<|lI!

7/08S

DFSORT Tuning Guide

Version 2 Release 2

SC23-6882-01

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 101

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC26-7526-02.

© Copyright IBM Corporation 1992, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures .
Tables .

About this document.

How to use this document

Required product knowledge

Referenced documents .

z/0S information

Using LookAt to look up message explanatlons
Performance comparisons

How to send your comments to IBM
If you have a technical problem

Chapter 1. Introduction
DFSORT on the World Wide Web
DFSORT FTP site .
The importance of tuning .
Successful tuning .
System resources .
Performance indicators .
Processor utilization .
Central storage and system pagmg
I/0 activity.
Elapsed time
Disk utilization

Chapter 2. DFSORT performance
features.
Blockset technique
OUTFIL .
Benefits .

Memory object sorting, hlpersortmg and data space

sorting

Benefits .

Operation .
Dynamic storage ad]ustment

Benefits.

Operation .
Cache Fast Write (CFW)

Benefits.

Operation .
ICEGENER .o
Extended format datasets.
Dynamic allocation of work data sets
System-Determined Block Size (SDB) .
Larger tape block sizes (greater than 32K)
Managed tape data sets .o
IDCAMS BLDINDEX .

DFSORT's performance booster for the SAS system

. Vil

. ix
. ix
. xi
. xi

. xii

xiii

. xiil

GLUT s B W WNRN R =

o JNo BEN N |

.8
.9
.9

11

.11
.12
.12
.12
.12
.13
.13
. 14
. 14
.15
.15
.15

15

Chapter 3. Environment considerations 17

Storage hierarchy

© Copyright IBM Corp. 1992, 2015

.17

Processor cache .
Central storage . .
Storage control cache .
Disk .
Tape.
Virtual storage
Main storage . .
System-managed storage .

Chapter 4. Installation considerations

Running DFSORT resident .

Making the DFSORT SVC available .

Using ICEGENER as a replacement for IEBGENER

Storage options . e
Recommendations .

Hipersorting, memory object sortmg, and data space

. 30
. 30
.32
.32
. 33
. 33

sortmg .
Recommendatlons . .
DFSORT installation defaults
Modifying installation defaults .
Invocation installation environments .
Time-of-Day installation environments .
Listing the installation defaults with ICETOOL
Installation options and performance . .
Installation exits .
ICEIEXIT .
ICETEXIT .

Chapter 5. Run-time considerations
Memory object sorting.
Limitations
Hipersorting .
Limitations .
Application ad]ustments .
Sorting with data space
The DSPSIZE parameter . .
How DFSORT uses data space .
Cache Fast Write .
File size
Storage . .
Data set size and V1rtual storage
Virtual storage limitations
Virtual storage guidelines. .
Virtual storage and sorting with data space or
memory objects .
Input and output data sets
Block sizes.
Type of device
VIO for DFSORT data sets
Input and output data set enhancements
Run-time options and performance

Chapter 6. Application considerations
COBOL interfaces to DFSORT .
Invoking DFSORT from COBOL

.17
. 18
. 18
.19
.19
. 20
. 20
.21

25

.25

. 26
27

.27

.27

33

. 34
. 40
. 40
.41

. 43
. 43
. 44
. 46
. 46
. 47
. 49
. 49
. 49
. 50
. 50
. 50
. 51
. 52
. 53

. 54
. 54
. 54
. 56
. 57
. 57
. 57

61

. 61
. 61

iii

Processing with FASTSRT
Processing with NOFASTSRT
Performance . ..
Sample sorting apphcatlon
Method 1: COBOL program with INPUT / OUTPUT
PROCEDURESs ..
COBOL Calling Program for Method 1
Operation (NOFASTSRT in effect) .
Performance .
Method 2: COBOL program w1th DFSORT control
statements. .
Operation (FASTSRT in effect)
Productivity . . .
Control statements .
COBOL calling program .
Performance .
Method 3: DFSORT W1th Control statements
Control statements .
Operation .
Productivity .
Performance .

Chapter 7. DFSORT performance data
DFSORT performance indicators

Overview of DFSORT performance 1nformat10n
Sources of DFSORT performance information .

Performance analysis and reporting products .
DFSORT/ICETOOL

iV z/0S V2R2 DFSORT Tuning Guide

. 62
. 62
. 63

. 64

. 64
. 65
. 67
. 67

. 67
. 68
. 68
. 68
. 69
.70
. 70
.71
.71
.71
.71

73
.73
.78
. 80
. 80
. 80

Analysis techniques for DFSORT performance data 81

Simple analysis81
Moderate analysis82
Thorough analysis83
Using RMF data.8
DFSORT requirements and systern resources . . .85
Placement of datasets.85
Use of virtual storage86
Use of VIO datasets86
Performance trade-offs.87

Appendix A. Sample ICETEXIT 89

Appendix B. AcceSS|b|I|ty e 14

Accessibility features . . . e .. Y7
Consult assistive technologies . . . 4
Keyboard navigation of the user mterface e Y97
Dotted decimal syntax diagrams97

Notices. 101

Policy for unsupported hardware. 102
Minimum supported hardware 103
Programming interface information 103
Trademarks103

Index.105

Figures

1. ICEGENER versus IEBGENER Copy
Comparison .

ACS Storage Class Routme

Storage Class ACS Routine

Storage Group ACS Routine .

Using ICETOOL to List Installation Defaults

Benefits of Eliminating Intermediate Merging

3390 Utilization for Various Block Sizes

Benefits of Large Input/ Output Data Set Block

Sizes . o

PN T RN

© Copyright IBM Corp. 1992, 2015

.13
.22
.22
.23

34
52
55

. 56

10.
11.

12.
13.
14.
15.

Benefits of FASTSRT .
DFSORT Control Statements for Method 2
Method 1 versus Method 2 Performance
Comparison .
DFSORT Control Statements for Method 4

A Sample JES2 Log .

DFSORT Messages . .

Sample SVC 249 to Write a SMF User Record

. 64

69

. 70

71

. 74
. 76

96

Vi z/0S V2R2 DFSORT Tuning Guide

Tables

Related documents
Referenced documents .

N o=

3. Installation Options That Influence DFSORT

Performance

4. Recommended Mlnlmum Storage Guldelmes
for Sorting Without Data Space .

5. Recommended Minimum Storage Gurdehnes
for Sorting with Data Space or Memory
Objects . e

© Copyright IBM Corp. 1992, 2015

. 35

. 53

. 54

Run-time Options That Influence DFSORT
Performance . .

Sources of Performance Indrcators .

Summary of Potential Performance Trade- Offs

. 57
. 78

87

vii

viii z/0S V2R2 DFSORT Tuning Guide

About this document

Sorting is one of the most frequently used functions at most data processing sites.

This document provides information about tuning IBM DFSORT, offering
suggestions for reducing its use of system resources and achieving better
turnaround time for the many applications that use DFSORT without adversely
affecting system performance.

This document is intended for systems engineers, performance analysts, system
programmers, and application programmers, who have some experience with
DFSORT. For those unfamiliar with DESORT, [z/OS DFSORT Installation and|
ICustomization| and |z/OS DFSORT Application Programming Guidd, provide
information that will help you use this document effectively.

In this document, one gigabyte (GB) is equal to 1024 megabytes (MB), which is
equal to 1048576 kilobytes (KB), which is equal to 1073741824 bytes.

How to use this document

This document contains the following sections:

* |Chapter 1, “Introduction,” on page 1|describes the importance of tuning
DFSORT, an example of successful tuning, system resources and tuning of
DFSORT, and the performance indicators for DFSORT.

+ |Chapter 2, “DFSORT performance features,” on page 7,|describes the
performance features of DFSORT.

* [Chapter 3, “Environment considerations,” on page 17 |describes the relationship
between DFSORT and the environment in which it runs including the storage
hierarchy, virtual storage, and system-managed storage.

+ |Chapter 4, “Installation considerations,” on page 25} describes how installation
options, run-time options, DFSORT capabilities, installation defaults, site-wide
options, and installation exits affect the performance of DFSORT applications.

* |Chapter 5, “Run-time considerations,” on page 43) describes DFSORT features
and how to use them to improve the run-time performance of DFSORT.

* |Chapter 6, “Application considerations,” on page 61 |describes how new and
existing applications can make efficient and effective use of the DFSORT
facilities.

* [Chapter 7, “DFSORT performance data,” on page 73 describes the actions you
can take to tune DFSORT, the type and location of information you need to tune
DFSORT, and the methods you can use to collect the information.

» |Appendix A, “Sample ICETEXIT,” on page 89, includes sample source code for
an ICETEXIT routine which creates a summary performance record each time
DFSORT is used, and a SVC to write the resulting user records to SMF.

Required product knowledge

To use this document effectively, you should be familiar with the following
information:

* Job control language (JCL)
e DFSORT and ICETOOL control statement syntax

© Copyright IBM Corp. 1992, 2015 ix

* Data management
* Tape and disk hardware

e System Management Facilities (SMF)

* Resource Measurement Facility (RMF ")

T™

You should also be familiar with the information presented in the following related

documents:

Table 1. Related documents

Document Title

Document Order Number

lz/0S DFSORT Application Programming Guide| 2/OS DFSORT Application|

Programming Guide|

Iz/OS DFSORT Installation and Customization| >/OS DFSORT Installation and)

Customization]

lz/0S DESORT Messages, Codes and Diagnosis Guide| ,/0S DFSORT Messages, Codes|

ind Diagnosis Guide|

lz/0S MVS |CL Reference|

[z/0S MVS JCL Reference]

lz/08 MV'S JCL User’s Guidd

lz/0S MV'S JCL User’s Guide

lz/0S DFSMS Using Data Sets|

[z/0S DFESMS Using Data Setd

lz/0S DESMS Using Magnetic Tapes| ,/0S DFSMS Using Magnetid

Tages|

lz/0S MV'S System Management Facilities (SMF)| 2/0S MVS System Management|

Facilities (SMF)|

lz/OS Language Environment Programming Guidd /05 Language Environment]

Programming Guide

Referenced documents

This document refers to the following documents:

X

Table 2. Referenced documents

Document title

Order number

lz/0S RMF Report Analysis|

|z/0S RMF Report Analysis)

/0S8 MVS Initialization and Tuning| lz/0S MVS Initialization and Tuning Reference

Reference|

lz/0S MVS Initialization and Tuning] |z/0S MVS Initialization and Tuning Guide|

|Guidg|

lz/0S DESMS Installation Exits|

|z/0S DESMS Installation Exits|

k/0S DFSORT Tuning Guide|is a part of a more extensive DFSORT library. These

documents can help you work with DFSORT more effectively.

Task

Publication Order Number

Planning for and
customizing DFSORT

2/0S DFSORT Installation and)
Installation an

Customization|
Customization|

Learning about DFSORT

|z/0S DFSORT: Getting Started| 2/OS DFSORT:
Getting Starte

z/0S V2R2 DFSORT Tuning Guide

Task Publication Order Number

Application programming 2/OS DFSORT Application| 2/0S DFSORZ'
Programming Guide| Application

Programming Guidd

Interpreting messages and [z/OS DFSORT Messages, Codes and £/0S DFSORT|
codes, and diagnosing Diagnosis Guide| Messages, Codes and

failures Diagnosis Guidgl

z/0S information

This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see |z/OS Information Roadmap)

To find the complete z/OS® library, go to [BM Knowledge Center|
[(http:/ /www.ibm.com /support/knowledgecenter /SSLTBW /welcome)|

Using LookAt to look up message explanations

LookAvt is an online facility that lets you look up explanations for most of the IBM®
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for
z/0S elements and features, z/VM®, z/VSE, and Clusters for AIX® and Linux:

* The Internet. You can access IBM message explanations directly from the LookAt
Web site at fwww.ibm.com/servers/eserver/zseries/zos/bkserv /lookat/ |

* Your z/OS TSO/E host system. You can install code on your z/OS systems to
access IBM message explanations using LookAt from a TSO/E command line
(for example: TSO/E prompt, ISPF, or z/OS UNIX System Services).

* Your Microsoft Windows workstation. You can install LookAt directly from the
z/OS and Software Products DVD Collection (SK3T-4271) and use it from the
resulting Windows graphical user interface (GUI). The command prompt (also
known as the DOS > command line) version can still be used from the directory
in which you install the Windows version of LookAt.

* Your wireless handheld device. You can use the LookAt Mobile Edition from
|www.ibm.com /servers/eserver/zseries/zos/bkserv/lookat/ lookatm.html| with a
handheld device that has wireless access and an Internet browser.

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:

* The z/OS and Software Products DVD Collection (SK3T-4271).

e The LookAt Web site (click Download and then select the platform, release,
collection, and location that suit your needs). More information is available in
the LOOKAT.ME files available during the download process.

About this document X1

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html

Performance comparisons

xii

The performance comparisons shown in this document are derived from averaging
numbers from three runs of each component of the comparison in a production
environment. The applications used are not meant to be representative of any
particular user's environment. The performance comparisons shown are examples
of the effects of various tuning techniques in particular situations.

Unless otherwise stated, applications were run:

* On an IBM 2084 CPU with 24 GB of central storage in a production z/OS
environment. All of the input, output, and work data sets resided on IBM RAID
3390-3 or 3390-9 emulated disk connected to IBM 2105 or 3990-6 control units.

* With z/OS DFSORT VI1R5 using the IBM-supplied installation defaults.

* Using 1500 MB input data sets with RECFM=FB, LRECL=1500, BLKSIZE=27000
and 20-byte randomly generated keys.

Exceptions: For the comparisons shown in [Figure 8 on page 56| variations of this
data set with different blocksizes were used. For the COBOL comparisons in
Chapter 6, a 150 MB input data set with RECFM=FB, LRECL=160, and
BLKSIZE=27840 was used.

The actual performance of a particular sort application is dependent on many
factors including record length, data set size, region size, total storage available,
type and number of auxiliary storage devices, and specific functions and exits
used.

CPU time represents the sum of the following five fields: TCB, SRB, RCT, HPT, and
IIP. See [“Processor utilization” on page 3 for a description of these fields.

Elapsed time results for sorting in a multi-tasking environment are application
profile and workload dependent. Therefore, the results might differ from user to
user.

IBM does not represent nor warrant that your applications will achieve the same
performance data as the examples in this document.

z/0S V2R2 DFSORT Tuning Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.

2. Send an email from the['Contact us" web page for z/OS (http:// |
[www.ibm.com /systems /z/0s/zos/webgs.html)|

Include the following information:
* Your name and address.
* Your email address.
* Your telephone or fax number.
* The publication title and order number:
z/0S V2R2 DFSORT Tuning Guide
SC23-6882-01
¢ The topic and page number that is related to your comment.
* The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:

* Contact your IBM service representative.
* Call IBM technical support.

* Visit the IBM Support Portal at [z/OS Support Portal (http://www-947.ibm.com/|
[systems/support/z/zos/)}

© Copyright IBM Corp. 1992, 2015 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

XiV z/0S V2R2 DFSORT Tuning Guide

Chapter 1. Introduction

This document offers information and recommendations on tuning DFSORT. It
provides advice to the system programmer on setting DFSORT's installation default
parameters as well as to the application programmer on improving the
performance of individual DFSORT applications. It describes the main indicators
used to measure performance and emphasizes the advantages of using DFSORT's
Blockset technique for improved performance. Since sort applications tend to be
more complex and time-consuming than merge or copy applications, this
document concentrates on techniques for improving the performance of sort
applications. However, many of these techniques are also appropriate for copy and
merge applications.

This document also assumes that DFSORT's most efficient technique is used. See
[“Blockset technique” on page 7 for more information on ensuring that Blockset is
used.

Note: Although a DFSORT “application” can comprise one or more parts of a job,
for simplicity's sake the terms “application” and “job” are used interchangeably in
this document.

This chapter describes the following;:

¢ The importance of tuning DFSORT

* Examples of successful tuning of DFSORT
* System resources and tuning DFSORT

* The performance indicators for DFSORT

DFSORT on the World Wide Web

For articles, online documents, news, tips, techniques, examples, and more, visit
the DFSORT/MVS home page at URL:

http://www.ibm.com/storage/dfsort

DFSORT FTP site

You can obtain DFSORT articles and examples using anonymous FIP to:
ftp.software.ibm.com/storage/dfsort/mvs/

The importance of tuning

If you are unsure whether your site can benefit from the advice in this document,

consider the following questions:

* Do you know how frequently DFSORT is invoked at your site?

¢ Is there growing pressure to reduce your batch window?

* Are you confident that you and your users are using DFSORT efficiently?

¢ If better tuning could result in significant savings in elapsed time, CPU time,
device connect time, or EXCP counts, would it be worthwhile?

The tuning of DFSORT and the way applications use it is important because
sorting and copying are two of the most frequently used functions at z/OS sites.

© Copyright IBM Corp. 1992, 2015 1

Introduction

DFSORT applications typically consume from 10 to 25 percent of the total
processor resources and 15 to 30 percent of the total I/O channel resources.

More efficient use of DFSORT can lead to:
* Reduced use of system resources

* Reduced job turnaround time

* Improved productivity

All of these benefits can result in cost savings.

