
z/OS

IBM Tivoli Directory Server Plug-in
Reference for z/OS
Version 2 Release 1

SA76-0169-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 173.

This edition applies to version 2, release 1, modification 0 of IBM z/OS (product number 5650-ZOS) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2008, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables v

About this document vii
Intended audience vii
Conventions used in this document vii
Where to find more information vii

Internet sources. viii

How to send your comments to IBM . . ix
If you have a technical problem. ix

z/OS Version 2 Release 1 summary of
changes xi

Part 1. Writing your own plug-in . . . 1

Chapter 1. Introduction to server
plug-ins 3

Chapter 2. Building an LDAP server
plug-in 5
Steps for writing an IBM TDS for z/OS plug-in. . . 5

Chapter 3. Operation plug-ins 7
Pre-operation plug-ins 7
Post-operation plug-ins 7
Client-operation plug-ins 8

Chapter 4. Plug-in application service
routines 11
slapi_add_internal() 12
slapi_attr_get_normalized_values() 14
slapi_attr_get_numvalues() 15
slapi_attr_get_type() 16
slapi_attr_get_values() 17
slapi_attr_value_cmp(). 18
slapi_ch_calloc() 19
slapi_ch_free() 20
slapi_ch_free_values() 21
slapi_ch_malloc() 22
slapi_ch_realloc() 23
slapi_ch_strdup() 24
slapi_compare_internal() 25
slapi_control_present() 26
slapi_delete_internal() 27
slapi_dn_ignore_case_v3() 28
slapi_dn_isparent() 30
slapi_dn_normalize_v3() 31
slapi_dn_normalize_case_v3() 33
slapi_entry_add_value() 35
slapi_entry_add_values() 37
slapi_entry_alloc() 39

slapi_entry_attr_delete() 40
slapi_entry_attr_find() 41
slapi_entry_delete_value() 42
slapi_entry_delete_values() 43
slapi_entry_dup() 44
slapi_entry_first_attr() 45
slapi_entry_free() 46
slapi_entry_get_dn() 47
slapi_entry_merge_value() 48
slapi_entry_merge_values() 50
slapi_entry_next_attr() 52
slapi_entry_replace_value() 53
slapi_entry_replace_values() 54
slapi_entry_schema_check() 55
slapi_entry_set_dn() 57
slapi_filter_get_attribute_type() 58
slapi_filter_get_ava() 59
slapi_filter_get_choice() 61
slapi_filter_get_subfilt() 62
slapi_filter_list_first() 64
slapi_filter_list_next() 65
slapi_get_message_np() 66
slapi_isSDBM_authenticated() 67
slapi_log_error() 68
slapi_modify_internal() 70
slapi_modrdn_internal() 72
slapi_op_abandoned() 74
slapi_pblock_destroy() 75
slapi_pblock_get() 76
slapi_pblock_set() 84
slapi_search_internal() 88
slapi_send_ldap_referral() 90
slapi_send_ldap_result() 92
slapi_send_ldap_search_entry() 94
slapi_trace() 96

Part 2. IBM TDS for z/OS provided
plug-ins 99

Chapter 5. ICTX plug-in 101
Configuring the ICTX plug-in 101
Using remote authorization and audit 101
Setting up authorization for working with remote
services 102
Remote authorization extended operation 103

Remote authorization extended operation
response codes 105
Remote authorization audit controls 108

Remote auditing extended operation 108
Remote auditing extended operation response
codes 111
Remote audit controls 114

© Copyright IBM Corp. 2008, 2013 iii

Chapter 6. Remote crypto plug-in . . . 117
Configuring the remote crypto plug-in 117
Setting up authorization to ICSF callable services 118
Setting up authorization to PKCS #11 tokens and
objects 119
ICSF callable services supported by the
RemoteCryptoPKCS#11 extended operation . . . 119
Common ASN.1 encodings used by the
RemoteCryptoPKCS#11 extended operation . . . 126
ICSF state cleanup ASN.1 syntaxes 127
General purpose-related ASN.1 syntaxes 128

ICSF Query facility (CSFIQF) ASN.1 syntaxes 128
ICSF Query algorithm (CSFIQA) ASN.1 syntaxes 128

Object management ASN.1 syntaxes 129
Get attribute value (CSFPGAV) ASN.1 syntaxes 129
Set attribute value (CSFPSAV) ASN.1 syntaxes 129
Token record create (CSFPTRC) ASN.1 syntaxes 130
Token record delete (CSFPTRD) ASN.1 syntaxes 130
Token record list (CSFPTRL) ASN.1 syntaxes 130

Signing and verifying ASN.1 syntaxes 131
Generate HMAC (CSFPHMG) ASN.1 syntaxes 131
Verify HMAC (CSFPHMV) ASN.1 syntaxes . . 132
Public key sign (CSFPPKS) ASN.1 syntaxes . . 132
Public key verify (CSFPPKV) ASN.1 syntaxes 133

Message digesting ASN.1 syntaxes 133
One-way hash, sign, or verify (CSFPOWH)
ASN.1 syntaxes. 133

Secret key encrypt and secret key decrypt ASN.1
syntaxes 134

Secret key decrypt (CSFPSKD) ASN.1 syntaxes 134
Secret key encrypt (CSFPSKE) ASN.1 syntaxes 135
CSFPSKD and CSFPSKE rule array reference 137

Key management ASN.1 syntaxes 138
Derive multiple keys (CSFPDMK) ASN.1
syntaxes 138
Derive key (CSFPDVK) ASN.1 syntaxes . . . 140
Generate key pair (CSFPGKP) ASN.1 syntaxes 141
Generate secret key (CSFPGSK) ASN.1 syntaxes 142

Unwrap key (CSFPUWK) ASN.1 syntaxes . . . 142
Wrapped key (CSFPWPK) ASN.1 syntaxes. . . 142

Common RemoteCryptoPKCS#11 extended
operation error codes 143
ICSF callable services supported by the
RemoteCryptoCCA extended operation. 143
Common ASN.1 encodings used by the
RemoteCryptoCCA extended operation. 148

Symmetric key management ASN.1 syntaxes 149
CKDS key record management ASN.1 syntaxes 149
Symmetric cryptography-related services . . . 152
Symmetric key management-related remote
services 158
Asymmetric key management services 159
PKDS key record management-related remote
services 162

Part 3. Appendixes 165

Appendix A. Plug-in sample 167
Steps for building and running a sample plug-in 167

Appendix B. Accessibility 169
Accessibility features 169
Using assistive technologies 169
Keyboard navigation of the user interface 169
Dotted decimal syntax diagrams 169

Notices 173
Policy for unsupported hardware. 174
Minimum supported hardware 175
Programming interface information 175
Trademarks 175

Index 177

iv z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Tables

1. slapi_filter_get_choice() search filters 61
2. printf()-style substitution codes 68
3. Operational parameters 76
4. General request parameters 77
5. ABANDON request parameters 79
6. ADD request parameters 79
7. BIND request parameters 79
8. COMPARE request parameters 79
9. DELETE request parameters 79

10. EXTENDED OPERATION request parameters 80
11. MODIFY request parameters 80
12. MODIFY DN request parameters 80
13. SEARCH request parameters 80
14. Callback parameters 81
15. General result parameters 82
16. Internal request result parameters 82
17. Registration parameters 84
18. Operational parameters 85
19. Callback parameters 86
20. General result parameters 87
21. EXTENDED OPERATION result parameters 87
22. printf()-style substitution codes 97

23. Remote authorization responseCodes 106
24. Remote authorization majorCodes 106
25. Remote authorization MinorCodes 107
26. Remote auditing responseCodes 111
27. Remote auditing majorCodes 111
28. Remote auditing MinorCodes 113
29. Remote audit event codes 115
30. Remote audit event code qualifiers 115
31. Event-specific fields for remote audit events 115
32. ICSF callable services supported by the

RemoteCryptoPKCS#11 extended operation . 120
33. requestValue handle descriptions 121
34. responseValue handle descriptions 124
35. Encoding PKCS #11 attribute types using the

attributeValue 127
36. CSFPSKD and CSFPSKE supported

mechanisms and rule arrays 137
37. Common RemoteCryptoPKCS#11 extended

operation return codes 143
38. ICSF callable services supported by the

RemoteCryptoCCA extended operation . . . 144

© Copyright IBM Corp. 2008, 2013 v

vi z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

About this document

The IBM® Tivoli® Directory Server for z/OS® is the IBM implementation of the
Lightweight Directory Access Protocol (LDAP) for the z/OS operating system.

This document contains reference information about using and writing plug-ins,
which extend the capabilities of the IBM Tivoli Directory Server for z/OS
(5650-ZOS).

Intended audience
This document is intended for application programmers. Application programmers
should be experienced and have previous knowledge of directory services.

Conventions used in this document
This document uses the following typographic conventions:

Bold Bold words or characters represent API names, functions, routines, utility
names, and system elements that you must enter into the system literally,
such as commands and options.

Italic Italic words or characters represent variables for which you must supply
values.

Example font
Path names, attributes, environment variables, parameter values, examples,
and information displayed by the system appear in constant width type
style.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non-blank
character on the line to be continued, and continue the command on the
next line.

Where to find more information
When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

© Copyright IBM Corp. 2008, 2013 vii

http://www.ibm.com/systems/z/os/zos/bkserv/

Internet sources
The following resources are available through the internet to provide additional
information about the z/OS library and other security-related topics:
v Online library

To view and print online versions of the z/OS publications, use this address:
http://www.ibm.com/systems/z/os/zos/bkserv/

v Redbooks®

The documents known as IBM Redbooks that are produced by the International
Technical Support Organization (ITSO) are available at the following address:
http://www.redbooks.ibm.com

Preface

viii z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/redbooks

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS
SA76-0169-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 2008, 2013 ix

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

x z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 2008, 2013 xi

xii z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Part 1. Writing your own plug-in

© Copyright IBM Corp. 2008, 2013 1

2 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Chapter 1. Introduction to server plug-ins

This section explains how to create an IBM Tivoli Directory Server for z/OS
plug-in. In general, a plug-in is a software module that adds function to an
existing program or application. In this case, configured plug-ins extend the
capabilities of your directory server.

Plug-ins are dynamically loaded into the LDAP servers address space when the
server is started. When the plug-in is loaded, a plug-in initialization routine is
called to register plug-in functions. The server calls plug-in functions from the
dynamically loaded library by using registered function pointers.

When the LDAP server receives a client request, the server attempts to call a
configured database backend function to process the request. If a database backend
is found that accepts the client request, that backend processes the request. LDAP
server backends typically process client requests by reading or writing data to a
database containing directory entries. In addition to these types of database
operations, LDAP server backends may also provide functions that support
replication and dynamic schema updates.

If a client request is not accepted by a database backend, then the LDAP server
attempts to call a configured plug-in to process the request. If a plug-in is found,
which accepts the request, that plug-in processes the request.

Once the request is processed by a configured database backend or plug-in, that
backend or plug-in must return a message to the client. If the client request is not
processed, the LDAP server returns an error message to the client. Only one
message is returned to the client.

The following types of plug-ins are supported by the IBM Tivoli Directory Server
for z/OS: (See Chapter 3, “Operation plug-ins,” on page 7 for more information.)

preoperation
a plug-in that is executed before a client request is processed. For example,
a plug-in that checks for a new entry, before the new entry is added to a
directory

postoperation
a plug-in that is executed after a client request is processed. For example, a
plug-in that audits clients after they bind to the server

clientoperation
a plug-in that is called to process a client request

© Copyright IBM Corp. 2008, 2013 3

4 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Chapter 2. Building an LDAP server plug-in

Each plug-in is a separate dynamic link library (DLL) that is loaded by the LDAP
server. The /usr/include/slapi-plugin.h file defines the various structures and
service routine prototypes that are available to the plug-in.

LDAP server SLAPI export definitions are contained in one of two DLL library
load modules:
v The GLDSLP31.x side file contains the export definitions that a 31-bit plug-in

DLL imports.
v The GLDSLP64.x side file contains the export definitions that a 64-bit plug-in

DLL imports.

The plug-in must be stored as a member of a PDS or PDSE (a 64-bit plug-in DLL
must be stored in a PDSE). The plug-in data set must be in the load list for the
LDAP server, either through a STEPLIB statement or the system LNKLST. The PDS
or PDSE must be APF-authorized. If Program Control is activated, the PDS or
PDSE must be controlled (trusted).

The LDAP server plugin configuration option is used to define a plug-in, and
must be added to the LDAP server configuration file. This option is described in
z/OS IBM Tivoli Directory Server Administration and Use for z/OS, Customizing the
LDAP server configuration chapter. It has three required parameters and one
optional parameter:
1. the plug-in type - preOperation, clientOperation, or postOperation.
2. the plug-in DLL name.
3. the name of the plug-in initialization routine, which is called during LDAP

server initialization.
4. optional parameters, which the plug-in can retrieve.

For example:
plugin postOperation PLUGSAMP plugin_init "auditFile"

Steps for writing an IBM TDS for z/OS plug-in
How to build an IBM TDS for z/OS plug-in:
v Start by designing and writing the plug-in initialization routine and SLAPI

service functions
The plug-in initialization routine must register the following that are supported
by the plug-in:
– service functions
– message types
– distinguished name suffixes
– extended operation object identifiers

Return code 0 must be returned when successful and non-zero when not
successful. The plug-in initialization routine receives as input, the plug-in
parameter block (Slapi_PBlock) and returns an integer as the return value. An
example of an initialization routine prototype:
int plugin_init (Slapi_PBlock * pb);

© Copyright IBM Corp. 2008, 2013 5

Note: For this example, the name plugin_init would be the initialization
routine name that is used with the plugin configuration option.

v When writing the SLAPI service functions that implement the plug-in design,
see Chapter 4, “Plug-in application service routines,” on page 11 for application
service routines to use and for defined prototypes. You can also see
slapi-plugin.h for defined prototypes.

v Decide on any input parameters for the plug-in.
Plug-in input parameters can be retrieved by using the SLAPI_PLUGIN_ARGC
or SLAPI_PLUGIN_ARGV parameters with the slapi_pblock_get() service
routine.

v Include slapi-plugin.h, which contains defined SLAPI data structures and
prototypes.

v Export the plug-in initialization routine.
v Compile the plug-in code into object files.
v Link the plug-in object files with one of the LDAP server SLAPI side files that

are listed above.
v Ensure that the plug-in DLL module is in the load list of the LDAP server and is

a member of either a PDS or PDSE.
v APF authorize the data set that contains the plug-in DLL. If Program Control is

active, mark the data set as controlled (trusted).
v Edit and add the plugin configuration option to the LDAP server configuration

file. See z/OS IBM Tivoli Directory Server Administration and Use for z/OS for more
information about the configuration option.

v Restart the LDAP server.

You might want to program trace statements to follow processing flow in the
plug-in. The trace macro, SLAPI_TRACE(), is provided in slapi-plugin.h to assist
in tracing. This macro uses the slapi_trace() service routine, described in Chapter 4,
“Plug-in application service routines,” on page 11. For example:
SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Entered."));

If issuing messages from a message catalog, the message catalog name must be
registered in the plug-in by calling the slapi_pblock_set() routine with the
SLAPI_PLUGIN_MSG_CAT_NP parameter. When the message catalog is
registered, a specific message can be retrieved by calling the
slapi_get_message_np() routine. The retrieved message can then be issued by
calling the slapi_log_error() routine. The NLSPATH and LANG environment
variables must be properly set for the plug-in and the LDAP server to find the
registered message catalog file. Also, the plugin and the LDAP server must have
read access to the message catalog to issue messages from the registered message
catalog. See “slapi_pblock_set()” on page 84, “slapi_get_message_np()” on page 66,
and “slapi_log_error()” on page 68 for more information.

A sample plug-in showing several examples of using SLAPI service routines and a
makefile are provided in Appendix A, “Plug-in sample,” on page 167:
v /usr/lpp/ldap/examples/plug-insample.c is the sample plug-in
v /usr/lpp/ldap/examples/makefile.plugin is its makefile

6 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Chapter 3. Operation plug-ins

The IBM Tivoli Directory Server for z/OS supports the following operational
plug-ins:
v Pre-operation
v Post-operation
v Client-operation

Pre-operation plug-ins
A pre-operation plug-in is executed before a client request is processed.

The plug-in initialization function is responsible for registering the message types
supported by the plug-in by calling the slapi_pblock_set() routine. The plug-in is
not called for a message type that it has not registered.

The pre-operation message function receives the plug-in parameter block,
(Slapi_PBlock), as an input parameter and returns an integer as the function
return value:
int plug-in_message_function (

Slapi_PBlock * pb);

The return value is zero if request processing continues and nonzero if request
processing terminates. If a nonzero value is returned, the pre-operation plug-in
must return a result message to the client by calling the slapi_send_ldap_result()
routine. If a zero value is returned, the pre-operation plug-in must not return a
result to the client. A result message is not returned for ABANDON and UNBIND
requests and the plug-in return value is ignored for these message types.

Note: Post-operation plug-ins are called even if a nonzero value is returned by the
pre-operation plug-in.

If the client request is a paged search request, pre-operation plug-ins are only
executed before the initial paged search request.

Post-operation plug-ins
A post-operation plug-in is executed after a client request is processed.

The plug-in initialization function is responsible for registering the message types
supported by the plug-in by calling the slapi_pblock_set() routine. The plug-in is
not called for a message type that it has not registered.

A post-operation message function receives the plug-in parameter block,
(Slapi_PBlock), as an input parameter. There is no function return value.
void plug-in_message_function (

Slapi_PBlock * pb);

The plug-in must not return a result message to the client since this has already
been done before the post-operation plug-in is called. The slapi_pblock_get()
routine is called to obtain the result code returned to the client for the request.

© Copyright IBM Corp. 2008, 2013 7

If the client request is a paged search request, post-operation plug-ins are only
executed after the last page of a paged search request is returned.

Client-operation plug-ins
A client-operation plug-in is executed after a client request is processed. For ADD,
BIND, COMPARE, DELETE, MODIFY, MODIFY DN, and SEARCH requests, the
plug-in is called if it registered a suffix that matches the target DN for the request.
For EXTENDED OPERATION requests, the plug-in is called if it registered an
object identifier that matches the object identifier in the request. All
client-operation plug-ins are called for ABANDON and UNBIND requests.

The client-operation plug-in initialization function is responsible for registering the
message types, distinguished name suffixes, and extended operations supported by
the plug-in by calling the slapi_pblock_set() routine. The plug-in is only called for
message types or extended operations that it has registered for.

The client-operation message function receives the plug-in parameter block
(Slapi_PBlock) as an input parameter. There is no function return value.
void plug-in_message_function (

Slapi_PBlock * pb);

The client operation plug-in must return a result message to the client for all
message types except ABANDON and UNBIND (these message types do not
return a response to the client). The slapi_send_ldap_result() routine is used to
send the result message to the client. For a SEARCH request, the
slapi_send_ldap_search_entry() and slapi_send_ldap_referral() routines are used
to send the search results to the client before sending the result message.

Additional server controls are registered with the LDAP server by specifying
SLAPI_PLUGIN_CTLLIST when calling the slapi_pblock_set() routine. Server
control registration is only permitted during plug-in initialization. At any time, a
plug-in can retrieve the list of server controls registered by specifying
SLAPI_PLUGIN_CTLLIST when calling the slapi_pblock_get() routine.

The plug-in can access the server controls supplied with a client request by
specifying SLAPI_REQCONTROLS when calling the slapi_pblock_get() routine.
The plug-in can also set a list of server controls to be returned in the client result
message by specifying SLAPI_RETCONTROLS when calling the slapi_pblock_set()
routine.

In addition to client requests, the client-operation plug-in can also register a
callback routine. The callback routine is called by the LDAP server when the server
needs additional information. The plug-in calls the slapi_pblock_get() routine for
the SLAPI_CALLBACK_TYPE parameter to get the callback type. Some examples
of callbacks are:
v Get the user password
v Get the group list
v Get the alternate names

ABANDON
Each client-operation plug-in is called for an ABANDON request if the
plug-in has registered a SLAPI_PLUGIN_ABANDON_FN routine. The
plug-in must not return a response to the client since there is no client
response for an ABANDON request. The plug-in stops processing a request
that is abandoned by the client.

8 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Instead of registering a SLAPI_PLUGIN_ABANDON_FN routine, the
plug-in can periodically call the slapi_op_abandoned() routine to see if an
active request is abandoned by the client.

ADD The client-operation plug-in is called for an ADD request if the entry DN
matches a suffix registered by the plug-in and the plug-in registered a
SLAPI_PLUGIN_ADD_FN routine. The plug-in is responsible for
processing the request and returning the result message to the client.

BIND The client-operation plug-in is called for a simple BIND if the
authentication DN matches a suffix registered by the plug-in and the
plug-in registered a SLAPI_PLUGIN_BIND_FN routine. A SASL BIND is
not passed to the plug-in. The plug-in is responsible for authenticating the
DN and returning the result message to the client. Extended group
gathering is performed for an authentication DN located in a plug-in
database but plug-in databases are not included in the group gathering
process.

COMPARE
The client-operation plug-in is called for a COMPARE request if the entry
DN matches a suffix registered by the plug-in and the plug-in registered a
SLAPI_PLUGIN_COMPARE_FN routine. The plug-in is responsible for
processing the request and returning the result message to the client.

DELETE
The client-operation plug-in is called for a DELETE request if the entry DN
matches a suffix registered by the plug-in and the plug-in registered a
SLAPI_PLUGIN_DELETE_FN routine. The plug-in is responsible for
processing the request and returning the result message to the client.

EXTENDED OPERATION
The client-operation plug-in is called for an EXTENDED OPERATION
request if the request object identifier matches an object identifier
registered by the plug-in and the plug-in registered a
SLAPI_PLUGIN_EXT_OP_FN routine. The plug-in is responsible for
processing the extended operation request and returning the result to the
client. The slapi_pblock_set() routine is used to set the extended operation
result object identifier (SLAPI_EXT_OP_RET_OID) and value
(SLAPI_EXT_OP_RET_VALUE) in the result message. The
slapi_send_ldap_result() routine is then used to return the result to the
client.

MODIFY
The client-operation plug-in is called for a MODIFY request if the entry
DN matches a suffix registered by the plug-in and the plug-in registered a
SLAPI_PLUGIN_MODIFY_FN routine. The plug-in is responsible for
processing the request and returning the result message to the client.

MODIFY DN
The client-operation plug-in is called for a MODIFY DN request if the
entry DN matches a suffix registered by the plug-in and the plug-in
registered a SLAPI_PLUGIN_MODRDN_FN routine. The plug-in is
responsible for processing the request and returning the result message to
the client.

SEARCH
The client-operation plug-in is called for a SEARCH request if the base DN
matches a suffix registered by the plug-in and the plug-in registered a
SLAPI_PLUGIN_SEARCH_FN routine. The plug-in is responsible for
processing the request and returning the result message to the client.

Chapter 3. Operation plug-ins 9

Search entries are returned by calling the slapi_send_ldap_search_entry()
routine, search referrals are returned by calling the
slapi_send_ldap_referral() routine, and the search result is returned by
calling the slapi_send_ldap_result() routine.

If the client request is a paged search request, the client-operation plug-in
is only called during the initial paged search request.

UNBIND
Each client-operation plug-in is called for an UNBIND request if the
plug-in registered a SLAPI_PLUGIN_UNBIND_FN routine. The plug-in
must not return a response to the client since there is no client response for
an UNBIND request. The plug-in does not release any resources that are
allocated for the connection.

10 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Chapter 4. Plug-in application service routines

This topic describes the plug-in application service routines. The slapi-plugin.h
include file defines the data structures and function prototypes. The GLDSLP31.x
and GLDSLP64.x side files provide the DLL import definitions for 31-bit and 64-bit
load modules.

Text data is represented in UTF-8 format. The application is responsible for any
necessary code page conversions.

The service routines assume that the directory objects (entries, attributes, and
filters) are used by a single thread. The application is responsible for providing
concurrency control if it is sharing directory objects among multiple threads.

© Copyright IBM Corp. 2008, 2013 11

slapi_add_internal()
Purpose

Issue an ADD entry request.

Format
#include <slapi-plugin.h>

Slapi_PBlock * slapi_add_internal (
const char * dn,
LDAPMod ** mods,
LDAPControl ** controls,
int l)

Parameters

Input

dn The distinguished name of the new entry.

mods
The mod_op field is ignored other than checking the LDAP_MOD_BVALUES flag. The
attribute value is specified as a BerVal structure if the LDAP_MOD_BVALUES flag is
set and is specified as a character string if it is not set.

controls
A NULL-terminated array of server controls for the ADD request. Specify
NULL if there are no server controls.

l This parameter is not used and set to 0. It is included for compatibility with
other LDAP implementations.

Usage

The slapi_add_internal() routine issues an ADD request and returns the results to
the plug-in for processing. The LDAP Version 3 protocol and the current client
authentication is used for the ADD request. The request is unauthenticated if a
client request is not being processed. Call the slapi_pblock_get() routine to obtain
the results from the returned parameter block. The following values can be
retrieved from the parameter block:
v SLAPI_PLUGIN_INTOP_RESULT - The result code from the result message
v SLAPI_PLUGIN_INTOP_ERRMSG - The error message from the result message
v SLAPI_PLUGIN_INTOP_MATCHED_DN - The matched DN from the result message
v SLAPI_PLUGIN_INTOP_REFERRALS - The referrals from the result message

Related topics

The function return value is the address of a plug-in parameter block or NULL if
the ADD request is not issued. The slapi_pblock_destroy() routine is to release the
plug-in parameter block when it is no longer needed. The errno variable is set to
one of the following values when the function return value is NULL:

EINVAL
A parameter is not valid

EIO Unable to process the ADD request

slapi_add_internal()

12 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

ENOMEM
Insufficient storage is available

slapi_add_internal()

Chapter 4. Plug-in application service routines 13

slapi_attr_get_normalized_values()
Purpose

Obtain the normalized attribute values.

Format
#include <slapi-plugin.h>

int slapi_attr_get_normalized_values (
Slapi_Attr * attr,
BerVal *** vals)

Parameters

Input

attr
The directory entry attribute.

Output

vals
This variable sets the address of the normalized attribute value array or the
NULL if there are no attribute values. The end of the array is indicated by a
NULL value address. The application must not modify or release the
normalized attribute values.

Usage

The slapi_attr_get_normalized_values() routine returns the address of the array of
normalized attribute values. The attribute values are normalized by using the
equality matching rule for the attribute type as defined in the LDAP schema. The
unnormalized attribute values are returned if the attribute type does not have an
equality matching rule.

Related topics

The function return value is 0 if the normalized attribute values are returned and
-1 if an error occurred. The errno variable is set to one of the following values
when the function return value is -1:

EINVAL
A parameter is not valid

slapi_attr_get_normalized_values()

14 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_attr_get_numvalues()
Purpose

Obtain the number of attribute values.

Format
#include <slapi-plugin.h>

int slapi_attr_get_numvalues (
Slapi_Attr * attr,
int * numValues)

Parameters

Input

attr
The directory entry attribute.

Output

numValues
This variable is set to the number of attribute values.

Usage

The slapi_attr_get_numvalues() routine returns the number of values for the
supplied attribute.

Related topics

The function return value is 0 if the number of attribute values is returned or -1 if
an error occurred. The errno variable is set to one of the following values when the
function return value is -1:

EINVAL
A parameter is not valid

slapi_attr_get_numvalues()

Chapter 4. Plug-in application service routines 15

slapi_attr_get_type()
Purpose

Obtain the attribute type.

Format
#include <slapi-plugin.h>

int slapi_attr_get_type (
Slapi_Attr * attr,
char ** type)

Parameters

Input

attr
The directory entry attribute.

Output

type
This variable is set to the address of the attribute type. The application must
not modify or release the attribute type.

Usage

The slapi_attr_get_type() routine returns the name of a directory attribute. The
returned value is the primary attribute name, in lowercase, as defined in the LDAP
schema.

Related topics

The function return value is 0 if the attribute type is returned or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EINVAL
A parameter is not valid

ENOENT
Attribute type is not set

slapi_attr_get_type()

16 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_attr_get_values()
Purpose

Obtain the attribute values.

Format
#include <slapi-plugin.h>

int slapi_attr_get_values (
Slapi_Attr * attr,
BerVal *** vals)

Parameters

Input

attr
The directory entry attribute.

Output

vals
This variable is set to the address of the attribute value array or to NULL if
there are no attribute values. The end of the array is indicated by a NULL
BerVal address. The application must not modify or release the attribute
values.

Usage

The slapi_attr_get_values() routine returns the address of the array of attribute
values.

Related topics

The function return value is 0 if the attribute values are returned and -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EINVAL
A parameter is not valid

slapi_attr_get_values()

Chapter 4. Plug-in application service routines 17

slapi_attr_value_cmp()
Purpose

Compare two attribute values.

Format
#include <slapi-plugin.h>

int slapi_attr_value_cmp (
Slapi_Attr * attr,
BerVal * value1,
BerVal * value2)

Parameters

Input

attr
The directory entry attribute.

values1
The first attribute value.

values2
The second attribute value.

Usage

The slapi_attr_value_cmp() routine compares two values by using the equality
matching rule for the attribute type as defined in the LDAP schema. The
unnormalized attribute values are compared if there is no equality matching rule
for the attribute type.

Related topics

The function return value is 0 if the attribute values are equal, 1 if the attribute
values are not equal and -1 if an error occurred. The errno variable is set to one of
the following values when the function return value is -1:

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

ESRCH
Attribute type is not defined in LDAP schema

slapi_attr_value_cmp()

18 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_ch_calloc()
Purpose

Allocate storage for an array.

Format
#include <slapi-plugin.h>

void * slapi_ch_calloc (
unsigned long elemCount,
unsigned long elemSize)

Parameters

Input

elemCount
The number of elements in the array.

elemSize
The size of each element in the array.

Usage

The slapi_ch_calloc() routine allocates storage for an array. Call the slapi_ch_free()
routine to release the storage when it is no longer needed.

Related topics

The function return value is the address of the allocated storage or NULL if the
storage is not allocated. The errno variable is set to ENOMEM if the storage is not
allocated.

slapi_ch_calloc()

Chapter 4. Plug-in application service routines 19

slapi_ch_free()
Purpose

Release allocated storage.

Format
#include <slapi-plugin.h>

void slapi_ch_free (
void * ptr)

Parameters

Input

ptr
The address of the storage is released.

Usage

The slapi_ch_free() routine releases allocated storage.

Related topics

There is no function return value.

slapi_ch_free()

20 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_ch_free_values()
Purpose

Release an array of values.

Format
#include <slapi-plugin.h>

void slapi_ch_free_values (
BerVal ** values)

Parameters

Input

values
The array of values. The end of the array is indicated by a NULL BerVal
address.

Usage

The slapi_ch_free_values() routine releases an array of BerVal structures. Each
value is released and then the array is released.

Related topics

There is no function return value.

slapi_ch_free_values()

Chapter 4. Plug-in application service routines 21

slapi_ch_malloc()
Purpose

Allocate storage.

Format
#include <slapi-plugin.h>

void * slapi_ch_malloc (
unsigned long size)

Parameters

Input

size
The number of bytes is allocated.

Usage

The slapi_ch_malloc() routine allocates storage for use by the plug-in. Call the
slapi_ch_free() routine to release the storage when it is no longer needed.

Related topics

The function return value is the address of the allocated storage or NULL if the
storage is not allocated. The errno variable is set to ENOMEM if the storage is not
allocated.

slapi_ch_malloc()

22 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_ch_realloc()
Purpose

Reallocate storage.

Format
#include <slapi-plugin.h>

void * slapi_ch_realloc (
void * block,
unsigned long newSize)

Parameters

Input

block
The address of block is reallocated.

newSize
The new size for the block.

Usage

The slapi_ch_realloc() routine reallocates a block of storage. The size of the
original block is changed or a new block of storage is allocated. The contents of the
original block of storage are copied to the new block and the original block is
released if a new block of storage is allocated. Call the slapi_ch_free() routine to
release the storage when it is no longer needed.

Related topics

The function return value is the address of the reallocated storage or NULL if the
storage is not reallocated. The errno variable is set to ENOMEM if the storage is
not reallocated. The original storage block is still allocated if the reallocate request
is not successful.

slapi_ch_realloc()

Chapter 4. Plug-in application service routines 23

slapi_ch_strdup()
Purpose

Duplicate a character string.

Format
#include <slapi-plugin.h>

char * slapi_ch_strdup (
const char * string)

Parameters

Input

string
The string is duplicated.

Usage

The slapi_ch_strdup() routine duplicates a character string by allocating storage for
the new string and then copying the original string to the allocated storage. Call
the slapi_ch_free() routine to release the copied string when it is no longer needed.

