
z/OS

IBM Tivoli Directory Server Client
Programming for z/OS
Version 2 Release 2

SA23-2295-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 311.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Acknowledgements

Some of the material contained in this document is a derivative of LDAP documentation provided with the
University of Michigan LDAP reference implementation (Version 3.3). Copyright©1992-1996, Regents of the
University of Michigan.

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by NEC Systems Laboratory.

© Copyright IBM Corporation 1999, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables v

About this document vii
Intended audience vii
Conventions used in this document vii
Where to find more information vii

Internet sources vii

How to send your comments to IBM . . ix
If you have a technical problem. ix

z/OS Version 2 Release 2 summary of
changes for IBM Tivoli Directory Server
Client Programming for z/OS xi
Summary of changes for z/OS Version 2 Release 1 xi

Chapter 1. LDAP programming 1
How LDAP is defined 1

Current RFCs 1
Draft RFCs 2
Superseded RFCs 2

Data model 2
LDAP names 2
Function overview 3
ASCII support 3
Compiling, linking, and running a program 4

Rules 4
Using TSO and batch jobs 4

Using the API 4
Basic structure 5

Authentication methods 5
Performing an operation 6

Adding an entry 6
Modifying an entry 7
Deleting an entire entry. 8
Changing the RDN of an entry and relocating the
entry 8
Comparing an attribute value with its value in an
entry in the directory 8
Reading a directory entry's contents 9
Listing the objectClass attribute values for all
entries directly below a given entry. 9
Reading the objectClass attribute values for all
entries below a given entry 9

Getting results 9
Referrals 10

Using LDAP Version 2 referrals 11
Using LDAP Version 3 referrals 11
Rebinding while following referrals 12

Error processing 13
Using ldap_get_lderrno() 14
Using ldap_get_errno() and ldap_parse_result() 14
Using ldap_err2string() and ldap_get_option() . . 14

Using ldap_parse_pwdpolicy_response() and
ldap_pwdpolicy_err2string() 15

LDAP controls 15
Session controls 16
Supported client controls 16

Using RACF data 19
Thread safety 19
Client-side search results caching 20
Synchronous versus asynchronous operation . . . 20
Calling the LDAP APIs from other languages . . . 21
LDAP client for Java 21

Chapter 2. LDAP routines. 23
ldap_abandon(), ldap_abandon_ext() 30
ldap_add(), ldap_add_s(), ldap_add_ext(),
ldap_add_ext_s() 32
ldap_add_control() 36
ldap_berfree_np() 37
ldap_compare(), ldap_compare_s(),
ldap_compare_ext(), ldap_compare_ext_s() 38
ldap_control_free() 42
ldap_controls_free(). 43
ldap_convert_local_np() 44
ldap_convert_utf8_np() 45
ldap_count_attributes() 46
ldap_count_entries() 47
ldap_count_messages() 48
ldap_count_references() 49
ldap_count_values() 50
ldap_count_values_len() 51
ldap_create_page_control() 52
ldap_create_persistentsearch_control() 55
ldap_create_sort_control(). 57
ldap_create_sort_keylist() 59
ldap_delete(), ldap_delete_s(), ldap_delete_ext(),
ldap_delete_ext_s() 61
ldap_dn2ufn() 64
ldap_dn2ufn_np() 65
ldap_enetwork_domain_get() 66
ldap_enetwork_domain_set() 68
ldap_err2string(). 70
ldap_explode_dn() 71
ldap_explode_dn_np() 73
ldap_explode_rdn() 75
ldap_extended_operation(),
ldap_extended_operation_s() 76
ldap_first_attribute() 79
ldap_first_entry() 81
ldap_first_message() 82
ldap_first_reference() 83
ldap_free_dndesc_np(). 84
ldap_free_sort_keylist() 85
ldap_free_urldesc() 86
ldap_get_dn(). 87
ldap_get_entry_controls_np() 88

© Copyright IBM Corp. 1999, 2015 iii

ldap_get_errno() 89
ldap_get_function_vector() 90
ldap_get_lderrno() 92
ldap_get_option() 93
ldap_get_values() 105
ldap_get_values_len(). 106
ldap_init() 107
ldap_insert_control() 110
ldap_is_ldap_url() 111
ldap_is_ldap_url_np() 112
ldap_memcache_destroy() 113
ldap_memcache_flush() 114
ldap_memcache_get(). 116
ldap_memcache_init() 117
ldap_memcache_set() 119
ldap_memcache_update() 120
ldap_memfree(). 121
ldap_modify(), ldap_modify_s(), ldap_modify_ext(),
ldap_modify_ext_s() 122
ldap_mods_free() 126
ldap_msgfree() 127
ldap_msgid() 128
ldap_msgtype(). 129
ldap_next_attribute() 130
ldap_next_entry() 131
ldap_next_message() 132
ldap_next_reference() 133
ldap_parse_entrychange_control() 134
ldap_parse_extended_result() 136
ldap_parse_page_control() 138
ldap_parse_pwdpolicy_response() 140
ldap_parse_reference_np() 142
ldap_parse_result() 144
ldap_parse_sasl_bind_result() 146
ldap_parse_sort_control() 147
ldap_pwdpolicy_err2string() 149
ldap_remove_control() 150
ldap_rename(), ldap_rename_s() 151
ldap_result(). 154
ldap_sasl_bind(), ldap_sasl_bind_s() 157
ldap_search(), ldap_search_s(), ldap_search_st(),
ldap_search_ext(), ldap_search_ext_s() 164
ldap_server_conf_save() 172
ldap_server_free_list() 174
ldap_server_locate() 175
ldap_set_option(), ldap_set_option_np() 182
ldap_set_rebind_proc() 195
ldap_simple_bind(), ldap_simple_bind_s() 196
ldap_ssl_client_init() 198
ldap_ssl_init() 200
ldap_start_tls_s_np() 203
ldap_stop_tls_s_np() 205
ldap_unbind(), ldap_unbind_s() 206
ldap_url_parse() 207
ldap_url_parse_np() 210
ldap_url_search(), ldap_url_search_s(),
ldap_url_search_st() 212
ldap_value_free() 216
ldap_value_free_len() 217

ldap_version() 218

Chapter 3. Deprecated LDAP routines 221
ldap_bind(), ldap_bind_s() 222
ldap_modrdn(), ldap_modrdn_s(). 224
ldap_open() 226
ldap_perror() 229
ldap_result2error(). 230
ldap_ssl_start() 231

Chapter 4. Using the LDAP client . . . 235
LDAP client environment variables 235
Using SSL and TLS protected communications . . 238
Using the socksified client 240
Enabling tracing 242
Name resolver configuration file 244
LDAP server information file 246

Example of a server information file. 248
Publishing LDAP server information in DNS . . . 248

Using SRV and TXT records 249
Using TXT records to emulate SRV records . . 252
Using CNAME records 252
ldap_server_locate() usage by ldap_init() and
ldap_ssl_init() 253

Chapter 5. LDAP client utilities 255
Running the LDAP client utilities in the z/OS shell 255
Running the LDAP client utilities in TSO 255
Using the LDAP client utilities 256
Specifying a value for a file name 258
SSL/TLS information for LDAP client utilities . . 259

Using RACF key rings 259
Using PKCS #11 tokens 260
SSL initialization failure 260
Using environment variables to control SSL/TLS
settings 262

ldapchangepwd utility 264
ldapcompare utility 268
ldapdelete utility 272
ldapmodify and ldapadd utilities 276
ldapmodrdn utility 291
ldapsearch utility 296

Appendix. Accessibility 307
Accessibility features 307
Consult assistive technologies 307
Keyboard navigation of the user interface 307
Dotted decimal syntax diagrams 307

Notices 311
Policy for unsupported hardware. 312
Minimum supported hardware 313
Programming interface information 313
Trademarks 313

Index 315

iv z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Tables

1. Summary of the current LDAP routines 23
2. How ldap_get_option values are returned 93
3. SSL V3 and TLS V1.0 cipher suites 101
4. How to specify options for the

ldap_set_option and ldap_set_option_np
routines 182

5. LDAP debug levels 244
6. Names for running LDAP client utilities from

TSO. 256

7. SSL failure reason codes 260
8. ldapchangepwd options 264
9. ldapcompare options 268

10. ldapdelete options 272
11. ldapmodify and ldapadd options 276
12. ldapmodrdn options 291
13. ldapsearch options 296

© Copyright IBM Corp. 1999, 2015 v

vi z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

About this document

This document describes the Lightweight Directory Access Protocol (LDAP) client
application, which is part of IBM® Tivoli® Directory Server for z/OS®, and
supports z/OS (5650-ZOS).

Intended audience
This document is intended for application programmers. Application programmers
should be experienced and have previous knowledge of directory services.

Conventions used in this document
This document uses the following typographic conventions:

Bold Bold words or characters represent API names, functions, routines, utility
names, and system elements that you must enter into the system literally,
such as commands and options.

Italic Italic words or characters represent variables for which you must supply
values.

Example font
Path names, attributes, environment variables, parameter values, examples,
and information displayed by the system appear in constant width type
style.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non-blank
character on the line to be continued, and continue the command on the
next line.

Where to find more information
When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS V2R2 Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Internet sources
The following resources are available through the internet to provide additional
information about the z/OS library and other security-related topics:

© Copyright IBM Corp. 1999, 2015 vii

http://www.ibm.com/systems/z/os/zos/bkserv/

v Online library

To view and print online versions of the z/OS publications, use this address:
http://www.ibm.com/systems/z/os/zos/bkserv/

v Redbooks®

The documents known as IBM Redbooks that are produced by the International
Technical Support Organization (ITSO) are available at the following address:
http://www.redbooks.ibm.com

Preface

viii z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/redbooks

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS
SA23-2295-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/

systems/support/z/zos/).

© Copyright IBM Corp. 1999, 2015 ix

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

x z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

z/OS Version 2 Release 2 summary of changes for IBM Tivoli
Directory Server Client Programming for z/OS

The following changes are made to z/OS Version 2 Release 2 (V2R2).

Changed
v The -L option is updated for the “ldapsearch utility” on page 296. See Table 13

on page 296.
v LDAP routine, “ldap_ssl_client_init()” on page 198, is updated to indicate that

LDAP no longer supports SSL V2 protocol and that SSL V3, TLS V1.0, TLS V1.1,
and TLS V1.2 protocols are supported.

v Deprecated LDAP routine, “ldap_ssl_start()” on page 231, is updated to indicate
that LDAP no longer supports SSL V2 protocol and that SSL V3, TLS V1.0, TLS
V1.1, and TLS V1.2 protocols are supported.

v “Using environment variables to control SSL/TLS settings” on page 262 is
updated to indicate that LDAP no longer supports SSL V2 protocol and that SSL
V3, TLS V1.0, TLS V1.1, and TLS V1.2 protocols are supported.

Summary of changes for z/OS Version 2 Release 1
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS V2R2 Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS V2R2 Introduction and Release Guide

© Copyright IBM Corp. 1999, 2015 xi

xii z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Chapter 1. LDAP programming

The Lightweight Directory Access Protocol (LDAP) was defined in response to
many complaints about the complexity of interacting with an X.500 Directory
Service using the full Directory Access Protocol (DAP). A number of programmers
at the University of Michigan proposed and implemented a lightweight version of
a directory access protocol. This work has grown into what is termed the LDAP
protocol.

The LDAP support in z/OS is for client access to Directory Services that accept the
LDAP protocol. The LDAP client allows programs running on z/OS UNIX System
Services to store and extract information into and from a Directory Service. The
LDAP server can be used to store and extract information about z/OS using the
LDAP protocol. For more information, see z/OS IBM Tivoli Directory Server
Administration and Use for z/OS.

How LDAP is defined
The LDAP protocol is defined by a number of Internet Engineering Task Force
(IETF) request for comments (RFCs).

Current RFCs
The z/OS LDAP client supports all or parts of the following Internet Engineering
Task Force (IETF) request for comments (RFCs):
v RFC 1738: Uniform Resource Locators (URL)

v RFC 1823: The LDAP Application Program Interface

v RFC 1928: SOCKS Protocol Version 5

v RFC 1929: Username/Password Authentication for SOCKS V5

v RFC 2052: A DNS RR for specifying the location of services (DNS SRV)

v RFC 2195: IMAP/POP AUTHorize Extension for Simple Challenge/Response

v RFC 2222: Simple Authentication and Security Layer (SASL)

v RFC 2251: Lightweight Directory Access Protocol (v3)

v RFC 2252: Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions

v RFC 2253: Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names

v RFC 2254: The String Representation of LDAP Search Filters

v RFC 2255: The LDAP URL Format

v RFC 2256: A Summary of the X.500 (96) User Schema for use with LDAPv3

v RFC 2373: IP Version 6 Addressing Architecture

v RFC 2696: LDAP Control Extension for Simple Paged Results Manipulation

v RFC 2732: Format for Literal IPv6 Addresses in URLs

v RFC 2829: Authentication Methods for LDAP

v RFC 2830: Lightweight Directory Access Protocol (v3): Extension for Transport Layer
Security

v RFC 2831: Using Digest Authentication as a SASL Mechanism

v RFC 2849: The LDAP Data Interchange Format (LDIF)

v RFC 2891: LDAP Control Extension for Server Side Sorting of Search Results

© Copyright IBM Corp. 1999, 2015 1

http://www.rfc-editor.org/rfc/pdfrfc/rfc1738.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1823.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1928.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1929.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2195.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2222.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2251.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2252.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2254.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2255.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2256.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2373.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2696.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2732.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2829.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2830.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2830.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2831.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2849.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2891.txt.pdf

Draft RFCs
The z/OS LDAP client supports all or parts of the following request for comment
(RFC) draft:
v Password Policy for LDAP directories

Superseded RFCs
The following obsolete RFCs were implemented by the z/OS LDAP client and
server but have been superseded by current RFCs:
v RFC 1777: Lightweight Directory Access Protocol

v RFC 1778: The String Representation of Standard Attribute Syntaxes

v RFC 1779: A String Representation of Distinguished Names

v RFC 1959: An LDAP URL Format

v RFC 1960: A String Representation of LDAP Search Filters

Data model
The LDAP data model is closely aligned with the X.500 data model. In this model,
a Directory Service provides a hierarchically organized set of entries. Each of these
entries is represented by an object class (or set of object classes). The object class of
the entry determines the set of attributes that are required to be present in the entry
including the set of attributes that can optionally appear in the entry. An attribute
is represented by an attribute type and one or more attribute values. In addition to
the attribute type and values, each attribute has an associated syntax that describes
the type of the attribute values. Examples of attribute syntaxes include Directory
String and Octet String.

To summarize, the directory is made up of entries. Each entry contains a set of
attributes. These attributes can be single or multi-valued (have one or more values
that are associated with them). The object class of an entry determines the set of
attributes that must and the set of attributes that might exist in the entry.

In XDS/XOM, a complex set of arrays of structures is used to represent a directory
entry. In LDAP, this is simplified. With the LDAP API, a set of C language utility
routines is used to extract attribute type and value information from directory
entry information that is returned from an LDAP search operation. Unlike
XDS/XOM, attribute values are provided to the calling program in either
null-terminated character string form or in a simple structure that specifies a
pointer and a length value. Furthermore, attribute types are provided to the
program as null-terminated character strings instead of object identifiers.

LDAP names
The LDAP protocol and APIs use typed names to identify directory entries. In
contrast, the Domain Name Service (DNS) uses untyped names to identify entries.
Each directory entry is identifiable by its fully distinguished name. The
distinguished name (DN) is constructed by concatenating the relative distinguished
names (RDNs) of each entry in the directory hierarchy leading from the root of the
namespace to the entry itself. This is identical to the X.500 naming model. With
LDAP, however, a distinguished name is specified using a null-terminated
character string instead of a complex set of nested arrays of XOM structures. Note
that an RDN can consist of multiple attribute type/value pairs.

Examples of LDAP RDNs include:

2 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc1777.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1778.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1779.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1959.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1960.txt.pdf

c=US
o=Acme International
ou=Marketing+l=Virginia
cn=Jane Doe

The LDAP format for this DN is:
cn=Jane Doe, ou=Marketing+l=Virginia, o=Acme International, c=US

An LDAP DN is specified as a null-terminated character string in a right-to-left
fashion (right-to-left refers to the ordering of RDNs from highest to lowest in the
directory hierarchy). Note that embedded spaces are taken as part of the attribute
value for RDNs and do not require quotation marks. Also, note that RDNs are
separated by commas (,) and attribute type/value pairs within an RDN are
separated by plus (+) signs. (See RFC 2253: UTF-8 String Representation of
Distinguished Names for more information.)

Function overview
The LDAP client API is provided in a C DLL that is loaded at run time by
applications using the LDAP API. The DLL that externalizes the LDAP
programming interfaces is called GLDCLDAP for 31-bit applications and
GLDCLD64 for 64-bit applications. The DLL can be loaded into LPA, specified in
the link list, or included in the STEPLIB for the job. The LDAP API consists of C
language functions.

All function names begin with the prefix ldap_. Synchronous versions of the APIs
have a suffix of _s, for example, ldap_add_s(). The _np suffix indicates that the
API is non-portable. That is, the API is not defined in an RFC and might not be
available with other LDAP implementations. The _ext suffix indicates that the API
is an enhanced version of an existing API. For example, ldap_search_ext() is an
enhanced version of ldap_search().

For detailed information about each LDAP API, see Chapter 2, “LDAP routines,”
on page 23 and Chapter 3, “Deprecated LDAP routines,” on page 221.

ASCII support
EBCDIC is the default for the LDAP client run time. In EBCDIC mode, all text data
is in the local EBCDIC code page. Text data for requests that are sent to the LDAP
server is converted from EBCDIC to UTF-8 and text data that is received from the
LDAP server is converted from UTF-8 to EBCDIC. The EBCDIC code page is based
on the value that is specified for the setlocale() API routine. The IBM-1047 code
page is used if the application does not call setlocale() to set the current locale.

UTF-8 I/O mode is set by calling the ldap_set_option() or ldap_set_option_np()
routine and turning on the LDAP_OPT_UTF8_IO option. In this mode, text data for
LDAP client operations is in UTF-8. This data includes host names, user names,
passwords, and error messages. Text data for requests that are sent to the LDAP
server is assumed to be in UTF-8 and is not converted. Similarly, text data that is
received from the LDAP server is returned to the application in UTF-8.

Native ASCII mode is set by defining the LDAP_LIBASCII compiler variable before
including the ldap.h header file. In this mode, all text data is in UTF-8. This
includes text data for LDAP client operations, and data sent to the LDAP server or
received from the LDAP server. When the LDAP_LIBASCII compiler variable is
defined, the LDAP_OPT_UTF8_IO option is automatically set whenever an LDAP

Chapter 1. LDAP programming 3

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

handle is created. Note the interfaces between the LDAP client run time and the
underlying operating system routines use EBCDIC. This means that the UTF-8 text
data for LDAP client operations must not contain any characters that cannot be
represented in the local EBCDIC code page.

Compiling, linking, and running a program
The LDAP API is supplied in a C DLL that is loaded at program run time,
enabling a program to call the functions of the interface. The following rules apply
to compiling and link-editing programs that use the LDAP API.

Rules
1. Include the ldap.h header file in all C or C++ source files that make calls to the

LDAP API. If you use SSL/TLS, you must include the ldapssl.h include file
after the ldap.h include file.

2. When compiling, specify -Wc,DLL on the compile of all modules that make calls
to the LDAP API.

3. When linking the program, specify -Wl,DLL and include an LDAP sidefile as
one of the files to be linked with the program. The LDAP sidefiles are:
v /usr/lib/GLDCLDAP.x for 31-bit applications
v /usr/lib/GLDCLD64.x for 64-bit applications

4. Ensure that your application has POSIX(ON) so it can use the LDAP API.
5. When running the program, ensure that the LDAP DLL is accessible. The DLL

is supplied in the SYS1.SIEALNKE data set.
v The 31-bit DLL is GLDCLDAP.
v The 64-bit DLL is GLDCLD64.

6. Call the setlocale() routine to set the current locale before the first call to an
LDAP API.

7. If you are using SSL/TLS or Kerberos authentication, you must use the
SYS1.SIEALNKE data set.

Makefile and README files are shipped in /usr/lpp/ldap/examples to explain
how to build the LDAP sample applications. You might be able to use this
information as a base for building your LDAP application.

Using TSO and batch jobs
If you are using TSO and batch jobs to compile, link, and run LDAP client
applications, you must be aware of the following additional information:
v Data set GLDHLQ.SGLDHDRC contains the LDAP header files.
v Data set GLDHLQ.SGLDEXPC contains the sidefiles.
v POSIX(ON) must be specified as a runtime option because the default for this

environment is POSIX(OFF).

Using the API
Using the LDAP programming interface is relatively easy compared to using the
XDS/XOM programming interface. Where the XDS/XOM interfaces required
setting up some complex nested arrays of XOM structures, many of the parameters
for LDAP APIs are simplified to null-terminated character strings. The following
sections describe each of the basic parts of a program that uses the LDAP
programming interface.

4 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Basic structure
The basic structure of a program that uses the LDAP programming interface is the
following:
1. Before initialization, SIGPIPE signals should be set to be ignored or a signal

handler should be defined. TCP/IP functions can cause SIGPIPE signals. When
the signal is ignored, TCP/IP reflects the signal as an EPIPE error for the
TCP/IP functions.

2. Initialize the LDAP programming interface and the connection to the directory
server that accepts the LDAP protocol using ldap_init().

3. Bind to the Directory Service to establish an identity with the directory server
by using ldap_simple_bind(), ldap_simple_bind_s(), ldap_sasl_bind(), or
ldap_sasl_bind_s().

4. Perform LDAP operations such as add, modify, delete, compare, and search.
5. When all LDAP operations are completed, unbind the LDAP programming

interface using ldap_unbind() or ldap_unbind_s().

Note:

a. ldap_unbind_s() is identical in function to ldap_unbind() and is provided
as a convenience for those programs that do only synchronous operations
so that the unbind does not appear to be an asynchronous operation. All
unbind operations are synchronous.

b. After the ldap_unbind() or ldap_unbind_s() function returns, the LDAP
handle that was returned by ldap_init() is no longer valid and must not be
used.

c. To terminate the connection with an LDAP server, it is necessary to unbind,
regardless of whether an explicit bind was done.

It is acceptable to perform more than one ldap_init() within the same program.
More than one LDAP handle can be allocated at the same time. This, however,
causes multiple TCP/IP socket connections to be opened from the client program
at the same time. This is discouraged when accessing only one directory server.
When multiple directory servers are to be accessed, multiple LDAP handles can be
active simultaneously.

Authentication methods
Five authentication methods are supported for checking client access to LDAP
directory services. They are:
v Simple authentication
v Certificate authentication
v Kerberos credentials authentication
v CRAM-MD5 authentication
v DIGEST-MD5 authentication

For each supported authentication method, Secure Socket Layer (SSL) or Transport
Layer Security (TLS) can be used to secure the socket connection between the client
and the server by encrypting the data that is transferred over the connection. TLS
is based on SSL V3. Through a protocol handshake between the client and server,
the choice of TLS or SSL is decided. (TLS is the preferred protocol.)

The supported authentication methods are available through the ldap_sasl_bind()
routine. (For details, see “ldap_sasl_bind(), ldap_sasl_bind_s()” on page 157.) Each
supported authentication method is described briefly as follows:

Chapter 1. LDAP programming 5

Simple authentication
A user ID and password are sent (in clear text) from the client to the server
to establish who is contacting the LDAP server for information. Mutual
authentication is not performed. The server verifies the identity of the
client but the client has no way to verify the identity of the server. Simple
authentication is also referred to as simple bind. The ldap_simple_bind()
and ldap_simple_bind_s() routines can be used to perform a simple bind.
The ldap_sasl_bind() and ldap_sasl_bind_s() routines can be used for
simple binds as well by passing in NULL on the mechanism parameter.

Certificate authentication
The identity from the client certificate sent to the LDAP server on an
SSL/TLS socket connection is used to establish who is contacting the
LDAP server for information. SSL or TLS must be configured on the LDAP
server. Certificate authentication is also referred to as SASL EXTERNAL
bind and is provided by the ldap_sasl_bind() and ldap_sasl_bind_s()
routines.

Kerberos credentials authentication
A client application and an LDAP server accepting Kerberos authentication
mutually authenticate each other using a Key Distribution Center (KDC).
The identity is determined by algorithms on the server. Kerberos
authentication is also referred to as SASL GSSAPI bind and is provided by
the ldap_sasl_bind() and ldap_sasl_bind_s() routines.

CRAM-MD5 authentication and DIGEST-MD5 authentication
CRAM-MD5 authentication and DIGEST-MD5 authentication are each
accomplished in a series of challenges and responses between the client
application and server. The response from the client application to the
server has a hashed password that is calculated by using an algorithm that
is known by both the client application and server. The server checks to
make certain that the authentication is correct by calculating its own
password hash and comparing it to the client-calculated password hash.
Both CRAM-MD5 and DIGEST-MD5 authentications are provided by the
ldap_sasl_bind() and ldap_sasl_bind_s() routines.

Performing an operation
Each LDAP operation is performed by calling the associated LDAP API. Of the
operations, ldap_add() and ldap_modify() are the most complex to set up while
the results of ldap_search() are the most complex to interpret. It is not surprising
that these deal with adding or changing and retrieving directory entry contents. An
example of a call to each LDAP operation is shown here along with a short
explanation, where needed. See Chapter 2, “LDAP routines,” on page 23 for details
on the parameters to each LDAP function in the LDAP API.

Adding an entry
Example:
modifications = (LDAPMod **)calloc(5, sizeof(LDAPMod *));

for (i=0; i<4; i++) {
modifications[i] = (LDAPMod *)malloc(sizeof(LDAPMod));
modifications[i]->mod_op = LDAP_MOD_ADD;

}

modifications[0]->mod_type = "objectClass";
modifications[0]->mod_values = (char **)calloc(2, sizeof(char *));
modifications[0]->mod_values[0] = "person";

6 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

modifications[1]->mod_type = "cn";
modifications[1]->mod_values = (char **)calloc(2, sizeof(char *));
modifications[1]->mod_values[0] = "John Doe";
modifications[2]->mod_type = "sn";
modifications[2]->mod_values = (char **)calloc(2, sizeof(char *));
modifications[2]->mod_values[0] = "Doe";
modifications[3]->mod_type = "description";
modifications[3]->mod_values = (char **)calloc(2, sizeof(char *));
modifications[3]->mod_values[0] = "This is John Doe";
rc = ldap_add_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
modifications);

The bulk of the work in calling ldap_add_s() is in setting up the modifications
array. Once this array is constructed, the call to ldap_add_s() is relatively simple.
The modifications array represents all the attributes (and associated values) that
are to be present in the newly created entry.

To supply a binary attribute, use the pointer-length form of input. Set the mod_op
field of the attribute to LDAP_MOD_ADD | LDAP_MOD_BVALUES to indicate that the
passed value is binary and in pointer-length form. The data is sent to the LDAP
server without modification.

When the LDAP_OPT_UTF8_IO option is set to LDAP_OPT_OFF, the value is supplied as
a null-terminated character string in the code set of the current locale. The data is
converted to wire protocol before being sent to the LDAP server.

When the LDAP_OPT_UTF8_IO option is set to LDAP_OPT_ON, the value is supplied as a
null-terminated UTF-8 character string. The data is not converted to wire protocol
before being sent to the LDAP server.

Modifying an entry
Example:
modifications = (LDAPMod **)calloc(4, sizeof(LDAPMod *));

for (i=0; i<3; i++) {
modifications[i] = (LDAPMod *)malloc(sizeof(LDAPMod));

}

modifications[0]->mod_op = LDAP_MOD_DELETE;
modifications[0]->mod_type = "description";
modifications[0]->mod_values = (char **)calloc(1, sizeof(char *));
modifications[1]->mod_op = LDAP_MOD_ADD;
modifications[1]->mod_type = "telephoneNumber";
modifications[1]->mod_values = (char **)calloc(2, sizeof(char *));
modifications[1]->mod_values[0] = "1-607-123-4567";
modifications[2]->mod_op = LDAP_MOD_REPLACE;
modifications[2]->mod_type = "sn";
modifications[2]->mod_values = (char **)calloc(2, sizeof(char *));
modifications[2]->mod_values[0] = "Doe, Jr";
rc = ldap_modify_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
modifications);

The same modifications array construct that was used for an add operation is used
for performing a modify operation. The difference is that the mod_op field can take
on values of LDAP_MOD_ADD, LDAP_MOD_REPLACE, or LDAP_MOD_DELETE. Like
ldap_add(), you can perform a bitwise OR operation to assign LDAP_MOD_BVALUES to
the mod_op field to indicate that binary values are supplied. The same conversion
rules are applicable for ldap_modify() as were described for ldap_add().

Chapter 1. LDAP programming 7

Deleting an entire entry
Example:
msgid = ldap_delete(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
msgtype = ldap_result(ld, msgid, 1, NULL, &res);

It is important to note that the delete operation fails if the entry to be deleted
contains any subentries below it in the directory hierarchy. Deletion is not
recursive. The example shows how the message ID that is returned from the
asynchronous call is passed to the ldap_result() function to wait for the results of
the operation.

Changing the RDN of an entry and relocating the entry
Example:
rc = ldap_rename_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
"cn=Jonathan Doe",
"ou=Sales, o=Acme International, c=US",
1, NULL, NULL);

Here, the RDN of the entry is changed and the entry is relocated. In this example:
v "cn=John Doe, ou=Marketing, o=Acme International, c=US" is the DN of the

entry to be renamed.
v "cn=Jonathan Doe" is the new value of the RDN for the renamed entry.
v "ou=Sales, o=Acme International, c=US" is the DN of the new superior

(parent) node under which the entry is moved; if no relocation is being
performed, this parameter should be NULL.

v 1, NULL, NULL indicates that the old RDN value should be deleted from the
renamed entry and that the client and server controls that are set in the handle
should be used.

When no controls are present, each respective parameter should be set to NULL. The
X.500 data model states that the attribute types and values that comprise the RDN
of an entry are also part of the attribute types and values of the entry itself. When
the RDN of an entry is modified, it is the option of the program to specify whether
the attribute values that made up the old RDN be retained as attribute types and
values of the renamed entry.

Comparing an attribute value with its value in an entry in the
directory

Example:
rc = ldap_compare_s(ld,

"cn=Jonathan Doe, ou=Marketing, o=Acme International, c=US",
"telephoneNumber",
"1-607-555-1234");

This operation compares the supplied value ("1-607-555-1234") to all the values of
the telephoneNumber attribute in the entry "cn=Jonathan Doe, ou=Marketing,
o=Acme International, c=US". If any of the values match, LDAP_COMPARE_TRUE is
returned. If none of the telephoneNumber attribute's values match,
LDAP_COMPARE_FALSE is returned. If the attribute does not exist or some other error
occurs, an appropriate error code is returned.

8 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Reading a directory entry's contents
Example:
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_BASE,
"(objectClass=*)",
NULL, 0, &res);

Listing the objectClass attribute values for all entries directly
below a given entry

Example:
attrs[0] = "objectClass";
attrs[1] = NULL;
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_ONELEVEL,
"(objectClass=*)",
attrs, 0, &res);

Reading the objectClass attribute values for all entries below
a given entry

Example:
attrs[0] = "objectClass";
attrs[1] = NULL;
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_SUBTREE,
"(objectClass=*)",
attrs, 0, &res);

The ldap_search_s() operations shown above exemplify a read, list, and search
operation, all by using the ldap_search_s() programming interface. In the case of
the list operation, the ldap_get_dn() function can be used when looping over the
returned results to extract just the distinguished name of the subentries. When
NULL is specified for the attributes parameter, all attribute types and values are
returned in the results sent to the client program.

Getting results
The LDAP results processing functions can be used to interpret the results that are
returned from LDAP search operations. Recall that the LDAP search operation is
used to perform read and list operations as well. When interpreting the results of a
search operation it is typically necessary to loop over the returned entries, for each
entry loop over the set of returned attributes, and for each attribute, get the set of
attribute values for the attribute. The code to perform this results interpretation
takes on a similar format in each case.

Example: An example of this type of processing is:
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_SUBTREE,
"(|(cn=Jane*)(cn=Jon*))",
NULL, 0, &res);

for (entry = ldap_first_entry(ld, res);
entry != NULL;
entry = ldap_next_entry(ld, entry)) {

Chapter 1. LDAP programming 9

dn = ldap_get_dn(ld, entry);
printf("Entry: %s\n", dn);
ldap_memfree(dn);

for (attrtype = ldap_first_attribute(ld, entry, &ber);
attrtype != NULL;
attrtype = ldap_next_attribute(ld, entry, ber)) {

values = ldap_get_values(ld, entry, attrtype);
if (values != NULL) {

for (i = 0; values[i] != NULL; i++)
printf(" %s = %s\n", attrtype, values[i]);

ldap_value_free(values);
}
ldap_memfree(attrtype);

}
}

ldap_msgfree(res);

As shown by the code fragment, after getting to the attribute type and values for
the returned entry, null-terminated character strings are used to represent the
attribute type and values. This greatly simplifies accessing Directory Service
information. The ldap_get_values() operation provides attribute values in the form
of a null-terminated string. This routine converts the returned results into a
null-terminated string in the code set of the current locale unless the
LDAP_OPT_UTF8_IO option is set for the LDAP handle. If the data is binary data or if
conversions should be avoided, the ldap_get_values_len() routine must be used.
The data is then supplied in pointer-length format and no conversions are
performed.

Referrals
When a client requests information from a server that does not hold the needed
data, the server can pass back one or more referrals that indicate other servers to
contact. The client can then request the information from the referenced servers.
The LDAP client follows referrals if the LDAP_OPT_REFERRALS option is set for the
LDAP handle. (This is the default.) Otherwise, the referrals are returned to the
application for processing. The LDAP_OPT_REFHOPLIMIT option sets a limit on the
number of nested referrals that are followed.

The LDAP client supports referral values that are LDAP URLs (Uniform Resource
Locators) and ignores any other referral values. The format of an LDAP URL is
described in “ldap_url_parse()” on page 207. The host part of the URL is required
to identify the server to which to send the referral. A secure LDAP URL (one
specifying ldaps for the scheme) is used only if the LDAP handle is using an SSL
connection. A non-secure LDAP URL (one specifying ldap for the scheme) is used
for SSL and non-SSL connections. The default port (389 for non-secure connections
or 636 for secure connections) is used if the LDAP URL does not specify a port.
Because a non-secure LDAP URL can be used with both non-SSL and SSL
connections, an explicit port specification in the URL does not work for both
connection types because the LDAP server requires different ports for non-SSL and
SSL connections. If you are using non-default ports for the LDAP server, the
referral definition should contain values for both ldap: and ldaps: schemes.

Upon completion of referral processing, any unfollowed referrals are appended to
the error string in the result message. The result code is set to LDAP_SUCCESS if all
the referrals were processed successfully. Otherwise, the result code is set to the
error code for the first referral failure.

10 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Servers present the referrals differently depending on the LDAP protocol version
being used by the client. Referrals for the LDAP Version 2 protocol are returned in
the error string, as the protocol does not provide a specific mechanism for
indicating referrals. Referrals for the LDAP Version 3 protocol are returned in
search reference messages and in the result message with a result code of
LDAP_REFERRAL.

Using LDAP Version 2 referrals
LDAP Version 2 referrals are returned as part of the error string in the result
message. Because clients do not examine the error string for results indicating
LDAP_SUCCESS, the server returns a result code of LDAP_PARTIAL_RESULTS instead of
LDAP_SUCCESS to indicate the presence of referral information in the error string.
Referral information can be returned in the error string for any result code other
than LDAP_SUCCESS.

The referral information is at the end of the error string and looks like the
following:
Referral:\n
ldap://hostname1:port1/dn\n
ldaps://hostname2:port2/dn\n
...

where \n indicates a new-line character.

Multiple referrals are present only for partial search results when it is necessary to
contact more than one additional server to complete the entire request. This
indicates that multiple referral definitions were found that matched the search
criteria. The client contacts every server that is presented in the list to continue the
search request. Only the first referral value is returned for each referral definition
because there is no way to distinguish between a single referral definition with
multiple referral values and multiple referral definitions.

Using LDAP Version 3 referrals
The LDAP Version 3 protocol defines referrals as part of the protocol. There are
two methods of passing back referral information: referrals and search continuation
references.
v Referrals: The LDAP_REFERRAL result code is returned by the server to indicate

that the server does not hold the target entry of the request. The referral field is
present in the result message and indicates another server (or set of servers) to
contact. Referrals can be returned in response to any operation except abandon
and unbind. When multiple referrals are present in a given referral response,
each one must be equally capable of being used to continue the operation.

v Search continuation references: A referral is not returned in the result for a
one-level or subtree search in which the search scope spans multiple referral
objects. Instead, one or more search continuation references are returned. Search
continuation references are intermixed with search entries. Each search
continuation reference contains a referral to another server (or set of servers) to
contact and represents a subtree of the namespace which potentially satisfies the
search criteria. When multiple referrals are present in a given search
continuation reference, each one must be equally capable of being used to
continue the operation.

The LDAP Version 3 protocol provides the manageDsaIT control to allow the client
to operate on the referral object instead of the real object. When this control is

Chapter 1. LDAP programming 11

included in the client request, the server does not present any referrals or search
continuation references, but instead treats the referral objects as normal objects.

Rebinding while following referrals
When the LDAP client follows a referral to a different LDAP server, it must bind to
that server. To this, the client must have the proper credentials available to pass to
the target LDAP server. Normally, these credentials are passed on the
ldap_simple_bind() or ldap_sasl_bind() function invocation. During referral
processing, however, this must be done when needed by the LDAP client.

The rebind procedure is called twice when attempting to rebind to an LDAP
server: once to obtain the credentials for the user and once to allow the rebind
procedure to release any storage that was allocated by the first call to the rebind
procedure.

The rebind routine set by ldap_set_rebind_proc() or the LDAP_OPT_REBIND_FN
option is defined as follows:

int rebind_proc (
LDAP * ld,
char ** dnp,
char ** passwdp,
int * authmethodp,
int freeit)

The rebind routine set by the LDAP_OPT_EXT_REBIND_FN option is defined as follows:
int ext_rebind_proc (

LDAP * ld,
int msgtype,
const char * host,
const char * object,
int freeit,
int * authmethodp,
char ** dnp,
char ** passwdp,
char ** mechanismp,
BerVal ** credentialsp,
LDAPControl *** serverctrlsp,
LDAPControl *** clientctrlsp)

When the rebind routine is invoked and the freeit parameter is 0, the rebind
routine should set the return values before returning to the caller. The only
supported authentication methods for rebinding are LDAP_AUTH_SIMPLE and
LDAP_AUTH_SASL. An anonymous bind is done if an unsupported authentication
method is specified.

The ld parameter provides the LDAP handle for the request resulting in the
referral. This handle can be used to send an unauthenticated request to the target
LDAP server (for example, a search request to retrieve attributes from the root
DSE). An error is returned if an attempt is made to bind to the server, to abandon
active requests, or to unbind the handle.

The msgtype parameter provides the message type for the request resulting in the
referral. The host and object parameters provide the host name and the
distinguished name for the referral. The text strings are in UTF-8 or the local
EBCDIC code page as determined by the LDAP_OPT_UTF8_IO option for the LDAP
handle. The object parameter is NULL if there is no distinguished name available.

12 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

For the LDAP_AUTH_SIMPLE authentication method, the dnp parameter should be set
to the distinguished name for the bind and the passwdp parameter should be set to
the password for the bind. The SASL authentication return values are ignored. The
text strings must be in UTF-8 or the local EBCDIC code page as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle.

For the LDAP_AUTH_SASL authentication method, the dnp, mechanismp,
credentialsp, serverctrlsp and clientctrlsp parameters should be set as
described for the ldap_sasl_bind() routine. The passwdp return value is ignored.
The text strings must be in UTF-8 or the local EBCDIC code page as determined by
the LDAP_OPT_UTF8_IO option for the LDAP handle.

When the LDAP_AUTH_SASL authentication method is specified by the rebind_proc()
routine, the GSSAPI SASL mechanism is used with the default Kerberos
credentials. The extended rebind routine should be used if another LDAP_AUTH_SASL
authentication method is needed.

When the LDAP_AUTH_SASL authentication method is specified by the
ext_rebind_proc() routine, any of the supported SASL mechanisms can be used.

When the rebind routine is invoked and the freeit parameter is nonzero, the
rebind routine should release any storage that was acquired by the previous call to
the rebind procedure. The dnp, passwdp, authmethodp, mechanismp,
credentialsp, serverctrlsp and clientctrlsp parameters are the values returned
by the previous call to the rebind procedure.

The rebind routine should return LDAP_SUCCESS if the return fields were
successfully set. Otherwise, the rebind routine should return one of the error codes
in the ldap.h include file. An error return causes the current LDAP operation to be
stopped and the error is returned to the original caller. The function return value is
ignored when the rebind routine is called to release storage.

When processing a bind referral and no rebind procedure is defined, the LDAP
client run time uses the credentials from the original bind request to bind to the
target server. For any other type of request, the LDAP client run time performs an
unauthenticated bind when no rebind procedure is defined.

Error processing
The following are routines that are used in the LDAP programming interface for
handling errors that are returned from LDAP operations:
v ldap_err2string()

v ldap_get_errno()

v ldap_get_lderrno()

v ldap_get_option()

v ldap_parse_pwdpolicy_response()

v ldap_parse_result()

v ldap_pwdpolicy_err2string()

Each is used for a slightly different purpose but all accomplish the same goal of
returning error information to the calling program.

Chapter 1. LDAP programming 13

Using ldap_get_lderrno()
The ldap_get_lderrno() routine returns the most recent LDAP error code, error
message, and matched distinguished name (DN) that was logged by the LDAP
programming interface against an LDAP handle.

Be careful when using ldap_get_lderrno() in a multi-threaded environment where
the LDAP handle is shared by multiple threads. If an LDAP operation completes
on another thread before ldap_get_lderrno() examines the error code, error
message, or matched distinguished name (DN), the values that are returned by
ldap_get_lderrno() reflect the result of the LDAP operation on the other thread.
Use the ldap_parse_result() and ldap_err2string() routines in these cases.

Using ldap_get_errno() and ldap_parse_result()
The most basic error handling routine in the LDAP API is ldap_get_errno(). This
routine returns the most recent error code that was logged by the LDAP
programming interface against an LDAP handle. In the case of LDAP operations
that result in errors, the error code value that was returned from the directory
server can be obtained by calling ldap_parse_result(), passing in the LDAPMessage
that was returned from the LDAP operation. There is a subtle difference between
using ldap_get_errno() and ldap_parse_result() for asynchronous operations. For
asynchronous operations, if an error occurs during the process of sending the
request to the directory server, you must use ldap_get_errno() to obtain the error
value. Use the ldap_parse_result() call after a ldap_result() call is complete. In the
case of synchronous operations, either routine can be used. In addition, the
synchronous routines also return the error code value for the programmer's
convenience.

Be careful when using ldap_get_errno() in a multi-threaded environment where
the LDAP handle is shared by multiple threads. If an LDAP operation completes
on another thread before ldap_get_errno() examines the error code on the current
thread, the error code that is returned by ldap_get_errno() reflects the result of the
LDAP operation on the other thread. Use the ldap_parse_result() and
ldap_err2string() calls in these cases.