Because of the internal optimizations that DFSORT performs (for instance, selecting
the best work data set block size for the run), users often do not take the time to
tune DFSORT or their applications. Experience shows that many sites only begin to
focus on DFSORT performance when there is a crisis: perhaps as data volumes
increase, or the batch window becomes smaller. While this document offers help
for these situations, it is also intended to help avoid them.

Successful tuning

Some of the practical advice in this document is based on the experience of IBM
developers working with DFSORT customers to help them in specific situations.

This document offers many recommendations, ranging from advice on setting the
most appropriate option values to guidelines for optimizing virtual storage and
work space. You should decide which recommendations are best for your site,
based on site requirements and the amount of resources available to implement
them.

System resources

The purpose of tuning DFSORT is to use system resources more efficiently. This is
important at most sites, since there are usually too many demands made for
limited resources. Although DFSORT automatically optimizes many of its tuning
decisions, there are additional actions which a site and its DFSORT users can take
to further improve DFSORT performance. These actions depend on the priority
given to various performance objectives.

Different sites and programmers define efficient performance in different ways. A site
with a primarily batch environment or an application programmer with a single
task to complete probably measures performance based on elapsed time.
Alternatively, a site experiencing high CPU usage or a programmer who is charged
based on CPU time is more likely to evaluate efficiency in terms of reduced CPU
time.

While improved performance is the objective of tuning, often it is necessary to
compromise. That is, improving the use of one system resource can have a
negative impact on other resources, in much the same way that giving more
resources to one application can make it perform much better at the expense of
degrading the performance of other applications that are competing for the same
resources.

The main trade-offs that you should consider are among;:

Processor Load
Accounting charges are often based on the number of CPU service units
used by a job or address space. The more CPU time used, the higher the

2 z/0S V2R2 DFSORT Tuning Guide

Introduction

charges. Reducing a job's CPU time not only reduces these charges, but
also enables other jobs competing for the same CPU resource to complete
sooner.

Paging Activity
System paging activity reflects how the system is managing central storage
to meet the virtual storage requirements of applications and user
programs. Paging is the process of moving virtual storage pages from
central storage to auxiliary storage, and takes a large amount of elapsed
time to perform.

System paging activity can increase elapsed time for user programs. If the
activity is too high, the system reduces its workload by reducing the
number of jobs running, and might suspend processing of some jobs
(known as swapping) until the paging activity returns to an acceptable
level. The result is that the system spends more time managing virtual
storage, while many user programs take longer to complete.

I/O Activity
Some accounting charges are based on the I/O performed by a job. This is
frequently measured by execute channel program (EXCP) counts. While
EXCP counts might not represent a completely accurate usage of 1/O
resources, they are important to many users and sites, and steps can be
taken to reduce them.

Elapsed Time
Elapsed time is likely to be most important for sites with a limited batch
window, where processing of particular applications has to be completed
within a certain period. It is also important to users whose productivity
depends on having their applications complete as soon as possible.

Disk Utilization
In environments where disk space is constrained, the amount of auxiliary
storage required by an application is a primary concern. For DESORT
applications, this usually involves the efficient use of output and work
data sets.

Performance indicators

This section describes how you can measure the performance factors listed
previously for DFSORT. Often, performance is evaluated as a combination of some
or all of them. The priorities given to each depend upon site objectives.

Processor utilization

CPU fields are used to measure the amount of work performed by the processor,
as opposed to work performed by the I/O and storage subsystems. CPU time
consists of the sum of the following five components.

Task Control Block (TCB)
The CPU time used to perform user program activity on behalf of user
tasks for a job step.

Service Request Block (SRB)
The CPU time used to perform system service requests on behalf of user
tasks for a job step.

Chapter 1. Introduction 3

Introduction

Hiperspace™ Processing Time (HPT)
If the user task reads from or writes to a Hiperspace using the HSPSERV
macro, this is the amount of CPU time used to service these reads and
writes.

I/O Interrupt Processing (IIP)
The CPU time used to handle input/output (I/O) interrupts on behalf of
user tasks for a job step.

Region Control Task (RCT)
If the user task is swapped out while running, this is the amount of CPU
time used to swap the task out and back in again.

Central storage and system paging

Central storage is a critical resource exploited by DFSORT to reduce I/O and
improve performance. DFSORT exploits available storage to create memory objects,
Hiperspaces and data spaces. Overcommitment of these resources can lead to
excessive paging that negatively impacts the performance of DFSORT and other
workloads running on the same system.

To be meaningful, paging and swapping activity measurements are usually
associated with particular workloads, or groups of applications that are run
simultaneously on a given processor. As such, system paging activity is more a
measure of the performance and throughput of the entire system than of the
performance of individual applications being run on the system.

Paging activity is often measured by the page-in, page-out, and page-reclaim rates
of different address space types, such as Hiperspace, VIO, or non-VIO address
spaces. For swapping activity, there is also the additional distinction between
logical and physical swaps.

Central storage resource statistics and system paging and swapping activity data
are usually gathered by the Resource Measurement Facility (RMF) or a similar
system tool. See [z/OS RMF Report Analysis|for more information on RMF.

I/O activity

This represents the movement of data between the processor and disk or tape
devices. The effective use of I/O resources is important to a site and 1/O activity is
often an important component of site accounting methodologies.

Because performing input to and output from disk and tape devices typically takes
much longer than manipulating the data in real storage, the amount of I/O
performed is a key component of an application's Elapsed time. Therefore,
reducing I/O generally improves an application's Elapsed time.

I/0 activity is primarily measured in the following ways:

EXCPs
The number of execute channel program (EXCP) commands issued (logical
1/0s)

SSCHs
The number of start subchannel (SSCH) commands issued (physical 1/Os)

Device Connect Time
The amount of time a particular device is dedicated for the I/O transfer

4 7/0S V2R2 DFSORT Tuning Guide

Introduction

Channel Usage
The percentage of time a channel is busy initiating, transferring, or
completing the movement of data between a device and the CPU

While EXCPs are often used as a measure of 1/0O activity, their counts can be
extremely misleading. For example, one EXCP can be used to transfer a few bytes
or dozens of megabytes! SSCHs measure the number of physical I/Os to a data set
and thus can be more useful than EXCPs. A complete analysis of total I/O
performance should consider device connect time, channel usage and SSCHs.

Elapsed time

Elapsed time refers to the amount of “wall clock” time from initiation to
termination of the application. For typical sorting applications, elapsed time is
composed primarily of I/O time, with CPU time and I/O queueing time also
contributing significantly.

The Elapsed time for an application can differ from run to run, depending upon
the amount of competition from other applications for system resources. Accurate
Elapsed time comparisons can be done only if the system has no other applications
running.

Disk utilization

In certain environments, disk space usage is a more important characteristic of an
application's performance than CPU time or elapsed time. Inefficient disk usage is
usually measured in terms of the amount of disk space that is allocated, compared
to the amount of disk space actually needed. Frequently, large amounts of disk
space are wasted as a result of inefficient blocking

Chapter 1. Introduction 5

6 z/0S V2R2 DFSORT Tuning Guide

Chapter 2. DFSORT performance features

The performance of a DFSORT application is largely determined by the use of a
special set of product features. This chapter provides an introduction to the
performance features of DFSORT including:

* Blockset technique

+ OUTFIL

* Memory object sorting, Hipersorting and dataspace sorting

* Dynamic Storage Adjustment

* Cache fast write

* ICEGENER

* Compression

* Striping

* Dynamic allocation of work data sets

* System-determined block size

* Larger tape blocksizes (greater than 32K)

* Managed tape data sets

« IDCAMS BLDINDEX

¢ DFSORT's Performance Booster for The SAS System

How to use these features to gain the most effective performance from DFSORT is
described in |Chapter 4, “Installation considerations,” on page 25 and in
[“Run-time considerations,” on page 43

Blockset technique

The Blockset technique is DFSORT's most efficient method for sorting, merging,
and copying. Blockset uses optimized algorithms and makes the most efficient use
of IBM hardware. DFSORT uses Blockset whenever possible. DFSORT's other
techniques, Peerage/Vale and Conventional, are not as efficient as Blockset and are
only used when Blockset cannot be used.

The Blockset technique can reduce CPU time, I/O activity, and Elapsed time. It is
strongly recommended that you remove any obstacles to using Blockset whenever
possible. For the purposes of this document, any recommendations to improve
performance assume that Blockset is the DFSORT technique used.

It is worth checking to see if Blockset was used for a given application; message
ICE143I in the SYSOUT data set shows which technique was used. If ICE143I is
not shown or shows that a technique other than Blockset was selected, resubmit
the application with a SORTDIAG DD statement (unnecessary if the application
already had a SORTDIAG DD statement or if your site has specified installation
option DIAGSIM=YES). Additional DFSORT messages and diagnostic information
are then shown, including:

* ICES802I, which shows the technique used

 ICES800I or error messages

ICES800I gives a code indicating why Blockset was not used. If the code is 1, one or
more error messages are also shown.

Note: Blockset messages are suppressed if another technique is selected, unless a
SORTDIAG DD statement is present, or installation option DIAGSIM=YES has
been specified for your site.

© Copyright IBM Corp. 1992, 2015 7

Performance Features

Blockset will not be selected if you specify work data sets on tape devices. Blockset
only supports tape devices for input and output data sets. It is very strongly
recommended that you use disk rather than tape for work data sets.

OUTFIL

OUTFIL is a control statement that allows you to create one or more output data
sets for a sort, copy, or merge application with only one pass over an input data
set. You can use multiple OUTFIL statements, with each statement specifying the
OUTFIL processing to be performed for one or more output data sets.

With a single pass over an input data set, OUTFIL can create one or more:
* Output data sets containing unedited or edited records

e Output data sets containing different ranges, samples, or subsets of records.
Those records that are not selected for any subset can be saved in another
output data set.

* Reports containing different header records, detail records and trailer records.
* FB output data sets from a VB input data set.
* VB output data sets from an FB input data set.

OUTFIL has many additional features as well; see z/OS DFSORT Applicatior|
[Programming Guide| for complete details on all of the tasks you can perform with
OUTFIL.

Benefits

Because OUTFIL allows you to create output data sets with only one pass over an
input data set, OUTFIL can improve performance. This is especially true for
elapsed time and EXCPs when you compare an OUTFIL job to create many output
data sets with many non-OUTFIL jobs each creating one output data set.

Memory object sorting, hipersorting and data space sorting

DFSORT can use available central storage to improve elapsed time and reduce 1/0O
to disk work data sets for sort applications. DFSORT evaluates the characteristics
of each sort along with available resources to determine the best technique for
providing optimal performance.

A memory object is a data area in virtual storage that is allocated above the bar
and backed by central storage. With memory object sorting, memory objects can be
used either as intermediate work space or as additional main storage. Memory
objects can be used exclusively, or along with disk, for temporary storage of
records during a sort.

Hipersorting is DFSORT's ability to use Hiperspaces as intermediate work space
for sorting. Hipersorting was originally designed to exploit expanded storage in
31-bit architecture. With 64-bit architecture, Hipersorting now effectively exploits
central storage instead. DFSORT's use of Hiperspaces for intermediate work space,
alone or in combination with work data sets, is called Hipersorting.

A data space is a data area in virtual storage that is allocated below the bar and
backed by central storage. Programs that access data in a data space run in access
register address space control (AR ASC) mode. With data space sorting, data
spaces can be used as additional main storage. Data spaces can be used exclusively
or along with disk, for temporary storage of records during a sort.

8 2z/0S V2R2 DFSORT Tuning Guide

Performance Features

Benefits

Memory objects and Hiperspaces used as intermediate work
space

When virtual storage is smaller than the input data set to be sorted, DFSORT uses
temporary intermediate storage to perform the sort. This intermediate storage can
be of three types; it can be memory objects, Hiperspaces, or disk work data sets.
Understanding how all programs use central storage can help you see the benefits
of using memory objects or Hiperspaces as work space.

* Memory Object or Hiperspace Storage used as work space

A program's request for data in a memory object or Hiperspace work file results
in a synchronous or other high-speed transfer in central storage. Upon
completion, the program continues.

* Disk Storage used as work space

If the request is for data to or from disk, an asynchronous I/O operation is
started, the program interrupted, and control returned to the dispatcher to
dispatch another program. When the I/O completes, the program waits to be
dispatched again, since it is now able to process its data.

A memory object or Hiperspace read or write operation involves the transfer of
data within central storage, whereas a disk I/O operation involves the transfer of
data between disk and central storage. Since data movement in central storage is
faster than from disk, elapsed time is likely to improve. Note that disk volumes
connected to cached controllers can provide significant, but smaller, elapsed time
improvements compared to central storage. The use of memory object or
Hiperspace work space eliminates the need for work data set I/O, therefore
eliminating EXCPs and channel usage for the work devices.

Memory objects and data spaces used as additional main
storage

A memory object or data space can be used as a large contiguous area of virtual
storage for sorting records. The benefit of using central storage in this way is
twofold:

* Due to the potentially large size of a memory object or data space, this type of
sorting enables a greater percentage of sort jobs to be processed completely
within main storage, without the need to write intermediate data to disk work
space. This can reduce CPU and elapsed times, as well as EXCP counts and
channel usage.

* If an in-main-storage sort is not possible, memory object or dataspace sorting
usually picks the optimal amount of virtual storage for memory object or data
space. This is frequently larger than the default amount of main storage and
enables DFSORT to sort larger amounts of data at a time before writing them to
the work data sets. This often provides a savings in elapsed time, I/O activity,
and CPU time.

Operation

In addition to DFSORT, central storage can be used by many other applications
and system components, such as DB2® buffer pools, VSAM Hiperspace,
Hiperbatch, virtual lookaside facility (VLEF), VIO, and the paging subsystem. To
avoid overusing storage, which can lead to paging data set space shortages and
increased system paging activity, DFESORT uses several safeguards.

Chapter 2. DFSORT performance features 9

Performance Features

10

To begin with, DFSORT is always aware of the future storage needs of other
concurrent DFSORT applications. A DFSORT application never attempts to back its
memory object, Hiperspace or data space data with storage that is needed by
another DFSORT application.

Next, DFSORT dynamically determines the amount of available storage prior to
creating each memory object, Hiperspace or data space. "Available" storage is the
storage used to back new Memory Object, Hiperspace or data space data. It
consists of two types:

* Free storage is storage that is not being used by any application.

* Old storage is storage that is being used by other applications, but whose data
has been unreferenced for a long period of time. This time period is long enough
that the system deems it eligible for migration to auxiliary storage to make room
for new data.

Knowing both the amount of storage needed by other DFSORT applications and
the amount of available storage, along with the values of DFSORT installation
options EXPMAX, EXPOLD, EXPRES and TUNE, DFSORT can assess the impact of
creating a memory object, Hiperspace or data space. This greatly reduces the
likelihood of overusing central storage, especially as a result of multiple large
concurrent DFSORT applications. It also allows sites to customize their total use of
storage by DFSORT applications through the EXPMAX, EXPOLD, EXPRES and
TUNE installation options. These can only be specified as installation wide defaults
using an ICEPRMxx member of PARMLIB or the ICEMAC macro.

MOSIZE, HIPRMAX and DSPSIZE control the amount of memory object,
Hiperspace and data space each individual DFSORT application can use while
EXPMAX, EXPOLD, and EXPRES control the total amount of storage used by all
DFSORT applications running in the system. These can be specified as installation
wide defaults using an ICEPRMxx member of PARMLIB or the ICEMAC macro,
overridden at run-time with an EXEC PARM option or OPTION control statement,
or overridden with an installation wide ICEIEXIT exit routine.

The MOWRK installation default controls whether memory objects can be used as
intermediate work space. If MOWRK=NO is in effect, then memory objects can
only be used as additional main storage. MOWRK can be specified as an
installation wide default using an ICEPRMxx member of PARMLIB or the
ICEMAC macro, or overridden at run-time with an EXEC PARM option or
OPTION control statement. MOWRK cannot be overridden with an ICEIEXIT exit
routine.

When memory objects or data spaces are used as additional main storage, each
sort creates one large area at the beginning and no adjustments are made until the
memory object or data space is deleted when the sort terminates.

When memory objects or Hiperspaces are used as intermediate work space,
DEFSORT has the ability to create up to 16 memory objects or Hiperspaces which
can be allocated incrementally or all at once. The advantage of allocating storage in
increments is that multiple concurrent sorts can more evenly share available central
storage resources since available central storage is evaluated prior to creating each
new memory object or Hiperspace. When storage is allocated in this way,
DFSORT's dynamic allocation of work data sets must allocate additional space to
safeguard against any unexpected increase in disk work space requirements if
central storage resources become constrained during the sort. When each sort
allocates all of it's memory object or Hiperspace immediately, DFSORT's dynamic

z/0OS V2R2 DFSORT Tuning Guide

Performance Features

allocation can be more aggressive in reducing space allocations since it is less likely
that the disk work space allocations will be larger than expected. However, when
multiple sorts are running concurrently, a small number of them may monopolize
the available central storage while others are forced to use only disk work space.

