使用されません。 データ  セッ トの一部を次に示します。

モデル A

次のパス図は、 8 つのサブセッ ト用のモデルを表します。

図の 4 つの楕円には、知識、価値、満足度、および成果のラベルが付けられています。

これらは、2 分割された 8 つの検定によって間接的に測定される非観測変数を表します。
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測定モデル

モデルの中で、観測変数が非観測 ( または潜在的 ) 変数にどのよ うに依存するかを指定

する部分を測定モデルと呼ぶ場合があ り ます。 このモデルには、4 つの異なる測定サブ

モデルがあ り ます。

たとえば、知識サブモデルの例を考えてみまし ょ う。 2 分割されたサブセッ ト、 1知識

と  2 知識の得点は、 元になる単一の変数で、 直接観測されない知識によって決まる と

仮定されます。 このモデルによる と、2 つのサブセッ トの測定エラーを表す誤差3 と誤

差4 の影響によ り、 2 つのサブセッ トの得点は一致しない可能性があ り ます。 1知識と

2 知識は、 潜在的変数知識の指標と呼ばれます。 知識の測定モデルが示すパターンは、

上のパス図で後 3 回繰り返されます。

構造モデル

モデルの中で、 潜在的変数がどのよ うに相互に関連するかを指定する部分を構造モデ

ルと呼ぶ場合があ り ます。

このモデルの構造部分は、 例 4 の構造部分と同じです。 この例が例 4 と異なるのは測

定モデルだけです。
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特定

このモデルの 13 の非観測変数では確実な特定はできません。 パラ メータに対する適切

な制約によって各非観測変数の測定単位を固定する必要があ り ます。 この処理は、例4
で非観測変数に使用した方法を 13 回繰り返すこ とによって行われます。 この方法で

は、 パス図で各非観測変数を起点とする一方向の矢印を探し、 対応する係数を 1 など

の任意の値に固定します。 非観測変数を起点とする一方向矢印が複数ある場合、 その

いずれかでこの処理を実行します。 74 ページの 「モデル A」 のパス図は、 特定可能性

制約の適切な選択肢の 1 つを示しています。

モデルを指定する

パス図は縦長ではなく横長になるので、 パス図に合う よ うに描画領域の形を変更する

こ とができます。 デフォルトでは、Amos の描画領域は印刷方向が縦の場合に合わせて

幅よ り高さが大き くなっています。 

描画領域の方向を変更する

E メニューから、 [ 表示 ]  [ イ ン ターフ ェ イスのプロパテ ィ ] を選択します。 

E [ インターフェイスのプロパティ ] ダイアログ ボッ クスで、 [ ページレ イアウ ト ] タブを

ク リ ッ ク します。 
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E [用紙サイズ ] を [A4 横 ] などの 「横方向」 用紙サイズに設定します。

E [ 適用 ] をク リ ッ ク します。

パス図を作成する

これで、ページ 74 のパス図に示すモデルを作成する準備ができました。 モデルを作成

するにはいくつかの方法があ り ます。 1 つの方法は、最初に測定モデルを作成する方法

でます。 こ こでは、 潜在的変数の 1 つである知識の測定モデルを作成し、 他の 3 つの

原型と して使用します。

E 非観測変数知識用の楕円を作成します。

 

E メニューから、 [ 図 ]  [ 指標変数を描 く ] を選択します。

Ex6_modelA
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E 楕円の中を 2 回ク リ ッ ク します。 

ク リ ッ クするごとに、 知識の指標変数が 1 つ作成されます。

画面からわかるよ うに、 [ 指標変数を描 く ] ボタンが有効になっている場合、非観測変数

を複数回ク リ ック して複数の指標を作成し、 固有の変数またはエラー変数を完成でき

ます。 Amos Graphics は指標間の適切な間隔を保持し、識別制約を自動的に挿入します。

指標を回転する

デフォルトでは指標は知識の楕円の上に表示されますが、 位置を変更するこ とができ

ます。 

E メニューから、 [ 編集 ]  [ 回転 ] を選択します。

E 知識の楕円をク リ ッ ク します。

知識の楕円をク リ ッ クするごとに、 指標が時計方向に 90° 回転します。 楕円を 3 回ク

リ ッ クする と、 指標は下の図のよ うにな り ます。

測定モデルを複写する

次の手順は、 価値 と満足度の測定モデルの作成手順です。

E メニューから、 [ 編集 ]  [ すべて選択 ] を選択します。

測定モデルが青になり ます。 
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E メニューから、 [ 編集 ]  [ 複写 ] を選択します。

E 測定モデルの任意の部分をク リ ックし、 コピーを元の測定モデルの下にドラッグします。

E この手順を繰り返し、 元の測定モデルの上に 3 つ目の測定モデルを作成します。 

パス図は次のよ うに描かれているはずです。

E 成果用に 4 つ目のコピーを作成し、 元の測定モデルの右に配置します。 

E メニューから、 [ 編集 ]  [ 反転 ] を選択します。

これによ り、 成果の 2 つの指標の配置が次のよ うに変更されます。



80

例 5

変数名を入力する

E 各オブジェク ト を右ク リ ッ ク し、 ポップアップ メニューから  [ オブジ ェ ク ト のプロパ

テ ィ ] を選択します。 

E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [ テキス ト ] タブをク リ ッ ク し、

[変数名 ] テキス ト  ボッ クスに名前を入力します。

または、 メニューから  [ 表示 ]  [ データ セ ッ ト に含まれる変数 ] を選択し、 変数名をパ

ス図内のオブジェク トにド ラ ッグするこ と もできます。

構造モデルを完成する

構造モデルの完成に必要な手順は残りわずかです。

E 知識、 価値、 および満足度を結ぶ 3 つの共分散パスを作成します。

E 潜在的予測変数である知識、 価値、 および満足度のそれぞれから、 潜在的従属変数で

ある成果へ向かって一方向矢印を作成します。

E 非観測変数である誤差 9 を成果の予測変数と して追加します ( メ ニューから  [ 図 ] 
[ 固有の変数を描 く ] を選択します )。

74 ページ に示すよ うなパス図が作成されます。 このパス図を含む Amos Graphics の入

力ファイルは Ex05-a.amw になり ます。

モデル A の結果

練習と して、 次の自由度の計算を確認してください。

モデル A が正しいという仮説が承認されます。

Ex5_modelA
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パラ メータの推定値は、 識別制約の影響を受けます。

これに対し標準化推定値は、 識別制約の影響を受けません。 標準化推定値を計算する

には、 次の操作を行います。 

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。

E [ 標準化推定値 ] チェッ ク  ボッ クスをオンにします。
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グラ フ ィ ッ ク出力を表示する

標準化推定値が表示されたパス図は次のよ うにな り ます。
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成果の上の値は、 純粋な知識、 価値、 および満足度が、 成果の分散の 66% を占めるこ

とを示します。 観測変数の上に表示される値は、8 つの独立したサブセッ トの信頼性の

推定値です。 元の検定 (2 分割する前 ) で信頼性を求める式は、Rock 等の調査 (1977) ま
たは心理検定の理論に関する書籍に記載されています。

モデル B

モデル A が正しい (反証がない ) という仮定の上で、1知識と  2知識が並行検定である

という追加の仮定を検討します。 並行検定の仮定では、 知識に対する  1知識の回帰が、

知識に対する  2知識の回帰と同じになる必要があ り ます。 さ らに、 1知識と  2知識に関

連付けられた誤差変数の分散が等し くなる必要があ り ます。 1 成果と  2 成果だけでな

く、 1価値 と  2価値 も並列検定である という仮定からも同様の結論が導かれます。 た
だし、 1 満足度 と  2 満足度 が並行である という仮定は完全に正しいとは言えません。

元の検定の項目数が奇数であ り、 正確に 2 分割できないため、 サブセッ トの一方がも

う一方よ りやや長くな り ます。 つま り、 2満足度 が 1満足度 よ り  20% 長くな り ます。

これらの検定は長さのみ異なる という仮定から、 次の結論が導かれます。

 満足度 に対する  2満足度 の回帰の係数は、満足度 に対する  1満足度 の回帰の係数

の 1.2 倍になる必要があ り ます。

 誤差7 と誤差8 の分散が等しいとする と、 誤差8 の係数は、 誤差7 の係数の 
 倍の大きさになる必要があ り ます。

これらのパラ メータ制約を適用するため、 パス図を最初から作成し直す必要はあ り ま

せん。 モデル A 用に作成したパス図を土台と して使用し、 2 つの係数の値を変更しま

す。 変更後のパス図は次のよ うにな り ます。

1.2 1.095445=
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モデル B の結果

モデル B ではパラ メータ制約の追加によ り、 次のよ うに自由度が増加します。

カイ  2 乗統計量も増加しますが、大幅な増加ではあ り ません。 これは、モデル B のデー

タからの逸脱が大き くないこ とを示します。
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実際にモデル B が正しい場合、関連付けられたパラ メータ推定値は、モデル A から取

得される値よ り優先されます。 こ こでは、 識別制約の選択による影響が大き過ぎるの

で、 生のパラ メータ推定値は提示されません。 ただし、 標準化推定値と重相関係数の

平方は次のよ うにな り ます。
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パス図に表示される標準化推定値と重相関係数の平方は次のよ うにな り ます。

モデル A に対するモデル B の検定

場合によっては、 同じデータ  セッ ト用のモデルと して 2 つの選択肢があり、 どちらの

モデルがデータによ り適合するかを判断する必要があ り ます。 一方のパラ メータに追

加の制約を適用するこ とによっても う一方のモデルを取得できる場合は常に、直接比較

を実行できます。 この例はそのよ うなケースです。 こ こでは、モデル A のパラ メータに

8 つの追加制約を適用するこ とによってモデル B を取得しました。 たとえば、母集団パ

ラ メータに関する強い仮説を表すという意味において、2 つのモデルではモデル B が強

いモデルです (モデル A が弱いモデルです )。 強いモデルほど自由度が大き くなり ます。

強いモデルのカイ  2 乗統計量は、 少なく と も弱いモデルのカイ  2 乗統計量と同じ大き

さになり ます。

弱いモデル (モデル A) に対する強いモデル (モデル B) の検定は、 大きいカイ  2 乗
統計量から小さいカイ  2 乗統計量を引く こ とによって得られます。 この例では、 新し

い統計量は 16.632 (= ) になり ます。 強いモデル (モデル B) が正し く

指定されている場合、 この統計量はカイ  2 乗と近似の分布を示し、 自由度はも う一方

のモデルの自由度との差に等し くな り ます。 この例では、 自由度の差は 8 (= )
になり ます。 モデル B では、 モデル A のすべてのパラ メータ制約に加えて、 8 つの制

約を適用します。

26.967 10.335–

22 14–
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要するに、 モデル B が正しい場合、自由度 8 のカイ  2 乗分布から、 16.632 という値

が得られます。 弱いモデル (モデル A) だけが正し く、強いモデル (モデル B) は正し く

ない場合、 新しい統計量が大き くなる傾向があ り ます。 このため、 新しいカイ  2 乗統

計量が極端に大き くなる場合は、 強いモデル (モデル B) を棄却して弱いモデル (モデ

ル A) を選ぶ必要があ り ます。 自由度 が 8 の場合、 15.507 以上のカイ  2 乗値は 0.05 レ
ベルで有意とな り ます。 この検定に基づいて、 こ こではモデル B を棄却します。

カイ  2 乗値 26.967、 自由度22 に基づく、 モデル B が正しいという前の結論はど う

なったのでし ょ うか。 2 つの結論の不一致は、2 つの検定は仮定が異なる という理由に

よって説明できます。 自由度 8 に基づく検定では、モデル B の検定時にモデル A が正

しいと仮定します。 自由度 22 に基づく検定では、モデル A に関するそのよ うな仮定は

行いません。 モデル A が正しいと確信している場合は、モデル A に対してモデル B を
比較する検定 ( 自由度 8 に基づく検定 ) を使用する必要があ り ます。 そ うでない場合

は、 自由度 22 に基づく検定を使用する必要があ り ます。
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VB.NET でのモデル作成

モデル A

モデル A に適合するプログラムを次に示します。

外生変数間の相関に関する  Amos の仮定によ り  (例4 参照 )、 知識、 価値、 および満足

度の相関が可能であるこ とをプログラムで示す必要はあ り ません。 また、誤差1、誤差

2.... , 誤差9 は相互に無相関であ り、他のすべての外生変数と も無相関であるこ とを示

す必要もあ り ません。
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モデル B

モデル B に適合するプログラムを次に示します。
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例6
探索分析

概要

この例では、 時間に関する潜在的変数を使用した構造モデルの作成、 探索分析での修

正指数と検定統計量の使用、 単一分析での複数モデルの比較方法、 およびモデルの積

率、 因子得点係数、 総合効果、 間接効果の計算方法について説明します。

データについて

Wheaton 等は、1966 年から  1971 年にわたって 932 人のデータを長期的に追跡した調査

結果を報告しました (1977)。 Jöreskog および Sörbom 等は以後 Wheaton のデータを使用

して、積率構造の分析を行っています (1984)。 この例では、次に示す Wheaton の 6 つの

測定値を使用します。

変数名 説明

anomia67 (失語傾向 (67年 )) anomia (失語傾向 ) 尺度の 1967 年の得点

anomia71 (失語傾向 (71年 )) 1971 年の anomia (失語傾向 ) の得点

powles67(無気力感 (67年 )) powles (無気力感 ) 尺度の 1967 年の得点

powles71(無気力感 (71年 )) 1971 年の powles (無気力感 ) の得点

education (教育年数 ) 1966 年に記録された就学年数

SEI (社会経済指標 ) 1966 年に使用された Duncan の社会経済指標
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これら  6 つの測定値の標本の平均値、 標準偏差、 および相関を見てみまし ょ う。 SPSS
Statistics ファ イル Wheaton.sav に次の表があ り ます。 データの読み込み後、分析の必要

に応じて Amos が標準偏差と相関を分散と共分散に変換します。 この分析では標本の

平均値は使用しません。

Wheaton データ用のモデル A

Jöreskog と  Sörbom は、 93 ページ に示す Wheaton データ用のモデルを提示し  (1984)、
モデル A と呼んでいます。 このモデルでは、すべての観測変数が、元になる非観測変数

に依存する と断定します。 たとえば、 anomia67 (失語傾向 (67年 )) と  powles67 (無気力

感 (67年 )) の両方が非観測変数67_alienation (疎外感 (67年 )) に依存します。 この変数

は、 Jöreskog と  Sörbom が疎外感と呼ぶ仮想変数です。 非観測変数 eps1 と  eps2 は、

例5 における変数誤差1 と誤差2 と同じ役割を果たすよ うに見えます。 ただし、こ こで

は解釈が異なり ます。 例 5 では、 誤差 1 と誤差 2 は測定誤差と して自然に解釈されま

す。 この例では、 anomia (失語傾向 ) 尺度と  powles (無気力感 ) 尺度が同じ対象を測定

するよ うに設計されていないため、 それらの相違は測定誤差によるものだけでないと

判断する方が妥当と思われます。 このため、 この場合の eps1 と  eps2 は、 anomia67 (失
語傾向 (67 年 )) と  powles67 ( 無気力感 (67 年 )) の測定誤差を表すだけでな く、

67_alienation (疎外感 (67年 )) (両方に影響する変数の 1 つ ) の他に 2 つの検定の得点に

影響する可能性があるすべての変数を表すと考える必要があ り ます。

Ex6_modelA
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モデルの特定化

Amos Graphics でモデル A を指定するには、 次に示すパス図を作成するか、 標本 ファ

イル Ex06–a.amw を開きます。 8 つの固有の変数 (delta1、 delta2、 zeta1、 zeta2、 および

eps1 ～ eps4) は相互に無相関であ り、 3 つの潜在的変数 ses、 67_alienation (疎外感 (67
年 ))、および71_alienation (疎外感 (71年 )) と も無相関であるこ とに注意してください。

特定

モデル A は、各非観測変数の測定尺度が不定である という一般的な問題を除いて特定

されます。 各非観測変数の測定尺度は、 その変数を基点とするパスのいずれかで係数

を単一の値 (1) に設定するこ とによって自由に固定できます。 パス図には、 単一の値

(1) に固定された 11 の係数、つま り、非観測変数ごとに 1 つの制約が示されています。

これらの制約によって十分にモデルを特定できます。
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分析の結果

このモデルには、 推定される  15 個のパラ メータ  (6 個の係数と  9 個の分散 ) があ り ま

す。 また、21 個の標本の積率 (6 個の標本分散と  15 個の標本共分散 ) があ り ます。 これ

によ り自由度が 6 のままになり ます。

Wheaton のデータはモデル A のデータから大き く離れています。

棄却の処理

提示されたモデルを統計的な見地から棄却する必要がある場合、 いくつかの方法があ

り ます。

 統計仮説の検定は、 モデルの選択には不適切である と言えます。 Jöreskog は、 因子

分析においてこの問題を取り上げました (1967)。 モデルは、 よ く ても近似に過ぎ

ず、 幸いにして正確に一致しな くても有効である とい う考え方が広く受け入れら

れています。 この考え方による と、 非常に多くの標本を使用して検定を行った場

合、統計的な見地からモデルの棄却が発生するこ とは避けられません。 この点から

考える と、 純粋に統計的な見地によるモデルの棄却は (特に標本が大きい場合 ) 必
ずしも問題ではあ り ません。 

 棄却されたモデルに代わる別のモデルを最初から考案するこ とができます。

 棄却されたモデルがデータによ り適合するよ うに小規模な修正を加えるこ とがで

きます。

この例では最後の方法について説明します。 データに適合するよ うにモデルを修正す

る最も自然な方法は、 いくつかの仮定を緩める方法です。 たとえば、 モデル A では eps1
と  eps3 が無相関である と仮定しています。 eps1 と  eps3 を双方向矢印で結ぶこ とによ

り、この制限を緩めるこ とができます。 このモデルでは、anomia67 (失語傾向 (67年 )) は
ses に直接依存しないこ と も指定されています。 ses から  anomia67 (失語傾向 (67年 )) に
一方向矢印を描く こ とによ り、 この仮定を削除できます。 モデル A では、 制約によって

パラ メータを他のパラ メータ と等し くするこ とはあ り ませんが、 そのよ うな制約が存

在する場合、 適合度を高めるためこのよ う な制約の削除を検討する場合もあ り ます。

当然のこ とながら、 モデルの仮定を緩める際には、特定されるモデルが特定されないモ

デルにならないよ うに注意する必要があり ます。 
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修正指数

修正の可能性ごとに個別の分析を実行するこ とによ り、 モデルに対するさまざまな修

正を検定できますが、 この方法は時間がかかり ます。 修正指数を使用する と、 多くの

修正の可能性を単一の分析で評価できます。 これによ り、 小さいカイ  2 乗値で効果が

上がるよ うなモデル修正案が提示されます。 

修正指数を使用する

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。 

E [ 修正指数 ] チェッ ク  ボッ クスをオンにします。 この例では、[ 修正指数の閾値 ] が [4]に設

定されたままにします。 

モデル A の修正指数を次に示します。
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表の列見出しの M.I. は、 修正指数 (Modification Index) の略です。 この修正指数は、

Jöreskog および Sörbom によって示された指数です (1984)。 最初に示されている修正指

数 (5.905) は、 eps2 と  delta1 の相関が可能な場合に発生するカイ  2 乗の減少を控えめ

に推定した値です。 新しいカイ  2 乗統計量は自由度が 5  にな り、 65.639
( ) よ り大き くなるこ とはあ り ません。 実際にはカイ  2 乗統計量の減少

が 5.905 よ り大き くなる可能性があ り ます。 Par Change の列は、 各パラ メータが 0 に
固定されずに推定された場合の変化の概算値を示します。 Amos は、 eps2 と  delta1 の
間の共分散を  と推定します。 小さい修正指数に基づき、 eps2 と  delta1 の相関

を可能にするこ とによって得られるものは多くないと考えられます。 また、 許容可能

な適合度が得られたと しても、 理論的に見てこの修正が正しいとは言えません。

修正指数の閾値を変更する

デフォルトでは 4 以上の修正指数のみ表示されますが、 この閾値は変更できます。 

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。 

E [ 修正指数の閾値 ] テキス ト  ボッ クスに値を入力します。 非常に低い閾値を設定する と、

小さ過ぎて意味のない修正指数が多数表示されます。

モデル A の最大修正指数は 40.911 です。 これは、 eps1 と  eps3 の相関を可能にする と、

カイ  2 乗統計量が少なく と も  40.911 減少するこ とを示します。 これら  2 つの変数が相

関する必要があるこ とは妥当と思われるので、 この修正は考慮に値します。 Eps1 は、

67_alienation (疎外感 (67年 )) の変化に起因しない anomia67 (失語傾向 (67年 )) の変動

を表します。 同様に eps3 は、71_alienation (疎外感(71年)) の変化に起因しない anomia71
(失語傾向 (71年 )) の変動を表します。 anomia67 (失語傾向 (67年 )) と  anomia71 (失語傾

向 (71年 )) は、同じ計測による  (異なる時間の ) 尺度の得点です。 anomia (失語傾向 ) 尺
度によって alienation 以外の測定を行う場合、 eps1 と  eps3 の間にゼロ以外の相関が期

待されます。 実際には正の相関が期待されますが、 これは Par Change 列の数値が正で

ある という事実と合致します。

eps1 と  eps3 が相関する と予測する理論的な根拠は、eps2 と  eps4 にも適用されます。

修正指数は、 eps2 と  eps4 の相関の可能性も提示します。 ただし、 こ こではこの修正の

可能性を無視し、 eps1 と  eps3 の相関を可能にするこ とによってモデル A の結果の確

認に進みます。 新しいモデルは Jöreskog と  Sörbom のモデル B になり ます。

6 1–= 
71.544 5.905–

0.424–



97

探索分析

Wheaton データ用のモデル B

モデル A のパス図を基に、 eps1 と  eps3 の間に双方向矢印を描く こ とによ り、 モデル

B を取得できます。 新しい双方向矢印が印刷領域を超えて伸びる場合、 [ 形 ] ボタンを

使用して双方向矢印のカーブを調整できます。 [ 移動 ] ボタンを使用して双方向矢印の

終点の位置を変更するこ と もできます。 

モデル B のパス図は Ex06-b.amw ファ イルにあ り ます。

テキス ト 出力 

eps1 と  eps3 の間に追加された共分散によ り、 自由度が 1 減少します。
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カイ  2 乗統計量は、 既定の 40.911 よ り大幅に低下します。

モデル B は棄却できません。 モデル B の適合度に問題がないので、 eps2 と  eps4 の相

関を可能にする という、 上で説明した可能性は追求しません (モデル B に欠けている

対称性を実現するため、eps2 と  eps4 の間のゼロ以外の相関を可能にする引数を作成で

きます )。
異なる識別制約が適用されている場合、 生のパラ メータ推定値が異なるので、 これ

らの推定値の解釈には注意が必要です。

新しい共分散パスに関連付けられた検定統計量が大きいこ とに注意して ください。

eps1 と  eps3 の間の共分散は明らかにゼロではあ り ません。 このこ とは、共分散が 0 に
固定されたモデル A の適合度が不十分であるこ とを示します。
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モデル B のグラ フ ィ ッ ク出力

次のパス図に、 標準化推定値と重相関係数の平方を示します。

モデル内の誤差変数が表すのは測定誤差だけではないため、 重相関係数の平方を信頼

性の推定値と して解釈するこ とはできません。 むしろ、 各重相関係数の平方は、 対応

する信頼性の下限の推定値になり ます。 たとえば、 education (教育年数 )の例を考えて

みまし ょ う。 ses が分散の 72% を占めています。 これによ り、信頼性が少なく と も  0.72
である と推定されます。 教育年数が就学年数で測定されるこ とを考える と、 その信頼

性ははるかに大きいと思われます。
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修正指数の誤用

モデルを改良する際に、 修正指数に全面的に従う必要はあ り ません。 理論的または常

識的に意味がある場合のみ修正を考える必要があ り ます。 
そのよ うな制限なしで修正指数を盲信する と、 適合度の大幅な向上を求めて非常に

多くの修正の可能性を調べるこ とにな り ます。 このよ うな方法は、偶然の利用によ り、

許容可能なカイ  2 乗値を含む不適切な (不合理な ) モデルを生成する傾向があ り ます。

この問題は、 MacCallum (1986) と、 MacCallum、 Roznowski、 および Necowitz (1992)
によって取り上げられています。

新しい制約の追加によ ってモデルを改良する

修正指数は、 カイ  2 乗統計量が自由度よ り速く減少するよ うに、 パラ メータ数を増加

するこ とによってモデルを改良する方法を提示します。 この技法は誤用の可能性もあ

り ますが、 多くの調査で適切な役割を果たしています。 その他の技法を使用して、 許

容可能なカイ  2 乗値をよ り多く含むモデルを生成するこ と もできます。 この技法では、

カイ  2 乗統計量の増加が比較的少なくなる と共に、 自由度の増加が比較的大き くなる

よ うに追加の制約を導入します。 このよ う な修正の多くは、 C.R. 列の検定統計量を確

認するこ とによって大まかに評価できます。 単一の検定統計量を使用して、 単一の母

集団パラ メータが 0 に等し くなる という仮説の検定を行う方法については既に説明し

ました ( 例 1 参照 )。 ただし、 検定統計量には別の解釈もあ り ます。 パラ メータの検定

統計量の 2 乗は、 そのパラ メータを 0 に固定して分析を繰り返す場合にカイ  2 乗統計

量が増加する量とほぼ等し くな り ます。

検定統計量を計算する

2 つのパラ メータ推定値がほぼ等しいこ とが判明した場合、 それら  2 つのパラ メータ

が正確に等し くなるよ うに指定された新しいモデルを仮定するこ とによ り、 適合度の

カイ  2 乗検定を改良できます。 大きな差がないパラ メータのペアの配置を支援するた

め、 Amos ではパラ メータのペアごとに検定統計量を提供します。 

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。 

E [ 差に対する検定統計量 ] チェッ ク  ボッ クスをク リ ッ ク します。 

Amos ではパラ メータの差に対する検定統計量を計算する際に、 モデルの指定時に名

前を付けなかったパラ メータ用に名前を生成します。 名前はテキス ト出力のパラ メー

タ推定値の横に表示されます。 
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モデル B のパラ メータ推定値を次に示します。 Amos によって生成されたパラ メータ

名は Label 列に示されます。
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パラ メータ名は、 次の表で検定統計量を解釈するために必要です。

主対角線の下にある 0 を無視する と、検定統計量の表にはパラメータのペアごとに 1 つ
ずつ、合計 120 のエン ト リがあ り ます。 表の左上付近にある  0.877 という数値に着目し

てください。 この検定統計量は、 par_1 と  par_2 という名前のパラメータの差を、 この

差の推定標準誤差で割った値です。 これら  2 つのパラメータは、powles71 (無気力感 (71
年)) <– 71_alienation (疎外感(71年)) および powles67 (無気力感(67年)) <– 67_alienation
(疎外感 (67年 )) の係数です。 

32 ページ に示す分布の仮定に基づき、標準正規分布の表を使用して検定統計量を評

価し、 2 つのパラ メータが母集団において等しいかど うかを検定できます。 0.877 は
1.96 よ り小さいので、 2 つの係数が母集団において等しいという仮説を 0.05 レベルで

は否定しません。

Critical Ratios for Differences between Parameters (Default model)
par_1 par_2 par_3 par_4 par_5 par_6

par_1 .000
par_2 .877 .000
par_3 9.883 9.741 .000
par_4 -4.429 -5.931 -10.579 .000
par_5 -17.943 -16.634 -12.284 -18.098 .000
par_6 -22.343 -26.471 -12.661 -17.300 -5.115 .000
par_7 3.903 3.689 -6.762 5.056 8.490 10.124
par_8 8.955 8.866 1.707 9.576 10.995 11.797
par_9 8.364 7.872 -.714 9.256 11.311 12.047
par_10 7.781 8.040 -2.362 9.470 11.683 12.629
par_11 11.106 11.705 -.186 11.969 14.039 15.431
par_12 3.826 3.336 -5.599 4.998 7.698 8.253
par_13 10.425 9.659 -.621 10.306 12.713 13.575
par_14 4.697 4.906 -4.642 6.353 8.554 9.602
par_15 3.393 3.283 -7.280 4.019 5.508 5.975
par_16 14.615 14.612 14.192 14.637 14.687 14.712
Critical Ratios for Differences between Parameters (Default model)

par_7 par_8 par_9 par_10 par_11 par_12
par_7 .000
par_8 7.128 .000
par_9 5.388 -2.996 .000
par_10 4.668 -4.112 -1.624 .000
par_11 9.773 -2.402 .548 2.308 .000
par_12 .740 -6.387 -5.254 -3.507 -4.728 .000
par_13 8.318 -2.695 . 169 1.554 -.507 5.042
par_14 1.798 -5.701 -3.909 -2.790 -4.735 .999
par_15 1.482 -3.787 -2.667 -1.799 -3.672 .855
par_16 14.563 14.506 14.439 14.458 14.387 14.544
Critical Ratios for Differences between Parameters (Default model)

par_13 par_14 par_15 par_16
par_13 .000
par_14 -3.322 .000
par_15 -3.199 .077 .000
par_16 14.400 14.518 14.293 .000
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パラ メータ間の差に対する検定統計量の 2 乗は、 2 つのパラ メータが等し くなるよ

うに設定された場合にカイ  2 乗統計量が増加する量とほぼ同じです。 0.877 の 2 乗は

0.769 なので、 2 つの係数の推定値が等し くなるよ うにモデル B を修正する と、 カイ  2
乗値はおよそ  にな り ます。 新しいモデルの自由度は 5 では

な く  6 にな り ます。 適合度は向上し ますが ( モデル B の  に対し

)、 それ以上のこ とはできません。

最小検定統計量を見てみまし ょ う。 表の最小検定統計量は、par_14 と  par_15 という

名前のパラ メータの 0.077 です。 これらの 2 つのパラ メータは、 eps4 と  delta1 の分散

です。 0.077 の 2 乗は約 0.006 です。 eps4 と  delta1 の分散が等し くなる と仮定するモデ

ル B の修正によ り、 カイ  2 乗値が 6.383 を約 0.006 超えますが、 自由度は 5 ではなく

6 です。 関連する確率レベルは約 0.381 になり ます。 この修正の唯一の問題は、 修正に

正当な理由がないと思われるこ とです。 つま り、 eps4 と  delta1 の分散が等し くなる と

予測する先験見的な理由がないと思われます。

差に対する検定統計量の表の誤用については先程説明しました。 ただし、この表は少

数の仮定の迅速な調査には有効です。 この表の適切な使用例と して、anomia67 (失語傾

向 (67年 )) と  anomia71 (失語傾向 (71年 )) の観測値が、 2 つの状況で同じ計測方法を使

用して取得されたという事実を考えてみてください。 同じこ とは powles67 ( 無気力感

(67年 )) と  powles71 (無気力感 (71年 )) にも当てはま り ます。 2 つの状況で検定が同様の

役割を果たすこ とは妥当である と思われます。 差に対する検定統計量は、この仮定と一

致します。 eps1 と  eps3 (par_11 と  par_13) の分散は、 検定統計量 –0.51 と異なり ます。

eps2 と  eps4 (par_12 と  par_14) の分散は、 検定統計量 1.00 と異なり ます。 alienation で
の powles (無気力感 ) の係数 (par_1 and par_2) は、検定統計量 0.88 と異なり ます。 個々

に見た場合、 これらの差のいずれも従来の有意確率で有意ではあ り ません。 これは、

3 つの差がすべて 0 になるよ うに制約されるモデルをよ り注意して調査する価値があ

るこ とを示します。 この新しいモデルをモデル C と呼びます。

6.383 0.769 7.172=+
p 0.307=

p 0.275=
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Wheaton データ用のモデル C

Ex06–c.amw ファ イルにあるモデル C のパス図を次に示します。

path_p では、alienation (疎外感 ) から  powles (無気力感 ) を予測するための係数が、1967
年と  1971 年で同じになる必要があ り ます。 var_a を使用して、eps1 と  eps3 の分散が等

し くなるよ うに指定します。 var_p を使用して、 eps2 と  eps4 の分散が等し くなるよ う

に指定します。

モデル C の結果

モデル C はモデル B よ り自由度が 3 上がり ます。
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Model C の検定

予想どおりモデル C は許容可能な適合度を示し、 確率レベルがモデル B よ り高くなり

ます。

モデル B に対するモデル C の検定は、カイ  2 乗値の差 ( ) と自

由度の差 ( ) を調べるこ とによって実行できます。 カイ  2 乗値 1.118、 自由度

3 は有意ではあ り ません。

モデル C のパラ メ ータ推定値

モデル C の標準化推定値を次に示します。

7.501 6.383 1.118=–
8 5 3=–
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単一分析での複数モデルの使用

Amos では単一の分析に複数のモデルを適合できます。 これによ り、すべてのモデルの

結果を 1 つの表にま とめるこ とができます。 Amos では入れ子にしたモデルの比較で

カイ  2 乗検定を実行するこ と も可能です。 この例では、 モデル B のパラ メータ制約に

よってモデル A と  C をそれぞれ取得できるよ うに指定するこ とによ り、モデル A、B、
および C を単一の分析に適合できます。

Ex06-all.amw ファ イルに含まれる次のパス図では、モデル A またはモデル C を生成

するために制約する必要があるモデル B のパラ メータに次の名前が割り当てられてい

ます。

このパス図の 7 つのパラ メータには、 var_a67、 var_p67、 var_a71、 var_p71、 b_pow67、
b_pow71、 および cov1 という名前が付けられています。 2 つのパラ メータに同じ名前

が付けられるこ とはないので、 パラ メータに名前を付けるこ とによってパラ メータが

等し くなるよ うに制約されるこ とはあ り ません。 ただし、これから説明するよ うに、変

数に名前を付けるこ とによってさまざまな方法でパラ メータを制約できます。

上に示すパラ メータ名を使用して、 cov1 = 0 を要求するこ とによ り、 最も一般的なモ

デル (モデル B) からモデル A を取得できます。 
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E パス図の左側にある  [ モデル ] パネルで、[ デフ ォル ト  モデル ] をダブルク リ ッ ク します。

[モデル管理 ] ダイアログ ボッ クスが表示されます。 

E [モデル名 ] テキス ト  ボッ クスに、 「Model A: No Autocorrelation」 と入力します。

E 左側のパネルで cov1 をダブルク リ ッ ク します。 

[パラ メータ制約 ] ボッ クスに cov1 が表示されるこ とを確認します。 

E [パラ メータ制約 ] ボッ クスに 「cov1 =0」 と入力します。

これでモデル A の指定が完了しました。 

E [モデル管理 ] ダイアログ ボッ クスで、 [ 新規作成 ] をク リ ッ ク します。
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E [モデル名 ] テキス ト  ボッ クスに、 「Model B: Most General」 と入力します。

モデル B にはパス図に示す以外の制約がないので、直ちにモデル C に進むこ とができ

ます。 

E [ 新規作成 ] をク リ ッ ク します。 

E [モデル名 ] テキス ト  ボッ クスに、 「Model C: Time-Invariance」 と入力します。 

E [パラ メータ制約 ] ボッ クスに、 次のよ うに入力します。

b_pow67 = b_pow71
var_a67 = var_a71
var_p67 = var_p71

完成度を高めるため、 4 つ目のモデル (モデル D) を導入し、モデル A の 1 つの制約と

モデル C の 3 3 つの制約を結合します。 モデル D は制約を入力し直さなくても指定で

きます。 

E [ 新規作成 ] をク リ ッ ク します。 

E [モデル名 ] テキス ト  ボッ クスに、 「Model D: A and C Combined」 と入力します。 

E [パラ メータ制約 ] ボッ クスに、 次のよ うに入力します。

Model A: No Autocorrelation
Model C: Time-Invariance

これらの行によ り、Model A と  Model C の両方の制約をモデル D に組み込むこ とを指

定します。 
これで 4 つのモデルすべてのパラ メータ制約が設定されました。 最後の手順は、 分

析の実行と出力の表示です。
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複数モデルによる出力

個々のモデルのグラ フ ィ ッ ク出力を表示する

複数のモデルを適合している場合、 [ モデル ] パネルを使用して個々のモデルの図を表

示します。 [ モデル ] パネルはパス図の左隣にあ り ます。 モデルを表示するには、モデル

の名前をク リ ッ ク します。

4 つのモデルすべての適合度の統計を表示する

E メニューから、 [ 表示 ][ テキス ト 出力の表示 ] の順にク リ ッ ク します。

E [Amos出力 ] ウ ィンド ウの左上のウ ィンド ウ枠にあるツ リー図で、[ モデルの適合度 ] を
ク リ ッ ク します。

カイ  2 乗統計量を表示する出力の一部を次に示します。

CMIN 列には、各モデルの最小乖離度が示されます。 最尤法の推定値の場合 (デフォル

ト )、 CMIN 列はカイ  2 乗統計量になり ます。 p 列には、 各モデルの検定用の対応する

上側確率が示されます。

モデルのペアが入れ子になっている場合、 カイ  2 乗比較検定と関連付けられた p 値
を含む、 モデル比較表が提供されます。 
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E [Amos 出力 ] ウ ィンド ウの左上のウ ィンド ウ枠にあるツ リー図で、 [ モデル比較 ] をク

リ ッ ク します。

たとえば、この表からモデル C の適合度はモデル B よ り大き く低下しないこ とがわか

り ます ( )。 つま り、 モデル B が正しいと仮定する と、 時間不変性の仮説を

受け入れるこ とにな り ます。

一方で、 モデル A の適合度はモデル B よ り 大き く 低下する こ と がわか り ます

( )。 つま り、 Model B が正しいと仮定する と、 eps1 と  eps3 が無相関である

という仮説を否定するこ とにな り ます。

オプシ ョ ン出力を取得する

観測変数間の分散と共分散は、 モデル C が正しいという仮説の下で推定できます。 

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。 

E [ モデルの積率 ] を選択します (チェッ ク  マークが表示されます )。 

E モデル内の誤差変数を除くすべての変数に対するモデルの分散と共分散を取得するに

は、 [ 全変数に対するモデルの積率 ] を選択します。

p 0.773=

p 0.000=
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モデル C で [ 全変数に対するモデルの積率 ] を選択する と、 次の出力が得られます。

観測変数に対するモデルの分散と共分散は、 標本分散と標本共分散と同じではあ り ま

せん。 対応する母集団の推定値と して、 モデルの分散と共分散は標本分散と標本共分

散よ り優れています (Model C が正しいと仮定した場合 )。
[分析のプロパティ ] ダイアログ ボッ クスで [ 標準化推定値 ] と  [ 全変数に関するモデ

ルの積率 ] チェッ ク  ボッ クスの両方をオンにしている場合、 モデルの共分散行列だけ

でなく、 すべての変数のモデルの相関行列も提供されます。

モデル内のすべての変数に対するモデルの共分散行列を使用して、 観測変数に対する

非観測変数の回帰を実行できます。 結果の係数推定値は、[ 因子得点ウ ェ イ ト ] チェッ ク

ボッ クスをオンにするこ とによって取得できます。 モデル C の推定因子得点ウェイ ト

を次に示します。

因子得点ウェイ トの表では、 非観測変数ごとに個別の行と、 観測変数ごとに個別の列

があ り ます。 個々の ses 得点を推定する場合を考えてみまし ょ う 。 表の ses 行にある

6 つのウェイ ト を使用して、 6 つの個々の観測得点の重み付き合計を計算します。
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間接効果、 直接効果、 総合効果を取得する

パス図の一方向矢印に関連付けられた係数を直接効果と呼ぶ場合があ り ます。 たとえ

ばモデル C では、ses は 71_alienation (疎外感 (71年 )) に対して直接効果があ り ます。

同様に、 71_alienation (疎外感 (71年 )) は powles71 (無気力感 (71年 )) に対して直接効

果があ り ます。 この場合、ses は (疎外感 (71年 ) を介して ) powles71 (無気力感 (71年 ))
に対して間接効果がある と言います。 

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。 

E [ 間接、 直接または総合効果 ] チェッ ク  ボッ クスをオンにします。 

モデル C では、 出力に次の総合効果の表が含まれます。

表の最初の行は、 67_alienation (疎外感 (67年 )) が直接的または間接的に ses のみに依

存するこ とを示します。 67_alienation (疎外感 (67年 )) に対する  ses の総合効果 は –0.56
です。 効果が負の値の場合、その他の要素がすべて等し く、比較的高い ses の得点が比

較的低い 67_alienation (疎外感 (67年 )) の得点と関連するこ とを示します。 表の 5 行目

を見る と、 powles71 (無気力感 (71年 )) が直接的または間接的に ses、 67_alienation (疎
外感 (67 年 ))、 および 71_alienation ( 疎外感 (71 年 )) に依存しています。 ses の低得点、

67_alienation (疎外感 (67年 )) の高得点、および71_alienation (疎外感 (71年 )) の高得点

は、 powles71 (無気力感 (71年 )) の高得点と関連します。 直接、 間接、 および総合効果

の解釈の詳細については、 Fox の調査 (1980) を参照してください。
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VB.NET でのモデル作成

モデル A

モデル A に適合するプログラムを次に示します。 このプログラムは Ex06–a.vb と して

保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.BeginGroup(Sem.AmosDir & "Examples¥Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation")
        Sem.AStructure("powles67 <--- eps2 (1)")
        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation")
        Sem.AStructure("powles71 <--- eps4 (1)")

        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")

        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")

        Sem.AStructure("education <--- ses (1)")
        Sem.AStructure("education <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル B

モデル B に適合するプログラムを次に示します。 このプログラムは Ex06–b.vb と して

保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.Crdiff()
        Sem.BeginGroup(Sem.AmosDir & "Examples¥Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation")
        Sem.AStructure("powles67 <--- eps2 (1)")
        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation")
        Sem.AStructure("powles71 <--- eps4 (1)")
        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")
        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")
        Sem.AStructure("education <--- ses (1)")
        Sem.AStructure("education <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")
        Sem.AStructure("eps1 <---> eps3")      ' Autocorrelated residual
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル C

モデル C に適合するプログラムを次に示します。 このプログラムは Ex06–c.vb と して

保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.AllImpliedMoments()
        Sem.FactorScoreWeights()
        Sem.TotalEffects()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation (path_p)")
        Sem.AStructure("powles67 <--- eps2 (1)")
        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation (path_p)")
        Sem.AStructure("powles71 <--- eps4 (1)")
        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")
        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")
        Sem.AStructure("education <--- ses (1)")
        Sem.AStructure("education <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")
        Sem.AStructure("eps3 <--> eps1")
        Sem.AStructure("eps1 (var_a)")
        Sem.AStructure("eps2 (var_p)")
        Sem.AStructure("eps3 (var_a)")
        Sem.AStructure("eps4 (var_p)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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複数のモデルを適合する

3 つのモデル A、 B、 および C すべてを単一の分析に適合させるには、 最初に次のプ

ログラムを実行します。 このプログラムは、 一部のパラ メータに固有の名前を割り当

てます。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.AllImpliedMoments()
        Sem.TotalEffects()
        Sem.FactorScoreWeights()
        Sem.Mods(4)
        Sem.Crdiff()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation (b_pow67)")
        Sem.AStructure("powles67 <--- eps2 (1)")

        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation (b_pow71)")
        Sem.AStructure("powles71 <--- eps4 (1)")

        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")
        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")

        Sem.AStructure("education <--- ses (1)")
        Sem.AStructure("education <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")

        Sem.AStructure("eps3 <--> eps1 (cov1)")

        Sem.AStructure("eps1 (var_a67)")
        Sem.AStructure("eps2 (var_p67)")
        Sem.AStructure("eps3 (var_a71)")
        Sem.AStructure("eps4 (var_p71)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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パラ メータ名は固有なので、 パラ メータに名前を付けるこ とによってパラ メータが制

約されるこ とはあ り ません。 ただし、パラ メータに名前を付けるこ とによ り、Model メ
ソ ッ ドを使用して制約を適用するこ とができます。 プログラムの Sem.FitModel 行の代わ

りに次の行を追加する と、 毎回異なるパラ メータ制約を適用してモデルを 4 回適合し

ます。

最初の行は、 Model A: No Autocorrelation とい う名前のモデルを定義します。 このモデ

ルでは、 cov1 という名前のパラ メータが 0 に固定されています。

2 行目は、 Model B: Most General という名前のモデルを定義します。 このモデルでは、

モデル パラ メータに適用される追加の制約はあ り ません。

3 回目の Model メ ソ ッ ドでは、 Model C: Time-Invariance という名前のモデルを定義し

ます。 このモデルでは、 次の同等性の制約を適用します。

b_pow67 = b_pow71
var_a67 = var_a71
var_p67 = var_p71

4 回目の Model メ ソ ッ ドでは、Model D: A and C Combined という名前のモデルを定義しま

す。 このモデルでは、 モデル A の 1 つの制約とモデル C の 3 つの制約を結合します。

最後のモデル指定 (モデル D) は、それまでのモデル指定を使用して、 よ り制約の多

い新しいモデルを定義する方法を示します。

すべてのモデルを一度に適合するには、 FitModel メ ソ ッ ドの代わりに FitAllModels メ
ソ ッ ド を使用する必要があ り ます。 FitModel メ ソ ッ ドは 1 つのモデルしか適合しませ

ん。 デフォルトでは、 このメ ソ ッ ドは最初のモデル ( この例ではモデル A) を適合しま

す。 最初のモデルを適合するには FitModel(1) 、2 番目のモデルを適合するには FitModel(2)

を使用します。 FitModel( 「Model C: Time-Invariance」 ) と指定してモデル C を適合するこ と

もできます。

Ex06–all.vb には、 4 つのモデルすべてを適合するプログラムが含まれます。

Sem.Model("Model A: No Autocorrelation", "cov1 = 0")
Sem.Model("Model B: Most General", "")
Sem.Model("Model C: Time-Invariance", _

"b_pow67 = b_pow71;var_a67 = var_a71;var_p67 = var_p71")
Sem.Model("Model D: A and C Combined", _

"Model A: No Autocorrelation;Model C: Time-Invariance")
Sem.FitAllModels()
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例7
非再帰 モデル

概要

この例では、 非再帰モデルを使用した構造方程式モデルの作成について説明します。

データについて

Felson と  Bohrnstedt は、 小学校 6 年生から中学 2 年生の女子生徒 209 人を対象と した

調査を実施しました (1979)。 この調査では次の変数に関する測定値を取得しました。

これら  6 つの変数の標本の相関、 平均、 および標準偏差は、 SPSS Statistics ファ イル

Fels_fem.sav に保存されています。 SPSS Statistics データ  エディ タに表示されるデータ

ファイルを次に示します。

変数 説明

academic 認められる学力。 最も学力が優れている思う級友 3 人の名前とい

う項目に基づく計量社会学的測定値。

athletic 認められる運動能力。 最も運動能力が優れている と思う級友 3 人
の名前という項目に基づく計量社会学的測定値。

attract 認められる魅力。最も外見が優れている と思 う級友 3 人の名前

(自分は除く ) という項目に基づく計量社会学的測定値。
GPA 成績平均点。
height 被験者の学年と性別の平均の高さからの偏差。
weight 高さで調整されたウェイ ト 。

rating 別の市の子供たちに被験者の写真を見せるこ とによって得られた

肉体的魅力の評価。
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この例では標本の平均値は使用しません。

Felson と  Bohrnstedt のモデル

Felson と  Bohrnstedt は、7 つの測定変数の内 6 つを使用する次のモデルを提示しました。

認められる  academic の結果は、GPA と認められる魅力 (attract) の関数と してモデル化

されます。 同様に、認められる  academic の結果は、 height、 weight、および別の市の子

供たちから得られた魅力の rating の関数と してモデル化されます。 このモデルで特に

注目すべき点は、 認められる学力は認められる魅力に依存し、 逆もまた同様である と

いう こ とです。 このよ うなフ ィードバッ ク  ループを含むモデルを非再帰 ( 再帰と非再

帰の定義については例4 を参照 ) と呼びます。 現在のモデルは、attract から  academic へ
のパスおよびその逆のパスを トレースできるので非再帰です。 このパス図は Ex07.amw
ファ イルに保存されています。
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モデルの特定

特定のため、 2 つの非観測変数誤差1 と誤差2 の測定単位を確定する必要があ り ます。

上のパス図には、1 に固定された 2 つの係数が示されています。 モデルを特定するには

これら  2 つの制約で十分です。

分析の結果

テキス ト 出力

モデルの自由度は 2 で、 モデルが不適切である という十分な根拠はあ り ません。

ただし、 テキス ト出力にあるいくつかの極端に小さい検定統計量によって示されるよ

うに、 このモデルが不必要に複雑であるこ とを示すいくつかの根拠があ り ます。

検定統計量から判断する と、 次に示す 3 つの帰無仮説は、 それぞれ従来の有意確率レ

ベルで許容されるこ とがわかり ます。
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 認められる魅力は高さに依存しない (検定統計量 = 0.050)。

 認められる学力は認められる魅力に依存しない (検定統計量 = –0.039)。

 残差変数誤差1 と誤差2 は無相関である  (検定統計量 = –0.382)。

厳密に言う と、 検定統計量を使用して 3 つの仮説すべてを一度に検定するこ とはでき

ません。 代わりに、3 つの制約すべてを同時に組み込んだモデルを作成する必要があ り

ます。 この方法についてはこ こでは取り上げません。

上に示された生のパラ メータ推定値は (誤差1 と誤差2 の変数を除いて ) 識別制約の

影響を受けません。 当然のこ とですが、 これらの推定値は観測変数の測定単位の影響

を受けます。 反対に、 標準化推定値はすべての測定単位から独立しています。

標準化推定値を取得する

分析を実行する前に、 次の操作を行います。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。

E [ 標準化推定値 ] を選択します (チェッ ク  マークが表示されます )。

E ダイアログ ボッ クスを閉じます。

こ こで、 これまでに統計的に有意でないこ とが判明している係数と相関が、 記述的に

も小さいこ とがわかり ます。
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重相関係数の平方を取得する

重相関係数の平方は、 標準化推定値と同様に測定単位から独立しています。 重相関の

2 乗を取得するには、 分析を実行する前に次の操作を行います。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。

E [ 重相関係数の平方 ] を選択します (チェッ ク  マークが表示されます )。

E ダイアログ ボッ クスを閉じます。

重相関係数の平方によ り、 このモデルの 2 つの内生変数はモデル内のその他の変数に

よってあま り正確に予測されないこ とがわかり ます。 このこ とは、 適合度のカイ  2 乗
検定は予測精度の測定にはならないこ とを示します。

グラ フ ィ ッ ク出力

標準化推定値と重相関係数の平方を表示するパス図の出力を次に示します。
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安定指数

非再帰モデルにはフ ィードバッ ク  ループがあるため、再帰モデルでは発生しない特定

の問題が発生する可能性があ り ます。 現在のモデルでは、 魅力が認められる学力に依

存し、 認められる学力が魅力に依存し、 さ らに魅力が認められる学力に依存する とい

う よ うに繰り返されます。 これは無限回帰のよ うに見えるだけでな く、 実際に無限回

帰にな り ます。 線型従属のこの無限シーケンスによ り、 魅力、 学力、 およびモデルの

その他の変数間に明確な関係が定義されるかど うか疑問に思われる方もあるでし ょ

う。 その答えは、 明確な関係が定義される可能性もあ り、 されない可能性もあ り ます。

すべては係数に依存します。 一部の係数の値では、 線型従属の無限シーケンスが一連

の明確に定義された関係に収束します。 このよ う な場合、 線型従属のシステムが安定

している と言い、 そ うでない場合は不安定である と言います。

注 : パス図を見て線型システムが安定しているかど うかを判断するこ とはできません。

係数を確認する必要があ り ます。

Amos では母集団にどのよ う な係数があるかを確認できませんが、 そのよ う な係数を

推定し、 その推定値から安定指数 (Fox (1980)、 Bentler および Freeman (1983) による )
を計算します。

安定指数が –1 から  +1 までの間の場合、 そのシステムは安定しており、 そ うでない

場合は不安定です。 この例のシステムは安定しています。 

非再帰モデルの安定指数を表示するには、 次の操作を行います。

E [Amos出力] ウ ィンド ウの左上のウ ィンド ウ枠にあるツ リー図で、[グループ /モデルにつ

いての注釈 ] をク リ ッ ク します。

不安定なシステム (安定指数が 1 以上 ) は不可能であ り、同じ意味で負の分散も不可能

です。 安定指数 1 ( または 1 以上 ) が得られた場合、 モデルが不適切であるか、 標本サ

イズが小さ過ぎて係数の正確な推定値を提示できないこ とを意味します。 パス図にい

くつかのループがある場合、Amos ではループごとに安定指数を計算します。 安定指数

のいずれかが 1 以上の場合、 その線型システムは不安定です。

次の変数の安定指数は 0.003 です。

魅力

学力
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VB.NET でのモデル作成

この例のモデルに適合するプログラムを次に示します。 このプログラムは Ex07.vb
ファ イルに保存されています。

Felson と  Bohrnstedt のモデルには最後の AStructure 行が不可欠です。 この行がないと、

Amos は誤差1 と誤差2 が無相関である と仮定します。

同じモデルを次のよ うな方程式形式で指定できます。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_fem.sav")
        Sem.AStructure("academic <--- GPA")
        Sem.AStructure("academic <--- attract")
        Sem.AStructure("academic <--- error1 (1)")

        Sem.AStructure("attract <--- height")
        Sem.AStructure("attract <--- weight")
        Sem.AStructure("attract <--- rating")
        Sem.AStructure("attract <--- academic")
        Sem.AStructure("attract <--- error (1)")

        Sem.AStructure("error2 <--> error1")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

Sub Main()
    Dim Sem As New AmosEngine

    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_fem.sav")
        Sem.AStructure("academic = GPA + attract + error1 (1)")
        Sem.AStructure("attract  = height + weight + rating + "_
                & "academic + error2 (1)")
        Sem.AStructure("error2 <--> error1")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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因子分析

概要

この例では、 確認的因子分析について説明します。

データについて

Holzinger と  Swineford は、シカゴの 2 つの学校に在籍する中学 1 年生と中学 2 年生 301
人を対象と した心理学検定を実施しました (1939)。 この例では、 1 つの学校 
(Grant-White 校 ) の 73 人の女子生徒から取得された得点を使用します。 この例で使用

する  6 つの検定を次の表に示します。

変数 説明

visperc 視覚認知力の得点
cubes 空間視覚化力の検定
lozenges 空間 (方向 )の認知力の検定
paragraph 文書理解力の得点
sentence 文理解力の得点
wordmean 語彙力に関する検定の得点
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Grnt_fem.sav ファ イルには次の検定の得点が保存されています。

共通因子モデル

6 つの検定を使用する次のモデルを検討してみまし ょ う。

このモデルでは、最初の 3 つの検定は spatial (視覚能力 ) という名前の非観測変数に依

存する と断言しています。 spatial (視覚能力 ) は直接観測されない基礎能力 (空間能力 )
と して解釈できます。 このモデルによる と、 最初の 3 つの検定の結果はこの能力に依

存します。 さ らに、 これらの各検定の結果は、 空間能力以外の要素にも依存する可能

性があ り ます。 たとえば、 visperc (視覚認知力 ) の場合、 固有の変数 err_v も関連しま

す。 Err_v は、 パス図には特に示されない、 visperc ( 視覚認知力 ) に対するあらゆる影

響を表します。 Err_v は visperc (視覚認知力 )の測定誤差を表しますが、visperc (視覚認

知力 )の得点に影響を与える可能性があ り、 モデルには特に示されない社会経済状況、

年齢、 体力、 語彙力、 およびその他の特性や能力も表します。
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こ こに示すモデルは共通因子分析モデルです。 共通因子分析の用語では、 非観測変

数 spatial (視覚能力 ) を共通因子と呼び、 3 つの非観測変数 err_v、 err_c、 および err_l
を独自因子と呼びます。 パス図にはその他の共通因子 verbal (言語能力 ) が表示されて

います。 最後の 3 つの検定はこの共通因子に依存します。 パス図には、 上記以外の

3 つの独自因子、 err_p、 err_s、 および err_w も表示されています。 2 つの共通因子、

spatial (視覚能力 ) と  verbal (言語能力 ) は相関が可能です。 一方で、独自因子は相互に

無相関であ り、 共通因子と も無相関である と仮定されます。 共通因子から観測変数へ

のパス係数は、 因子負荷と呼ばれる場合があ り ます。

特定

このモデルは、 通常どおり、 各非観測変数の測定尺度が不定である という点を除いて

特定されます。 各非観測変数の測定尺度は、 一部の回帰式で係数を 1 などの定数に設

定するこ とによって自由に設定できます。 上のパス図にこの方法を示します。 このパ

ス図では、 8 つの係数が 1 に固定され、 非観測変数ごとに 1 つの係数が固定されてい

ます。 これらの制約によって十分にモデルを特定できます。

提示されたモデルは、 各非観測変数が 1 つの共通因子にのみ依存する、 特に単純な

共通因子分析モデルです。 共通因子分析の他の適用例では、 観測変数が任意の数の共

通因子に同時に依存できます。 一般的なケースでは、 共通因子モデルが特定されるか

ど うかを判断するのは非常に困難です (Davis (1993)、 Jöreskog (1969、 1979) による )。
この例および前の例における特定可能性の説明は、 非観測変数の自然な測定単位の不

足が特定不能の唯一の原因であるよ う な印象を与え、 問題を実際以上に単純化してい

るよ うに見えます。 非観測変数の測定単位の不足が常に特定不能の原因になるこ とは

事実です。 幸いにして、 これまで何度も取り上げているよ うに、 この原因は対応が容

易です。

ただし、 簡単な対応策がない、 特定可能性に関する別の種類の問題が発生する可能

性も あ り ます。 特定可能性の条件は各モデルで個別に設定する必要があ り ます。

Jöreskog と  Sörbom は、パラ メータに同等性の制約条件を適用するこ とによ り、多数の

モデルの特定を実現する方法を示しました (1984)。 因子分析モデル ( およびその他の

多くのモデル ) の場合、 モデルを特定可能にするために何が必要かを解明するには、

モデルに対する深い理解が必要です。 モデルが特定可能かど うかわからない場合は、

Amos によって特定不能と報告されるかど うかを確認するため、 モデルを適合してみ

るこ とができます。 実際に、 この実証的アプローチは高い効果を上げています。 原則

的な反論 (McDonald および Krane (1979) による ) もあ り ますが、 モデルの特定状態を

事前に判断する代替方法はあ り ません。 Bollen は、 その優れた著書の中で、 さまざま

な種類の特定不能性の原因と対応について論じています (1989)。
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モデルを指定する

Amos は、128 ページ に示すパス図から直接モデルを分析します。 理論的にはモデルを

spatial( 視覚能力 ) と  verbal ( 言語能力 ) の枝に分離できる こ とに注意して ください。

2 つの枝の構造上の類似を使用して、 モデルを迅速に作成できます。

モデルを作成する

最初の枝を作成した後で、 次の操作を行います。

E メニューから、 [ 編集 ]  [ すべて選択 ] を選択します。

E 枝全体のコピーを作成するには、メニューから、[ 編集 ]  [ 複写 ] を選択し、枝に含まれ

るオブジェク トのいずれかをパス図の別の場所にド ラ ッグします。 

spatial( 視覚能力 ) と  verbal ( 言語能力 ) を結ぶ双方向矢印を必ず作成して ください。

この双方向矢印がないと、Amos は 2 つの共通因子が無相関である と仮定します。 この

例の入力ファイルは Ex08.amw です。
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分析の結果

分析の標準化されていない結果を次に示します。 図の右上に示すよ うに、 このモデル

はデータに非常によ く適合しています。

練習と して、 自由度の計算を確認してみまし ょ う。

自由度の計算 (デフォルト  モデル )
異なる標本の積率の数 21

推定される異なるパラ メータの数 13
自由度 (21 – 13) 8
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パラ メータの推定値 ( 標準化された値と標準化されていない値の両方 ) を次に示し

ます。 予想どおり、 空間能力と語彙力の間の相関によ り、 係数は正になり ます。

標準化推定値を取得する

上に示す標準化推定値を取得するには、 分析を実行する前に次の操作を行います。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。
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E [ 標準化推定値 ] を選択します (チェッ ク  マークが表示されます )。

E 次の図に示すよ うに、 内生変数ごとに重相関係数の平方が必要な場合は、 [ 重相関係数

の平方 ] も選択します。

E ダイアログ ボッ クスを閉じます。

標準化推定値を表示する

E [Amos出力 ] ウ ィンド ウで、 [ 出力パス図の表示 ] ボタンをク リ ッ ク します。

E パス図の左側にある  [パラ メータ形式 ] パネルで、 [ 標準化推定値 ] を選択します。

標準化推定値が表示されたパス図を次に示します。
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重相関係数の平方は次のよ うに解釈できます。 wordmean (語彙力 )の例を見る と、その

変数の 71% を語彙力が占めています。 この変数の残り  29% を占めるのは固有の因子

err_w です。 err_w が測定誤差のみを表す場合、 wordmean (語彙力 )の信頼性の推定値

は 0.71 である と言う こ とができます。 実際は、 0.71 はwordmean (語彙力 )の信頼性の

下限の推定値です。

Holzinger と  Swineford のデータは、新しい因子分析技法に関する専門書や実証で繰

り返し分析されてきました。 この例で使用する  6 つの検定は、 Jöreskog と  Sörbom によ

る同様の例 (1984) で使用された 9 つの検定のよ り大きなサブセッ トから取得されたも

のです。 こ こで使用する因子分析モデルも両者のモデルを基にしています。 因子分析

の文献に見られる、 Holzinger と  Swineford のデータの探求に関する長い歴史を考える

と、 現在のモデルが非常によ く適合するこ とは偶然ではあ り ません。 通常の場合以上

に、 こ こに示された結果を新たなデータ  セッ トで確認する必要があ り ます。

VB.NET でのモデル作成

次のプログラムは、 Holzinger と  Swineford のデータ用の因子モデルを指定します。

このプログラムは Ex08.vb ファ イルに保存されています。

因子 (spatial(視覚能力 ) と  verbal (言語能力 )) の相関を明示的に可能にする必要はあ り

ません。 固有の因子は相互に無相関であ り、 これら  2 つの因子と も無相関であるこ と

を指定する必要もあ り ません。 これらは Amos プログラムのデフォル ト の仮定です

(Amos Graphics ではデフォルトではあ り ません )。 

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_fem.sav")
        Sem.AStructure("visperc  = (1) spatial + (1) err_v")
        Sem.AStructure("cubes    =     spatial + (1) err_c")
        Sem.AStructure("lozenges =     spatial + (1) err_l")

        Sem.AStructure("paragrap = (1)spatial  + (1) err_p")
        Sem.AStructure("sentence   =    spatial + (1) err_s")
        Sem.AStructure("wordmean=    spatial + (1) err_w")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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共分散分析の代替分析

概要

この例では、 完全に信頼できる共変量を必要と しない、 共分散分析の単純な代替分析

について説明します。 よ り有効な、ただしよ り複雑な代替分析については 例16 で説明

します。

共分散分析と その代替分析

共分散分析は、 実験研究や準実験研究で、 実験群間の既存の相違による影響を低減す

るためにしばしば使用される技法です。 実験群への無作為な割り当てによ り、 グルー

プ間で系統的な前処置が異なる可能性が除去される と しても、 共分散分析によって処

置効果の評価の精度を向上できる という利点があ り ます。

各共変量が誤差なしで測定される と仮定する と、共分散分析の有用性は低下します。

この方法では他の仮定も行いますが、 共変量が完全に信頼できる という仮定は特に注

目されています (Cook および Cambell (1979) など )。 これは、 1 つにはこの仮定を破棄

する と非常に悪い結果になる可能性があるからです。 信頼できない共変量を使用する

と、 処置の効果がない場合にある と判断した り、 効果がある場合にないと判断するな

どの誤った結論に到達する可能性があ り ます。 信頼できない共変量によって、 実際に

は有効な処置が有害であるかのよ うに見える場合さえあ り ます。 と同時に、 残念なが

ら、 共変量が完全に信頼できる という仮説を満たすこ とは通常は不可能です。

この例では、 変数を誤差なしで測定する必要がない共分散分析の代替分析について

説明します。 こ こに示す方法は、 Bentler と  Woodward 等によって使用された方法です

(1979)。 Sörbom による別の方法 (1978) については、 例16 で説明します。 Sörbom の方

法がよ り一般的です。 この方法では、 共分散分析の他の仮定を検定し、 いくつかの仮

定を緩和するこ と もできます。 Sörbom の方法は、 その一般性によ り比較的複雑になり

ます。 反対に、 この例で示す方法は、 共変量が誤差なしで測定される とい う仮定を除

いて、 共分散分析の通常の仮定を使用します。 この方法の利点は、 比較的単純である

こ とです。
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この例では、2 つの実験群と  1 つの共変量を使用します。 この例を任意の数の実験群

と共変量に一般化するこ とができます。 Sörbom は、 この例と  例16 で使用するデータ

を使用しています (1978)。 分析は Sörbom の例に厳密に従っています。

データについて

Olsson は、 11 歳の生徒 213 人を対象に、 2 つの状況で一連の 8 つの検定を実施しまし

た (1973)。 この例では、 8 つの検定の内、同意語と反意語の 2 つを使用します。 一連の

検定を 2 回実施する間に、108 人の生徒 (実験群 ) は検定の結果を向上させるための ト

レーニングを受けました。 それ以外の 105 人の生徒 (統制群 ) は特別な ト レーニングを

受けていません。 2 つの状況で 2 回検定を実施した結果、213 人の生徒に対してそれぞ

れ 4 つの得点が得られました。 実験群と統制群のメンバを識別するため、5 番目の 2 分
変数も作成されています。 全体と して、 この例では次の変数を使用します。

5 つの測定値の相関と標準偏差は、Microsoft Excel ワークブッ ク  UserGuide.xls の ワー

クシート  Olss_all にあ り ます。 データ  セッ トは次のとおりです。

treatment (訓練 ) と各事後検定の間には正の相関があ り ます。 これは、 ト レーニングを

受けた生徒の方が ト レーニングを受けなかった生徒よ り事後検定の結果が良かったこ

とを示します。 treatment (訓練 ) と各事前検定の間の相関も正ですが、 比較的小さい相

関です。 これは、統制群と実験群が、事前検定では同等であったこ とを示します。 生徒

は統制群と実験群に無作為に割り当てられているので、 これは予測どおりです。

変数 説明

pre_syn (同意語 (事前 )) 同意語検定の事前検定の得点。

反意語 (事前 ) 反意語検定の事前検定の得点。

同意語 (事後 ) 同意語検定の事後検定の得点。

post_opp (反意語 (事後 )) 反意語検定の事後検定の得点。

treatment (訓練 )
特別な ト レーニング ( 訓練 ) を受けた生徒は 1、 受けなかった

生徒は 0の値になる  2 分変数。 この変数は、この例の分析用に

特に作成さたものです。
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共分散分析

検定の結果に対する ト レーニングの効果を評価するため、 事後検定のいずれかを基準

変数と して、 2 つの事前検定を共変量と して使用する共分散分析の実行を検討できま

す。 この分析が適切に機能するには、 同意語の事前検定と反意語の事前検定の両方が

完全に信頼できる必要があ り ます。

Olsson データ用のモデル A

次のパス図に示す Olsson データ用のモデルについて検討してみまし ょ う。 このモデル

では、 pre_syn (同意語 (事前 )) と pre_opp (反意語 (事前 )) の両方が、 pre_verbal (言語

能力 ( 事前 )) という名前の非観測能力の不完全な測定値である と断言します。 この非

観測能力は事前検定の時点での語彙力と考えられます。 固有の変数 eps1 と  eps2 は、

pre_syn (同意語 (事前 )) と pre_opp (反意語 (事前 )) の測定誤差だけでなく、 このパス

図には示されない、 2 つの検定に対するその他の影響も表します。

同様に、 このモデルでは、 post_syn ( 同意語 ( 事後 )) と post_opp ( 反意語 ( 事後 )) が、

post_verbal (言語能力 (事後 )) という名前の非観測能力の不完全な測定値である と断言

します。 この非観測能力は事後検定の時点での語彙力と考えられます。 Eps3 と  eps4
は、 測定誤差と、 このパス図には示されないその他の変動の原因を表します。

モデルには、 事後検定の時点での語彙力の測定に役立つ 2 つの変数が示されていま

す。 そのよ うな予測変数の 1 つが、事前検定の時点での語彙力です。 事後検定の時点で

の語彙力が、 事前検定の時点での語彙力に依存するこ とは予想どおりです。 過去の結

果はしばしば将来の結果の優れた予測変数になるので、 このモデルでは潜在的変数

pre_verbal (言語能力 (事前 )) を共変量と して使用します。 ただし、最も注目するのは 2
つ目の予測変数である treatment (訓練)です。 こ こでは、treatment (訓練)から post_verbal
(言語能力 (事後 )) を指す矢印に関連付けられた係数と、 それが 0 と大き く異なるかど
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うかに主に注目します。 言い換えれば、 特定の係数が 0 である という追加の仮説の下

で、 上に示すモデルが正しいと認められるかど うかを確認するこ とが最終的な目的で

す。 そのためにまず、 モデル A が現状のままで受け入れられるかど うかを検討する必

要があ り ます。

特定

7 つの非観測変数の測定単位は不定です。 この問題は、上の図の各非観測変数を基点と

する一方向矢印を 1 つ探し、 対応する係数を単一の値 (1) に固定するこ とによって解

決できます。 上のパス図に示された 7 つの 1 は、 識別制約を満たすために十分である

こ とがわかり ます。

モデル A を指定する

モデル A を指定するには、 137 ページ に示すよ うなパス図を作成します。 このパス図

は、 Ex09-a.amw ファ イルと して保存されています。

モデル A の結果

モデル A には考慮すべき経験的証拠があ り ます。

これは良く ないデータです。 モデル A を受け入れる こ とができた場合、 post_verbal
(言語能力 (事後 )) を treatment(訓練 )で回帰させる係数を 0 に固定して分析を繰り返す

次の手順を実行できます。 ただし、今それを実行しても意味があ り ません。 処置の効果

がない強いモデルを検定する土台と して使用するため、 正しいと確信されるモデルか

ら開始する必要があ り ます。
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よ り適切なモデルを探す

モデル A がよ りデータに適合するよ うに、 何らかの修正方法がある と考えられます。

修正指数から、 適切な修正を行うためのいくつかの示唆が得られます。 

修正指数を要求する

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。

E [ 修正指数 ] を選択し、 右にあるフ ィールドに適切な閾値を入力します。 この例では、

閾値はデフォルト値の 4 のままにします。

閾値 4 で修正指標を要求する と、 次の追加出力が得られます。

M.I. 列の最初の修正指数による と、 固有の変数 eps2 と  eps4 の相関が可能な場合、 カ

イ  2 乗統計量が少なく と も  13.161 減少します (実際の減少はよ り大き くなる可能性が

あ り ます )。 同時に、当然のこ とですが、追加のパラ メータを推定する必要があるので、

自由度が 1 下がり ます。 13.161 が最大修正指数であるため、 この値を最初に検討し、

eps2 と  eps4 の相関を可能にするこ とが妥当かど うかを確認する必要があ り ます。

eps2 は、事前検定の語彙力以外のすべての pre_opp (反意語 (事前 )) 測定値を表しま

す。 同様に、eps4 は事後検定の語彙力以外のすべての post_opp (反意語 (事後 )) 測定値

を表します。 両方の反意語検定の実施によ り、 語彙力以外に何らかの安定した特性ま

たは能力が測定される と考えられます。 この場合、eps2 と  eps4 の間に正の相関が予測

されます。 実際に、 eps2 と  eps4 の共分散に関連付けられた、予測されるパラ メータの

変化 (Par Change 列の数値 ) は正であ り、共分散が 0 に固定されていない場合は共分散

が正の推定値になる と考えられるこ とを示します。

加えて、 eps2 と  eps4 の相関を可能にするこ とを推奨する理由は、 eps1 と  eps3 にも

ほぼ同様に適用されます。 これらの共分散にも非常に大きな修正指数があ り ます。 た

だし、 現時点では、 モデル A に 1 つのパラ メータ  (eps2 と  eps4 の共分散 ) のみ追加し

ます。 この新しいモデルを Model B と呼びます。
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Olsson データ用のモデル B

モデル B のパス図を下に示します。 モデル B は、 モデル A のパス図を基に、 eps2 と  
eps4 を結ぶ双方向矢印を追加するこ とによって取得できます。 このパス図は 
Ex09-b.amw ファ イルに保存されています。

パス図を表示する とわかるよ うに、 パス図の一番上に誤差変数が配置されており、 双

方向矢印を描く スペースがあり ません。 この問題を解決するには、次の操作を行います。

E メニューから、 [ 編集 ]  [ ページ サイズに調整 ] を選択します。

または、 次の方法も可能です。

E 双方向矢印を描き、ページ境界を越える場合は、 [ 画面に当てはまるよ う にパス図を拡大

/ 縮小 ] ボタン (ページに矢印が付いたボタン ) ボタンをク リ ッ ク します。 ページ境界内

に収まるよ うにパス図が縮小されます。



141

共分散分析の代替分析

モデル B の結果

eps2 と  eps4 の相関を可能にする と、 カイ  2 乗統計量が大幅に減少します。

eps1 と  eps3 の共分散の修正指数が 9.788 であったモデル A の結果を思い出してくだ

さい。 明らかに、 eps2 と  eps4 の共分散に加えてこの共分散を除去しても、 このよ うな

減少が発生する とカイ  2 乗統計量が負の値になるため、カイ  2 乗統計量がさらに 9.788
減少するこ とはあ り ません。 このため修正指数は、対応する制約 —およびその制約の

み— を除去した場合に発生するカイ  2 乗統計量の減少の最小値を表します。

次に示す生のパラ メータ推定値は、 識別制約が異なる とパラ メータ推定値も異なる

ので、 解釈が困難です。

予想どおり、eps2 と  eps4 の共分散は正になり ます。 パラメータ推定値と共に表示される

最も興味深い結果は、post_verbal (言語能力 (事後 ))に対する  treatment (訓練 )の効果の

検定統計量です。 この検定統計量は、 treatment (訓練 )が post_verbal (言語能力 (事後 ))
に対して大きな効果があるこ とを示します。 この係数が 0 に固定されるよ うにモデル

B を修正するこ とによ り、 この効果の大きさに関するよ り適切な検定を容易に取得で

きます。 一方で、 Amos Graphics によって次のよ うな標準化推定値と重相関係数の 2 乗
が表示されます。
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この例では、 主に特定の仮説の検定に注目しており、 パラ メータ推定値には特に注意

する必要はあ り ません。 ただし、パラ メータ推定値自体が特に注目されない場合でも、

とにかく値を確認してそれらの値が妥当かど うかを判断するこ とは良い考えです。 た
とえば、 こ こでは eps2 と  eps4 の間の相関の正確な状態には注意しませんが、 正であ

る と予測されます。 同様に、 このモデルの係数に負の推定値があるこ とは予想外です。

どのよ うなモデルでも、 変数の分散が負にならないこ とがわかっているので、 負の分

散推定値は常に不適切な推定値にな り ます。 標本がかな り大きい場合など、 推定値全

体の正常度チェッ クを実行できない場合は、 それらの値が取得されたモデルがデータ

に適合している場合でも、 モデルの正しさを疑う必要があ り ます。

Olsson データ用のモデル C

これで、合理的に正しいと確信できるモデル (モデル B) が作成されたので、post_verbal
(言語能力 (事後 ))が treatment (訓練 )に依存しないという制約を追加した場合にう ま く

いくかど うかを確認します。つま り、 こ こでは新しいモデル (モデル C と呼びます ) の
検定を行います。 モデル C の大部分はモデル B と同じですが、 post_verbal (言語能力