Related topics

The function return value is the address of the duplicated string or NULL if the
storage is not allocated. The errno variable sets to ENOMEM if the storage is not
allocated.

slapi_ch_strdup()

24 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_compare_internal()
Purpose

Issue a COMPARE request.

Format
#include <slapi-plugin.h>

Slapi_PBlock * slapi_compare_internal (
const char * dn,
const char * type,
const BerVal * value,
LDAPControl ** controls)

Parameters

Input

dn The distinguished name of the entry.

type
The attribute name.

value
The attribute value.

controls
A NULL-terminated array of server controls for the COMPARE request. Specify
NULL if there are no server controls.

Usage

The slapi_compare_internal() routine issues a COMPARE request and returns the
results to the plug-in for processing. The LDAP Version 3 protocol and the current
client authentication are used for the COMPARE request. The request is
unauthenticated if a client request is not being processed. The slapi_pblock_get()
routine is called to obtain the results from the returned parameter block. The
following values are retrieved from the parameter block:
v SLAPI_PLUGIN_INTOP_RESULT - The result code from the result message.
v SLAPI_PLUGIN_INTOP_ERRMSG - The error message from the result message.
v SLAPI_PLUGIN_INTOP_MATCHED_DN - The matched DN from the result message.
v SLAPI_PLUGIN_INTOP_REFERRALS - The referrals from the result message.

Related topics

The function return value is the address of the plug-in parameter block or NULL if
the COMPARE request is not issued. Call the slapi_pblock_destroy() routine to
release the plug-in parameter block when it is no longer needed. The errno variable
is set to one of the following values when the function return value is NULL:

EINVAL
A parameter is not valid

EIO Unable to process the COMPARE request

ENOMEM
Insufficient storage is available

slapi_compare_internal()

Chapter 4. Plug-in application service routines 25

slapi_control_present()
Purpose

Determine if a server control is present.

Format
#include <slapi-plugin.h>

int slapi_control_present (
LDAPControl ** controls,
const char * oid,
BerVal ** value,
int * isCritical)

Parameters

Input

controls
The array of server controls. The end of the array is indicated by a NULL
control address.

oid
The object identifier of the control you want.

Output

value
This variable is set to the address of the control value if the control is found.
The application must not modify or release the control value.

isCritical
The returned value is 1 if the control is critical and 0 otherwise.

Usage

The slapi_control_present() routine searches an array of server controls for a
control with the specified object identifier. If the control is found, a pointer to the
control value is returned along with an indication of whether the control is marked
as critical.

Related topics

The function return value is 1 if the control is found, 0 if the control is not found
and -1 if an error occurred. The errno variable is set to one of the following values
when the function return value is -1:

EINVAL
A parameter is not valid.

ENOMEM
Insufficient storage is available.

slapi_control_present()

26 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_delete_internal()
Purpose

Issue a DELETE request.

Format
#include <slapi-plugin.h>

Slapi_PBlock * slapi_delete_internal (
const char * dn,
LDAPControl ** controls,
int l)

Parameters

Input

dn The distinguished name of the entry.

controls
A NULL-terminated array of server controls for the DELETE request. Specify
NULL if there are no server controls.

l This parameter is not used and set to 0. It is included for compatibility with
other LDAP implementations.

Usage

The slapi_delete_internal() routine issues a DELETE request and returns the
results to the plug-in for processing. The LDAP Version 3 protocol and the current
client authentication is used for the DELETE request. The request is
unauthenticated if a client request is not being processed. Call the
slapi_pblock_get() routine to obtain the results from the returned parameter block.
The following values can be retrieved from the parameter block:
v SLAPI_PLUGIN_INTOP_RESULT - The result code from the result message
v SLAPI_PLUGIN_INTOP_ERRMSG - The error message from the result message
v SLAPI_PLUGIN_INTOP_MATCHED_DN - The matched DN from the result message
v SLAPI_PLUGIN_INTOP_REFERRALS - The referrals from the result message

Related topics

The function return value is the address of a plug-in parameter block or NULL if
the DELETE request is not issued. Call the slapi_pblock_destroy() routine to
release the plug-in parameter block when it is no longer needed. The errno variable
is set to one of the following values when the function return value is NULL:

EINVAL
A parameter is not valid

EIO Unable to process the DELETE request

ENOMEM
Insufficient storage is available

slapi_delete_internal()

Chapter 4. Plug-in application service routines 27

slapi_dn_ignore_case_v3()
Purpose

Normalize a distinguished name and convert to lowercase.

Format
#include <slapi-plugin.h>

char * slapi_dn_ignore_case_v3 (
const char * dn)

Parameters

Input

dn The distinguished name to be normalized.

Usage

The slapi_dn_ignore_case_v3() routine converts a distinguished name (DN) by
removing leading and trailing spaces, spaces between name components and
spaces around the equals signs. The API normalizes the attribute type name to the
primary attribute type name, in lowercase, in the LDAP schema definition. Any
semicolons that are used to separate relative distinguished names (RDN) are
converted to commas. The entire name is then converted to lowercase. A
compound RDN is sorted alphabetically by the primary attribute type names.
Special characters within a DN are represented by using the backslash (\) escape
character. For example,
cn="a + b", o=ibm, c=us

is converted to
cn=a\+b,o=ibm,c=us

Escaped hexadecimal attribute values are converted to the character representation.
For example,
cn=\4a\6f\68\6e Doe,ou=Engineering,o=Darius

is converted to
cn=john doe,ou=engineering,o=darius

BER-encoded attribute values are converted to UTF-8 values. For example,
cn=#04084a6f686e20446f65,ou=Engineering,o=Darious

is converted to
cn=john doe,ou=engineering,o=darius

If an attribute type is not defined in the LDAP schema, the primary attribute type
name is the attribute type in lowercase.

Related topics

The function return value is the normalized name or NULL if an error occurred.
Call the slapi_ch_free() routine to release the normalized name when it is no
longer needed. The errno variable is set to one of the following values when the
function return value is NULL:

slapi_dn_ignore_case_v3()

28 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

NULL is returned if a NULL DN is passed in and EINVAL is the return value.
EINVAL is the return value.

slapi_dn_ignore_case_v3()

Chapter 4. Plug-in application service routines 29

slapi_dn_isparent()
Purpose

Determines whether a particular DN is the parent of another specified DN. Before
calling this function, call slapi_dn_ignore_case_v3 to normalize the DNs, which
also converts all characters to lowercase.

Format
#include <slapi-plugin.h>

int slapi_dn_isparent(
const char * parentdn,
const char * childdn)

Parameters

Input

parentdn
Determine if this DN is the parent of childdn.

childdn
Determine if this DN is the child of parentdn.

Usage

The slapi_dn_isparent() routine takes two normalized, lowercase DNs as input and
compares them, determining if the first DN is the parent of the second DN. Input
string formats are expected to be UTF-8 characters.

Related topics

A nonzero positive value is returned if parentdn is the parent of childdn, 0 if the
parentdn is not the parent of childdn and -1 if an error is detected.

slapi_dn_isparent()

30 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_dn_normalize_v3()
Purpose

Normalize a distinguished name and preserve the case of attribute values.

Format
#include <slapi-plugin.h>

char * slapi_dn_normalize_v3 (
const char * dn)

Parameters

Input

dn The distinguished name to be normalized.

Usage

The slapi_dn_normalize_v3() routine converts a distinguished name (DN) by
removing leading and trailing spaces, spaces between name components and
spaces around the equals signs. The API normalizes the attribute type name to the
primary attribute type name in the LDAP schema definition. Any semicolons that
are used to separate relative distinguished names (RDN) are converted to commas.
A compound RDN is sorted alphabetically by the primary attribute type names.
Special characters within a DN are represented by using the backslash (\) escape
character. For example,
cn="a + b", o=ibm, c=us

is converted to
cn=a\+b,o=ibm,c=us

Escaped hexadecimal attribute values are converted to the character representation.
For example,
cn=\4a\6f\68\6e Doe,ou=Engineering,o=Darius

is converted to
cn=John Doe,ou=Engineering,o=Darius

BER-encoded attribute values are converted to UTF-8 values. For example,
cn=#04084a6f686e20446f65,ou=Engineering,o=Darious

is converted to
cn=John Doe,ou=Engineering,o=Darius

If an attribute type is not defined in the LDAP schema, the primary attribute type
name is the attribute type in lowercase.

Related topics

The function return value is the normalized name or NULL if an error occurred.
Call the slapi_ch_free() routine to release the normalized name when it is no
longer needed. The errno variable is set to one of the following values when the
function return value is NULL:

slapi_dn_normalize_v3()

Chapter 4. Plug-in application service routines 31

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

NULL is returned if a NULL DN is passed in and EINVAL is the return value.

slapi_dn_normalize_v3()

32 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_dn_normalize_case_v3()
Purpose

Normalize a distinguished name and convert not case-sensitive attribute values to
uppercase.

Format
#include <slapi-plugin.h>

char * slapi_dn_normalize_case_v3 (
const char * dn)

Parameters

Input

dn The distinguished name to be converted.

Usage

The slapi_dn_normalize_case_v3() routine:
v Converts a distinguished name (DN) to a canonical form by removing leading

and trailing spaces, spaces between name components and spaces around the
equals signs

v Normalizes the attribute type name to the uppercased primary attribute type
name in the LDAP schema definition

v Any semicolons that are used to separate relative distinguished names (RDN)
are converted to commas

v A compound RDN is sorted alphabetically by the primary attribute type names
v An attribute value is converted to uppercase if the associated matching rule is

not case-sensitive, otherwise the case of the attribute value is preserved
v Special characters within a DN are represented by using the backslash (\) escape

character

For example,
cn="a + b", o=ibm, c=us

is converted to
CN=A\+B,O=IBM,C=US

Escaped hexadecimal attribute values are converted to the character representation.
For example,
cn=\4a\6f\68\6e Doe,ou=Engineering,o=Darius

is converted to
CN=JOHN DOE,OU=ENGINEERING,O=DARIUS

BER-encoded attribute values are converted to UTF-8 values. For example,
cn=#04084a6f686e20446f65,ou=Engineering,o=Darious

is converted to
CN=JOHN DOE,OU=ENGINEERING,O=DARIUS

slapi_dn_normalize_case_v3()

Chapter 4. Plug-in application service routines 33

If an attribute type is not defined in the LDAP schema, the primary attribute type
name is the attribute type, in uppercase, and the attribute matching rule is
caseIgnoreMatch.

Related topics

The function return value is the normalized name or NULL if an error occurred.
Call the slapi_ch_free() routine to release the normalized name when it is no
longer needed. The errno variable is set to one of the following values when the
function return value is NULL:

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

NULL is returned if a NULL DN is passed in and EINVAL is the return value.

slapi_dn_normalize_case_v3()

34 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_add_value()
Purpose

Add an attribute value to a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_add_value (
Slapi_Entry * entry,
const char * type,
BerVal * value)

Parameters

Input

entry
The directory entry.

type
The attribute name. This can be the attribute object identifier, the primary
attribute name, or an alternate attribute name as defined in the LDAP schema.

value
The attribute value to be added. Specify NULL to add the attribute without a
value (an error is returned if the attribute already exists).

Usage

The slapi_entry_add_value() routine adds an attribute value to a directory entry
that was allocated by the slapi_entry_alloc() routine. A not case-sensitive compare
is used when searching for the attribute type. The attribute type is created if it
does not already exist for the entry. An error is returned if the entry already
contains the attribute value. Use the slapi_entry_merge_value() routine if you
want to ignore a duplicate attribute value. Use the slapi_entry_replace_value()
routine to replace the existing attribute values with the new value.

The slapi_entry_add_value() routine makes a copy of the supplied attribute value.
An error is returned if the attribute value is not normalized by using the equality
matching rule defined for the attribute type.

Related topics

The function return value is 0 if the attribute value is added to the entry or -1 if an
error occurred. The errno variable is set to one of the following values when the
function return value is -1:

EEXIST
The attribute value already exists

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

slapi_entry_add_value()

Chapter 4. Plug-in application service routines 35

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_add_value()

36 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_add_values()
Purpose

Add an attribute value to a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_add_values (
Slapi_Entry * entry,
const char * type,
BerVal * values)

Parameters

Input

entry
The directory entry.

type
The attribute name. This can be the attribute object identifier, the primary
attribute name, or an alternate attribute name as defined in the LDAP schema.

value
A NULL-terminated array of values to be added.

Usage

The slapi_entry_add_values() routine adds multiple attribute values to a directory
entry that was allocated by the slapi_entry_alloc() routine. A not case-sensitive
compare is used when searching for the attribute type. The attribute type is created
if it does not already exist for the entry. An error is returned if the entry already
contains one of the supplied attribute values and none of the attribute values are
added to the entry. Use the slapi_entry_merge_values() routine to add
non-matching attribute values when the entry contains one or more matching
attribute values. Use the slapi_entry_replace_values() routine to replace the
existing attribute values with the new values.

The slapi_entry_add_values() routine makes copies of the supplied attribute
values. An error is returned if the attribute value is not normalized by using the
equality matching rule defined for the attribute type.

Related topics

The function return value is 0 if the attribute value is added to the entry or -1 if an
error occurred. The errno variable is set to one of the following values when the
function return value is -1:

EEXIST
The attribute value already exists

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

slapi_entry_add_values()

Chapter 4. Plug-in application service routines 37

ENOMEM
Insufficient storage is available

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_add_values()

38 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_alloc()
Purpose

Allocate a new directory entry.

Format
#include <slapi-plugin.h>

Slapi_Entry * slapi_entry_alloc (void)

Parameters

None.

Usage

The slapi_entry_alloc() routine allocates a new directory entry. After the entry is
allocated, the slapi_entry_set_dn() routine is called to set the entry distinguished
name and the slapi_entry_add_values() routine is called to add the entry
attributes. The slapi_entry_free() routine is called to release the directory entry
when it is no longer needed.

Related topics

The function return value is the address of the new entry or NULL if an error
occurred. The errno variable is set to one of the following values when the function
return value is NULL:

ENOMEM
Insufficient storage is available

slapi_entry_alloc()

Chapter 4. Plug-in application service routines 39

slapi_entry_attr_delete()
Purpose

Delete a directory entry attribute.

Format
#include <slapi-plugin.h>

int slapi_entry_attr_delete (
Slapi_Entry * entry,
const char * type)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

Usage

The slapi_entry_attr_delete() routine deletes an attribute from a directory entry. A
not case-sensitive compare is used when searching for the attribute type.

Related topics

The function return value is 0 if the attribute was deleted, 1 if the entry does not
contain the attribute, and -1 if an error occurred. The errno variable is set to one of
the following values when the function return value is -1:

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

slapi_entry_attr_delete()

40 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_attr_find()
Purpose

Find a directory entry attribute.

Format
#include <slapi-plugin.h>

int slapi_entry_attr_find (
Slapi_Entry * entry,
const char * type,
Slapi_Attr ** attr)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

Output

attr
This variable is set to the address of the attribute if the attribute is found in the
directory entry. The application must not modify or release the attribute.

Usage

The slapi_entry_attr_find() routine searches the directory entry for the specified
attribute and returns the address of the attribute if it is found. A not case-sensitive
compare is used when searching for the attribute type. The attribute name in the
returned attribute is the primary attribute name in lowercase, as defined in the
LDAP schema.

Related topics

The function return value is 0 if the attribute is found and -1 otherwise. The errno
variable sets to one of the following values when the function return value is -1:

EINVAL
A parameter is not valid

ENOENT
Attribute not found

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_attr_find()

Chapter 4. Plug-in application service routines 41

slapi_entry_delete_value()
Purpose

Remove an attribute value from a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_delete_value (
Slapi_Entry * entry,
const char * type,
BerVal * value)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

value
The attribute value to be deleted.

Usage

The slapi_entry_delete_value() routine removes an attribute value from a directory
entry. The attribute is deleted if there are no attribute values left after deleting the
requested value. A not case-sensitive compare is used when searching for the
attribute type. An error is returned if the entry does not contain the requested
attribute value. Use the slapi_entry_attr_delete() routine to delete an attribute and
all of its values.

An error is returned if the attribute value is not normalized by using the equality
matching rule defined for the attribute type.

Related topics

The function return value is 0 if the requested attribute value is deleted or -1 if an
error occurred. The errno variable is set to one of the following values when the
function return value is -1:

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

ENOENT
The attribute value was not found

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_delete_value()

42 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_delete_values()
Purpose

Remove multiple attribute values from a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_delete_values (
Slapi_Entry * entry,
const char * type,
BerVal * values)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

values
A NULL-terminated array of attribute values to be deleted.

Usage

The slapi_entry_delete_values() routine removes multiple attribute values from a
directory entry. The attribute is deleted if there are no attribute values left after
deleting the requested values. A not case-sensitive compare is used when searching
for the attribute type. An error is returned if the entry does not contain the
requested attribute values. Use the slapi_entry_attr_delete() routine to delete an
attribute and all of its values.

An error is returned if the attribute value is not normalized by using the equality
matching rule defined for the attribute type.

Related topics

The function return value is 0 if the requested attribute values are deleted or -1 if
an error occurred. The errno variable is set to one of the following values when the
function return value is -1:

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

ENOENT
The attribute value was not found

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_delete_values()

Chapter 4. Plug-in application service routines 43

slapi_entry_dup()
Purpose

Duplicate a directory entry.

Format
#include <slapi-plugin.h>

Slapi_Entry * slapi_entry_dup (
Slapi_Entry * entry)

Parameters

Input

entry
The directory entry to be duplicated.

Usage

The slapi_entry_dup() routine creates a copy of a directory entry. Call the
slapi_entry_free() routine to release the copied directory entry when it is no longer
needed.

Related topics

The function return value is the address of the copied directory entry or NULL if
an error occurred. The errno variable is set to one of the following values when the
function return value is NULL:

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

slapi_entry_dup()

44 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_first_attr()
Purpose

Obtain the first attribute in a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_first_attr (
Slapi_Entry * entry,
Slapi_Attr ** attr)

Parameters

Input

entry
The directory entry.

Output

attr
This variable is set to the address of the first attribute. The application must
not modify or release the attribute.

Usage

The slapi_entry_first_attr() routine returns the first attribute in a directory entry.
The attribute type in the returned attribute is the primary attribute name. The
application cycles through all of the entry attributes by calling
slapi_entry_first_attr() to obtain the first attribute and then repeatedly calling
slapi_entry_next_attr() to obtain the remaining attributes.

Related topics

The function return value is 0 if the attribute is found and -1 otherwise. The errno
variable sets to one of the following values when the function return value is -1:

EINVAL
A parameter is not valid

ENOENT
The entry has no attributes

slapi_entry_first_attr()

Chapter 4. Plug-in application service routines 45

slapi_entry_free()
Purpose

Free a directory entry.

Format
#include <slapi-plugin.h>

void slapi_entry_free (
Slapi_Entry * entry)

Parameters

Input

entry
The directory entry to be freed.

Usage

The slapi_entry_free() routine frees a directory entry that was allocated by the
slapi_entry_alloc() or slapi_entry_dup() routine. The entry name and any entry
attributes are freed.

Related topics

There is no function return value.

slapi_entry_free ()

46 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_get_dn()
Purpose

Obtain the directory entry name.

Format
#include <slapi-plugin.h>

char * slapi_entry_get_dn (
Slapi_Entry * entry)

Parameters

Input

entry
The directory entry.

Usage

The slapi_entry_get_dn() routine returns the distinguished name of a directory
entry. This name must not be modified or released by the application.

Related topics

The function return value is the address of the entry name or NULL if an error
occurred. The errno variable sets to one of the following values when the function
return value is NULL:

EINVAL
A parameter is not valid

ENOENT
Attribute type is not set

slapi_entry_get_dn()

Chapter 4. Plug-in application service routines 47

slapi_entry_merge_value()
Purpose

Add an attribute value to a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_merge_value (
Slapi_Entry * entry,
const char * type,
BerVal * value)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

value
The attribute value to be added. Specify NULL to add the attribute without a
value (the attribute is created if it does not exist).

Usage

The slapi_entry_merge_value() routine adds an attribute value to a directory entry
that was allocated by the slapi_entry_alloc() routine. A not case-sensitive compare
is used when searching for the attribute type. The attribute type is created if it
does not already exist for the entry. No error is returned if the entry already
contains the supplied attribute value. Use the slapi_entry_add_value() routine to
add the attribute value if you want to be notified when a duplicate attribute value
exists. Use the slapi_entry_replace_value() routine to replace the existing attribute
values with a new value.

The slapi_entry_merge_value() routine makes a copy of the supplied attribute
value. An error is returned if the attribute value is not normalized by using the
equality matching rule defined for the attribute type.

Related topics

The function return value is 0 if the attribute value is added to the entry or -1 if an
error occurred. The errno variable is set to one of the following values when the
function return value is -1:

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

slapi_entry_merge_value()

48 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_merge_value()

Chapter 4. Plug-in application service routines 49

slapi_entry_merge_values()
Purpose

Add multiple attribute values to a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_merge_values (
Slapi_Entry * entry,
const char * type,
BerVal * values)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

values
A NULL-terminated array of values to be added.

Usage

The slapi_entry_merge_values() routine adds multiple attribute values to a
directory entry that was allocated by the slapi_entry_alloc() routine. A not
case-sensitive compare is used when searching for the attribute type. The attribute
type is created if it does not already exist for the entry. No error is returned if the
entry already contains the supplied attribute values. Use the
slapi_entry_add_values() routine to add the attribute value if you want to be
notified when the entry contains one or more matching attribute values. Use the
slapi_entry_replace_values() routine to replace the existing attribute values with
the new values.

The slapi_entry_merge_values() routine makes copies of the supplied attribute
values. An error is returned if the attribute value is not normalized by using the
equality matching rule defined for the attribute type.

Related topics

The function return value is 0 if the attribute values are added to the entry or -1 if
an error occurred. The errno variable is set to one of the following values when the
function return value is -1:

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

slapi_entry_merge_values()

50 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_merge_values()

Chapter 4. Plug-in application service routines 51

slapi_entry_next_attr()
Purpose

obtain the next attribute in a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_next_attr (
Slapi_Entry * entry,
Slapi_Attr * prevAttr,
Slapi_Attr ** attr)

Parameters

Input

entry
The directory entry.

prevAttr
The previous attribute returned by slapi_entry_first_attr() or
slapi_entry_next_attr().

Output

attr
This variable is set to the address of the attribute following the attribute
specified by the prevAttr parameter. The application must not modify or release
the attribute.

Usage

The slapi_entry_next_attr() routine returns the next attribute in a directory entry.
The attribute type in the returned attribute is the primary attribute name. The
application cycles through all of the entry attributes by calling
slapi_entry_first_attr() to obtain the first attribute and then repeatedly calling
slapi_entry_next_attr() to obtain the remaining attributes.

Related topics

The function return value is 0 if the attribute is found and -1 otherwise. The errno
variable sets to one of the following values when the function return value is -1:

EINVAL
A parameter is not valid

ENOENT
There are no more attributes

slapi_entry_next_attr()

52 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_replace_value()
Purpose

Replace the attribute values in a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_replace_value (
Slapi_Entry * entry,
const char * type,
BerVal * value)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

value
The replacement attribute value. Specify NULL to remove all of the values for
the attribute (the attribute is created if it does not exist).

Usage

The slapi_entry_replace_value() routine replaces all of the attribute values in a
directory entry that was allocated by the slapi_entry_alloc() routine. A not
case-sensitive compare is used when searching for the attribute type. The attribute
type is created if it does not already exist for the entry. Use the
slapi_entry_add_value() or slapi_entry_merge_value() routine to add an attribute
value to the existing values.

The slapi_entry_replace_value() routine makes a copy of the supplied attribute
value. An error is returned if the attribute value is not normalized by using the
equality matching rule defined for the attribute type.

Related topics

The function return value is 0 if the attribute values are replaced or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_replace_value()

Chapter 4. Plug-in application service routines 53

slapi_entry_replace_values()
Purpose

Replace the attribute values in a directory entry.

Format
#include <slapi-plugin.h>

int slapi_entry_replace_values (
Slapi_Entry * entry,
const char * type,
BerVal * values)

Parameters

Input

entry
The directory entry.

type
The attribute name. This is the attribute object identifier, the primary attribute
name, or an alternate attribute name as defined in the LDAP schema.

value
A NULL-terminated array of replacement values.

Usage

The slapi_entry_replace_values() routine replaces all of the attribute values in a
directory entry that was allocated by the slapi_entry_alloc() routine. A not
case-sensitive compare is used when searching for the attribute type. The attribute
type is created if it does not already exist for the entry. Use the
slapi_entry_add_values() or slapi_entry_merge_values() routine to add attribute
values to the existing values.

The slapi_entry_replace_values() routine makes a copy of the supplied attribute
value. An error is returned if the attribute value is not normalized by using the
equality matching rule defined for the attribute type.

Related topics

The function return value is 0 if the attribute values are replaced or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EEXIST
Duplicate value in replacement values

EILSEQ
Unable to normalize attribute value

ENOMEM
Insufficient storage is available

ESRCH
Attribute type is not defined in LDAP schema

slapi_entry_replace_values()

54 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_schema_check()
Purpose

Check a directory entry against the LDAP schema.

Format
#include <slapi-plugin.h>

int slapi_entry_schema_check (
Slapi_Entry * entry)

Parameters

Input

entry
The directory entry.

Usage

The slapi_entry_schema_check() routine validates a directory entry by using the
LDAP schema.

An error is returned if any of the following conditions are true:
v The entry contains an undefined attribute type or object class.
v The entry contains an obsolete attribute type or object class.
v The entry contains an attribute type that cannot be modified by the user.
v The entry contains an attribute type that is not allowed by the entry object

classes.
v A single-valued attribute type contains multiple attribute values.
v A required attribute type is not found and the extensibleObject object class is not

specified.
v There is not only one base structural object class.
v An auxiliary object class is a base object class.

Related topics

The function return value is 0 if the directory entry is valid or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EDOM
Obsolete attribute type or object class

EEXIST
Single-valued attribute has multiple values

EILSEQ
An auxiliary object class is a base object class or there is not only one
structural object class

EINVAL
A parameter is not valid

ENOENT
Required attribute not found

slapi_entry_schema_check()

Chapter 4. Plug-in application service routines 55

ENOMEM
Insufficient storage is available

EPERM
Attribute cannot be modified by user

ERANGE
Attribute not allowed by object class

ESRCH
Undefined attribute type or object class

slapi_entry_schema_check()

56 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_entry_set_dn()
Purpose

Set the directory entry name.

Format
#include <slapi-plugin.h>

int slapi_entry_set_dn (
Slapi_Entry * entry,
const char * dn)

Parameters

Input

entry
The directory entry.

dn The distinguished name for the entry.

Usage

The slapi_entry_set_dn() routine sets or changes the entry name for a directory
entry allocated by the slapi_entry_alloc() routine. The slapi_entry_set_dn() routine
must not be used to change the name in a directory entry returned by the
slapi_pblock_get() routine. The slapi_entry_set_dn() routine stores a copy of the
supplied name in the directory entry. The storage for the previous DN is released.

Related topics

The function return value is 0 if the entry name is set and -1 if an error occurred.
The errno variable is set to one of the following values when the function return
value is -1:

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

slapi_entry_set_dn()

Chapter 4. Plug-in application service routines 57

slapi_filter_get_attribute_type()
Purpose

Obtain the search filter attribute type.

Format
#include <slapi-plugin.h>

int slapi_filter_get_attribute_type (
Slapi_Filter * filter,
char ** type)

Parameters

Input

filter
The search filter.

Output

type
This variable is set to the address of the attribute type for the search filter. The
application must not modify or release the attribute type.

Usage

The slapi_filter_get_attribute_type() routine returns the attribute type for the
following search filters:
v LDAP_FILTER_APPROX

v LDAP_FILTER_EQUALITY

v LDAP_FILTER_GE

v LDAP_FILTER_LE

v LDAP_FILTER_PRESENT

v LDAP_FILTER_SUBSTRINGS

An error is returned if the search filter is not one of these types. The attribute type
is the primary attribute name, in lowercase, as defined in the LDAP schema.

Related topics

The function return value is 0 if the attribute type is returned or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EINVAL
A parameter is not valid

EPERM
The filter does not have an attribute type

ESRCH
Attribute type is not defined in LDAP schema

slapi_filter_get_attribute_type()

58 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_filter_get_ava()
Purpose

Obtain the search filter assertion value.

Format
#include <slapi-plugin.h>

int slapi_filter_get_ava (
Slapi_Filter * filter,
char ** type,
BerVal ** value)

Parameters

Input

filter
The search filter.

Output

type
This variable is set to the address of the attribute type for the search filter. The
application must not modify or release the attribute type.

value
This variable is set to the address of the assertion value for the search filter.
The application must not modify or release the assertion value.

Usage

The slapi_filter_get_ava() routine returns the assertion value for the following
search filters:
v LDAP_FILTER_APPROX

v LDAP_FILTER_EQUALITY

v LDAP_FILTER_GE

v LDAP_FILTER_LE

v LDAP_FILTER_PRESENT

An error is returned if the search filter is not one of these types. The attribute type
is the primary attribute name, in lowercase, as defined in the LDAP schema. The
assertion value is normalized by using the equality matching rule for the attribute
type. An error is returned if the assertion value is not normalized.

Related topics

The function return value is 0 if the assertion value is returned or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EILSEQ
Assertion value is not normalized

EINVAL
A parameter is not valid

slapi_filter_get_ava()

Chapter 4. Plug-in application service routines 59

EPERM
The filter does not have an attribute type

ESRCH
Attribute type is not defined in LDAP schema

slapi_filter_get_ava()

60 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_filter_get_choice()
Purpose

Obtain the search filter type.

Format
#include <slapi-plugin.h>

int slapi_filter_get_choice (
Slapi_Filter * filter)

Parameters

Input

filter
The search filter.

Usage

The slapi_filter_get_choice() routine returns the search filter type. The top-level
search filter is obtained by calling the slapi_pblock_get() routine with the
SLAPI_SEARCH_FILTER parameter. Lower-level search filters are obtained by
calling the slapi_filter_list_first() and slapi_filter_list_next() routines.

The following search filter types are defined:

Table 1. slapi_filter_get_choice() search filters. slapi_filter_get_choice() search filters

Header Header

LDAP_FILTER_AND AND filter: (&(cn=John)(sn=Doe))

LDAP_FILTER_OR OR filter: (|(cn=John)(cn=Jane))

LDAP_FILTER_NOT NOT filter: (!(cn=John))

LDAP_FILTER_EQUALITY EQ filter: (cn=John)

LDAP_FILTER_GE GE filter: (cn>=John)

LDAP_FILTER_LE LE filter: (cn<=John)

LDAP_FILTER_PRESENT Presence filter: (cn=*)

LDAP_FILTER_APPROX Approximate filter: (cn~=John)

LDAP_FILTER_SUBSTRINGS Substrings filter: (cn=J*Doe)

Related topics

The function return value is one of the above search filter types or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EINVAL
A parameter is not valid

slapi_filter_get_choice()

Chapter 4. Plug-in application service routines 61

slapi_filter_get_subfilt()
Purpose

Obtain the search filter substrings.

Format
#include <slapi-plugin.h>

int slapi_filter_get_subfilt (
Slapi_Filter * filter,
char ** type,
char ** initial,
char *** any,
char ** final)

Parameters

Input

filter
The search filter.

Output

type
This variable is set to the address of the attribute type for the search filter. The
application must not modify or release the attribute type.

initial
This variable is set to the address of the 'initial' substring or NULL if there is
no 'initial' substring. The application must not modify or release the substring.

any
This variable is set to the address of the array of 'any' substrings or NULL if
there are no 'any' substrings. The end of the array is indicated by a NULL
string address. The application must not modify or release the substrings.

final
This variable is set to the address of the 'final' substring or NULL if there is no
'final' substring. The application must not modify or release the substring.

Usage

The slapi_filter_get_subfilt() routine returns the substrings for an
LDAP_FILTER_SUBSTRINGS search filter. An error is returned if this is not a
substrings filter. The attribute type is the primary attribute name, in lowercase, as
defined in the LDAP schema. The substrings are normalized by using the equality
matching rule for the attribute type. An error is returned if the substrings are not
normalized.

For example, if the filter is (cn=John*Q*Public), the initial substring is John, the
final substring is Public, and the any substrings array contains the single
substring Q.

slapi_filter_get_subfilt()

62 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Related topics

The function return value is 0 if the substrings are returned or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EILSEQ
Unable to normalize attribute value

EINVAL
A parameter is not valid

EPERM
The filter does not have substrings

ESRCH
Attribute type is not defined in LDAP schema

slapi_filter_get_subfilt()

Chapter 4. Plug-in application service routines 63

slapi_filter_list_first()
Purpose

Obtain the first subfilter.