DFSORT provides the TUNE installation default to control how DFSORT evaluates
available resources and allocates memory objects, Hiperspaces and data spaces. If
balancing storage usage by multiple concurrent sorts is a priority, the shipped
default of TUNE=STOR is recommended. If conserving disk work space is a
priority, TUNE=DISK is recommended. TUNE can be specified as an installation
wide default using an ICEPRMxx member of PARMLIB or the ICEMAC macro.
TUNE cannot be overridden with an ICEIEXIT exit routine.

The following are actions you can take which might increase DFSORT's use of
memory objects, Hiperspaces and data spaces:

¢ Ensure that MOSIZE=MAX, MOWRK=YES, HIPRMAX=OPTIMAL and
DSPSIZE=MAX are used. These parameters can be specified as installation-wide
defaults using an ICEPRMxx member of PARMLIB or the ICEMAC macro, or
overridden at run-time with an EXEC PARM option or OPTION control
statement. MOSIZE, HIPRMAX and DSPSIZE can also be overridden with an
installation-wide ICEIEXIT exit routine.

* Verify that a sufficient size for memory objects is defined by the MEMLIMIT
parameter on the JOB or EXEC JCL statement. Note that if REGION=0M is
specified, MEMLIMIT=NOLIMIT is assumed. If REGION is set equal to a value
other than OM and MEMLIMIT is not specified, the default MEMLIMIT value
defined in the SMFPRMxx member of PARMLIB is used.

* Verify that IEFUSI does not place any restrictions on the size of the memory
objects, Hiperspaces or data spaces a single address space can create.

* Ensure that DFSORT has accurate information about the input file size. DFSORT
can automatically estimate the file size for disk input data sets, and tape data
sets managed by DFSMSrmm or a tape management system that uses ICETPEX.
See “File Size and Dynamic Allocation” in z/OS DFSORT Application|
[Programming Guidd for information on situations where DFSORT cannot
determine the file size accurately, and what to do about it.

* Verify that there is sufficient available central storage present to back DFSORT's
memory objects, Hiperspaces and data spaces.

See [Chapter 4, “Installation considerations,” on page 25 and [Chapter 5, “Run-timé|
fconsiderations,” on page 43| for further details on how best to tune DFSORT's use
of memory objects, Hiperspaces and data spaces.

Dynamic storage adjustment

Dynamic Storage Adjustment (DSA) is DFSORT's ability to automatically increase
the amount of virtual storage committed to a sort when doing so should
significantly improve performance. Like dataspace sorting, DSA lets DFSORT tune
the right amount of virtual storage for a sort application.

Benefits

Increasing the amount of virtual storage available to DFSORT can significantly
improve the performance of many sort applications, especially large sorts. The
optimal amount of virtual storage varies with the amount of data being sorted.
Consequently, the best performance and most efficient use of virtual storage can
only be obtained by tuning the virtual storage of each individual sort. DSA does

Chapter 2. DFSORT performance features 11

Performance Features

most of this tuning automatically, relieving system and application programmers of
the task. By using the optimal amount of virtual storage, DFSORT maximizes its
performance while minimizing the impact of DFSORT applications on the system.

Operation

DFSORT's use of virtual storage from the primary address space is limited by
several factors, most notably system (for example, REGION, IEFUSI) and DFSORT
(for example, TMAXLIM, SIZE) parameters, defaults, and exits. While DFSORT can
never exceed the system limits, those limits usually exceed the virtual storage
DFSORT needs for most applications. As a result, the DFSORT limits usually
control the amount of virtual storage used by DFSORT.

Dynamic Storage Adjustment permits a range to be specified for the default
amount of virtual storage for sorts, provided SIZE/MAINSIZE=MAX is in effect.
This range starts with the value specified for TMAXLIM and goes up to the value
specified for DSA. For most sorts, DFSORT limits its use of virtual storage to
TMAXLIM. However, for larger sorts, DFSORT automatically optimizes
performance by increasing the amount of virtual storage it uses, up to but not
exceeding the DSA value.

See [Chapter 4, “Installation considerations,” on page 25 and [Chapter 5, “Run-tim¢]
fconsiderations,” on page 43| for further details on the best way to tune DFSORT's
use of DSA.

Cache Fast Write (CFW)

12

The term cache fast write (CFW) is normally used to refer to the capability of the
cached 3990 storage control units to use cache memory to improve average 1/0O
times. In this document, cache fast write is also used to refer to DFSORT's ability
to take advantage of the storage control unit's cache fast write function, by writing
data sets to and reading data sets from cache only.

Benefits

You can gain elapsed time savings by using cache fast write. The benefits of CFW
are twofold:

* When writing data to the work data sets, the write operations can complete at
cache speed rather than at disk speed, as long as overall cache activity permits
it. If the cache usage is very heavy, then there may be very little or no benefit to
using CFW, since the majority of write operations will be immediately directed
to disk.

* When reading data back from the work data sets, the read operations can
complete at cache speed rather than at disk speed, as long as the data to be read
still resides in cache. If the required data does not reside in cache, a disk access
is required and no performance benefit results. The higher the cache activity, the
less the performance improvement with CFW, because it is more likely that
written data will be destaged to disk before it can be read back.

Operation

DFSORT's use of cache fast write for the work data sets can be controlled with
installation option CFW, and run-time option CFW or NOCFW on the DEBUG
statement. Note that cache fast write can only be used if the DFSORT SVC has
been installed. Also note that some control units override the CFW setting and
decide when and when not to cache the data.

z/0OS V2R2 DFSORT Tuning Guide

Performance Features

ICEGENER
DFSORT's ICEGENER facility allows you to more efficiently process IEBGENER
jobs. Qualifying IEBGENER jobs are processed by the equivalent, but more
efficient, DFSORT copy function. If the DFSORT copy function cannot be used (for
example, IEBGENER control statements are specified), control is automatically
transferred to the IEBGENER program.
If your site has installed ICEGENER as an automatic replacement for IEBGENER,
you need not make any changes to your jobs to use ICEGENER. If your site has
not chosen automatic use of ICEGENER, you can use ICEGENER by substituting
the name ICEGENER for IEBGENER on any EXEC statement or LINK macro call.
The use of ICEGENER rather than IEBGENER for copy applications can result in
significant savings in elapsed time, CPU time, and EXCP counts. shows an
example of the tremendous performance advantages of ICEGENER over
IEBGENER.
[]IEBGENER []ICEGENER
Percentage
00— 00 100 00
80— 8
60 - e
40 o B
20 oo T
12
1
0
Elapsed Time CPUTime EXCPs

Figure 1. ICEGENER versus IEBGENER Copy Comparison

Extended format datasets

Extended format data sets provide features that can significantly reduce the
elapsed time DFSORT spends reading and writing data.

The Sequential Data Striping feature can reduce the time required to read and
write your DFSORT input and output data sets. We recommend using sequential
data striping for your very large DFSORT input and output data sets as a way to
improve elapsed time and performance.

Chapter 2. DFSORT performance features 13

Performance Features

Extended format data sets also provide functions to assist in managing the space
requirements of very large data sets. These features include compression, extended
addressability (for VSAM), increased extent and volume support, and space
constraint relief options. Consult with your storage administrator to learn how
these features can be exploited in your environment.

Dynamic allocation of work data sets

When a sort application cannot be performed entirely in virtual storage, DFSORT
must use work space. Dynamic allocation of work data sets makes more efficient
use of this work space.

You set the DYNAUTO installation option to control whether dynamic allocation is
used automatically, or only when requested by the DYNALLOC run-time option.
DYNAUTO also controls whether dynamic allocation or JCL allocation takes
precedence when JCL work data sets are specified.

DYNAUTO can be set as follows:

* If DYNAUTO=IGNWKDD, dynamic allocation takes precedence over JCL
allocation. If you want the opposite result for selected applications, use the
USEWKDD run-time option.

* If DYNAUTO=YES, JCL allocation takes precedence over dynamic allocation. If
you want the opposite result, remove all JCL allocation statements.

* If DYNAUTO=NO, dynamic allocation of work data sets is not used unless you
specify the DYNALLOC run-time option. JCL allocation takes precedence over
dynamic allocation.

Dynamic allocation of work data sets has the following advantages:

* As the characteristics (for example, file size and virtual storage size) of an
application change over time, DFSORT can automatically optimize the amount
of dynamically allocated work space for the application. This eliminates
unneeded allocation of disk space.

* As the amount of Hiperspace available to the application varies from run to run,
DFSORT can automatically adjust the amount of space it dynamically allocates
to complement the amount of Hiperspace. This eliminates unneeded allocation
of disk space.

* The amount of work space actually used is often less than the amount allocated.
DEFSORT tries to minimize dynamic over-allocation while making certain that the
application does not fail due to lack of space. With JCL allocation, you could
minimize the amount of allocated space manually, but this might require
changes to JCL allocation as the characteristics of the application change.

* Dynamically allocated work data sets are automatically allocated as large format
so they can use more than 65535 tracks on a single volume.

* When disk work space requirements are larger than expected, DFSORT can
automatically recover by increasing allocation sizes or using additional work
data sets.

System-Determined Block Size (SDB)

14

Use the system-determined block size (SDB) facility whenever possible to allow the
system to select optimal block sizes for your output data sets. SDB provides better

use of output disk space and improved elapsed time. DFSORT's use of SDB can be
controlled using installation options SDB and SDBMSG.

z/0OS V2R2 DFSORT Tuning Guide

Performance Features

Larger tape block sizes (greater than 32K)

With z/0S, block sizes greater than 32760 bytes can be used for tape data sets. A
larger tape block size can improve elapsed time and tape utilization. The larger
block sizes allow the tape device to perform better because of the decreased need
to start and stop reading blocks. DFSORT's SDB=LARGE or SDB=INPUT option
allows DFSORT to select a block size greater than 32760 for a tape output data set.
However, you must insure that subsequent applications that use such data sets can
handle larger block sizes.

Managed tape data sets

The use of tapes managed by DFSMSrmm, or a tape management system that uses
ICETPEX, allows DFSORT to obtain accurate information about input file size and
data set characteristics. This results in improved performance and more efficient
use of both main storage and intermediate work storage.

IDCAMS BLDINDEX

DFSORT provides support that enables IDCAMS BLDINDEX to automatically use
DFSORT to improve the performance of most BLDINDEX jobs that require
BLDINDEX external sorting.

DFSORT's performance booster for the SAS system

DFSORT provides significant CPU time improvements for The SAS System
applications. To take advantage of this feature, contact SAS Institute Inc. for details
of the support they provide to enable this enhancement.

Chapter 2. DFSORT performance features 15

16 z/0S V2R2 DFSORT Tuning Guide

Chapter 3. Environment considerations

While DFSORT automatically optimizes many of its tuning decisions to improve
performance, the environment in which it runs affects its overall performance and,
therefore, the programs and applications that use DFSORT. DFSORT is designed to
take advantage of the major components of the z/OS environment.

The purpose of this chapter is to describe how DFSORT modifies its operation to
take advantage of these components and the benefits it derives from them.

The majority of information in this chapter applies only to sorting applications.
While copying and merging are also commonly used features of DFSORT, it is
sorting that uses the most resources and is the most important to tune.

This chapter includes the following information:
* Storage hierarchy
* Virtual storage

* System-managed storage

Storage hierarchy

Within a z/OS environment, data resides across a storage hierarchy. Each level of
this hierarchy is represented in hardware by a different component, and the
amount of each component in a system is usually variable between some
minimum and maximum levels. A typical representation of these components
(from top to bottom) would be:

1. Processor cache

2. Central storage

3. Storage control cache
4. Disk

5. Tape

The components at the top of the hierarchy (processor cache, central storage) are
somewhat expensive on a per-byte basis (and thus relatively small in capacity), but
have very fast access times. In contrast, the components at the bottom of the
hierarchy (disk, tape) are relatively inexpensive and have very large capacities, but
their access rates are considerably slower. As you go from top to bottom in the
hierarchy, the components typically get less expensive per byte, have higher
capacities, and have slower access times.

DFSORT attempts to take advantage of all the levels of the storage hierarchy. The
following sections briefly describe how DFSORT accomplishes this.

Processor cache

Processor cache is the special high-speed memory from which processors access
their instructions and data. This memory has a much faster access rate than central
storage, and is an integral part of IBM processors. It contains a copy of those
portions of central storage that have been recently referenced. When an instruction
or piece of data is needed by the processor and is not in the processor cache, a
“cache miss” takes place and the processor waits while a copy of the data is
brought into the cache. This results in higher CPU times.

© Copyright IBM Corp. 1992, 2015 17

Environment Considerations

DFSORT is designed to make efficient use of the processor cache by reducing cache
misses as much as possible.

Central storage

Of all the components that affect DFSORT's performance, central (or main), storage
is the most crucial. Sorting is a memory-intensive operation. Without enough
central storage to back the virtual storage needs of DFSORT, its performance (as
well as the performance of other applications on the system) degrades significantly
due to excessive system paging activity.

To sort efficiently, DFSORT needs large amounts of virtual storage. Its needs grow
with the amount of data being sorted; a data set four times as large as another
requires roughly twice as much virtual storage to sort with the same degree of
efficiency. If this virtual storage is not backed by central storage when DFSORT is
running, there is a noticeable performance degradation on the system.

Central storage also plays an important role in the use of Hipersorting, dataspace
sorting, and memory object sorting. DFSORT bases its use of these very efficient
sorting methods on the amount of central storage it can use without causing
excessive paging on the system. If too much central storage paging would result,
DFSORT limits its use of these methods and relies on work data set I/O to
auxiliary storage.

See [“Hipersorting” on page 46 ||“Memory object sorting” on page 43 |and [“Sorting]
fwith data space” on page 49| for more information about exploiting central storage
to reduce I/O and improve elapsed time.

Storage control cache

Certain storage control models, such as IBM's Enterprise Storage Server (ESS) and
TotalStorage DS8000 Series, contain a special high-speed (relative to disk) memory
known as storage control cache. This cache serves two purposes:

* When reading data from disk, if the data is already in the storage control cache,
the program can access it directly from the cache without having to wait for the
(relatively slow) disk to retrieve it.

* When writing data to disk, by writing directly to the cache (through use of
cache fast write), applications can complete their write operations significantly
faster than if they had written to the disk directly.

DFSORT takes advantage of the storage control cache by writing to its work data
sets with cache fast write enabled. This speeds up the time needed to write to
these work data sets as well as to read back from them.

To benefit from DFSORT's ability to use cache fast write (CFW), ensure that the
CFW feature is activated on your storage control units (if appropriate).

DFSORT also takes advantage of the storage control cache by selecting the
appropriate caching mode for input and output data sets. This reduces elapsed
time for DFSORT applications and also helps other non-DFSORT applications make
better use of the cache.

18 z/0S V2R2 DFSORT Tuning Guide

Disk

Tape

Environment Considerations

In most cases, DFSORT's Blockset technique adjusts automatically to take
advantage of the geometry of the particular IBM disk being used. This is especially
true for work data sets, whose block sizes and distribution of data play crucial
roles in the performance of DFSORT.

The location of input, output, and work data sets, as well as the speed of the disks
on which they reside has a significant effect on the performance of a sort
application. For best results, work data sets should be placed on different storage
subsystems than the input and output data sets. This helps avoid channel, control
unit path, and device contentions. To attain the maximum performance benefit,
these data sets (or at least the input and output data sets) should be placed on the
fastest disks so that DFSORT can take advantage of their speed.

In general, while DFSORT has no control over where its data sets are allocated, it
does automatically optimize its access patterns based on data set location to
achieve the best possible performance.

When allocating DFSORT work data sets on devices attached to non-synchronous
storage control units or connected to ESCON channels, elapsed time may be
degraded for certain applications. To avoid this degradation, it is especially
important to follow the virtual storage guidelines described in [“Virtual storage]
leuidelines” on page 53| and to ensure that DESORT has an accurate knowledge of
the size of the data set being sorted. See [z/0S DFSORT Application Programming]
for more details about non-synchronous storage subsystem considerations.

In addition to data set location, certain data set characteristics, such as block size,
are also very important when considering performance. As mentioned before,
DFSORT automatically chooses an optimal block size for its work data sets. Using
DFSORT's installation option SDB=LARGE, SDB=INPUT or SDB=YES enables
DFSORT to choose optimal block sizes for its output data sets on disk as well. Of
less importance, using installation option SDBMSG=YES enables DFSORT to
choose optimal block sizes for its message data sets on disk.

Tape is the least expensive media on a per-byte basis. It has the highest capacity
for data storage of any component in the storage hierarchy. But it also has a
relatively slow access time and must be accessed sequentially. However, automatic
tape libraries and IDRC compacted tape make tape a good choice for SORTIN and
SORTOUT. Further, if these tape data sets are managed by DFSMSrmm or a tape
management system that uses ICETPEX, DFSORT can obtain important
information such as input file size, and input and output attributes, that help
DFSORT optimize performance.

Tape devices are not recommended for use as work data sets. Since a fast access
rate is critical for work data sets, and work data tends to be accessed in a
nonsequential manner, performance is significantly better when disk devices are
used as work data sets rather than tape devices. In fact, tape work data sets should
be avoided if at all possible, because they prevent DFSORT from using its efficient
Blockset technique.