(事後 ))で treatment (訓練 )の係数が 0 になるよ うに指定されている点のみ異なり ます。
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モデル C のパス図を作成する

モデル C のパス図を作成するには、 次の操作を行います。

E モデル B のパス図を基に作成します。

E treatment (訓練 )から post_verbal (言語能力 (事後 )) を指す矢印を右ク リ ッ ク し、ポップ

アップ メニューから [ オブジ ェ ク ト のプロパテ ィ ] を選択します。

E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、[ パラ メ ータ ] タブをク リ ッ ク し、

[係数 ] テキス ト  ボッ クスに 「0」 と入力します。

モデル C のパス図は、 Ex09-c.amw ファ イルに保存されています。

モデル C の結果

モデル C は、 従来のすべての有意水準で棄却する必要があ り ます。

モデル B が正し く、モデル C の正しさのみ疑わしいと仮定する場合、次のよ うにして

モデル C のよ り適切な検定を取得できます。 モデル B からモデル C を作成する際に、

カイ  2 乗統計量が 52.712 (= ) 増加する一方で、 自由度が 1 (= 3-2) 増
加しています。 モデル C が正しい場合、 自由度 1 で近似のカイ  2 乗分布を持つ乱数変

数の観測値が 52.712 にな り ます。 このよ う な乱数変数が 52.712 を超える確率はご く

わずかです。 treatment (訓練 )は post_verbal (言語能力 (事後 ))に対して大きな効果があ

り ます。

すべてのモデルを一度に適合する 

標本 ファイル Ex09-all.amw では、3 つのモデル (A から  C) すべてを単一の分析に適合し

ます。 単一の分析に複数のモデルを適合する手順については、 例16 で説明しています。

55.396 2.684–
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VB.NET でのモデル作成

モデル A

次のプログラムはモデル A を適合します。 このプログラムは Ex09–a.vb ファ イルに保存

されています。

モデル B

次のプログラムはモデル B を適合します。 このプログラムは Ex09–b.vb ファ イルに保

存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")

        Sem.AStructure("post_syn   = (1) pre_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     pre_verbal + (1) eps4")

        Sem.AStructure("pre_verbal = pre_verbal + treatment + (1) zeta")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")
        Sem.AStructure("post_syn   = (1) pre_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     pre_verbal + (1) eps4")

        Sem.AStructure("pre_verbal = pre_verbal + treatment + (1) zeta")

        Sem.AStructure("eps2 <---> eps4")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル C

次のプログラムはモデル C を適合します。 このプログラムは Ex09–c.vb ファ イルに保

存されています。

複数のモデルを適合する

次のプログラム (Ex09-all.vb) は、 3 つのモデル (A から  C) をすべて適合します。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")
        Sem.AStructure("post_syn   = (1) pre_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     pre_verbal + (1) eps4")

        Sem.AStructure("pre_verbal = pre_verbal + (0) treatment + (1) zeta")

        Sem.AStructure("eps2 <---> eps4")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")
        Sem.AStructure("post_syn   = (1) pre_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     pre_verbal + (1) eps4")

        Sem.AStructure("pre_verbal = pre_verbal + (effect) treatment + (1) zeta")

        Sem.AStructure("eps2 <---> eps4 (cov2_4)")

        Sem.Model("Model_A", "cov2_4 = 0")
        Sem.Model("Model_B")
        Sem.Model("Model_C", "effect = 0")
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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複数グループの同時分析

概要

この例では、2 つのデータ  セッ トに同時にモデルを適合する方法について説明します。

Amos では、 複数のグループ ( または標本 ) から取得されたデータのモデルを同時に作

成できます。 この複数グループ機能によ り、 次のいくつかの例に示すよ うに、 さ らに

多くの種類の分析を実行できます。

複数グループの分析

こ こで、 例 1 から  例 3 で使用されている、 若年被験者と高齢被験者から取得された

Attig (1983) の記憶力データをも う一度振り返ってみまし ょ う。 この例では、 2 つのグ

ループの結果を比較し、 類似性を確認します。 ただし、 高齢者と若年者を個別に分析

するこ とによってこれらのグループを比較するこ とはあ り ません。 代わりに、パラ メー

タを推定し、両方のグループに関する仮説を同時に検定する単一の分析を実行します。

この方法には、 若年者と高齢者のグループを個別に分析する場合と比較して 2 つの利

点があ り ます。 まず、 若年者と高齢者の間に相違が検出された場合、 その大きさを検

定できます。 次に、 若年者と高齢者の間に相違がない場合、 またはグループ間の相違

がいくつかのモデル パラ メータのみに関するものである場合、 両方のグループを同時

分析する と、 単一グループ分析を個別に 2 回実施した場合に取得される推定値よ り、

正確なパラ メータ推定値が提供されます。

データについて

こ こでは、若年被験者と高齢被験者の両方から取得された Attig の記憶力データを使用

します。 高齢被験者のデータの一部を次に示します。 このデータは、 Microsoft Excel
ブッ ク  UserGuide.xls のワークシート  Attg_old にあ り ます。



148

例 10

若年被験者のデータはワークシート  Attg_yng にあ り ます。 この例では、 測定値記憶 1
と助成記憶1 のみ使用します。 
複数グループ分析のデータはさまざまな方法で分類できます。 1 つの方法は、 グルー

プごとに 1 つのファイルを使用してデータを異なるファイルに保存する方法です ( この

例ではこの方法を使用します )。 2 つ目の方法と して、 すべてのデータを 1 つの大きい

ファイルに保存し、 グループの所属変数を含める方法が考えられます。

モデル A

こ こでは、 2 つの変数記憶1 と助成記憶1 用に非常に小さいモデル (モデル A) を作成

するこ とから開始します。 このモデルでは単に、 高齢被験者と同様若年被験者も、 記

憶1 と助成記憶1 がいくつかの指定されない分散と共分散を持つ 2 つの変数であるこ

とを示します。 若年者と高齢者で分散と共分散が異なってもかまいません。

グループの相違を指定するための規則

複数グループ分析の主な目的は、 グループがどの程度異なるかを解明するこ とです。

すべてのグループで、 同じパラ メータ値を含む同じパス図を使用しますか。 または、

同じパラ メータ図でグループごとに異なるパラ メータ値を使用しますか。 あるいは、

グループごとに異なるパス図が必要ですか。 Amos Graphics では、複数グループ分析に

おけるグループの相違を指定するため次の規則が用意されています。 

 明示的に宣言されていない限り、 すべてのグループで同じパス図を使用します。

 名前のないパラ メータには異なるグループの異なる値を使用できます。 これによ

り、 Amos Graphics のデフォルトの複数グループ モデルでは、 すべてのグループで

同じパス図を使用しますが、 グループごとに異なるパラ メータ値を使用できます。

 異なるグループのパラ メータに同じラベルを指定するこ とによ り、 これらのパラ

メータが同じ値になるよ うに制約できます ( この方法については 158 ページのモ

デル B で説明します )。 



149

複数グループの同時分析

モデル A を指定する

E メニューから、 [ フ ァ イル ]  [ 新規作成 ] を選択して新しいパス図の作成を開始します。

E メニューから、 [ フ ァ イル ][ データ  フ ァ イル ] を選択します。

[データ  ファ イル ] ダイアログ ボッ クスでは、 [ グループ番号 1] という名前の 1 つのグ

ループにのみデータ  ファ イルを指定できるこ とに注意してください。 こ こではまだ複

数グループ分析であるこ とを指定していません。

E [ フ ァ イル名 ] をク リ ッ ク し、 Amos の Examples ディ レク ト リにある  Excel ブッ クの 
UserGuide.xls を選択して、 [ 開 く ] をク リ ッ ク します。

E [データ表を選択 ] ダイアログ ボッ クスで、 ワークシート  Attg_yng を選択します。

E [OK] をク リ ッ ク して [データ表の選択 ] ダイアログ ボッ クスを閉じます。

E [OK] をク リ ッ ク して、 [データ  ファ イル ] ダイアログ ボッ クスを閉じます。
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E メニューから、 [ 表示 ]  [ データ セ ッ ト に含まれる変数 ] を選択します。

E 観測変数記憶1 と助成記憶1 を図にド ラ ッグします。

E 記憶1 と助成記憶1 を双方向矢印で結びます。

E パス図にキャプシ ョ ンを追加するには、メニューから、[ 図 ]  [ 図のキャ プシ ョ ン ] を選

択し、 パス図にキャプシ ョ ンを表示する位置をク リ ッ ク します。

E [図のキャプシ ョ ン ] ダイアログ ボッ クスで、テキス ト  マクロ  ¥group と  ¥format を含む

タイ トルを入力します。

 

E [OK] をク リ ッ ク して若年者グループのモデル指定を完了します。

E 2 つ目のグループを追加するには、メニューから、[分析 ]  [ グループ管理 ] を選択します。
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E [ グループ管理 ] ダイアログ ボッ クスで、[ グループ名 ] テキス ト  ボッ クスの名前を 「グ

ループ番号 1」 から 「young subjects」 に変更します。

E [ 新規作成 ] をク リ ッ ク して 2 つ目のグループを作成します。

E [ グループ名 ] テキス ト  ボッ クスの名前を 「グループ番号 2」 から 「old subjects」 変更

します。

E [ 閉じ る ] をク リ ッ ク します。

E メニューから、 [ フ ァ イル ][ データ  フ ァ イル ] を選択します。

[データ  ファ イル ] ダイアログ ボッ クスに、young subjects と  old subjects という名前の

2 つのグループが表示されます。

E 高齢被験者のデータ  セッ ト を指定するには、 [データ  ファ イル ] ダイアログ ボッ クス

で [old subjects] を選択します。
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E [ フ ァ イル名 ] をク リ ッ ク し、 Amos の Examples ディ レク ト リにある  Excel ブッ クの 
UserGuide.xls を選択して、 [ 開 く ] をク リ ッ ク します。

E [データ表を選択 ] ダイアログ ボッ クスで、 ワークシート  Attg_old を選択します。

E [OK] をク リ ッ ク します。

テキス ト 出力

モデル A は自由度が 0 になり ます。

Amos では次のよ うにして異なる標本の積率を計算します。 若年被験者には 2 つの標

本分散と  1 つの標本共分散があ り、3 つの標本の積率が生成されます。 高齢被験者にも

3 つの標本の積率があ り、合計 6 つの標本の積率が生成されます。 推定されるパラ メー

タは母集団の積率であ り、 この積率も  6 つあ り ます。 自由度が 0 なので、 このモデル

は検定できません。

[Amos 出力 ] ウ ィンド ウに若年者のパラ メータ推定値を表示するには、 次の操作を行

います。

E 左上のウ ィンド ウ枠にあるツ リー図で、 [ 推定値 ] をク リ ッ ク します。
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E ウ ィンド ウの左側にある  [ グループ ] パネルで、 [young subjects] をク リ ッ ク します。

高齢被験者のパラ メータ推定値を表示するには、 次の操作を行います。

E [ グループ ] パネルで、 [old subjects] をク リ ッ ク します。

グラ フ ィ ッ ク出力

次の図は、 2 つのグループの非標準化推定値を示す出力パス図です。

[Amos Graphics] ウ ィンド ウの左側にあるパネルで、さまざまな表示オプシ ョ ンを選択

できます。 

 入力パス図または出力パス図を表示するには、[ 入力パス図の表示 ] または [ 出力パス

図の表示 ] ボタンをク リ ッ ク します。 

 [グループ ] パネルで [young subjects] または [old subjects] のいずれかを選択します。
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 [パラ メータ形式 ] パネルで、[ 非標準化推定値 ] または [ 標準化推定値 ] のいずれかを

選択します。

モデル B

2 つのグループのパラ メータ推定値が異なるこ とを確認するのは容易です。 では、どの

程度異なるのでし ょ うか。 差の大きさを確認する  1 つの方法と して、 分析を繰り返す

方法があ り ますが、 こ こでは若年者の各パラ メータを高齢者の対応するパラ メータ と

等し くする必要があ り ます。 この結果作成されたモデルをモデル B と呼びます。 
モデル B では、 各パラ メータに名前を付け、 高齢者グループと若年者グループで同

じパラ メータ名を使用する必要があ り ます。

E まず、 パス図の左側にある  [ グループ ] パネルで [young subjects] をク リ ッ ク します。

E パス図で記憶1 の四角を右ク リ ッ ク します。

E ポップアップ メニューから、 [ オブジ ェ ク ト のプロパテ ィ ] を選択します。

E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [ パラ メ ータ ] タブをク リ ッ ク し

ます。
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E [分散 ] テキス ト  ボッ クスに、記憶1 の分散の名前を入力します。たとえば、 「var_rec」

と入力します。

E [ 全グループ ] を選択します (チェッ ク  マークが表示されます )。

こ こにチェッ ク  マークが付いている場合、すべてのグループの記憶1 の分散に var_rec
という名前が割り当てられます。 こ こにチェッ ク  マークが付いていない場合、 var_rec
は若年者グループのみの記憶1 の分散の名前になり ます。

E [ オブジェク トのプロパティ ] ダイアログ ボッ クスが開いた状態で、 [ 助成記憶 1] をク

リ ッ ク し、 分散の名前と して 「var_cue」 と入力します。 

E 双方向矢印をク リ ッ ク し、共分散の名前と して 「cov_rc」 と入力します。 常に [ 全グルー

プ ] が選択されているこ とを確認してください。

各グループのパス図は次のよ うにな り ます。
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テキス ト 出力

モデル B には制約が適用されるため、 6 つではなく  3 つの異なるパラ メータのみ推定

されます。 これによ り、 自由度が 0 から  3 に増加します。

モデル B は、 従来のすべての有意水準で受け入れるこ とができます。

若年被験者用のモデル B に基づいて取得されたパラメータ推定値を次に示します (高齢

被験者のパラ メータ推定値も同じです )。

モデル B に基づいて取得された標準誤差推定値 (若年被験者で 0.780、 0.909、 および

0.873) は、モデル A に基づいて取得された対応する推定値 (0.944、1.311、および 0.953).
よ り小さいこ とがわかり ます。 モデル B が正しいと考える限り、 モデル A の推定値よ

りモデル B の推定値の方が適している と言えます。

グラ フ ィ ッ ク出力

モデル B では、 両方のグループの出力パス図が同じになり ます。
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VB.NET でのモデル作成

モデル A

モデル A を適合するプログラム (Ex10-a.vb) を次に示します。

この 2 つのグループ分析では BeginGroup メ ソ ッ ドを 2 回使用します。 最初の BeginGroup

行は、 Attg_yng データ セッ ト を指定します。 その後の 3 行によってそのグループの名

前とモデルを示します。 2 番目の BeginGroup 行はAttg_old データ  セッ ト を指定し、 そ

の後の 3 行によってそのグループの名前とモデルを示します。 各グループのモデルは

単に、 記憶 1 と助成記憶 1 が、 制約されない分散と指定されない共分散を持つ 2 つの

変数であるこ とを示します。 GroupName メ ソッ ドはオプションですが、 Amos による出

力へのラベル付けに役立つので、 複数グループ分析では有効です。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Attg_yng")
                Sem.GroupName("young subjects")
                Sem.AStructure("recall1")
                Sem.AStructure("cued1")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Attg_old")
                Sem.GroupName("old subjects")
                Sem.AStructure("recall1")
                Sem.AStructure("cued1")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル B

次に示すモデル B のためのプログラムは、 Ex10-b.vb に保存されています。

パラ メータ名の var_rec、 var_cue、 および cov_rc (かっこ内 ) を使用して、 一部のパラ

メータが若年者と高齢者で同じ値になるよ うに指定します。 var_rec という名前を 2 回
使用するには、 記憶 1 が両方のグループで同じ分散を持つ必要があ り ます。 同様に、

var_cue という名前を 2 回使用するには、助成記憶1 が両方のグループで同じ分散を持

つ必要があ り ます。 cov_rc という名前を 2 回使用するには、記憶1 と助成記憶1 が両方

のグループで同じ共分散を持つ必要があ り ます。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples¥UserGuide.xls"

        Sem.Standardized()
        Sem.TextOutput()

        Sem.BeginGroup(dataFile, "Attg_yng")
            Sem.GroupName("young subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <>cued1  (cov_rc)")
        Sem.BeginGroup(dataFile, "Attg_old")
            Sem.GroupName("old subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <>cued1  (cov_rc)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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複数モデルの入力

モデル A と  B の両方を適合するプログラム (Ex10-all.vb) を次に示します。1

Sem.Model ステート メン トは、 最後のグループの AStructure 指定の直後にく る必要があ

り ます。 どの Model ステート メン トが最初にきても問題はあ り ません。 

1 例6 (Ex06-all.vb) では、複数のモデル制約が単一の文字列で指定され、個々の制約はセミ コロンで区切られ

ています。 この例では、各制約が独自の文字列で指定され、個々の文字列はカンマで区切られています。 ど
ちらの唆文も使用できます。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.Standardized()
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Attg_yng")
            Sem.GroupName("young subjects")
            Sem.AStructure("recall1           (yng_rec)")
            Sem.AStructure("cued1             (yng_cue)")
            Sem.AStructure("recall1 <>cued1  (yng_rc)")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥UserGuide.xls", "Attg_old")
            Sem.GroupName("old subjects")
            Sem.AStructure("recall1           (old_rec)")
            Sem.AStructure("cued1             (old_cue)")
            Sem.AStructure("recall1 <>cued1  (old_rc)")

        Sem.Model("Model A")
        Sem.Model("Model B", "yng_rec=old_rec", "yng_cue=old_cue", _
            "yng_rc=old_rc")
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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例11
Felson と  Bohrnstedt の女子生徒と男

子生徒のデー タ

概要

この例では、 同時方程式モデルを 2 つのデータ  セッ トに一度に適合する方法について

説明します。

Felson と  Bohrnstedt のモデル

例 7 では、 209 人の女子生徒の標本を使用して、 認められる魅力と認められる学力に

関する  Felson と  Bohrnstedt のモデル (1979) を検証しました。 こ こでは、同じモデルを

使用して、 例 7 のデータ と  207 人の男子生徒の別の標本から取得されたデータに同時

に適用します。 測定された変数の相互の関連が、 男子生徒と女子生徒で同様かど うか

という問題を検証します。

データについて

Felson と  Bohrnstedt による女子生徒のデータ  (1979) については 例7 で説明しました。

SPSS Statistics ファ イル Fels_mal.sav から取得された男子生徒のデータを次の表に示し

ます。 
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男子生徒のデータ  ファ イルには 8 つの変数があるのに、女子生徒のデータ  ファ イルに

は 7 つの変数しかないこ とに注意して ください。 追加の変数 skills はこの例のどのモ

デルでも使用しないので、 データ  ファ イルに存在しても無視されます。

女子生徒と男子生徒用のモデル A を指定する

認められる魅力と学力に関する  Felson と  Bohrnstedt のモデルを、女子生徒だけでなく

男子生徒にも拡張するこ とを検討してみまし ょ う。 これを行うには、 例 7 に示す女子

生徒のみのモデル指定を基にして、 2 つのグループに適合するよ うに修正します。 例7
のパス図を既に作成している場合は、 この例の出発点と してそのパス図を使用できま

す。 追加のパス図を作成する必要はあ り ません。

複数グループ分析では、 パス図にパラ メータ推定値を表示できるのは一度に 1 グ
ループだけです。 どのグループのパラ メータ推定値が表示されているかを確認するた

め、 図のキャプシ ョ ンを表示する と便利です。

図のキャ プシ ョ ンを指定する

グループ名を表示する図のキャプシ ョ ンを作成するには、 キャプシ ョ ンに ¥group テ
キス ト  マクロを配置します。

E メニューから、 [ 図 ] [ 図のキャ プシ ョ ン ] を選択します。

E パス図にキャプシ ョ ンを表示する位置をク リ ッ ク します。

E [図のキャプシ ョ ン ] ダイアログ ボッ クスで、 テキス ト  マクロ  ¥group を含むタイ トル

を入力します。 次に例を示します。

例7 では 1 つのグループしかないので、 グループの名前に注意する必要はあ り ません

でした。 デフォル ト のグループ番号 1 とい う名前をそのまま使用できました。 今回は

2 つのグループを管理するので、 グループにわか りやすい名前を付ける必要があ り

ます。
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E メニューから  [ 分析 ]  [ グループ管理 ] を選択します。

E [ グループ管理 ] ダイアログ ボッ クスで、 [ グループ名 ] に 「girls」 と入力します。

E [ グループ管理 ] ダイアログ ボッ クスが開いたままの状態で、[ 新規作成 ] をク リ ッ ク し

て 2 つ目のグループを作成します。

E [ グループ名 ] テキス ト  ボッ クスに 「boys」 と入力します。

E [ 閉じ る ] をク リ ッ ク して [ グループ管理 ] ダイアログ ボッ クスを閉じます。

E メニューから、 [ フ ァ イル ] [ データ  フ ァ イル ] を選択します。

E [データ  ファ イル ] ダイアログ ボッ クスで、 [girls] をダブルク リ ッ ク し、データ  ファ イ

ル Fels_fem.sav を選択します。

E 次に、 [boys] をダブルク リ ッ ク し、 データ  ファ イルFels_mal.sav を選択します。

E [OK] をク リ ッ ク して、 [データ  ファ イル ] ダイアログ ボッ クスを閉じます。
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男子生徒の標本用のパス図は次のよ うにな り ます。

女子生徒と男子生徒のパス図は同じにな り ますが、 2 つのグループでパラ メータの値

が等し くなる必要はないこ とに注意して ください。 このこ とは、 係数、 共分散、 およ

び分散の推定値が男子生徒と女子生徒では異なる可能性があるこ とを意味します。

モデル A のテキス ト 出力

例7 の 1 つのグループの代わりにこ こでは 2 つのグループを使用するので、 推定する

標本の積率とパラ メータの数が 2 倍になり ます。 このため、 自由度も例7 の 2 倍にな

り ます。

このモデルは、 両方のグループのデータに非常によ く適合しています。

これによ り、 Felson と  Bohrnstedt のモデルが男子生徒と女子生徒の両方で正しいとい

う仮説を受け入れます。 次に注意するのはパラ メータ推定値です。 こ こでは、女子生徒

の推定値を男子生徒の推定値とどのよ うに比較するかに注目します。 女子生徒のパラ

メータ推定値は次のとおりです。

カイ 2乗 = 3.183
自由度 = 4
確率水準 = 0.528
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これらのパラ メータ推定値は例7 と同じものです。 標準誤差、検定統計量、および p 値
も同じです。 男子生徒の非標準化推定値は次のとおりです。
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モデル A のグラ フ ィ ッ ク出力

非標準化推定値が表示された女子生徒のパス図を次に示します。

男子生徒の推定値が表示されたパス図を次に示します。 

モデル A の女子生徒と男子生徒の推定値を視覚的に検査し、 性差を確認できます。

1 つのパラ メータの値が女子生徒と男子生徒で大幅に異なるかど う かを確認する

には、 自由なパラ メータのすべてのペア間の差に対する検定統計量の表を調べます。 

パラ メ ータの差に対する検定統計量を取得する

E メニューから、 [ 表示 ]  [ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。
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E [ パラ メ ータの差に対する検定統計量 ] を選択します。

ただし、 この例では差に対する検定統計量は使用せず、 グループの差を確認する代替

方法を使用します。

女子生徒と男子生徒のモデル B

こ こでは主に係数に注目し、(モデル B では ) 女子生徒と男子生徒が同じ係数になる と

仮定します。 このモデルでは、 外生変数の分散と共分散がグループによって異なる可

能性があ り ます。

このモデルでは、 変数間の線型従属がすべてのグループで不変である必要がある一

方で、 height や weight などの変数の分布が男子生徒と女子生徒で異なる可能性があ り

ます。 モデル B では、 各グループで 6 つの係数を制約する必要があ り ます。

E 最初に、 パス図の左側にある  [ グループ ] パネルで [girls] をク リ ッ ク し、 女子生徒のパ

ス図を表示します。

E 一方向矢印のいずれかを右クイ ッ ク し、ポップアップ メニューから  [ オブジ ェ ク ト のプ

ロパテ ィ ] を選択します。 

E [オブジェク トのプロパティ ] ダイアログ ボックスの [パラ メ ータ ] タブをク リ ッ ク します。

E [ 係数 ] テキス ト  ボッ クスに名前を入力します。
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E [ 全グループ ] を選択します。 [ 全グループ ] の横にチェッ ク  マークが表示されます。

チェッ ク  マークが付いている場合、すべてのグループでこの係数に同じ名前が割り当

てられます。

E [オブジェク トのプロパティ ] ダイアログ ボッ クスが開いた状態で、別の一方向矢印を

ク リ ッ ク し、 [ 係数 ] テキス ト  ボッ クスに別の名前を入力します。

E すべての係数に名前を付けるまでこの操作を繰り返します。 常に [ 全グループ ] を選択 
(チェッ ク  マークを付ける ) して ください。

すべての係数に名前を付けたら、 各標本のパス図は次のよ うにな り ます。
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モデル B の結果

テキス ト 出力

モデル B はデータに非常によ く適合しています。

モデル A とモデル B を比較する と、 有意でないカイ  2 乗 ( )
と自由度 ( ) が得られます。 モデル B が正しいと仮定する と、モデル B の推

定値がモデル A の推定値よ り適している と考えられます。

女子生徒の標本の非標準化パラ メータ推定値は次のとおりです。

カイ 2乗 = 9.493
自由度 = 10
確率水準 = 0.486

9.493 3.183– 6.310=
10 4 6=–
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男子生徒の非標準化パラ メータ推定値は次のとおりです。

モデル B の指定によ り、男子生徒の推定係数は女子生徒の推定係数と同じになり ます。

グラ フ ィ ッ クス出力

女子生徒の出力パス図は次のとおりです。
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男子生徒の出力は次のとおりです。 

モデル A と  B を単一の分析に適合する

モデル A とモデル B を同一の分析に適合するこ とができます。 Amos の Examples ディ

レク ト リにある  Ex11-ab.amw ファ イルに、 この方法が示されています。

女子生徒と男子生徒のモデル C

すべてのパラ メータを男子生徒と女子生徒で同じ値にするなど、 モデル B に制約を追

加するこ と も検討できます。 つま り、 Felson と  Bohrnstedt のモデルが両方のグループ

で正し くなる必要がある と同時に、観測変数の分散 /共分散行列全体が男子生徒と女子

生徒で同じになる と仮定し ます。 このコースを進める代わ り に、 こ こで Felson と
Bohrnstedt のモデルから離れて、観測変数が女子生徒と男子生徒で同じ分散 /共分散行

列になる という仮定に注目してみまし ょ う。 この仮定を具象化するモデル ( モデル C)
を作成します。
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E モデル A またはモデル B のパス図を基にして、 6 つの観測変数を除くすべてのオブ

ジェク ト をパス図から削除します ([ 編集 ] [ 消去 ] を選択します )。 パス図は次のよ う

にな り ます。

四角形の各ペアを双方向矢印で結ぶ必要があり ます。合計 15 の双方向矢印が必要です。

E 出力結果の外観を改善するには、 メニューから  [ 編集 ]  [ 移動 ] を選択し、 マウスを使

用して 6 つの四角形を次のよ うに一列に並べます。

[ プロパテ ィ を ド ラ ッ グ ] オプシ ョ ンを使用する と、四角形を一直線上に整列できます。 
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E メニューから、 [ 編集 ]  [ プロパテ ィ を ド ラ ッ グ ] を選択します。

E [プロパティをド ラ ッグ ] ダイアログ ボッ クスで、 [ 高さ ]、 [ 幅 ]、および [X 座標 ] を選択

します。 各項目の横にチェッ ク  マークが表示されます。

E マウスを使用して、 これらのプロパティを academic から  attract にド ラ ッグします。

これによ り、 attract の x 座標が academic と同じになり ます。 つま り、 一直線上に整列

します。 attract と  academic のサイズが異なる場合は、 サイズも同じになり ます。

E 次に、 attract から  GPA へ、 GPA から  height へ、 以下同様にプロパティをド ラ ッグし

ます。 6 つの変数がすべて一直線上に整列するまでこの操作を続けます。

E 四角形の間隔を均等にするには、 メニューから、 [ 編集 ]  [ すべて選択 ] を選択します。 

E 次に、 [ 編集 ]  [ 垂直に配置 ] を選択します。

多数の双方向矢印を一度に作成するための特殊なボタンがあ り ます。 前の手順で 6 つ
の変数がすべて選択された状態で、 次の操作を行います。
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E メニューから、 [ プ ラグイ ン ]  [ 共分散を描 く  (Draw Covariances)] を選択します。 

選択した変数間で使用可能なすべての共分散パスが作成されます。

E すべての分散と共分散に適切な名前のラベルを付けます。 たとえば、 a から  u のラベ

ルを付けます。 [オブジェク トのプロパティ ] ダイアログ ボッ クスで、パラ メータに名

前を付ける際には常に [ 全グループ ] にチェッ ク  マークが付いているこ とを確認してく

ださい。

E メニューから、[ 分析 ]  [ モデル管理 ] を選択し、男子生徒用の 2 つ目のグループを作成

します。

E [ フ ァ イル ]  [ データ  フ ァ イル ] を選択し、 このグループに男子生徒のデータ  セッ ト

(Fels_mal.sav) を指定します。
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Ex11-c.amw ファ イルには、モデル C のモデル指定が含まれます。 入力パス図は次のと

おりです。 このパス図は両方のグループで同じになり ます。

モデル C の結果

モデル C は、 従来のすべての有意水準で棄却する必要があ り ます。

この結果は、 男子生徒と女子生徒の相違がまったくないモデルの提示によって時間を

浪費してはいけないこ とを示しています。

カイ 2乗 = 48.977
自由度 = 21
確率水準 = 0.001
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VB.NET でのモデル作成

モデル A

モデル A に適合するプログラムを次に示します。 このプログラムは Ex11-a.vb と して

保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_fem.sav")
        Sem.GroupName("girls")
        Sem.AStructure("academic = GPA + attract + error1 (1)")
        Sem.AStructure _
            ("attract  = height + weight + rating + academic + error2 (1)")
        Sem.AStructure("error2 <--> error1")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_mal.sav")
        Sem.GroupName("boys")
        Sem.AStructure("academic = GPA + attract + error1 (1)")
        Sem.AStructure _
            ("attract  = height + weight + rating + academic + error2 (1)")
        Sem.AStructure("error2 <--> error1")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル B

次のプログラムはモデル B を適合します。 このプログラムでは、 パラ メータ  ラベル

p1 から  p6 を使用してグループ全体に同等性の制約条件を適用します。 このプログラ

ムは Ex11-b.vb に保存されています。

モデル C

モデル C 用の Visual Basic プログラムはこ こには示しません。 このプログラムは 
Ex11-c.vb ファ イルに保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_fem.sav")
        Sem.GroupName("girls")
        Sem.AStructure("academic = (p1) GPA + (p2) attract + (1) error1")
        Sem.AStructure("attract  = "& _
            "(p3) height + (p4) weight + (p5) rating + (p6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_mal.sav")
        Sem.GroupName("boys")
        Sem.AStructure("academic = (p1) GPA + (p2) attract + (1) error1")
        Sem.AStructure("attract  = "& _
            "(p3) height + (p4) weight + (p5) rating + (p6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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複数のモデルを適合する

次のプログラムはモデル A と  B の両方を適合します。 このプログラムは Ex11-ab.vb
ファ イルに保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_fem.sav")
        Sem.GroupName("girls")
        Sem.AStructure("academic = (g1) GPA + (g2) attract + (1) error1")
        Sem.AStructure("attract  = "& _
            "(g3) height + (g4) weight + (g5) rating + (g6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Fels_mal.sav")
        Sem.GroupName("boys")
        Sem.AStructure("academic = (b1) GPA + (b2) attract + (1) error1")
        Sem.AStructure("attract  = "& _
            "(b3) height + (b4) weight + (b5) rating + (b6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.Model("Model_A")
        Sem.Model("Model_B", _
            "g1=b1", "g2=b2", "g3=b3", "g4=b4", "g5=b5", "g6=b6")

        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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複数のグループの同時因子分析

概要

この例は、 複数の母集団のそれぞれに対して、 同じ因子分析モデルが適用されるかど

うかを検定する方法を示します。 異なる母集団に対しては、 パラ メータも異なる可能

性があ り ます (Jöreskog, 1971 年 )。

データについて

こ こでは、例8 で説明した Holzinger と  Swineford (1939 年 ) のデータを使用します。 た
だし、今回は Grant-White の標本から、例8 で調べた 73 人の少女のデータだけでなく、

72 人の少年のデータ も分析します。 Grnt_fem.sav フ ァ イルに保存されている少女の

データについては、例8 で説明しました。 以下に、Grnt_mal.sav ファ イルに保存されて

いる少年の標本 データを示します。 
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Holzinger と  Swineford の少年少女のモデル A

例 8 の共通因子分析モデルは、 少女の場合と同じ く、 少年の場合にも適用される とい

う仮説を考えます。 例 8 のパス図は、 この 2 グループのモデルの出発点と して使用で

きます。 Amos Graphics では、デフォルトで両方のグループが同じパス図を持っている

と仮定されます。 そのため、 2 つのグループに対してパス図を 2 回描く必要はあ り ま

せん。

例8 では、 グループは 1 つしかないため、 グループの名前は重要ではあ り ませんで

した。 デフォルトのグループ番号1 という名前をそのまま使用できました。 今回は 2 つ
のグループを管理するので、 グループにわかりやすい名前を付ける必要があ り ます。

グループに名前を付ける

E メニューから  [ 分析 ]  [ グループ管理 ] を選択します。

E [ グループ管理 ] ダイアログ ボッ クスで、 [ グループ名 ] に 「Girls」 と入力します。

E [ グループ管理 ] ダイアログ ボッ クスを開いたまま、 [ 新規作成 ] をク リ ッ ク して別のグ

ループを作成します。

E [ グループ名 ] テキス ト  ボッ クスに 「Boys」 と入力します。

E [ 閉じ る ] をク リ ッ ク して [ グループ管理 ] ダイアログ ボッ クスを閉じます。
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データの指定

E メニューから、 [ フ ァ イル ][ データ  フ ァ イル ] を選択します。

E [データ  ファ イル ] ダイアログ ボッ クスで、 Girls をダブルク リ ッ ク して、 データ  ファ

イルに grnt_fem.sav を指定します。

E 次に Boys をダブルク リ ッ ク して、 データ  ファ イルに grnt_mal.sav を指定します。

E [OK] をク リ ッ ク して、 [データ  ファ イル ] ダイアログ ボッ クスを閉じます。

少女の標本のパス図は次のよ うにな り ます。

少年のパス図も同じです。 ただし、 パラ メータ推定値は 2 つのグループで異なる場合

もあるこ とに注意してください。
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モデル A の結果

テキス ト 出力

このモデルの自由度の計算では、 例8 のすべての数値がちょ う ど 2 倍になり ます。

通常の有意水準では、 モデル A は適合します。 モデル A が棄却される場合は、 2 つの

グループのうち少なく と も  1 つのパス図を変更する必要があ り ます。

グラ フ ィ ッ ク出力

こ こに示すのは、 73 人の少女の ( 標準化されていない ) パラ メータ推定値です。 これ

は、 少女だけを調べた例8 で得られたものと同じ推定値です。

自由度の計算 (デフォルト  モデル )
異なる標本の積率の数 42

推定される異なるパラ メータの数 26
自由度 (42 – 26) 16

カイ  2 乗 = 16.480
自由度 = 16
確率水準 = 0.420
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72 人の少年の出力パス図は、 次のよ うにな り ます。

推定された係数は、 グループ間でほとんど変わっていないこ とに注意して ください。

2 つの母集団は同じ係数を持っているよ うに思われます。 モデル B では、 この仮説を

検定します。

Holzinger と  Swineford の少年少女のモデル B

こ こでは、 少年と少女のパス図は同じである とい う仮説を使用します。 次に、 少年と

少女が同じパラ メータ値を持つかど うかを調べます。 次のモデル ( モデル B) では、

少年の母集団のすべてのパラ メータが、 少女の対応するパラ メータ と等し くなるこ と

までは要求しません。 要求するのは、 因子パターン (つま り、 係数 ) が、 両方のグルー

プで等し くなるこ とです。 モデル B では、 少年と少女は異なる固有の分散を持つこ と

ができます。 共通因子の分散および共分散も、 グループ間で異なる場合があ り ます。

E モデル A をモデル B の出発点と して使用します。

E まず、パス図の左にある  [ グループ ] パネルで Girls をク リ ッ ク して、少女のパス図を表

示します。

E spatial (視覚能力 ) から cubes (空間視覚化力 )へ伸びる矢印を右ク リ ッ ク して、 ポップ

アップ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択します。

E [オブジェク トのプロパティ ] ダイアログ ボックスの [パラ メ ータ ] タブをク リ ッ ク します。



184

例 12

E [係数 ] テキス ト  ボッ クスに 「cube_s」 と入力します。

E [ 全グループ ] を選択します。 [ 全グループ ] の横にチェッ ク  マークが表示されます。

チェッ ク  マークを付けるこ とによ り、両方のグループでこの係数に同じ名前が割り当

てられます。

E [オブジェク トのプロパティ ] ダイアログ ボックスを開いたまま、 残りの片矢印を順に

ク リ ッ ク し、 それぞれ [係数 ] テキス ト  ボックスに名前を入力します。 この操作を繰り

返して、 すべての係数に名前を付けます。 常に [ 全グループ ] を選択 (チェッ ク  マーク

を付ける ) して ください。 (既に 1 に固定されている係数は、そのままにしてください。)

2 つの標本のパス図は、 いずれも次のよ うにな り ます。



185

複数のグループの同時因子分析

モデル B の結果

テキス ト 出力

モデル B で追加された制約条件のため、データから推定されるパラ メータの数は 4 つ
少なくな り、 自由度の数は 4 だけ増えます。

カイ  2 乗適合度統計量は許容可能です。

モデル A とモデル B のカイ  2 乗の差 も、 通常の有意水準

では大きな差ではあ り ません。 したがって、 グループによらない因子パターンを指定

したモデル B は、 Holzinger と  Swineford のデータに適合します。

グラ フ ィ ッ ク出力

こ こに示すのは、 73 人の少女のパラ メータ推定値です。

自由度の計算 (デフォルト  モデル )
異なる標本の積率の数 42

推定される異なるパラ メータの数 22
自由度 (42 – 20) 20

カイ  2 乗 = 18.292
自由度 = 20
確率水準 = 0.568

18.292 16.480 1.812=–
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こ こに示すのは、 72 人の少年のパラ メータ推定値です。

 

予想される とおり、モデル B のパラ メータ推定値は、モデル A の推定値とは異なって

います。 次の表に、 2 つのモデルの推定値と標準誤差を並べて示しています。

[ パラ メ ータ ] モデル A モデル B

少女の標本 推定値 標準誤差 推定値 標準誤差

g: cubes ( 空間視覚化力 ) <--- spatial ( 視覚能力 ) 0.610 0.143 0.557 0.114
g: lozenges ( 方向認識力 ) <--- spatial ( 視覚能力 ) 1.198 0.272 1.327 0.248
g: sentence ( 文理解力 ) <--- verbal ( 言語能力 ) 1.334 0.160 1.305 0.117
g: wordmean ( 語彙力 ) <--- verbal ( 言語能力 ) 2.234 0.263 2.260 0.200
g: spatial ( 視覚能力 ) <---> verbal ( 言語能力 ) 7.315 2.571 7.225 2.458
g: var(spatial) 23.302 8.124 22.001 7.078
g: var(verbal) 9.682 2.159 9.723 2.025
g: var(err_v) 23.873 5.986 25.082 5.832
g: var(err_c) 11.602 2.584 12.382 2.481
g: var(err_l) 28.275 7.892 25.244 8.040
g: var(err_p) 2.834 0.869 2.835 0.834
g: var(err_s) 7.967 1.869 8.115 1.816
g: var(err_w) 19.925 4.951 19.550 4.837
少年の標本 推定値 標準誤差 推定値 標準誤差

b: cubes ( 空間視覚化力 ) <--- spatial ( 視覚能力 ) 0.450 0.176 0.557 0.114
b: lozenges ( 方向認識力 ) <--- spatial ( 視覚能力 ) 1.510 0.461 1.327 0.248
b: sentence ( 文理解力 ) <--- verbal ( 言語能力 ) 1.275 0.171 1.305 0.117
b: wordmean ( 語彙力 ) <--- verbal ( 言語能力 ) 2.294 0.308 2.260 0.200
b: spatial ( 視覚能力 ) <---> verbal ( 言語能力 ) 6.840 2.370 6.992 2.090
b: var(spatial) 16.058 7.516 16.183 5.886
b: var(verbal) 6.904 1.622 6.869 1.465
b: var(err_v) 31.571 6.982 31.563 6.681
b: var(err_c) 15.693 2.904 15.245 2.934
b: var(err_l) 36.526 11.532 40.974 9.689
b: var(err_p) 2.364 0.726 2.363 0.681
b: var(err_s) 6.035 1.433 5.954 1.398
b: var(err_w) 19.697 4.658 19.937 4.470
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2 つを除いて、 すべての標準誤差の推定値がモデル B の方が小さ くなっています。 こ

れには、制約条件のないパラメータも含まれます。 これが、モデル B が正しいという こ

とを仮定して、 モデル A ではなくモデル B のパラメータ推定値を使用する理由です。
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VB.NET でのモデル作成

モデル A

次のプログラム (Ex12-a.vb) は、 モデル A の少年少女を表しています。

少年についても、 少女と同じモデルを指定します。 ただし、 少年のパラ メータ値は対

応する少女のパラ メータ値とは異なる場合があ り ます。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc  = (1) spatial + (1) err_v")
            Sem.AStructure("cubes    =     spatial + (1) err_c")
            Sem.AStructure("lozenges =     spatial + (1) err_l")

            Sem.AStructure("paragrap = (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   =    spatial + (1) err_s")
            Sem.AStructure("wordmean=    spatial + (1) err_w")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc  = (1) spatial + (1) err_v")
            Sem.AStructure("cubes    =     spatial + (1) err_c")
            Sem.AStructure("lozenges =     spatial + (1) err_l")

            Sem.AStructure("paragrap = (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   =    spatial + (1) err_s")
            Sem.AStructure("wordmean=    spatial + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル B

こ こでは、 モデル B に適合するプログラムを示します。 モデル B では、 いくつかのパ

ラ メータに同じ名前を付け、 等し くなるよ うに制約条件を設定しています。 このプロ

グラムは、 Ex12-b.vb という名前で保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc  = (1) spatial + (1) err_v")
            Sem.AStructure("cubes   = (cube_s)  spatial + (1) err_c")
            Sem.AStructure("lozenges = (lozn_s)  spatial + (1) err_l")

            Sem.AStructure("paragrap = (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (word_v)spatial  + (1) err_w")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc  = (1) spatial + (1) err_v")
            Sem.AStructure("cubes   = (cube_s)  spatial + (1) err_c")
            Sem.AStructure("lozenges = (lozn_s)  spatial + (1) err_l")

            Sem.AStructure("paragrap = (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (word_v)spatial  + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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平均値に関する仮説の推定および検定

概要

この例は、 平均値の推定方法および平均値に関する仮説の検定方法を示します。 大規

模な標本では、 こ こで示す方法は多変量分散分析と同等です。

平均値と切片のモデル作成

Amos や同様のプログラムを使用する場合、 通常は分散、 共分散、 係数を推定し、

これらのパラ メータに関する仮説を検定します。 平均値と切片は通常は推定せず、

平均値と切片に関する仮説は通常は検定しません。 平均値と切片は、これらのパラ メー

タを含むモデルの指定は比較的難しいため、 構造モデルの方程式から外される場合も

少なくあ り ません。

しかし、 Amos は平均値と切片のモデル作成が容易になるよ うに設計されています。

こ こで示す例は、 平均値と切片を推定し、 仮説を検定する方法を示す最初の例です。

この例では、 モデルのパラ メータは分散、 共分散、 平均値のみから構成されます。

後の例では、 回帰式に係数と切片を導入します。

データについて

この例では、例1 で説明した Attig (1983 年 ) のメモ リ  データを使用します。 こ こでは、

若者および老人両方の被験者のデータを使用します。 2 つのグループの生データは、

UserGuide.xls という  Microsoft Excel ワークブックの Attg_yng および Attg_old ワークシー

トに含まれています。 この例で使用する測定値は、 記憶1 および助成記憶1 だけです。
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若者および老人の被験者のモデル A

例10 のモデル B の分析では、 記憶1 および助成記憶1 は、 若者と老人の両方のグループ

について、 分散および共分散が同じである という結論になり ました。 少なく と も、 見つ

かった仮説の反証は有意なものではありませんでした。 この例でのモデル A は、 例10 の
モデル B の分析に手を加えたものです。 今回は、2 つの変数 (記憶1 および助成記憶1) の
平均値も推定します。

Amos Graphics の平均構造モデル

Amos Graphics では、 平均値に関する仮説の推定と検定は、 分散および共分散構造の

分析とそれほど違いません。 例10 のモデル B を出発点にします。 若者と老人の被験者

は、 次のよ うな同じパス図を持っています。

両方のグループで、 同じパラ メータ名を使用します。 これによ り、 必要なパラ メータ

推定値が両グループで同じになり ます。

例10 には、平均値と切片はあ り ません。 このモデルに平均値と切片を導入するには、

次の操作を実行します。

E メニューから、 [ 表示 ]  [ 分析のプロパテ ィ ] を選択します。 

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 推定 ] タブをク リ ッ ク します。
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E [ 平均値と切片を推定 ] を選択します。

パス図は次のよ うにな り ます ( どちらのグループも同じパス図です )。

パス図には、 各外生変数について、 パラ メータの平均値、 分散の組が表示されていま

す。 このモデルには内生変数がないため、 切片はあ り ません。 パス図の各変数につい

て、 カンマの後に分散の名前が続きます。 モデルの平均値はまだ名前を付けていない

ため、 カンマの前は空白になっています。

[ 分析 ] メニューから  [ 推定値を計算 ] を選択する と、Amos は 2 つの平均値、2 つの分

散、 および各グループの共分散を推定します。 分散と共分散はグループ間で等し くな

る という制約条件があ り ますが、 平均値には制約条件はあ り ません。
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[ 平均値と切片を推定 ] を選択 (チェッ ク  マークを付ける ) する と、 Amos Graphics の動

作は次のよ うに変わり ます。 

 平均値と切片のフ ィールドが [オブジェク トのプロパティ ] ダイアログ ボッ クスの

[ パラ メ ータ ] タブに表示されます。

 係数、 分散、 共分散だけでな く、 平均値と切片にも制約条件を適用するこ とがで

きます。

 メニューから  [分析 ]  [推定値を計算 ] を選択する と、平均値と切片—が推定されま

す。 制約条件がある場合は適用されます。

 標本の共分散を入力と して与える場合、 標本の平均値を与える必要があ り ます。

[ 平均値と切片を推定 ] にチェッ ク  マークを 「付けない」 場合は次のよ うにな り ます。 

 分散、 共分散、 および係数のフ ィールドだけが [オブジェク トのプロパティ ] ダイ

アログ ボッ ク スの [ パラ メ ー タ ] タブに表示されます。 制約条件はこれらのパラ

メータにのみ指定できます。

 [ 推定値を計算 ] を選択する場合、 Amos は分散、 共分散、 係数は推定しますが、

平均値と切片は推定 「しません」。

 標本の平均値を与えずに、標本の共分散を入力と して与えるこ とができます。 標本

の平均値を与えても無視されます。

 平均モデルを当てはめた後に [ 平均値と切片を推定 ] のチェッ ク  マークを外した場

合、出力パス図には平均値と切片が残り ます。 平均値と切片のない正しい出力パス

図を表示するには、 [ 平均値と切片を推定 ] のチェッ ク  マークを外してからモデル

の推定値を 「再計算」 します。

以上の規則に従って [ 平均値と切片を推定 ] チェッ ク  ボッ クスを使用して、 従来のパス

モデルと同様に、 簡単に平均モデルの推定および検定ができます。

モデル A の結果

テキス ト 出力

このモデルの自由度の数は、 例 10 のモデル B と同じです。 こ こでは、 異なる方法で

自由度を求めます。 今回は、 独立な標本積率の数には標本の平均値だけでな く、 標本

の分散および共分散も含まれます。 若者の標本には、 2 つの分散、 1 つの共分散、 2 つ
の平均値があ り、 合計 5 つの標本積率があ り ます。 同様に、 老人の標本にも  5 つの標

本積率があ り ます。 したがって、両方の標本を合わせる と  10 個の標本積率があ り ます。

推定パラ メータは 7 つあ り ます。 それぞれ、 var_rec (記憶1 の分散 )、 var_cue (助成記

憶1 の分散 )、 cov_rc (記憶1 と助成記憶1 の共分散 )、 若者と老人の中での記憶1 の平

均値 (2 つ )、 若者と老人の中での助成記憶1 の平均値 (2 つ ) です。
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したがって、 自由度の数は次のよ うに計算されます。

こ こでのカイ  2 乗統計量も、例10 のモデル B と同じです。 通常の有意水準では、若者

と老人が同じ分散と共分散を持つという仮説は適用できます。

こ こに示すのは、 40 人の若者の被験者のパラ メータ推定値です。

こ こに示すのは、 40 人の老人の被験者の推定値です。

平均値を除いて、これらの推定値は例 10 のモデル B で得られた推定値と同じです。

標準誤差および検定統計量の推定値も同じです。 このこ とは、 平均値に制約条件を指

定せずに平均値を推定しても、 残りのパラ メータや標準誤差の推定値には影響しない

こ とを示しています。

カイ  2 乗 = 4.588
自由度 = 3
確率水準 = 0.205
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グラ フ ィ ッ ク出力

2 つのグループのパス図の出力を次に示します。 各変数の隣に、平均値と分散の組が表

示されています。 たとえば、若者の被験者の場合、変数記憶1 の平均の推定値は 10.25、
分散の推定値は 5.68 です。

若者および老人の被験者のモデル B

こ こからは、 モデル A が正しいと仮定して、 両方のグループの記憶1 および助成記憶

1 の平均値が同じである という、 よ り限定的な仮説を考えます。 

記憶1 および助成記憶1 の平均値に制約条件を指定するには、次の操作を実行します。

E 記憶1 を右ク リ ッ ク して、 ポップアップ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を
選択します。

E [オブジェク トのプロパティ ] ダイアログ ボックスの [パラメータ ] タブをク リ ッ ク します。

[ 平均値 ] テキス ト  ボッ クスには、 数値か名前のいずれかを入力できます。 こ こでは、

「mn_rec」 という名前を入力します。
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E [ 全グループ ] を選択します。 ([ 全グループ ] の隣にチェッ ク  マークが表示されます。

チェッ ク  マークを付ける と、 すべてのグループの記憶 1 の平均値に mn_rec という名

前を割り当て、すべてのグループで記憶1 の平均値が同じであるこ とが要求されます。)

E 記憶 1 の平均値に mn_rec という名前を付けた後、 同じ手順で助成記憶 1 の平均値に

mn_cue という名前を付けます。

2 つのグループのパス図は、 次のよ うにな り ます。

このパス図は、 Ex13-b.amw ファ イルに保存されています。

モデル B の結果

平均値に新しい制約条件を指定する と、 モデル B の自由度は 5 になり ます。

通常の有意水準では、 モデル B は棄却されます。

カイ  2 乗 = 19.267
自由度 = 5
確率水準 = 0.002
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モデル B と モデル A との比較

モデル A が正し く、 モデル B が誤りである場合 ( これは、 モデル A は適用でき、 モデ

ル B は棄却されたこ とから理に適っています )、 平均値が等しいという仮定が誤って

いるこ とにな り ます。 分散と共分散が等しいという仮定の下で平均値が等しいという

仮説をさ らに検定するには、 次の方法があ り ます。 モデル B をモデル A と比較する

と、 カイ  2 乗統計量の差は 14.679、 自由度の差は 2 です。 モデル B は、 モデル A に制

約条件を追加して得られたため、モデル B が正しい場合、差の 14.679 は、自由度の差

2 によるカイ  2 乗変数についての観測値です。 この大きさのカイ  2 乗値を得られる確

率は 0.001 です。 したがって、モデル A を受け入れてモデル B は棄却し、2 つのグルー

プの平均値は異なる と結論するこ とができます。

モデル B をモデル A と比較するこ とは、 Amos の通常の多変量分散分析に非常に近

い方法です。 実際、 Amos のカイ  2 乗検定は漸近的にのみ正しいとい う点を除いて、

Amos の検定は通常の MANOVA と同等です。 対照的に、 この例の場合、 MANOVA で
は正確な検定を行う こ とができます。

複数のモデル入力

単一の分析でモデル A およびモデル B を両方当てはめるこ とができます。 Ex13-all.amw
ファイルでこの方法を示します。 単一の分析で両方のモデルを当てはめる利点のひとつ

は、 2 つのモデルが入れ子になっているこ とを Amos が認識し、 カイ  2 乗値の差だけで

なく、モデル B をモデル A に対して検定する場合の p 値を自動的に計算するこ とです。 
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VB.NET での平均構造モデル作成

モデル A

こ こで示すプログラム (Ex13-a.vb) は、 モデル A に適合します。 このプログラムでは、

例 10 のモデル B で使用した分散と共分散の制限を保持し、 さ らに平均値についても

制約条件を指定します。

ModelMeansAndIntercepts メ ソ ッ ドを使用して、(外生変数の ) 平均値および (内生変数の

予測における ) 切片が明示的なモデル パラ メータ と して推定されるよ うに指定しま

す。

Mean メ ソ ッ ドは、記憶1 および助成記憶1 の平均値を推定するために各グループで

2 回使用します。 このプログラムで Mean メ ソ ッ ドを使用しない場合、 記憶1 および助

成記憶1 の平均値は 0 で固定されます。 Amos プログラムで ModelMeansAndIntercepts メ
ソ ッ ドを使用する場合、 別の平均値を指定しないと、 Amos では各外生変数の平均値

が 0 と仮定されます。 平均値を推定する外生変数につき  1 回 Model メ ソ ッ ドを使用す

る必要があ り ます。 ModelMeansAndIntercepts メ ソ ッ ドを使用する場合は、 Amos プログ

ラムがこのよ うに動作するこ とを考慮する必要はあ り ません。
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注 : Amos プログラムで Sem.ModelMeansAndIntercepts メ ソ ッ ドを使用する場合、平均値を

推定する外生変数ごとに 1 回、Mean メ ソッ ドを呼び出す必要があり ます。 Mean メ ソ ッ ド

を使用して明示的に推定しない外生変数は、 平均値が 0 と仮定されます。

この点が Amos Graphics と違います。 Amos Graphics では、 [ 平均値と切片を推定 ] に
チェ ッ ク  マークを付ける と、 平均値に明示的な制約条件が指定されていない限り、

すべての外生変数の平均値が制約条件のないパラ メータ と して扱われます。

モデル B

次のプログラム (Ex13-b.vb) は、モデル B に適合します。 グループによらない分散と共

分散が要求されるこ とに加え、 このプログラムではグループ間で等しい平均値を持つ

こ と も要求されます。
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複数のモデルを適合する

次のプログラムは、モデル A およびモデル B の両方に適合します。 このプログラムは、

Ex13-all.vb という名前で保存されています。
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明示的な切片を持つ回帰

概要

この例は、 通常の回帰分析で切片を推定する方法を示します。

Amos が行う仮定

通常、 ある変数が他の変数に線形従属する と指定する場合、 Amos では付加定数、

つま り切片を含む従属を表す線形方程式を仮定しますが、 切片の推定は行いません。

たとえば例 4 では、 変数成果を他の 3 つの変数 (知識、 価値、 満足度 ) に線形従属する

よ うに指定しました。 Amos では、 次の形式の回帰方程式を仮定します。 

成果 = a + b1  知識 + b2  価値 + b3  満足度 + error

こ こで、 、 、  は係数、a は切片です。 例4 では、係数  から   を推定しました。

Amos では、 例4 の a は推定せず、 パス図にも現れません。 それでも、 回帰方程式に a
が存在する と仮定して 、 、  を推定しました。 同様に、 知識、 価値、 満足度 が平

均値を持つと仮定しましたが、平均値は推定せず、パス図にも現れません。 通常は回帰

方程式の平均値と切片をこの方法で扱えば十分です。 しかし、場合によっては切片を推

定したり、 切片に関する仮説を検定したりする必要があるこ と もあ り ます。 その場合、

この例で示す手順に従う必要があり ます。 

データについて

こ こでは、 例4 で最初に使用した Warren, White, Fuller (1974 年 ) のデータをも う一度

使用します。 こ こでは、 Examples ディ レク ト リにある  UserGuide.xls の Warren5v とい

う  Excel ワークシート を使用します。 以下に、 標本の積率 (平均値、 分散、 共分散 ) を
示します。

b1 b2 b3 b1 b3

b1 b2 b3
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モデルを指定する

例4 で指定したものと同じ回帰モデルを指定できます。 例4 の操作を行っている場合、

そのパス図をこの例の出発点と して使用できます。 Amos で平均値と切片を推定する

には、 1 つだけ変更する必要があ り ます。

E メニューから  [ 表示 ] [ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスの [ 推定 ] タブをク リ ッ ク します。

E [ 平均値と切片を推定 ] を選択します。

パス図は次のよ うにな り ます。

変数誤差の上に、 0, という文字列が表示されているこ とに注意してください。 カンマ

の左の 0 は、 変数誤差の平均値が 0 で固定されているこ とを示します。 これは、 線形

回帰モデルでは通常の仮定です。 0, のカンマの右に何もないのは、誤差の分散が定数

ではなく、 名前を付けられていないこ とを表します。

[ 平均値と切片を推定 ] にチェッ ク  マークを付ける と、 Amos では各予測変数につい

て平均値を推定し、 成果を予測する回帰方程式の切片を推定します。
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分析の結果

テキス ト 出力

現在の分析では例 4 と同じ結果になり ますが、 3 つの平均値と  1 つの切片が明示的に

推定されます。 自由度の数はこ こでも  0 ですが、自由度の計算は少し異なり ます。 標本

の平均値がこの分析に必要です。 したがって、 独立な標本積率の数には標本の分散と

共分散だけでな く平均値も含まれます。 標本には 4 つの平均値、 4 つの分散、 6 つの

共分散があ り、 合計で 14 個の標本の積率があ り ます。 パラ メータ推定値については、

3 つの係数と  1 つの切片があ り ます。 また、 3 つの予測変数には 3 つの平均値、 3 つの

分散、 3 つの共分散があ り ます。 最後に、 1 つの誤差分散があ り ます。 合計で 14 個の

パラ メータ推定値があ り ます。

自由度が 0 であるため、 検定する仮説はあ り ません。

カイ  2 乗 = 0.000
自由度 = 0
確率水準の計算はできません。
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係数、 分散、 共分散の推定は例4 と同じです。 また、 関係する標準誤差、 検定統計量、

p 値も同じです。

グラ フ ィ ッ ク出力

この例の標準化されていない推定値を示すパス図を、 以下に示します。 内生変数成果

の真上に切片 –0.83 が表示されています。
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VB.NET でのモデル作成

参照用に、 例4 の Amos プログラム (方程式版 ) をこ こに示します。

次の例14 のモデルのプログラムは、同じ結果に加えて、平均値と切片の推定値を与え

ます。 このプログラムは、 Ex14.vb という名前で保存されています。

Sem.ModelMeansAndIntercepts ステート メン トによ り  Amos が平均値と切片を明示的なモ

デル パラ メータ と して扱う こ とに注意して ください。 も う  1 つの例 4 との違いは、

AStructure の行に、 1 組の空のかっこ とプラス記号を追加しているこ とです。 追加した

空のかっこは、 回帰方程式の切片を表します。
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Sem.Mean ステート メン トによ り、 知識、 価値、 満足度 の平均の推定値を求めます。

Mean メ ソ ッ ドの呼び出しでは、 0 以外の平均値を持つ外生変数をそれぞれ引数と して

指定する必要があ り ます。 このプログラムで Mean メ ソ ッ ドを使用しない場合、 Amos
では外生変数の平均値は 0 で固定されます。

切片パラ メータは、( この例で示したよ うに ) Sem.AStructure コマンドで 1 組のかっこ

を追加するこ とで指定できますが、Intercept メ ソ ッ ドを使用して指定するこ と もできま

す。 次のプログラムでは、 Intercept メ ソ ッ ドを使用して、成果を予測する回帰方程式に

切片が存在するこ とを指定します。
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構造平均によ る因子分析

概要

この例は、複数の母集団のデータの共通因子分析で因子平均を推定する方法を示します。

因子平均

伝統的に、 共通因子分析モデルでは、 変数の平均値に関する仮定は行いません。 特に、

モデルでは共通因子の平均に関する仮定は行いません。 実際、 因子平均を推定したり、

従来の単一標本の因子分析で仮説を検定したりするこ とは不可能です。

しかし、 Sörbom (1974 年 ) は、 複数の母集団のデータを分析する限り、 適切な仮定

の下で因子平均について推論するこ とが可閥であるこ とを示しました。 Sörbom の手法

を使用する と、すべての母集団のすべての因子の平均を推定するこ とはできませんが、

母集団間の因子平均の差を推定するこ とはできます。 たとえば、 共通因子分析モデル

を少女の標本と少年の標本に同時に当てはめた例12 を考えます。 各グループに 2 つの

共通因子があ り、 言語能力 (verbal) および空間能力 (spatial) と解釈されました。 例 12
で使用した方法では、 言語能力の平均や空間能力の平均を調査できません。 Sörbom の
方法ではこれが可能です。 Sörbom の方法では、 少女または少年のどちらについても平

均値を推定するこ とはできませんが、 各因子について、 少女と少年の平均値の差を推

定するこ とはできます。 この方法では、 因子平均の差についての有意確率の検定もで

きます。

因子分析モデルの状態の特定は、因子平均を推定する場合の難しい問題です。 実際、

Sörbom の業績は、パラ メータに制約条件を課して、因子分析モデルを特定して因子平

均の差を推定する方法を示したこ とです。 こ こでは、Sörbom のガイ ド ラインに従って、

この例のモデルを特定します。
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データについて

こ こでは、例12 の Holzinger と  Swineford (1939 年 ) のデータを使用します。 少女のデー

タ セッ トは Grnt_fem.sav にあ り ます。 少年のデータ セッ トは Grnt_mal.sav にあ り ます。

少年と少女のモデル A

モデルを指定する

この例では、 少年と少女の空間能力の平均は同じであ り、 言語能力の平均も同じであ

る とい う帰無仮説を検定するためのモデルを構成する必要があ り ます。 こ こで、 空間

能力および言語能力は共通因子です。 この仮説に意味を持たせるには、 視覚能力

(spatial) および言語能力 (verbal) を、少年に対しても少女に対しても同様に観測変数に

関連付ける必要があ り ます。 これは、 少女の係数と切片を、 少年の係数と切片に等し

くする必要がある という こ とです。 
例12 のモデル B は、 この例のモデル A を指定するための出発点と して使用できま

す。 例12 のモデル B を出発点と して、 以下の操作を実行します。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 推定 ] タブをク リ ッ ク します。

E [ 平均値と切片を推定 ] を選択します (隣にチェッ ク  マークが表示されます )。

係数は既にグループ間で等しいという制約条件を指定されています。 切片がグループ

間で等しいという制約条件を設定するには、 次の操作を実行します。

E visperc (視覚認知力 ) などの観測変数の 1 つを右ク リ ッ ク します。

E ポップアップ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択します。

E [オブジェク トのプロパティ ] ダイアログ ボックスで、[パラメータ ] タブをク リ ック します。

E [切片 ] テキス ト  ボッ クスに、 「int_vis」 などのパラ メータ名を入力します。

E [ 全グループ ] を選択し、 両方のグループで切片の名前を 「int_vis」 にします。

E 同じ操作を繰り返して、 残りの 5 つの切片にも名前を付けます。

Sörbom が示したよ うに、1 つのグループの因子平均を定数に固定する必要があ り ます。

こ こでは、 少年の視覚能力 (spatial) および言語能力 (verbal) を 0 に固定します。 例 13
では、 変数の平均値を定数値に固定する方法を示しています。 
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注 : [オブジェク トのプロパティ ] ダイアログ ボッ クスを使用して少年の因子平均を 0
に固定する場合、[ 全グループ ] のチェッ ク  マークを付けないよ うに注意してください。

少年の因子平均を 0 に固定してから、 同じ手順に従って、 少女の因子平均にも名前を

割り当てます。 この時点で、 少女のパス図は次のよ うにな り ます。

少年のパス図は次のよ うにな り ます。
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グループ間の制約条件について

切片および係数に関するグループ間の制約条件は、 母集団によって満たされる場合と

満たされない場合があ り ます。 モデルを当てはめた結果の 1 つが、 これらの制約条件

が少女と少年の母集団で保持されるかど うかの検定にな り ます。 これらの制約条件か

ら始めた理由は、 (Sörbom が指摘しているよ うに ) 因子平均を推定する場合、モデルを

特定するためには切片および係数に関する制約条件のいくつかを課す必要があるため

です。 これらの制約条件だけがモデルを特定するための制約条件ではあ り ませんが、

妥当と思われるものです。

少年と少女のパス図の唯一の違いは、2 つの因子平均の制約条件にあ り ます。 少年の

場合、 平均は 0 で固定されています。 少女の場合、 両方の因子平均が推定されます。

少女の因子平均には mn_s および mn_v という名前が付けられていますが、それぞれの

因子平均に固有の名前が付けられているため、 因子平均には制約条件はあ り ません。

少年の因子平均は、 モデルを特定するために 0 に固定されています。 Sörbom は、

こ こでまったく違う制約条件を課したと しても、 少年と少女の因子平均を同時に推定

するこ とは不可能であるこ とを示しました。 例と して、言語能力を考えます。 少年の言

語能力の平均をある定数 (0 など ) に固定する場合、 少女の言語能力の平均を推定する

こ とができます。 別の方法と して、 少女の言語能力の平均をある定数に固定して、

少年の言語能力の平均を推定するこ と もできます。 残念ながら、 両方の平均を同時に

推定するこ とはできません。 その代わり、 どちらの平均を固定した場合も、 その平均

をどんな値に固定した場合も、 少年の平均と少女の平均の差は同じになり ます。

モデル A の結果

テキス ト 出力

通常の有意水準では、 モデル A を棄却する理由はあ り ません。

カイ  2 乗 = 22.593
自由度 = 24
確率水準 = 0.544
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グラ フ ィ ッ ク出力

こ こで関心があるのは、 主に言語能力の平均と空間能力の平均の推定値です。 他のパ

ラ メータの推定値にはあま り関心はあ り ません。 しかし、 通常どおり、 すべての推定

値が妥当であるか確かめる必要があ り ます。 こ こに示すのは、 73 人の少女の標準化さ

れていないパラ メータ推定値です。
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こ こに示すのは、 少年の推定値です。

少女の空間能力の平均の推定値は –1.07 です。 少年の空間能力の平均は 0 で固定して

います。 したがって、 少女の空間能力の平均は、 少年の空間能力の平均よ り も  1.07 単
位だけ低いと推定されています。 この差は、 最初に少年の平均を 0 に固定したこ とに

は影響されません。 少年の平均を 10.000 に固定していた場合、 少女の平均は 8.934 と
推定されていました。 少女の平均を 0 に固定していた場合、 少年の平均は 1.07 と推定

されていました。

空間能力はどのよ う な単位で表されているのでし ょ うか。 空間能力の 1.07 単位の

差は、 単位の大きさに応じて大きな差にも小さい差にもな り ます。 空間能力の visperc
(視覚認知力 ) を回帰する係数は 1 に等しいので、 空間能力は visperc (視覚認知力 ) の
検定の得点と同じ単位で表されている とい う こ とができます。 もちろん、 これはユー

ザーが visperc (視覚認知力 )の検定に詳し くないと有用な情報にはなり ません。 visperc
(視覚認知力 )に関係なく  1.07 という平均の差を評価する別の方法もあ り ます。 こ こに

は載せていませんが、 テキス ト出力の一部に、 少年の spatial (視覚能力 )の分散の推定

値は 15.752 であ り、 標準偏差は約 4.0 である こ とが示されています。 少女の場合、

spatial (視覚能力 ) の分散の推定値は 21.188、 標準偏差は約 4.6 です。 この大きさの標

準偏差では、 通常は 1.07 という差はあま り大きいとは考えられません。

少女と少年の間の、 1.07 単位の差の統計上の有意性は容易に評価できます。 少年の

平均は 0 に固定されているため、 必要なのは少女の平均が 0 から大き く離れているか

ど うかを調べるこ とだけです。
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こ こに、 テキス ト出力の少女の因子平均の推定値を示します。

少女の空間能力の平均の検定統計量は –1.209 で、 0 から大き く離れてはいません

( )。 言い換える と、 少年の平均から大き く離れてはいません。

言語能力に注目する と、 少女の平均は、 少年の平均よ り  0.96 単位高いと推定され

ます。 言語能力の標準偏差は、 少年では約 2.7、 少女では約 3.15 です。 したがって、

言語能力の 0.96 単位は、 一方のグループの標準偏差の約 1/3 です。 少年と少女の間の

差は、 0.05 レベルで有意とな り ます ( )。

少年と少女のモデル B

モデル A の議論では、検定統計量を使用して 2 回の有意差検定を行いました。空間能

力における性別の違いについての検定と、 言語能力における性別の違いについての検

定です。 こ こでは、 空間能力または言語能力のいずれにおいても性別による違いはな

いという帰無仮説の検定を行います。 このため、 少年と少女が空間能力でも言語能力

でも同じ平均値を持つという制約条件を追加して分析を繰り返します。 少年の平均値

は既に 0 に固定されているため、 少女の平均値を少年の平均値と同じにする という こ

とは、 少女の平均値も  0 にする という こ とです。

少女の因子平均には、 mn_s および mn_v という名前が付けられています。 平均値を 0
に固定するには、 次の操作を実行します。

E メニューから  [ 分析 ]  [ モデルを管理 ] の順に選択します。

E [モデル管理 ] ダイアログ ボッ クスの [モデル名 ] テキス ト  ボッ クスに 「Model A」 と入

力します。

p 0.226=

p 0.066=
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E [パラ メータ制約 ] ボッ クスは空白のまま残しておきます。

E [ 新規作成 ] をク リ ッ ク します。

E [モデル名 ] テキス ト  ボッ クスに 「Model B」 と入力します。

E [パラ メータ制約 ] テキス ト  ボッ クスに 「mn_s = 0」 および 「mn_v = 0」 という制約条件

を入力します。

E [ 閉じ る ] をク リ ッ ク します。

こ こで [ 分析 ]  [ 推定値を計算 ] を選択する と、Amos はモデル A およびモデル B の両方

を当てはめます。 Ex15-all.amw ファ イルには、 この 2 つのモデルの設定があ り ます。
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モデル B の結果

モデル A を比較の基準と して使用しない場合、 通常の有意水準を使用する と、 モデル

B は適用可能です。

モデル A およびモデル B の比較

モデル B の検定の別の方法と して、 モデル A が正しいと仮定して、 モデル B がモデ

ル A よ り も大き く劣った適合をしないかど うかを検定するこ と もできます。 この比較

についてのカイ  2 乗検定はテキス ト出力で与えられます。

E [Amos出力 ] ウ ィンド ウで、左上のペインのツ リー図にある  [ モデル比較 ] をク リ ッ ク し

ます。

この表は、モデル B にはモデル A よ り も  2 多い自由度があ り、カイ  2 乗統計量は 8.030
だけ大きいこ とを示しています。 モデル B が正しい場合、 カイ  2 乗の値がこのよ うな

大きい差になる確率は 0.018 であ り、 モデル B に対する反証とな り ます。

カイ  2 乗 = 30.624
自由度 = 26
確率水準 = 0.243
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VB.NET でのモデル作成

モデル A

モデル A に適合するプログラムを次に示します。 このプログラムは Ex15-a.vb と して

保存されています。

AStructure メ ソ ッ ドは、各内生変数につき  1 回呼び出されます。 少女のグループで Mean

メ ソ ッ ドを使用して、 言語能力および空間能力の因子が制約なく推定されるよ うに指

定します。 プログラムでは、 Mean メ ソ ッ ドを使用して、 少年のグループにおける言語

能力および空間能力の平均が 0 になる という指定も行っています。 実際には、Amos で
はデフォルトで平均を 0 と仮定します。 したがって、 少年に対する  Mean メ ソ ッ ドは

必要あ り ません。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc  = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes   = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (int_sen) + (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (int_wrd) + (word_v)spatial  + (1) err_w")
            Sem.Mean("spatial ", "mn_s")
            Sem.Mean("verbal", "mn_v")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc  = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes   = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (int_sen) + (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (int_wrd) + (word_v)spatial  + (1) err_w")
            Sem.Mean("spatial ", "0")
            Sem.Mean("verbal", "0")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル B

モデル B に適合するプログラムを次に示します。 このモデルでは、 少年と少女の両方

の因子平均が 0 に固定されています。 このプログラムは、Ex15-b.vb と して保存されて

います。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples¥userguide.xls"
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "grnt_fem")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc  = (int_vis) +      (1) spatial + (1) err_v")
                Sem.AStructure("cubes   = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragraph = (int_par) +      (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (int_sen) + (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (int_wrd) + (word_v)spatial  + (1) err_w")
            Sem.Mean("spatial ", "0")
            Sem.Mean("verbal", "0")
        Sem.BeginGroup(dataFile, "grnt_mal")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc  = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes   = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragraph = (int_par) +      (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (int_sen) + (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (int_wrd) + (word_v)spatial  + (1) err_w")
            Sem.Mean("spatial ", "0")
            Sem.Mean("verbal", "0")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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複数のモデルの当てはめ

次のプログラム (Ex15-all.vb) は、 モデル A とモデル B の両方に適合します。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc  = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes   = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (int_sen) + (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (int_wrd) + (word_v)spatial  + (1) err_w")
            Sem.Mean("spatial ", "mn_s")
            Sem.Mean("verbal", "mn_v")

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc  = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes   = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1)spatial  + (1) err_p")
            Sem.AStructure("sentence   = (int_sen) + (sent_v)spatial  + (1) err_s")
            Sem.AStructure("wordmean= (int_wrd) + (word_v)spatial  + (1) err_w")
            Sem.Mean("spatial ", "0")
            Sem.Mean("verbal", "0")

        Sem.Model("Model A")                      ' 因子平均の性別による差

        Sem.Model("Model B", "mn_s=0", "mn_v=0")  ' 因子平均を等し く する
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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共分散分析に対する Sörbom の代替案

概要

この例は、 2 つ以上のグループでの長期的な観測による潜在的な構造方程式モデルの

作成、 潜在変数と自己相関残差を取り入れて従来の共分散分析技術を一般化するモデ

ル (1978 年の Sörbom と比較します )、 および従来の共分散分析で行われた仮定の検定

方法を示します。

前提条件

例 9 では、 従来の共分散分析に対して、 信頼できない共変量がある場合でも使用でき

る代替案を示しました。 残念ながら、 共分散分析は完全に信頼できる共変量を仮定す

る以外にも前提条件が必要で、例9 の方法は他の前提条件にも依存しています。 Sörbom
(1978 年 ) は、 これらの前提条件の多くを検定し、前提条件の一部を緩和するこ とがで

きる、 よ り一般的な方法を開発しました。

この例では、Sörbom が自分の方法を紹介するために使用したのと同じデータを使用

します。 説明も  Sörbom の解説に厳密に従います。
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データについて

こ こでは、例9 で紹介した Olsson (1973 年 ) のデータをも う一度使用します。 108 人の

実験被験者から得た標本の平均値、 分散、 共分散は、 UserGuide.xls という  Microsoft 
Excel ワークブッ クの Olss_exp ワークシートに格納されています。 