Format
#include <slapi-plugin.h>

Slapi_Filter * slapi_filter_list_first (
Slapi_Filter * filter)

Parameters

Input

filter
The search filter.

Usage

The slapi_filter_list_first() routine returns the first subfilter in an AND, OR, or
NOT filter. For example, if the search filter is (&(cn=John)(sn=Doe)), the first
subfilter is (cn=John). The top-level search filter is obtained by calling the
slapi_pblock_get() routine with the SLAPI_SEARCH_FILTER parameter.
Lower-level search filters are obtained by calling the slapi_filter_list_first() and
slapi_filter_list_next() routines.

Related topics

The function return value is the first subfilter or NULL if an error occurred. The
errno variable is set to one of the following values when the function return value
is NULL:

EINVAL
A parameter is not valid

ENOENT
There are no subfilters

EPERM
The filter is not an AND, OR, or NOT filter

slapi_filter_list_first()

64 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_filter_list_next()
Purpose

Obtain the next subfilter.

Format
#include <slapi-plugin.h>

Slapi_Filter * slapi_filter_list_next (
Slapi_Filter * filter,
Slapi_Filter * subfilter)

Parameters

Input

filter
The search filter.

subfilter
The current subfilter.

Usage

The slapi_filter_list_next() routine returns the next subfilter in an AND or OR
filter. For example, if the search filter is (&(cn=John)(sn=Doe)) and the current
subfilter is (cn=John), then the next subfilter is (sn=Doe). The return value is
NULL and errno is set to ENOENT when all of the subfilters are processed.

Related topics

The function return value is the next subfilter or NULL if an error occurred. The
errno variable is set to one of the following values when the function return value
is NULL:

EINVAL
A parameter is not valid

ENOENT
There are no subfilters

EPERM
The filter is not an AND, OR, or NOT filter

slapi_filter_list_next()

Chapter 4. Plug-in application service routines 65

slapi_get_message_np()
Purpose

Retrieves a message from a registered plug-in message catalog file.

Format
#include <slapi-plugin.h>

char * slapi_get_message_np (
Slapi_PBlock * pb,
int msgNumber,
...)

Parameters

Input

pb The plug-in parameter block.

msgNumber
The message identifier in the registered plug-in message catalog file.

...
A variable argument list containing the message substitutions. See the fmt
parameter of “slapi_log_error()” on page 68 for supported printf-style
substitution codes.

Usage

The slapi_get_message_np() routine retrieves a message from a registered plug-in
message catalog file, and creates a message string with the supplied message
substitutions. A message catalog is registered in the plug-in by calling the
slapi_pblock_set() routine with the SLAPI_PLUGIN_MSG_CAT_NP parameter.
The NLSPATH and LANG environment variables must be properly set for the
plug-in and the LDAP server to find the registered message catalog file. Also, the
plug-in and the LDAP server must have read access to the message catalog in
order to issue messages from the registered message catalog. If a message is
successfully retrieved, it can be written to the LDAP server job log by calling the
slapi_log_error() routine.

Related topics

If the registered plug-in message catalog cannot be opened or the message cannot
be found in the catalog file, a NULL is returned. If the message is found, it must
not be freed by the caller.

slapi_get_message_np()

66 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_isSDBM_authenticated()
Purpose

Determines whether the client BIND DN is contained in the SDBM backend.

Format
#include <slapi_plugin.h>

int slapi_isSDBM_authenticated (
Slapi_PBlock * pb)

Parameters

Input

pb The plug-in parameter block.

Usage

The slapi_isSDBM_authenticated() routine retrieves the BIND DN associated with
the connection from the plug-in parameter block and checks whether the DN
belongs to the SDBM backend, meaning the BIND DN is authenticated by the
RACF® security server.

Related topics

A nonzero positive value is returned if the BIND DN was authenticated by the
security server, 0 if it was not authenticated, and -1 if an error is detected.

slapi_isSDBM_authenticated()

Chapter 4. Plug-in application service routines 67

slapi_log_error()
Purpose

Write a message to the LDAP server job log.

Format
#include <slapi-plugin.h>

void slapi_log_error (
int msg_severity,
char * subsystem,
char * fmt, ...)

Parameters

Input

msg_severity
Level of severity of the message. Level of severity is one of the following:
v LDAP_MSG_LOW
v LDAP_MSG_MED
v LDAP_MSG_HIGH

To force the message to the console logically on LDAP_OP_CONSOLE with the
msg_severity, see “Usage” on page 69 for when messages are written to the log.

subsystem
Name of the plug-in subsystem in which this function is called.

fmt
Message you want written. This message is in printf()-style format. Only the
following printf()-style substitution codes are supported:

Table 2. printf()-style substitution codes. printf()-style substitution codes

Substitution codes Description

%d signed integer

%ld signed long integer

%u unsigned integer

%lu unsigned long integer

%x lowercase hexadecimal unsigned integer (specify %08x or %8.8x
for an 8-character value with zero-fill)

%lx lowercase hexadecimal unsigned long integer

%X uppercase hexadecimal unsigned integer (specify %08X or %8.8X
for an 8-character value with zero-fill)

%lX uppercase hexadecimal unsigned long integer

%p pointer

%c EBCDIC character

%s EBCDIC string

%W ASCII string

The format specifications use either the XPG4 "%n$f" form or the "%f" form,
but the two forms cannot be intermixed in the same message.

slapi_log_error()

68 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Usage
1. The slapi_log_error() routine formats a message and writes it to the job log.
2. The message is written to the operator console depending on the setting of the

environment variable LDAP_CONSOLE_LEVEL unless LDAP_OP_CONSOLE is
logically ORed with the msg_severity. In this case, it is always written to the
operator console. The slapi_log_error() severity level equates to the
LDAP_CONSOLE_LEVEL severity level as follows:
v LDAP_MSG_LOW is an Information (I) severity level
v LDAP_MSG_MED is an Attention (W) severity level
v LDAP_MSG_HIGH is an Error (E) severity level
See z/OS IBM Tivoli Directory Server Administration and Use for
z/OSSLAPI_REQUESTOR for more information about the use of
LDAP_CONSOLE_LEVEL, activity logging, and LDAP server configuration.

3. Operator console messages must include a message identifier. The subsystem
input field is used for the message identifier.

4. The message is written to the LDAP server activity log when activity logging is
enabled.

5. Examples (<Italics> are completed with the appropriate system and LDAP
server information):
v slapi_log_error(LDAP_MSG_MED,

"GLD1004I","LDAP server is ready for requests.\n");

Writes the following message to the job log:
<date time> GLD1004I LDAP server is ready for requests.

v slapi_log_error (LDAP_MSG_HIGH,
"GLD1059I", "Listening for requests on %s port %d.\n", ip,port);

where
LDAP_CONSOLE_LEVEL=E
ip is the string "127.0.0.1"
port = 386

Writes the following message to the job log:
<date time> GLD1059I Listening for requests on 127.0.0.1 port 386.

The same message is written to the operator console, depending on how
your console is configured. The date and time are excluded.

v slapi_log_error (LDAP_MSG_LOW | LDAP_OP_CONSOLE,
"GLD1005I", "LDAP server start command processed.\n");

Writes the following message to the job log:
<date time> GLD1005I LDAP server start command processed.

The same message is written to the operator console, depending on how
your console is configured. The date and time are excluded.

Related topics

None.

slapi_log_error()

Chapter 4. Plug-in application service routines 69

slapi_modify_internal()
Purpose

Issue a modify request.

Format
#include <slapi-plugin.h>

Slapi_PBlock * slapi_modify_internal (
const char * dn,
LDAPMod ** mods,
LDAPControl ** controls,
int l)

Parameters

Input

dn The distinguished name of the entry.

mods
A NULL-terminated array of modifications. The attribute value is specified as a
BerVal structure if the LDAP_MOD_BVALUES flag is set and is specified as a
character string if it is not set.

controls
A NULL-terminated array of server controls for the MODIFY request. Specify
NULL if there are no server controls.

l This parameter is not used and is set to 0. It is included for compatibility with
other LDAP implementations.

Usage

The slapi_modify_internal() routine issues a MODIFY request and returns the
results to the plug-in for processing. The LDAP Version 3 protocol and the current
client authentication is used for the MODIFY request. The request is
unauthenticated if a client request is not being processed. Call the
slapi_pblock_get() routine to obtain the results from the returned parameter block.
The following values can be retrieved from the parameter block:
v SLAPI_PLUGIN_INTOP_RESULT - The result code from the result message.
v SLAPI_PLUGIN_INTOP_ERRMSG - The error message from the result message.
v SLAPI_PLUGIN_INTOP_MATCHED_DN - The matched DN from the result message.
v SLAPI_PLUGIN_INTOP_REFERRALS - The referrals from the result message.

Related topics

The function return value is the address of a plug-in parameter block or NULL if
the MODIFY request is not issued. Call the slapi_pblock_destroy() routine to
release the plug-in parameter block when it is no longer needed. The errno variable
is set to one of the following values when the function return value is NULL:

EINVAL
A parameter is not valid

EIO Unable to process the MODIFY request

slapi_modify_internal()

70 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

ENOMEM
Insufficient storage is available

slapi_modify_internal()

Chapter 4. Plug-in application service routines 71

slapi_modrdn_internal()
Purpose

Issue a MODIFY-DN request.

Format
#include <slapi-plugin.h>

Slapi_PBlock * slapi_modrdn_internal (
const char * dn,
const char * newrdn,
int deloldrdn,
LDAPControl ** controls,
int l)

Parameters

Input

dn The distinguished name of the entry.

newrdn
The new RDN® for the entry.

deloldrdn
Specify 1 if the old RDN is to be deleted and 0 if the old RDN is not to be
deleted.

controls
A NULL-terminated array of server controls for the MODIFY-DN request.
Specify NULL if there are no server controls.

l The parameter is not used and set to 0. It is included for compatibility with
other LDAP implementations.

Usage

The slapi_modrdn_internal() routine issues a MODIFY-DN request and returns the
results to the plug-in for processing. The LDAP Version 3 protocol and the current
client authentication is used for the MODIFY-DN request. The request is
unauthenticated if a client request is not being processed. Call the
slapi_pblock_get() routine to obtain the results from the returned parameter block.
The following values can be retrieved from the parameter block:
v SLAPI_PLUGIN_INTOP_RESULT - The result code from the result message.
v SLAPI_PLUGIN_INTOP_ERRMSG - The error message from the result message.
v SLAPI_PLUGIN_INTOP_MATCHED_DN - The matched DN from the result message.
v SLAPI_PLUGIN_INTOP_REFERRALS - The referrals from the result message.

Related topics

The function return value is the address of a plug-in parameter block or NULL if
the MODIFY-DN request is not issued. Call the slapi_pblock_destroy() routine to
release the plug-in parameter block when it is no longer needed. The errno variable
is set to one of the following values when the function return value is NULL:

EINVAL
A parameter is not valid

slapi_modrdn_internal()

72 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

EIO Unable to process the MODIFY-DN request

ENOMEM
Insufficient storage is available

slapi_modrdn_internal()

Chapter 4. Plug-in application service routines 73

slapi_op_abandoned()
Purpose

Check if the current request has been abandoned.

Format
#include <slapi-plugin.h>

int slapi_op_abandoned (
Slapi_PBlock * pb)

Parameters

Input

pb The plug-in parameter block.

Usage

The slapi_op_abandoned() routine checks if the client has abandoned the current
request.

Related topics

The function return value is 1 if the request is abandoned, 0 if the request is not
abandoned, and -1 if an error occurred. The errno variable is set to one of the
following values when the function return value is -1

EINVAL
A parameter is not valid

EPERM
There is no client request

slapi_op_abandoned()

74 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_pblock_destroy()
Purpose

Release a plug-in parameter block returned for an internal request.

Format
#include <slapi-plugin.h>

void slapi_pblock_destroy (
Slapi_PBlock * pb)

Parameters

Input

pb The plug-in parameter block.

Usage

The slapi_pblock_destroy() routine releases a plug-in parameter block returned by
an internal request routine, such as slapi_add_internal(). This routine must not be
used to release a plug-in parameter block supplied as input to a plug-in callback
routine.

Related topics

There is no function return value.

slapi_pblock_destroy()

Chapter 4. Plug-in application service routines 75

slapi_pblock_get()
Purpose

Retrieve a value from the plug-in parameter block.

Format
#include <slapi-plugin.h>

int slapi_pblock_get (
Slapi_PBlock * pb,
int arg,
void * value)

Parameters

Input

pb The plug-in parameter block.

arg
The parameter value to be retrieved.

Output

value
The address of a variable that is set to the parameter value.

Usage

The specified parameter value is retrieved from the plug-in parameter block. The
plug-in must not modify or release any of the values returned by the
slapi_pblock_get() routine. For SLAPI_PLUGIN_PRIVATE and
SLAPI_CONN_PRIVATE, the parameter value is an address that is saved in the
plug-in parameter block and can be freed. EINVAL is returned if the parameter
type or value is not valid while EPERM is returned if the parameter type is not
allowed for the current plug-in invocation.

These parameter types are valid only for a parameter block returned by an internal
request routine:
v SLAPI_PLUGIN_INTOP_REFERRALS

v SLAPI_PLUGIN_INTOP_RESULT

v SLAPI_PLUGIN_INTOP_SEARCH_ENTRIES

v SLAPI_PLUGIN_INTOP_SEARCH_REFERRALS

The other parameter types are not valid for an internal request parameter block.

Table 3. Operational parameters. Operational parameters

Name Format Usage

SLAPI_PLUGIN_ARGC int The number of arguments specified on the
plugin configuration statement.

SLAPI_PLUGIN_ARGV char ** A NULL-terminated array of arguments
specified on the plugin configuration
statement. See SLAPI_PLUGIN_ARGC for
the number of arguments.

slapi_pblock_get()

76 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 3. Operational parameters (continued). Operational parameters

Name Format Usage

SLAPI_PLUGIN_CTLLIST char ** An array of server control object identifiers
registered by the current plug-in. The value
is NULL if there are no server controls.

SLAPI_PLUGIN_DB_SUFFIXES char ** A NULL-terminated array of database
suffixes registered for the current plug-in.
The value is NULL if there are no database
suffixes registered. The database suffixes are
normalized as determined by the LDAP
server schema.

SLAPI_PLUGIN_EXT_OP_
OIDLIST

char ** A NULL-terminated array of extended
operation object identifiers registered for the
current plug-in. The value is NULL if there
are no object identifiers registered.

SLAPI_PLUGIN_PRIVATE void * Private value set by the slapi_pblock_set()
routine. Each plug-in can have its own
private value and must be freed on
termination.

SLAPI_PLUGIN_TYPE int Current plug-in type:

v SLAPI_PLUGIN_PREOPERATION

v SLAPI_PLUGIN_CLIENTOPERATION

v SLAPI_PLUGIN_POSTOPERATION

Table 4. General request parameters. General request parameters

Name Format Usage

SLAPI_CONN_ID unsigned long Client connection identifier.
Connection identifiers are reused
when a connection is closed,
abandoned, or an unbind occurs.
The plug-in registers a
SLAPI_PLUGIN_DISCONNECT_FN
if it must be informed when a client
connection is closed, abandoned, or
an unbind occurs.

SLAPI_CONN_PRIVATE void * Private value for the current
connection. Each plug-in can have
its own set of private connection
values and must be freed on
termination. The value is NULL if
the plug-in has not set a private
value for the connection.

SLAPI_CONN_VERSION int The LDAP protocol version for the
connection. This is the previous
protocol version while processing a
BIND request (use the
SLAPI_BIND_VERSION parameter
to obtain the protocol version
specified in the BIND request)

SLAPI_REQCONTROLS LDAPControl
**

A NULL-terminated array of server
controls specified in the request.
The value is NULL if there are no
controls.

slapi_pblock_get()

Chapter 4. Plug-in application service routines 77

Table 4. General request parameters (continued). General request parameters

Name Format Usage

SLAPI_REQUEST_ID unsigned int Message identifier for the current
client request.

SLAPI_REQUESTOR_ACEE void * Address of the ACEE of the bound
client. NULL is returned when no
ACEE is associated with the client.
An ACEE is only available if the
client binds by way of SDBM,
Native Authentication, or SSL with
a certificate stored in RACF.

SLAPI_REQUESTOR_ALT_NAMES char ** A NULL-terminated array of
normalized alternate names for the
authentication DN. The value is
NULL if there are no alternate
names.

SLAPI_REQUESTOR_DN char * Authenticated DN of the client
requesting the operation. A
zero-length string is returned if the
client is not authenticated.

SLAPI_REQUESTOR_GROUPS char ** A NULL-terminated array of
normalized group names for the
authentication DN. The value is
NULL if the authentication DN is
not a member of any groups or if
group gathering was not enabled
for the BIND request.

SLAPI_REQUESTOR_IS_ADMIN int The value is 1 if the requester is the
LDAP administrator. Otherwise, the
value is 0.

SLAPI_REQUESTOR_NORM_DN char * Normalized authenticated DN of
the client requesting the operation.
A zero-length string is returned if
the client is not authenticated.

SLAPI_REQUESTOR_SAF_ID char * SAF user ID of the bound client. A
zero-length string is returned when
no SAF user ID is associated with
the client. The value is uppercased
and in local code page.

SLAPI_REQUESTOR_SECURITY_
LABEL

char * The security label associated with
the client requesting the operation.
The security label is returned as a
local code page string. A zero-length
string is returned when the client is
not authenticated or when LDAP
server security label processing is
not configured for client operations.

SLAPI_TARGET_DN char * Target DN specified in the current
request. The value is NULL if the
request does not have a target DN.

slapi_pblock_get()

78 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 5. ABANDON request parameters. ABANDON request parameters

Name Format Usage

SLAPI_ABANDON_MSGID unsigned int Message identifier of the message
is abandoned.

Table 6. ADD request parameters. ADD request parameters

Name Format Usage

SLAPI_ADD_ENTRY Slapi_Entry * Entry to be added. The server
creates SLAPI_ENTRY whenever an
add is requested. This function
returns the address of the entry.
This entry is freed at the end of the
request.

SLAPI_ADD_TARGET char * DN of the entry to be added. This
is the same value returned by
SLAPI_TARGET_DN.

Table 7. BIND request parameters. BIND request parameters

Name Format Usage

SLAPI_BIND_CREDENTIALS BerVal * Credentials from the BIND request.

SLAPI_BIND_METHOD int Bind method:

v LDAP_AUTH_SIMPLE

v LDAP_AUTH_SASL

SLAPI_BIND_TARGET char * Authentication DN from the BIND
request. This is the same value
returned by SLAPI_TARGET_DN.

SLAPI_BIND_VERSION int The LDAP protocol version from the
BIND request.

Table 8. COMPARE request parameters. COMPARE request parameters

Name Format Usage

SLAPI_COMPARE_TARGET char * DN of the entry to be used for the
comparison. This is the same value
returned by SLAPI_TARGET_DN.

SLAPI_COMPARE_TYPE char * Attribute type to be used for the
comparison. The primary attribute
name, in lowercase, is returned as
defined in the LDAP schema.

SLAPI_COMPARE_VALUE BerVal * Attribute value to be used for the
comparison. The normalized attribute
value is returned if the attribute type
has an equality matching filter,
otherwise the unnormalized attribute
value is returned.

Table 9. DELETE request parameters. DELETE request parameters

Name Format Usage

SLAPI_DELETE_TARGET char * DN of the entry to be deleted. This is
the same value returned by
SLAPI_TARGET_DN.

slapi_pblock_get()

Chapter 4. Plug-in application service routines 79

Table 10. EXTENDED OPERATION request parameters. EXTENDED OPERATION request
parameters

Name Format Usage

SLAPI_EXT_OP_REQ_OID char * Extended operation object
identifier.

SLAPI_EXT_OP_REQ_VALUE BerVal * Extended operation value.

Table 11. MODIFY request parameters. MODIFY request parameters

Name Format Usage

SLAPI_MODIFY_MODS LDAPMod ** A NULL-terminated array of
modifications to be performed.
The attribute values are
represented as binary values in the
LDAPMod entries (modv_bvals is
used instead of modv_strvals and
the LDAP_MOD_BVALUES flag is
set).

SLAPI_MODIFY_TARGET char * DN of the entry to be modified.
This is the same value returned by
SLAPI_TARGET_DN.

Table 12. MODIFY DN request parameters. MODIFY DN request parameters

Name Format Usage

SLAPI_MODRDN_DELOLDRDN int 1 if the old RDN is to be
deleted, 0 if the old RDN is
not to be deleted.

SLAPI_MODRDN_NEWRDN char * New RDN for the entry.

SLAPI_MODRDN_NEWSUPERIOR char * DN of the new superior entry.
The value is NULL if a new
superior entry is not specified
in the MODIFY DN request.

SLAPI_MODRDN_TARGET char * New DN for the renamed
entry. This is the same value
returned by
SLAPI_TARGET_DN.

Table 13. SEARCH request parameters. SEARCH request parameters

Name Format Usage

SLAPI_SEARCH_ATTRS char ** A NULL-terminated array of
attribute types from the search
request. The value is NULL if
there are no attribute types in
the search request. The
attribute names are the
primary attribute names in
lowercase as defined in the
LDAP schema.

slapi_pblock_get()

80 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 13. SEARCH request parameters (continued). SEARCH request parameters

Name Format Usage

SLAPI_SEARCH_ATTRSONLY int 1 if only attribute types are to
be returned, 0 if attribute
types and values are to be
returned.

SLAPI_SEARCH_DEREF int Alias dereferencing:

v LDAP_DEREF_NEVER

v LDAP_DEREF_FINDING

v

LDAP_DEREF_SEARCHING

v LDAP_DEREF_ALWAYS

SLAPI_SEARCH_FILTER Slapi_Filter * Search filter.

SLAPI_SEARCH_SCOPE int Search scope:

v LDAP_SCOPE_BASE

v LDAP_SCOPE_ONELEVEL

v LDAP_SCOPE_SUBTREE

SLAPI_SEARCH_SIZELIMIT int Search size limit. This is the
smaller of the size limit from
the search request and the size
limit specified in the LDAP
server configuration file. The
configured size limit should
be ignored for the LDAP
administrator.

SLAPI_SEARCH_TARGET char * DN of the base entry for the
search. This is the same value
returned by
SLAPI_TARGET_DN.

SLAPI_SEARCH_TIMELIMIT int Search time limit. This is the
smaller of the time limit from
the search request and the
time limit specified in the
LDAP server configuration
file. The configured time limit
is ignored for the LDAP
administrator.

Table 14. Callback parameters. Callback parameters

Name Format Usage

SLAPI_CALLBACK_NAME char * The normalized name for the
callback request. The value is NULL
if there is no name associated with
the callback request.

slapi_pblock_get()

Chapter 4. Plug-in application service routines 81

Table 14. Callback parameters (continued). Callback parameters

Name Format Usage

SLAPI_CALLBACK_TYPE int The callback type.

v SLAPI_TYPE_DN_PW to obtain
the password for a distinguished
name

v SLAPI_TYPE_UID_PW to obtain
the password for a user name

v SLAPI_TYPE_GROUPS to obtain
the group list for a distinguished
name

v SLAPI_TYPE_ALT_NAMES to
obtain the Kerberos alternate
names

Table 15. General result parameters. General result parameters

Name Format Usage

SLAPI_PLUGIN_OPRETURN int The result code for the current
operation. The result code is set by
the slapi_send_ldap_result()
routine.

Table 16. Internal request result parameters. Internal request result parameters

Name Format Usage

SLAPI_PLUGIN_INTOP_SEARCH_
ENTRIES

Slap_Entry ** A NULL-terminated array
of search entries returned
for an internal search
request. The value is
NULL if there are no
search entries.

SLAPI_PLUGIN_INTOP_SEARCH_
REFERRALS

char * A NULL-terminated array
of search references
returned for an internal
search request. The value is
NULL if there are no
search references.

SLAPI_PLUGIN_INTOP_ERRMSG char * Error message returned in
the result message for an
internal request. The value
is NULL if there is no error
message.

SLAPI_PLUGIN_INTOP_MATCHED_DN char * Matched DN returned in
the result message for an
internal request. The value
is NULL if there is no
matched DN.

SLAPI_PLUGIN_INTOP_REFERRALS char * A NULL-terminated array
of referrals returned in the
result message for an
internal request. The value
is NULL if there are no
referrals.

slapi_pblock_get()

82 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 16. Internal request result parameters (continued). Internal request result parameters

Name Format Usage

SLAPI_PLUGIN_INTOP_RESULT int Result code returned in the
result message for an
internal request.

Related topics

The return value is 0 if the request is successful and -1 if there is an error. The
errno variable is set to one of the following values when the function return value
is -1:

EFAULT
Value address is not valid

EINVAL
A parameter is not valid

ENOENT
Value does not exist

ENOMEM
Insufficient storage is available

EPERM
Insufficient storage is available

slapi_pblock_get()

Chapter 4. Plug-in application service routines 83

slapi_pblock_set()
Purpose

Format
#include <slapi-plugin.h>

int slapi_pblock_set (
Slapi_PBlock * pb,
int arg,
void * value)

Parameters

Input

pb The plug-in parameter block.

arg
The parameter value to be set.

value
The address of the parameter value or, for a registration parameter, the
callback function.

Usage

The specified parameter value is set in the plug-in parameter block. The plug-in
must release any storage allocated for the parameter value since the
slapi_pblock_set() routine makes a copy of the parameter value before returning.
For SLAPI_PLUGIN_PRIVATE and SLAPI_CONN_PRIVATE, the parameter value
is an address that is saved in the plug-in parameter block. EINVAL is returned if
the parameter type or value is not valid while EPERM is returned if the parameter
type is not allowed for the current plug-in invocation.

Suffixes, extended operations, and controls can only be set during initialization.

Table 17. Registration parameters. Registration parameters

Name Format Usage

SLAPI_PLUGIN_ABANDON_FN int (*)(Slapi_PBlock *) Routine to process a
client ABANDON
request.

SLAPI_PLUGIN_ADD_FN int (*)(Slapi_PBlock *) Routine to process a
client ADD request.

SLAPI_PLUGIN_BIND_FN int (*)(Slapi_PBlock *) Routine to process a
client BIND request.

SLAPI_PLUGIN_CALLBACK_FN int (*)(Slapi_PBlock *) Routine to process a
server callback request.
A callback routine is
registered only by a
client-operation plug-in.

SLAPI_PLUGIN_CLOSE_FN void (*)(Slapi_PBlock *) Routine to be called
during LDAP server
termination.

SLAPI_PLUGIN_COMPARE_FN int (*)(Slapi_PBlock *) Routine to process a
client COMPARE
request.

slapi_pblock_set()

84 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 17. Registration parameters (continued). Registration parameters

Name Format Usage

SLAPI_PLUGIN_DELETE_FN int (*)(Slapi_PBlock *) Routine to process a
client DELETE request.

SLAPI_PLUGIN_DISCONNECT_FN void (*)(Slapi_PBlock *) Routine to be called
when an LDAP client
session is closed.

SLAPI_PLUGIN_EXT_OP_FN int (*)(Slapi_PBlock *) Routine to process a
client EXTENDED
OPERATION request.

SLAPI_PLUGIN_MODIFY_FN int (*)(Slapi_PBlock *) Routine to process a
client MODIFY request.

SLAPI_PLUGIN_MODRDN_FN int (*)(Slapi_PBlock *) Routine to process a
client MODIFY DN
request.

SLAPI_PLUGIN_SEARCH_FN int (*)(Slapi_PBlock *) Routine to process a
client SEARCH request.

SLAPI_PLUGIN_THREAD_FN void (*)(Slapi_PBlock *) Routine to be called
when an LDAP server
worker thread
terminates.

SLAPI_PLUGIN_UNBIND_FN int (*)(Slapi_PBlock *) Routine to process a
client UNBIND request.

Table 18. Operational parameters. Operational parameters

Name Format Usage

SLAPI_CONN_PRIVATE void * Private value for the
current connection. Each
plug-in can have its own
set of private connection
values.

SLAPI_PLUGIN_CTLLIST char ** NULL-terminated array
of server control object
identifiers supported by
the current plug-in. The
LDAP server accepts an
unrecognized critical
control if the object
identifier is registered by
one or more plug-ins.
The plug-in is
responsible for any
processing required by
the server control.

SLAPI_PLUGIN_DB_SUFFIX char ** NULL-terminated array
of database suffixes for
the current plug-in. This
parameter is set only by
a client-operation
plug-in.

slapi_pblock_set()

Chapter 4. Plug-in application service routines 85

Table 18. Operational parameters (continued). Operational parameters

Name Format Usage

SLAPI_PLUGIN_EXT_OP_OIDLIST char ** NULL-terminated array
of extended operation
object identifiers for the
current plug-in. This
parameter is set only by
a client-operation
plug-in.

SLAPI_PLUGIN_MSG_CAT_NP char ** The name of the message
catalog that is to be
registered by this plug-in.

SLAPI_PLUGIN_PRIVATE void * Private value that is
retrieved by the
slapi_pblock_get()
routine. Each plug-in has
its own private value.

Table 19. Callback parameters. Callback parameters

Name Format Usage

SLAPI_CALLBACK_ERRMSG char * An error message is returned to the
LDAP client if an error occurred.
Specify NULL if there is no error
message.

SLAPI_CALLBACK_LIST char ** A NULL-terminated array of names.
This is the return value for a group list
or alternate names callback. Specify
NULL if there are no names.

SLAPI_CALLBACK_PASSWORD char * The user password. This is a return
value for a password callback. Specify
NULL if there is no password for the
supplied name.

SLAPI_CALLBACK_STATUS int This is the LDAP result code for the
request. It is set to LDAP_SUCCESS if
the callback request was processed,
LDAP_UNWILLING_TO_PERFORM if
the plug-in does not recognize the
callback type, or an LDAP error code if
an error occurred. The return status is
LDAP_SUCCESS if there is no
password, group, or alternate name for
the supplied name and the appropriate
return value (SLAPI_CALLBACK_LIST
or SLAPI_CALLBACK_PASSWORD) is
set to NULL.

SLAPI_CALLBACK_TARGET_DN char * The entry name associated with the
password returned for the
SLAPI_CALLBACK_PASSWORD
parameter. This is a return value for a
password callback. Specify NULL if
there is no entry.

slapi_pblock_set()

86 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 20. General result parameters. General result parameters

Name Format Usage

SLAPI_RETCONTROLS LDAPControl ** A NULL-terminated array of controls
is returned in the result message.
This parameter may be set only by a
client-operation plug-in.

Table 21. EXTENDED OPERATION result parameters. EXTENDED OPERATION
parameters

Name Format Usage

SLAPI_EXT_OP_RET_OID char * Extended operation object
identifier.

SLAPI_EXT_OP_RET_VALUE BerVal * Extended operation value.

Related topics

The return value is 0 if the request is successful and -1 if there is an error. The
errno variable is set to one of the following values when the function return value
is -1:

EEXIST
Value already exists

EFAULT
Value address is not valid

EINVAL
A parameter is not valid

ENOMEM
Insufficient storage is available

EPERM
A parameter is not allowed

slapi_pblock_set()

Chapter 4. Plug-in application service routines 87

slapi_search_internal()
Purpose

Issue a SEARCH request.

Format
#include <slapi-plugin.h>

Slapi_PBlock * slapi_search_internal (
const char * base,
int scope,
const char * filter,
LDAPControl ** controls,
char ** attrs,
int attrsonly)

Parameters

Input

base
The base DN for the search.

scope
The scope for the search must be:
v LDAP_SCOPE_BASE
v LDAP_SCOPE_ONELEVEL
v LDAP_SCOPE_SUBTREE

filter
The filter for the search. The filter is set to (objectClass=*) if NULL is
specified for this parameter.

controls
A NULL-terminated array of server controls for the SEARCH request. Specify
NULL if there are no server controls. The pagedResults (OID
1.2.840.113556.1.4.319) server control is not supported on an internal
SEARCH request.

attrs
A NULL-terminated array of attributes is returned for the search entries.
Specify NULL if all attributes are returned. Note that operational attributes are
returned only if they are explicitly listed in the attrs parameter.

attrsonly
Specify 1 if just the attribute types are to be returned or 0 if both attribute
types and attribute values are to be returned.