Certain data set characteristics, such as block size, are important when considering
performance on tape devices. Using DFSORT's installation option SDB=LARGE or
SDB=INPUT enables DFSORT to choose optimal block sizes greater than 32K for
its output data sets on tape. Using installation option SDB=YES enables DFSORT to

Chapter 3. Environment considerations 19

Environment Considerations

choose optimal block sizes up to 32K for its output data sets on tape. Of less
importance, using installation option SDBMSG=YES enables DFSORT to choose
optimal block sizes up to 32K for its message data sets on tape as well

Virtual storage

20

Logically, DFSORT (like any other application) works within a virtual address
space. Installation defaults such as TMAXLIM and run-time options such as
REGION and MAINSIZE determine the size of this address space. With the
exception of dataspace sorting (see [“Memory object sorting, hipersorting and data|

Ispace sorting” on page 8 for a discussion of dataspace sorting) and memory object

sorting (see ["Memory object sorting, hipersorting and data space sorting” on page|
for more information about memory object sorting), this size remains constant
throughout most of the sorting process.

DFSORT attempts to make the best use of the virtual storage it has available. If
you provide DFSORT with enough virtual storage, it might be able to sort the
input data set entirely in virtual storage (an “in-main-storage” sort) without need
of work data sets or Hiperspace. This is the preferred method of sorting small data
sets up to a few megabytes in size. To sort larger input data sets, DFSORT may use
data space or memory objects to perform an "in-main-storage" sort.

When an in-main-storage sort is not possible or practical, DFSORT processes a
portion of the input data set at a time, then combines all of these processed
portions together into the final sorted data set. It is here that DFSORT excels at
allocating virtual storage effectively in order to minimize both the number of
portions as well as the time spent combining the portions into the output data set.

With dataspace sorting, DFSORT creates a data space to help carry out its
processing. This is a new area of virtual storage, and is in addition to the original
(specified or defaulted) virtual storage requested. The size of the data space is
sufficient to guarantee an efficient sort (or dataspace sorting is not used).

In addition, DFSORT adjusts the size of the data space during processing, as
necessary, in response to system paging levels. When system paging levels rise,
DFSORT reduces its use of virtual storage (as long as this reduction does not
significantly degrade DFSORT performance).

DFSORT also tries to move as many of its data areas above 16 MB virtual as it can
to help provide virtual storage constraint relief for the system.

With z/0S, the MVS'™" address space expands up to 16 exabytes in size. The
architecture that creates this address space provides 64-bit addresses. The 64-bit
address space marks the 2-gigabyte virtual line called "the bar". The bar separates
storage below the 2-gigabyte address, called "below the bar", from storage above
the 2-gigabyte address, called "above the bar". DFSORT obtains storage in virtual
storage above the bar as a "memory object" for sorting.

Main storage

Main storage is the portion of virtual storage in the primary address space that
DFSORT limits itself to using. In general, the more main storage you make
available to DFSORT, the better the performance for larger jobs. To prevent
excessive paging, insure that sufficient real storage is available to back up the
amount of main storage used. This is especially important with main storage sizes

z/0OS V2R2 DFSORT Tuning Guide

Environment Considerations

greater than 32 MB. The default amount of main storage that will be made
available to DFSORT is defined when it is installed.

Although it is possible to run a "very minimal" sort application in 88 KB of
storage, the actual minimum amount of storage required is generally 128 KB to 440
KB depending on the application. The recommended minimum to avoid severe
performance degradation is about 6MB but a greater amount may be required for
optimal performance when sorting large files. Guidelines for setting these values
are given in[Table 4 on page 53|and [Table 5 on page 54 It is recommended that the
user not override the mainsize storage amount, but rather allow DFSORT to adjust
the storage up to the DSA limit (DFSORT only makes this adjustment for a sort
application when doing so can improve performance).

System-managed storage

The Storage Management Subsystem (SMS) makes data set allocation very easy
and efficient. Having SMS manage the temporary data sets can be a good first step
in migrating to system-managed storage. However, the SMS automatic class
selection (ACS) routines can unintentionally affect DFSORT data set allocations and
job performance, so you might need to coordinate changes to the ACS routines
with the site's storage administrator, as described here.

When any data set is allocated on an SMS system, the allocation request passes
through the system's data class and storage class ACS routines. If the data set will
be system-managed, the request also passes through the system's management
class and storage group ACS routines. There is only one set of ACS routines per
site, and they are very powerful. They can override DFSORT installation options,
such as VIO=NO, and can even override requests for a certain data, storage, or
management class, or a certain unit or volume.

It is important to use &maxsize rather than &size in the ACS routines for volume
assignment decisions related to the size of DFSORT work data sets. &size only
takes into account the primary allocation, whereas &maxsize takes into account
both the primary and possible total secondary allocation. Thus, the use of
&maxsize will allow for a more accurate decision on the assignment of unit,
storage class, storage group, and so on.

As an example of how ACS routines can affect the performance of DFSORT
applications, consider a storage class ACS routine that assigns all temporary data
sets to the STANDARD storage class, as shown in [Figure 2 on page 22| The storage
class is then used to assign the temporary data sets to a storage group. Because the
routine does not differentiate between DFSORT temporary data sets and other
temporary data sets, the storage group ACS routine cannot selectively prevent
DFSORT temporary data sets from being assigned to VIO. Allocating temporary
data sets to VIO works well in most cases, but might not be desirable for DESORT
temporary data sets, as explained in [“VIO for DFSORT data sets” on page 57|

Chapter 3. Environment considerations 21

Environment Considerations

22

PROC 1 STORCLAS

SELECT
WHEN (&DSTYPE = 'TEMP')
SET &STORCLAS = 'STANDARD'

END /+ END OF PROC =/

Figure 2. ACS Storage Class Routine. &DSTYPE is used to assign temporary data sets to
the STANDARD storage class.

One way to avoid allocating DFSORT temporary data sets to VIO is to write the
ACS storage class routine so it assigns all DFSORT temporary output and work
data sets (for example, those with ddnames SORTOUT, SORTOFdd, SORTWKdd,
and SORTDKdd) to a special NONVIO storage class. Using the &DD variable is
the most efficient way to determine whether or not a data set is a DFSORT data
set. Because you cannot use the &DD variable to check the ddname in the storage
group ACS routine, you must check for DFSORT temporary data sets in the storage

class ACS routine as shown in

PROC 1 STORCLAS
/* DEFINE DFSORT TEMPORARY DATA SETS =/

FILTLIST DFSORTDD INCLUDE(SORTWK=*,SORTDK*,SORTOF=*,'SORTOUT")

/* ASSIGN 'NONVIO' STORAGE CLASS TO DFSORT TEMPORARY DATA SETS =/
/* AND 'STANDARD' TO ALL OTHER TEMPORARY DATA SETS */

SELECT
WHEN (&DSTYPE = 'TEMP')
IF (&DD = &DFSORTDD)
THEN SET &STORCLAS = 'NONVIO'
ELSE SET &STORCLAS = 'STANDARD'
OTHERWISE SET &STORCLAS = '
END

END /+ END OF PROC =/

Figure 3. Storage Class ACS Routine. &DSTYPE and &DD are used to assign storage class
NONVIO for DFSORT temporary data sets. The ddnames of these temporary data sets
should be reserved names.

The storage group ACS routine can then look for the SORT storage class, and
assign the data sets to a non-VIO storage group, as shown in [Figure 4 on page 23|
The site's storage administrator will need to create the special NONVIO storage
class and alter the storage class and storage group ACS routines.

z/0OS V2R2 DFSORT Tuning Guide

Environment Considerations

PROC 1 STORGRP

/* ASSIGN ALL TEMPORARY DATA SETS THAT ARE NOT DFSORT */
/* DATA SETS TO 'SGVIO' */

SELECT
WHEN(&DSTYPE = 'TEMP' && &STORCLAS; -= 'SORT')
SET &STORGRP = 'SGVIO','PRIME'

/* ASSIGN DFSORT TEMPORARY DATA SETS TO 'PRIME' */

OTHERWISE SET &STORGRP = 'PRIME'
END

END /+ END OF PROC */

Figure 4. Storage Group ACS Routine. &DSTYPE and &STORCLAS-=SORT are used to
prevent VIO allocation for DFSORT temporary data sets. PRIME is a pool storage group
used for most data sets.

Be aware that the ddnames SORTOUT, SORTWKdd, and SORTDKdd can be
changed to other names when a program calls DFSORT. If other DFSORT output
and work data set ddnames are in common use at your site, you should also
include them in the ACS routines. This scheme does not work for OUTFIL data
sets specified with the FNAMES operand unless common ddnames are specified.

Note: Filtering on SORTIN in the ACS routines cannot prevent DFSORT
temporary input data sets from being allocated to VIO. These data sets are
allocated in preceding steps and passed to DFSORT. Thus, SORTIN is not the
ddname used when these data sets are allocated.

If the only DFSORT temporary data sets are dynamically allocated work data sets,
another way to avoid VIO allocation is to use a non-VIO generic device type for
the installation option DYNALOC and the run-time option DYNALLOC. The
storage group ACS routine could then be written to assign a pool storage group to
data sets with that generic device type. Again, the site's storage administrator will
need to establish a non-VIO generic device type and alter the storage group ACS
routine.

Note: DFSORT's dynamic allocation uses a primary allocation of 0 and non-zero
secondary extents. In this way, space is only used when the data set is extended. If
the attempts to extend the data sets fail or the required space can still not be
obtained, DFSORT may do one of two things:

* delete and then reallocate a dynamically allocated work data set using a
non-zero primary allocation to force selection of a volume with enough free
space to satisfy the request or

* retry the allocation using a device type matching the unit type of the original
allocation (for example, 3390) in an effort to allocate the required space in a
volume from another pool storage group. This behavior, though rare, should be
taken into account when designing ACS routines that make assignments based
solely on device type.

Chapter 3. Environment considerations 23

Environment Considerations

24

There might be other cases as well where the site's ACS routines unintentionally
alter DFSORT performance or data set allocation. Be aware of this, and if you
encounter problems, consult with your storage administrator to work out a joint
solution.

Software that changes disk space allocations or adds additional volumes should be
excluded from changing DFSORT work data set space. DFSORT's dynamic
allocation function calculates the optimal work space for each sort application,
adjusts the allocated work space as needed, and terminates if the required space is
not available. Software that reduces DFSORT's disk work data set allocations may
cause a sort application to fail. To avoid this situation, you should take the
appropriate steps to have such software exclude the following ddnames from being
changed: SORTWK?*, STATWK*, DATAWK?*, DAnnWK?*, STnnWK?*, SWnnWK* and
ccccWK* (where cccc is defined with the SORTDD=cccc option). Additionally if
you are using DFSMS data classes, you should not assign those ddnames to a
DFSMS data class that uses the Space Constraint Relief feature.

z/0OS V2R2 DFSORT Tuning Guide

Chapter 4. Installation considerations

Improving the performance of DFSORT consists of a number of activities,
including:

* Tuning on a site-wide or system level

* Tuning of individual applications

* Designing efficient applications

To some extent, the success of each depends upon the success of the others. For
instance, suppose we have a DFSORT application that has been carefully designed
and tuned, and would be a good candidate for dataspace sorting. It might be
adversely affected by the site's decision to set the default DSPSIZE parameter to 0.
Such a setting would turn off dataspace sorting (unless the programmer has
specifically overridden it in the application).

In a similar fashion, suppose that a significant site-wide tuning effort had been
undertaken to find the optimal value for the installation parameter TMAXLIM.
This parameter controls DFSORT's default maximum virtual storage. If a
programmer overrides this default by specifying an unusually small SIZE or
MAINSIZE value in an application, the application might make larger demands on
the system's disk and processor resources. This, in turn, could cause performance
problems for that application as well as any other active applications on the
system.

Even the best system and application tuning may be wasted on applications that
use sorts unnecessarily. For example, an application that sorts two already sorted
data sets into one could be replaced with a more efficient merge application.
Likewise, an application that uses a sort to extract a subset of the records, but does
not rearrange the records in any way, could be replaced with a more efficient copy
application.

This chapter offers advice for system programmers and application developers
who are responsible for installing and using DFSORT. It includes the following
topics:

* Running DFSORT resident

* Making the DFSORT SVC available

* Using ICEGENER as a replacement for IEBGENER

* Understanding storage options

* Using DFSORT capabilities

* Changing installation defaults

¢ Understanding installation performance options

¢ Using installation exits

Running DFSORT resident

By running DFSORT resident, that is, with DFSORT's SORTLPA library in LPALST
and DFSORT's SICELINK library in LINKLST, you can gain three performance
benefits:

© Copyright IBM Corp. 1992, 2015 25

Installation Considerations

* Two or more applications can use the same copy of DFSORT in main storage at
the same time. This enables central storage to be used more efficiently and cuts
down on system paging.

¢ The DFSORT load modules do not have to be loaded each time DFSORT is run.
This also saves unnecessary paging and time. This is especially noticeable for the
smaller DFSORT applications, which tend to make up the bulk of DFSORT jobs
at most sites.

* The space for the DFSORT load modules is not charged against the virtual
storage limits of individual applications. This saves storage that can be used by
DFSORT to do a more efficient sort.

Since DFSORT is invoked so frequently, it is a prime candidate for running
resident. When the DFSORT ICEGENER facility is used to replace IEBGENER, as
described in [‘Using ICEGENER as a replacement for IEBGENER” on page 27
DFSORT's use greatly increases, making it even more important to run DFSORT
resident.

Making the DFSORT SVC available

26

The DFSORT-supplied SVC enables DFESORT to run authorized functions without
itself being authorized. In particular, the following performance-related functions
are impaired if DFSORT's SVC is not available:

SMF type-16
DFSORT's type-16 SMF record contains useful information for analyzing
the performance of DFSORT (see [“Using SMF data” on page 82). Without
the SVC, DFSORT cannot write the SMF record to an SMF system data set,
although the record can still be obtained through an ICETEXIT routine. If
DFSORT's SMF feature is activated (installation or run-time option
SMF=SHORT or SMF=FULL) and a properly installed SVC is not available,
then all DFSORT applications will abend.

Cache fast write
Cache fast write (CFW) enables DFSORT to save elapsed time because
DFSORT is able to write its intermediate data into storage control cache,
and read it from the cache (see|’Cache Fast Write (CFW)” on page 12).
Without the SVC, DFSORT cannot use CFW, and issues message ICE1911.
Processing continues with possibly degraded elapsed time performance.

Caching mode
For storage control units that support cache, DFSORT selects the caching
mode that appears to be the best for the circumstances. Without the SVC,
DFSORT cannot set these caching modes, and issues message ICE1911. This
results in the default modes being selected, with possibly degraded system
and DFSORT elapsed time performance.

In addition to the functions described previously, there are other performance
enhancements that are available to DFSORT through use of the SVC.

Recommendation: Make the DFSORT SVC available for best performance. Make
sure that the installation of the SVC has been completed correctly so that the SVC
can be used.

z/0OS V2R2 DFSORT Tuning Guide

Installation Considerations

Using ICEGENER as a replacement for IEBGENER

At many sites, the copy utility IEBGENER is a frequently used program. Actions
that improve its performance greatly benefit user productivity and resource
utilization.

DFSORT's ICEGENER facility allows qualifying IEBGENER jobs to be routed to the
more efficient DFSORT copy function. In most cases, using the DFSORT copy
function instead of IEBGENER requires less CPU time, less elapsed time, and
results in fewer EXCPs (see [Figure 1 on page 13). If the DFSORT copy function
cannot be used, DFSORT automatically transfers control to the IEBGENER utility.
You can install ICEGENER so that your existing IEBGENER jobs do not require
changes.

These are some of the circumstances that prevent the use of ICEGENER:
* A SYSIN DD statement other than SYSIN DD DUMMY is present.
* Detection of an error before DFSORT has started the copy operation
* A condition listed in DFSORT message ICE160A as follows:
1 The SYSUT1 or SYSUT2 data set was BDAM.
FREE=CLOSE was specified.
An attempt to open a data set caused a system error.
The SYSUT1 or SYSUT2 data set resided on an unsupported device.
ASCII tapes had the following parameters:

(LABEL=AL or OPTCD=Q) and RECFM=D and BUFOFF-=L

gk W N

or

(LABEL=AL or OPTCD=Q) and RECFM-=D and BUFOFF-=0

An attempt to read the DSCB for the SYSUT1 data set caused an error.
An attempt to read the DSCB for the SYSUT2 data set caused an error.
The SYSUT1 data set had keyed records.

User labels were present.

©O© ® 3D

Under such circumstances, DFSORT transfers control to IEBGENER. However,
IEBGENER may not be able to process the copy application either.

See |z/0S DFSORT Installation and Customization| for complete details on installing
ICEGENER as an automatic replacement for IEBGENER.

Storage options

By using appropriate values for DFSORT installation storage options, you can
ensure that the majority of applications have sufficient virtual storage. If the
IBM-supplied installation default value for an installation storage option is
inappropriate for the majority of DFSORT applications at your site, you should
change it to a more appropriate value. For specific applications, the installation
values can be overridden using run-time options. See|z/OS DFSORT Installation ana1
ICustomization| and |z/OS DFSORT Application Programming Guidd for details of
DFSORT storage options and the relationships between these options.