105 人の統制群の被験者から得た標本の平均値、分散、共分散は、Olss_cnt ワークシー

トに格納されています。 

両方のデータ  セッ トに、分散と共分散の通例の不偏推定値が含まれています。 つま り、

共分散行列の要素は ( ) で割るこ とで得られます。 これは、 Amos が共分散行列を

読み込むために使用するデフォルトの設定でもあ り ます。 ただし、 モデルの当てはめ

の場合は、デフォルトの動作は (N で割って得られる ) 母集団共分散行列の最尤法の推

定を標本の共分散行列と して使用します。 Amos では、不偏推定値から最尤法の推定値

に自動的に移行します。

N 1–
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デフ ォル ト の動作の変更

E メニューから、 [ 表示 ]  [ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスの [ 分散タ イプ ] タブをク リ ッ ク します。

Amos で使用されるデフォルトの設定では、 データ  モデルの欠損値に一致する結果を

得られます (例17 および例18 で解説します )。 LISREL (Jöreskog と  Sörbom、 1989 年 )
や EQS (Bentler、1985 年 ) などの他の SEM プログラムでは、代わりに不偏積率を分析

し、標本のサイズが小さい場合はわずかに異なる結果になり ます。 [ 分散タ イプ ] タブの

[ 不偏推定値共分散 ] オプシ ョ ンを両方選択する と、 Amos では LISREL や EQS と同じ

推定値を生成します。 付録 B では、 共分散行列の最尤法の推定値と不偏推定値のどち

らを選択して当てはめを行うかに関する ト レードオフについて、 詳し く解説します。
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モデル A

モデルを指定する

Olsson のデータに対して、 Sörbom の最初のモデル ( モデル A) を考えます。 統制群の

パス図は次のよ うにな り ます。

次のパス図は、 実験群のモデル A です。

このモデルでは平均値と切片が重要であるため、 次の操作をしっかり と実行して くだ

さい。

E メニューから、 [ 表示 ]  [ 分析のプロパテ ィ ] を選択します。
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E [ 推定 ] タブをク リ ッ ク します。

E [ 平均値と切片を推定 ] を選択します (隣にチェッ ク  マークが表示されます )。

モデル A の各グループで、 pre_syn ( 同意語 ( 事前 )) と pre_opp ( 反意語 ( 事前 )) が
pre_verbal (言語能力 (事前 )) とい う単一の潜在変数の指標であ り、 post_syn (同意語

(事後 )) と post_opp (反意語 (事後 )) が post_verbal (言語能力 (事後 )) という別の潜在変

数の指標であるこ とが指定されます。 潜在変数 pre_verbal (言語能力 (事前 )) は学習開

始時の言語能力、 post_verbal (言語能力 (事後 ))は学習終了時の言語能力と解釈されま

す。 これが Sörbom の測定モデルです。 構造モデルでは、 post_verbal (言語能力 (事後 ))
は pre_verbal (言語能力 (事前 ))に線形従属する と指定されます。 

opp_v1 と  opp_v2 のラベルによ り、 測定モデルの係数が両方のグループで同じであ

る こ とが要求されます。 同様に、 a_syn1、 a_opp1、 a_syn2、 a_opp2 ラベルによ り、

測定モデルの切片が両方のグループで同じであるこ とが要求されます。 この等質性の

制約条件は、 誤った仮定である可能性もあ り ます。 実際、 これから行う分析の結果の

1 つは、 これらの仮定の検定になり ます。 Sörbom が指摘しているよ うに、 構造モデル

のパラ メータに関する仮説を推定および検定できるよ うにするためには、 測定モデル

のパラ メータに関するいくつかの仮定を行う必要があ り ます。

統制群の被験者については、pre_verbal (言語能力 (事前 ))の平均値およびpost_verbal
(言語能力 (事後 ))の切片が 0 に固定されています。 これによ り、 グループの比較を行

う場合は統制群が参照する群にな り ます。 潜在変数の平均値と切片を特定するには、

このよ うな統制群を選ぶ必要があ り ます。

実験被験者の場合、 潜在因子のパラ メータの平均値と切片は、 0 以外の値をと るこ

とが可能です。 pre_diff ラベルの付いた潜在変数の平均値は試験前の言語能力の差を

表し、effect ラベルの付いた切片は統制群と比較した実験群の向上度を表します。 この

例のパス図は、 Ex16-a.amw ファ イルに保存されています。 
Sörbom のモデルでは、 6 つの観測されない外生変数の分散にグループ間の制約条件

を課していないこ とに注意してください。 つま り、4 つの観測変数は統制状態と実験状

態で異なる固有の分散を持ち、 pre_verbal (言語能力 (事前 )) および zeta の分散も  2 つ
のグループで異なる場合があ り ます。 モデル X、 モデル Y、 およびモデル Z を作成す

る と きに、 これらの仮定をよ り厳密に調査します。

モデル A の結果

テキス ト 出力

[Amos出力 ] ウ ィンド ウで、左上のペインのツ リー図にある  [ モデルについての注釈 ] を
ク リ ッ クする と、 モデル A は通常の有意水準では適用できないこ とが示されます。

カイ  2 乗 = 34.775
自由度 = 6
確率水準 = 0.000
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モデル A が誤りであるこ とを示す次のメ ッセージも出力されます。

実験群と統制群を意味のある比較ができるよ うにしたまま、 データに適合するよ うに

モデル A を修正するこ とは可能でし ょ うか。 こ こでは、 分析を繰り返して修正指数を

要求するこ とが有効です。 修正指数を得るには、 次の操作を実行します。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] 

E [分析のプロパティ ] ダイアログ ボッ クスの [ 出力 ] タブをク リ ッ ク します。

E [ 修正指数 ] を選択し、[修正指数 ] の右にあるテキス ト  ボッ クスに適切なしきい値を入

力します。 この例では、 しきい値はデフォルト値の 4 のままにします。

こ こに示すのは、 実験群から出力された修正指数です。

統制群では、 しきい値の 4 よ り大きい修正指数を持つパラ メータはあ り ません。
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モデル B

モデル A で得られた修正指数の最大値から、 実験群の eps2 と  eps4 の間の共分散を追

加するこ とが示唆されます。 修正指数が示すのは、eps2 と  eps4 が 0 でない共分散を持

つこ とができる場合、 カイ  2 乗統計量は少な く と も  10.508 下がる とい う こ とです。

変更パラ メータの統計量 4.700 は、 共分散の推定値が任意の値をと るこ とができる場

合、 共分散の推定値が正の値になるこ とを示しています。 提示された修正値は妥当な

値です。 eps2 は pre_opp (反意語 (事前 )) の固有の分散を表し、 eps4 は post_opp (反意

語 ( 事後 )) の固有の分散を表します。pre_opp ( 反意語 ( 事前 )) と post_opp ( 反意語

(事後 )) の測定値は、 2 つの異なる状況で同じ検定 (反意語 ) を実施して得られます。

したがって、 eps2 および eps4 が正の相関関係を持つと考えるのは妥当です。

次に、 変更されたモデルを考えます。 このモデル B では、 eps2 および eps4 は、 実験

群内で相関関係を持つこ とができます。 モデル A からモデル B を得るには、次の操作を

実行します。

E eps2 と  eps4 を結ぶ両矢印を引きます。

矢印を引く こ とで、eps2 と  eps4 は両グループで相関関係を持つこ とができます。 統制

群では相関させた く ないので、 統制群では共分散を  0 に固定する必要があ り ます。

手順は次のとおりです。

E (パス図の左にある ) [ グループ ] パネルで control をク リ ッ ク して、統制群のパス図を表

示します。

E 両矢印を右ク リ ッ ク して、 ポップアップ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を
選択します。

E [オブジェク トのプロパティ ] ダイアログ ボックスの [ パラ メ ータ ] タブをク リ ック します。

E [ 共分散 ] テキス ト  ボッ クスに 「0」 と入力します。

E [ 全グループ ] のチェッ ク  ボッ クスが空であるこ とを確認します。 チェッ ク  ボッ クスが

空の場合、 共分散の制約条件は統制群にのみ適用されます。
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モデル B の統制群のパス図をこ こに示します。

実験群のパス図は次のよ うにな り ます。
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モデル B の結果

モデル A からモデル B に移行する と、 カイ 2 乗統計量は (見込みの 10.508 よ り大き く )
17.712 下がり、 自由度の数は 1 だけ下がり ます。 

モデル B はモデル A よ りは改善されていますが、十分な改善ではあ り ません。 モデル

B は、 まだデータにう ま く適合しません。 さ らに、 統制群の zeta の分散は、 モデル A
の場合と同じ く負の推定値を持ちます (こ こでは示しません)。 これらの 2 つの事実は、

モデル B に対する強力な反証になり ます。 しかし、 修正指数はモデル B をさ らに修正

できる こ とを示しているので、 まだ望みはあ り ます。 統制群の修正指数は次のよ うに

な り ます。

修正指数の最大値 (4.727) は、 eps2 と  eps4 を統制群で相関させるこ とを提示していま

す。 (eps2 と  eps4 は実験群では既に相関しています。) この修正を行う とモデル C にな

り ます。

カイ  2 乗 = 17.063
自由度 = 5
確率水準 = 0.004
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モデル C

モデル C は、 項 eps2 と  eps4 が統制群と実験群の両方で相関関係を持つという点を除

いてモデル B と同様です。

モデル C を指定するには、 モデル B を取り上げて、 統制群で eps2 と  eps4 の間の共

分散に関する制約条件を削除するだけです。 統制群の新しいパス図をこ こに示しま

す。 このパス図は、 Ex16-c.amw ファ イルにあ り ます。

モデル C の結果

こ こでついに適合するモデルを得られます。

カイ  2 乗 = 2.797
自由度 = 4
確率水準 = 0.592
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統計的な適合度の観点から見る と、 モデル C を棄却する理由はあ り ません。 分散の推

定値がすべて正の値であるこ とにも注意して ください。 105 人の統制群の被験者のパ

ラ メータ推定値を次に示します。

次のパス図は、 108 人の実験被験者のパラ メータ推定値を表示しています。

パラ メータ推定値の大部分はあま り興味を引きませんが、 推定値が妥当であるこ とを

確認するこ とができます。 分散の推定値が正であるこ とは既に確認しました。 測定モ

デルのパス係数は正であるこ とが保証されます。 測定モデルの係数に正の値と負の値

が混在する と、解釈するのが困難で、 モデルに疑問が生じます。 eps2 と  eps4 の間の共

分散は、 期待どおり両方のグループで正です。
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こ こで主に興味があるのは、pre_verbal (言語能力 (事前 ))に対する post_verbal (言語

能力 ( 事後 )) の回帰です。 切片は、 統制群では 0 に固定されていますが、 実験群では

3.71 と推定されます。 係数の推定値は、 統制群では 0.95、 実験群では 0.85 です。 2 つ
のグループの係数は非常に近く、2 つの母集団で同じ値であるよ うに見えます。 係数が

同じ場合、 2 つのグループの比較を切片の比較に限定するこ とで、 試験の評価を大幅

に簡略化できます。 したがって、 両方のグループの係数が同じであるモデルは試行す

る価値があ り ます。 これがモデル D になり ます。

モデル D

モデル D は、両方のグループで pre_verbal (言語能力 (事前 ))から post_verbal (言語能力

(事後 )) を予測するための係数が同じであるこ とが要求される点を除いて、モデル C と
同様です。 両方のグループの係数に同じ名前 ( たとえば、 pre2post) を付ける こ とで、

この制約条件を指定するこ とができます。 次に示すのは、 実験群についてのモデル D
のパス図です。
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次に、 統制群についてのモデル D のパス図を示します。

モデル D の結果

通常の有意水準では、 モデル D は適合します。

モデル C に対して、 モデル D の検定では 1.179 (= 3.976 – 2.797) 大きいカイ  2 乗値と

1 (つま り、 5 – 4) 多い自由度が得られました。 こ こでも、 係数が等しいとい う仮説

(モデル D) を受け入れるこ とができます。

カイ  2 乗 = 3.976
自由度 = 5
確率水準 = 0.553
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係数が等しい場合、 試験前と試験後の被験者の比較は、 切片の差に依存します。

こ こに示すのは、 105 人の統制群の被験者のパラ メータ推定値です。

108 人の実験被験者の推定値は次のよ うにな り ます。

実験群の切片は 3.63 と推定されます。 テキス ト出力 ( こ こでは示しません ) による と、

推定値 3.63 の検定統計量は 7.59 です。 したがって、 実験群の切片は統制群の切片

(0 に固定 ) と大き く異なっています。 
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モデル E

切片post_verbal (言語能力 (事後 ))の差の有意確率を検定する別の方法に、グループ間

で切片が等しいとい う制約条件を追加してモデル D の分析を繰り返す方法があ り ま

す。 統制群の切片は既に 0 に固定されているので、 必要な手順は実験群の切片も同様

に 0 にする という条件を追加するだけです。 モデル E ではこの制約を使用します。

モデル E のパス図は、 pre_verbal (言語能力 (事前 ))に対する回帰の切片post_verbal
(言語能力 (事後 ))が両方のグループで 0 に固定されているこ とを除いて、モデル D の
パス図と同じです。 パス図はこ こには載せません。 Ex16-e.amw にパス図が含まれてい

ます。

モデル E の結果

モデル E は棄却されます。

モデル E をモデル D と比較する と、51.018 (= 55.094 – 3.976) 大きいカイ  2 乗値と  1
(= 6 – 5) 多い自由度が得られます。 モデル D が支持され、 モデル E は棄却されます。

モデル E の適合度はモデル D の適合度よ り大幅に低いため、切片が等しいという仮説

は棄却されます。 言い換える と、 試験後の時点での統制群と実験群には、 試験前の時

点で存在した差からは計算できない差があ り ます。

これが Olsson のデータに対する  Sörbom (1978 年 ) の分析の結論です。

モデル A からモデル E を単一の分析で当てはめる

Ex16-a2e.amw ファ イルの例は、5 つすべてのモデル (モデル A からモデル E) を単一の

分析で当てはめます。 単一の分析で複数のモデルを当てはめる手順の詳細は、 例 6 で
示しました。

Sörbom の方法と例 9 の方法の比較

共分散分析に対する  Sörbom の代替案は例9 の方法よ り も適用するのが困難です。 その

一方で、 Sörbom の方法はよ り一般的であるため、 例 9 の方法よ り も優れています。

つま り、適切なパラ メータ制約を用いて Sörbom の方法を使用するこ とで、例9 の方法

を再現できます。

カイ  2 乗 = 55.094
自由度 = 6
確率水準 = 0.000
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モデル X、モデル Y、モデル Z という  3 つのモデルを示して、 この例を終わり ます。

これらの新しいモデルの比較によ り、 例9 の結果を再現するこ とができます。 ただし、

例 9 で使用した方法が不適切だったという証拠も見つかり ます。 この非常に複雑な演

習の目的は、例9 の手法の制限に注目し、 Sörbom の手法ではその方法の前提条件の一

部を検定および緩和できるこ とを示すこ とです。

モデル X

最初に、 観測変数の分散と共分散が統制状態および実験状態で同じであるこ とが要求

される新しいモデル (モデル X) を考えます。 観測変数の平均値は、 2 つの母集団の間

で異なる場合もあ り ます。 モデル X では、 変数の間に線形従属性は指定しません。

モデル X はそれ自体はあま り興味深いものではあ り ませんが、(後から作成する ) モデ

ル Y およびモデル Z は興味深いモデルです。 モデル X と比べて、 これらのモデルが

どれだけデータに適合するかを調べます。

Amos Graphics のモデル作成

推定する切片や平均値がないため、 [分析のプロパティ ] ダイアログ ボッ クスの [ 推定 ]
タブにある  [ 平均値と切片を推定 ] にチェッ ク  マークがないこ とを確認してください。 

次に示すのは、 統制群についてのモデル X のパス図です。

実験群のパス図も同じです。 両方のグループで同じパラ メータ名を使用する と、2 つの

グループが同じパラ メータ値を持つこ とが要求されます。
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モデル X の結果

通常の有意水準では、 モデル X は棄却されます。

実際には、 モデル X が不適切であるこ とがわかった時点で、 この後の分析 (モデル Y
およびモデル Z) も不適切なモデルです。 例9 で得られた結果と同じ結果になるこ とを

示すため、 演習と して分析を実行します。

モデル Y

モデル D に次の制約条件を追加したモデルを考えます。

 試験前の言語能力 (言語能力 (事前 )) が、 統制群と実験群で同じ分散を持つ。

 eps1、 eps2、 eps3、 eps4、 および zeta の分散が、 両方のグループで等しい。

 eps2 と  eps4 の間の共分散が、 両方のグループで等しい。

eps2 と  eps4 の相関関係を除いて、 モデル D では、 eps1、 eps2、 eps3、 eps4、 および

zeta が、 これらの変数同士と も他のすべての外生変数と も相関しないこ とが要求され

ました。 これらの新しい制約条件によ り、 すべての外生変数の分散と共分散が両方の

グループで同じになるこ とが要求されます。 

要するに、 新しいモデルでは次の 2 種類の制約条件が課されます。

 すべての係数と切片は両方のグループで等しい。ただし、 pre_verbal ( 言語能力

(事前 ))から post_verbal (言語能力 (事後 )) を予測するために使用する切片は異なる

場合があ り ます (モデル D の条件 )。 

 外生変数の分散と共分散は両方のグループで等しい (モデル Y で追加された条件 )。

これらは例9 のモデル B で行ったものと同じ仮定です。 今回は、明示的に仮定を行い、

検定できる という こ とが違います。 モデル Y のパス図を下に示します。 このモデルで

は平均値と切片を推定するので、 次の操作をしっかり と実行してください。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [ 推定 ] タブをク リ ッ ク します。

E [ 平均値と切片を推定 ] を選択します (隣にチェッ ク  マークが表示されます )。

カ イ  2 乗 = 29.145
自由度 = 10
確率水準 = 0.001
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実験群のパス図をこ こに示します。

統制群のパス図をこ こに示します。

モデル Y の結果

モデル Y は棄却されます。

例 9 の分析は、 モデル Y (例 9 のモデル B) が正しいという こ とに依存しているため、

適合しなかったのも当然です。 振り返ってみる と、 例9 のモデル B が適合するこ とが

わかり ます (2= 2.684、 df = 2、 p = 0.261)。 では、 ど う してこ こでは同じモデルが棄却

されるのでし ょ うか (2 = 31.816、 df = 1、 p = 0.001)。 その答えは、 帰無仮説は両方の

カイ  2 乗 = 31.816
自由度 = 12
確率水準 = 0.001
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ケース  (例9 のモデル B と この例のモデル Y) で同じですが、対立仮説が異なるためで

す。 例9 では、 モデル B を検定した対立仮説には、 観測変数の分散と共分散が試験変

数の両方の値と同じである という仮定が含まれています (32 ページでも仮定していま

す )。 言い換える と、例9 のモデル B の検定は、統制群と実験群の母集団で分散と共分

散の等質性を暗に仮定して実行されました。 これはまさに、 この例のモデル X で明示

的に行った仮定です。 
モデル Y は、 モデル X に制約を追加したモデルです。 モデル Y の仮定 (2 つの母集

団で係数が等し く、 外生変数の分散と共分散が等しい ) は、 モデル X の仮定 ( 観測変

数の共分散が等しい ) を包含するこ とを示すこ とができます。 したがって、 モデル X
とモデル Y は入れ子になったモデルです。そして、モデル X が正しいという仮定の下

でモデル Y の条件付き検定を実行するこ とが可能です。 当然、 検定が意味を持つのは

モデル X が本当に正しい場合のみですが、既にモデル X は誤りだという結論が出てい

ます。 それでも、 モデル X に対するモデル Y の検定を行いまし ょ う。 カイ  2 乗値の差

は 2.671 (つま り、31.816 – 29.145)、自由度の差は 2 (= 12 – 10) です。 これらの数値は、

例9 のモデル B の値と  (丸め誤差の範囲内で ) 同じです。 違うのは、例9 では検定が適

切である と仮定したこ とです。 こ こでは、 (モデル X を棄却したこ とから ) 検定が不適

切であるこ とはよ くわかっています。

現在のモデル Y が例9 のモデル B と同じであるこ とに疑問がある場合、 2 つの分析

のパラ メータ推定値を比較してください。 108 人の実験被験者のモデル Y のパラ メー

タ推定値をこ こに示します。 例9 のモデル B から得た標準化されていないパラ メータ

推定値が、 表示される推定値と一致するかど うか確認してください。
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モデル Z

最後に、 pre_verbal (言語能力 (事前 ))から post_verbal (言語能力 (事後 )) を予測するた

めの方程式の切片が、 両方の母集団で等しいという条件をモデル Y に追加して、 新し

いモデル ( モデル Z) を作成します。 このモデルは例9 のモデル C と同じ ものです。

モデル Z のパス図は次のよ うにな り ます。

モデル Z の実験群のパス図をこ こに示します。

統制群のパス図をこ こに示します。
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モデル Z の結果

このモデルは棄却されます。

モデル Y と比較する と、モデル Z も棄却されます (2 = 84.280 – 31.816 = 52.464、
df = 13 – 12 = 1)。 丸め誤差の範囲内で、 これは例9 でモデル C をモデル B と比較した

と きのカイ  2 乗値と自由度の差と同じです。

カイ  2 乗 = 84.280
自由度 = 13
確率水準 = 0.000
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VB.NET でのモデル作成

モデル A

モデル A に適合するプログラムを次に示します。 このプログラムは Ex16-a.vb と して

保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples¥UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (0) + () pre_verbal + (1) zeta")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (effect) + () pre_verbal + (1) zeta")
            Sem.Mean("pre_verbal ", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル B

モデル B を当てはめるには、 モデル A のプログラムの実験群のモデル指定に

Sem.AStructure("eps2 <---> eps4")

とい う行を追加します。 完成したモデル B のプログラムをこ こに示します。 このプロ

グラムは、 Ex16-b.vb と して保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples¥UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (0) + () pre_verbal + (1) zeta")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (effect) + () pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")
            Sem.Mean("pre_verbal ", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル C

モデル C に適合するプログラムを次に示します。 このプログラムは、Ex16-c.vb と して

保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples¥UserGuide.xls"

        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (0) + () pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (effect) + () pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")
            Sem.Mean("pre_verbal ", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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モデル D

次のプログラムはモデル D に適合します。 このプログラムは、Ex16-d.vb と して保存さ

れています。

    Sub Main()
        Dim Sem As New AmosEngine
        Try
            Dim dataFile As String = Sem.AmosDir & "Examples¥UserGuide.xls"
            Sem.TextOutput()
            Sem.Mods(4)
            Sem.Standardized()
            Sem.Smc()
            Sem.ModelMeansAndIntercepts()

            Sem.BeginGroup(dataFile, "Olss_cnt")
                Sem.GroupName("control")
                Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
                Sem.AStructure( _
                    "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
                Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
                Sem.AStructure( _
                    "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
                Sem.AStructure("pre_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
                Sem.AStructure("eps2 <---> eps4")

            Sem.BeginGroup(dataFile, "Olss_exp")
                Sem.GroupName("experimental")
                Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
                Sem.AStructure( _
                    "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
                Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
                Sem.AStructure( _
                    "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
                Sem.AStructure( _
                    "pre_verbal = (effect) + (pre2post) pre_verbal + (1) zeta")
                Sem.AStructure("eps2 <---> eps4")
                Sem.Mean("pre_verbal ", "pre_diff")

            Sem.FitModel()
        Finally
            Sem.Dispose()
        End Try
    End Sub
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モデル E

次のプログラムはモデル E に適合します。 このプログラムは、Ex16-e.vb と して保存さ

れています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples¥UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")
            Sem.Mean("pre_verbal ", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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複数のモデルを適合する

次のプログラムは、 モデル A からモデル E まで 5 つすべてのモデルに適合します。 こ
のプログラムは、 Ex16-a2e.vb と して保存されています。

モデル X、 モデル Y、 モデル Z

こ こでは、 モデル X、 モデル Y、 モデル Z の Visual Basic のプログラムは説明しませ

ん。 プログラムは、 Ex16-x.vb、 Ex16-y.vb、 およびEx16-z.vb という ファ イルに保存さ

れています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples¥UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (0) + (c_beta) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4  (c_e2e4)")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn= (a_syn2) + (1)      pre_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) pre_verbal + (1) eps4")
            Sem.AStructure("pre_verbal = (effect) + (e_beta) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4  (e_e2e4)")
            Sem.Mean("pre_verbal ", "pre_diff")

        Sem.Model("Model A", "c_e2e4 = 0", "e_e2e4 = 0")
        Sem.Model("Model B", "c_e2e4 = 0")
        Sem.Model("Model C")
        Sem.Model("Model D", "c_beta = e_beta")
        Sem.Model("Model E", "c_beta = e_beta", "effect = 0")
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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欠損デー タ

概要

この例は、 データの一部に欠損値があるデータ  セッ トの分析方法を示します。

不完全なデータ

調査を計画したと きに期待したデータ値が、 実際には得るこ とができないこ とがしば

しば発生します。 被験者が調査の一部に参加できないこ と もあ り ます。 または、 アン

ケートの回答者がいくつかの質問を飛ばすこ と もあ り ます。 年齢を教えない人、 収入

を答えない人、 反応時間を測定する日に現れない人などがいる場合もあ り ます。 どの

よ うな理由にせよ、 しばしば欠損値のあるデータ  セッ ト を処理するこ とにな り ます。

不完全なデータを処理する標準的な方法の 1 つは、 データの一部に欠損値がある観

測値を分析から除外する こ とです。 これを リ ス ト ご との削除と呼ぶこ とがあ り ます。

たとえばある人が収入を答えなかった場合、 その人を調査から除外し、 サイズは小さ

くな り ますが、 完全なデータのある標本に基づいて通常の分析を行います。 この方法

は、答えなかった回答のために、答えた回答に含まれる情報を捨てる必要があるため、

満足のできる方法ではあ り ません。 欠損値が多いと、 この方法では標本の大部分を捨

てる必要がある場合もあ り ます。

標本積率に基づく分析の場合のも う  1 つの標準的な方法は、 各標本積率を個別に計

算し、 特定の積率の計算に必要な値が欠損している場合にのみ観測値を計算から除外

する方法です。 たとえば、 標本の平均収入の計算では、 収入がわからない人だけを除

外します。 同様に、 標本の年齢と収入の間の共分散の計算では、 年齢または収入が欠

損している場合にだけ観測値を除外します。 この欠損データの処理方法は、 ペアごと

の削除と呼ばれるこ と もあ り ます。
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3 つ目の方法はデータの代入です。 これは、 欠損値を何らかの推測値で置き換え、

完全なデータに対する通常の分析を行う方法です。 たとえば、 収入を答えた人の平均

収入を計算し、その平均収入を収入を答えなかった人全員の収入と考えます。 Beale と
Little (1975 年 ) は、 多くの統計パッケージで実装されているデータの代入方法を解説

しています。

Amos ではこれらの方法はどれも使用しません。 欠損データがある場合でも、 最尤法

による推定値 (Anderson, 1957 年 ) を計算します。 このため、 欠損データがある場合は常

に Amos を使用すれば、 簡単な回帰分析 (例4) や平均値の推定 (例13) など、 従来の分

析を行う こ とができます。

Amos で処理できない種類の欠損データがあるこ とにも注意してください。 (上記の

3 つの方法など、他の一般的な欠損データ処理方法でも処理できません。 ) 場合によっ

ては、 欠損値の存在自体が情報を持ているこ と もあ り ます。 たとえば、 収入が非常に

高い人は ( 他の人と比べて ) 収入に関する質問に答えない傾向がある こ となどです。

このよ うに、 観測データから得られる情報に加えて、 質問に答えなかったこ とからそ

の人の収入レベルについての確率的な情報が得られます。 このよ うな場合には、 Amos
が使用する欠損データの処理方法は不適切です。

Amos では、欠損したデータ値はランダムに欠損したと仮定されます。 この仮定が妥

当であるかど うかや、 欠損データが実際に意味するこ とがいつも簡単にわかる とは限

り ません (Rubin, 1976 年 )。 一方で、ランダムに欠損したという条件が満たされる場合、

Amos では有効で堅実な推定値が得られます。 対照的に、 前述の方法では有効な推定

値を得られません。 また、 欠損データが完全にランダムに欠損している とい う強い条

件の下でのみ推定値が一致します (Little と  Rubin, 2020 年 )。

データについて

この例では、例8 で使用した Holzinger と  Swineford (1939 年 ) のデータを修正します。

元のデータ  セッ ト  (SPSS Statistics ファ イル Grnt_fem.sav に格納されています ) には 73
人の少女の 6 つの検定の得点が含まれ、 合計 438 個のデータ値があ り ます。 欠損値の

あるデータ  セッ ト を得るには、Grnt_fem.sav の 438 個のデータ値をそれぞれ 0.30 の確

率で削除します。

その結果のデータ  セッ トが SPSS Statistics ファ イル Grant_x.sav に格納されています。

下に示しているのは、 このファ イルの最初のいくつかのデータです。 ピ リオド  (.) は欠

損値を表します。 
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Amos では、SPSS Statistics データ  セッ トのピ リオドを認識し、欠損データ と して処理

します。 
Amos は他にも多くのデータ形式で欠損データを認識できます。 たとえば ASCII 形

式のデータ  セッ トでは、 区切り文字が 2 つ連続する と欠損値を示します。 上に示した

7 つのデータは、 ASCII 形式では次のよ うにな り ます。

visperc,cubes,lozenges,paragraph,sentence,wordmean
33,,17,8,17,10
30,,20,,,18
,33,36,,25,41
28,,,10,18,11
,,25,,11,,8
20,25,6,9,,,,
17,21,6,5,10,10

Grant_x.sav のデータの約 27% が欠損しています。 完全なデータが利用できるのは、

7 人分のデータだけです。

モデルを指定する

こ こでは、 Grant_x.sav ファ イルの Holzinger と  Swineford のデータに対して、 例 8 の
共通因子分析モデル (251 ページで示しました ) を当てはめます。 この分析と例 8 の分

析の違いは、 今回はデータの 27% が欠損しているこ とです。 

データ  ファ イルに Grant_x.sav を指定して上のパス図を描いてから、 次の操作を実行

します。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 推定 ] タブをク リ ッ ク します。

E [ 平均値と切片を推定 ] を選択します (隣にチェッ ク  マークが表示されます )。 
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これによ り、 測定変数を予測する  6 つの回帰方程式それぞれの切片を推定するこ とが

できます。 欠損値がある場合の最尤法による推定は、 平均値と切片を推定する と きの

み機能します。 そのため、 推定値が必要でない場合にも平均値と切片を推定する必要

があ り ます。

飽和モデルおよび独立モデル

一部の適合度の計算には、 ユーザーのモデルに加えて、 飽和モデルと独立モデルを当

てはめる必要があり ます。 完全なデータがあればこれは問題になり ませんが、欠損値が

ある場合には、 飽和モデルと独立モデルの適合に大量の計算が必要になる場合があ り

ます。 飽和モデルは特に問題になり ます。 p 個の観測変数がある場合、 飽和モデルには

 個のパラ メータがあ り ます。 たとえば、観測変数が 10 個の場合は 65 個
のパラ メータ、 20 個の変数の場合は 230 個のパラ メータ、 40 個の変数の場合は 860 個
のパラ メータなどとな り ます。 パラ メータの数が多くなる と、飽和モデルを当てはめる

のは現実的ではない場合があり ます。 さ らに、欠損値のパターンによっては、ユーザー

のモデルを当てはめるこ とは可能でも、 飽和モデルを当てはめるこ とは原理的に不可

能である場合もあ り ます。

不完全なデータの場合、 Amos Graphics はユーザーのモデルに加えて、 飽和モデル

および独立モデルを当てはめよ う と します。 Amos が独立モデルの適合に失敗した場

合、 CFI など、独立モデルの適合に依存する適合度が計算できません。 Amos が飽和モ

デルを当てはめるこ とができない場合、 通常のカイ  2 乗統計量は計算できません。

分析の結果

テキス ト 出力

この例では、 Amos は飽和モデルおよび独立モデルを両方当てはめるこ とができます。

結果と して、 カイ 2 乗統計量を含め、 すべての適合度が示されます。 適合度を見るに

は、 次の操作を実行します。

E [Amos出力 ] ウ ィンド ウの左上のツ リー図にある  [ モデル適合 ] をク リ ッ ク します。 

次に示すのは、因子分析モデル (デフォルト  モデルと呼びます )、飽和モデル、独立モ

デルのカイ  2 乗統計量を示す出力の一部です。

カイ  2 乗値 11.547 は、例8 の完全なデータ  セッ トで得られた値 7.853 からあま り離れ

ていません。 両方の分析で、 p 値は 0.05 以上です。

p p 3+  2
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パラ メータ推定値、 標準誤差、 および検定統計量は完全なデータの分析の場合と同

じ解釈ができます。

標準化推定値と重相関係数の平方は次のよ うにな り ます。
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グラ フ ィ ッ ク出力

このパス図は、 内生変数の標準化推定値と重相関係数の平方を示しています。

標準化パラ メータ推定値は、例8 で完全なデータから得られた推定値と比較できます。

2 組の推定値は小数点以下 1 桁まで同じです。
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VB.NET でのモデル作成

不完全なデータを分析するために Amos プログラムを書く場合、 Amos では独立モデ

ルおよび飽和モデルは自動的には当てはめません。 (Amos Graphics ではこれらのモデ

ルを自動的に当てはめます。 ) Amos プログラムで独立モデルおよび飽和モデルを当て

はめるには、プログラムにこれらのモデルを指定するコードを含める必要があ り ます。

特に、 通常の尤度比カイ  2 乗統計量を計算するには、 プログラムに飽和モデルを当て

はめるコート を含める必要があ り ます。

このセクシ ョ ンでは、 尤度比カイ  2 乗統計量の計算に必要な次の 3 つの手順を説明し

ます。

 因子モデルの適合

 飽和モデルの適合

 尤度比カイ  2 乗統計量とその p 値の計算

最初に、 この 3 つの手順を、 3 つの別々のプログラムで実行します。 その後、 3 つの手

順を単一のプログラムにま とめます。

因子モデルの適合 ( モデル A)

次のプログラムは確認のための因子モデル (モデル A) に適合します。 このプログラム

は、 Ex17-a.vb と して保存されています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.Title("Example 17 a: Factor Model")
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.AllImpliedMoments()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grant_x.sav")
        Sem.AStructure("visperc  = ( ) + (1) spatial + (1) err_v")
        Sem.AStructure("cubes   = ( ) +     spatial + (1) err_c")
        Sem.AStructure("lozenges = ( ) +     spatial + (1) err_l")

        Sem.AStructure("paragrap = ( ) + (1)spatial  + (1) err_p")
        Sem.AStructure("sentence   = ( ) +    spatial + (1) err_s")
        Sem.AStructure("wordmean= ( ) +    spatial + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try

End Sub
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ModelMeansAndIntercepts メ ソ ッ ドを使用して平均値と切片がモデルのパラ メータ と して

指定されているこ と と、6 つの回帰方程式のそれぞれに切片を表す 1 組の空のかっこが

含まれているこ とに注意してください。 欠損値のあるデータを分析する場合、平均値と

切片はモデルの明示的なパラ メータ と して示す必要があ り ます。 これは完全なデータ

の分析とは異なり ます。完全なデータの分析では、平均値と切片は、推定するか制約条

件を設定する場合を除いて、 モデルに示す必要はあり ません。

モデル A の適合を要約する と、 次のよ うにな り ます。

対数尤度関数の値は、 完全なデータの場合に得られるカイ  2 乗統計量の代わりに表示

されます。 加えて、テキス ト出力のモデルの要約セクシ ョ ンの先頭に、Amos は次の警

告を表示します。

Amos がこの注記を表示する と きは常に、モデルの要約セクシ ョ ンの cmin 列の値には

見慣れた適合度カイ  2 乗統計量が含まれません。 因子モデルの適合度を評価するには、

対数尤度関数の値を、 飽和モデルなどの制約条件の少ない基準モデルの値と比較する

必要があ り ます。

飽和モデルの適合 ( モデル B)

飽和モデルには、1 次および 2 次の積率と同じ数の自由なパラ メータがあ り ます。 完全

なデータを分析する場合、 飽和モデルは常に標本のデータに完全に適合します ( カイ

2 乗 = 0.00、 df = 0)。 同じ  6 つの観測変数がある構造方程式モデルはすべて、 飽和モデ

ルと同等か、飽和モデルに制約条件を指定したモデルのいずれかです。 飽和モデルは、

少なく と も制約条件のあるモデルと同程度には標本のデータに適合します。 対数尤度

関数の値は制約条件のあるモデルよ り大き くはなく、 通常は小さ くな り ます。

対数尤度関数 = 1375.133
パラ メータ数 = 19

少な く と も  1 つのグループのデータに対して飽和モデルは適合しませんで

した。 このため、 「対数尤度関数」、 AIC、 BCC のみが出力されます。 尤度比

カイ 2乗統計量やその他の適合度測度は出力されません。
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次のプログラムは飽和モデル (モデル B) に適合します。 このプログラムは、Ex17-b.vb
と して保存されています。

BeginGroup の行以降では、 Mean メ ソ ッ ドを 6 回使用し、 6 つの変数の平均の推定値を

要求しています。 Amos が平均値を推定する場合、プログラムで明示的に分散と共分散

を制約していない限り、 自動的に分散と共分散も推定します。

Sub Main()
    Dim Saturated As New AmosEngine
    Try
        ' 飽和モデルの設定と推定
        Saturated.Title("Example 17 b: Saturated Model")
        Saturated.TextOutput()
        Saturated.AllImpliedMoments()
        Saturated.ModelMeansAndIntercepts()

        Saturated.BeginGroup(Saturated.AmosDir & "Examples¥Grant_x.sav")
        Saturated.Mean("visperc")
        Saturated.Mean("cubes")
        Saturated.Mean("lozenges")
        Saturated.Mean("paragrap")
        Saturated.Mean("sentence ")
        Saturated.Mean("wordmean")

        Saturated.FitModel()
    Finally
        Saturated.Dispose()
    End Try
End Sub
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次に示すのは、 飽和モデル B の標準化されていないパラ メータ推定値です。

プログラムの中の AllImpliedMoments メ ソ ッ ドは、 次の推定値の表を表示します。
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これらの推定値は、 平均の推定値も含め、 ペアごとまたはリ ス ト ごとの削除方法を使

用し て計算された標本の値と は異な り ます。 た と えば、 53 人が視覚認識の検定

(visperc) を受けました。 この 53 人の visperc (視覚認知力) の得点の平均は 28.245 です。

Amos による視覚認識の平均得点の推定値も  28.245 だと予想するかも しれません。

これらの推定値は、 推定平均でさえ、 ペアごとの削除またはリ ス ト ごとの削除のいず

れかを使用して標本の値を計算した場合と異なり ます。

この 53 人の visperc (視覚認知力 )の得点の平均は 28.245 です。

対数尤度関数の値は、 入れ子になったモデルの適合度の計算に使用できます。 この場

合、モデル A (適合度の統計量 1375.133、パラメータ数 19) はモデル B (適合度の統計量

1363.586、 パラ メータ数 27) の中に入れ子になっています。 強い方のモデル (モデル A)
を弱いモデル (モデル B) と比較し、強い方のモデルが正しい場合、次のこ とが言えま

す。 弱いモデルから強いモデルに切り替える と きの対数尤度関数の増加量は、 2 つの

モデルのパラ メータ数の差に等しい自由度を持つ、 カイ  2 乗ランダム変数の観測値で

す。 この例では、 モデル A の対数尤度関数は、 モデル B の対数尤度関数を 11.547
(= 1375.133 – 1363.586) 上回っています。 同時に、 モデル A は 19 個のパラ メータしか

推定する必要があ り ません。 一方でモデル B は 27 個のパラ メータを推定する必要が

あ り、 その差は 8 です。 言い換える と、 モデル A が正しい場合、 11.547 は 8 自由度の

カイ  2 乗変数の観測値です。 カイ  2 乗の表で、 このカイ  2 乗統計量が有意な値かど う

かを参照するこ とができます。

尤度比カ イ  2 乗統計量と その p 値の計算

カイ  2 乗の表を参照する代わりに、 ChiSquareProbability メ ソ ッ ドを使用して、 11.547 と
い う大き さのカイ  2 乗値が正しい因子モデルで発生する確率を求める こ とができま

す。 次のプログラムは、ChiSquareProbability メ ソ ッ ドの使用方法を示しています。 このプ

ログラムは、 Ex17-c.vb と して保存されています。

対数尤度関数 = 1363.586
パラ メータ数 = 27

Sub Main()
    Dim ChiSquare As Double, P As Double
    Dim Df As Integer

    ChiSquare = 1375.133 - 1363.586  ' 対数尤度関数の差

    Df = 27 - 19                                      ' パラ メ ータ数の差

    P = AmosEngine.ChiSquareProbability(ChiSquare, CDbl(Df))

    Debug.WriteLine( "Fit of factor model:")
    Debug.WriteLine( "Chi Square = " & ChiSquare.ToString("#,##0.000"))
    Debug.WriteLine("DF = " & Df)
    Debug.WriteLine("P = " & P.ToString("0.000"))
End Sub
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プログラムの出力は、プログラム エディ タの [デバッグ ] 出力パネルに表示されます。

 

p 値は 0.173 です。 したがって、 モデル A が 0.05 レベルで正しいという仮説を受け入

れるこ とができます。

この例で説明したよ うに、 不完全なデータのモデルを検定するには、 適合度を別の

代替モデルの適合度と比較する必要があり ます。 この例では、検定したいのはモデル A
ですが、 モデル A を比較する基準と してモデル B も当てはめる必要があり ます。 代替

モデルは 2 つの条件を満たす必要があり ます。 1 つ目は、 代替モデルが正しいこ とを確

かめる必要があ り ます。 モデル B では明示的でない積率に制約条件を課してはいませ

んし、誤りである可能性がないため、 モデル B は確かにこの条件を満たします。 2 つ目

は、検定するモデルよ り も一般的である必要があり ます。 検定するモデルのパラ メータ

に対する制約条件の一部を削除するこ とで得られたモデルは、 この 2 つ目の条件を満

たします。 代替モデルを考え出すこ とができない場合は、 こ こで使用したよ うに、いつ

でも飽和モデルを使用できます。

単一プログラムでの全手順の実行

両方のモデル ( 因子モデルおよび飽和モデル ) を適合する単一のプログラムを書き、

カイ  2 乗統計量とその p 値を計算するこ とができます。 Ex17-all.vb ファ イルのプログ

ラムでこの方法を示します。
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欠損デー タ についてのその他の情報

概要

この例では、 一部の値を故意に欠損させたデータを分析した後、 不完全なデータを意

図的に収集する際の利点について調べます。

欠損データ

通常、 データの欠損を歓迎する研究者はいません。 普通は可能な限り、 細心の注意を

払ってデータの欠損による誤差を回避しよ う と します。 しかし実際には、 各状況にお

けるすべての変数を観察しない 方がいい場合もあ り ます。 Matthai(1951) と  Lord(1955)
は、 特定のデータ値を意図的に観察しないというデザインを設計しました。 

このデザインで採用されている基本原則とは、 ある変数について十分な観察が得ら

れない、 またはコス トがかかり過ぎる という場合には、 相関関係のある他の変数を別

に観察するこ とで、 よ り精度の高い推定値が得られる という ものです。

このデザインは非常に便利ですが、 計算が難しいという理由から、 以前はご く単純

な条件下でしか用いられませんでした。 こ こでは、 一部のデータが意図的に収集され

なかったデザインについて、 考えられる多数の例の中から一例を紹介します。 分析の

方法は、 例17 と同じです。
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データについて

この例では、 Attig によるデータ  (例 1 を参照 ) から一部のデータ値を除去し、 欠損と

して扱っています。 以下に、SPSS Statistics データ  エディ タで表示した、若年層におけ

る変更済みデータ  ファ イル Atty_mis.sav の一部を示します。 このファ イルには、 40 名
の若年被験者が、 Attig による  v_short および vocab という  2 種類の語彙検定を受けた

際の得点が記載されています。 変数 vocab は、WAIS 語彙の得点です。 V_short は、WAIS
語彙検定での、 項目の小規模なサブセッ トにおける得点です。 Vocab 得点では、 ラン

ダムに抽出した 30 名の被験者のデータを削除してあ り ます。

2 番目のデータ  ファ イル Atto_mis.sav には、 40 名の老年被験者による語彙検定の得点

が記載されています。 こ こでも、 ランダムに抽出した 30 名分の vocab 得点が削除され

ています。

もちろん、 常識的な人間ならば、 収集済みのデータを削除したり しません。 こ こでは、

例を説明するにあたり、 このデータ欠損パターンが次のよ うな状況下で発生したと し

ます。 
vocab は、自分が知る限り最良の語彙検定である と仮定します。 この検定は非常に信

頼性が高く有効なので、 あなたはこの語彙検定を実施したいと考えています。 ただ残

念なこ とに、 実施には費用が高くつきます。 実施には長時間を要するでし ょ う し、

被験者ごとに個別に実施する必要があ り ます。 また、 採点には訓練を積んだ人間があ

たる必要があるかもしれません。 一方、 V_short は、語彙検定と して良いものとは言え

ませんが、 短時間で済み、 コス ト も抑えられ、 一回で多数の被験者に対して簡単に実

施できます。 若年層と老年層それぞれ 40 名ずつに対して廉価な検定である  v_short を
実施します。 その後で、若年層と老年層からそれぞれランダムに 10 名を抽出し、高価

な検定である  vocab を受けてもらいます。
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この研究の目的は、 次のとおりである と します。

 若年層の母集団における  vocab 検定の得点の平均値を推定する。 

 老年層の母集団における  vocab 検定の得点の平均値を推定する。 

 vocab の得点における平均値は、 若年層と老年層で等しいという仮説を検定する。 

このシナリオでは、あなたは v_short の得点の平均値には関心を持っていません。 ただ

し、 次に示すとおり、 この得点には vocab の得点についての仮説を推定して検定する

ために役立つ情報が含まれているため、 v_short の得点はこ こでも有用です。

意図的に欠損値を発生させたという事実が、 分析の方法に影響するこ とはあ り ませ

ん。 このデータには、 2 つのモデルが適用されます。 両方のモデルで、 2 つの語彙検定

間の平均値、 分散、 共分散が、 若年層だけでな く、 老年層においても推定されます。

モデル A では、グループ間でのパラ メータ推定値が等しい必要がある という制約条件

はあ り ません。 モデル B では、 vocab の平均値が、 両方のグループで等し くなるこ と

が求められます。

モデル A

vocab と  v_short 間の平均値、 分散、 および共分散を推定するには、 若年層と老年層の

2 つのグループ モデルを設定します。

E パス図を作成します。 この図では、 vocab と  v_short を、 双方向矢印でつながれた 2 つ
の四角形で表します。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 推定 ] タブをク リ ッ ク します。

E [ 平均値と切片を推定 ] を選択します (横にチェッ ク  マークが表示されます )。

E [分析のプロパティ ] ダイアログ ボッ クスが開いている状態で、[ 出力 ] タブをク リ ッ ク

します。

E [ 標準化推定値 ] と  [ 差に対する検定統計量 ] を選択します。

この例では、 グループ間における  vocab の平均値の差に注目しているため、 若年層グ

ループと老年層グループのそれぞれの平均値に名前を付けておく と便利です。 若年層

グループの vocab 平均値に名前を付ける方法は、 次のとおりです。

E 若年層グループのパス図内にある  vocab 四角形を右ク リ ッ ク します。

E ポップアップ メニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択します。

E [オブジェク トのプロパティ ] ダイアログ ボックスで、[パラメータ] タブをク リ ック します。
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E [平均値 ] テキス ト  ボッ クスで、 m1_yng などの名前を入力します。

E 老年層グループについても同様の手順をと り ます。 老年層グループの平均値にも、

m1_old などの一意の名前を付けてください。 

それぞれの名前が一意であれば、 名前を付けたこ とで平均値の値が制約されるこ とは

あ り ません。 平均値に名前が付く と、 この 2 つのグループのパス図は次のよ うにな り

ます。

モデル A の結果 

グラ フ ィ ッ クス出力

若年被験者と老年被験者のそれぞれに平均値、 分散、 および共分散が表示された 2 つ
のパス図です。
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テキス ト 出力

E [Amos 出力 ] ウ ィンド ウの左上隅のウ ィンド ウ枠にある  [ モデルについての注釈 ] をク

リ ッ ク します。 

モデル A は飽和状態にある という こ とがテキス ト出力されます。 つま り、 このモデル

は検定できないという こ とです。

若年被験者のパラ メータ推定値と標準誤差は、 次のとおりです。

老年被験者のパラ メータ推定値と標準誤差は、 次のとおりです。

vocab の平均値における推定値は、 若年層の母集団では 56.891、 老年層の母集団では

65.001 です。 これらの値が、 vocab 検定を受けた若年層と老年層各 10 名から得られる

と した標本の平均値とは異なる点に注意して ください。 標本の平均値である  58.5 と
62 は母集団の平均値と しては良い推定値です（サイズが 10 の 2 つの標本から得られる

と される最良の値）。 ただし、 Amos による推定値 (56.891 と  65.001) には、 v_short の
得点に関する情報が使用されている という利点があ り ます。

異なる標本の積率の数 10
推定される異なるパラ メータの数 10

自由度 (10 – 10) 0
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それでは、 v_short の得点における情報を含む推定値は、 どの程度精度を増している

こ とになるのでし ょ う か。 これは、標準誤差の推定値に注目する と大体わかり ます。

若年被験者では、 表中の 56.891 に対する標準誤差は約 1.765 です。 これに対し、 標本

の平均値 58.5 に対する標準誤差は、約 2.21 です。 老年被験者では、 65.001 に対する標

準誤差は約 2.167 です。 これに対し、標本の平均値 62 に対する標準誤差は、約 4.21 で
す。 こ こで取り上げた標準誤差は近似値に過ぎませんが、 おおよその比較基準にな り

ます。 若年被験者のケースでは、 v_short での得点に含まれる情報を使用するこ とで、

vocab 平均値の推定値における標準誤差が約 21% 減少しています。 老年被験者の例で

は、 約 49% の標準誤差が減少しています。

v_short での得点から得られる追加情報を評価するには、標本サイズの要件を評価す

る という方法もあ り ます。 v_short での得点に関する情報を使用しなかったと仮定しま

す。 平均値における標準誤差を 21% 減少させるには、 あと何名の若年被験者が vocab
検定を受ける必要があったでし ょ うか。 同様に、 平均値における標準誤差を 49% 減少

させるには、あと何名の老年被験者が vocab 検定を受ける必要があったでし ょ うか。 こ
の平均値における標準誤差は標本 サイズの平方根に反比例するため、 答えは、 若年層

で約 1.6 倍、老年層で約 3.8 倍の被験者が必要だったこ とになり ます。 つま り、各層で

10 名ずつが両方の検定を受け、30 名ずつが短時間の検定のみを受けるのではなく、若

年層で約 16 名、 老年層では約 38 名の被験者が vocab 検定を受ける必要があったとい

う こ とです。 もちろん、 この計算で扱っているのはあ く までも標準誤差の推定値であ

り、 正確な標準誤差の値ではあ り ません。 このため、 こ こでわかるこ とは、 v_short 検
定の得点を使用するこ とで得られる精度についての概略に過ぎません。

若年層と老年層の各母集団では、 vocab の得点における平均値が異なるでし ょ うか。

この平均値の差における推定値は、8.110(65.001 - 56.891) です。 この有意確率の差を検

定するにあたっての検定統計量を、 次のテーブルに示します。

「m1_yng」 および 「m1_old」 とい う ラベルがついた上からの 2 行と左からの 2 列は、

vocab 検定のグループ平均値を参照します。 長時間の検定では、老年層の母集団の得点

は若年層の母集団よ り も高く、 両者の平均値には 0.05 レベルでの有意差がみられま

す。 これによって、 この平均値の差に対する検定統計量は 2.901 となっています。

また、 vocab でのグループ平均値が等しいという仮説の検定は、 両者の平均値に設

けた同等性の制約条件をモデルに対して最適合するこ とでも得られます。 次にこの方

法について説明します。 
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モデル B

モデル B では、 vocab の平均値が、 若年層と老年層とで等し くなるこ とが求められま

す。 この制約条件を設けるには、 2 つの方法があ り ます。 1 つは、 平均値の名前を変更

する とい う方法です。 モデル A では、 各平均値には一意の名前が付けられています。

この名前は変更するこ とができ、 両方の平均値に同じ名前を付ける こ とができます。

これによって、 2 つの平均値は同じ値である必要が生じるこ とにな り ます。

こ こでは、 別の方法を使用して平均値を制約します。 平均値の名前 m1_yng および

m1_old は変更されません。 Amos では [モデルを管理 ] を使用して、単一の分析にモデ

ル A とモデル B の両方を適合させます。 この手法を使用するには、次の手順を実行し

ます。

E モデル A から開始します。

E メニューから  [ 分析 ]  [ モデルを管理 ] の順に選択します。

E [モデル管理 ] ダイアログ ボッ クスの [モデル名 ] テキス ト  ボッ クスに「モデル A」と入

力します。

E [パラ メータ制約 ] ボッ クスは空白のまま残しておきます。

E モデル B を指定するには、 [ 新規作成 ] をク リ ッ ク します。

E [モデル名 ] テキス ト  ボッ クスで、 「モデル番号 2」 を 「モデル B」 に変更します。
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E [パラ メータ制約 ] テキス ト  ボッ クスに、 「m1_old = m1_yng」 と入力します。

E [ 閉じ る ] をク リ ッ ク します。

Ex18-b.amw という ファ イルに、 モデル A とモデル B の両方に適合するパス図が保存

されます。

モデル A およびモデル B からの出力

E モデル A とモデル B の両方における適合度を調べるには、 [Amos出力 ] ウ ィンド ウの

左上隅のウ ィンド ウ枠にあるツ リー図で、 [ モデルの適合度 ] をク リ ッ ク します。 

カイ  2 乗の値のある出力部分を次に示します。

モデル B が正しい (若年層と老年層の両方の母集団において vocab の得点の平均値が

等しい ) 場合、 7.849 は、自由度 1 のカイ  2 乗分布がみられる乱数変数における観測値

とな り ます。 7.849 と同じ大きさの値を偶然に得る確率は低いので (p = 0.005)、 モデル

B は棄却されます。 この結果、若年被験者と老年被験者では、 vocab の得点における平

均値が有意に異なる と言えます。
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VB.NET でのモデル作成

モデル A

モデル A に適合するプログラムを次に示します。 両方の被験者グループにおける両方

の語彙検定について、 制約を設けずに平均値、 分散、 および共分散を推定します。

このプログラムは、 Ex18-a.vb ファ イルと して保存されます。

Crdiff メ ソ ッ ドは、 前述したパラ メータの差に対する検定統計量を表示します。 

後で参照するために、 モデル A の 対数尤度関数 の値を控えておいてください。 

    Sub Main()
        Dim Sem As New AmosEngine
        Try
            Sem.TextOutput()
            Sem.Crdiff()
            Sem.ModelMeansAndIntercepts()

            Sem.BeginGroup(Sem.AmosDir & "Examples¥atty_mis.sav")
                Sem.GroupName("young_subjects")
                Sem.Mean("vocab", "m1_yng")
                Sem.Mean("v_short")
            Sem.BeginGroup(Sem.AmosDir & "Examples¥atto_mis.sav")
                Sem.GroupName("old_subjects")
                Sem.Mean("vocab", "m1_old")
                Sem.Mean("v_short")
            Sem.FitModel()
        Finally
            Sem.Dispose()
        End Try
    End Sub

対数尤度関数 = 429.963
パラ メータ数 = 10
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モデル B

モデル B に適合するプログラムは次のとおりです。 このプログラムでは、 若年層グ

ループの vocab 平均値と老年層グループの vocab 平均値 と で同じパラ メ ータ名

(mn_vocab) が使用されています。 この方法では、 若年層グループと老年層グループに

おける  vocab 平均値が同じである必要があ り ます。 このプログラムは、Ex18-b.vb ファ

イルと して保存されます。

Amos が報告するモデル B の適合度は、 次のとおりです。 

モデル B とモデル A との適合度の差は 7.85(= 437.813 - 429.963)、パラ メータ数の差は

1(= 10 - 9) です。 これらの数値は、 先に Amos Graphics で得た数値と同じです。 

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Crdiff()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥atty_mis.sav")
            Sem.GroupName("young_subjects")
            Sem.Mean("vocab", "mn_vocab")
            Sem.Mean("v_short")
        Sem.BeginGroup(Sem.AmosDir & "Examples¥atto_mis.sav")
            Sem.GroupName("old_subjects")
            Sem.Mean("vocab", "mn_vocab")
            Sem.Mean("v_short")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

対数尤度関数 = 437.813
パラ メータ数 = 9
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概要

この例では、 ブート ス ト ラ ップ法によって頑健な標準誤差の推定値を得る方法につい

て示します。

ブー ト ス ト ラ ッ プ法

ブート ス ト ラ ップ (Efron, 1982) は、 パラ メータ推定値の標本分布の推定に汎用できる

方法です。 特に、標準誤差の近似を求める場合に使用するこ とができます。 先に示した

例のとおり、 Amos は推定対象のパラ メータについて、 標準誤差の近似を自動表示し

ます。 Amos では、 こ う した近似値の計算に、 32 ページ での仮定に依存した公式を使

用します。

ブート ス ト ラ ップでは、標準誤差の推定における問題に対し、 まった く異なる手法

をと り ます。 別の手法が必要と される理由とは何でし ょ うか。 第一に、Amos には、重

相関の 2 乗における標準誤差など、必要と される標準誤差のすべてに公式が備わって

いるわけではあ り ません。 ただし、 ブート ス ト ラ ップでは、 標準誤差に対する公式を

使用できな くてもまった く問題あ り ません。 ブート ス ト ラ ップを使用すれば、 標準誤

差に対する公式がわかっているかど うかにかかわらず、 Amos が計算するすべての推

定値に対する標準誤差の近似を生成する こ とができます。 標準誤差に対する公式が

Amos に備わっている場合でも、 公式が役立つのは 32 ページ での仮定においてのみ

です。 加えて、公式が機能するのは、正しいモデルを使用している場合に限られます。

ブート ス ト ラ ップによって求められた標準誤差の近似は、 こ う した制限を受けるこ と

はあ り ません。

ブート ス ト ラ ップには、 かな り大きな標本を必要とするなど、 特有の欠点もあ り ま

す。 ブート ス ト ラ ップについて初めて学習する場合は、『Scientific American』 誌に掲載

の、 Diaconis と  Efron(1983) による論文を一読されるこ とをお勧めします。
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この例では因子分析モデルを適用したブート ス ト ラ ップについて紹介しますが、 も

ちろん任意のモデルを使用してもかまいません。 なお、 Amos は 例 1 のよ うな単純な

推定における問題を解決できる こ とを覚えていて ください。 Amos のブート ス ト ラ ッ

プ機能を使用でき る よ う になる こ とだけを目的に、 こ う した単純な問題にあえて

Amos を使用してみるのもいいでし ょ う。

データについて

この例では、 例 8 で紹介した Holzinger と  Swineford(1939) のデータを使用します。

このデータは、 Grnt_fem.sav ファ イルに入っています。

因子分析モデル

このモデルのパス図 (Ex19.amw) は、 例 8 と同じです。

E 500 回のブート ス ト ラ ップ反復を求めるには、 メニューから  [ 表示 ]  [ 分析のプロパテ ィ ]
の順に選択します。

E [ ブー ト ス ト ラ ッ プ ] タブをク リ ッ ク します。

E [ ブー ト ス ト ラ ッ プの実行 ] を選択します。
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E [ ブー ト ス ト ラ ッ プ標本の数 ] テキス ト  ボッ クスに 「500」 と入力します。

ブー ト ス ト ラ ッ プの進行状況の監視

パス図の左側にある  [ 計算の要約 ] パネルを見るこ とで、ブート ス ト ラ ップ アルゴ リズ

ムの進行状況を監視できます。 

分析の結果

モデルの適合度は、 もちろん 例 8 と同じです。

カイ  2 乗 = 7.853
自由度 = 8
確率水準 = 0.448
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パラ メータ推定値も、 例 8 と同じです。 ただし、 こ こでは最尤法の理論に基づく標準

誤差の推定値に注目し、 ブート ス ト ラ ップによって得られた標準誤差と比較します。

このため、 最尤法によるパラ メータの推定値と標準誤差は次のよ うにな り ます。

ブート ス ト ラ ップ出力は、 診断情報が以下のとおりのテーブルから開始されます。
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特異な分散共分散行列が、 1 つ以上のブート ス ト ラ ップ標本に見られるこ とがあ り ま

す。 また、 Amos が一部のブート ス ト ラ ップ標本の解を求められないこ と もあ り ます。

上記のいずれかの標本が出現した場合、 Amos は出現について報告し、 ブートス ト ラッ

プ分析からこの標本を除外します。 この例では、特異な分散共分散行列が見られるブー

ト ス ト ラップはなく、 500 のブートス ト ラップ標本すべての解が求められました。 標準

誤差のブート ス ト ラ ップ推定値は、 次のとおりです。
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 「S.E.」 という ラベルが付いた 1 列目には、 標準誤差のブート ス ト ラ ップ推定値が

表示されています。 これらの推定値は、最尤法によって得られた標準誤差の近似と

比較されます。 

 「S.E.-S.E.」 とい う ラベルが付いた 2 列目には、 ブート ス ト ラ ップにおける標準誤

差の推定値自身に対する標準誤差の近似が表示されています。

 「Mean」 とい う ラベルが付いた列にある値は、ブート ス ト ラ ップ標本に対して計算

されたパラ メータ推定値の平均値です。 ブート ス ト ラ ップ平均値は、元の推定値と

同じである必要はあ り ません。 

 「Bias」 とい う ラベルが付いた列にある値は、 元の推定値と、 ブート ス ト ラ ップ標

本に対する推定値の平均との差です。 ブート ス ト ラ ップ標本に対する推定値の平均

が元の推定値よ り も大きい場合、 「Bias」 は正の値となり ます。 

 「S.E.-Bias」 とい う ラベルが付いた最後の列には、 推定値の偏りに対する標準誤差

の近似が表示されています。

VB.NET でのモデル作成

次のプログラム (Ex19.vb) は 例19 のモデルに適合し、 500 のブート ス ト ラ ップ標本で

ブート ス ト ラ ップを実行します。 これは、 Bootstrap 行が追加されている点以外は 例 8
でのプログラムと同じです。

Sem.Bootstrap(500) という行で、 500 のブート ス ト ラ ップ標本に基づくブート ス ト ラ ップ

の標準誤差を求めています。

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Bootstrap(500)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples¥Grnt_fem.sav")

        Sem.AStructure("visperc  = (1) spatial + (1) err_v")
        Sem.AStructure("cubes    =     spatial + (1) err_c")
        Sem.AStructure("lozenges =     spatial + (1) err_l")

        Sem.AStructure("paragrap = (1)spatial  + (1) err_p")
        Sem.AStructure("sentence   =    spatial + (1) err_s")
        Sem.AStructure("wordmean=    spatial + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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概要

この例では、 ブート ス ト ラ ップをモデル比較に使用する方法について示します。

モデル比較におけるブー ト ス ト ラ ッ プ手法

この方法で扱うのは、 個々のモデルを絶対的に評価する際の問題ではなく、 競合する

2 つ以上のモデルからモデルを選択する際の問題です。 Bollen と  Stine の共同研究

(1992) および、 Bollen(1982)、 Stine(1989) の各研究では、積率構造分析でのモデル選択

におけるブー ト ス ト ラ ッ プ使用の可能性について述べられています。 Linhart と
Zucchini の共同研究 (1986) では、 構造モデリ ングなどの大きなモデルク ラスに適した

ブート ス ト ラ ップとモデル選択に向けた、 一般的なスキーマについて述べられていま

す。 こ こでは、 この Linhart と  Zucchini による手法を採用しています。

モデル比較におけるブート ス ト ラ ップ手法について要約する と、次のよ うにな り ます。

 元の標本を置換して標本を抽出するこ とで、 複数のブート ス ト ラ ップ 標本を生成

します。 つま り、 元の標本 が、 ブート ス ト ラ ップの標本抽出のための 母集団とな

り ます。

 競合するすべてのモデルを各ブート ス ト ラ ップ標本に当てはめます。 個々の分析

が済んだら、ブート ス ト ラ ップ標本から得られたモデルの積率と、ブート ス ト ラ ッ

プ母集団の積率との乖離度を計算します。

 先述の手順における各モデルについて、乖離度の (ブートス ト ラップ標本に対する )
平均値を計算します。

 乖離度の平均値が最も小さいモデルを選択します。
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データについて

この例では、 先に例 8、 例 12、 例 15、 例 17、 および 例 19 で紹介した Holzinger と
Swineford による研究 (1939) における、 Grant-White 高校の男子生徒と女子生徒が混

ざった標本を使用します。 男子生徒と女子生徒を合わせて 145 の観測値が、 Grant.sav
ファ イルに入っています。

5 つのモデル

5 つの尺度モデルが、 6 種類の心理検定に適用されます。 モデル 1 は、因子数が 1 の因

子分析モデルです。
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モデル 2 は、 制約のない因子分析です。 因子数は 2 です。 回帰ウェイ トの うちの 2 つ
を 0 に固定するこ とでモデルを制約するのではなく、 モデルを特定するだけであるこ

とに注意してください (Anderson, 1984; Bollen および Jöreskog, 1985; Jöreskog, 1979)。

モデル 2R は、 制限つきの因子分析モデルで、 因子数は 2 です。 このモデルでは、

最初の 3 つの検定は因子のうちの 1 つのみに依存していて、 残りの 3 つの検定はも う

一方の因子のみに依存しています。
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残る  2 つのモデルからは、 先述のモデルの適合度を評価するための、 慣例による基準

点を設定するこ とができます。 飽和モデルでは、 観測変数の分散と共分散は制限され

ません。

独立モデルでは、 観測変数の分散は制限されませんが、 共分散は 0 になるこ とが求め

られます。

分析のたびに、 Amos によってこの 2 つのモデルの適合度が自動的に報告されるため、

通常、 飽和モデルと独立モデルを別々に当てはめるこ とはあ り ません。 ただし、 この

2 つのモデルについてのブート ス ト ラ ップ結果を得るには、 飽和モデルと独立モデル

を明示的に指定する必要があ り ます。 異なる  5 つのブート ス ト ラ ップ分析は、1 つのモ

デルに対して 1 つずつ実施する必要があ り ます。 この 5 つの分析を実施する方法は、い

ずれも次のとおりです。

E メニューから  [ 表示 ] [ 分析のプロパテ ィ ] の順に選択します。
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E [分析のプロパティ ] ダイアログ ボックスで、[ ブー ト ス ト ラ ッ プ ] タブをク リ ッ ク します。

E [ ブー ト ス ト ラ ッ プの実行 ] を選択します (横にチェッ ク  マークが表示されます )。

E [ ブー ト ス ト ラ ッ プ標本の数 ] テキス ト  ボッ クスに 「1000」 と入力します。

E [ 乱数 ] タブをク リ ッ ク してから、 [ 乱数のシー ド ] に値を入力します。

シードには任意の値を設定できますが、 複数ある  Amos の各セッシ ョ ンと まったく同

じ標本群を抽出するには、毎回同じシード数を設定する必要があ り ます。 この例では、

シード数を 3 に設定します。

場合によっては、 ブート ス ト ラ ップ 標本に対し、 最小化アルゴ リズムが収束しなくな

るこ とがあ り ます。 全体の計算時間を抑制する方法は、 次のとおりです。

E [ 数値解析 ] タブをク リ ッ ク してから、[ 反復回数の制限 ] フ ィールドで、反復回数を 40 な
どの現実的な数に制限します。

この 5 つのモデルに対する  Amos Graphics の入力ファイルは、 それぞれ Ex20-1.amw、

Ex20-2.amw、 Ex20-2r.amw、 Ex20-sat.amw、 Ex20-ind.amw という名前で保存されてい

ます。
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テキス ト 出力

E モデル 1 のテキス ト出力の表示を表示するには、 [Amos 出力 ] ウ ィンド ウの左上隅の

ウ ィンド ウ枠にあるツ リー図で [ ブー ト ス ト ラ ッ プ反復の要約 ] をク リ ッ ク します。

次のメ ッセージは、いずれのブート ス ト ラ ップ 標本についても破棄する必要はないと

いう こ とを表しています。 1,000 のブート ス ト ラ ップ 標本すべてが利用されました。

E ツ リー図で [ ブー ト ス ト ラ ッ プ分布 ] をク リ ッ ク して、次のヒ ス ト グラムを表示します。

a には、Grant-White 高校の生徒 145 名分の元の標本からの標本積率 (ブートス ト ラップ

母集団の積率 ) が含まれています。  には、モデル 1 を b-th ブートス ト ラップ標本に当

てはめるこ とで得られたモデルの積率が含まれています。 したがって、  は、

母集団の積率が、 モデル 1 を使用した b-th 標本から推定した積率からどの程度離れて

いるかを表す測度であるこ とにな り ます。

共分散行列が特異なため、 0 個のブート ス ト ラ ップ標本が利用されませんでした。

解を求めるこ とができなかったため、 0 個のブート ス ト ラ ップ標本が利用されませ

んでした。

1000 個の利用可能なブート ス ト ラ ップ標本が得られました。

      1000,,1   ,ˆˆ  b
KL
C

bKL
C

bML
C aa,a,a, 

̂b

CML ̂b a 
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1,000 を超えるブート ス ト ラ ップ 標本に対する の平均値は 64.162、 標準誤

差は 0.292 でした。 残りの 4 つのモデルについても、 同様のヒ ス ト グラムが平均値と

標準誤差と と もに表示されていますが、こ こでは再現していません。 5 つの競合モデル

における乖離度の平均値は、 BCC、 AIC、 および CAIC とい う値と と もに下記のテー

ブルに表示されています。 このテーブルから、5 つの競合モデルにおけるモデルの適合

度 (かっこ内は標準誤差 ) がわかり ます。

このテーブルの 「失敗」 列は、 モデル 2 の尤度関数が、 1,000 個のブート ス ト ラ ップ 標
本中 19 個で最大化されなかったこ とを示しています。少なく と も、反復回数の制限値

40 は適用されていません。 ブート ス ト ラ ップ 標本の総数をターゲッ トの 1,000 に合わ

せるため、 モデル 2 には新たに 19 個のブート ス ト ラ ップ 標本が生成されました。 モ
デル 2 を正常に適合できなかった 19 個の標本は、残りの 4 つのモデルでは問題となり

ませんでした。 したがって、 5 つのモデルすべてに共通するブート ス ト ラ ップ 標本は

981 個でした。

19 個のブート ス ト ラ ップ 標本においてモデル 2 の推定値を計算できなかった理由

については、特に調べられていません。 一般に、積率構造分析でのアルゴ リズムは、適

合が不十分なモデルに対して失敗しがちです。 たとえば、開始値を厳密に設定したり、

優れたアルゴ リズムを使用するなど、モデル 2 をこの 19 個の標本に正常に適合させる

方法を見つけられたと しても、 乖離度が大き くなるものと予想されます。 この理由か

ら、 推定に失敗したブート ス ト ラ ップ 標本を破棄すれば、 乖離度の平均値における偏

り を減少させるこ とができる と考えられます。 このため、 ブート ス ト ラ ップ実行中に

おける推定の失敗について考慮する必要があ り ます。 乖離度の平均値が最も小さいモ

デルに対してこの失敗が起きた場合には、 特に注意します。

この例では、モデル 2R で乖離度の平均値が最小 (26.57) とな り、 BCC、 AIC、 CAIC
基準に基づいたモデル選択が確認されます。 乖離度の平均値における差は、 標準誤差

に比べて大きいです。 すべてのモデルが同一のブート ス ト ラ ップ 標本に適合していた

ため (モデル 2 を正常に適合できなかった標本を除く )、ブート ス ト ラ ップ 標本におい

て、 同一モデルに対する乖離度間で正の相関が見られるだろ う と予想するこ と もでき

るでし ょ う。 しかしあいにくながら、Amos からこの相関が報告されるこ とはあ り ませ

ん。 この相関を手計算してみる と、 ほぼ 1 近くにな り ます。 このため、 全体的にテー

ブル内の平均値の差における標準誤差は、 平均値の標準誤差よ り もかな り小さいと言

えます。

モデル 失敗 乖離度の平均値 BCC AIC CAIC
1 0 64.16 (0.29) 68.17 66.94 114.66
2 19 29.14 (0.35 36.81 35.07 102.68
2R 0 26.57 (0.30) 30.97 29.64 81.34
Sat. 0 32.05 (0.37) 44.15 42.00 125.51
Indep. 0 334.32 (0.24) 333.93 333.32 357.18

CML ̂b a 
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要約

ブー ト ス ト ラ ップは、 積率構造分析でのモデル選択において実際に役立ちます。

Linhart と  Zucchini (1986) の手法では、モデル比較の基準と して、モデルの積率と母集

団の積率との間で予測される乖離度を使用します。 この方法は理論上は単純で、 適用

しやすいものです。 この方法では、 有意確率などの特別な数を任意に使用するこ とは

できません。 もちろん、 競合モデルの理論的な妥当性や、 モデルに関連付けられた

パラ メータ推定値の合理性は、 ブート ス ト ラ ップ手続きでは考慮されません。 また、

モデル評価プロセスでの別の段階では、 適切な重みを指定する必要があ り ます。

VB.NET でのモデル作成

この例が記述された Visual Basic プログラムは、 Ex20-1.vb、 Ex20-2.vb、 Ex20-2r.vb、
Ex20-ind.vb、 および Ex20-sat.vb ファ イルに入っています。
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概要

この例では、 競合する推定基準をブート ス ト ラ ップによって選択する方法について示

します。

推定方法

母集団の積率とモデルの積率との乖離度は、 モデルだけではなく推定方法にも依存し

ます。 モデルを比較するために 例20 で使用した手法は、推定方法の比較にも適用でき

ます。 この手法が特に必要と されるのは、 選択対象となる推定方法が漸近的にのみ最

適となる こ とがわかっていて、 この推定方法の有限標本における相対的な利点が、

モデル、 標本 サイズ、 および母集団の分布に依存する と予測される場合です。 推定方

法を選択する このプログラムを実行する際に最も問題となるのは、 母集団の積率と

モデルの積率との間の乖離度を測定する方法をあらかじめ決定する必要がある という

こ とです。 この決定にあたっては、 他の対象への推定基準を肯定するしか方法がない

よ うです。 もちろん、 すべての母集団の乖離度が同じ結果となれば、 適切な母集団の

乖離度はどれかという問題について理論的に考察できるよ うにな り ます。 この例では、

こ う した明確な例を紹介します。

データについて

この例では、 例 20 (Grant.sav ファ イル ) での Holzinger-Swineford(1939) データを使用

します。
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モデルについて

この例では先の例とは替わり、漸近的分布非依存法 (ADF)、最尤法 (ML)、一般化最小

2 乗法 (GLS)、 重み付けのない最小 2 乗法 (ULS) の 4 つの方法で、 例20 のモデル 2R
のパラ メータを推定します。 この 4 つのモデルを比較するには、Amos を 4 回実行する

必要があ り ます。

推定方法とブート ス ト ラ ップ パラ メータを指定する方法は、 次のとおりです。

E メニューから  [ 表示 ][ 分析のプロパテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 乱数 ] タブをク リ ッ ク します。

E [ 乱数のシー ド ] に値を入力します。

例 20 で述べたとおり、 シードには任意の値を選択できますが、 複数ある  Amos の各

セッシ ョ ンと まった く同じ標本群を抽出するには、 毎回同じシード数を設定する必要

があ り ます。 この例では、 シード数を 3 に設定します。 

E 次に、 [ 推定 ] タブをク リ ッ ク します。

E [ 漸近的分布非依存法 ] 乖離度を選択します。

この乖離度は、各ブート ス ト ラ ップ 標本へのモデル適合に、ADF による推定方法を使

用するこ とを設定します。 
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E 最後に、 [ ブー ト ス ト ラ ッ プ ] タブをク リ ッ ク します。