Usage

The slapi_search_internal() routine issues a SEARCH request and returns the
results to the plug-in for processing. The LDAP Version 3 protocol and the current
client authentication are used for the SEARCH request. The request is
unauthenticated if a client request is not being processed. Call the
slapi_pblock_get() routine to obtain the search results from the returned parameter
block. The following values can be retrieved from the parameter block:
v SLAPI_PLUGIN_INTOP_RESULT - The result code from the result message
v SLAPI_PLUGIN_INTOP_ERRMSG - The error message from the result message

slapi_search_internal()

88 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

v SLAPI_PLUGIN_INTOP_MATCHED_DN - The matched DN from the result message
v SLAPI_PLUGIN_INTOP_REFERRALS - The referrals from the result message
v SLAPI_PLUGIN_INTOP_SEARCH_ENTRIES - The search entries
v SLAPI_PLUGIN_INTOP_SEARCH_REFERRALS - The search references

Related topics

The function return value is the address of the plug-in parameter block or NULL if
the SEARCH request is not issued. Call the slapi_pblock_destroy() routine to
release the plug-in parameter block when it is no longer needed. The errno variable
is set to one of the following values when the function return value is NULL:

EINVAL
A parameter is not valid

EIO Unable to process the SEARCH request

ENOMEM
Insufficient storage is available

slapi_search_internal()

Chapter 4. Plug-in application service routines 89

slapi_send_ldap_referral()
Purpose

Send an LDAP search referral message to the client

Format
#include <slapi-plugin.h>

int slapi_send_ldap_referral (
Slapi_PBlock * pb,
Slapi_Entry * entry,
BerVal ** refs,
BerVal *** urls)

Parameters

Input

pb The plug-in parameter block.

entry
The directory entry containing the referrals. The entry name is used if a
referral value does not already contain a distinguished name. NULL is
specified for this parameter if the referral values are complete and do not
require the distinguished name added.

refs
The referral values from the directory entry.

Input/Output

urls
This variable points to a NULL-terminated array of referral urls for LDAP
Version 2 clients. The variable is initialized to NULL before the first call to the
slapi_send_ldap_referral() routine for the current search request. If the client is
using the LDAP Version 2 protocol, the slapi_send_ldap_referral() routine
allocates and expands this array to contain the new referral urls. Call the
slapi_ch_free_values() routine to release the array when it is no longer needed.
NULL is specified for this parameter if the client is using the LDAP Version 3
protocol.

Usage

The slapi_send_ldap_referral() routine processes a referral entry that is within the
scope of a search request. The slapi_send_ldap_result() routine is called with a
result code of LDAP_PARTIAL_RESULTS (LDAP Version 2) or LDAP_REFERRAL
(LDAP Version 3) if the base entry for the search is a referral entry. The
slapi_send_ldap_referral() routine is called only by a pre-operation or
client-operation plug-in.

If the client is using the LDAP Version 3 protocol, a search referral message is
created and sent to the client. The urls parameter is not used in this case.

If the client is using the LDAP Version 2 protocol, the referral urls are accumulated
by using the urls parameter. Upon completion of the search request, the
application calls the slapi_send_ldap_result() routine with a result code of
LDAP_PARTIAL_RESULTS and provide the referral urls. The referral array is
freed by calling the slapi_ch_free_values() routine.

slapi_send_ldap_referral()

90 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

The referral urls are modified based on the directory entry name and the search
scope. The directory name is used for the distinguished name if the referral url
does not contain a distinguished name. The referral scope is base if the search
scope is one-level and the referral scope is sub if the search scope is sub. The
slapi_send_ldap_referral() routine is not called if the search scope is base since the
referral is returned in the LDAP result message and not as an LDAP search referral
message.

Related topics

The function return value is 0 if the referrals have been processed or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

EINVAL
A parameter is not valid

EIO Unable to send the message

ENOMEM
Insufficient storage is available

EPERM
The plug-in is not a pre-operation or client-operation plug-in or the current
request is not a search request

slapi_send_ldap_referral()

Chapter 4. Plug-in application service routines 91

slapi_send_ldap_result()
Purpose

Send the LDAP result message to the client.

Format
#include <slapi-plugin.h>

void slapi_send_ldap_result (
Slapi_PBlock * pb,
int resultCode,
char * matchedDN,
char * errorText,
int numEntries,
BerVal ** referrals)

Parameters

Input

pb The plug-in parameter block.

resultCode
The result code to be returned to the client.

matchedDN
The matched DN returned to the client. Specify NULL for this parameter if no
matched DN is returned. A matched DN must not be specified unless the
result code is:
v LDAP_ALIAS_DEREF_PROBLEM
v LDAP_ALIAS_PROBLEM
v LDAP_INVALID_DN_SYNTAX
v LDAP_NO_SUCH_OBJECT

errorText
The error text returned to the client. Specify NULL for this parameter if no
error text is returned. Error text is not specified if the result code is
LDAP_SUCCESS.

numEntries
The number of search entries returned for the current search request. This
parameter is specified as 0. This parameter is obsolete and is included for
compatibility with other LDAP implementations.

referrals
A NULL-terminated array of referral URLs returned to the client. Specify
NULL for this parameter if no referrals are returned to the client. For the
LDAP Version 3 protocol, referrals must not be specified unless the result code
is LDAP_REFERRAL. For the LDAP Version 2 protocol, referrals are specified
for any result code other than LDAP_SUCCESS (LDAP Version 2 referrals are
appended to the error text).

Usage

The slapi_send_ldap_result() routine sends an LDAP result message to the LDAP
client. Only one result message is returned for each LDAP request. The
slapi_send_ldap_result() routine is called only by a pre-operation or
client-operation plug-in. The slapi_pblock_set() routine can be called before calling

slapi_send_ldap_result()

92 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

the slapi_send_ldap_result() routine if the result message includes server controls,
an extended result object identifier or an extended result value.

Related topics

There is no function return value.

slapi_send_ldap_result()

Chapter 4. Plug-in application service routines 93

slapi_send_ldap_search_entry()
Purpose

Send an LDAP search entry message to the client.

Format
#include <slapi-plugin.h>

int slapi_send_ldap_search_entry (
Slapi_PBlock * pb,
Slapi_Entry * entry,
LDAPControl ** controls,
char ** attrs,
int attrsonly)

Parameters

Input

pb The plug-in parameter block.

entry
The directory entry.

controls
A NULL-terminated array of LDAP controls returned with the search entry
message. Specify NULL for the array address if no controls should be returned.

attrs
A NULL-terminated array of attribute types returned in the search entry
message. Specify NULL for the array address if all attributes are returned.
Specify an array with just the NULL entry if no attributes are returned.
Operational attributes are returned only if they are explicitly specified.

attrsonly
Specify 1 to return only the attribute types and 0 to return the attribute types
and values.

Usage

The slapi_send_ldap_search_entry() routine sends an LDAP search entry message
to the LDAP client. The slapi_send_ldap_search_entry() routine is called only by a
pre-operation or client-operation plug-in. The slapi_send_ldap_search_entry()
routine is called for each directory entry that matches the search parameters. The
slapi_send_ldap_referral() routine is called to return a search referral message to
the client.

If the client search request specified a valid pagedResults (OID
1.2.840.113556.1.4.319) or SortKeyRequest (OID 1.2.840.113556.1.4.473) server
control, the LDAP server performs paging or sorting of search entries after the
search operation has returned from all pre-operation plug-ins, client-operation
plug-ins, and LDAP server backend calls.

Related topics

The function return value is 0 if the search entry message is sent or -1 if an error
occurred. The errno variable is set to one of the following values when the function
return value is -1:

slapi_send_ldap_search_entry()

94 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

ECANCELED
Client has canceled the request

EINVAL
A parameter is not valid

EIO Unable to send the message

ENOMEM
Insufficient storage is available

EPERM
The plug-in is not a pre-operation or client-operation plug-in or the current
request is not a search request

ESRCH
Attribute type is not defined in LDAP schema

slapi_send_ldap_search_entry()

Chapter 4. Plug-in application service routines 95

slapi_trace()
Purpose

Writes an LDAP server trace message.

Format
#include <slapi-plugin.h>

void * slapi_trace (
long long traceLevel,
char * subsystem,
char * fmt, ...)

Parameters

Input

traceLevel
Trace level of the message. Trace level must be one of the following:
v LDAP_DEBUG_ACL
v LDAP_DEBUG_ARGS
v LDAP_DEBUG_BE_CAPABILITIES
v LDAP_DEBUG_BER
v LDAP_DEBUG_CACHE
v LDAP_DEBUG_CONNS
v LDAP_DEBUG_ERROR
v LDAP_DEBUG_FILTER
v LDAP_DEBUG_INFO
v LDAP_DEBUG_LDAPBE
v LDAP_DEBUG_LDBM
v LDAP_DEBUG_MESSAGE
v LDAP_DEBUG_MULTISERVER
v LDAP_DEBUG_PACKETS
v LDAP_DEBUG_PERFORMANCE
v LDAP_DEBUG_PLUGIN
v LDAP_DEBUG_REFERRAL
v LDAP_DEBUG_REPL
v LDAP_DEBUG_SCHEMA
v LDAP_DEBUG_SDBM
v LDAP_DEBUG_STATS
v LDAP_DEBUG_STRBUF
v LDAP_DEBUG_SYSPLEX
v LDAP_DEBUG_TDBM
v LDAP_DEBUG_THREAD
v LDAP_DEBUG_TRACE

The trace level can be combined with (logical or) LDAP_USE_CTRACE, to
write the message by using the LDAP server CTRACE in-memory tracing.

slapi_trace()

96 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

fmt, ...
Message you want traced. This message can be in printf()-style format. Only
the following printf()-style substitution codes are supported:

Table 22. printf()-style substitution codes. printf()-style substitution codes

Substitution codes Description

%d signed integer

%ld signed long integer

%u unsigned integer

%lu unsigned long integer

%x lowercase hexadecimal unsigned integer (specify %08x or %8.8x
for an 8-character value with zero-fill)

%lx lowercase hexadecimal unsigned long integer

%X uppercase hexadecimal unsigned integer (specify %08X or %8.8X
for an 8-character value with zero-fill)

%lX uppercase hexadecimal unsigned long integer

%p pointer

%c EBCDIC character

%s EBCDIC string

%W ASCII string

Usage
1. The slapi_trace() routine formats a message and uses either the LDAP server

debug trace functions or the CTRACE in-memory trace functions to write the
message.

2. When initially writing a plug-in, use the LDAP_DEBUG_PLUGIN trace level.
As the complexity of the plug-in grows, use the other trace levels to refine or
reduce LDAP server trace output.

3. See z/OS IBM Tivoli Directory Server Administration and Use for z/OS for more
information about LDAP server debug level tracing and CTRACE in-memory
tracing in the Running the LDAP server chapter.

4. The message is written by using the LDAP server CTRACE in-memory trace
functions by combining LDAP_USE_CTRACE with the slapi_trace() trace level.

5. Examples (<Italics> are completed with the appropriate system and LDAP
server information):
v slapi_trace (LDAP_DEBUG_PLUGIN, "MyPLUG", "Attempting to read data.");

When LDAP server debugging is enabled and the debug level includes
PLUGIN, formats, and traces the message:
<date time>(<thread info>) PLUGIN:MyPLUG: <function name>: Attempting to read data.

v

slapi_trace (LDAP_DEBUG_TRACE, ThisPLUG, "%d data bytes were read.", bytesIn);

When LDAP server debugging is enabled and the debug level includes
TRACE, formats, and traces the message:
<date time>(<thread info>) TRACE: ThisPLUG: <function name>:<value of bytesIn> data bytes were read.

v

slapi_trace (LDAP_DEBUG_PLUGIN | LDAP_USE_CTRACE, "PLUG", "I’m at this point.");

slapi_trace()

Chapter 4. Plug-in application service routines 97

When LDAP server debugging is enabled and the debug level includes
PLUGIN, formats, and traces the message by using CTRACE in-memory
tracing:
<date time>(<thread info>) PLUGIN:PLUG: <function name>: I’m at this point.

Related topics

None.

slapi_trace()

98 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Part 2. IBM TDS for z/OS provided plug-ins

© Copyright IBM Corp. 2008, 2013 99

100 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Chapter 5. ICTX plug-in

The ICTX plug-in provides centralized remote resource management. This allows
resource managers that do not reside on z/OS to centralize authorization decisions
and security event logging by using RACF through the ICTX plug-in. These
services are provided through two LDAP extended operations: Remote
authorization and Remote auditing. These extended operations allow any remote
application that has access to an LDAP client, the ability to query z/OS for
authorization decisions and for logging security events. The Remote authorization
extended operation uses the RACROUTE REQUEST=AUTH SAF service while the
Remote auditing extended operation uses the r_auditx (IRRSAX00) RACF callable
service. See z/OS Security Server RACROUTE Macro Reference for more information
about the RACROUTE REQUEST=AUTH service. See z/OS Security Server RACF
Callable Services for more information about the r_auditx (IRRSAX00) RACF callable
service.

The Enterprise Identity Mapping (EIM) product provided the ICTX plug-in or
backend since z/OS V1.8. The ICTX plug-in that is shipped with the z/OS LDAP
server contains the following enhancements or features that are not provided in the
EIM ICTX plug-in.
v Support for running the plug-in and LDAP server in 64-bit addressing mode.
v The ability to perform simple binds to the SDBM backend, LDBM or TDBM

native authentication binds, SASL EXTERNAL binds where the certificate is
mapped to a SAF or RACF user, and Kerberos binds.

Note: The ICTX plug-in or backend that is shipped with EIM is no longer being
enhanced. Only the ICTX plug-in that is shipped with the z/OS LDAP server is
updated or enhanced.

Configuring the ICTX plug-in
The z/OS LDAP server supports running the ICTX plug-in either in 31-bit or
64-bit. The plug-in can be configured manually or by using the dsconfig utility.

To manually configure the ICTX plug-in, the following plugin configuration line
must be specified before any database configuration sections.
plugin clientOperation GLDBIC31/GLDBIC64 ICTX_INIT “CN=ICTX”

To configure the ICTX plug-in using the dsconfig utility, set the PLUGIN_ICTX
input option to on in the ds.profile input file of the dsconfig utility.

Using remote authorization and audit
An application or resource manager that uses the Remote authorization or Remote
auditing extended operations must be able to generate requests, send it through
the network to the appropriate z/OS LDAP server and interpret the response from
the server. The following steps represent the typical sequence of events that are
specific to the Remote authorization or Remote auditing extended operations:
1. The authenticated user must resolve to a SAF or RACF identity that is allowed

to perform the authorization check or remote auditing request. The following
binds in the z/OS LDAP server can resolve to a SAF or RACF identity:

© Copyright IBM Corp. 2008, 2013 101

v Simple bind to the ICTX plug-in with using an authorized
racfid=userid,cn=ictx bind distinguished name. If the RACF user ID begins
with a number sign (#), it must be preceded by a backslash (\) escape
character. Number sign characters in other positions of the user ID do not
need to be escaped. For example:
racfid=\#user#id,cn=ictx

v Simple bind to the SDBM backend. See SDBM authorization for more
information.

v LDBM or TDBM native authentication bind. Native authentication allows the
use of an LDBM or TDBM entry but the password or password phrase is
stored in SAF. See Native authentication for more information.

v Kerberos (GSSAPI) bind. See Kerberos authentication for more information.
v SASL EXTERNAL certificate bind where the certificate is mapped to a SAF or

RACF user. See Setting up for SSL/TLS for more information about mapping
certificates to users.

2. The application must build a DER-encoded extended operation request having
the defined ASN.1 syntax that is specific to the Remote authorization or
Remote auditing extended operation request. That request can then be
included with the LDAP handle and the specific request OID on the LDAP
client application call, such as ldap_extended_operation_s(), to build the LDAP
message and send it to the server.

3. The z/OS LDAP server receives the request and routes it to the ICTX plug-in,
where it is decoded and processed. The ICTX plug-in verifies the correct syntax
and the authority of the requester before invoking the SAF authorization check
or audit service to satisfy the request. The result of the SAF service is a
DER-encoded response that the LDAP server returns.

4. The application must decode the response to interpret the results. A nonzero
LdapResult code indicates that the request was not processed by the ICTX
plug-in. A nonzero LdapResult is accompanied by a reason code message in
the response that might provide additional diagnostic information.

Note: A zero LdapResult code does not necessarily imply the request was
processed successfully (or for authorization, that a user has the specified
access). It does, however, indicate that an extended operation responseValue
was returned. The application should verify that the ICTX responseCode within
the responseValue indicates success (0). A non-zero responseCode indicates one
or more request items resulted in errors (or unauthorized users). The
application should check the MajorCode within each response item to determine
which returned failures. The application should be aware that ICTX might not
return a response item corresponding to each request item in the event of a
severe error, such as an error encountered in the extended operation encoding.

The application can send as many requests as needed throughout a single
bound session, and should unbind from the z/OS LDAP server when it finishes
processing ICTX plug-in requests.

Setting up authorization for working with remote services
After the user successfully authenticated and issued the appropriate extended
operation, the bound user must then have the appropriate authority to use the
underlying SAF callable services.

For the Remote authorization extended operation, the bound user must have at
least READ access to the FACILITY class profile IRR.LDAP.REMOTE.AUTH to

102 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

check the user's own access to a resource. To check access of another user, the user
must have at least UPDATE access to FACILITY class profile
IRR.LDAP.REMOTE.AUTH.

For example:
RDEFINE FACILITY IRR.LDAP.REMOTE.AUTH UACC(NONE)
PERMIT IRR.LDAP.REMOTE.AUTH CLASS(FACILITY) ID(BINDUSER) ACCESS(UPDATE))
SETROPTS RACLIST(FACILITY) REFRESH

For the Remote audit extended operation, the bound user must have at least
READ access to the FACILITY class profile IRR.LDAP.REMOTE.AUDIT.

For example:
RDEFINE FACILITY IRR.LDAP.REMOTE.AUDIT UACC(NONE)
PERMIT IRR.LDAP.REMOTE.AUDIT CLASS(FACILITY) ID(BINDUSER) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Also, the user ID running the z/OS LDAP server must have at least READ access
to the FACILITY class profile IRR.RAUDITX to issue the r_audix RACF callable
service. See z/OS Security Server RACF Callable Services for more information about
the r_auditx (IRRSAX00) RACF callable service.
For example:
RDEFINE FACILITY IRR.RAUDITX UACC(NONE)
PERMIT IRR.RAUDITX CLASSS(FACILITY) ID(LDAPSRV) ACCESS(READ))
SETROPTS RACLIST(FACILITY) REFRESH

Remote authorization extended operation
The Remote authorization extended operation request results in calls to the
RACROUTE REQUEST=AUTH SAF service. The results of the RACROUTE
REQUEST=AUTH service are returned to the caller. For more information about
RACROUTE REQUEST=AUTH, see z/OS Security Server RACROUTE Macro
Reference.

The Remote authorization extended operation request must contain the
DER-encoding of the ASN.1 syntax. The request OID is 1.3.18.0.2.12.66. The
following is the Remote authorization extended operation request syntax:
requestValue ::= SEQUENCE {

requestVersion INTEGER,
itemList SEQUENCE of

item SEQUENCE {
itemVersion INTEGER,
itemTag INTEGER,
userOrGroup OCTET STRING,
resource OCTET STRING,
class OCTET STRING,
access INTEGER,
logString OCTET STRING

}
}

Where,

requestValue: The name for the entire sequence of authorization request data.

requestVersion: The format of the request value. Version 1 indicates a user
authorization request; each individual item in the itemList is an authorization
request for a RACF user ID. Version 2 indicates a user authorization or a group

Chapter 5. ICTX plug-in 103

authorization request; each individual item in the itemList is an authorization
request for either a RACF user ID or a RACF group ID.

itemList: A sequence of one or more items, which allows for multiple
authorization checks within a single ICTX request. The size of the entire encoded
requestValue is limited to 16 million bytes unless your encoding routine or LDAP
client imposes a stricter limit. If requestVersion is 2, the itemList can be a mixture
of user authorization and group authorization items.

item: A sequence of data that represents a single authorization check.

itemVersion: The format of the individual item. Version 1 indicates an
authorization request for a RACF user ID. Version 2 indicates an authorization
request for a RACF group ID.

itemTag: An integer that is set by the client for each request item and echoed in
each response item. Its purpose is to assist the client in correlating multiple request
responses, and has no influence on the authorization logic or logging.

userOrGroup: If itemVersion is 1, a RACF user ID whose authority is being
checked. Its length cannot exceed 8 characters. If the length is zero, the user value
defaults to the user ID associated with the bind user.

If itemVersion is 2, a RACF group ID whose authority is being checked. Its length
must be from 1 and 8 characters. Optimizations that are used when performing a
user ID authorization check are not available when performing a group ID
authorization check. For this reason, it is likely that group authorization check
executes more slowly than user ID authorization checks.

This field must be specified in uppercase, because RACF user and group names are
uppercase, and the remote authorization service does not convert lowercase
characters to uppercase.

resource: A name to be matched against a RACF profile for authorization
checking. The string may not include blank characters. Its length may be from 1 to
the maximum RACF profile length defined for the specified class.

class: A defined RACF general resource class. It cannot be DATASET, USER, or
GROUP. Its length must be from 1 to 8 characters.

If you are checking authorization to resources protected by profiles in a
grouping/member class, specify the member class name in the remote
authorization request. To obtain accurate results in this case, ensure that the
administrator issued SETROPTS RACLIST for the member class.

access: The level of authority requested. It must be one of the following integer
values:
X’01’ READ
X’02’ UPDATE
X’03’ CONTROL
X’04’ ALTER

logString: Any character data from 0 to 200 characters in length. It is appended to
an ICTX-defined string in the SMF log record.

104 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

The following is the ASN.1 syntax for the Remote authorization extended
operation. The response OID is 1.3.18.0.2.12.67.
responseValue ::= SEQUENCE {

responseVersion INTEGER,
responseCode INTEGER,
itemList SEQUENCE of

item SEQUENCE {
itemVersion INTEGER,
itemTag INTEGER,
majorCode INTEGER,
minorCode1 INTEGER,
minorCode2 INTEGER,
minorCode3 INTEGER

}
}

Where,

responseValue: The name for the entire sequence of authorization response data.

responseVersion: The format of the response value. Version 1 is the only supported
format.

responseCode: The greatest error encountered while processing the request. See
Table 23 on page 106 for more information about supported responseCodes.

itemList: A sequence of one or more items, which allows for multiple
authorization results within a single ICTX response.

item: A sequence of data that represents the results from a single authorization
check.

itemVersion: The format of the individual item. Version 1 is the only supported
format.

itemTag: An integer echoed from the corresponding request itemTag. The purpose
of the itemTag is to assist the client in correlating multiple request responses.
itemTag has no influence on the authorization logic or logging.

majorCode: An integer value representing the result of the authorization check. See
Table 24 on page 106 for more information about error major codes.

minorCode1: Additional information about the error. See Table 25 on page 107 for
more information about error minor codes.

minorCode2: Additional information about the error.

minorCode3: Additional information about the error.

Remote authorization extended operation response codes
Use the following table to understand the response codes that are generated from
the remote authorization processing. The responseCode represents the greatest error
encountered. You might experience situations where a request item generates an
error that is not reflected in the responseCode, because that value is overridden by
a higher-severity error.

Chapter 5. ICTX plug-in 105

Table 23. Remote authorization responseCodes. Remote authorization responseCodes

responseCode (decimal) Meaning

0 All request items were processed successfully

28 Empty item list. No items are found within the itemList
sequence of the extended operation request, so no response
items are returned.

61-70 The specified requestVersion is not supported. Subtract 60
from the value to determine the highest requestVersion that the
server supports. responseCode 61 indicates that the server
supports version 1 requests only. responseCode 62 indicates that
the highest supported request level is 2.

other Errors or warnings encountered while processing one or more
request items. The value represents the highest majorCode in the
set of all response items. Verify the major and minor codes that
are returned for each item.

Table 24. Remote authorization majorCodes. Remote authorization majorCodes

MajorCode
(decimal) Meaning Comment

0 Authorized The user has the requested access to the
resource.

2 Warning mode The user has the requested access because
warning mode is enabled for the resource.
Warning mode is a feature of RACF that
allows installations to try out security
policies. Installations can define a profile
with the WARNING attribute. When
RACF performs an authorization check by
using the profile, it logs the event (if there
are audit settings) and allows the
authorization check to pass successfully.
The log records can be monitored to
ensure that the new policy is operating as
expected before putting the policy into
production by turning off the WARNING
attribute.

4 Undetermined No decision is made. The specified
resource is not protected by RACF, or
RACF is not installed.

8 Unauthorized The user does not have the requested
access to the resource.

12 RACROUTE error The RACROUTE REQUEST=AUTH
service returned an unexpected error.
Compare the returned minor codes with
the SAF and RACF codes in z/OS Security
Server RACROUTE Macro Reference.

14 initACEE error The initACEE callable service returned an
unexpected error. Compare the returned
minor codes with the SAF and RACF
codes in z/OS Security Server RACF
Callable Services.

106 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 24. Remote authorization majorCodes (continued). Remote authorization majorCodes

MajorCode
(decimal) Meaning Comment

16 Request value error A value specified in the extended
operation request is incorrect or
unsupported. Check the returned minor
codes to narrow the reason.

20 Request encoding error A decoding error was encountered
indicating the extended operation request
contains non-compliant DER encoding, or
does not match the documented ASN.1
syntax.

24 Insufficient authority The requester does not have sufficient
authority for the requested function. The
user ID associated with the LDAP bound
user must have the appropriate access to
the FACILITY class profile
IRR.LDAP.REMOTE.AUTH.

100 Internal error An internal error was encountered within
the ICTX plug-in.

Table 25. Remote authorization MinorCodes. Remote authorization MinorCodes

MinorCode (decimal) MinorCode Meaning

0-14 minorCode1 - the SAF return code

minorCode2 - the RACF return code

minorCode3 - the RACF reason code

16-20 minorCode1 is the extended operation request
parameter number within the item.

v 0 - item sequence

v 1 - itemVersion

v 2 - itemTag

v 3 - user

v 4 - resource

v 5 - class

v 6 - access

v 7 - logString

minorCode2 value indicates one of the
following:

v 32 - incorrect length

v 36 - incorrect value

v 40 - encoding error

minorCode3 does not have a defined
meaning.

24-100 minorCode1, minorCode2, and minorCode3 do
not have a defined meaning.

Chapter 5. ICTX plug-in 107

Remote authorization audit controls
The auditor can specify whether to log access attempts that are based on user,
class, resource, or any criteria as described in z/OS Security Server RACF Auditor's
Guide. The SMF type 80 records that are generated can be unloaded by using the
IRRADU00 utility.

Remote auditing extended operation
The Remote auditing extended operation request results in calls to the r_auditx
(IRRSAX00) SAF callable service. The results of the r_auditx service are returned to
the caller. For more information about the r_auditx callable service, see z/OS
Security Server RACF Callable Services.

The Remote auditing extended operation request must contain the DER-encoding
of the ASN.1 syntax. The request OID is 1.3.18.0.2.12.68. The following is the
Remote auditing extended operation request syntax:
requestValue ::= SEQUENCE {

requestVersion INTEGER,
itemList SEQUENCE of

item SEQUENCE {
itemVersion INTEGER,
itemTag INTEGER,
linkValue OCTET STRING SIZE(8),
violation BOOLEAN,
event INTEGER,
qualifier INTEGER,
class OCTET STRING,
resource OCTET STRING,
logString OCTET STRING,
dataFieldList SEQUENCE of

dataField SEQUENCE {
type INTEGER,
value OCTET STRING
}

}
}

Where,

requestValue: The name for the entire sequence of audit request data.

requestVersion: The format of the request value. Version 1 is the only currently
supported format.

itemList: A sequence of one or more items, allowing multiple audit records to be
written with a single ICTX request. You should limit the size of the entire encoded
RequestValue to 16 million bytes; however, your encoding routine or LDAP client
might impose a stricter limit.

item: A sequence of data that represents a single audit record.

itemVersion: The format of the individual item. Version 1 is the only currently
supported format.

itemTag: An integer that is set by the client for each request item and echoed in
each response item. Its purpose is to assist the client in correlating multiple request
responses. The itemTag value does not influence the audit processing, and does not
appear in the audit record.

108 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

linkValue: 8 bytes of data that is used to mark related audit records. Specify 8
bytes of zero (X'00') if no such marking is needed.

violation: A boolean value that indicates whether the event represents a violation
(nonzero ~ TRUE) or not (zero ~ FALSE). The value is used in the R_auditx
logging decision.

event - An integer 1 - 7 that identifies the security event type. The possible values
are:

1 Authentication

2 Authorization

3 Authorization Mapping

4 Key Management

5 Policy Management

6 Administrator Configuration

7 Administrator Action

qualifier - An integer 0 - 3 that describes the event result. The possible values are:

0 Success

1 Information

2 Warning

3 Failure

class - A defined RACF general resource class that might be used for audit
logging determination. It cannot be DATASET, USER, or GROUP. Its length must
be from 0 to 8 characters.

resource - A name that might be matched against a RACF profile in the specified
class for audit logging determination. Its length may be from 0 to 246 characters.

logString - Any character data from 0 to 200 characters in length. It is appended
to an ICTX-defined string in the SMF log record.

dataFieldList - A sequence of type and value pairs that are logged as SMF
relocates. Any number of relocates might be included, but the R_auditx service
limits the total amount of this relocate data to 20 kilobytes per record. For more
information, see z/OS Security Server RACF Callable Services.

dataField - A sequence of data that represents a single relocate section in an audit
record.

type - An integer 100 - 116 corresponding to a defined relocate number. The
possible values are:

100 SAF identifier for bind user

101 Requester's bind user identifier

102 Originating security domain

103 Originating registry / realm

104 Originating user name

Chapter 5. ICTX plug-in 109

105 Mapped security domain

106 Mapped registry / realm

107 Mapped user name

108 Operation performed

109 Mechanism / object name

110 Method / function used

111 Key / certificate name

112 Caller subject initiating security event

113 Date and time security event occurred

114 Application specific data

115 Identifier for the client submitting the remote audit request

116 Version of the client submitting the remote audit request

value - Character data of the associated type that is included in the audit record.

The following is the ASN.1 syntax for the Remote auditing extended operation
response. The response OID is 1.3.18.0.2.12.69.
responseValue ::= SEQUENCE {

responseVersion INTEGER,
responseCode INTEGER,
itemList SEQUENCE of

item SEQUENCE {
itemVersion INTEGER,
itemTag INTEGER,
majorCode INTEGER,
minorCode1 INTEGER,
minorCode2 INTEGER,
minorCode3 INTEGER

}
}

Where,

responseValue: The name for the entire sequence of audit response data.

responseVersion: The format of the response value. Version 1 is the only supported
format.

responseCode: The greatest error encountered while processing the request. See
Table 26 on page 111 for more information about supported responseCodes.

itemList: A sequence of one or more items, which allows for multiple audit results
within a single ICTX response.

item: A sequence of data that represents the results from a single audit check.

itemVersion: The format of the individual item. Version 1 is the only supported
format.

110 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

itemTag: An integer that is echoed from the corresponding request itemTag. The
purpose of the itemTag is to assist the client in correlating multiple request
responses. The itemTag does not influence the audit processing, and does not
appear in the audit record.

majorCode: An integer value representing the result of the audit check. See Table 27
for more information about error major codes.

minorCode1: Additional information about the error. See Table 28 on page 113 for
more information about error minor codes.

minorCode2: Additional information about the error.

minorCode3: Additional information about the error.

Remote auditing extended operation response codes
Use the following table to understand the response codes that are generated from
the remote auditing processing. The responseCode represents the greatest error
encountered. You might experience situations in which a request item generates an
error that is not reflected in the responseCode, because that value is overridden by
a higher-severity error.

Table 26. Remote auditing responseCodes. Remote auditing responseCodes

responseCode (decimal) Meaning

0 All request items were processed successfully.

28 Empty item list. No items are found within the itemList
sequence of the extended operation request, so no response
items are returned.

61-70 The specified requestVersion is not supported. Subtract 60
from the value to determine the highest requestVersion that the
server supports. responseCode 61 indicates that the server
supports version 1 requests only.

other Errors or warnings that are encountered while processing one
or more request items. The value represents the highest
majorCode in the set of all response items. Verify the major and
minor codes returned for each item.

Table 27. Remote auditing majorCodes. Remote auditing majorCodes

majorCodes
(decimal) Meaning Comment

0 Success The event is logged successfully.

Chapter 5. ICTX plug-in 111

Table 27. Remote auditing majorCodes (continued). Remote auditing majorCodes

majorCodes
(decimal) Meaning Comment

2 Warning mode The event is logged, and warning mode is
set for the specified resource. Warning
mode is a feature of RACF that allows
installations to try out security policies.
Installations can define a profile with the
WARNING attribute. When RACF
performs an authorization check by using
the profile, it logs the event (if there are
audit settings) and allow the authorization
check to pass successfully. The log records
can be monitored to ensure that the new
policy is operating as expected before
putting the policy into production by
turning off the WARNING attribute.

A remote client resource manager using
the remote audit service might simulate
RACF warning mode logic after
submitting an audit request for a failing
authorization event. If the majorCode in
the response item indicates that the
matching resource profile has the warning
mode set, the remote client resource
manager might allow the check to pass
successfully.