Using ldap_err2string() and ldap_get_option()
The ldap_err2string() routine, given an LDAP error code, returns a null-terminated
character string that provides a textual description of the error.

The ldap_get_option() routine, when specified with the LDAP_OPT_ERROR_NUMBER
and LDAP_OPT_ERROR_STRING values, obtains the LDAP error code and error
message. These can then be issued in a message containing the text returned by
ldap_err2string() on the standard error stream.

Be careful when using ldap_get_option() in a multi-threaded environment where
the LDAP handle is shared by multiple threads. If an LDAP operation completes
on another thread before ldap_get_option() examines the error code or error
message values on the current thread, the values returned by ldap_get_option()
reflect the result of the LDAP operation on the other thread. Use the
ldap_parse_result() and ldap_err2string() calls in these cases.

14 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Using ldap_parse_pwdpolicy_response() and
ldap_pwdpolicy_err2string()

The ldap_parse_pwdpolicy_response() routine parses the password policy control
response returned from the LDAP server and returns the password policy error
code, warning code, and warning result value.

The ldap_pwdpolicy_err2string() routine, given an error or warning code from the
password policy control response, returns a null-terminated character string that
provides a textual description of the password policy error or warning.

LDAP controls
Certain LDAP Version 3 operations can be extended with the use of controls.
Controls can be sent to a server, or returned to the client with any LDAP message.
This type of control is called a server control.

The LDAP API also supports a client-side extension mechanism that can be used to
define client controls. The client controls affect the behavior of the LDAP client
library, and are never sent to the server.

A common data structure is used to represent both server controls and client
controls:
typedef struct ldapcontrol {

char * ldctl_oid;
BerVal ldctl_value;
char ldctl_iscritical;

} LDAPControl, * PLDAPControl;

The LDAPControl fields have the following definitions:

ldctl_oid
Specifies the control type as a null-terminated character string in either the
local EBCDIC code page or UTF-8 as determined by the LDAP_OPT_UTF8_IO
option in the LDAP handle for the request that references the control. The
control type is a numeric OID with no leading, trailing, or embedded
white space characters.

ldctl_value
Specifies the data associated with the control (if any). An error is returned
if the data length is greater than 2147483647. To specify a zero-length
value, set ldctl_value.bv_len to 0 and ldctl_value.bv_val to a
zero-length string. To indicate that no data is associated with the control,
set ldctl_value.bv_val to NULL.

The data format depends on the control type. A text string for a server
control is in UTF-8. A text string for a client control is in UTF-8 or the local
code page as determined by the LDAP_OPT_UTF8_IO option for the LDAP
handle associated with the request referencing the control. A binary value
for a server or client control is formatted as determined by the control
OID.

ldctl_iscritical
Specifies whether the control is critical. If this field is nonzero (critical), the
operation is performed only if the control is appropriate for the operation
and it is recognized and supported by the server for server controls or the
client for client controls. Otherwise, the operation is not performed.

Chapter 1. LDAP programming 15

If this field is 0 (noncritical), the control is used in performing the
operation only if it is appropriate for the operation and it is recognized
and supported by the server for server controls or the client for client
controls. Otherwise, the control is ignored.

Controls are specified on the LDAP API as lists of controls. Control lists are
represented as a null-terminated array of pointers to LDAPControl structures.

Session controls
Many of the LDAP Version 3 APIs that perform LDAP operations accept a list of
controls (for example, ldap_search_ext()). Alternatively, a list of controls that affect
each operation performed on a given LDAP handle can be set using the
ldap_set_option() API. These are called session controls. Session controls apply to
the given operation when NULL is specified for the corresponding control list
parameter on the API. If a list of controls is specified for the control parameter on
the API, these are used instead of the session controls on the given operation. If
session controls are set, but a specific request does not want any controls, an
empty list of controls should be specified for the control parameter. (This is
different from a NULL parameter; it is a pointer to an array containing a single
NULL.)

Session controls also apply to the nonextended APIs that perform LDAP
operations. So although ldap_search(), for example, does not accept control list
parameters, it includes a server control on its request if there was a server control
setup through ldap_set_option().

Supported client controls
Currently, the only client controls supported by this library are:
v ibm-serverHandledSearchRequest

v ibm-saslBindDigestUserName

v ibm-saslBindCramUserName

v ibm-saslBindDigestRealmName

Note the object identifier for ibm-saslBindCramUserName is the same as the object
identifier for ibm-saslBindDigestUserName.

ibm-serverHandledSearchRequest
Name: ibm-serverHandledSearchRequest

Numeric OID:
1.3.18.0.2.10.7

Purpose:
Provides the ability to selectively bypass cache usage per search request.

Criticality:
TRUE or FALSE. If TRUE, operations that do not support this control fail with
LDAP_UNAVAILABLE_CRITICAL_EXTENSION. If FALSE, operations that do not
support this control ignore its presence and process the request.

Value: An ASN.1-encoded sequence as follows:
ibm-serverHandledSearchRequest ::= SEQUENCE {

cacheResults BOOLEAN DEFAULT FALSE
}

16 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Example:
The following is an example of defining an ibm-
serverHandledSearchRequest control.
static LDAPControl skipCacheControl = {

IBM_SERVER_HANDLED_SEARCH_REQUEST_OID, /* OID */
{sizeof(BER_ENCODED_BOOLEAN_FALSE)-1, BER_ENCODED_BOOLEAN_FALSE}, /* false */
LDAP_OPT_ON /* critical */

};

Meaning:
If the control is not present, the search request can be handled from the
cache. If the search request is not cached, the search is passed on to the
server, and the results can be cached.

If the control is present, and if the cacheResults flag is FALSE (or not
present, that is, an empty SEQUENCE), the client must bypass the cache,
send the request to the server, and bypass adding the results to the cache.

If the control is present, and if the cacheResults flag is TRUE, then whether
the search request is cached, the search is passed onto the server, and the
results can be cached.

Notes:

1. The cacheResults must be a BER-encoded sequence. For coding
convenience, the ldap.h include file defines the
BER_ENCODED_BOOLEAN_TRUE and BER_ENCODED_BOOLEAN_FALSE constants.
Additionally, the following constants are defined and represent the
numeric OID for this control:
v IBM_SERVER_HANDLED_SEARCH_REQUEST_OID

v IBM_SERVER_HANDLED_SEARCH_REQUEST_OID_UTF8

2. This control is only supported by LDAP search operations.
3. This control is only applicable if client-side caching is enabled.

ibm-saslBindDigestUserName
Name: ibm-saslBindDigestUserName

Numeric OID:
1.3.18.0.2.10.13

Purpose:
Provides the ability to specify the user name authentication identity for a
DIGEST-MD5 SASL authentication bind.

Criticality:
TRUE or FALSE. If TRUE, operations that do not support this control fail with
LDAP_UNAVAILABLE_CRITICAL_EXTENSION. If FALSE, operations that do not
support this control ignore its presence and process the request.

Value: A character string representing the user name. The string is in UTF-8 or the
local EBCDIC code page as determined by the LDAP_OPT_UTF8_IO option for
the LDAP handle associated with the request. The ldctl_value.bv_val
field contains the address of the string and the ldctl_value.bv_len field
contains the length of the string (excluding the string delimiter).

Example:
The following is an example of defining an ibm-saslBindDigestUserName
control.

Chapter 1. LDAP programming 17

static LDAPControl userControl = {
IBM_CLIENT_MD5_USER_NAME_OID, /* OID */
{ 3, "jon" }, /* username */
LDAP_OPT_OFF /* non-critical */

};

Meaning:
If the control is present and DIGEST-MD5 authentication is specified, the
user name is the identity used for authentication binding.

Notes:

1. For coding convenience, the ldap.h include file defines the
IBM_CLIENT_MD5_USER_NAME_OID, IBM_CLIENT_MD5_USER_NAME_OID_UTF8,
IBM_CLIENT_DIGEST_USER_NAME_OID, and
IBM_CLIENT_DIGEST_USER_NAME_OID_UTF8 constants for the numeric OID
for this control.

2. This control is supported only by LDAP bind operations.

ibm-saslBindCramUserName
Name: ibm-saslBindCramUserName

Numeric OID:
1.3.18.0.2.10.13

Purpose:
Provides the ability to specify the user name authentication identity for a
CRAM-MD5 SASL authentication bind.

Criticality:
TRUE or FALSE. If TRUE, operations that do not support this control fail with
LDAP_UNAVAILABLE_CRITICAL_EXTENSION. If FALSE, operations that do not
support this control ignore its presence and process the request.

Value: A character string representing the user name. The string is in UTF-8 or the
local EBCDIC code page as determined by the LDAP_OPT_UTF8_IO option for
the LDAP handle associated with the request. The ldctl_value.bv_val
field contains the address of the string and the ldctl_value.bv_len field
contains the length of the string (excluding the string delimiter). The user
name must consist of characters that can be represented in the ISO8859-1
code page and must not contain any blanks.

Example:
The following is an example of defining an ibm-saslBindCramUserName
control.
static LDAPControl userControl = {

IBM_CLIENT_MD5_USER_NAME_OID, /* OID */
{ 4, "juan" }, /* username */
LDAP_OPT_OFF /* non-critical */

};

Meaning:
If the control is present and CRAM-MD5 authentication is specified, the
user name is the identity used for authentication binding.

Notes:

1. For coding convenience, the ldap.h include file defines the
IBM_CLIENT_MD5_USER_NAME_OID, IBM_CLIENT_MD5_USER_NAME_OID_UTF8,
IBM_CLIENT_CRAM_USER_NAME_OID, and
IBM_CLIENT_CRAM_USER_NAME_OID_UTF8 constants for the numeric OID
for this control.

18 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

2. This control is supported only by LDAP bind operations.

ibm-saslBindDigestRealmName
Name: ibm-saslBindDigestRealmName

Numeric OID:
1.3.18.0.2.10.12

Purpose:
Provides the ability to specify the realm name for a DIGEST-MD5 SASL
authentication bind.

Criticality:
TRUE or FALSE. If TRUE, operations that do not support this control fail with
LDAP_UNAVAILABLE_CRITICAL_EXTENSION. If FALSE, operations that do not
support this control ignore its presence and process the request.

Value: A character string representing the realm name. The string is in UTF-8 or
the local EBCDIC code page as determined by the LDAP_OPT_UTF8_IO option
for the LDAP handle associated with the request. The ldctl_value.bv_val
field contains the address of the string and the ldctl_value.bv_len field
contains the length of the string (excluding the string delimiter).

Example:
The following is an example of defining an ibm-saslBindDigestRealmName
control.
static LDAPControl realmControl = {

IBM_CLIENT_MD5_REALM_NAME_OID, /* OID */
{ 15, "myrealm.ibm.com" }, /* realm name */
LDAP_OPT_OFF /* non-critical */

};

Meaning:
If the control is present and DIGEST-MD5 authentication is specified, the
realm name is used to select a realm in which to bind.

Notes:

1. For coding convenience, the ldap.h include file defines the
IBM_CLIENT_MD5_REALM_NAME_OID,
IBM_CLIENT_MD5_REALM_NAME_OID_UTF8,
IBM_CLIENT_DIGEST_REALM_NAME_OID, and
IBM_CLIENT_DIGEST_REALM_NAME_OID_UTF8 constants for the numeric OID
for this control.

2. This control is supported only by LDAP bind operations.

Using RACF data
There are some restrictions when updating information stored in RACF®, a
component of the Security Server for z/OS, over the LDAP protocol. See the
information about accessing RACF information in z/OS IBM Tivoli Directory Server
Administration and Use for z/OS.

Thread safety
The LDAP programming interface is thread safe. Thread safety is implemented by
serializing all operations that are made against a particular LDAP handle. Multiple
operations can be safely initiated from multiple threads in the client program. To
have these operations sent to the directory server for possible parallel processing
by the server, asynchronous operations must be used. An alternative is to initialize

Chapter 1. LDAP programming 19

multiple LDAP handles. This alternative is not suggested as it causes multiple
open TCP/IP socket connections between the client program and the directory
server.

Client-side search results caching
Client-side search result caching is supported. It can be enabled for specific LDAP
connections or globally for all connections. The ldap_memcache_init() and
ldap_memcache_set() routines are used to specify search result caching for specific
LDAP connections. The LDAP_CLIENT_CACHE, LDAP_CLIENT_CACHE_MAX_SIZE, and
LDAP_CLIENT_CACHE_TTL environment variables are used to specify global search
result caching. (See “LDAP client environment variables” on page 235 for details.)
The ibm-serverHandledSearchRequest client control is used to disable search result
caching for a specific search request.

When caching search results or retrieving the results of a previous search request, a
case-sensitive comparison is performed between the base distinguished name in
the search request and the base distinguished name in the cache. The distinguished
names must be identical, including case, any white space characters, or escape
sequences.

The results for a search request are added to the cache if the following conditions
are true:
v The result code is LDAP_SUCCESS, LDAP_REFERRAL, or LDAP_PARTIAL_RESULTS.
v The search base distinguished name is included in the list of distinguished

names for the cache.

A search request is satisfied from the cache if the following conditions are true:
v The LDAP server host name and port number must be the same.
v The bind mechanism and bind identity must be the same.
v The search parameters and search options must be the same.
v The LDAP_OPT_REFERRALS, LDAP_OPT_REFHOPLIMIT, LDAP_OPT_PROTOCOL_VERSION,

LDAP_OPT_REBIND_FN, and LDAP_OPT_EXT_REBIND_FN options must be the same.

Restriction: The LDAP client cannot determine whether the contents of the cache
are current. The application must make this determination. If the contents are not
current (they are stale), the application should clear the cache.

Synchronous versus asynchronous operation
The asynchronous operations in the LDAP programming interface allow multiple
operations to be started from the LDAP client without first waiting for each
operation to complete. This can be beneficial in allowing multiple outstanding
search operations from the client program. Searches that take less time to complete
can be returned without waiting for a more complicated search to complete.
However, there is some interplay with the thread safety support. To allow LDAP
operations to be performed from multiple client program threads, operations are
serialized. As ldap_result() is an LDAP operation, if an ldap_result() is initiated on
one client thread, any other ldap_result() initiated on another client thread is held
up until the ldap_result() on the first thread is complete. To effectively use
asynchronous operations to the advantage of the client program, calls to
ldap_result() should be formulated to complete as quickly as possible so as not to
hold up other LDAP operations that are possibly initiated on other threads from
being started.

20 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Guideline: When running in a multi-threaded environment, calls to ldap_result()
should be made to wait for the first available result instead of waiting for specific
results.

With synchronous operations, even though multiple operations can be initiated on
separate threads, the thread safety support serializes these requests at the client,
prohibiting these requests from being initiated to the server. To ensure that the
operations are initiated to the server, asynchronous operations should be used
when running in an environment where multiple client program threads might be
making calls to the LDAP programming interface.

Calling the LDAP APIs from other languages
In order for a COBOL application to call the C LDAP client APIs, the COBOL
application must call a C application that, in turn, invokes the LDAP APIs.
However, if the COBOL application is link-edited into a separate load module from
a C program that calls the LDAP APIs, the COBOL load module must be either
link-edited with a CEEUOPT that has POSIX(ON), or POSIX(ON) must be passed to it as
a runtime option, which is equivalent. See z/OS Language Environment Customization
for more information.

LDAP client for Java
An industry-standard Java™ programming language interface exists to access the
LDAP server directory services through the Java Naming and Directory Interface
(JNDI). You can find the information about how to use the LDAP service provider
interface (LDAP SPI) for JNDI in documentation from Oracle.

The JNDI is shipped as part of Java on z/OS. Use the JNDI that is shipped with
Java and supported on z/OS.

Chapter 1. LDAP programming 21

22 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Chapter 2. LDAP routines

This topic describes the Lightweight Directory Access Protocol (LDAP) application
programming routines. These routines provide access through TCP/IP to directory
services that accept the LDAP protocol.

The following deprecated routines are supported but have been replaced by newer,
current LDAP routines. For detailed descriptions of these routines, see Chapter 3,
“Deprecated LDAP routines,” on page 221.

Guideline: Avoid using deprecated routines. Use current replacement routines
instead.

Deprecated routine Replacement routine
ldap_bind() ldap_simple_bind()
ldap_bind_s() ldap_simple_bind_s()
ldap_modrdn() ldap_rename()
ldap_modrdn_s() ldap_rename_s()
ldap_open() ldap_init or ldap_ssl_init()
ldap_perror() ldap_parse_result() or ldap_get_errno()
ldap_result2error() ldap_parse_result()
ldap_ssl_start() ldap_ssl_client_init() and ldap_ssl_init()

Table 1 lists current LDAP routines and the function each performs.

Table 1. Summary of the current LDAP routines

Name of routine Function performed For a detailed description, see ...

ldap_abandon() Abandon an operation “ldap_abandon(), ldap_abandon_ext()” on page
30

ldap_abandon_ext() Abandon an operation “ldap_abandon(), ldap_abandon_ext()” on page
30

ldap_add() Add an entry to the
LDAP directory

“ldap_add(), ldap_add_s(), ldap_add_ext(),
ldap_add_ext_s()” on page 32

ldap_add_s() Add an entry to the
LDAP directory

“ldap_add(), ldap_add_s(), ldap_add_ext(),
ldap_add_ext_s()” on page 32

ldap_add_control() Create a control and
insert it into a list of
controls

“ldap_add_control()” on page 36

ldap_add_ext() Add an entry to the
LDAP directory

“ldap_add(), ldap_add_s(), ldap_add_ext(),
ldap_add_ext_s()” on page 32

ldap_add_ext_s() Add an entry to the
LDAP directory

“ldap_add(), ldap_add_s(), ldap_add_ext(),
ldap_add_ext_s()” on page 32

ldap_berfree_np() Release storage for a
binary value

“ldap_berfree_np()” on page 37

ldap_compare() Compare an entry in the
LDAP directory

“ldap_compare(), ldap_compare_s(),
ldap_compare_ext(), ldap_compare_ext_s()” on
page 38

ldap_compare_s() Compare an entry in the
LDAP directory

“ldap_compare(), ldap_compare_s(),
ldap_compare_ext(), ldap_compare_ext_s()” on
page 38

© Copyright IBM Corp. 1999, 2015 23

Table 1. Summary of the current LDAP routines (continued)

Name of routine Function performed For a detailed description, see ...

ldap_compare_ext() Compare an entry in the
LDAP directory

“ldap_compare(), ldap_compare_s(),
ldap_compare_ext(), ldap_compare_ext_s()” on
page 38

ldap_compare_ext_s() Compare an entry in the
LDAP directory

“ldap_compare(), ldap_compare_s(),
ldap_compare_ext(), ldap_compare_ext_s()” on
page 38

ldap_control_free() Release the storage for an
LDAP control

“ldap_control_free()” on page 42

ldap_controls_free() Release the storage for an
array of LDAP controls

“ldap_controls_free()” on page 43

ldap_convert_local_np() Convert a text string
from the local EBCDIC
code page to UTF-8

“ldap_convert_local_np()” on page 44

ldap_convert_utf8_np() Convert a text string
from UTF-8 to the local
EBCDIC code page

“ldap_convert_utf8_np()” on page 45

ldap_count_attributes() Return the number of
attributes in an LDAP
search entry

“ldap_count_attributes()” on page 46

ldap_count_entries() Return the number of
search entries in an
LDAP result

“ldap_count_entries()” on page 47

ldap_count_messages() Return the number of
messages in an LDAP
result

“ldap_count_messages()” on page 48

ldap_count_references() Return the number of
search references in an
LDAP result

“ldap_count_references()” on page 49

ldap_count_values() Return the number of
elements in an array of
character strings

“ldap_count_values()” on page 50

ldap_count_values_len() Return the number of
elements in an array of
binary values

“ldap_count_values_len()” on page 51

ldap_create_page_control() Create a paged result
control for use with an
LDAP search request

“ldap_create_page_control()” on page 52

ldap_create_
persistentsearch_
control()

Create a persistent search
control for use with an
LDAP search request

“ldap_create_persistentsearch_control()” on
page 55

ldap_create_sort_control() Create a sort result
request control for use
with an LDAP search
request

“ldap_create_sort_control()” on page 57

ldap_create_sort_keylist() Create a list of sort keys “ldap_create_sort_keylist()” on page 59

ldap_delete() Delete an entry from the
LDAP directory

“ldap_delete(), ldap_delete_s(), ldap_delete_ext(),
ldap_delete_ext_s()” on page 61

ldap_delete_s() Delete an entry from the
LDAP directory

“ldap_delete(), ldap_delete_s(), ldap_delete_ext(),
ldap_delete_ext_s()” on page 61

24 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 1. Summary of the current LDAP routines (continued)

Name of routine Function performed For a detailed description, see ...

ldap_delete_ext() Delete an entry from the
LDAP directory

“ldap_delete(), ldap_delete_s(), ldap_delete_ext(),
ldap_delete_ext_s()” on page 61

ldap_delete_ext_s() Delete an entry from the
LDAP directory

“ldap_delete(), ldap_delete_s(), ldap_delete_ext(),
ldap_delete_ext_s()” on page 61

ldap_dn2ufn() Parse a distinguished
name and return a
user-friendly name

“ldap_dn2ufn()” on page 64

ldap_dn2ufn_np() Parse a distinguished
name and return a
user-friendly name

“ldap_dn2ufn_np()” on page 65

ldap_enetwork_domain_
get()

Return the eNetwork
domain for the current
user

“ldap_enetwork_domain_get()” on page 66

ldap_enetwork_domain_
set()

Set the eNetwork domain
for the current user

“ldap_enetwork_domain_set()” on page 68

ldap_err2string() Return a descriptive text
message for an LDAP
error code

“ldap_err2string()” on page 70

ldap_explode_dn() Parse a distinguished
name into an array of
relative distinguished
names

“ldap_explode_dn()” on page 71

ldap_explode_dn_np() Parse a distinguished
name and return an
LDAP DN description

“ldap_explode_dn_np()” on page 73

ldap_explode_rdn() Parse a relative
distinguished name into
an array of attributes

“ldap_explode_rdn()” on page 75

ldap_extended_operation() Perform extended
operations

“ldap_extended_operation(),
ldap_extended_operation_s()” on page 76

ldap_extended_operation_s() Perform extended
operations

“ldap_extended_operation(),
ldap_extended_operation_s()” on page 76

ldap_first_attribute() Return the attribute type
for the first attribute in
an LDAP search entry

“ldap_first_attribute()” on page 79

ldap_first_entry() Return the first search
entry in an LDAP result

“ldap_first_entry()” on page 81

ldap_first_message() Return the first message
in an LDAP result

“ldap_first_message()” on page 82

ldap_first_reference() Return the first search
reference in an LDAP
result

“ldap_first_reference()” on page 83

ldap_free_dndesc_np() Release storage allocated
for an LDAP DN
description

“ldap_free_dndesc_np()” on page 84

ldap_free_sort_keylist() Release storage allocated
for a list of sort keys

“ldap_free_sort_keylist()” on page 85

Chapter 2. LDAP routines 25

Table 1. Summary of the current LDAP routines (continued)

Name of routine Function performed For a detailed description, see ...

ldap_free_urldesc() Release storage allocated
for an LDAP URL
description

“ldap_free_urldesc()” on page 86

ldap_get_dn() Return the distinguished
name from a search entry

“ldap_get_dn()” on page 87

ldap_get_entry_controls_
np()

Return the server controls
from a search entry
message

“ldap_get_entry_controls_np()” on page 88

ldap_get_errno() Return the last error code
for an LDAP handle

“ldap_get_errno()” on page 89

ldap_get_function_vector() Obtain the address of the
LDAP function vector

“ldap_get_function_vector()” on page 90

ldap_get_lderrno() Return information for
the most recent error

“ldap_get_lderrno()” on page 92

ldap_get_option() Return the value for an
LDAP option

“ldap_get_option()” on page 93

ldap_get_values() Return the attribute
values as an array of
character strings

“ldap_get_values()” on page 105

ldap_get_values_len() Return the attribute
values as an array of
binary values

“ldap_get_values_len()” on page 106

ldap_init() Create and initialize an
LDAP handle for an SSL
or non-SSL connection

“ldap_init()” on page 107

ldap_insert_control() Insert an existing control
into a list of controls

“ldap_insert_control()” on page 110

ldap_is_ldap_url() Determine if a URL
appears to be an LDAP
URL

“ldap_is_ldap_url()” on page 111

ldap_is_ldap_url_np() Determine if a URL
appears to be an LDAP
URL

“ldap_is_ldap_url_np()” on page 112

ldap_memcache_destroy() Destroy a search result
cache

“ldap_memcache_destroy()” on page 113

ldap_memcache_flush() Remove entries from a
search result cache

“ldap_memcache_flush()” on page 114

ldap_memcache_get() Return the search result
cache for an LDAP
handle

“ldap_memcache_get()” on page 116

ldap_memcache_init() Create a search result
cache

“ldap_memcache_init()” on page 117

ldap_memcache_set() Set the search result
cache for an LDAP
handle

“ldap_memcache_set()” on page 119

ldap_memcache_update() Remove expired search
result cache entries

“ldap_memcache_update()” on page 120

ldap_memfree() Release storage allocated
by the LDAP run time

“ldap_memfree()” on page 121

26 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 1. Summary of the current LDAP routines (continued)

Name of routine Function performed For a detailed description, see ...

ldap_modify() Modify an existing entry
in the LDAP directory

“ldap_modify(), ldap_modify_s(),
ldap_modify_ext(), ldap_modify_ext_s()” on
page 122

ldap_modify_s() Modify an existing entry
in the LDAP directory

“ldap_modify(), ldap_modify_s(),
ldap_modify_ext(), ldap_modify_ext_s()” on
page 122

ldap_modify_ext() Modify an existing entry
in the LDAP directory

“ldap_modify(), ldap_modify_s(),
ldap_modify_ext(), ldap_modify_ext_s()” on
page 122

ldap_modify_ext_s() Modify an existing entry
in the LDAP directory

“ldap_modify(), ldap_modify_s(),
ldap_modify_ext(), ldap_modify_ext_s()” on
page 122

ldap_mods_free() Release storage allocated
for an array of attribute
modifications

“ldap_mods_free()” on page 126

ldap_msgfree() Release storage for an
LDAP message

“ldap_msgfree()” on page 127

ldap_msgid() Return the message
identifier

“ldap_msgid()” on page 128

ldap_msgtype() Return the message type “ldap_msgtype()” on page 129

ldap_next_attribute() Return the attribute type
for the next attribute in
an LDAP search entry

“ldap_next_attribute()” on page 130

ldap_next_entry() Return the next search
entry in an LDAP result

“ldap_next_entry()” on page 131

ldap_next_message() Return the next LDAP
message in an LDAP
result

“ldap_next_message()” on page 132

ldap_next_reference() Return the next search
reference in an LDAP
result

“ldap_next_reference()” on page 133

ldap_parse_entrychange_
control()

Parse an entry change
notification server control
returned in an LDAP
search response

“ldap_parse_entrychange_control()” on page 134

ldap_parse_extended_result() Parse an LDAP extended
result message

“ldap_parse_extended_result()” on page 136

ldap_parse_page_control() Parse a paged results
server control returned in
an LDAP search response

“ldap_parse_page_control()” on page 138

ldap_parse_pwdpolicy_
response()

Parse a password policy
control response returned
in an LDAP message

“ldap_parse_pwdpolicy_response()” on page 140

ldap_parse_reference_np() Parse an LDAP search
continuation reference
message

“ldap_parse_reference_np()” on page 142

ldap_parse_result() Parse an LDAP result
message

“ldap_parse_result()” on page 144

Chapter 2. LDAP routines 27

Table 1. Summary of the current LDAP routines (continued)

Name of routine Function performed For a detailed description, see ...

ldap_parse_sasl_bind_result() Parse an LDAP SASL
bind result message

“ldap_parse_sasl_bind_result()” on page 146

ldap_parse_sort_control() Parse a sort results
response control returned
in an LDAP search
response

“ldap_parse_sort_control()” on page 147

ldap_pwdpolicy_err2string Return a descriptive text
message for an LDAP
password policy control
response error or
warning code

“ldap_pwdpolicy_err2string()” on page 149

ldap_remove_control() Remove a control from a
list of controls

“ldap_remove_control()” on page 150

ldap_rename() Rename an entry in the
LDAP directory

“ldap_rename(), ldap_rename_s()” on page 151

ldap_rename_s() Rename an entry in the
LDAP directory

“ldap_rename(), ldap_rename_s()” on page 151

ldap_result() Return the result message
for an LDAP request

“ldap_result()” on page 154

ldap_sasl_bind() Bind to the LDAP server
using the Simple
Authentication and
Security Layer

“ldap_sasl_bind(), ldap_sasl_bind_s()” on page
157

ldap_sasl_bind_s() Bind to the LDAP server
using the Simple
Authentication and
Security Layer

“ldap_sasl_bind(), ldap_sasl_bind_s()” on page
157

ldap_search() Search the LDAP
directory

“ldap_search(), ldap_search_s(), ldap_search_st(),
ldap_search_ext(), ldap_search_ext_s()” on page
164

ldap_search_s() Search the LDAP
directory

“ldap_search(), ldap_search_s(), ldap_search_st(),
ldap_search_ext(), ldap_search_ext_s()” on page
164

ldap_search_st() Search the LDAP
directory

“ldap_search(), ldap_search_s(), ldap_search_st(),
ldap_search_ext(), ldap_search_ext_s()” on page
164

ldap_search_ext() Search the LDAP
directory

“ldap_search(), ldap_search_s(), ldap_search_st(),
ldap_search_ext(), ldap_search_ext_s()” on page
164

ldap_search_ext_s() Search the LDAP
directory

“ldap_search(), ldap_search_s(), ldap_search_st(),
ldap_search_ext(), ldap_search_ext_s()” on page
164

ldap_server_conf_save() Save the LDAP server
information list

“ldap_server_conf_save()” on page 172

ldap_server_free_list() Release the LDAP server
information list

“ldap_server_free_list()” on page 174

ldap_server_locate() Locate the LDAP servers “ldap_server_locate()” on page 175

ldap_set_option() Set the value for an
LDAP option

“ldap_set_option(), ldap_set_option_np()” on
page 182

28 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 1. Summary of the current LDAP routines (continued)

Name of routine Function performed For a detailed description, see ...

ldap_set_option_np() Set the value for an
LDAP option

“ldap_set_option(), ldap_set_option_np()” on
page 182

ldap_set_rebind_proc() Specify the routine to be
called when binding to
another LDAP server

“ldap_set_rebind_proc()” on page 195

ldap_simple_bind() Bind to the LDAP server
using a distinguished
name (DN) and
password

“ldap_simple_bind(), ldap_simple_bind_s()” on
page 196

ldap_simple_bind_s() Bind to the LDAP server
using a distinguished
name (DN) and
password

“ldap_simple_bind(), ldap_simple_bind_s()” on
page 196

ldap_ssl_client_init() Initialize the SSL client
run time

“ldap_ssl_client_init()” on page 198

ldap_ssl_init() Create and initialize an
LDAP handle for an SSL
connection

“ldap_ssl_init()” on page 200

ldap_start_tls_s_np() Start TLS for a
connection

“ldap_start_tls_s_np()” on page 203

ldap_stop_tls_s_np() Stop TLS for a connection “ldap_stop_tls_s_np()” on page 205

ldap_unbind() Close the connection to
the LDAP server and
release the LDAP handle

“ldap_unbind(), ldap_unbind_s()” on page 206

ldap_unbind_s() Close the connection to
the LDAP server and
release the LDAP handle

“ldap_unbind(), ldap_unbind_s()” on page 206

ldap_url_parse() Parse an LDAP URL “ldap_url_parse()” on page 207

ldap_url_parse_np() Parse an LDAP URL “ldap_url_parse_np()” on page 210

ldap_url_search() Search the LDAP
directory using an LDAP
URL

“ldap_url_search(), ldap_url_search_s(),
ldap_url_search_st()” on page 212

ldap_url_search_s() Search the LDAP
directory using an LDAP
URL

“ldap_url_search(), ldap_url_search_s(),
ldap_url_search_st()” on page 212

ldap_url_search_st() Search the LDAP
directory using an LDAP
URL

“ldap_url_search(), ldap_url_search_s(),
ldap_url_search_st()” on page 212

ldap_value_free() Release storage allocated
for an array of character
strings

“ldap_value_free()” on page 216

ldap_value_free_len() Release storage allocated
for an array of binary
values

“ldap_value_free_len()” on page 217

ldap_version() Return LDAP version
information

“ldap_version()” on page 218

Chapter 2. LDAP routines 29

ldap_abandon(), ldap_abandon_ext()
Purpose

Abandon an operation

Format
#include <ldap.h>

int ldap_abandon(
LDAP * ld,
int msgid)

int ldap_abandon_ext(
LDAP * ld,
int msgid,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[])

Parameters

Input:

ld Specifies the LDAP handle.

msgid
Specifies the message identifier of a request that is still in progress.

serverctrls
Specifies an array of server controls for the abandon request. The end of the
array is indicated by a NULL address. If NULL is specified for this parameter, the
server controls specified by the LDAP_OPT_SERVER_CONTROLS option for the
LDAP handle are used. If NULL is specified for this parameter and the
LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP handle, no
server controls are used. To override the server controls for the LDAP handle
so that no controls are used, specify a server controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

clientctrls
Specifies an array of client controls for the abandon request. The end of the
array is indicated by a NULL address. If NULL is specified for this parameter, the
client controls specified by the LDAP_OPT_CLIENT_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP handle, no
client controls are used. To override the client controls for the LDAP handle so
that no controls are used, specify a client controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

Usage

The ldap_abandon() and ldap_abandon_ext() routines send an abandon request to
the LDAP server for the request identified by the message identifier. The LDAP
server cancels the request and does not return a result message. If the request has
already completed, the result message is purged and is not returned to the
application.

ldap_abandon(), ldap_abandon_ext()

30 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

An application rebind exit routine cannot abandon the request causing the referral
or any request in the referral chain. However, the application can abandon the
request causing the referral if a timeout occurs and control is returned to the
application by the ldap_result() routine. Abandoning the original referral request
causes all requests in the referral chain to be abandoned.

Client controls specified by the LDAP_OPT_CLIENT_CONTROLS option and server
controls specified by the LDAP_OPT_SERVER_CONTROLS option are used by the
ldap_abandon() routine. These controls are also used by the ldap_abandon_ext()
routine unless overridden by the serverctrls and clientctrls parameters.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INVALID_STATE
An unbind is in progress or the requested message is currently being
processed by the LDAP run time.

LDAP_NO_MATCHING_REQUEST
The message identifier does not refer to an outstanding request.

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_NOT_SUPPORTED
LDAP protocol version 3 is required to specify server or client controls.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Unable to send request to server.

ldap_abandon(), ldap_abandon_ext()

Chapter 2. LDAP routines 31

ldap_add(), ldap_add_s(), ldap_add_ext(), ldap_add_ext_s()
Purpose

Add an entry to the LDAP directory.

Format
#include <ldap.h>

typedef struct ldapmod {
int mod_op;
char * mod_type;
union {

char ** modv_strvals;
BerVal ** modv_bvals;

} mod_vals;
struct ldapmod * mod_next;

} LDAPMod;

#define LDAP_MOD_BVALUES 0x80

#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_add(
LDAP * ld,
const char * dn,
LDAPMod * mods[])

int ldap_add_s(
LDAP * ld,
const char * dn,
LDAPMod * mods[])

int ldap_add_ext(
LDAP * ld,
const char * dn,
LDAPMod * mods[],
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
int * msgidp)

int ldap_add_ext_s(
LDAP * ld,
const char * dn,
LDAPMod * mods[],
LDAPControl * serverctrls[],
LDAPControl * clientctrls[])

Parameters

Input

ld Specifies the LDAP handle.

dn Specifies the distinguished name for the directory entry as a null-terminated
character string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. A zero-length name is not
allowed for an add request.

mods
Specifies the attributes for the directory entry. The mod_op field is ignored other
than checking the LDAP_MOD_BVALUES flag. The mod_type field specifies the
attribute type as a null-terminated character string in UTF-8 or the local

ldap_add(), ldap_add_s(), ldap_add_ext(), ldap_add_ext_s()

32 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option for the
LDAP handle. The modv_strvals field can be used for character values and the
modv_bvals field can be used for binary values. The supplied values are in
binary if the LDAP_MOD_BVALUES flag is set. Otherwise, the supplied values are
null-terminated character strings in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

serverctrls
Specifies an array of server controls for the add request. The end of the array is
indicated by a NULL address. If NULL is specified for this parameter, the server
controls specified by the LDAP_OPT_SERVER_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP handle, no
server controls are used. To override the server controls for the LDAP handle
so that no controls are used, specify a server controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

clientctrls
Specifies an array of client controls for the add request. The end of the array is
indicated by a NULL address. If NULL is specified for this parameter, the client
controls specified by the LDAP_OPT_CLIENT_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP handle, no
client controls are used. To override the client controls for the LDAP handle so
that no controls are used, specify a client controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

Output

msgidp
Returns the message identifier assigned to the add request message. The
application can use this value when calling the ldap_result() routine to wait
for the add result message.

Usage

The ldap_add() and ldap_add_ext() routines send the request to the LDAP server
and return control to the application. The application must call the ldap_result()
routine to obtain the result.

The ldap_add_s() and ldap_add_ext_s() routines send the request to the LDAP
server and wait for the completion of the request. The add request is abandoned if
the client is unable to wait for the response because of an error from the
ldap_result() routine.

The parent entry must exist. For example, if an entry named "cn=John Doe,
ou=Manufacturing, o=Acme" is being added, the entry named "ou=Manufacturing,
o=Acme" must exist.

The supplied attributes should include all attributes making up the low-level RDN
(relative distinguished name) of the entry name and the objectClass attribute and
any mandatory attributes for the specified object classes. Each attribute must have

ldap_add(), ldap_add_s(), ldap_add_ext(), ldap_add_ext_s()

Chapter 2. LDAP routines 33

at least one value. The maximum value length is 2147483647. The z/OS LDAP
server adds any missing RDN attributes and values if the addition does not cause
an object class or constraint violation.

Client controls specified by the LDAP_OPT_CLIENT_CONTROLS option and server
controls specified by the LDAP_OPT_SERVER_CONTROLS option are used by the
ldap_add() and ldap_add_s() routines. These controls are also used by the
ldap_add_ext() and ldap_add_ext_s() routines unless overridden by the
serverctrls and clientctrls parameters.

Function return value

The ldap_add() routine returns -1 if a client error is detected. Otherwise, it returns
the message identifier assigned to the add request. If the return value is -1, the
application should call the ldap_get_errno() routine to get the error code. Errors
reported by the LDAP server are not returned by the ldap_add() routine. Instead,
the application must call the ldap_parse_result() routine to obtain the result code
from the result message returned by the ldap_result() routine.

The ldap_add_ext() routine returns LDAP_SUCCESS if the request is sent to the LDAP
server. Otherwise, the return value is one of the error codes listed in the ldap.h
include file. Errors reported by the LDAP server are not returned by the
ldap_add_ext() routine. Instead, the application must call the ldap_parse_result()
routine to obtain the result code from the result message returned by the
ldap_result() routine.

The ldap_add_s() and ldap_add_ext_s() routines return LDAP_SUCCESS if the request
is successful. Otherwise, the return value is one of the error codes listed in the
ldap.h include file. The return value includes errors detected by the LDAP client
and errors detected by the LDAP server.

The following are some common client errors:

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

LDAP_LOCAL_ERROR
A system function reported an error.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to specify server or
client controls.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
add operation.

The following are some common server result codes:

LDAP_ALREADY_EXISTS
The entry exists.

ldap_add(), ldap_add_s(), ldap_add_ext(), ldap_add_ext_s()

34 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_INSUFFICIENT_ACCESS
Not authorized to add entry.

LDAP_NO_SUCH_OBJECT
The parent entry does not exist.

LDAP_OBJECT_CLASS_VIOLATION
Either a mandatory attribute is not included or an attribute is not allowed
by the object class definition.

LDAP_REFERRAL
The parent entry is not in the current LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
add operation.

LDAP_UNDEFINED_TYPE
An attribute type is not defined in the directory schema.

ldap_add(), ldap_add_s(), ldap_add_ext(), ldap_add_ext_s()

Chapter 2. LDAP routines 35

ldap_add_control()
Purpose

Create a control and insert it into a list of controls

Format
#include <ldap.h>

int ldap_add_control(
char * oid,
ber_len_t len,
char * value,
int is_critical,
LDAPControl *** control_list)

Parameters

Input

oid Specifies the control type, represented as a string.

len Specifies the length of the value string.

value Specifies the data associated with the control.

is_critical
Specify 1 if this is a critical control, otherwise specify 0.

Output

control_list
Specifies the address of the control list. A new control list is created if there
is no control list. (The location pointed to by the control_list parameter
contains NULL.) Otherwise, the existing control list is expanded and the new
control is added to the list. The ldap_controls_free() routine should be
called to release the controls when they are no longer needed.

Usage

The ldap_add_control() routine creates a control (using the oid, len, value, and
is_critical values) and inserts it into a list of controls specified by control_list.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, the
return value is one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_add_control()

36 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_berfree_np()
Purpose

Release storage for a binary value

Format
#include <ldap.h>

void ldap_berfree_np(
BerVal * val)

Parameters

Input

val
Specifies the binary value to free.

Usage

The ldap_berfree_np() routine releases the storage allocated for a binary value.
The BerVal structure and the binary value are freed.

Function return value

There is no function return value.

ldap_berfree_np()

Chapter 2. LDAP routines 37

ldap_compare(), ldap_compare_s(), ldap_compare_ext(),
ldap_compare_ext_s()

Purpose

Compare an attribute value to an attribute value for an entry in the LDAP
directory

Format
#include <ldap.h>

int ldap_compare(
LDAP * ld,
const char * dn,
const char * attr,
const char * value)

int ldap_compare_s(
LDAP * ld,
const char * dn,
const char * attr,
const char * value)

int ldap_compare_ext(
LDAP * ld,
const char * dn,
const char * attr,
BerVal * bvalue,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
int * msgidp)

int ldap_compare_ext_s(
LDAP * ld,
const char * dn,
const char * attr,
BerVal * bvalue,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[])

Parameters

Input

ld Specifies the LDAP handle.

dn Specifies the distinguished name for the directory entry as a null-terminated
character string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. A zero-length name can be
used to specify the root DSE.

attr
Specifies the attribute type as a null-terminated character string in UTF-8 or
the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option
for the LDAP handle.

value
Specifies the attribute value as a null-terminated character string in UTF-8 or
the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option
for the LDAP handle.

ldap_compare(), ldap_compare_s(), ldap_compare_ext(), ldap_compare_ext_s()

38 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

bvalue
Specifies the attribute value as a binary octet string. The value is sent to the
LDAP server without any conversion. The maximum value length is
2147483647.

serverctrls
Specifies an array of server controls for the compare request. The end of the
array is indicated by a NULL address. If NULL is specified for this parameter, the
server controls specified by the LDAP_OPT_SERVER_CONTROLS option for the
LDAP handle are used. If NULL is specified for this parameter and the
LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP handle, no
server controls are used. To override the server controls for the LDAP handle
so that no controls are used, specify a server controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

clientctrls
Specifies an array of client controls for the compare request. The end of the
array is indicated by a NULL address. If NULL is specified for this parameter, the
client controls specified by the LDAP_OPT_CLIENT_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP handle, no
client controls are used. To override the client controls for the LDAP handle so
that no controls are used, specify a client controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

Output

msgidp
Returns the message identifier assigned to the compare request message. The
application can use this value when calling the ldap_result() routine to wait
for the compare result message.