E [ ブー ト ス ト ラ ッ プの実行 ] を選択して、 [ ブー ト ス ト ラ ッ プ標本の数 ] に 「1000」 と入力し

ます。

E [ ブー ト ス ト ラ ッ プ  ADF]、 [ ブー ト ス ト ラ ッ プ  ML]、 [ ブー ト ス ト ラ ッ プ  GLS]、 および [
ブー ト ス ト ラ ッ プ ULS]。

[ ブー ト ス ト ラ ッ プ ADF]、 [ ブー ト ス ト ラ ッ プ ML]、 [ ブー ト ス ト ラ ッ プ GLS]、 [ ブー ト ス ト

ラ ッ プ SLS] および [ ブー ト ス ト ラ ッ プ ULS] の選択によって、 元の標本での標本積率と

各ブー ト ス ト ラ ップ標本からのモデル積率との乖離度を測定する際に、 それぞれ

CADF、 CML、 CGLS、 および CULS を使用するこ とが設定されます。

集計のため、 分析 ([ 分析 ][ 推定値を計算 ]) の実行中に、 Amos は ADF 乖離度を使

用している  1,000 のブート ス ト ラ ップ 標本のそれぞれにモデルを適合します。 各ブー

ト ス ト ラ ップ 標本について、モデル積率の母集団積率に対する近似値は、CADF、CML、

CGLS、 および CULS という異なる  4 つの方法によって測定されます。
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E [ 最尤法 ] 乖離度を選択して、 分析を繰り返します。

E [ 一般化最小 2 乗法 ] 乖離度を選択して、 さ らに分析を繰り返します。 

E [ 重み付けのない最小 2 乗法 ] 乖離度を選択して、 最後の分析を実行します。

この例についての Amos Graphics 入力フ ァ イルは、 Ex21-adf.amw、 Ex21-ml.amw、

Ex21-gls.amw、 および Ex21-uls.amw の 4 ファ イルです。

テキス ト 出力

4 つの分析のうちの最初の分析 (Ex21-adf.amw にあ り ます ) では、 ADF を使用した推

定によって、 次のヒ ス ト グラム出力が得られます。 このヒ ス ト グラムを表示する方法

は、 次のとおりです。
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E [Amos出力 ] ウ ィンド ウの左上隅のウ ィンド ウ枠にあるツ リー図で、[ ブー ト ス ト ラ ッ プ

分布 ] [ADF 乖離度 ( モデル対母集団 )] の順にク リ ッ ク します。

この出力部分には、 1,000 個のブート ス ト ラ ップ 標本における母集団の乖離度の分布

 が表示されています。 こ こで、  には  の最小化によって得

られたモデル積率、 つま り、 標本の乖離度が含まれています。 1,000 個のブート ス ト

ラ ップ 標本における   の平均値は 20.601 で、 標準誤差は 0.218 です。

次のヒ ス ト グラムは、  の分布を表しています。 このヒ ス ト グラムを表示する

方法は、 次のとおりです。

E [Amos出力 ] ウ ィンド ウの左上隅のウ ィンド ウ枠にあるツ リー図で、[ ブー ト ス ト ラ ッ プ

分布 ] [ML 乖離度 ( モデル対母集団 )] の順にク リ ッ ク します。

次のヒ ス ト グラムは、  の分布を表しています。 このヒ ス ト グラムを表示す

る方法は、 次のとおりです。

CADF ̂b a  ̂b CADF ̂b ab 

CADF ̂b a 

CML ̂b a 

CGLS ̂b a 
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E [Amos出力 ] ウ ィンド ウの左上隅のウ ィンド ウ枠にあるツ リー図で、[ ブー ト ス ト ラ ッ プ

分布 ] [GLS 乖離度 ( モデル対母集団 )] の順にク リ ッ ク します。

次のヒ ス ト グラムは、  の分布を表しています。 このヒ ス ト グラムを表示す

る方法は、 次のとおりです。

E [Amos出力 ] ウ ィンド ウの左上隅のウ ィンド ウ枠にあるツ リー図で、[ ブー ト ス ト ラ ッ プ

分布 ] [ULS 乖離度 ( モデル対母集団 )] の順にク リ ッ ク します。

CULS ̂b a 
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次のテーブルには、1,000 個のブート ス ト ラ ップ 標本における   の平均値が表

示されています。 かっこ内は標準誤差です。 先ほど示した 4 つの分布は、 テーブルの

最初の行に集計されています。 残る  3 行には、 CML、 CGLS、 および CULS をそれぞれ最

小化した推定結果が表示されています。

「CADF 」 とい う ラベルが付いた 1 列目には、 母集団の乖離度 CADF  に応じた 4 つの推

定方法の相対的なパフォーマンスが表示されています。 CADF 列では、 19.19 が乖離度

の平均値と して最小なので、 CADF 基準における最適な推定方法は CML である と言え

ます。 同様に、 テーブルの CML 列を調べる と、 CML 基準においても、 CML が最適な推

定方法であるこ とがわかり ます。

テーブルの 4 つの列は 4 つの推定方法の正確な順序とは一致しませんが、 すべての

ケースにおいて、 乖離度の平均値が最も小さいのは ML です。 ML による推定と  GLS
による推定との差がわずかなケースもあ り ます。 当然のこ とながら、 使用した母集団

の乖離度すべてにおいて、 ULS による推定はう ま くいきませんでした。 さ らに興味深

いのは、 ADF による推定がう ま くいかなかったこ とです。 ADF による推定はモデル、

母集団、 標本 サイズという組み合わせには適さないと言えます。

VB.NET でのモデル作成

この例についての Visual Basic プログラムは、 Ex21-adf.vb、 Ex21-gls.vb、 Ex21-ml.vb、
および Ex21-uls.vb ファ イルにあ り ます。

評価に使用した、 母集団の乖離度 : 
CADF CML CGLS CULS

推定に使用し

た、 標本の乖

離度

CADF 20.60 (0.22) 36.86 (0.57) 21.83 (0.26) 43686 (1012)
CML 19.19 (0.20) 26.57 (0.30) 18.96 (0.22) 34760 (830)
CGLS 19.45 (0.20) 31.45 (0.40) 19.03 (0.21) 37021 (830)

CULS 24.89 (0.35) 31.78 (0.43) 24.16 (0.33) 35343 (793)

C ̂b a 

C ̂b ab 

C ̂b ab 
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例22
探索的モデル特定化

概要

この例では、 2 種類の探索的モデル特定化を紹介します。 一方は概して確認的 ( オプ

シ ョ ン矢印が少数 ) で、 他方は概して探索的 (オプシ ョ ン矢印が多数 ) です。 

データについて

この例では、 例7 で紹介した、 Felson と  Bohrnstedt(1979) による女子のデータを使用し

ます。 

モデルについて

この探索的モデル特定化での初期モデルには、 Felson と  Bohrnstedt(1979) の研究での

モデルを使用しています。 図 22-1 を参照してください。

図 22-1  Felson と  Bohrnstedt の研究における女子のモデル

_Ref11692368
_Ref11692368
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オプシ ョ ン矢印が少数の探索的モデル特定化

Felson と  Bohrnstedt が主に関心を向けていたのは、 academic ← attract と、 attract ←
academic という  2 つの一方向矢印でした。 こ こでの論点は、 この 2 つの一方向矢印の

うち、 必要と されているのは片方だけなのか両方なのか、 あるいはどちら も必要と さ

れていないのかという こ とでした。 この理由から、探索的モデル特定化の実行中は、両

方の矢印をオプシ ョ ンにします。 また、誤差1 と誤差2 を結ぶ双方向矢印によって、一

方向矢印で表示されている効果の解釈が複雑になり、 これはモデルにとって望まし く

ない機能です。 このため、 この双方向矢印も省略可能にします。 探索的モデル特定化

は、 この 3 つのオプシ ョ ン矢印のうち必要な矢印がある場合に、 どれがモデルにとっ

て必要なのかを決定する手助けとな り ます。

この探索的モデル特定化では、 ほとんどの矢印がモデルに必要で、 オプシ ョ ンは

3 つだけなので、 概して確認的と言えます。

モデルの特定化

E %examples%\Ex22a.amw を開き  ます。 

描画領域にパス図が開かれます。 最初は、 図 22-1 に見られるオプシ ョ ン矢印は表示さ

れていません。

E メニューから  [ 分析 ]  [ 探索的モデル特定化 ] の順に選択します。

[探索的モデル特定化 ] ウ ィンド ウが表示されます。 最初は、 ツールバーだけが表示さ

れています。

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク してから、誤差1 と誤差2 を結ぶ

双方向矢印をク リ ッ ク します。 矢印の色が、 オプシ ョ ンであるこ とを表す色に変わり

ます。
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ヒ ン ト : 次の図のよ うに、オプシ ョ ン矢印の色を変えた り破線にした りするには、メ

ニューから  [ 表示 ]  [ イ ン タ ーフ ェ イ スのプロパテ ィ ] の順に選択してから、 [ ア ク セ

ス ] タブをク リ ッ ク して [ 色の選択 ] チェッ ク  ボッ クスを選択します。

E 矢印を必須に戻すには、[探索的モデル特定化 ] ツールバーの  をク リ ッ ク してから

目的の矢印をク リ ッ ク します。 ポインタを離すと、 必須の矢印と して矢印が再表示さ

れます。 

E 再度  をク リ ッ ク してから、パス図が次のよ うになるまで、図中の矢印をク リ ッ ク

します。

後で探索分析を実行する際に、 プログラムはこの 3 つの色付き矢印をオプシ ョ ンと し

て扱い、 これらの矢印の可能なサブグループをすべて使用してモデルを適合しよ う と

します。
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プログラムのオプシ ョ ンの選択

E [探索的モデル特定化 ] ツールバーの [ オプシ ョ ン ] ボタン をク リ ッ ク します。

E [オプシ ョ ン ] ダイアログ ボッ クスで、 [ 結果 ] タブをク リ ッ ク します。

E [ リ セ ッ ト ] をク リ ッ ク して、設定したオプシ ョ ンがこの例と同じであるこ とを確認しま

す。 

E 次に、 [ 次を検索 ] タブをク リ ッ ク します。 先頭のテキス ト には、 この探索分析が 8 つ
(つま り  23) のモデルに適合するこ とが表示されています。

E [ 最善の ___ モデルのみを保存 ] ボッ クスで、 値を 10 から  0 に変更します。 

デフォルト値 10 で探索的モデル特定化を実行する と、 最大 10 の一方向矢印モデル、

最大 10 の双方向矢印モデル、 などが報告されます。 値を 0 に設定する と、報告対象モ

デル数に対する制限がなくな り ます。 
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報告対象モデル数を制限するこ とで、 探索的モデル特定化が大幅に速くな り ます。

ただし、 この例での探索的モデル特定化に出現するモデルは、 合計 8 つしかあ り ませ

ん。 また、 [ 最善の ___ モデルのみを保存 ] に 0 以外の値を指定するこ とで、後述するよ

うに、 プログラムが赤池ウェイ トや Bayes 因子を正規化して、 すべてのモデルの合計

を 1 にする という こ とができなくなる という、 望まし くない効果が生じるこ とがあ り

ます。

E [オプシ ョ ン ] ダイアログ ボッ クスを閉じます。

探索的モデル特定化の実行

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。 

このプログラムでは、 オプシ ョ ン矢印の各サブグループを使用して、 モデルを 8 回適

合させます。 完了する と、 [探索的モデル特定化 ] ウ ィンド ウが拡張して、 結果が表示

されます。 
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次のテーブルには、 この 8 つのモデルと飽和モデルについての適合度が集計されてい

ます。

「モデル」 列には、 探索的モデル特定化で適合されたモデルに対する、 1 から  8 までの

任意の索引番号が表示されています。 「飽和モデル」 は、 飽和モデルを表しています。

最初の行を見る と、モデル 1 には 19 のパラ メータ と  2 の自由度があ り ます。 乖離度関

数 ( このケースでは尤度比カイ  2 乗統計量 ) は 2.761 です。 Amos 出力の別の箇所では、

乖離度関数における最小値を CMIN と呼びます。 こ こでは略して 「C」 とい う ラベル

が付けられています。 テーブル内の列についての説明を表示するには、 列の上で右ク

リ ッ ク し、 ポップアップ メニューから  [ 用語のヘルプ ] を選択します。

「モデル」 列と 「注釈」 列を除き、各列での最良の値には下線が引かれているこ とに

注意してください。 
このテーブルでは、 よ く知られている適合度 (CFI や RMSEA など ) が多数省かれて

います。 表示されている適合度の選択理由については、 付録 E を参照してください。

生成されたモデルの表示

E テーブル内の任意の行をダブルク リ ッ ク して ( 「飽和モデル」 行を除きます )、 描画領

域にある対応するパス図を表示するこ とができます。 例と して、 モデル 7 の行をダブ

ルク リ ッ ク してパス図を表示してみまし ょ う。

図 22-2  モデル 7 のパス図
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モデルのパラ メ ータ推定値の表示

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。

E [探索的モデル特定化 ] ウ ィンド ウで、 モデル 7 の行をダブルク リ ッ ク します。 

描画領域にモデル 7 のパラ メータ推定値が表示されます。

図 22-3  モデル 7 のパラ メ ータ推定値

BCC を使用し たモデル比較

E [探索的モデル特定化 ] ウィンドウで、「BCC0」 という見出しのついた列をク リ ックします。

「BCC」 を基準にテーブルが並べ替えられ、BCC における最善モデル (BCC の値が最も

小さいモデル ) がリ ス トの先頭に配置されます。

_Ref12204742
_Ref12204742
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Burnham と  Anderson(1998) による提言に基づき、 BCC の最小値が 0 になるよ う 、

すべての BCC 値に定数が挿入されています。 BCC0 の下付き文字 0 は、 この再調整が

行われたこ とを表しています。 AIC (上図には表示されていません ) と  BIC も、同様に

再調整されています。 おおまかなガイ ド ラ イン と して、 Burnham と  Anderson 1998,
p. 128) は、 AIC0 について、 次のよ うな解釈を提言しています。 BCC0 についても同様

に解釈できます。

Burnham と  Anderson によるガイ ド ラ インではモデル 7 が最善モデルと推定されてい

ますが、 モデル 6 とモデル 8 も除外すべきではあ り ません。

赤池ウ ェ イ ト の表示

E [探索的モデル特定化 ] ツールバーの [ オプシ ョ ン ] ボタン をク リ ッ ク します。

E [オプシ ョ ン ] ダイアログ ボッ クスで、 [ 結果 ] タブをク リ ッ ク します。 

E [BCC, AIC, BIC] で、 [ 赤池ウ ェ イ ト  / Bayes 因子 ( 合計 = 1)] を選択します。

AIC0 または BCC0 Burnham と  Anderson による解釈

0 – 2
このモデルを、 可能な標本母集団における実際の K-L 最善モデルか

ら除外すべき確実な証拠が何もあ り ません (Burnham と  Anderson に
よる  K-L の最善 についての定義を参照してください )。

2 – 4 このモデルが K-L 最善モデルではないとする証拠は弱いです。
4 – 7 このモデルが K-L 最善モデルではないとする確実な証拠があ り ます。
7 – 10 このモデルが K-L 最善モデルではないとする強力な証拠があ り ます。
10 このモデルが K-L 最善モデルではないこ とは明らかです。

_Ref17272295
_Ref17272295
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適合度のテーブルでは、 「BCC0」 とい う ラベルが付いていた列が 「BCCp」 に替わり、

値に赤池ウェイ トが挿入されました。 (付録 G を参照してください )。

赤池ウェイ ト  (赤池 , 1978; Bozdogan, 1987; Burnham および Anderson, 1998) は、 デー

タを与えられたモデルの尤度と して解釈されてきました。 この解釈による と、 推定さ

れた K-L 最善モデル (モデル 7) の可能性は、モデル 6 の約 2.4 倍 (0.494 / 0.205 = 2.41)
に過ぎません。 Bozdogan(1987) は、 候補モデルに事前確率を割り当てるこ とができれ

ば、この事前確率を (モデルの尤度と して解釈されている ) 赤池ウェイ ト と と もに使用

して、事後確率を得るこ とができる と指摘しています。 同じ値の事前確率と と もに、赤

池ウェイ ト自身が事後確率とな り ます。 これによって、 モデル 7 は確率 0.494 の K-L
最善モデル、 モデル 6 は確率 0.205 の K-L 最善モデル、 などと表すこ とができます。

可能性が高いモデルは、 モデル 7、 6、 8、 および 1 の 4 つです。 各モデルの確率を合

計 (0.494 + 0.205 + 0.192 + 0.073 = 0.96) する と、 この 4 つのモデルのうちいずれかが

K-L 最善モデルになる確率は 96% である と言えます (Burnham および Anderson, 1998、
pp. 127-129)。 BCCp の下付き文字 p は、BCCp を、ある状況下での確率と解釈できるこ

とを表しています。
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BIC を使用し たモデル比較

E [オプシ ョ ン ] ダイアログ ボッ クスの [ 結果 ] プロパティ  ページで、[BCC, AIC, BIC] か
ら  [ ゼロベース （min = 0） ] を選択します。

E [探索的モデル特定化 ] ウィンドウで、「BIC0」 という見出しのついた列をク リ ックします。

「BIC」 を基準にテーブルが並べ替えられ、BIC における最善モデル (BIC の値が最も小

さいモデル ) がリ ス トの先頭に配置されます。
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BIC の値が最も小さいモデル 7 が、 事後確率の近似値 ( モデル間で同じ値の事前確率

を使用した うえで、 個々のモデルのパラ メータにおける特定の事前分布を使用 ) が最

も高いモデルです。 Raftery(1995) は、 競合モデルに対するモデル 7 についての証拠の

判断にあたり、 BIC0 値の解釈を次のよ うに提言しています。

このガイ ド ラインによる と、 モデル 6 と  8 では 「陽性」 の証拠が得られ、 その他のモ

デルについてはモデル 7 に比べて 「非常に強い」 証拠が得られます。

Bayes 因子を使用し たモデル比較

E [オプシ ョ ン ] ダイアログ ボッ クスの [ 結果 ] プロパティ  で、[BCC, AIC, BIC] から  [ 赤池

ウ ェ イ ト  / Bayes 因子 ( 合計 = 1） ] を選択します。

BIC0 Raftery(1995) による解釈

0 – 2 弱い
2 – 6 陽性
6 – 10 強い
10 非常に強い
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適合度のテーブルでは、 「BIC0」 とい う ラベルが付いていた列が 「BICp」 に替わ り、

合計が 1 となるよ う調整された Bayes 因子が値に挿入されました。

モデル間で同じ値の事前確率を使用した うえで、 個々のモデルのパラ メータにおける

特定の事前分布を使用 (Raftery, 1995; Schwarz, 1978) した BICp 値は、 事後確率の近似

値です。 モデル 7 は、確率 0.860 の正しいモデルです。 モデル 7、 6、 8 のいずれかが正

しいモデルである とい う こ とは、99% (0.860 + 0.069 + 0.065 = 0.99) 確信できます。

下付き文字 p は、 BICp 値を確率と解釈できるこ とを表しています。

Madigan と  Raftery(1994) は、モデルの平均化 ( こ こでの説明は省きます ) にはOccam
のウ ィンド ウにおけるモデルのみが使用される とい う こ とを提言しています。 対称的

な Occam のウ ィ ン ド ウは、 最も可能性が高いモデルに比べて可能性がかな り低い

(Madigan と  Raftery は、 およそ 20 分の 1 の可能性という例を挙げています ) モデルを

除外するこ とで得られる、 モデルのサブグループです。 この例では、 対称的な Occam
のウ ィンド ウには、 モデル 7、 6、 8 が含まれています。 これらのモデルは確率 (BICp

値 ) が  よ り も高いためです。0.860 20 0.043=
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Bayes 因子の再調整

E [オプシ ョ ン ] ダイアログ ボッ クスの [ 結果 ] プロパティ  ページで、[BCC, AIC, BIC] か
ら  [ 赤池ウ ェ イ ト  / Bayes 因子 (max = 1） ] を選択します。

適合度のテーブルでは、 「BICp」 とい う ラベルが付いていた列が 「BICL」 に替わ り、

最大値が 1 となるよ う調整された Bayes 因子が値に含まれました。 これによ り、Occam
のウ ィンド ウを抽出しやすくな り ます。 これは、BICL 値が  よ り も大き

いモデルで構成されています。 つま りはモデル 7、 6、 8 のこ とです。 BICL の下付き文

字 L は、 BCCL と似た統計量を尤度と解釈できる という こ とを表しています。

1 20 0.05=
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モデルの短い リ ス ト についての調査

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。 これによ り、モデルにつ

いての短いリ ス トが表示されます。 

次の図のとおり、 この短いリ ス トには、 各パラ メータ数に対する最善モデルが表示さ

れています。 こ こでは、 パラ メータ数 16 個での最善モデル、 パラ メータ数 17 個での

最善モデル、 などが表示されています。 パラ メータ数の固定されたモデルに対してこ

の比較が制限された場合、 すべての基準が最善モデルについて一致する という こ とに

注意して ください。 選択する基準に関係なく、 この リ ス トには全体における最善モデ

ルが掲載されているはずです。

図 22-4  各パラ メ ータ数に対する最善モデル

このテーブルは、 パラ メータ数 17 個での最善モデルが、 パラ メータ数 16 個での最善

モデルよ り も大幅に適合度が高いこ とを表しています。 パラ メータが 17 個を超すと、

さ らにパラ メータを追加しても適合度の向上は比較的にゆるやかです。 費用対効果の

分析では、 16 個のパラ メータを 17 個に増やす場合には比較的大きな対費用効果が得

られますが、パラ メータが 17 個を超すと対費用効果は比較的小さいです。 このこ とか

ら、発見的な収穫逓減点引数の使用によって、パラ メータ数 17 個での最善モデルが採

用できるこ とがわかり ます。 パラ メータ数の決定におけるこの手法については、 この

例の後半で詳し く紹介します (312 ページの 「C における最善の適合グラフの表示」 と
315 ページの 「C のスク リープロ ッ トの表示」 を参照してください )。 

_Ref10789253
_Ref10789253
_Ref14768871
_Ref14768871
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適合度と複雑度についての散布図の表示

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。 [プロ ッ ト ] ウ ィンド ウが

開き、 次のグラフが表示されます。

このグラフは、 複雑度 (ÉpÉâÉÅÅ[ タ数の測定による ) に対する適合度 (C の測定による )
についての散布図を表しています。 各点はモデルを表します。 グラフから、 適合度と

複雑度が ト レードオフの関係にある こ とがわか り ます。 この関係の特質について、

Steiger は次のよ うに述べています。

複雑度と適合度の間の数値的に最良の妥協点はある程度個人の好みの

問題であるため、最終分析において複雑さの測度と適合度の測度を単一

の数値指標に組み合わせる  1 つの最良の方法を定義するこ とは、ある意

味では不可能である と も言えます。 モデルの選択は、 嗜好についての 2
次元分析における昔からの課題です (Steiger, 1990、 p. 179)。

E 散布図中の任意の点をク リ ッ ク して、 この点や、 重なり合う点が表すモデルを示すメ

ニューを表示します。 

E ポップアップ メニューからモデルを 1 つ選択し、 このモデルが強調表示されているモ

デルの適合度統計量についてのテーブルと、 同時に、 描画領域でのモデルのパス図と

を参照します。
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次の図では、 カーソルが、重なり合う  2 点を指しています。 この 2 点は、 モデル 6 (乖
離度 2.76) とモデル 8 (乖離度 2.90) をそれぞれ表しています。 

このグラフの水平線は、 C の値が一定であるこ とを表しています。 最初は、 この線の

中心は、 縦軸の 0 にあ り ます。 左下にある  [ 適合度 ] パネルでは、 水平線上の点が、

C = 0、 および F = 0 (F は、 Amos 出力では FMIN と呼ばれます ) と表されています。

NFI1 と  NFI2 はいずれも  NFI の一種で、 2 つの異なるベースラ イン  モデルを使用し

ます (付録 F を参照してください )。 
最初は、 NFI1 と  NFI2 の両方が、 水平線上の点での 1 と等しいです。 水平線の位置

は調整するこ とができます。 この線は、マウスでド ラ ッグすれば移動できます。 線を移

動する と、 左下のパネル内の適合度の値が、 線の移動先の位置に変更されているこ と

を確認できます。

_Ref17272350
_Ref17272350
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定数の適合度を表す線の調整

E 調整可能な線の上にマウスを移動します。 ポインタが手の形に変わったら、 NFI1 の
値が 0.900 の位置まで線をド ラ ッグします (左下のパネルで NFI1 の値を追いながら、調

整可能な線を移動します )。 

NFI1 は、NFI 統計量でよ く使用される形式です。 この形式におけるベースライン モデ

ルでは、 観測変数の平均値と分散に制約を設けずに、 観測変数が互いに相関しないこ

とが必要と されます。 線の下にある点の値は NFI1 > 0.900 であ り、 線よ り上にある点

については NFI1 < 0.900 です。 このこ とから、 調整可能な線によって、 適用できるモ

デルが適用できないモデルと分けられているこ とがわかり ます。 これは、 一般に使用

されている、 Bentler と  Bonett(1980) の発言を基にした規則によるものです。
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定数 C – df を表す線の表示

E [プロ ッ ト ] ウ ィンド ウで、[適合度 ] の [C - df] を選択します。 次のよ うに表示されます。

調整可能な線の位置の他には、 散布図に変更はあ り ません。 こ こでは、 調整可能な線

に、 C - df の値が一定である点が含まれています。 先の例ではこの線は水平でしたが、

こ こでは下方に傾いています。 これは、 C - df によって、 モデルの適正の評価におけ

る複雑度に重みが付けられている こ と を示しています。 最初は、 調整可能な線は、

C - df の値が最小の点を通過します。

E この点をク リ ッ ク してから、 ポップアップ メニューから  [ モデル 7] を選択します。 

適合度を表すテーブルでモデル 7 が強調表示され、 描画領域にはモデル 7 のパス図が

表示されます。 
左下隅のパネルには、 C - df だけに依存する適合度の値が表示されます。 したがっ

て、 これらの適合度値は、 C - df 自身のよ うに、 調整可能な線に沿って一定の値をと

り ます。 CFI1 と  CFI2 はいずれも  CFI の一種で、2 つの異なるベースライン モデルを使

用します (付録 G を参照してください )。 最初は、 CFI1 と  CFI2 の両方が、 調整可能な

線上の点での 1 と等しいです。 調整可能な線を移動する と、 左下のパネル内の適合度

の値が、 線の移動先の位置に変更されます。
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定数 C – df を表す線の調整

E 調整可能な線を、 CFI1 の値が 0.950 の位置までド ラ ッグします。 

CFI1 は、 通常の CFI 統計量です。 この CFI 統計量におけるベースライン モデルでは、

平均値と分散に制約を設けずに、観測変数が互いに相関しないこ とが必要と されます。

線の下にある点の値は CFI1 > 0.950 であ り、線よ り上にある点については CFI1 < 0.950
です。 このこ とから、Hu と  Bentler(1999) の提言を基にした規則を基準に、調整可能な

線によって、 適用できるモデルが適用できないモデルと分けられているこ とがわかり

ます。
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定数の適合度を表すその他の線の表示

E [AIC]、 [BCC]、 [BIC] を順番にク リ ッ ク します。

調整可能な線が次第に負に傾いていく こ とに注意してください。 これには、5 つの測定

値 (C、 C - df、 AIC、 BCC、 および BIC) が、 モデルの複雑度に対して重みを増加させ

ている という事実が反映されています。 この 5 つの測定値それぞれについて、 調整可

能な線の傾きは一定です。 このこ とは、 線をマウスでド ラ ッグする と確認できます。

一方、C / df の調整可能な線における傾きは一定ではあ り ません (マウスでド ラ ッグす

る と線の傾きが変わり ます )。 このため、 C / df の傾きは、 C、 C – df、 AIC、 BCC、 お

よび BIC のそれぞれの傾き と比較するこ とができません。

C における最善の適合グラ フの表示

E [プロ ッ ト ] ウ ィンド ウで、 [プロ ッ ト  タイプ ] の [ 最善の適合 ] を選択します。

E [適合度 ] から  [C] を選択します。

図 22-5  各パラ メ ータ数に対する C の最小値

_Ref10789253
_Ref10789253
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このグラフ上の各点は、 C の値が、 パラ メータ数の等しい他のモデルの値以下である

モデルを表しています。 グ ラ フから、 パラ メータ数 16 個での最善モデルの値は

、 グラフから、 パラ メータ数 17 個での最善モデルの値は 、

などがわかり ます。 [ 最善の適合 ] が選択されている と、適合度のテーブルに、パラ メー

タ数ごとの最善モデルが表示されます。 このテーブルは、 先に 306 ページ で紹介して

います。

固定されたパラ メータ数に対する最善モデルは、 適合度の選択に依存しないこ とに注

意してください。 たとえばモデル 7 は、 C - df だけでなく、 C / df や他の各適合度を基

準にしても、パラ メータ数 17 個での最善モデルとな り ます。 モデルの選択基準に使用

した適合度の種類とは関係なく、 最善モデルについてのこの短いリ ス トには、 全体的

に判断された最善モデルが必ず含まれています。 
 をク リ ッ クすれば、 いつでも この短いリ ス ト を表示するこ とができます。 最善

の適合グラフから、発見的な見地においては、収穫逓減点である  17 を正しいパラ メー

タ数と して選択すべきであるこ とがわかり ます。 つま り、 パラ メータ数を 16 から  17
に増やすと  C ( ) の値は比較的大き く増加しますが、 パラ

メータ数が 17 を超える と、 その後の変化は比較的ゆるやかになり ます。

C 67.342= C 3.071=

67.342 3.071– 64.271=
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その他の適合度に対する最善の適合グラ フの表示

E [ 最善の適合 ] を選択している状態で、[適合度 ] から他の選択肢を選んでみまし ょ う 。

選択肢には、 C - df、 AIC、 BCC、 BIC、および C / dfがあ り ます。 たとえば、 [BIC] をク リ ッ

クする と、 次のよ うに表示されます。

BIC は、 C、 C - df、 AIC、 BCC、 および BIC のうち、 複雑度に対して最も大きなペナ

ルティを課す測定値です。 複雑度に対するペナルティの高さは、パラ メータ数 17 以降

で急勾配を描く正の傾きに表れています。 このグラフからは、 BIC を基準にした場合、

パラ メータ数 17 個での最善モデルが他の候補モデルよ り も優れている とい う こ とが

明らかです。

別の適合度をク リ ッ クする と、 最善の適合グラフの縦軸や、 点の設定内容が変更さ

れる こ とに注意して ください。1 ただし、 各点の同一性は保持されます。 たとえば、

パラ メータ数 16 個での最善モデルは常にモデル 4 であ り、 パラ メータ数 17 個での最

善モデルは常にモデル 7 である、 とい う こ とです。 これは、 パラ メータ数が固定され

ている場合、 各適合度に対するモデルのランク順位は同じだからです。

1 C / df グラフからは飽和モデルが欠損していますが、これは C / df で飽和モデルが定義されていないためです。
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C のスク リープロ ッ ト の表示

E [プロ ッ ト ] ウ ィンド ウで、 [プロ ッ ト  タイプ ] の [ スク リー プロ ッ ト ] を選択します。

E [適合度 ] から  [C] を選択します。

[プロ ッ ト ] ウ ィンド ウに、 次のグラフが表示されます。

図 22-6  C のスク リープロ ッ ト

このスク リー プロッ トでは、 横軸の座標が 17 の位置にある点の縦軸の座標は、 64.271 で
す。 これは、 パラ メータ数 17 個での最善モデル ( ) は、 パラ メータ数 16 個で

の最善モデル ( ) よ り も適合度が高く、この差は 
であるこ とを示しています。 同様に、 18 個のパラ メータでのグラフの高さからは、 パラ

メータ数 17 個での最善モデルから  パラ メータ数 18 個での最善モデルに移動したこ とで

得られる  C の向上などがわかり ます。 ただし、 横軸の値が 21 を超える点については、

別の説明が必要です。 パラ メータ数 21 個での最善モデルと比較できる、 パラ メータ数が

20 個のモデルはありません ( 実際、 唯一のパラ メータ数が 21 個のモデルは、 飽和モデル

です)。 パラ メータ数 21 個での最善モデル ( ) は、 これによ りパラ メータ数 19 個で

の最善モデル ( ) と比較されます。 21 個のパラ メータの点の高さは、

 と計算されます。 つま り、 パラ メータ数 19 個のモデルからパラ メータ

数 21 個のモデルに移動したこ とで得られる C の向上は、 パラ メータあたりの C の減少量

として表されます。

C 3.071=
C 67.342= 67.342 3.071 64.271=–

C 0=
C 2.761=

2.761 0–  2
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312 ページ と  315 ページ の図はいずれも、 17 個のパラ メータを肯定する、 発見的

な収穫逓減点引数についての裏付けと して使用するこ とができます。 この 2 つの図に

は、 次のよ うな違いがあ り ます。 最善の適合グラフ  (312 ページ ) では、 線が L 字 に
なっている箇所、 つま り、 比較的急な傾斜から比較的ゆるやかな傾斜に変化する箇所

が注目されます。 こ こで述べている問題によ り、 この変化はパラ メータ数 17 個で発生

します。 このこ とは、 パラ メータ数 17 個での最善モデルの裏付けとな り ます。 ス ク

リー プロ ッ ト  (315 ページ ) でも、 L 字箇所が注目されますが、 この例ではパラ メータ

数 18 個で発生します。 このこ と もまた、 パラ メータ数 17 個での最善モデルの裏付け

とな り ます。 スク リー プロ ッ トでは、 パラ メータ数 k 個で発生した L 字は、 パラ メー

タ数 （ ） 個での最善モデルの裏付けとな り ます。

スク リー プロ ッ ト という名は、主成分分析でスク リー プロ ッ ト と して知られるグラ

フ  (Cattell, 1966) と類似しているこ とから付けられています。 主成分分析で、 スク リー

プロ ッ トは、 成分を 1 つずつモデルに追加したこ とで得られるモデルの適合度の向上

を表します。 こ こで紹介している  SEM についてのスク リー プロ ッ トは、 モデルのパ

ラ メータ数を増分させるこ とで得られるモデルの適合度の向上を表しています。 この

SEM についてのスク リー プロ ッ トは、 主成分分析についてのスク リー プロ ッ ト と完

全に同じではあ り ません。 たとえば、 主成分分析では、 成分を 1 つずつ取り入れる際

に、一連の入れ子モデルを得るこ とにな り ます。 SEM についてのスク リー プロ ッ トで

は、 この限りではあ り ません。 パラ メータ数 17 個での最善モデルやパラ メータ数 18
個での最善モデルなどでは、 入れ子になるかど うかは不明です ( この例では入れ子に

なっています )。 さ らに、主成分分析ではスク リー プロ ッ トは常に単調で、増加するこ

とはないのですが、 SEM についてのスク リー プロ ッ トのケースでは、 入れ子モデル

であったにもかかわらず、 このこ とを確証できません。 実際、 この例でのスク リー プ
ロ ッ トは単調ではあ り ません。

従来のスク リー プロッ ト と こ こでのスク リー プロッ トには違いがあるのですが、新し

いスク リー プロッ ト を従来のスク リー プロッ ト と同様の発見的方法で使用するこ とが

提唱されています。 モデル選択における  2 段階の手法が勧められています。 第 1 段階

では、 スク リー プロ ッ ト とモデルの短いリ ス トのいずれかを調べるこ とによ り、 パラ

メータ数が選択されます。 第 2 段階では、 第 1 段階で決定された数のパラ メータを持

つモデルの中から、 最善モデルが選択されます。

その他の適合度に対するスク リー プロ ッ ト の表示

E [プロ ッ ト  タイプ ] で [ スク リー プロ ッ ト ] を選択している状態で、[適合度 ] から他の選

択肢を選択します。 選択肢には、 C - df、 AIC、 BCC、 および BIC があ り ます (C / df はあ

り ません )。 

k 1–
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たとえば、 [BIC] を選択する と、 次のよ うに表示されます。

C - df、 AIC、 BCC、および BIC で、縦軸の単位と原点が C とは異なる こ と を除き、

すべて同じグラフです。 このこ とから、 スク リー プロ ッ トの検定によって選択される

最終モデルは、使用する適合度の種類とは独立しているこ とがわかり ます (C / df を使

用する場合を除く )。 このこ とは、この例で先に紹介した (312 ページの 「C における最

善の適合グラフの表示」 と  314 ページの 「その他の適合度に対する最善の適合グラフ

の表示」 を参照してください ) 最善の適合プロッ トについてのスク リー プロ ッ トにお

ける利点です。 最良の適合プロッ ト と スク リー プロ ッ トには、 ほぼ同じ情報が含まれ

ます。 ただし、 最良の適合プロッ トの形が適合度の選択に依存する一方、 スク リー プ
ロ ッ トではこれに依存しません (C / df を除く )。
標本積率を変更せずに標本 サイズを変更しても、縦軸が再調整されるだけで何も影

響しないという点で、最良の適合図とスク リー プロ ッ トは標本 サイズとは独立してい

ます。

_Ref14768871
_Ref14768871
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オプシ ョ ン矢印が多数の探索的モデル特定化

先述の探索的因子分析は、オプシ ョ ン矢印が 3 つのみの、概して確認的なものでした。

Felson と  Bohrnstedt によるデータにおけるモデルを構築するにあたっては、 これよ り

もはるかに探索的な手法をと るこ とができます。 測定された 6 つの変数についての唯

一の仮説は次のとおりである と します。 

 academic は他の 5 つの変数に依存し、 かつ、

 attract は他の 5 つの変数に依存する  

図 22-7 のパス図では、この仮説が 11 のオプシ ョ ン矢印で表されています。 この図では、

どの変数が内生変数であるかが指定されているだけです。 仮説をなす各観測変数モデ

ルは、 探索的モデル特定化に含まれています。 観測変数と外生変数との共分散をオプ

シ ョ ンにするこ と もできますが、 その場合、 オプシ ョ ン矢印の数が 11 から  17 に増え、

候補モデルは 2,048(211) から  131,072(217) にまで増えてしまいます。 観測変数と外生変

数との共分散をオプシ ョ ンにする と コス トがかかる うえ、相関がない変数のペアを含む

モデルを検索するのは、 興味深い作業とは言いがたいです。

図 22-7  Felson と  Bohrnstedt による女子のデータにおける、 高度に探索的なモデル
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モデルの特定化

E %examples%\Ex22b.amw を開きます。 

ヒ ン ト  : 直前に開いたファイルが Examples フォルダ内にある場合、描画領域の左側に

ある  [ ファ イル ] リ ス トでファ イルをダブルク リ ッ クすれば開く こ とができます。 

矢印のオプシ ョ ン指定

E メニューから  [ 分析 ]  [ 探索的モデル特定化 ] の順に選択します。 

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク してから、パス図が 318 ページ の
よ うになるまで、 パス図内の矢印をク リ ッ ク します。 

ヒ ン ト  : 複数の矢印を一度に変更するには、 マウス  ポインタをク リ ッ ク してから目的

の矢印に向けてド ラ ッグします。 

_Ref12253978
_Ref12253978
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オプシ ョ ン設定のデフ ォル ト へのリ セ ッ ト

E [探索的モデル特定化 ] ツールバーの [ オプシ ョ ン ] ボタン をク リ ッ ク します。 

E [オプシ ョ ン ] ダイアログ ボッ クスで、 [ 次を検索 ] タブをク リ ッ ク します。

E [ 最善の ___ モデルのみを保存 ] ボッ クスで、 値を 0 から  10 に変更します。 

これによ り、 先にこの例で変更したデフォルト設定が復元されます。 デフォルト設定

では、 プログラムはモデルリ ス トの列の並べ替えに使用する基準に応じて、 最善モデ

ルを 10 だけ表示します。 この探索的モデル特定化では多数のモデルが生成されるの

で、 この制限は必要です。

E [ 結果 ] タブをク リ ッ ク します。

E [BCC、 AIC、 BIC] で、 [ ゼロベース (min=0)] を選択します。

探索的モデル特定化の実行

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。 

この検索には、 1.8 GHz の Pentium 4 で 10 秒ほどかかり ます。 完了する と、 [探索的モ

デル特定化 ] ウ ィンド ウが拡張して、 結果が表示されます。



321

探索的モデル特定化

BIC を使用し たモデル比較

E [探索的モデル特定化 ] ウ ィンド ウで、 「BIC0」 とい う見出しのついた列をク リ ッ ク しま

す。 これによって、 BIC0 を基準にテーブルが並べ替えられます。 

図 22-8  BIC0 を基準にし た 10 の最善モデル

並べ替えられたテーブルから、 BIC0 を基準にした場合、 モデル 22 が最善モデルであ

るこ とがわかり ます ( モデルの番号は、 パス図にオブジェク トが描画された順序にも

多少依存します。 このため、 独自のパス図を作成する場合、 モデルの番号がこ こでの

番号と異なるこ とがあ り ます )。 BIC0 を基準と した場合に 2 番目に適合していたモデ

ル 32 は、BCC0 を基準にする と最善モデルとな り ます。 上記のモデルを次に示します。

モデル 22 モデル 32

_Ref12299971
_Ref12299971


322

例 22

スク リープロ ッ ト の表示

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。

E [プロ ッ ト ] ウ ィンド ウで、 [プロ ッ ト  タイプ ] の [ スク リー プロ ッ ト ] を選択します。 

スク リー プロ ッ トでは、モデルの適合度と倹約性との ト レードオフが最適なモデルと

して、 パラ メータ数 15 個のモデルを強く推奨しています。 

E 横軸 15 の点をク リ ッ クする とポップアップが表示され、 この点がモデル 22 を表すこ

とが示されます。 このモデルのカイ  2 乗の変化は 46.22 です。 

E 22 (46.22) をク リ ッ ク して、 描画領域にモデル 22 を表示します。

制限

探索的モデル特定化手続きは、 単一グループからのデータを分析する場合にのみ実行

できます。

_Ref11693188
_Ref11693188
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探索的モデル特定化によ る探索的因子

分析

概要

この例では、 探索的モデル特定化による探索的因子分析について説明します。 こ こで

の探索的因子分析に向けた手法では、 測定された変数は任意の因子に (オプシ ョ ンで )
依存するこ とができます。 探索的モデル特定化は、 単純性と適合度の最適な組み合わ

せを示す、 一方向矢印のサブグループを検索するために実行します。 また、 モデルが

多数あるために網羅的な探索的モデル特定化を実行できない場合に役立つ、 発見的な

探索的モデル特定化についても説明します。

データについて

この例では、 例 8 で紹介した、 Holzinger と  Swineford(1939) による女子のデータを使

用します。

モデルについて

初期モデルについては、 324 ページ の図 23-1 を参照してください。 探索的モデル特定

化では、 因子から測定された変数に向けた一方向矢印は、 すべてオプシ ョ ン と され

ます。 この探索的モデル特定化では、 モデルに必要な一方向矢印はどれか、 つま り、

ある変数がどの因子に依存しているのかという こ とについて把握するこ とを目的と し

ています。
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この 2 つの因子分散は、 残差変数に関連付けられたすべての係数と同様に、 どちら

も  1 に固定されています。 この制約を設けないと、探索的モデル特定化に出現する、

いずれのモデルも識別できなくな り ます。

図 23-1  2 つの因子での探索的因子分析モデル

モデルの特定化

E %examples%\Ex23.amw ファ イルを開きます。 

最初は、 図 23-1 でのパス図が表示されます。 因子分散が 1 に固定されていても、 この

状態ではモデルを識別できないため、このモデルを適合させよ う と しても意味があり ま

せん。

[ 探索的モデル特定化 ] ウ ィ ン ド ウを開 く

E [探索的モデル特定化 ] ウ ィンド ウを開くには、[ 分析 ]  [ 探索的モデル特定化 ] の順に選

択します。 

最初は、 次のよ うにツールバーだけが表示されています。

_Ref11693188
_Ref11693188
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すべての係数のオプシ ョ ン指定

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク してから、パス図内のすべての一

方向矢印をク リ ッ ク します。 

図 23-2  すべての係数をオプシ ョ ンにし た 2 因子モデル

探索的モデル特定化の実行中、 プログラムは、 オプシ ョ ン矢印の可能なサブグループ

をすべて使用してモデルを適合しよ う と します。

オプシ ョ ン設定のデフ ォル ト へのリ セ ッ ト

E [探索的モデル特定化 ] ツールバーの [ オプシ ョ ン ] ボタン  をク リ ッ ク します。 

E [オプシ ョ ン ] ダイアログ ボッ クスで、 [ 結果 ] タブをク リ ッ ク します。
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E [ リ セ ッ ト ] をク リ ッ ク して、設定したオプシ ョ ンがこの例と同じであるこ とを確認しま

す。 

E 次に、[次を検索 ] タブをク リ ッ ク します。 [最善の ___ モデルのみを保存 ] のデフォルト値

が 10 であるこ とに注意してください。

この設定では、 プログラムはモデルリ ス ト の列の並べ替えに使用する基準に応じて、

最善モデルを 10 だけ表示します。 たとえば、「C / df」 という見出しのついた列をク リ ッ

クする と、 C / df を基準に並べ替えが行われ、 C / df の値が小さい順に 10 のモデルが

テーブルに表示されます。 散布図には、 上位 10 位までの 1 因子モデル、 上位 10 位ま

での 2 因子モデルという よ うに表示されます。 オプシ ョ ンのパラ メータが多数ある場

合には、 表示パラ メータ数を制限しておく と便利です。 
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この例ではオプシ ョ ンのパラ メータが 12 あるので、候補モデルの数は 
とな り ます。 多数のモデルに対して結果を保存していく と、 パフォーマンスに影響す

るこ とがあ り ます。 パラ メータ数ごとに上位 10 位までのモデルを表示する とい う制

限によって、 プログラムでは、およそ 10 × 13 = 130 モデル分だけのリ ス ト を保持すれ

ばいいこ とにな り ます。 パラ メータ数ごとに上位 10 位までのモデルを検索するため

には、 プログラムは 130 をはるかに超えるモデルを適合させる必要はあ り ませんが、

4,096 よ りは少な くて済みます。 このプログラムではモデルを不必要に適合しないた

め、 アルゴ リズムに総当たり回帰 (Furnival および Wilson, 1974) で使用されているア

ルゴ リズムと同じ、 分岐限界法を使用しています。

探索的モデル特定化の実行

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。 

この検索には、 1.8 GHz の Pentium 4 で 12 秒ほどかかり ます。 完了する と、 [探索的モ

デル特定化 ] ウ ィンド ウが拡張して、 結果が表示されます。

最初は、 モデルのリ ス トはあま り詳細にわたっていません。 モデルは出現した順に

リ ス トに掲載されるので、 検索の早期に出現したモデルは識別されません。 識別でき

ないモデルの分類方法については、 付録 D で説明されています。

BCC を使用し たモデル比較

E [探索的モデル特定化 ] ウ ィンド ウで、 「BCC0」 とい う見出しのついた列をク リ ッ ク し

ます。 

2
12

4096=
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「BCC」 を基準にテーブルが並べ替えられ、BCC における最善モデル (BCC の値が最も

小さいモデル ) がリ ス トの先頭に配置されます。

図 23-3  BCC0 を基準にし た 10 の最善モデル

BCC0 を基準にした場合の 2 つの最善モデル (モデル 52 とモデル 53) の適合度は同じ

です ( こ こでは値が 0 ですが、小数以下 3 桁まで指定されます )。 このこ とについては、

この 2 つのモデルのそれぞれのパス図からの説明を得るこ とができます。 

E [探索的モデル特定化 ] ウ ィンド ウで、モデル 52 の行をダブルク リ ッ ク します。 描画領

域にパス図が表示されます。 

E モデル 53 のパス図を参照するには、 モデル 53 の行をダブルク リ ッ ク します。

図 23-4  F1 と  F2 を逆にする と、 候補モデルが入れ替わる

モデル 52 モデル 53
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これは、F1 と  F2 の役割を逆にする と、一方のペアのメンバーが他方のペアのメンバー

と入れ替わる という、 単なる  1 組のモデルのペアに過ぎません。 こ う したペアは他に

もあ り ます。 モデル 52 とモデル 53 は同じものですが、4,096 の候補モデルリ ス トでは

別のものと して数えられています。 328 ページ の図 23-3 での 10 のモデルは 5 組のペ

アになっていますが、図 23-5 で示すよ うに、候補モデルが常に同じペアで出現する と

は限り ません。 この図のモデルは、パラ メータ数 6 個での上位 10 位のモデルに入らな

いだけでな く、 識別されるこ と もあ り ません。 ただし、 このモデルからは、 F1 と  F2
を逆にした場合に、 どのよ うにして 4,096 の候補モデルから別のメンバーの抽出に失

敗し う るかという こ とがわかり ます。

図 23-5  F1 と  F2 を逆にする と、 同じ候補モデルが発生する

同じ候補モデルが発生するこ とで、 この例でのモデル選択におけるベイズの計算の適

用方法が不明確にな り ます。 同様に、赤池ウェイ ト の使用方法も不明確にな り ます。

さ らに、 BCC0 の解釈における  Burnham と  Anderson によるガイ ド ライン は赤池ウェ

イ トについての推論に基づいているので、 このガイ ド ラインがこの例に適用できるか

ど うかが明確ではあ り ません。 一方、Burnham と  Anderson によるガイ ド ラインを無視

して BCC0 を使用すれば、問題が発生しないものと考えられます。 モデル 52 (および、

これと同じであるモデル 53) は、 BCC0 を基準にした場合の最善モデルです。

_Ref14845364
_Ref14845364
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BCC0 は、例8 で使用された Jöreskog と  Sörbom (1996) によるモデルを基にしたモデ

ルを選択しますが、モデル 62 (および、 これと同じであるモデル 63) は BCC0 の基準に

おいて僅差で 2 位であ り、 別の適合度を基準にした場合は最善モデルになっているこ

と もある という こ とには注意すべきでし ょ う。 モデル 63 のパス図は次のとおりです。

図 23-6  モデル 63

モデル 53 とモデル 63 の両方において、 因子 F1 と因子 F2 は、 それぞれ大まかに空間

能力と言語能力である と解釈できます。 この 2 つのモデルでは、 cubes (空間視覚化力 )
検定の得点における解釈が異なり ます。 モデル 53 では、 cubes (空間視覚化力 )の得点

は空間能力に全面的に依存しています。 モデル 63 では、 cubes (空間視覚化力 )の得点

は空間能力と言語能力の両方に依存しています。 すべての基準が適合度と倹約性に基

づいているこ とは危険性が高いため、 モデルの選択基準における解釈の問題に注意す

るこ とが特に必要です。 ただし、 次の手順でのスク リー プロ ッ トの検定では、 最善モ

デルがどれであるかが明確にわかり ます。
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スク リープロ ッ ト の表示

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。

E [プロ ッ ト ] ウ ィンド ウで、 [プロ ッ ト  タイプ ] の [ スク リー プロ ッ ト ] を選択します。 

ス ク リー プロ ッ ト では、 パラ メータ数 13 個のモデルの使用を強く推奨しています。

13 番目のパラ メータの直後でグラフが突然落ち込み、その後勾配がゆるやかになるた

めです。 横軸の座標 13 にある点をク リ ッ ク します。 ポップアップが表示され、 この点

が 328 ページ の図 23-4 におけるモデル 52 とモデル 53 を表すこ とが示されます。

モデルの短い リ ス ト の表示

E [ 探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。 後から参照できるよ う

に、 モデルの短いリ ス トの控えをとっておきます。

_Ref11692933
_Ref11692933
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発見的な探索的モデル特定化

オプシ ョ ン矢印の数が増えるにしたがって、 網羅的な探索的モデル特定化で適合する

必要のあるモデルの数が急速に増えます。 325 ページ の図 23-2 には 12 のオプシ ョ ン

矢印があ り ます。 このため、 網羅的な探索的モデル特定化では、  のモデル

を適合する必要があ り ます ([ オプシ ョ ン ] ダイアログ ボッ クスの [ 次を検索 ] プロパ

ティ  ページにある  [ 最善の ___ モデルのみを保存 ] に、 小さな正の数が指定されている

場合は、 モデルの数は 4096 よ り も少なくな り ます )。 適合する必要があるモデルの数

を減らすために、多数の発見的な検索手続きが提案されてきました (Salhi, 1998)。 いず

れも必ず最善モデルを検索できる とは限り ませんが、オプシ ョ ン矢印の数が 20 を超え

たあたりから網羅的な探索的モデル特定化ができなくなる という問題に対し、 実際の

計算に役立つという利点があ り ます。

Amos には、 発見的検索のオプシ ョ ンの他に、 発見的検索の方略が 3 つ備わってい

ます。 特定の適合度における最小と最大の意味において、 最善についての定義を選択

するこ とが必要となるため、 発見的な方略では、 全体における最善モデルの検索が試

みられるこ とはあ り ません。 その代わり、発見的な方略では、乖離度が最小のパラ メー

タ数 1 個のモデル、 乖離度が最小のパラ メータ数 2 個のモデル、 といったモデルの検

索を試みます。 この手法を採り入れるこ とで、 適合度の選択から独立した検索手続き

を設計するこ とができます。 [ オプシ ョ ン ] ダイアログ ボッ クスの [ 次を検索 ] プロパ

ティ  ページで、 適用が可能な検索方略を選択できます。 選択肢は、 次のとおりです。

 全ての部分集合網羅的検索が実行されます。 これがデフォルト とな り ます。

 変数増加法プログラムは、オプシ ョ ン矢印のないモデルを最初に適合します。 その

後、 乖離度の減少が最も大きい矢印を常に追加しながら、 オプシ ョ ン矢印を 1 つ
ずつ追加していきます。

 変数減少法プログラムは、 モデル内の矢印がすべてオプシ ョ ン矢印であるモデル

を最初に適合します。 その後、 乖離度の増加が最も小さい矢印を常に削除しなが

ら、 オプシ ョ ン矢印を 1 つずつ削除していきます。

 ステ ッ プワイズ法プログラムは、 変数増加法と変数減少法を切り替えながら検索

を行います。 最初は変数増加法から始めます。プログラムはオプシ ョ ン矢印 1 つの

最善モデルの出現、 オプシ ョ ン矢印 2 つの最善モデルの出現、 とい う よ うに経過

を追います。 変数増加法による検索後、変数増加法と変数減少法との切り替えアル

ゴ リズムが、一定の規則のも とで変更されます。 この規則では、プログラムは、出

現したモデルの乖離度が、 これよ り前に出現した同じ数の矢印を持つどのモデル

よ り も小さい場合にのみ、 矢印の追加や削除を行う こ とになっています。 たとえ

ば、 オプシ ョ ン矢印 5 つのモデルに対してプログラムが矢印を 1 つ追加するのは、

出現したオプシ ョ ン矢印 6 つのモデルの乖離度が、 これよ り も前に出現したオプ

シ ョ ン矢印 6 つのモデルのいずれと比べても小さい場合のみです。 変数増加法と

変数減少法との切り替え検索では、変数増加法または変数減少法のいずれかが、改

善のないままに完了した時点で一方に切り替わり ます。

2
12

4096=



333

探索的モデル特定化による探索的因子分析

ステ ッ プワイズ検索の実行

E [探索的モデル特定化 ] ツールバーの [ オプシ ョ ン ] ボタン をク リ ッ ク します。 

E [オプシ ョ ン ] ダイアログ ボッ クスで、 [ 次を検索 ] タブをク リ ッ ク します。

E [ ステ ッ プワイズ法 ] を選択します。

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。

図 23-7 では、パラ メータ数 13 個のモデルであるモデル 7 の調査が推奨されています。

このモデルの乖離度 C は、 パラ メータ数 12 個での最善モデルの乖離度よ り もはるか

に小さ く、 パラ メータ数 14 個での最善モデルを大き く上回ってもいません。 モデル 7
は、 BCC と  BIC のどちらを基準にしても最善モデルとな り ます。 ( 発見的な探索的モ

デル特定化アルゴ リズムでの確率的要素によって、 図中の数値とは異なる結果が生じ

る場合があ り ます。 変数増加法での検索中に矢印が追加された り、 変数減少法での検

索中に矢印が削除されたりする と、 最善モデルの選択が一意ではなくなるこ とがあ り

ます。 この場合、最善モデルに結び付けられた矢印から  1 本が無作為に抽出されます。）

図 23-7  ステ ッ プワイズ法での検索結果

_Ref12419715
_Ref12419715
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スク リープロ ッ ト の表示

E [探索的モデル特定化 ] ツールバーの  をク リ ッ ク します。

E [プロ ッ ト ] ウ ィンド ウで、 [プロ ッ ト  タイプ ] の [ スク リー プロ ッ ト ] を選択します。 

スク リー プロ ッ トから、 13 番目のパラ メータを追加する と、 乖離度が大幅に減少し、

13 番目のパラ メータを超える と、それ以上パラ メータを追加してもほんの少ししか減

少しないという こ とが確認できます。

図 23-8  ステ ッ プワイズ法による検索後のスク リー プロ ッ ト

E スク リー プロ ッ トで、横軸の座標が 13 の点 (図 23-8 を参照 ) をク リ ッ ク します。 ポッ

プアップが表示され、モデル 7 がパラ メータ数 13 個での最善モデルであるこ とが示さ

れます。

E ポップアップ メニューから  7 (25.62) をク リ ッ ク します。 描画領域にモデル 7 のパス図

が表示されます。 

ヒ ン ト  : [探索的モデル特定化 ] ウ ィンド ウでモデル 7 の行をダブルク リ ッ ク しても同

じ結果が得られます。

_Ref12421771
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発見的な探索的モデル特定化における制限

発見的な探索的モデル特定化では、 特定のパラ メータ数の最善モデルを検索できない

場合があ り ます。 実際、 この例でのステップワイズ検索では、 パラ メータ数 11 個での

最善モデルを 1 つも検索できませんでした。 333 ページの図23-7 では、 ステップワイ

ズ検索によって検索された、パラ メータ数 11 個での最善モデルの乖離度 (C) は 97.475
でした。 と ころが網羅的検索では、乖離度 55.382 の 2 つのモデルが検索されています。

各パラメータ数に対し、ステップワイズ検索では最善モデルから  1 つが検索されました。

当然ながら、 発見的検索が成功だったのかど うかがわかるのは、 網羅的検索を実行

して、 発見的検索の結果を再調査できた場合だけです。 使用できる手法が発見的検索

のみである場合の問題と して、 各パラ メータ数に対して最善モデルの 1 つを検索でき

るかど うかが不確かである という こ とだけでなく、 検索が成功したのかど うかを知る

方法がないという こ と も挙げられます。

発見的検索によって、 特定のパラ メータ数に対する最善モデルの 1 つを検索できた

場合においても、 適合度が同じか、 差がわずかな他のモデルについての情報を得るこ

とができません （Amos ではこのよ うに実装されています )。
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複数グループでの因子分析

概要

この例では、 複数グループにまたがる制約条件の自動指定による、 2 つのグループで

の因子分析を紹介します。

データについて

この例では、 例 12 と例 15 で紹介した、 Holzinger と  Swineford(1939) による女子と男

子のデータを使用します。

モデル 24a: 平均値と切片項を使用し ないモデル作成

明示的なモデルパラ メータに平均値と切片項が含まれている と、 複数グループの分析

が困難になり ます。 平均値と切片項の処理については、 追ってモデル 24b で説明しま

す。 こ こでは、 明示的な平均値と切片項のない次の因子分析モデルを、 女子と男子の

データに適合させるこ とについて考察します。
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図 24-1  女子と男子の 2 因子モデル

これは、 例 12 で考察した、 2 つのグループでの因子分析における問題と同じです。

こ こでは例 12 での結果が自動的に得られます。

モデルの特定化

E メニューから  [ フ ァ イル ]  [ 開 く ] の順に選択します。

E [開 く ]ダイアログで、 ファイル名 「%examples%\Ex24a.amw」 を入力し、 [開 く ]ボタン

をク リ ッ ク します。

パス図は 図 24-1 に表示のとおりで、男子も女子も同じです。 回帰ウェイ トの うちのい

くつかは、 値が 1 に固定されています。 この回帰ウェイ トの値は、 続く分析が完了す

るまで 1 に固定されたままです。 この補助が付いた複数グループの分析によって、

指定したモデルに制約条件が設けられるこ とはあっても、 制約条件が削除されるこ と

はあ り ません。

[ 複数グループの分析 ] ダイアログ ボ ッ クスを開 く

E メニューから  [ 分析 ][ 複数グループの分析 ] の順に選択します。 

_Ref12080302
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E 表示されるダイアログ  ボッ ク スで [OK] をク リ ッ ク します。 [複数グループの分析] ダ
イアログ ボッ クスが開きます。

図 24-2  [ 複数グループの分析 ] ダイアログ ボ ッ クス

ほとんどの場合、 [OK] をク リ ッ クするだけです。 しかし、 こ こでは [複数グループの分

析 ] ダイアログ ボッ クスの一部を見てみるこ とにしまし ょ う。 
チェッ ク  ボッ クスが 8 列に並んでいます。 チェッ ク  ボッ クスがオンになっているの

は、 [1]、 [2]、 および [3] という ラベルが付いた列だけです。 これは、 プログラムによっ

て、 グループ間制約がそれぞれ異なる  3 つのモデルが生成される という こ とを意味し

ています。

列 1 では、 モデルの測定部分における回帰ウェイ トの略である、 [ 測定モデルのウ ェ

イ ト ] という ラベルの付いた行だけがオンになっています。 これは、因子分析モデルで

の因子負荷に当たり ます。 次の項で、 測定モデルのウェイ ト をパス図に表示する方法

について説明します。 列 1 よ り、 測定モデルのウェイ トがグループ間で一定 （男子と

女子とで等しい） のモデルが生成されます。

列 2 では、 [ 測定モデルのウ ェ イ ト ] だけでなく、 モデルの構造部分における分散と

共分散の略である  [ 構造モデルの共分散 ] もオンになっています。 これらはそれぞれ、因

子分析モデルでの因子分散と因子共分散に当たり ます。 次の項で、 構造モデルの共分

散をパス図に表示する方法について説明します。 列 2 よ り、測定モデルのウェイ ト と、

構造モデルの共分散がグループ間で一定のモデルが生成されます。

列 3 では、列 2 でのすべてのチェッ ク  ボッ クスに加えて、モデルの測定部分におけ

る残差 (誤差 ) 変数の分散と共分散の略である、[ 測定モデルの残差 ] チェッ ク  ボッ クス

もオンになっています。 次の項で、 測定モデルの残差をパス図に表示する方法につい

て説明します。 黒のフォン ト  (灰色ではあ り ません ) で表示された 3 つのパラ メータの

グループは、相互に排他的かつ網羅的です。このため、列 3 によ り、すべてのパラ メー

タがグループ間で一定のモデルが生成されます。

_Ref17272826
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上記を要約する と、 列 1 から列 3 によ り、 モデルの階層が生成されます。 この階層

では、 前のモデルの制約条件が各モデルに引き継がれます。 最初に、 因子負荷の値が

グループ間で固定されます。 次に、 因子分散と因子共分散の値が固定されます。 最後

に、 残差 (独自 ) 分散の値が固定されます。

パラ メ ータ部分集合の表示

E [複数グループの分析] ダイアログ ボックスの [測定モデルのウェ イ ト ] をク リ ック します。

測定モデルのウェイ トが、描画領域に色付きで表示されます。 [ インターフェイスのプロ

パティ ] ダイアログ ボックスの [ アクセス ] プロパティ  ページにある  [ 色の選択 ] チェッ

ク  ボッ クスがオンになっている場合、測定モデルのウェイ トは次のよ うな太線で表示

されます。 

E [ 構造モデルの共分散 ] をク リ ッ ク して、因子分散と因子共分散が強調表示されているこ

とを確認します。 

E [測定モデルの残差 ] をク リ ックして、誤差変数が強調表示されているこ とを確認します。

グループ間制約のそれぞれが、 どのパラ メータに影響しているかを簡単に視覚化する

方法があ り ます。
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生成されたモデルの表示

E [複数グループの分析 ] ダイアログ ボッ クスで [OK] をク リ ッ ク します。 

パス図にすべてのパラ メータの名前が表示されます。 パス図の左側にあるパネルか

ら、 グループ間制約が設けられていない [ 制約な し ] モデルの他に、 プログラムによっ

て 3 つの新規モデルが作成されたこ とがわかり ます。

図 24-3  自動制約後の Amos Graphics のウ ィ ン ド ウ
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E [XX: 測定モデルのウ ェ イ ト ] をダブルク リ ッ ク します。 [モデルを管理 ] ダイアログ ボッ

クスが開き、 因子負荷の値をグループ間で一定にする必要がある という制約条件が表

示されます。

すべてのモデルの適合と、 出力の表示

E メニューから  [ 分析 ] [ 推定値を計算 ] の順に選択して、すべてのモデルを適合します。

E メニューから、 [ 表示 ] [ テキス ト 出力の表示 ] を選択します。

E 出力ビューアの概念ツ リー図で [ モデルの適合度 ] ノードをク リ ック して拡張してから、

[CMIN] をク リ ッ ク します。

CMIN テーブルには、各適合モデルに対する尤度比カイ  2 乗統計量が表示されます。 こ
のデータは、 いずれのモデルからも著し く逸脱するこ とはあ り ません。 加えて、 [制約

なし ] モデルから  [測定モデルの残差 ] モデルに向けての階層において、 ある段階から

次の段階へのカイ  2 乗の増加分が、自由度の増加分を大き く上回るこ とはあ り ません。

女子のパラ メータ値が男子のパラ メータ値と異なるこ とを示す有意な証拠はないよ う

です。

CMIN テーブルを次に示します。

モデル NPAR CMIN DF P CMIN/DF

制約なし 26 16.48 16 0.42 1.03
測定モデルのウェイ ト 22 18.29 20 0.57 0.91
構造モデルの共分散 19 22.04 23 0.52 0.96
測定モデルの残差 13 26.02 29 0.62 0.90
飽和モデル 42 0.00 0
独立モデル 12 337.55 30 0.00 11.25
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E 概念ツ リー図で、 [ モデルの適合度 ] ノードの下にある  [AIC] をク リ ッ ク します。

[AIC] 値と  [BCC] 値は、 すべてのパラ メータがグループ間で等し くなるよ うに制約し

たこ とで ([ 測定モデルの残差 ] モデル )、 モデルの適合度と倹約性における最適な ト

レードオフが得られたこ とを示しています。

AIC テーブルを次に示します。

分析のカス タ マイズ

自動生成されたグループ間制約は、 次の 2 箇所において変更する こ と もできます。

339 ページ の図 24-2 では、列 1、 2、 3 のチェッ ク  ボッ クスのオン / オフを変更できま

す。 また、 列 4 から列 8 までのチェッ ク  ボッ クスをオンにするこ とで、 別のモデルを

生成するこ と もできます。 その後、 341 ページ の図 24-3 で、 パス図の左側にあるパネ

ルに一覧表示された任意の自動生成モデルについて、 名前を変更したり、 モデル自体

を変更するこ とができます。

モデル 24b: 因子の平均値の比較

明示的な平均値と切片項がモデルに加わる と、 どのグループ間パラ メータ制約を、

どのよ う な順番で検定するべきかとい う問題が発生します。 この例では、 338 ページ

の図 24-1 における因子分析モデルを、女子と男子に分かれたグループのデータに適合

する際に、 Amos がどのよ うに平均値と切片項を制限するかについて説明します。

これは、 例 15 で考察した、 2 つのグループでの因子分析における問題と同じです。

こ こでは例15 での結果が自動的に得られます。

モデルの特定化

E メニューから  [ フ ァ イル ]  [ 開 く ] の順に選択します。

E [ 開 く ] ダイアログで、ファ イル名 「%examples%\Ex24b.amw」 を入力し、 [ 開 く ]ボタン

をク リ ッ ク します。 

モデル AIC BCC BIC CAIC

制約なし 68.48 74.12
測定モデルのウェイ ト 62.29 67.07
構造モデルの共分散 60.04 64.16
測定モデルの残差 52.02 54.84
飽和モデル 84.00 93.12
独立モデル 361.55 364.16
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パス図は次のとおりで、 男子も女子も同じです。 回帰ウェイ ト の う ちのいくつかは、

値が 1 に固定されています。 観測されない変数の平均値は、 すべて 0 に固定されてい

ます。 次の項で、女子における因子の平均値に対する制約条件を削除します。 その他の

制約条件 （削除しない制約条件） は、 分析が完了するまで有効のままです。

図 24-4  明示的な平均値と切片項を含む 2 因子モデル

制約条件の削除

最初は、 因子の平均値は男子と女子の両方で 0 に固定されています。 両方のグループ

における因子の平均値を推定するこ とはできません。 ただし、 Sörbom (1974) は、 1 つ
のグループの因子の平均値を一定の値に固定し、 因子モデルの回帰ウェイ ト と切片項

に適切な制約条件を設けるこ とで、 他のすべてのグループにおける因子の平均につい

て、 有意な推定値を得るこ とができる と述べています。 この例では、 上記での 1 つの

グループを男子と し、 この因子の平均値を 0 に固定するこ とにします。 その後、 残り

のグループである女子における因子の平均値に対する制約条件を削除します。 Sörbom
による手法で必要と される、回帰ウェイ ト と切片項に対する制約条件は、Amos によっ

て自動生成されます。

男子における因子の平均値はすでに 0 に固定されています。 女子における因子の平

均値に対する制約条件を削除する方法は、 次のとおりです。

E Amos Graphics のウ ィンド ウの描画領域で視覚能力を右ク リ ッ ク して、ポップアップ メ
ニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択します。 

E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [ パラ メ ータ ] タブをク リ ッ ク し

ます。

E [平均 ] ボッ クスで 0 を選択してから、 Del キーを押します。

E [オブジェク トのプロパティ ] ダイアログ ボッ クスが開いている状態で、描画領域の言

語能力をク リ ッ ク します。 [オブジェク トのプロパティ ] ダイアログ ボッ クスに、言語

因子のプロパティが表示されます。
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E [パラ メータ ] プロパティ  ページの [平均 ] ボッ クスで 0 を選択してから、Del キーを押

します。

E [オブジェク ト  プロパティ ] ダイアログ ボッ クスを閉じます。

女子における因子の平均値に対する制約条件が削除され、 女子と男子の各パス図は次

のよ うにな り ます。

ヒ ン ト  : 描画領域のパス図を切り替えるには、 左側の [ グループ ] 枠で [Boys] または

[Girls] をク リ ッ ク して ください。

グループ間制約の生成

E メニューから  [ 分析 ] [ 複数グループの分析 ] の順に選択します。 

E 表示されるダイアログ  ボッ ク スで [OK] をク リ ッ ク します。 [複数グループの分析] ダ
イアログ ボッ クスが開きます。

女子 男子
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上記のデフォルト設定では、 次のよ うな 5 つのモデルについての入れ子状の階層が生

成されます。

E [OK] をク リ ッ ク します。

モデルの適合

E メニューから  [ 分析 ]  [ 推定値を計算 ] の順に選択します。 

パス図の左側にあるパネルに、 2 つのモデルをデータに適合できなかったこ とが表示

されます。 適合できなかった 2 つのモデルとは、 グループ間制約のない [ 制約な し ] モ
デルと、 因子負荷がグループ間で等し くなるよ う固定された [ 測定モデルのウ ェ イ ト ]
モデルです。 この 2 つのモデルは識別されていません。

出力の表示

E メニューから  [ 表示 ]  [ テキス ト 出力の表示 ] の順に選択します。

E 出力ビューアの概念ツ リー図で、 [ モデルの適合度 ] ノードを拡張します。

自動生成され、 識別された 4 つのモデルについての適合度の一部が、 飽和モデルと独

立モデルの適合度と と もに表示されます。 

E [モデルの適合度 ] ノードの下にある  [CMIN] をク リ ッ ク します。 

モデル 制約条件

モデル 1 (列 1)
測定モデルのウェイ ト  ( 因子負荷 ) の値は、 グループ間で

同じです。

モデル 2 (列 2)
上記に加え、 測定モデルの切片項 ( 測定変数を予測する方

程式での切片項 ) も、 グループ間で同じです。

モデル 3 (列 3)
上記に加え、 構造モデルの平均値 ( 因子の平均値 ) も、

グループ間で同じです。

モデル 4 (列 4)
上記に加え、 構造モデルの共分散 ( 因子の分散と共分散 )
も、 グループ間で同じです。

モデル 5 (列 5) すべてのパラ メータの値がグループ間で同じです。
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CMIN テーブルから、 飽和モデルに対して検定を行った場合、 いずれの生成モデルも

棄却できないという こ とがわかり ます。 

一方、因子の平均値を等し くする という制約条件を設けたこ とによるカイ  2 乗値の変化

( ) は、 自由度の変化 ( ) に比べて大きいよ うです。

E 概念ツ リー図で、 [ モデルの適合度 ] ノードをク リ ッ ク します。

モデルの [測定モデルの切片項 ] が正しい場合、次のテーブルから、カイ  2 乗値の差が

有意であるこ とがわかり ます。

上の 2 つのテーブルでは、 2 つのカイ  2 乗統計量と、 これに関連する自由度が特に重

要です。 最初のテーブルでの、  と   から、 測定モデルにおける切

片項と回帰ウェイ トがそれぞれ等しいとい う仮説を採択できる こ とにな り ました。 切
片項と回帰ウェイ トがそれぞれ等し くない限り、 男子と女子で因子が同じ意味を持つ

という こ とが不明確になり、 各平均値を比較する意味がなくなるため、 この仮説の信

頼性を確立するこ とは重要です。 も う  1 つの重要なカイ 2 乗統計量 である  
と   からは、男子と女子で因子の平均値が等しいという仮説が棄却されるこ と

にな り ます。

男子と女子での因子の平均値に見られるグループ間の差は、 [測定モデルの切片項 ]
モデルでの女子の推定値から決定するこ とができます。 

E 出力ビューアの左下のウ ィンド ウ枠で、 [ 測定モデルの切片項 ] モデルを選択します。

E 概念ツ リー図で、 [ 推定値 ] をク リ ッ ク してから、 [ スカ ラー ]、 [ 平均値 ] の順にク リ ッ ク

します。 

男子の平均値は 0 に固定されているので、 次のテーブルに表される とおり、 女子の平

均値だけが推定されます。

モデル NPAR CMIN DF P CMIN/DF

測定モデルの切片項 30 22.593 24 0.544 0.941
構造モデルの平均値 28 30.624 26 0.243 1.178
構造モデルの共分散 25 34.381 29 0.226 1.186
測定モデルの残差 19 38.459 35 0.316 1.099
飽和モデル 54 0.00 0
独立モデル 24 337.553 30 0.00 11.252

モデル DF CMIN P
NFI
Delta-1

IFI
Delta-2

RFI
rho-1

TLI
rho2

構造モデルの平均値 2 8.030 0.018 0.024 0.026 0.021 0.023
構造モデルの共分散 5 11.787 0.038 0.035 0.038 0.022 0.024
測定モデルの残差 11 15.865 0.146 0.047 0.051 0.014 0.015

推定値 標準誤差 検定統計量 P ラベル

spatial (視覚能力 ) –1.066 0.881 –1.209 0.226 m1_1
言語 0.956 0.521 1.836 0.066 m2_1

30.62 22.59 8.03=– 26 24 2=–

c2
22.59= df 24=

c2
8.03=

df 2=
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上記の推定値は、 例 15 のモデル A において述べられています。 このモデルは、 こ こ

での [測定モデルの切片項 ] モデルと同じです (例15 のモデル B は、 こ こでの 
[構造モデルの平均値 ] モデルと同じです )。
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複数グループの分析