3 Logging not required The event is not logged because no audit
controls are set to require it.

4 Undetermined The event is not logged. The conditions
suggested by the following minorCode
combinations might be intentional
administrator settings:

v 4,0,0 - RACF is not installed or not
active

v 8,8,8 - UAUDIT is not set, and class is
not active or not RACLISTed

v 8,8,12 - UAUDIT is not set, class is
active and RACLISTed, and a covering
resource profile is not found

8 Unauthorized The user does not have authority the
R_auditx service. The user ID associated
with the LDAP server must have at least
READ access to the FACILITY class
profile IRR.RAUDITX.

12 R_auditx error The R_auditx service returned an
unexpected error. Compare the returned
minor codes with the SAF and RACF
codes that are documented in z/OS
Security Server RACF Callable Services.

16 Request value error A value specified in the extended
operation request is incorrect or
unsupported. Check the returned minor
codes to narrow the reason.

112 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 27. Remote auditing majorCodes (continued). Remote auditing majorCodes

majorCodes
(decimal) Meaning Comment

20 Request encoding error A decoding error was encountered
indicating the extended operation request
contains non-compliant DER encoding, or
does not match the documented ASN.1
syntax.

24 Insufficient authority The requester does not have sufficient
authority for the requested function. The
user ID associated with the LDAP bound
user must have at least READ access to
the FACILITY class profile
IRR.LDAP.REMOTE.AUDIT.

100 Internal error An internal error was encountered within
the ICTX plug-in.

Table 28. Remote auditing MinorCodes. Remote auditing MinorCodes

MinorCode (decimal) MinorCode Meaning

0-12 minorCode1- the SAF return code

minorCode2 - the RACF return code

minorCode3 - the RACF reason code

16-20 MinorCode1 is the extended operation request
parameter number within the item.

v 0 - item sequence

v 1 - itemVersion

v 2 - itemTag

v 3 - linkValue

v 4 - violation

v 5 - event

v 6 - qualifier

v 7 - class

v 8 - resource

v 9 - logString

v 10 - dataFieldList sequence

v 11 - dataField sequence

v 12 - type

v 13 - value

MinorCode2 value indicates one of the
following:

v 32 - incorrect length

v 36 - incorrect value

v 40 - encoding error

minorCode3 does not have a defined
meaning.

24-100 minorCode1, minorCode2, and minorCode3 do
not have a defined meaning.

Chapter 5. ICTX plug-in 113

Remote audit controls
The Remote auditing extended operation uses the R_auditx callable service that is
documented in z/OS Security Server RACF Callable Services to generate SMF type 83
(subtype 4) audit records. The IRRADU00 utility can then be used to unload the
generated SMF type 83 subtype 4 records. Whether the R_auditx service actually
writes an audit record for an event, however, depends on the RACF audit controls.
If the audit controls do not direct RACF to log an event that was specified in a
remote audit request, the R_auditx service does not generate an audit record. If the
remote application sends a remote audit request for an operation that is not
configured to be logged, is reflected in the remote audit response (a MajorCode of
3 indicates that the event was not logged because it is not required).

There are several ways the RACF auditor can enable logging of events from remote
audit requests. For example, because the remote application used a RACF user ID
to authenticate with z/OS through an LDAP bind operation, the auditor can enable
logging for all remote audit events by setting UAUDIT for that RACF user ID.

If the remote application specified a class and resource in the remote auditing
requests, the auditor can enable logging for the class (using the SETROPTS
LOGOPTIONS command) or the resource (using the ADDSD AUDIT, ALTDSD
AUDIT, or ALTDSD GLOBALAUDIT commands). To do this, the auditor must
know the class and resource that is specified by the application submitting the
remote audit requests.

An effective way to gain granular control over which remote application events are
logged, is to use the RACF dynamic class descriptor table (dynamic CDT) to define
custom classes to represent specific remote applications. When you define a custom
class to represent a remote application, you can create resource profiles in the class
to represent specific user operations that the application supports. Then, by
manipulating the auditing options for the class and profiles, the RACF auditor can
determine the type of information logged. For example, imagine a travel
application that runs remotely and supports user operations to:
v book a flight
v cancel a flight booking
v check seat availability
v view flight information

A new custom class, @FLIGHTS is created in the dynamic CDT to represent this
remote application, and profiles BOOK, CANCEL, SEATCHECK, and VIEW are
created in this new class to represent the user operations that are supported. A
remote audit request Item is sent by the remote application for each user operation,
and the Class and Resource parameters for each Item identifies the travel
application and the particular operation. The Class and Resource parameters are
used on the remote audit requests for logging determination on the z/OS server.
Even though the remote audit record is sent for each operation, whether these
events are logged depends on how auditing is configured for the @FLIGHTS class
and the BOOK, CANCEL, SEATCHECK, and VIEW profiles. This gives the RACF
auditor granular control over which user operations are logged. Configuration of
the audit settings on the profiles enables the RACF auditor to, for example, log all
BOOK and CANCEL requests while ignoring VIEW and SEATCHECK requests.

SMF Record Type 83 subtype 4 records
The remote audit service logs events as SMF Type 83 subtype 4 records that can be
unloaded by using the IRRADU00 utility. Each logged event has a unique event
code with a corresponding event code qualifier, or value that indicates whether the

114 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

event succeeded, resulted in warning or failure, or was logging event information.
The event codes are described in the following table:

Table 29. Remote audit event codes. Remote audit event codes

Event Command / Service

1 Authentication

2 Authorization

3 Authorization mapping

4 Key management

5 Policy management

6 Administrator configuration

7 Administrator action

The following table describes the event code qualifiers:

Table 30. Remote audit event code qualifiers. Remote audit event code qualifiers

(Common) Event Code
Qualifier Dec (Hex) Description

(Common) Relocate type
sections

0 Successful request or
authorization.

Common relocates, 100-114

1 Event information.

2 Not a failure, but might
warrant investigation. For
authorization event, grace
period might be in effect.

3 Unsuccessful request;
unauthorized.

The following are the remote audit specific extended relocates:

Table 31. Event-specific fields for remote audit events. Event-specific fields for remote audit events

Relocate XML Tag DB2® field name Type Length

Position

CommentsStart End

100 localUser SAF_LOCAL_USER Char 8 3000 3007 SAF identifier
for bind user

101 bindUser SAF_BIND_USER Char 256 3010 3265 Requesters bind
user identifier

102 domain SAF_DOMAIN Char 512 3268 3779 Originating
security domain

103 regName SAF_REG_NAME Char 256 3782 4037 Originating
registry / real m

104 regUser SAF_REG_USER Char 256 4040 4295 Originating user
name

105 mapDomain SAF_MAP_DOMAIN Char 512 4298 4809 Mapped security
domain

106 mapRegName SAF_MAP_REG_NAME Char 256 4812 5067 Mapped registry
/ realm

107 mapRegUser SAF_MAP_REG_USER Char 256 5070 5325 Mapped user
name

Chapter 5. ICTX plug-in 115

Table 31. Event-specific fields for remote audit events (continued). Event-specific fields for remote audit events

Relocate XML Tag DB2® field name Type Length

Position

CommentsStart End

108 action SAF_ACTION Char 64 5328 5391 Operation
performed

109 object SAF_OBJECT Char 64 5394 5457 Mechanism /
object name

110 method SAF_METHOD Char 64 5460 5523 Method /
function used

111 key SAF_KEY Char 256 5526 5781 Key / certificate
name

112 subjectName SAF_SUBJECT_NAME Char 256 5784 6039 Caller subject
initiating
security event

113 dateTime SAF_DATE_TIME Char 32 6042 6073 Date and time
security event
occurred

114 otherData SAF_OTHER_DATA Char 2048 6076 8123 Application
specific data

115 clientID SAF_CLIENT_ID Char 16 8126 8141 Identifier for
client submitting
remote audit
request.

116 clientVer SAF_CLIENT_VER Char 8 8144 8151 Version of client
submitting
remote audit
request.

116 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Chapter 6. Remote crypto plug-in

The remote crypto plug-in in the z/OS LDAP server provides access to a PKCS #11
or CCA services implementation for client applications that do not have local
access to one. PKCS #11 is one of the cryptographic standards of Public Key
Cryptographic Standards (PKCS) that define a platform independent API to
cryptographic tokens. The PKCS #11 standard defines the types of cryptographic
tokens and how to use, create, and delete tokens, including how to encrypt,
decrypt, and hash data with those tokens. See Cryptographic Token Interface Standard
for more information about the PKCS #11 standard.

The remote crypto plug-in uses ICSF (Integrated Cryptographic Security Facility)
support for its PKCS #11 or CCA services implementation. This plug-in supports
the RemoteCryptoPKCS#11 and RemoteCryptoCCA extended operations that
allow any LDAP client application with a successfully bound and authorized user
to perform any PKCS #11 or CCA services API by invoking the appropriate ICSF
callable service. The RemoteCryptoPKCS#11 and RemoteCryptoCCA extended
operations are generic extended operations that allow an LDAP client application
to specify the same data as if invoking the ICSF callable service locally. See z/OS
Cryptographic Services ICSF Application Programmer's Guide and z/OS Cryptographic
Services ICSF Writing PKCS #11 Applications for more information about the ICSF
callable services that support the PKCS #11 standard.

The remote crypto plug-in supports the level of ICSF shipped with z/OS version 2,
release 1.

Configuring the remote crypto plug-in
The remote crypto plug-in is only supported when the LDAP server is running in
64-bit. The remote crypto plug-in can be configured manually or by using the
dsconfig utility.

To manually configure the remote crypto plug-in, the following plugin
configuration option line must be specified before any database configuration
sections:
plugin clientOperation /GLDRCP64 rcrypto_init "enableCCA yes enablePKCS11 yes"

Note:

1. Because the remote crypto plug-in runs only in 64-bit mode, this plugin
configuration option line results in a start error if included in configuration files
for servers that are started in 31-bit.

2. The default for enableCCA is yes.
3. The default for enablePKCS11 is yes.

To configure the remote crypto plug-in using the dsconfig utility, set the
PLUGIN_RCRYPTO input option to on in the ds.profile input file of the dsconfig
utility.

The TCP/IP interface that is used to communicate with the remote crypto plug-in
should be secured. Using System SSL is one approach to help secure sensitive data
sent to the plug-in. However, there are performance implications that you must
consider when using System SSL to protect the communication between clients and

© Copyright IBM Corp. 2008, 2013 117

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

the remote crypto plug-in. Therefore, you should limit the use of the remote crypto
plug-in to zEnterprise 196 (z196) systems where applications or appliances
deployed on IBM zEnterprise® BladeCenter® Extensions (zBX) communicates with
the remote crypto plug-in over the intraensemble data network (IEDN). Use of the
IEDN reduces risk of compromising sensitive data in transit, alleviating the need to
use System SSL. See z/OS Communications Server: IP Configuration Guide for
information about configuring an ensemble, defining members of the ensemble,
defining IP addresses in the IEDN, and granting permissions for use of the IEDN.
When the IEDN is properly configured, update the listen configuration options to
have the z/OS LDAP server listen on the IEDN sockets.

If limiting access to the IEDN, make sure that the z/OS LDAP server instances that
enable the remote crypto plug-in are dedicated to listening on IEDN sockets only.
This ensures remote crypto requests always occur over the IEDN. Note that
depending on the type of bind (SDBM, native authentication, Kerberos, or SASL
EXTERNAL) required for use with remote crypto, that this dedicated server
instance might require one or more backends defined.

Setting up authorization to ICSF callable services
When the RemoteCryptoPKCS#11 or RemoteCryptoCCA extended operations are
used, the authenticated user must have the appropriate access to call the
underlying ICSF callable service. Before using the RemoteCryptoPKCS#11 or
RemoteCryptoCCA extended operation, the authenticated user must resolve to a
SAF identity, which is then granted authorization to the underlying ICSF callable
services. The following binds in the z/OS LDAP server can resolve to a SAF
identity:
v Simple bind to the SDBM backend. See SDBM authorization for more

information.
v LDBM or TDBM native authentication bind. Native authentication allows the use

of an LDBM or TDBM entry but the password or password phrase is stored in
SAF. See Native authentication for more information.

v Kerberos (GSSAPI) bind. See Kerberos authentication for more information.
v SASL EXTERNAL certificate bind where the certificate is mapped to a SAF user.

The sslMapCertificate configuration option must be set to fail the SASL
EXTERNAL bind request if the user cannot be mapped to a SAF or RACF user.
See Setting up for SSL/TLS for more information about mapping certificates to
users.

The security administrator must decide the authorization that each authenticated
user must have when accessing the remote crypto plug-in and using the
RemoteCryptoPKCS#11 or RemoteCryptoCCA extended operation, which calls the
underlying ICSF callable service. See Table 32 on page 120 for the ICSF callable
services that are supported by the remote crypto plug-in. If the CSFSERV class is
active on your system, ICSF performs access control checks on the underlying
callable services. To provide users access to all supported ICSF callable services
other than those protected by discrete profiles, the security administrator can
define a generic profile in the CSFSERV class and permit users READ access to the
generic profile. For example:
RDEFINE CSFSERV CSF* UACC(NONE)
PERMIT CSF* CLASS(CSFSERV) ACCESS(READ) ID(USER1)
SETROPTS CLASSACT(CSFSERV)
SETROPTS RACLIST(CSFSERV) REFRESH

118 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Additionally, specific ICSF callable services can be protected individually with
discrete profiles, regardless of the presence of a generic profile. For example, to
provide USER1 access specifically to the CSFPTRC callable service, the security
administrator could issue the following commands:
RDEFINE CSFSERV CSF1TRC UACC(NONE)
PERMIT CSF1TRC CLASS(CSFSERV) ACCESS(READ) ID(USER1)
SETROPTS CLASSACT(CSFSERV)
SETROPTS RACLIST(CSFSERV) REFRESH

See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications and z/OS
Security Server RACF Security Administrator's Guide for more information about the
supported CSFSERV class and granting authorization.

Setting up authorization to PKCS #11 tokens and objects
The PKCS #11 standard is for systems that grant access to token information based
on a PIN (personal identification number). The types of users that are defined for
this standard are the standard user (User) and security officer (SO), each having a
PIN. The SO initializes a token (zero the contents) and set the User's PIN. The SO
can also access the public objects on the token, but not the private ones. The User
has access to the private objects on a token and has the power to change its own
PIN. The User cannot reinitialize a token. The PIN that a user enters determines
which role that user takes. A user can fill both roles by knowing both PINs.

z/OS does not use PINs. Instead, profiles in the SAF CRYPTOZ class control access
to tokens. For each token, there are two resources in the CRYPTOZ class for
controlling access to tokens:
v The resource USER.token-name controls the access of the User role to the token.
v The resource SO.token-name controls the access of the SO role to the token.

See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more
information about the types of SO and USER profiles in the CRYPTOZ class. See
z/OS Cryptographic Services ICSF Application Programmer's Guide for information
about the necessary authorization that is needed to access the PKCS #11 tokens and
objects.

ICSF callable services supported by the RemoteCryptoPKCS#11
extended operation

The RemoteCryptoPKCS#11 extended operation is a generic extended operation
that provides remote access to the PKCS#11 related services available in ICSF
(Integrated Cryptographic Service Facility). This extended operation can help if
you want to maintain z/OS as the centralized PKCS#11 repository when
implementing PKCS#11 on non-z/OS systems. Table 32 on page 120 includes the
ICSF PKCS #11 callable service routines that are supported by the
RemoteCryptoPKCS#11 extended operation. It also includes the equivalent PKCS
#11 routines and the PKCS #11 function category that each of the ICSF callable
services belong to. See z/OS Cryptographic Services ICSF Application Programmer's
Guide for more information about these ICSF callable services. See Cryptographic
Token Interface Standard for more information about the PKCS #11 standard.

Chapter 6. Remote crypto plug-in 119

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

Table 32. ICSF callable services supported by the RemoteCryptoPKCS#11 extended operation. ICSF callable
services supported by the RemoteCryptoPKCS#11 extended operation
ICSF callable
service and helper
function Description Used by PKCS #11 API

PKCS #11 function
category Function code Request tag Response tag

CSFIQF - Query
facility

Retrieve information about ICSF, the
cryptographic coprocessors, and the
CCA code in the coprocessors.

C_GetMechanismInfo General purpose FC_CSFIQF REQ_CSFIQF RES_CSFIQF

CSFPDMK - Derive
multiple keys

Generate multiple secret key objects
and protocol-dependent keying
material from an existing secret key
object.

C_DeriveKey Key management FC_CSFPDMK REQ_CSFPDMK RES_CSFPDMK

CSFPDVK - Derive
key

Generate a new secret key object from
an existing key object.

C_DeriveKey Key management FC_CSFPDVK REQ_CSFPDVK RES_CSFPDVK

CSFPGAV - Get
attribute value

Retrieve the attributes of an object. C_GetAttributeValue Object management FC_CSFPGAV REQ_CSFPGAV RES_CSFPGAV

CSFPGKP - Generate
key pair

Generate an RSA, DSA, elliptic curve,
or Diffie-Hellman key pair.

C_GenerateKeyPair Key management FC_CSFPGKP REQ_CSFPGKP RES_CSFPGKP

CSFPGSK - Generate
secret key

Generate a secret key or set of domain
parameters.

C_GenerateKey Key management FC_CSFPGSK REQ_CSFPGSK RES_CSFPGSK

CSFPHMG -
Generate HMAC

Generate a hashed message
authentication code (MAC).

C_SignInit
C_Sign
C_SignUpdate
C_Sign

Signing and verifying FC_CSFPHMG REQ_CSFPHMG RES_CSFPHMG

CSFPHMV - Verify
HMAC

Verify a hash message authentication
code (MAC).

C_VerifyInit
C_Verify
C_VerifyUpdate
C_VerifyFinal

Signing and verifying FC_CSFPHMV REQ_CSFPHMV RES_CSFPHMV

CSFPOWH -
One-way hash, sign,
or verify

Generate a one-way hash on specified
text, sign specified text, or verify a
signature on specified text.

C_DigestInit
C_Digest
C_DigestUpdate
C_DigestFinal

Message digesting FC_CSFPOWH REQ_CSFPOWH RES_CSFPOWH

CSFPPKS - Private
key sign

Decrypt or sign data by using an RSA
private key using zero-pad or PKCS
#1 V1.5 formatting, sign data by using
a DSA private key, or sign data by
using an elliptic curve private key in
combination with DSA.

C_SignInit
C_Sign
C_SignUpdate
C_SignFinal

Signing and verifying FC_CSFPPKS REQ_CSFPPKS RES_CSFPPKS

CSFPPKV - Public
key verify

Encrypt or verify data by using an
RSA public key using zero-pad or
PKCS #1 V1.5 formatting, verify a
signature by using a DSA public key,
or verify a signature by using an
elliptic curve public key in
combination with DSA.

C_VerifyInit
C_Verify
C_VerifyUpdate
C_VerifyFinal

Signing and verifying FC_CSFPPKV REQ_CSFPPKV RES_CSFPPKV

CSFPSAV - Set
attribute

Update the attributes of an object. C_SetAttributeValue Object management FC_CSFPSAV REQ_CSFPSAV RES_CSFPSAV

CSFPSKD - Secret
key decrypt

Decipher data by using a clear
symmetric key.

C_DecryptInit
C_Decrypt
C_DecryptUpdate
C_DecryptFinal

Encryption and
decryption

FC_CSFPSKD REQ_CSFPSKD RES_CSFPSKD

CSFPSKE - Secret
key encrypt

Encipher data by using a clear
symmetric key.

C_EncryptInit
C_Encrypt
C_EncryptUpdate
C_EncryptFinal

Encryption and
decryption

FC_CSFPSKE REQ_CSFPSKE RES_CSFPSKE

CSFPTRC - Token
record create

Initialize or reinitialize a z/OS PKCS
#11 token, create, or copy a token
object in the token data set, or create
or copy a session object for the current
PKCS #11 session.

C_CreateObject
C_CopyObject

Object management FC_CSFPTRC REQ_CSFPTRC RES_CSFPTRC

CSFPTRD - Token
record delete

Delete a z/OS PKCS #11 token object,
session object, or state object.

C_DestroyObject Object management FC_CSFPTRD REQ_CSFPTRD RES_CSFPTRD

CSFPTRL - Token
record list

Obtain a list of z/OS PKCS #11 tokens
or obtain a list of token and session
objects for a token.

C_GetSlotList
C_FindObjects

General purpose and
object management

FC_CSFPTRL REQ_CSFPTRL RES_CSFPTRL

CSFPUWK - Unwrap
key

Unwrap and create a key object by
using another key.

C_UnwrapKey Key management FC_CSFPUWK REQ_CSFPUWK RES_CSFPUWK

CSFPWPK - Wrap
key

Wrap a key with another key. C_WrapKey Key management FC_CSFPWPK REQ_CSFPWPK RES_CSFPWPK

GLDTRD -
Internal-only used to
gain access to the
chaining data

An internal-only extended operation
request used to gain access to the
chaining data returned by several ICSF
callable services.

N/A N/A FC_GLDTRD REQ_GLDTRD RES_GLDTRD

CSFIQA - ICSF
query algorithm

Obtain information about the
cryptographic and hashing algorithms
available

C_GetMechanismInfo General purpose FC_CSFIQA REQ_CSFIQA RES_CSFIQA

Because the RemoteCryptoPKCS#11 extended operation is a generic extended
operation, it supports all of the ICSF PKCS #11 callable services in Table 32.

120 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Therefore, the extended operation has a common BER encoding for both the
request and response values as many of the ICSF PKCS #11 callable service
routines have common interfaces (inputs and outputs on the callable service
routines).

The request and response values for the RemoteCryptoPKCS#11 extended
operation follows. For more information about ASN.1 (Abstract Syntax Notation
One) and BER (Basic Encoding Rules), see:
ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

v Request values: The following ASN.1 syntax describes the BER encoding of the
request value for the RemoteCryptoPKCS#11 extended operation request. Each
ICSF PKCS #11 callable service has additional callable service-specific
information that is encoded in the requestData field. The request OID is
1.3.18.0.2.12.83.
requestValue ::= SEQUENCE {

version INTEGER,
exitData OCTET STRING,
handle OCTET STRING,
ruleArraySeq RuleArraySeq,
requestData CSFPInput

}

Where,
version: Identifies which version of the interface is being used. Currently, the
only value supported is 1. If the interface is extended in the future, then other
values are supported.
exitData: Identifies the data that is passed to the installation exit. See the
appropriate ICSF callable service routine in z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information. If the ICSF callable service
routine does not need exitData, then specify a zero length octet string.
handle: Identifies the input generic handle that is needed for the ICSF PKCS #11
callable service routine. If the ICSF callable service routine or helper function
does not need a handle, then specify a zero length octet string. See Table 33 for
information about what this handle represents for the ICSF PKCS #11 callable
service or extended operation request. See the appropriate ICSF callable service
routine in z/OS Cryptographic Services ICSF Application Programmer's Guide for
more information about the handle.

Table 33. requestValue handle descriptions. requestValue handle descriptions

ICSF callable service and helper function Handle description

CSFIQF - ICSF query facility Not used.

CSFPDMK - Derive multiple keys The 44-byte handle of the base key object.

CSFPDVK - Derive key The 44-byte handle of the source key object.

CSFPGAV - Get attribute value The 44-byte handle of the object.

CSFPGKP - Generate key pair The 44-byte handle of the token of the key objects.

CSFPGSK - Generate secret key The 44-byte handle of the token.

CSFPHMG - Generate HMAC The 44-byte handle of a generic secret key object. This
parameter is ignored for MIDDLE and LAST chaining
requests.

CSFPHMV - Verify HMAC The 44-byte handle of a generic secret key object. This
parameter is ignored for MIDDLE and LAST chaining
requests.

Chapter 6. Remote crypto plug-in 121

ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

Table 33. requestValue handle descriptions (continued). requestValue handle descriptions

ICSF callable service and helper function Handle description

CSFPOWH - One-way hash, sign, or verify For hash requests, this is the 44-byte name of the token
to which this hash operation is related. The first 32 bytes
of the handle are meaningful. The remaining 12 bytes are
reserved.

For sign and verify requests, this is the 44-byte handle to
the key object that is to be used. For FIRST and MIDDLE
chaining requests, only the first 32 bytes of the handle
are meaningful, to identify the token.

CSFPPKS - Private key sign The 44-byte handle of a private key object.

CSFPPKV - Public key verify The 44-byte handle of public key object.

CSFPSAV - Set attribute The 44-byte handle of the object.

CSFPSKD - Secret key decrypt The 44-byte handle of secret key object.

CSFPSKE - Secret key encrypt The 44-byte handle of secret key object.

CSFPTRC - Token record create The 44-byte name of the z/OS PKCS #11 token to be
initialized, or the token handle of the object to be created
or copied. For the create or re-create functions, the first
32 bytes of the handle are meaningful on input. For the
copy function, all 44 bytes of the handle are significant
on input.

CSFPTRD - Token record delete The 44-byte name of the token or object to be deleted.

CSFPTRL - Token record list For tokens, an empty string (blanks) for the first call, or
the 44-byte handle of the last token found for subsequent
calls. For objects, the 44-byte handle of the token for the
first call, or the 44-byte handle of the last object found
for subsequent calls.

CSFPUWK - Unwrap key The 44-byte handle of the private key or secret key object
to unwrap the key.

CSFPWPK - Wrap key The 44-byte handle of the secret key or private key object
to be wrapped or the source_key_handle parameter on
the callable service routine.
Note: The wrapping_key_handle parameter in the callable
service routine is specified in the wrappingHandle
parameter of the WPKInput.

GLDTRD - Internal-only used to gain access to the
chaining data.

Not used.

CSFIQA - ICSF query algorithm Not used.

ruleArraySeq: Is a sequence that identifies an array of keywords that provide
control information to the ICSF callable services. The ASN.1 description is:
RuleArraySeq ::= SEQUENCE {

ruleArrayCount INTEGER,
ruleArray OCTET STRING

}

See the appropriate ICSF callable service routine in z/OS Cryptographic Services
ICSF Application Programmer's Guide for more information about the rule array.
The integer ruleArrayCount identifies the number of rules in the array and is
referred to as rule_array_count in the ICSF callable service routine descriptions.
The octet string ruleArray is the actual array of rules, and is referred to as
rule_array in the ICSF callable service routine descriptions. The number
ruleArrayCount must be consistent with the contents of the octet string

122 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

rule_array. The length of ruleArray octet string must be a multiple of 8 times
the number that is specified in the ruleArrayCount field. If an individual rule
specified in the ruleArray is fewer than 8 characters, it must be blank padded
on the right to 8 full characters. You must always use the entire sequence. To
specify an empty rule array, specify ruleArrayCount as zero, and ruleArray as a
zero length octet string.
requestData: Identifies the extended operation request-specific data for the ICSF
callable service. See Table 32 on page 120 for the appropriate request tag for
CSFPInput. The values for these tags can be found in the ldap_rcrypto.h sample
header file.
Where,
CSFPInput ::= CHOICE {

IQF [CSFIQF] IQFInput,
DMK [CSFPDMK] DMKInput,
DVK [CSFPDVK] DVKInput,
GAV [CSFPGAV] GAVInput,
GKP [CSFPGKP] GKPInput,
GSK [CSFPGSK] GSKInput,
HMG [CSFPHMG] HMGInput,
HMV [CSFPHMV] HMVInput,
OWH [CSFPOWH] OWHInput,
PKS [CSFPPKS] PKSInput,
PKV [CSFPPKV] PKVInput,
SAV [CSFPSAV] SAVInput,
SKD [CSFPSKD] SKDInput,
SKE [CSFPSKE] SKEInput,
TRC [CSFPTRC] TRCInput,
TRD [CSFPTRD] TRDInput,
TRL [CSFPTRL] TRLInput,
UWK [CSFPUWK] UWKInput,
WPK [CSFPWPK] WPKInput,
GLDTRD [GLDTRD] GLDTRDInput,
IQA [CSFIQA] IQAInput

}

v Response values: The following ASN.1 syntax describes the BER encoding of the
response value for the RemoteCryptoPKCS#11 extended operation response. The
handle, the ICSF return code, and ICSF reason codes are returned from the
underlying ICSF callable service routine. Each ICSF PKCS #11 callable service
returns additional response-specific data in the responseData field. The response
OID is 1.3.18.0.2.12.84.
responseValue ::= SEQUENCE {

version INTEGER,
ICSFRc INTEGER (0 .. MaxCSFPInteger),
ICSFRsnCode INTEGER (0 .. MaxCSFPInteger),
exitData OCTET STRING,
handle OCTET STRING,
responseData CSFPOutput

}

Where,
version: Identifies which version of the interface is being used. Currently the
only value supported is 1. If the interface is extended in the future, then other
values are supported.
ICSFRc: Identifies the ICSF return code. See z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information about the ICSF return code
error.
ICSFRsnCode: Identifies the ICSF reason code. See z/OS Cryptographic Services
ICSF Application Programmer's Guide for more information about the ICSF reason
code error.

Chapter 6. Remote crypto plug-in 123

exitData: Identifies the data that is passed to the installation exit. See the
appropriate ICSF callable service routine in z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information. A zero length octet string
indicates that no exitData is returned.
handle: Identifies the handle that is returned from the ICSF PKCS #11 callable
service routine. In some instances, the handle that is returned in the
responseValue is the same handle that was specified in the requestValue. See
Table 34 for information about what this handle represents for the ICSF PKCS
#11 callable service or extended operation response. See the appropriate ICSF
callable service routine in z/OS Cryptographic Services ICSF Application
Programmer's Guide or more information about the handle.

Table 34. responseValue handle descriptions. responseValue handle descriptions

ICSF callable service and helper function Handle description

CSFIQF - ICSF query facility Not used.

CSFPDMK - Derive multiple keys The 44-byte handle of the base key object.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPDVK - Derive key The 44-byte handle of the secret key object that was
derived or the target_key_object_handle parameter of
the callable service. If the callable service returns an
error, this handle is encoded as a zero length octet string.

CSFPGAV - Get attribute value The 44-byte handle of the object.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPGKP - Generate key pair The 44-byte handle of the new public key object or the
public_key_object_handle parameter of the callable
service. If the callable service returns an error, this
handle is encoded as a zero length octet string.

CSFPGSK - Generate secret key The 44-byte handle of the new secret key object or the
returned handle parameter of the callable service. If the
callable service returns an error, this handle is the same
as the requestValue handle.

CSFPHMG - Generate HMAC The 44-byte handle of a generic secret key object. This
parameter is ignored for MIDDLE and LAST chaining
requests.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPHMV - Verify HMAC The 44-byte handle of a generic secret key object. This
parameter is ignored for MIDDLE and LAST chaining
requests.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

124 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 34. responseValue handle descriptions (continued). responseValue handle descriptions

ICSF callable service and helper function Handle description

CSFPOWH - One-way hash, sign, or verify For hash requests, this is the 44-byte name of the token
to which this hash operation is related. The first 32 bytes
of the handle are meaningful. The remaining 12 bytes are
reserved.

For sign and verify requests, this is the 44-byte handle to
the key object that is to be used. For FIRST and MIDDLE
chaining requests, only the first 32 bytes of the handle
are meaningful, to identify the token.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPPKS - Private key sign The 44-byte handle of a private key object.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPPKV - Public key verify The 44-byte handle of public key object.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPSAV - Set attribute The 44-byte handle of the object.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPSKD - Secret key decrypt The 44-byte handle of secret key object.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPSKE - Secret key encrypt The 44-byte handle of secret key object.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPTRC - Token record create The 44-byte handle of the z/OS PKCS #11 token or object
created if the CREATE or RECREATE option is specified
in the input ruleArray. This is the output handle
parameter of the callable service.

CSFPTRD - Token record delete The 44-byte name of the token or object to be deleted.
Note: This handle value is the same as what was
specified in the requestValue handle. It is not updated
on the extended operation response.

CSFPTRL - Token record list Not used.
Note: The list of tokens is returned in the OutputList of
the TRLOutput.

CSFPUWK - Unwrap key The 44-byte handle of the secret key or private key object
created for the unwrapped key. The object uses the token
name of the unwrapping key object. This is the
target_key_handle parameter of the callable service. If
the callable service returns an error, this handle is
encoded as a zero length octet string.

Chapter 6. Remote crypto plug-in 125

Table 34. responseValue handle descriptions (continued). responseValue handle descriptions

ICSF callable service and helper function Handle description

CSFPWPK - Wrap key The 44-byte handle of the secret key or private key object
to be wrapped or the source_key_handle parameter on
the callable service routine.
Note: The wrapping_key_handle parameter in the callable
service routine is specified in the wrappingHandle
parameter of the WPKInput.

GLDTRD - Internal-only used to gain access to the
chaining data.

Not used.