Recommendations
You must provide sufficient virtual storage to DESORT using the guidelines given
in [“Virtual storage guidelines” on page 53|and |”Virtua1 storage and sorting with|
ldata space or memory objects” on page 54/

The following installation storage option values are recommended:

Chapter 4. Installation considerations 27

Installation Considerations

28

SIZE

The default, SIZE=MAX, is recommended. This enables DFSORT to use as
much virtual storage as possible, both above and below 16 MB virtual,
subject to the limits set by MAXLIM and TMAXLIM.

When installation option SIZE=MAX, EXEC PARM option SIZE=MAX, or
run-time option MAINSIZE=MAX is in effect, the TMAXLIM, RESALL,
and RESINV options are used. These options are not used when SIZE=n or
MAINSIZE=n is in effect.

You should also be aware of how the JCL REGION parameter can affect
DFSORT virtual storage allocation. While subject to the constraints of your
site's IEFUSI and IEALIMIT exits, the JCL REGION value limits the
amount of below 16 MB virtual storage.

DFSORT attempts to place as much of its storage as possible above 16 MB
virtual. DFSORT, however, still needs sufficient storage below 16 MB
virtual to run effectively. In general, a REGION value of at least 512 KB is
best. If DFSORT is called by a program, the REGION value should be large
enough to allow sufficient storage for DFSORT and the program. If E15 or
E35 user exits are used, a larger REGION value might improve
performance because these functions use more storage below 16 MB
virtual.

In general, the minimum of:
* REGION plus OVERRGN
e SIZE or MAINSIZE

* MAXLIM

determines the maximum storage available below 16 MB virtual. Thus,
with REGION=100K, OVERRGN=65536 (64 KB), SIZE=4194304 (4 MB), and
MAXLIM=1048576 (1 MB), a total of 4 MB is available to DFSORT, but only
164 KB can (and probably will) be available below 16 MB virtual. On the
other hand, if REGION=2M and SIZE=819200 (800 KB), then a total of 800
KB is available to DFSORT and all of it can (but probably will not) be
allocated below 16 MB virtual.

If the available storage below 16 MB virtual is insufficient, DFSORT issues
message ICE039A, which indicates the minimum additional storage
required below 16 MB virtual. Although the application might run if you
add the minimum storage indicated, it is recommended that you increase
either the REGION value, or the SIZE or MAINSIZE value (or both) to
provide sufficient virtual storage for the application to run efficiently.

PARM parameter SIZE=n or OPTION parameter MAINSIZE=n can be used
to allow more (or less) storage for specific applications for which the
installation default is not appropriate. For example, you might want to
specify MAINSIZE=8M to improve performance for a critical large
application when your installation default is 6 MB. Note that DSA is not
used when SIZE=n or MAINSIZE=n is specified.

When SIZE=n or MAINSIZE=n is in effect, RESALL and RESINV are not
used. Generally, this does not cause a problem, but if it does you should
ensure that the user exit size values in your MODS statement, if any, are
correct. Because the user exit size in the MODS statement is only an
estimate, you can raise it if necessary to allow more reserved storage.
Alternatively, you could raise the REGION value or go back to using
SIZE=MAX or MAINSIZE=MAX to resolve the problem. See
Installation and Customization|for details of the relationships between SIZE,
MAINSIZE, RESALL, RESINV, REGION, and other storage parameters.

z/0OS V2R2 DFSORT Tuning Guide

Installation Considerations

TMAXLIM

DSA

Although different sites have different requirements, experience indicates
that the TMAXLIM default of 6 MB is a good general purpose value.
Raising TMAXLIM from the default value might provide additional
performance benefits, particularly if a high percentage of your site's
DFSORT usage is spent on large sorting applications. However, the DSA
parameter (described later in this section) only raises the storage for
selected applications. Since a larger TMAXLIM affects every job and could
result in higher CPU times for smaller jobs, setting DSA appropriately is a
better choice than increasing TMAXLIM.

Alternatively, you could specify SIZE=n or MAINSIZE=n at run-time to
provide more (or less) storage for specific DFSORT applications.

DSA (Dynamic Storage Adjustment) allows DFSORT to change the value of
TMAXLIM dynamically if doing so should improve the performance of a
sort job. In general, the default of 64 (MB) is sufficient to handle most
sorts, but if your site runs very large sorts (multiple GB of input data), you
might consider increasing the DSA to 128.

MAXLIM

The default of 1 MB is generally sufficient. DFSORT performance might be
improved by specifying larger MAXLIM and REGION values for
applications with E15 or E35 user exits that use storage below 16 MB
virtual.

MINLIM

A MINLIM value of at least the default value of 440 KB is recommended.
The major reason for using a lower MINLIM value is if your site has
applications that fail with a higher MINLIM value (and for which there is
no easy fix for the failures).

The MINLIM value is important only for jobs which specify a SIZE or
MAINSIZE value that is less than the MINLIM value. By not using a value
of MAX, these jobs become locked into a specific virtual storage limit. They
must also reserve storage without using RESALL and RESINYV, usually by
making the SIZE or MAINSIZE value less than the REGION value or by
coding user exit sizes on a MODS control statement. Such applications are
prime candidates for your tuning efforts.

One way to improve the performance of these applications is to raise the
MINLIM value (for example, to the MAXLIM value). This enables such
applications to run with a larger amount of virtual storage. This strategy,
however, might cause some of these applications to fail due to insufficient
reserved storage. Using run-time options, you should change the failing
applications to use SIZE=MAX or MAINSIZE=MAX and set appropriate
values for user exit sizes (on the MODS control statement), RESALL, and
RESINV.

OVERRGN

The default and recommended values for this option are 64 KB for
directly-invoked and 16 KB for program-invoked applications.

RESALL

The default is 4 KB and should normally not be modified. If a storage
related failure occurs when sufficient virtual storage (REGION and SIZE)
has been specified, try setting RESALL to a larger value to correct the
problem.

Chapter 4. Installation considerations 29

Installation Considerations

RESINV
Normally, a RESINV value of 16 KB is sufficient and is recommended.

ARESALL
ARESALL is seldom needed and can be kept at its default of 0.

ARESINV
ARESINV is seldom needed and can be kept at its default value of 0.

See [/0S DFSORT Installation and Customization| for more information about these
parameters.

Hipersorting, memory object sorting, and data space sorting

Hipersorting, memory object sorting and data space sorting are all methods of
exploiting central storage to reduce work data set I/O and improve DFSORT
efficiency. DFSORT selects the method that best fits the characteristics of the sort
being executed and the available resources at the time of execution. This section
recommends ways to use Hipersorting, memory object sorting, and data space
sorting to improve DFSORT performance.

Recommendations

The recommended installation settings for Hipersorting, memory object sorting,
and data space sorting are the IBM-supplied defaults:

* EXPMAX=MAX

* EXPOLD=50%

* EXPRES=10%

* TUNE=STOR

* HIPRMAX=OPTIMAL

* MOSIZE=MAX

* MOWRK=YES

* DSPSIZE=MAX

These settings are described in detail in the sections that follow.
EXPMAX=MAX

This setting allows maximum Hipersorting, memory object sorting, and
data space sorting activity on a system, especially during periods when
applications (both DFSORT and non-DFSORT) are making little use of
central storage. Setting EXPMAX=n, where n is a number of megabytes, or
EXPMAX=p%, where p% is a percentage of the configured central storage,
should only be considered when it is important for a site to limit the total
amount of storage used by all DFSORT applications on the system.

Setting EXPMAX to n or p% can help prevent situations where a long
running sort application holds storage resources that may be needed by
new work entering the system later. Note that this only limits DFSORT's
storage usage. The total storage used by DFSORT and other address spaces
can exceed EXPMAX depending on the values in effect for EXPRES and
EXPOLD.

EXPOLD=50%
This setting is recommended only if migration of storage data to auxiliary
storage does not cause a problem on your system. During batch processing
windows, migrating old data to auxiliary storage can improve overall
system performance, since it allows more active data, like DFSORT work
data, to use storage in place of disk work data sets. But, the one-time

30 z/0S V2R2 DFSORT Tuning Guide

Installation Considerations

migration can have a negative impact on system performance, especially if
the paging subsystem is not large enough to hold the number of frames
that are migrated. Using EXPOLD=50%, along with TUNE=STOR, causes
DFSORT to continually examine the amount of old storage and never allow
a sort to cause more than half of it to be used by DFSORT.

If the migration of large amounts of old storage data is not a concern and
you want to maximize DFSORT's use of central storage, consider setting
EXPOLD=MAX. This setting should only be used if there is a robust
paging subsystem large enough to support a large spike in the number of
frames being migrated to auxiliary storage.

If the migration of large amounts of old storage data is a concern for your
site, set EXPOLD to a small number or zero. Setting EXPOLD=0 limits
DFSORT to only consider available frames in its evaluation of resources for
Hipersorting, memory object sorting or data space sorting.

EXPRES=10%
This setting permits DFSORT almost full use of available storage when
non-DFSORT activity is light, but greatly reduces the possibility of an
overuse of storage when there is a sudden increase in the use of storage by
non-DFSORT applications. If you need to keep central storage available for
non-DFSORT applications, increase this value. If you want DFSORT to
have full use of available storage, set EXPRES=0.

TUNE=STOR
This setting causes DFSORT to allocate central storage in increments sized
to balance usage when multiple sorts are executing concurrently on the
same system. DFSORT continually examines available resources and
dynamically makes adjustments to the increment size. If EXPMAX,
EXPOLD or EXPRES are specified as percentages, DFSORT will also
recalculate those values based on available resources. DFSORT's dynamic
allocation will increase the space allocations to reduce the risk of failure if
central storage resources become constrained during execution of a sort.

If conserving disk work space is more important in your environment, you
can use TUNE=DISK which will cause each sort to allocate all of the
available work space it plans to use immediately. This can cause a small
number of sorts to monopolize available central storage but DFSORT's
dynamic allocation will be able to more aggressively reduce the disk work
space allocations based on the expected central storage usage.

Note that even sorts which use JCL or pre-allocated work data sets will
allocate storage based on the TUNE parameter. This is necessary so that all
sorts compete equally for the same storage. Similarly, this is why TUNE
cannot be overridden as a run-time option. TUNE=DDYN can be used to
cause sorts that use DFSORT's dynamic allocation to allocate all of the
available storage they plan to use immediately, and cause sorts using JCL
or pre-allocated work data sets to allocate in increments. This is useful for
special situations where dynamic allocation is frequently used by the
majority of sorts, and optimizing disk space is a priority, but there might
be a known time period when the majority of sorts do not use dynamic
allocation and would benefit from balancing central storage.

TUNE=OLD is available for customers who prefer that DFSORT allocate
central storage in fixed increment sizes. If EXPMAX, EXPOLD or EXPRES
is specified as a percentage, DFSORT calculates that value once based on
configured central storage.

HIPRMAX=OPTIMAL, MOSIZE=MAX, DSPSIZE=MAX, MOWRK=YES

Chapter 4. Installation considerations 31

Installation Considerations

These settings allow the DFSORT installation options EXPMAX, EXPOLD,
and EXPRES to control the total Hipersorting, memory object sorting, and
data space sorting activity on a system.

HIPRMAX=n or HIPRMAX=p% should be reserved for use as a run-time
override for applications that have a special reason to limit the amount of
Hiperspace available for Hipersorting.

MOSIZE=n or MOSIZE=p% should be reserved for use as run-time
overrides for applications that have a special reason to limit the amount of
virtual storage available for memory object sorting.

MOWRK=NO should only be used for installations that have a special
need to only allow memory objects to be used as an extension of main
storage instead of intermediate work space.

DSPSIZE=n or DSPSIZE=p% should be reserved for use as run-time
overrides for applications that have a special reason to limit the amount of
virtual storage available for data space sorting.

When Hiperspace, memory object and data space usage is limited, JCL
work data sets (SORTWKdd) may no longer be large enough to complete a
sort, or the installation DYNSPC default may not be large enough for
unknown file size conditions. As a result, error messages (for example,
ICE046A and ICE083A) may be issued due to less central storage being
used. The use of dynamic allocation with an appropriately large
installation DYNSPC value is recommended. If you have JCL work data
sets and you want DFSORT to ignore them, use DYNAUTO=IGNWKDD.

DFSORT installation defaults

32

DFSORT is shipped with a set of installation defaults that are used by all DFSORT
applications at a site. These defaults set values for various DFSORT parameters.
They can be changed on a site-wide level for various invocation environments and
time-of-day environments using ICEPRMxx members of PARMLIB or the ICEMAC
macro. See [z/OS DFSORT Installation and Customization|for complete details of
installation defaults.

Most of the installation defaults can be overridden for specific applications by
setting the appropriate run-time options. In addition, some of the defaults (as well
as run-time options) can be overridden for all or a subset of applications at a site
through use of an ICEIEXIT routine. See|z/OS DFSORT Application Programming|
for complete details of DFSORT's option override scheme.

Modifying installation defaults

ICEPRMxx members in PARMLIB or the ICEMAC macro can be used to modify
the IBM-supplied installation default values for DFSORT. Many of these
installation options have an impact on performance, including;:
 Storage limits

* Hiperspace, data space, and memory object limits

* Use of system-determined block size

* Reallocation of VIO work data sets

* Use of dynamic allocation for work data sets

* Number of work data sets for dynamic allocation

* Device type for dynamically allocated data sets

* Use of control interval access for VSAM data sets

¢ Number of I/O buffers to use

* IDRC tape compaction ratio

z/0OS V2R2 DFSORT Tuning Guide

Installation Considerations

* Use of VERIFY, EQUALS, ALTSEQ, and LOCALE

Modifications to the installation defaults should be carefully chosen to reflect how
you want DFSORT to run at your site. You should only override installation
options for which the supplied default values are not acceptable. You can easily
change installation options using a START ICEOPT command from the console or
in a COMMNDxx member in PARMLIB. For example, to use the installation
options specified in an ICEPRM01 member of PARMLIB, type the following at the
console:

start iceopt,iceprm=01

ICEPRMxx members in PARMLIB are the recommended way to change your
installation defaults. You can activate different ICEPRMxx members for different
LPARs.

Alternatively, you can use the ICEMAC macro and a USERMOD to update the
source distribution library to reflect the changed options.

Invocation installation environments

DFSORT allows separate sets of installation defaults for four invocation installation
environments, as follows:

JCL-invoked (ICEAM1)
DFSORT invoked directly (that is, not through programs) by batch jobs

Program-invoked (ICEAM?2)
DFSORT invoked through batch programs

TSO-invoked (ICEAM3)
DFSORT invoked directly by foreground TSO users

TSO program-invoked (ICEAM4)
DFSORT invoked through programs by foreground TSO users

Time-of-Day installation environments

DFSORT allows each of the invocation installation environments (ICEAM1-4) to
specify time-of-day installation environments (ICETD1-4) with separate sets of
installation defaults to be used for runs on specific days and times (for example,
from 8:00am to 5:00pm on Saturday and Sunday). You might want to take
advantage of this feature to allow, for example, DFSORT to use larger storage
values (DSA, TMAXLIM, and so on) for runs at certain days and times.

Listing the installation defaults with ICETOOL

You can use an ICETOOL job similar to the one in [Figure 5 on page 34| to list the
merged PARMLIB/ICEMAC installation defaults actually in use at your site for the
eight installation environments.

Chapter 4. Installation considerations 33

Installation Considerations

//DFRUN JOB A402,PROGRAMMER
//LISTDEF EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//SHOWDEF DD SYSOUT=A
//TOOLIN DD =

DEFAULTS LIST(SHOWDEF)
/*

Figure 5. Using ICETOOL to List Installation Defaults

See |z/OS DFSORT Installation and Customization| for complete details on installation
options and defaults.

Note: The supplied DFSORT installation defaults were chosen to balance DFSORT
versus system performance and resource usage, as well as to have DFSORT operate
in a manner appropriate for most customers. Therefore, the supplied defaults
should only be changed on an exception basis.

Installation defaults that are inappropriate for an application should be overridden

for that application with the corresponding run-time options. See /OS DESOR
[Application Programming Guidd for complete details of run-time options.

Installation options and performance

[Table 3 on page 35| shows site-wide installation options that influence the
performance of DFSORT, a description of each option, and additional comments
about the option.

34 7z/0S V2R2 DFSORT Tuning Guide

Table 3. Installation Options That Influence DFSORT Performance

Installation Considerations

Type

Installation Option

Description

Comments

Options that tailor
main storage

SIZE Upper limit for total storage Limited by TMAXLIM when
above and below 16 MB virtual SIZE=MAX is in effect. The

recommended value is MAX.

OVERRGN Upper limit for storage over and Limited by the IEFUSI or
above that specified by REGION. IEALIMIT installation-wide exits

using the “region limit” values.

MAXLIM Upper limit for storage below 16 ~ Always used. The recommended
MB virtual. value is 1 MB.

TMAXLIM Upper limit for total storage Only used when SIZE=MAX or
above and below 16 MB virtual. nMAINSIZE=MAX is in effect. The

recommended value is 6 MB.