概要

この例では、 Sörbom による代替案を、共分散の分析において自動的に実装する方法に

ついて説明します。

例 16 では、 潜在変数のある共分散の分析における、 Sörbom による手法の利点につ

いて紹介しています。 ただし残念なこ とに、例16 でも説明している とおり、Sörbom に
よる手法は多数の手順を必要とするため、 適用が困難です。 この例では、 例16 と同じ

結果を自動的に取得します。

データについて

こ こ では、 例 16 での Olsson(1973) によ るデータ を使用し ます。 標本の積率は、

UserGuide.xls という ワークブッ クにあ り ます。 実験群での標本の積率は、 Olss_exp と
いう ワークシートにあ り ます。 統制群での標本の積率は、Olss_cnt という ワークシート

にあ り ます。
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モデルについて

モデルについては、例16 で説明しています。 Sörbom による手法では、パス図が実験群

と統制群で同じであるこ とが必要と されます。

図 25-1  Olsson のデータにおける Sörbom のモデル

モデルの特定化

E %examples%\Ex25.amw を開き  ます。 

パス図は図 25-1 に表示のとおりで、 統制群も実験群も同じです。 回帰ウェイ トの うち

のいくつかは、値が 1 に固定されています。 すべての残差 (誤差 ) 変数の平均値の平均

値は、0 に固定されています。 これらの制約条件は、分析が完了するまで有効のままです。

潜在変数の平均値と切片項の制限

Olsson のデータにおける  Sörbom のモデルを表した、 図 25-1 のモデルは識別されませ

ん。 Amos によって自動生成される各グループ間制約においても識別されないままで

す。 各グループ間制約において、 pre_verbal (言語能力 (事前 ))の平均値と、 post_verbal
(言語能力 (事後 )) を予測する方程式での切片項は、 識別されません。 少なく と も一部

のグループ間制約でモデルが識別されるよ うにするには、統制群などの 1 つのグループ

を抽出して、 pre_verbal (言語能力 (事前 )) の平均値と、 post_verbal (言語能力 (事後 ))
の切片項を、 0 などの数に固定する必要があ り ます。 

E パス図の左側にある  [グループ ] 枠で、 「control」 が選択されているこ とを確認してくだ

さい。 このこ とは、統制群のパス図が描画領域に表示されているこ とを示しています。

E 描画領域でpre_verbal (言語能力(事前)) を右ク リ ッ ク して、ポップアップ メニューから

[ オブジ ェ ク ト のプロパテ ィ ] を選択します。

_Ref12125275
_Ref12125275
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E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [ パラ メ ータ ] タブをク リ ッ ク し

ます。 

E [平均 ] テキス ト  ボッ クスに、 「0」 と入力します。 

E [ オブジェク トのプロパティ ] ダイアログ ボッ クスが開いている状態で、 描画領域の

post_verbal (言語能力 (事後 )) をク リ ッ ク します。

E [ テーブル プロパティ ] ダイアログ ボッ クスの [ 切片 ] テキス ト  ボッ クスに、 「0」 と入

力します。

E [オブジェク ト  プロパティ ] ダイアログ ボッ クスを閉じます。 

統制群のパス図が次のよ うに表示されます。

実験群のパス図は図 25-1 でのままです。

グループ間制約の生成

E メニューから  [ 分析 ]  [複数グループの分析 ] の順に選択します。 

E 表示されるダイアログ ボッ クスで [OK] をク リ ッ ク します。 

_Ref12125275
_Ref12125275
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[複数グループの分析 ] ダイアログ ボッ クスが表示されます。

E [OK] をク リ ッ クする と、 8 つのモデルによる、 次のよ うな入れ子状の階層が生成され

ます。

モデルの適合

E メニューから  [ 分析 ]  [ 推定値を計算 ] の順に選択します。 

モデル 制約条件

モデル 1 (列 1)
測定モデルのウェイ ト  ( 因子負荷 ) の値は、 グループ間で一定

です。

モデル 2 (列 2)
上記に加え、 測定モデルの切片項 ( 測定変数を予測する方程式

での切片項 ) も、 グループ間で一定です。

モデル 3 (列 3)
上記に加え、 構造モデルのウェイ ト  ( 言語能力 ( 事後 ) を予測

するための回帰ウェイ ト ) も、 グループ間で一定です。

モデル 4 (列 4)
上記に加え、 構造モデルの切片項 ( 言語能力 ( 事後 ) を予測す

る方程式での切片項 ) も、 グループ間で一定です。

モデル 5 (列 5)
上記に加え、構造モデルの平均値 (言語能力 (事後 )の平均値 )
も、 グループ間で一定です。

モデル 6 (列 6)
上記に加え、 構造モデルの共分散 ( 言語能力 ( 事前 ) の分散 )
も、 グループ間で一定です。

モデル 7 (列 7)
上記に加え、 構造モデルの残差 (zeta の分散 ) も、 グループ間

で一定です。

モデル 8 (列 8) すべてのパラ メータの値がグループ間で一定です。
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パス図の左側にあるパネルに、 2 つのモデルをデータに適合できなかったこ とが表示

されます。 適合できなかったモデルは、 [ 制約な し ] モデルと、 [ 測定モデルのウ ェ イ ト ]
モデルです。 この 2 つのモデルは識別されていません。

テキス ト 出力を表示する

E メニューから、 [ 表示 ] [ テキス ト 出力の表示 ] を選択します。

E 出力ビューアの概念ツ リー図で [ モデルの適合度 ] ノードを拡張してから、 [CMIN] をク

リ ック します。 自動生成され、識別された 7 つのモデルについての一部の適合度が、飽

和モデルと独立モデルの適合度と と もに、CMIN テーブルに次のよ うに表示されます。

このテーブルには多数のカイ  2 乗統計量があ り ますが、 重要なのは 2 つだけです。

Sörbom の手続きから、 2 つの基本的な問題に行き当たり ます。 1 つは、 [構造モデルの

ウェイ ト ] モデルを適合できるかど うかについてです。 このモデルでは、pre_verbal (言
語能力 (事前 ))から post_verbal (言語能力 (事後 )) を予測するための回帰ウェイ トの値

が、 グループ間で一定になるよ う指定しています。 
[構造モデルのウェイ ト ] モデルが採択される となる と、階層での次のモデルである

[ 構造モデルの切片項 ] モデルの適合度は大幅に低くなるのではないかと考えられま

す。 一方、 [構造モデルのウェイ ト ] モデルを棄却する必要がある場合は、 [構造モデル

の切片項 ] モデルが問題に上らなくなってしまいます。 残念ながら、こ こではこのケー

スが発生しています。 、 の [構造モデルのウェイ ト ] モデルは、従

来のいずれの有意水準においても棄却されます。

モデル NPAR CMIN DF P CMIN/DF

測定モデルの切片項 22 34.775 6 0.000 5.796
構造モデルのウェイ ト 21 36.340 7 0.000 5.191
構造モデルの切片項 20 84.060 8 0.000 10.507
構造モデルの平均値 19 94.970 9 0.000 10.552
構造モデルの共分散 18 99.976 10 0.000 9.998
構造モデルの残差 17 112.143 11 0.000 10.195
測定モデルの残差 13 122.366 15 0.000 8.158
飽和モデル 28 0.000 0
独立モデル 16 682.638 12 0.000 56.887

c2
36.34= df 7=
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修正指数の調査

[構造モデルのウェイ ト ] モデルの適合度を改善できるかど うかを調べる方法は、次の

とおりです。 

E 出力ビューアを閉じます。

E Amos Graphics メニューから、 [ 表示 ]  [ 分析のプロパテ ィ ] の順に選択します。

E [ 出力 ] タブをク リ ッ ク してから、 [ 修正指数 ] チェッ ク  ボッ クスを選択します。 

E [分析のプロパティ ] ダイアログ ボッ クスを閉じます。

E メニューから  [ 分析 ]  [ 推定値を計算 ] の順に選択して、すべてのモデルを適合します。

このモデルは分析に適合度が必要な唯一のモデルであるため、 調査が必要となるのは

[構造モデルのウェイ ト ] モデルの修正指数だけです。 

E メニューから、 [ 表示 ] [ テキス ト 出力の表示 ] の順に選択してから、出力ビューアの概

念ツ リー図で [ 修正指数 ] を選択します。 さ らに、 左下のパネルで [ 構造モデルのウェ イ

ト ] を選択します。 

E [ 修正指数 ] ノードを拡張して、 [ 共分散 ] を選択します。 

統制群における次の共分散テーブルに見られる とおり、 デフォルトのしきい値である

4 を上回っている修正指数は 1 つだけです。 

E 左のパネルで、[experimental] をク リ ッ ク します。 実験群における次の共分散テーブルに

見られる とおり、 4 を上回っている修正指数は 4 つあ り ます。

この中で、 明らかな論理的調整が見られるのは、 eps2 を eps4 と相関させる修正と、

eps1 を eps3 と相関させる修正の 2 つだけです。 この 2 つのうち修正指数が大きいの

は、 eps2 を eps4 と相関させる修正の方です。 これによ り、統制群と実験群のどちらの

修正指数からも、 eps2 を eps4 と相関させるこ とが推奨されます。

M.I. 改善度

eps2 <--> eps4 4.553 2.073

M.I. 改善度

eps2 <--> eps4 9.314 4.417
eps2 <--> eps3 9.393 –4.117
eps1 <--> eps4 8.513 –3.947
eps1 <--> eps3 6.192 3.110
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モデルの変更と分析の繰り返し

E 出力ビューアを閉じます。

E メニューから  [ 図 ][ 共分散を描 く ] の順に選択します。

E ク リ ッ ク したまま ド ラ ッグして、 eps2 と  eps4 の間に双方向矢印を描きます。 

E メニューから  [分析][複数グループの分析] の順に選択し、表示される メ ッセージ ボッ

クスで [OK] をク リ ッ ク します。 

E [複数グループの分析 ] ダイアログ ボッ クスで [OK] をク リ ッ ク します。

E メニューから  [ 分析 ][ 推定値を計算 ] の順に選択して、すべてのモデルを適合します。

E メニューから  [ 表示 ][ テキス ト 出力の表示 ] の順に選択します。

E 出力ビューアの概念ツ リー図を使用して、[ 構造モデルのウ ェ イ ト ] モデルの適合度を表

示します。 

eps2 と  eps4 を結ぶ双方向矢印が追加されたこ とで、 次の CMIN テーブルに表される

よ うに、 [構造モデルのウェイ ト ] モデルの適合度 ( 、 ) が適切な値

とな り ました。

[ 構造モデルのウ ェ イ ト ] モデルがデータに適合する よ う になったため、 今度は、

[構造モデルの切片項 ] モデルの適合度が大幅に低くなるのではないかという こ とが考

えられます。 [構造モデルのウェイ ト ] モデルが正しい場合、 次のよ うにな り ます。

モデル NPAR CMIN DF P CMIN/DF

測定モデルの切片項 24 2.797 4 0.59 0.699
構造モデルのウェイ ト 23 3.976 5 0.55 0.795
構造モデルの切片項 22 55.094 6 0.00 9.182
構造モデルの平均値 21 63.792 7 0.00 9.113
構造モデルの共分散 20 69.494 8 0.00 8.687
構造モデルの残差 19 83.194 9 0.00 9.244
測定モデルの残差 14 93.197 14 0.00 6.657
飽和モデル 28 0.000 0
独立モデル 16 682.638 12 0.00 56.887

モデル DF CMIN P
NFI
Delta-1

IFI
Delta-2

RFI
rho-1

TLI
rho2

構造モデルの切片項 1 51.118 0.000 0.075 0.075 0.147 0.150
構造モデルの平均値 2 59.816 0.000 0.088 0.088 0.146 0.149
構造モデルの共分散 3 65.518 0.000 0.096 0.097 0.139 0.141
構造モデルの残差 4 79.218 0.000 0.116 0.117 0.149 0.151
測定モデルの残差 9 89.221 0.000 0.131 0.132 0.103 0.105

c2
3.98= df 5=



356

例 25

[ 構造モデルの切片項 ] モデルの適合度は、 確かに [ 構造モデルのウェイ ト ] モデルを

大き く下回っています。 post_verbal (言語能力 (事後 )) を予測する方程式における切片

項をグループ間で一定にする必要がある場合、 自由度が 1 しか増加していないのに対

し、カイ  2 乗統計量は 51.12 増加しています。 つま り、実験群の切片項が統制群の切片

項と大き く異なる という こ とです。 実験群の切片項は 3.627 と推定されます。

統制群の切片が 0 に固定されていたこ とを思い出すと、 これによって、 pre_verbal (言語

能力 (事前 ))の得点を固定した状態では、 post_verbal (言語能力 (事後 )) の得点は 3.63
増加する と推定されます。

この例から得られた結果は、 例 16 での結果と同じです。 [構造モデルのウェイ ト ]
モデルは、 例16 のモデル D と同じです。 [構造モデルの切片項 ] モデルは、 例16 のモ

デル E と同じです。

推定値 標準誤差 検定統計量 P ラベル

言語能力 (事後 ) 3.627 0.478 7.591 <0.001 j1_2
pre_syn (同意語 (事前 )) 18.619 0.594 31.355 <0.001 i1_1
反意語 (事前 ) 19.910 0.541 36.781 <0.001 i2_1
同意語 (事後 ) 20.383 0.535 38.066 <0.001 i3_1
post_opp (反意語 (事後 )) 21.204 0.531 39.908 <0.001 i4_1
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概要

この例は、 Amos でのベイズ推定について説明します。

ベイズ推定

最尤法の推定と仮説検定では、モデル パラ メータの真の値は固定だが未知と考えられ、

このよ う なパラ メータの所定の標本からの推定はランダムだが既知と考えられます。

ベイズ ・ アプローチと呼ばれる別の統計的推論では、 未知の数量をランダムな変数と

見なして、 確率分布に割り当てます。 ベイズ法の観点では、 真のモデル パラ メータは

未知なのでランダムである と見なし、 同時確率分布に割り当てます。 この分布は、 何

らかの方式でパラ メータが変化するこ とを示すわけではあ り ません。 むしろこの分布

は、 収集した情報の状態、 すなわちパラ メータについて現在わかっている情報を要約

するためのものです。 データが観測される前のパラ メータの分布を事前分布といいま

す。 データの観測後、 データから得られる証拠は、 ベイズの定理という有名な公式に

よって事前分布と結合されます。 その結果、 更新されたパラ メータの分布である事後

分布には、 事前の確信と経験的な証拠が反映されています (Bolstad および Curran,
2017)。

モデルの複数のパラ メータの同時事後分布を視覚的にと らえた り解釈した りするの

は、 人間には難しいものです。 したがって、 ベイジアン解析を実行する際には、 解釈

が容易になるよ う事後分布を要約する必要があ り ます。 はじめに各パラ メータの周辺

事後密度を一度に 1 つずつ作図するのがよい方法です。 特に、 データ  標本が多い場合

には、 パラ メータの周辺事後分布は正規分布に近似する傾向があ り ます。 周辺事後分

布の平均は事後平均といい、 パラ メータ推定と して報告できます。 分布の標準偏差で

ある事後の標準偏差は、従来の標準誤差に似た、不確実性を測定する有用な方法です。
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周辺事後分布のパーセンタイルから信頼区間に類似する値を計算できます。2.5 パー

センタイルから  97.5 パーセンタイルの範囲の区間は、95% のベイズの信頼区間を形成

します。 周辺事後分布はほぼ正規分布に近似し、 95% のベイズの信頼区間は事後平均

± 1.96 事後標準偏差にほぼ等し くな り ます。 この場合、ベイズの信頼区間は、パラ メー

タ推定値の正規標本分布を前提とする通常の信頼区間と基本的に同じにな り ます。 事
後分布が正規分布でない場合、区間は事後平均に関して対称になり ません。 この場合、

ベイズ推定の特性のほうが従来の手法よ り も適切なこ とがあ り ます。

従来の信頼区間とは異なり、 ベイズの信頼区間はパラ メータ自体に関する確率分布

と して解釈されます。 Prob ( ) は、 文字どおり、  の真の値が a と
b の間にある確率が 95% であるこ とを意味します。 周辺事後分布の両裾の部分をベイ

ズの p  値の一種と して仮説検定に使用するこ と もできます。  に対する周辺事後密度

の領域の 96.5% が a 値の右側にある場合、帰無仮説  の検定のベイズの p 値は対

立仮説  に対して 0.045 です。 この場合、「対立仮説が真である確率は 96.5% であ

る」 と言う こ と もできます。

ベイジアン推論の考え方は 18 世紀後半までさかのぼり ますが、統計には近年までほ

とんど使用されていませんでした。 ベイズの手法の適用に抵抗があるのは、 確率を確

信の状態と して示すこ とへの哲学的な嫌悪や、 事前分布の選択に主観が付きま と う こ

とに由来しています。 しかし、 ベイジアン解析があま り使用されなかった理由の大半

は、 同時事後分布を要約する計算方法が困難であるか利用不可能であったこ とです。

しかし、マルコフ連鎖モンテカルロ (MCMC) 法と呼ばれる新しいシミ ュレーション技法

を使用して、 高次元の同時事後分布や複合的な問題においてもパラ メータのランダム

値を作図できるよ うにな り ました。 MCMC では、 事後分布の要約の作成が、 ヒ ス ト グ

ラムの作図や標本の平均値およびパーセンタイルの計算と同様に簡単になり ました。 

事前分布の選択

事前分布では、 不明のパラ メータがある場合の研究者の確信を数量化します。 母集団

で変数がどのよ うに分布するかの知識がある と、 対象となるパラ メータの妥当な事前

分布を選択する上で研究者の助けになるこ とがあ り ます。 Hox (2002) は、 一般的な母

集団における平均が 100 で標準偏差が 15 のノルムに準拠した知能検定の例を挙げて

います。 一般的な母集団を代表するのは誰かという調査で被験者に検定を実施する場

合、検定スコアの平均が 100 で標準偏差が 15 である事前分布の中心に位置する と考え

るのが妥当です。 観察対象の変数に限界があるこ とを知る と、 パラ メータに境界を設

定する上で役立つこ とがあ り ます。 たとえば、 リ ッカート法で 0、1 …10 の値をと る調

査項目の平均は 0 から  10 の間にあるはずであ り、 最大分散は 25 です。 この項目の平

均と分散の事前分布をこれらの限界に準拠するよ う設定できます。

多くの場合、 取り入れる情報ができるだけ少ない事前分布を設定し、 データがそれ

自体を表せるよ う にする傾向があ り ます。 事前分布の確率が非常に広い範囲のパラ

メータ値をと る場合、拡散している といいます。 Amos ではデフォルトで、各パラ メー

タに対して  から   の一様分布を適用します。 

a  b   0.95= 


 a

 a

3.4– 10
38– 3.4 10

38
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拡散事前分布は、 無情報事前分布と呼ばれるこ と も多いので、 この用語も同様に使

用します。 しかし、 厳密な意味では、 事前分布は完全に無情報であるこ と も、 許容さ

れる値の全範囲にわたる一様分布になるこ と もあ り ません。 パラ メータが変換された

場合に一様でなくなってしま うためです。 ( たとえば、 変数の分散が 0 から   まで均

等に分布する と仮定します。 このと き、標準偏差は均一に分布しません。 ) すべての事

前分布は、 少なく と もなんらかの情報を伴います。 データ  セッ トのサイズが大き くな

る と、 結果的にデータからの証拠がこの情報を上回るため、 事前分布の影響は小さ く

な り ます。 標本が非常に少ない場合やモデルまたは事前分布がデータ と矛盾している

場合を除き、 事前分布を変えてもベイジアン解析からの解はほとんど変わらない傾向

があ り ます。 Amos では、任意のパラ メータの事前分布を容易に変えるこ とができるた

め、 このよ うな感度のチェッ クが簡単に行えます。

Amos Graphics によるベイズ推定の実行

Amos Graphics によるベイズ推定を説明するために、 例 3 を再度取り上げます。 この

例では、 2 つの変数間の共分散が、 年齢とボキャブラ リの間の共分散の値を 0 に固定

するこ とによって 0 になる帰無仮説の検定方法を示しています。 

共分散の推定

現在の例に対して最初に行う必要があるのは、 共分散を推定できるよ うに共分散のゼ

ロ制約を除去するこ とです。

E %examples%\Ex03.amw を開き  ます。 

E パス図の 2 方向の矢印を右ク リ ッ ク し、ポップアップ メニューから  [ オブジ ェ ク ト のプ

ロパテ ィ ] を選択します。


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E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [ パラ メ ータ ] タブをク リ ッ ク し

ます。

E [共分散 ] テキス ト  ボッ クスで 「0」 を削除します。

E [オブジェク ト  プロパティ ] ダイアログ ボッ クスを閉じます。 

この結果得られるパス図は次のよ うにな り ます (Ex26.amw でも参照できます )。 

最尤法解析の結果

このモデルのベイジアン解析を実行する前に、 比較目的で最尤法解析を実行します。 

E メニューから  [分析]  [推定値を計算] を選択する と、次のパラ メータ推定値と標準誤差

が表示されます。

共分散 : ( グループ番号 1 - デフォルト  モデル )
推定値 標準誤差 検定統計量 P ラベル

年齢 <--> ボキャブラ リ –5.014 8.560 –0.586 0.558

分散 : ( グループ番号 1 - デフォルト  モデル )
推定値 標準誤差 検定統計量 P ラベル

年齢 21.574 4.886 4.416 ***
ボキャブラ リ 131.294 29.732 4.416 ***
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ベイジアン解析

ベイジアン解析では、明示的な平均値および切片の推定が必要です。 Amos でベイジア

ン解析を実行するには、 まず、 平均値および切片を推定するよ う指定します。

E メニューから  [ 表示 ]  [ 分析のプロパテ ィ ] を選択します。

E [ 平均値と切片を推定 ] を選択します。 (横にチェッ ク  マークが表示されます。 )

E ベイジアン解析を実行するには、メニューから  [ モデル適合度 ]  [ ベイズ推定 ] を選択す

るか、 キーボードで Ctrl+B キーを同時に押します。
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[ ベイジアン SEM] ウ ィンド ウが表示され、 MCMC アルゴ リズムによって即座に標本

が生成されます。

[ベイジアン SEM] ウ ィンド ウには、 ウ ィンド ウ上部近くにツールバーがあ り、 その下

に結果の要約表が表示されます。 要約表の各行は、 単一のモデル パラ メータの周辺事

後分布を表します。 [平均値 ] という ラベルの付いた最初の列には、 事後分布の中央ま

たは平均である、 事後平均が表示されます。 これは、 データ と事前分布に基づく、 ベ

イジアンのパラ メータ  ポイン ト推定と して使用できます。 データ  セッ トが大きい場

合、 事後平均は最尤推定値に近づく傾向があ り ます。 ( この場合、 2 つの値はある程度

近い値です。 年齢 - ボキャブラ リ の共分散の事後平均 –6.536 と前出の最尤推定値

–5.014 を比較してください。 ) 

ベイジアン解析とデータ代入の結果の複製

Amos に実装されている多重代入とベイジアン推定のアルゴ リ ズムは、 初期の乱数の

シードによって変わる一連の乱数を多用します。 Amos のデフォルトの動作では、ベイ

ジアン推定、 ベイジアン法データ代入、 または確率的回帰法データ代入を実行するた

びに乱数シードを変更します。 その結果、このよ うな解析のいずれかを複製する と、異

なる乱数シードを使用しているため、若干異なる結果が得られるこ とが予想できます。

何らかの理由で前の解析とまったく同じ複製が必要な場合は、 前の解析で使用した

ものと同じ乱数シードで開始します。
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現行シー ドの調査

現行の乱数シードが何であるかを調べたり、 値を変更したりするには、 次のよ うにし

ます。

E メニューから  [ ツール ]  [ 乱数シー ド  マネジャー ] を選択します。

デフォルトで、Amos では、乱数を使用するシミ ュレーション メ ソッ ド  (ベイジアン SEM、

確率的回帰法データ代入、またはベイジアン法データ代入のいずれか ) の呼び出しごと

に現行の乱数シードに 1 ずつ加算します 。 Amos では、以前に使用したシードのログを

保持しているので、 前に生成した解析結果または代入されたデータ セッ トのファ イル

作成日と、 乱数シード  マネジャーで報告された日付を突き合わせるこ とができます。

現行シー ドの変更

E [ 変更 ] をク リ ッ ク し、 以前に使用したシードを入力してから解析を実行します。

Amos では、 そのシードを用いて最後に開始したと きに使用したものと同じ一連の乱

数が使用されます。 たとえば、 この例の解析を実行したと き、Amos が使用したシード

14942405 を調べるために乱数シード  マネジャーを使用しました。 その時と同じベイ

ジアン解析の結果を生成するには、 次のよ うにします。

E [ 変更 ] をク リ ッ ク し、 現在のシードを 14942405 に変更します。
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次の図は、 変更後の [乱数シード  マネジャー ] ダイアログ ボッ クスを示しています。

先を見越して、 ベイジアン解析またはデータ代入解析の実行前に固定のシード値を選

択する方法もあ り ます。 [ 常に同一シー ド使用 ] オプシ ョ ンを選択する と、 Amos ですべ

ての解析に同じシード値を使用するこ と もできます。 

このシードの値を確実な場所に記録しておく と、 解析の結果を後日再現するこ とがで

きます。

ヒ ン ト : このガイ ドでは、 すべての例で同じシード値 14942405 を使用しているので、

この結果を再現するこ とができます。
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前述したよ うに、Amos で採用している  MCMC アルゴ リズムでは、パラ メータの事後

分布のモンテカルロ  シ ミ ュレーシ ョ ンを経た、高次元の同時事後分布からのパラ メー

タの乱数値を描画します。 たとえば、 [平均値 ] 列に示される値は、 厳密な事後平均で

はなく、 MCMC の手続きから生成される乱数の標本を平均して得られる推定値です。

事後平均の不確実性がどの程度モンテカルロ法のサンプリ ングに起因するか、 大まか

にでも理解するこ とが重要です。 
[標準誤差 ] という ラベルの付いた第 2 列は、モンテカルロ法で推定される事後平均

が実際の事後平均からどの程度隔たっている可能性があるかを示唆する標準誤差の推

定値を示しています。 MCMC の手続きでさらに多くの標本が生成されるにつれ、事後

平均の推定の精度が向上し、 [標準誤差 ] は徐々に低下します。 この標準誤差は、 事後

平均がパラ メータの実際の未知の値からどの程度隔たっているかを推定するものでは

ないので注意が必要です。 つま り、 パラ メータの 95% の区間の幅と して、 ± の標準誤

差の値を使用するこ とはあ り ません。 
事後平均と実際の未知のパラ メータの間の考え う る隔たりは、 [標準偏差 ] という ラ

ベルの付いた第 3 列に示されます。この数値は最尤推定値の標準誤差に近くな り ます。

そのほかの列には、 [収束統計量 ] (C.S.) 、 各パラ メータの中央値、 各パラ メータ分布

の 50% の上限と下限、各パラ メータの歪度、尖度、最小値、最大値が示されます。 50%
の上限と下限はベイズの 50% の信頼セッ トの終点であ り、 従来の手法の 50% の信頼

区間に類似しています。 信頼係数は 95% を使用するのが一般的なので、95% に変更す

る方法を後述します。

[ 分析 ]  [ ベイズ推定 ] を選択する と、MCMC アルゴ リズムによって即座にサンプリ

ングが開始され、 ユーザーが [ サンプ リ ングの一時停止 ] ボタンをク リ ッ ク して処理を

停止するまで続けられます。 362 ページの図は、  のサンプ リ ング

が完了した後で、サンプリ ングが停止しています。 Amos では、解析用に保存された最

初の標本を描画する前に、 500 のバーンイン 標本を生成して破棄しました。 Amos で
は、 MCMC 手続きが実際の同時事後分布に収束できるよ うにするバーンイン 標本を

描画します。 バーンイン標本を描画して破棄した後で、 この同時事後分布の外観を際

立たせるための追加の標本を描画します。 362 ページに示す例では、 Amos が 5,831 の
このよ うな解析標本を描画した後で、 要約表の結果が基にする解析標本の上に描画さ

れています。 実際に、 表示される結果は 500 のバーンイン 標本と  5,500 の解析標本で

す。 Amos が使用するサンプリ ング アルゴ リ ズムは非常に高速なので、 サンプ リ ング

のたびに要約表を更新する と、 [ベイジアン SEM] ウ ィンド ウに表示される結果は、急

速に変化する意味不明のにじんだ画像にな り ます。 これは解析の速度も低下させま

す。 2 つの問題を回避するため、 Amos では 1,000 回のサンプリ ングごとに結果を リ フ

レッシュします。

500 5831 6331=+
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リ フ レ ッ シュ  オプシ ョ ンの変更

リ フレッシュの間隔を変更するには

E メニューから  [ 表示 ][ オプシ ョ ン ] を選択します。

E [オプシ ョ ン ] ダイアログ ボッ クスで [ リ フ レ ッ シュ ] タブをク リ ッ クする と、リ フレッ

シュ  オプシ ョ ンが表示されます。

リ フレ ッシュの間隔をデフォル ト の 1,000 オブザベーシ ョ ン以外の値に変更できま

す。 あるいは、 指定した一定の時間間隔で表示を リ フレッシュするこ と もできます。 
[ 画面表示を手作業で リ フ レ ッ シュ ] を選択する と、表示は自動的に更新されなくな り

ます。 [ リ フ レ ッ シュ ] タブで何を選択するかに関わらず、[ベイジアン SEM] ツールバー

の [ リ フ レ ッ シュ ] ボタンをク リ ッ クするこ とによって、 手作業でいつでも画面表示を

リ フレッシュできます。

収束の評価

パラ メータの安定した推定を得るための十分な標本があ り ますか ? この質問に答える

前に、手続きが収束する とはど ういう意味かを簡潔に説明します。 MCMC アルゴ リズ

ムの収束は、最尤法など無作為でない方法の収束とはまったく異なり ます。 MCMC の
収束を正し く理解するには、 2 つの異なるタイプを区別する必要があ り ます。 

第 1 のタイプは、 分布の収束といい、 分析標本がパラ メータの実際の同時事後分布

から引き出されるこ とを意味します。 分布の収束は、 アルゴ リ ズムが徐々に初期値か

ら離れていくバーンインの期間に発生します。 この段階の標本は実際の事後分布を表

していない可能性があるため、 破棄されます。 デフォルトの 500 のバーンイン期間は

保守的な見積りなので、 ほとんどの問題に必要な期間よ りずっ と長くなっています。

バーンイン期間が終わり、 Amos が分析標本の収集を開始する と、 事後平均などの要

約統計量を正確に推定するのに十分な標本があるかど うかが問題になり ます。 
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問題は事後分布の要約の収束と呼ばれる第 2 のタイプの収束に関係します。 分析標

本が独立しているのではなく、 実際は自己相関性がある時系列になっている という事

実によって、事後分布の要約の収束は複雑です。 1001 番目の標本は 1000 番目と、1000
番目は 999 番目と、 順々に相関しています。 このよ う な相関は MCMC の固有の機能

で、この相関のために、5,500 ( または任意の数 ) の分析標本からの要約統計量は、5,500
の標本が独立している場合よ り も変動が大き くな り ます。 しかし、 分析標本を引き続

き累積していく と、 事後分布の要約は徐々に安定します。

Amos は、収束のチェッ クを支援するいくつかの診断を備えています。 362 ページの

[ベイジアン SEM] ウ ィンド ウのツールバー上の 1.0025 という値に注目してください。

これは、 Gelman ほか (2013) によって提唱された基準に基づく全体の収束統計量です

(2004)。 画面を リ フレッシュするたびに、要約表で各パラ メータの収束統計量が更新さ

れます。 ツールバー上の収束統計量の値は個々の収束統計量の値の最大値です。 デ
フォルトで、収束統計量の最大値が 1.002 未満の場合に、Amos は手続きが収束したと

判断します。 この基準では、 1.0025 とい う最大収束統計量は、 十分小さ くはあ り ませ

ん。 全体の収束統計量が十分小さ くない場合には、不機嫌な顔  が表示されます。 収
束統計量では、 分析標本の部分の範囲内の変動と、 複数の部分にまたがった変動を比

較します。 1.000 の値は完全な収束を表します。 それよ り大きい値は、 よ り多くの分析

標本を作成するこ とによって事後分布の要約をさらに正確にできるこ とを示します。

[ サンプ リ ングの一時停止 ] ボタンを 2 回めにク リ ッ クする と、サンプリ ング処理が再

開されます。 [ 分析 ] メニューから  [ サンプ リ ングの一時停止 ] を選択したり、キーボード

から  Ctrl+E キーを同時に押したりするこ とによっても、サンプリ ングの一時停止および

再開が可能です。 次の図は、しばら くの間サンプリ ングを再開し、再度停止した後の結

果を示しています。
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この時点で 74,501 の分析標本があ り ますが、 表示が直近で更新されたのは 74,500 番
目の標本の時点です。 最大の収束統計量は 1.0005 で、 許容される収束基準の 1.002 を
下回っています。 満足できる収束を示す上機嫌の顔  が表示されています。 Gelman
ほか (2013) は、 多くの分析において、 1.10 以下の値で十分である と提言しています。

デフォルト基準の 1.002 は保守的な値です。 この基準によって MCMC が収束したこ と

を判断しても、要約表の変化が停止するわけではあ り ません。 MCMC アルゴ リズムを

実行している限り、 要約表は変化し続けます。 ただし、 ツールバー上の全体の収束統

計量の値が 1.000 に近づくにつれて、 標本を追加しても精度はそれほど上がらな くな

るので、 分析を停止します。

診断の作図

収束統計量の値に加えて、Amos はベイジアンの MCMC 手法の収束のチェッ クを支援

するいくつかの作図機能を備えています。 各種の作図を表示するには、 次のよ うにし

ます。

E メニューから  [ 表示 ]  [ 事後分布 ] を選択します。

[事後分布 ] ダイアログ ボッ クスが表示されます。 
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E [ベイジアン SEM] ウ ィンド ウから  [ 年齢 < - > ボキャ ブ ラ リ ] パラ メータを選択します。

こ こで、 [事後分布 ] ダイアログ ボッ クスに、 22,500 標本での年齢 -ボキャブラ リの共

分散の分布を表す頻度多角形 (ポ リ ゴン ) が表示されます。 

事後分布に収束した可能性を視覚的に判断するために、 累積された標本の最初の 3 分
の 1 から得た分布の推定と、 最後の 3 分の 1 から得た分布の推定を 2 つ同時に表示す

る方法があ り ます。 周辺事後分布 2 つの推定を同じグラフ上に表示するには、 次のよ

うにします。
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E [ 最初と最後の分布 ] を選択します。 (オプションの横にチェック マークが表示されます。)

この例では、分析標本の最初の 3 分の 1 と最後の 3 分の 1 の分布はほとんど同じです。

これは、 年齢 - ボキャブラ リの共分散の事後分布の重要な特徴を Amos でう ま く特定

できたこ とを示しています。 この事後分布は、 –6 に近い値を中心にしているよ うに見

えます。 これは、 このパラ メータの [平均値 ] の値に一致します。 視覚的にみて、 標準

偏差はほぼ 10 であるこ とがわかり ます。 これは [標準偏差 ] の値に一致します。 
サンプリ ングされた値の過半数が 0 の左側にあ り ます。 これは、 共分散パラ メータ

の真の値が負数であるこ との緩やかな証拠にはな り ますが、 0 の右側の比率もかな り

大きいため、 この結果が統計上有意であるこ とにはな り ません。 サンプ リ ングされた

値の 0 の右側の部分に対する比率が非常に小さければ ( たとえば、 5% 未満 )、 共分散

パラ メータが 0 以上である という帰無仮説を棄却できますが、この場合はできません。

収束の評価に役立つ作図と して、 ほかに ト レース図があ り ます。 時系列図と も呼ば

れる ト レース図は、 パラ メータのサンプ リ ングされた値を時間と共に表示します。 こ
の図では、 分布で MCMC の手続きがどれだけ早く収束するか、 つま り、 どれだけ早

く開始値に依存しなくなるかを判断する上で役立ちます。



371

ベイズ推定

E ト レース図を表示するには、 [ ト レース ] を選択します。

こ こに示す図はかな り典型的なものです。 急速な上下の変動を示し、 長期間の傾向や

動向は見られません。 この図を目分量で横方向にいくつかのセクシ ョ ンに分けても、

任意のセクシ ョ ンの ト レースの外観は別のセクシ ョ ンの ト レース とそれほど変わり ま

せん。 これは、分布の収束が急速に起こっているこ とを示します。 図の中に長期間の傾

向や動向がある場合は、 収束が遅いこ とを示します。 (長期間とは、 この図の水平方向

のスケールに対して相対的なものであ り、 標本数に依存します。 多くのサンプ リ ング

を行う と、 ト レース  スポッ トはアコーディオンのよ うに縮み、 やがて、 急速に上下に

変動するよ うな外観の動向または傾向が現れます。急速な上下の動きが意味するのは、

k の値が標本の総数と比べて小さい場合に、 任意の反復でサンプ リ ングされる値が k
回後の反復でサンプリ ングされる値と関連していないという こ とです。

標本間の相関が低下するまでどれだけ長くかかるかを知るには、 自己相関図と呼ぶ

第 3 の図を調べます。 この図では、任意の反復でサンプリングされる値と、k = 1, 2, 3,…
の場合に k 回後の反復でサンプリングされる値の間の推定される相関が表示されます。
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E この図を表示するには、 [ 自己相関 ] を選択します。

水平方向の軸に沿ったラグは、相関を推定する間隔を意味します。 通常の状態では、自

己相関係数が低下する と  0 に近づき、 一定のラグを超える と  0 の近くに留ま り ます。

上の自己相関図では、 ラグ- 10 の相関 (任意のサンプリ ングされた値と  10 回後の反復

から得られた値の相関 ) は、 およそ 0.50 です。 ラグ- 35 の相関は 0.20 未満で、 ラグ 90
以上では相関は実質的に 0 です。 これは、 少なく と も この共分散パラ メータに関する

限り、 90 の反復によって MCMC の手続きが実質的に開始値に依存しなくなるこ とを

表しています。 開始値に依存しなくなる とは、分布が収束するのと同じです。 モデルの

他のパラ メータの自己相関図を調べる と、ほぼ 90 回の反復で実質的に 0 に低下するこ

とがわかり ます。 この事実から、500 標本のバーンイン期間は分布の収束に到達するの

に十分であ り、 分析標本は実際の事後分布の標本である という確信が得られます。

ある種の病理学上の条件では、MCMC の手続きは非常に緩やかに収束するか、まっ

たく収束しないこ とがあ り ます。 これは、データ  セッ ト内に高い比率で欠損値があ り、

その欠損値が特殊なパターンを形成している場合や、 モデルの一部のパラ メータの推

定が正確でない場合などに起こ り ます。 このよ う な状況では、 モデル内の 1 つ以上の

パラ メータの ト レース図に長期間の動向または傾向があ り、 標本を増やしても減少し

ません。 ト レース図がアコーディオンのよ うに縮んでも、 動向と傾向はなくな り ませ

ん。 このよ うな場合、パラ メータのサンプリ ングされた値の範囲 ( ト レース図の垂直方

向のスケールによって、 あるいは [ベイジアン SEM] ウ ィンド ウの [標準偏差 ] または

[最小値 ] と  [最大値 ] の差によって示される ) が非常に大きい可能性があ り ます。 自己

相関は、 大きいラグで高いままになった り、 長い間、 正の値と負の値の間で揺れ動く
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よ うに見えた りするこ とがあ り ます。 このよ う な現象が起こる場合は、 モデルが複雑

すぎて手元のデータでは対処できないこ とを示唆しているので、 よ り単純なモデルに

適合させるか、 さ らに情報の多い事前分布を指定してパラ メータに関する情報を付加

するこ とを検討します。

2 変量相関の周辺事後分布図

[ベイジアン SEM] ウ ィンド ウの要約表と各 [事後分布 ] ダイアログ ボッ クスのポ リ ゴ

ンは、1 度に 1 つの推定値の周辺事後分布を表しています。 周辺事後分布は非常に重要

ですが、 推定値ど う しに関連があるこ とを明らかにするものではあ り ません。 たとえ

ば、 共分散または回帰の 2 つの係数が、 いずれか 1 つが 0 である可能性が高いという

意味で同じ有意性を持つこ とはあ り ますが、 両方という こ とはあ りえません。 推定値

のペアの間の関連性を視覚的に表すために、 Amos は 2 変量相関の周辺事後分布図機

能を備えています。

E 2 つのパラ メータの周辺事後分布を表示するには、 まず、 パラ メータのいずれか 1 つ
の事後分布を表示します ( たとえば、 年齢の分散 )。 

E キーボードで Ctrl キーを押しながら、要約表の第 2 のパラ メータを選択します ( たとえ

ば、 ボキャブラ リの分散 )。 
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する と、年齢とボキャブラ リの分散の周辺事後分布を表す 3 次元面図が表示されます。

E [ ヒストグラム ] を選択すると、垂直方向のブロッ クを使用する同様の図が表示されます。
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E [2-D 等高線 ] を選択すると、2 変量相関の周辺事後密度を表す 2 次元の図が表示されます。

3 つの灰色の網かけは、 暗い色から明るい色に順にそれぞれ、 50%、 90%、 95% の信

頼領域を表します。 この信頼領域は、 従来の統計的推論の手法を用いた大部分のデー

タ分析でなじみのある  2 変量相関の信頼領域と概念的に似ています。 

ベイズの信頼区間

[ベイジアン SEM] ウ ィンド ウの要約表には、各推定値に対するベイズの信頼区間の上

限および下限の終点が表示されます。 デフォルトで、 Amos は 50% の間隔を表示しま

す。 これは、 従来の手法の 50% の信頼区間と同様です。

研究者は、95% の信頼区間を報告するこ とが多いので、事後確率の内容の 95% に相

当するよ うに境界を変更するこ と もできます。

信頼係数の変更

E [オプシ ョ ン ] ダイアログ ボッ クスで [ 表示 ] タブをク リ ッ ク します。
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E [信頼係数 ] の値と して 「95」 と入力します。 

E [ 閉じ る ] ボタンをク リ ッ ク します。 これで、95% のベイズの信頼区間が表示されます。

ベイジアン推定に関する参考資料

Gill (2004) は 『Political Analysis』 の特別号で、ベイジアン推定とその利点を読みやす

い概要にまとめています。 Jackman (2000) はジャーナルの論文で、ト ピッ クのよ り技術

的な取り扱い方について例を挙げて提案しています。 Gelman ほか (2013) による書籍

では、 膨大な例を持つ実際の問題を数多く取り扱っています。
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概要

この例では、 非拡散事前分布を使用する例を説明します。

例について

例26 では、 Amos がデフォルトで使用する一様事前分布によって、 単純なモデルにベ

イズ推定を実行する方法を示しました。 この章の例では、 さ らに複雑なモデルについ

て考察し、 非拡散事前分布を用います。 特に、 分散推定値が負の値やその他の不適切

な値をと らない事前分布を設定する方法を示します。 

ベイズ推定についてのその他の情報

前章の例の説明では、 ベイズ推定は分析者がデータ と と もに与える情報に依存す

る こ とに注目し ま した。 それに対して、 最尤法の推定では、 観測データ   が関係

L(|y)  (y|q) を通して与えられる場合に未知のパラ メータ  q の尤度を最大にし、ベイ

ズ推定では y の事後密度 p(q|y)  (q)L(q|y) を見積も り ます。 こ こで、 p(q) は q の事前

分布で、 p(q|y) は y を所与と した q の事後密度です。 概念と して、 これは q を所与と

する  y の事後密度が q の事前分布と観測データの尤度の積である こ と を意味します

(Jackman2000p. 377)。
サンプルのサイズが大き くなるにつれ、 尤度関数は ML 推定値の付近に、 よ り高密

度に集中します。 その場合、 拡散事前分布は尤度が高い領域ではほぼ平ら、 すなわち

一定になる傾向があ り、事後分布の形状は主に尤度 (つま り、データそのもの ) によっ

て決定されます。 
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 の一様な事前分布では、 (q) は完全に平らであ り、 事後分布は尤度を単純に再正

規化したものです。 一様でない事前分布でも、 事前分布の影響はサンプルのサイズが

大き くなるに従って小さ くな り ます。 さ らに、 サンプル サイズが増大する と、  の同

時事後分布は正規分布に近似します。 この理由で、 ベイズ法と古典的な最尤法の分析

では同等の漸近的結果が得られます (Jackman2000)。 サンプル数が小さいと、 ベイズ

法の手続きに合理的な事前情報を与えられる場合は、 ベイジアン解析からのパラ メー

タ推定値のほうが正確になる可能性があ り ます。 (逆にいう と、適切でない事前情報は

偏り を持ち込むこ とで悪い影響を及ぼします。 )

ベイジアン解析と不適解

潜在変数モデルを当てはめる際によ く ある問題の 1 つが、 不適解の出現です (Chen、
BollenPaxtonCurranKirby2001)。 たとえば、 分散の推定値が負数である場合に不適

解が出現します。 分散が 0 よ り小さ くなるこ とはないため、 そのよ う な解は不適解と

呼ばれます。 不適解はサンプルが小さすぎるか、 モデルが不適切であるこ とを示す場

合があ り ます。 ベイズ推定によって、不適切なモデルを改善するこ とはできませんが、

使用するサンプルが少ないこ とから生じる不適解を回避するこ とはできます。 Martin
と  McDonald (1975) は、 探索的因子分析のためのベイズ推定について論じ、 不適解に

ゼロの確率を割り当てる事前分布を選ぶこ とによって、 推定を改善し、 不適解を回避

できる と示唆しています。 この章の例は、 事前分布を適切に選択するこ とによ り不適

解を回避する  Martin と  McDonald の手法を説明しています。

データについて

Jamison と  Scogin (1995) は、うつ病の被験者に自宅で課題を読んで完成させてもら う、

新しい治療法の有効性についての実験的な研究を実施しました ( 「Feeling Good: The
New Mood Therapy」 (Burns, 1999, 2020))。 Jamison と  Scogin は、被験者に対照条件また

は実験条件をランダムに割り当て、 被験者のうつ病のレベルを測定し、 実験群に治療

を施した後でレベルを再度測定しました。 うつ病の測定は、1 つの測定方法には依存す

るのではなく、 ベッ ク うつ病評価尺度 (Beck Depression Inventory) (Beck, 1967) とハミ

ルト ン うつ病評価尺度 (Hamilton Rating Scale for Depression) (Hamilton, 1960) という よ

く知られた 2 つの うつ病評価尺度を使用しました。 こ こでは、 それぞれ BDI および

HRSD と略すこ と と します。 データは、 ファ イル feelinggood.sav にあ り ます。
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最尤法によるモデルの適合

次の図は、 最尤法の推定を用いて、 時間 2 のうつ病での治療効果 (COND) にモデルを

適合させた結果を表しています。 時間 1 のうつ病は、共変量と して使用します。 時間 1
と時間 2 で、 BDI および HRSD は、 基礎となる単一の変数である うつ病 (DEPR) を示

す指標と してモデリ ングされます。

このモデルのパス図は、Ex27.amw にあ り ます。 自由度 1 のカイ  2 乗統計量 0.059 は良

好な適合を示しますが、 治療後の HRSD に対する負の残差分散は、 解が不適であるこ

とを示します。

無情報 ( 拡散 ) 事前分布によるベイズ推定

拡散事前分布を用いたベイジアン解析では、 最尤法の解と同様の結果が得られるで

し ょ うか ? これを確かめるため、 同じモデルでベイジアン解析を実行します。 最初に、

バーンイン オブザベーシ ョ ン数を増やす方法について説明します。 こ こではデフォル

トのバーンイン オブザベーシ ョ ン数の 500 を変更する必要はあ り ませんが、手順のみ

説明します。
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バーン イ ン オブザベーシ ョ ン数の変更

バーンイン オブザベーシ ョ ン数を 1,000 に変更するには、 次のよ うにします。

E メニューから  [ 表示 ]  [ オプシ ョ ン ] を選択します。

E [オプシ ョ ン ] ダイアログ ボッ クスで [MCMC] タブを選択します。

E [ バーン イ ン ・ オブザベーシ ョ ン数 ] を 1000 に変更します。
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E [ 閉じ る ] をク リ ッ ク し、不機嫌な顔が 上機嫌な顔に変わる まで MCMC サンプリ

ングを続けます。 

要約表は次のよ うにな り ます。 

こ こでは、Amos が MCMC サンプルのデフォルトの制限である  100,000 に到達するま

で解析を続けました。 Amos がこの制限に達する と、細線化と呼ばれる処理が始ま り ま

す。 細線化とは、すべてのサンプルの代わりに、等間隔に配置したサンプルのサブセッ

ト を保持する処理です。 Amos は、MCMC サンプリ ング処理を開始する と、100,000 サ
ンプルの制限に達するまですべてのサンプルを保持します。 制限に達した時点でデー

タの分析者がサンプリ ング処理を停止していない場合、 Amos は 1 つおきにサンプル

を削除するこ とによってサンプルの半分を破棄するので、残った系列のラグ- 1 の従属

は、元の細線化していない系列のラグ- 2 の従属と同じになり ます。 これ以降、Amos は
生成される  2 つのサンプルから  1 つを保持しながら、 100,000 の上限に再び達するま

でサンプリ ング処理を継続します。 再び上限に達した時点で Amos はサンプルを再び

細線化し、 4 つおきに 1 つのサンプルを保持し、 ... と続いていきます。 



382

例 27

Amos ではなぜ細線化を実行するのでし ょ うか ? 細線化によって連続するサンプル

間の自己相関が低くなるため、 細線化された連続する  100,000 のサンプルは、 同じ長

さの細線化されていない系列よ り も多くの情報を提供します。 現在の例で表示されて

いる結果は、 1,000 のバーンイン サンプルの後に収集された 53,000 サンプルを基にし

た、 合計 54,000 サンプルの結果です。 ただし、 これはサンプルの系列が 3 回細線化さ

れた後であるため、 保持されている  1 つのサンプルごとに 8 つのサンプルが生成され

ています。 細線化が実行されなかったとすれば、  のバーンイン サ
ンプルと   の分析サンプルがあるこ とにな り ます。

ベイジアン解析の結果は、 最尤法の結果と非常によ く似ています。 e5 の残差分散の

事後平均は、最尤法の推定値と同様に負数です。 事後分布自体が 0 の左側にかなり寄っ

ています。

この問題には解消する方法があ り ます。 e5 の分散が負数になる任意のパラ メータのベ

ク トルに 0 の事前密度を割り当てるこ とです。 e5 の分散の事前分布を変更するには、

次のよ うにします。

1 000 8 8 000=
53 000 8 424 000=
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E メニューから  [ 表示 ]  [ 事前分布 ] を選択します。

あるいは、 [ベイジアン SEM] ツールバーの [ 事前分布 ] ボタン  をク リ ッ クするか、

キーボードで Ctrl+R キーを同時に押します。 [事前分布 ] ダイアログ ボッ クスが表示さ

れます。 

E [ベイジアン SEM] ウ ィンド ウで e5 の分散を選択する と、 e5 のデフォルトの事前分布

が表示されます。 
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E デフォルトの下限値の  を 0 に置き換えます。 

E [ 適用 ] をク リ ッ クする と、 変更が保存されます。

3.4– 10
38–
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累積された MCMC サンプルは直ちに破棄され、 サンプ リ ングは初めから再び開始さ

れます。 しばら く したら、[ベイジアン SEM] ウ ィンド ウの表示が次のよ うにな り ます。
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e5 の分散の事後平均が正数になっています。 事後分布を調べる と、 サンプリ ングされ

た値に 0 以下のものがないこ とが確認できます。 

この解は適切でし ょ うか ? 各分散の事後平均は正数ですが、 [最小値 ] 列を見る と、 e2
の分散と  e3 の分散に対してサンプ リ ングされた値の一部が負数であるこ とがわかり

ます。 e2 と  e3 の分散が負の値になるのを避けるため、 e5 に対して実施したのと同様

に事前分布を変更できます。 
この例のよ うな小規模のモデルで、 パラ メータ単位にこのよ うな制約条件を設定す

るのはそれほど困難ではあ り ません。 しかし、 不適切な値をと る任意のパラ メータ値

に対して自動的に事前密度を 0 に設定する方法もあ り ます。 この機能を使用するには、

次のよ うにします。

E メニューから  [ 表示 ]  [ オプシ ョ ン ] を選択します。

E [オプシ ョ ン ] ダイアログ ボッ クスで、 [ 事前分布 ] タブをク リ ッ ク します。
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E [ 許容性テス ト ] を選択します。 (横にチェッ ク  マークが表示されます。 )

[ 許容性テス ト ] を選択する と、 任意の分散共分散行列が正値定符号でないモデルにな

るパラ メータ値の事前密度が 0 に設定されます。 特に、 正の値でない分散の事前密度

が 0 に設定されます。

Amos は、許容性テス ト  オプシ ョ ンと同じよ うに機能する安定性テス ト  オプシ ョ ン

も備えています。 [ 安定性テス ト ] を選択する と、線型方程式の不安定な体系になるパラ

メータ値の事前密度が 0 に設定されます。
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[ 許容性テス ト ] を選択する と、 前に累積されたサンプルが破棄され、 直ちに MCMC
サンプリ ングが再び開始されます。 少し経つと、 次のよ うな結果が表示されます。

解析には、すべての推定値の収束基準を満たす 73,000 のオブザベーシ ョのみが使用さ

れているこ とに注意して ください。 すべての分散推定値の最小値が正の値になってい

ます。 
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モデルのパラ メ ー タ以外の値のベイズ

推定

概要

この例では、 ベイズ推定でモデルのパラ メータ以外の数量を推定する方法について示

します。

例について

例26 と例27 ではベイジアン解析について説明しました。 いずれの例でも、モデルのパ

ラ メータの推定のみを取り扱いました。 時には、 モデル パラ メータの関数以外の数量

の推定が必要になるこ と もあ り ます。 たとえば、 構造方程式モデリ ングを最もよ く使

用するケースに、 直接効果と間接効果の同時推定があ り ます。 この例では、 間接効果

の事後分布を推定する方法について説明します。 
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Wheaton のデータの再考

例6 で、 Wheaton ほか (1977) の疎外データを紹介し、 データの 3 つの代替モデルを示

しました。 こ こでは、 例 6 のモデル C を再度取り上げます。 次のパス図は、 ファ イル

Ex28.amw にあ り ます。 

間接効果

こ こで、 ある研究者が疎外感 (67年 ) を介した社会的地位から疎外感 (71年 ) への間接

効果に着目している と仮定します。 言い換える と、 研究者は、 社会経済的地位が 1967
年時点での疎外感に影響を及ぼし、その結果 1971 年時点での疎外感に影響を及ぼすの

ではないかと考えています。

間接効果の推定

E ベイジアン解析を開始する前に、 Amos Graphics のメニューから  [ 表示 ] [ 分析のプロ

パテ ィ ] を選択します。

E [分析のプロパティ ] ダイアログ ボッ クスで、 [ 出力 ] タブをク リ ッ ク します。
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E [ 間接、 直接、 または総合効果 ] と  [ 標準化推定値 ] を選択し、標準化間接効果を推定しま

す。 (オプシ ョ ンの横にチェッ ク  マークが表示されます。 )

E [分析のプロパティ ] ダイアログ ボッ クスを閉じます。
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E メニューから  [分析 ][推定値を計算 ] を選択する と、モデル適合度とパラ メータ推定値

の最尤法のカイ  2 乗検定が実行されます。 

結果は、 例6-6 の Model C で示したものと同じになり ます。 社会的地位から疎外感 (71
年 ) への標準化直接効果は -0.19 です。 社会的地位から疎外感 (71年 ) への標準化間接効

果は、 社会的地位から疎外感 (67年 ) への標準化直接効果 (-0.56) と疎外感 (67年 ) から

疎外感 (71年 ) への標準化直接効果 (0.58) の 2 つの標準化直接効果の積と して定義され

ています。 これらの 2 つの標準化直接効果の積は  とな り ます。

標準化間接効果を手動で求める必要はあ り ません。 すべての標準化間接効果を表示

するには、 次のよ うにします。

E メニューから、 [ 表示 ] [ テキス ト 出力の表示 ] の順にク リ ッ ク します。

0.56– 0.58 0.32–=
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E [Amos出力 ] ウ ィンド ウの左上隅から  [推定値 ]、[行列 ]、[標準化間接効果 ] を選択します。
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モデル C のベイジアン解析

モデル C のベイズ推定を開始するには、 次のよ うにします。

E メニューから  [ 分析 ]  [ ベイズ推定 ] を選択します。

MCMC アルゴ リズムは、 MCMC サンプル 22,000 以内に非常に急速に収束します。
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追加推定値

要約表には、 モデル パラ メータのみの結果が表示されます。 間接効果など、 モデル パ
ラ メータから求められた数量の事後分布を推定するには、 次のよ うにします。

E メニューから  [ 表示 ] [ 追加推定値 ] を選択します。 

追加推定値の周辺事後分布を推定するには、 少し時間がかかる こ とがあ り ます。

ステータス  ウ ィンド ウに進行状況が表示されます。

結果は [追加推定値 ] ウ ィンド ウに表示されます。 標準化間接効果ごとの事後平均を表

示するには、 次のよ うにします。

E ウ ィンド ウの左側のパネルから  [ 標準化間接効果 ] と  [ 平均値 ] を選択します。
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E 結果を印刷するには、 印刷する項目を選択します。 (横にチェッ ク  マークが表示され

ます。 )

E メニューから  [ フ ァ イル ]  [ 印刷 ] を選択します。 

大量の印刷出力が生成される可能性があるので注意して ください。 この例ですべての

チェッ ク  ボッ クスにチェッ ク  マークを付ける と、  の行列が印刷され

ます。

E 標準化直接効果の事後平均を表示するには、左側のパネルから  [ 標準化直接効果 ] と  [ 平
均値 ] を選択します。 

社会経済的地位から  1971 年時点での疎外感への標準化直接効果および標準化間接効

果の事後平均は、 最尤推定値とほぼ同じです。

1 8 11 88=
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間接効果に関する推論

間接効果の信頼区間を見つけたり、 間接効果の有意性検定を行った りするには、 2 つ
の方法があ り ます。 Sobel (1982、 1986) は、間接効果が正規分布する と仮定する方法を

提唱しました。 この仮定に異議をとなえる統計シ ミ ュレーシ ョ ンの論文は増えていま

すが、よ り良い (通常は非対称の ) 信頼区間を構築するブート ス ト ラ ップの使用は支持

されています (MacKinnon, Lockwood, および Williams, 2004, Shrout および Bolger,
2002)。 これらの研究によ り、 Amos で利用可能なバイアス修正済のブート ス ト ラ ップ

信頼区間は、 間接効果の信頼できる推論を導き出すこ とがわかり ました。

Sobel の手法と信頼区間を見つけるためのブー ト ス ト ラ ップの代替手段と して、

Amos では、 標準化間接効果または標準化されていない間接効果の (通常、 非対称の )
信頼区間を求めるこ とができます。 次の図は、 モデル内の各標準化間接効果の 95% の
信頼区間の下限値を示します。 [ 追加推定値 ] ウ ィンド ウの左側のパネルで [95% 下限 ]
が選択されています。 (ベイジアンSEM の [オプシ ョ ン ] ダイアログ ボッ クスから  95%
以外の値も指定できます。 )
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社会経済的地位から  1971 年時点での疎外感への間接効果の 95% の信頼区間の下限値

は、 –0.382 です。 対応する上限値は、 次の図が示すよ うに –0.270 です。

この標準化間接効果の実際の値が –0.382 と  –0.270 の範囲内にあるこ との確信は 95%
です。 事後分布を表示するには、 次のよ うにします。
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E [追加推定値 ] ウ ィンド ウのメニューから  [ 表示 ]  [ 事後分布 ] を選択します。

最初に、 空の事後分布のウ ィンド ウが表示されます。 
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E [追加推定値 ] ウ ィンド ウで [ 平均値 ] と  [ 標準化間接効果 ] を選択します。 
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その後、社会経済的地位から  1971 年時点での疎外感への間接効果の事後分布が表示さ

れます。 間接効果の分布は、 厳密ではあ り ませんが、 ほぼ正規分布になり ます。 
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ベイジアン SEM におけるユーザー定義

数量の推定

概要

この例では、ユーザー定義の数量 (直接効果と間接効果の差異 ) を推定する方法を示し

ます。

例について

前の例では、 Amos ベイジアン分析の追加推定値機能を使用して間接効果を推定する

方法を示しました。 分析をも う  1 歩進め、 「間接効果を、 対応する直接効果と比較する

にはど うすればよいですか」 とい う、 調査でよ く聞かれる質問に対応するものと仮定

します。

疎外感モデルの安定性 

カスタム推定値機能を使用して、 モデル パラ メータの任意の関数について推論を導い

た り推定した りできます。 カスタム推定機能について説明するために、 も う一度前の

例に戻ってみまし ょ う。 モデルのパス図を 405 ページ に示します。 また、 フ ァ イル

Ex29.amw にも記載してあ り ます。 このモデルでは、 1971 年に見られた疎外感に対す

る社会経済的地位による直接効果を確認できます。 また、 1967 年に見られた疎外感に

よって媒介される間接効果も確認できます。
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この例の残りの部分では、 直接効果、 間接効果、 およびこの 2 つの比較に焦点を当

てています。 直接効果に対してパラ メータ  ラベル ( 「c」 ) を指定し、 間接効果の 2 つの

コンポーネン ト  ( 「a」 および 「b」 ) を指定したこ とに注目してください。 必須ではあり

ませんが、 パラ メータ  ラベルを使用する とカスタム推定値の指定が容易になり ます。 
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このモデルのベイジアン分析を開始するには

E メニューから  [ 分析 ]  [ ベイズ推定 ] を選択します。

しばら く したら、 [ベイジアン SEM] ウ ィンド ウの表示が次のよ うにな り ます。 

E メニューから  [ 表示 ]  [ 追加推定値 ] を選択します。
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E [追加推定値] ウ ィンド ウで、[標準化直接効果] チェッ ク  ボッ クスおよび [平均値] チェッ

ク  ボッ クスをオンにします。

疎外感 (71年 ) に対する社会的地位の直接効果の事後分布平均値は、 -0.195 です。
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E [ 標準化間接効果 ] チェック ボックスおよび [ 平均値 ] チェッ ク  ボッ クスをオンにします。

1971 年にけおる疎外感に対する社会経済的地位の直接効果は、 –0.322 です。 
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間接効果の事後分布は完全に 0 よ り も左に位置するため、 間接効果は 0 未満である と

考えて差し支えあ り ません。

また、 直接効果の事後分布も表示できます。 ただし、 このプログラムには、 間接効果

と直接効果の差異 (またはその比率) の事後分布を確かめる機能は組み込まれていませ

ん。 このケースでは、 プログラムの開発者が想定していなかった数量を推定した り推

論を導く必要があ り ます。 この場合、 独自のカスタム推定値を定義する こ とによ り、

Amos の機能を拡張する必要があ り ます。
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数値カス タム推定値

このセクシ ョ ンでは、直接効果と間接効果の数値の差異を推定する  Visual Basic プログ

ラムの記述方法を示します (Visual Basic の代わりに C# を使用するこ と もできます )。
最終的な Visual Basic プログラムは、 ファ イル Ex29.vb に記載されています。

カスタム推定値を定義するプログラムを記述する最初の手順では、 カスタム推定値

ウ ィンド ウを開きます。

E [ベイジアン SEM] ウィンドウのメニューから  [ 表示 ] [ カス タム推定値 ] を選択します。

このウ ィンド ウには Visual Basic のスケルト ン プログラムが表示されますので、Amos
で推定する新しい数量を定義するコード行を追加します。 

注 : Visual Basic の代わりに C# を使用する場合は、 メニューから  [ フ ァ イル ]  [ 新規

Estimands (C#)] を選択します。

スケルトン プログラムにはサブルーチンと関数が含まれています。 サブルーチンと関数

の呼び出しを制御するこ とはできません。 これらは、 Amos によって呼び出されます。 

 Amos は、作成した DeclareEstimands サブルーチンを 1 度呼び出し、推定する新しい

数量 (推定値 ) の数を確認します。 
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 Amos は、 作成した CalculateEstimands 関数を繰り返し呼び出します。 それは 
CalculateEstimands 関数を呼び出すたびに、 指定されたパラ メータ値についてカスタ

ム推定値の値を計算する必要があ り ます。

DeclareEstimands サブルーチンにおいて、 プレースホルダ ‘Your code goes here’ を、 推定

する新しい数量 ( 推定値 ) の数とその名前を指定する行で置き換えます。 この例と し

て、 疎外感 (71年 ) に対する  社会的地位 の直接効果と これに対応する間接効果の差異

を推定します。 また、直接効果と間接効果を個別に計算するコードを記述するこ とで、

直接効果と間接効果を個別に推定できます。 各推定値を定義するには、 次に示すよ う

に newestimand キーワードを使用します。

「direct」、 「indirect」、 および 「difference」 という語は、 推定値のラベルです。 別のラベ

ルを使用するこ と もできます。 
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CalculateEstimands 関数においては、 プレースホルダ ‘Your code goes here’ を  「direct」、
「indirect」、 および 「difference」 という推定値を評価する行で置き換える必要があ り ま

す。 
まず、 直接効果を計算する  Visual Basic コードを記述します。 次の図では、 Visual 

Basic ステート メン トの一部である  estimand( 「direct」 ) .value = が入力済みになっていま

す。

等号 (=) の右側にコードを追加して、ステート メン ト を完成する必要があ り ます。 直接

効果は、CalculateEstimands 関数の引数と して指定される  AmosEngine オブジェク ト を介

してアクセスできるパラ メータ値のセッ ト について計算されます。 AmosEngine オブ

ジェ ク ト の使用方法を知るには Amos に精通したプログラマである必要があ り ます

が、必要な Visual Basic シンタ ッ クスはド ラ ッグ アンド  ド ロ ップで簡単に取得できま

す。
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ド ラ ッ グ アン ド  ド ロ ッ プ

E [ベイジアン SEM] ウ ィンド ウで直接効果を見つけ、 その行をク リ ッ ク します ( この行

は次の図では強調表示されています )。 

E マウス  ポインタを選択した行の端に移動します。 上端でも下端でもかまいません。

ヒ ン ト  : マウス  ポインタを適当な位置に配置する と、マウス  ポインタの横にプラス符

号 (+) が表示されます。 
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E マウスの左ボタンを押したまま、 マウス  ポインタを Visual Basic のウ ィンド ウ内の、

直接効果を表す式を配置する位置にド ラ ッグします。

この操作が完了する と、 次の図に示すよ うに、 適切なパラ メータ式が入力されます。

等号の右側のパラ メータは、 前述のパス図で使用していたラベル ( 「c」 ) で識別され

ます。 
次に、1971 年における疎外に対する社会経済的地位の間接効果の計算に目を向けて

みまし ょ う。 この間接効果は、 2 つの直接効果の積と して定義されています。 1 つは

1967 年における疎外感に対する社会経済的地位の直接効果 (パラ メータ  a) で、 も う

1 つは 1971 年における疎外感に対する  1967 年の疎外の直接効果 (パラ メータ  b) です。 
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E 間接効果を計算する  Visual Basic 割り当てステート メン トの左側には、

estimand(“indirect”) .value = と入力します。 

上記と同じ ド ラ ッグ アンド  ド ロ ップの処理を使用して、 まず [ベイジアン SEM] ウ ィ

ンド ウから  [無題 .vb] ウ ィンド ウに行をド ラ ッグします。 
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E 最初に、 1967 年における疎外に対する社会経済的地位の直接効果を、未完成のステー

ト メン トの等号の右側にド ラ ッグします。 

E 次に、1971 年の疎外に対する  1967 年の疎外感の直接効果をド ラ ッグ アンド  ド ロ ップ

します。
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この 2 つ目の直接効果は、 [無題 .vb] ウ ィンド ウに sem.ParameterValue( 「b」 ) と表示

されます。
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E 最後に、キーボードを使用して、2 つのパラメータの間にアスタ リスク (*) を挿入します。

ヒ ン ト  : 複雑なカスタム推定値については、 [追加推定値 ] ウ ィンド ウから  [ カスタム

推定値 ] ウ ィンド ウにド ラ ッグ アンド  ド ロ ップするこ と もできます。
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直接効果と間接効果の差異を計算するには、 次の図に示すよ うに、 Visual Basic シン

タ ッ クスの 3 番目の行を追加します。

E 3 つのカスタム推定値すべての事後分布を確認するには、[ フ ァ イル ][ 実行 ] ( または、

ツールバー上の [ 実行 ] ボタン ) をク リ ッ ク します。

結果が表示されるまで数秒かかり ます。 ステータス  ウ ィンド ウに進行状況が表示され

ます。
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3 つのカスタム推定値の周辺事後分布は、 次の表に集計されます。

direct の結果は [ベイジアン  SEM] 要約表でも確認できます。 また、 indirect の結果は

[追加推計値 ] 表でも確認できます。 こ こで確認する必要があるのは、difference の結果

です。 差異の事後分布平均値は –0.135 です。 最小値は –0.377 で、最大値は 0.096 です。 

E 差異の周辺事後分布を確認するには、 [ 表示 ]  [ 事後分布 ] を選択します。

E [ カスタム推定値 ] 表の difference 行を選択します。 
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ほとんどの領域が 0 よ り も左にあるため、 差異はほぼ負である と考えるこ とができま

す。 つま り、間接効果は直接効果よ り も負である と言ってもほぼ差し支えあ り ません。

事後分布を目測してみる と、 おそら く  95 % 程度の領域が 0 よ り左に存在するよ うに

思われます。 したがって、約 95% の公算で、間接効果が直接効果よ り も大きいと言う

こ とができます。 しかし、 事後分布を目測 に頼る必要はあ り ません。 周辺事後分布の

任意の領域を確認する方法、 よ り一般的には、 パラ メータに関する任意の命題が真で

ある確率を推定する方法があ り ます。

二値カス タム推定値

ポ リ ゴンを視覚的に調査してみれば、difference 値の大部分が負であるこ とがわかり ま

すが、 どのく らいの比率の値が負であるのかを正確には確認できません。 この比率は、

間接効果が直接効果を超える とい う確率の推定値です。 このよ う な確率を推定する場

合、 二値推定値を使用できます。 Visual Basic ( または C#) プログラムでは、 二値推定

値は、 真と偽という  2 つの値のみを取る という点を除けば、 数値推定値とまったく同

じです。 間接効果が直接効果よ り も負である確率を推定するには、 間接効果が直接効

果よ り も負である場合に真とな り、それ以外の場合は偽となるモデル パラ メータの関

数を定義する必要があ り ます。
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二値推定値の定義

E DeclareEstimands サブルーチンで各二値推定値に名前を付けます。 わかりやすくするた

めに、 2 つの二値推定値にそれぞれ 「indirect is less than zero」 と  「indirect is smaller 
than direct」 という名前を付けて宣言します。 
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E CalculateEstimates 関数にコード行を追加して、 二値推定値の計算方法を指定します。

この例では、 最初の二値カスタム推定値は、 間接効果の値が 0 未満の場合に真とな り

ます。 2 番目の二値カスタム推定値は、間接効果が直接効果よ り も小さい場合に真とな

り ます。
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E [ 実行 ] をク リ ッ ク します。 

Amos は、抽出された各 MCMC 標本について各論理式の真偽を評価します。 分析が終

了する と、各式の評価が真となった MCMC 標本の比率が報告されます。 これらの比率

は、 [ カスタム推定値 ] 要約表の [二値推定値 ] セクシ ョ ンに表示されます。 

P 列は、 MCMC 標本の全系列のうち、 各式が真と評価された回数の比率を示します。

この例では、 MCMC 標本数が 29,501 であったため、 P の値はおよそ 30,000 の標本に

基づいています。 P1、 P2、および P3 は、それぞれ、 MCMC 標本の最初の 3 分の 1、真

ん中の 3 分の 1、 最後の 3 分の 1 で各論理式の評価が真であった回数の比率を示しま

す。 この図では、これらの各比率は、およそ 10,000 の MCMC 標本が基になっています。 
[ カスタム推定値 ] ウ ィンド ウの [二値推定値 ] 領域の比率に基づいて、 ほぼ間違い

なく間接効果が負である とい う結論を下すこ とができます。 これは、 間接効果の値が

0 以上である  MCMC 標本が存在しないこ とを示した 408 ページ のポ リ ゴンと一致し

ています。 
同様に、 間接効果は直接効果よ り も大 ( 負 ) である確率は約 0.970 である と言えま

す。 0.970 は確率の推定に過ぎません。 これは、29,501 の相関観測値の基づく比率です。

ただし、最初の 3 分の 1 (0.968)、真ん中の 3 分の 1 (0.970)、最後の 3 分の 1 (0.972) の
比率が近接しているため、 これは適切な推定であるよ うに思われます。 
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デー タ代入

概要

この例では、 因子分析モデルにおける多重代入について説明します。

例について

例17 では、データに欠損値が含まれる場合に最尤法を使用してモデル適合を行う方法

を示します。 また、Amos では欠損値に値を代入するこ と もできます。 データ代入では、

各欠損値はなんらかの推測数値に置き換えられます。 各欠損値を代入値に置き換えた

ら、 その結果得られる完全データセッ ト を、 完全データ用に設計されたデータ分析方

法で分析できます。 Amos には 3 つのデータ代入方法が用意されています。

 回帰法代入では、まず最尤法を使用してモデル適合を行います。 その後、モデル パ
ラ メータを最尤推定値と等し くなるよ うに設定し、線型回帰を使用して、各ケース

の未観測値を、同じケースについての観測値の線型結合と して予測します。 この予

測値を欠損値に当てはめます。

 確率的回帰法代入 (Little および Rubin, 2020 年 ) では、未知のモデル パラ メータを

最尤推定値と等し くなるよ うに設定し、観測値に基づく欠損値の条件付き分布から

無作為に抽出して、各ケースの値を代入します。 確率的回帰法代入にはランダムな

要素が存在するため、代入プロセスを繰り返すたびに、異なる完全データセッ トが

生成されます。

 ベイジアン法代入は、確率的回帰法代入に似ていますが、パラ メータ値が推定に過

ぎず未知である という事実を考慮する点が異なり ます。
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多重代入

多重代入 (Schafer, 1997 年 ) では、 非決定性の代入方法 (確率的回帰法代入またはベイ

ジアン法代入 ) を使用して複数の完全データセッ ト を作成します。 観測値が変化する

こ とはあ り ませんが、 代入値は完全データセッ ト ご とに異な り ます。 複数の完全デー

タセッ ト を作成したら、 完全データセッ ト ごとに分析します。 たとえば、 m 個の完全

データセッ トがある場合、 m 個の異なる結果セッ トが存在し、 それぞれの結果セッ ト

にはさまざまな数量の推定値と標準誤差の推定値が含まれます。 m 個の完全データ

セッ トは互いに異なるため、 m 個の結果セッ ト も互いに異なり ます。

データ分析者は m 個の完全データセッ ト を個別に分析した後、得られた m セッ トの

推定値と標準誤差を単一の結果セッ トに結合する必要があり ます。 Rubin (1987 年 ) の
有名な公式を使用して、複数の完全データセッ トの結果を結合できます。 これらの公式

は、 例31 で使用します。

モデルベースの代入

この例では、 因子分析モデルを使用して代入を実行します。 モデルベースの代入には

2 つの利点があ り ます。 まず、 モデル内の任意の潜在的変数に値を代入できる点です。

2 番目の利点は、 モデルが的確で正の自由度を持っている場合、 モデルの共分散行列

と平均値は飽和モデルのそれよ り も正確である と推定されるこ とです ( 代入はモデル

の共分散行列と平均値に基づきます )。 ただし、 例 1 のモデルのよ うな飽和モデルは、

他に適切なモデルが存在しない場合に代入に使用できます。

Amos Graphics を使用し た多重データ代入の実行

この例では、例17 の確認的因子分析モデルを使用してベイジアン法多重代入を実行し

ます。 使用するデータセッ トは、 ファ イル grant_x.sav にある  Holzinger と  Swineford
(1939 年 ) による不完全データセッ トです。 欠損値の代入は、 多重代入から有用な結果