CSFIQA - ICSF query algorithm Not used.

responseData: Identifies the ICSF PKCS #11 request-specific extended operation
response data. See Table 32 on page 120 for the appropriate response tag for
CSFPOutput. The values for these tags can be found in the ldap_rcypto.h sample
header file.
Where,
CSFPOutput ::= CHOICE {

IQF [CSFIQF] IQFOutput,
DMK [CSFPDMK] DMKOutput,
DVK [CSFPDVK] DVKOutput,
GAV [CSFPGAV] GAVOutput,
GKP [CSFPGKP] GKPOutput,
GSK [CSFPGSK] GSKOutput,
HMG [CSFPHMG] HMGOutput,
HMV [CSFPHMV] HMVOutput,
OWH [CSFPOWH] OWHOutput,
PKS [CSFPPKS] PKSOutput,
PKV [CSFPPKV] PKVOutput,
SAV [CSFPSAV] SAVOutput,
SKD [CSFPSKD] SKDOutput,
SKE [CSFPSKE] SKEOutput,
TRC [CSFPTRC] TRCOutput,
TRD [CSFPTRD] TRDOutput,
TRL [CSFPTRL] TRLOutput,
UWK [CSFPUWK] UWKOutput,
WPK [CSFPWPK] WPKOutput,
GLDTRD [GLDTRD] GLDTRDOutput,
IQA [CSFIQA] IQAOutput

}

Common ASN.1 encodings used by the RemoteCryptoPKCS#11
extended operation

This section describes the common ASN.1 encodings that are used by the
RemoteCryptoPKCS#11 extended operation request and response. Table 35 on
page 127 includes how PKCS #11 attribute types must be encoded using the
attributeValue.
MaxCSFPInteger ::= 231 - 1

Attributes ::= SEQUENCE OF SEQUENCE {
attrName INTEGER,
attrValue AttributeValue

}

AttributeValue ::= CHOICE {
charValue [0] OCTET STRING,
intValue [1] INTEGER

}

126 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Where,

attrName: Indicates an integer identifier for the PKCS #11 attribute name for the
key or object that you are creating or searching for. The attribute name identifiers
that are supported vary depending on the ICSF callable service that is invoked and
the key or object type that is being created or searched for. See z/OS Cryptographic
Services ICSF Application Programmer's Guide and z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications for more information.

attrValue: Specifies the value for the attrName. The attrValue can be an OCTET
STRING or an integer that is depending on the attrName. The client application
must encode this value appropriately for use with the specified attrName. See z/OS
Cryptographic Services ICSF Writing PKCS #11 Applications for information about the
supported data types for the specified attrName.

Table 35. Encoding PKCS #11 attribute types using the attributeValue. Encoding PKCS #11 attribute types using the
attributeValue

PKCS #11 attribute data type ASN.1 encoding

CKO_OBJECT_CLASS OCTET STRING

CK_BOOL OCTET STRING

"Printable EBCDIC string" OCTET STRING (Encode in ASCII/UTF8 on the client
and is automatically converted to EBCDIC on the server
side)

"Byte array" OCTET STRING

CK_DATE OCTET STRING

CK_MECHANISM_TYPE OCTET STRING

CK_KEY_TYPE OCTET STRING

"Big integer" OCTET STRING (big-endian formatting)

CK_CERTIFICATE_TYPE INTEGER

CK_ULONG INTEGER (00.. MaxCSFPInteger)

CK_KEY_TYPE INTEGER

ICSF state cleanup ASN.1 syntaxes
The RemoteCryptoPKCS#11 extended operation provides capability to interpret
the chaining data without an object handle, and call the CSFPTRD ICSF callable
service with the appropriate data to clean up ICSF resources that are used to
handle the multi-part processing. This function allows users to avoid interpreting
the chaining data to determine whether the ICSF resources must be cleaned up.
The integer ruleArrayCount in the requestValue of this function identifies the
number of rules in the array, and is referred to as rule_array_count in the
CSFPTRD ICSF callable service routine descriptions. The octet string ruleArray in
the requestValue of this function is the actual array of rules, and is referred to as
rule_array in the ICSF callable service routine descriptions. Since this function
always deletes an object, always set the ruleArrayCount to 1, and the ruleArray to
"OBJECT ". See the CSFPTRD callable service in z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information about the rule array or other
parameters of this callable service.
GLDTRDInput ::= chainData
chainData ::= OCTET STRING

Where,

Chapter 6. Remote crypto plug-in 127

chainData: An octet string that specifies the chaining data to use to clean up ICSF
resources.
GLDTRDOutput ::= NULL

General purpose-related ASN.1 syntaxes
ICSF provides a series of callable services that allow users to query the status of
ICSF and the encryption and hashing algorithms that are supported by ICSF. The
RemoteCryptoPKCS#11 extended operation allows the CSFIQA and CSFIQF
callable services to be available for remote invocation.

ICSF Query facility (CSFIQF) ASN.1 syntaxes
IQFInput ::= SEQUENCE {

returnedDataMaxLen INTEGER,
reservedData OCTET STRING

}

Where,

returnedDataMaxLen: An integer that specifies the length, in bytes, of the area that
is provided by the caller that is receiving the returned data value from ICSF in the
CSFIQF callable service.

reservedData: An octet string that identifies the data that is specified in the
reserved data in the CSFIQF callable service. The reserved data is ignored by ICSF.
IQFOutput ::= SEQUENCE {

returnedDataLen INTEGER,
returnedData OCTET STRING

}

Where,

returnedDataLen: An integer that contains the length, in bytes, of the returned
data. On a successful call, this is the length of the returnedData octet string. If the
returned ICSF return code and reason code indicate the input returnedDataMaxLen
is too small, this value indicates the size that is needed for returnedDataMaxLen.

returnedData: An octet string that specifies the returned data from the CSFIQF
callable service.

ICSF Query algorithm (CSFIQA) ASN.1 syntaxes
IQAInput ::= SEQUENCE {

returnedDataMaxLen INTEGER,
reservedData OCTET STRING

}

Where,

returnedDataMaxLen: An integer that specifies the length, in bytes, of the area that
is provided by the caller that is receiving the returned data value that is returned
from ICSF in the CSFIQA callable service.

reservedData: An octet string that identifies the data that is specified in the
reserved data in the CSFIQA callable service. The reserved data is ignored by ICSF.

128 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

IQAOutput ::= SEQUENCE {
returnedDataLen INTEGER,
returnedData OCTET STRING

}

Where,

returnedDataLen: An integer that contains the length, in bytes, of the returned
data. On a successful call, this is the length of the returnedData octet string. If the
returned ICSF return code and reason code indicate the input returnedDataMaxLen
is too small, this value indicates the size that is needed for returnedDataMaxLen.

returnedData: An octet string that specifies the returned data from the CSFIQA
callable service

Object management ASN.1 syntaxes
ICSF provides a series of callable services to allow users to create or delete PKCS
#11 tokens or objects, retrieve information of PKCS #11 tokens or objects, and save
or retrieve attributes values of a PKCS #11 object. The RemoteCryptoPKCS#11
extended operation allows the CSFPTRC, CSFPTRD, CSFPTRL, CSFPGAV, and
CSFPSAV ICSF callable services to be available for remote invocation.

Get attribute value (CSFPGAV) ASN.1 syntaxes
GAVInput ::= attrListLen
attrListLen ::= INTEGER (0 .. MaxCSFPInteger)

Where,

attrListLen: An integer that specifies the length of the buffer (in bytes) allocated
to hold the attributes that are returned from ICSF in the CSFPGAV callable service.
GAVOutput ::= SEQUENCE {

attrListLen INTEGER (0 .. MaxCSFPInteger),
attrList Attributes

}

Where,

attrListLen: An integer that specifies the length (in bytes) of the attrList
returned from ICSF in the CSFPGAV callable service. If the attrListLen specified
on input is sufficient to hold all attributes, this is the same as attrListLen on
input; otherwise, this is the minimum length needed.

attrList: A list of object attributes that are returned from ICSF in the CSFPGAV
callable service

Set attribute value (CSFPSAV) ASN.1 syntaxes
SAVInput ::= attrList
attrList ::= Attributes

Where,

attrList: A list of attributes to be updated in the object in the CSFPSAV callable
service.
SAVOutput ::= NULL

Chapter 6. Remote crypto plug-in 129

Token record create (CSFPTRC) ASN.1 syntaxes
TRCInput ::= SEQUENCE {

trcAttrs ::= CHOICE {
tokenAttrString [0] OCTET STRING,
objectAttrList [1] Attributes

}
}

Where,

trcAttrs: The token attributes string for the token that is being created or
re-created, or the list of object attributes for the object that is being created.

tokenAttrString: When creating or re-creating a token ("TOKEN���" specified in
rule_array), this is a 68-byte string of the token attributes for the token that is
being created or re-created.

objectAttrList: When creating or copying an object ("OBJECT��" specified in
rule_array), this is a list of object attributes for the object that is being created or
copied. Note that for object copy ("COPY����" specified in rule_array), this
attributes list contains no attribute.

Note: � represents a blank character.
TRCOutput ::= NULL

Token record delete (CSFPTRD) ASN.1 syntaxes
TRDInput ::= NULL
TRDOutput ::= NULL

Token record list (CSFPTRL) ASN.1 syntaxes
TRLInput ::= SEQUENCE {

inListLen INTEGER (0 .. MaxCSFPInteger),
maxHandleCount INTEGER (0 .. MaxCSFPInteger),
searchTemplate [0] Attributes OPTIONAL

}

Where,

inListLen: An integer that specifies the length, in bytes, of the buffer that is to
hold the contents of the output list that is returned from ICSF in the CSFPTRL
callable service.

maxHandleCount: An integer that specifies the maximum number of tokens or object
handles that are to be returned in the output list from ICSF in the CSFPTRL
callable service.

searchTemplate: A list of criteria (attribute values) that an object must meet to be
added to the output list returned from ICSF in the CSFPTRL callable service. For
requesting tokens ("TOKEN���" specified in rule_array), do not complete this
field; for requesting session objects ("OBJECT��" specified in rule_array), this field
is optional.

Note: � represents a blank character.
TRLOutput ::= SEQUENCE {

outListLen INTEGER (0 .. MaxCSFPInteger),
outList CHOICE {

130 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

tokenList [0] OCTET STRING,
handleList [1] OCTET STRING

}
}

Where,

outListLen: Number of bytes used for the outList parameter. If the inListLen
specified on input is insufficient to hold one record, it is set to the minimum length
needed for one record.

tokenList: A string containing the list of z/OS PKCS #11 tokens that the user has
SAF authorization to. Each token record is 116 bytes long.

handleList: A string containing a list of token handles or a list of session objects
handles for a specific token that the user has SAF authorization to. Only the objects
that meet the search criteria are returned. Each object handle is 44 bytes long.

Signing and verifying ASN.1 syntaxes
ICSF provides several callable services to support signing and verifying. The
RemoteCryptoPKCS#11 extended operation allows the CSFPHMG, CSFPHMV,
CSFPPKS, and CSFPPKV ICSF callable services to be available for remote
invocation.

Generate HMAC (CSFPHMG) ASN.1 syntaxes
HMGInput ::= SEQUENCE {

text OCTET STRING,
chainData OCTET STRING,
hmacLength INTEGER (0 .. MaxCSFPInteger)

}

Where,

text: An octet string that identifies the data that is being used to generate an
HMAC hash in the CSFPHMG callable service.

chainData: An octet string that specifies the chaining data that is maintained
during multipart HMAC hashing in the CSFPHMG callable service.

hmacLength: Ignored by ICSF. The caller must provide an area large enough to
receive the generated HMAC data as defined by the mechanism that is specified in
the rule array.
HMGOutput ::= SEQUENCE {

chainData OCTET STRING,
hmac OCTET STRING,
hmacLength INTEGER

}

Where,

chainData: An octet string that contains the updated chaining data for multipart
HMAC generation that must be specified on the subsequent request in HMGInput.

hmac: An octet string that contains the HMAC hash that are generated by the
CSFPHMG callable service on a LAST or ONLY request. For a FIRST or MIDDLE
request, the extended operation returns this as a zero length octet string.

Chapter 6. Remote crypto plug-in 131

hmacLength: Ignored by ICSF.

Verify HMAC (CSFPHMV) ASN.1 syntaxes
HMVInput ::= SEQUENCE {

text OCTET STRING,
chainData OCTET STRING,
hmac OCTET STRING

}

Where,

text: An octet string that identifies the text value for which an HMAC is verified
by using the CSFPHMV callable service.

chainData: An octet string that specifies the chaining data that is maintained
during multipart HMAC hash verification in the CSFPHMV callable service.

hmac: An octet string that identifies the HMAC hash value that is being verified by
the CSFPHMV callable service on a LAST or ONLY request. For a FIRST or
MIDDLE request, this value is ignored.
HMVOutput ::= chainData
chainData ::= OCTET STRING

Where,

chainData: An octet string that contains the updated chaining data for multipart
HMAC hash verification that must be specified on the subsequent call in HMVInput.

Public key sign (CSFPPKS) ASN.1 syntaxes
PKSInput ::= SEQUENCE {

cipherValue OCTET STRING,
clearValueMaxLen INTEGER (0 .. MaxCSFPInteger)

}

Where,

cipherValue: An octet string that specifies the value that is being signed or
decrypted by the CSFPPKS callable service.

clearValueMaxLen: An integer that specifies the length, in bytes, of the area that is
provided by the caller that is receiving the clear value that is returned from ICSF
in the CSFPPKS callable service.
PKSOutput ::= SEQUENCE {

clearValue OCTET STRING,
clearValueLen INTEGER (0 .. MaxCSFPInteger)

}

Where,

clearValue: An octet string that contains the generated signature or decrypted data
from the CSFPPKS callable service.

clearValueLen: An integer that contains the length, in bytes, of the generated
signature or decrypted data. On a successful call, this is the length of the returned
clearValue octet string. If the returned ICSF return code and reason code indicate

132 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

the input clearValueMaxLen is too small, the returned value of clearValueLen
indicates the size that is needed for clearValueMaxLen.

Public key verify (CSFPPKV) ASN.1 syntaxes
PKVInput ::= SEQUENCE {

clearValue OCTET STRING,
CHOICE {

cipherValueMaxLen [0] INTEGER (0 .. MaxCSFPInteger),
cipherValue [1] OCTET STRING

}
}

Where,

clearValue: An octet string that specifies the data that is being encrypted on an
ENCRYPT call, otherwise, the signature that is being verified by the CSFPPKV
callable service.

cipherValueMaxLen: For ENCRYPT only, an integer that specifies the length, in
bytes, of the area that is provided by the caller that is receiving the data that is
returned in cipherValue by the CSFPPKV callable service.

cipherValue: For signature verification only, an octet string that specifies the data
that is being verified by the CSFPPKV callable service.
PKVOutput ::= SEQUENCE {

cipherValue OCTET STRING OPTIONAL,
cipherValueLen INTEGER OPTIONAL

}

Where,

cipherValue: For ENCRYPT only, an octet string that contains the encrypted data
that is returned by the CSFPPKV callable service.

cipherValueLen: For ENCRYPT only, an octet string that contains the length, in
bytes, of the encrypted data. On a successful call, this is the length of the returned
cipherValue octet string. If the returned ICSF return code and reason code indicate
the input cipherValueMaxLen is too small, the returned value of cipherValueLen
indicates the size that is needed for cipherValueMaxLen.

Message digesting ASN.1 syntaxes
ICSF provides the CSFPOWH callable service, which provides message digesting
and hashing support. The RemoteCryptoPKCS#11 extended operation allows the
CSFPOWH callable service to be available for remote invocation.

One-way hash, sign, or verify (CSFPOWH) ASN.1 syntaxes
OWHInput ::= SEQUENCE {

text OCTET STRING,
chainData OCTET STRING,
hash OCTET STRING

}

Where,

text: An octet string that identifies the input data that is being used for creating a
hash in the CSFPOWH callable service.

Chapter 6. Remote crypto plug-in 133

chainData: An octet string that specifies the chaining data that is maintained
during multipart hashing in the CSFPOWH callable service.

hash: An octet string that identifies the intermediate hash value in the CSFPOWH
callable service.
OWHOutput ::= SEQUENCE {

chainData OCTET STRING,
hash OCTET STRING.
hashLen INTEGER

}

Where,

chainData: An optional octet string that contains the updated chaining data that is
returned during multipart hashing that must be specified on the subsequent call in
the CSFPOWH callable service. This data must be sent on the subsequent call in
OWHInput.

hash: An octet string that specifies the hash that is generated from the CSKPOWH
callable service from the input text data.

hashLen: An integer that contains the length, in bytes, of the hashed data. On a
successful call, this is the length of the returned hash octet string. If the returned
ICSF return code and reason code indicate the length of the input hash is too
small, the returned value of hashLen indicates the buffer size that is needed for
hash.

Secret key encrypt and secret key decrypt ASN.1 syntaxes
ICSF supports different types of secret key encryption and decryption algorithms.
The RemoteCryptoPKCS#11 extended operation allows the CSFPSKE and
CSPFSKD ICSF callable services to be available for remote invocation.

Note: Special ASN.1 syntax must be used to handle GCM and GCMIVGEN mode
AES encryption and decryption.

Secret key decrypt (CSFPSKD) ASN.1 syntaxes
SKDInput ::= SEQUENCE {

initialValue [0] OCTET STRING,
gcmData [1] GCMData OPTIONAL,
chainData [2] OCTET STRING,
cipherText [3] OCTET STRING,
clearTextMaxLen [4] INTEGER (0 .. MaxCSFPInteger)

}

GCMData ::= SEQUENCE {
gcmAuthenticationData OCTET STRING,
gcmTagLen INTEGER

}

Where,

initialValue: An octet string that identifies the initialization vector for the decrypt
operation in the CSFPSKD callable service.

gcmAuthenticationData: An optional octet string that identifies additional data that
is provided for GCM mode AES decryption in the CSFPSKD callable service.

134 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

gcmTagLen: An optional integer that identifies the number of bytes for the tag that
is generated during GCM mode AES decryption in the CSFPSKD callable service.

chainData: An octet string that specifies the chaining data that is maintained
during multi-part decryption in the CSFPSKD callable service.

cipherText: An octet string that identifies the data to be decrypted in the
CSFPSKD callable service.

clearTextMaxLen: An integer that specifies the maximum number of decrypted
bytes to return in the CSKPSKD callable service.
SKDOutput ::= SEQUENCE {

chainData OCTET STRING,
clearText OCTET STRING,
clearTextLength INTEGER

}

Where,

chainData: An octet string that specifies the chaining data that is returned during
multipart decryption in the CSFPSKD callable service. This data must be sent on
subsequent SKDInput.

clearText: An octet string that returns the decrypted cipherText data that is
returned from the CSFPSKD callable service.

clearTextLength: An integer that specifies the returned length of the clear text that
is generated by the CSFPSKD callable service. On a successful call, this is the
length of the returned clearText octet string. If the returned ICSF return code and
reason code indicates the input clearTextMaxLen is too small, the returned value of
clearTextLength indicates the size that is needed for the input clearTextMaxLen.

Secret key encrypt (CSFPSKE) ASN.1 syntaxes
SKEInput ::= SEQUENCE {

initialValueChoice InitialValue,
chainData OCTET STRING,
clearText OCTET STRING,
cipherTextMaxLen INTEGER (0 .. MaxCSFPInteger)

}

InitialValue ::= CHOICE {
basicIV [0] OCTET STRING,
gcmIV [1] GCMData,
gcmIVGen [2] GCMIvGenData

}

GCMData ::= SEQUENCE {
initialValue OCTET STRING,
gcmAuthenticationData OCTET STRING,
gcmTagLen INTEGER

}

GCMIvGenData ::= SEQUENCE {
4ByteNonce OCTET STRING,
gcmAuthenticationData OCTET STRING,
gcmTagLen INTEGER,
authenticationDataOffset INTEGER OPTIONAL

}

Where,

Chapter 6. Remote crypto plug-in 135

initialValueChoice: Indicates the various options for specifying the initialization
vector. GCM and GCMIVGEN modes of AES encryption must use special
processing for the initialization vector. See z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information.

basicIV (initialization vector): An octet string that identifies the initialization
vector for the encrypt operation in the CSFPSKE callable service.

initialValue: An octet string that identifies the initialization vector for the encrypt
operation in the CSFPSKE callable service. For GCM mode AES encryption, this
value requires special processing.

gcmAuthenticationData: An octet string that identifies additional authentication
data that is needed for GCM and GCMIVGEN mode AES encryption in the
CSFPSKE callable service.

gcmTagLen: An integer that identifies the number of bytes for the tag that is
generated during GCM and GCMIVGEN mode AES encryption in the CSFPSKE
callable service.

4ByteNonce: A 4-byte string that provides the nonce value used for initialization
vector generation during GCMIVGEN mode AES encryption in the CSFPSKE
callable service.

authenticationDataOffset: An optional integer that indicates the CSFPSKE callable
service generates an initialization vector during GCMIVGEN mode AES
encryption. The generated initialization vector must be stored within the
gcmAuthenticationData octet string, beginning at the offset of this value.

chainData: An octet string that specifies the chaining data that is maintained
during multipart encryption in the CSFPSKE callable service.

clearText: An octet string that specifies the clear text data that is being encrypted
in the CSFPSKE callable service.

cipherTextMaxLen: An integer that specifies the maximum number of encrypted
bytes to return in the CSFPSKE callable service.

Where,
SKEOutput ::= SEQUENCE {

chainData OCTET STRING,
cipherText OCTET STRING,
cipherTextLength INTEGER,
initialValue OCTET STRING,
gcmAuthenticationData OCTET STRING OPTIONAL

}

Where,

chainData: An octet string that specifies the chaining data that is returned during
multipart encryption in the CSFPSKE callable service. This data must be sent on
subsequent SKEInput.

cipherText: An octet string that specifies the encrypted clearText data that is
returned from the CSFPSKE callable service.

136 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

cipherTextLength: An integer that specifies the returned length of the cipher text
that is generated by the CSFPSKE callable service. On a successful call, this is the
length of the returned cipherText octet string. If the returned ICSF return code and
reason code indicates the input cipherTextMaxLen is too small, the returned value
of cipherTextLength indicates the size that is needed for the input
cipherTextMaxLen.

initialValue: An octet string that returns the initialization vector that is used for
the encrypt operation in the CSFPSKE callable service. For GCMIVGEN mode AES
encryption, this value returns the generated initialization vector.

gcmAuthenticationData: An octet string that returns the additional data that is used
for GCM and GCMIVGEN mode AES encryption in the CSFPSKE callable service.
If the authenticationDataOffset value for GCMIVGEN mode AES encryption is
specified, this value is updated with the generated initialization vector.

CSFPSKD and CSFPSKE rule array reference
The CSFPSKE and CSFPSKD ICSF callable services support different algorithms
and modes of encryption and decryption. The rule array sets the algorithm, mode,
and multipart state of a CSFPSKE and CSFPSKD callable service invocation. See
z/OS Cryptographic Services ICSF Application Programmer's Guide for more
information about the different algorithms and modes that are supported by
CSFPSKE and CSFPSKD.

Table 36. CSFPSKD and CSFPSKE supported mechanisms and rule arrays. CSFPSKD and CSFPSKE supported
mechanisms and rule arrays

PKCS #11 mechanism ICSF required values

CKM_CDMF_ECB
CKM_DES_ECB

rule_array = "DES ECB "
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle

CKM_CDMF_CBC
CKM_DES_CBC

rule_array ="DES CBC|CBC-PAD INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle
chain_data

CKM_DES_CBC_PAD
CKM_CDMF_CBC_PAD

rule_array ="DES CBC|CBC-PAD INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle
chain_data

CEKM_DS3_ECB rule_array ="DES3 ECB "
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle

CKM_DES3_CBC rule_array ="DES3 CBC|CBC-PAD INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle
chain_data

CKM_DES3_CBC_PAD rule_array ="DES3 CBC|CBC-PAD INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle
chain_data

CKM_RSA_PKCS rule_array ="RSA-PKCSENCRYPT "
key_handle

CKM_RSA_X_509 rule_array ="RSA-ZEROENCRYPT "
key_handle

Chapter 6. Remote crypto plug-in 137

Table 36. CSFPSKD and CSFPSKE supported mechanisms and rule arrays (continued). CSFPSKD and CSFPSKE
supported mechanisms and rule arrays

PKCS #11 mechanism ICSF required values

CKM_AES_CBC rule_array ="AES CBC|CBC-PAD INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle
chain_data

CKM_AES_ECB rule_array ="AES CBC|CBC-PAD INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle
chain_data

CKM_AES_CBC_PAD rule_array ="AES CBC|CBC-PAD INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length = DES_BLOCK_SIZE=8
key_handle
chain_data

CKM_AES_GCM rule_array = "AES GCM INITIAL|ONLY"
initialization_vector_length
key_handle
chain_data

CKM_BLOWFISH_CBC rule_array ="BLOWFISHCBC INITIAL|CONTINUE|FINAL|ONLY"
initialization_vector_length
initialization_vector
key_handle
chain_data

CKM_RC4 rule_array ="RC4 STREAM INITIAL|CONTINUE|FINAL|ONLY"
key_handle
chain_data

Key management ASN.1 syntaxes
ICSF supports different types of key management routines for creating secret,
public, and private keys and for deriving single and multiple keys. The
RemoteCryptoPKCS#11 extended operation allows the CSFPGSK, CSFPGKP,
CSFPDVK, CSFPDMK, CSFPWPK, and CSFPUWK ICSF callable services to be
available for remote invocation.

Derive multiple keys (CSFPDMK) ASN.1 syntaxes
DMKInput ::= SEQUENCE {

attrList Attributes,
parmsListChoice DMKInputParmsList

}

DMKInputParmsList ::= CHOICE {
SSL-KM_TLS-KM [0] SSL_TLS_DMKInputParmsList

}

SSL_TLS_DMKInputParmsList ::= SEQUENCE {
export BOOLEAN,
macSize INTEGER,
keySize INTEGER,
ivSize INTEGER,
clientRandomData OCTET STRING,
serverRandomData OCTET STRING

}

Where,

138 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

attrList: An attribute list that identifies characteristics (attribute name and value
pairs) that are used for deriving or creating multiple new keys in the CSFPDMK
callable service.

parmsListChoice: A choice sequence that specifies portions of the parms_list for
the CSFPDMK callable service. Only one parms_list format is supported by ICSF
and it is for deriving keys for the SSL-KM and TLS-KM mechanisms. See z/OS
Cryptographic Services ICSF Application Programmer's Guide for more information
about the parms_list format for the CSFPDMK callable service.

export: A boolean that indicates that export processing must be used in the
CSFPDMK callable service.

macSize: An integer indicating the size of the MAC that is being generated in bits
where 8 <= size <= 384, in multiples of 8.

keySize: An integer indicating the size of key that is being generated in bits. Must
match a supported size for the key type that is specified in the attribute list.

ivSize (initialization vector): An integer indicating the size of IV that is being
generated in bits (v), where 0 <= size <= 128, in multiples of 8.

clientRandomData: An octet string that specifies the random data of the client in
the parms_list for the CSFPDMK callable service.

serverRandomData: An octet string that specifies the random data of the server in
the parms_list for the CSFPDMK callable service.
DMKOutput ::= SEQUENCE {

parmsListChoice DMKOutputParmsList
}

DMKOutputParmsList ::= CHOICE {
SSL-KM_TLS-KM [0] SSL_TLS_DMKOutputParmsList

}

SSL_TLS_DMKOutputParmsList ::= SEQUENCE {
clientMACHandle OCTET STRING,
serverMACHandle OCTET STRING,
clientKeyHandle OCTET STRING,
serverKeyHandle OCTET STRING,
clientIV OCTET STRING

}

Where,

parmsListChoice: A choice sequence that specifies portions of the parms_list for
the CSFPDMK callable service. Only one parms_list format is supported by ICSF
and it is for deriving keys for the SSL-KM and TLS-KM mechanisms. See z/OS
Cryptographic Services ICSF Application Programmer's Guide for more information
about the parms_list format for the CSFPDMK callable service.

clientMACHandle: An octet string that identifies the handle of the client MAC secret
object that is generated by the CSFPDMK callable service. If the client MAC secret
object is not successfully generated, this octet string consists of 44 bytes of x'00'
data.

Chapter 6. Remote crypto plug-in 139

serverMACHandle: An octet string that identifies the handle of the server MAC
secret object that is generated by the CSFPDMK callable service. If the server MAC
secret object is not successfully generated, this octet string consists of 44 bytes of
x'00' data.

clientKeyHandle: An octet string that identifies the handle of the client key object
that is generated by the CSFPDMK callable service. If the client key object is not
successfully generated, this octet string consists of 44 bytes of x'00' data.

serverKeyHandle: An octet string that identifies the handle of the server key object
that is generated by the CSFPDMK callable service. If the server key object is not
successfully generated, this octet string consists of 44 bytes of x'00' data.

clientIV (initialization vector): An octet string that identifies the IV of the
client that is generated by the CSFPDMK callable service.

serverIV (initialization vector): An octet string that identifies the IV of the
server that is generated by the CSFPDMK callable service.

Derive key (CSFPDVK) ASN.1 syntaxes
DVKInput ::= SEQUENCE {

attrList Attributes,
parmsListChoice DVKInputParmsList

}

DVKInputParmsList ::= CHOICE {
PKCS-DH_publicValue [0] OCTET STRING,
SSL-TLS [1] SSL-TLS_DVKInputParmsList,
EC-DH [2] EC-DH_DVKInputParmsList

}

SSL_TLS_DVKInputParmsList ::= SEQUENCE {
clientRandomData OCTET STRING,
serverRandomData OCTET STRING

}

EC-DH_DVKInputParmsList ::= SEQUENCE {
kdfCode OCTET STRING,
sharedData OCTET STRING,
EC-DH_publicValue OCTET STRING

}

Where,

attrList: An attribute list that identifies characteristics (attribute name and value
pairs) that are used for deriving or creating a key in the CSFPDVK callable service.

parmsListChoice: A choice sequence that specifies portions of the parms_list for
the CSFPDVK callable service. The sequence that is chosen depends on the type of
key being derived. See z/OS Cryptographic Services ICSF Application Programmer's
Guide for more information about the supported parms_list for CSFPDVK.

PKCS-DH_publicValue: An octet string specifying the binary value representing the
public value of the other party when deriving a PKCS-DH key in the CSFPDVK
callable service.

clientRandomData: An octet string specifying the random data of the client when
deriving an SSL-MS, SSL-MSDH, TLS-MS, or TLS-MSDH key in the CSFPDVK
callable service.

140 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

serverRandomData: An octet string specifying the random data of the server when
deriving an SSL-MS, SSL-MSDH, TLS-MS, or TLS-MSDH key in the CSFPDVK
callable service.

kdfCode: An octet string specifying the KDF function code that is used when
deriving an EC-DH key in the CSFPDVK callable service.

sharedData: An octet string that identifies shared data that is needed for deriving
an EC-DH key in the CSFPDVK callable service.

EC-DH_publicValue: An octet string that specifies the binary value representing the
public value of the other party with or without DER encoding in the CSFPDVK
callable service.
DVKOutput ::= SEQUENCE {

parmsListChoice DVKOutputParmsList
}

DVKOutputParmsList ::= CHOICE {
PKCS-DH_Output [0] NULL,
SSL-TLS_Output [1] OCTET STRING,
EC-DH_Output [2] NULL

}

Where,

parmsListChoice: A choice sequence that specifies portions of the parms_list for
the CSFPDVK callable service. The sequence that is chosen depends on the type of
key being derived. See z/OS Cryptographic Services ICSF Application Programmer's
Guide or more information about the supported parms_list for CSFPDVK.

SSL-TLS_Output: An octet string that represents the SSL or TLS protocol version of
the derived SSL-MS or TLS-MS key. It is a hexadecimal representation of the
protocol version. For example, 0301' for version 3.1. This value is set to 0000' when
an SSL-MSDH or TLS-MSDH key is derived.

Generate key pair (CSFPGKP) ASN.1 syntaxes
GKPInput ::= SEQUENCE {

publicKeyAttrList Attributes,
privateKeyAttrList Attributes

}

Where,

publicKeyAttrList: An attribute list that identifies characteristics (attribute name
and value pairs) that are used for creating the public key in the CSFPGKP callable
service.

privateKeyAttrList: An attribute list that identifies characteristics (attribute name
and value pairs) that are used for creating the private key in the CSFPGKP callable
service.
GKPOutput ::= privateHandle
privateHandle ::= OCTET STRING

Where,

privateHandle: An octet string that identifies the handle of the private key that is
generated by the CSFPGKP callable service. The generated public handle is

Chapter 6. Remote crypto plug-in 141

returned in the handle parameter of the responseValue encoding. If the callable
service returns an error, privateHandle is encoded as a zero length octet string.