DSA Upper limit for dynamic storage ~ Only used when SIZE=MAX or
adjustment. MAINSIZE=MAX is in effect and

the use of additional storage
should improve performance. The
recommended value is 64 MB.

MINLIM Lower limit for SIZE or Only used when SIZE=n or
MAINSIZE. MAINSIZE=n is less than

MINLIM. The recommended
value is 440 KB.

RESALL Storage below 16 MB virtual that Only used when SIZE=MAX or
is reserved for system use. MAINSIZE=MAX is in effect. Can

reduce the amount of virtual
storage available for use by
DFSORT.

RESINV Storage below 16 MB virtual that Only used when SIZE=MAX or
is reserved for use by an MAINSIZE=MAX is in effect and
invoking program. DFSORT is program-invoked.

ARESALL Storage above 16 MB virtual that Can reduce the amount of virtual
is reserved for system use. storage available for use by

DFSORT.
ARESINV Storage above 16 MB virtual that Only used when DFSORT is

is reserved for use by an
invoking program.

program-invoked.

Chapter 4. Installation considerations 35

Installation Considerations

Table 3. Installation Options That Influence DFSORT Performance (continued)

Description

Comments

Type Installation Option
Options that affect use HIPRMAX
of Hiperspace,
memory objects and
data space

Upper limit for Hiperspace for a
single application.

Hiperspaces limited by IEFUSI
installation exit. Recommended
setting is OPTIMAL. Use
EXPMAX, EXPOLD, and EXPRES
to control Hipersorting on a
system-wide basis.

MOSIZE

Upper limit for a memory object
for a single application.

Recommended setting is MAX.
Memory objects are limited by
IEFUSI and JCL MEMLIMIT. If
central storage is overcommitted,
set MOSIZE to a low value and
test it. If resource contention is a
problem only at specific times, set
MOSIZE to MAX in your
environment installation modules
and use a time-of-day installation
module to restrict the MOSIZE
value for all jobs during those
specific times.

MOWRK

Whether memory objects can be
used as intermediate work
storage or only as an extension of
main storage.

Recommended setting is YES.
DFSORT’s use of memory objects
as work space provides more
efficient operation and improved
balancing of central storage
resources across concurrent sort
applications.

DSPSIZE

Upper limit for data space size.

Recommended setting is MAX. If
central storage is overcommitted,
set DSPSIZE to a low value and
test it. If resource contention is a
problem only at specific times, set
DSPSIZE to MAX in your
environment installation modules
and use a time-of-day installation
module to restrict the DSPSIZE
value for all jobs during those
specific times. Data spaces are
limited by IEFUSL

EXPMAX

Upper limit for total available
central storage used for all
Hipersorting, memory object and
data space sorting activity.

Available central storage is
subject to non-Hipersorting,
non-memory object and non-data
space sorting activity. Should be
set to MAX unless you want to
limit Hipersorting, memory object
and data space sorting activity to
a fixed portion of storage.

EXPOLD

Upper limit for total old
expanded and central storage
used for all Hipersorting,
memory object and data space
sorting activity.

Old expanded and central storage
are subject to non-Hipersorting,
non-memory object and non-data
space sorting activity. Should be
set to 50% unless a large
migration of old storage data
causes a problem at your site.

36 z/0S V2R2 DFSORT Tuning Guide

Table 3. Installation Options That Influence DFSORT Performance (continued)

Installation Considerations

Type Installation Option

Description

Comments

EXPRES

Lower limit for available
expanded and central storage
reserved for non-Hipersorting
and non-memory object sorting
use.

Available expanded and central
storage are subject to
non-Hipersorting and
non-memory object sorting
activity. Should be set to 10%
unless you want DFSORT to have
lower access priority to storage
than other applications.

Options that influence DYNAUTO
allocation of work
data sets

Whether work data sets should
be dynamically allocated
automatically.

Set to YES, or to IGNWKDD if
you want to use dynamic
allocation even when JCL work
data sets are specified. Can cause
an increase in CPU time for small
sort applications but helps
minimize the amount of disk
space required for sorting.

DYNALOC

Default device type and number
of work data sets when dynamic
allocation is requested.

Does not request dynamic
allocation; only supplies defaults.

DYNAPCT

Default additional work data sets
(as percentage) to be dynamically
allocated and used only when
needed.

If set to OLD, additional data sets
are only allocated when DFSORT
cannot determine the input file
size. Exceptions are documented
in|z/OS DESORT Installation and|

|Customization|

DYNSPC

Default amount of space to
allocate for dynamically allocated
work data sets.

Only used when DFSORT cannot
determine the input file size.

IDRCPCT

Compaction ratio to use for
IDRC-compacted tape data sets
when computing data set size.

Tells DFSORT how much work
space to dynamically allocate
when input is on an
IDRC-compacted tape and
DFSORT cannot determine the
input file size.

VIO

Whether VIO work data sets
should be automatically
reallocated to real disk locations.

ACS routines can override this
option.

Options that affect CINV
VSAM performance

Whether control interval access is
used for VSAM input data sets.

Improves performance for VSAM
input data sets.

VSAMBSP

Amount of VSAM bulffer space to
use.

To improve VSAM performance,
set OPTIMAL or MAX.

Chapter 4. Installation considerations 37

Installation Considerations

Table 3. Installation Options That Influence DFSORT Performance (continued)

Description

Comments

The maximum buffer space to be
used for disk SORTIN and
SORTOUT data sets.

Recommended setting is 34 MB.
Should only be lowered when
device contention or long channel
connect times are a problem.
Lowering the default could result
in larger EXCP counts for these
data sets, but could also decrease
the channel connect time per
EXCP.

Type Installation Option
Options that affect IOMAXBF
input and output data
set performance
ODMAXBF

The maximum buffer space to be
used for each OUTFIL data set.

Recommended setting is 2 MB.
Lowering the value can cause
performance degradation for the
application. When you use more
than 2 MB, the performance
improvements are small except
for EXCPs, and, there is an
increased need for storage.

38 z/0S V2R2 DFSORT Tuning Guide

Table 3. Installation Options That Influence DFSORT Performance (continued)

Installation Considerations

Description

Comments

Whether cache fast write is used
for DFSORT work data sets.

Only applicable for work data
sets located on disks attached to
cached 3990 storage control units.
Can be used only if DFSORT SVC
is installed. Cache fast write can
reduce the elapsed time of
sorting applications. CFW is more
beneficial to DFSORT
performance for small and
intermediate sized sorts, where
the work data sets are relatively
small.

Whether input order is preserved
for records with equal keys.

Can cause an increase in CPU
time. The default setting of
VLBLKSET should be changed to
NO if possible.

Whether output records are
checked for correct order.

Can cause an increase in CPU
time.

Type Installation Option
Other options that CFW
affect performance
EQUALS
VERIFY
ALTSEQ

Whether a collating sequence
other than EBCDIC is used.

Can cause an increase in CPU
time.

SDB and SDBMSG

Whether system-determined
block size is used for output data
sets whose block size is zero.

Use of optimum block sizes for
output data sets provides more
efficient performance than using
other block sizes.

IGNCKPT

Specifies whether
Checkpoint/Restart requests at
run-time should be ignored.

When CKPT is specified, the
Blockset technique cannot be
selected. Therefore, the
recommended setting is YES so
that the Blockset technique can be
used.

CHALT

Specifies whether ALTSEQ is to
be applied to character format
fields (CH).

As with ALTSEQ, can cause an
increase in CPU time.
Recommended setting is NO.

COBEXIT

Specifies the library for COBOL
E15 and E35 routines.

Use COB2. COBI1 is obsolete.

EFS

Specifies the name of a
user-written Extended Function
Support program to be called by
DFSORT.

Can cause an increase in CPU
time and elapsed time. Use only
when necessary for your
application.

LOCALE

Specifies whether locale
processing is to be used and, if
so, designates the active locale.

Should only be used when
required since it can show
degraded performance relative to
collation using character
encoding values.

See [z/OS DFSORT Installation and Customization] for a complete list of site-wide

installation options and the [z/OS DFSORT Application Programming Guide| for
corresponding run-time overrides.

Chapter 4. Installation considerations 39

Installation Considerations

Installation exits

40

DFSORT allows you to use user-written, installation-wide initialization and
termination exit routines to perform a variety of functions, such as overriding the
options currently in effect and collecting statistical data. For tuning purposes it is
often advantageous to install these exits for the following reasons:

* These exits can be used for performance data gathering to help you understand
the use of DFSORT at your site and make the appropriate tuning decisions
based on this information.

* An initialization routine allows you to override the run-time values set for
certain options, which enforces your decisions for those option values for all
DEFSORT applications at your site.

ICEIEXIT

A site-supplied ICEIEXIT routine can exercise control over certain DFSORT
run-time options.

If present and activated, the ICEIEXIT routine is called and passed installation and
run-time information by DFSORT. The ICEIEXIT routine can then use current
DFSORT and system information to determine whether to change certain options
in effect. This also permits site-wide control of certain options whose installation
defaults have been overridden at the application-level.

An ICEIEXIT routine can examine installation and run-time information related to:
* Storage limits

* Hiperspace limits

* Data space limits

* Memory object limits

* Use of VERIFY

e OUTFIL buffer space limits

and additional run-time information related to:
* DFSORT technique used

* Type of DFSORT application

* Method of DFSORT invocation

 Storage above 16 MB virtual

* Configured expanded storage

An ICEIEXIT routine can also change certain run-time options including;:
 Storage limits

* Hiperspace limits

* Data space limits

* Memory object limits

* Use of VERIFY

* OUTFIL buffer space limits

A site could use an ICEIEXIT routine to control applications and enforce site

standards. For example:

* Many options (for example, MAXLIM, SIZE, TMAXLIM, DSA) can affect the
virtual storage used by DFSORT. An ICEIEXIT routine could specify the amount
of virtual storage to be used depending on such factors as performance
requirements and jobname.

z/0OS V2R2 DFSORT Tuning Guide

Installation Considerations

Note: The time-of-day installation modules allow you to specify the virtual
storage to be used depending on the day and time when an application runs.
See [‘Time-of-Day installation environments” on page 33| for more information.

Before creating a data space, DFSORT checks to see how much central storage
either is not being used or has gone unreferenced for a sufficient period of time.
This is to make sure enough real storage is available to back the data space
without causing excessive system paging activity. An ICEIEXIT routine can
further reduce the risk of overcommitting central storage by limiting the amount
of data space that a single DFSORT application can use. This would also
override any run-time specifications that try to get around the installation
default.

See |z/OS DFSORT Installation and Customization| for information about coding an
ICEIEXIT routine and a sample ICEIEXIT routine, which shows how the storage
available to DFSORT can be dynamically modified based on the
jobname/stepname and type of application.

ICETEXIT

If present and activated, the ICETEXIT routine is called at the end of DFSORT
application processing. It is available for those who wish to make a thorough
analysis of DFSORT performance data using a single source of information. See

“Using ICETEXIT data” on page 84| for more information about using this routine;

see [z/OS DFSORT Installation and Customization| for complete information on how to
write and install an ICETEXIT routine.

Chapter 4. Installation considerations 41

42 7/0S V2R2 DFSORT Tuning Guide

Chapter 5. Run-time considerations

This chapter offers advice about improving the performance of individual DFSORT
applications by using run-time options related to the following areas:

* Memory object sorting

* Hipersorting

 Sorting with data space

* Cache fast write

* File size

 Storage

* Input and output data sets

The last section includes a table with information on run-time options available
with DFSORT that can affect performance.

Memory object sorting

Memory object sorting is a DFSORT capability that uses memory objects in 64-bit
virtual storage. For a more detailed description of this capability, see
fobject sorting, hipersorting and data space sorting” on page 8] The sections that
follow include information on how to use memory object sorting in the most
efficient way at your site.

DFSORT selects the most appropriate mode (memory objects as intermediate work
space or memory objects as additional main storage) for each particular run. Not
every sort application can use memory object sorting, and even for those sorts that
can use memory object sorting, it may be more advantageous not to use it under
certain circumstances.

A memory object, used in memory object sorting, is allocated in virtual storage
above the bar and backed by central storage. The use of central storage for
memory object sorting must always be weighed against the possibility of
degrading performance for a particular job, or for the entire system, by overusing
central storage. If DFSORT were to use memory object sorting indiscriminately,
there could be a significant increase in paging activity and a resulting reduction in
total system performance, affecting all jobs, including sorts.

The recommended setting for MOSIZE is MAX and the recommended setting for
MOWRK is YES. MOSIZE=MAX enables DFSORT to dynamically determine the
total amount of memory object storage to be used for memory object sorting,
taking into account the size of the file being sorted and the central storage usage
activity of the system. MOWRK=YES enables DFSORT to determine whether to use
memory object storage as intermediate work space or as an extension to main
storage. DFSORT has full control over total memory object sorting activity, and
sites can customize their definition of MOSIZE=MAX with the installation options
EXPMAX, EXPOLD, and EXPRES. MOSIZE=n and MOSIZE=p% should be
reserved for use as a run-time override for applications that have a special reason
to limit the size of a memory object for memory object sorting.

The number of megabytes used for a memory object during the sort is displayed in
message ICE1991 or ICE2991 depending on whether DFSORT uses it as

© Copyright IBM Corp. 1992, 2015 43

Run-Time Considerations

44

intermediate work space or as an extension to main storage. If memory object
sorting is not used, both messages show a value of OM.

Limitations

The maximum amount of memory object storage used by DFSORT is limited to the
minimum of the following values:

e The MEMLIMIT parameter limit on the total size of memory objects that can be
allocated in a single job step. See [z/0S MVS JCL Reference|for a description of the
MEMLIMIT parameter.

* The IEFUSI exit limit on the total size of memory objects that can be allocated in
a single job step. See [z/OS DFSMS Installation Exits| for a description of IEFUSL

e The MOSIZE value in effect, when set to a value other than MAX. The MOSIZE
value in effect is either the installation default, an overriding value specified at
run-time, or an overriding value specified in the installation ICEIEXIT routine.
Note that the value specified in the ICEIEXIT routine overrides any other value.

* Available central storage. Throughout the run, DFSORT checks the amount of
available central storage. If, as a result of any such check, either a central storage
shortage is predicted, or one of the site limits for total central storage usage by
all memory object sorting applications is reached, DFSORT switches from using
a memory object to using disk work data sets.

In addition, all future DFSORT applications are prevented from using memory
object sorting until the central storage situation is relieved. This prevents
memory object sorting applications by themselves from causing a shortage of
central storage.

The following are those cases for which you should not attempt to adjust your
application; in these cases the best performance for the individual job and for the
system is achieved by not using memory object sorting:

e Other performance features are in use: Memory object sorting is not used when
DFSORT decides to use Hipersorting or data space sorting. DESORT
dynamically chooses between using memory object sorting, data space sorting,
and Hipersorting and selects the one that provides the best performance for the
particular sort. Messages ICE180I and ICE188I indicate whether Hipersorting or
data space sorting was used for a particular run.

* The size of the input data set is very small: If the amount of data to be sorted
is known to be small enough that the sort can be accomplished in main memory,
memory object sorting is not used.

Application adjustments
The following are those cases for which you may want to adjust your application
in order to take advantage of memory object sorting.

* The Blockset technique was not selected: Memory object sorting is supported
only for the Blockset technique. If Blockset is not selected, message ICES800I
indicates why it was not selected. Note that the ICE800I message is printed only
when a SORTDIAG DD statement was coded in the sort’s JCL, or installation
option DIAGSIM=YES has been specified for your site. Use the ICE800I reason
code to determine the exact condition that is preventing the use of Blockset. If
you are interested in using memory object sorting for the job, change your
application appropriately to eliminate the particular condition, so that Blockset
can be used.

* Insufficient available virtual storage: In some cases, the amount of virtual
storage available to DFSORT can influence the potential effectiveness of memory
object sorting. The third value in message ICE092I or ICE093I indicates the

z/0OS V2R2 DFSORT Tuning Guide

Run-Time Considerations

amount of storage available for a particular sort job. To help reduce the
likelihood of not using memory object sorting because of insufficient virtual
storage, ensure that this value is at least the minimum recommendation given in
[Table 5 on page 54}

* Insufficient available above the bar virtual storage: The MEMLIMIT parameter
on the JOB or EXEC JCL statement limits the total amount of memory object
storage that can be allocated in a single job step. For more effective use of
memory object sorting, specify a MEMLIMIT value that is at least equal to the
size of the sorted data set, or specify an unlimited size for memory objects using
the MEMLIMIT=NOLIMIT parameter on the JOB or EXEC JCL statement. Note
that if MEMLIMIT is not specified, but REGION=0K or REGION=0M is specified
on the JOB or EXEC JCL statement, then MEMLIMIT=NOLIMIT is implied.

* Insufficient available central storage: The total amount of memory object
storage DFSORT needs is directly related to the size of the input data set.
Memory objects are backed by central storage. Therefore, insufficient available
central storage for backing DFSORT’s memory objects has an effect on the
performance of memory object sorting. If the total amount of memory object
storage DFSORT needs would exceed the available central storage, DFSORT
chooses not to use memory object sorting.