を得るための最初の手順に過ぎません。 最終的には、 次の 3 つの手順すべてを実行す

る必要があ り ます。

 手順 1 : Amos のデータ代入機能を使用して、m 個の完全データ ファイルを作成する。

 手順 2 : m 個の各完全データ  ファ イルを個別に分析する。

この分析は自分で行います。 Amos でも分析を行う こ とはできますが、 通常は他の

プログラムを使用します。 この例と次の例では、 SPSS Statistics を使用して回帰分

析を実行します。 こ こでは、 1 つの変数 (Sentence) を使用して別の変数 ( 語彙力 )
を予測します。 特に、 回帰の重み付けとその標準誤差の推定に重点を置きます。

 手順 3 : m 個のデータ  ファ イルの分析結果を結合する。

この例では、 最初の手順を行います。 手順 2 と  3 は、 例31 で行います。
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E 完全データ  ファ イルを生成するには、 Amos Graphics ファ イル Ex30.amw を開きます 

E メニューから  [ 分析 ]  [ データ代入 ] を選択します。

[Amosデータ代入 ] ウ ィンド ウが表示されます。 
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E [ ベイジアン法代入 ] が選択されているこ とを確認します。

E [ 完了データ セ ッ ト 数 ] を 「10」 に設定します ( これによ り  m = 10 と設定されます )。 

完全データ  ファ イルは多数必要と思えるかもしれません。 しかし、 ほとんどのアプリ

ケーシ ョ ンでは完全データ  ファ イルは少ししか必要あ り ません。 正確なパラ メータ推

定値と表示順誤差を得るには、 通常、 5 つから  10 の完全データ  ファ イルで十分です

(Rubin, 1987 年 )。 10 を超える代入を使用しても問題はあ り ませんが、手順 2 と  3 での

計算作業が増えてしまいます。 
Amos では、 完全データセッ ト を積み重ねるこ とによ り、 単一のファイル ([ 単一出力

フ ァイル ]) に完全データセッ ト を保存するこ と も、 個別のファイル ([ 多重出力フ ァイル ])
に各完全データセッ ト を保存するこ と もできます。 単一グループの分析の場合、 [ 単一

出力フ ァイル] を選択する と、1 つの出力データ ファイルが生成され、 [ 多重出力フ ァ イル

] を選択する と  m 個の個別データ  ファ イルが生成されます。

複数グループの分析の場合、 [ 単一出力フ ァ イル ] を選択する と、分析グループごとに

1 つの出力ファイルが生成され、 [ 多重出力フ ァ イル ] を選択する とグループごとに m 個
の出力ファ イルが生成されます。 たとえば、 グループが 4 つあ り、 5 つの完全データ

セッ ト を要求した場合、 [ 単一出力フ ァ イル ] を選択する と  4 つの出力ファイルが生成さ

れ、[ 多重出力フ ァ イル ] を選択する と  20 の出力ファイルが生成されます。こ こでは SPSS
Statistics を使用して完全データセッ ト を分析するので、最も簡単な方法を選択するので

あれば [ 単一出力フ ァ イル ] という こ とになり ます。 次に、 手順 2 で SPSS Statistics の分

割ファイル機能を使用して、完全データセッ ト を個別に分析します。 ただし、 どの回帰

プログラムを使用してもこの例を再現できるよ うにするには、 次のよ うにします。

E [ 多重出力フ ァ イル ] を選択します。

代入データは 2 つのファイル形式 (テキス ト形式と SPSS Statistics 形式 ) で保存できます。

E [ フ ァ イル名 ] をク リ ッ ク し、 [名前を付けて保存 ] ダイアログ ボッ クスを表示します。 
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E [ ファ イル名 ] ボッ クスで、 代入データセッ トの接頭辞名を指定できます。 こ こでは、

「Grant_Imp」 と指定します。 

代入データ  ファ イルには、 Grant_Imp1、 Grant_Imp2、 から以降順番に Grant_Imp10 ま
で名前が付けられます。

E [名前を付けて保存] ボッ クスの一覧で、テキス ト形式 ([.txt]) または IBM SPSS Statistics
データ  ファ イル形式 ([.sav]) を選択します。 

E [ 保存 ] をク リ ッ ク します。

E [データ代入 ] ウ ィンド ウの [ オプシ ョ ン ] をク リ ッ ク し、使用可能な代入オプシ ョ ンを

表示します。

これらのオプシ ョ ンについては、 オンライン ヘルプを参照してください。 オプシ ョ ン

の説明を表示するには、 対象のオプシ ョ ンの上にマウス  ポインタを置いた状態で F1
キーを押します。 下図では、 観測値の数を 10,000 (デフォルト ) から  30,000 に変更し

ています。

E [オプシ ョ ン ] ダイアログ ボッ クスを閉じて、 [データ代入 ] ウ ィンド ウの [ 代入 ] をク

リ ッ ク します。 しばら くする と、 次のメ ッセージが表示されます。
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E [OK] をク リ ッ ク します。

完全データ  ファ イルの名前が一覧表示されます。

各完全データ  ファ イルには 73 の完全なケースが含まれます。 最初の完全データ  ファ

イル Grant_Imp1.sav の先頭のレコードのいくつかを次に示します。 
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下に示してあるのは、2 番目の完全データ  ファ イル Grant_Imp2.sav の同じビューです。 

visperc ( 視覚認知力 ) の最初の 2 つのケースの値は、 元のデータ  ファ イルでも観測さ

れているため、 代入データ  ファ イル全体で同一です。 これに対して、 cubes (空間視覚

化力 )のこれらのケースの値は、元のデータ  ファ イル Grant_x.sav では欠損しているた

め、 cubes (空間視覚化力 )のこれら  2 つのケースについては、 代入データ  ファ イル全

体でさまざまな値が代入されています。

元の観測変数に加え、代入データ  ファ イルには 4 つの新しい変数が追加されていま

す。 spatial (視覚能力 ) と verbal (言語能力 ) は、代入された潜在的変数得点です。 Caseno
と  imputeno は、 それぞれケース番号と完全データセッ ト番号です。
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多重代入デー タ セ ッ ト の分析

概要

この例では、 多重代入データセッ トの分析について説明します。

SPSS Statistics を使用し た代入データ  フ ァ イルの分析

例 30 では 10 個の完全データセッ ト を作成しました。 これは、 3 段階のプロセスのう

ち、 Amos のデータ代入機能を使用して、 m 個の完全データセッ ト を補完する とい う

最初の手順でした ( こ こでは、 m = 10)。 残りの 2 つの手順は次のとおりです。

 手順 2 : m 個の各完全データ  ファ イルを個別に分析する。

 手順 3 : m 個のデータ  ファ イルの分析結果を結合する。

手順 2 の分析は、 Amos、 SPSS Statistics、 または他の任意のプログラムを使用して実

行できます。 手順 2 と  3 を自動化するには、 完全データセッ トの分析に使用するプロ

グラムをあらかじめ把握しておく必要があ り ます。

具体的な問題を解決するために、 手順 2 と  3 では SPSS Statistics を使用して回帰分

析を実行し、完全データセッ ト を分析します。 こ こでは、 1 つの変数 (Sentence) を使用

して別の変数 (Wordmean) を予測します。 特に、回帰の重み付けとその標準誤差の推定

に重点を置きます。



434

例 31

手順 2 : 10 個の個別分析

例30 で生成した 10 個の完全データセッ トのそれぞれについて、 回帰分析を実行する

必要があ り ます。この回帰分析では、Sentence を使用して Wordmean を予測します。

まず、 最初の完全データセッ トである  Grant_Imp1.sav を SPSS Statistics で開きます。

E SPSS Statistics メニューから  [ 分析 ]  [ 回帰 ]  [ 線型 ] を選択し、回帰分析を実行します

( この手順の詳細については省略します )。 

結果は次のよ うにな り ます。

回帰ウェイ ト付けの推定値と  (1.106) と標準誤差の推定値 (0.160) に注目します。 先ほ

ど実行した分析を、 他の 9 個の完全データセッ トについても繰り返すと、 回帰ウェイ

ト付けとその標準誤差の推定値が 9 個ずつ得られます。 次の表に、計 10 個の推定値と

標準誤差を示します。

代入 ML 推定値 ML 標準誤差

1 1.106 0.160
2 1.080 0.160
3 1.118 0.151
4 1.273 0.155
5 1.102 0.154
6 1.286 0.152
7 1.121 0.139
8 1.283 0.140
9 1.270 0.156
10 1.081 0.157
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手順 3 : 多重代入データ  フ ァ イルの結果の結合

1 つの完全データセッ トの分析から得られた標準誤差は、 欠損データ値を代入したた

めに生じる不確実性が考慮されていないため正確とは言えません。 完全データセッ ト

の個別分析から推定値と標準誤差を収集し、 単一の要約値 ( パラ メータ推定値の要約

値およびパラ メータ推定値の標準誤差の要約値 ) に結合する必要があ り ます。 これを

実行するための公式 (Rubin, 1987 年 ) はさまざまな文献に記載されています。 下記の公

式の出典は、 Schafer の論文 (1997 年、 109 ページ ) です。 このセクシ ョ ンの以下の部

分では、 これらの公式を、上記の 10 個の推定値と標準誤差の表に適用します。 以下に

おいて、

m を、 完全データセッ トの数と します ( このケースでは、 m = 10)。

 を標本 t の推定値とします。したがって、  = 1.106、  = 1.080、などとなり ます。

 を標本 t の標準誤差の推定値 と し ます。 し たがって、  = 0.160、
= 0.160、 などとな り ます。

回帰ウェイ ト付けの多重代入推定値は、次のよ うに 10 個の完全データセッ トから得ら

れる  10 個の推定値の平均に過ぎません。

結合されたパラ メータ推定値の標準誤差を得るには、 次の手順を実行します。

E 代入内分散の平均を計算します。

E 代入間分散を計算します。

E 全分散を計算します。

複数グループの標準誤差は、 次のよ うにな り ます。
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母集団において回帰ウェイ ト付けが 0 になる という帰無仮説の検定は、 統計量

に基づきます。 回帰ウェイ ト付けが 0 の場合、 この統計量は、 次の式によって得られ

る自由度を持つ t 分布を持ちます。

Joseph Schafer の NORM プログラムで、 これらの計算を行う こ とができます。 NORM 
は、 http://www.stat.psu.edu/~jls/misoftwa.html#win からダウンロードできます。

参考文献

Amos には、 FIML (例 17 を参照 )、 多重代入、 ベイズ推定など、 欠損データを処理す

る高度なメ ソ ッ ドがいくつか用意されています。 各メ ソ ッ ドの詳細を確認する場合、

FIML および多重代入の概要については Schafer と  Graham (2002 年 ) の論文を参照して

ください。 Allison は FIML と多重代入の両方を扱った簡潔でわかりやすいモノグラフ

(Allison, 2002 年 ) を発表しています。 この論文には、 数多くの機能例と、 多変量正規

性を想定した多重代入法の文脈内で非正規変数およびカテゴ リ変数を処理する方法に

関する優れた論考が示されています。 Schafer (1997 年 ) は、多重代入について詳細かつ

技術的に論じています。 Schafer と  Olsen (1998 年 ) は、 多重代入を実行するための、

わかりやすく段階的なガイ ドを発表しています。 
構造方程式モデルにおける  FIML と多重代入の統計パフォーマンスを比較した、

SEM 固有の研究も入手可能です (Olinsky, Chen, および Harlow, 2003 年 )。 最後に、 例

例26 から  例29 で説明したベイズ推定アプローチが、 欠損データの処理方法において

FIML に似ている点に注目しておく必要があ り ます。 Ibrahim らは、最近、不完全なデー

タの問題に対処するための、 FIML、 ベイズ推定、 確率の重み付け、 および多重代入の

各アプローチのパフォーマンスを比較し、欠損値がランダムな欠損 (MAR) プロセスか

ら生じ る、 不完全なデータの問題を処理する う えで、 これら  4 つのアプローチのパ

フ ォーマンスがおおむね同様に良好であった と結論付けています (Ibrahim, Chen,
Lipsitz, および Herring, 2005 年 )。 彼らの報告では SEM ではなく一般線型モデルが検討

されていますが、 彼らの調査結果と結論は、 一般に、 SEM を含む広範な統計モデルと

データ分析シナリオにも適用できます。
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打ち切 り デー タ

概要

こ こでは、 打ち切りデータを使用したパラ メータの推定、 事後予測分布の推定、 およ

びデータ代入について説明します。

データについて

この例では、 1967 年から  1974 年の間にスタンフォード心臓移植プログラムに登録さ

れた 103 人の患者から得た打ち切りデータを使用します。 このデータは Crowley およ

び Hu によって収集されたもので (1977 年 )、 Kalbfleisch および Prentice などが再分析

を行っています (2002 年 )。 このデータセッ トは transplant-a.sav ファ イルに保存されて

います。
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上の図で 1 番上に表示されている行を左から順に説明します。 患者 17 は 1968 年にプ

ログラムに登録され、 当時の年齢は 20.33 才でした。 この患者は 35 日後に死亡しまし

た。 次の数字 5.916 は、 35 の平方根です。Amos では、打ち切り変数を正規分布と仮定

します。 この例では、 生存期間の平方根の分布は生存期間自体の分布よ り も正規分布

に近くなる という前提の下に、生存期間の平方根を使用します。 [ 非打ち切り ] は、患者

の生存期間がわかっているこ とを表します。 言い換えれば、 患者がすでに死亡してい

たという こ とです。 このこ とから、 この患者はプログラムに登録された後 35 日間生存

したという こ とができます。

一部の患者は、 最後の観察時も生存していました。 たとえば、 患者 25 は、 1969 年、

33.22 才のと きにプログラムに登録されました。 この患者を最後に観察したのは 1,799
日後です。 42.415 は 1,799 の平方根です。 [ ステータス ] 列の [ 打ち切り ] は、 この患者

がプログラムに登録されてから  1,799 日後に生存していたこ と、 かつ、 その日がこの

患者を最後に観察したと きであるこ とを意味します。 そのため、 この患者の生存期間

が 1,799 日間である とはいえません。 実際、この患者はさらに長生きをしましたが、そ

の期間はわかり ません。 このよ うなケースは他にもあ り ます。 患者番号 26 を最後に観

察したのはプログラムへの登録後 1,400 日後のこ とで、当時もまだ生存していました。

したがって、 この患者が少なく と も  1,400 日間は生存したこ とがわかり ます。

患者 25 の生存期間 1,799 日など、 打ち切り値はどのよ うに扱えば良いでし ょ うか。

1,799 および他の打ち切り値をすべて破棄する と、長期間生存した患者のデータを破棄

するこ とになるため、値を破棄するこ とはできません。 他方、この患者は 1,799 日よ り

も長く生存していたこ とがわかっているので、1,799 のまま通常のスコアと同様に処理

するこ と もできません。

Amos では、 「患者 25 が 1,799 日よ り も長く生存した」 という情報を使用できます。

この情報を破棄した り、 この患者の生存期間が正確にわかっている と仮定した りする

必要はあ り ません。 もちろん、 生存期間が 218 日間だったこ とがわかっている患者 24
のよ うに、 正確な数値があるデータについては、 その数値が使用されます。
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データの再コー ド化

データファイルは、 Amos で読み込みを実行する前に再コード化する必要があ り ます。

次の図は、再コード化した後のデータセッ トの一部を示しています (完全なデータセッ

トは transplant-a.sav ファ イルにあ り ます )。

観測値が非打ち切りのデータは、新しいデータ  ファ イルでも元のデータ  ファ イルと同

じ様に表示されています。 しかし、打ち切り値は、元のデータ  ファ イルとは異なるコー

ド化処理が行われています。 たとえば、患者 25 の生存期間 (1,799 日よ り も長いと しか

わかっていない ) は、 新しいデータ  フ ァ イルでは [> 1799] と コード化されています

([> 1799] のよ う な文字列中のスペースは省略可能です )。 また、 生存期間の平方根は

42.415 よ り も大きいこ とがわかっているため、このデータ  ファ イルでは患者 25 の [ 経
過平方根 ] 列に [> 42.415] と表示されています。 数値変数と文字列変数を区別するデータ

ファイル形式 (SPSS Statistics 形式など ) のために、 経過日数と経過平方根は文字列変

数と してコード化する必要があ り ます。
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データの分析

次の手順に従って、 Amos Graphics でデータ  ファ イルを指定します。

E メニューから、 [ フ ァ イル ]、 [ データ  フ ァ イル ] の順にク リ ッ ク します。

E [データ  ファ イル ] ダイアログ ボッ クスで、 [ フ ァ イル名 ] ボタンをク リ ッ ク します。

E データ  ファ イル transplant-a.sav を選択します。 

E [ 数値でないデータ を許可する ] を選択します (チェッ ク  マークが表示されます )。

前述したデータの再コード化、 および [ 数値でないデー タ を許可する ] の有効化は、

打ち切りデータを分析する場合に限り必要となる手順です。 この 2 点を除けば、 打ち

切りデータを使用したモデルの適用と結果の解釈の方法は、 データがすべて数値デー

タの場合とまったく変わり ません。

回帰分析の実行

それでは、年齢および登録年度 (開始年 ) を予測変数と して、経過平方根を予測してみ

まし ょ う。 まず、 次のよ うなパス図を描きます。



441

打ち切りデータ

次のいずれかの方法でモデルを適用します。

E ツールバーの  をク リ ッ ク します。

または

E メニューから、 [ 分析 ]、 [ ベイズ推定 ] の順に選択します。

注 : 非数値データを使用する場合はベイズ推定しか実行できないため、  のボタンは

無効化されています。

[ベイズ SEM] ウ ィンド ウが開いたら、不機嫌な顔  が上機嫌の顔  に変わるまで

待ちます。 [ベイズ SEM] ウ ィンド ウに、 次のよ うな推定値の表が表示されます。

この図は表の一部です。 [ 平均値 ] 列には、 パラ メータのポイン ト推定値が表示されて

います。 開始年を使用して経過平方根を予測する係数は 1.45 です。 つま り、 登録年度

が 1 年あとだと、生存期間の平方根の値が 1.45 増加する と予測できます。 この予測は、

調査期間中に移植プログラムが改善していった可能性がある こ とを示唆しています。

年齢を使用して経過平方根を予測する係数は -0.29 です。 つま り、 移植プログラム登

録時の患者の年齢が 1 才上がるごとに、生存期間の平方根の値が 0.29 ずつ減少する と

予測できます。 -0.29 という係数推定値は、 実際は係数の事後分布の平均値です。 

E 事後分布全体を確認するには、 推定値 -0.29 を含む行を右ク リ ッ ク して、 ポップアッ

プ メニューから  [ 事後分布の表示 ] を選択します。
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[事後分布 ] ダイアログ ボッ クスが表示され、 係数の事後分布が表示されます。

係数の事後分布は確かに -0.29 付近が最も高くなっています。 -0.75 ～ 0.25 の範囲にほ

とんどすべてが分布しているので、この範囲内に係数がある と考えて問題あ り ません。

さ らに分布の大部分が -0.5 ～ 0 の範囲にあるこ とから、係数は -0.5 ～ 0 の間だとほぼ

確定できます。
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事後予測分布

このデータセッ トには、 患者 25 の生存期間のよ うな打ち切り値が含まれていました。

患者 25 の生存期間についてわかっているのは、 1,799 日よ り も長いこ と、 したがって

生存期間の平方根は 42.415 よ り も大きいとい う こ とです。 この患者の経過平方根が

42.415 よ り どれだけ大きいかはわかり ませんが、 その事後分布を求めるこ とはできま

す。 経過平方根が 42.415 を超えるこ とを考慮し、 モデルが正確だという前提で、 患者

25 の年齢と開始年から生存期間についてどのよ うなこ とがわかるでし ょ うか。 これを

確かめるには、 次の操作を行います。

E [事後予測分布 ] ボタン  をク リ ッ ク します。

または

E メニューから、 [ 表示 ]、 [ 事後予測分布 ] の順に選択します。

[事後予測分布 ] ウ ィンド ウに表が表示されます。 この表では、 行が各患者に対応して

おり、列がモデルの観測変数に対応しています。 25 行目を見る と、患者 25 の年齢と開

始年のスコアがわかり ます。 患者 25 の経過平方根には、<< という記号が表示されてい

ます。 これは、 このデータでは経過平方根のスコアに不等式制約が適用されていて実

際の数値ではないという こ とを表しています。
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患者 25 の経過平方根の事後分布を表示するには、 次のよ うにします。

E [<<] をク リ ッ ク します。 [事後分布 ] ウ ィンド ウに事後分布が表示されます。

患者 25 の経過平方根の事後分布は、 完全に 42.415 の右側に分布しています。 データ

だけ見ても経過平方根が 42.415 を超えている こ とは明らかでしたが、 この分布から

は、患者 25 の経過平方根が 70 を超える可能性がほとんどないとわかり ます。さ らに、

経過平方根が 55 を超える確率が非常に低いこ と もわかり ます。
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患者 25 の事後予測分布とは分布の形状が異なる場合について見てみまし ょ う。

E 事後予測分布表の 100 行目の [<<] の記号をク リ ッ ク します。

患者 100 が最後に観察されたのはプログラムに登録されてから  38 日後で、 この時点

でまだ生存していました。 つま り、 経過平方根は 6.164 以上であるこ とがわかってい

ます。 患者の経過平方根の事後分布をみる と、 6.164 ～ 70 の範囲である と考えて良い

し、さ らには 6.164 ～ 50 の範囲内である確率が高いこ とがわかり ます。 平均値は 27.36
で、経過平方根のポイン ト推定値とな り ます。 27.36 を 2 乗した値 748 が、患者 100 の
生存期間 (日数 ) の推定値とな り ます。
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代入

このモデルを使用して、 打ち切り値に値を代入するこ とができます。

E [ベイズ SEM] ウ ィンド ウが開いている場合はこれを閉じます。

E Amos Graphics メニューから、 [ 分析 ]、 [ データ代入 ] の順に選択します。

[回帰法代入 ] と  [確率的回帰法代入 ] は選択できない状態になっているはずです。 打ち切

りデータのよ うな非数値データを使用している場合は、 [ ベイズ法代入 ] しか選択でき

ません。

上の図に表示されている設定に従い、10 個の完全データセッ ト を作成してそのすべ

てを transplant-b_C.sav という  1 つの SPSS Statistics データ  ファ イルに保存します。 代
入を開始する手順は次のとおりです。
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E [ 代入 ] ボタンをク リ ッ ク します。

[ベイズ SEM] ウ ィンド ウ と と もに [データ代入] ダイアログ ボッ クスが表示されます。

E [データ代入 ] ダイアログ ボッ クスに上機嫌の顔  (10 個の各完全データ  セッ トの間

に実質的な相関がないこ とを示す ) が表示されるまで待ちます。

注 : 上機嫌の顔が表示された後 [OK] をク リ ッ クする前に、 [ベイズ SEM] ウ ィンド ウ内

の任意のパラ メータを右ク リ ッ ク して、 ポップアップ メニューから  [ 事後分布の表示 ]
を選択するこ と もできます。 これによ り、 ト レース図や自己相関図を確認できます。

E [データ代入 ] ダイアログ ボッ クスで、 [OK] をク リ ッ ク します。

[要約 ] ウ ィンド ウに、作成された完全データ  ファ イルの一覧が表示されます。 こ こで

は、 作成された完全データ  ファ イルは 1 つだけです。
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E ファ イル名をダブルク リ ッ ク して、 単一の完全データ  ファ イルの内容を表示します。

このファ イルには 10 個の完全データセッ トが含まれています。 

10 個ある完全データセッ トのそれぞれには 103 のケースが含まれています。したがっ

て、 ファ イルに含まれるケース数は 1,030 です。 新しいデータ  ファ イルの最初の 103
行は、 1 番目の完全データ  セッ トに対応します。 1 番目の完全データセッ トの各行の

imputeno 変数は 1、 caseno 変数はそれぞれ 1 ～ 103 となっています。

完全データ  ファ イルの最初の行の経過平方根の値は 7 です。 この値は打ち切り値では

ないので、 7 は代入値ではあ り ません。 この値は、 元のデータ  ファ イルに含まれてい

た通常の数値です。 一方、患者 25 の経過平方根は打ち切り値だったため、 この患者の

経過平方根の値 ( この例では 49.66) は代入値です。 49.66 という値は、444 ページ の図

にある事後予測分布から無作為に抽出された値です。
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通常、 この後に行う手順では、 打ち切りデータを適用できない他のプログラムへの

入力用に、 transplant-b_C.sav 内の 10 個の完全データセッ ト を使用します。 この場合、

そのプログラムでは、 10 個の完全データ  セッ ト を 1 つずつ順番に使って 10 回の分析

を個別に実行するこ とになり ます。 その後、 例31で行ったよ うに、 さ らに計算を実行

し  10 回分の分析結果を 1 つの結果セッ トにま とめます。 この例では、これらの手順は

実行しません。

データ値に対する一般的な不等式制約

この例では、 > 1799 のよ うな不等式制約だけ取り上げました。 他にも不等式制約を示

す文字列値があ り、 次のよ うなものが、 元の数値変数の値に対する不等式制約を示す

文字列値と してデータ  ファ イルで使用できます。

 文字列値 <5 は、 元になる数値が 5 未満であるこ とを表します。

 文字列値 4<<5 は、 元になる数値が 4 ～ 5 の範囲内にあるこ とを表します。
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順序 - カ テゴ リ カル デー タ

概要

この例では、 因子分析モデルを順序 - カテゴ リ カル データに適合させる方法について

説明します。 また、 カテゴ リ化された回答の基礎となる数値変数の事後予測分布を求

める方法や、 カテゴ リ化された回答に数値を代入する方法についても説明します。

データについて

この例では、 オランダ国内で 1,017 人を対象に行った環境問題に関する意識アンケー

ト調査の回答をデータ と して使用します。 このデータは、 European Values Study Group
がま と めた ものです ( 参考文献の一覧を参照し て く だ さい )。 データ  フ ァ イル

environment-nl-string.sav には、6 つの質問項目に対するそれぞれの回答が保存されてい

ます。 回答は、 「強く同意できない」 (SD)、 「同意できない」 (D)、 「同意する」 (A)、 「強

く同意する」 (SA) のいずれかのカテゴ リから選択されたものです。
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これらのデータを分析する手段と して、 4 つにカテゴ リ化された回答のそれぞれに数

値を割り当てるこ とができます (1 = SD、 2 = D、 3 = A、 4 = SA など )。 この方法で各

カテゴ リに数値を割り当てる と、 environment-nl-numeric.sav のデータセッ ト を取得で

きます。

Amos の分析では、 上記のよ う な、 カテゴ リに数値を割り当てる方法を使用しな くて

も、分析は実行できます。 4 つにカテゴ リ化された回答の順序だけを扱う こ と もできま

す。 データの順序だけを扱 う 場合は、 environment-nl-string.sav と  environment-nl-
numeric.sav のどちらのデータセッ ト を使用してもかまいません。

environment-nl-numeric.sav は比較的簡単に使用できます。 このデータセッ ト を使用

する と、 Amos では、 数値のカテゴ リに対して、 順位の低い方から  1、 2、 3、 4 の順に

デフォルトで番号が割り当てられるためです。 この場合は、正しい順序とな り ます。 こ
れに対し  environment-nl-string.sav を使用した場合、 Amos では、 カテゴ リがアルファ

ベッ トの昇順 (A、 D、 SA、 SD) にデフォルトで順序付けされます。 この場合、 順序は

正し く あ り ません。 したがって、 Amos におけるデフォル トのカテゴ リ順序を変更す

る必要があ り ます。

この例では、データ  ファ イル environment-nl-string.sav を使用します。 これは、デー

タの順序だけを扱う という こ とを明瞭化するだけでなく、 カテゴ リの正しい順序の指

定方法についても説明するためです。
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データ  フ ァ イルの指定

E Amos Graphics メニューから、 [ フ ァ イル ][ データ  フ ァ イル ] の順にク リ ッ ク します。 

E [データ  ファ イル ] ウ ィンド ウで、 [ フ ァ イル名 ] ボタンをク リ ッ ク します。

E データ  ファ イル environment-nl-string.sav を選択します。 

E [ 数値でないデータ を許可する ] を選択します (チェッ ク  マークが表示されます )。

E [OK] をク リ ッ ク します。
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Amos 内でのデータの再コー ド化

データの順序は、 データ  ファ イルだけから特定する こ とはできません。 データの値

(SD、 D、 A、 および SA) の解釈に必要な補足情報を Amos に対して指定する手順は次

のとおりです。

E Amos Graphics メニューから、 [ ツール ][ データの再コー ド化 ] の順に選択します。 

E [データの再コード化 ] ウィンドウの左上にある変数リ ス トから  [item 1] を選択します。

これによ り、 [item 1] に対する回答の度数分布がウ ィンド ウの下部に表示されます。

[再コード化ルール ] ボッ クスで [ 再コー ド化な し ] を選択する と、 [item 1] に対する回

答がそのままの形で Amos に読み込まれます。 つま り、 SD、 D、 A、 SA、 空の文字列

のいずれかが読み込まれます。 しかし  Amos は、SD や D などをそのまま処理するこ と

ができないため、 なんらかの対処が必要とな り ます。
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E [ 再コー ド化な し ] をク リ ッ ク し、ド ロ ップダウン リ ス トから  [ 順序 - カテゴ リ カル ] を選

択します。
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ウ ィンド ウ下部の度数表には [ 新しい値 ] 列が作成され、 データ  ファ イル内の [item 1]
の値が、 Amos に読み込まれる前にどのよ うに再コード化されるのかが表示されます。

度数表の先頭行に表示される内容は、元のデータ  ファ イル内に含まれる空の文字列が

欠損値と し て処理される こ と を表し ています。 また 2 行目の内容は、 回答 A が
<0.0783345405060296 とい う文字列に変換される こ と を表しています。 Amos ではこ

れを基に、 [item 1] に対する回答が連続型数値変数によって表され、 かつ A と回答し

た回答者のスコアは、基礎となる変数上では 0.0783345405060296 未満になる と判断し

ます。 同様に 3 行目の内容は、回答 D が 0.0783345405060296<<0.442569286522029 と
い う文字列に変換されるこ とを表しており、 Amos では、 基礎となる変数上のスコア

が 0.0783345405060296 と  0.442569286522029 の間の値になる と判断します。 
0.0783345405060296 や 0.442569286522029 などの数値は、回答の基礎となる数値変数

上のスコアが、 平均値 0、 標準偏差 1 の正規分布に従っている との仮定の下に、 [ 度数 ]
列の度数から求められます。

[ 元の値 ] 列のカテゴ リの順序は変更する必要があ り ます。 順序を変更する手順は次

のとおりです。
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E [詳細] ボタンをク リ ッ ク します。 [順序-カテゴ リ カルの詳細] ダイアログ ボッ クスが表

示されます。

[順序カテゴ リ ] リ ス ト  ボッ クスには、 4 つの回答カテゴ リがそれぞれ点線 (<---->)
をはさんで、 A、 D、 SA、 SD の順に表示されます。 この 3 つの点線は、 実数を、 回答

カテゴ リに関連する  4 つの区間に分ける際の境界を表します。 観測されない数値変数

について、 最も小さい境界値を下回るスコアを持つ回答者は、 回答が A である と見な

されます。 最も小さい境界値と中央の境界値との間にスコアを持つ回答者は、 回答が

D である と見なされます。 中央の境界値と最も大きい境界値の間にスコアを持つ回答

者は、回答が SA である と見なされます。 最も大きい境界値を上回るスコアを持つ回答

者は、 回答が SD である と見なされます。

プログラム側の処理は、 カテゴ リ  ( 区間 ) が 4 つと境界が 3 つ存在するこ とについ

ては正し く行われていますが、 カテゴ リの順序については正し くあ り ません。 プログ

ラムの処理では、 カテゴ リがアルファベッ ト順に並べられています。 そのため、 これ

ら  4 つのカテゴ リ と  3 つの境界はそのまま維持して、 順序だけを変更する必要があ り

ます。 こ こでは、 SD を先頭の区間 (最も小さい境界値を上限とする区間 ) に移動する

など、 順序の入れ替えをいくつか行います。 
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カテゴ リ と境界の順序は、 変更するこ とができます。 手順は次のとおりです。

E マウスを使ってカテゴ リ または境界を直接ド ラ ッグ アンド  ド ロ ップする。

または

E マウスを使ってカテゴ リ または境界を選択し、[上へ] ボタンや [下へ] ボタンをク リ ッ ク

する。

次に示すのは、 カテゴ リおよび境界を正しい順序に並べ終わった時点での、 [ 順序 -
カテゴ リ カルの詳細 ] ダイアログ ボッ クスの表示内容です。

[順序なしカテゴ リ ] リ ス ト  ボッ クスには、 Amos によ り欠損値と して処理される値の

リ ス トが表示されます。 こ こでは、 ただ 1 つのエン ト リ  [ 空の文字列 ] が表示されてい

ます。空の文字列は、Amos によ り欠損値と して処理されます。 空の文字列と してコー

ド化された回答が、 実際には SD、 D、 A、 または SA に対応する意味のある回答であ

る場合には、 [順序なしカテゴ リ ] リ ス ト  ボッ クスの [ 空の文字列 ] を選択し、 [ 下へ ] ボ
タンをク リ ッ ク して、[空の文字列] を [順序カテゴ リ ] リ ス ト  ボッ クスに移動できます。 
同様に、 [順序カテゴ リ ] リ ス ト  ボッ クス内の回答 ( たとえば SD) が、他の回答と比

較したと きに意味のない回答である場合には、 マウスで [SD] を選択し  [ 上へ ] ボタン

をク リ ッ クする と、 [ 順序なしカテゴ リ ] リ ス ト  ボッ クスに移動できます。 この場合、

SD は欠損値と して処理されます。

注 : [順序カテゴ リ ] リ ス ト  ボッ クス と  [順序なしカテゴ リ ] リ ス ト  ボッ クス との間で

エン ト リ を移動する場合は、ド ラ ッグ アンド  ド ロ ップ操作を使用するこ とはできませ

ん。 2 つのリ ス ト  ボッ クス間でカテゴ リ を移動するには、 [ 上へ ] ボタンまたは [ 下へ ]
ボタンを使用します。
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すでに適切な数の境界とカテゴ リが設定され、 カテゴ リが正しい順序に並べられてい

るため、 この時点で [順序 - カテゴ リ カルの詳細 ] ダイアログ ボッ クスを閉じ、作業を

終了してもかまいません。 しかしこ こでは、Croon (2002) の提言に従ってさ らに変更を

加えます。 Croon はこのデータ  セッ ト を実際に使用した上で、 SD カテゴ リは出現の

頻度が非常に低いため、D カテゴ リ とひとま とめにするべきである と提言しています。

これら  2 つのカテゴ リ を 1 つのカテゴ リにま とめるための手順は次のとおりです。

E ま とめられる  2 つのカテゴ リの境界を選択します。

E [境界を削除] ボタンをク リ ッ ク します。 [順序カテゴ リ ] リ ス トの表示内容は次のよ うに

な り ます。

これで、 回答 SD と  D は区別できなくな り ます。 どちらの回答をした回答者も、 基礎

となる数値変数上のスコアは、 先頭の区間に属するスコアになり ます。

3 つある各区間を隔てている  2 つの境界には、 まだ値が設定されていません。 境界

に値を指定しない場合は、 基礎となる数値変数上のスコアが、 平均値 0 および標準偏

差 1 の正規分布に従っている との仮定に基づいて、 Amos で境界値が推定されます。

Amos で推定を実行しない場合は、値を境界に直接割り当てるこ とができます。 値を割

り当てる手順は次のとおりです。

E マウスで境界を選択します。

E テキス ト  ボッ クスに数値を入力します。
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次の図は、2 つの境界にそれぞれ 0 および 1 の値が割り当てられた状態を示しています。

順序が先の境界の値よ り順序が後の境界の値の方が大きいという条件が満たされてい

る限り、 この 2 つの境界には 0 と  1 でなく と も任意の 1 組の数値を割り当てるこ とが

できます。 境界の数がいくつであっても  ( ただし  2 つ以上 )、 そのうちの 2 つの境界に

値を割り当てるこ とによ り、 基礎となる数値変数に対して 0 となる点および測定単位

を選択するこ とにな り ます。 基礎となる数値変数の尺度設定については、 ヘルプ ファ

イルの ト ピッ ク 「Choosing boundaries when there are three categories」 でさ らに詳し く

説明します。

E [OK] をク リ ッ ク して [順序 - カテゴ リ カルの詳細 ] ダイアログ ボッ クスを閉じます。
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この時点で、 カテゴ リおよび区間の境界に対する変更内容が、 [ データの再コード化 ]
ウ ィンド ウの度数表に反映されます。

度数表には、 Amos に読み込まれる前に行われるデータ  ファ イルの値の再コード化方

法が表示されます。 度数表を上から順に説明します。

 空の文字列は欠損値と して処理されます。

 文字列 SD と  D は <0 と して再コード化されます。 これは、基礎となる数値スコア

が 0 未満になるこ とを表しています。

 A は 0<<1 と して再コード化されます。 これは、基礎となる数値スコアが 0 と  1 の
間の値になるこ とを表しています。

 SA は >1 と して再コード化されます。 これは、 基礎となる数値スコアが 1 よ り大

き くなるこ とを表しています。
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こ こまでは、 [item 1] に対する処理について説明しました。 [item 1] に対して行ったの

と同様の処理を、残り  5 つの各観測変数に対しても行う必要があ り ます。 6 つの観測変

数すべてに対して再コード化を指定したら、 元のデータセッ ト と再コード化された変

数とを並べて表示するこ とができます。 手順は次のとおりです。

E [ データの表示 ] ボタンをク リ ッ ク します。

左側の表には、 再コード化される前の、 元のデータ  ファ イルの内容が表示されます。

右側の表には、再コード化された後の再コード化変数が表示されます。 Amos で分析が

実行される際には、 元の値ではなく再コード化された値が読み込まれます。

注 : データの再コード化実行済みの原データ  ファ イルを作成できます。 つま り、 上図

の右側に表示されているよ うな不等号を含む原データ  ファ イルを作成できます。 この

場合、 Amos の [データの再コード化 ] ウ ィンド ウを使用する必要はあ り ません。 この

方法は、 例32で実際に使用しています。

E 最後に、[データの再コード化 ] ウィンドウを閉じ、モデルを特定化する作業に移り ます。
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モデルの特定化

これまでの説明に従ってデータの再コード化ルールを指定した後は、 ベイズ解析と

同じ要領で分析を進めます。 この例では、 環境問題に関するデータセッ トに含まれる

6 つの質問事項に因子分析モデルを適合します。 初めの 3 項目は、環境保全のために費

用を負担する意志がどの程度あるかを調べるための質問です。 一方、残りの 3 項目は、

環境問題にどの程度の関心があるかを調べるための質問です。 こ う した質問の意図

は、次に示す因子分析モデルに反映されています。 この因子分析モデルは Ex33-a.amw
ファ イルに保存されています。

パス図は、数値データの場合とまったく同様に作成されます。 これは、順序 - カテゴ リ

カル変数ごとに最低 3 つのカテゴ リが存在する場合の利点の 1 つです。 つま り、 変数

がすべて数値型である場合と同じ方法でモデルを特定化するこ とができ、 なおかつそ

のモデルは数値変数と順序 - カテゴ リ カル変数の任意の組み合わせに対して適用でき

ます。 変数が二値変数の場合は、 モデルを識別できるよ うにパラ メータに関する制約

を追加する必要があ り ます。 これについては、オンライン ヘルプのトピック 「Parameter
identification with dichotomous variables」 で詳し く説明します。

モデルの適合

E ツールバーの  をク リ ッ ク します。

または

E メニューから、 [ 分析 ][ ベイズ推定 ] の順に選択します。

注 : 非数値データを使用する場合はベイズ推定しか実行できないため、  のボタンは

無効化されています。
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[ベイズ SEM] ウ ィンド ウが開いたら、アイコンが不機嫌な顔から上機嫌な顔に変わる

まで待ちます。 [ベイズ SEM] ウ ィンド ウの表示内容が次のよ うにな り ます。

上図には、 パラ メータ推定値の一部だけが表示されています。 [ 平均値 ] 列には、 各パ

ラ メータのポイン ト推定値が表示されます。 たとえば、WILLING から項目 1 を予測す

る場合の係数は 0.59 です。 事後分布の歪度 (0.09) および尖度 (-0.01) は 0 に近い値であ

り、 事後分布がほぼ正規分布になっているこ と と一致します。 標準偏差 ([S.D.]) は 0.03
であ り、 係数は約 67% の確率で 0.59±0.03 の範囲内に収ま り ます。 標準偏差を 2 倍の

0.06 にする と、 係数は約 95% の確率で 0.59±0.06 の範囲内に収ま り ます。 

係数の事後分布を表示する手順は次のとおりです。

E 目的の行を右ク リ ッ ク し、ポップアップ メニューから  [ 事後分布の表示 ] を選択します。
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[事後分布 ] ウ ィンド ウに事後分布が表示されます。 分布の形状によ り、分布の平均値、

標準偏差、 歪度、 および尖度を基に判断した先の結果を再確認するこ とができます。

分布の形状は正規分布に近く、 領域の 95% は 0.53 と  0.65 の間 (つま り  0.59±0.06) に
含まれている と考えられます。 
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MCMC 診断

MCMC アルゴ リズム (Gelman 他 (2013) を参照) による診断の出力結果を理解する知識

がある場合は、 [ ト レース ] 図や [自己相関 ] 図を活用するこ とができます。
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[最初と最後の分布 ] 図からは、別の診断内容を読み取るこ とができます。 この図には、

事後分布の 2 つの推定値 (2 つを重ね合わせた図 ) が表示されます。 一方は MCMC 標
本の最初の 3 分の 1 についての推定値、 も う一方は MCMC 標本の最後の 3 分の 1 に
ついての推定値です。

事後予測分布

推定と言えば通常は、 標準化係数や間接効果など、 モデル パラ メータまたはその関数

の推定を思い浮かべます。 しかし この分析では、 それ以外にも未知量が存在します。

452 ページにあるデータ表の各エン ト リは、 未知の数値または一部が未知の数値を表

しています。 たとえば、 回答者 1 は項目 2 に対して無回答であるため、 回答者 1 の基

礎となる数値変数上のスコアは推測 (推定 ) するしかあ り ません。 一方、その他の項目

に関する回答者 1 の回答や、 モデルが適切である という仮定から得られる結果を考慮

すれば、 基礎となる数値変数については、 かな り確度の高い推測が可能だと考えられ

ます。
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回答者 1 は、 項目 1 に対しては回答しているため、 項目 1 の基礎となる数値変数上

の回答者 1 のスコアについて推測を行う こ とは非常に容易です。 回答者 1 のスコアは、

その回答から、2 つの境界の間にある中央の区間に属している と判断されます。 2 つの

境界にはすでに 0 および 1 という値が割り当てられているため、 回答者 1 のスコアは

0 と  1 の間の値を取るこ とは明らかですが、さ らに、その他の項目に関する回答や、モ

デルが適切である という仮定を考慮するこ とによって、 よ り詳しい値を求めるこ とが

できます。

ベイズ推定では、 未知量はすべて同じ方法で処理されます。 未知データの値は、 未

知パラ メータの値を推定する場合と まった く同様に、 その事後分布を与える こ とに

よって推定が行われます。 未知データの値に関する事後分布は事後予測分布と呼ばれ

ますが、 解釈の方法は他の事後分布とまった く同じです。 未知データの値に関する事

後予測分布を表示する手順は次のとおりです。

E [事後予測分布 ] ボタン  をク リ ッ ク します。

または

E メニューから、 [ 表示 ][ 事後予測分布 ] の順に選択します。

[事後予測分布 ] ウ ィンド ウが表示されます。
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[事後予測分布 ] ウ ィンド ウには、 行を各回答者、 列をモデルの各観測変数とする表が

表示されます。 アスタ リ スク  (*) は欠損値であるこ とを表します。 また << は、 元の数

値変数に不等式制約を適用する回答であるこ とを表します。 各項目に対して事後分布

を表示する手順は次のとおりです。

E 表の左上のエン ト リ  (項目 1 に対する回答者 1 の回答 ) をク リ ッ ク します。

[事後分布 ] ウ ィンド ウが開き、回答者 1 の基礎となる数値スコアの事後分布が表示さ

れます。 事後分布は最初、 起伏が激し く不規則な形状を示します。

これは、プログラムによる事後分布の推定が、MCMC サンプリ ングを実行しながら順

次行われているためです。 しかし時間が経過するにつれて、 事後分布の推定値は修正

されていきます。 しばら くする と推定値はそれ以上変化しな くな り、 次の図のよ う な

形状になり ます。

事後分布を見る と、 回答者 1 の項目 1 に対する回答の基礎となる数値変数のスコアは

0 と  1 の間にあ り  ( これは既知の事実 )、 かつ 0 よ り も  1 に近い値を取る可能性が高い

こ とがわかり ます。
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E 次に、 表の 22 行目の第 1 列にあるエン ト リ をク リ ッ ク し、 回答者 22 の項目 1 に対す

る回答の基礎となる数値変数のスコアを推定します。 

しばら くする と推定値が確定し、 事後分布が次の図のよ うな形状になり ます。

回答者 1 と回答者 22 はどちらも、項目 1 に対して 「同意する」 と回答しています。 し

たがってどちらの回答者も、 基礎となる数値変数上のスコアは 0 と  1 の間の値を取り

ますが、 それぞれの事後分布はまったく異なっています。

事後予測分布の例をも う  1 つ見るために、 欠損値 (回答者 1 の項目 2 に対する回答

など ) をいずれか 1 つ選択します。 MCMC サンプリ ングが十分に実行される と、 事後

分布の推定値は次の図のよ うな形状になり ます。

ポイン ト推定値が必要な場合は、 事後分布の平均値 (0.52) を、 基礎となる数値変数に

おける回答者 1 のスコアの推定値と して使用できます。 事後分布の図を見る と、 スコ

アはほぼ 100% の確率で -1 と  2 の間の値を取るこ とがわかり ます。 また、 事後分布の

領域は大半が 0 と  1 の間に存在するため、 スコアは 0 と  1 の間の値を取る確率が高く

な り ます。
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潜在変数の事後予測分布

WILLING 因子についての回答者 1 のスコアを推定する場合を考えます。 Amos で未知

スコアの事後予測分布を推定できるのは、 観測変数に対してだけです。 潜在変数に対

するスコアの事後予測分布を推定するこ とはできません。 ただし、WILLING に対する

スコアの事後予測分布を推定するための方法は存在します。 WILLING を、潜在変数で

はなく、 ケースすべてに欠損値を持つ観測変数と見なすこ とによ り、 観測変数に変更

できます。 その際、 パス図およびデータの 2 つを変更する必要があ り ます。 
パス図では、 WILLING を囲む楕円を長方形に変更します。 手順は次のとおりです。

E WILLING を囲む楕円を右ク リ ッ ク し、ポップアップ メニューから  [ 直接観測される / され

ない変数を交替 ] を選択します。

E WILLING を囲む楕円をク リ ッ ク します。

パス図では次のよ うに WILLING を囲む楕円が長方形に変更されます。

こ こまでは、 パス図に対する処理について説明しました。 WILLING が観測変数になる

と、データ ファイル内に WILLING 列が必要になるため、データも変更する必要があり

ます。 データ ファイルは直接修正できます。 このファイルは SPSS Statistics データ ファ

イルであるため、SPSS Statistics を使用して WILLING 変数を追加するこ と もできます。

ただし、 WILLING に対するスコアがすべて欠損値になるよ う注意してください。 

元のデータ  ファ イルの内容を維持したままデータを変更する手順は次のとおりです。

E パス図の WILLING 変数を右ク リ ッ ク します。

E ポップアップ メニューから  [データの再コー ド化] を選択し、[データの再コード化] ウ ィ

ンド ウを開きます。
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E [データの再コード化 ] ウ ィンド ウで、[ 変数を作成 ] をク リ ッ ク します。 新しい変数とそ

のデフォルト名 V1 が、 [新規作成変数と再コード化変数 ] リ ス ト  ボッ クスに表示され

ます。
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E V1 を WILLING に変更します (必要であれば、[ 変数名を変更 ] ボタンをク リ ック します )。

E 新しい WILLING 変数を含む再コード化されたデータセッ ト を表示する必要がある場

合は、 [ データの表示 ] ボタンをク リ ッ ク します。

左側の表には元のデータセッ トが表示されます。 一方、右側の表には、Amos に読み込

まれる再コード化されたデータセッ ト が表示されます。 このデータセッ ト には、 再

コード化後の項目 1 から項目 6 までの各項目と、 新たに追加された WILLING 変数が

含まれています。
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E [データの再コード化 ] ウ ィンド ウを閉じます。

E Amos Graphics ツールバーの  をク リ ッ ク してベイジアン解析を開始します。 

E [ベイズ SEM] ウ ィンド ウで、アイコンが不機嫌な顔  から上機嫌な顔  に変わっ

たら、 [ 事後予測分布 ] ボタン  をク リ ッ ク します。

E 表の右上にあるエント リ をク リ ックする と、WILLING 因子に関する回答者 1 のスコア

の事後分布が表示されます。
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代入

順序 - カテゴ リ カル データでのデータ代入は、 数値データでのデータ代入と同じ方法

で行われます。 順序 - カテゴ リ カル データを使用する場合、 代入できる数値は、 欠損

値、 潜在変数のスコア、 および観測される順序 - カテゴ リ カル測定値の基礎となる非

観測数値変数のスコアの値になり ます。

代入を実行するにはモデルが必要です。 モデルには、 すでに使用した因子分析モデ

ルを使用してもかまいません。 代入に因子分析モデルを使用する場合、 いくつかの長

所があ り ますが、 短所も  1 つだけあ り ます。 長所の 1 つは、 モデルが適切であれば因

子に値を代入できるこ とです。 つま り、 WILLING および AWARE を観測変数とする

データ  セッ ト を新規作成するこ とができます。 も う  1 つの長所は、 モデルが適切であ

れば、 項目 1 から項目 6 までの各項目に対し、 制約が少ないモデルよ り も的確な代入

が期待できる点です。 因子分析モデルを使用する短所は、 モデルが不適切になる可能

性がある とい う点です。 この例では確実性を重視して、 適切である確率が最も高い飽

和モデル (下図参照 ) を使用します ( ファ イル Ex33-c.amw を参照してください )。

飽和モデルに対するパス図を作成したら、 代入を開始できます。
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E Amos Graphics メニューから、 [ 分析 ][ データ代入 ] の順に選択します。

[Amos データ代入 ] ウ ィンド ウでは、[ 回帰法代入 ] と  [ 確率的回帰法代入 ] は無効化され

ているこ とに注意してください。 非数値データを使用している場合は、 [ ベイズ法代入 ]
しか選択できません。

こ こでは上の図に表示されている設定内容をそのまま使用します。 これによ り、 10
個の完全データセッ トが作成され、それらすべてが environment-nl-string_C.sav という

1 つのデータ  ファ イルに保存されます。 代入を開始する手順は次のとおりです。

E [ 代入 ] ボタンをク リ ッ ク します。 

[ベイズ SEM] ウ ィンド ウ と と もに [データ代入] ダイアログ ボッ クスが表示されます。
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E [データ代入 ] ダイアログ ボッ クスに上機嫌な顔  (10 個の各完全データ  セッ トの間

に実質的な相関がないこ とを示す ) が表示されるまで待ちます。

注 : 上機嫌な顔が表示された後 [OK] をク リ ッ クする前に、 [ベイズ SEM] ウ ィンド ウ内

の任意のパラ メータを右ク リ ッ ク し、 ポップアップ メニューから  [ 事後分布の表示 ] を
選択するこ と もできます。 これによ り、 ト レース図や自己相関図を確認できます。

E [データ代入 ] ダイアログ ボッ クスで、 [OK] をク リ ッ ク します。

[要約 ] ウ ィンド ウに、作成された完全データ  ファ イルの一覧が表示されます。 こ こで

は、 作成された完全データ  ファ イルは 1 つだけです。

E [要約 ] ウ ィンド ウでファ イル名をダブルク リ ッ ク して、完全データ  ファ イルの内容を

表示します。 このファ イルには 10 個の完全データセッ トが含まれています。
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10 個ある完全データセッ ト のそれぞれには 1,017 のケースが含まれています。 した

がって、ファ イルに含まれるケース数は 10,170 です。 新しいデータ  ファ イルの最初の

1,017 行は、 1 番目の完全データ  セッ トに対応します。 1 番目の完全データセッ トにお

ける  imputeno 変数は各行で 1 になっています。 また caseno 変数には 1 から  1,017 ま
での値が順番に並んでおり、 1,017 に達する と再び 1 から繰り返されます。

通常、 この後に行う手順では、 数値 (順序 - カテゴ リ カルでない ) データを必要とする

他のプログラムへの入力用に、environment-nl-string_C.sav 内の 10 個の完全データセッ

ト を使用します。 この場合、 そのプログラムでは、 10 個の完全データ  セッ ト を 1 つず

つ順番に使って 10 回の分析を個別に実行するこ とになり ます。 その後、 例 31 で行っ

たよ うに、 さ らに計算を実行し  10 回分の分析結果を 1 つの結果セッ トにま とめます。

この例では、 これらの手順は実行しません。
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ト レーニング データ を使用し た

混合モデ リ ング

概要

混合モデリ ングは、あるモデルを母集団全体に当てはめるのは不適切であるけれども、

各サブグループに当てはめるこ とができるよ うに、 母集団をサブグループに分けるこ

とができる場合に適しています。

混合モデ リ ングは、 構造方程式モデ リ ングの分脈では、 Arminger、 Stein、 および

Wittenberg (1999 年 )、星野 (2001 年 )、Lee (2007 年 , 11 章 )、Loken (2004 年 )、Vermunt
および Magidson (2005 年 )、Zhu および Lee (2001 年 ) などによって解説されています。

この例では、 グループに割り当て済みのケース と割り当てられていないケースがあ

る場合の混合モデリ ングについて説明します。 すでに分類されているケースから学び、

他のケースを分類するのは、 Amos が行います。

例10、例11、例12のよ うな通常の複数グループの分析の設定とほぼ同じなので、 こ

こでは一部のケースがすでに分類されている例を使って混合モデリングを実行します。

混合モデリ ングは、 事前にケースが分類されていなくても実行できます。 その場合

はプログラムがすべてのケースを分類する必要があ り ます。 例35では、 このタイプの

分析について説明します。
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データについて

この例のデータは Anderson (1935 年 ) によって収集され、 Fisher (1936 年 ) がこのデー

タを使って判別分析を示しました。 元のデータは、 iris.sav ファ イルにあ り ます。 こ こ

ではその一部を示します。

データセッ トには、150 の異なる植物の花に関する  4 つの測定値が含まれています。 最
初の 50 の花は、setosa (セ トサ)という種類のアイ リ スでした。 次の 50 の花は、versicolor
(ベルシカラー ) という種類のアイ リ スでした。 最後の 50 の花は、 virginica (ベルジニ

カ ) という種類のアイ リ スでした。
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PetalLength (花びらの長さ ) と PetalWidth (花びらの幅 ) という  2 つの測定値の散布

図は、 種類による花の分類では、 これら  2 つの測定値だけでも有用であるこ と示して

います。

散布図の左下角にあるのは、setosa の花だけです。 したがって、Amos では、PetalLength
と PetalWidth を使って、他の花と  setosa の花を容易に区別するこ とができるはずです。

一方、 versicolor と virginica は一部が重複しているので、 PetalLength と  PetalWidth だ

けで、 花の種類が versicolor なのか virginica なのかを区別するのは難しい場合がある

こ とが予想されます。
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この例では、 すべての花の種類が含まれている  iris.sav データセッ トは使用しませ

ん。 代わりに、数種類の花だけが含まれている  iris3.sav データセッ ト を使用します。 次
の図は、 iris3.sav データセッ トの一部を示しています。

種類については、 setosa の花 10 個、versicolor の花 10 個、virginica の花 10 個がわかっ

ています。 残りの 120 の花の種類は不明です。 これらのデータを Amos で分析する と、

花の種類ごとに 10 の例を使用して、 残りの花の分類を行ないます。

分析の実行

E メニューから、 [ フ ァ イル ][ 新規作成 ] を選択して新しいパス図の作成を開始します。

E メニューから  [ 分析 ] [ グループ管理 ] を選択します。

E [ グループ管理 ] ダイアログ ボッ クスで、[ グループ名 ] テキス ト  ボッ クスの名前を「グ

ループ番号 1」 から 「PossiblySetosa ( セ ト サの可能性 )」 に変更します。

E [ 新規作成 ] をク リ ッ ク して 2 つ目のグループを作成します。
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E [ グループ名 ] テキス ト  ボッ クスの名前を 「グループ番号 2」 から 「PossiblyVersicolor (
バーシカ ラーの可能性 )」 に変更します。

E [ 新規作成 ] をク リ ッ ク して 3 つ目のグループを作成します。

E [ グループ名 ] テキス ト  ボッ クスの名前を 「グループ番号 3」 から 「PossiblyVirginica (
バージニカの可能性 )」 に変更します。

E [ 閉じ る ] をク リ ッ ク します。

データ  フ ァ イルの指定

E メニューから、 [ フ ァ イル ][ データ  フ ァ イル ] を選択します。
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E [PossiblySetosa] をク リ ッ ク して行を選択します。

E [ フ ァ イル名 ] をク リ ッ ク し、 Amos の Examples ディ レク ト リにある  iris3.sav ファ イル

を選択して、 [ 開 く ] をク リ ッ ク します。

E [ グループ化変数 ] をク リ ッ ク し、 [ グループ化変数を選択 ] ダイアログ ボッ クスで

[species] をダブルク リ ッ ク します。 これで、変数 [species] が花の分類に使用されます。



487

ト レーニング データ を使用し た 混合モデリ ング

E [データ  ファ イル] ダイアログ ボッ クスで [グループ値] をク リ ッ ク し、[グループの識別

値の選択 ] ダイアログ ボッ クスで [setosa] をダブルク リ ッ ク します。

[データ  ファ イル ] ダイアログ ボッ クスは、 次のよ うにな り ます。

E [PossiblyVersicolor] グループについて前述の手順を繰り返しますが、 今回は [ グループ

の識別値の選択 ] ダイアログ ボッ クスで [versicolor] をダブルク リ ッ ク します。
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E [PossiblyVirginica] グループについて前述の手順をも う一度繰り返しますが、今回は [ グ
ループの識別値の選択 ] ダイアログ ボッ クスで [virginica] をダブルク リ ッ ク します。 [
データ  ファ イル ] ダイアログ ボッ クスは、 次のよ うにな り ます。

こ こまでは、 すべての花の種類が判明している、 通常の 3 グループ分析のよ うに設定

してきました。 次に行う手順は、 混合モデリ ング特有のものです。 

E [ケースをグループに割り当てる ] を選択します (チェッ ク  マークが表示されます)。 この

チェッ ク  マークが表示されている と、 ケースが属しているグループがデータセッ トで

指定されていない場合、 ケースはグループに割り当てられます。

E [OK] をク リ ッ ク して、 [データ  ファ イル ] ダイアログ ボッ クスを閉じます。
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モデルの特定化

変数 [PetalLength] および [PetalWidth] の飽和モデルを使用します。 先に示した散布図

は、 種類に基づいて花の分類を行な うのに、 これら  2 つの変数が有用であるこ とを示

しています。

混合モデリ ングを行な う と きには、 飽和モデルに限定されないこ とに注意してくだ

さい。 因子分析モデルや回帰モデルなど、 どのタイプのモデルでも使用するこ とがで

きます。 回帰モデルを使った混合モデリ ングの実証については、例36 を参照してくだ

さい。

E 次のパス図を描きます ( このパス図は、 Ex34-a.amw と して保存されています )。

E メニューから  [ 表示 ] [ 分析のプロパテ ィ ] の順に選択します。
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E [ 平均値と切片を推定 ] を選択します (隣にチェッ ク  マークが表示されます )。 
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モデルの適合

E ツールバーの  をク リ ッ ク します。

または

E メニューから、 [ 分析 ]  [ ベイズ推定 ] の順に選択します。

注 : 混合モデリ ングではベイズ推定しか実行できないため、  のボタンは無効化され

ています。

[ベイズ SEM] ウ ィンド ウが開いたら、不機嫌な顔  が上機嫌の顔  に変わるまで

待ちます。 [ベイズ SEM] ウ ィンド ウに、 次のよ うな推定値の表が表示されます。

[ベイズ SEM] ウ ィンド ウに、通常の 3 グループ分析で取得されるすべてのパラ メータ

推定が表示されます。 表には、1 度に 1 つのグループの結果が表示されます。 表の上部

にあるタブをク リ ッ クする と、 別のグループに切り替えるこ とができます。 この例で

は、 モデルのパラ メータには平均値、 分散、 および共分散が含まれています。 さ らに

複雑なモデルになる と、 係数と切片項の推定値も含まれます。

混合モデリ ング分析では、各グループの母集団における比率の推定値も取得します。

前の図は、 母集団での setosa の花の推定比率が 0.333 と示しています ( ただし、 標本

には、 意図的に setosa、 versicolor、 virginica の花がそれぞれ同じ数だけ含まれている

こ とを指摘しておく必要があるでし ょ う。 したがって、 この例では、 標本から母集団

の比率について推論を導き出すこ とは有意ではあ り ませんが、 そのよ うな推論を導き

出す方法を示すために、 こ こでは species を確率変数と して扱います )。
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母集団の比率の事後分布を確認するには、比率が表示されいてる行を右ク リ ッ ク して、

ポップアップ メニューから  [ 事後分布の表示 ] を選択します。

[事後分布 ] ウィンドウは、 setosa の種類に属する花の比率が、 ほぼ確実に 0.25 ～ 0.45
の範囲になるこ とを示しています。 比率が 0.3 ～ 0.35 の間になる確率は、半々（約 50%）

のよ うです。
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個々のク ラスの分類

各花のグループ所属の確率を取得するには、 次のよ うにします。

E [事後予測分布 ] ボタン  をク リ ッ ク します。

または

E メニューから、 [ 表示 ]  [ 事後予測分布 ] の順に選択します。

[事後予測分布 ] ウ ィンド ウでは、 それぞれの花が setosa、 versicolor、 または virginica
である確率が示されています。

最初の 50 の花 (実際に setosa であるもの ) については、 setosa グループに属する確

率がほぼ 1 になっています。 先に示した散布図において、 setosa の花は明らかに他の

種類の花とは分離していたので、 この結果は予想したとおりです。

versicolor の花 (ケース番号 51 以降) もほとんどが正し く分類されました。 たとえば、

花番号 51 が versicolor である事後確率は 0.95 になっています。 しかし、分類エラーは

実際に起こ り ます。 たとえば、 ケース番号 71 は間違って分類されています。 versicolor
の花であるのに、 0.75 の確率で virginica であるこ とが推定されています。
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潜在構造分析

混合モデリ ングを行な う と きには、飽和モデルに限定されないこ とは先に述べました。

因子分析モデルや回帰モデルなど、どのタイプのモデルでも使用するこ とができます。

こ こで、 飽和モデルの重要なバリエーシ ョ ンについて理解しておく こ とをお勧めしま

す。 潜在構造分析 (Lazarsfeld および Henry, 1968 年 ) は、混合モデリ ングが変化したも

ので、 各グループ内において測定変数が独立している必要があ り ます。 測定変数が多

変量の正規変数の場合、 これらの変数は無相関であるこ とが必要です。

E 測定変数が無相関であるこ とを要求するには、 飽和モデルのパス図から双方向矢印を

削除します ( このパス図は Ex34-b.amw と して保存されています )。

E [ ベイジアン ] ボタン  をク リ ッ ク して、潜在構造分析を実行します。 こ こでは、潜在

構造分析の結果は示しません。
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使用し ない混合モデ リ ング

概要

混合モデリ ングは、あるモデルを母集団全体に当てはめるのは不適切であるけれども、

各サブグループに当てはめるこ とができるよ うに、 母集団をサブグループに分けるこ

とができる場合に適しています。

Amos で混合モデリ ングを実行する と きには、 分析を開始する前に一部のケースを

グループに割り当てるこ とができます。 この方法については、例34 で説明しています。

この例では、混合モデリング分析の開始時には、すべてのケースが分類されていません。

データについて

この例では、例 34 で使った Anderson (1935年 ) によるアイ リ スのデータを使用します。

ただし、今回は、150 の花のうち 30 についての種類の情報が含まれている  iris3.sav デー

タセッ ト は使用し ません。 代わ り に、 種類についての情報が一切含まれていない

iris2.sav データセッ ト を使用します。 例34 と この例が異なるのは、 例34 では、 一部の

ケースがあらかじめ分類されているのに対し、 この例ではあらかじめ分類されている

ケースがないという点です。 次の図は、 iris2.sav データセッ トの一部を示しています。
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データセッ ト には、 [species] 列が含まれていますが、 この列は空白になっています。

Amos では、 一部のケースの種類がすでにわかっている  ( 例 34 のよ うな ) 場合がある

こ とを考慮するので、 数値がなくても  [species] 列があるこ とが重要です。 ケースの分

類に使用される変数は、 「species」 とい う名前でなくても構いません。 どのよ うな変数

名でも使用できますが、 文字列 (非数値 ) 変数でなければなり ません。

分析の実行

E メニューから、 [ フ ァ イル ]  [ 新規作成 ] を選択して新しいパス図の作成を開始します。

E メニューから  [ 分析 ] [ グループ管理 ] を選択します。
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E [ 新規作成 ] をク リ ッ ク して 2 つ目のグループを作成します。

E [ 新規作成 ] をも う  1 度ク リ ッ ク して 3 つ目のグループを作成します。

E [ 閉じ る ] をク リ ッ ク します。

この例では、3 グループの混合モデルを当てはめます。 存在するグループの数がわから

ない場合は、 プログラムを複数回実行できます。 プログラムを実行して 2 グループの

モデルを当てはめた後、 も う  1 度実行して 3 グループのモデルを当てはめたりするこ

とができます。



498

例 35

データ  フ ァ イルの指定

E メニューから、 [ フ ァ イル ]  [ データ  フ ァ イル ] を選択します。

E [ グループ番号 1] をク リ ッ ク して 1 行目を選択します。

E [ フ ァ イル名 ] をク リ ッ ク し、 Amos の Examples ディ レク ト リにある  iris2.sav ファ イル

を選択して、 [ 開 く ] をク リ ッ ク します。

E [ グループ化変数 ] をク リ ッ ク し、 [ グループ化変数を選択 ] ダイアログ ボッ クスで

[species] をダブルク リ ッ ク します。 これで、 変数 species を使ってグループが区別され

ます。
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E 同じデータ  ファ イル (iris2.sav) とグループ変数 (species) を指定し、 グループ番号 2 に
ついて前述の手順を繰り返します。

E 同じデータ  ファ イル (iris2.sav) とグループ変数 (species) を指定し、 グループ番号 3 に
ついて前述の手順をも う  1 度繰り返します。

E [ ケースをグループに割り当てる ] を選択します (チェッ ク  マークが表示されます )。

[ ケースをグループに割り当てる ] の横にチェッ ク  マークがあるのを除き、 こ こまでは

通常の複数グループの分析と同じです。 このチェッ ク  マークによって、 これが混合モ

デリ ング分析になり ます。 このチェッ ク  マークが表示されている と、データ  ファ イル

のグループ変数がグループに割り当てられていない場合、 花はグループに割り当てら

れます。 [ グループ値 ] をク リ ッ ク してグループ変数の値を指定する必要がなかったこ

とに注意してください。 データ  ファ イルには、グループ変数 (Species)の値が含まれて

いないので、 3 つのグループの [species] の値と して、 Cluster1、 Cluster2、 Cluster3 が
自動的に作成されます。 

E [OK] をク リ ッ ク して、 [データ  ファ イル ] ダイアログ ボッ クスを閉じます。
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モデルの特定化

変数 [PetalLength] および [PetalWidth] の飽和モデルを使用します。 例 34 の散布図は、

種類に基づいて花の分類を行な うのに、 これら  2 つの変数が有用であるこ とを示して

います。

混合モデリ ングを行な う と きには、 飽和モデルに限定されないこ とに注意してくだ

さい。 因子分析モデルや回帰モデルなど、 どのタイプのモデルでも使用するこ とがで

きます。 例36 では、 回帰モデルを使用した混合モデリ ングを説明しています。

E 次のよ うなパス図を描きます。

E メニューから  [ 表示 ]  [ 分析のプロパテ ィ ] を選択します。
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E [ 平均値と切片を推定 ] を選択します (隣にチェッ ク  マークが表示されます )。

パラ メ ータの制約

この例では、 分散と共分散がすべてのグループにおいて変わらないこ とが要求されま

す。 これは、 判別分析やある種のク ラスタ リ ングで多く使用される、 分散および共分

散の等質性の仮定です。 原理上、 分散および共分散の等質性の仮定は混合モデリ ング

では必要あ り ません。 こ こでそれを仮定するのは、 この例の場合、 この仮定がなけれ

ば Amos のアルゴ リズムがう ま くいかないからです (例34 の散布図は、 仮定が破られ

ているこ とを示しています )。
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E パス図の [PetalLength] を右ク リ ッ ク して、ポップアップ メニューから  [ オブジ ェ ク ト の

プロパテ ィ ] を選択し、[分散 ] テキス ト  ボッ クスにパラ メータ名を 「v1」 と入力します。

E [ オブジェク トのプロパティ ] ダイアログ ボッ クスが開いている状態で、 パス図の

PetalWidth をク リ ッ ク します。

E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [分散 ] テキス ト  ボッ クスにパ

ラ メータ名を 「v2」 と入力します。

E [オブジェク トのプロパティ ] ダイアログ ボッ クスが開いている状態で、PetalLength と
PetalWidth の間の共分散を表す 2 方向矢印をダブルク リ ッ ク します。
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E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [共分散 ] テキス ト  ボッ クスに

パラ メータ名を 「c12」 と入力します。

パス図は次の図のよ うにな り ます。 ( このパス図は、 Ex35-a.amw と して保存されてい

ます )。

モデルの適合

E ツールバーの  をク リ ッ ク します。

または

E メニューから、 [ 分析 ]  [ ベイズ推定 ] の順に選択します。

注 : 混合モデリ ングではベイズ推定しか実行できないため、  のボタンは無効化され

ています。



504

例 35

[ベイズ SEM] ウ ィンド ウが開いたら、不機嫌な顔  が上機嫌の顔  に変わるまで

待ちます。 [ベイズ SEM] ウ ィンド ウに、 次のよ うな推定値の表が表示されます。

[ベイズ SEM] ウ ィンド ウに、通常の 3 グループ分析で取得されるすべてのパラ メータ

推定が表示されます。 表には、1 度に 1 つのグループの推定値が表示されます。 表の上

部にあるタブをク リ ッ クする と、 別のグループに切り替えるこ とができます。 この例

では、 モデルのパラ メータには平均値、 分散、 および共分散が含まれています。 さ ら

に複雑なモデルになる と、 係数と切片項の推定値も含まれます。

混合モデリ ング分析では、 各グループの母集団における比率の推定値も取得します。

前の図は、 母集団での setosa の花の推定比率が 0.360 であるこ と示しています。
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E 母集団の比率の事後分布を確認するには、比率が表示されいてる行を右ク リ ッ ク して、

ポップアップ メニューから  [ 事後分布の表示 ] を選択します。

[ 事後分布 ] ウ ィ ン ド ウの事後分布グラフは、 グループ番号 1 に属する花の比率が、

確実に 0.23 ～ 0.50 の範囲になるこ とを示しています。 比率が 0.30 ～ 0.40 の範囲にな

る確率は非常に高くなっています。
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個々のク ラスの分類

各花のグループ所属の確率を取得するには、 次のよ うにします。

E [事後予測分布 ] ボタン  をク リ ッ ク します。

または

E メニューから、 [ 表示 ]  [ 事後予測分布 ] の順に選択します。

[ 事後予測分布 ] ウ ィ ン ド ウには、 それぞれの花の変数 [species] の値が Cluster1、
Cluster2、 または Cluster3 である確率が表示されています。
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setosa の例であるこ とがわかっている最初の 50 のケースは、確率が 1 でグループ番号

3 に含まれるので、グループ番号 3 には明らかに setosa の花が含まれています。 ケース

51 から  100 までは、主にグループ番号 1 に含まれるので、グループ番号 1 には明らか

に versicolor の花が含まれています。 同様に、上の図には示されていませんが、 ケース

101 から  150 までは、 主にグループ番号 1 に割り当てられているので、 グループ番号

2 には明らかに virginica の花が含まれています。

潜在構造分析

観測変数が各グループ内で独立している必要がある、 潜在構造分析と呼ばれる混合モ

デリ ングのバリエーシ ョ ンがあ り ます。

E PetalLength と PetalWidth が無相関、したがって (多変量の正規分布なので ) 独立してい

るこ とを要求するには、 パス図でこれらを結んでいる  2 方向矢印を削除します。 その

結果得られるパス図は次のよ うにな り ます ( このパス図は、Ex35-b.amw と して保存さ

れています )。

E または、パラ メータ名の [v1] と  [v2] を削除して、分散に対する制約を削除するこ と も

できます ( その結果得られるパス図は、 Ex35-c.amw と して保存されています )。

E 2 方向矢印を削除し、分散に対する制約を削除したら、[ ベイジアン ] ボタン  をク リ ッ

ク して潜在構造分析を実行します。 こ こでは、 潜在構造分析の結果は報告しません。
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ラベル スイ ッ チング

この例で分析を再現しよ う とする と、 こ こで報告する結果を得ますが、 グループ名の

順序が変わり ます。 こ こでグループ番号 1 について報告される結果は、 グループ番号

2 またはグループ番号 3 について得られる結果の場合があ り ます。 これは、 ラベル ス
イ ッチング (Chung, Loken および Schafer, 2004 年 ) と呼ばれる場合があ り ます。 ラベル

スイ ッチングは、 1 つの分析を行っている途中で起こ らない限り、 特に問題ではあ り

ません。 しかし残念ながら、 ラベル スイ ッチングが分析の最中に起こるこ とがあ り ま

す。 ラベル スイ ッチングが起こる場合、 通常は個々のパラ メータの ト レース図によっ

て明らかにな り ます。 ベイズ推定の実行時に ト レース図を表示するには、 次のよ うに

します。

E [ベイズ SEM] ウ ィ ンド ウでパラ メータを右ク リ ッ ク し、 ポップアップ メニューから

[ 事後分布の表示 ] を選択します。

E [事後分布 ] ウ ィンド ウで、 [ ト レース ] を選択します。

この例の分析では、 ラベル スイ ッチングは起こっていません。 別の分析から得た次の

図は、ラベル スイ ッチングに典型的な ト レース図を示しています。 この ト レース図は、

2 つのケース  ク ラスタがあるデータの分析から得たものです。 一方のク ラスタでは X
と呼ばれる変数の平均値は約 4、他方のク ラスタでは変数 X の平均値は約 17 になって

いました。 この ト レース図は、およそ 5,000 回目の MCMC アルゴ リズムの反復までほ

とんどの間、グループ番号 1 と呼ばれるグループでは X の平均値のサンプリ ングされ

た値が 4 に近い数値のままだったこ とを示しています。 およそ 5,000 回目の反復で、サ

ンプ リ ングされた値が 17 の辺りで変動し始めました。 ト レース図のこの突然の変化

は、 グループ ラベル ( グループ番号 1 とグループ番号 2) が約 5,000 回目の反復時に入

れ替わった証拠を示しています。 ト レース図は、MCMC アルゴ リズムの最初の 20,000
回の反復中に、 このラベル スイ ッチングが数回起こったこ とを示しています。 
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ラベル スイ ッチングは、1 つまたは複数のパラ メータの、複数モデルの事後分布によっ