Usage

The ldap_compare() and ldap_compare_ext() routines send the request to the
LDAP server and return control to the application. The application must call the
ldap_result() routine to obtain the result.

The ldap_compare_s() and ldap_compare_ext_s() routines send the request to the
LDAP server and wait for the completion of the request. The compare request is
abandoned if the client is unable to wait for the response because of an error from
the ldap_result() routine.

The supplied attribute value is compared to the attribute value for the directory
entry. The result code is LDAP_COMPARE_TRUE if the values are the same and
LDAP_COMPARE_FALSE if the values are not the same. Any other result code indicates
an error.

Client controls specified by the LDAP_OPT_CLIENT_CONTROLS and server controls
specified by the LDAP_OPT_SERVER_CONTROLS options are used by the
ldap_compare() and ldap_compare_s() routines. These controls are also used by
the ldap_compare_ext() and ldap_compare_ext_s() routines unless overridden by
the serverctrls and clientctrls parameters.

ldap_compare(), ldap_compare_s(), ldap_compare_ext(), ldap_compare_ext_s()

Chapter 2. LDAP routines 39

Function return value

The ldap_compare() routine returns -1 if a client error is detected. Otherwise, it
returns the message identifier assigned to the compare request. If the return value
is -1, the application should call the ldap_get_errno() routine to get the error code.
Errors reported by the LDAP server are not returned by the ldap_compare()
routine. Instead, the application must call the ldap_parse_result() routine to obtain
the result code from the result message returned by the ldap_result() routine.

The ldap_compare_ext() routine returns LDAP_SUCCESS if the request is sent to the
LDAP server. Otherwise, the return value is one of the error codes listed in the
ldap.h include file. Errors reported by the LDAP server are not returned by the
ldap_compare_ext() routine. Instead, the application must call the
ldap_parse_result() routine to obtain the result code from the result message
returned by the ldap_result() routine.

The ldap_compare_s() and ldap_compare_ext_s() routines return either
LDAP_COMPARE_TRUE or LDAP_COMPARE_FALSE if the request is successful. Otherwise,
the return value is one of the error codes listed in the ldap.h include file. The
return value includes errors detected by the LDAP client and including errors
detected by the LDAP server.

The following are some common client errors:

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to specify server or
client controls.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
compare operation.

The following are some common server result codes:

LDAP_COMPARE_FALSE
The attribute values are not the same.

LDAP_COMPARE_TRUE
The attribute values are the same.

LDAP_INSUFFICIENT_ACCESS
Not authorized to access the directory entry.

LDAP_NO_SUCH_ATTRIBUTE
The directory entry does not have the specified attribute.

LDAP_NO_SUCH_OBJECT
The directory entry does not exist.

ldap_compare(), ldap_compare_s(), ldap_compare_ext(), ldap_compare_ext_s()

40 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_REFERRAL
The entry is not in the current LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
compare operation.

LDAP_UNDEFINED_TYPE
The attribute type is not defined in the directory schema.

ldap_compare(), ldap_compare_s(), ldap_compare_ext(), ldap_compare_ext_s()

Chapter 2. LDAP routines 41

ldap_control_free()
Purpose

Release the storage for an LDAP control

Format
#include <ldap.h>

void ldap_control_free(
LDAPControl * ctrl)

Parameters

Input

ctrl
Specifies the LDAP control.

Usage

The ldap_control_free() routine releases a single LDAP control. The LDAPControl
structure is released along with the control data objects.

Function return value

There is no function return value.

ldap_control_free()

42 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_controls_free()
Purpose

Release the storage for an array of LDAP controls

Format
#include <ldap.h>

void ldap_controls_free(
LDAPControl * ctrls[])

Parameters

Input

ctrls
Specifies the array of LDAP controls. The end of the array is indicated by a
NULL control address.

Usage

The ldap_controls_free() routine releases an array of LDAP controls. The address
array and each LDAPControl structure are released along with the control data
objects.

Function return value

There is no function return value.

ldap_controls_free()

Chapter 2. LDAP routines 43

ldap_convert_local_np()
Purpose

Convert a text string from the local EBCDIC code page to UTF-8

Format
#include <ldap.h>

int ldap_convert_local_np(
LDAP * ld,
const char * local_string,
char ** utf8_string)

Parameters

Input

ld Specifies the LDAP handle.

local_string
Specifies the string to be converted.

Output

utf8_string
Returns the converted string. The ldap_memfree() routine should be called to
release the string when it is no longer needed.

Usage

The ldap_convert_local_np() routine converts a text string from the local EBCDIC
code page to UTF-8. For more information about the conversion process, see the
description of the iconv() routine in z/OS XL C/C++ Runtime Library Reference.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_BAD_STRING_ENCODING
The input string contains a character sequence that is not valid.

LDAP_LOCAL_ERROR
The iconv() routine failed.

LDAP_NO_MEMORY
Insufficient storage available.

ldap_convert_local_np()

44 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_convert_utf8_np()
Purpose

Convert a text string from UTF-8 to the local EBCDIC code page

Format
#include <ldap.h>

int ldap_convert_utf8_np(
LDAP * ld,
const char * utf8_string,
char ** local_string)

Parameters

Input

ld Specifies the LDAP handle.

utf8_string
Specifies the string to be converted.

Output

local_string
Returns the converted string. The application should call the ldap_memfree()
routine to release the string when it is no longer needed.

Usage

The ldap_convert_utf8_np() routine converts a text string from UTF-8 to the local
EBCDIC code page. UTF-8 characters that cannot be represented in the local
EBCDIC code page are replaced by a substitute character as determined by the
local EBCDIC code page definition. For more information about the conversion
process, see the description of the iconv() routine in z/OS XL C/C++ Runtime
Library Reference.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_BAD_STRING_ENCODING
The input string contains a character sequence that is not valid.

LDAP_LOCAL_ERROR
The iconv() routine failed.

LDAP_NO_MEMORY
Insufficient storage available.

ldap_convert_utf8_np()

Chapter 2. LDAP routines 45

ldap_count_attributes()
Purpose

Return the number of attributes in an LDAP search entry

Format
#include <ldap.h>

int ldap_count_attributes(
LDAP * ld,
LDAPMessage * entry)

Parameters

Input

ld Specifies the LDAP handle.

entry
Specifies the LDAP entry returned by the ldap_first_entry() or
ldap_next_entry() routine.

Usage

The ldap_count_attributes() routine returns the number of attributes in an LDAP
search entry.

Function return value

The function return value is the number of attributes in the entry or -1 if an error
is detected. When the return value is -1, the application can call the
ldap_get_errno() routine to get the error code.

The following are some common errors for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_count_attributes()

46 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_count_entries()
Purpose

Return the number of search entries in an LDAP result

Format
#include <ldap.h>

int ldap_count_entries(
LDAP * ld,
LDAPMessage * msg)

Parameters

Input

ld Specifies the LDAP handle.

msg
Specifies the LDAP message.

Usage

The ldap_count_entries() routine returns the number of search entries in an LDAP
result. The count includes the specified message and any messages chained to that
message. This count is the total number of search entries in the result if the
message is the result message returned by ldap_result() or one of the synchronous
search request routines. The count is the number of search entries still to be
processed if the message is returned by the ldap_first_message(),
ldap_next_message(), ldap_first_entry(), ldap_next_entry(), ldap_first_reference(),
or ldap_next_reference() routine.

Function return value

The function return value is the number of search entries or -1 if an error is
detected. When the return value is -1, the application can call the ldap_get_errno()
routine to get the error code.

The following are some common errors for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_count_entries()

Chapter 2. LDAP routines 47

ldap_count_messages()
Purpose

Return the number of messages in an LDAP result

Format
#include <ldap.h>

int ldap_count_messages(
LDAP * ld,
LDAPMessage * msg)

Parameters

Input

ld Specifies the LDAP handle.

msg
Specifies the LDAP message.

Usage

The ldap_count_messages() routine returns the number of messages in an LDAP
result. The count includes the specified message and any messages chained to that
message. This count is the total number of messages in the result if the message is
the result message returned by ldap_result() or one of the synchronous search
request routines. The count is the number of messages still to be processed if the
message is returned by the ldap_first_message(), ldap_next_message(),
ldap_first_entry(), ldap_next_entry(), ldap_first_reference(), or
ldap_next_reference() routine.

The ldap_count_messages() routine counts the number of messages without regard
to the message type. Use the ldap_count_entries() or ldap_count_references()
routine if you want to know the number of messages of a particular type.

Function return value

The function return value is the number of messages or -1 if an error is detected.
When the return value is -1, the application can call the ldap_get_errno() routine
to get the error code.

The following are some common errors for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_count_messages()

48 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_count_references()
Purpose

Return the number of search references in an LDAP result

Format
#include <ldap.h>

int ldap_count_references(
LDAP * ld,
LDAPMessage * msg)

Parameters

Input

ld Specifies the LDAP handle.

msg
Specifies the LDAP message.

Usage

The ldap_count_references() routine returns the number of search references in an
LDAP result. The count includes the specified message and any messages chained
to that message. This count is the total number of search references in the result if
the message is the result message returned by ldap_result() or one of the
synchronous search request routines. The count is the number of search references
still to be processed if the message is returned by the ldap_first_message(),
ldap_next_message(), ldap_first_entry(), ldap_next_entry(), ldap_first_reference()
or ldap_next_reference() routine.

Function return value

The function return value is the number of search references or -1 if an error is
detected. When the return value is -1, the application can call the ldap_get_errno()
routine to get the error code.

The following are some common errors for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_count_references()

Chapter 2. LDAP routines 49

ldap_count_values()
Purpose

Return the number of elements in an array of character strings

Format
#include <ldap.h>

int ldap_count_values(
const char * vals[])

Parameters

Input

vals
Specifies the array of character strings. The end of the array is indicated by a
NULL address.

Usage

The ldap_count_values() routine returns the number of elements in an array of
character strings.

Function return value

The function return value is the number of elements in the array.

ldap_count_values()

50 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_count_values_len()
Purpose

Return the number of elements in an array of binary values

Format
#include <ldap.h>

int ldap_count_values_len(
BerVal * bvals[])

Parameters

Input

bvals
Specifies the array of binary values. The end of the array is indicated by a NULL
address.

Usage

The ldap_count_values_len() routine returns the number of elements in an array of
binary values.

Function return value

The function return value is the number of elements in the array.

ldap_count_values_len()

Chapter 2. LDAP routines 51

ldap_create_page_control()
Purpose

Create a paged results control for use with an LDAP search request

Format
#include <ldap.h>

int ldap_create_page_control(
LDAP * ld,
unsigned long page_size,
BerVal * cookie,
int is_critical,
LDAPControl ** control)

Parameters

Input

ld Specifies the LDAP handle.

page_size
Specifies the page size. The maximum page size is 2147483647.

cookie
Specifies the cookie returned by the LDAP server for the previous request.
Either specify NULL for this parameter or provide a zero-length cookie to create
the initial paged results control.

is_critical
Specify 1 if this is a critical control, otherwise specify 0.

Output

control
Returns the paged results control. The ldap_control_free() routine should be
called to release the control when it is no longer needed. The
ldap_insert_control() routine can be used to add the control to a list of controls
for input to the ldap_search_ext() or ldap_search_ext_s() routine.

Usage

RFC 2696: LDAP Control Extension for Simple Paged Results Manipulation provides
paging capabilities for LDAP clients that receive a subset of search results (page)
instead of the entire list. The next page of entries is returned to the client
application for each subsequent paged results search request submitted by the
client until the operation is canceled or the last result is returned. The server
ignores the paged results control if the page_size is greater than or equal to the size
limit value in the search request. A paged results control is not returned by the
server in this case.

The ldap_create_page_control() routine takes as input a page_size and a cookie and
builds a paged results server control (1.2.840.113556.1.4.319). The application
then adds this control to the list of controls sent to the server on an LDAP search
request to request that the server return the results in pages instead of all at once.
This is done by using the ldap_search_ext() or ldap_search_ext_s() routine.

ldap_create_page_control()

52 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc2696.txt.pdf

A zero-length cookie indicates this is the initial search request. The LDAP server
returns a paged results control in the search response message if no errors are
detected. The ldap_parse_page_control() routine can be used to parse the returned
control and extract the total entry count and the new cookie. This cookie can be used
to create the paged results control to retrieve the next page of results. Each search
response returns the next page of results and a paged results control with a new
cookie. A zero-length cookie is returned by the LDAP server with the final page of
results. The search requests used to obtain the successive result pages must be the
same as the original search request, other than the message identifier, page_size and
cookie, or the server returns LDAP_UNWILLING_TO_PERFORM.

The client can cancel the remaining search results by sending a search request with
the last cookie returned by the server and a page_size of zero. The remaining search
results are discarded by the server and an LDAP search response is returned with
a paged results control containing a zero-length cookie.

The LDAP server might limit the number of outstanding paged search results
requests for a given client or for all clients. A server with a limit on the number of
outstanding paged results requests returns LDAP_UNWILLING_TO_PERFORM in the
search response message if either a new paged results search request cannot be
started or an existing search request cannot be continued because the search results
have been deleted.

There is no guarantee to the client application that the results of a search query
remained unchanged through the life of a set of paged results request/response
sequences. If the result set for the query changed since the initial search request
specifying paged results, the client application might not receive all the entries
matching the search criteria.

The client application must turn off automatic referral chasing and process referrals
itself when issuing a paged search request. Otherwise, results may be incomplete,
more entries than requested may be returned in a given page, or an error might
occur attempting a paged search continuation. Automatic referral chasing is turned
off by setting the LDAP_OPT_REFERRALS to LDAP_OPT_OFF using the ldap_set_option()
or ldap_set_option_np() routine. When chasing referrals, the client application
must send an initial paged results request, with a zero-length cookie, to each of the
referral servers. The original LDAP server does not ensure that the referral server
supports the paged results control. Multiple lists are returned to the client
application, one by each referral server. It is the client application's decision as to
how best to present this information to the user.

The sort results control can be used with the paged results control to apply the
paging capability to a set of sorted results. The sort is performed on the entire set
of search results before the first page is returned to the LDAP client. See
“ldap_create_sort_control()” on page 57 for the description of the
ldap_create_sort_control() routine for more information about obtaining sorted
results.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

ldap_create_page_control()

Chapter 2. LDAP routines 53

LDAP_NO_MEMORY
Insufficient storage is available

LDAP_PARAM_ERROR
A parameter is not valid

ldap_create_page_control()

54 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_create_persistentsearch_control()
Purpose

Create a persistent search control for use with an LDAP search request

Format
#include <ldap.h>

int ldap_create_persistentsearch_control(
LDAP * ld,
int change_types,
int changes_only,
int return_echg_controls,
int is_critical,
LDAPControl ** control)

Parameters

Input

ld Specifies the LDAP handle.

change_types
Specifies the types of changes that should be included in the persistent search
results. This is a bit-sensitive value that must be set to LDAP_CHANGETYPE_ANY or
to any combination of the following values:
v LDAP_CHANGETYPE_ADD

v LDAP_CHANGETYPE_DELETE

v LDAP_CHANGETYPE_MODIFY

v LDAP_CHANGETYPE_MODDN.

changes_only
Specifies whether the search results should contain only changed entries.
Specify 1 if only changed entries matching the search criteria should be
returned. Specify 0 if all entries matching the search criteria should be returned
before starting to monitor for changes.

return_echg_controls
Specifies whether the entry change notification control should be returned with
each search result entry returned during the monitor phase of the search.
Specify 1 if you want entry change notification controls, otherwise specify 0.

is_critical
Specify 1 if this is a critical control, otherwise specify 0.

Output

control
Returns the persistent search control. The ldap_control_free() routine should
be called to release the control when it is no longer needed. The
ldap_insert_control() routine can be used to add the control to a list of controls
for input to the ldap_search_ext() routine.

Usage

The persistent search control provides the application with the ability to monitor
changes to directory entries. This control should be used with asynchronous search

ldap_create_persistentsearch_control()

Chapter 2. LDAP routines 55

requests because the search does not complete until either the request is
abandoned or the server connection is closed.

The ldap_create_persistentsearch_control() routine builds a persistent search
server control (2.16.840.1.113730.3.4.3). The application then adds this control
to the list of controls sent to the server on an LDAP search request. The
LDAP_OPT_DEREF option should be set to LDAP_DEREF_NEVER or LDAP_DEREF_FINDING
when issuing the search request.

Upon receiving the persistent search control, the LDAP server processes the search
request as follows:
v Existing entries that match the search criteria are returned unless a nonzero

value is specified for the changes_only parameter. The search results for existing
entries do not contain the entry change notification server control.

v A search result completion message is not returned. Instead, the search operation
remains active and monitors changes to the directory until the client abandons
the request or an unbind is performed.

v As changes are made, the affected entries are returned to the client if they match
the search criteria and if the operation causing the change is included in the list
specified by the change_types parameter. The search results contain the server
control for entry change notification if a nonzero value is specified for the
return_echg_controls parameter.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_create_persistentsearch_control()

56 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_create_sort_control()
Purpose

Create a sort results request control for use with an LDAP search request

Format
#include <ldap.h>

int ldap_create_sort_control(
LDAP * ld,
LDAPSortKey * sort_key_list[],
int is_critical,
LDAPControl ** control)

Parameters

Input

ld Specifies the LDAP handle.

sort_key_list
Specifies the sort_key_list created by the ldap_create_sort_keylist() routine. All
text strings in the sort keys are in either the local EBCDIC code page or UTF-8
as determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

is_critical
Specify 1 if this is a critical control, otherwise specify 0.

Output

control
Returns the sort results request control. The ldap_control_free() routine should
be called to release the control when it is no longer needed. The
ldap_insert_control() routine can be used to add the control to a list of controls
for input to the ldap_search_ext() or ldap_search_ext_s() routine.

Usage

RFC 2891: LDAP Control Extension for Server Side Sorting of Search Results provides
server sorting of search results. The sort is performed based upon one or more
attributes contained in the search results.

The ldap_create_sort_control() routine takes a sort_key_list as input and builds a
sort results request control (1.2.840.113556.1.4.473). The application then adds
this control to the list of controls sent to the server on an LDAP search request to
request that the server sort the results. This is done using the ldap_search_ext() or
ldap_search_ext_s() routine. The ldap_create_sort_keylist() routine can be used to
create the sort_key_list.

The LDAP server returns a sort results response control (1.2.840.113556.1.4.474).
The ldap_parse_sort_control() routine can be used to parse the control and return
the sort result code and optional attribute name. The sort result code is set to
LDAP_SUCCESS if the results were successfully sorted. Otherwise, it is set to an error
code indicating the reason for the failure and, if applicable, the attribute type is set
to the attribute resulting in the failure.

When chasing referrals, the client application must send an initial sort results
request to each of the referral servers. The original LDAP server does not ensure

ldap_create_sort_control()

Chapter 2. LDAP routines 57

http://www.rfc-editor.org/rfc/pdfrfc/rfc2891.txt.pdf

that the referral server supports the sort results request control. Multiple lists are
returned to the client application, one by each referral server. It is the client
application's decision as to how best to present this information to the user. The
client application must turn off client referral processing to get one truly sorted list,
otherwise, when chasing referrals with the sort results request control specified, the
search results from multiple servers are intermixed.

The paged results control can be used with the sort results control to apply the
paging capability to a set of sorted results. The sort is performed on the entire set
of search results before the first page is returned to the LDAP client. See
“ldap_create_page_control()” on page 52 for the description of the
ldap_create_page_control() routine for more information about obtaining paged
results. When returning paged results that have been sorted, the LDAP server
returns the sort results response control with each page of sorted results.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_NO_MEMORY
Insufficient storage is available

LDAP_PARAM_ERROR
A parameter is not valid

ldap_create_sort_control()

58 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_create_sort_keylist()
Purpose

Create a list of sort keys

Format
#include <ldap.h>

int ldap_create_sort_keylist(
LDAPSortKey *** sort_key_list,
const char * sort_string)

Parameters

Input

sort_string
Specifies one or more attributes to be used to sort the search results.

Output

sort_key_list
Returns the list of sort keys created from the sort_string. The
ldap_free_sort_keylist() routine should be called to release the key list when it
is no longer needed.

Usage

The ldap_create_sort_keylist() routine builds a list of LDAPSortKey structures
based on the list of attributes specified in the sort string. This list can then be used
as input to the ldap_create_sort_control() routine to create the sorted results server
control.

A sort key consists of three values:
1. the name of the attribute used to sort entries returned by the server
2. the optional name of a matching rule for that attribute
3. an optional indicator of whether the sort should be done in reverse order

The sort string consists of one or more attribute specifications separated by blanks.
Each attribute specification has the following format:
[-]attribute-type[:matching-rule]

The results are sorted in reverse order if the attribute specification is prefixed with
a minus sign (-). The matching rule is specified by either its object identifier or its
name as defined in the directory schema. The matching rule associated with the
attribute type is used if no matching rule is specified.

The LDAPSortKey structure is defined as follows:
struct_LDAPsortkey {

char * attr_type;
char * matching_rule_oid;
int reverse_order;

} LDAPSortKey, LDAPsortkey;

ldap_create_sort_keylist()

Chapter 2. LDAP routines 59

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_NO_MEMORY
Insufficient storage is available

LDAP_PARAM_ERROR
A parameter is not valid

ldap_create_sort_keylist()

60 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_delete(), ldap_delete_s(), ldap_delete_ext(), ldap_delete_ext_s()
Purpose

Delete an entry from the LDAP directory

Format
#include <ldap.h>

int ldap_delete(
LDAP * ld,
const char * dn)

int ldap_delete_s(
LDAP * ld,
const char * dn)

int ldap_delete_ext(
LDAP * ld,
const char * dn,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
int * msgidp)

int ldap_delete_ext_s(
LDAP * ld,
const char * dn,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[])

Parameters

Input

ld Specifies the LDAP handle.

dn Specifies the distinguished name for the directory entry as a null-terminated
character string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. A zero-length name is not
allowed for a delete request.

serverctrls
Specifies an array of server controls for the delete request. The end of the array
is indicated by a NULL address. If NULL is specified for this parameter, the server
controls specified by the LDAP_OPT_SERVER_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP handle, no
server controls are used. To override the server controls for the LDAP handle
so that no controls are used, specify a server controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

clientctrls
Specifies an array of client controls for the delete request. The end of the array
is indicated by a NULL address. If NULL is specified for this parameter, the client
controls specified by the LDAP_OPT_CLIENT_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP handle, no
client controls are used. To override the client controls for the LDAP handle so
that no controls are used, specify a client controls array consisting of a NULL

ldap_delete(), ldap_delete_s(), ldap_delete_ext(), ldap_delete_ext_s()

Chapter 2. LDAP routines 61

address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

Output

msgidp
Returns the message identifier assigned to the delete request message. The
application can use this value when calling the ldap_result() routine to wait
for the delete result message.

Usage

The ldap_delete() and ldap_delete_ext() routines send the request to the LDAP
server and return control to the application. The application must call the
ldap_result() routine to obtain the result.

The ldap_delete_s() and ldap_delete_ext_s() routines send the request to the LDAP
server and wait for the completion of the request. The delete request is abandoned
if the client is unable to wait for the response because of an error from the
ldap_result() routine.

The requested directory entry is deleted. The entry must be a leaf entry (that is, the
entry must not have any subordinate entries).

Client controls specified by the LDAP_OPT_CLIENT_CONTROLS and server controls
specified by the LDAP_OPT_SERVER_CONTROLS options are used by the ldap_delete()
and ldap_delete_s() routines. These controls are also used by the ldap_delete_ext()
and ldap_delete_ext_s() routines unless overridden by the serverctrls and
clientctrls parameters.

Function return value

The ldap_delete() routine returns -1 if a client error is detected. Otherwise, it
returns the message identifier assigned to the delete request. If the return value is
-1, the application should call the ldap_get_errno() routine to get the error code.
Errors reported by the LDAP server are not returned by the ldap_delete() routine.
Instead, the application must call the ldap_parse_result() routine to obtain the
result code from the result message returned by the ldap_result() routine.

The ldap_delete_ext() routine returns LDAP_SUCCESS if the request is sent to the
LDAP server. Otherwise, the return value is one of the error codes listed in the
ldap.h include file. Errors reported by the LDAP server are not returned by the
ldap_delete_ext() routine. Instead, the application must call the ldap_parse_result()
routine to obtain the result code from the result message returned by the
ldap_result() routine.

The ldap_delete_s() and ldap_delete_ext_s() routines return LDAP_SUCCESS if the
request is successful. Otherwise, the return value is one of the error codes listed in
the ldap.h include file. The return value includes errors detected by the LDAP
client and errors detected by the LDAP server.

The following are some common client errors:

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

ldap_delete(), ldap_delete_s(), ldap_delete_ext(), ldap_delete_ext_s()

62 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to specify server or
client controls.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
delete operation.

The following are some common server result codes:

LDAP_INSUFFICIENT_ACCESS
Not authorized to delete the directory entry.

LDAP_NO_SUCH_OBJECT
The directory entry does not exist.

LDAP_NOT_ALLOWED_ON_NONLEAF
An entry with subordinate entries cannot be deleted.

LDAP_REFERRAL
The entry is not in the current LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
delete operation.

ldap_delete(), ldap_delete_s(), ldap_delete_ext(), ldap_delete_ext_s()

Chapter 2. LDAP routines 63

ldap_dn2ufn()
Purpose

Parse a distinguished name and return a user-friendly name

Format
#include <ldap.h>

char * ldap_dn2ufn(
const char * dn)

Parameters

Input

dn Specifies the DN as a null-terminated character string in the local EBCDIC
code page or UTF-8, as determined by the LDAP_LIBASCII compiler variable.

Usage

The ldap_dn2ufn() routine breaks a distinguished name (DN) into one or more
relative distinguished names (RDN) following the rules that are defined in RFC
2253: UTF-8 String Representation of Distinguished Names. The RDN values are then
combined into a single character string with a comma and a space between each
value. Leading and trailing blanks are removed for each RDN but embedded
blanks remain unchanged. Escape sequences are not removed from the attribute
values.

Example: "cn=John Doe+employeeNumber=112233,ou=Manufacturing,o=Acme,c=US" is
returned as "John Doe, 112233, Manufacturing, Acme, US".

Function return value

The function return value is NULL if an error is detected. Otherwise, it is the
address of the user-friendly name. The application should call the ldap_memfree()
routine to release the character string when it is no longer needed.

ldap_dn2ufn()

64 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

ldap_dn2ufn_np()
Purpose

Parse a distinguished name and return a user-friendly name

Format
#include <ldap.h>

int ldap_dn2ufn_np(
LDAP * ld,
const char * dn,
char ** ufn)

Parameters

Input

ld Specifies the LDAP handle. This parameter can be specified as NULL if all text
strings are in UTF-8.

dn Specifies the DN as a null-terminated character string in the local EBCDIC
code page or UTF-8, as determined by the LDAP_OPT_UTF8_IO option for the
LDAP handle.

Output

ufn
Returns the user-friendly name as a null-terminated character string in either
UTF-8 or the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO
option for the LDAP handle. The ldap_memfree() routine should be called to
release the string when it is no longer needed.

Usage

The ldap_dn2ufn() routine breaks a distinguished name (DN) into one or more
relative distinguished names (RDN) following the rules defined in RFC 2253:
UTF-8 String Representation of Distinguished Names. The RDN values are then
combined into a single character string with a comma and a space between each
value. Leading and trailing blanks are removed for each RDN but embedded
blanks remain unchanged. Escape sequences are not removed from the attribute
values.

Example: "cn=John Doe+employeeNumber=112233,ou=Manufacturing,o=Acme,c=US" is
returned as "John Doe, 112233, Manufacturing, Acme, US".

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_dn2ufn_np()

Chapter 2. LDAP routines 65

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

ldap_enetwork_domain_get()
Purpose

Return the eNetwork domain for the current user

Format
#include <ldap.h>

int ldap_enetwork_domain_get(
char ** edomainp,
const char * filename)

Parameters

Input

filename
Specifies the name of the user information file as a null-terminated character
string in the local EBCDIC code page or UTF-8, as determined by the
LDAP_LIBASCII compiler variable. Specify NULL for this parameter to use the
default user information file ($HOME/ldap_user_info). The maximum length of
the file name is 255 and a longer name is truncated to the first 255 bytes.

Output

edomainp
Returns the eNetwork domain as a null-terminated character string in the local
EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII compiler
variable. The application should call the ldap_memfree() routine to release the
string when it is no longer needed.

Usage

The ldap_enetwork_domain_get() routine returns the eNetwork domain. The
eNetwork domain can be used by the ldap_server_locate() routine to form the
service name and allows LDAP servers within the same DNS domain to be further
subdivided based on the eNetwork domain.

The eNetwork domain is set by the ldap_enetwork_domain_set() routine and is
saved in the file that is specified by the filename parameter. For the default user
information file, the home directory is obtained from the $HOME environment
variable. If the $HOME environment variable is not defined, the home directory is
obtained from the OMVS segment for the current user. The user name is
indeterminate if the same UID is assigned to multiple users because the system
returns the first user name with the UID you want.

Guideline: To avoid conflicts, the $HOME environment variable should always be
defined for users sharing the same UID value.

The entries in the user information file are accessed by user name. This allows
multiple users to share the same home directory and still have unique values for
the eNetwork domain. Users with the same UID value, however, share the same
entry in the user information file and have the same eNetwork domain.

ldap_enetwork_domain_get()

66 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INSUFFICIENT_ACCESS
Not authorized to read the user information file.

LDAP_LOCAL_ERROR
A system routine returned an error.

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_NO_SUCH_OBJECT
The user information file does not exist or the user is not defined in the
user information file.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_USER_INFO_FILE_ERROR
Error processing user information file.

ldap_enetwork_domain_get()

Chapter 2. LDAP routines 67

ldap_enetwork_domain_set()
Purpose

Set the eNetwork domain for the current user

Format
#include <ldap.h>

int ldap_enetwork_domain_set(
const char * edomain,
const char * filename)

Parameters

Input

edomain
Specifies the eNetwork domain as a null-terminated character string in the
local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable. The maximum length of the eNetwork domain is 255 and an
error is returned if the name is too long. The eNetwork domain should consist
of characters that can be represented in the ISO8859-1 code page to avoid
problems when the eNetwork domain is later used to create a DNS resource
name. Specify NULL for this parameter to indicate there is no eNetwork domain
for the current user.

filename
Specifies the name of the user information file as a null-terminated character
string in the local EBCDIC code page or UTF-8, as determined by the
LDAP_LIBASCII compiler variable. Specify NULL for this parameter to use the
default user information file ($HOME/ldap_user_info). The maximum length of
the file name is 255 and a longer name is truncated to the first 255 bytes.

Usage

The ldap_enetwork_domain_set() routine sets the eNetwork domain. The
eNetwork domain can be used by the ldap_server_locate() routine to form the
service name and allows LDAP servers within the same DNS domain to be further
subdivided based on the eNetwork domain.

The eNetwork domain is saved in the file specified by the filename parameter. The
file is created if it does not exist. Existing domain information for the user is
replaced. For the default user information file, the home directory is obtained from
the $HOME environment variable. If the $HOME environment variable is not defined,
the home directory is obtained from the OMVS segment for the current user. The
user name is indeterminate if the same UID is assigned to multiple users because
the system returns the first user name with the UID you want.

Guideline: To avoid conflicts, the $HOME environment variable should always be
defined for users sharing the same UID value.

The entries in the user information file are accessed by user name. This allows
multiple users to share the same home directory and still have unique values for
the eNetwork domain. Users with the same UID value, however, share the same
entry in the user information file and have the same eNetwork domain.

ldap_enetwork_domain_set()

68 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INSUFFICIENT_ACCESS
Not authorized to read the user information file.

LDAP_LOCAL_ERROR
A system routine returned an error.

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_USER_INFO_FILE_ERROR
Error processing user information file.

ldap_enetwork_domain_set()

Chapter 2. LDAP routines 69

ldap_err2string()
Purpose

Return a descriptive text message for an LDAP error code

Format
include <ldap.h>

char * ldap_err2string(
int error)

Parameters

Input

error
Specifies the error code.

Usage

The ldap_err2string() routine returns a descriptive text message for an LDAP error
code. The application must not modify or free this text message. The message is in
the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable

Function return value

The function return value is the address of the text message and is never a NULL
address. The returned message is N/A if the LDAP message catalog cannot be
accessed, storage cannot be allocated, or the error code is not a recognized LDAP
error code.

ldap_err2string()

70 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_explode_dn()
Purpose

Parse a distinguished name into an array of relative distinguished names

Format
include <ldap.h>

char ** ldap_explode_dn(
const char * dn,
int notypes)

Parameters

Input

dn Specifies the distinguished name as a null-terminated character string in the
local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable.

notypes
Specify 0 (FALSE) if the relative distinguished names should contain the
attribute types and the attribute values. Specify 1 (TRUE) if the relative
distinguished names should contain just the attribute values.

Usage

The ldap_explode_dn() routine breaks a distinguished name (DN) into one or
more relative distinguished names (RDN) following the rules that are defined in
RFC 2253: UTF-8 String Representation of Distinguished Names. Leading and trailing
blanks are removed for each RDN but embedded blanks remain unchanged.
Escape sequences are not removed from the attribute values. In addition, the
following rules apply.

Rules
v If notypes is zero:

– RDN values contain both the attribute types and the attributes values.
– Opening and closing quotation marks are not removed from attribute values

that are enclosed in quotation marks.
– All attributes in an RDN are returned as a single array element.

v If notypes is nonzero:
– The RDN values contain only the attribute values.
– Opening and closing quotation marks are removed from attribute values that

are enclosed in quotation marks.
– Each attribute in an RDN is returned as a separate array element.

Example: "cn=John+sn=Doe,ou=Manufacturing,o=Acme,c=US" is parsed as follows:
v If notypes is nonzero: {"John", "Doe", "Manufacturing", "Acme", "US", NULL}

v If notypes is zero: {"cn=John+sn=Doe", "ou=Manufacturing", "o=Acme", "c=US",
NULL}

ldap_explode_dn()

Chapter 2. LDAP routines 71

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

Function return value

The function return value is NULL if an error is detected. Otherwise, it is the
address of an array of character strings. The end of the array is indicated by a NULL
address. The application should call the ldap_value_free() routine to release the
character string array when it is no longer needed.

ldap_explode_dn()

72 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_explode_dn_np()
Purpose

Parse a distinguished name and return an LDAP DN description

Format
include <ldap.h>

int ldap_explode_dn_np(
LDAP * ld,
const char * dn,
LDAPDNDesc ** ldnpp)

Parameters

Input

ld Specifies an LDAP handle. This parameter can be specified as NULL if all text
strings are in UTF-8. Otherwise, all text strings are in either the local EBCDIC
code page or UTF-8, as determined by the LDAP_OPT_UTF8_IO option for the
LDAP handle.

dn Specifies the distinguished name as a null-terminated character string in either
the local EBCDIC code page or UTF-8, as determined by the LDAP handle.

Output

ldnpp
Returns the address of the DN description. The application should call the
ldap_free_dndesc_np() routine to release the DN description when it is no
longer needed.

Usage

The ldap_explode_dn_np() routine breaks a distinguished name (DN) into one or
more relative distinguished names (RDN) following the rules defined in RFC 2253:
UTF-8 String Representation of Distinguished Names. Each RDN consists of one or
more attributes. Leading and trailing blanks are removed from the attribute types
and the attribute values (embedded blanks are not removed). In addition, the
opening and closing quotation marks are removed from attribute values that are
enclosed in quotation marks. Escape sequences in attribute values are processed
and replaced by their equivalent UTF-8 encodings.

Example:

The following DN:
"cn=John+sn=Doe,ou=Manufacturing,o=Acme,c=US"

is parsed as shown:
{{{"cn", "John"}, {"sn", "Doe"}}, {{"ou", "Manufacturing"}}, {{"o", "Acme"}}, {{"c", "US"}}}

The LDAPDNDesc structure is defined as follows:
typedef struct ldap_dn_desc {

int ldn_count;
LDAPRDNDesc * ldn_rdns;

} LDAPDNDesc;

ldap_explode_dn_np()

Chapter 2. LDAP routines 73

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

where:

ldn_count
Returns the number of RDN components in the DN.

ldn_rdns
Returns the address of an array of LDAPRDNDesc structures. There is an
LDAPRDNDesc structure for each RDN component of the DN.

The LDAPRDNDesc structure is defined as follows:
typedef struct ldap_rdn_desc {

int lrdn_count;
LDAPAttrDesc * lrdn_attrs;

} LDAPRDNDesc;

where:

lrdn_count
Returns the number of attributes in the RDN.

lrdn_attrs
Returns the address of an array of LDAPAttrDesc structures. There is an
LDAPAttrDesc structure for each attribute in the RDN.

The LDAPAttrDesc structure is defined as follows:
typedef struct ldap_attr_desc {

char * lattr_type;
char * lattr_value;

} LDAPAttrDesc;

where:

lattr_type
Returns the address of the attribute type as a null-terminated character
string.

lattr_value
Returns the address of the attribute value as a null-terminated character
string.

The attribute type and attribute value strings are returned in UTF-8 or the local
EBCDIC code page, as determined by the LDAP handle. Escape sequences are
added when converting attribute values to the local EBCDIC code page for
characters that cannot be represented in the ISO8859-1 code page. (No escape
sequences are needed when the strings are returned in UTF-8.)

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INVALID_DN_SYNTAX
The distinguished name is not valid.

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_explode_dn_np()

74 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_explode_rdn()
Purpose

Parse a relative distinguished name into an array of attributes

Format
include <ldap.h>

char ** ldap_explode_rdn(
const char * rdn,
int notypes)

Parameters

Input

rdn
Specifies the relative distinguished name as a null-terminated character string
in the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable.

notypes
Specify 0 (FALSE) if the returned attribute strings should contain the attribute
types and the attribute values. Specify 1 (TRUE) if the returned attribute strings
should contain just the attribute values.

Usage

The ldap_explode_rdn() routine breaks a relative distinguished name (RDN) into
one or more attributes following the rules defined in RFC 2253: UTF-8 String
Representation of Distinguished Names. The attribute strings contain just the attribute
values if notypes is nonzero; otherwise the attribute strings contain both the
attribute types and the attributes values. Leading and trailing blanks are removed
for each attribute but embedded blanks remain unchanged. Escape sequences are
not removed from the attribute values.

Example: "cn=John+sn=Doe " is parsed as follows:
v If notypes is nonzero: {"John", "Doe", NULL}

v If notypes is zero: {"cn=John", "sn=Doe", NULL}

Function return value

The function return value is NULL if an error is detected. Otherwise, it is the
address of an array of character strings. The end of the array is indicated by a NULL
address. The application should call the ldap_value_free() routine to release the
character string array when it is no longer needed.

ldap_explode_rdn()

Chapter 2. LDAP routines 75

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

ldap_extended_operation(), ldap_extended_operation_s()
Purpose

Perform extended operations

Format
#include <ldap.h>

int ldap_extended_operation(
LDAP * ld,
const char * reqoid,
const BerVal * reqdata,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
int * msgidp)

int ldap_extended_operation_s(
LDAP * ld,
const char * reqoid,
const BerVal * reqdata,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
char ** resultoidp,
BerVal ** resultdatap)

Parameters

Input

ld Specifies the LDAP handle.

reqoid
Specifies the extended operation request OID as a dotted decimal
null-terminated character string in either UTF-8 or the local EBCDIC code
page, as determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

reqdata
Specifies the data for the extended operation request. Specify NULL for this
parameter if no data is needed for the request. The data must be in the correct
format for the extended operation request and is not modified by the LDAP
client.

serverctrls
Specifies an array of server controls for the extended operation request. The
end of the array is indicated by a NULL address. If NULL is specified for this
parameter, the server controls specified by the LDAP_OPT_SERVER_CONTROLS
option for the LDAP handle are used. If NULL is specified for this parameter
and the LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP
handle, no server controls are used. To override the server controls for the
LDAP handle so that no controls are used, specify a server controls array
consisting of a NULL address. (Control values for this routine vary depending
on whether you are specifying server or client controls. See “LDAP controls”
on page 15 for details.)

clientctrls
Specifies an array of client controls for the extended operation request. The end
of the array is indicated by a NULL address. If NULL is specified for this
parameter, the client controls specified by the LDAP_OPT_CLIENT_CONTROLS
option for the LDAP handle are used. If NULL is specified for this parameter
and the LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP

ldap_extended_operation(), ldap_extended_operation_s()

76 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

handle, no client controls are used. To override the client controls for the
LDAP handle so that no controls are used, specify a client controls array
consisting of a NULL address. (Control values for this routine vary depending
on whether you are specifying server or client controls. See “LDAP controls”
on page 15 for details.)

Output

msgidp
Returns the message identifier assigned to the extended operation request
message. The application can use this value when calling the ldap_result()
routine to wait for the extended operation result message.

resultoidp
Returns the extended operation result OID as a dotted decimal null-terminated
character string in either UTF-8 or the local EBCDIC code page, as determined
by the LDAP_OPT_UTF8_IO option for the LDAP handle. The application should
call the ldap_memfree() routine to release the OID string when it is no longer
needed. The returned value is NULL if the extended operation result did not
contain an OID. Specify NULL for this parameter if the OID should not be
returned.

resultdatap
Returns the data from the extended operation result. The application should
call the ldap_berfree_np() routine to release the result data when it is no
longer needed. The returned value is NULL if the extended operation result did
not contain any data. Specify NULL for this parameter if the result data should
not be returned.

Usage

The ldap_extended_operation() and ldap_extended_operation_s() routines perform
an extended operation targeted at the LDAP server. The LDAP protocol version
must be LDAP_VERSION3 in order to perform an extended operation. The extended
operations that are available depend upon the LDAP server. The
supportedExtension attribute in the root DSE can be queried to determine if the
LDAP server supports a particular extended operation.

The ldap_extended_operation() routine initiates the extended operation and
returns control to the application. The application must call the ldap_result()
routine to wait for the completion of the extended operation. The application can
call the ldap_parse_extended_result() routine to obtain the result OID and any
result data from the result message returned by the ldap_result() routine.

The ldap_extended_operation_s() routine initiates the extended operation and
waits for it to complete. The extended operation request is abandoned if the client
is unable to wait for the response because of an error from the ldap_result()
routine.

Function return value

The function return value is LDAP_SUCCESS if the request is successful. Otherwise, it
is one of the errors listed in the ldap.h include file. The ldap_extended_operation()
routine returns only errors detected by the client run time. The
ldap_extended_operation_s() routine returns errors detected by both the client run
time and the LDAP server.

ldap_extended_operation(), ldap_extended_operation_s()

Chapter 2. LDAP routines 77

The following are some common client errors:

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to initiate an extended
operation.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for an
extended operation.

The following are some common server result codes:

LDAP_PROTOCOL_ERROR
The server does not support the requested extended operation.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for an
extended operation.

ldap_extended_operation(), ldap_extended_operation_s()

78 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_first_attribute()
Purpose

Return the attribute type for the first attribute in an LDAP search entry

Format
#include <ldap.h>

char * ldap_first_attribute(
LDAP * ld,
LDAPMessage * entry,
BerElement ** ber)

Parameters

Input

ld Specifies the LDAP handle.

entry
Specifies an entry returned by the ldap_first_entry() or ldap_next_entry()
routine.