Generate secret key (CSFPGSK) ASN.1 syntaxes
GSKInput ::= SEQUENCE {

attrList Attributes,
parmsList OCTET STRING

}

Where,

attrList: An attribute list that identifies characteristics (attribute name and value
pairs) that are used for creating the secret key in the CSFPGSK callable service. If
an attrList is not needed for generating the secret key, specify a zero length
sequence in the Attributes.

parmsList: An octet string that specifies the parameter list for the CSFPGSK
callable service. If an parmsList is not needed for generating the secret key, specify
a zero length octet string. See z/OS Cryptographic Services ICSF Application
Programmer's Guide for more information about the parmsList format.
GSKOuput ::= NULL

Unwrap key (CSFPUWK) ASN.1 syntaxes
UWKInput ::= SEQUENCE {

wrappedKey OCTET STRING,
initialValue OCTET STRING,
attrList Attributes

}

Where,

wrappedKey: An octet string that contains key data that is to be unwrapped in the
CSFPUWK callable service.

initialValue: An octet string that identifies the initialization vector for the
unwrapping of the key in the CSFPUWK callable service.

attrList: An attribute list that identifies characteristics (attribute name and value
pairs) that are used for creating a key after unwrapping the key data in the
CSFPUWK callable service.
UWKOutput ::= NULL

Wrapped key (CSFPWPK) ASN.1 syntaxes
WPKInput ::= SEQUENCE {

wrappingHandle OCTET STRING,
wrappedKeyMaxLen INTEGER (0 .. MaxCSFPInteger),
initialValue OCTET STRING

}

Where,

wrappingHandle: An octet string that identifies the name of a public key or secret
key object to wrap a secret key or the wrapping_key_handle parameter in the
CSFPWPK callable service. The secret key that is wrapped is specified in the
handle parameter of the requestValue encoding.

142 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

wrappedKeyMaxLen: An integer that specifies the maximum expected length of the
wrapped key output that is generated by the CSFPWPK callable service.

initialValue: An octet string that identifies the initialization vector for the
wrapping of the key in the CSFPWPK callable service. If an initialization vector is
not needed, specify a zero length octet string. See z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information about the initialValue
format.
WPKOutput ::= SEQUENCE {

wrappedKey OCTET STRING,
wrappedKeyLen INTEGER

}

Where,

wrappedKey: An octet string that specifies the returned wrapped or encrypted key
data from the CSFPWPK callable service. If the callable service returns an error,
this field is encoded as a zero length octet string.

wrappedKeyLen: An integer that specifies the returned length of the wrapped key
that is generated by the CSPWPK callable service. On a successful call, this is the
length of the returned wrappedKey octet string. If the returned ICSF return code and
reason code indicates the input wrappedKeyMaxLen is too small, the returned value
of wrappedKeyLen indicates the size that is needed for the input wrappedKeyMaxLen.

Common RemoteCryptoPKCS#11 extended operation error codes
Table 37 summarizes some different error scenarios and the
RemoteCryptoPKCS#11 extended operation response that is returned for such
scenarios. ICSF callable service-specific return codes and reason codes are returned
in the response. See z/OS Cryptographic Services ICSF Application Programmer's Guide
for more information about those errors

Table 37. Common RemoteCryptoPKCS#11 extended operation return codes. Common RemoteCryptoPKCS#11
extended operation return codes

Error scenario RemoteCryptoPKCS#11 response

Out of memory Returns an LDAP_OTHER return code

Internal server error Returns an LDAP_OPERATIONS_ERROR return code

Unable to decode request Returns an LDAP_PROTOCOL_ERROR return code

Data sent on request is not valid, for example, a -1 for a
length field

Returns an LDAP_PROTOCOL_ERROR return code

Unable to encode response Returns an LDAP_OTHER return code

ICSF callable services supported by the RemoteCryptoCCA extended
operation

The RemoteCryptoCCA extended operation is a generic extended operation that
allows an LDAP client application to specify the same data as if invoking the ICSF
callable service locally. Table 38 on page 144 includes the ICSF CCA callable service
routines that are supported by the RemoteCryptoCCA extended operation. See
z/OS Cryptographic Services ICSF Application Programmer's Guide or Cryptographic
Token Interface Standard for more information about ICSF callable services.

Chapter 6. Remote crypto plug-in 143

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

Table 38. ICSF callable services supported by the RemoteCryptoCCA extended operation. ICSF callable services
supported by the RemoteCryptoCCA extended operation

ICSF callable
service and
helper function Description Function code Request tag Response tag

CSNECKM -
Multiple clear
key import

Imports a single-length,
double-length, or triple-length clear
DATA key, enciphers it under the
master key, and places the result into
an internal key token. CSNBCKM
converts the clear key into
operational form as a DATA key.

FC_CSNECKM REQ_CSNECKM RES_CSNECKM

CSNEDEC -
Decipher

Deciphers data using either the
CDMF or the cipher block chaining
mode of the DES. (The method
depends on the token marking or
keyword specification.)

FC_CSNEDEC REQ_CSNEDEC RES_CSNEDEC

CSNEENC -
Encipher

Enciphers data using either the
CDMF or the cipher block chaining
mode of the DES. (The method
depends on the token marking or
keyword specification.)

FC_CSNEENC REQ_CSNEENC RES_CSNEENC

CSNEKGN - Key
generate

Generates a 64-bit, 128-bit, or 192-bit
odd parity key, or a pair of keys, and
returns them in encrypted forms
(operational, exportable, or
importable).

FC_CSNEKGN REQ_CSNEKGN RES_CSNEKGN

CSNEKRC -
CKDS key record
create

Adds a key record containing a key
token set to binary zeros to both the
in-storage and DASD copies of the
CKDS.

FC_CSNEKRC REQ_CSNEKRC RES_CSNEKRC

CSNEKRD -
CKDS key record
delete

Deletes a key record from both the
in-storage and DASD copies of the
CKDS.

FC_CSNEKRD REQ_CSNEKRD RES_CSNEKRD

CSNEKRR -
CKDS key record
read

Use the CKDS key record read
callable service to read an internal
AES or DES key token.

FC_CSNEKRR REQ_CSNEKRR RES_CSNEKRR

CSNEKRW -
CKDS key record
write

Writes an internal key token to the
CKDS record specified in the key
label parameter. Updates both the
in-storage and DASD copies of the
CKDS currently in use.

FC_CSNEKRW REQ_CSNEKRW RES_CSNEKRW

CSNEKTB - Key
token build

Use the key token build callable
service to build an external or
internal key token from information
which you supply.

FC_CSNEKTB REQ_CSNEKTB RES_CSNEKTB

CSNESAD -
Symmetric
algorithm
decipher

Deciphers data using the AES
algorithm in an address space or a
data space using the cipher block
chaining or electronic code book
modes.

FC_CSNESAD REQ_CSNESAD RES_CSNESAD

144 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Table 38. ICSF callable services supported by the RemoteCryptoCCA extended operation (continued). ICSF callable
services supported by the RemoteCryptoCCA extended operation

ICSF callable
service and
helper function Description Function code Request tag Response tag

CSNESAE -
Symmetric
algorithm
encipher

Enciphers data using the AES
algorithm in an address space or a
data space using the cipher block
chaining or electronic code book
modes.

FC_CSNESAE REQ_CSNESAE RES_CSNESAE

CSNESYD -
Symmetric key
decipher

Deciphers data using the AES or DES
algorithm in an address space or a
data space using the cipher block
chaining or electronic code book
modes.

FC_CSNESYD REQ_CSNESYD RES_CSNESYD

CSNESYE -
Symmetric key
encipher

Enciphers data using the AES or DES
algorithm in an address space or a
data space using the cipher block
chaining or electronic code book
modes.

FC_CSNESYE REQ_CSNESYE RES_CSNESYE

CSNFKRC -
PKDS key record
create

Writes a new record to the PKDS. FC_CSNFKRC REQ_CSNFKRC RES_CSNFKRC

CSNFKRD -
PKDS key record
delete

Deletes a record from the PKDS. FC_CSNFKRD REQ_CSNFKRD RES_CSNFKRD

CSNFKRR -
PKDS key record
read

Use the PKDS key record read
callable service to read a record from
the PKDS.

FC_CSNFKRR REQ_CSNFKRR RES_CSNFKRR

CSNFPKB - PKA
key token build

Creates an external PKA key token
containing a clear private RSA or DSS
key. Using this token as input to the
PKA key import callable service
returns an operational internal token
containing an enciphered private key.
Using CSNDPKB on a clear public
RSA or DSS key, returns the public
key in a token format that other PKA
services can directly use. CSNDPKB
can also be used to create a skeleton
token for input to the PKA key
generate service for the generation of
an internal DSS or RSA key token.

FC_CSNFPKB REQ_CSNFPKB RES_CSNFPKB

CSNFPKG - PKA
key generate

Generates a DSS internal token for
use in digital signature services, RSA
keys (for use on the PCICC, PCIXCC,
CEX2C, or CEX3C) and ECC keys
(for use on the CEX3C).

FC_CSNFPKG REQ_CSNFPKG RES_CSNFPKG

CSNFPKI - PKA
key import

Imports a PKA key token containing
either a clear PKA key or a PKA key
enciphered under a limited authority
IMP-PKA KEK.

FC_CSNFPKI REQ_CSNFPKI RES_CSNFPKI

CSNFPKX - PKA
public key extract

Extracts a PKA public key token from
a supplied PKA internal or external
private key token.

FC_CSNFPKX REQ_CSNFPKX RES_CSNFPKX

Chapter 6. Remote crypto plug-in 145

Table 38. ICSF callable services supported by the RemoteCryptoCCA extended operation (continued). ICSF callable
services supported by the RemoteCryptoCCA extended operation

ICSF callable
service and
helper function Description Function code Request tag Response tag

CSNFSYI -
Symmetric key
import

Imports a symmetric key enciphered
under an RSA public key into
operational form enciphered under a
host master key.

FC_CSNFSYI REQ_CSNFSYI RES_CSNFSYI

CSNFSYX -
Symmetric key
export

Transfers an application-supplied
symmetric key from encryption
under the host master key to
encryption under an
application-supplied RSA public key
or AES EXPORTER key.

FC_CSNFSYX REQ_CSNFSYX RES_CSNFSYX

Because the RemoteCryptoCCA extended operation is a generic extended
operation, it supports all of the ICSF CCA callable services in Table 38 on page 144.
Therefore, the extended operation has a common BER encoding for both the
request and response values as many of the ICSF CCA callable service routines
have common interfaces (inputs and outputs on the callable service routines).

The request and response values for the RemoteCryptoCCA extended operation
follows. For more information about ASN.1 (Abstract Syntax Notation One) and
BER (Basic Encoding Rules), see:
ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

v Request values: The following ASN.1 syntax describes the BER encoding of the
request value for the RemoteCryptoCCA extended operation request. Each ICSF
CCA callable service has additional callable service-specific information that is
encoded in the requestData field. The request OID is 1.3.18.0.2.12.85.
requestValue ::= SEQUENCE {

version INTEGER,
exitData OCTET STRING,
ruleArraySeq RuleArraySeq,
requestData CCAInput

}

Where,
version: Identifies which version of the interface is being used. Currently the
only value supported is 1. If the interface is extended in the future, then other
values are supported.
exitData: Identifies the data that is passed to the installation exit. See the
appropriate ICSF callable service routine in z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information. If the ICSF callable service
routine does not need exitData, then specify a zero length octet string.
ruleArraySeq: Is a sequence that identifies an array of keywords that provide
control information to the ICSF callable services. The ASN.1 description is:
ASCII STRING ::= OCTET STRING

Note: ASCII STRING - Represents an OCTET STRING of ASCII bytes.
RuleArraySeq ::= SEQUENCE {

ruleArrayCount INTEGER,
ruleArray ASCII STRING

}

146 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

See the appropriate ICSF callable service routine in z/OS Cryptographic Services
ICSF Application Programmer's Guide for more information about the rule array.
The integer ruleArrayCount identifies the number of rules in the array and is
referred to as rule_array_count in the ICSF callable service routine descriptions.
The octet string ruleArray is the actual array of rules, and is referred to as
rule_array in the ICSF callable service routine descriptions. The number
ruleArrayCount must be consistent with the contents of the octet string
rule_array. The length of ruleArray octet string must be a multiple of 8 times
the number that is specified in the ruleArrayCount field. If an individual rule
specified in the ruleArray is fewer than 8 characters, it must be blank padded
on the right to 8 full characters. You must always use the entire sequence. To
specify an empty rule array, specify ruleArrayCount as zero, and ruleArray as a
zero length octet string.
requestData: Identifies the extended operation request-specific data for the ICSF
callable service. See Table 38 on page 144 for the appropriate request tag for
CCAInput. The values for these tags can be found in the ldap_rcrypto.h sample
header file.
Where,
CCAInput ::= CHOICE {

ECKM [CSNECKM] ECKMInput,
EDEC [CSNEDEC] EDECInput,
EENC [CSNEENC] EENCInput,
EKGN [CSNEKGN] EKGNInput,
EKRC [CSNEKRC] EKRCInput,
EKRD [CSNEKRD] EKRDInput,
EKRR [CSNEKRR] EKRRInput,
EKRW [CSNEKRW] EKRWInput,
EKTB [CSNEKTB] EKTBInput,
ESAD [CSNESAD] ESADInput,
ESAE [CSNESAE] ESAEInput,
ESYD [CSNESYD] ESYDInput,
ESYE [CSNESYE] ESYEInput,
FKRC [CSNFKRC] FKRCInput,
FKRD [CSNFKRD] FKRDInput,
FKRR [CSNFKRR] FKRRInput,
FPKB [CSNFPKB] FPKBInput,
FPKG [CSNFPKG] FPKGInput,
FPKI [CSNFPKI] FPKIInput,
FPKX [CSNFPKX) FPKXInput,
FSYI [CSNFSYI] FSYIInput
FSYX [CSNFSYX] FSYXInput

}

v Response values: The following ASN.1 syntax describes the BER encoding of the
response value for the RemoteCryptoCCA extended operation response. The
ICSF return code and ICSF reason codes are returned from the underlying ICSF
callable service routine. Each ICSF CCA callable service returns additional
response-specific data in the responseData field. The response OID is
1.3.18.0.2.12.86.
responseValue ::= SEQUENCE {

version INTEGER,
ICSFRc INTEGER (0 .. MaxCCAInteger),
ICSFRsnCode INTEGER (0 .. MaxCCAInteger),
exitData OCTET STRING,
responseData CCAOutput

}

Where,

Chapter 6. Remote crypto plug-in 147

version: Identifies which version of the interface is being used. Currently the
only value supported is 1. If the interface is extended in the future, then other
values are supported.
ICSFRc: Identifies the ICSF return code. See z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information about the ICSF return code
error.
ICSFRsnCode: Identifies the ICSF reason code. See z/OS Cryptographic Services
ICSF Application Programmer's Guide for more information about the ICSF reason
code error.
exitData: Identifies the data that is passed to the installation exit. See the
appropriate ICSF callable service routine in z/OS Cryptographic Services ICSF
Application Programmer's Guide for more information. A zero length octet string
indicates that no exitData is returned.
responseData: Identifies the ICSF CCA request-specific extended operation
response data. See Table 38 on page 144 for the appropriate response tag for
CCAOutput. The values for these tags can be found in the ldap_rcypto.h sample
header file.
Where,
CCAOutput ::= CHOICE {

ECKM [CSNECKM] ECKMOutput,
EDEC [CSNEDEC] EDECOutput,
EENC [CSNEENC] EENCOutput,
EKGN [CSNEKGN] EKGNOutput,
EKRC [CSNEKRC] EKRCOutput,
EKRD [CSNEKRD] EKRDOutput,
EKRR [CSNEKRR] EKRROutput,
EKRW [CSNEKRW] EKRWOutput,
EKTB [CSNEKTB] EKTBOutput,
ESAD [CSNESAD] ESADOutput,
ESAE [CSNESAE] ESAEOutput,
ESYD [CSNESYD] ESYDOutput,
ESYE [CSNESYE] ESYEOutput,
FKRC [CSNFKRC] FKRCOutput,
FKRD [CSNFKRD] FKRDOutput,
FKRR [CSNFKRR] FKRROutput,
FPKB [CSNFPKB] FPKBOutput,
FPKG [CSNFPKG] FPKGOutput,
FPKI [CSNFPKI] FPKIOutput,
FPKX [CSNFPKX) FPKXOutput,
FSYI [CSNFSYI] FSYIOutput,
FSYX [CSNFSYX] FSYXOutput

}

MaxCCAInteger ::= 2³¹ - 1
keyIdentifier ::= OCTET STRING

Note: keyIdentifier: If the first byte of a key identifier is larger than 20, the
LDAP server assumes that it is an ASCII key label. Otherwise, it assumes that it
is a binary key token.

Common ASN.1 encodings used by the RemoteCryptoCCA extended
operation

This section describes the common ASN.1 encodings that are used by the
RemoteCryptoCCA extended operation request and response.

148 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Symmetric key management ASN.1 syntaxes
ICSF supports a symmetric key management routine for importing a clear AES or
DES key, enciphering the key under the corresponding master key and then
returning the enciphered key in an internal key token. The RemoteCryptoCCA
extended operation allows the CSNECKM ICSF callable service to be available for
remote invocation.

Multiple clear key import (CSNECKM) ASN.1 syntaxes
ECKMInput ::= SEQUENCE {

clearKey OCTET STRING,
keyIdentifier keyIdentifier

}

Where,

clearKey: Specifies the clear key value to import in the CSNECKM callable service.
The length of the value must be 8-bytes, 16-bytes, or 24-bytes for DES keys and
16-bytes, 24-bytes, or 32-bytes for AES keys.

keyIdentifier: A 64-byte string that is used to receive an internal AES or DES key
token in the CSNECKM callable service.
ECKMOutput ::= SEQUENCE {

keyIdentifier keyIdentifier,
keyIdLength INTEGER

}

Where,

keyIdentifier: A 64-byte string containing an internal AES or DES key token
where the enciphered key is located.

keyIdLength: The length in bytes of the output keyIdentifier parameter.

CKDS key record management ASN.1 syntaxes
ICSF supports different types of CKDS key management routines for creating and
deleting a key record in the CKDS, writing a key token to the CKDS record, and
generating DES keys in the CKDS. The RemoteCryptoCCA extended operation
allows the CSNEKRC, CSNEKRD, CSNEKGN, CSNEKRR, CSNEKRW, and
CSNEKTB ICSF callable services to be available for remote invocation.

CKDS key record create (CSNEKRC) ASN.1 syntaxes
EKRCInput ::= keyLabel

keyLabel ::= ASCII STRING

Where,

keyLabel: The 64-byte label of the record that is added to the CKDS, and used to
store AES and DES tokens in the CSNEKRC callable service.
EKRCOutput ::= NULL {

CKDS key record delete (CSNEKRD) ASN.1 syntaxes
EKRDInput ::= keyLabel
keyLabel ::= ASCII STRING

Where,

Chapter 6. Remote crypto plug-in 149

keyLabel: The 64-byte label of the key record containing an AES or DES token in
CKDS that is deleted in the CSNEKRD callable service.
EKRDOutput ::= NULL {

CKDS key record read (CSNEKRR) ASN.1 syntaxes
EKRRInput ::= keyLabel
keyLabel ::= ASCII STRING

Where,

keyLabel: The 64-byte label of a record containing an AES or DES token in the
in-storage CKDS. The internal key token in this record is returned to the caller.
EKRROutput ::= keyToken
keyToken ::= OCTET STRING

Where,

keyToken: The 64-byte internal key token that is retrieved from the in-storage
CKDS.

CKDS key record write (CSNEKRW) ASN.1 syntaxes
EKRWInput ::= SEQUENCE {

keyToken OCTET STRING,
keyLabel ASCII STRING

}

Where,

keyToken: The 64-byte internal AES or DES key token that is written to the CKDS
in the CSNEKRW callable service.

keyLabel: The 64-byte label of the record in the CKDS that key token is written to
in the CSNEKRW callable service.
EKRWOutput ::= keyToken
keyToken ::= OCTET STRING

Where,

keyToken: The 64-byte internal AES or DES key token that is written to the CKDS
in the CSNEKRW callable service.

CKDS key generate (CSNEKGN) ASN.1 syntaxes
EKGNInput ::= SEQUENCE {

keyForm ASCII STRING,
keyLength ASCII STRING,
keyType1 ASCII STRING,
keyType2 ASCII STRING,
kekKeyIdentifer1 KeyIdentifier,
kekKeyIdentifer2 KeyIdentifier,
generatedKeyIdentifer1 KeyIdentifier,
generatedKeyIdentifer2 KeyIdentifier,

}

Where,

keyForm: A 4-byte keyword that defines the type of key or keys you want to
generate.

150 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

keyLength: An 8-byte string value that defines the length of the key.

keyType1: An 8-byte value that defines the type of generatedKeyIdentifer1.

keyType2: An 8-byte value that defines the type of generatedKeyIdentifer2. This
can only be used if DES keys are being generated.

kekKeyIdentifer1: A 64-byte string of a DES internal key token that contains the
importer or exporter key-encrypting key, or a key label.

kekKeyIdentifer2: A 64-byte string of a DES internal key token that contains the
importer or exporter key-encrypting key, or a key label of an internal token.

generatedKeyIdentifer1: Specifies either a generated:
v Internal DES or AES key token for an operational key form, or
v External DES key tokens that contain a key that is enciphered by using

KEK_key_identifier_1.

generatedKeyIdentifer2: Specifies a generated external key token that contains a
key that is enciphered by using KEK_key_identifier_2.

CKDS Key token build (CSNEKTB) ASN.1 syntaxes
EKTBInput ::= SEQUENCE {

keyToken OCTET STRING,
keyType ASCII STRING,
keyValue OCTET STRING,
mkKeyVersion INTEGER,
keyRegisterNumber INTEGER,
tokenData1 OCTET STRING,
controlVector OCTET STRING,
initializationVector OCTET STRING,
padCharacter INTEGER (0..255),
crytpoPeriodStart OCTET STRING,
mkVerificationPattern OCTET STRING

}

Where,

keyToken: A 64-byte string. If the keyType parameter is TOKEN, then this is a
64-byte internal token that is updated as specified in the rule_array. Otherwise,
this field is an output-only field and must be 64 bytes long.

keyType: An 8-byte field that specifies the type of key you want to build or the
keyword TOKEN for updating a supplied token.

keyValue: A 32-byte string representing the key value. See Key Token Build
(CSNBKTB and CSNEKTB) in z/OS Cryptographic Services ICSF Application
Programmer's Guide for more information about the content, and if needed,
padding, requirements for this buffer.

mkKeyVersion: The master key version number. This field is examined only if the
KEY keyword is specified, in which case, this field must be zero.

keyRegisterNumber: This value is ignored.

tokenData1: An 8-byte field containing the LRC value for AES keys.

Chapter 6. Remote crypto plug-in 151

controlVector: A 16-byte field containing the control vector. For AES keys, the 16
bytes are ignored.

initializationVector: This value is ignored.

padCharacter: Pad character.

crytpoPeriodStart: This value is ignored.

mkVerificationPattern: An 8-byte field containing the value that is inserted into
the master key verification pattern field of the key token.
EKTBOutput ::= keyToken
keyToken ::= OCTET STRING

Where,

keyToken: The key token value.

Symmetric cryptography-related services
ICSF supports encipher and decipher callable services for protecting data or
reading protected data. The RemoteCryptoCCA extended operation allows the
CSNEDEC, CSNEENC, CSNESAD, CSNESAE, CSNESYD, and CSNESYE ICSF
callable services to be available for remote invocation.

Symmetric algorithm encipher (CSNESAE) ASN.1 syntaxes
ESAEInput ::= SEQUENCE {

keyIdentifier KeyIdentifier,
keyParms OCTET STRING,
blockSize INTEGER,
initializationVector OCTET STRING,
chainData OCTET STRING,
clearText OCTET STRING,
cipherTextLength INTEGER,
optionalData OCTET STRING,

}

Where,

keyIdentifier: Specifies an internal secure AES token or the label name of a secure
AES token in the CKDS. Normal CKDS label name syntax is required.

keyParms: This value is ignored.

blockSize: Block size for the cryptographic algorithm.

initializationVector: Contains the initialization vector (IV) for CBC mode
encryption, including the CBC mode invoked using the PKCS-PAD keyword.

chainData: A buffer that is used as a work area for sequences of chained symmetric
algorithm encipher requests. When the keyword INITIAL is used, this is an output
parameter and receives data that is needed when enciphering the next part of the
input data. When the keyword CONTINUE is used, this is an input/output
parameter; the value received as output from the previous call in the sequence is
provided as input to this call, and this call returns new chainData that is used as
input on the next call.

clearText: Text to be enciphered.

152 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

cipherTextLength: Specifies the maximum number of cipher bytes to return.

optionalData: This value is ignored.
ESAEOutput :: = SEQUENCE {

chainData OCTET STRING,
cipherText OCTET STRING,
cipherTextLength INTEGER,
optionalData OCTET STRING

}

Where,

chainData: Data that is needed when enciphering the next part of the input data.

cipherText: Contains the enciphered data.

cipherTextLength: Specifies the number of bytes returned in cipherText.

optionalData: Reserved.

Symmetric algorithm decipher (CSNESAD) ASN.1 syntaxes
ESADInput ::= SEQUENCE {

keyIdentifier keyIdentifier,
keyParms OCTET STRING,
blockSize INTEGER,
initializationVector OCTET STRING,
chainData OCTET STRING,
cipherText OCTET STRING,
clearTextLength INTEGER,
optionalData OCTET STRING,

}

Where,

keyIdentifier: Specifies an internal secure AES token or the label name of a secure
AES token in the CKDS. Normal CKDS label name syntax is required.

keyParms: This value is ignored.

blockSize: Block size for the cryptographic algorithm.

initializationVector: Contains the initialization vector (IV) for CBC mode
decryption, including the CBC mode that is invoked by using the PKCS-PAD
keyword.

chainData: A buffer that is used as a work area for sequences of chained symmetric
algorithm decipher requests. When the keyword INITIAL is used, this is an output
parameter and receives data that is needed when deciphering the next part of the
input data. When the keyword CONTINUE is used, this is an input/output
parameter; the value received as output from the previous call in the sequence is
provided as input to this call, and this call returns new chainData that is used as
input on the next call.

cipherText: Text to be deciphered.

clearTextLength: Specifies the maximum number of clear bytes to return.

optionalData: This value is ignored.

Chapter 6. Remote crypto plug-in 153

ESADOutput :: = SEQUENCE {
chainData OCTET STRING,
clearText OCTET STRING,
clearTextLength INTEGER,
optionalData OCTET STRING

}

Where,

chainData: Data that is needed when deciphering the next part of the input data.

clearText: Contains the deciphered data.

clearTextLength: Specifies the number of bytes returned in clearText.

optionalData: Reserved.

Encipher (CSNEENC) ASN.1 syntaxes
EENCInput ::= SEQUENCE {

keyIdentifier KeyIdentifier,
clearText OCTET STRING,
initializationVector OCTET STRING,
padCharacter INTEGER (0..255),
chainingVector OCTET STRING,

}

Where,

keyIdentifier: A 64-byte string that is the internal key token containing the
data-encrypting key, or the label of a CKDS record containing the data-encrypting
key, to be used for encrypting the data.

clearText: Text to be enciphered.

initializationVector: The 8-byte supplied string for the cipher block chaining.

padCharacter: An integer, 0 - 255, that is used as a padding character for the
4700-PAD process rule.

chainingVector: An 18-byte field that ICSF uses as a system work area.
EENCOutput :: = SEQUENCE {

keyIdentifier KeyIdentifier,
chainingVector OCTET STRING,
cipherText OCTET STRING,
textLength INTEGER

}

Where,

keyIdentifier: A 64-byte string that is the internal key token containing the
data-encrypting key, or the label of a CKDS record containing the data-encrypting
key, to be used for encrypting the data.

chainingVector: An 18-byte buffer that is used as a work area for sequences of
chained encipher requests. When the keyword INITIAL is used, this is an output
parameter and receives data that is needed when enciphering the next part of the
input data. When the keyword CONTINUE is used, this is an input/output

154 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

parameter; the value received as output from the previous call in the sequence is
provided as input to this call, and this call returns new chainingVector that is
used as input on the next call.

cipherText: Data to be enciphered.

textLength: On entry, you supply the length of the cleartext. See the
MaxCCAInteger for the maximum text length value. A zero value for the
text_length parameter is not valid. If the returned enciphered text (cipherText
parameter) is a different length because of the addition of padding bytes, the value
is updated to the length of the ciphertext.

Decipher (CSNEDEC) ASN.1 syntaxes
EDECInput ::= SEQUENCE {

keyIdentifier KeyIdentifier,
cipherText OCTET STRING,
initializationVector OCTET STRING,
chainingVector OCTET STRING

}

Where,

keyIdentifier: A 64-byte string that is the internal key token containing the
data-encrypting key, or the label of a CKDS record containing a data-encypting
key.

cipherText: Text to be deciphered.

initializationVector: The 8-byte supplied string for the cipher block chaining.

chainingVector: An 18-byte field that ICSF uses as a system work area.
EDECOutput :: = SEQUENCE {

keyIdentifier KeyIdentifier,
chainingVector OCTET STRING,
clearText OCTET STRING,
textLength INTEGER

}

Where,

keyIdentifier: A 64-byte string that is the internal key token containing the
data-encrypting key, or the label of a CKDS record containing a data-encypting
key.

chainingVector: An 18-byte field that ICSF uses as a system work area.

clearText: Field where the callable service returns the deciphered text.

textLength: On entry, you supply the length of the ciphertext. See the
MaxCCAInteger for the maximum length value. A zero value for the text_length
parameter is not valid. If the returned deciphered text (clear_text parameter) is a
different length because of the removal of padding bytes, the value is updated to
the length of the plaintext.

Symmetric key encipher (CSNESYE) ASN.1 syntaxes
ESYEInput ::= SEQUENCE {

keyIdentifier KeyIdentifier,
keyParms OCTET STRING,

Chapter 6. Remote crypto plug-in 155

blockSize INTEGER,
initializationVector OCTET STRING,
chainData OCTET STRING,
clearText OCTET STRING,
cipherTextLength INTEGER,
optionalData OCTET STRING

}

Where,

keyIdentifier: Specifies the cipher key, for the KEY-CLR keyword. The parameter
must be left-aligned. Specifies an internal clear token, or the label name of a clear
key or an encrypted key in the CKDS, for the KEYIDENT keyword. Normal CKDS
label name syntax is required.

keyParms: Specifies the cipher key, for the KEY-CLR keyword. The parameter must
be left-aligned. Specifies an internal clear token, or the label name of a clear key or
an encrypted key in the CKDS, for the KEYIDENT keyword. Normal CKDS label
name syntax is required.

blockSize: The block size for the cryptographic algorithm.

initializationVector: Contains the initialization chaining value. You must use the
same ICV to decipher the data. This parameter is ignored for the ECB processing
rule.

chainData: A buffer that is used as a work area for sequences of chained symmetric
algorithm encipher requests. When the keyword INITIAL is used, this is an output
parameter and receives data that is needed when enciphering the next part of the
input data. When the keyword CONTINUE is used, this is an input/output
parameter; the value received as output from the previous call in the sequence is
provided as input to this call, and this call returns new chainData that is used as
input on the next call.

clearText: Text to be enciphered.

cipherTextLength: Specifies the maximum number of cipher bytes to return.

optionalData: Optional data that is required by a specified algorithm.
ESYEOutput :: = SEQUENCE {

keyParms OCTET STRING,
chainData OCTET STRING,
cipherText OCTET STRING
cipherTextLength INTEGER

}

Where,

keyParms: Contains key-related parameters specific to the encryption algorithm and
processing mode.
v For the CFB-LCFB processing rule, this 1-byte field specifies the segment size in

bytes. Valid values are 1 to the blocksize, inclusive. The blocksize is eight for
DES and 16 for AES.

v For the GCM processing rule, this contains the generated authentication tag for
the provided plaintext (plain_text parameter) and additional authenticated data
(optional_data parameter).

v For all other processing rules, this field is ignored.

156 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

v For the modes where key_parms is used, you must specify the same key_parms
when deciphering the text by using the symmetric key decipher callable service.

chainData: Data that is needed when enciphering the next part of the input data.

cipherText: Contains the enciphered data.

cipherTextLength: Specifies the number of bytes returned in cipherText.