If you would like memory object sorting to be used, there are several possible
approaches you can take:

— Make sure that the MOSIZE value, the MEMLIMIT value, or the installation
IEFUSI exit are not limiting the application to a small amount of memory
object storage. Setting MOSIZE=MAX (or setting MOSIZE to a very large
value), and having MEMLIMIT and IEFUSI allow the use of a memory object
at least the size of the input data set, will remove this limitation.

— Rerun the application when system activity, especially other concurrent
memory object sorting and Hipersorting activity, is lower so that more central
storage is available for the sort.

— Reduce the size of the input data set, so that less central storage is required
for the sort. For some applications it is not necessary to sort all of the data,
since only a subset is needed for processing. For example, INCLUDE, OMIT,
SKIPREC, or STOPAFT can significantly reduce the amount of intermediate
storage required by DFSORT. Seqz/OS DFSORT Application Programming Guidd
for more details about these features of DFSORT.

— Ensure that DFSORT has accurate information about the input file size.
DFSORT can automatically estimate the file size for disk input data sets and
tape data sets managed by DFSMSrmm or a tape management system that
uses ICETPEX. However, there are certain situations, which DFSORT reports
with message ICE118], in which DFSORT cannot determine the file size. See
"File Size and Dynamic Allocation” in f/OS DFSORT Application Programming]
for more information on these situations, and what to do about them.

* Insufficient work data set usage: When it is possible to use a combination of
memory object and disk storage as intermediate work space, DFSORT must
decide how best to use disk work data sets. Specify generous extent sizes for
disk work data sets, especially for secondary extents.

In general, DFSORT takes into account the effects of using memory objects on both
the application’s performance and the system’s performance when determining
whether or not to use memory object sorting. If either effect is not desirable,
DFSORT chooses not to use memory object sorting.

See [“Memory object sorting, hipersorting and data space sorting” on page 8| for
information on the benefits and operation of memory object sorting and

Chapter 5. Run-time considerations 45

Run-Time Considerations

[‘Hipersorting, memory object sorting, and data space sorting” on page 30 for
additional information on using memory object sorting effectively.

Hipersorting

Hipersorting is a DFSORT capability that uses Hiperspaces for sorting. For a more
detailed description of this capability, see [“Memory object sorting, hipersorting and|
|data space sorting” on page 8.| The sections that follow include information on how
to use Hipersorting in the most efficient way at your site.

DEFSORT selects the most appropriate mode (Hiperspace-only, Hiperspace-mixed,
or disk-only mode) for each particular run. Not every sort application can use
Hipersorting, and even for those sorts that can use Hipersorting, it may be more
advantageous not to use it under certain circumstances. This section examines the
most common reasons for not using Hiperspace and explains the possible actions
that can be undertaken to allow more jobs to take advantage of Hipersorting.

DFSORT adjusts its use of hiperspaces appropriately taking into consideration that
real storage is a resource available to all users of the system.

Some customers have expressed concerns that they would like to see Hipersorting
used more often. However, the use of hiperspace storage must always be weighed
against the possibility of degrading performance for a job or for the entire system,
by overusing storage. If DFSORT were to use Hipersorting indiscriminately, there

could be a significant increase in paging activity and a resulting reduction in total
system performance, affecting all jobs, including sorts.

The recommended setting for HIPRMAX is OPTIMAL. With dynamic Hipersorting,
DFSORT has full control over total Hipersorting activity, and sites can customize
their definition of HIPRMAX=OPTIMAL with the installation options EXPMAX,
EXPOLD, and EXPRES. HIPRMAX=n and HIPRMAX=p% should be reserved for
use as a run-time override for applications that have a special reason to limit the
amount of Hiperspace available for Hipersorting.

The number of kilobytes of Hiperspace storage used during the sort is displayed in
message ICE180L. If Hipersorting is not used, the message shows a value of 0K.

Limitations

The maximum amount of Hiperspace used by DFSORT is limited to the minimum
of the following values:

* The IEFUSI exit limit on the total amount of Hiperspace and data space that can
be allocated in a single job step. See f/OS MVS Installation Exits| for a description
of IEFUSI.

e The HIPRMAX value in effect, when set to a value other than OPTIMAL. The
HIPRMAX value in effect is either the installation default, an overriding value
specified at run-time, or an overriding value specified in the installation
ICEIEXIT routine. Note that the value specified in the ICEIEXIT routine
overrides any other value.

* Available storage. Throughout the run, DFSORT determines the pages available
on the system, subtracts from this the amount of storage needed by other
concurrent Hipersorting applications, and factors in the values specified for
installation options EXPMAX, EXPOLD, and EXPRES. If as a result of any such
check, either a storage shortage is predicted or one of the site limits for total

46 2/0S V2R2 DFSORT Tuning Guide

Run-Time Considerations

storage usage by all Hipersorting applications is reached, DFSORT switches from
using Hiperspace to using disk work data sets for all currently running
Hipersorting applications.

In addition, all future DFSORT applications are prevented from using
Hipersorting until the storage situation is relieved. This prevents Hipersorting
applications by themselves from causing excessive paging.

Since this last criteria depends very heavily on system activity, especially other
concurrent Hipersorting and memory object sorting activity, DFSORT
applications can use varying amounts of Hiperspace when run at different times
and under different conditions. In fact, it is possible for such applications to not
use any Hiperspace.

The following are those cases for which you should not attempt to adjust your
application; in these cases the best performance for the individual job and for the
system is achieved by not using Hipersorting:

¢ Other performance features are in use. Hipersorting is not used when DFSORT
decides to use dataspace or memory object sorting. DFSORT dynamically
chooses between using dataspace sorting, memory object sorting and
Hipersorting; DFSORT selects the one that provides the best performance for the
particular sort. Messages ICE188I and ICE199I indicate whether dataspace
sorting or memory object sorting was used for a particular run.

* The size of the input data set is very small. If the amount of data to be sorted
is known to be small enough that the sort can be accomplished in main memory,
Hipersorting is not used. Since no intermediate data is generated, neither
Hiperspace nor disk work data sets are needed. The presence of message
ICEO080I indicates that a sort was processed in main memory.

Application adjustments

The following are those cases for which you may want to adjust your application
in order to take advantage of Hipersorting.

¢ The Blockset technique was not selected. Hipersorting is supported only for
the Blockset technique. If Blockset is not selected, message ICE800I indicates
why it was not selected.

Note that the ICE800I message is printed only when a SORTDIAG DD statement
was coded in the sort's JCL, or installation option DIAGSIM=YES has been
specified for your site. Use the ICE800I reason code to determine the exact
condition that is preventing the use of Blockset. If you are interested in using
Hipersorting for the job, change your application appropriately to eliminate the
particular condition, so that Blockset can be used.

* Insufficient available virtual storage. In some cases, the amount of virtual
storage available to DFSORT can influence the potential effectiveness of a
Hiperspace. A Hiperspace of a certain size could be too small to improve
performance when an insufficient amount of virtual storage is available, whereas
the same size Hiperspace might be large enough to improve performance when
a sufficient amount of storage is available. Since DFSORT does not use
Hiperspace when doing so would not result in a performance benefit,
insufficient virtual storage can indirectly prevent the use of Hipersorting.

Supply DFSORT with sufficient virtual storage if you would like Hipersorting to
be used. The third value in message ICE092I or ICE093I indicates the amount of
storage available for a particular sort job. To help reduce the likelihood of not
using Hipersorting because of insufficient virtual storage, ensure that this value
is at least the maximum recommendation given in [Table 4 on page 53| If
necessary, increase the amount of virtual storage available to the job by

Chapter 5. Run-time considerations 47

Run-Time Considerations

48

specifying a larger MAINSIZE value on the OPTION control statement and/or
raising the REGION value on the sort step EXEC statement.

Insufficient available central storage. The size of the input data set in relation
to the total available central storage has an important effect on the performance
of Hipersorting. If the size of the Hiperspace that could be created is too small
to hold a significant percentage of the intermediate data, then the performance
of the run would be degraded compared to using disk-only mode. Therefore,
DFSORT chooses not to use Hipersorting in this situation.

If you would like Hipersorting to be used, there are several possible approaches
you can take:

— Make sure that the HIPRMAX value or the installation IEFUSI exit is not
limiting the application to a small amount of Hiperspace. Setting
HIPRMAX=OPTIMAL (or to a very large value) and having IEFUSI allow at
least 2 GB of Hiperspace per application will remove this limitation.

— Make sure that the EXPMAX, EXPOLD, and EXPRES values allow significant
amounts of Hipersorting. This is accomplished by setting EXPMAX and
EXPOLD to large values (or MAX) and EXPRES to a small value.

— Rerun the application when system activity, especially other concurrent
Hipersorting and memory object sorting activity, is lower so that more storage
is available for the sort. The more storage available, the larger the Hiperspace
that can be created by DFSORT, and the larger the data set size for which
Hipersorting can be allowed.

— In situations where business critical applications are executing concurrent
with non-critical applications, it may be desirable to limit Hiperspace usage
by a non-critical sort application to leave resources available for the business
critical sort applications.

Remember that some data sets are so large that Hipersorting can never be
used to sort them, even if all of the storage installed on the system were
available for the sort. To allow Hipersorting in such cases, you can either
break up the large sort into multiple smaller sorts, or install more storage on
the system.

— Reduce the size of the input data set, so that less storage is required for the
sort. For some applications it is not necessary to sort all of the data, since
only a subset is needed for processing. For example, INCLUDE, OMIT,
SKIPREC, or STOPAFT can significantly reduce the amount of intermediate
storage required by DFSORT. See [/OS DFSORT Application Programming Guide|
for more details about these features of DFSORT.

— Ensure that DFSORT has accurate information about the input file size.
DFSORT can automatically estimate the file size for disk input data sets and
tape data sets managed by DFSMSrmm or a tape management system that
uses ICETPEX. However, there are certain situations, which DFSORT reports
with message ICE118I, in which DFSORT cannot determine the file size. See
"File Size and Dynamic Allocation” in z/OS DFSORT Application Programming|
for more information on these situations, and what to do about them.

— The parameters that control the system resources manager (SRM) can
indirectly affect the amount of storage that is available for all the jobs on your
system, including sort jobs. For example, PWS5=(0,100) may cause DFSORT to
not use Hipersorting. See [z/0S MVS Initialization and Tuning Reference for
information about SRM and its parameters.

Inefficient work data set usage. When a Hiperspace-mixed mode run is
possible, DFSORT must decide how best to use both Hiperspace and disk work
data sets. In most cases, trade-offs can be made such that both types of
intermediate storage can be used efficiently. In some cases, however, it is

z/0OS V2R2 DFSORT Tuning Guide

Run-Time Considerations

impossible to use both Hiperspace and disk work data sets efficiently, in which
case DFSORT chooses not to use Hipersorting.

In order to avoid such cases, use only 3390 or later model disks, and supply
sufficient virtual storage to DFSORT, as described in|Table 4 on page 53|
Sometimes, it is necessary to rerun the jobs when there is less system activity (to
allow selection of Hiperspace-only mode) in order to take advantage of
Hipersorting.

In general, DFSORT takes into account the potential effects of using Hiperspace on
both the application's performance and the system's performance when
determining whether or not to use Hipersorting. If either effect is not desirable,
DFSORT chooses not to use Hipersorting.

See [“Memory object sorting, hipersorting and data space sorting” on page 8| for
information on the benefits and operation of Hipersorting and ["Hipersorting|
fmemory object sorting, and data space sorting” on page 3(| for additional
information on using Hipersorting effectively.

Sorting with data space

Dataspace sorting is a DFSORT capability that uses data space. See [“Memory obiject|
lsorting, hipersorting and data space sorting” on page 8| for a detailed description
of dataspace sorting.

The DSPSIZE parameter

The DSPSIZE parameter specifies the maximum amount of data space to be used
with dataspace sorting. The maximum size of the data space allocated by DFSORT
for a job is determined by the minimum of the following values:

¢ The limit placed on the size of the data space by the system's IEFUSI installation
exit. For a description of IEFUSI, refer to|z/OS MVS Installation Exits|

* The DSPSIZE value (either the installation value, or an override value specified
at run-time).

* The amount of system paging activity at the start of the run. The size of the data
space can be adjusted throughout the run. DFSORT determines the optimal data
space size, based on system activity, to help avoid a negative impact on system
paging when using dataspace sorting. If the system paging levels are high,
DFSORT's data space size limit will be low.

* The limit of 2 gigabytes placed on the size of a single data space.

How DFSORT uses data space

The recommended setting for DSPSIZE is MAX. This enables DFSORT to
dynamically determine the size of a data space to be used for data space sorting,
taking into account the size of the file being sorted and the central storage usage
activity of the system. DFSORT has full control over total data space sorting
activity, and sites can customize their definition of DSPSIZE=MAX with the
installation options EXPMAX, EXPOLD, and EXPRES. DSPSIZE=n and
DSPSIZE=p% should be reserved for use as a run-time override for applications
that have a special reason to limit the size of a data space for data space sorting.

The amount of data space storage used for each sort job is displayed in message

ICE188I. DFSORT dynamically determines how best to use data spaces for each
particular run:

Chapter 5. Run-time considerations 49

Run-Time Considerations

* If the input data set size is known to be small enough so that the sort can be
accomplished in main storage, no data space is created.

* If the size of the input data set in relation to the maximum available data space
amount is too large, no data space is created. Dataspace sorting is only used if
the size of the data space that could be created is large enough to improve the
performance of the sort application.

* If the size of the input data set in relation to the total available main storage is
too large, no data space is created. To ensure that you have enough main storage

to use dataspace sorting, follow the recommended virtual storage guidelines for
DFSORT (Table 5 on page 54).

In general, DFSORT takes into account the effect on the application's performance
and the effect on the system's performance before using data space. If either effect
is not desirable, DFSORT chooses not to use dataspace sorting.

See [“Memory object sorting, hipersorting and data space sorting” on page §| for
information about the benefits and operation of dataspace sorting, and
[“Hipersorting, memory object sorting, and data space sorting” on page 30| for
additional information on using data space sorting effectively.

Cache Fast Write

With DFSORT, cache fast write (CFW) refers to the capability of DFSORT to take
advantage of the storage control unit's cache fast write function when writing to
the work data sets. The recommended setting for cache fast write is CFW=YES. If
you want to change the CFW setting for a specific application, you can use the
CFW or NOCFW options of the DEBUG statement at run-time for that application.

See [“Cache Fast Write (CFW)” on page 12|for information on the benefits and
operation of cache fast write and |“Hipersorting, memory object sorting, and datal
space sorting” on page 30| for additional information on using cache fast write
effectively. Note that some control units will override this setting and determine
for themselves whether or not to cache the data.

File size

The input file size is important for sort applications, since it is used for several
internal optimizations as well as for dynamic work data set allocation. DFSORT
can automatically estimate the file size for disk input data sets and tape data sets
managed by DFSMSrmm or a tape management system that uses ICETPEX.
However, there are certain situations, which DFSORT reports with message
ICE118I, in which DFSORT cannot determine the file size. See "File Size and
Dynamic Allocation" in 2/0S DESORT Application Programming Guide|for more
information on these situations, and what to do about them.

Storage

DFSORT sorts most efficiently when sufficient virtual storage is available to enable
an optimal balance between placing data in virtual and auxiliary storage. When
virtual storage is limited, DFSORT must expend more resources to transfer data
between virtual and auxiliary storage, which causes increased CPU time, elapsed
time, and I/0 usage.

Sufficient real storage must be available to support DFSORT's virtual storage
requirements. Supplying DFSORT with more virtual storage might not improve

50 z/0S V2R2 DFSORT Tuning Guide

Run-Time Considerations

performance if the available system resources cannot accommodate the
corresponding increase in virtual storage activity. If real storage resources become
overcommitted, excessive paging can result. This can cause the performance of
both DFSORT and the system to degrade. It is important, therefore, to balance
virtual storage resources supplied to DFSORT with the overall system resource
requirements.

DFSORT's Dynamic Storage Adjustment (DSA) feature can let DFSORT tune the
right amount of virtual storage for sort applications relieving, system and
application programmers of the task. See [“Dynamic storage adjustment” on page|
for more information on the benefits and operation of DSA.

See [“Virtual storage” on page 20| for a description of virtual storage.

Data set size and virtual storage

The relationship between data set size and amount of virtual storage available is
critical to the performance of DFSORT. Basically, there are four separate cases to
consider.

* When virtual storage is larger than the data set, DFSORT may be able to
perform the sort entirely within virtual storage, without need to store
intermediate data. This is called an in-main-storage sort. Indeed, this is the
preferred method for sorting small data sets, since it minimizes I/O usage as
well as CPU and elapsed time.

* When virtual storage is smaller than the data set, Hiperspace or work data sets
are needed to store the intermediate data. Provided virtual storage is sufficient
(see [Table 4 on page 53| for guidelines), DFSORT is still able to perform an
efficient sort, with elapsed and CPU times close to those of an in-main storage
sort. I/O or Hiperspace usage is increased, however, reflecting the need to write
intermediate data to work data sets or Hiperspace.

* When virtual storage is reduced further or the data set size is increased,
DFSORT is forced to make less efficient use of Hiperspace or work data sets.
DFSORT does what it can to maintain performance but is forced to use
Hiperspace or work data sets less efficiently as the ratio of data set size to

available storage increases.The loss of efficiency adversely affects elapsed time
and EXCP counts.