Output

ber
Returns the address of an LDAP control block used to maintain the current
attribute position. The application must not modify this control block.

Usage

The ldap_first_attribute() routine returns the attribute type for the first attribute in
the search entry. The ldap_next_attribute() routine should be called to obtain
successive attributes in the search entry. The ldap_get_values() or
ldap_get_values_len() routine can be called to get the attribute values associated
with the attribute type.

The ber parameter returns the address of a control block allocated and maintained
by the LDAP client run time. This control block is released when the
ldap_next_attribute() routine returns a NULL value. The application should call the
ldap_memfree() routine to release this control block if the application does not
want to keep calling the ldap_next_attribute() routine until all attributes have been
processed.

Function return value

The function return value is the attribute type of the first attribute. The attribute
type is a null-terminated character string in UTF-8 or the local EBCDIC code page,
as determined by the LDAP_OPT_UTF8_IO option for the LDAP handle. The
application should call the ldap_memfree() routine to release the attribute type
when it is no longer needed. The return value is NULL if there are no attributes or if
an error is detected. The ldap_get_errno() routine can be called to get the error
code when the return value is NULL. The error code is LDAP_SUCCESS if there are no
attributes.

The following are some common errors for this routine:

ldap_first_attribute()

Chapter 2. LDAP routines 79

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_first_attribute()

80 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_first_entry()
Purpose

Return the first search entry in an LDAP result

Format
#include <ldap.h>

LDAPMessage * ldap_first_entry(
LDAP * ld,
LDAPMessage * result)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by ldap_result() or one of the
synchronous request routines.

Usage

The ldap_first_entry() routine returns the address of the first search entry in the
LDAP result. The ldap_next_entry() routine should be called to obtain successive
entries in the LDAP result.

Function return value

The function return value is the address of the first search entry. The return value
is NULL if there are no search entries or if an error is detected. The ldap_get_errno()
routine can be called to get the error code when the return value is NULL. The error
code is LDAP_SUCCESS if there are no search entries.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_first_entry()

Chapter 2. LDAP routines 81

ldap_first_message()
Purpose

Return the first message in an LDAP result

Format
#include <ldap.h>

LDAPMessage * ldap_first_message(
LDAP * ld,
LDAPMessage * result)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by ldap_result() or one of the
synchronous request routines.

Usage

The ldap_first_message() routine returns the address of the first message in the
LDAP result. Call the ldap_next_message() routine to obtain successive messages
in the LDAP result.

Function return value

The function return value is the address of the first message. The return value is
NULL if an error is detected. The ldap_get_errno() routine can be called to get the
error code when the return value is NULL.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid; for example, there is no message in the result.

ldap_first_message()

82 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_first_reference()
Purpose

Return the first search reference in an LDAP result

Format
#include <ldap.h>

LDAPMessage * ldap_first_reference(
LDAP * ld,
LDAPMessage * result)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by ldap_result() or one of the
synchronous request routines.

Usage

The ldap_first_reference() routine returns the address of the first search reference
in the LDAP result. The ldap_next_reference() routine should be called to obtain
successive references in the LDAP result.

Function return value

The function return value is the address of the first search reference. The return
value is NULL if there are no search references or if an error is detected. The
ldap_get_errno() routine can be called to get the error code when the return value
is NULL. The error code is LDAP_SUCCESS if there are no search references.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_first_reference()

Chapter 2. LDAP routines 83

ldap_free_dndesc_np()
Purpose

Release storage allocated for an LDAP DN description

Format
#include <ldap.h>

void ldap_free_dndesc_np(
LDAPDNDesc * ldnp)

Parameters

Input

ldnp
Specifies the LDAP DN description to be released.

Usage

The ldap_free_dndesc_np() routine releases the storage allocated for an LDAP DN
(Distinguished Name) description returned by the ldap_explode_dn_np() routine.

Function return value

There is no function return value.

ldap_free_dndesc_np()

84 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_free_sort_keylist()
Purpose

Release storage allocated for a list of sort keys

Format
#include <ldap.h>

void ldap_free_sort_keylist(
LDAPSortKey * sort_key_list[])

Parameters

Input

sort_key_list
Specifies the sort key list to be released.

Usage

The ldap_free_sort_keylist() routine releases the storage allocated for a list of sort
keys created by the ldap_create_sort_keylist() routine. The address array and each
LDAPSortKey structure are released along with the associated data objects.

Function return value

There is no function return value.

ldap_free_sort_keylist()

Chapter 2. LDAP routines 85

ldap_free_urldesc()
Purpose

Release storage allocated for an LDAP URL description

Format
#include <ldap.h>

void ldap_free_urldesc(
LDAPURLDesc * ludp)

Parameters

Input

ludp
Specifies the LDAP URL description to be released.

Usage

The ldap_free_urldesc() routine releases the storage allocated for an LDAP URL
description returned by the ldap_url_parse() or ldap_url_parse_np() routine.

Function return value

There is no function return value.

ldap_free_urldesc()

86 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_get_dn()
Purpose

Return the distinguished name from the search entry

Format
#include <ldap.h>

char * ldap_get_dn(
LDAP * ld,
LDAPMessage * entry)

Parameters

Input

ld Specifies the LDAP handle.

entry
Specifies a search entry returned by the ldap_first_entry() or ldap_next_entry()
routine.

Usage

The ldap_get_dn() routine returns the distinguished name from a search entry.

Function return value

The function return value is the address of the distinguished name for the entry or
NULL if an error is detected. The name is returned as a null-terminated character
string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. The application should call the
ldap_memfree() routine to release the name when it is no longer needed. The
ldap_get_errno() routine can be called to obtain the error code when the return
value is NULL.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_get_dn()

Chapter 2. LDAP routines 87

ldap_get_entry_controls_np()
Purpose

Return the server controls from a search entry message

Format
#include <ldap.h>

int ldap_get_entry_controls_np(
LDAP * ld,
LDAPMessage * entry,
LDAPControl *** serverctrlsp)

Parameters

Input

ld Specifies the LDAP handle.

entry
Specifies an entry returned by the ldap_first_entry() or ldap_next_entry()
routine.

Output

serverctrlsp
Returns the server controls as an array of LDAPControl structures. The end of
the array is indicated by a NULL control address. The return value is NULL if the
LDAP server did not return any server controls. The control OID string is in
UTF-8 or the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO
option for the LDAP handle. The control value is unchanged and has the
format returned by the LDAP server. The application should call the
ldap_controls_free() routine to release the controls array when it is no longer
needed. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

Usage

The ldap_get_entry_controls_np() routine returns the server controls from a search
entry message. A parameter error is returned if the message is not a search entry
message.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_get_entry_controls_np()

88 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_get_errno()
Purpose

Return the last error code for an LDAP handle

Format
#include <ldap.h>

int ldap_get_errno(
LDAP * ld)

Parameters

Input

ld Specifies the LDAP handle.

Usage

The ldap_get_errno() routine returns the last error associated with an LDAP
handle. In a multi-threaded environment, this is the error for the last request using
the LDAP handle and not necessarily the last request issued by the current thread.
The error code associated with the LDAP handle is not reset by a successful LDAP
request and remains unchanged until the next error is detected.

Function return value

The function return value is LDAP_SUCCESS if no error has been detected. Otherwise,
it is one of the LDAP error codes listed in the ldap.h include file.

ldap_get_errno()

Chapter 2. LDAP routines 89

ldap_get_function_vector()
Purpose

Obtain the address of the LDAP function vector

Format
#include <ldap.h>

void ldap_get_function_vector(
unsigned int * function_mask,
LDAPFunctions ** function_vector)

Parameters

Output

function_mask
Returns a bit mask indicating the LDAP API level.

function_vector
Returns the address of the LDAP function vector. The LDAP function vector
for native ASCII mode is returned if the LDAP_LIBASCII compiler variable is
defined. Otherwise, the LDAP function vector for native EBCDIC mode is
returned.

Usage

LDAP functions can be called using either static binding or runtime binding. Static
binding is performed when the application is compiled, while runtime binding is
performed when the application is run.

In order to use static binding, the LDAP sidefile is specified as input to the binder.
This causes all LDAP functions to be resolved at bind time and causes the LDAP
client DLL to be implicitly loaded when the application is run.

In order to use runtime binding, the LDAP client DLL must be explicitly loaded by
the application and the LDAP functions must be called using indirect addresses.
The ldap_get_function_vector() routine allows an application to obtain the address
of the LDAP function vector containing an entry for each LDAP API routine. This
eliminates the need for the application to build the function vector through
repeated calls to the dllqueryfn() routine.

The function mask indicates the capabilities of the LDAP client DLL. The following
values have been defined:

LDAP_API_LVL1
LDAP functions provided as part of z/OS Version 1 Release 6 and 7 are
available.

LDAP_API_LVL2
LDAP functions provided as part of z/OS Version 1 Release 8, 9, and 10
are available.

LDAP_API_LVL3
LDAP functions provided as part of z/OS Version 1 Release 11 are
available.

ldap_get_function_vector()

90 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_API_LVL4
LDAP functions provided as part of z/OS Version 1 Release 12, z/OS
Version 1 Release 13, z/OS Version 2 Release 1, or z/OS Version 2 Release
2, or higher are available.

Function return value

There is no function return value.

ldap_get_function_vector()

Chapter 2. LDAP routines 91

|
|
|
|

ldap_get_lderrno()
Purpose

Return information for the most recent error

Format
#include <ldap.h>

int ldap_get_lderrno(
LDAP * ld,
char ** matcheddnp,
char ** errmsgp)

Parameters

Input

ld Specifies the LDAP handle.

Output

matcheddnp
Returns the matched distinguished name from the most recent result message
as a null-terminated character string. The string is in UTF-8 or the local
EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option for the
LDAP handle. The return value is NULL if the most recent result message does
not contain a matched distinguished name. The application should call the
ldap_memfree() routine to release the string when it is no longer needed.
Specify NULL for this parameter if the matched distinguished name should not
be returned.

errmsgp
Returns the error text from the most recent result message as a null-terminated
character string. The string is in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option for the LDAP handle. The return
value is NULL if the LDAP server did not return any error text. The application
should call the ldap_memfree() routine to release the string when it is no
longer needed. Specify NULL for this parameter if the error text should not be
returned.

Usage

The ldap_get_lderrno() routine obtains information for the most recent error that
occurred for an LDAP operation. In a multi-threaded environment, this might not
be an error from a request issued by this thread. When an error occurs on the
LDAP server, the server returns the following information to the client:
v The LDAP result code for the error that occurred.
v A message containing any additional information about the error from the

server.
v A matched distinguished name (DN), which identifies a portion of an existing

entry, might be returned if the DN specified on the last LDAP operation does
not exist on the LDAP server.

Function return value

The function return value is the LDAP result code from the most recent error.

ldap_get_lderrno()

92 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_get_option()
Purpose

Return the value for an LDAP option

Format
#include <ldap.h>

int ldap_get_option(
LDAP * ld,
int option,
void * value)

Parameters

Input

ld Specifies the LDAP handle.

option
Specifies the option identifier.

Output

value
Returns the option value.

Usage

The ldap_get_option() routine returns the value of an LDAP option for the
supplied LDAP handle. The manner in which the option value is returned depends
upon the option type. Table 2 summarizes how the options are returned.

Table 2. How ldap_get_option values are returned

Option Value parameter

LDAP_OPT_CLIENT_CONTROLS LDAPControl ***

LDAP_OPT_CONNECT int *

LDAP_OPT_DEBUG int *

LDAP_OPT_DEBUG_FILENAME char **

LDAP_OPT_DEBUG_STRING char **

LDAP_OPT_DELEGATION int *

LDAP_OPT_DEREF int *

LDAP_OPT_ERROR_NUMBER int *

LDAP_OPT_ERROR_STRING char **

LDAP_OPT_EXT_ERROR int *

LDAP_OPT_EXT_REBIND_FN LDAPExtRebindProc *

LDAP_OPT_HOST_NAME char **

LDAP_OPT_IO_CALLBACK LDAPIOCallback *

LDAP_OPT_MATCHED_DN char **

LDAP_OPT_MAX_SASL_LEVEL int *

LDAP_OPT_MIN_SASL_LEVEL int *

ldap_get_option()

Chapter 2. LDAP routines 93

Table 2. How ldap_get_option values are returned (continued)

Option Value parameter

LDAP_OPT_PROTOCOL_VERSION int *

LDAP_OPT_REBIND_FN LDAPRebindProc *

LDAP_OPT_REFERRALS int *

LDAP_OPT_REFHOPLIMIT int *

LDAP_OPT_RESTART int *

LDAP_OPT_SASL_QOP int *

LDAP_OPT_SERVER_CONTROLS LDAPControl ***

LDAP_OPT_SIZELIMIT int *

LDAP_OPT_SOCKS_CONF char **

LDAP_OPT_SOCKS_PASSWORD char **

LDAP_OPT_SOCKS_SERVER char **

LDAP_OPT_SOCKS_USERNAME char **

LDAP_OPT_SOCKS_VERSION int *

LDAP_OPT_SSL int *

LDAP_OPT_SSL_CIPHER char **

LDAP_OPT_SSL_CIPHER_EXPANDED char **

LDAP_OPT_SSL_CIPHER_FORMAT int *

LDAP_OPT_SSL_TIMEOUT int *

LDAP_OPT_TIMELIMIT int *

LDAP_OPT_UTF8_IO int *

LDAP_OPT_V2_WIRE_FORMAT int *

For example, the LDAP_OPT_SIZELIMIT option is returned as follows:
int sizeLimit;
ldap_get_option(ld, LDAP_OPT_SIZELIMIT, &sizeLimit);

The following LDAP options can be returned:
v LDAP_OPT_CLIENT_CONTROLS

The LDAP_OPT_CLIENT_CONTROLS option returns the address of a list of client
controls to be processed with each request. The end of the list is indicated by a
NULL control address. The list address is NULL if there are no client controls. The
ldap_controls_free() routine should be called to release the controls when they
are no longer needed. A parameter error is returned if the LDAP protocol
version is not set to LDAP_VERSION3.
The OID string in the client control is a null-terminated character string in
UTF-8 or the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO
option for the LDAP handle. In addition, a client control value that is a character
string is also in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle.

v LDAP_OPT_CONNECT

The LDAP_OPT_CONNECT option returns LDAP_OPT_ON if a connection has been
established with the LDAP server and LDAP_OPT_OFF otherwise. The
LDAP_OPT_SSL option can be used to determine if the connection is using SSL.

v LDAP_OPT_DEBUG

ldap_get_option()

94 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The LDAP_OPT_DEBUG option returns a bitmap indicating the debug trace level for
the LDAP client run time. The debug trace level applies to the entire process and
not just the LDAP handle. For this reason, the LDAP handle can be specified as
NULL. If specified, the LDAP handle must be a valid handle. If tracing is not
active, the debug trace level is LDAP_DEBUG_OFF.
The debug trace level is formed by ORing together one or more of the following
debug options:

LDAP_DEBUG_ACL
Trace ACL processing

LDAP_DEBUG_ALL
Enable all debug traces (same as LDAP_DEBUG_ANY)

LDAP_DEBUG_ANY
Enable all debug traces (same as LDAP_DEBUG_ALL)

LDAP_DEBUG_ARGS
Trace request arguments

LDAP_DEBUG_BE_CAPABILITIES
Trace backend capabilities

LDAP_DEBUG_BER
Trace ASN.1 encode and decode processing

LDAP_DEBUG_CACHE
Trace cache activity

LDAP_DEBUG_CONNS
Trace connection activity

LDAP_DEBUG_ERROR
Trace errors

LDAP_DEBUG_FILTER
Trace filter processing

LDAP_DEBUG_INFO
Trace informational messages

LDAP_DEBUG_LDAPBE
Trace server backend activity

LDAP_DEBUG_LDBM
Trace file backend activity

LDAP_DEBUG_MESSAGE
Trace message processing

LDAP_DEBUG_MULTISERVER
Trace multiple server activity

LDAP_DEBUG_OFF
Disable all debug traces

LDAP_DEBUG_PACKETS
Trace packet activity

LDAP_DEBUG_PARSE
Trace parsing activity

LDAP_DEBUG_PERFORMANCE
Trace performance statistics

ldap_get_option()

Chapter 2. LDAP routines 95

LDAP_DEBUG_PLUGIN
Trace plug-in extension activity

LDAP_DEBUG_REFERRAL
Trace referral activity

LDAP_DEBUG_REPLICATION
Trace replication activity

LDAP_DEBUG_SCHEMA
Trace schema processing

LDAP_DEBUG_SDBM
Trace RACF backend activity

LDAP_DEBUG_STATS
Trace operational statistics

LDAP_DEBUG_STRBUF
Trace and UTF-8 activity

LDAP_DEBUG_SYSPLEX
Trace sysplex activity

LDAP_DEBUG_TDBM
Trace TDBM database processing

LDAP_DEBUG_THREAD
Trace thread activity

LDAP_DEBUG_TRACE
Trace API routine entry and exit

For more information about the LDAP trace options, see “Enabling tracing” on
page 242.

v LDAP_OPT_DEBUG_FILENAME

The LDAP_OPT_DEBUG_FILENAME option returns the name of the LDAP trace output
file. The return value is NULL if the debug file name has not been set. The
application should call the ldap_memfree() routine to release the file name when
it is no longer needed. The debug file name applies to the entire process and not
just the LDAP handle. For this reason, the LDAP handle can be specified as
NULL. If specified, the LDAP handle must be a valid handle. The file name is in
the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable.

v LDAP_OPT_DEBUG_STRING

The LDAP_OPT_DEBUG_STRING option returns the active LDAP trace options as a
null-terminated character string. The ldap_memfree() routine should be called to
release the options string when it is no longer needed. The debug trace level
applies to the entire process and not just the LDAP handle. For this reason, the
LDAP handle can be specified as NULL. If specified, the LDAP handle must be a
valid handle. The options string is in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable.

v LDAP_OPT_DELEGATION

The LDAP_OPT_DELEGATION option returns LDAP_OPT_ON if the LDAP client passes
Kerberos delegated credentials to the LDAP server, and LDAP_OPT_OFF otherwise.
A parameter error is returned if the LDAP protocol version is not set to
LDAP_VERSION3.

v LDAP_OPT_DEREF

The LDAP_OPT_DEREF option returns how the LDAP server handles aliases during
search requests and is one of the following values:

ldap_get_option()

96 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_DEREF_NEVER
Do not dereference aliases. (This is the default.)

LDAP_DEREF_SEARCHING
Dereference aliases in subordinates of the base object in searching but
not in locating the base object of the search.

LDAP_DEREF_FINDING
Dereference aliases in locating the base object of the search but not when
searching subordinates of the base object.

LDAP_DEREF_ALWAYS
Dereference aliases both in searching and in locating the base object of
the search.

v LDAP_OPT_ERROR_NUMBER

The LDAP_OPT_ERROR_NUMBER option returns the last error that is associated with
the LDAP handle. In a multi-threaded environment, this is the error for the last
request using the LDAP handle and not necessarily the last request that is issued
by the current thread. The error code that is associated with the LDAP handle is
not reset by a successful LDAP request and remains unchanged until the next
error is detected. The value that is returned by the LDAP_OPT_ERROR_NUMBER
option is the same as the value returned by the ldap_get_errno() routine.

v LDAP_OPT_ERROR_STRING

The LDAP_OPT_ERROR_STRING option returns the error message from the most
recent result message that is processed by the ldap_result2error() routine or by
one of the synchronous request routines. In a multi-threaded environment, this
might not be a result message from a request that is issued by this thread. The
return value is NULL if there is no error message. The error message that is
associated with the LDAP handle is reset by a successful synchronous request
routine, by ldap_result2error() before it processes the result message, and by a
routine processing an operation (such as search or modify) when a client error
occurs. The returned text string is in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable. The ldap_memfree() routine
should be called to release the error message when it is no longer needed.

v LDAP_OPT_EXT_ERROR

The LDAP_OPT_EXT_ERROR option returns the last extended error code that is
associated with an LDAP handle. In a multi-threaded environment, this is the
error for the last request using the LDAP handle and not necessarily the last
request that is issued by the current thread. The extended error code is set each
time that an extended error occurs for an LDAP handle and is not reset by a
successful LDAP request; it remains unchanged until the next error is detected
for the LDAP handle. If there is no extended error code that is associated with
the LDAP error, the extended error code is set to 0.

v LDAP_OPT_EXT_REBIND_FN

The LDAP_OPT_EXT_REBIND_FN option returns the address of the routine to be
called by the LDAP client run time when it must authenticate a connection with
another LDAP server. (For more information about the rebind routine, see
“Rebinding while following referrals” on page 12.) The return value is NULL if
the LDAP_OPT_EXT_REBIND_FN option has not been set.

v LDAP_OPT_HOST_NAME

The LDAP_OPT_HOST_NAME option returns the host name list for the LDAP handle.
This is a null-terminated character string consisting of one or more host:port
values separated by blanks. The application should call the ldap_memfree()

ldap_get_option()

Chapter 2. LDAP routines 97

routine to release the string when it is no longer needed. The host name list is in
the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable.

v LDAP_OPT_IO_CALLBACK

The LDAP_OPT_IO_CALLBACK option returns the current callback routines for the
LDAP handle. For more information about the callback routines, see the
description of LDAP_OPT_IO_CALLBACK for the ldap_set_option() and
ldap_set_option_np() routines in “ldap_set_option(), ldap_set_option_np()” on
page 182.

v LDAP_OPT_MATCHED_DN

The LDAP_OPT_MATCHED_DN option returns the matched DN from the most recent
result message that is processed by the ldap_result2error() routine or by one of
the synchronous request routines. In a multi-threaded environment, this might
not be a result message from a request that is issued by this thread. The return
value is NULL if there is no matched DN. The matched DN associated with the
LDAP handle is reset by a successful synchronous request routine, by
ldap_result2error() before it processes the result message, and by a routine
processing an operation (such as search or modify) when a client error occurs.
The returned text string is in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable. The ldap_memfree() routine
should be called to release the matched DN value when it is no longer needed.

v LDAP_OPT_MAX_SASL_LEVEL

The LDAP_OPT_MAX_SASL_LEVEL option returns the maximum SASL protection
level for the LDAP handle. This level is the highest SASL protection level that
can be negotiated during a bind using a SASL mechanism. The negotiated
protection level cannot be greater than this level even if the server offers a
higher protection level. LDAP_PARAM_ERROR is returned if the LDAP protocol
version is not LDAP_VERSION3.
The SASL protection levels, in increasing level of protection, are:

LDAP_SASL_LEVEL_NONE
No integrity or confidentiality protection.

LDAP_SASL_LEVEL_INTEG
Integrity protection.

LDAP_SASL_LEVEL_CONF
Integrity and confidentiality protection. (This is the default.)

v LDAP_OPT_MIN_SASL_LEVEL

The LDAP_OPT_MIN_SASL_LEVEL option returns the minimum SASL protection
level for the LDAP handle. This level is the lowest SASL protection level that
can be negotiated during a bind using a SASL mechanism. The bind fails if the
server does not offer at least this protection level. LDAP_PARAM_ERROR is returned
if the LDAP protocol version is not LDAP_VERSION3.
The SASL protection levels, in increasing level of protection, are:

LDAP_SASL_LEVEL_NONE
No integrity or confidentiality protection. (This is the default.)

LDAP_SASL_LEVEL_INTEG
Integrity protection.

LDAP_SASL_LEVEL_CONF
Integrity and confidentiality protection.

v LDAP_OPT_PROTOCOL_VERSION

ldap_get_option()

98 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The LDAP_OPT_PROTOCOL_VERSION option returns the LDAP protocol version that
is used by the LDAP client when connecting to an LDAP server and is either
LDAP_VERSION2 or LDAP_VERSION3.

v LDAP_OPT_REBIND_FN

The LDAP_OPT_REBIND_FN option returns the address of the routine to be called by
the LDAP client run time when it must authenticate a connection with another
LDAP server. (For more information about the rebind routine, see “Rebinding
while following referrals” on page 12.) The return value is NULL if the
LDAP_OPT_REBIND_FN option has not been set and ldap_set_rebind_proc() has not
been called.

v LDAP_OPT_REFERRALS

The LDAP_OPT_REFERRALS option returns LDAP_OPT_ON if the LDAP client follows
referrals that are returned by the LDAP server and LDAP_OPT_OFF otherwise.

v LDAP_OPT_REFHOPLIMIT

The LDAP_OPT_REFHOPLIMIT option returns the maximum number of LDAP
servers to contact when following a referral. For subtree searches, this is the
limit on the depth of nested search references, so the number of servers that are
contacted might actually exceed this value.

v LDAP_OPT_RESTART

The LDAP_OPT_RESTART option returns LDAP_OPT_ON if the select() system call
should be restarted when it is interrupted by the system and LDAP_OPT_OFF
otherwise.

v LDAP_OPT_SASL_QOP

The LDAP_OPT_SASL_QOP option returns the quality-of-protection (QOP) negotiated
between the LDAP client and the LDAP server. The QOP consists of two 16-bit
fields: The upper 16 bits contain the confidentiality level and the lower 16 bits
contain the integrity level. The LDAP_SASL_INTEG_MASK and LDAP_SASL_CONF_MASK
masks can be used to isolate the integrity and confidentiality levels for
comparison purposes. The integrity service ensures that messages are not
modified or lost. The confidentiality service encrypts messages so they can be
read only by the remote partner.
The following integrity levels are supported:

LDAP_SASL_INTEG_NONE
No integrity service is available.

LDAP_SASL_INTEG_MD5
Integrity checking provided using MD5 digests.

LDAP_SASL_INTEG_SHA1
Integrity checking provided using SHA-1 digests.

The following confidentiality levels are supported:

LDAP_SASL_CONF_NONE
No confidentiality service is available.

LDAP_SASL_CONF_RC4_128
Confidentiality using 128-bit RC4.

LDAP_SASL_CONF_DES_56
Confidentiality using 56-bit DES.

LDAP_SASL_CONF_3DES_112
Confidentiality using 112-bit 3DES.

LDAP_SASL_CONF_3DES-168
Confidentiality using 168-bit 3DES.

ldap_get_option()

Chapter 2. LDAP routines 99

v LDAP_OPT_SERVER_CONTROLS

The LDAP_OPT_SERVER_CONTROLS option returns the address of a default list of
server controls to be sent with each request. The end of the list is indicated by a
NULL control address. The return value is NULL if there are no default server
controls. A parameter error is returned if the LDAP protocol version is not set to
LDAP_VERSION3. The ldap_controls_free() routine should be called to release the
controls when they are no longer needed.
The OID string in the server control is a null-terminated character string in
UTF-8 or the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO
option for the LDAP handle. The value in the server control is returned
unchanged.

v LDAP_OPT_SIZELIMIT

The LDAP_OPT_SIZELIMIT option specifies the maximum number of entries that
can be returned for a search request. The LDAP server can also provide a size
limit on the number of entries returned. For information about the server's size
limit and how it interacts with the client size limit, see the documentation for
your LDAP server. For the IBM Tivoli Directory Server for z/OS, see the
description of the sizeLimit configuration file option (Customizing the LDAP
server configuration) in z/OS IBM Tivoli Directory Server Administration and Use
for z/OS. The default size limit for the client, which is specified by a value of 0,
indicates that the maximum number of entries is limited only by the LDAP
server limit.

v LDAP_OPT_SOCKS_CONF

The LDAP_OPT_SOCKS_CONF option returns the name of the SOCKS configuration
file as a null-terminated string in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable. The return value is NULL if
the LDAP_OPT_SOCKS_CONF option has not been set and the SOCKS_CONF
environment variable was not defined when the LDAP handle was initialized.
The ldap_memfree() routine should be called to release the string when it is no
longer needed. Note setting the LDAP_OPT_SOCKS_SERVER option clears the
LDAP_OPT_SOCKS_CONF option.

v LDAP_OPT_SOCKS_PASSWORD

The LDAP_OPT_SOCKS_PASSWORD option returns the SOCKS password as a
null-terminated character string in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable. The return value is NULL if
the LDAP_OPT_SOCKS_PASSWORD option has not been set and the SOCKS_PASSWORD
environment variable was not defined when the LDAP handle was initialized.
The ldap_memfree() routine should be called to release the string when it is no
longer needed.

v LDAP_OPT_SOCKS_SERVER

The LDAP_OPT_SOCKS_SERVER option returns the SOCKS server list as a
null-terminated character string in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable. Entries in the character
string are separated by commas. The return value is NULL if the
LDAP_OPT_SOCKS_SERVER option has not been set and the SOCKS_SERVER
environment variable was either not defined or was overridden by the
SOCKS_CONF environment variable when the LDAP handle was initialized. The
ldap_memfree() routine should be called to release the string when it is no
longer needed. Note setting the LDAP_OPT_SOCKS_CONF option clears the
LDAP_OPT_SOCKS_SERVER option.

v LDAP_OPT_SOCKS_USERNAME

The LDAP_OPT_SOCKS_USERNAME option returns the SOCKS user name as a
null-terminated character string in the local EBCDIC code page or UTF-8, as

ldap_get_option()

100 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

determined by the LDAP_LIBASCII compiler variable. The return value is NULL if
the LDAP_OPT_SOCKS_USERNAME option has not been set and the SOCKS_USERNAME
environment variable was not defined when the LDAP handle was initialized.
The ldap_memfree() routine should be called to release the string when it is no
longer needed.

v LDAP_OPT_SOCKS_VERSION

The LDAP_OPT_SOCKS_VERSION option returns the SOCKS protocol version, and is
4 or 5. Note the SOCKS version 5 protocol is always used when the LDAP
server address is an IPv6 address, even though the LDAP_OPT_SOCKS_VERSION
option is set to 4.

v LDAP_OPT_SSL

The LDAP_OPT_SSL option returns LDAP_OPT_ON if an SSL connection can be used
to bind to the LDAP server and LDAP_OPT_OFF otherwise. The LDAP_OPT_CONNECT
option can be used to determine if a connection has been established with the
LDAP server.

v LDAP_OPT_SSL_CIPHER

This option is pertinent provided 2-byte SSL ciphers are currently in effect,
which is based on the setting of LDAP_OPT_SSL_CIPHER_FORMAT.
The LDAP_OPT_SSL_CIPHER option returns a null-terminated character string in the
local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII compiler
variable. The string consists of a single cipher specification if an SSL connection
is established with the LDAP server and provided 2-byte SSL ciphers are in
effect. Otherwise, the string consists of one or more cipher suites to be used
when negotiating an SSL connection with the LDAP server. The return value is
NULL if an SSL connection is not opened and no cipher suites are set by the
application. The returned character string consists of the cipher suites that are
specified as two hexadecimal digits per cipher suite. Cipher suite values are
concatenated, with no separators. The application should call the
ldap_memfree() routine to release the string when it is no longer needed.
Table 3 lists the cipher suites that are defined for coding convenience in the
ldap.h include file. Only 2-byte cipher suites that are supported in SSL V3 and
TLS V1.0 are provided in ldap.h and Table 3. For newer cipher suites supported
in later TLS protocols, see z/OS Cryptographic Services System SSL Programming.

Table 3. SSL V3 and TLS V1.0 cipher suites

Mnemonic Value Description

LDAP_SSL_RC4_MD5_EX "03" 40-bit RC4 encryption with MD5 digest
and RSA key exchange

LDAP_SSL_RC4_MD5_US "04" 128-bit RC4 encryption with MD5 digest
and RSA key exchange

LDAP_SSL_RC4_SHA_US "05" 128-bit RC4 encryption with SHA-1 digest
and RSA key exchange

LDAP_SSL_RC2_MD5_EX "06" 40-bit RC2 encryption with MD5 digest
and RSA key exchange

LDAP_SSL_DES_SHA_EX "09" 56-bit DES encryption with SHA-1 digest
and RSA key exchange

LDAP_SSL_3DES_SHA_US "0A" 168-bit 3DES encryption with SHA-1 digest
and RSA key exchange

LDAP_SSL_DH_DES_SHA_DSS_EX "0C" 56-bit DES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using DSS certificate

ldap_get_option()

Chapter 2. LDAP routines 101

Table 3. SSL V3 and TLS V1.0 cipher suites (continued)

Mnemonic Value Description

LDAP_SSL_DH_3DES_SHA_DSS "0D" 168-bit 3DES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using DSS certificate

LDAP_SSL_DH_DES_SHA_RSA_EX "0F" 56-bit DES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using RSA certificate

LDAP_SSL_DH_3DES_SHA_RSA "10" 168-bit 3DES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using RSA certificate

LDAP_SSL_EDH_DES_SHA_DSS_EX "12" 56-bit DES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using DSS certificate

LDAP_SSL_EDH_3DES_SHA_DSS "13" 168-bit 3DES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using DSS certificate

LDAP_SSL_EDH_DES_SHA_RSA_EX "15" 56-bit DES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using RSA certificate

LDAP_SSL_EDH_3DES_SHA_RSA "16" 168-bit 3DES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using RSA certificate

LDAP_SSL_RSA_AES_128_SHA "2F" 128-bit AES encryption with SHA-1 digest
and RSA key exchange

LDAP_SSL_DH_AES_128_SHA_DSS "30" 128-bit AES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using DSS certificate

LDAP_SSL_DH_AES_128_SHA_RSA "31" 128-bit AES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using RSA certificate

LDAP_SSL_EDH_AES_128_SHA_DSS "32" 128-bit AES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using DSS certificate

LDAP_SSL_EDH_AES_128_SHA_RSA "33" 128-bit AES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using RSA certificate

LDAP_SSL_RSA_AES_256_SHA "35" 256-bit AES encryption with SHA-1 digest
and RSA key exchange

LDAP_SSL_DH_AES_256_SHA_DSS "36" 256-bit AES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using DSS certificate

LDAP_SSL_DH_AES_256_SHA_RSA "37" 256-bit AES encryption with SHA-1 digest
and fixed Diffie-Hellman key exchange
using RSA certificate

LDAP_SSL_EDH_AES_256_SHA_DSS "38" 256-bit AES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using DSS certificate

LDAP_SSL_EDH_AES_256_SHA_RSA "39" 256-bit AES encryption with SHA-1 digest
and ephemeral Diffie-Hellman key
exchange using RSA certificate

ldap_get_option()

102 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

v LDAP_OPT_SSL_CIPHER_EXPANDED

This option is pertinent provided 4-byte SSL ciphers are currently in effect,
which is based on the setting of LDAP_OPT_SSL_CIPHER_FORMAT.
The LDAP_OPT_SSL_CIPHER_EXPANDED option returns a null-terminated character
string in the local EBCDIC code page or UTF-8, as determined by the
LDAP_LIBASCII compiler variable. The string consists of a single cipher
specification if an SSL connection is established with the LDAP server and
provided 4-byte SSL ciphers are in effect. Otherwise, the string consists of one or
more cipher suites to be used when negotiating an SSL connection with the
LDAP server. The return value is NULL if an SSL connection is not opened and no
cipher suites are set by the application. The returned character string consists of
the cipher suites that are specified as four hexadecimal digits per cipher suite.
Cipher suite values are concatenated, with no separators. The application should
call the ldap_memfree() routine to release the string when it is no longer
needed.

v LDAP_OPT_SSL_CIPHER_FORMAT

The LDAP_OPT_SSL_CIPHER_FORMAT option specifies the cipher format that is used
for specifying SSL cipher suites.
A value of LDAP_SSL_CIPHER_FORMAT_CHAR2 indicates the cipher suites come from
either SSL defaults, as determined from the GSK_V3_CIPHER_SPECS
environment variable, or from a setting of the LDAP_OPT_SSL_CIPHER by using the
ldap_set_option() routine.
A value of LDAP_SSL_CIPHER_FORMAT_CHAR4 indicates the cipher suites come from
either SSL defaults, as determined from the GSK_V3_CIPHER_SPECS_EXPANDED
environment variable, or from a setting of the LDAP_OPT_SSL_CIPHER_EXPANDED by
using the ldap_set_option() routine.

v LDAP_OPT_SSL_TIMEOUT

The LDAP_OPT_SSL_TIMEOUT option returns the SSL session timeout value in
seconds. Cached SSL sessions are discarded after this number of seconds.
Cached SSL sessions can be reused and improve performance by eliminating the
need for a full SSL handshake when reconnecting to an LDAP server. The
session timeout is 0 if an SSL connection has not been opened and an SSL
timeout value has not been set by the application.

v LDAP_OPT_TIMELIMIT

The LDAP_OPT_TIMELIMIT option specifies the number of seconds to wait for
search results. The LDAP server can also provide a limit on the search time. For
information about the server's search time limit and how it interacts with the
client time limit, see the documentation for your LDAP server. For the IBM
Tivoli Directory Server for z/OS, see the description of the timeLimit
configuration file option (Customizing the LDAP server configuration) in z/OS
IBM Tivoli Directory Server Administration and Use for z/OS. The default time limit
for the client, which is specified by a value of 0, indicates that there is no client
time limit and that the maximum number of seconds is limited only by the
LDAP server limit.

v LDAP_OPT_UTF8_IO

The LDAP_OPT_UTF8_IO option applies to all LDAP API routines that accept an
LDAP handle as an input parameter unless stated otherwise in the description of
the API routine. Text data for LDAP API routines that do not accept an LDAP
handle as an input parameter is in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable.
The LDAP_OPT_UTF8_IO option returns the format of text data that is provided as
input to an LDAP API routine or returned as output by an LDAP API routine.

ldap_get_option()

Chapter 2. LDAP routines 103

The return value is LDAP_OPT_ON if text data is in the UTF-8 code set, and
LDAP_OPT_OFF if text data is in the code set of the current locale.

v LDAP_OPT_V2_WIRE_FORMAT

The LDAP_OPT_V2_WIRE_FORMAT option returns the format of attribute values that
are exchanged between the LDAP client and the LDAP server using the LDAP
version 2 protocol. (Attribute values that are exchanged using the LDAP version
3 protocol are always in UTF-8.) The return value is
LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1 if attribute values are exchanged using the
ISO8859-1 code page. The return value is LDAP_OPT_V2_WIRE_FORMAT_UTF8 if
attribute values are exchanged using UTF-8.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes that are listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid or the LDAP protocol version is not correct for
the requested option.

ldap_get_option()

104 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_get_values()
Purpose

Return the attribute values as an array of character strings

Format
#include <ldap.h>

char ** ldap_get_values(
LDAP * ld,
LDAPMessage * entry,
const char * attr)

Parameters

Input

ld Specifies the LDAP handle.

entry
Specifies an entry returned by the ldap_first_entry() or ldap_next_entry()
routine.

attr
Specifies the attribute type as a null-terminated character string. The string is
in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle.

Usage

The ldap_get_values() routine returns the attribute values associated with an
attribute type as an array of character strings. The attribute type can be supplied
by the application or can be an attribute type returned by the ldap_first_attribute()
or ldap_next_attribute() routine.

The attribute values must consist of valid character data, otherwise the results are
unpredictable. Use the ldap_get_values_len() routine to get binary attribute values.

Function return value

The function return value is an array of character strings, terminated by a NULL
string address. Each character string is in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option for the LDAP handle. The application
should call the ldap_value_free() routine to release the attribute values when they
are no longer needed. The return value is NULL if the attribute is not found or if an
error is detected. The ldap_get_errno() routine can be called to get the error code if
the return value is NULL.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NO_SUCH_ATTRIBUTE
Attribute not found.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_get_values()

Chapter 2. LDAP routines 105

ldap_get_values_len()
Purpose

Return the attribute values as an array of binary values

Format
#include <ldap.h>

BerVal ** ldap_get_values_len(
LDAP * ld,
LDAPMessage * entry,
const char * attr)

Parameters

Input

ld Specifies the LDAP handle.

entry
Specifies an entry returned by the ldap_first_entry() or ldap_next_entry()
routine.

attr
Specifies the attribute type as a null-terminated character string. The string is
in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle.

Usage

The ldap_get_values_len() routine returns the attribute values associated with an
attribute type as an array of binary values. No code page translations are
performed on the values. The attribute type can be supplied by the application or
can be an attribute type returned by the ldap_first_attribute() or
ldap_next_attribute() routine.

Function return value

The function return value is an array of binary values. The array is terminated by a
NULL BerVal address. The application should call the ldap_value_free_len() routine
to release the attribute values when they are no longer needed. The return value is
NULL if the attribute is not found or if an error is detected. The ldap_get_errno()
routine can be called to get the error code.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NO_SUCH_ATTRIBUTE
Attribute not found.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_get_values_len()

106 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_init()

Purpose

Create and initialize an LDAP handle for an SSL or non-SSL connection

Format
#include <ldap.h>

LDAP * ldap_init(
const char * host,
int port)

Parameters

Input

host
Specifies the location of the LDAP server as a null-terminated string in the
local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable. This location can be a blank-separated host list or a single
LDAP URL. Specify NULL for this parameter to connect to an LDAP server on
the local system using the IPv4 loopback address (127.0.0.1).

port
Specifies the port for the LDAP server when an explicit port is not specified in
the host list. The value must be between 1 and 65535. Specify 0 to use the
default LDAP port (389).

Usage

The ldap_init() routine creates and initializes an LDAP handle. The routine does
not establish a connection with the LDAP server. A connection is established when
the first server request using the handle is issued. The handle is initialized for a
non-SSL connection unless an LDAP URL is specified for the host parameter and
the URL scheme is ldaps instead of ldap. The application should call the
ldap_unbind() or ldap_unbind_s() routine to release the handle when it is no
longer needed. The location of the LDAP server can be explicitly specified by using
a host list or an LDAP URL containing a host name. The location of the LDAP
server can be implicitly specified by using an LDAP URL that does not contain a
host name.

A host list consists of one or more blank-separated host:port values. The host
specification is a DNS resource name (for example, dcesec4.endicott.ibm.com), a
dotted decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address enclosed in square brackets (for example, [1080::8:800:200C:417A]. The
port, if specified, must be a decimal number between 1 and 65535. The value of the
port parameter can be used if a port is not specified. The hosts are tried in the
order specified until a connection is established with an LDAP server.

An LDAP URL has the following format:
[<][URL:]scheme://[host[:port]][/dn[?attributes[?scope[?filter]]]][>]

where:

ldap_init()

Chapter 2. LDAP routines 107

scheme
Specifies the value ldap for a non-SSL connection and ldaps for an SSL
connection.

host:port
Specifies the location of the LDAP server. The host specification can be a
DNS resource name (for example, dcesec4.endicott.ibm.com), a dotted
decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address enclosed in square brackets (for example,
[1080::8:800:200C:417A]). The port, if specified, must be a decimal
number between 1 and 65535. The port defaults to 389 for a non-SSL
connection and 636 for an SSL connection.

dn Specifies the distinguished name (DN) for the request. The DN can be used
as a filter when the ldap_server_locate() routine should be called to locate
the LDAP server.

attributes
Consists of one or more comma-separated search attributes. This value is
not used by the ldap_init() routine.

scope Specifies the search scope and can be "base", "one", or "sub". This value is
not used by the ldap_init() routine.

filter Specifies the search filter. This value is not used by the ldap_init() routine.

The URL can be optionally enclosed in angle brackets or prefixed with URL: or
both.