Symmetric key decipher (CSNESYD) ASN.1 syntaxes
ESYDInput ::= SEQUENCE {

keyIdentifier KeyIdentifier
keyParms OCTET STRING,
blockSize INTEGER,
initializationVector OCTET STRING,
chainData OCTET STRING,
cipherText OCTET STRING,
clearTextLength INTEGER,
optionalData OCTET STRING

}

Where,

keyIdentifier: Specifies the cipher key, for the KEY-CLR keyword. The parameter
must be left-aligned. Specifies an internal clear token, or the label name of a clear
key or an encrypted key in the CKDS, for the KEYIDENT keyword. Normal CKDS
label name syntax is required. KEYIDENT is valid with DES and AES.

keyParms: Contains key-related parameters specific to the encryption algorithm and
processing mode.
v For the CFB-LCFB processing rule, this 1-byte field specifies the segment size in

bytes. Valid values are 1 to the block size, inclusive. The block size is eight for
DES and 16 for AES.

v For the GCM processing rule, this contains the authentication tag for the
provided ciphertext (cipher_text parameter) and additional authenticated data
(optional_data parameter).

v For all other processing rules, this field is ignored.
v For the modes where key_parms is used, you must specify the same key_parms

used when enciphering the text by using the symmetric key encipher.

blockSize: Block size for the cryptographic algorithm.

initializationVector: Contains the initialization chaining value. You must use the
same ICV that was used to encipher the data. This parameter is ignored for the
ECB processing rule.

chainData: This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining vector
holds the output chaining vector from the caller. The direction is output if the ICV
selection keyword is INITIAL. This parameter is ignored if the ICV selection
keyword is ONLY. The mapping of the chain_data depends on the algorithm
specified. For AES, the chain_data field must be at least 32 bytes in length. The
OCV is in the first 16 bytes in the chain_data. For DES, chain_data field must be
at least 16 bytes in length.

cipherText: Text to be deciphered.

Chapter 6. Remote crypto plug-in 157

clearTextLength: Specifies the maximum number of clear bytes to return.

optionalData: Optional data that is required by a specified algorithm or processing
mode. For the GCM processing rule, this parameter contains the Additional
Authenticated Data (AAD). For all other processing rules, this field is ignored. You
must specify the same optionalData used when enciphering the text when using
symmetric key encipher.
ESYDOutput :: = SEQUENCE {

chainData OCTET STRING,
clearText OCTET STRING
clearTextLength INTEGER,

}

Where,

chainData: Data that is needed when deciphering the next part of the input data.

cipherText: Contains the deciphered data.

cipherTextLength: Specifies the number of bytes returned in clearText.

Symmetric key management-related remote services
ICSF supports routines for exporting and importing symmetric keys. The
RemoteCryptoCCA extended operation allows the CSNFSYX and CSNFSYI ICSF
callable services to be available for remote invocation.

Symmetric key export (CSNFSYX) ASN.1 syntaxes
FSYXInput ::= SEQUENCE {

sourceKeyIdentifier KeyIdentifier,
transportKeyIdentifier KeyIdentifier,
encipheredKeyLength INTEGER

}

Where,

sourceKeyIdentifier: Specifies the application-supplied label or internal token of a
secure AES DATA (version X'04'), DES DATA, or variable-length symmetric key
token to encrypt under the supplied RSA public key or AES EXPORTER key.

transportKeyIdentifier: Specifies an RSA public key token, AES EXPORTER
token, or label of the key to protect the exported symmetric key.

encipheredKeyLength: Specifies the maximum length of the returned encipheredKey
that can be accepted by the application.
FSYXOutput :: = SEQUENCE {

sourceKeyIdentifier KeyIdentifier,
encipheredKey OCTET STRING
encipheredKeyLength Integer

}

Where,

sourceKeyIdentifier: Specifies the returned source key label or token, as updated
by the service.

158 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

encipheredKey: Specifies the exported key, which is protected by the RSA public or
AES EXPORTER key that is specified in the transporterKeyIdentifier on the
request.

encipheredKeyLength: Specifies the length of the returned encipheredKey.

Symmetric key import (CSNFSYI) ASN.1 syntaxes
FSYIInput ::= SEQUENCE {

RSAEncipheredKey OCTET STRING,
RSAPrivateKeyIdentifier KeyIdentifier,
targetKeyIdentifierLength INTEGER

}

Where,

RSAEncipheredKey: Specifies the key to import, which is protected under an RSA
public key.

RSAPrivateKeyIdentifier: Specifies an RSA private key token or label whose
corresponding public key protects the symmetric key.

targetKeyIdentifierLength: Specifies the maximum length of the returned
targetKeyIdentifier that can be accepted by the application.
FSYIOutput ::= SEQUENCE {

targetKeyIdentifier KeyIdentifier,
targetKeyIdentifierLength INTEGER

}

Where,

targetKeyIdentifier: Specifies the returned internal token of the imported
symmetric key.

targetKeyIdentifierLength: Specifies the maximum length of the returned
targetKeyIdentifier that can be accepted by the application.

Asymmetric key management services
ICSF supports different types of PKA key management routines for building,
generating, importing, and extracting public keys. The RemoteCryptoCCA
extended operation allows the CSNFPKB, CSNFPKG, CSNFPKI, and CSNFPKX
ICSF callable services to be available for remote invocation.

PKA key token build (CSNFPKB) ASN.1 syntaxes
The ICSF asymmetric key management routine, CSNFPKB, builds an external PKA
key token containing unenciphered private RSA, DSS, or ECC keys, or public RSA,
DSS, or ECC keys.
KeyValue ::= CHOICE {
[0] msbKeyValue OCTET STRING
}

Note: When Choice 0 of KEYVALUE is used, all integer values must be in
big-endian order. For example, most significant byte first.

Chapter 6. Remote crypto plug-in 159

FPKBInput ::= SEQUENCE {
keyValue KeyValue,
privateKeyName ASCII STRING,
userDefinableAssociatedData OCTET STRING,
keyTokenLength INTEGER

}

Where,

keyValue: A segment of contiguous storage containing a variable number of input
clear key values and the lengths of these values in bits or bytes, as specified. See
PKA Key Token Build (CSNDPKB and CSNFPKB) in z/OS Cryptographic Services
ICSF Application Programmer's Guide for the CSNFPKB API description. Currently
only choice 0 is supported. All integer values must be in big-endian order.

privateKeyName: Specifies a text string, which contains the name of a private key.

userDefinableAssociatedData: Specifies a string containing the associated data that
is placed after the IBM associated data in the token.

keyTokenLength: Specifies the size of the caller allocated storage to hold the
returned key.
FPKBOutput :: = SEQUENCE {

keyToken OCTET STRING,
keyTokenLength INTEGER (0..3500)

}

Where,

keyToken: Specifies the returned key token.

keyTokenLength: Specifies the size of the returned key.

PKA key generate (CSNFPKG) ASN.1 syntaxes
The ICSF asymmetric key management routine CSNFPKG can generate a PKA key.
The PKA key can be an internal token for use with the DSS algorithm in the digital
signature services, or an RSA key for use on the Cryptographic Coprocessor
Feature, PCI Cryptographic Coprocessor, PCI X Cryptographic Coprocessor, Crypto
Express2 Coprocessor, or Crypto Express3 Coprocessor, or an ECC key for use on
the Crypto Express3 Coprocessor.
FPKGInput ::= SEQUENCE {

regenerationData OCTET STRING,
skeletonKeyIdentifier KeyIdentifier,
transportKeyIdentifier KeyIdentifier,
generatedKeyToken KeyIdentifier

}

Where,

regenerationData: Specifies a string that is used as the basis for creating a
particular public-private key pair in a repeatable manner.

skeletonKeyIdentifier: Specifies either a key token or key label.

transportKeyIdentifier: Specifies a 64-byte label of a CKDS record that contains
the transport key, 64-byte DES internal key token containing the transport key, or a
variable-length AES internal key token containing the transport key.

160 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

generatedKeyToken: Specifies the internal token or label of the generated DSS, ECC,
or RSA key. The label can be like a retained key for most RSA key tokens.
FPKGOutput ::= SEQUENCE {

generatedKeyToken KeyIdentifier,
generatedKeyTokenLength INTEGER

}

Where,

generatedKeyToken: Specifies the internal token or label of the generated DSS, ECC,
or RSA key. The label can be like a retained key for most RSA key tokens.

generatedKeyTokenLength: Specifies the length of the returned generatedKeyToken.

PKA key import (CSNFPKI) ASN.1 syntaxes
The ICSF asymmetric key management routine, CSNFPKI, can be used to import
an external PKA private key token, a clear PKA key, or an external trusted block
token. Output of this service is an ICSF internal token of the RSA, DSS, or ECC
private key or trusted block.
FPKIInput ::= SEQUENCE {

sourceKeyIdentifier KeyIdentifier,
importerKeyIdentifier KeyIdentifier,
targetKeyIdentifier KeyIdentifier

}

Where,

sourceKeyIdentifier: Contains an external token or label of a PKA private key,
without section identifier 0x14 (Trusted Block Information), or the trusted block in
external form as produced by the Trusted Block Create (CSNDTBC and CSNETBC)
service with the ACTIVATE keyword.

importerKeyIdentifier: Specifies a variable-length field containing an AES or DES
key identifier that is used to wrap the imported key.

targetKeyIdentifier: Specifies the internal token or label of the imported PKA
private key or a Trusted Block.
FPKIOutput ::= SEQUENCE {

importerKeyIdentifier KeyIdentifier
targetKeyIdentifier KeyIdentifier,
targetKeyIdentifierLength INTEGER

}

Where,

importerKeyIdentifier: Specifies a variable-length field containing an AES or DES
key identifier that is used to wrap the imported key.

targetKeyIdentifier: Specifies the internal token or label of the imported PKA
private key or a Trusted Block.

targetKeyIdentifierLength: Specifies the length of the returned
targetKeyIdentifier.

PKA key extract (CSNFPKX) ASN.1 syntaxes
The ICSF asymmetric key management routine, CSNFPKX, can be used to extract a
PKA public key token from a supplied PKA internal or external private key token.

Chapter 6. Remote crypto plug-in 161

FPKXInput ::= SEQUENCE {
sourceKeyIdentifier KeyIdentifier,
targetPublicKeyTokenLength INTEGER

}

Where,

sourceKeyIdentifier: Specifies the internal or external token of a PKA private key
or the label of a PKA private key.

targetPublicKeyTokenLength: Specifies the length of the allocated storage to hold
the returned targetPublicKeyToken.
FPKXOutput ::= SEQUENCE {

sourceKeyIdentifier KeyIdentifier,
targetPublicKeyToken OCTET STRING,
targetPublicKeyTokenLength INTEGER

}

Where,

sourceKeyIdentifier: Specifies

targetPublicKeyToken: Specifies the token of the extracted PKA public key.

targetPublicKeyTokenLength: Specifies the length of the returned
targetPublicKeyToken.

PKDS key record management-related remote services
ICSF supports routines for creating, deleting, and reading records in the Public Key
Data Set (PKDS). The RemoteCryptoCCA extended operation allows the
CSNFKRC, CSNFKRD, and CSNFKRR ICSF callable services to be available for
remote invocation.

PKDS key record create (CSNFKRC) ASN.1 syntaxes
FKRCInput ::= SEQUENCE {

label ASCII STRING,
token OCTET STRING

}

Where,

label: Specifies the 64-byte label of the record to be added to the PKDS.

token: Specifies an RSA, DSS, or ECC private token in either external or internal
format, or an RSA, DSS, or ECC public token, or a null token. To store a null
token, encode a zero length octet string in the request.
FKRCOutput ::= NULL

PKDS key record delete (CSNFKRD) ASN.1 syntaxes
FKRDInput ::= label ASCII STRING

Where,

label: Specifies the 64-byte label of the record to be deleted from the PKDS.
FKRDOutput ::= NULL

162 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

PKDS key record read (CSNFKRR) ASN.1 syntaxes
FKRRInput ::= SEQUENCE {

label ASCII STRING,
tokenLength INTEGER

}

Where,

label: Specifies the 64-byte label of the record to be read from the PKDS.

tokenLength: Specifies the maximum length of bytes to return for the output token.
FKRRInput ::= SEQUENCE {

token OCTET STRING,
tokenLength INTEGER

}

Where,

token: Specifies the record that is returned from the PKDS.

tokenLength: Specifies the length of the record that is returned from the PKDS.

Chapter 6. Remote crypto plug-in 163

164 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Part 3. Appendixes

© Copyright IBM Corp. 2008, 2013 165

166 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Appendix A. Plug-in sample

The sample plug-in and its makefile are in /usr/lpp/ldap/examples.

The sample plug-in, /usr/lpp/ldap/examples/plugin_sample.c creates a
post-operation plug-in that logs LDAP server BIND requests and results codes to a
specified file. The specified file is an input parameter to the sample plug-in.

The makefile, /usr/lpp/ldap/examples/makefile.plugin can be used to build
plugin_sample.c.

Steps for building and running a sample plug-in
How to build and run a sample plug-in:
1. Start by creating either a PDS or a PDSE data set with the same attributes as

SYS1.SIEALNKE. A PDSE data set is required when building the plug-in
sample as a 64-bit module.

2. APF authorize the data set created.
3. Ensure that the data set is in the load list for the LDAP server, either through

a STEPLIB statement or the system LNKLST.
4. Edit /usr/lpp/ldap/examples/makefile.plugin and update PLUGSAMP_DLL

with the name of the data set you created. For example:
PLUGSAMP_DLL = "//’GLD.PLUGIN.SIEALNKE(PLUGSAMP)’"

Also, if you are building a 64-bit DLL, set PLUGSAMP_ADDR_MODE to 64.
5. Save makefile.plugin

6. To compile and linkedit the sample plug-in by using the makefile.plugin,
enter make -f makefile.plugin.

7. Verify that no build or link errors occurred. Verify that your data set now
contains the member PLUGSAMP, or a member with the name you updated.

8. Stop the server.
9. Edit the LDAP server configuration file and add the plugin configuration

option to the global section:
plugin postOperation PLUGSAMP plugin_init "logFilename"

where, "logFilename" is the name of the file you want to have the log records
written to, and it must be in double quotation marks.

10. If you are building a 64-bit DLL, then add the plugin configuration option in
the following format:
plugin postOperation PLUGSM31/PLUGSAMP plugin_init "logFilename"

Note: For this 64-bit example, it is assumed PLUGSAMP is the name that is
used when the 64-bit DLL was built, as shown above. The name PLUGSM31
is a place holder name for the plugin configuration option. It can be any
name and no DLL with that name must exist.
See z/OS IBM Tivoli Directory Server Administration and Use for z/OS,
Customizing the LDAP server configuration chapter, for a complete description of
the plugin configuration option and its parameters.

11. Restart the LDAP server.

© Copyright IBM Corp. 2008, 2013 167

If you use the debug parameter PLUGIN, sample plug-in trace messages is
written to the LDAP server job log. For example:
START LDAPSRV,PARMS=’-d PLUGIN’

where, LDAPSRV is an example name and represents the name of your LDAP
server start-up procedure.

When started, browse your LDAP server job log for plug-in initialization and trace
messages. Also, the sample plug-in creates an empty log file. Verify that it was
created.

To test, perform an LDAP operation binding to the LDAP server. The sample
plug-in writes a message to the log including the result code of the bind operation
and the bind DN. For example:
Result: 0 DN: o=your company

See Chapter 2, “Building an LDAP server plug-in,” on page 5 for more information
about building and writing a z/OS LDAP server plug-in.

168 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Appendix B. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 2008, 2013 169

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

170 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix B. Accessibility 171

172 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2008, 2013 173

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

174 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
z/OS IBM Tivoli Directory Server Plug-in Reference for z/OS documents information
that is not intended to be used as Programming Interfaces of z/OS LDAP. This
information is identified where it occurs with an introductory statement to a topic.

z/OS IBM Tivoli Directory Server Client Programming for z/OS primarily documents
intended Programming Interfaces that allow the customer to write programs to
obtain services of z/OS LDAP.

Programming interface information

End Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 175

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

176 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

Index

A
ABANDON request parameters 79
accessibility 169

contact IBM 169
features 169

ADD request parameters 79
assistive technologies 169

B
BIND request parameters 79
Building an LDAP plug-in 5

C
Callback parameters 81, 86
client plug-in 8
common RemoteCryptoCCA ASN.1 encodings

Asymmetric key management services 159
PKA key extract (CSNFPKX) ASN.1 syntaxes 161
PKA key generate (CSNFPKG) ASN.1 syntaxes 160
PKA key import (CSNFPKI) ASN.1 syntaxes 161
PKA key token build (CSNFPKB) ASN.1 syntaxes 159

CKDS key record management ASN.1 syntaxes 149
CKDS key generate (CSNEKGN) ASN.1 syntaxes 150
CKDS key record create (CSNEKRC) ASN.1

syntaxes 149
CKDS key record delete (CSNEKRD) ASN.1

syntaxes 149
CKDS key record read (CSNEKRR) ASN.1

syntaxes 150
CKDS key record write (CSNEKRW) ASN.1

syntaxes 150
CKDS Key token build (CSNEKTB) ASN.1

syntaxes 151
PKDS key record management-related remote services 162

PKDS key record create (CSNFKRC) ASN.1
syntaxes 162

PKDS key record delete (CSNFKRD) ASN.1
syntaxes 162

PKDS key record read (CSNFKRR) ASN.1
syntaxes 163

Symmetric cryptography-related services ASN.1
syntaxes 152

Decipher (CSNEDEC) ASN.1 syntaxes 155
Encipher (CSNEENC) ASN.1 syntaxes 154
Symmetric algorithm decipher (CSNESAD) ASN.1

syntaxes 153
Symmetric algorithm encipher (CSNESAE) ASN.1

syntaxes 152
Symmetric key decipher (CSNESYD) ASN.1

syntaxes 157
Symmetric key encipher (CSNESYE) ASN.1

syntaxes 155
Symmetric key management ASN.1 syntaxes 149

Multiple clear key import (CSNECKM) ASN.1
syntaxes 149

Symmetric key management-related remote services 158
Symmetric key export (CSNFSYX) ASN.1 syntaxes 158
Symmetric key import (CSNFSYI) ASN.1 syntaxes 159

common RemoteCryptoPKCS#11 ASN.1 encodings
General purpose related ASN.1 syntaxes 128

ICSF Query algorithm (CSFIQA) ASN.1 syntaxes 128
ICSF Query facility (CSFIQF) ASN.1 syntaxes 128

ICSF state cleanup ASN.1 syntaxes 127
Key management ASN.1 syntaxes 138

Derive key (CSFPDVK) ASN.1 syntaxes 140
Derive multiple keys (CSFPDMK) ASN.1 syntaxes 138
Generate key pair (CSFPGKP) ASN.1 syntaxes 141
Generate secret key (CSFPGSK) ASN.1 syntaxes 142
Unwrap key (CSFPUWK) ASN.1 syntaxes 142
Wrapped key (CSFPWPK) ASN.1 syntaxes 142

Message digesting ASN.1 syntaxes 133
One-way hash, sign, or verify (CSFPOWH) 133

Object management ASN.1 syntaxes 129
Get attribute value (CSFPGAV) ASN.1 syntaxes 129
Set attribute value (CSFPSAV) ASN.1 syntaxes 129
Token record create (CSFPTRC) ASN.1 syntaxes 130
Token record delete (CSFPTRD) ASN.1 syntaxes 130
Token record list (CSFPTRL) ASN.1 syntaxes 130

Secret key encrypt and secret key decrypt ASN.1
syntaxes 134

Secret key decrypt (CSFPSKD) 134
Secret key encrypt (CSFPSKE) 135

Signing and verifying ASN.1 syntaxes 131
Generate HMAC (CSFPHMG) ASN.1 syntaxes 131
Public key sign (CSFPPKS) ASN.1 syntaxes 132
Public key verify (CSFPPKV) ASN.1 syntaxes 133
Verify HMAC (CSFPHMV) ASN.1 syntaxes 132

Common RemoteCryptoPKCS#11 extended operation error
codes 143

COMPARE request parameters 79

D
DELETE request parameters 79

E
EXTENDED OPERATION request parameters 80
EXTENDED OPERATION result parameters 87

G
General request parameters 77
General result parameters 82, 87

I
ICTX plug-in 101

configuring the ICTX plug-in 101
remote audit controls 114
remote auditing requests

remote auditing extended operation 108
remote authorization audit controls 108
remote authorization extended operation response

codes 105
remote authorization requests

remote authorization extended operation 103

© Copyright IBM Corp. 2008, 2013 177

ICTX plug-in (continued)
Setting up authorization

working with remote services 102
SMF Record Type 83 subtype 4 records 114
using remote authorization and auditing 101

interface
programming interface information 175

Internal request result parameters 82
Introduction 3

K
keyboard

navigation 169
PF keys 169
shortcut keys 169

M
MODIFY DN request parameters 80
MODIFY request parameters 80

N
navigation

keyboard 169
Notices 173

O
Operation plug-in 7
Operational parameters 76, 85

P
Plug-in sample 167
Plug-in supported APIs

APIs 11
post-operation plug-in 7
pre-operation plug-in 7
programming interface information 175

R
Registration parameters 84
Remote auditing extended operation response codes 111
remote crypto plug-in 117

common RemoteCryptoCCA ASN.1 encodings 148
common RemoteCryptoPKCS#11 ASN.1 encodings 126
configuring remote crypto plug-in 117
ICSF callable services support

RemoteCryptoCCA extended operation 143
RemoteCryptoPKCS#11 extended operation 119

RemoteCryptoCCA extended operation
request values 143
response values 147

RemoteCryptoPKCS#11 extended operation
request values 119
response values 123

setting up authorization
ICSF callable services 118
PKCS #11 tokens and objects 119

routines 14
slapi_add_internal() 12

routines (continued)
slapi_attr_get_numvalues() 15
slapi_attr_get_type() 16
slapi_attr_get_values() 17
slapi_attr_value_cmp() 18
slapi_ch_calloc() 19
slapi_ch_free_values() 21
slapi_ch_free() 20
slapi_ch_malloc() 22
slapi_ch_realloc() 23
slapi_ch_strdup() 24
slapi_compare_internal() 25
slapi_control_present() 26
slapi_delete_internal() 27
slapi_dn_ignore_case_v3() 28
slapi_dn_isparent() 30
slapi_dn_normalize_case_v3() 33
slapi_dn_normalize_v3() 31
slapi_entry_add_value() 35
slapi_entry_add_values() 37
slapi_entry_alloc() 39
slapi_entry_attr_delete() 40
slapi_entry_attr_find() 41
slapi_entry_delete_value() 42
slapi_entry_delete_values() 43
slapi_entry_dup() 44
slapi_entry_first_attr() 45
slapi_entry_free() 46
slapi_entry_get_dn() 47
slapi_entry_merge_value() 48
slapi_entry_merge_values() 50
slapi_entry_next_attr() 52
slapi_entry_replace_value() 53
slapi_entry_replace_values() 54
slapi_entry_schema_check() 55
slapi_entry_set_dn() 57
slapi_filter_get_attribute_type() 58
slapi_filter_get_ava() 59
slapi_filter_get_choice() 61
slapi_filter_get_subfilt() 62
slapi_filter_list_first() 64
slapi_filter_list_next() 65
slapi_get_message_np() 66
slapi_isSDBM_authenticated() 67
slapi_log_error() 68
slapi_modify_internal() 70
slapi_modrdn_internal() 72
slapi_op_abandoned() 74
slapi_pblock_destroy() 75
slapi_pblock_get() 76
slapi_pblock_set() 84
slapi_search_internal() 88
slapi_send_ldap_referral() 90
slapi_send_ldap_result() 92
slapi_send_ldap_search_entry() 94
slapi_trace() 96

S
SEARCH request parameters 80
sending comments to IBM ix
shortcut keys 169
slapi_add_internal 12
slapi_attr_get_normalized_values 14
slapi_attr_get_numvalues 15
slapi_attr_get_type 16
slapi_attr_get_values 17

178 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

slapi_attr_value_cmp 18
slapi_ch_calloc 19
slapi_ch_free 20
slapi_ch_free_values 21
slapi_ch_malloc 22
slapi_ch_realloc 23
slapi_ch_strdup 24
slapi_compare_internal 25
slapi_control_present 26
slapi_delete_internal 27
slapi_dn_ignore_case_v3 28
slapi_dn_isparent() 30
slapi_dn_normalize_case_v3 33
slapi_dn_normalize_v3 31
slapi_entry_add_value 35
slapi_entry_add_values 37
slapi_entry_alloc 39
slapi_entry_attr_delete 40
slapi_entry_attr_find 41
slapi_entry_delete_value 42
slapi_entry_delete_values 43
slapi_entry_dup 44
slapi_entry_first_attr 45
slapi_entry_free 46
slapi_entry_get_dn 47
slapi_entry_merge_value 48
slapi_entry_merge_values 50
slapi_entry_next_attr 52
slapi_entry_replace_value 53
slapi_entry_replace_values 54
slapi_entry_schema_check 55
slapi_entry_set_dn 57
slapi_filter_get_attribute_type 58
slapi_filter_get_ava 59
slapi_filter_get_choice 61
slapi_filter_get_subfilt 62
slapi_filter_list_first 64
slapi_filter_list_next 65
slapi_get_message_np 66
slapi_isSDBM_authenticated 67
slapi_log_error 68
slapi_modify_internal 70
slapi_modrdn_internal 72
slapi_op_abandoned 74
slapi_pblock_destroy 75
slapi_pblock_get 76
slapi_pblock_set 84
slapi_search_internal 88
slapi_send_ldap_referral 90
slapi_send_ldap_result 92
slapi_send_ldap_search_entry 94
slapi_trace 96
Summary of changes xi

T
trademarks 175

U
user interface

ISPF 169
TSO/E 169

Index 179

180 z/OS V2R1.0 IBM Tivoli Directory Server Plug-in Reference for z/OS

����

Product Number: 5650-ZOS

Printed in USA

SA76-0169-00

	Contents
	Tables
	About this document
	Intended audience
	Conventions used in this document
	Where to find more information
	Internet sources

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Part 1. Writing your own plug-in
	Chapter 1. Introduction to server plug-ins
	Chapter 2. Building an LDAP server plug-in
	Steps for writing an IBM TDS for z/OS plug-in

	Chapter 3. Operation plug-ins
	Pre-operation plug-ins
	Post-operation plug-ins
	Client-operation plug-ins

	Chapter 4. Plug-in application service routines
	slapi_add_internal()
	slapi_attr_get_normalized_values()
	slapi_attr_get_numvalues()
	slapi_attr_get_type()
	slapi_attr_get_values()
	slapi_attr_value_cmp()
	slapi_ch_calloc()
	slapi_ch_free()
	slapi_ch_free_values()
	slapi_ch_malloc()
	slapi_ch_realloc()
	slapi_ch_strdup()
	slapi_compare_internal()
	slapi_control_present()
	slapi_delete_internal()
	slapi_dn_ignore_case_v3()
	slapi_dn_isparent()
	slapi_dn_normalize_v3()
	slapi_dn_normalize_case_v3()
	slapi_entry_add_value()
	slapi_entry_add_values()
	slapi_entry_alloc()
	slapi_entry_attr_delete()
	slapi_entry_attr_find()
	slapi_entry_delete_value()
	slapi_entry_delete_values()
	slapi_entry_dup()
	slapi_entry_first_attr()
	slapi_entry_free()
	slapi_entry_get_dn()
	slapi_entry_merge_value()
	slapi_entry_merge_values()
	slapi_entry_next_attr()
	slapi_entry_replace_value()
	slapi_entry_replace_values()
	slapi_entry_schema_check()
	slapi_entry_set_dn()
	slapi_filter_get_attribute_type()
	slapi_filter_get_ava()
	slapi_filter_get_choice()
	slapi_filter_get_subfilt()
	slapi_filter_list_first()
	slapi_filter_list_next()
	slapi_get_message_np()
	slapi_isSDBM_authenticated()
	slapi_log_error()
	slapi_modify_internal()
	slapi_modrdn_internal()
	slapi_op_abandoned()
	slapi_pblock_destroy()
	slapi_pblock_get()
	slapi_pblock_set()
	slapi_search_internal()
	slapi_send_ldap_referral()
	slapi_send_ldap_result()
	slapi_send_ldap_search_entry()
	slapi_trace()

	Part 2. IBM TDS for z/OS provided plug-ins
	Chapter 5. ICTX plug-in
	Configuring the ICTX plug-in
	Using remote authorization and audit
	Setting up authorization for working with remote services
	Remote authorization extended operation
	Remote authorization extended operation response codes
	Remote authorization audit controls

	Remote auditing extended operation
	Remote auditing extended operation response codes
	Remote audit controls
	SMF Record Type 83 subtype 4 records

	Chapter 6. Remote crypto plug-in
	Configuring the remote crypto plug-in
	Setting up authorization to ICSF callable services
	Setting up authorization to PKCS #11 tokens and objects
	ICSF callable services supported by the RemoteCryptoPKCS#11 extended operation
	Common ASN.1 encodings used by the RemoteCryptoPKCS#11 extended operation
	ICSF state cleanup ASN.1 syntaxes
	General purpose-related ASN.1 syntaxes
	ICSF Query facility (CSFIQF) ASN.1 syntaxes
	ICSF Query algorithm (CSFIQA) ASN.1 syntaxes

	Object management ASN.1 syntaxes
	Get attribute value (CSFPGAV) ASN.1 syntaxes
	Set attribute value (CSFPSAV) ASN.1 syntaxes
	Token record create (CSFPTRC) ASN.1 syntaxes
	Token record delete (CSFPTRD) ASN.1 syntaxes
	Token record list (CSFPTRL) ASN.1 syntaxes

	Signing and verifying ASN.1 syntaxes
	Generate HMAC (CSFPHMG) ASN.1 syntaxes
	Verify HMAC (CSFPHMV) ASN.1 syntaxes
	Public key sign (CSFPPKS) ASN.1 syntaxes
	Public key verify (CSFPPKV) ASN.1 syntaxes

	Message digesting ASN.1 syntaxes
	One-way hash, sign, or verify (CSFPOWH) ASN.1 syntaxes

	Secret key encrypt and secret key decrypt ASN.1 syntaxes
	Secret key decrypt (CSFPSKD) ASN.1 syntaxes
	Secret key encrypt (CSFPSKE) ASN.1 syntaxes
	CSFPSKD and CSFPSKE rule array reference

	Key management ASN.1 syntaxes
	Derive multiple keys (CSFPDMK) ASN.1 syntaxes
	Derive key (CSFPDVK) ASN.1 syntaxes
	Generate key pair (CSFPGKP) ASN.1 syntaxes
	Generate secret key (CSFPGSK) ASN.1 syntaxes
	Unwrap key (CSFPUWK) ASN.1 syntaxes
	Wrapped key (CSFPWPK) ASN.1 syntaxes

	Common RemoteCryptoPKCS#11 extended operation error codes
	ICSF callable services supported by the RemoteCryptoCCA extended operation
	Common ASN.1 encodings used by the RemoteCryptoCCA extended operation
	Symmetric key management ASN.1 syntaxes
	Multiple clear key import (CSNECKM) ASN.1 syntaxes

	CKDS key record management ASN.1 syntaxes
	CKDS key record create (CSNEKRC) ASN.1 syntaxes
	CKDS key record delete (CSNEKRD) ASN.1 syntaxes
	CKDS key record read (CSNEKRR) ASN.1 syntaxes
	CKDS key record write (CSNEKRW) ASN.1 syntaxes
	CKDS key generate (CSNEKGN) ASN.1 syntaxes
	CKDS Key token build (CSNEKTB) ASN.1 syntaxes

	Symmetric cryptography-related services
	Symmetric algorithm encipher (CSNESAE) ASN.1 syntaxes
	Symmetric algorithm decipher (CSNESAD) ASN.1 syntaxes
	Encipher (CSNEENC) ASN.1 syntaxes
	Decipher (CSNEDEC) ASN.1 syntaxes
	Symmetric key encipher (CSNESYE) ASN.1 syntaxes
	Symmetric key decipher (CSNESYD) ASN.1 syntaxes

	Symmetric key management-related remote services
	Symmetric key export (CSNFSYX) ASN.1 syntaxes
	Symmetric key import (CSNFSYI) ASN.1 syntaxes

	Asymmetric key management services
	PKA key token build (CSNFPKB) ASN.1 syntaxes
	PKA key generate (CSNFPKG) ASN.1 syntaxes
	PKA key import (CSNFPKI) ASN.1 syntaxes
	PKA key extract (CSNFPKX) ASN.1 syntaxes

	PKDS key record management-related remote services
	PKDS key record create (CSNFKRC) ASN.1 syntaxes
	PKDS key record delete (CSNFKRD) ASN.1 syntaxes
	PKDS key record read (CSNFKRR) ASN.1 syntaxes

	Part 3. Appendixes
	Appendix A. Plug-in sample
	Steps for building and running a sample plug-in

	Appendix B. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	B
	C
	D
	E
	G
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U