て明らかになるこ とがあ り ます。 上の ト レース図は、 次の事後分布推定に対応してい

ます。

上のグラフは、 パラ メータの事後分布の平均値を表したものです。 ラベル スイ ッチン

グが起こったと きの混合モデリ ング分析では、 有意な推定ではない場合があ り ます。

ラベル スイ ッチングを防止する方法は、 いくつか提案されています (Celeux, Hurn お
よび Robert, 2000 年 ; Frühwirth-Schnatter, 2004 年 ; Jasra, Holmes および Stephens, 2005
年 ; Stephens, 2000 年 )。 Chung、 Loken および Schafer (2004 年 ) は、 1 つまたは 2 つの

ケースだけでもあらかじめグループに割り当てる と、 ラベル スイ ッチングの解消に有

効な場合がある と提案しています。 Amos では、例34 で示したよ うに、あらかじめケー

スをグループに割り当てるこ とができます。 Amos では、 ラベル スイ ッチングを防止

するための他の方法は実行されません。
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混合回帰モデ リ ング

概要

混合回帰モデリ ング (Ding, 2006 年 ) は、 ある回帰モデルを母集団全体に当てはめるの

は不適切であるけれども、 各サブグループに当てはめるこ とができるよ うに、 母集団

をサブグループに分けるこ とができる場合に適しています。

データについて

2 つの人為的なデータセッ ト を使って、 混合回帰について説明します。

1 つ目のデータ セ ッ ト

次のデータセ ッ ト は DosageAndPerformance1.sav フ ァ イルに保存されています。

Dosage (投与量 ) は、一部の治療の強度を指します。 Performance (パフォーマンス ) は、

ある達成度の尺度です。 Group ( グループ ) は、文字列 (非数値 ) 変数です。混合回帰分

析でのこの変数の役割については後で説明します。
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dosage と  performance の散布図は、 標本には 2 つの異なる被験者グループがあるこ と

を示しています。 一方のグループでは、 dosage が増えるにつれ、 performance が向上し

ています。 他方のグループでは、dosage が増えるにつれ、performance が低下しています。

この場合、1 本の回帰直線を標本全体に当てはめよ う とするのは間違いです。 このデー

タには、 それぞれのグループに 1 本ずつ、 2 本の直線がう ま く当てはま り ます。 これ

は、 混合回帰モデリ ングで行な う こ とができます。 混合回帰分析では、 標本をグルー

プに分割し、 それぞれのグループに別々の回帰直線を当てはめます。
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2 つ目のデータ セ ッ ト

DosageAndPerformance2.sav ファ イルにある次のデータセッ トにも、 dosage 、
performance 、 および group という変数についてのデータが含まれています。

また同じ く、 データの散布図は、 グループごとに固有の回帰直線を必要とする、 2 つ
のグループが存在する証拠を示しています。 どちらのグループにおいても、 dosage の
1 単位の増加は、 performance の約 2 単位の向上に関連しているので、 各グループ内で

の回帰直線の傾きは約 2 になっています。 一方、2 つのグループには異なる切片があ り

ます。 どの dosage レベルにおいてでも、一方のグループの performance は他方のグルー

プよ り も  5 ポイン ト程度高くなっています。 このデータセッ トの混合回帰分析では、標

本をグループに分割し、 それぞれのグループに別々の回帰直線を当てはめます。
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データ セ ッ ト のグループ変数

前述したどちらのデータセッ トにも、 group と呼ばれる、 データが含まれていない文

字列 (非数値 ) 変数が含まれています。 Amos では、 混合モデル回帰分析で group 変数

を使って個々のケースを分類します ( こ こで変数が group と呼ばれているこ とは重要

ではあ り ません。 文字列変数であれば、 どの変数名でも使用できます )。 
分析を開始する前に一部のケースがすでにグループに割り当てられている場合は、

データセッ トの [group] 列にグループ名を入力できます。 たとえば、混合モデル回帰分

析を開始する前に、パフォーマンスの高い被験者と低い被験者が標本に含まれていて、

標本の最初の 2 人が高パフォーマンス、 その次の 3 人が低パフォーマンスの被験者と

わかっている場合、 データ表の [group] 列にその情報を次のよ うに入力できます。

プログラムでは、 あらかじめ分類されたこの 5 つのケースを使用して、 残りのケース

の分類を行ないます。 選択した個々のケースをグループにあらかじめ割り当てる作業

は、 こ こでは単なる可能性と して述べているだけです。 この例では、 ケースをグルー

プにはあらかじめ割り当てません。
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分析の実行

この例では、 DosageAndPerformance2.sav データセッ トのみを分析します。

E メニューから、 [ フ ァ イル ][ 新規作成 ] を選択して新しいパス図の作成を開始します。

E メニューから  [ 分析 ] [ グループ管理 ] を選択します。

E [ 新規作成 ] をク リ ッ ク して 2 つ目のグループを作成します。

E [ 閉じ る ] をク リ ッ ク します。

この例では、2 グループの混合回帰モデルを当てはめます。 存在するグループの数がわ

からない場合は、 プログラムを複数回実行できます。 プログラムを実行して 2 グルー

プのモデルを当てはめた後、 も う  1 度実行して 3 グループのモデルを当てはめたりす

るこ とができます。
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データ  フ ァ イルの指定

E メニューから、 [ フ ァ イル ][ データ  フ ァ イル ] を選択します。

E [ グループ番号 1] をク リ ッ ク して行を選択します。

E [ フ ァ イル名 ] をク リ ッ ク し、 Amos の Examples ディ レク ト リにある  
DosageAndPerformance2.sav ファ イルを選択して、 [ 開 く ] をク リ ッ ク します。

E [ グループ化変数 ] をク リ ッ ク し、 [ グループ化変数を選択 ] ダイアログ ボッ クスで 
[group] をダブルク リ ッ ク します。 これで、 group という変数を使ってグループが区別

されます。
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E 同じデータ  ファ イル (DosageAndPerformance2.sav) とグループ変数 (group) を指定し、

グループ番号 2 について前述の手順を繰り返します。

E [ ケースをグループに割り当てる ] を選択します (チェッ ク  マークが表示されます )。 

[ ケースをグループに割り当てる ] の横にチェッ ク  マークがあるのを除き、 こ こまでは

通常の複数グループの分析と同じです。 このチェッ ク  マークによって、 これが混合モ

デリ ング分析になり ます。 このチェッ ク  マークが表示されている と、データ  ファ イル

のグループ変数がグループに割り当てられていない場合、 ケースはグループに割り当

てられます。 [ グループ値 ] をク リ ッ ク してグループ変数の値を指定する必要がなかっ

たこ とに注意して ください。 データ  ファ イルには、 グループ変数 (group) の値が含ま

れていないので、 [group] 変数の値と して、 グループ番号 1 のケースに Cluster1、 グ

ループ番号 2 のケースに Cluster2 が自動的に作成されます。

E [OK] をク リ ッ ク して、 [データ  ファ イル ] ダイアログ ボッ クスを閉じます。
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モデルの特定化

E 回帰モデルのパス図を次のよ うに作成します。 ( このパス図は Ex07.amw と して保存さ

れています )。

E メニューから  [ 表示 ] [ 分析のプロパテ ィ ] の順に選択します。
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E [ 平均値と切片を推定 ] を選択します (隣にチェッ ク  マークが表示されます )。 
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モデルの適合

E ツールバーの  をク リ ッ ク します。

または

E メニューから  [ 分析 ]  [ ベイズ推定 ] を選択します。

注 : 混合モデリ ングではベイズ推定しか実行できないため、  のボタンは無効化され

ています。

[ベイズ SEM] ウ ィンド ウが開いたら、不機嫌な顔  が上機嫌の顔  に変わるまで

待ちます。 [ベイズ SEM] ウ ィンド ウに、 次のよ うな推定値の表が表示されます。

[ベイズ SEM] ウ ィンド ウに、通常の複数グループの回帰分析で取得されるすべてのパ

ラ メータ推定が表示されます。 グループごとに個別の推定値表があ り ます。 推定値の

表の上部にあるタブをク リ ッ クする と、 別のグループに切り替えるこ とができます。
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表の一番下の行には、 各グループの母集団における比率の推定値が表示されます。

グループ番号 1 の推定値を表示している上の図では、 グループ番号 1 の母集団の比率

が 0.247 と推定されています。 母集団の比率の推定事後分布を確認するには、比率の行

を右ク リ ッ ク して、 ポップアップ メニューから  [ 事後分布の表示 ] を選択します。

[事後分布 ] ウ ィンド ウのグラフは、グループ番号 1 の母集団の比率が実質的に 0.15 ～
0.35 の範囲になるこ とを保証しています。
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こ こで、 グループ番号 1 の係数と切片をグループ番号 2 の対応する推定値と比較して

みまし ょ う。 グループ番号 1 では、係数の推定値は 2.082、切片の推定値は 5.394 です。

グループ番号 2 では、係数の推定値 (1.999) はグループ番号 1 とほぼ同じですが、切片

の推定値 (9.955) はグループ番号 1 よ り大幅に大き くなっています。



523

混合回帰モデリ ング

個々のク ラスの分類

各ケースのグループ所属の確率を取得するには、 次のよ うにします。

E [事後予測分布 ] ボタン  をク リ ッ ク します。

または

E メニューから、 [ 表示 ][ 事後予測分布 ] の順に選択します。

[事後予測分布 ] ウ ィンド ウには、 それぞれのケースの変数 [group] が Cluster1 または

Cluster2 の値を取る確率が表示されています。 ケース 1 は、 グループ番号 1 に属する確

率が 0.88、 グループ 2 に属する確率が 0.12 と推定されています。 1 つ目のグループの

切片が約 5.394 なのに対して、 2 つ目のグループの切片が約 9.955 なのを考える と、 グ

ループ番号 1 がパフォーマンスの低いグループだと言えます。 したがって、標本の 1 人
目の被験者がパフォーマンスの低いグループに属する確率は 88 パーセント、 パフォー

マンスの高いグループに属する確率は 12 パーセン トです。
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パラ メ ータ推定値の向上

推定に必要なパラ メータの数を減らすこ とによって、パラ メータ推定値 (およびAmos
のク ラスタ形成力 ) を向上できます。 先に確認したよ うに、 2 つのグループの回帰直線

の傾きはほぼ同じです。 また、各回帰直線のばらつきも、2 つのグループにおいてほぼ

同じに見えます。 したがって、 傾き と誤差分散は 2 つのグループで同じである という

仮説を混合モデリ ング分析に取り入れ、 その結果、 推定される異なるパラ メータの数

を減らすこ とが可能です。 手順は次のとおりです。

E パス図で dosage と  performance を結ぶ一方向矢印を右ク リ ッ ク して、ポップアップ メ
ニューから  [ オブジ ェ ク ト のプロパテ ィ ] を選択し、 [ 係数 ] テキス ト  ボッ クスにパラ

メータ名を 「b」 と入力します。

E [ オブジェク トのプロパティ ] ダイアログ ボッ クスが開いている状態で、 パス図の E1
をク リ ッ ク します。

E [オブジェク トのプロパティ ] ダイアログ ボッ クスで、 [分散 ] テキス ト  ボッ クスにパ

ラ メータ名を 「v」 と入力します。
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パス図は次の図のよ うにな り ます。 ( このパス図は Ex36-b.amw と して保存されてい

ます )。

傾き と誤差分散が 2 つのグループで同じになるよ うに制約したら、 [ ベイジアン ] ボタ

ン  をク リ ッ ク して混合モデリ ング分析を繰り返すこ とができます。 こ こでは、 そ

の分析の結果は示しません。
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グループ比率の事前分布

グループ比率の事前分布では、 ユーザーが指定できるパラメータによるディ リシュレ分

布を使用します。 デフォルトでは、ディ リシュレ パラメータは 4, 4, … になっています。

E ディ リシュレ パラメータを指定するには、 [ベイズ SEM] ウ ィンド ウでグループ比率の

推定値を右ク リ ッ ク し、 ポップアップ メニューから  [ 事前分布の表示 ] を選択します。

ラベル スイ ッ チング

こ こでグループ番号 1 について報告される結果が、 グループ番号 2 について得られる

結果と一致し、 グループ 2 について報告される結果が、 グループ 1 について得られる

結果と一致する場合があ り ます。 つま り、 ユーザーが得る結果と こ こで報告される結

果は一致するが、 グループ名が反対になっている場合がある という こ とです。 これは、

ラベル スイ ッチング (Chung, Loken および Schafer, 2004 年 ) と呼ばれる場合があ り ま

す。 ラベル スイ ッチングについては、 例35 の最後に詳し く説明しています
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パス図を描画し ない場合の Amos 
Graphics の使用

はじめに

Amos Graphics では、通常、パス図を描画してモデルを指定しますが、グラフ ィ ッ クを

使用しない方法も提供されています。 パス図を描画しない場合は、 Visual Basic または

C# プログラムの形式でテキス ト を指定できます。 このよ うなプログラムでは、 パス図

の各オブジェク ト  (四角形、楕円形、片方向矢印、双方向矢印、図のキャプシ ョ ン ) は、

単一のプログラムのステート メ ン トに対応します。 通常、 プログラムのステート メ ン

トは、 1 行のテキス トです。

以下は、 パス図を描画する代わりにテキス ト を入力してモデルを指定する場合があ

る理由です。

 モデルが大きすぎるため、 そのパス図を描画するのが困難である

 マウスよ り もキーボードの使用を好んでいる、またはグラフ ィ ッ ク よ り もテキス ト

での作業を好んでいる

 変数の数や変数名などのわずかな情報が異なる類似した多数のモデルを生成する

必要がある。 このよ う なモデルを頻繁に生成する必要がある場合、 テキス ト出力

が、 IBM SPSS Amos を当てはめる特定のモデルを指定する、 カスタムの Visual
Basic または C# プログラムとなるスーパー プログラム を作成し、作業を自動化す

る と効率的です。

この例は、 パス図を描画する代わりにテキス ト を入力して Amos Graphics でモデルを

指定する方法を示します。
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データについて

この例では、 例 8 の Holzinger and Swineford (1939) データセッ ト を使用します。

共通因子モデル

この例では、 例 8 の因子分析モデルを使用します。 例 8 ではパス図の描画によってモ

デルを指定しましたが、 この例では Visual Basic プログラムの記述によって同じモデ

ルを指定します。

モデルを指定するプ ラグイ ンの作成

E メニューから、 [ プ ラグイ ン ][ プ ラグイ ン ] を選択します。

E [プラグイン ] ダイアログ ボッ クスの [作成 ] をク リ ッ ク します。
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[プログラム エディ タ ] ウ ィンド ウが開きます。

E [プログラム エディ タ ] ウ ィンド ウで、 Name 関数と  Description 関数を有意義な文字列

を戻すよ うに変更します。

この時点では、 例 8 の最初のパス図を参照する と役立ちます。 パス図の各四角形、 楕

円形、 および矢印の Mainsub  関数に 1 行を追加します。
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E プログラム エディ タで、 次の行

pd.Observed("visperc")

を Mainsub  関数の最初の行に入力します。

こ こでプラグインを保存する と、 後で 「visperc」 とい う変数を表す四角形の描画に使

用できます。 この四角形は、 パス図の無作為の位置に、 任意の高さ と幅で描画されま

す。 高さ、 幅、 および位置を指定できます。 例を次に示します。

pd.Observed("visperc", 400, 300, 200, 100)

これは、 「visperc」 とい う変数の四角形を描画します。 四角形は、 パス図の左端から

400 論理ピクセル、上端から  300 論理ピクセルの位置を中心に配置されます。 また、幅

200 論理ピクセル、 高さ  100 論理ピクセルの大きさです。 (論理ピクセルは、 1/96 イン

チです。 ) 他の Observed 方法の種類は、 オンラインヘルプをご覧ください。

この例では、 パス図のオブジェク トに高さ と幅を指定しません。

E プラグインが残りの 5 つの Observed 変数に対する四角形を描画するよ うに、 Mainsub
関数に以下の行を追加入力します。

pd.Observed("cubes")
pd.Observed("lozenges")
pd.Observed("paragrap")
pd.Observed("sentence")
pd.Observed("wordmean")
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E プラグインが 8 つの Unobserved 変数に対する  8 つの楕円形を描画するよ うに、以下の

行を入力します。

pd.Unobserved("err_v")
pd.Unobserved("err_c")
pd.Unobserved("err_l")
pd.Unobserved("err_p")
pd.Unobserved("err_s")
pd.Unobserved("err_w")
pd.Unobserved("spatial")
pd.Unobserved("verbal")

E プラグインが 12 個の片方向矢印を描画するよ うに、 以下の行を入力します。

pd.Path("visperc", "spatial", 1)
pd.Path("cubes", "spatial")
pd.Path("lozenges", "spatial")
pd.Path("paragrap", "verbal", 1)
pd.Path("sentence", "verbal")
pd.Path("wordmean", "verbal")

pd.Path("visperc", "err_v", 1)
pd.Path("cubes", "err_c", 1)
pd.Path("lozenges", "err_l", 1)
pd.Path("paragrap", "err_p", 1)
pd.Path("sentence", "err_s", 1)
pd.Path("wordmean", "err_w", 1)

上記の一部の行には、 Path 方法に 1 と同等に設定された 3 つ目の引数があ り ますが、

このよ うにして、 回帰の太さを定数値 1 に固定しています。 他の Path 方法について

は、 オンライン ヘルプを参照してください。
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E プラグインが双方向矢印を描画するよ うに、 以下の行を入力します。

pd.Cov("spatial", "verbal")

E パス図でのオブジェク トの位置を調整し、 見栄えを改善するために、 以下の行を入力

します。

pd.Reposition()

前述のとおり、この例で使用されている単純な Observed、Unobserved、および Caption
方法は、パス図の無作為な位置にオブジェク ト を配置しますが、 Reposition 方法は、オ

ブジェク トの位置を再調整し、 パス図の見栄えを良く します。 しかし、 プレゼンテー

シ ョ ン品質のパス図を生成するわけではあ り ません。 実際には、 その品質に及びもし

ません。 一方、 Reposition は通常パス図の見栄えを大幅に改善します。 パス図のオブ

ジェク トのサイズと位置を希望どおりに変更するには、 以下の手法があ り ます。

E pd ク ラスの Observed、Unobserved、および Caption 方法を使用するたびに、高さ、幅、

および位置を指定します。 (Observed、Unobserved、および Caption 方法については、オ

ンライン ヘルプを参照してください。 )

または

E プラグインで、Reposition 方法を使用して、オブジェク トの位置を調整します。 プラグ

インを実行後、 Amos Graphics ツールボッ クスの描画ツールを使用して、 パス図のオ

ブジェク ト をインタラ クティブに移動およびサイズの変更を行います。

元に戻す機能の制御

E 次の行を Mainsub 関数の最初の行に入力します。

pd.UndoToHere

E 次の行を Mainsub 関数の最後の行に入力します。

pd.UndoResume

UndoToHere 方法と  UndoResume 方法は、 [元に戻す ] ボタンを 1 回ク リ ッ クするこ

とでプラグインの実行の効果が取り消されるよ うに、 セッ トで使用します。
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これで、 プログラム エディ タの Mainsub 関数は次のよ うにな り ます。

これで、 例 8 の因子分析モデルを指定するためのプラグインが完成しました。 記述済

みのプラグインは、 Amos の plugins フォルダのフォルダにある 「Ex37a-plugin.vb」 と
い う フ ァ イ ル に あ り ま す。 こ の フ ァ イ ル の 言 語 固 有 の バ ー ジ ョ ン は、

%amosplugins%\Japanese フォルダーと  %amosplugins%\English フォルダーに保存され

ています。 事前に入力されている言語固有のプラグインの一つを、 %amosplugins%
フォルダーにコピーして、 使用するこ とができます。



534

例 37

プ ラグイ ンのコ ンパイルと保存

E [プログラム エディ タ ] ウ ィンド ウ内、 ツールバー上の [シンタ ッ クス検証] ボタンをク

リ ッ ク します。 [プログラム エディ タ ] ウ ィンド ウの [ シンタ ッ クス  エラー ] タブにコ

ンパイル エラーが表示されます。

E コンパイル エラーを修正したら、 [プログラム エディ タ ] ウ ィンド ウの [ 閉じ る ] をク

リ ッ ク します。 ファ イルを保存するかど うかを問われます。

E [ はい ] をク リ ッ ク します。 [名前を付けて保存 ] ダイアログボッ クスが表示されます。

E [ 名前を付けて保存 ] ダ イ  ア ロ  グで、 プ ラ  グ イ  ンの名前を入力し  て [ 保存 ] を ク
リ  ッ  ク  し  ます。 プラグインは、 [名前を付けて保存 ] ダイアログのデフォルトのフォ

ルダに保存する必要があ り ます。 [ 名前を付けて保存 ] ダ イ  ア ロ  グでフォルダーを

誤って変更してしまった場合は、 フォルダー名 「%amosplugins%」 を入力する と、 デ

フォルトに戻すこ とができます。
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プラグインを保存したら、プラグイン名 Example 37a が [プラグイン ] ウ ィンド ウのプ

ラグイン リ ス トに表示されます。 (Example 37a  は、プラグインの Name  関数を使用し

て戻される文字列です。 )

E [プラグイン ] ウ ィンド ウを閉じます。
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プ ラグイ ンの使用方法

E メニューから、 [ フ ァ イル ][ 新規作成 ] を選択します。

作業を保存するかど うかを問われた場合は、 [ はい ] または [ いいえ ] を選択します。

E メニューから、 [ プ ラグイ ン ][Example 37a] を選択します。 プラグインによって、 モデ

ルのパス図が生成され、 パス図ウ ィンド ウにモデルが表示されます。 以下は、 この例

の準備中に生成されたパス図です。 (パス図内の要素の位置付けは乱数ジェネレータに

よって決定されるため、 これとは異なるパス図が表示される場合があ り ます )
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モデル指定以外のその他の分析機能

例 8 では、 データ  ファ イル  Gmt_fem.sav  をインタ ラ クテ ィブに指定しました ( メ

ニューから、 [ フ ァ イル ][ データ  フ ァ イル ] を選択 )。 こ こでも、 同じ操作を実行でき

ます。 または、 Mainsub 関数に以下の行を追加する こ とによって、 プラグイン内で

Gmt_fem.sav データ  ファ イルを指定するこ と もできます。

pd.SetDataFile(1, MiscAmosTypes.cDatabaseFormat.mmSPSS, _ 
Environment.GetEnvironmentVariable("examples") & "\grnt_fem.sav", "", "", "")

同様に、 例 8 では、 標準化推定値は、 インタ ラ クテ ィブに要求されていました ( メ

ニューの [ 表示 ][ 分析プロパテ ィ ] を選択 )。 標準化推定値をインタラ クティブに要求

する代替手法と して、 Mainsub 関数に以下の行を追加するこ とによって、 プラグイン

内で要求するこ とができます。

pd.GetCheckBox("AnalysisPropertiesForm", "StandardizedCheck").Checked = True 

一般的に、 インタ ラ クテ ィブに指定できる分析の機能は、 pd ク ラスの方法とプロパ

ティを使用してプラグイン内で指定できます。

モデル変数に対応するプログラム変数の定義

パス図にオブジェク ト を作成する方法には、 Oserved、 Unobserved、 Path、 Cov、 およ

び Caption の 5 つがあ り ます。 これらの各方法は、それが作成するオブジェク トへの参

照を返します。 たとえば、 Observed 方法は、 パス図に観測変数を作成し、 さ らにその

観測変数に参照を返します。 以下の行

pd.Observed("wordmean")
pd.Unobserved("verbal")

を記述して観測変数 wordmean と非観測変数 verbal を作成する代わりに、 以下の行

(Visual Basic) を記述できます。

Dim wordmean As PDElement = pd.Observed("wordmean")
Dim verbal As PDElement = pd.Unobserved("verbal")

それから、 プログラム変数 wordmean を使用してモデル変数 wordmean を参照し、 プ

ログラム変数 verbal を使用してモデル変数 verbal を参照できます。 verbal 変数から

wordmean 変数に片方向矢印を描画するには、 以下のいずれかを記述できます。

pd.Path(wordmean, verbal)

または

pd.Path(ìwordmeanî, "verbal")
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引用符を使用しない記述方法には、 引用符を使用しない場合にプラグインをコンパイ

ルしたと き  ([ プログラム エディ タ ] ウ ィンド ウで [ コ ンパイル ] をク リ ッ ク したと き )
に入力エラーが検出されやすいという と ころに、 利点があ り ます。 引用符を使用する

と、入力エラーがある場合に、プラグラインを使用するまでエラーは検出されません。

ファ イル Ex37b-plubin.vb には、Ex37a-plugin.vb と同じ機能を持つプラグインが含まれ

ますが、 Ex37b-plugin.vb は Visual Basic 変数を使用してモデル変数を参照している点

が異な り ます。 Ex37b-plugin.vb の言語固有のバージ ョ ンは、 %amosplugins%\Japanese
フォルダーと  %amosplugins%\English フォルダーに保存されています。 事前に入力さ

れている言語固有のプラグインの一つを、 %amosplugins% フォルダーにコピーして、

使用するこ とができます。
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単純なユーザー定義数量 I

はじめに

この例では、 ブート ス ト ラ ップ標準誤差、 信頼区間、 有意検査を使用してモデル パラ

メータのユーザー定義関数を推定する方法を示しています。 この例では、 1 つのユー

ザー定義関数が推定されます。 これは間接効果です。

この例では、 パラ メータのユーザー定義関数を推定する簡略化された方法を示して

います。簡略化された方法では、単一の式で定義できる数量も限定されます。Amos の
ユーザー定義数量機能のよ り一般的なバージ ョ ン ( こ こでは示していません ) では、任

意の長さ と複雑さのプログラム 1 つで数量を定義できます。 よ り一般的なバージ ョ ン

については、 オンライン ヘルプのト ピッ ク 「CValue Class Reference (CValue ク ラス参

照 )」 を参照して く ださい。 http://amosdevelopment.com/features/user-defined/user-
definedgeneral/index.html.611 では動画でも説明しています。

http://amosdevelopment.com/video/index.htm
http://amosdevelopment.com/video/index.htm
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Wheaton のデータの再考

例6 では、 Wheaton ら (1977) のデータの 3 つの代替モデルについて説明しました。 こ

こでは、 例6 のモデル B を再度取り上げます。 ファイル Ex38.amw にある次のパス図

は、 例6 のモデル B にいくつかのパラ メータ名を追加したものです。
 

例6 で 67alienation という名前だった潜在的変数は、 こ こでは alienation67 という名前

になっています。 同様に、 71alienation も  alienation71 に変更されています。 変数名を

変更した理由は、 これらの名前が、 名前の先頭に数値を使用できない式で表示される

こ とになるためです。

間接効果の推定

このモデルの 5 つの回帰の重み付けが A、 B、 C、 D、 E という名前になっているのは、

powles71 に対する  ses の間接効果について説明しやすくするためです。 このよ うな間

接効果には、 積 AB および積 CDB の 2 つがあ り ます。 2 つの間接効果の和 AB + CDB
は、 [ 表示 ] > [ 分析のプロパテ ィ ] > [ 出力 ] をク リ ッ ク して [ 間接、 直接、 または総合効果

] の横にチェッ クマークを付けるこ とで推定できます。この機能は Amos に組み込まれ

ているため、 ユーザー定義数量を指定する必要はあ り ません。 ただし、 たとえば AB
と  CDB などの個々の間接効果をその和と共に推定したい場合もあ り ます。 これは次

の方法でユーザー定義数量と して推定できます。
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E [Amos Graphics] ウ ィンド ウの左下にあるステータスバーで [ ユーザー定義数量を推定し

ない ] をク リ ッ ク します。次に、ポップアップ メニューで [ 新しい数量を定義 ] をク リ ッ

ク します。
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E 新しいウ ィンド ウが開いたら、 3 行に入力して 3 つのカスタム数量を定義します。

3 つのカスタム数量の名前は、 Indirect_AB、 Indirect_CDB、 Sum です。 別の名前を指

定するこ と もできます。 数量の名前は英数字と下線で構成する必要があ り ます。 先頭

文字は英字でなければなり ません。 大文字小文字は区別されません。 つま り、 Abc と
いう数量がすでにある場合、 abc という名前は使えません。

パラ メータ名には、 接頭辞 「p.」 と  1 文字を組み合わせます。 たとえば、 「p.A」 は 「A
という名前のパラ メータ」 を意味します。 読みやすくするために、 「p.」 接頭辞は省略

されるこ と もあ り ます。
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ただし、 「p.」 を使用する と、 「p.」 と入力すればパラ メータ名の一覧が表示されて、 簡

単にパラ メータを選択できる という利点があ り ます。以下のスク リーンシ ョ ッ トでは、

パラ メータ  リ ス トの A をダブルク リ ッ クする と、 キーボードで 「A」 と入力したのと

同じ結果になり ます。

「p.」 を使用する必要のある状況が 1 つあ り ます。A という名前のパラ メータ と  A とい

う名前の変数の両方がある と、 単に 「A」 と入力する とあいまいにな り ます。 このよ

うな場合、「A」 とい う名前のパラ メータには 「p.A」、 「A」 とい う名前の変数には 「v.A」
と入力する必要があ り ます。
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E また、 次のよ うに行と コ メン ト を入力するこ と もできます。

E [ 閉じ る ] ボタンをク リ ッ ク します。

E 次のダイアログで [ はい ] をク リ ッ ク します。
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E [名前を付けて保存 ] ダイアログで、 [ ファ イル名 ] ボッ クスに 「indirect effects」 と入力

します。 次に、 [ 保存 ] ボタンをク リ ッ ク します。

E [ 表示 ] > [ 分析のプロパテ ィ ] > [ ブー ト ス ト ラ ッ プ ] をク リ ッ ク し、[ ブー ト ス ト ラ ッ プの実

行 ] および [ バイアス修正済信頼区間） ] の横にチェッ クマークを付けます。 また、 デー

タファ イルに標本積率が含まれていて生データは含まれていないため、 [ モンテ カルロ

( パラ メ ト リ ッ ク  ブー ト ス ト ラ ッ プ )] の横にもチェッ クマークを付けます。

E [ 分析 ] > [ 推定値を計算 ]　 をク リ ッ ク します。

E [ 表示 ] > [ テキス ト 出力の表示 ] をク リ ッ ク します。
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E [Amos 出力 ] ウ ィンド ウで [ 推定値 ] をダブルク リ ッ ク してから  [ スカ ラー ] をダブルク

リ ッ ク し、 [ ユーザー定義数量 ] をク リ ッ ク します。

Indirect_AB という名前の数量は -0.205 と推定されています。これは。回帰の重み付け

A (–0.212) と回帰の重み付け B (0.971) の積です。

E [ ブー ト ス ト ラ ッ プの標準誤差 ] をク リ ッ ク します。

Indirect_AB は、 おおよそ正規分布に従っていて、 標準誤差は約 0.048 です。
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単純なユーザー定義数量 I

E [ ブー ト ス ト ラ ッ プの信頼度 ]　 をク リ ッ ク します。

Indirect_AB の母集団値は、 90% の信頼度で -0.283 ～ -0.118 です。 推定値が –0.205 の
場合、 p 値は 0.013 になり ます。 0.05 の水準ではゼロから有意な差があ り ますが、 0.01
の水準では有意な差はあ り ません。
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パラ メ ータに名前を付けない間接効果の推定

パラ メータの関数を推定しよ う と考えている場合、 上記のよ うに、 これらのパラ メー

タに名前を付ける という方法が便利です。 ただし、 パラ メータに名前を付ける必要が

あるわけではあ り ません。 次の手順は、 推定したばかりの同じ間接効果を推定する方

法を示していますが、 パラ メータ名を使用していません。

E [Amos Graphics] ウ ィンド ウの左下にあるステータスバーで [Simple indirect effect の推定

] をク リ ッ ク します。 次に、 ポップアップ表示される メニューで [Simple indirect effects
の編集 ] をク リ ッ ク します。

パラ メータを名前で参照する場合には、パラ メータの説明を次のよ うに置き換えます。

E 「p.A」 を 「e.DirectEffect(alienation71,ses)」 に変更します。

E 「p.B」 を 「e.DirectEffect(powles71,alienation71)」 に変更します。

E 「p.C」 を 「e.DirectEffect(alienation67,ses)」 に変更します。
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単純なユーザー定義数量 I

E 「p.D」 を 「e.DirectEffect(alienation71,alienation67)」 に変更します。

置換を終える と、 カスタム数量の指定は次のよ うにな り ます。

E ウ ィンド ウを閉じます。

E 表示されるダイアログ ボッ クスで [ はい ] をク リ ッ ク します。

E [ 分析 ] > [ 推定値を計算 ]　 をク リ ッ ク します。

E [ 表示 ] > [ テキス ト 出力の表示 ] をク リ ッ ク します。( テキス ト出力は、前回と同じです )。
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例39
単純なユーザー定義数量 II

はじめに

この例では、 ブート ス ト ラ ップ標準誤差、 信頼区間、 差の有意検査を使用して 2 つの

標準化された回帰の重み付けの差を推定する方法を示しています。

データについて

39 人の生徒がいるク ラスに対して 4 回の小テス トが行われました。 小テス トは、 学期

中、ほぼ一定の間隔を空けて行われました。 ファ イル QuizComplete.txt には、 4 回の小

テス ト をすべて受けた生徒 22 人の点数が記載されています。

Markov モデル

ファ イル Ex39.amw には、4 回の小テス トの点数の Markov モデルが記載されています。
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次のパス図は、 このモデルについて推定される標準化された回帰の重み付けを示して

います。

2 つの標準化された回帰の重み付けを比較してみまし ょ う。 たとえば、 q3 を予測する

ための q2 を使用した重み付けと  q4 を予測するための q3 を使用した重み付けを比較

します。 2 つの推定値の差は約  です。 その差の標準誤差を求め、

信頼区間とその差の有意検査を求めまし ょ う。

E [Amos Graphics] ウ ィンド ウの左下にあるステータスバーで [ユーザー定義数量を推定し

ない ] をク リ ッ ク します。 次に、 ポップアップ表示される メニューで [ 新しい数量を定

義 ] をク リ ッ ク します。

0.39 0.35– 0.04=
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単純なユーザー定義数量 II

E 新しいウ ィンド ウが開いたら、 次のよ うに 1 行に入力して新しい数量を定義します。

StandardizedWeightDiff 以外の名前を選ぶこ と もできます。

E ツールバー上の [ シン タ ッ クスを検証 ] ボタンをク リ ッ ク します。入力に間違いがなけれ

ば、 [説明 ] ボッ クスに 「シン タ ッ クスは OK です。」 と表示されます。

E ウ ィンド ウを閉じます。

E 次のダイアログで [ はい ] をク リ ッ ク します。
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E [名前を付けて保存 ] ダイアログで、[ ファ イル名 ] ボッ クスに StandardizedDifference と
入力します。 次に、 [ 保存 ] ボタンをク リ ッ ク します。 

E [ 表示 ] > [ 分析のプロパテ ィ ] > [ ブー ト ス ト ラ ッ プ ] をク リ ッ ク し、[ ブー ト ス ト ラ ッ プの実

行 ] および [ バイアス修正済信頼区間） ] の横にチェッ クマークを付けます。

E [ 分析 ] > [ 推定値を計算 ]　 をク リ ッ ク します。

E [ 表示 ] > [ テキス ト 出力の表示 ] をク リ ッ ク します
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単純なユーザー定義数量 II

E [Amos 出力 ] ウ ィンド ウで [ 推定値 ] をダブルク リ ッ ク してから  [ スカ ラー ] をダブルク

リ ッ ク し、 [ ユーザー定義数量 ] をク リ ッ ク します。

StandardizedWeightDiff という名前の数量は 0.047 と推定されています。

E [ ブー ト ス ト ラ ッ プの標準誤差 ] をク リ ッ ク します。

この差は、 おおよそ正規分布に従っていて、 標準誤差は約 0.426 です。
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E [ ブー ト ス ト ラ ッ プの信頼度 ]　 をク リ ッ ク します。

差の母集団値は、 90% の信頼度で -0.679 ～ 0.688 です。 0.047 という推定値は、 従来

のどの有意水準でもゼロから有意な差があ り ません (p = 0.934)。
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付録A
表記法

q = パラ メータ数

 = パラ メータのベク トル (次の q)

G = グループ数

 = グループ g のオブザベーシ ョ ン数

 = 全グループを統合したオブザベーシ ョ ン総数

 = グループ g の観測変数の数

 = グループ g の標本の積率数。 平均と定数項が明示的なモデル パラ メータである

場合、 関連する標本の積率は、 平均、 分散、 および共分散であ り、

 とな り ます。 それ以外の場合は、 標本分散と共分散

のみがカウン ト され、  とな り ます。

 = 全グループを統合した標本の積率数

 = モデルの検定のための自由度の数

 = グループ g の i 番目の変数の r 番目のオブザベーシ ョ ン

 = グループ g の r 番目のオブザベーシ ョ ン

 = グループ g の標本共分散行列

 = モデルに従った、 グループ g の共分散行列

 = モデルに従った、 グループ g の平均ベク トル

 = グループ g の母集団共分散行列



N
g 

N N g 
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xir
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S
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 g   

 g   

0
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パート 1: 付録
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付録 A

 = グループ g の母集団平均ベク トル

 = 単一の列ベク トルに配列された  の  の異なる要素

r = ChiCorrect 方式で指定された負でない整数値。 デフォルトでは、r = G です。 Emulisrel6

方式を使用した場合、 r = G であ り、 ChiCorrect を使用して変更するこ とはでき

ません。

n = N – r 

 = すべてのグループの標本の積率を含む、 p 次のベク ト ル、 すなわち  には

 の要素と ( 平均と定数項が明示的なモデル パラ メータである場

合 )  も含まれます。

 = すべてのグループの母集団の積率を含む、 p 次のベク トル、 すなわち  には

 の要素と  (平均と定数項が明示的なモデル パラ メータである場

合 )  も含まれます。  の要素の順序は、  の要素の順序と一致

している必要があ り ます。

 = モデルに従って、 すべてのグループの母集団の積率を含む、 p 次のベク トル、

すなわち  には  の要素と ( 平均と定数項が明示的な

モデル パラ メータである場合 )  も含まれます。  の要

素の順序は、  の要素の順序と一致している必要があ り ます。

 = モデルの標本への当てはめで最小化される関数 (g) の )

 =  を最小化する g の値

0
g 

s
g 

vec S
g  = p* g 
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付録B
乖離度

Amos は次の形式の乖離度 (Browne, 1982, 1984) を最小化します。

(D1)

f の定義方法を変更するこ とによ り、 さまざまな乖離度が得られます。 平均と定数項に

制約条件がなく、明示的モデル パラ メータ と して表示されない場合、  と   は省

略され、 f は  と表されます。

乖離度  と   は、 f を次のよ うにするこ とによって得られます。

標本サイズにのみ依存する付加定数を除き、  は、Kullback-Leibler の情報量の - 2 倍
です (Kullback & Leibler, 1951)。 厳密に言う と、  と   は、  であるた

め、 Browne の定義による と乖離度とはみなされません。

最尤法推定値 (ML)では、  および  は f を次のよ うにすることによって得られます。

(D2)
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一般化最小 2 乗法推定値 (GLS)では、  および  は f を次のよ うにするこ とに

よって得られます。

(D3)

漸近的分布非依存推定値 (ADF) の場合、  および  は f を次のよ うにするこ と

によって得られます。

(D4)

 の要素は、 Browne (1984, Equations 3.1 - 3.4) によって次のよ うに表されます。

尺度不変最小 2 乗推定値 (SLS) では、  および  は f を次のよ うにするこ とに

よって得られます。

(D5)

このと き、  とな り ます。

重み付けのない最小 2 乗法 推定値 (ULS) では、  および  は f を次のよ うにす

るこ とによって得られます。
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乖離度

(D6)

Amos の Emulisrel6 方式は、 (D1) を以下で置き換えるのに使用できます。

(D1a)

F は、  と して計算されます。

G = 1 かつ r = 1 の場合、 (D1) および (D1a) は等し く、 次のよ うに表されます。

最尤法、 漸近的分布非依存、 および一般化最小 2 乗法推定値では、 (D1) および (D2)
共、 適切な分布の仮定の下で正し く指定されたモデルに対してカイ  2 乗分布とな り ま

す。 漸近的には、 (D1) と  (D2) は等価ですが、 どちらの式でも、有限標本ではある程度

の不一致が見られます。 
2 つの独立した標本があ り、 それぞれに 1 つのモデルを使用する と します。 さ らに、

この 2 つの標本を同時に分析しますが、 その場合に、 1 つのモデルの任意のパラ メー

タがも う  1 つのモデルのパラ メータ と等しいこ とを要求する制約条件を課さないこ と

と します。 次に、 (D1a) を最小化した場合、 両グループの同時分析から得られたパラ

メータ推定値は、 各グループの別々の分析から得られたものと同じになり ます。 
さ らに、 同時分析から得られた乖離度 (D1a) は、 2 つの個別の分析から得られた乖

離度の合計になり ます。 r がゼロ以外の場合、 公式 (D1) にはこのプロパティがあ り ま

せん。 公式 (D1) を使用して 2 つのグループの同時分析を実行する と、 2 つの別々の分

析と同じパラ メータ推定値が得られますが、 同時分析からの乖離度は、 個別の乖離度

の合計にはなり ません。

一方、Amos を使用してモデルを当てはめた単一の標本がある と します。 この標本を

任意にサイズの異なる  2 つのグループに分割し、 それらのグループの同時分析を実行

する と します。 このと き、 両グループの元のモデルを採用し、 第 1 グループの各パラ

メータが第 2 グループの対応するパラ メータ と等し くなるよ うに制約条件を設定しま

す。 両方の分析で (D1) を最小化した場合、 両方と も同じ結果が得られます。 ただし、

両方の分析で (D1a) を使用した場合、 2 つの分析では異なる推定値と  F に対する異な

る最小値が生成されます。

こ こで指摘された不一致はすべて、 r = 0 を選択し、 (D1) が次のよ うになるよ うにし

て (D1) を使用するこ とによって回避できます。
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付録C
適合度

モデル評価は、 構造モデ リ ングに関連する、 最も難しい未解決な問題の 1 つです。

Bollen & Long (1993)、 MacCallum (1990)、 Mulaik他 (1989)、 および Steiger (1990) は、

この問題についてさまざまな見解や推奨案を提唱しています。 少なく と も乖離度の値

のほかに、 多数の統計量がモデルのメ リ ッ ト の測定値と して提唱されてきま した。

Amos はこれらのほとんどの統計量を算出します。

適合度は、 ユーザーによって指定された各モデルに対して、 また、 飽和モデルおよ

び独立モデルと呼ばれる  2 つの追加のモデルに対して使用されます。 

 飽和モデルでは、母集団の積率に制約条件が設定されません。 飽和モデルは、最も

一般的なモデルです。 あらゆるデータ  セッ トに完全に適合するこ とが保障されて

いる という意味では、 空疎なモデルです。 すべての Amos モデルは、 飽和モデルに

制約条件が付けられたものです。 

 独立モデルはこれと正反対の性格を持っています。 独立モデルでは、 観測変数に相

関はないものと仮定されます。 平均値が推定または制約されている場合、 すべての

観測変数の平均値は 0 に固定されます。 独立モデルは信じ難いほど厳密に制約され

るため、 いかなる興味あるデータ  セッ トにもあま り適合しません。 

指定した各モデルが、独立モデルに等し くなるよ うに制約される場合が良くあ り ます。

この場合、 飽和モデルと独立モデルは、 2 つの極値であ り、 提案したモデルはこの間

に位置する とみなすこ とができます。

最尤法以外のすべての推定法の場合、 Amos は、 すべてのパラ メータが 0 に固定さ

れるゼロ  モデルの適合度も報告します。

PCLOSE
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倹約性の測度

比較的パラ メータの少ない (かつ、比較的自由度の多い ) モデルは、倹約性、すなわち

単純性が高いと考えられます。 パラ メータの多い ( かつ、 自由度の少ない ) モデルは、

複雑であ り、 倹約性に欠けている と考えられます。 この単純と複雑という言葉の用法

は、 必ずしも日常の用法には適合していません。 たとえば、 飽和モデルは複雑であ り、

線形従属の凝ったパターンを持ち、 パラ メータ値が高度に制約されているモデルは単

純である という こ とにな り ます。

単純で、倹約性の高いモデルが好ましい (Mulaik他、 1989) という根拠を調べるこ と

はできますが、 倹約性の高いモデルが複雑なモデルよ り も好ましいという点では異論

はないよ うに思われます。 他がすべて同じである とする と、 パラ メータ とい う点では

少ない方が好ましいと言えます。 同時に、 適合性の高いモデルは適合性の低いモデル

よ り も好ましいものです。 多くの適合度は、 この相反する  2 つの目的、 すなわち単純

さ と適合度のバランスをとろ う と しています。

複雑度と適合度の間の数値的に最良の妥協点はある程度個人の好みの問題であ

るため、最終分析において複雑さの測度と適合度の測度を単一の数値指標に組み

合わせる  1 つの最良の方法を定義するこ とは、ある意味では不可能である と も言

えます。 モデルの選択は、嗜好についての 2 次元分析における昔からの課題です

(Steiger, 1990、 p. 179)。

NPAR

NPAR は、推定される異なるパラ メータ  (q) の数です。 たとえば、相互に等しいこ とが

求められる  2 つの係数は 1 つのパラ メータ と して数えられます。

注 : 出力パス図にパラ メータの数を表示するには、¥npar テキス ト  マクロを使用します。

DF

DF はモデルの検定のための自由度の数です。

p は標本の積率数であ り、 q は異なるパラ メータの数です。 Rigdon (1994a) は、 自由度

の計算と解釈について詳し く説明しています 。

注 : 出力パス図に自由度を表示するには、 ¥df テキス ト  マクロを使用します。

qpd df



565

適合度

PRATIO

倹約率 (James, Mulaik, および Brett, 1982。Mulaik他 , 1989) は、評価対象のモデルの制

約条件の数を、 独立モデルの制約条件数の割合と して表したものです。

こ こで、d は評価されるモデルの自由度を表し、  は独立モデルの自由度を表します。

倹約率は PNFI および PCFI の計算で使用されます (576 ページの 「倹約性修正済み測

度」 を参照 )。

注 : 出力パス図に倹約率を表示するには、 ¥pratio テキス ト  マクロを使用します。

最小標本乖離度

以下の適合度は、 乖離度の最小値を基にしています。

CMIN

CMIN は、 乖離度C の最小値、  です (付録 B を参照 )。

注 : 出力パス図に乖離度 C の最小値  を表示するには、 ¥cmin テキス ト  マクロを使用

します。

P

P は、 現在の標本で発生する大きさの乖離度が得られる確率です ( 適切な分布の仮定

の下で、 適正に指定されたモデルを想定した場合 )。 すなわち、 P は、 モデルが完全に

母集団に適合している という仮説を検定するための "p 値 "です。

モデルを選択する  1 つの方法では、統計的な仮説の検定を採用して、使用可能なデー

タ と矛盾するモデルを分析から除外します。 仮説の検定は広範に受け入れられている

手順であ り、 多くの使用経験があ り ます。 ただし、 モデル選択手段と しては不適切で

ある こ とが、 積率構造の分析の開発において早く から指摘されています (Jöreskog,
1969)。 母集団に完全には適合しないほとんどのモデルが有効な近似値であるこ とは、

一般的に認められています。 言い換える と、 完全適合という帰無仮説から始めるこ と

は信頼性が低く、 最終的には標本の過度の肥大化が許可されていない場合にのみ使用

されます。

モデルの当てはめにおいて、 仮説の検定の役割についての上記のよ うな見解に抵抗

があった場合、 次の引用が便利でし ょ う。 最初の 2 つは構造モデリ ングの開発以前の

もので、 他のモデル当てはめ問題を指しているのです。

id

d
PRATIO

di

Ĉ

Ĉ

_Ref445723442
_Ref445723442
_Ref445723442
_Ref445723442
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理論とデータの基本的な食い違いを検出する検定の検出力は、主に標本のサイズ

によって制御されます。 標本のサイズが小さい場合、帰無仮説から著し く逸脱し

ている代替仮説でも、 有意値の  が得られる可能性はわずかながらあ り ます。

標本が非常に大き くなる と、帰無仮説からの小さな、重要でない逸脱も、ほぼ間

違いなく検出されます。 (Cochran, 1952)

標本が小さい場合、  検定では、データが広範囲の多様な理論から  "著し く逸脱

していない " こ とが示されますが、標本が大きい場合、  検定では、差が他の基

準では無視できるか取るに足らないほどわずかなものであっても、特定の理論で

期待されたデータから著し く逸脱している とい う結果が示されます。 (Gulliksen
& Tukey, 1958, p. 95 ～ 96)

このよ うな "完全に適合する " 仮説は、 検定データでの経験作業においては極め

て非現実的です。 十分に大きなサイズの標本が得られた場合、 この  統計によ

れば、間違いなく、 このよ うな自明でない仮説は統計的に受け入れ難いものであ

るこ とが示されます。 (Jöreskog, 1969, p. 200)

...非常に大きな標本では、実質的にすべてのモデルが、統計的に受け入れ難いと

して棄却すべきである とみなされる ... 実際は、有意でないカイ  2 乗値が望まれ、

モデルとデータ間の差がないとい う仮説の有効性を推定しよ う と します。 この

よ うな論理は、各種の統計的な見せかけにおいて、帰無仮説を証明しよ う とする

試みと してよ く知られています。 カイ  2 乗分布 v は、標本のサイズを単純に小さ

くするだけで小さ く でき るため、 この試みは一般的には正当化でき ません。

(Bentler & Bonett, 1980, p. 591)

こ こでは、 この帰無仮説 (完全適合 ) は極めて信頼性が乏しいものであ り、 統計

検定で偽である こ とを検出できたかど うかを把握してもそれほど役に立たない

ものである という立場を支持します。 (Browne & Mels, 1992, p. 78).

570 ページの 「PCLOSE」 も参照してください。

注 : 出力パス図にこの p 値を表示するには、 ¥p テキス ト  マクロを使用します。

CMIN/DF

CMIN/DF は、 最小乖離度  (付録 B を参照 ) を自由度で割った値です。

一部の著者は、この比率を適合度と して使用するこ とを提言しています。 ULS と  SLS 以
外のすべての推定基準では、 この比率は正しいモデルでは 1 に近くな り ます。 問題は、

この比率が 1 からどの程度逸脱した値になれば、 モデルが十分でないと結論付けるこ

とができるかが明確でないこ とです。

2

2

2

2

Ĉ

d

Ĉ
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経験則

...Wheaton他 (1977) は、 研究者が相対的なカイ  2 乗 ( ) も計算するよ う勧

めました。 彼らは、妥当な値と して最初約 5 以下の比率を提案しました。ただし、

弊社では、 2 ～ 1 または 3 ～ 1 の範囲の自由度の比率までの  が仮説モデルと

標本 データ間で許容可能な適合度である こ とが示されています。 (Bentler &
Bonett、 1981、 p. 80)

...別の研究者は、 2 という低い比率、 あるいは 5 という高い比率が妥当な適合を

示すと して提唱しています。 (Marsh & Hocevar, 1985).

...2.00 よ り大きい  比率は、不十分な適合を示すこ とは明らかなよ うです

(Byrne, 1989, p. 55)。

注 : 出力パス図に CMIN/DF の数を表示するには、¥cmindf テキス ト  マクロを使用します。

FMIN

FMIN は、 乖離度 F の最小値、  です (付録 B を参照 )。

注 : 出力パス図に乖離度 F の最小値  を表示するには、 ¥fmin テキス ト  マクロを使用

します。

母集団の乖離度に基づ く 測度

Steiger & Lind (1980) は、モデルの妥当性の測度と して母集団の乖離度を使用するこ と

を提唱しました。 母集団の乖離度、  は、 モデルを標本の積率ではなく、 母集団の積

率に当てはめて得られる乖離度の値です。 すなわち、 次の式のよ うにな り ます。

に対して

Steiger, Shapiro, および Browne (1985) は、 一定の条件下では、  は、 自由度が

d で非心度パラ メータが  の非心度カイ  2 乗分布になるこ とを示しまし

た。 Steiger-Lind のモデル評価の手法は、  および関連する数量の推定を中心にしてい

ます。 
こ こでは、主に、 Steiger & Lind (1980) および Steiger, Shapiro, Browne (1985) を基に

しています。 表記法は、 Browne & Mels (1992) のものを採用しています。

2 df

2

2 df

F̂

F̂

F0

F0 min F    0,  


=

F̂ min F    a,  


=

Ĉ nF̂=
 C nF= =

F0
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NCP

 は非心度パラ メータの推定値です。 .

LO90 および HI 90 という ラベルの付いた列には、  の 90% の信頼区間の下限値 ( )
と上限値 ( ) が含まれています。  は、  について次を解く と得られ、

 は、  について次を解く と得られ、

 は、非心度パラメータが  で自由度 d の非心度カイ  2 乗分布の分布関数です。

注 : パス図に非心度パラ メータ推定値を表示するには、¥ncp テキス ト  マクロを使用し、

90% 信頼下限値を表示するには ¥ncplo を使用し、 90% 信頼上限値を表示するには

¥ncphi を使用します。

F0

  は  の推定値です。

LO 90 および HI 90 という ラベルの付いた列には、  の 90% の信頼区間の下限値と上

限値が含まれています。

注 : 出力パス図に  の値を表示するには、 ¥f0 テキス ト  マクロを使用し、 90% の信頼

下限推定値を表示するには ¥f0lo を使用し、 90% の信頼上限推定値を表示するには

¥f0hi を使用します。

NCP max Ĉ d– 0( )=  C0 nF0= =

L
U L 

  95.,ˆ  dC 

U 

  05.,|ˆ  dC 

 x  d( ) 

F0 F̂0 max
Ĉ d–
n

------------ 0 
  NCP

n
---------= = = 

n
--- F0=

F0

n
L 90 LO

n
U 90 HI

F̂0
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RMSEA

 は、モデルの複雑度に対してペナルティを含まず、多数のパラ メータを持つモデル

が有利にな りやすい傾向があ り ます。 2 つの入れ子モデルを比較した場合、  では単

純なモデルの方が有利にはなり ません。 Steiger & Lind (1980) は、 モデルの検定におい

て、  を自由度の数で割るこ とによって、 モデルの複雑度の効果を補正するこ とを提

案しています。 結果の比率の平方根をと る と、母集団の近似誤差平均平方根 (Steiger &
Lind によれば RMS 、 Browne & Cudeck (1993) によれば RMSEA ) が生成されます。

LO 90 および HI 90 という ラベルの付いた列には、 RMSEA の 90% の信頼区間の下限

値と上限値が含まれています。 これらの上下限値は、 次の式で求められます。

経験則

実際の経験から、RMSEA の値が約 0.05 以下であれば、自由度に関してモデルの

高い適合性を示しているよ うに思われます。 この数字は主観的判断に基づく も

のです。 絶対確実または正確である とみなすこ とはできませんが、 RMSEA = 0.0
の厳密な適合の要件に比べれば妥当な値です。 また、RMSEA が約 0.08 以下の値

は妥当な近似誤差を示すものである と考え、 RMSEA が 0.1 を超えるモデルは採

用しないこ と と します。 (Browne & Cudeck、 1993)

注 : 出力パス図に推定近似誤差平均平方根を表示するには、 ¥rmsea テキス ト  マクロを

使用し、90% 信頼下限推定値を表示するには ¥rmsealo を使用し、90% 信頼上限推定値

を表示するには ¥rmseahi を使用します。

F0

F0

F0

d

F0RMSEA population 

d

F0
ˆ

RMSEA estimated 

d

nL 90 LO

d

nU 90 HI
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PCLOSE

 は、母集団 RMSEA が 0.05 以下の帰無仮説検定用の

p 値です。 

これに反して、 P 列の p 値 (565 ページの 「P」 を参照 ) は、 母集団 RMSEA が 0 の仮

説の検定用です。

RMSEA の使用経験に基づき、 Browne & Cudeck (1993) は、 RMSEA が 0.05 以下の場

合は高い適合度を示すこ とを提唱しています。 高適合度のこの定義に従う と、PCLOSE
は高適合度の検定とな り、 P は厳密な適合の検定とな り ます。

注 : 出力パス図に母集団 RMSEA の高適合度用の p 値を表示するには、 ¥pclose テキス

ト  マクロを使用します。

情報理論的測度

Amos は複数の統計を  または  の形式で報告します。 k は正の定数で

す。 これらの各統計から、適合性 ( または ) と複雑さ  (q) の重み付き合計を求める

こ とによって、 両者の合成測度が形成されます。 適合性の高い単純なモデルは、 この

よ うな基準に従う と スコアが低くな り ます。 複雑で、適合性の低いモデルのスコアは高

くな り ます。 定数 k は、適合性と複雑さに付加される相対的ペナルティを決定します。 
この項で述べる統計量は、 モデルの比較のためのものであ り、 分離モデルの評価の

ためのものではあ り ません。

これらのすべての統計量は、 最尤法推定で使用するために開発されたものです。

Amos は GLS および ADF 推定も報告しますが、 それらを使用するこ とが適切である

かど うかは不明です。

AIC

赤池情報量基準 (Akaike, 1973, 1987) は次の式で表されます。

572 ページの 「ECVI」 も参照してください。

注 : 出力パス図に赤池情報量基準の値を表示するには、 ¥aic テキス ト  マクロを使用し

ます。

PCLOSE 1  Ĉ .05
2
nd d –=

05.RMSEA :0 H

0RMSEA :0 H

Ĉ kq+ F̂ kq+
Ĉ F̂

qC 2ˆAIC 

P \* Charformat
P \* Charformat
ECVI \* Charformat
ECVI \* Charformat
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BCC

Browne-Cudeck (1989) 基準は次の式で表されます。

こ こで Emulisrel6 コマンドが使用された場合  であ り、 使用されなかっ

た場合、  です。

BCC ではモデルの複雑さに対し、AIC よ り もわずかに大きなペナルティが課されま

す。 BCC は、特に積率構造分析のために開発された、この項で唯一の測度です。 Browne
と  Cudeck は、 BCC がよ り一般的に適用可能な測度に比べて優れているこ とを示す、

経験的証拠を提供しました。 Arbuckle (準備中 ) は、BCC の正当性についての代替的根

拠を示し、 複数のグループに対して上記の式を導き出しました。

572 ページの 「MECVI」 も参照してください。

注 : 出力パス図に Browne-Cudeck 基準の値を表示するには、¥bcc テキス ト  マクロを使

用します。

BIC

ベイズ情報量基準 (Schwarz, 1978, Raftery, 1993) は、 次の式で表されます。

AIC、 BCC、 および CAIC に比べて、 BIC はモデルの複雑さに大きなペナルティを与

えるため、 倹約性の高いモデルを採用する傾向が強くな り ます。 BIC は、 平均と定数

項が明示的なモデル パラ メータでない単一のグループの場合にのみ報告されます。

注 : 出力パス図にベイズ情報量基準の値を表示するには、 ¥bic テキス ト  マクロを使用

します。

CAIC

Bozdogan (1987) の CAIC (consistent AIC) は次の式で表されます。

CAIC はモデルの複雑さに AIC やBCC よ り も大きなペナルティを課しますが、BIC ほ
ど大き くはあ り ません。 CAIC は、 平均と定数項が明示的なモデル パラ メータでない

単一のグループの場合にのみ報告されます。 
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注 : 出力パス図に一致 AIC 統計量の値を表示するには、¥caic テキス ト  マクロを使用し

ます。

ECVI

一貫した目盛りの単位以外、 ECVI は AIC と同じです。

LO 90 および HI 90 という ラベルの付いた列には、 ECVI の 90% の信頼区間の下限値

と上限値が含まれています。

570 ページの 「AIC」 も参照してください。

注 : 出力パス図に期待交差確認指標の値を表示するには、¥ecvi テキス ト  マクロを使用

し、 90% 信頼下限期待値を表示するには ¥ecvilo を使用し、 90% 信頼上限期待値を表

示するには ¥ecvihi を使用します。

MECVI

スケール因子以外、 MECVI は BCC と同じです。

こ こで Emulisrel6 コマンドが使用された場合、  であ り、 使用されなかっ

た場合、  です。

571 ページの 「BCC」 も参照してください。

注 : 出力パス図に変更された ECVI 統計量を表示するには、 ¥mecvi テキス ト  マクロを

使用します。
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ベースラ イ ン モデルとの比較

いくつかの適合度では、 どれほどモデルが適合していても、 事態は常に悪化する可能

性がある という事実について熟考を促されます。

Bentler と  Bonett (1980) および Tucker と  Lewis (1973) は、 独立モデルまたはその他

の非常に適合性の低いベースライン モデルの適合を、乖離度がどれほど大き くなるか

を調べる課題と して提案しました。 この課題の目的は、 独自のモデルの適合性に何ら

かの見通しを持たせるこ とです。 どのモデルも う ま く適合しない場合、 真に不良なモ

デルを確認するこ とは勇気付けられるこ とです。 たとえば、 次の出力が示しているよ

うに、 例 6 のモデル A は自由度に関して大きな乖離度 ( ) を持っていま

す。 これに反して、71.544 は 2131.790 (独立モデルの乖離度 ) と比べる とそれほど悪く

ないよ うに見えます。

この、 モデル評価における 「状況はさ らに悪化する可能性がある」 とい う原理は、 多

数の適合度に組み入れられています。 すべての測度は 0 ～ 1 の範囲になる傾向があ り、

1 に近い値は適合度が高いこ とを示します。 NFI (下記 ) のみが、0 ～ 1 の範囲になるこ

とが保証されており、 1 は完全な適合を示します。 (1 よ り大きい値も  1 と して報告さ

れ、 0 未満の値も  0 と して報告されるため、 CFI も  0 ～ 1 の範囲になるこ とが保証さ

れています。 )
独立モデルは最も多く使用され、Amos でも使用していますが、ベースライン モデル

と して選択できるモデルの唯一の例です。 Sobel と  Bohrnstedt (1985) は、ベースライン

モデルと して独立モデルを選択するこ とは、 不適切な場合が多いと主張しています。

彼らは代替案を提案し、Bentler と  Bonett (1980) が行ったよ うに、いくつかの例を挙げ

てベースライン モデルの選択に対する  NFI の感度を示しました。

NFI

Bentler-Bonett (1980) 標準適合指標 (NFI) または Bollen (1989b) の表記法では 1 は、次

のよ うに表されます。

こ こで  は、 評価されるモデルの最小乖離度であ り、  はベースライ

ン モデルの最小乖離度です。

モデル NPAR CMIN DF P CMIN/DF

モデル A: 自己相関な し 15 71.544 6 0.000 11.924
モデル B: 最も一般的 16 6.383 5 0.271 1.277
モデル C: 時間不変 13 7.501 8 0.484 0.938
モデル D: A と  C の合成 12 73.077 9 0.000 8.120
飽和モデル 21 0.000 0
独立モデル 6 2131.790 15 0.000 142.119

Ĉ 71.544=

bb F

F

C

C
ˆ

ˆ
1

ˆ

ˆ
1NFI 1 

Ĉ nF̂= Cb̂ nFb̂=
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例 6 では、 他の任意のモデルに制約条件を付加する こ とによって、 独立モデルが

得られます。 すべてのモデルは、飽和モデルに制約を設けるこ とによって得られます。

たとえば、モデル A は、  であ り、完全に適合する飽和モデル ( )
と独立モデル ( ) との明らかに中間に位置します。

このよ うに見る と、 モデル A の適合度は、 独立モデルの適合度よ り も飽和モデルの

適合度に近いと言えます。 事実、 モデル A の乖離度は、 (適合度の低い ) 独立モデルと

(完全に適合する ) 飽和モデルとの間の 96.6% であるこ とがわかり ます。

経験則

適合度の目盛りは必ずしも解釈が容易ではない ( 指標が重相関の 2 乗ではない )
ため、結果のさまざまな度合いの優位性に関連付けられる指標の値を定義するに

は、 経験が必要です。 弊社の経験では、 全体の適合指標が 0.9 未満のモデルは、

通常、 実質的に改善されます。 これらの指標や先に説明した一般的な階層的比較

については、例を挙げるこ とによってよ く理解されます。 (Bentler & Bonett, 1980,
p. 600、 NFI と  TLI の両方を参照 )

注 : 出力パス図に標準適合指標の値を表示するには、¥nfi テキス ト  マクロを使用します。

RFI

Bollen (1986) の相対適合指標 (RFI) は次の式で表されます。

こ こで  と  d は評価されるモデルの自由度であ り、  および  は、 ベースライン

モデルの乖離度と自由度です。

RFI は、F の代わりに F / d を置き換えるこ とによって、NFI から得られます。 1 に近

い RFI 値は、 適合度が非常に高いこ とを示しています。

注 : 出力パス図に相対適合指標を表示するには、 ¥rfi テキス ト  マクロを使用します。

モデル NPAR CMIN DF P CMIN/DF

モデル A: 自己相関な し 15 71.544 6 0.000 11.924
モデル B: 最も一般的 16 6.383 5 0.271 1.277
モデル C: 時間不変 13 7.501 8 0.484 0.938
モデル D: A と  C の合成 12 73.077 9 0.000 8.120
飽和モデル 21 0.000 0
独立モデル 6 2131.790 15 0.000 142.119

2 71.544= 2 0=
2 2131.790=

966.
790.2131

54.71
1

790.2131

54.71790.2131



NFI

bbbb dF

dF

dC

dC
ˆ

ˆ
1

ˆ

ˆ
1RFI 1  

Ĉ Ĉb db

LO
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IFI

Bollen (1989b) の増分適合指標 (IFI) は次の式で表されます。

こ こで  および d は評価されるモデルの乖離度と自由度であ り、  および  は、

ベースライン モデルの乖離度と自由度です。 1 に近い IFI 値は、適合度が非常に高いこ

とを示しています。

注 : 出力パス図に増分適合指標を表示するには、 ¥ifi テキス ト  マクロを使用します。

TLI

Tucker-Lewis 係数 (Bollen, 1989b の表記法では 2) については、Bentler と  Bonett (1980)
によって積率の構造の分析の文脈で解説されており、 Bentler-Bonett 非標準適合指標

(NNFI) と も呼ばれます。 

TLI の一般的な範囲は 0 ～ 1 の間ですが、 この範囲には限定されません。 1 に近い TLI
値は、 適合度が非常に高いこ とを示しています。

注 : 出力パス図に Tucker-Lewis 指標の値を表示するには、 ¥tli テキス ト  マクロを使用

します。

CFI

比較適合指標 (CFI, Bentler, 1990) は次の式で表されます。

こ こで 、d および NCP は評価されるモデルの乖離度、自由度および非心度パラ メー

タ推定値であ り、 、  および は、ベースライン モデルの乖離度と自由度、お

よび非心度パラ メータ推定値です。

CFI は 0 ～ 1 の範囲に収まる よ う に切り捨てられる点以外、 CFI は McDonald と
Marsh (1990) の相対非心度指標 (RNI) と同じです。

1 に近い CFI 値は、 適合度が非常に高いこ とを示しています。
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Ĉ
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注 : 出力パス図に相対適合指標の値を表示するには、¥cfi テキス ト  マクロを使用します。

倹約性修正済み測度

James 他 (1982) は、評価対象のモデルとベースライン モデルの両方の検定において自

由度の数が考慮される よ う に、 NFI に倹約性指標 をかける こ と を提唱し ま した。

Mulaik 他 (1989) は、 GFI にも同じ修正を適用するこ とを提案しました。 Amos でも、

CFI に倹約性修正を適用しています。

578 ページの 「PGFI」 も参照してください。

PNFI

PNFI は、 James 他 (1982) の倹約性修正を NFIに適用した結果です。

こ こで d は評価されるモデルの自由度です。  はベースライン モデルの自由度です。

注 : 出力パス図に倹約性標準適合指標の値を表示するには、 ¥pnfi テキス ト  マクロを使

用します。

PCFI

PCFI は、 James 他 (1982) の倹約性修正を CFI に適用した結果です。

こ こで d は評価されるモデルの自由度です。  はベースライン モデルの自由度です。

注 : 出力パス図に倹約性比較適合指標の値を表示するには、 ¥pcfi テキス ト  マクロを使

用します。

  
bd

d
NFIPRATIONFIPNFI 

db

  
bd

d
CFI=PRATIOCFIPCFI 

db
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GFI および関連測度

こ こでは、 GFI と関連測度について説明します。

GFI

GFI (適合度指標 ) は、ML および ULS 推定のために Jöreskog と  Sörbom (1984) によっ

て考案され、 Tanaka and Huba (1985) によって他の推定基準に一般化されました。 

GFI は次の式で表されます。

こ こで  は、付録 B に定義されている最小乖離度であ り、  は , g = 1, 2,...,G
で F を評価する と得られます。 (D2) は 付録 B では  について定義されていな

いため、 最尤法推定値について例外を設ける必要があ り ます。 最尤法推定値の場合の

GFI を計算するため、付録 B の  は  で次のよ うに計算

されます。

こ こで、  は  の最尤法推定値です。 GFI は常に 1 未満です。 GFI = 1 は完全な適合

を示します。

注 : 出力パス図に適合度指標の値を表示するには、¥gfi テキス ト  マクロを使用します。

AGFI

AGFI ( 修正済み適合度指標 ) は、 モデルの検定で使用可能な自由度を考慮します。

次の式で表されます。

こ こで

AGFI の上限値は 1 で、 この場合完全な適合を示します。 ただし、 GFI のよ うに下限値

は 0 ではあ り ません。

注: 出力パス図に修正済み GFI の値を表示するには、¥agfi テキス ト  マクロを使用します。
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PGFI

Mulaik 他 (1989) によって提唱された PGFI (倹約性適合度指標 ) は、モデルの検定で使

用可能な自由度を考慮して GFI を修正したものです。

d は評価されるモデルの自由度であ り、

はベースライン ゼロ  モデルの自由度です。

注 : 出力パス図に倹約性 GFI の値を表示するには、¥pgfi テキス ト  マクロを使用します。

その他の測度

その他の適合測度について説明します。

HI 90

Amos は、 複数の統計量の母集団の値に対して 90% 信頼区間を報告します。 上限値と

下限値は、 HI 90 および LO 90 という ラベルの列で表されます。

HOELTER

Hoelter (1983) のク リ ティカル N は、モデルが正しいという仮説を受け入れるための最

大標本サイズです。 Hoelter は、ク リ ティカル N を決定するために使用する有意水準を

指定していませんが、 彼の例では 0.05 を使用しています。 Amos は、 0.05 および 0.01
の有意水準に対してク リ ティカル N を報告します。 

例6 の各モデルについて Amos によって表示されるク リ ティカル N を示します。

モデル
HOELTER
0.05

HOELTER
0.01

モデル A: 自己相関な し 164 219
モデル B: 最も一般的 1615 2201
モデル C: 時間不変 1925 2494
モデル D: A と  C の合成 216 277
独立モデル 11 14

bd

d
GFIPGFI 

 



G

g

g
b pd

1

*
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たとえば、モデル A は、標本の積率が Wheaton の研究で検出されたのとまったく同じ

で 標本 サイズが 164 であれば、0.05 レベルで使用されたはずです。 標本 サイズが 165
の場合、 モデル A は棄却されたこ とになり ます。 Hoelter は、 200 以上のク リティカル

N は十分な適合度を示すと主張しています。 複数のグループの分析において、 Hoelter
はグループ数の 200 倍のしきい値を提唱しています。 おそら く、 このしきい値は 0.05
の有意水準と共に使用される値です。 この標準では、 例6 のモデル A と独立モデルは

除外されます。 Hoelter の基準によれば、 モデル B は満足のいく ものです。 私自身は、

Hoelter による  200 の標準の主張の正当性は確信していません。 残念ながら、 ク リ ティ

カル N をモデルの選択に実際に役立てるには、 このよ うな標準が必要です。 Bollen と
Liang (1988) は、 ク リ ティカル N の統計量に関する研究を報告しています。

注 : 出力パス図に Hoelter のク リ テ ィカル N を表示するには、  については

¥hfive テキス ト  マクロを使用し、  については ¥hone を使用します。

LO 90

Amos は、 複数の統計量の母集団の値に対して 90% 信頼区間を報告します。 上限値と

下限値は、 HI 90 および LO 90 という ラベルの列で表されます。

RMR

RMR (残差平均平方根 ) は、 平均平方量の平方根であ り、 この値だけ、 標本分散 およ

び共分散は、 モデルが正しいという仮定の下に得られた推定値から相違しています。

RMR が小さければ小さいほど、 適合度は高くな り ます。 RMR が 0 の場合は、 完全な

適合度を示します。

例 6 からの以下の出力は、 RMR による と、 飽和モデルを除けばモデル A が検討対

象のモデルの中で最適であるこ とを示しています。

注 : 出力パス図に残差平均平方根の値を表示するには、 ¥rmr テキス ト  マクロを使用し

ます。

モデル RMR GFI AGFI PGFI

モデル A: 自己相関な し 0.284 0.975 0.913 0.279
モデル B: 最も一般的 0.757 0.998 0.990 0.238
モデル C: 時間不変 0.749 0.997 0.993 0.380
モデル D: A と  C の合成 0.263 0.975 0.941 0.418
飽和モデル 0.000 1.000
独立モデル 12.342 0.494 0.292 0.353

 0.05=
 0.01=
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選択された適合度のリ ス ト

少数の適合度に集中する場合、 以下の適合度のみを選出して報告した Browne と  Mels
(1992) の暗黙の推奨を検討してみてください。

565 ページの 「CMIN」

565 ページの 「P」

567 ページの 「FMIN」

568 ページの 「F0」、 90% 信頼区間

570 ページの 「PCLOSE」

569 ページの 「RMSEA」、 90% 信頼区間

572 ページの 「ECVI」、 90% 信頼区間 ( 570 ページの 「AIC」 ) も参照 )

最尤法推定の場合、Browne と  Cudeck (1989、1993) が ECVI に代えて MECVI (572 ペー

ジ ) を提唱しています。
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付録D
非識別可能性の数値診断

パラ メータを識別するのか、 あるいはモデル全体を識別するのかを判定するために、

Amos では近似二次導関数の行列および関連する行列の順位を調べます。 使用される

手法は、 McDonald & Krane (1977) の手法に似ています。 この方法には原理的な難点も

あ り ます (Bentler &Weeks, 1980McDonald, 1982)。 また、 境界線上にある行列の順位の

判定には実務的な問題もあ り ます。 こ う した困難のため、 可能であれば、 事前にモデ

ルの識別可能性を判定しておく必要があ り ます。 複雑なモデルでは、 事前判定が不可

能であるため、 Amos の数値判定に依存する必要があ り ます。 幸いなこ とに、 Amos は
現実の識別可能性の評価に大変優れています。





583

付録E
適合度を使用し たモデルの順位付け

一般的に、選択肢が多過ぎるため、 1 つの適合度を選択するこ とは困難です。 適合度の

目的が、 絶対的な標準によってモデルの長所を判定するのではなく、 モデルを相互に

比較するこ とである場合には、選択が容易になり ます。 たとえば、モデルの集合のラン

ク順を決める場合は、 RMSEA、 RFI、 または TLI のどれを使用しても問題はないこ と

が分かり ます。 これらの各測度は、  および  のみによる  d に依存しており、それ

ぞれ単調に  に依存しています。 したがって、各測度によるモデルのランク順は同

じになり ます。 このため、探索的モデル特定化手順では、RMSEA のみが報告されます。

次の適合度は、  および  のみによる  d に依存しており、単調に  に依存し

ています。 探索的モデル特定化手順では、すべての代表と して CFI のみが報告されます。

Ĉ Ĉ d
Ĉ d

RMSEA Ĉ d–
nd

------------ 1
n
--- Ĉ

d
--- 1– 
 = =

RFI 1 1
Ĉ d
Ĉb db
--------------–= =

TLI 2

Ĉb

db

----- Ĉ
d
---–

Ĉb

db

----- 1–
--------------= =

Ĉ Ĉ d– Ĉ d–
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付録 E

 (Amos では報告されない )