The ldap_init() routine calls the ldap_server_locate() routine to locate the LDAP
server when the LDAP URL does not contain a host name. The default server
information file /etc/ldap/ldap_server_info.conf can be used unless the
LDAP_SERVER_INFO_CONF environment variable is defined. The ldap_server_locate()
routine uses the default values for everything except the DN filter. The DN filter is
set to the DN specified in the URL. (No DN filtering is done if a DN is not
specified in the URL.) The scheme specified in the URL can be used to select
servers from the list returned by the ldap_server_locate() routine. A server entry is
selected if the scheme is ldap and the security type is LDAP_LSI_NOSSL or if the
scheme is ldaps and the security type is LDAP_LSI_SSL. A server entry is not
selected if the security type is not defined.

The ldap_ssl_client_init() routine must be called before the ldap_init() routine if
the LDAP URL specifies an SSL connection.

The LDAP handle is initialized with the following default values. The
ldap_set_option() or ldap_set_option_np() routine can be called to set different
values upon completion of the ldap_init() routine.
v The LDAP protocol version is set based on the LDAP_VERSION environment

variable. If the LDAP_VERSION environment variable is not defined, the protocol
version is set to 3.

v The LDAP version 2 wire format is set based on the LDAP_V2_WIRE_FORMAT
environment variable. If the LDAP_V2_WIRE_FORMAT environment variable is not
defined, the LDAP version 2 wire format is set to UTF-8.

v Referral processing is enabled and the referral hop limit is set to 10.

ldap_init()

108 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

The function return value is the new LDAP handle if no error is detected.
Otherwise, the return value is NULL.

ldap_init()

Chapter 2. LDAP routines 109

ldap_insert_control()
Purpose

Insert an existing control into a list of controls

Format
#include <ldap.h>

int ldap_insert_control(
LDAPControl * control,
LDAPControl *** control_list)

Parameters

Input

control
Specifies the control to be added to the list of controls.

Output

control_list
Specifies the address of the control list. A new control list is created if there is
no control list. (The location pointed to by the control_list parameter contains
NULL.) Otherwise, the existing control list is expanded and the new control is
added to the list. The ldap_controls_free() routine should be called to release
the controls when they are no longer needed.

Usage

The ldap_insert_control() routine adds an existing control to a list of controls. The
control list is reallocated to make room for the new control.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, the
return value is one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_insert_control()

110 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_is_ldap_url()
Purpose

Determine if a URL appears to be an LDAP URL

Format
#include <ldap.h>

int ldap_is_ldap_url(
const char * url)

Parameters

Input

url
Specifies the URL to be tested as a null-terminated character string in the local
EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII compiler
variable

Usage

The ldap_is_ldap_url() routine checks the supplied URL to see if it looks like an
LDAP URL. An LDAP URL has the following format:
[<][URL:]scheme://[host[:port]][/dn[?attributes[?scope[?filter]]]][>]

The ldap_is_ldap_url() routine checks for a scheme of ldap or ldaps. The routine
does not check the remainder of the URL. To validate the entire URL, use the
ldap_url_parse() routine instead of the ldap_is_ldap_url() routine.

Function return value

If the URL is an LDAP URL, the function return value is 1 (TRUE). If it is not, the
return value is 0 (FALSE).

ldap_is_ldap_url()

Chapter 2. LDAP routines 111

ldap_is_ldap_url_np()
Purpose

Determine if a URL appears to be an LDAP URL

Format
#include <ldap.h>

int ldap_is_ldap_url_np(
LDAP * ld,
const char * url)

Parameters

Input

ld Specifies an LDAP handle. If the URL is in UTF-8, this parameter can be
specified as NULL. Otherwise, the URL is in either the local EBCDIC code page
or UTF-8 as determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

url
Specifies the URL to be tested as a null-terminated character string in either the
local EBCDIC code page or UTF-8 as determined by the LDAP handle.

Usage

The ldap_is_ldap_url_np() routine is the same as the ldap_is_ldap_url() routine
except that the URL is in either UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option. For information about the
ldap_is_ldap_url() routine, see “ldap_is_ldap_url()” on page 111.

Function return value

If the URL is an LDAP URL, the function return value is 1 (TRUE). If it is not, the
return value is 0 (FALSE).

ldap_is_ldap_url_np()

112 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_memcache_destroy()
Purpose

Destroy a search result cache

Format
#include <ldap.h>

void ldap_memcache_destroy(
LDAPMemCache * cache)

Parameters

Input

cache
Specifies the search result cache handle.

Usage

The ldap_memcache_destroy() routine destroys a search result cache created by the
ldap_memcache_init() routine. The cache handle is not valid upon completion of
this routine. Search result caching is disabled for any LDAP handles that are still
associated with the search result cache.

The global search result cache cannot be destroyed. If the routine should be called
with the cache handle for the global search result cache, all entries in the global
cache are removed but the global cache remains valid.

Function return value

There is no function return value.

ldap_memcache_destroy()

Chapter 2. LDAP routines 113

ldap_memcache_flush()
Purpose

Remove entries from a search result cache

Format
#include <ldap.h>

void ldap_memcache_flush(
LDAPMemCache * cache,
const char * dn,
int scope)

Parameters

Input

cache
Specifies the search result cache handle.

dn Specifies the base distinguished name as a null-terminated character string in
UTF-8 or the local EBCDIC code page, as determined by the LDAP_LIBASCII
compiler variable. Specify NULL for this parameter to flush all cache entries.

scope
Specifies the name scope and must be one of the following:

LDAP_SCOPE_BASE
Search just the entry specified by the base name.

LDAP_SCOPE_ONELEVEL
Search the base entry and its immediate children.

LDAP_SCOPE_SUBTREE
Search the base entry and all of its descendants.

Usage

The ldap_memcache_flush() routine removes entries from a search result cache.
The dn parameter specifies the base distinguished name and the scope parameter
specifies the name scope. All search requests whose base distinguished names fall
within the range of the specified DN and scope are removed from the cache.

Examples: Assume that the cache contains search requests for the following base
distinguished names:
o=Acme
ou=Manufacturing,o=Acme
ou=Research,o=Acme
cn=John Doe,ou=Manufacturing,o=Acme
cn=Jane Doe,ou=Research,o=Acme

v If ldap_memcache_flush() should be called with "o=Acme" and
scope=LDAP_SCOPE_BASE, the "o=Acme" cache entry is removed.

v If ldap_memcache_flush() should be called with "o=Acme" and
scope=LDAP_SCOPE_ONELEVEL, the "ou=Manufacturing,o=Acme" and
"ou=Research,o=Acme" entries are removed.

v If ldap_memcache_flush() should be called with "o=Acme" and
scope=LDAP_SCOPE_SUBTREE, all entries are removed.

ldap_memcache_flush()

114 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

There is no function return value.

ldap_memcache_flush()

Chapter 2. LDAP routines 115

ldap_memcache_get()
Purpose

Return the search result cache for an LDAP handle

Format
#include <ldap.h>

int ldap_memcache_get(
LDAP * ld,
LDAPMemCache ** cachep)

Parameters

Input

ld Specifies the LDAP handle.

Output

cachep
Returns the cache handle. If there is no search result cache for the LDAP
handle, the return value is NULL.

Usage

The ldap_memcache_get() routine returns the search result cache handle associated
with the LDAP handle.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_memcache_get()

116 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_memcache_init()
Purpose

Create a search result cache

Format
#include <ldap.h>

int ldap_memcache_init(
unsigned long ttl,
unsigned long size,
char * baseDNs[],
void * reserved,
LDAPMemCache ** cachep)

Parameters

Input

ttl
Specifies the lifetime in seconds for entries in the cache. The maximum value is
2147483647 seconds. Specify 0 if the cache entries do not expire.

size
Specifies the maximum size in bytes for the cache. The maximum value is
2147483647 bytes. Specify 0 if there is no maximum size for the cache. Older
entries are removed to make room for new entries once the maximum size is
reached.

baseDNs
Specifies an array of distinguished names. The end of the array is indicated by
a NULL address. Each distinguished name is a null-terminated character string
in UTF-8 or the local EBCDIC code page, as determined by the LDAP_LIBASCII
compiler variable. Specify NULL for this parameter to cache all search results.

reserved
Specify NULL for this parameter.

Output

cachep
Returns the cache handle. The ldap_memcache_destroy() routine should be
called to destroy the cache when it is no longer needed.

Usage

The ldap_memcache_init() routine creates a search result cache. The baseDNs
parameter specifies the list of base distinguished names. The search request is not
cached if the base DN for the search request is not included in this list. All search
requests are cached if NULL is specified for the baseDNs parameter.

After the search result cache is created, the ldap_memcache_set() routine must be
called to associate the search result cache with one or more LDAP handles. Search
requests using these LDAP handles are then cached in the search result cache.

The LDAP_CLIENT_CACHE environment variable can be used to define a global search
result cache. All LDAP handles use the global search result cache unless the

ldap_memcache_init()

Chapter 2. LDAP routines 117

ldap_memcache_set() routine should be called to set a different cache for the
LDAP handle.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_memcache_init()

118 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_memcache_set()
Purpose

Set the search result cache for an LDAP handle

Format
#include <ldap.h>

int ldap_memcache_set(
LDAP * ld,
LDAPMemCache * cache)

Parameters

Input

ld Specifies the LDAP handle.

cache
Specifies the search result cache handle. Specify NULL for this parameter to
disable search result caching for the LDAP handle.

Usage

The ldap_memcache_set() routine sets the search result cache used by the LDAP
handle. The ldap_memcache_init() routine can be used to create a search result
cache.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_LOCAL_ERROR
An error is detected by a system routine.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_memcache_set()

Chapter 2. LDAP routines 119

ldap_memcache_update()
Purpose

Remove expired search result cache entries

Format
#include <ldap.h>

void ldap_memcache_update(
LDAPMemCache * cache)

Parameters

Input

cache
Specifies the search result cache handle.

Usage

The ldap_memcache_update() routine removes all expired entries from the search
result cache. It is normally not necessary to call the ldap_memcache_update()
routine, because expired cache entries are automatically removed when new entries
are added to the cache.

Function return value

There is no function return value.

ldap_memcache_update()

120 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_memfree()
Purpose

Release storage allocated by the LDAP run time

Format
#include <ldap.h>

void ldap_memfree(
void * mem)

Parameters

Input

mem
Specifies the address of the storage to be released.

The ldap_memfree() routine releases storage allocated by the LDAP run time.

Function return value

There is no function return value.

ldap_memfree()

Chapter 2. LDAP routines 121

ldap_modify(), ldap_modify_s(), ldap_modify_ext(), ldap_modify_ext_s()
Purpose

Modify an existing entry in the LDAP directory

Format
#include <ldap.h>

typedef struct ldapmod {
int mod_op;
char * mod_type;
union {

char ** modv_strvals;
BerVal ** modv_bvals;

} mod_vals;
struct ldapmod * mod_next;

} LDAPMod;

#define LDAP_MOD_BVALUES 0x80

#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify(
LDAP * ld,
const char * dn,
LDAPMod * mods[])

int ldap_modify_s(
LDAP * ld,
const char * dn,
LDAPMod * mods[])

int ldap_modify_ext(
LDAP * ld,
const char * dn,
LDAPMod * mods[],
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
int * msgidp)

int ldap_modify_ext_s(
LDAP * ld,
const char * dn,
LDAPMod * mods[],
LDAPControl * serverctrls[],
LDAPControl * clientctrls[])

Parameters

Input

ld Specifies the LDAP handle.

dn Specifies the distinguished name for the directory entry as a null-terminated
character string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. A zero-length name is not
allowed for a modify request.

mods
Specifies the attribute modifications for the directory entry. The mod_op field
indicates whether the LDAP server should add the attribute (LDAP_MOD_ADD),
replace the attribute (LDAP_MOD_REPLACE) or delete the attribute

ldap_modify(), ldap_modify_s(), ldap_modify_ext(), ldap_modify_ext_s()

122 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

(LDAP_MOD_DELETE). The LDAP_MOD_BVALUES flag should be set in the mod_op field
for binary attribute values. The mod_type field specifies the attribute type as a
null-terminated character string in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option for the LDAP handle. The
modv_strvals field can be used for character values, while the modv_bvals field
can be used for binary values. The supplied values are in binary if the
LDAP_MOD_BVALUES flag is set. Otherwise, the supplied values are
null-terminated character strings in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

serverctrls
Specifies an array of server controls for the add request. The end of the array is
indicated by a NULL address. If NULL is specified for this parameter, the server
controls specified by the LDAP_OPT_SERVER_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP handle, no
server controls are used. The server controls for the LDAP handle can be
overridden so that no controls are used by specifying a server controls array
consisting of a NULL address. (Control values for this routine vary depending
on whether you are specifying server or client controls. See “LDAP controls”
on page 15 for details.)

clientctrls
Specifies an array of client controls for the add request. The end of the array is
indicated by a NULL address. If NULL is specified for this parameter, the client
controls specified by the LDAP_OPT_CLIENT_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP handle, no
client controls are used. The client controls for the LDAP handle can be
overridden so that no controls are used by specifying a client controls array
consisting of a NULL address. (Control values for this routine vary depending
on whether you are specifying server or client controls. See “LDAP controls”
on page 15 for details.)

Output

msgidp
Returns the message identifier assigned to the modify request message. This
value can be used when calling the ldap_result() routine to wait for the modify
result message.

Usage

The ldap_modify() and ldap_modify_ext() routines send the request to the LDAP
server and return control to the application. The application must call the
ldap_result() routine to obtain the result.

The ldap_modify_s() and ldap_modify_ext_s() routines send the request to the
LDAP server and wait for the completion of the request. The modify request is
abandoned if the client is unable to wait for the response because of an error from
the ldap_result() routine.

The entry to be modified must exist. The modifications are performed as an atomic
unit in the order listed and either all the modifications are performed or none of
the modifications are performed. The directory schema can be violated while the
modifications are performed, but the final result must conform to the requirements
of the directory schema. If the z/OS LDAP server is running with an SDBM

ldap_modify(), ldap_modify_s(), ldap_modify_ext(), ldap_modify_ext_s()

Chapter 2. LDAP routines 123

backend, the ldap_modify() APIs can return the LDAP_OTHER error code and have
completed a partial update to an entry in RACF. The results match what would
occur if the update was done using the RACF ALTUSER, ALTGROUP, or
RALTER command. The RACF message text is also returned in the result.

To add attribute values, set the mod_op field to LDAP_MOD_ADD. Existing attribute
values remain unchanged. The attribute is created if it does not exist.

To replace attribute values, set the mod_op field to LDAP_MOD_REPLACE. When
modifying directory entries, you must specify the entire set of attribute values. Any
existing attribute values not included in the replacement are removed. The
attribute is created if it does not exist. The attribute is deleted if no attribute values
are specified.

When modifying a schema on a z/OS LDAP server, you can replace an attribute
value without specifying all the other values in the set. A value is replaced if it
exists in the schema attribute. An attribute is added if it does not exist in the
schema attribute. No attributes are removed.

To delete attribute value, set the mod_op field to LDAP_MOD_DELETE. The supplied
values are removed from the attribute. All attribute values are deleted if no values
are provided. The attribute is deleted if there are no values left after deleting the
requested values.

The attributes making up the low-level RDN of the distinguished name for the
entry cannot be modified. However, if these attributes are multi-valued, other
(non-RDN) values can be added or removed. Use the ldap_rename() or
ldap_rename_s() routine to change the entry name.

Mandatory attributes for the entry object classes cannot be removed. Any
mandatory attributes required by new object classes that are added to the entry
must be added as part of the same modify operation.

The ldap_modify() and ldap_modify_s() routines use client controls specified by
the LDAP_OPT_CLIENT_CONTROLS and server controls specified by the
LDAP_OPT_SERVER_CONTROLS options. The ldap_modify_ext() and
ldap_modify_ext_s() routines also use these controls unless overridden by the
serverctrls and clientctrls parameters.

Function return value

The ldap_modify() routine returns -1 if a client error is detected. Otherwise, it
returns the message identifier assigned to the modify request. The application
should call the ldap_get_errno() routine to get the error code if the return value is
-1. The ldap_modify() routine does not return errors reported by the LDAP server.
Instead, the application must call the ldap_parse_result() routine to obtain the
result code from the result message returned by the ldap_result() routine.

The ldap_modify_ext() routine returns LDAP_SUCCESS if the request is sent to the
LDAP server. Otherwise, the return value is one of the error codes listed in the
ldap.h include file. The ldap_modify_ext() routine does not return errors reported
by the LDAP server. Instead, the application must call the ldap_parse_result()
routine to obtain the result code from the result message returned by the
ldap_result() routine.

ldap_modify(), ldap_modify_s(), ldap_modify_ext(), ldap_modify_ext_s()

124 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The ldap_modify_s() and ldap_modify_ext_s() routines return LDAP_SUCCESS if the
request is successful. Otherwise, the return value is one of the error codes listed in
the ldap.h include file. The return value includes errors detected by the LDAP
client and errors detected by the LDAP server.

The following are some common client errors:

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to specify server or
client controls.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
modify operation.

The following are some common server result codes:

LDAP_INSUFFICIENT_ACCESS
Not authorized to modify entry.

LDAP_NO_SUCH_OBJECT
The entry does not exist.

LDAP_OBJECT_CLASS_VIOLATION
Either a mandatory attribute is not included or an attribute is not allowed
by the object class definition.

LDAP_REFERRAL
The entry is not in the current LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
modify operation.

LDAP_UNDEFINED_TYPE
An attribute type is not defined in the directory schema.

ldap_modify(), ldap_modify_s(), ldap_modify_ext(), ldap_modify_ext_s()

Chapter 2. LDAP routines 125

ldap_mods_free()
Purpose

Release storage allocated for an array of attribute modifications

Format
#include <ldap.h>

void ldap_mods_free(
LDAPMod * mods[],
int freemods)

Parameters

Input

mods
Specifies the array of attribute modifications. The end of the array is indicated
by a NULL address.

freemods
Specify TRUE(1) to free the LDAPMod address array and the individual LDAPMod
structures. Specify FALSE(0) to free only the individual LDAPMod structures.

Usage

The ldap_mods_free() routine releases the storage allocated for an array of
attribute modifications. The attribute type and value are released along with the
LDAPMod structure. If a nonzero value is specified for the freemods parameter, the
LDAPMod address array is freed as well.

Function return value

There is no function return value.

ldap_mods_free()

126 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_msgfree()
Purpose

Release storage for an LDAP message

Format
#include <ldap.h>

int ldap_msgfree(
LDAPMessage * msg)

Parameters

Input

msg
Specifies the LDAP message to be released.

Usage

The ldap_msgfree() routine releases the storage allocated for an LDAP message
and its message chain.

Function return value

The function return value is the message type of the message. If there is a message
chain, the function return value is the message type of the last message in the
chain. The function return value is 0 if the message address is NULL or is not the
address of an LDAP message.

ldap_msgfree()

Chapter 2. LDAP routines 127

ldap_msgid()
Purpose

Return the message identifier

Format
#include <ldap.h>

int ldap_msgid(
LDAPMessage * msg)

Parameters

Input

msg
Specifies the LDAP message.

Usage

The ldap_msgid() routine returns the message identifier for an LDAP message.

Function return value

The function return value is the message identifier. The function return value is 0 if
the message address is NULL or is not the address of an LDAP message.

ldap_msgid()

128 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_msgtype()
Purpose

Return the message type

Format
#include <ldap.h>

int ldap_msgtype(
LDAPMessage * msg)

Parameters

Input

msg
Specifies the LDAP message.

Usage

The ldap_msgtype() routine returns the message type for an LDAP message.

Function return value

The function return value is the message type. If the message address is NULL or is
not the address of an LDAP message, the function return value is 0.

ldap_msgtype()

Chapter 2. LDAP routines 129

ldap_next_attribute()
Purpose

Return the attribute type for the next attribute in an LDAP search entry

Format
#include <ldap.h>

char * ldap_next_attribute(
LDAP * ld,
LDAPMessage * entry,
BerElement * ber)

Parameters

Input

ld Specifies the LDAP handle.

entry
Specifies an entry returned by the ldap_first_entry() or ldap_next_entry()
routine.

ber
Specifies the LDAP control block returned by the ldap_first_attribute() routine.

Usage

The ldap_next_attribute() routine returns the attribute type for the next attribute in
the search entry. The ldap_get_values() or ldap_get_values_len() routine can then
be called to get the attribute values associated with the attribute type.

The ber parameter is a control block allocated by the ldap_first_attribute() routine
and maintained by the LDAP client runtime. This control block is released when
the ldap_next_attribute() routine returns a NULL value, even if the NULL value is the
result of an error. The application should call the ldap_memfree() routine to
release this control block if the application does not want to keep calling the
ldap_next_attribute() routine until all attributes have been processed.

Function return value

The function return value is the attribute type of the next attribute. The attribute
type is a null-terminated character string in UTF-8 or the local EBCDIC code page,
as determined by the LDAP_OPT_UTF8_IO option for the LDAP handle. The
application should call the ldap_memfree() routine to release the attribute type
when it is no longer needed. The return value is NULL if there are no more
attributes or if an error is detected. The ldap_get_errno() routine can be called to
get the error code when the return value is NULL. The error code is LDAP_SUCCESS if
there are no more attributes.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_next_attribute()

130 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_next_entry()
Purpose

Return the next search entry in an LDAP result

Format
#include <ldap.h>

LDAPMessage * ldap_next_entry(
LDAP * ld,
LDAPMessage * msg)

Parameters

Input

ld Specifies the LDAP handle.

msg
Specifies the LDAP message returned by the ldap_first_entry() routine.

Usage

The ldap_next_entry() routine returns the address of the next search entry in an
LDAP result.

Function return value

The function return value is the address of the next search entry. The return value
is NULL if there are no more search entries or if an error is detected. The
ldap_get_errno() routine can be called to get the error code when the return value
is NULL. The error code is LDAP_SUCCESS if there are no more search entries.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_next_entry()

Chapter 2. LDAP routines 131

ldap_next_message()
Purpose

Return the next LDAP message in an LDAP result

Format
#include <ldap.h>

LDAPMessage * ldap_next_message(
LDAP * ld,
LDAPMessage * msg)

Parameters

Input

ld Specifies the LDAP handle.

msg
Specifies the LDAP message returned by the ldap_first_message() routine.

Usage

The ldap_next_message() routine returns the address of the next message in an
LDAP result.

Function return value

The function return value is the address of the next message. The return value is
NULL if there are no more messages or if an error is detected. The ldap_get_errno()
routine can be called to get the error code when the return value is NULL. The error
code is LDAP_SUCCESS if there are no more messages.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_next_message()

132 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_next_reference()
Purpose

Return the next search reference in an LDAP result

Format
#include <ldap.h>

LDAPMessage * ldap_next_reference(
LDAP * ld,
LDAPMessage * msg)

Parameters

Input

ld Specifies the LDAP handle.

msg
Specifies the LDAP message returned by the ldap_first_reference() routine.

Usage

The ldap_next_reference() routine returns the address of the next search reference
in an LDAP result.

Function return value

The function return value is the address of the next search reference. The return
value is NULL if there are no more search references or if an error is detected. The
ldap_get_errno() routine can be called to get the error code when the return value
is NULL. The error code is LDAP_SUCCESS if there are no more search references.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_next_reference()

Chapter 2. LDAP routines 133

ldap_parse_entrychange_control()
Purpose

Parse an entry change notification server control returned in an LDAP search
response

Format
#include <ldap.h>

int ldap_parse_entrychange_control(
LDAP * ld,
LDAPControl * server_controls[],
int * change_type,
char ** previous_dn,
int * change_number_present,
long * change_number)

Parameters

Input

ld Specifies the LDAP handle.

server_controls
Specifies an array of server controls returned in the response message. The end
of the array is indicated by a NULL address. The array should contain an entry
change notification control.

Output

change_type
Returns the change type and is LDAP_CHANGETYPE_ADD, LDAP_CHANGETYPE_DELETE,
LDAP_CHANGETYPE_MODIFY or LDAP_CHANGETYPE_MODDN. Specify NULL for this
parameter if the change type is not needed.

previous_dn
Returns the entry DN before it was renamed or moved by a Modify DN
operation and is NULL for other types of changes. Specify NULL for this
parameter if the previous DN is not needed. The name is a null-terminated
character strong in UTF-8 or the local EBCDIC code page as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. The ldap_memfree() routine
should be called to release the name when it is no longer needed.

change_number_present
Returns 1 if the change number is returned by the LDAP server or 0 if the
change number is not returned. Specify NULL for this parameter if the change
number indication is not needed.

change_number
Returns the change number if one was returned by the LDAP server. Specify
NULL for this parameter if the change number is not needed.

Usage

The ldap_parse_entrychange_control() routine can be used to process the entry
change notification control (2.16.840.1.113730.3.4.7) returned by the LDAP
server in an LDAP search entry.

ldap_parse_entrychange_control()

134 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_CONTROL_NOT_FOUND
The server controls do not contain the entry change notification control.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_parse_entrychange_control()

Chapter 2. LDAP routines 135

ldap_parse_extended_result()
Purpose

Parse an LDAP extended result message

Format
#include <ldap.h>

int ldap_parse_extended_result(
LDAP * ld,
LDAPMessage * result,
char ** resultoidp,
BerVal ** resultdatap,
int freeit)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by the ldap_result() or
ldap_extended_operation_s() routines.

freeit
Specify TRUE(1) to free the LDAP message chain before returning to the
application or specify FALSE(0) to keep the LDAP message chain. If you
specify TRUE, the message chain is freed even when the function return value is
not LDAP_SUCCESS.

Output

resultoidp
Returns the response OID from the extended result message. Specify NULL for
this parameter if the response OID should not be returned. The value is set to
NULL if the LDAP server did not return a response OID. The OID is returned as
a null-terminated dotted decimal character string in either UTF-8 or the local
EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option for the
LDAP handle. The application should call the ldap_memfree() routine to
release the OID string when it is no longer needed.

resultdatap
Returns the response data from the extended result message. Specify NULL for
this parameter if the response data should not be returned. The value is set to
NULL if the LDAP server did not return any response data. The application
should call the ldap_berfree_np() routine to release the response data when it
is no longer needed.

Usage

The ldap_parse_extended_result() routine returns extended response information
from an LDAP extended result message. A parameter error is returned if the
message is not an extended result message. The application can call the
ldap_parse_result() routine to obtain the matched name, error text, and referral
information from the extended result message.

ldap_parse_extended_result()

136 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

The function return value is the result code from the extended result message
unless an error is detected while parsing the message.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_parse_extended_result()

Chapter 2. LDAP routines 137

ldap_parse_page_control()
Purpose

Parse a paged results server control returned in an LDAP search response

Format
#include <ldap.h>

int ldap_parse_page_control(
LDAP * ld,
LDAPControl * server_controls[],
unsigned long * total_count,
BerVal ** cookie)

Parameters

Input

ld Specifies the LDAP handle.

server_controls
Specifies an array of server controls returned in the response message. The end
of the array is indicated by a NULL address. The array should contain a paged
results server control.

Output

total_count
Returns the server estimate of the total number of entries in the total result set.
This value is zero if the server is unable to provide an estimate of the total
number of entries.

cookie
Returns the cookie for the next page of search results. The ldap_berfree_np()
routine should be called to release the cookie when it is no longer needed.

Usage

RFC 2696: LDAP Control Extension for Simple Paged Results Manipulation provides
paging capabilities for LDAP clients that want to receive just a subset of search
results (page) instead of the entire list. The next page of entries is returned to the
client application for each subsequent paged results search request submitted by
the client until the operation is canceled or the last result is returned. See the
description of “ldap_create_page_control()” on page 52 for a detailed description of
paged search results processing.

The ldap_parse_page_control() routine can be used to extract the total entry count
and the cookie from the paged results control returned by the LDAP server. The
server returns a zero-length cookie when the last page of results is returned. The
server controls in the search response message do not contain the paged results
control if the requested page size is greater than or equal to the size limit in the
search request or if there are no result entries to return.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

ldap_parse_page_control()

138 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc2696.txt.pdf

The following are some common client errors:

LDAP_CONTROL_NOT_FOUND
The server controls do not contain the paged results control

LDAP_NO_MEMORY
Insufficient storage is available

LDAP_PARAM_ERROR
A parameter is not valid

ldap_parse_page_control()

Chapter 2. LDAP routines 139

ldap_parse_pwdpolicy_response()
Purpose

Parse a password policy control response returned in an LDAP message

Format
#include <ldap.h>

int ldap_parse_pwdpolicy_response(
LDAPControl * server_controls[],
int * controlerrp,
int * controlwarnp,
int * controlresp)

Parameters

Input

server_controls
Specifies an array of server controls returned in the response message. The end
of the array is indicated by a NULL address. The array should contain a server
password policy control response.

Output

controlerrp
Returns the LDAP password policy error code, that can be used as input to
ldap_pwdpolicy_err2string() to obtain a text description of the error.

controlwarnp
Returns the LDAP password policy warning code, that can be used as input to
ldap_pwdpolicy_err2string() to obtain a text description of the warning.

controlresp
Returns the warning result value.

Usage

The ldap_pwdpolicy_err2string() routine, given a password policy control
response (1.3.6.1.4.1.42.2.27.8.5.1) error or warning code from the
ldap_parse_pwdpolicy_response() routine, returns a null-terminated character
string that provides a textual description of the password policy error or warning.

The ldap_parse_pwdpolicy_response() routine is used to:
v Obtain the LDAP password policy error or warning codes from the password

policy control response associated with an LDAP message.
v Obtain the LDAP password policy warning result value associated with the

warning code from the password policy control response.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_CONTROL_NOT_FOUND
The server controls do not contain the password policy control response.

ldap_parse_pwdpolicy_response()

140 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_parse_pwdpolicy_response()

Chapter 2. LDAP routines 141

ldap_parse_reference_np()
Purpose

Parse an LDAP search continuation reference message

Format
#include <ldap.h>

int ldap_parse_reference_np(
LDAP * ld,
LDAPMessage * result,
char *** referralsp,
LDAPControl *** serverctrlsp,
int freeit)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by ldap_result() or one of the
synchronous search request routines.

freeit
Specify TRUE(1) to free the LDAP message chain before returning to the
application. If you specify TRUE, the message chain is freed even when the
function return value is not LDAP_SUCCESS. Specify FALSE(0) to keep the LDAP
message chain.

Output

referralsp
Returns the referrals as an array of character strings. The end of the array is
indicated by a NULL string address. The return value is NULL if the LDAP server
did not return any referrals. Specify NULL for this parameter if the referral list
should not be returned. Each referral is returned as a null-terminated character
string in either UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. The application should call the
ldap_value_free() routine to release the referrals array when it is no longer
needed.

serverctrlsp
Returns the server controls as an array of LDAPControl structures. The end of
the array is indicated by a NULL control address. The return value is NULL if the
LDAP server did not return any server controls. Specify NULL for this
parameter if the server controls should not be returned. The control OID string
is in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. The control value is unchanged
and has the format returned by the LDAP server. The application should call
the ldap_controls_free() routine to release the controls array when it is no
longer needed. (Control values for this routine vary depending on whether you
are specifying server or client controls. See “LDAP controls” on page 15 for
details.)

ldap_parse_reference_np()

142 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Usage

The ldap_parse_reference_np() routine returns information from a search
continuation reference message. It returns a parameter error if the message is not a
search continuation reference message.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_parse_reference_np()

Chapter 2. LDAP routines 143

ldap_parse_result()
Purpose

Parse an LDAP result message

Format
#include <ldap.h>

int ldap_parse_result(
LDAP * ld,
LDAPMessage * result,
int * errcodep,
char ** matcheddnp,
char ** errmsgp,
char *** referralsp,
LDAPControl *** servctrlsp,
int freeit)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by ldap_result() or one of the
synchronous request routines.

freeit
Specify TRUE(1) to free the LDAP message chain before returning to the
application. If you specify TRUE, the message chain is freed even when the
function return value is not LDAP_SUCCESS. Specify FALSE(0) to keep the LDAP
message chain.

Output

errcodep
Returns the result code from the result message. Specify NULL for this
parameter if the result code should not be returned.

matcheddnp
Returns the matched distinguished name from the result message as a
null-terminated character string. The string is in UTF-8 or the local EBCDIC
code page, as determined by the LDAP_OPT_UTF8_IO option for the LDAP
handle. The return value is NULL if the result message does not contain a
matched distinguished name. The application should call the ldap_memfree()
routine to release the string when it is no longer needed. Specify NULL for this
parameter if the matched distinguished name should not be returned.

errmsgp
Returns the error text from the result message as a null-terminated character
string. The string is in UTF-8 or the local EBCDIC code page, as determined by
the LDAP_OPT_UTF8_IO option for the LDAP handle. The return value is NULL if
the LDAP server did not return any error text. The application should call the
ldap_memfree() routine to release the string when it is no longer needed.
Specify NULL for this parameter if the error text should not be returned.

referralsp
Returns the referrals as an array of null-terminated character strings. The end
of the array is indicated by a NULL string address. The strings are in UTF-8 or

ldap_parse_result()

144 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option
for the LDAP handle. The return value is NULL if the LDAP server did not
return any referrals. The application should call the ldap_value_free() routine
to release the referrals array when it is no longer needed. Specify NULL for this
parameter if the referrals should not be returned.

servctrlsp
Returns the server controls as an array of LDAPControl structures. The end of
the array is indicated by a NULL control address. The return value is NULL if the
LDAP server did not return any server controls. The control OID string is in
UTF-8 or the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO
option for the LDAP handle. The control value is unchanged and has the
format returned by the LDAP server. The application should call the
ldap_controls_free() routine to release the controls array when it is no longer
needed. Specify NULL for this parameter if the server controls should not be
returned.

Usage

The ldap_parse_result() routine returns information from an LDAP result message.
The routine returns an error if it should be called for a search entry or search
reference message and the message chain does not contain the search result
message. The application can obtain additional information from a SASL bind
result message by calling the ldap_parse_sasl_bind_result() routine. The
application can obtain additional information from an extended result message by
calling the ldap_parse_extended_result() routine.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NO_RESULT_MESSAGE
The message chain does not contain an LDAP result.

LDAP_PARAM_ERROR
A parameter is not valid.

Note: Before z/OS V1R6, ldap_parse_result() returned LDAP_OPERATIONS_ERROR
when it was called to process a search entry or search reference message and the
message chain did not contain the search result message. As of z/OS V1R6, the
LDAP client returns LDAP_NO_RESULT_MESSAGE.

ldap_parse_result()

Chapter 2. LDAP routines 145

ldap_parse_sasl_bind_result()
Purpose

Parse an LDAP SASL bind result message

Format
#include <ldap.h>

int ldap_parse_sasl_bind_result(
LDAP * ld,
LDAPMessage * result,
BerVal ** servercredp,
int freeit)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by the ldap_result() routine.

freeit
Specify TRUE to free the result message before returning to the application. If
you specify TRUE, the result message is freed even when the function return
value is not LDAP_SUCCESS. Specify FALSE to keep the result message.

Output

servercredp
Returns the server credentials from the result message. The return value is
NULL if there are no server credentials. Specify NULL for this parameter if the
server credentials should not be returned. The application should call the
ldap_berfree_np() routine to release the credentials when they are no longer
needed.

Usage

The ldap_parse_sasl_bind_result() routine returns information from a SASL
(Simple Authentication and Security Layer) bind result message.

Function return value

The function return value is the result code from the bind result message unless an
error is detected while parsing the message.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_parse_sasl_bind_result()

146 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_parse_sort_control()
Purpose

Parse a sort results response control returned in an LDAP search response

Format
#include <ldap.h>

int ldap_parse_sort_control(
LDAP * ld,
LDAPControl * server_controls[],
unsigned long * sort_rc,
char ** attribute)

Parameters

Input

ld Specifies the LDAP handle.

server_controls
Specifies an array of server controls returned in the response message. The end
of the array is indicated by a NULL address. The array should contain a sort
results server control.

Output

sort_rc
Returns the sort result code.

attribute
Returns the attribute name associated with a sort error. Specify NULL for this
parameter if the attribute name is not needed. The return value is NULL if the
server did not return an attribute name. The ldap_memfree() routine should be
called to release the attribute name when it is no longer needed.

Usage

RFC 2891: LDAP Control Extension for Server Side Sorting of Search Results provides
server sorting of search results. The sort is performed based upon one or more
attributes contained in the search results.

The ldap_parse_sort_control() routine can be used to extract the sort result code
and failing attribute name from the sort results response control returned by the
LDAP server.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common client errors:

LDAP_CONTROL_NOT_FOUND
The server controls do not contain the sort results control

LDAP_NO_MEMORY
Insufficient storage is available

ldap_parse_sort_control()

Chapter 2. LDAP routines 147

http://www.rfc-editor.org/rfc/pdfrfc/rfc2891.txt.pdf

LDAP_PARAM_ERROR
A parameter is not valid

ldap_parse_sort_control()

148 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_pwdpolicy_err2string()
Purpose

Return a descriptive text message for an LDAP password policy control response
error or warning code

Format
#include <ldap.h>

char * ldap_pwdpolicy_err2string(
int error)

Parameters

Input

error
Specifies the error or warning code. This can be obtained by issuing the
ldap_parse_pwdpolicy_response() routine which returns the error code in
controlerrp and the warning code in controlwarnp.

Usage

The ldap_pwdpolicy_err2string() routine, given a password policy control
response (1.3.6.1.4.1.42.2.27.8.5.1) error or warning code from the
ldap_parse_pwdpolicy_response() routine, returns a null-terminated character
string that provides a textual description of the password policy error or warning.

For a password policy warning code, the ldap_pwdpolicy_err2string() routine
returns a text string containing a substitution variable. The substitution value is
returned in the controlresp parameter after issuing the
ldap_parse_pwdpolicy_response() routine. To create the full warning text, use
printf providing the text string containing the substitution variable obtained from
this routine and the substitution value. For more information, see
“ldap_parse_pwdpolicy_response()” on page 140.

The application must not modify or free this text message. The message is in the
local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII compiler
variable

Function return value

The function return value is the address of the text message and is never a NULL
address. The returned message is N/A if the LDAP message catalog cannot be
accessed, storage cannot be allocated, or the error code is not a recognized LDAP
error code.

ldap_pwdpolicy_err2string()

Chapter 2. LDAP routines 149

ldap_remove_control()
Purpose

Remove a control from a list of controls

Format
#include <ldap.h>

int ldap_remove_control(
LDAPControl * control,
LDAPControl *** control_list,
int freeit)

Parameters

Input

control
Specifies the control to be removed from the list of controls.

freeit
Specify TRUE(1) to free the control. Otherwise, specify FALSE(0).

Output

control_list
Specifies the address of the control list.

Usage

The ldap_remove_control() routine removes a control from a list of controls. The
control and its contents are freed if the freeit parameter is nonzero. The control is
not freed if it is not found in the list of controls. The control address list is freed
when all the controls have been removed.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, the
return value is one of the LDAP error codes that are listed in the ldap.h include
file.

The following are some common client errors:

LDAP_CONTROL_NOT_FOUND
The control is not found in the list of controls.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_remove_control()

150 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_rename(), ldap_rename_s()
Purpose

Rename an entry in the LDAP directory

Format
#include <ldap.h>

int ldap_rename(
LDAP * ld,
const char * dn,
const char * newrdn,
const char * newparent,
int deleteoldrdn,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
int * msgidp)

int ldap_rename_s(
LDAP * ld,
const char * dn,
const char * newrdn,
const char * newparent,
int deleteoldrdn,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[])

Parameters

Input

ld Specifies the LDAP handle.

dn Specifies the distinguished name for the directory entry as a null-terminated
character string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. A zero-length name is not
allowed for a rename request.

newrdn
Specifies the new relative distinguished name (RDN) for the directory entry as
a null-terminated character string in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

newparent
Specifies the distinguished name of the new parent entry as a null-terminated
character string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. Specify a zero-length character
string to indicate that the root is the new parent. Specify NULL for this
parameter to indicate that the parent entry is not to be changed. The LDAP
protocol version must be LDAP_VERSION3 to specify a non-NULL value for this
parameter.

deleteoldrdn
Specify TRUE(1) if the attributes from the old RDN are to be removed from the
entry. Specify FALSE(0) if the attributes are to be retained.

serverctrls
Specifies an array of server controls for the rename request. The end of the
array is indicated by a NULL address. If NULL is specified for this parameter, the
server controls specified by the LDAP_OPT_SERVER_CONTROLS option for the
LDAP handle are used. If NULL is specified for this parameter and the

ldap_rename(), ldap_rename_s()

Chapter 2. LDAP routines 151

LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP handle, no
server controls are used. To override the server controls for the LDAP handle
so that no controls are used, specify a server controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

clientctrls
Specifies an array of client controls for the rename request. The end of the
array is indicated by a NULL address. If NULL is specified for this parameter, the
client controls specified by the LDAP_OPT_CLIENT_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the
LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP handle, no
client controls are used. To override the client controls for the LDAP handle so
that no controls are used, specify a client controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

Output

msgidp
Returns the message identifier assigned to the rename request message. This
value can be used when calling the ldap_result() routine to wait for the
rename result message.

Usage

The ldap_rename() routine sends the request to the LDAP server and returns
control to the application. The application must then call the ldap_result() routine
to obtain the result.

The ldap_rename_s() routine sends the request to the LDAP server and then waits
for the completion of the request. The rename request is abandoned if the client is
unable to wait for the response because of an error from the ldap_result() routine.

The requested directory entry is renamed. The entry might or might not have
subordinate entries. If the entry is not a leaf entry, the entire subtree is renamed.

Client controls specified by the LDAP_OPT_CLIENT_CONTROLS and server controls
specified by the LDAP_OPT_SERVER_CONTROLS options are used by the ldap_rename()
and ldap_rename_s() routines unless overridden by the serverctrls and clientctrls
parameters.

Function return value

The ldap_rename() routine returns LDAP_SUCCESS if the request is sent to the LDAP
server. Otherwise, the return value is one of the error codes listed in the ldap.h
include file. Errors reported by the LDAP server are not returned by the
ldap_rename() routine. Instead, the application must call the ldap_parse_result()
routine to obtain the result code from the result message returned by the
ldap_result() routine.

The ldap_rename_s() routine returns LDAP_SUCCESS if the request is successful.
Otherwise, the return value is one of the error codes listed in the ldap.h include
file. The return value includes errors detected by the LDAP client and errors
detected by the LDAP server.

ldap_rename(), ldap_rename_s()

152 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The following are some common client errors:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to specify server or
client controls or to specify a new parent entry.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or not supported for a
rename operation.

The following are some common server errors:

LDAP_ALREADY_EXISTS
An entry with the new name exists.

LDAP_INSUFFICIENT_ACCESS
Not authorized to rename the directory entry.

LDAP_NO_SUCH_OBJECT
The directory entry does not exist.

LDAP_REFERRAL
The entry is not in the current LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or not supported for a
rename operation.

ldap_rename(), ldap_rename_s()

Chapter 2. LDAP routines 153

ldap_result()
Purpose

Return the result message for an LDAP request

Format
#include <ldap.h>

int ldap_result(
LDAP * ld,
int msgid,
int all,
struct timeval * timeout,
LDAPMessage ** result)

Parameters

Input

ld Specifies the LDAP handle.

msgid
Specifies the message identifier assigned to the LDAP request. Specify
LDAP_RES_ANY to return the next result message for the LDAP handle.

all
Specify LDAP_MSG_ONE to return a single search entry for a search request.
Specify LDAP_MSG_ALL to return all the search entries and the search result for a
search request.

timeout
Specifies the length of time to wait for a result message. This value is specified
in the timeval structure that is defined in the time.h file. The timeval structure
contains tv_sec and tv_usec fields for specifying the time in seconds and
microseconds. Specify NULL for this parameter to wait until a result message is
received. Set the tv_sec and tv_usec values in the timeout value to 0 to return
immediately, if there is no result message available.