This performance degradation can be especially dramatic when using work data
sets allocated on devices attached to non-synchronous storage control units or

connected to ESCON channels. In such cases, it is especially important to follow
the virtual storage guidelines explained in|“Virtual storage guidelines” on page]

* When virtual storage is very small or the data set size is very large, DFSORT
may require several additional passes over the data to perform the sort. This
phenomenon is known as intermediate merging. DFSORT issues message ICE2471
to indicate intermediate merging was required; processing continues with
degraded performance. [Figure 6 on page 52|shows the benefit of increasing
virtual storage to eliminate intermediate merging.

Chapter 5. Run-time considerations 51

Run-Time Considerations

[]Intermediate Merging, []NoIntermediate Merging
Percentage MAINSIZE=440K

1000 10 100 10

804 | e

60 59

40— B B T

20 - B S— B O —

Elapsed Time CPUTime EXCPs

Figure 6. Benefits of Eliminating Intermediate Merging

All other factors being equal, the range of data set sizes that DFSORT can sort
efficiently (or sort without requiring intermediate merging) grows roughly as the
square of the virtual storage size. That is, doubling the virtual storage in an
application enables the application to handle data sets four times as large with the
same degree of efficiency. Likewise, halving the virtual storage causes the
application to handle data sets only one-fourth as large with the same efficiency.

Virtual storage limitations

With the possible exception of in-main storage sorts, providing more storage than
needed to do an efficient sort (see [Table 4 on page 53| for storage guidelines) will
probably not result in any significant performance improvement. In fact, elapsed
time (and possibly CPU time) may even increase slightly. While this degradation
might not be very noticeable, increasing virtual storage increases the overall effect
DEFSORT has on the system by tying up more central storage than necessary. This
can result in fewer jobs being able to run at the same time as well as increased
paging activity on the system.

If user exit routines are used, they will affect DFSORT virtual storage requirements.
The exit routines will occupy virtual storage, and any storage requests they issue
will reduce the amount of storage available to DFSORT. The MODS control
statement should be used to reserve storage for exit routines.

If the storage available to DFSORT below 16 MB virtual is severely limited (for
example, to less than 256 KB), the use of any of the following can result in storage
failures or terminations:

* Spanned records

* COBOL exit routines

e CHALT, LOCALE, or SMF options

52 z/0S V2R2 DFSORT Tuning Guide

Run-Time Considerations

¢ ALTSEQ, INCLUDE, OMIT, SUM, OUTFIL, OUTREC, or INREC control
statements

* Very large blocks or logical records

* VSAM data sets

* An Extended Function Support (EFS) program

* An ICETEXIT routine

* A large ICEIEXIT routine

* A large number of JCL or dynamically allocated work data sets

You can avoid storage problems and achieve better DFSORT performance by
making sure MINLIM is always set to a reasonable value (for example, the
supplied default of 440 KB) and by using SIZE/MAINSIZE=MAX with DSA at 32
or more (the supplied default is 64), or SIZE/MAINSIZE=nM with n set to at least
the minimum value recommended in

The DSA run-time option can be used to override the DSA installation option for a
particular sort application.

Virtual storage guidelines

DFSORT's Dynamic Storage Adjustment feature (DSA) provides the best use of
virtual storage for large sorts. However, if DSA cannot be used because the file size
is unknown (as indicated by message ICE118I) or because SIZE=MAX is not in
effect, the following guidelines can be used to determine the best amount of virtual
storage for the sort.

gives guidelines for the recommended minimum virtual storage to use for
a sort application based on its data set size. If you do not know the data set size,
you can run the application and look at message ICE134l. The table gives a range
of virtual storage sizes for each possible data set size. The low end of each range
should produce an efficient sort for the given data set size. The high end, in some
cases, will enable an even more efficient sort. Using less than the low end will
likely produce noticeable degradation while using more than the high end will
probably not have a significant impact on performance.

Table 4. Recommended Minimum Storage Guidelines for Sorting Without Data Space

Recommended Minimum

Input Data Set Size Storage
Less than 50 MB 4 MB

50 MB to 100 MB 4-6 MB
100 MB to 200 MB 4-8 MB
200 MB to 500 MB 6-12 MB
500 MB to 1 GB 8-16 MB
1GBto 2 GB 12-24 MB
More than 2 GB 16-32 MB

In order to guarantee the most efficient sorting, use the higher end of the range
shown. In order to guarantee efficient, but not necessarily optimum sorting, use
the lower end. These values are intended for sorting without data space. See
[Table 5 on page 54| for storage recommendations for sorting with data space.

Although sort applications can usually run with less virtual storage than the
recommended minimum, the recommended amount enables DFSORT to sort most

Chapter 5. Run-time considerations 53

Run-Time Considerations

efficiently. Using less than the recommended amount can result in the effects
described in [‘Data set size and virtual storage” on page 51

Virtual storage and sorting with data space or memory objects

Dataspace sorting and memory object sorting have a different set of guidelines
regarding virtual storage. For one thing, dataspace sorting creates and uses a data
space to hold the records currently being processed. The size of this data space is
chosen to be large enough to guarantee an efficient sort. Otherwise, dataspace
sorting is not used. The same applies to memory object sorting with regards to a
memory object.

As a result of the ability of dataspace sorting or memory object sorting to adjust its
virtual storage requirements dynamically to the data set being sorted, and the fact
that the virtual storage made available through the data space or memory object is
in addition to the virtual storage available to DFSORT normally (through the SIZE
or MAINSIZE parameter), the guidelines in [Table 4 on page 53| are not applicable
to dataspace sorting or memory object sorting. Instead, use the values found in
for dataspace sorting or memory object sorting applications.

Table 5. Recommended Minimum Storage Guidelines for Sorting with Data Space or Memory
Objects

Recommended Minimum
Storage for Dataspace
Sorting or Memory Object

Input Data Set Size Sorting
Less than 200 MB 4 MB
200 MB to 500 MB 4-6 MB
500 MB to 1 GB 4-8 MB
1GBto2GB 4-10 MB
More than 2 GB 4-12 MB

In order to guarantee the most efficient sorting, use the higher end of the range

shown. In order to guarantee efficient, but not necessarily optimum, sorting, use
the lower end. These values are intended for sorting with data space or memory
objects. See [Table 4 on page 53| for storage recommendations for sorting without
data space or memory objects.

Input and output data sets

54

The performance of DFSORT can be affected by your choice of block sizes, the
types of devices for input and output data sets, user exits, VIO, and some
enhancements for input and output data sets. The sections that follow describe
these items in more detail.

Block sizes

Choosing an efficient block size can improve space utilization and 1/O
performance. DFSORT's SDB=LARGE, SDB=INPUT or SDB=YES installation option
allows DFSORT to automatically select the system determined optimum block size
for output data sets as long as you do not specify the BLKSIZE explicitly. Use one
of these installation options, as appropriate, for optimum space utilization and
performance. SDB=INPUT is the supplied default. See f/OS DFSORT Installatior]

z/0OS V2R2 DFSORT Tuning Guide

Run-Time Considerations

tind Customization| for details on the SDB installation option values. You can use the
SDB run-time option to override the SDB installation option when appropriate for
particular jobs.

Space utilization

The amount of space on a track or cylinder occupied by user data depends on the
block size specified for the data set. Grouping logical records into blocks reduces
the amount of space needed to store data. Because fewer physical records are
needed to store the same number of logical records, the amount of space for count
and key areas, and for gaps between records is reduced.

Larger block sizes offer better opportunities for increased disk space utilization. An
appropriately selected block size can result in higher space utilization than a
smaller block size. An inappropriately selected block size (large or small) can result
in poor space utilization.

shows the 3390 space utilization with various block sizes for a
fixed-blocked data set with a logical record length of 160.

Space Utilization %

-1007 ,, ,9,8, ,,,,,
90
80 b 79 | || ,
71
60 4 1 -
55
42
L et I S (R e I SRSt I RS (NN S -
33
oo .19 |l .
0
160 320 480 800 1600 3200 6400 27840
Block Size (bytes)

Figure 7. 3390 Utilization for Various Block Sizes. Assumes data records are stored in equal-length physical records
with no keys.

I/O performance

Although small block sizes permit more concurrent channel operations, they
reduce the net data transfer rate (the actual amount of data transferred per
second). This can impact the elapsed time of a DFSORT application performing a
significant amount of I/O. Small block size transfer also requires more CPU
involvement and can, therefore, increase CPU time.

Large block sizes enable a higher net data transfer rate for sequential data sets,
such as for input and output, and reduce the amount of processor time needed to

Chapter 5. Run-time considerations 55

Run-Time Considerations

service a channel program. For tapes, larger block sizes (up to 256 megabytes),
provide the best performance and are recommended. Always use system
determined blocksizes (SDB) for the best utilization and performance. An example
of the benefits of appropriately large input and output data set block sizes is

shown in

[] BLKSIZE=1500 [| BLKSIZE=3000 [[7] BLKSIZE=4500 [l BLKSIZE=27000 (SDB)

MAINSIZE=6M
Percentage

100 100 100
100 - e

804 e

60 +-{ fepmmp

204 |-

Elapsed Time CPUTime EXCPs

Figure 8. Benefits of Large Input/Output Data Set Block Sizes

Recommendations
When selecting a block size for input or output, consider these factors:

* Smaller data set sizes generally result in less efficient use of disk space.

* DFSORT applications that process data sets with small block sizes will generate
higher EXCP counts and probably increase CPU time.

Type of device

For optimal performance, use high performance devices such as IBM's Enterprise
Storage Server (ESS) or TotalStorage DS8000 for input, output, and work data sets
to gain the advantages of higher data transfer rates and multiple path access.
Other ways of improving DFSORT processing of the input and output data sets are
as follows:

* Use multiple channel paths

* Allocate enough primary space for the output data sets to avoid the need for
additional extents.

* Use separate devices for the input and work data sets, and for the output and
work data sets. (DFSORT application data sets that are accessed concurrently
should reside on separate devices.)

56 z/0S V2R2 DFSORT Tuning Guide

Run-Time Considerations

VIO for DFSORT data sets

DFSORT temporary data sets allocated to virtual devices (VIO) can provide
significant elapsed time improvements. However, the trade-off for improving
elapsed time using VIO is a serious CPU time degradation.

VIO is recommended for DFSORT input and output data sets only. While DFSORT
can use VIO for work data sets, Hiperspace is the preferred method of using
storage to eliminate I/O to work data sets on auxiliary storage.

In a DFSMS environment, data sets used by DFSORT might be allocated to virtual
devices by the automatic class selection (ACS) routines, overriding the VIO
installation option in some cases. ['System-managed storage” on page 21| explains
how the ACS routines can be changed to avoid VIO allocation for DFSORT
temporary data sets.

Input and output data set enhancements

You can also use certain enhancements for input and output data sets to improve
performance. These enhancements include compression and striping. See
[“Extended format datasets” on page 13| for a more detailed description of each of
these items.

Using compression and striping affects performance as follows:
¢ The time needed to transfer data is decreased, sometimes dramatically.

* The time needed to perform the DFSORT application is decreased, sometimes
dramatically.

* Work data set I/O is much more likely to be a bottleneck in sort applications
that use these enhancements. To eliminate the need for work data set I/O when
using compression or striping, do one of the following:

— Use Hipersorting for all sorting, or
— Sort entirely in main storage or data space for small to medium size sorts.

Run-time options and performance

shows run-time options that influence the performance of DFSORT, a
description of each option, any restrictions, the IBM-supplied installation default
value and a possible reason for modifying that value at run-time. Any
IBM-supplied installation default value can be changed to a different site
installation default value using ICEPRMxx members in PARMLIB or the ICEMAC
macro.

Table 6. Run-time Options That Influence DFSORT Performance

Run-time IBM-supplied Default Value
Option Description Restriction and Reason for Modifying
SIZE and Upper limit for total storage Limited by TMAXLIM or The default is MAX. Modify
MAINSIZE above and below 16 MB virtual. MAXLIM when SIZE=MAX or when sorting unusually large
MAINSIZE=MAX is in effect. data sets.
DSA Upper limit for dynamically Only used when SIZE=MAX or The default is 64 MB. Set to a
adjusted storage. MAINSIZE=MAX is in effect lower value if you do not want

and DFSORT can determine DFSORT to adjust storage up to
that performance will benefit. 64 MB.

Chapter 5. Run-time considerations 57

Run-Time Considerations

Table 6. Run-time Options That Influence DFSORT Performance (continued)

Run-time IBM-supplied Default Value

Option Description Restriction and Reason for Modifying

RESALL Storage below 16 MB virtual Only used when SIZE=MAX or The default is 4 KB. Modify
that is reserved for system use. MAINSIZE=MAX is in effect. when sufficient REGION is

Can reduce the amount of specified but application
virtual storage available for use terminates for lack of below 16
by DFSORT. MB virtual storage.

RESINV Storage below 16 MB virtual Only used when SIZE=MAX or The default is 0.
that is reserved for use by an MAINSIZE=MAX is in effect
invoking program. and DFSORT is

program-invoked.

ARESALL Storage above 16 MB virtual Can reduce the amount of The default is 0.
that is reserved for system use. virtual storage available for use

by DFSORT.

ARESINV Storage above 16 MB virtual Only used when DFSORT is The default is 0.
that is reserved for use by an program-invoked.
invoking program.

HIPRMAX Upper limit for Hiperspace for ~ Hiperspaces limited by IEFUSI The default is OPTIMAL. Set to
a single application. installation exit. 0 to disable Hipersorting.

DSPSIZE Upper limit for data space size. Data spaces limited by IEFUSI. The default is MAX. Set to 0 to

disable dataspace sorting.

MOSIZE Maximum size of a memory Memory objects limited by The default is MAX. Set to 0 to
object for a single application. = MEMLIMIT JCL and IEFUSI disable memory object sorting.

installation exit.

MOWRK and ~ Whether memory objects can be NOMOWRK can cause an The default is MOWRK. Use

NOMOWRK used as intermediate work increase in CPU time. NOMOWRK only when
storage. necessary

DYNALLOC Requests dynamic allocation The default is (SYSDA, 4). The
and specifies device type and unit name can be changed to a
number of work data sets. name used exclusively by

DFSORT to isolate work data
set volumes from the general
pool of devices.

DYNAPCT Default additional work data Allocated with zero space and The default is 10. Increase if
sets (as percentage) to be only used when needed. failures due to insufficient work
dynamically allocated. space are a concern. If set to

OLD, additional work data sets
are not allocated.

DYNSPC Default amount of space to Only used when DFSORT The default is 256 MB. Set to a
allocate for dynamically cannot determine the input file higher value to allow larger
allocated work data sets. size. sorts when DFSORT cannot

determine the file size.

CINV and Whether control interval access Improves performance for The default is CINV.

NOCINV is used for VSAM input data VSAM input data sets.

sets.

58 z/0S V2R2 DFSORT Tuning Guide

Table 6. Run-time Options That Influence DFSORT Performance (continued)

Run-Time Considerations

Run-time IBM-supplied Default Value
Option Description Restriction and Reason for Modifying
CFW and Whether cache fast write is Only applicable for work data ~ The default is CFW. Use
NOCFW used for DFSORT work data sets located on disks attached to NOCFW for large sorts.
sets. cached 3990 storage control

units. Can be used only if

DFSORT SVC is installed. Cache

fast write can reduce the

elapsed time of sorting

applications. CFW is more

beneficial to DFSORT

performance for small and

intermediate sized sorts.

EQUALS and Whether input order is Can cause an increase in CPU The default is VLBLKSET. Use

NOEQUALS preserved for records with time. NOEQUALS whenever possible.
equal keys.

VERIFY and Whether output records are Can cause an increase in CPU The default is NOVERIFY. Use

NOVERIFY checked for correct order. time. VERIFY only when necessary.

ALTSEQ Whether a collating sequence Can cause an increase in CPU There is no default value. Use
other than EBCDIC is used. time. ALTSEQ only when necessary.

AVGRLEN Specifies the average input This value is used when There is no default value. Using
record length in bytes for necessary to determine the a value close to the actual
variable-length sort input file size. The resulting average record length may
applications. value is important for sort improve variable-length record

applications, since it is used for sort performance.
several internal optimizations as

well as for dynamic work data

set allocation (see OPTION

DYNALLOC).

FILSZ Specifies either the exact The type of value specified can There is no default value. Using
number of records to be sorted have a significant effect on a value close to the actual file
or an estimate of the number of performance and work data set size may improve sort
records to be sorted. allocation. See performance when message

for more information. ICE118I is received.

ODMAXBF The maximum buffer space to Lowering the value can cause The default is 2 MB. When you
be used for each OUTFIL data performance degradation for are running OUTFIL
set. the application. When you use applications with a large

more than 2 MB, the number of output data sets and
performance improvements are constrained storage, use a
small except for EXCPs, and, smaller value to reduce total
there is an increased need for virtual storage usage.

storage.

NOBLKSET Controls the use of Blockset If necessary, DFSORT can still There is no default value.

techniques. use non-Blockset techniques for Specify NOBLKSET only
ot