次の適合度は、 単調に  に依存しており、 d には全く依存していません。 探索的モデ

ル特定化手順では、 すべての代表と して  が報告されます。

次の各適合度は  と  d の重み付け合計であ り、 モデルのランク順を生成できます。

探索的モデル特定化手順では、 CAIC 以外の各適合度が報告されます。

NCP max Ĉ d– 0 =

F0 F̂0 max
Ĉ d–
n

------------ 0 
 = =

CFI 1
max Ĉ d– 0 

max Cb
ˆ db– Ĉ d– 0 

---------------------------------------------------–=

RNI 1
Ĉ d–
Cb
ˆ db–

----------------–=

Ĉ
Ĉ

CMIN Ĉ=

FMIN
Ĉ
n
---=

NFI 1
Ĉ

Ĉb

-----–=

Ĉ

BCC

AIC

BIC

CAIC
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適合度を使用し たモデルの順位付け

次の各適合度は、 独自のモデルのランク順を提供します。 ランク順はベースライン モ
デルの選択にも依存しています。 探索的モデル特定化手順では、 これらの測度は報告

されません。

次の適合度は、 最尤法の推定の場合に Amos によって報告される、  および d の関数

ではない速度です。 探索的モデル特定化手順では、 これらの測度は報告されません。

IFI 2=

PNFI

PCFI

Ĉ

GFI

AGFI

PGFI
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付録 F
記述適合度のベースラ イ ン モデル

7 つの適合度 (NFI、 RFI、 IFI、 TLI, CFI、 PNFI、 および PCFI) では、 他のモデルと比

較するための、帰無 または ベースライン 不良モデルが必要です。 探索的モデル特定化

手順では、 4 つの帰無モデルまたはベースライン モデルから選択できます。

帰無モデル 1: 観測変数間に相関がないこ とが必要です。 観測変数の平均値と分散は制

約されません。 これは、 探索的モデル特定化を実行しない、 通常の Amos 分析におけ

る独立モデルです。

帰無モデル 2: 観測変数間の相関度が等しいこ とが必要です。 観測変数の平均値と分散

は制約されません。

帰無モデル 3: 観測変数間に相関がなく、 平均値が 0 であるこ とが必要です。 観測変数

の分散は制約されません。 これは、 平均値と定数項が明示的なモデル パラ メータであ

る、 Amos 4.0.1 以前で使用されるベースライン独立モデルです。

帰無モデル 4: 観測変数間の相関度が等しいこ とが必要です。 観測変数の分散は制約さ

れません。 平均値は 0 であるこ とが必要です。

各帰無モデルは、 NFI、 RFI、 IFI、 TLI、 CFI、 PNFI、 PCFI に対して異なる値を生成し

ます。 帰無モデル 3 と帰無モデル 4 は、 平均値と定数項が指定したモデルで明示的に

推定されない場合にのみ、 探索的モデル特定化で当てはめられます。 帰無モデル 3 と
帰無モデル 4 は、平均値と定数項が制約されるモデルの評価に適している と言えます。

平均値と定数項は制約されないが、 欠損データによる最尤法を許可するためだけに推

定されるよ うな一般的な状況で、 帰無モデル 3 と帰無モデル 4 を当てはめる理由はほ

とんどあ り ません。
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付録 F

探索的モデル特定化で当てはめるベースライン モデルを指定するには

E メニューから  [ 分析 ]  [ 探索的モデル特定化 ] の順に選択します。

E [探索的モデル特定化 ] ツールバーの [ オプシ ョ ン ] ボタン をク リ ッ ク します。

E [オプシ ョ ン ] ダイアログ ボッ クスで、 [ 次を検索 ] タブをク リ ッ ク します。

4 つの帰無モデルと飽和モデルが、 [ベンチマーク  モデル ] グループに表示されます。
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付録G
AIC、 BCC、 および BIC の再調整

適合度 AIC、BCC、および BIC は、付録 C に定義されています。 各測度の形式は 
で、 k はすべてのモデルで同じ値になり ます。 小さい値の方が優れており、データへの

高い適合度 (小さい ) と倹約性 (小さい q) の組み合わせを示しています。 測度は単一

のモデルの長所を判定するためではなく、 モデルの相互比較のために使用されます。

Amos の探索的モデル特定化手順では、 これらの測度の 3 通りの再調整方法が用意

されており、 例 22 および 例 23 に示されています。 この付録では、 再調整された適合

度の公式を示します。 
以下では、 、 、 および  をモデル i の適合度と します。

ゼロ ベースの再調整

AIC、 BCC、 および BIC は、 モデルの相互比較のみに使用され、 小さい値の方が大き

い値よ り も優れているため、 以下のよ うに定数を追加しても弊害はあ り ません。

再調整された値は 0 または正の値です。 たとえば、 AIC に従った場合の最適なモデル

では  とな り、 これよ り劣るモデルでは、 最適なモデルよ り どれだけ劣るか

を示す、 正の  値が生成されます。

Ĉ kq+

Ĉ

AIC i  BCC i  BIC i 

AIC 0
i 

AIC
i 

min
i

AIC
i  –=

BCC 0
i 

BCC
i 

min
i

BCC
i  –=

BIC 0
i 

BIC
i 

min
i

BIC
i  –=

AIC0 0=
AIC0



590

付録 G

E 探索的モデル特定化後に 、 、および  を表示するには、[探索的モデル

特定化 ] バーで  をク リ ッ ク します。

E [オプシ ョ ン ] ダイアログ ボッ クスの [結果] タブで、[ゼロベース (min=0)] をク リ ッ ク しま

す。

赤池ウ ェ イ ト / Bayes 因子 ( 合計 = 1)

E 以下の再調整を得るには、 [オプシ ョ ン ] ダイアログ ボッ クスの [ 結果 ] タブで、 [ 赤池

ウ ェ イ ト / Bayes 因子 ( 合計 = 1)] をク リ ッ ク します。

各再調整された測度の合計は、 モデル全体で 1 になり ます。 再調整は、 包括的な探索

的モデル特定化の後にのみ実行されます。 発見的探索を実行するか、 [ 最善の＿モデル

のみを保存 ] に正の値を指定した場合、分母での総和は計算されず、再調整も実行され

ません。  は、Burnham & Anderson (1998) によって赤池ウェイ ト と名付けられま

した。 は  と同じに解釈されます。 ベイジアン法フレームワーク内およ

びモデルに対して同じ事前確率を指定した適切な仮定の下では、  は 事後確率の

近似値とな り ます。

AIC0 BCC0 BIC0

AICp
i  e AIC

i 
2–

e AIC
m 

2–

m


----------------------------=

BCCp
i  e BCC

i 
2–

e BCC
m 

2–

m


----------------------------=

BICp
i  e BIC

i 
2–

e BIC
m 

2–

m


----------------------------=

AICp
i 

BCCp
i  AICp

i 

BICp
i 
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AIC、 BCC、 および BIC の再調整

赤池ウ ェ イ ト / Bayes 因子 (max = 1)

E 以下の再調整を得るには、 [オプシ ョ ン ] ダイアログ ボッ クスの [ 結果 ] タブで、 [ 赤池

ウ ェ イ ト / Bayes 因子 (max = 1)] をク リ ッ ク します。

たとえば、 AIC に従った場合の最適なモデルでは  とな り、 これよ り劣るモ

デルでは、 0 ～ 1 の  値が生成されます。  の詳細については、 Burnham &
Anderson (1998) を、また、  の詳細については、Raftery (1993, 1995) および Madigan
& Raftery (1994) を参照してください。

AICL
i  e AIC

i 
2–

max
m

e AIC
m 

2– 
------------------------------------=

BCCL
i  e BCC

i 
2–

max
m

e BCC
m 

2– 
------------------------------------=

BICL
i  e BIC

i 
2–

max
m

e BIC
m 

2– 
------------------------------------=

AICL 1=
AICL AICL

BICL
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通達

本書は米国 IBMが提供する製品およびサービスについて作成したものです。この資料の他の

言語版を IBMから入手できる場合があ り ます。ただし、 これを入手するには、本製品または

当該言語版製品を所有している必要がある場合があ り ます。 

本書に記載された製品、 サービス、 または機能は、 他の国で提供されていない場合があ り ま

す。 お客様のお住まいの地域で現在提供されている製品およびサービスに関する情報は、 現

地の IBM カスタマーサービスにお問い合わせください。 IBM 製品、プログラム、またはサー

ビスを言及している場合、 それらの IBM 製品、 プログラムまたはサービスのみが使用され

ている こ とを陳述または暗示しているわけではあ り ません。 IBM の知的財産権を侵害しな

い、 機能的に同等の製品、 プログラム、 またはサービスが代わりに使用されている場合もあ

り ます。 ただし、IBM 以外の製品、プログラム、またはサービスの機能の評価や検証は、ユー

ザーの責任にゆだねられます。

IBM は、本書に記述された内容について、特許を有しているか、申請中である場合があ り ま

す。 本書を提供するこ とによって、これらの特許の使用権が認められるわけではあ り ません。

使用権については、 以下にお問い合わせください。 

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US 

2バイ ト文字 （DBCS） で記載されている事項のライセンスに関するお問い合わせは、

お客様が所在する国の IBM知的財産部門、 または下記宛先に書面でお送り ください。 
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知的財産権ライセンス係

法務および知的財産法

〒103-8510
日本国東京都中央区日本橋箱崎町19番21号
日本アイ ・ ビー ・ エム株式会社

INTERNATIONAL BUSINESS MACHINES CORPORATION は、 本書を、 第三者の権利を侵

害していないこ と、 市販性、 または特定目的との適合性を含む ( ただしこれらに限定されな

い ) 明示または暗示の保証をするこ とな く、 「現状のまま」 提供する と します。 一部の国は、

特定の取引における明示的または暗示的な保証の放棄を認めていないため、上述の文言がお

客様に適用されない場合があ り ます。 

この情報には、 技術的に不正確な情報または誤字や誤植が含まれるこ とがあ り ます。 こ こに

示される情報は定期的に変更されていますが、 これらの変更は本書の改訂版で適用されま

す。 IBM は、予告なくいつでも、本書に記載の製品やプログラムに機能改善や機能変更を提

供する場合があ り ます。 

本書中の IBM 以外の Web サイ トに対する参照は、 便宜上の目的でのみ参照されており、 い

かなる意味でも これらの Web サイ ト を推奨するものではあ り ません。 これらの Web サイ ト

で提供されている資料は本 IBM 製品のための資料ではなく、 お客様の自己責任の下、 これ

らの Web サイ ト をご利用ください。

IBM は、 お客様への義務を発するこ とな く、 IBM が適切である と判断した方法で、 お客様

からの情報を使用または配布する場合があ り ます。

本プログラムの使用許諾ライセンス取得者のう ち、 (i) 独立して作成されたプログラムと他

のプログラム ( 本プログラムを含む ) の間の情報の交換、 および (ii) 交換された情報の相互

使用を行う目的で、使用許諾ライセンスに関する情報を必要とするお客様は、以下にお問い

合わせください。 

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

そのよ うな情報は、該当する諸条件の下、一部のケースでは有償によって、提供できる場合

があ り ます。

本書に記載された使用許諾ライセンス取得のプログラム、およびそれに提供されるすべての

使用許諾ラ イセンス取得の資料は、 IBM Customer Agreement、 IBM International Program
License Agreement、またはお客様と当社の間で締結する同等のすべての契約によって提供さ

れます。

IBM 以外の製品に関する情報は、 それらの製品の提供業者、 提供業者の公開告示、 または

他の一般提供情報よ り取得されてます。 IBM は、 それらの製品を検証してないため、 IBM
以外の製品に関するパフォーマンス、 互換性、 または他の主張を裏付ける こ とはできませ

ん。 IBM 以外の製品の機能に関するご質問は、 それらの製品の提供業者にお問い合わせく

ださい。
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通達

IBM の将来の方向性または意向に関する記述は、 単に目標や目的を示しているものであ り、

予告なしに変更または撤回される場合があ り ます。

この情報には、日常の取引で使用されるデータやレポートの例が含まれます。 これらを可能

な限り完全に説明するために、例には個人、会社、 ブランド、および製品の名前が含まれま

す。 これらの名前はすべて架空のものであ り、名前や名称が類似する個人や企業が実在して

いる と しても、 それは偶然にすぎません。

著作権使用許諾 ：

本書には、様々なオペレーティング ・プラ ッ ト フォームでのプログラ ミ ング手法を例示する

サンプル ・ アプ リ ケーシ ョ ン ・ プログラムがソース言語で掲載されています。 お客様は、 サ

ンプル・プログラムが書かれているオペレーティング ・プラ ッ ト フォームのアプリ ケーシ ョ

ン ・ プログラ ミ ング ・ インターフェースに準拠したアプ リ ケーシ ョ ン ・ プログラムの開発、

使用、 販売、 配布を目的と して、 いかなる形式においても、 IBMに対価を支払う こ とな く こ

れらのサンプル ・プログラムを複製し、 改変し、 配布するこ とができます。 これらのサンプ

ル ・ プログラムは、 あらゆる条件下における完全なテス ト を経ていません。 従って IBMは、

これらのサンプル・プログラムについて信頼性、利便性または機能性があるこ とをほのめか

した り、 保証した りするこ とはできません。 これらのサンプル ・ プログラムは 「現状有姿」

の状態で提供されるものであ り、いかなる保証も提供されません。 IBMは、お客様の当該サ

ンプル ・ プログラムの使用から生ずるいかなる損害に対しても一切の責任を負いません。

これらのサンプル ・ プログラムの各複製物もし くはすべての部分または二次的著作物にも、

次のよ うに著作権表示を入れていただく必要があ り ます。

© Copyright IBM Corp. 2024. このコードの一部は、 IBM Corp.のサンプル ・ プログラムから

取られています。

© Copyright IBM Corp. 1989 - 2024. All rights reserved.





597

参考文献

Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. 
Proceedings of the 2nd International Symposium on Information Theory, B. N. Petrov and F. 
Csaki, eds. Budapest: Akademiai Kiado. 267–281 よ り。

______. 1978. A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of 
Statistical Mathematics, 30: 9–14.

______. 1987. Factor analysis and AIC. Psychometrika, 52: 317–332.
Allison, P. D. 2002. Missing data. Thousand Oaks, CA: Sage Publications.
Anderson, E. 1935. The irises of the Gaspe Peninsula. Bulletin of the American Iris Society, 59: 2–5.
Anderson, T. W. 1957. Maximum likelihood estimates for a multivariate normal distribution when 

some observations are missing. Journal of the American Statistical Association, 52: 200–203.
______. 1984. An introduction to multivariate statistical analysis. New York: John Wiley and Sons.
Arbuckle, J. L. Unpublished, 1991. Bootstrapping and model selection for analysis of moment 

structures.
______. 1994a. Advantages of model-based analysis of missing data over pairwise deletion. RMD 

Conference on Causal Modeling (West Lafayette, IN) において発表。

______. 1994b. A permutation test for analysis of covariance structures. Psychometric Society, 
University of Illinois, Champaign, IL の年次総会において発表。 

______. 1996. Full information estimation in the presence of incomplete data. Advanced structural 
equation modeling, G. A. Marcoulides and R. E. Schumacker, eds. Mahwah, New Jersey: 
Lawrence Erlbaum Associates. よ り。

Arminger, G., P. Stein, and J. Wittenberg. 1999. Mixtures of conditional mean- and covariance- 
structure models. Psychometrika, 64:4, 475–494.

Attig, M. S. 1983. The processing of spatial information by adults. The Gerontological Society, San 
Francisco の年次総会において発表。

Beale, E. M. L., and R. J. A. Little. 1975. Missing values in multivariate analysis. Journal of the Royal 
Statistical Society Series B, 37: 129–145.



598

Beck, A. T. 1967. Depression: causes and treatment. Philadelphia, PA: University of Pennsylvania 
Press.

Bentler, P. M. 1980. Multivariate analysis with latent variables: Causal modeling. Annual Review of 
Psychology, 31: 419–456.

______. 1985. Theory and Implementation of EQS: A Structural Equations Program. Los Angeles, 
CA: BMDP Statistical Software.

______. 1989. EQS structural equations program manual. Los Angeles, CA: BMDP Statistical 
Software.

______. 1990. Comparative fit indexes in structural models. Psychological Bulletin, 107: 238–246.
Bentler, P. M., and D. G. Bonett. 1980. Significance tests and goodness of fit in the analysis of 

covariance structures. Psychological Bulletin, 88: 588–606.
Bentler, P. M., and C. Chou. 1987. Practical issues in structural modeling. Sociological Methods and 

Research, 16: 78–117.
Bentler, P. M., and E. H. Freeman. 1983. Tests for stability in linear structural equation systems. 

Psychometrika, 48: 143–145.
Bentler, P. M., and D. G. Weeks. 1980. Linear structural equations with latent variables. 

Psychometrika, 45: 289–308.
Bentler, P. M., and J. A. Woodward. 1979. Nonexperimental evaluation research: Contributions of 

causal modeling. Improving Evaluations, L. Datta and R. Perloff, eds. Beverly Hills: Sage 
Publications よ り。

Bollen, K. A. 1986. Sample size and Bentler and Bonett’s non-normed fit index. Psychometrika, 51: 
375–377.

______. 1987. Outliers and improper solutions: A confirmatory factor analysis example. 
Sociological Methods and Research, 15: 375–384.

______. 1989a. Structural equations with latent variables. New York: John Wiley and Sons.
______. 1989b. A new incremental fit index for general structural equation models. Sociological 

Methods and Research, 17: 303–316.
Bollen, K. A., and K. G. Jöreskog. 1985. Uniqueness does not imply identification: A note on 

confirmatory factor analysis. Sociological Methods and Research, 14: 155–163.
Bollen, K. A., and J. Liang. 1988. Some properties of Hoelter’s CN. Sociological Methods and 

Research, 16: 492–503.
Bollen, K. A., and J. S. Long, eds. 1993. Testing structural equation models. Newbury Park, CA: 

Sage Publications.
Bollen, K. A., and R. A. Stine. 1992. Bootstrapping goodness-of-fit measures in structural equation 

models. Sociological Methods and Research, 21: 205–229.
Bolstad, W. M., and J. M. Curran. 2017. Introduction to Bayesian statistics. Hoboken, NJ: John Wiley 

and Sons.
Boomsma, A. 1987. The robustness of maximum likelihood estimation in structural equation models. 

Structural Modeling by Example: Applications in Educational, Sociological, and Behavioral 
Research, P. Cuttance and R. Ecob, eds. Cambridge University Press, 160–188. よ り。



599

参考文献

Botha, J. D., A. Shapiro, and J. H. Steiger. 1988. Uniform indices-of-fit for factor analysis models. 
Multivariate Behavioral Research, 23: 443–450.

Bozdogan, H. 1987. Model selection and Akaike’s information criterion (AIC): The general theory 
and its analytical extensions. Psychometrika, 52: 345–370.

Brown, C. H. 1983. Asymptotic comparison of missing data procedures for estimating factor 
loadings. Psychometrika, 48:2, 269–291.

Brown, R. L. 1994. Efficacy of the indirect approach for estimating structural equation models with 
missing data: A comparison of five methods. Structural Equation Modeling: A Multidisciplinary 
Journal, 1: 287–316.

Browne, M. W. 1982. Covariance structures. Topics in applied multivariate analysis, D. M. Hawkins, 
ed. Cambridge: Cambridge University Press, 72–141 よ り。

______. 1984. Asymptotically distribution-free methods for the analysis of covariance structures. 
British Journal of Mathematical and Statistical Psychology, 37: 62–83.

Browne, M. W., and R. Cudeck. 1989. Single sample cross-validation indices for covariance 
structures. Multivariate Behavioral Research, 24: 445–455.

______. 1993. Alternative ways of assessing model fit. Testing structural equation models, K. A. 
Bollen and J. S. Long, eds. Newbury Park, CA: Sage Publications, 136–162 よ り。

Browne, M. W., and G. Mels. 1992. RAMONA user’s guide. The Ohio State University, Columbus, 
OH.

Burnham, K. P., and D. R. Anderson. 1998. Model selection and inference: A practical information-
theoretic approach. New York: Springer-Verlag.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: A practical 
information-theoretic approach. 2nd ed. New York: Springer-Verlag.

Burns, D. D. 1999. Feeling good: the new mood therapy. New York: Avon Books.
______. 2020. Feeling great: the revolutionary new treatment for depression and anxiety. Eau Claire, 

WI: PESI.
Byrne, B. M. 1989. A primer of LISREL: Basic applications and programming for confirmatory factor

analytic models. New York: Springer-Verlag.

______. 2001. Structural equation modeling with Amos: Basic concepts, applications, and 
programming. Mahwah, New Jersey: Erlbaum.

Carmines, E. G., and J. P. McIver. 1981. Analyzing models with unobserved variables. Social 
measurement: Current issues, G. W. Bohrnstedt and E. F. Borgatta, eds. よ り。 Beverly Hills: Sage 
Publications.

Cattell, R. B. 1966. The scree test for the number of factors. Multivariate Behavioral Research, 
1: 245–276.

Celeux, G., M. Hurn, and C. P. Robert. 2000. Computational and inferential difficulties with mixture 
posterior distributions. Journal of the American Statistical Association, 95:451, 957–970.

Chen, F., K. A. Bollen, P. Paxton, P. J. Curran, and J. B. Kirby. 2001. Improper solutions in structural 
equation models: Causes, consequences, and strategies. Sociological Methods and Research, 
29:4, 468–508.



600

Chung, H., E. Loken, and J. L. Schafer. 2004. Difficulties in drawing inferences with finite-mixture 
models: A simple example with a simple solution. American Statistician, 58:2, 152–158.

Cliff, N. 1973. Scaling. Annual Review of Psychology, 24: 473–506.
______. 1983. Some cautions concerning the application of causal modeling methods. Multivariate 

Behavioral Research, 18: 115–126.
Cochran, W. G. 1952. The 2 test of goodness of fit. Annals of Mathematical Statistics, 23: 315–345.
Cook, T. D., and D. T. Campbell. 1979. Quasi-experimentation: Design and analysis issues for field 

settings. Chicago: Rand McNally.
Croon, M. 2002. Ordering the classes. Applied Latent Class Analysis: 137–162, J. A. Hagenaars and 

A. L. McCutcheon, eds. よ り。 Cambridge, UK: Cambridge University Press.
Crowley, J., and M. Hu. 1977. Covariance analysis of heart transplant data. Journal of the American 

Statistical Association, 72: 27–36.
Cudeck, R., and M. W. Browne. 1983. Cross-validation of covariance structures. Multivariate 

Behavioral Research, 18: 147–167.
Davis, W. R. 1993. The FC1 rule of identification for confirmatory factor analysis: A general 

sufficient condition. Sociological Methods and Research, 21: 403–437.
Diaconis, P., and B. Efron. 1983. Computer-intensive methods in statistics. Scientific American, 

248:5, 116–130.
Ding, C. 2006. Using regression mixture analysis in educational research. Practical Assessment 

Research and Evaluation, 11:11. http://pareonline.net/getvn.asp?v=11&n=11 で入手可能。

Dolker, M., S. Halperin, and D. R. Divgi. 1982. Problems with bootstrapping Pearson correlations in 
very small samples. Psychometrika, 47: 529–530.

Draper, N. R., and H. Smith. 1981. Applied regression analysis. 2nd ed. New York: John Wiley and 
Sons.

Edgington, E. S. 1987. Randomization tests. 2nd ed. New York: Marcel Dekker.
Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7: 1–26.
______. 1982. The jackknife, the bootstrap, and other resampling plans. (SIAM Monograph #38) 

Philadelphia: Society for Industrial and Applied Mathematics.
______. 1987. Better bootstrap confidence intervals. Journal of the American Statistical Association, 

82: 171–185.
Efron, B., and G. Gong. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. 

American Statistician, 37: 36–48.
Efron, B., and D. V. Hinkley. 1978. Assessing the accuracy of the maximum likelihood estimator: 

Observed versus expected Fisher information. Biometrika, 65: 457–87.
Efron, B., and R. J. Tibshirani. 1993. An introduction to the bootstrap. New York: Chapman and Hall.
European Values Study Group and World Values Survey Association. European and world values 

surveys four-wave integrated data file, 1981–2004. Vol. 20060423. 2006.



601

参考文献

Felson, R.B., and G. W. Bohrnstedt 1979. “Are the good beautiful or the beautiful good?” The 
relationship between children’s perceptions of ability and perceptions of physical attractiveness. 
Social Psychology Quarterly, 42: 386–392. 

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 
7: 179–188.

Fox, J. 1980. Effect analysis in structural equation models. Sociological Methods and Research, 9: 
3–28.

Fraley, C., and A. E. Raftery. 2002. Model-based clustering, discriminant analysis, and density 
estimation. Journal of the American Statistical Association, 97:458, 611–631.

Frühwirth-Schnatter, S. 2004. Estimating marginal likelihoods for mixture and Markov switching 
models using bridge sampling techniques. The Econometrics Journal, 7: 143–167.

Furnival, G. M., and R. W. Wilson. 1974. Regression by leaps and bounds. Technometrics, 16: 
499–511.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2013. Bayesian 
data analysis. 3rd ed. Boca Raton: Chapman and Hall/CRC.

Gill, J. 2004. Introduction to the special issue. Political Analysis, 12:4, 323–337.
Graham, J. W., S. M. Hofer, S. I. Donaldson, D. P. MacKinnon, and J. L. Schafer. 1997. Analysis 

with missing data in prevention research. The science of prevention: Methodological advances 
from alcohol and substance abuse research, K. Bryant, M. Windle, and S. West, eds. よ り。

Graham, J. W., S. M. Hofer, and D. P. MacKinnon. 1996. Maximizing the usefulness of data obtained 
with planned missing value patterns: An application of maximum likelihood procedures. 
Multivariate Behavorial Research, 31: 197–218.

Gulliksen, H., and J. W. Tukey. 1958. Reliability for the law of comparative judgment. 
Psychometrika, 23: 95–110.

Hamilton, L. C. 1990. Statistics with Stata. Pacific Grove, CA: Brooks/Cole.
Hamilton, M. 1960. A rating scale for depression. Journal of Neurology, Neurosurgery, and 

Psychiatry, 23: 56–62.
Hayduk, L. A. 1987. Structural equation modeling with LISREL. Baltimore: Johns Hopkins 

University Press.
Hoelter, J. W. 1983. The analysis of covariance structures: Goodness-of-fit indices. Sociological 

Methods and Research, 11: 325–344.
Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky. 1999. Bayesian model averaging: a 

tutorial. Statistical Science, 14: 382–417.
Holzinger, K. J., and F. A. Swineford. 1939. A study in factor analysis: The stability of a bi-factor 

solution. Supplementary Educational Monographs, No. 48. Chicago: University of Chicago, 
Dept. of Education.

Hoshino, T. 2001. Bayesian inference for finite mixtures in confirmatory factor analysis. 
Behaviormetrika, 28:1, 37–63.

Hu, L., and P. M. Bentler. 1999. Cutoff criteria for fit indices in covariance structure analysis: 
conventional criteria versus new alternatives. Structural Equation Modeling, 6: 1–55.



602

Hubert, L. J., and R. G. Golledge. 1981. A heuristic method for the comparison of related structures. 
Journal of Mathematical Psychology, 23: 214–226.

Huitema, B. E. 1980. The analysis of covariance and alternatives. New York: John Wiley and Sons.
Ibrahim, J. G., M-H Chen, S. R. Lipsitz, and A. H. Herring. 2005. Missing data methods for 

generalized linear models: A review. Journal of the American Statistical Association, 100:469, 
332–346.

Jackman, S. 2000. Estimation and inference via Bayesian simulation: An introduction to Markov 
chain Monte Carlo. American Journal of Political Science, 44:2, 375–404.

James, L. R., S. A. Mulaik, and J. M. Brett. 1982. Causal analysis: Assumptions, models, and data. 
Beverly Hills: Sage Publications.

Jamison, C., and F. Scogin. 1995. The outcome of cognitive bibliotherapy with depressed adults. 
Journal of Consulting and Clinical Psychology, 63: 644–650.

Jasra, A., C. C. Holmes, and D. A. Stephens. 2005. Markov chain Monte Carlo methods and the label 
switching problem in Bayesian mixture modeling. Statistical Science, 20:1, 50–67.

Jöreskog, K. G. 1967. Some contributions to maximum likelihood factor analysis. Psychometrika, 32: 
443–482.

______. 1969. A general approach to confirmatory maximum likelihood factor analysis. 
Psychometrika, 34: 183–202.

______. 1971. Simultaneous factor analysis in several populations. Psychometrika, 36: 409–426.
______. 1979. A general approach to confirmatory maximum likelihood factor analysis with 

addendum. Advances in factor analysis and structural equation models, K. G. Jöreskog and D. 
Sörbom, eds. Cambridge, MA: Abt Books, 21–43 よ り。

Jöreskog, K. G., and D. Sörbom. 1984. LISREL-VI user’s guide. 3rd ed. Mooresville, IN: Scientific 
Software.

______. 1989. LISREL-7 user’s reference guide. Mooresville, IN: Scientific Software.
______. 1996. LISREL-8 user’s reference guide. Chicago: Scientific Software.
Judd, C. M., and M. A. Milburn. 1980. The structure of attitude systems in the general public: 

Comparisons of a structural equation model. American Sociological Review, 45: 627–643.
Kalbfleisch, J. D., and R. L. Prentice. 2002. The statistical analysis of failure time data. Hoboken, 

NJ: John Wiley and Sons.
Kaplan, D. 1989. Model modification in covariance structure analysis: Application of the expected 

parameter change statistic. Multivariate Behavioral Research, 24: 285–305.
Kendall, M. G., and A. Stuart. 1973. The advanced theory of statistics. Vol. 2, 3rd ed. New York: 

Hafner.
Kline, R. B. 2016. Principles and practice of structural equation modeling. 4th ed. New York: The 

Guilford Press.
Kullback, S., and R. A. Leibler. 1951. On information and sufficiency. Annals of Mathematical 

Statistics, 22: 79–86.
Lazarsfeld, P. F., and N. W. Henry. 1968. Latent structure analysis. Boston: Houghton Mifflin.



603

参考文献

Lee, S., and S. Hershberger. 1990. A simple rule for generating equivalent models in covariance 
structure modeling. Multivariate Behavioral Research, 25: 313–334.

Lee, S. Y. 2007. Structural equation modeling: A Bayesian approach. Chichester, UK: John Wiley 
and Sons.

Lee, S. Y., and X. Y. Song. 2004. Evaluation of the Bayesian and maximum likelihood approaches 
in analyzing structural equation models with small sample sizes. Multivariate Behavioral 
Research, 39:4, 653–686.

Lee, S. Y., and X. Y. Song. 2003. Bayesian analysis of structural equation models with dichotomous 
variables. Statistics in Medicine, 22: 3073–3088.

Linhart, H., and W. Zucchini. 1986. Model selection. New York: John Wiley and Sons.
Little, R. J. A., and D. B. Rubin.. 1989. The analysis of social science data with missing values. 

Sociological Methods and Research, 18: 292?326.
______. 2020. Statistical analysis with missing data. 3rd ed. Hoboken, NJ: John Wiley and Sons.
Little, R. J. A., and N. Schenker. 1995. Missing data. In: Handbook of statistical modeling for the 

social and behavioral sciences, G. Arminger, C. C. Clogg, and M. E. Sobel, eds. New York: 
Plenum.

Loehlin, J. C., and A. A. Beaujean. 2017. Latent variable models: An introduction to factor, path, and 
structural equation analysis. 5th ed. New York: Routledge.

Loken, E. 2004. Using latent class analysis to model temperament types. Multivariate Behavioral 
Research, 39:4, 625–652.

Lord, F. M. 1955. Estimation of parameters from incomplete data. Journal of the American Statistical 
Association, 50: 870–876.

Lubke, G. H., and B. Muthén. 2005. Investigating population heterogeneity with factor mixture 
models. Psychological Methods, 10:1, 21–39.

MacCallum, R. C. 1986. Specification searches in covariance structure modeling. Psychological 
Bulletin, 100: 107–120.

______. 1990. The need for alternative measures of fit in covariance structure modeling. Multivariate 
Behavioral Research, 25: 157–162.

MacCallum, R. C., M. Roznowski, and L. B. Necowitz. 1992. Model modifications in covariance 
structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111: 
490–504.

MacCallum, R. C., D. T. Wegener, B. N. Uchino, and L. R. Fabrigar. 1993. The problem of equivalent 
models in applications of covariance structure analysis. Psychological Bulletin, 114: 185–199.

MacKay, D. J. C. 2003. Information theory, inference and learning algorithms. Cambridge, UK: 
Cambridge University Press.

MacKinnon, D. P., C. M. Lockwood, and J. Williams. 2004. Confidence limits for the indirect effect: 
distribution of the product and resampling methods. Multivariate Behavioral Research, 39:1, 
99–128.



604

Madigan, D., and A. E. Raftery. 1994. Model selection and accounting for model uncertainty in 
graphical models using Occam’s window. Journal of the American Statistical Association, 89: 
1535–1546.

Manly, B. F. J. 1991. Randomization and Monte Carlo Methods in Biology. London: Chapman and 
Hall.

Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer 
Research, 27: 209–220.

Mantel, N., and R. S. Valand. 1970. A technique of nonparametric multivariate analysis. Biometrics, 
26: 47–558.

Mardia, K. V. 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika, 
57: 519–530.

______. 1974. Applications of some measures of multivariate skewness and kurtosis in testing 
normality and robustness studies. Sankhya, Series B, 36: 115–128.

Marsh, H. W., and D. Hocevar. 1985. Application of confirmatory factor analysis to the study of self-
concept: First- and higher-order factor models and their invariance across groups. Psychological 
Bulletin, 97: 562–582.

Martin, J. K., and R. P. McDonald. 1975. Bayesian estimation in unrestricted factor analysis: A 
treatment for Heywood cases. Psychometrika, 40: 505–517.

Matsumoto, M., and T. Nishimura. 1998. Mersenne twister: A 623-dimensionally equidistributed 
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer 
Simulation, 8: 3–30.

Matthai, A. 1951. Estimation of parameters from incomplete data with application to design of 
sample surveys. Sankhya, 11: 145–152.

McArdle, J. J., and M. S. Aber. 1990. Patterns of change within latent variable structural equation 
models. Statistical methods in longitudinal research, Volume I: Principles and structuring change, 
A. von Eye, ed. New York: Academic Press, 151–224 よ り。

McDonald, R. P. 1978. A simple comprehensive model for the analysis of covariance structures. 
British Journal of Mathematical and Statistical Psychology, 31: 59–72.

______. 1982. A note on the investigation of local and global identifiability. Psychometrika, 47: 
101–103.

______. 1989. An index of goodness-of-fit based on noncentrality. Journal of Classification, 6: 
97–103.

McDonald, R. P., and W. R. Krane. 1977. A note on local identifiability and degrees of freedom in 
the asymptotic likelihood ratio test. British Journal of Mathematical and Statistical Psychology, 
30: 198–203.

______. 1979. A Monte-Carlo study of local identifiability and degrees of freedom in the asymptotic 
likelihood ratio test. British Journal of Mathematical and Statistical Psychology, 32: 121–132.

McDonald, R. P., and H. W. Marsh. 1990. Choosing a multivariate model: Noncentrality and 
goodness of fit. Psychological Bulletin, 107: 247–255.



605

参考文献

Mulaik, S. A. 1990. An analysis of the conditions under which the estimation of parameters inflates 
goodness of fit indices as measures of model validity. Psychometric Society の年次総会 
(Princeton, New Jersey, June 28–30, 1990) で論文発表。

Mulaik, S. A., L. R. James, J. Van Alstine, N. Bennett, S. Lind, and C. D. Stilwell. 1989. Evaluation 
of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105: 430–445.

Muth始 , B., D. Kaplan, and M. Hollis. 1987. On structural equation modeling with data that are not 
missing completely at random. Psychometrika, 52: 431–462.

Olinsky, A., S. Chen, and L. Harlow. 2003. The comparitive efficacy of imputation methods for 
missing data in structural equation modeling. European Journal of Operational Research, 151: 
53–79.

Olsson, S. 1973. An experimental study of the effects of training on test scores and factor structure. 
Uppsala, Sweden: University of Uppsala, Department of Education.

Raftery, A. E. 1993. Bayesian model selection in structural equation models. In: Testing structural 
equation models, K. A. Bollen and J. S. Long, eds. Newbury Park, CA: Sage Publications, 
163–180.

______. 1995. Bayesian model selection in social research. Sociological Methodology, P. V. 
Marsden, ed. San Francisco: Jossey-Bass, 111–163 よ り。

Rigdon, E. E. 1994a. Calculating degrees of freedom for a structural equation model. Structural 
Equation Modeling, 1: 274–278.

______. 1994b. Demonstrating the effects of unmodeled random measurement error. Structural 
Equation Modeling, 1: 375–380.

Rock, D. A., C. E. Werts, R. L. Linn, and K. G. Jöreskog. 1977. A maximum likelihood solution to 
the errors in variables and errors in equations model. Journal of Multivariate Behavioral Research, 
12: 187–197.

Rubin, D. B. 1976. Inference and missing data. Biometrika, 63: 581–592.
______. 1987. Multiple imputation for nonresponse in surveys. New York: John Wiley and Sons.
Runyon, R. P., and A. Haber. 1980. Fundamentals of behavioral statistics, 4th ed. Reading, Mass.: 

Addison-Wesley.
Salhi, S. 1998. Heuristic search methods. Modern methods for business research, G. A. Marcoulides, 

ed. Mahwah, NJ: Erlbaum, 147–175 よ り。

Saris, W. E., A. Satorra, and D. Sörbom. 1987. The detection and correction of specification errors 
in structural equation models. Sociological methodology, C. C. Clogg, ed. San Francisco: Jossey-
Bass よ り。

Schafer, J. L. 1997. Analysis of incomplete multivariate data. London, UK: Chapman and Hall.
Schafer, J. L., and J. W. Graham. 2002. Missing data: Our view of the state of the art. Psychological 

Methods, 7:2, 147–177.
Schafer, J. L., and M. K. Olsen. 1998. Multiple imputation for multivariate missing-data problems: 

A data analyst's perspective. Multivariate Behavioral Research, 33:4, 545–571.
Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6: 461–464.



606

Scheines, R., H. Hoijtink, and A. Boomsma. 1999. Bayesian estimation and testing of structural 
equation models. Psychometrika, 64: 37–52.

Shrout, P. E., and N. Bolger. 2002. Mediation in experimental and nonexperimental studies: New 
procedures and recommendations. Psychological Methods, 7:4, 422–445.

Sobel, M. E. 1982. Asymptotic confidence intervals for indirect effects in structural equation models. 
Sociological methodology, S. Leinhart, ed. San Francisco: Jossey-Bass, 290–312 よ り。

______. 1986. Some new results on indirect effects and their standard errors in covariance structure 
models. Sociological methodology, S. Leinhart, ed. San Francisco: Jossey-Bass, 159–186 よ り。

Sobel, M. E., and G. W. Bohrnstedt. 1985. Use of null models in evaluating the fit of covariance 
structure models. Sociological methodology, N. B. Tuma, ed. San Francisco: Jossey-Bass, 152-
178 よ り。

Sörbom, D. 1974. A general method for studying differences in factor means and factor structure 
between groups. British Journal of Mathematical and Statistical Psychology, 27: 229–239.

______. 1978. An alternative to the methodology for analysis of covariance. Psychometrika, 43: 
381–396.

Spirtes, P., R. Scheines, and C. Glymour. 1990. Simulation studies of the reliability of computer-
aided model specification using the TETRAD II, EQS, and LISREL programs. Sociological 
Methods and Research, 19: 3–66.

Steiger, J. H. 1989. EzPATH: Causal modeling. Evanston, IL: Systat.
______. 1990. Structural model evaluation and modification: An interval estimation approach. 

Multivariate Behavioral Research, 25: 173–180.
Steiger, J. H., and J. C. Lind. 1980, May 30. Statistically-based tests for the number of common 

factors. Psychometric Society の Annual Spring Meeting (Iowa City) で論文発表。

Steiger, J. H., A. Shapiro, and M. W. Browne. 1985. On the multivariate asymptotic distribution of 
sequential chi-square statistics. Psychometrika, 50: 253–263.

Stelzl, I. 1986. Changing a causal hypothesis without changing the fit: Some rules for generating 
equivalent path models. Multivariate Behavioral Research, 21: 309–331.

Stephens, M. 2000. Dealing with label switching in mixture models. Journal of the Royal Statistical 
Society, Series B, 62:4, 795–809.

Stine, R. A. 1989. An introduction to bootstrap methods: Examples and ideas. Sociological Methods 
and Research, 18: 243–291.

Swain, A. J. 1975. Analysis of parametric structures for variance matrices. Unpublished Ph.D. thesis, 
University of Adelaide.

Tanaka, J. S., and G. J. Huba. 1985. A fit index for covariance structure models under arbitrary GLS 
estimation. British Journal of Mathematical and Statistical Psychology, 38: 197–201.

______. 1989. A general coefficient of determination for covariance structure models under arbitrary 
GLS estimation. British Journal of Mathematical and Statistical Psychology, 42: 233–239.

Tucker, L. R., and C. Lewis. 1973. A reliability coefficient for maximum likelihood factor analysis. 
Psychometrika, 38: 1–10.



607

参考文献

Verleye, G. 1996. Missing at random data problems in attitude measurements using maximum 
likelihood structural equation modeling. Unpublished dissertation. Frije Universiteit Brussels, 
Department of Psychology.

Vermunt, J. K., and J. Magidson. 2005. Structural equation models: Mixture models. Encyclopedia 
of statistics in behavioral scientce, B. Everitt and D. Howell, eds. Chichester, UK: John Wiley and 
Sons, 1922–1927 よ り。

Warren, R. D., J. K. White, and W. A. Fuller. 1974. An errors-in-variables analysis of managerial role 
performance. Journal of the American Statistical Association, 69: 886–893.

Wheaton, B. 1987. Assessment of fit in overidentified models with latent variables. Sociological 
Methods and Research, 16: 118–154.

Wheaton, B., B. Muthén, D. F. Alwin, and G. F. Summers. 1977. Assessing reliability and stability in 
panel models. Sociological methodology, D. R. Heise, ed. San Francisco: Jossey-Bass, 84–136 よ
り。

Wichman, B. A., and I. D. Hill. 1982. An efficient and portable pseudo-random number generator. 
Algorithm AS 183. Applied Statistics, 31: 188–190.

Winer, B. J. 1971. Statistical principles in experimental design. New York: McGraw-Hill.
Wothke, W. 1993. Nonpositive definite matrices in structural modeling. In: Testing structural 

equation models, K. A. Bollen and J. S. Long, eds. Newbury Park, CA: Sage Publications, 
256–293.

______. 1999 Longitudinal and multi-group modeling with missing data. Modeling longitudinal and 
multiple group data: Practical issues, applied approaches and specific examples, T. D. Little, K. 
U. Schnabel, and J. Baumert, eds. よ り。 Mahwah, New Jersey: Lawrence Erlbaum Associates.

Zhu, H. T., and S. Y. Lee. 2001. A Bayesian analysis of finite mixtures in the LISREL model. 
Psychometrika, 66:1, 133–152.



608



609

索引

A
ADF, 漸近的分布非依存 , 560
AGFI, 修正済み適合度指標 , 577
AIC

Burnham と  Anderson によるガイドライン , 300
赤池情報量基準 , 283, 570

Amos Graphics、 起動 , 9
AmosEngine メ ソ ッ ド , 52
Amos による仮定

回帰について , 203
外生変数間の相関について , 71
共分散分析について , 221
欠損データについて , 250
測定モデル内のパラ メータについて , 225
分布に関する , 32

Amos モデルの分布の仮定 , 32
Anderson のアイ リ スのデータ , 484, 497
AStructure メ ソ ッ ドの式形式 , 72

B
Bayes 因子 , 590, 591

再調整 , 305
BCC

Browne-Cudeck 基準 , 283, 571
Burnham と  Anderson によるガイドライン , 300
モデル比較 , 299

BCC を使用したモデル比較 , 327
BIC

ベイズ情報量基準 , 571
モデル比較 , 321

C
CAIC, 一貫した AIC, 571
Caption

パス図を描画するための pd 方法 , 534
CFI, 比較適合指標 (comparative fit index), 575

CMIN
最小乖離度関数 , 109, 565
テーブル , 342

CMIN/DF, 最小乖離度を自由度で割った値 , 566
Cov

パス図を描画するための pd 方法 , 534
C における

オプシ ョ ン矢印 , 313
探索的因子分析 , 312
適合度 , 314

D
DF, 自由度 , 564

E
ECVI, 期待交差確認指標 , 572
EQS (SEM プログラム ), 223
European Values Study Group, 453

F
F0

テキス ト  マクロ , 568
F0, 母集団の乖離度 , 568
Fisher のアイ リ スのデータ , 484, 497
FMIN, 乖離度 F の最小値 , 567

G
GetCheckBox

pd 方法 , 539
GFI, 倹約性適合度指標 , 578
GFI, 適合度指標 , 577
GLS, 一般化した最小 2 乗法 , 560
GroupName メ ソ ッ ド , 157

H
HOELTER, ク リ ティカル N, 578



610

索引

L
LISREL (SEM プログラム ), 223

M
Mainsub 関数 , 531
MCMC 診断 , 468
MECVI, 変更された期待交差確認指標 , 572
ML, 最尤法推定値 , 559

N
NCP, 非心度パラ メータ , 568
NFI, 相対適合指標 (relative fit index), 574
NFI, 増分適合指標 (incremental fit index), 575
NFI, 標準適合指標 (normed fit index), 573
NNFI, 非標準適合指標 (non-normed fit index), 575
NPAR, パラ メータ数 , 564

O
Observed

パス図を描画するための pd 方法 , 532
Occam のウ ィンド ウ、 対称 , 304

P
P, 確率 , 565
Path

パス図を描画するための pd 方法 , 533
PCFI, 倹約性比較適合指標 (parsimonious 

comparative fit index), 576
PCLOSE, 母集団 RMSEA の高い適合性 , 570
pd 方法

Caption, 534
Cov, 534
GetCheckBox, 539
Observed, 532
Path, 533
Reposition, 534
SetDataFile, 539
UndoResume, 534
UndoToHere, 534
Unobserved, 533

PNFI, 倹約性標準適合指標 (parsimonious normed 
fit index), 576

PRATIO, 倹約率 , 565

R
Reposition

パス図を描画するための pd 方法 , 534
RFI, 相対非心度指標 (relative noncentrality index), 

575
RMR, 残差平均平方根 , 579
RMSEA, 近似誤差平均平方根 , 569

S
Semnet, 4
SetDataFile

pd 方法 , 539
SLS, 尺度不変最小 2 乗 , 560

T
TLI, Tucker-Lewis 指標 , 575

U
ULS, 重み付けのない最小 2 乗法 , 560
UndoResume

pd 方法 , 534
UndoToHere

pd 方法 , 534
Unobserved

パス図を描画するための pd 方法 , 533

あ
アイ リ スのデータ , 484, 497
赤池ウェイ ト , 590, 591

解釈 , 301
表示 , 300

新しいグループ , 51, 70, 157
安定指数 , 124
安定したモデル , 124

い
一貫した AIC(CAIC), 283
入れ子になったモデル , 239
因子得点ウェイ ト , 111
因子の平均値

制約条件の削除 , 344
比較 , 343

因子負荷 , 339



611

索引

因子分析 , 127
構造平均 , 209
探索的 , 323
モデル , 209

う
打ち切りデータ , 439

お
オブジェク トの移動 , 14
オブジェク トの形変更 , 14
オプシ ョ ン出力 , 15, 30, 43, 110
オプシ ョ ン矢印 , 306, 313, 316

か
カイ  2 乗確率メ ソ ッ ド , 259
カイ  2 乗統計量 , 47
図のキャプシ ョ ンへの表示 , 48

回帰法代入 , 427
回帰モデル , 9, 13, 442
外生変数 , 35, 63, 69, 71
外生変数間の相関 , 71
乖離度 , 559
取得

重相関係数の平方 , 123
パラ メータの差に対する検定統計量 , 166
標準化推定値 , 122, 132

確率 , 28
確率的回帰法代入 , 427
カスタム推定値 , 403
仮説の検定 , 47
カテゴ リの境界 , 459
間接効果 , 112

信頼区間の発見 , 397
推定 , 390
表示、 標準化 , 393

き
記述適合度 , 587
帰無モデル , 587
境界。 「カテゴ リの境界」 を参照

共通因子 , 129
共通因子モデル , 128

共分散
構造 , 339
描画 , 174
不偏推定値 , 222
ラベル , 174

共分散の設定 , 25
共分散分析 , 137

代替 , 135, 221
方法の比較 , 235

共分散分析の代替分析 , 135, 221
共分散を描く , 174

く
グラフ ィ ッ クを使用しないモデルの指定 , 529
グループ間制約 , 212
影響されるパラ メータ , 340
手動設定 , 343
生成 , 351

グループ間制約の生成 , 351
グループの相違の指定
規則 , 148

グループの相違を指定するための規則 , 148

け
計算

検定統計量 , 100
標準化推定値 , 30

係数 , 581
結果取得用のメ ソ ッ ド , 52
結果の結合、 多重代入データ  ファ イル , 437
結果を含むテキス ト  ファ イル , 51
欠損データ , 249–270
検定統計量 , 27

計算 , 100
倹約性 , 564
倹約性指標 , 576

こ
構造指定 , 72

パラ メータの推定 , 72
構造方程式モデリ ング , 2

雑誌 , 4
推定方法 , 2

構造方程式モデリ ングに関する雑誌 , 4
構造モデル , 75
構造モデルの共分散 , 339
固定変数 , 32



612

索引

コピー
テキス ト出力の表示 , 20
パス図 , 20

固有の変数 , 71
混合モデリ ング , 483

さ
再帰モデル , 69
再コード化データ , 441, 456, 474
最小乖離度関数 , 109
細線化 , 381
再調整された測度 , 589
作成

2 つ目のグループ , 174
パス図 , 77

散布図
C - df を表す線 , 310
C - df を表す線の調整 , 311
定数の適合度を表す線 , 309
定数の適合度を表す線の調整 , 309
定数の適合度を表すその他の線 , 312
適合度と複雑度 , 307

し
シード、 乱数 , 362
閾値。 「カテゴ リの境界」 を参照

識別可能モデル , 66, 252, 255, 280, 563
識別制約 , 138
時系列図 , 370
事後

標準偏差 , 357
分布 , 357
平均 , 357

自己相関図 , 371, 469
事後予測分布 , 445, 470, 495, 508, 525

潜在変数 , 474
事前分布 , 357, 358, 377

グループ比率 , 528
指定

図のキャプシ ョ ンのグループ名 , 162
等しいパラ メータ , 39
等しいパラ メータの利点 , 39

指標の回転 , 78
修正指数 , 95, 100, 354

誤用 , 100
要求 , 139

修正指数の誤用 , 100

修正指数の要求 , 139
収束

事後分布の要約の , 367
分布の , 366
ベイズ推定における , 366

自由度 , 29
従来の線型回帰 , 61
順序 - カテゴ リ カル データ , 453
条件付き検定 , 239
情報理論的適合度 , 570
診断

MCMC, 468
信頼区間 , 578, 579
信頼領域 , 375

す
垂直に配置 , 173
推定

間接効果 , 390
分散と共分散 , 21
平均値 , 191

数値カスタム推定値 , 409
数量 , 541
スク リー プロ ッ ト
最善の適合グラフの表示 , 314
探索的モデル特定化 , 315

すべてのモデルの適合 , 342
単一の分析 , 171

せ
正規分布 , 32
生成されたモデル , 341
生存期間 , 440
制約

共分散 , 39
追加によるモデルの改良 , 100
パラ メータ , 13
分散 , 38
平均値と切片項 , 350

ゼロ  ベースの再調整 , 589
ゼロ  モデル , 563
描画領域

共分散パスの追加 , 80
測定モデルのウェイ トの表示 , 340
非観測変数の追加 , 80
方向の変更 , 76

漸近 , 28



613

索引

線型従属 , 62
宣言用のメ ソ ッ ド , 52
潜在構造分析 , 496, 509
潜在変数

事後予測分布 , 474

そ
相関がない変数 , 54
相関がない変数の検定 , 54
総合効果 , 112
測定エラー , 62
測定モデル , 75, 278
測定モデルのウェイ ト , 339

描画領域での表示 , 340
測定モデルの残差 , 340
測定モデルの複写 , 78

た
対称的な Occam のウ ィンド ウ , 304
代入

回帰 , 427
確率的回帰法 , 427
多重 , 428
データ , 427, 448, 478
ベイジアン , 427
モデルベースの , 428

多重代入 , 428
多重代入データセッ ト , 435
多重代入データ  ファ イルの結果の結合 , 437
多変量分散分析 , 198
単一分析での複数モデル , 106
探索的因子分析 , 318, 323

スク リー プロ ッ ト , 312
探索的モデル特定化 , 315
適合度と複雑度についての散布図 , 307

探索的モデル特定化 , 293–322
Bayes 因子を使用したモデル比較 , 303
BCC を使用したモデル比較 , 299
BIC を使用したモデル比較 , 302
CAIC, 584
CFI, 583
RMSEA, 583
赤池ウェイ ト , 300
オプシ ョ ン矢印 , 306, 319
オプシ ョ ン矢印が少数 , 294

確証的 , 294
高速化 , 297
実行 , 297
使用するパラ メータ数 , 306
生成されたモデル , 298
探索的因子分析 , 315, 318, 323
適合度の表示 , 297
デフォルトに戻す , 296, 320
発見的 , 323, 332
パラ メータ推定値 , 299
必須の矢印 , 295
プログラムのオプシ ョ ン , 296
保持するモデルの制限 , 296

探索分析 , 91
単純モデル , 564

ち
直接効果 , 112

て
データおよびモデル指定用のメ ソ ッ ド , 52
データ代入 , 250, 427, 448, 478
データの再コード化 , 441, 456, 474
データの入力 , 41
データ  ファ イル , 11
適合度 , 563, 580, 583
テキス ト出力と しての相関推定値 , 31
テキス ト出力の表示

コピー , 20
テキス ト  マクロ , 47, 564–579
デフォルト、 変更 , 223

と
統計仮説の検定 , 94
同時因子分析 , 179
同時方程式モデル , 161
同等性の制約条件 , 129
独自因子 , 129
特定可能性 , 61, 129, 581

条件 , 129
特定可能性の条件 , 129
独立モデル , 252, 255, 280, 563
ト レース図 , 370, 468, 510
ト レーニング データ , 483



614

索引

な
内生変数 , 66
名前を付ける

グループ , 180
変数 , 24

は
バーンイン 標本 , 365
パス図 , 2
印刷 , 20
オブジェク トの移動 , 14, 40
オブジェク トの形変更 , 14
オブジェク トの削除 , 15
オブジェク トの書式設定 , 40
カイ  2 乗統計量の表示 , 48
キャプシ ョ ンのグループ名の指定 , 162
コピー , 20
作成 , 77
指標の回転 , 78
新規 , 22
測定モデルの複写 , 78
データ  ファ イルの添付 , 22, 41
動作のやり直し , 15
動作を元に戻す , 15
パラ メータの制約 , 13
表示の変更 , 14
矢印の描画 , 13

発見的な探索的モデル特定化 , 323, 332
ステップワイズ法 , 332, 333
制限 , 335
変数減少法 , 332
変数増加法 , 332

パラ メータ
グループ間制約による影響 , 340
等しい、 指定の利点 , 39
等しいパラ メータの指定 , 39

パラ メータ制約条件 , 37
パラ メータの推定
構造指定 , 72

ひ
非拡散事前分布 , 377
非観測変数 , 73
非再帰モデル , 69, 119, 120

表示
グラフ ィ ッ クス出力 , 19, 26
生成されたモデル , 341
テキス ト出力の表示 , 17, 27
パラ メータ部分集合 , 340
標準化間接効果 , 393
標準化推定値 , 133

標準化推定値 , 30, 122
取得 , 132
表示 , 133

ふ
ブート ス ト ラ ップ , 271–276

ADF, 287
GLS, 287
ML, 287
ULS, 287
欠点 , 271
失敗 , 283
進行状況の監視 , 273
診断情報のあるテーブル , 274
推定方法の比較 , 285–291
標本 , 277
標本の数 , 273, 281
モデル比較における手法 , 277–284

不安定なモデル , 124
付加定数 ( 切片 ), 203
複雑モデル , 564
複数グループでの因子分析 , 337
複数グループの同時分析 , 147
複数グループの分析 , 349
不適解 , 378
不等式制約、 データ , 445, 451
負の分散 , 142
フ リー パラ メータ , 35
[ プロパティをド ラ ッグ ] オプシ ョ ン , 173
分散

不偏推定値 , 222
ラベル , 174

分散と共分散の等質性 , 503
分散と共分散の不偏推定値 , 222
分類エラー , 495

へ
ベースライン モデル , 587

指定 , 588
比較 , 573

ペアごとの削除 , 249



615

索引

平均値と切片
モデル作成 , 191

平均値と切片項
制限 , 343, 350

[ 平均値と切片を推定 ] オプシ ョ ン
選択しない場合 , 194
選択する場合 , 194

平均値に関する仮説の検定 , 191
ベイジアン推定 , 357

追加推定値の , 395
ベイジアン法代入 , 427
ベイズ推定における安定性テス ト , 387
ベイズ推定における許容性テス ト , 387
ベイズの信頼区間 , 358
ベイズの定理 , 357
変更

描画領域の方向 , 76
デフォルト , 223
デフォルトの動作 , 223
フォン ト , 25

変数
外生 , 63, 69, 71
固有 , 71
名前の入力 , 80
非観測 , 73

変数減少法による発見的な探索的モデル特定化
, 332

変数増加法による発見的な探索的モデル特定化
, 332

ほ
飽和 , 66
飽和モデル

オプシ ョ ン指定 , 325
特定不能な係数 , 64
モデル , 66

母集団の乖離度
モデルの妥当性の測度 , 567

も
網羅的な探索的モデル特定化 , 332
モデル
新しい制約の追加による改良 , 100
安定 , 124
一方に対するも う一方の検定 , 86
入れ子 , 239
因子分析 , 209
回帰 , 9

棄却 , 94
共通因子 , 128
構造 , 75
個別、 グラフ ィ ッ ク出力の表示 , 109
再帰 , 69
識別可能 , 66, 252, 255, 280, 563
指定 , 11, 35
修正 , 94
新規 , 10
生成 , 341
ゼロ , 563
描画 , 130
測定 , 75, 278
単一分析での複数 , 106
単純 , 564
同時方程式 , 161
特定 , 61, 64, 76, 93, 121, 129, 138, 209
独立 , 252, 255, 280, 563
内生 , 66
非再帰 , 69, 119, 120
不安定 , 124
複雑 , 564
複数、 統計の表示 , 109
平均値と切片項を使用しない , 337
変数の描画 , 11
変数の命名 , 12
矢印の描画 , 13

モデルの指定、 グラフィ ックを使用しない , 529
モデル比較

Bayes 因子の使用 , 303
BCC の使用 , 299
BIC の使用 , 302, 321

モデルベースの代入 , 428

よ
予測分布。 「事後予測分布」 を参照

予測変数 , 32

ら
ラベル
出力 , 46
分散と共分散 , 174

ラベル スイ ッチング , 510, 528
乱数のシード , 362
乱数変数 , 32

り
リ ス ト ごとの削除 , 249



616

索引


	IBM® SPSS® Amos™ 30 ユーザーズ ガイド
	目次
	第1章 概要
	主要な方法
	チュートリアルについて
	例について
	ドキュメントについて
	その他の情報源
	謝辞

	第2章 チュートリアル: Amos Graphics のス タートアップ ガイド
	概要
	データについて
	Amos Graphics の起動
	新しいモデルの作成
	データ ファイルの指定
	モデルの指定と変数の描画
	変数の命名
	矢印の描画
	パラメータの制約
	パス図の表示の変更
	オブジェクトを移動するには
	オブジェクトや双方向矢印の形を変更するには
	オブジェクトを削除するには
	動作を元に戻すには
	動作をやり直すには

	オプション出力の設定
	分析の実行
	出力の表示
	テキスト出力を表示するには
	グラフィックス出力を表示するには

	パス図の印刷
	パス図のコピー
	テキスト出力のコピー

	例1 分散および共分散の推定
	概要
	データについて
	データの取り込み
	データの分析
	モデルを指定する
	変数に名前を付ける
	フォントの変更
	共分散の設定
	分析の実行

	グラフィック出力を表示する
	テキスト出力の表示
	オプション出力
	標準化推定値の計算
	分析の再実行
	相関推定値のテキスト出力としての表示

	Amos モデルの分布の仮定
	VB.NET でのモデル作成
	追加出力の生成

	C# によるモデリング
	Python でのモデリング
	その他のプログラム開発ツール

	例2 仮説の検定
	概要
	データについて
	パラメータ制約条件
	分散の制約
	等しいパラメータの指定
	等しいパラメータの指定の利点

	共分散の制約

	オブジェクトの移動と書式設定
	データの入力
	分析の実行
	テキスト出力の表示

	オプション出力
	分散共分散行列推定値
	共分散および分散推定値のパス図への表示

	出力のラベル付け
	仮説の検定
	パス図へのカイ 2 乗統計量の表示
	VB.NET でモデルを作成する
	タイミングがすべて


	例3 その他の仮説の検定
	概要
	データについて
	データの取り込み
	2 つの変数に相関がないという仮説の検定
	モデルを指定する
	テキスト出力の表示
	グラフィック出力の表示
	VB.NET でのモデル作成

	例4 従 来の線型回帰
	概要
	データについて
	データの分析
	モデルを指定する
	特定
	係数を固定する
	テキスト出力を表示する
	グラフィック出力を表示する
	その他のテキスト出力を表示する
	VB.NET でモデルを作成する
	外生変数間の相関に関する仮定
	AStructure メソッドの式形式


	例5 非観測変数
	概要
	データについて
	モデル A
	測定モデル
	構造モデル
	特定
	モデルを指定する
	描画領域の方向を変更する
	パス図を作成する
	指標を回転する
	測定モデルを複写する
	変数名を入力する
	構造モデルを完成する

	モデル A の結果
	グラフィック出力を表示する

	モデル B
	モデル B の結果
	モデル A に対するモデル B の検定
	VB.NET でのモデル作成
	モデル A
	モデル B


	例6 探索分析
	概要
	データについて
	Wheaton データ用のモデル A
	モデルの特定化
	特定
	分析の結果
	棄却の処理
	修正指数
	修正指数を使用する
	修正指数の閾値を変更する


	Wheaton データ用のモデル B
	テキスト出力
	モデル B のグラフィック出力
	修正指数の誤用
	新しい制約の追加によってモデルを改良する
	検定統計量を計算する


	Wheaton データ用のモデル C
	モデル C の結果
	Model C の検定
	モデル C のパラメータ推定値

	単一分析での複数モデルの使用
	複数モデルによる出力
	個々のモデルのグラフィック出力を表示する
	4 つのモデルすべての適合度の統計を表示する
	オプション出力を取得する
	間接効果、直接効果、総合効果を取得する

	VB.NET でのモデル作成
	モデル A
	モデル B
	モデル C
	複数のモデルを適合する


	例7 非再帰 モデル
	概要
	データについて
	Felson と Bohrnstedt のモデル
	モデルの特定
	分析の結果
	テキスト出力
	標準化推定値を取得する
	重相関係数の平方を取得する
	グラフィック出力
	安定指数

	VB.NET でのモデル作成

	例8 因子分析
	概要
	データについて
	共通因子モデル
	特定
	モデルを指定する
	モデルを作成する

	分析の結果
	標準化推定値を取得する
	標準化推定値を表示する

	VB.NET でのモデル作成

	例9 共分散分析の代替分析
	概要
	共分散分析とその代替分析
	データについて
	共分散分析
	Olsson データ用のモデル A
	特定
	モデル A を指定する
	モデル A の結果
	より適切なモデルを探す
	修正指数を要求する

	Olsson データ用のモデル B
	モデル B の結果
	Olsson データ用のモデル C
	モデル C のパス図を作成する

	モデル C の結果
	すべてのモデルを一度に適合する
	VB.NET でのモデル作成
	モデル A
	モデル B
	モデル C
	複数のモデルを適合する


	例10 複数グループの同時分析
	概要
	複数グループの分析
	データについて
	モデル A
	グループの相違を指定するための規則
	モデル A を指定する
	テキスト出力
	グラフィック出力

	モデル B
	テキスト出力
	グラフィック出力

	VB.NET でのモデル作成
	モデル A
	モデル B
	複数モデルの入力


	例11 Felson と Bohrnstedt の女子生徒と男 子生徒のデータ
	概要
	Felson と Bohrnstedt のモデル
	データについて
	女子生徒と男子生徒用のモデル A を指定する
	図のキャプションを指定する

	モデル A のテキスト出力
	モデル A のグラフィック出力
	パラメータの差に対する検定統計量を取得する

	女子生徒と男子生徒のモデル B
	モデル B の結果
	テキスト出力
	グラフィックス出力

	モデル A と B を単一の分析に適合する
	女子生徒と男子生徒のモデル C
	モデル C の結果
	VB.NET でのモデル作成
	モデル A
	モデル B
	モデル C
	複数のモデルを適合する


	例12 複数のグループの同時因子分析
	概要
	データについて
	Holzinger と Swineford の少年少女のモデル A
	グループに名前を付ける
	データの指定

	モデル A の結果
	テキスト出力
	グラフィック出力

	Holzinger と Swineford の少年少女のモデル B
	モデル B の結果
	テキスト出力
	グラフィック出力

	VB.NET でのモデル作成
	モデル A
	モデル B


	例13 平均値に関する仮説の推定および検定
	概要
	平均値と切片のモデル作成
	データについて
	若者および老人の被験者のモデル A
	Amos Graphics の平均構造モデル
	モデル A の結果
	テキスト出力
	グラフィック出力

	若者および老人の被験者のモデル B
	モデル B の結果
	モデル B とモデル A との比較
	複数のモデル入力
	VB.NET での平均構造モデル作成
	モデル A
	モデル B
	複数のモデルを適合する


	例14 明示的な切片を持つ回帰
	概要
	Amos が行う仮定
	データについて
	モデルを指定する
	分析の結果
	テキスト出力
	グラフィック出力

	VB.NET でのモデル作成

	例15 構造平均による因子分析
	概要
	因子平均
	データについて
	少年と少女のモデル A
	モデルを指定する

	グループ間の制約条件について
	モデル A の結果
	テキスト出力
	グラフィック出力

	少年と少女のモデル B
	モデル B の結果
	モデル A およびモデル B の比較
	VB.NET でのモデル作成
	モデル A
	モデル B
	複数のモデルの当てはめ


	例16 共分散分析に対する Sörbom の代替案
	概要
	前提条件
	データについて
	デフォルトの動作の変更
	モデル A
	モデルを指定する

	モデル A の結果
	テキスト出力

	モデル B
	モデル B の結果
	モデル C
	モデル C の結果
	モデル D
	モデル D の結果
	モデル E
	モデル E の結果
	モデル A からモデル E を単一の分析で当てはめる
	Sörbom の方法と例9 の方法の比較
	モデル X
	Amos Graphics のモデル作成
	モデル X の結果
	モデル Y
	モデル Y の結果
	モデル Z
	モデル Z の結果
	VB.NET でのモデル作成
	モデル A
	モデル B
	モデル C
	モデル D
	モデル E
	複数のモデルを適合する
	モデル X、モデル Y、モデル Z


	例17 欠損データ
	概要
	不完全なデータ
	データについて
	モデルを指定する
	飽和モデルおよび独立モデル
	分析の結果
	テキスト出力
	グラフィック出力

	VB.NET でのモデル作成
	因子モデルの適合 (モデル A)
	飽和モデルの適合 (モデル B)
	尤度比カイ 2 乗統計量とその p 値の計算
	単一プログラムでの全手順の実行


	例18 欠損データについてのその他の情報
	概要
	欠損データ
	データについて
	モデル A
	モデル A の 結果
	グラフィックス出力
	テキスト出力

	モデル B
	モデル A およびモデル B からの出力
	VB.NET でのモデル作成
	モデル A
	モデル B


	例19 ブートストラップ
	概要
	ブートストラップ法
	データについて
	因子分析モデル
	ブートストラップの進行状況の監視
	分析の結果
	VB.NET でのモデル作成

	例20 ブートストラップでのモデル比較
	概要
	モデル比較におけるブートストラップ手法
	データについて
	5 つのモデル
	テキスト出力

	要約
	VB.NET でのモデル作成

	例21 ブートストラップによる比較推定方法
	概要
	推定方法
	データについて
	モデルについて
	テキスト出力

	VB.NET でのモデル作成

	例22 探索的モデル特定化
	概要
	データについて
	モデルについて
	オプション矢印が少数の探索的モデル特定化
	モデルの特定化
	プログラムのオプションの選択
	探索的モデル特定化の実行
	生成されたモデルの表示
	モデルのパラメータ推定値の表示
	BCC を使用したモデル比較
	赤池ウェイトの表示
	BIC を使用したモデル比較
	Bayes 因子を使用したモデル比較
	Bayes 因子の再調整
	モデルの短いリストについての調査
	適合度と複雑度についての散布図の表示
	定数の適合度を表す線の調整
	定数 C – df を表す線の表示
	定数 C – df を表す線の調整
	定数の適合度を表すその他の線の表示
	C における最善の適合グラフの表示
	その他の適合度に対する最善の適合グラフの表示
	C のスクリープロットの表示
	その他の適合度に対するスクリー プロットの表示

	オプション矢印が多数の探索的モデル特定化
	モデルの特定化
	矢印のオプション指定
	オプション設定のデフォルトへのリセット
	探索的モデル特定化の実行
	BIC を使用したモデル比較
	スクリープロットの表示

	制限

	例23 探索的モデル特定化による探索的因子 分析
	概要
	データについて
	モデルについて
	モデルの特定化
	[探索的モデル特定化] ウィンドウを開く
	すべての係数のオプション指定
	オプション設定のデフォルトへのリセット
	探索的モデル特定化の実行
	BCC を使用したモデル比較
	スクリープロットの表示
	モデルの短いリストの表示
	発見的な探索的モデル特定化
	ステップワイズ検索の実行
	スクリープロットの表示
	発見的な探索的モデル特定化における制限

	例24 複数グループでの因子分析
	概要
	データについて
	モデル 24a: 平均値と切片項を使用しないモデル作成
	モデルの特定化
	[複数グループの分析] ダイアログ ボックスを開く
	パラメータ部分集合の表示
	生成されたモデルの表示
	すべてのモデルの適合と、出力の表示

	分析のカスタマイズ
	モデル 24b: 因子の平均値の比較
	モデルの特定化
	制約条件の削除
	グループ間制約の生成
	モデルの適合
	出力の表示


	例25 複数グループの分析
	概要
	データについて
	モデルについて
	モデルの特定化
	潜在変数の平均値と切片項の制限
	グループ間制約の生成
	モデルの適合
	テキスト出力を表示する
	修正指数の調査
	モデルの変更と分析の繰り返し


	例26 ベイズ推定
	概要
	ベイズ推定
	事前分布の選択
	Amos Graphics によるベイズ推定の実行
	共分散の推定

	最尤法解析の結果
	ベイジアン解析
	ベイジアン解析とデータ代入の結果の複製
	現行シードの調査
	現行シードの変更
	リフレッシュ オプションの変更

	収束の評価
	診断の作図
	2 変量相関の周辺事後分布図
	ベイズの信頼区間
	信頼係数の変更

	ベイジアン推定に関する参考資料

	例27 非拡散事前分布によるベイズ推定
	概要
	例について
	ベイズ推定についてのその他の情報
	ベイジアン解析と不適解
	データについて
	最尤法によるモデルの適合
	無情報 (拡散) 事前分布によるベイズ推定
	バーンイン オブザベーション数の変更


	例28 モデルのパラメータ以外の値のベイズ 推定
	概要
	例について
	Wheaton のデータの再考
	間接効果
	間接効果の推定

	モデル C のベイジアン解析
	追加推定値
	間接効果に関する推論

	例29 ベイジアン SEM におけるユーザー定義 数量の推定
	概要
	例について
	疎外感モデルの安定性
	数値カスタム推定値
	ドラッグ アンド ドロップ

	二値カスタム推定値
	二値推定値の定義


	例30 データ代入
	概要
	例について
	多重代入
	モデルベースの代入
	Amos Graphics を使用した多重データ代入の実行

	例31 多重代入データセットの分析
	概要
	SPSS Statistics を使用した代入データ ファイルの分析
	手順 2 : 10 個の個別分析
	手順 3 : 多重代入データ ファイルの結果の結合
	参考文献

	例32 打ち切りデータ
	概要
	データについて
	データの再コード化
	データの分析
	回帰分析の実行

	事後予測分布
	代入
	データ値に対する一般的な不等式制約

	例33 順序-カテゴリカル データ
	概要
	データについて
	データ ファイルの指定
	Amos 内でのデータの再コード化
	モデルの特定化
	モデルの適合

	MCMC 診断
	事後予測分布
	潜在変数の事後予測分布
	代入

	例34 トレーニング データを使用した 混合モデリング
	概要
	データについて
	分析の実行
	データ ファイルの指定
	モデルの特定化
	モデルの適合
	個々のクラスの分類
	潜在構造分析

	例35 トレーニング データを 使用しない混合モデリング
	概要
	データについて
	分析の実行
	データ ファイルの指定
	モデルの特定化
	パラメータの制約

	モデルの適合
	個々のクラスの分類
	潜在構造分析
	ラベル スイッチング

	例36 混合回帰モデリング
	概要
	データについて
	1 つ目のデータセット
	2 つ目のデータセット
	データセットのグループ変数

	分析の実行
	データ ファイルの指定
	モデルの特定化
	モデルの適合
	個々のクラスの分類
	パラメータ推定値の向上
	グループ比率の事前分布
	ラベル スイッチング

	例37 パス図を描画しない場合の Amos Graphics の使用
	はじめに
	データについて
	共通因子モデル
	モデルを指定するプラグインの作成
	元に戻す機能の制御
	プラグインのコンパイルと保存
	プラグインの使用方法

	モデル指定以外のその他の分析機能
	モデル変数に対応するプログラム変数の定義

	例38 単純なユーザー定義数量 I
	はじめに
	Wheaton のデータの再考
	間接効果の推定
	パラメータに名前を付けない間接効果の推定


	例39 単純なユーザー定義数量 II
	はじめに
	データについて
	Markov モデル

	付録A 表記法
	付録B 乖離度
	付録C 適合度
	倹約性の測度
	NPAR
	DF
	PRATIO

	最小標本乖離度
	CMIN
	P
	CMIN/DF
	経験則

	FMIN

	母集団の乖離度に基づく測度
	NCP
	F0
	RMSEA
	経験則

	PCLOSE

	情報理論的測度
	AIC
	BCC
	BIC
	CAIC
	ECVI
	MECVI

	ベースライン モデルとの比較
	NFI
	経験則

	RFI
	IFI
	TLI
	CFI

	倹約性修正済み測度
	PNFI
	PCFI

	GFI および関連測度
	GFI
	AGFI
	PGFI

	その他の測度
	HI 90
	HOELTER
	LO 90
	RMR

	選択された適合度のリスト

	付録D 非識別可能性の数値診断
	付録E 適合度を使用したモデルの順位付け
	付録F 記述適合度のベースライン モデル
	付録G AIC、BCC、および BIC の再調整
	ゼロ ベースの再調整
	赤池ウェイト/ Bayes 因子 (合計 = 1)
	赤池ウェイト/ Bayes 因子 (max = 1)

	通達
	参考文献
	索引