Output

result
Returns the result message. The application should call the ldap_msgfree()
routine to release the message when it is no longer needed.

Usage

The ldap_result() routine returns the next result message for the LDAP handle. If
there is no result message available and the timeout value is not 0, it waits for a
message to be received.

The ldap_result() routine can be used with the asynchronous LDAP request
routines to process result messages as they are returned by the LDAP server. The
order of the result messages is not necessarily the same as the order in which the
requests were sent to the LDAP server.

ldap_result()

154 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

The function return value is 0 if no result message is received before the timeout
interval expires. The function return value is -1 if an error occurs while receiving
the result message, in which case the application can call the ldap_get_errno()
routine to obtain the error code. Otherwise, the function return value is the
message type for the first result message.

A search request can return multiple messages. There is a search entry message for
each directory object satisfying the search criteria, plus a search result message
after all the search entries are returned. There can also be search continuation
reference messages if the LDAP client is not following referrals. By specifying
LDAP_MSG_ALL, the application can make a single call to ldap_result() and get all the
search messages at once (the ldap_result() routine does not return until the search
result message is received). In this case, the function return value is
LDAP_RES_SEARCH_ENTRY or LDAP_RES_SEARCH_REFERENCE if there is at least one search
entry or search reference, and LDAP_RES_SEARCH_RESULT if there are no search
entries or search references.

Errors detected while following referrals are returned in the result code for the
result message and not as the function return value for the ldap_result() routine.
Error messages returned by the LDAP server while following referrals are
appended to the error string in the result message along with the referral value
resulting in the error.

The following result message types can be returned:

LDAP_RES_ADD
Add result.

LDAP_RES_BIND
Bind result.

LDAP_RES_COMPARE
Compare result.

LDAP_RES_DELETE
Delete result.

LDAP_RES_EXTENDED
Extended result.

LDAP_RES_MODIFY
Modify result.

LDAP_RES_MODRDN
Modify RDN result.

LDAP_RES_SEARCH_ENTRY
Search entry.

LDAP_RES_SEARCH_REFERENCE
Search reference.

LDAP_RES_SEARCH_RESULT
Search result.

The following are some common errors for this routine:

ldap_result()

Chapter 2. LDAP routines 155

LDAP_INVALID_STATE
A connection has not been established with the LDAP server or an unbind
has been issued for the LDAP handle.

LDAP_LOCAL_ERROR
A local system error is detected.

LDAP_NO_MATCHING_REQUEST
The message identifier does not refer to an outstanding request.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_PROTOCOL_ERROR
Response message is not valid.

LDAP_SERVER_DOWN
A network error has occurred or the LDAP server has closed the
connection.

LDAP_TIMEOUT
A response is not received within the timeout interval.

LDAP_WAIT_INTERRUPTED
A signal is received and the LDAP_OPT_RESTART option is not set to
LDAP_OPT_ON.

ldap_result()

156 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_sasl_bind(), ldap_sasl_bind_s()
Purpose

Bind to the LDAP server using the Simple Authentication and Security Layer
(SASL)

Format
#include <ldap.h>

int ldap_sasl_bind(
LDAP * ld,
const char * who,
const char * mechanism,
BerVal * credentials,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
int * msgidp)

int ldap_sasl_bind_s(
LDAP * ld,
const char * who,
const char * mechanism,
BerVal * credentials,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
BerVal ** servercredp)

Parameters

Input

ld Specifies the LDAP handle.

who
Specifies the authorization name as a null-terminated character string. The
name is in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. Specify NULL for this parameter
if there is no authorization name.

mechanism
Specifies the security mechanism as a null-terminated character string. The
mechanism is in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. The supported security
mechanisms are NULL, EXTERNAL, GSSAPI, CRAM-MD5, and DIGEST-MD5. (These
mechanisms are described in “Usage” on page 158.) A simple bind is
performed if this parameter is NULL, the mechanism is a zero-length string, or
the mechanism is NULL. The LDAP protocol version must be LDAP_VERSION3 for
anything other than a simple bind.

credentials
Specifies the client credentials. Specify NULL for this parameter if there are no
client credentials.

serverctrls
Specifies an array of server controls for the bind operation. The end of the
array is indicated by a NULL address. Specify NULL for this parameter if there
are no server controls. The bind operation then uses the server controls set by
the LDAP_OPT_SERVER_CONTROLS option for the LDAP handle. If you do not want
to use the server controls from the LDAP handle, specify the address of a
server control list containing a single NULL address. (Control values for this

ldap_sasl_bind(), ldap_sasl_bind_s()

Chapter 2. LDAP routines 157

routine vary depending on whether you are specifying server or client controls.
See “LDAP controls” on page 15 for details.)

clientctrls
Specifies an array of client controls for the bind operation. The end of the array
is indicated by a NULL address. Specify NULL for this parameter if there are no
client controls. The bind operation then uses the client controls set by the
LDAP_OPT_CLIENT_CONTROLS option for the LDAP handle. If you do not want to
use the client controls from the LDAP handle, specify the address of a client
control list containing a single NULL address. (Control values for this routine
vary depending on whether you are specifying server or client controls. See
“LDAP controls” on page 15 for details.)

Output

msgidp
Returns the message identifier assigned to the bind request message. This
value can be used when calling the ldap_result() routine to wait for the bind
result message.

servercredp
Returns the server credentials from the result message for a synchronous bind
request. The value is set to NULL if there are no server credentials. Specify NULL
for this parameter if the server credentials are not needed. The application
should call the ldap_berfree_np() routine to release the credentials when they
are no longer needed.

Usage

The ldap_sasl_bind() or ldap_sasl_bind_s() routine binds to the LDAP server
identified by the LDAP handle. The LDAP server authenticates the client using the
specified Simple Authentication and Security Layer (SASL) mechanism.

The ldap_sasl_bind() routine sends the bind message to the LDAP server and
returns control to the application. The application should call the ldap_result()
routine to get the response to the bind request. The application can then call the
ldap_parse_result() and ldap_parse_sasl_bind_result() routines to obtain
information from the result message.

The ldap_sasl_bind_s() routine sends the bind message to the LDAP server and
waits for a response. The bind request is abandoned if the client is unable to wait
for the response because of an error from the ldap_result() routine.

The who parameter specifies the authorization name for the connection. This is also
the authentication name for a simple bind. If the value of the who parameter is
NULL, the LDAP server uses the authentication name from the SASL bind for
authorization checking.

You can change the client authentication for a session by calling ldap_sasl_bind()
or ldap_sasl_bind_s() again. Note some LDAP servers might not support changing
the client authentication depending upon the SASL mechanism used to perform
the initial authentication.

NULL mechanism

Using the NULL mechanism is equivalent to calling the ldap_simple_bind() or
ldap_simple_bind_s() routine. For simple authentication, the client authenticates

ldap_sasl_bind(), ldap_sasl_bind_s()

158 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

itself to the server by supplying an authentication name and the password
associated with the name. The authentication is successful if the password is
correct. An anonymous bind is performed when no authentication name is
supplied. LDAP supports simple authentication where the authentication name is
the distinguished name of an entry in the LDAP directory. The password is the
value associated with that directory entry.

Simple authentication is performed when the mechanism parameter is NULL,
specifies a zero-length string, or specifies the string NULL. The who parameter
specifies the distinguished name to be used as the authentication name. The bv_val
and bv_len fields for the credentials parameter specify the password.

The ldap.h include file defines LDAP_SASL_SIMPLE and LDAP_MECHANISM_NULL for use
as the mechanism value. The UTF-8 versions are LDAP_SASL_SIMPLE_UTF8 and
LDAP_MECHANISM_NULL_UTF8.

Mutual authentication is not performed. The server verifies the identity of the
client but the client has no way to verify the identity of the server.

Integrity and confidentiality services are not available and must be provided by the
transport layer if they are needed (for example, by using SSL). Therefore, the
LDAP_OPT_MIN_SASL_LEVEL and LDAP_OPT_MAX_SASL_LEVEL options are ignored for
simple authentication and the LDAP_OPT_SASL_QOP option always returns a QOP of
0 (SASL provides no integrity or confidentiality services).

EXTERNAL mechanism - TCP/IP connection

For external authentication using a TCP/IP connection, the server authenticates the
client using information external to the SASL protocol. LDAP supports external
authentication using the X.509 client certificate provided by an SSL connection. The
label specified on the call to the ldap_ssl_init() routine identifies the client
certificate. System SSL selects a certificate if the application provides no label. See
z/OS Cryptographic Services System SSL Programming for more information about
how to specify a certificate using the GSK_KEY_LABEL environment variable or as the
default certificate in a key database, SAF key ring, or PKCS #11 token.

External authentication is performed when the mechanism parameter is the string
EXTERNAL. To use external authentication with LDAP, the client must use an SSL
connection to the LDAP server and must not provide any credentials when calling
the ldap_sasl_bind() or ldap_sasl_bind_s() routine (the credentials parameter must
either be NULL or point to a zero-length value). The LDAP server uses the subject
name from the client certificate as the authentication name.

The ldap.h include file defines LDAP_MECHANISM_EXTERNAL for use as the mechanism
value. The UTF-8 version is LDAP_MECHANISM_EXTERNAL_UTF8.

SSL performs mutual authentication. The server verifies the identity of the client
using the client certificate and the client verifies the identity of the server using the
server certificate.

SSL provides integrity and confidentiality services.

System SSL must be installed to use the EXTERNAL SASL mechanism. The
LDAP_OPT_MIN_SASL_LEVEL and LDAP_OPT_MAX_SASL_LEVEL options are ignored for
external authentication and the LDAP_OPT_SASL_QOP option always returns a QOP of

ldap_sasl_bind(), ldap_sasl_bind_s()

Chapter 2. LDAP routines 159

0 (SASL provides no integrity or confidentiality services). You can use the
LDAP_OPT_SSL_CIPHER option to obtain the SSL cipher suite negotiated by the LDAP
client and the LDAP server.

GSSAPI mechanism

For GSSAPI authentication, the server authenticates the client using Kerberos
Version 5 credentials. The client is responsible for obtaining a Kerberos
ticket-granting ticket (TGT) for the wanted client identity. The user can obtain the
TGT by using the kinit command or the application can obtain the TGT by calling
the appropriate Kerberos API routines. For more information about the kinit
command, see z/OS Integrated Security Services Network Authentication Service
Administration. For more information about the Kerberos and GSSAPI routines, see
z/OS Integrated Security Services Network Authentication Service Programming.

The system where the LDAP server is running must be defined to the DNS name
server. If an IP address is supplied on the call to ldap_init() or ldap_ssl_init(), the
name server must be able to translate the IP address to a host name. The LDAP
server must have a Kerberos principal name in one of the following forms:
LDAP/primary-host-name@realm-name

or

ldap/primary-host-name@realm-name

The LDAP client first tries to obtain a Kerberos service ticket to
LDAP/primary-host-name@realm-name and retries using ldap/primary-host-
name@realm-name if the server principal is not defined. The primary host name is
the canonical name returned by the DNS name server and consists of lowercase
characters. (Although DNS name are not case-sensitive, Kerberos principal names
are case-sensitive).

GSSAPI authentication is performed when the mechanism parameter is the string
GSSAPI. The application can either acquire the GSSAPI credential before calling the
ldap_sasl_bind() or ldap_sasl_bind_s() routine or it can use the default GSSAPI
credential. If the application acquires the GSSAPI credential, the value of the
credentials parameter must be the credential identifier (the bv_val field contains
the address of the credential identifier and the bv_len field is the length of the
credential identifier). The LDAP client uses the TGT from the Kerberos credentials
cache to acquire a GSSAPI credential if the credentials parameter is NULL or points
to a zero-length value. The Kerberos mechanism can be used to perform the
authentication with the LDAP server. The authentication name is the Kerberos
client principal obtained from the TGT. Delegated credentials are made available to
the LDAP server if the LDAP_OPT_DELEGATION option is set to LDAP_OPT_ON.

The ldap.h include file defines LDAP_MECHANISM_GSSAPI for use as the mechanism
value. The UTF-8 version is LDAP_MECHANISM_GSSAPI_UTF8.

Mutual authentication is performed by GSSAPI. The server verifies the identity of
the client when the client demonstrates that it knows the session key contained in
the encrypted service ticket. The client verifies the identity of the server when the
server demonstrates that it knows the encryption key for the service ticket.

Integrity and confidentiality services are available when offered by the LDAP
server. The LDAP_OPT_MIN_SASL_LEVEL option sets the minimum protection level and
defaults to LDAP_SASL_LEVEL_NONE. The bind fails if the LDAP server does not offer

ldap_sasl_bind(), ldap_sasl_bind_s()

160 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

at least this level of protection. The LDAP_OPT_MAX_SASL_LEVEL option sets the
maximum protection level and defaults to LDAP_SASL_LEVEL_CONF. The LDAP client
does not negotiate a higher protection level even if the server offers it. The
LDAP_OPT_SASL_QOP option can be used to obtain the negotiated integrity and
protection levels.

Network Authentication Services must be installed to use the GSSAPI SASL
mechanism.

CRAM-MD5 mechanism

For CRAM-MD5 authentication, the client authenticates itself to the server by
supplying an authentication name and the password associated with the name.
Unlike simple authentication where the password is sent to the LDAP server,
CRAM-MD5 uses a challenge-response message exchange which never sends the
password to the server. Instead, the password can be used as the shared secret to
generate a keyed MD5 digest. The client sends this digest to the server, which
generates its own digest. If the server digest matches the client digest, the client is
authenticated by the server.

CRAM-MD5 authentication is performed when the mechanism parameter is the
string CRAM-MD5. The authentication name is the short name specified by the
ibm-saslBindCramUserName client control or the DN of a directory object if specified
by the who parameter (the short name can be used if both are specified). An error is
returned if the short name contains any blanks or the ibm-saslBindCramUserName
client control is specified more than once. A parameter error is returned if the DN
or the ibm-saslBindCramUserName client control is specified. The bv_val and bv_len
fields for the credentials parameter specify the password. A parameter error is
returned if no password is provided. All strings are in UTF-8 or the local EBCDIC
code page, as determined by the LDAP_OPT_UTF8_IO option for the LDAP handle. In
addition, the short name and password must consist of characters that can be
represented in the ISO8859-1 code page.

The ldap.h include file defines LDAP_MECHANISM_CRAM for use as the mechanism
value. The UTF-8 version is LDAP_MECHANISM_CRAM_UTF8.

Mutual authentication is not performed. The server verifies the identity of the
client but the client has no way to verify the identity of the server.

Integrity and confidentiality services are not available and must be provided by the
transport layer if they are needed (for example, by using SSL). Therefore, the
LDAP_OPT_MIN_SASL_LEVEL and LDAP_OPT_MAX_SASL_LEVEL options are ignored for
CRAM-MD5 authentication and the LDAP_OPT_SASL_QOP option always returns a
QOP of 0 (no integrity or confidentiality services are provided by SASL).

DIGEST-MD5 mechanism

For DIGEST-MD5 authentication, the client authenticates itself to the server by
supplying an authentication name and the password associated with the name.
Unlike simple authentication, where the password is sent to the LDAP server,
DIGEST-MD5 uses a challenge-response message exchange which never sends the
password to the server. Instead, the password can be used as the shared secret to
generate a keyed MD5 digest. The client sends this digest to the server, which
generates its own digest. If the server digest matches the client digest, the client is
authenticated by the server. The server then generates a response digest and sends
it to the client, which generates its own digest. If the client digest matches the

ldap_sasl_bind(), ldap_sasl_bind_s()

Chapter 2. LDAP routines 161

server digest, the server is authenticated by the client. Therefore, the DIGEST-MD5
mechanism provides mutual authentication while the CRAM-MD5 mechanism
provides just client authentication.

DIGEST-MD5 authentication is performed when the mechanism parameter is the
string DIGEST-MD5. The ibm-saslBindDigestRealmName client control specifies the
digest realm. The digest realm can be used to select the authentication realm when
the LDAP server supports multiple realms. If this control is not specified and the
LDAP server does not specify a realm, the local host name can be used as the
digest realm. A parameter error is returned if the ibm-saslBindDigestRealmName
client control is specified more than once. The ibm-saslBindDigestUserName client
control specifies the user name. A parameter error is returned if the
ibm-saslBindDigestUserName client control is not specified or is specified more
than once. The bv_val and bv_len fields for the credentials parameter specify the
password. If no password is provided, a parameter error is returned. The who
parameter provides an optional authorization distinguished name that is sent to
the LDAP server as part of the DIGEST-MD5 message exchange. All strings are in
UTF-8 or the local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO
option for the LDAP handle.

The ldap.h include file defines LDAP_MECHANISM_DIGEST for use as the mechanism
value. The UTF-8 version is LDAP_MECHANISM_DIGEST_UTF8.

The DIGEST-MD5 mechanism performs mutual authentication. The server verifies
the identity of the client when the client demonstrates that it knows the password
by sending the correct request digest. The client verifies the identity of the server
when the server demonstrates that it knows the password by sending the correct
response digest.

Integrity and confidentiality services are available when offered by the LDAP
server. The LDAP_OPT_MIN_SASL_LEVEL option sets the minimum protection level and
defaults to LDAP_SASL_LEVEL_NONE. The bind fails if the LDAP server does not offer
at least this level of protection. The LDAP_OPT_MAX_SASL_LEVEL option sets the
maximum protection level and defaults to LDAP_SASL_LEVEL_CONF. The LDAP client
does not negotiate a higher protection level even if the server offers it. The
LDAP_OPT_SASL_QOP option can be used to obtain the negotiated integrity and
protection levels.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file. The
ldap_sasl_bind_s() routine returns errors reported by the LDAP server and errors
detected by the LDAP client. The ldap_sasl_bind() routine does not return errors
reported by the LDAP server. Instead, the application must call the
ldap_parse_result() routine to obtain the result code from the bind response
message returned by the ldap_result() routine. Errors detected by the LDAP client
run time during the SASL negotiation are also returned in the bind result message.

The following are some common client errors:

LDAP_GSS_INIT_FAILED
Kerberos GSS-API initialization failed.

LDAP_GSS_NOT_AVAILABLE
Kerberos GSS-API support is not available.

ldap_sasl_bind(), ldap_sasl_bind_s()

162 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_INVALID_STATE
A bind or unbind is in progress for the LDAP handle or an application exit
is active for the LDAP handle.

LDAP_LOCAL_ERROR
A system function detected an error.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version is not version 3 and the mechanism is not
simple or external authentication.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SASL_INAPPROPRIATE
The LDAP server does not offer a security level that meets the criteria set
by the application.

LDAP_SERVER_DOWN
Unable to connect to the LDAP server.

LDAP_SSL_NOT_USED
The EXTERNAL mechanism is requested but the connection is not using SSL.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
bind operation.

The following are some common bind result codes:

LDAP_DIGEST_MD5_SASL_FAILED
SASL DIGEST-MD5 negotiation failed.

LDAP_GSS_SASL_FAILED
SASL GSS-API negotiation failed.

LDAP_INAPPROPRIATE_AUTH
Inappropriate authentication provided by the client.

LDAP_INVALID_CREDENTIALS
The credentials provided by the client are not valid.

LDAP_PROTOCOL_ERROR
A protocol error is detected during the SASL negotiation.

LDAP_REFERRAL
The server cannot accept the bind.

LDAP_STRONG_AUTH_NOT_SUPPORTED
The server does not support the requested SASL mechanism.

LDAP_STRONG_AUTH_REQUIRED
The server requires strong authentication.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
bind operation.

ldap_sasl_bind(), ldap_sasl_bind_s()

Chapter 2. LDAP routines 163

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(),
ldap_search_ext_s()

Purpose

Search the LDAP directory

Format
#include <ldap.h>

int ldap_search(
LDAP * ld,
const char * base,
int scope,
const char * filter,
const char * attrs[],
int attrsonly)

int ldap_search_s(
LDAP * ld,
const char * base,
int scope,
const char * filter,
const char * attrs[],
int attrsonly,
LDAPMessage ** result)

int ldap_search_st(
LDAP * ld,
const char * base,
int scope,
const char * filter,
const char * attrs[],
int attrsonly,
struct timeval * timeout,
LDAPMessage ** result)

int ldap_search_ext(
LDAP * ld,
const char * base,
int scope,
const char * filter,
const char * attrs[],
int attrsonly,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
struct timeval * timeout,
int sizelimit,
int * msgidp)

int ldap_search_ext_s(
LDAP * ld,
const char * base,
int scope,
const char * filter,
const char * attrs[],
int attrsonly,
LDAPControl * serverctrls[],
LDAPControl * clientctrls[],
struct timeval * timeout,
int sizelimit,
LDAPMessage ** result)

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

164 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Parameters

Input

ld Specifies the LDAP handle.

base
Specifies the distinguished name of the directory object where the search
should start. The name is a null-terminated character string in UTF-8 or the
local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option for
the LDAP handle. The distinguished name should be in the format that is
defined by RFC 2253: UTF-8 String Representation of Distinguished Names.

scope
Specifies the search scope as follows:

LDAP_SCOPE_BASE
Search just the entry that is specified by the base name.

LDAP_SCOPE_ONELEVEL
Search the immediate children of the base entry.

LDAP_SCOPE_SUBTREE
Search the base entry and all of its descendants.

filter
Specifies the search filter as a null-terminated character string in UTF-8 or the
local EBCDIC code page, as determined by the LDAP_OPT_UTF8_IO option for
the LDAP handle. If you specify NULL or a zero-length string for this parameter,
the search filter is set to "(objectClass=*)". For information about filter
syntax, see “Usage” on page 167.

attrs
Specifies an array of attribute types to be returned. Each attribute type is a
null-terminated character string in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8-IO option for the LDAP handle. The end of
the array is indicated by a NULL address. If you specify NULL for this parameter,
all the attributes for an entry are returned.

attrsonly
Specifies whether the attribute values should be returned along with the
attribute types. A nonzero value causes just the attribute types to be returned.
A zero value causes both attribute types and attribute values to be returned.

serverctrls
Specifies an array of server controls for the search request. The end of the
array is indicated by a NULL address. If NULL is specified for this parameter, the
server controls specified by the LDAP_OPT_SERVER_CONTROLS option for the
LDAP handle are used. If NULL is specified for this parameter and the
LDAP_OPT_SERVER_CONTROLS option has not been set for the LDAP handle, no
server controls are used. To override the server controls for the LDAP handle
so that no controls are used, specify a server controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

clientctrls
Specifies an array of client controls for the search request. The end of the array
is indicated by a NULL address. If NULL is specified for this parameter, the client
controls specified by the LDAP_OPT_CLIENT_CONTROLS option for the LDAP
handle are used. If NULL is specified for this parameter and the

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

Chapter 2. LDAP routines 165

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

LDAP_OPT_CLIENT_CONTROLS option has not been set for the LDAP handle, no
client controls are used. To override the client controls for the LDAP handle so
that no controls are used, specify a client controls array consisting of a NULL
address. (Control values for this routine vary depending on whether you are
specifying server or client controls. See “LDAP controls” on page 15 for
details.)

timeout
Specifies the maximum time for the search request. This value is specified in
the timeval structure that is defined in the time.h file. The timeval structure
contains tv_sec and tv_usec fields for specifying the time in seconds and
microseconds. Specify NULL for this parameter if there is no time limit for the
request. Otherwise, set the tv_sec and tv_usec values in the timeout value to
the maximum time in seconds and microseconds. For the ldap_search_ext()
routine, the value of the tv_sec value in the timeout parameter is sent to the
server and overrides the value of LDAP_OPT_TIMELIMIT in the LDAP handle. For
the ldap_search_ext_s() routine, the value of the tv_sec value in the timeout
parameter is sent to the server (overriding the value of LDAP_OPT_TIMELIMIT in
the LDAP handle) and specifies how long the client waits before abandoning
the request. The tv_usec values in the timeout parameter are ignored in the
ldap_search_ext() and ldap_search_ext_s() routines. For the ldap_search_st()
routine, the value of LDAP_OPT_TIMELIMIT in the LDAP handle is sent to the
server to indicate a limit on the search time in the server while the values of
tv_sec and tv_usec in the timeout parameter specifies how long the client waits
before abandoning the request.

The LDAP server can also provide a limit on the search time. For information
about the server's search time limit and how it interacts with the client time
limit, see the documentation for your LDAP server. For the IBM Tivoli
Directory Server for z/OS, see the description of the timeLimit configuration
file option (Customizing the LDAP server configuration) in z/OS IBM Tivoli
Directory Server Administration and Use for z/OS. The default time limit for the
client, which is specified by a value of 0, indicates that there is no client time
limit and that the maximum number of seconds is limited only by the LDAP
server limit.

sizelimit
Specifies the maximum number of entries that can be returned, overriding the
value of LDAP_OPT_SIZELIMIT in the LDAP handle. A value of 0 indicates that
there is no limit.

The LDAP server can also provide a size limit on the number of entries
returned. For information about the server's size limit and how it interacts with
the client size limit, see the documentation for your LDAP server. For the IBM
Tivoli Directory Server for z/OS, see the description of the sizeLimit
configuration file option (Customizing the LDAP server configuration) in z/OS
IBM Tivoli Directory Server Administration and Use for z/OS. The default size
limit for the client, which is specified by a value of 0, indicates that the
maximum number of entries is limited only by the LDAP server limit.

Output

result
Returns the address of the result message chain. The message address is set to
NULL if there are no result messages returned by the LDAP server. Note that the
synchronous routines can return one or more result messages even when the

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

166 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

function return value is not LDAP_SUCCESS. The application should call the
ldap_msgfree() routine to release the message chain when it is no longer
needed.

msgidp
Returns the message identifier that is assigned to the search request message.
This value can be used when calling the ldap_result() routine to wait for the
search results.

Usage

The ldap_search() and ldap_search_ext() routines initiate the search and return
control to the application. The application must then call the ldap_result() routine
to obtain the search results.

The ldap_search_s(), ldap_search_st() and ldap_search_ext_s() routines initiate the
search and wait for the search results. The ldap_search_s() routine waits
indefinitely, and the ldap_search_st() and ldap_search_ext_s() routines provide a
parameter to specify a time limit. The search request is abandoned if the client is
unable to wait for the response because of an error from the ldap_result() routine.
The search request is also abandoned if the time limit specified for the
ldap_search_st() routine expires.

The ldap_search_ext() routine uses the timeout parameter to specify the maximum
time for the search request. A search issued by ldap_search_ext() is terminated by
the LDAP server with a result code of LDAP_TIMELIMIT_EXCEEDED when the time
limit is exceeded. The ldap_search_st() routine uses the timeout parameter to
specify how long the client should wait for a response. A search issued by
ldap_search_st() is abandoned by the LDAP client with a result code of
LDAP_TIMEOUT when the time limit is exceeded. The ldap_search_ext_s() routine
uses the timeout parameter to specify the maximum time for the search request
and how long the client should wait for a response. A search issued by
ldap_search_ext_s() might either be terminated by the LDAP server with a result
code of LDAP_TIMELIMIT_EXCEEDED or by the LDAP client with a result code of
LDAP_TIMEOUT when the time limit is exceeded. The result code that is returned
from the ldap_search_ext_s() routine depends on where the time limit is first
triggered. For example, a client timeout can occur if the server has sent all
requested search entries but a network delay occurs that prevents the client from
receiving all requested search entries. A server-side timeout can occur if the
timeout value that is specified is not long enough for the server to retrieve all the
requested entries on the search request. Setting the tv_sec field to 0 for
ldap_search_ext() indicates that there is no time limit for the search request, while
setting the tv_sec field to 0 for ldap_search_st() or ldap_search_ext_s() indicates
that the client should not wait for a response (which means that the search request
is abandoned if the response is not immediately available).

The LDAP server returns zero or more search entry and search continuation
reference messages, followed by the search done message. There is a search entry
message for each directory object that matched the search criteria. There are search
continuation reference messages if the LDAP server is unable to search all objects
in the scope under the base object. The search done message indicates any errors
encountered during the search.

Search continuation references are handled by the LDAP client run time if the
LDAP_OPT_REFERRALS option is set for the LDAP handle. (This is the default). In this
case, the application does not receive the search continuation reference messages,

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

Chapter 2. LDAP routines 167

because they are replaced by search entry messages obtained by following the
referral. Errors encountered while following referrals are added to the error text in
the search done message. If multiple errors are detected, the error text contains a
line for each error and the result code indicates the first error.

Use the ldap_first_entry() and ldap_next_entry() routines to process the result
message chain. If referrals are not handled by the LDAP client, use the
ldap_first_reference() and ldap_next_reference() routines to handle any search
continuation references. Call the ldap_msgfree() routine to release the result
message chain after all the messages have been processed.

Server and client controls specified by the LDAP_OPT_SERVER_CONTROLS and
LDAP_OPT_CLIENT_CONTROLS options are used by all the search routines but are
overridden by the timeout and sizelimit values for the ldap_search_ext() and
ldap_search_ext_s() routines. The search time limit specified by the
LDAP_OPT_TIMELIMIT option and the search size limit specified by the
LDAP_OPT_SIZELIMIT option are used by the ldap_search() and ldap_search_s()
routines and can be overridden for the ldap_search_ext() and ldap_search_ext_s()
routines. For the ldap_search_st() routine, the LDAP_OPT_TIMELIMIT value is sent to
the server in the search request and the timeout value can be used to determine
how long to wait for the server response.

The search results can be cached if a search result cache is specified for the LDAP
handle. These results can be used to satisfy subsequent search requests without
sending the search request to the LDAP server. You can use the
ibm-serverHandledSearchRequest client control to disable caching for a specific
search request. For more information about search caching, see “Client-side search
results caching” on page 20.

Constructing search filters

Search filters are constructed as defined in RFC 2254: String Representation of LDAP
Search Filters. The filter syntax is defined by the rules that are shown below.

Rules:
filter = "(" filtercomp ")"
filtercomp = and / or / not / item
and = "&" filterlist
or = "|" filterlist
not = "!" filter
filterlist = 1*filter
item = simple / present / substring / extensible
simple = attr filtertype value
filtertype = equal / approx / greatereq / lesseq
equal = "="
approx = "~="
greatereq = ">="
lesseq = "<="
extensible = attr [":dn"] [":" matchingrule] ":=" value

/ [":dn"] ":" matchingrule ":=" value
present = attr "=*"
substring = attr "=" [initial] any [final]
initial = value
any = "*" *(value "*")
final = value
attr = AttributeDescription as defined in RFC 2251
matchingrule = MatchingRuleId as defined in RFC 2251
value = AttributeValue as defined in RFC 2251

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

168 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc2254.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2254.txt.pdf

Values inside double quotation marks represent literal values. Items that are
enclosed in square brackets are optional. Items that are separated by / represent a
choice. The notation 1*filter indicates one or more filters. Specifying ":dn" as
part of the extensible item indicates that the components of the distinguished name
are to be included in the matching and the object attributes.

An error is returned if an extensible filter item is specified and the LDAP protocol
version is not LDAP_VERSION3.

Note: The z/OS LDAP server does not support extensible search filters.
Approximate search filters are treated as equality search filters in the z/OS LDAP
server.

Leading and trailing white space characters are ignored. Embedded white space
characters are allowed within an attribute value and are retained. Embedded white
space characters are not allowed within any of the literals in the above rules.
Quotation marks have no special meaning within a search filter and are treated as
normal characters.

Filter control characters, such as "(", ")", "*", and "\", within an attribute value
must be escaped using the format "\xx", where xx is the hexadecimal
representation of the ASCII value of the escaped character. For example, "*" would
be represented as "\2a". UTF-8 characters can be represented as a sequence of
escaped characters; for example, "(sn=Lu\c4\8di\c4\87)". The case of the
hexadecimal characters is not important.

IETF RFC 2254 replaces IETF RFC 1960. However, RFC 1960 specified that filter
control characters were escaped by preceding the escaped control character with a
reverse slash. For example, "*" would be represented as "*" within an attribute
value. To provide compatibility with applications written to RFC 1960, filter control
characters can be escaped using either format.

Earlier levels of LDAP allowed the outer parentheses to be omitted from the filter.
For compatibility, z/OS LDAP allows the outer parentheses to be omitted from the
filter. For example, "mail=*" can be specified instead of "(mail=*)".

Examples: The following are some examples of filters:
v (mail=*)

This filter matches any entry with the mail attribute and does not match entries
without the mail attribute.

v (mail=*@student.of.life.edu)

This filter matches any entry whose mail attribute value ends with the string
"@student.of.life.edu".

v (&(cn=Jane*)(sn=Doe)(!(uid=jdoe)))

This filter matches any entry whose cn attribute value starts with Jane and
whose sn attribute value is Doe and whose uid attribute value is not jdoe.

Function return value

The ldap_search() routine returns -1 if a client error is detected. Otherwise, it
returns the message identifier that is assigned to the search request. If the return
value is -1, the application should call the ldap_get_errno() routine to get the error
code. Errors reported by the LDAP server are not returned by the ldap_search()

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

Chapter 2. LDAP routines 169

http://www.rfc-editor.org/rfc/pdfrfc/rfc2254.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1960.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1960.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1960.txt.pdf

routine. Instead, the application must call the ldap_parse_result() routine to obtain
the result code from the search done message returned by the ldap_result()
routine.

The ldap_search_ext() routine returns LDAP_SUCCESS if the search request is sent to
the LDAP server. Otherwise, the return value is one of the error codes listed in the
ldap.h include file. The ldap_search_ext() routine does not return errors reported
by the LDAP server. The application must call the ldap_parse_result() routine to
obtain the result code from the search done message returned by the ldap_result()
routine.

The ldap_search_s(), ldap_search_st() and ldap_search_ext_s() routines return
LDAP_SUCCESS if the request is successful. Otherwise, the return value is one of the
error codes listed in the ldap.h include file. The return value includes errors
detected by the LDAP client and errors detected by the LDAP server. One or more
result messages can be returned by these routines even when the return value is
not LDAP_SUCCESS. If no result messages are returned, the result message address is
NULL.

The following are some common client errors:

LDAP_FILTER_ERROR
The search filter is not valid.

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to use an extensible
filter item or to specify server or client controls.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_TIMEOUT
The wait time has expired and the search request has been abandoned.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
search operation.

The following are some common search result codes:

LDAP_INSUFFICIENT_ACCESS
Not authorized to access base object.

LDAP_NO_SUCH_OBJECT
The base object is not found.

LDAP_REFERRAL
The base object is not in the current LDAP server.

LDAP_SIZELIMIT_EXCEEDED
The search size limit has been exceeded.

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

170 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_TIMELIMIT_EXCEEDED
The search time limit has been exceeded.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
search operation.

ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()

Chapter 2. LDAP routines 171

ldap_server_conf_save()
Purpose

Save the LDAP server information list

Format
#include <ldap.h>

int ldap_server_conf_save(
const char * filename,
unsigned long ttl,
LDAPServerInfo * server_info_list)

Parameters

Input

filename
Specifies the name of the server information file as a null-terminated string in
the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable. Specify NULL to use the default server information file
/etc/ldap/ldap_server_info.conf.

ttl
Specifies the time-to-live period in minutes for the information in the server
information file. Specify 0 if the server information file has no expiration time
and it remains valid until it is rewritten. After the ttl period expires, the
information in the server information file is ignored.

server_info_list
Specifies the server information list. For a description of the server information
list, see “ldap_server_locate()” on page 175. Text data is in the local EBCDIC
code page or UTF-8, as determined by the LDAP_LIBASCII compiler variable.

Usage

The ldap_server_conf_save() routine saves the LDAP server information list
returned by the ldap_server_locate() routine. The filename parameter specifies the
file in which the server information is saved. This file is rewritten each time the
ldap_server_conf_save() routine should be called. (For details, see “LDAP server
information file” on page 246.) An error is returned if the directory path does not
exist.

Access information from the server information list saved in the server information
file can be used on subsequent calls to the ldap_server_locate() routine to eliminate
the need to contact the DNS name server for the information.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INSUFFICIENT_ACCESS
Not authorized to update the server information file.

ldap_server_conf_save()

172 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_LOCAL_ERROR
An error occurred while writing the server information file.

ldap_server_conf_save()

Chapter 2. LDAP routines 173

ldap_server_free_list()
Purpose

Release a server information list

Format
#include <ldap.h>

int ldap_server_free_list(
LDAPServerInfo * server_info_list)

Parameters

Input

server_info_list
Specifies the first entry in the list.

Usage

The ldap_server_free_list() routine releases the storage allocated for a server
information list returned by the ldap_server_locate() routine. All entries are
released starting with the entry specified by the server_info_list parameter.

Function return value

The function return value is always LDAP_SUCCESS.

ldap_server_free_list()

174 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_server_locate()
Purpose

Locate the LDAP servers

Format
#include <ldap.h>

int ldap_server_locate(
LDAPServerRequest * server_request,
LDAPServerInfo ** server_info_list)

Parameters

Input

server_request
Specifies the address of an LDAPServerRequest structure. The application
should initialize the structure to 0 before setting specific fields in the structure,
to ensure that defaults are used when a field is not explicitly set. If you want
the default behavior for all fields, specify NULL for this parameter. Text data is
in the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable.

Output

server_info_list
Returns the address of the first LDAPServerInfo structure in a list of
LDAPServerInfo structures. Each LDAPServerInfo structure contains the address
of the next structure in the list. The end of the list is indicated by a NULL
address. The application should call the ldap_server_free_list() routine to
release the list when it is no longer needed. Text data is in the local EBCDIC
code page or UTF-8, as determined by the LDAP_LIBASCII compiler variable.

Usage

Use the ldap_server_locate() routine to locate one or more LDAP servers. Specify
NULL for the server_request parameter to use the default request values. (For details
about information contained in the server information file, see “LDAP server
information file” on page 246.)

The LDAPServerRequest structure is defined as follows:
typedef struct LDAP_Server_Request {

int search_source;
char * conf_filename;
int reserved;
char * service_key;
char * enetwork_domain;
char ** name_servers;
char ** dns_domains;
int connection_type;
int connection_timeout;
char * DN_filter;
char * proto_key;
unsigned char reserved2[60];

} LDAPServerRequest;

where:

ldap_server_locate()

Chapter 2. LDAP routines 175

search_source
Specifies the search order as follows:

LDAP_LSI_CONF_DNS
Causes the server information file to be searched followed by DNS if
no matching entries are found in the server information file or if the
server information file has expired. (This is the default.)

LDAP_LSI_CONF_ONLY
Causes only the server information file to be searched.

LDAP_LSI_DNS_ONLY
Causes only DNS to be searched.

conf_filename
Specifies the server information file name. Specify NULL to use the default
server information file /etc/ldap/ldap_server_info.conf. Otherwise, specify
the address of a null-terminated string. This field is ignored if
LDAP_LSI_DNS_ONLY is specified.

service_key
Specifies the service key used to form the DNS resource name. Specify NULL to
use the default service key of ldap. Otherwise, specify the address of a
null-terminated string consisting of characters that can be represented in the
ISO8859-1 code page and having a maximum length of 63 characters. If NULL is
specified for service_key and the search is unsuccessful, the ldap_server_locate()
routine retries the search using _ldap for the service key (and _tcp for the
protocol key if NULL is also specified for the proto_key field). Note _ldap is the
preferred service key as defined by the latest version of RFC 2052: A DNS RR
for specifying the location of services (DNS SRV). The application should specify a
service key of _ldap to bypass the double search if the ldap service key is not
being used.

enetwork_domain
Specifies the eNetwork domain name used to form the DNS resource name.
Specify NULL to use the default eNetwork domain name obtained from the
ldap_user_info configuration file in the home directory for the current user.
(This file is created by the ldap_enetwork_domain_set() routine.) Otherwise,
specify the address of a null-terminated string consisting of characters that can
be represented in the ISO8859-1 code page and having a maximum length of
63 characters. No eNetwork domain name can be used if NULL is specified for
the enetwork_domain field and the ldap_enetwork_domain_set() routine has not
been called to set a default eNetwork domain name for the user. The
application can override the default eNetwork domain and use no eNetwork
domain by specifying a zero-length string as the enetwork_domain value.

An eNetwork domain is a naming construct, implemented by the LDAP
administrator, to further subdivide a set of LDAP servers (as published in
DNS) into logical groupings. When you specify an eNetwork domain, only the
LDAP servers grouped within the specified eNetwork domain are returned.
This is useful when an application, or group of applications, needs access to a
particular set of LDAP servers within the enterprise. For example, the research
division within a company might use a dedicated set of LDAP servers. By
publishing this dedicated set of LDAP servers in DNS with an eNetwork
domain of research, applications that need to access information published in
the research division's LDAP servers can selectively obtain the host names and
ports of just those servers. Other LDAP servers also published in DNS are not
returned.

ldap_server_locate()

176 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf

name_servers
Specifies a list of domain name servers. Specify NULL to use the default domain
name servers. Otherwise, specify the address of an address array where each
array entry is the address of a null-terminated character string consisting of
characters that can be represented in the ISO8859-1 code page. The address
array is terminated by a NULL entry. Each character string represents the IP
address of a domain name server specified in dotted decimal (IPv4) or
colon-hexadecimal (IPv6) format. The default domain name servers are
obtained from the resolver configuration file specified by the RESOLVER_CONFIG
environment variable. The default resolver configuration file /etc/resolv.conf
can be used if the RESOLVER_CONFIG environment variable is not defined. For
information about the contents of the name resolver configuration file, see
“Name resolver configuration file” on page 244.

Each name server in the list is queried in the specified order until either a
successful answer to the query is received or an authoritative answer is
received indicating the resource name is not known.

dns_domains
Specifies a list of domain names used to form the DNS resource name. Specify
NULL to use the default domain name list. Otherwise, specify the address of an
address array where each array entry is the address of a null-terminated
character string consisting of characters that can be represented in the
ISO8859-1 code page. The address array is terminated by a NULL entry. Each
character string represents a domain name, such as endicott.ibm.com. The
default domain names are obtained from the resolver configuration file
specified by the RESOLVER_CONFIG environment variable. The default resolver
configuration file /etc/resolv.conf can be used if the RESOLVER_CONFIG
environment variable is not defined. For information about the contents of the
name resolver configuration file, see “Name resolver configuration file” on
page 244.

A search is performed for each domain name in the domain name list. The
server information list returned to the application contains the results of all the
searches. The entries are ordered as specified in the domain name list. That is,
all entries matching the first domain name are followed by all entries matching
the second domain name; all entries matching the second domain name are
followed by all entries matching the third domain name; and so on. The entries
within each domain are ordered based on priority and weight as described in
RFC 2052: A DNS RR for specifying the location of services (DNS SRV).

connection_type
Specifies the type of connection used to communicate with the domain name
server as follows:

LDAP_LSI_TCP
Causes only TCP to be used.

LDAP_LSI_UDP
Causes only UDP to be used.

LDAP_LSI_UDP_TCP
Causes UDP to be used followed by TCP if the name server answer is
truncated. (This is the default.)

connection_timeout
Specifies the amount of time in seconds to wait for a response from the name
server. Specify 0 to use the default timeout value. Otherwise, specify the
number of seconds to wait for a response. The default timeout value is
obtained from the resolver configuration file specified by the RESOLVER_CONFIG

ldap_server_locate()

Chapter 2. LDAP routines 177

http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf

environment variable. The default resolver configuration file /etc/resolv.conf
can be used if the RESOLVER_CONFIG environment variable is not defined. The
default timeout is 5 seconds if the resolver configuration file does not contain a
timeout value. For information about the contents of the name resolver
configuration file, see “Name resolver configuration file” on page 244.

DN_filter
Specifies the naming context you want. LDAP servers that do not provide a
naming context which includes the specified distinguished name are not
included in the server list. Specify NULL to include all LDAP servers. Otherwise,
specify the address of a null-terminated string consisting of characters that can
be represented in the ISO8859-1 code page. The server list is sorted so that the
best matches are listed first. For example, if the filter DN is "cn=Mary,
sn=Roberts, ou=Bose, o=Acme, c=US" and LDAP ServerA supports naming
context "o=Acme,c=US" and LDAP ServerB supports naming context
"ou=Bose,o=Acme,c=US", then ServerB is returned before ServerA.

proto_key
Specifies the protocol key used to form the DNS resource name. Specify NULL
to use the default protocol key of tcp. Otherwise, specify the address of a
null-terminated string consisting of characters that can be represented in the
ISO8859-1 code page and having a maximum length of 63 characters. If NULL is
specified for proto_key and the search is unsuccessful, the ldap_server_locate()
routine retries the search using _tcp for the protocol key (and _ldap for the
service key if NULL is also specified for the service_key field). Note _tcp is the
preferred protocol key as defined by the latest version of RFC 2052: A DNS RR
for specifying the location of services (DNS SRV). The application should specify a
protocol key of _tcp to bypass the double search if the tcp protocol key is not
being used. The protocol key is ignored when looking for an entry in the
server information file.

The LDAPServerInfo structure is defined as follows:
typedef struct LDAP_Server_Info {

char * lsi_host;
unsigned short lsi_port;
char * lsi_suffix;
char * lsi_query_key;
char * lsi_dns_domain;
int lsi_replica_type;
int lsi_sec_type;
unsigned short lsi_priority;
unsigned short lsi_weight;
char * lsi_vendor_info;
char * lsi_info;
struct LDAP_Server_Info *prev;
struct LDAP_Server_Info *next;

} LDAPServerInfo;

where:

lsi_host
Returns the fully qualified host name for the LDAP server as a null-terminated
string.

lsi_port
Returns the port number assigned to the LDAP server.

lsi_suffix
Returns the naming context for the LDAP server as a null-terminated string.
This field is NULL if there is no published naming context for the LDAP server.

ldap_server_locate()

178 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf

lsi_query_key
Returns the service name as a null-terminated string. The service name is
formed by concatenating the service key and an optional eNetwork domain
name. For example, if the service key is ldap and the eNetwork domain name
is research, the service name is ldap.research.

lsi_dns_domain
Returns the DNS domain where the LDAP server information was published.
This is a null-terminated string.

lsi_replica_type
Returns the LDAP server type and is set to one of the following values:

LDAP_LSI_MASTER
The server is a master.

LDAP_LSI_REPLICA
The server is a replica.

LDAP_LSI_NO_SERVER_TYPE
The server type is not known.

lsi_sec_type
Returns the connection security type and is set to one of the following values:

LDAP_LSI_NOSSL
The connection is non-SSL.

LDAP_LSI_SSL
The connection is SSL.

LDAP_LSI_NO_SECURITY_TYPE
The security type is not known.

lsi_priority
Returns the priority value for the LDAP server. The LDAPServerInfo list entries
are ordered based on the priority value such that entries with smaller priority
values are listed before entries with larger priority values.

lsi_weight
Returns the weight value for the LDAP server. The LDAPServerInfo list entries
are load-balanced within a priority class based on the weight value such that
entries with larger weight values are more likely to be listed before entries
with smaller weight values

lsi_vendor_info
Returns the vendor information for the LDAP server. This is a null-terminated
string. This field is NULL if there is no published vendor information for the
LDAP server.

lsi_info
Returns the general information for the LDAP server. This is a null-terminated
string. This field is NULL if there is no published general information for the
LDAP server.

prev
The address of the previous entry in the server information list. This field is
NULL if this is the first entry in the list.

next
The address of the next entry in the server information list. This field is NULL if
this is the last entry in the list.

ldap_server_locate()

Chapter 2. LDAP routines 179

In general, an application can locate a suitable LDAP server as follows:
1. Before connecting to an LDAP server in the enterprise, the application should

call the ldap_server_locate() routine to obtain a list of one or more LDAP
servers that have been published in DNS or in the server information file. (For
details about information contained in the server information file, see “LDAP
server information file” on page 246.) The application can normally use the
default request settings by specifying NULL for the server_request parameter. If
the application does not specify search_source, the ldap_server_locate() routine
looks for server information in the server information file and then uses DNS if
the server information file does not exist, if the server information file entries
have expired, or if no servers in the server information file match the search
criteria. If no server entries are found and the application does not specify the
service key (which defaults to ldap), the ldap_server_locate() routine retries the
search using _ldap for the service key.

2. Once the application has obtained the list of servers, it should walk the list,
using the first server that meets its needs. This maximizes the advantage that
can be derived from using the priority and weighting scheme implemented by
the administrator. The application might not want to use the first server in the
list for several reasons:
a. The client must specifically connect using SSL or non-SSL. The lsi_sec_type

field in the LDAPServerInfo entry is set to LDAP_LSI_SSL if the server is
listening for an SSL connection and to LDAP_LSI_NOSSL if the server is
listening for a non-SSL connection. This field is set based on the service
entry supplied by the administrator in the DNS TXT record for the LDAP
server. If an LDAP server accepts both SSL and non-SSL connections, the
administrator should define two TXT records for the server, one specifying
"service:ldap://host:port/" and the other specifying
"service:ldaps://host:port/". This results in two LDAPServerInfo entries
for the LDAP server, one specifying LDAP_LSI_NOSSL and the other
specifying LDAP_LSI_SSL.
The lsi_sec_type field is set to LDAP_LSI_NO_SECURITY_TYPE if the
administrator did not specify a service TXT record for the LDAP server. In
this case, the application can query the root DSE to determine if the server
supports a secure SSL port. This assumes that the LDAP server is listening
on a port that is known to the application (for example, the default port of
389).

b. The client must connect to a master or replica. The lsi_replica_type field in
the LDAPServerInfo entry is set to LDAP_LSI_MASTER if the LDAP server is a
master and to LDAP_LSI_REPLICA if the server is a replica. This field is set
based on the ldaptype entry supplied by the administrator in the DNS TXT
record for the LDAP server. The lsi_replica_type field is set to
LDAP_LSI_NO_SERVER_TYPE if the administrator did not specify an ldaptype
TXT record.

c. The client must connect to a server that supports a particular naming
context. Note the list of servers returned in the list can be filtered by
specifying a value for the DN_filter field in the LDAPServerRequest, which
filters out servers that do not have a naming context under which the DN
resides. The naming contexts supported by the LDAP server are obtained
from the service TXT records for the LDAP server. The application can
query the root DSE to determine the supported naming contexts if the
administrator did not provide service TXT records containing the naming
contexts.

3. Once the client has selected a server, it calls the ldap_init() or ldap_ssl_init()
routine. If the selected server is unavailable, the application should continue

ldap_server_locate()

180 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

processing the server list returned by the ldap_server_locate() routine until an
available server is found or the list is exhausted.

The resource name for LDAP servers published in DNS is formed by combining
the service key, eNetwork domain name, protocol key, and domain name as
follows:

service-key.eNetwork-domain.protocol-key.domain-name

Example: If the service key is _ldap, the eNetwork domain is marketing, the
protocol key is _tcp, and the domain name is mycorp.com, the resource name for
the DNS SRV record would be:

_ldap.marketing._tcp.mycorp.com

If no eNetwork domain is specified, the resource name would be:
_ldap._tcp.mycorp.com

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_DNS_CONF_FILE_ERROR
Server information file error.

LDAP_DNS_CONF_FILE_EXPIRED
Server information file is expired and LDAP_LSI_CONF_ONLY is specified for
the search source.

LDAP_DNS_INVALID_DATA
Name server response is not valid.

LDAP_DNS_NO_SERVERS
No LDAP servers are available.

LDAP_DNS_TRUNCATED
Name server response is truncated and TCP connections are not available.

LDAP_LOCAL_ERROR
A system routine detected an error.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
An incorrect request parameter is specified. This error can occur if the
generated DNS resource name is longer than 255 characters.

ldap_server_locate()

Chapter 2. LDAP routines 181

ldap_set_option(), ldap_set_option_np()
Purpose

Set the value for an LDAP option

Format
#include <ldap.h>

int ldap_set_option(
LDAP * ld,
int option,
void * value)

int ldap_set_option_np(
LDAP * ld,
int option,
...)

Parameters

Input

ld Specifies the LDAP handle.

option
Specifies the option identifier.

value
Specifies the option value.

Usage

The ldap_set_option() and ldap_set_option_np() routines set the value for an
LDAP option in the supplied LDAP handle. The routines differ only in the way the
third parameter is specified.

The manner in which the LDAP option value is specified for the ldap_set_option()
routine depends upon the LDAP protocol version option for the LDAP handle. The
manner in which the LDAP option value is specified for the ldap_set_option_np()
routine is not dependent upon the LDAP protocol version option for the LDAP
handle. Note the default LDAP protocol version is 2 for LDAP handles created by
the ldap_open() routine and 3 for LDAP handles created by the ldap_init() and
ldap_ssl_init() routines. Table 4 summarizes how to specify the options.

Table 4. How to specify options for the ldap_set_option and ldap_set_option_np routines

Option
ldap_set_option
Version 2

ldap_set_option
Version 3 ldap_set_option_np

LDAP_OPT_CLIENT_CONTROLS LDAPControl ** LDAPControl **

LDAP_OPT_DEBUG int int * int

LDAP_OPT_DEBUG_FILENAME char * char * char *

LDAP_OPT_DEBUG_STRING char * char * char *

LDAP_OPT_DELEGATION int int

LDAP_OPT_DEREF int int * int

LDAP_OPT_EXT_REBIND_FN LDAPExtRebindProc LDAPExtRebindProc LDAPExtRebindProc

LDAP_OPT_IO_CALLBACK LDAPIOCallback * LDAPIOCallback * LDAPIOCallback *

LDAP_OPT_MAX_SASL_LEVEL int * int

ldap_set_option(),ldap_set_option_np()

182 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 4. How to specify options for the ldap_set_option and ldap_set_option_np
routines (continued)

Option
ldap_set_option
Version 2

ldap_set_option
Version 3 ldap_set_option_np

LDAP_OPT_MIN_SASL_LEVEL int * int

LDAP_OPT_PROTOCOL_VERSION int * int * int

LDAP_OPT_REBIND_FN LDAPRebindProc LDAPRebindProc LDAPRebindProc

LDAP_OPT_REFERRALS int int int

LDAP_OPT_REFHOPLIMIT int int * int

LDAP_OPT_RESTART int int int

LDAP_OPT_SERVER_CONTROLS LDAPControl ** LDAPControl **

LDAP_OPT_SIZELIMIT int int * int

LDAP_OPT_SOCKS_CONF char * char * char *

LDAP_OPT_SOCKS_PASSWORD char * char * char *

LDAP_OPT_SOCKS_SERVER char * char * char *

LDAP_OPT_SOCKS_USERNAME char * char * char *

LDAP_OPT_SOCKS_VERSION int int * int

LDAP_OPT_SSL_CIPHER char * char * char *

LDAP_OPT_SSL_CIPHER_EXPANDED char * char * char *

LDAP_OPT_SSL_CIPHER_FORMAT int int int

LDAP_OPT_SSL_TIMEOUT int int * int

LDAP_OPT_TIMELIMIT int int * int

LDAP_OPT_UTF8_IO int int int

LDAP_OPT_V2_WIRE_FORMAT int int int

Example: The LDAP_OPT_SIZELIMIT option is specified as follows:
int sizeLimit = 50;

/* Version 2 */
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void *)sizeLimit);

/* Version 3 */
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizeLimit);

/* Version 2 or Version 3 */
ldap_set_option_np(ld, LDAP_OPT_SIZELIMIT, sizeLimit);

The following LDAP options can be set:

LDAP_OPT_CLIENT_CONTROLS
The LDAP_OPT_CLIENT_CONTROLS option specifies a default list of client
controls to be processed with each request. The end of the list is indicated
by a NULL control address. Specify NULL for the list address to clear the
current client controls list for the LDAP handle. The entire list is rejected if
the list includes a critical client control that is not recognized by the LDAP
client run time. A parameter error is returned if the LDAP protocol version
is not set to LDAP_VERSION3. The default list can be overridden by
specifying a client control, or a list of client controls, on specific API
routines. There are no default client controls if the
LDAP_OPT_CLIENT_CONTROLS option is not set.

The OID string in the client control is a null-terminated character string in
UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option of the LDAP handle. In addition, a client control
value that is a character string is in UTF-8 or the local EBCDIC code page,
as determined by the LDAP_OPT_UTF8_IO option of the LDAP handle.

ldap_set_option(),ldap_set_option_np()

Chapter 2. LDAP routines 183

The following client controls are supported:

ibm-saslBindCramRealmName 1.3.18.0.2.10.12
ibm-saslBindCramUserName 1.3.18.0.2.10.13
ibm-saslBindDigestRealmName 1.3.18.0.2.10.12
ibm-saslBindDigestUserName 1.3.18.0.2.10.13
ibm-serverHandledSearchRequest 1.3.18.0.2.10.7

For more information about client controls, see “Supported client controls”
on page 16.

LDAP_OPT_DEBUG
The LDAP_OPT_DEBUG option specifies a bitmap that indicates the level of
debug trace you want for the LDAP client run time and overrides the
debug trace level that is set by the LDAP_DEBUG environment variable. The
debug trace level applies to the entire process and not just the LDAP
handle. For this reason, the LDAP handle can be specified as NULL, in
which case the ldap_set_option() routine expects the debug trace level to
be specified as the address of an integer and the ldap_set_option_np()
routine expects the debug trace level to be specified as an integer. If
specified, the LDAP handle must be a valid handle.

The option value is formed by ORing together one or more of the following
debug options:

LDAP_DEBUG_ACL
Trace ACL processing

LDAP_DEBUG_ALL
Enable all debug traces (same as LDAP_DEBUG_ANY)

LDAP_DEBUG_ANY
Enable all debug traces (same as LDAP_DEBUG_ALL)

LDAP_DEBUG_ARGS
Trace request arguments

LDAP_DEBUG_BE_CAPABILITIES
Trace backend capabilities

LDAP_DEBUG_BER
Trace ASN.1 encode and decode processing

LDAP_DEBUG_CACHE
Trace cache activity

LDAP_DEBUG_CONNS
Trace connection activity

LDAP_DEBUG_ERROR
Trace errors

LDAP_DEBUG_FILTER
Trace filter processing

LDAP_DEBUG_INFO
Trace informational messages

LDAP_DEBUG_LDAPBE
Trace server backend activity

LDAP_DEBUG_LDBM
Trace file backend activity

ldap_set_option(),ldap_set_option_np()

184 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_DEBUG_MESSAGE
Trace message processing

LDAP_DEBUG_MULTISERVER
Trace multiple server activity

LDAP_DEBUG_OFF
Disable all debug traces

LDAP_DEBUG_PACKETS
Trace packet activity

LDAP_DEBUG_PARSE
Trace parsing activity

LDAP_DEBUG_PERFORMANCE
Trace performance statistics

LDAP_DEBUG_PLUGIN
Trace plug-in extension activity

LDAP_DEBUG_REFERRAL
Trace referral activity

LDAP_DEBUG_REPLICATION
Trace replication activity

LDAP_DEBUG_SCHEMA
Trace schema processing

LDAP_DEBUG_SDBM
Trace RACF backend activity

LDAP_DEBUG_STATS
Trace operational statistics

LDAP_DEBUG_STRBUF
Trace and UTF-8 activity

LDAP_DEBUG_SYSPLEX
Trace sysplex activity

LDAP_DEBUG_TDBM
Trace TDBM database processing

LDAP_DEBUG_THREAD
Trace thread activity

LDAP_DEBUG_TRACE
Trace API routine entry and exit

Note some of these trace points are applicable only for the LDAP server
and do not generate any trace output for the LDAP client. For more
information about the LDAP trace options, see “Enabling tracing” on page
242.

LDAP_OPT_DEBUG_FILENAME
The LDAP_OPT_DEBUG_FILENAME option specifies the name of the LDAP trace
output file and overrides the name that is set by the LDAP_DEBUG_FILENAME
environment variable. The debug file name applies to the entire process
and not just the LDAP handle. For this reason, the LDAP handle can be
specified as NULL. If specified, the LDAP handle must be a valid handle.
The file name is in the local EBCDIC code page or UTF-8, as determined
by the LDAP_LIBASCII compiler variable.

ldap_set_option(),ldap_set_option_np()

Chapter 2. LDAP routines 185

The trace output is written to stdout if the LDAP_OPT_DEBUG_FILENAME
option is not set and the LDAP_DEBUG_FILENAME environment variable is not
defined. Therefore, the LDAP_OPT_DEBUG_FILENAME option should be set
before either the LDAP_OPT_DEBUG or LDAP_OPT_DEBUG_STRING option is set if
the trace output is not to be written to the default trace file as specified by
the LDAP_DEBUG_FILENAME environment variable.

The current process identifier is included as part of the trace file name
when the name contains a percent sign (%). For example, if
LDAP_OPT_DEBUG_FILENAME is set to /tmp/ldap.%.trc and the current process
identifier is 247, then the trace file name is /tmp/ldap.247.trc. The trace
file name should be unique for each process with LDAP trace enabled
because the trace output can be corrupted if multiple processes use the
same trace file.

LDAP_LOCAL_ERROR is returned if the specified trace file cannot be opened.
In this case, the trace output is written to stdout until a subsequent call is
successful in setting the LDAP_OPT_DEBUG_FILENAME option.

LDAP_OPT_DEBUG_STRING
The LDAP_OPT_DEBUG_STRING option specifies LDAP trace options as a
null-terminated character string and either completely replaces or
incrementally modifies the trace options that are set by the LDAP_DEBUG
environment variable. The debug trace level applies to the entire process
and not just the LDAP handle. For this reason, the LDAP handle can be
specified as NULL. If specified, the LDAP handle must be a valid handle.
The debug string is in the local EBCDIC code page or UTF-8, as
determined by the LDAP_LIBASCII compiler variable.

The value for LDAP_OPT_DEBUG_STRING is a character string that can be
specified as follows:
v A decimal value (for example, 32)
v A hexadecimal value (for example, x20 or X20)
v A keyword (for example, FILTER)
v A construct of these values using plus and minus signs to indicate

inclusion or exclusion of a value.

The trace options that are specified by the LDAP_DEBUG environment
variable are modified if the LDAP_OPT_DEBUG_STRING starts with a plus or
minus sign. Otherwise, the trace options that are specified by the
LDAP_DEBUG environment variable are replaced with the options specified by
the LDAP_OPT_DEBUG_STRING option. For more information about the LDAP
trace options, see “Enabling tracing” on page 242.

LDAP_OPT_DELEGATION
The LDAP_OPT_DELEGATION option specifies whether the LDAP client passes
Kerberos delegated credentials to the LDAP server. It must be set to either
LDAP_OPT_ON or LDAP_OPT_OFF. The default is LDAP_OPT_OFF. A parameter
error is returned if the LDAP protocol version is not set to LDAP_VERSION3.
Use this option if you want to allow the LDAP server to use the client's
credentials for requests. Note the server might or might not support this
capability.

LDAP_OPT_DEREF
The LDAP_OPT_DEREF option specifies how the LDAP server handles aliases
during search request. It must have one of the following values:

ldap_set_option(),ldap_set_option_np()

186 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_DEREF_ALWAYS
Dereference aliases both in searching and in locating the base
object of the search.

LDAP_DEREF_FINDING
Dereference aliases in locating the base object of the search but not
when searching subordinates of the base object.

LDAP_DEREF_NEVER
Do not dereference aliases. (This is the default.)

LDAP_DEREF_SEARCHING
Dereference aliases in subordinates of the base object in searching
but not in locating the base object of the search.

LDAP_OPT_EXT_REBIND_FN
The LDAP_OPT_EXT_REBIND_FN option specifies the routine to be called by
the LDAP client run time when it must authenticate a connection with
another LDAP server. This can occur when the LDAP client is following a
referral returned by the initial LDAP server. If a rebind routine is not
defined, referrals are followed using an anonymous bind. For more
information about the rebind routine, see “Rebinding while following
referrals” on page 12. Specify NULL for the rebind function to stop using a
rebind routine.

The rebind routine set by the LDAP_OPT_EXT_REBIND_FN option can be used
if both LDAP_OPT_EXT_REBIND_FN and LDAP_OPT_REBIND_FN are set for the
LDAP handle.

LDAP_OPT_IO_CALLBACK
The LDAP_OPT_IO_CALLBACK option specifies routines to be called by the
LDAP client run time when it must communicate with the LDAP server.
The C/C++ runtime (LE) socket routines, such as socket(), bind(),
connect(), getpeername(), send(), select(), recv(), and close(), are used if
the application does not provide its own routines.

The LDAP_OPT_IO_CALLBACK option cannot be changed after a connection is
established with the LDAP server. Specify NULL for the address of the
LDAPIOCallback structure to revert to the normal socket routines. The
callback routines are used when following referrals returned by the local
LDAP server. The LDAPIOCallback structure is defined as follows:
typedef struct _LDAPIOCallback {

void * userData;
int (*connect)(const char * host, int port,

int * desc, void * userData);
int (*getpeer)(int desc, struct sockaddr * addr,

size_t size, size_t * length,
void * userData);

int (*send)(int desc, const void * buffer, size_t length,
void * userData);

int (*select)(int desc[], struct timeval * timeout,
int * rtndesc, void * userData);

int (*recv)(int desc, void * buffer, size_t size,
size_t * length, void * userData);

void (*close)(int desc, void * userData);
} LDAPIOCallback;

The fields in the LDAPIOCallback structure are used as follows:

userData
The userData value is passed to each of the callback routines.
Specify NULL for this field if you do not need to pass anything to
the callback routines.

ldap_set_option(),ldap_set_option_np()

Chapter 2. LDAP routines 187

connect
The connect routine should be called when the LDAP client run
time must establish a connection with the LDAP server. The host
and port values are obtained from the ldap_init(), ldap_ssl_init() or
ldap_open() routine. If an LDAP URL was specified, the host
parameter contains the host name that is obtained from the URL.
The callback routine can use these values to establish the
connection, or can ignore them and use a different algorithm to
determine the target for the connection. The return value must be 0
if the connection is successful, or a value that is defined in errno.h
if the connection is unsuccessful. The desc parameter should be set
to a descriptor for the connection if the request is successful. The
descriptor can be anything that is meaningful to the application if
it is not -1. The descriptor is passed to the other callback routines.

getpeer The getpeer routine should be called to obtain the connection name
for the LDAP server. For a TCP/IP-based connection, this should
be a struct sockaddr for the AF_INET or AF_INET6 family. The
addr and size parameters identify the address and size of the return
buffer. The callback routine should set the length parameter to the
actual size of the returned identification. The return value should
be 0 for a normal return, or a value that is defined in errno.h for a
failure return.

send The send routine should be called to send data to the LDAP server.
The callback routine is responsible for ensuring that all the data is
sent to the LDAP server (that is, this is a blocking send). The buffer
and length parameters identify the data to be sent. The return value
should be 0 if the data is sent, or a value that is defined in errno.h
if the data cannot be sent.

select The select routine should be called to wait for data on one or more
LDAP server connections. The desc parameter is an array of
descriptors with the last entry in the array set to -1. The timeout
parameter specifies how long to wait for data to become available.
NULL is passed for the timeout parameter if the select routine is to
wait indefinitely. The return value should be EAGAIN if the time
limit is reached, EINTR if the wait is interrupted by a signal, or 0 if
there is data or status available for a connection. The rtndesc
parameter should be set to the descriptor with pending data or
status.

recv The recv routine should be called to receive data or connection
status from the LDAP server. The callback routine should not
return until it has either data or an error (that is, this is a blocking
receive). The buffer and size parameters identify the receive buffer
address and size. The callback routine should set the length
parameter to the actual data length. The return value should be 0 if
data is received, ECONNRESET if the connection is closed, or a value
that is defined in errno.h if an error is detected.

close The close routine should be called to close the connection to the
LDAP server.

LDAP_OPT_MAX_SASL_LEVEL
The LDAP_OPT_MAX_SASL_LEVEL option specifies the maximum SASL
protection level for the LDAP handle. This is the highest SASL protection
level that can be negotiated during a bind using a SASL mechanism. The
negotiated protection level cannot be greater than this level even if the

ldap_set_option(),ldap_set_option_np()

188 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

server offers a higher protection level. LDAP_PARAM_ERROR is returned if the
LDAP protocol version is not set to LDAP_VERSION3.

The SASL protection levels, in increasing level of protection, are:

LDAP_SASL_LEVEL_NONE
No integrity or confidentiality protection.

LDAP_SASL_LEVEL_INTEG
Integrity protection.

LDAP_SASL_LEVEL_CONF
Integrity and confidentiality protection. (This is the default.)

LDAP_OPT_MIN_SASL_LEVEL
The LDAP_OPT_MIN_SASL_LEVEL option specifies the minimum SASL
protection level for the LDAP handle. This is the lowest SASL protection
level that can be negotiated during a bind using a SASL mechanism. The
bind fails if the server does not offer at least this protection level.
LDAP_PARAM_ERROR is returned if the LDAP protocol version is not set to
LDAP_VERSION3.

The SASL protection levels, in increasing level of protection, are:

LDAP_SASL_LEVEL_NONE
No integrity or confidentiality protection. (This is the default.)

LDAP_SASL_LEVEL_INTEG
Integrity protection.

LDAP_SASL_LEVEL_CONF
Integrity and confidentiality protection.

LDAP_OPT_PROTOCOL_VERSION
The LDAP_OPT_PROTOCOL_VERSION option specifies the LDAP protocol
version that is used by the LDAP client when connecting to an LDAP
server. It must be set to either LDAP_VERSION2 or LDAP_VERSION3. The default
is LDAP_VERSION3 if ldap_init() or ldap_ssl_init() can be used to create the
LDAP handle, and LDAP_VERSION2 if ldap_open() can be used to create the
LDAP handle. In either case, the LDAP_OPT_PROTOCOL_VERSION option can be
used to change the default protocol version. The protocol version must be
set before the client binds to an LDAP server as a result of calling
ldap_bind(), ldap_bind_s(), ldap_sasl_bind(), ldap_sasl_bind_s(),
ldap_simple_bind(), ldap_simple_bind_s(), or any routine that causes an
implicit bind. An error is returned if the LDAP_OPT_PROTOCOL_VERSION option
is specified after a connection is established with the LDAP server.

Note: The LDAP protocol version affects the way parameters are specified
for the ldap_set_option() routine. Therefore, the
LDAP_OPT_PROTOCOL_VERSION option should be set before any other LDAP
options are set.

LDAP_OPT_REBIND_FN
The LDAP_OPT_REBIND_FN option specifies the routine to be called by the
LDAP client run time when it must authenticate a connection with another
LDAP server. This can occur when the LDAP client is following a referral
that is returned by the initial LDAP server. If a rebind routine is not
defined, referrals are followed using an anonymous bind. For more
information about the rebind routine, see “Rebinding while following
referrals” on page 12. Specify NULL for the rebind function to stop using a
rebind routine.

ldap_set_option(),ldap_set_option_np()

Chapter 2. LDAP routines 189

The rebind routine set by the LDAP_OPT_EXT_REBIND_FN option can be used
if both LDAP_OPT_EXT_REBIND_FN and LDAP_OPT_REBIND_FN are set for the
LDAP handle.

LDAP_OPT_REFERRALS
The LDAP_OPT_REFERRALS option specifies whether the LDAP client follows
referrals that are returned by the LDAP server. It must be set to either
LDAP_OPT_ON or LDAP_OPT_OFF. The default is LDAP_OPT_ON.

LDAP_OPT_REFHOPLIMIT
The LDAP_OPT_REFHOPLIMIT option specifies the maximum number of LDAP
servers to contact when following a referral. For subtree searches, this is
the limit on the depth of nested search references, so the number of servers
that are contacted might actually exceed this value. The default is 10.

LDAP_OPT_RESTART
The LDAP_OPT_RESTART option specifies whether the select() system call
should be restarted when it is interrupted by the system. It must be set to
either LDAP_OPT_ON or LDAP_OPT_OFF. The default is LDAP_OPT_OFF.

LDAP_OPT_SERVER_CONTROLS
The LDAP_OPT_SERVER_CONTROLS option specifies a default list of server
controls to be sent with each request. The end of the list is indicated by a
NULL control address. Specify NULL for the list address to clear the current
server controls list for the LDAP handle. A parameter error is returned if
the LDAP protocol version is not set to LDAP_VERSION3. The default list can
be overridden by specifying a server control, or a list of server controls, on
specific API routines. There are no default server controls if the
LDAP_OPT_SERVER_CONTROLS option is not set.

The OID string in the server control is a null-terminated character string in
UTF-8 or the local EBCDIC code page, as determined by the LDAP handle.
The OID value is assumed to already be in the correct format for
transmission to the server and the LDAP client does not modify it.

LDAP_OPT_SIZELIMIT
The LDAP_OPT_SIZELIMIT option specifies the maximum number of entries
that can be returned for a search request. The LDAP server can also
provide a size limit on the number of entries returned. For information
about the server's size limit and how it interacts with the client size limit,
see the documentation for your LDAP server. For the IBM Tivoli Directory
Server for z/OS, see the description of the sizeLimit configuration file
option (Customizing the LDAP server configuration) in z/OS IBM Tivoli
Directory Server Administration and Use for z/OS. The default size limit for
the client, which is specified by a value of 0, indicates that the maximum
number of entries is limited only by the LDAP server limit.

LDAP_OPT_SOCKS_CONF
The LDAP_OPT_SOCKS_CONF option specifies the name of the SOCKS
configuration file to be used when connecting to the LDAP server, and
overrides the SOCKS_CONF and SOCKS_SERVER environment variables and also
the LDAP_OPT_SOCKS_SERVER option. The option value is a null-terminated
character string in the local EBCDIC code page or UTF-8, as determined by
the LDAP_LIBASCII compiler variable. Specify NULL for the option value to
cancel the SOCKS configuration that is specified by the SOCKS_CONF or
SOCKS_SERVER environment variable and use a direct connection to the
LDAP server.

LDAP_OPT_SOCKS_PASSWORD
The LDAP_OPT_SOCKS_PASSWORD option specifies the SOCKS password to be

ldap_set_option(),ldap_set_option_np()

190 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

used when connecting to the LDAP server through a SOCKS server, and
overrides the SOCKS_PASSWORD environment variable. The option value is a
null-terminated character string in the local EBCDIC code page or UTF-8,
as determined by the LDAP_LIBASCII compiler variable. Specify NULL for the
option value to indicate that no password is to be used.

A SOCKS user name and password are required when using the SOCKS
version 5 protocol and the SOCKS server is configured to require user
authentication. An unauthenticated SOCKS connection can be used if the
SOCKS user name and password are not set. Note authentication for the
SOCKS connection is separate from the bind authentication for the LDAP
server. The SOCKS user name and password are not used for the SOCKS
version 4 protocol.

LDAP_OPT_SOCKS_SERVER
The LDAP_OPT_SOCKS_SERVER option specifies the SOCKS servers to be used
when connecting to the LDAP server, and overrides the SOCKS_CONF and
SOCKS_SERVER environment variables and also the LDAP_OPT_SOCKS_CONF
option. The option value is a null-terminated character string in the local
EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable, and consists of a comma-separated list of SOCKS
servers. Each SOCKS server is specified as host:port. The host is a DNS
name, an IPv4 address in dotted decimal format, or an IPv6 address in
colon-separated format that is enclosed in square brackets. The port
defaults to 1080, if it is not specified. Specify NULL for the option value to
cancel the SOCKS configuration that is specified by the SOCKS_CONF or
SOCKS_SERVER environment variable and use a direct connection to the
LDAP server.

LDAP_OPT_SOCKS_USERNAME
The LDAP_OPT_SOCKS_USERNAME option specifies the SOCKS user name to be
used when connecting to the LDAP server through a SOCKS server. It
overrides the SOCKS_USERNAME environment variable. The option value is a
null-terminated character string in the local EBCDIC code page or UTF-8,
as determined by the LDAP_LIBASCII compiler variable. Specify NULL for the
option value to indicate that no user name is to be used.

A SOCKS user name and password are required when using the SOCKS
version 5 protocol and the SOCKS server is configured to require user
authentication. An unauthenticated SOCKS connection can be used if the
SOCKS user name and password are not set. Note authentication for the
SOCKS connection is separate from the bind authentication for the LDAP
server. The SOCKS user name and password are not used for the SOCKS
version 4 protocol.

LDAP_OPT_SOCKS_VERSION
The LDAP_OPT_SOCKS_VERSION option specifies the SOCKS protocol version,
and overrides the SOCKS_VERSION environment variable. The valid values
are 4 and 5. The default is 4. However, the SOCKS version 5 protocol is
always used when the LDAP server address is an IPv6 address because the
SOCKS version 4 protocol does not support IPv6 addresses. You can set the
LDAP_OPT_SOCKS_VERSION option to 5 to cause the LDAP client run time to
always use the SOCKS version 5 protocol.

LDAP_OPT_SSL_CIPHER

This option is pertinent if 2-byte SSL ciphers are currently in effect, which
is based on the setting of LDAP_OPT_SSL_CIPHER_FORMAT or the

ldap_set_option(),ldap_set_option_np()

Chapter 2. LDAP routines 191

LDAP_OPT_SSL_CIPHER_FORMAT option. Also see the description of the option
LDAP_OPT_SSL_CIPHER_EXPANDED below. Only one of these settings are
pertinent at one time.

The LDAP_OPT_SSL_CIPHER option specifies one or more cipher suites to be
used when negotiating an SSL connection with the LDAP server. The
default SSL cipher suites are used if the LDAP_OPT_SSL_CIPHER option is not
set. The GSK_V3_CIPHER_SPECS environment variable can be used to change
the default cipher suites. The option value is a null-terminated character
string in the local EBCDIC code page or UTF-8, as determined by the
LDAP_LIBASCII compiler variable. The string consists of the cipher suites
you want as two hexadecimal digits per cipher suite. For example, to
choose from RC4-MD5-US, RC4-SHA-1, and AES-128-SHA-1, specify
04052F.

For compatibility with prior releases, the ldap.h include file provides
definitions for 2-byte cipher suites that are supported in SSL V3 and TLS
V1.0 as a coding convenience. The definitions are summarized in Table 3.
The mnemonics ending in _EX are always available. The other mnemonics
are available only when the SSL Security Level 3 FMID is installed. For
newer cipher suites supported in later TLS protocols, use the two
hexadecimal digit forms for each cipher suite you want. For more
information about the GSK V3_CIPHER_SPECS environment variable and SSL
cipher suites, see and in z/OS Cryptographic Services System SSL
Programming. The SSL cipher list must be set before an SSL connection is
established to the LDAP server.

LDAP_OPT_SSL_CIPHER_EXPANDED
This option is pertinent provided 4-byte SSL ciphers are currently in effect,
which is based on the setting of the environment variable
LDAP_SSL_CIPHER_FORMAT or the LDAP_OPT_SSL_CIPHER_FORMAT option. Also,
see the description of the option LDAP_OPT_SSL_CIPHER above. Only one of
these two settings are pertinent at one time.

The LDAP_OPT_SSL_CIPHER option specifies one or more cipher suites to be
used when negotiating an SSL connection with the LDAP server. The
default SSL cipher suites are used if the LDAP_OPT_SSL_CIPHER_EXPANDED
option is not set. The GSK_V3_CIPHER_SPECS_EXPANDED environment variable
can be used to change the default cipher suites. The option value is a
null-terminated character string in the local EBCDIC code page or UTF-8,
as determined by the LDAP_LIBASCII compiler variable. The string consists
of the cipher suites you want as four hexadecimal digits per cipher suite.
For example, to choose from RC4-MD5-US, RC4-SHA-1, and
AES-128-SHA-1, specify 00040005002F.

For more information about the GSK_V3_CIPHER_SPECS_EXPANDED
environment variable and SSL cipher suites, see and in z/OS Cryptographic
Services System SSL Programming. The SSL cipher list must be set before an
SSL connection is established to the LDAP server.

LDAP_OPT_SSL_CIPHER_FORMAT
This option indicates the length of SSL cipher specifications to be used.
Valid values are LDAP_SSL_CIPHER_FORMAT_CHAR2 and
LDAP_SSL_CIPHER_FORMAT_CHAR4, where LDAP_SSL_CIPHER_FORMAT_CHAR2 is
the default setting.

A value of LDAP_SSL_CIPHER_FORMAT_CHAR2 indicates the cipher suites in use
come from either SSL defaults, as determined from the

ldap_set_option(),ldap_set_option_np()

192 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

GSK_V3_CIPHER_SPECS environment variable, or from a setting of
LDAP_OPT_SSL_CIPHER, by way of the ldap_set_option() routine.

A value of LDAP_SSL_CIPHER_FORMAT_CHAR4 indicates the cipher suites in use
come from either SSL defaults, as determined from the
GSK_V3_CIPHER_SPECS_EXPANDED environment variable, or from a setting of
LDAP_OPT_SSL_CIPHER_EXPANDED, by way of the ldap_set_option() routine.

The SSL cipher list must be set before an SSL connection is established to
the LDAP server.

LDAP_OPT_SSL_TIMEOUT
The LDAP_OPT_SSL_TIMEOUT option specifies the SSL session timeout value
in seconds. Cached SSL sessions are discarded after the specified number
of seconds. Cached SSL sessions can be reused and improve performance
by eliminating the need for a full SSL handshake when reconnecting to an
LDAP server. SSL sessions are not cached if the timeout value is zero. If
the LDAP_OPT_SSL_TIMEOUT option is not set, the default SSL session timeout
of 86400 seconds can be used. The GSK_V3_SESSION_TIMEOUT environment
variable can be used to change the default SSL session timeout value. The
SSL timeout value must be set before an SSL connection is established to
the LDAP server. The LDAP_OPT_SSL_TIMEOUT option is ignored if the
ldap_ssl_client_init() routine should be called to initialize the SSL
environment.

LDAP_OPT_TIMELIMIT
The LDAP_OPT_TIMELIMIT option specifies the number of seconds to wait for
search results. The LDAP server can also provide a limit on the search
time. For information about the server's search time limit and how it
interacts with the client time limit, see the documentation for your LDAP
server. For the IBM Tivoli Directory Server for z/OS, see the description of
the timeLimit configuration file option (Customizing the LDAP server
configuration) in z/OS IBM Tivoli Directory Server Administration and Use for
z/OS. The default time limit for the client, which is specified by a value of
0, indicates that there is no client time limit and that the maximum number
of seconds is limited only by the LDAP server limit.

LDAP_OPT_UTF8_IO
The LDAP_OPT_UTF8_IO option specifies the format of text data that is
provided as input to an LDAP API routine or returned as output by an
LDAP API routine. LDAP_OPT_ON indicates text data is in the UTF-8 code
set. LDAP_OPT_OFF indicates text data is in the code set of the current locale.
The default is LDAP_OPT_ON if the LDAP_LIBASCII compiler variable is
defined and LDAP_OPT_OFF otherwise.

The LDAP_OPT_UTF8_IO option applies to all LDAP API routines that accept
an LDAP handle as an input parameter, unless noted otherwise in the
description of the API routine. Text data for LDAP API routines that do not
accept an LDAP handle as an input parameter is in the local EBCDIC code
page or UTF-8, as determined by the LDAP_LIBASCII compiler variable.

LDAP_OPT_V2_WIRE_FORMAT
The LDAP_OPT_V2_WIRE_FORMAT option specifies the format of attribute
values that are exchanged between the LDAP client and the LDAP server
using the LDAP version 2 protocol. (Attribute values that are exchanged by
using the LDAP version 3 protocol are always in UTF-8.)

ldap_set_option(),ldap_set_option_np()

Chapter 2. LDAP routines 193

LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1 indicates attribute values are
exchanged using the ISO8859-1 code page. LDAP_OPT_V2_WIRE_FORMAT_UTF8
indicates attribute values are exchanged using UTF-8. The default is
LDAP_OPT_V2_WIRE_FORMAT_UTF8.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes that are listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INVALID_STATE
The LDAP handle is not in the correct state for the requested operation.

LDAP_LOCAL_ERROR
A system routine returned an error.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid or the LDAP protocol version is not correct for
the requested option.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is not recognized.

ldap_set_option(),ldap_set_option_np()

194 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_set_rebind_proc()
Purpose

Specify the routine to be called when binding to another LDAP server

Format
#include <ldap.h>

int ldap_set_rebind_proc(
LDAP * ld,
LDAPRebindProc proc)

Parameters

Input

ld Specifies the LDAP handle.

proc
Specifies the routine to be called.

Usage

The ldap_set_rebind_proc() routine specifies the routine to be called by the LDAP
client run time when it must authenticate a connection with another LDAP server.
This occurs when the LDAP client is following a referral returned by an LDAP
server. If a rebind routine is not defined, referrals are followed using an
anonymous bind.

For more information about the rebind routine, see “Rebinding while following
referrals” on page 12. You can set the rebind routine either by calling
ldap_set_rebind_proc() or by calling ldap_set_option() to set the
LDAP_OPT_REBIND_FN option. The rebind routine that can be used is the last one set
by either method. The ldap_set_rebind_proc() routine cannot be used to specify an
extended bind routine. To specify an extended bind, use the ldap_set_option()
routine to set the LDAP_OPT_EXT_REBIND_FN option.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following is a common error for this routine:

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_set_rebind_proc()

Chapter 2. LDAP routines 195

ldap_simple_bind(), ldap_simple_bind_s()
Purpose

Bind to the LDAP server using a distinguished name (DN) and password

Format
#include <ldap.h>

int ldap_simple_bind(
LDAP * ld,
const char * who,
const char * passwd)

int ldap_simple_bind_s(
LDAP * ld,
const char * who,
const char * passwd)

Parameters

Input

ld Specifies the LDAP handle.

who
Specifies the distinguished name as a null-terminated character string. The
distinguished name is in UTF-8 or the local EBCDIC code page, as determined
by the LDAP_OPT_UTF8_IO option for the LDAP handle. An anonymous bind is
performed if this parameter is NULL or the distinguished name is a zero-length
string.

passwd
Specifies the password as a null-terminated character string. The password is
in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle.

Usage

The ldap_simple_bind() or ldap_simple_bind_s() routine binds to the LDAP
server identified by the LDAP handle. The LDAP server authenticates the client
using the distinguished name and password. Note this information is sent
unencrypted to the LDAP server unless an SSL connection can be used.

The ldap_simple_bind() routine sends the bind message to the LDAP server and
returns control to the application. The application should call the ldap_result()
routine to get the response to the bind request.

The ldap_simple_bind_s() routine sends the bind message to the LDAP server and
waits for a response. The bind request is abandoned if the client is unable to wait
for the response because of an error from the ldap_result() routine.

Client controls specified by the LDAP_OPT_CLIENT_CONTROLS and server controls
specified by the LDAP_OPT_SERVER_CONTROLS options are used by the
ldap_simple_bind() and ldap_simple_bind_s() routines.

ldap_simple_bind(), ldap_simple_bind_s()

196 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Function return value

The function return value for the ldap_simple_bind() routine is the message
identifier of the bind message, or -1 if a client error occurred. When the return
value is -1, the application should call the ldap_get_errno() routine to get the
LDAP error code. Any errors reported by the LDAP server are not returned by the
ldap_simple_bind() routine. Instead, the application must call the
ldap_parse_result() routine to obtain the result code from the bind response
message returned by the ldap_result() routine.

The function return value for the ldap_simple_bind_s() routine is LDAP_SUCCESS if
no error is detected. Otherwise, it is one of the LDAP error codes listed in the
ldap.h include file. Errors reported by the LDAP server are returned by the
ldap_simple_bind_s() routine including errors detected by the LDAP client.

The following are some common client errors:

LDAP_INVALID_STATE
A bind or unbind is in progress for the LDAP handle or an application exit
is active for the LDAP handle.

LDAP_LOCAL_ERROR
A system function reported an error.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Unable to connect to LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
bind operation.

The following are some common bind result codes:

LDAP_INAPPROPRIATE_AUTH
Inappropriate authentication provided by the client.

LDAP_INVALID_CREDENTIALS
The credentials provided by the client are not valid.

LDAP_REFERRAL
The server cannot accept the bind.

LDAP_STRONG_AUTH_REQUIRED
Strong authentication is required by the server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
bind operation.

ldap_simple_bind(), ldap_simple_bind_s()

Chapter 2. LDAP routines 197

ldap_ssl_client_init()
Purpose

Initialize the SSL client run time

Format
#include <ldap.h>
#include <ldapssl.h>

int ldap_ssl_client_init(
const char * keyring,
const char * keyring_pw,
int ssl_timeout,
int * ssl_rsncode)

Parameters

Input

keyring
Specifies the name of the SSL key database, SAF key ring, or PKCS #11 token
as a null-terminated character string in the local EBCDIC code page or UTF-8,
as determined by the LDAP_LIBASCII compiler variable. Specify NULL for this
parameter to use the GSK_KEYRING_FILE environment variable. An SSL key
database must be a z/OS UNIX System Services file and cannot be a
partitioned or sequential data set. For a PKCS #11 token, specify the following
format to indicate the token to be used:
TOKEN/NAME

where NAME is the name of the PKCS #11 token.

keyring_pw
Specifies the password for the SSL key database as a null-terminated character
string in the local EBCDIC code page or UTF-8, as determined by the
LDAP_LIBASCII compiler variable. Specify file://filename to use an SSL stash
file where filename is the name of the stash file. Specify a zero-length
character string to use a SAF key ring or PKCS #11 token instead of a key
database. Specify NULL for this parameter to use the GSK_KEYRING_PW or
GSK_KEYRING_STASH environment variable. An SSL stash file must be a z/OS
UNIX System Services file and cannot be a partitioned or sequential data set. If
NULL is specified and the GSK_KEYRING_PW and GSK_KEYRING_STASH environment
variables are not defined, a SAF key ring or PKCS #11 token can be used. The
PKCS #11 token is used if the keyring parameter is in the following format:
TOKEN/NAME

If NULL is specified for the keyring parameter, this parameter is ignored.

ssl_timeout
Specifies the SSL session cache timeout in seconds. The value must be between
1 and 86400. Specify a value of 0 to use the GSK_V3_SESSION_TIMEOUT
environment variable. If 0 is specified and the GSK_V3_SESSION_TIMEOUT
environment variable is not defined, the default is 86400.

Output

ssl_rsncode
Returns the LDAP reason code as defined in the ldapssl.h include file. Specify
NULL for this parameter if the LDAP reason code is not needed.

ldap_ssl_client_init()

198 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Usage

The ldap_ssl_client_init() routine initializes the SSL client run time and must be
called before any SSL options are set or an SSL connection is established with an
LDAP server. In addition, ldap_ssl_client_init() must be run before starting
ldap_init() or ldap_ssl_init() to create a handle for an SSL connection. An error is
returned if ldap_ssl_client_init() should be called more than once. LDAP does not
support SSL V2 protocol, and disables it from being used. SSL V3, TLS V1.0, TLS
V1.1, and TLS V1.2 protocols are supported. The z/OS System SSL defaults and
environment variables control which of these supported protocols are enabled or
disabled. For example, the environment variable GSK_PROTOCOL_SSLV3 can be
set to "ON" to enable SSL V3 protocol, or "OFF" to disable SSL V3 protocol. The
environment variable GSK_PROTOCOL_TLSV1 can be set to "ON" to enable TLS
V1.0 protocol, or "OFF" to disable TLS V1.0 protocol. TLS V1.1 and TLS V1.2
protocols are disabled by default. To enable TLS V1.1 protocol, set the environment
variable GSK_PROTOCOL_TLSV1_1 to "ON". Similarly, to enable TLS V1.2
protocol, set the environment variable GSK_PROTOCOL_TLSV1_2 to "ON".

A SAF key ring name is specified as userid/keyring. The current user ID can be used
if the user ID is omitted. The user must have READ access to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key
ring owned by the current user. The user must have UPDATE access to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key
ring owned by another user. Note certificate private keys are not available when
using a SAF key ring owned by another user.

A PKCS #11 token is specified in the following format:
TOKEN/NAME

where NAME is the name of the PKCS #11 token. The user must have READ access
to the SO.NAME and USER.NAME resources in the CRYPTOZ class when using a PKCS
#11 token.

For information about System SSL, see z/OS Cryptographic Services System SSL
Programming.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_PARAM_ERROR
A parameter is not correct.

LDAP_SSL_ALREADY_INITIALIZED
The SSL client run time is already initialized.

LDAP_SSL_INITIALIZE_FAILED
SSL initialization failed.

LDAP_SSL_NOT_AVAILABLE
System SSL is not available.

ldap_ssl_client_init()

Chapter 2. LDAP routines 199

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ldap_ssl_init()
Purpose

Create and initialize an LDAP handle for an SSL connection

Format
#include <ldap.h>

LDAP * ldap_ssl_init(
const char * host,
int port,
const char * label)

Parameters

Input

host
Specifies the location of the LDAP server as a null-terminated character string
in the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable. This location can be a blank-separated host list or a single
LDAP URL. Specify NULL for this parameter to connect to an LDAP server on
the local system using the IPv4 loopback address (127.0.0.1).

port
Specifies the port for the LDAP server. This value can be used when an explicit
port is not specified in the host list, and it must be between 1 and 65535. If 0 is
specified, the default LDAP port (389) can be used.

label
Specifies the label for the client certificate as a null-terminated character string
in the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable. Specify NULL for this parameter to use the GSK_KEY_LABEL
environment variable. If NULL is specified for this parameter and the
GSK_KEY_LABEL environment variable is not defined, the default certificate for
the SSL key database, SAF key ring, or PKCS #11 token can be used. A client
certificate is needed only when the LDAP server is configured for client
authentication.

Usage

The ldap_ssl_init() routine creates and initializes an LDAP handle. The routine
does not establish a connection with the LDAP server. A connection is established
when the first server request using the handle is issued. The handle is always
initialized for an SSL connection even if an LDAP URL is specified for the host
parameter and the URL scheme is ldap instead of ldaps. The application should
call the ldap_unbind() or ldap_unbind_s() routine to release the handle when it is
no longer needed. The location of the LDAP server can be explicitly specified by
using a host list or an LDAP URL containing a host name. The location of the
LDAP server can be implicitly specified by using an LDAP URL that does not
contain a host name.

A host list consists of one or more blank-separated host:port values. The host
specification is a DNS resource name (for example, dcesec4.endicott.ibm.com), a
dotted decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address enclosed in square brackets (for example, [1080::8:800:200C:417A]. The
port, if specified, must be a decimal number between 1 and 65535. The value of the

ldap_ssl_init()

200 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

port parameter can be used if a port is not specified. The hosts are tried in the
order specified until a connection is established with an LDAP server.

An LDAP URL has the following format:
[<][URL:]scheme://[host[:port]][/dn[?attributes[?scope[?filter]]]][>]

where:

scheme
Specifies the value ldap for a non-SSL connection and ldaps for an SSL
connection. However, the ldap_ssl_init() routine always sets up an SSL
connection. Use the ldap_init() routine if you want the connection type to
be determined by the URL scheme.

host:port
Specifies the location of the LDAP server. The host specification can be a
DNS resource name (for example, dcesec4.endicott.ibm.com), a dotted
decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address enclosed in square brackets (for example,
[1080::8:800:200C:417A]). The port, if specified, must be a decimal
number between 1 and 65535. The port defaults to 389 for a non-SSL
connection and 636 for an SSL connection.

dn Specifies the distinguished name (DN) for the request. The DN can be used
as a filter when the ldap_server_locate() routine should be called to locate
the LDAP server.

attributes
Consists of one or more comma-separated search attributes. This value is
not used by the ldap_ssl_init() routine.

scope Specifies the search scope and can be "base", "one", or "sub". This value is
not used by the ldap_ssl_init() routine.

filter Specifies the search filter. This value is not used by the ldap_ssl_init()
routine.

The URL can be optionally enclosed in angle brackets or prefixed with URL: or
both.

The ldap_ssl_init() routine calls the ldap_server_locate() routine to locate the
LDAP server when the LDAP URL does not contain a host name. The default
server information file /etc/ldap/ldap_server_info.conf can be used unless the
LDAP_SERVER_INFO_CONF environment variable is defined. The ldap_server_locate()
routine uses the default values for everything except the DN filter. The DN filter is
set to the DN specified in the URL. (No DN filtering is done if a DN is not
specified in the URL). A server entry is selected only if the security type is
LDAP_LSI_SSL. A server entry is not selected if the security type is not defined.

The ldap_ssl_client_init() routine must be called before the ldap_ssl_init() routine.

The LDAP handle is initialized with the following default values. The
ldap_set_option() or ldap_set_option_np() routine can be called to set different
values upon completion of the ldap_ssl_init() routine.
v The LDAP protocol version is set based on the LDAP_VERSION environment

variable. The protocol version is set to 3 if the LDAP_VERSION environment
variable is not defined.

ldap_ssl_init()

Chapter 2. LDAP routines 201

v The LDAP version 2 wire format is set based on the LDAP_V2_WIRE_FORMAT
environment variable. The LDAP version 2 wire format is set to UTF-8 if the
LDAP_V2_WIRE_FORMAT environment variable is not defined.

v Referral processing is enabled and the referral hop limit is set to 10.

Function return value

The function return value is the new LDAP handle if no error is detected.
Otherwise, the return value is NULL.

ldap_ssl_init()

202 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_start_tls_s_np()
Purpose

Start TLS for a connection

Format
#include <ldap.h>

int ldap_start_tls_s_np(
LDAP * ld,
const char * label)

Parameters

Input

ld Specifies the LDAP handle.

label
Specifies the label for the client certificate as a null-terminated character string
in the local EBCDIC code page or UTF-8, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. Specify NULL for this parameter
to use the GSK_KEY_LABEL environment variable. If you specify NULL for this
parameter and the GSK_KEY_LABEL environment variable is not defined, the
default certificate for the SSL key database, SAF key ring, or PKCS #11 token
can be used. A client certificate is needed only when the LDAP server is
configured for client authentication.

Usage

The ldap_start_tls_s_np() routine initiates Transport Layer Security (TLS) for an
existing connection with an LDAP server. An error is returned if TLS is already
being used by the connection or if there are outstanding requests. Any existing
authentication for the connection remains unchanged. If the application wants to
use the client certificate for authentication, it should call the ldap_sasl_bind() or
ldap_sasl_bind_s() routine after calling ldap_start_tls_s_np() and specify EXTERNAL
as the SASL authentication method.

The ldap_ssl_client_init() routine must be called to initialize the SSL environment
before calling the ldap_start_tls_s_np() routine.

The certificate presented by the LDAP server must contain the DNS host name as
either the common name (CN) portion of the certificate subject name or as a
subject alternate name. The DNS host name is the name specified when the
ldap_init() or ldap_ssl_init() routine was called. An error is returned if the server
certificate does not contain a matching host name.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INAPPROPRIATE_AUTH
The server certificate does not contain the DNS host name for the
connection.

ldap_start_tls_s_np()

Chapter 2. LDAP routines 203

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_OPERATIONS_ERROR
TLS is already active or there are outstanding requests for the connection.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_PROTOCOL_ERROR
The Start TLS extended operation is not supported.

LDAP_SSL_CLIENT_INIT_NOT_CALLED
The ldap_ssl_client_init() routine has not been called.

LDAP_UNAVAILABLE
TLS support is not available or the server is stopping.

ldap_start_tls_s_np()

204 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_stop_tls_s_np()
Purpose

Stop TLS for a connection

Format
#include <ldap.h>

int ldap_stop_tls_s_np(
LDAP * ld)

Parameters

Input

ld Specifies the LDAP handle.

Usage

The ldap_stop_tls_s_np() routine stops Transport Layer Security (TLS) for a
connection. The routine returns an error if TLS is not being used or if there are
outstanding requests. The connection reverts to anonymous authentication.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_OPERATIONS_ERROR
TLS is not active or there are outstanding requests for the connection.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_stop_tls_s_np()

Chapter 2. LDAP routines 205

ldap_unbind(), ldap_unbind_s()
Purpose

Close the connection to the LDAP server and release the LDAP handle

Format
#include <ldap.h>

int ldap_unbind(
LDAP * ld)

int ldap_unbind_s(
LDAP * ld)

Parameters

Input

ld Specifies the LDAP handle.

Usage

The ldap_unbind() or ldap_unbind_s() routine closes the connection to the LDAP
server and releases the LDAP handle. The LDAP handle cannot be used upon
completion of either routine. Control is not returned to the application until the
LDAP handle is released. (Both routines are synchronous.)

ldap_unbind() and ldap_unbind_s() return an error if the routine should be called
while an application exit routine is active for the LDAP handle.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INVALID_STATE
Unbind already started for the LDAP handle or an application exit is
active.

LDAP_PARAM_ERROR
The LDAP handle is not valid.

LDAP_SERVER_DOWN
Unable to send unbind request to server.

ldap_unbind(), ldap_unbind_s()

206 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_url_parse()
Purpose

Parse an LDAP URL

Format
#include <ldap.h>

int ldap_url_parse(
const char * url,
LDAPURLDesc ** ludpp)

Parameters

Input

url
Specifies the LDAP URL as a null-terminated character string in the local
EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII compiler
variable.

Output

ludpp
Returns the address of the LDAP URL description. The application should call
the ldap_free_urldesc() routine to release the URL description when it is no
longer needed. Text data is returned in the local EBCDIC code page or UTF-8,
as determined by the LDAP_LIBASCII compiler variable.

Usage

The ldap_url_parse() routine parses an LDAP URL and returns an LDAP URL
description.

An LDAP URL has the following format:
[<][URL:]scheme://[host[:port]][/dn[?attributes[?scope[?filter]]]][>]

where:

scheme
Specifies the value ldap for a non-SSL connection and ldaps for an SSL
connection.

host:port
Specifies the location of the LDAP server. The host specification can be a
DNS resource name (for example, dcesec4.endicott.ibm.com), a dotted
decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address enclosed in square brackets (for example,
[1080::8:800:200C:417A]). The port, if specified, must be a decimal
number between 1 and 65535. The port defaults to 389 for a non-SSL
connection and 636 for an SSL connection.

dn Specifies the distinguished name (DN) for the request.

attributes
Consists of one or more comma-separated search attributes.

scope Specifies the search scope and can be "base", "one", or "sub".

ldap_url_parse()

Chapter 2. LDAP routines 207

filter Specifies the search filter. The filter is set to "(objectClass=*)" if no search
filter is specified.

The URL can be optionally enclosed in angle brackets or prefixed with URL: or
both.

A URL consists of characters in the US-ASCII character set (the characters from the
ISO8859-1 code page with values between 1 and 127). Escaped characters can be
specified in the scheme-specific section. Escaped characters are used for characters
not in the US-ASCII character set or for characters that are reserved for control
purposes (such as ?) or which might cause problems depending on how the URL
can be used (such as embedded blanks). An escaped character consists of a percent
(%) followed by two hexadecimal digits representing the character value in the
ISO8859-1 code page. For example, a blank is represented at %20. For more
information, see RFC 1738: Uniform Resource Locators (URL).

The LDAPURLDesc structure is defined as follows:
typedef struct ldap_url_desc {

char * lud_host;
int lud_port;
char * lud_dn;
char ** lud_attrs;
int lud_scope;
char * lud_filter;
char * lud_string;
unsigned long lud_options;

} LDAPURLDesc;

where:

lud_host
Returns the LDAP server host name as a null-terminated character string
in UTF-8 or the local EBCDIC code page depending on the LDAP_LIBASCII
compiler variable. If the URL does not specify a host name, this field is set
to NULL.

lud_port
Returns the LDAP server port number. If the URL does not specify a port
number, the port number is set to 389 for a non-SSL connection or 636 for
an SSL connection.

lud_dn Returns the distinguished name as a null-terminated character string in
UTF-8 or the local EBCDIC code page depending on the LDAP_LIBASCII
compiler variable. If the URL does not specify a distinguished name, this
field is set to NULL.

lud_attrs
Returns an array of search attributes where each attribute is a
null-terminated character string in UTF-8 or the local EBCDIC code page
depending on the LDAP_LIBASCII compiler variable. The array is terminated
by a NULL address. If the URL does not specify any search attributes, this
field is set to NULL.

lud_scope
Returns the search scope and is set to LDAP_SCOPE_BASE,
LDAP_SCOPE_ONELEVEL, or LDAP_SCOPE_SUBTREE. If the URL does not specify a
search scope, the scope is set to LDAP_SCOPE_BASE.

lud_filter
Returns the search filter as a null-terminated character string in UTF-8 or

ldap_url_parse()

208 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc1738.txt.pdf

the local EBCDIC code page depending on the LDAP_LIBASCII compiler
variable. If the URL does not specify a search filter, this field is set to the
string "(objectClass=*)".

lud_string
Returns a copy of the original URL as a null-terminated character string in
UTF-8 or the local EBCDIC code page depending on the LDAP_LIBASCII
compiler variable.

lud_options
Specifies the LDAP_URL_OPT_SECURE flag, which is set when the URL
specifies an SSL connection.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_PARAM_ERROR
URL address is NULL.

LDAP_URL_ERR_BADPORT
Server port is not valid.

LDAP_URL_ERR_BADSCOPE
Search scope is not valid.

LDAP_URL_ERR_MALFORMED
URL syntax is not valid.

LDAP_URL_ERR_MEM
Insufficient storage is available.

LDAP_URL_ERR_NOTLDAP
URL does not specify an LDAP scheme.

ldap_url_parse()

Chapter 2. LDAP routines 209

ldap_url_parse_np()
Purpose

Parse an LDAP URL

Format
#include <ldap.h>

int ldap_url_parse_np(
LDAP * ld,
const char * url,
LDAPURLDesc ** ludpp)

Parameters

Input

ld Specifies an LDAP handle. This parameter can be specified as NULL if the URL
is in UTF-8. Otherwise, the URL is in either the local EBCDIC code page or
UTF-8, as determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

url
Specifies the LDAP URL as a null-terminated character string in either the local
EBCDIC code page or UTF-8, as determined by the LDAP handle.

Output

ludpp
Returns the address of the LDAP URL description. The application should call
the ldap_free_urldesc() routine to release the URL description when it is no
longer needed.

Usage

The ldap_url_parse_np() routine is the same as the ldap_url_parse() routine except
that text strings provided by the application and text strings returned to the
application are in either UTF-8 or the local EBCDIC code page, as determined by
the LDAP_OPT_UTF8_IO option. For more information about the ldap_url_parse()
routine see “ldap_url_parse()” on page 207.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_PARAM_ERROR
URL address is NULL.

LDAP_URL_ERR_BADPORT
Server port is not valid.

LDAP_URL_ERR_BADSCOPE
Search scope is not valid.

LDAP_URL_ERR_MALFORMED
URL syntax is not valid.

ldap_url_parse_np()

210 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_URL_ERR_MEM
Insufficient storage is available.

LDAP_URL_ERR_NOTLDAP
URL does not specify an LDAP scheme.

ldap_url_parse_np()

Chapter 2. LDAP routines 211

ldap_url_search(), ldap_url_search_s(), ldap_url_search_st()
Purpose

Search the LDAP directory using an LDAP URL

Format
#include <ldap.h>

int ldap_url_search(
LDAP * ld,
const char * url,
int attrsonly)

int ldap_url_search_s(
LDAP * ld,
const char * url,
int attrsonly,
LDAPMessage ** result)

int ldap_url_search_st(
LDAP * ld,
const char * url,
int attrsonly,
struct timeval * timeout,
LDAPMessage ** result)

Parameters

Input

ld Specifies the LDAP handle.

url
Specifies the LDAP URL as a null-terminated character string in either the local
EBCDIC code page or UTF-8, as determined by the LDAP_OPT_UTF8_IO option
for the LDAP handle.

attrsonly
Specifies whether the attribute values should be returned along with the
attribute types. A nonzero value causes just the attribute types to be returned.
A zero value causes both attribute types and attribute values to be returned.

timeout
Specifies the maximum time for the search request. Specify NULL for this
parameter if there is no time limit for the request. Otherwise, set the tv_sec
field to the maximum time in seconds. Note that the actual time limit is the
smaller of the client-specified value and the maximum time allowed by the
LDAP server.

Output

result
Returns the address of the result message chain. If the LDAP server returns no
result messages, the message address is set to NULL. Note that the synchronous
routines can return one or more result messages even when the function return
value is not LDAP_SUCCESS. The application should call the ldap_msgfree()
routine to release the message chain when it is no longer needed.

ldap_url_search(), ldap_url_search_s(), ldap_url_search_st()

212 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Usage

The ldap_url_search() routine initiates the search and returns control to the
application. The application must call the ldap_result() routine to obtain the search
results.

The ldap_url_search_s() and ldap_url_search_st() routines initiate the search and
wait for the search results. The ldap_url_search_s() routine waits indefinitely, while
the ldap_url_search_st() routine provides a parameter to specify a time limit. The
search request is abandoned if the client is unable to wait for the response because
of an error from the ldap_result() routine. The search request is also abandoned if
the time limit specified for the ldap_url_search_st() routine expires.

The ldap_url_search(), ldap_url_search_s() and ldap_url_search_st() routines are
like the ldap_search(), ldap_search_s() and ldap_search_st() routines. The base
object name, search scope, search filter, and attribute list are obtained from the
LDAP URL. For more information about searching, see the description of the
search routines in “ldap_search(), ldap_search_s(), ldap_search_st(),
ldap_search_ext(), ldap_search_ext_s()” on page 164.

An LDAP URL has the following format:
[<][URL:]scheme://[host[:port]][/dn[?attributes[?scope[?filter]]]][>]

where:

scheme
Specifies the value ldap for a non-SSL connection and ldaps for an SSL
connection.

host:port
Specifies the location of the LDAP server. The host specification can be a
DNS resource name (for example, dcesec4.endicott.ibm.com), a dotted
decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address that is enclosed in square brackets (for example,
[1080::8:800:200C:417A]). The port, if specified, must be a decimal
number between 1 and 65535. The port defaults to 389 for a non-SSL
connection and 636 for an SSL connection.

dn Specifies the base object name for the search request.

attributes
Consists of one or more comma-separated search attributes. All attributes
are returned if no search attributes are specified.

scope Specifies the search scope and can be "base", "one", or "sub". The scope is
set to "base" if no search scope is specified.

filter Specifies the search filter. The filter is set to "(objectClass=*)" if no search
filter is specified.

The URL can be optionally enclosed in angle brackets or prefixed with URL: or
both.

A URL consists of characters in the US-ASCII character set (the characters from the
ISO8859-1 code page with values between 1 and 127). Escaped characters can be
specified in the scheme-specific section. Escaped characters are used for characters
not in the US-ASCII character set or for characters that are reserved for control
purposes (such as ?) or that might cause problems depending on how the URL can
be used (such as embedded blanks). An escaped character consists of a percent (%)

ldap_url_search(), ldap_url_search_s(), ldap_url_search_st()

Chapter 2. LDAP routines 213

followed by two hexadecimal digits representing the character value in the
ISO8859-1 code page. For example, a blank is represented at %20. For more
information, see RFC 1738: Uniform Resource Locators (URL).

The URL must specify a host name. The port defaults to 389 for a non-SSL
connection and 636 for an SSL connection. The existing connection can be used if
the security type, host name, and port in the LDAP URL are the same as the
values used to establish the connection. Otherwise, a new connection is established
for the search request. The application rebind procedure is started if a new
connection is established to obtain the bind parameters. An unauthenticated
connection is established if the application did not provide a rebind procedure.

The ldap_ssl_client_init() routine must have been called to initialize the SSL
environment if the URL specifies an SSL connection. The certificate label specified
for the ldap_ssl_init() or ldap_start_tls_s_np() routine can be used for the client
certificate. If no label has been set, the label specified by the GSK_KEY_LABEL
environment variable can be used. If no label has been set and the GSK_KEY_LABEL
environment variable is not defined, the default certificate for the SSL key database
or SAF key ring can be used. Note a client certificate is needed only when the
LDAP server is configured for client authentication.

Function return value

The ldap_url_search() routine returns -1 if a client error is detected. Otherwise, it
returns the message identifier assigned to the search request. The application
should call the ldap_get_errno() routine to get the error code if the return value is
-1. Errors reported by the LDAP server are not returned by the ldap_url_search()
routine. The application must call the ldap_parse_result() routine to obtain the
result code from the search done message returned by the ldap_result() routine.

The ldap_url_search_s() and ldap_url_search_st() routines return LDAP_SUCCESS if
the request is successful. Otherwise, the return value is one of the error codes
listed in the ldap.h include file. The return value includes errors detected by the
LDAP client and errors detected by the LDAP server. One or more result messages
can be returned by these routines even when the return value is not LDAP_SUCCESS.
If no result messages are returned, the result message address is NULL.

The following are some common client errors:

LDAP_FILTER_ERROR
The search filter is not valid.

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to use an extensible
filter item.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

ldap_url_search(), ldap_url_search_s(), ldap_url_search_st()

214 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

http://www.rfc-editor.org/rfc/pdfrfc/rfc1738.txt.pdf

LDAP_TIMEOUT
The wait time has expired and the search request has been abandoned.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
search operation.

LDAP_URL_ERR_BADPORT
Server port is not valid.

LDAP_URL_ERR_BADSCOPE
Search scope is not valid.

LDAP_URL_ERR_MALFORMED
URL syntax is not valid.

LDAP_URL_ERR_MEM
Insufficient storage is available.

LDAP_URL_ERR_NOTLDAP
URL does not specify an LDAP scheme.

The following are some common search result codes:

LDAP_INSUFFICIENT_ACCESS
Not authorized to access base object.

LDAP_NO_SUCH_OBJECT
The base object is not found.

LDAP_REFERRAL
The base object is not in the current LDAP server.

LDAP_SIZELIMIT_EXCEEDED
The search size limit has been exceeded.

LDAP_TIMELIMIT_EXCEEDED
The search time limit has been exceeded.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
search operation.

ldap_url_search(), ldap_url_search_s(), ldap_url_search_st()

Chapter 2. LDAP routines 215

ldap_value_free()
Purpose

Release storage allocated for an array of character strings

Format
#include <ldap.h>

void ldap_value_free(
char * vals[])

Parameters

Input

vals
Specifies the array of character strings. The end of the array is indicated by a
NULL address.

Usage

The ldap_value_free() routine releases the storage allocated for an array of
character strings.

Function return value

There is no function return value.

ldap_value_free()

216 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_value_free_len()
Purpose

Release storage allocated for an array of binary values

Format
#include <ldap.h>

void ldap_value_free_len(
BerVal * vals[])

Parameters

Input

vals
Specifies the array of binary values. The end of the array is indicated by a NULL
address.

Usage

The ldap_value_free_len() routine releases the storage allocated for an array of
binary values.

Function return value

There is no function return value.

ldap_value_free_len()

Chapter 2. LDAP routines 217

ldap_version()
Purpose

Return LDAP version information

Format
#include <ldap.h>

int ldap_version(
LDAPVersion * info)

Parameters

Output

info
Returns the LDAP version information in the LDAPVersion structure provided
by the application. NULL can be specified for this parameter if the version
information is not needed.

Usage

The ldap_version() routine returns information about the LDAP runtime library.

The following fields are set in the LDAPVersion structure:
typedef struct _LDAPVersion {

int sdk_version;
int protocol_version;
int SSL_version;
int security_level;
char ssl_max_cipher[65];
char ssl_min_cipher[65];

} LDAPVersion;

where:

sdk_version
This field is set to the LDAP run time library version and release (vrr).
The version value (v) is 4, indicating z/OS Version 2. The release value (rr)
is 10 + the z/OS release number. For example, z/OS V2R1, the sdk_version
is 411.

protocol_version
This field is set to the highest LDAP protocol version (multiplied by 100)
supported by the LDAP runtime library. This is currently 300 for LDAP
Version 3.

SSL_version
This field is set to the highest SSL protocol version (multiplied by 100)
supported by the LDAP runtime library.

security_level
This field is not used and is set to 0.

ssl_max_cipher
This field is set to the SSL Version 3/TLS Version 1 cipher suites
recognized by LDAP. This is the same as the LDAP_SSL_CIPHERLIST
definition in the ldap.h include file. The returned values are in the local
EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII

ldap_version()

218 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

compiler variable. The LDAP_OPT_SSL_CIPHER option of the
ldap_get_option() routine can be used after the SSL environment is
initialized to obtain the actual cipher suite list. This field is deprecated.

Restriction: The actual cipher suites available on a given system are
determined by the System SSL product and can be affected by government
export regulations and the values for various System SSL environment
variables.

ssl_min_cipher
This field is set to the same value as the ssl_max_cipher field. This field is
deprecated.

For more information about System SSL, see z/OS Cryptographic Services System SSL
Programming.

Function return value

The return value is the LDAP runtime version and release value. This is the value
returned in the sdk_version field of the LDAPVersion structure.

ldap_version()

Chapter 2. LDAP routines 219

ldap_version()

220 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Chapter 3. Deprecated LDAP routines

This topic describes the deprecated LDAP routines. These routines have been
replaced by newer routines, but are still supported.

Guideline: If you are writing new applications, use the routines that are described
in Chapter 2, “LDAP routines,” on page 23 instead of the deprecated routines. If
you are updating existing applications that use deprecated LDAP routines,
consider updating them to use the newer routines. They are listed in each section
of this topic as preferred routines.

© Copyright IBM Corp. 1999, 2015 221

ldap_bind(), ldap_bind_s()
Preferred routines

ldap_simple_bind() or ldap_simple_bind_s()

Purpose

Bind to the LDAP server using a distinguished name (DN) and password

Format
#include <ldap.h>

int ldap_bind (
LDAP * ld,
const char * who,
const char * passwd,
int method)

int ldap_bind_s (
LDAP * ld,
const char * who,
const char * passwd,
int method)

Parameters

Input

ld Specifies the LDAP handle.

who
Specifies the distinguished name as a null-terminated character string. The
distinguished name is in UTF-8 or the local EBCDIC code page, as determined
by the LDAP_OPT_UTF8_IO option for the LDAP handle. An anonymous bind is
performed if this parameter is NULL or the distinguished name is a zero-length
string.

passwd
Specifies the password as a null-terminated character string. The password is
in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle.

method
Specifies the bind method and must be LDAP_AUTH_SIMPLE.

Usage

The ldap_bind() or ldap_bind_s() routine binds to the LDAP server identified by
the LDAP handle. The LDAP server authenticates the client using the
distinguished name and password. Note that this information is sent unencrypted
to the LDAP server unless an SSL connection is used.

The ldap_bind() routine sends the bind message to the LDAP server and returns
control to the application. The application should call the ldap_result() routine to
get the response to the bind request.

The ldap_bind_s() routine sends the bind message to the LDAP server and waits
for a response. The bind request is abandoned if the client is unable to wait for the
response due to an error from the ldap_result() routine.

ldap_bind(), ldap_bind_s()

222 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The ldap_bind() and ldap_bind_s() routines use client controls specified by the
LDAP_OPT_CLIENT_CONTROLS and server controls specified by the
LDAP_OPT_SERVER_CONTROLS options.

Function return value

The function return value for the ldap_bind() routine is the message identifier of
the bind message, or -1 if a client error occurred. When the return value is -1, the
application should call the ldap_get_errno() routine to get the LDAP error code.
The ldap_bind() routine does not return any errors reported by the LDAP server.
The application must call the ldap_parse_result() routine to obtain the error code
from the bind response message returned by the ldap_result() routine.

The function return value for the ldap_bind_s() routine is LDAP_SUCCESS if no error
is detected. Otherwise, it is one of the LDAP error codes listed in the ldap.h
include file. The ldap_bind_s() routine returns errors reported by the LDAP server
and errors detected by the LDAP client.

The following are some common client errors:

LDAP_AUTH_UNKNOWN
Method is not LDAP_AUTH_SIMPLE.

LDAP_INVALID_STATE
A bind or unbind is in progress for the LDAP handle or an application exit
is active for the LDAP handle.

LDAP_LOCAL_ERROR
A system function reported an error.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Unable to connect to the LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
bind operation.

The following are some common bind result codes:

LDAP_INAPPROPRIATE_AUTH
The client provided inappropriate authentication.

LDAP_INVALID_CREDENTIALS
The credentials provided by the client are not valid.

LDAP_REFERRAL
The server cannot accept the bind.

LDAP_STRONG_AUTH_REQUIRED
The server requires strong authentication.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
bind operation.

ldap_bind(), ldap_bind_s()

Chapter 3. Deprecated LDAP routines 223

ldap_modrdn(), ldap_modrdn_s()
Preferred routines

ldap_rename() or ldap_rename_s()

Purpose

Rename an entry in the LDAP directory

Format
#include <ldap.h>

int ldap_modrdn (
LDAP * ld,
const char * dn,
const char * newrdn,
int deleteoldrdn)

int ldap_modrdn_s (
LDAP * ld,
const char * dn,
const char * newrdn,
int deleteoldrdn)

Parameters

Input

ld Specifies the LDAP handle.

dn Specifies the distinguished name for the directory entry as a null-terminated
character string in UTF-8 or the local EBCDIC code page, as determined by the
LDAP_OPT_UTF8_IO option for the LDAP handle. A zero-length name is not
allowed for a rename request.

newrdn
Specifies the new relative distinguished name (RDN) for the directory entry as
a null-terminated character string in UTF-8 or the local EBCDIC code page, as
determined by the LDAP_OPT_UTF8_IO option for the LDAP handle.

deleteoldrdn
Specify TRUE if the attributes from the old RDN are to be removed from the
entry. Specify FALSE if the attributes are to be retained.

Usage

The ldap_modrdn() routine sends the request to the LDAP server and returns
control to the application. The application must call the ldap_result() routine to
obtain the result.

The ldap_modrdn_s() routine sends the request to the LDAP server and waits for
the completion of the request. The modify request is abandoned if the client is
unable to wait for the response because of an error from the ldap_result() routine.

The RDN for the requested directory entry is changed. The entry might or might
not have subordinate entries. If the entry is not a leaf entry, the entire subtree is
renamed.

ldap_modrdn(), ldap_modrdn_s()

224 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The ldap_modrdn() and ldap_modrdn_s() routines use client controls specified by
the LDAP_OPT_CLIENT_CONTROLS option and server controls specified by the
LDAP_OPT_SERVER_CONTROLS option.

Function return value

The ldap_modrdn() routine returns -1 if a client error is detected. Otherwise, it
returns the message identifier assigned to the rename request. If the return value is
-1, the application should call the ldap_get_errno() routine to get the error code.
The ldap_modrdn() routine does not return errors reported by the LDAP server.
The application must call the ldap_parse_result() routine to obtain the result code
from the result message returned by the ldap_result() routine.

The ldap_modrdn_s() routine returns LDAP_SUCCESS if the request is successful.
Otherwise, the return value is one of the error codes listed in the ldap.h include
file. The return value includes errors detected by the LDAP client and errors
detected by the LDAP server.

The following are some common client errors:

LDAP_INVALID_STATE
An unbind request has been issued for the LDAP handle.

LDAP_NO_MEMORY
Insufficient storage is available.

LDAP_NOT_SUPPORTED
The LDAP protocol version must be LDAP_VERSION3 to specify server or
client controls.

LDAP_PARAM_ERROR
A parameter is not valid.

LDAP_SERVER_DOWN
Network connection failed.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical client control is either not recognized or is not supported for a
rename operation.

The following are some common server result codes:

LDAP_ALREADY_EXISTS
An entry with the new name exists.

LDAP_INSUFFICIENT_ACCESS
Not authorized to modify the directory entry.

LDAP_NO_SUCH_OBJECT
The directory entry does not exist.

LDAP_REFERRAL
The entry is not in the current LDAP server.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION
A critical server control is either not recognized or is not supported for a
rename operation.

ldap_modrdn(), ldap_modrdn_s()

Chapter 3. Deprecated LDAP routines 225

ldap_open()
Preferred routines

ldap_init() or ldap_ssl_init()

Purpose

Create and initialize an LDAP handle and then connect to the LDAP server

Format
#include <ldap.h>

LDAP * ldap_open (
const char * host,
int port)

Parameters

Input

host
Specifies the location of the LDAP server as a null-terminated character string
in the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable. This location can be a blank-separated host list or a single
LDAP URL. Specify NULL for this parameter to connect to an LDAP server on
the local system using the IPv4 loopback address (127.0.0.1).

port
Specifies the port for the LDAP server. This port is used when the host list
does not specify an explicit port. The value must be between 1 and 65535. If
you specify 0, the default LDAP port (389) is used.

Usage

The ldap_open() routine creates and initializes an LDAP handle and connects to
the LDAP server. The handle is initialized for a non-SSL connection unless an
LDAP URL is specified for the host parameter and the URL scheme is ldaps
instead of ldap. The application should call the ldap_unbind() or ldap_unbind_s()
routine to release the handle when it is no longer needed. The location of the
LDAP server can be explicitly specified by using a host list or an LDAP URL
containing a host name. The location of the LDAP server can be implicitly
specified by using an LDAP URL that does not contain a host name.

A host list consists of one or more blank-separated host:port values. The host
specification is a DNS resource name (for example, dcesec4.endicott.ibm.com), a
dotted decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address that is enclosed in square brackets (for example, [1080::8:800:200C:417A].
The port specification is a decimal number between 1 and 65535. If a port is not
specified, the value of the port parameter is used. The hosts are tried in the order
that is specified until a connection is established with an LDAP server.

An LDAP URL has the following format:
[<][URL:]scheme://[host[:port]][/dn[?attributes[?scope[?filter]]]][>]

where:

ldap_open()

226 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

scheme Specifies the value ldap for a non-SSL connection and ldaps for an SSL
connection.

host:port
Specifies the location of the LDAP server. The host specification can be a
DNS resource name (for example, dcesec4.endicott.ibm.com), a dotted
decimal IPv4 address (for example, 9.130.25.34), or a colon-separated IPv6
address that is enclosed in square brackets (for example,
[1080::8:800:200C:417A]). The port, if specified, must be a decimal
number between 1 and 65535. The port defaults to 389 for a non-SSL
connection and 636 for an SSL connection.

dn Specifies the distinguished name (DN) for the request. The DN is used as a
filter when the ldap_server_locate() routine is called to locate the LDAP
server.

attributes
Consists of one or more comma-separated search attributes. This value is
not used by the ldap_open() routine.

scope Specifies the search scope and can be "base", "one", or "sub". This value is
not used by the ldap_open() routine.

filter Specifies the search filter. This value is not used by the ldap_open()
routine.

The URL can be optionally enclosed in angle brackets or prefixed with URL: or
both.

The ldap_open() routine calls the ldap_server_locate() routine to locate the LDAP
server when the LDAP URL does not contain a host name. The default server
information file /etc/ldap/ldap_server_info.conf is used unless the
LDAP_SERVER_INFO_CONF environment variable is defined. The ldap_server_locate()
routine uses the default values for everything except the DN filter. The DN filter is
set to the DN specified in the URL (no DN filtering is done if a DN is not specified
in the URL). The scheme specified in the URL is used to select servers from the list
returned by the ldap_server_locate() routine. A server entry is selected if the
scheme is ldap and the security type is LDAP_LSI_NOSSL or if the scheme is ldaps
and the security type is LDAP_LSI_SSL. A server entry is not selected if the security
type is not defined.

The ldap_ssl_client_init() routine must be called before the ldap_open() routine if
the LDAP URL specifies an SSL connection.

The LDAP handle is initialized with the following default values. The
ldap_set_option() or ldap_set_option_np() routine can be called to set different
values upon completion of the ldap_open() routine.
v The LDAP protocol version is set based on the LDAP_VERSION environment

variable. If the LDAP_VERSION environment variable is not defined the protocol
version is set to 2.

v The LDAP version 2 wire format is set based on the LDAP_V2_WIRE_FORMAT
environment variable. If the LDAP_V2_WIRE_FORMAT environment variable is not
defined the LDAP version 2 wire format is set to UTF-8.

v Referral processing is enabled and the referral hop limit is set to 10.

ldap_open()

Chapter 3. Deprecated LDAP routines 227

Function return value

The function return value is the new LDAP handle if no error is detected.
Otherwise, the return value is NULL.

ldap_open()

228 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_perror()
Preferred routines

ldap_parse_result() or ldap_get_errno()

Purpose

Print an error message on stderr

Format
#include <ldap.h>

void ldap_perror (
LDAP * ld,
const char * prefix)

Parameters

Input

ld Specifies the LDAP handle.

prefix
Specifies the message prefix as a null-terminated character string in either the
local EBCDIC code page or UTF-8, as determined by the LDAP handle. If NULL
is specified for this parameter, a message prefix is not used.

Usage

The ldap_perror() routine prints an error message on stderr. The printed text is in
the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable.

The last error associated with the LDAP handle is used to retrieve the error text for
the error. The first line is printed as prefix:text.

If ldap_result2error() or one of the synchronous request routines is called before
the ldap_perror() routine, two additional lines are printed. If the result message
contained a value for the matched distinguished name, this value is printed as
prefix:matched:name. If the result message contained an error message, this value
is printed as prefix:additional info:message. The ldap_perror() routine continues
to print the same values for matched distinguished name and error message on
subsequent calls until new values are set by ldap_result2error() or one of the
synchronous search request routines.

Function return value

There is no function return value.

ldap_perror()

Chapter 3. Deprecated LDAP routines 229

ldap_result2error()
Preferred routines

ldap_parse_result()

Purpose

Return the error code for an LDAP result message

Format
#include <ldap.h>

int ldap_result2error (
LDAP * ld,
LDAPMessage * result,
int freeit)

Parameters

Input

ld Specifies the LDAP handle.

result
Specifies the result message returned by ldap_result() or one of the
synchronous request routines.

freeit
Specify TRUE to free the LDAP message chain before returning to the
application. Specify FALSE to keep the LDAP message chain. If you specify
TRUE, the message chain is freed even when the function return value is not
LDAP_SUCCESS.

Usage

The ldap_result2error() routine returns the error code from the LDAP result
message. An error is returned if ldap_result2error() is called for a search entry or
search reference message and the message chain does not contain the search result
message (the message chain is still released if the freeit parameter is nonzero).

Function return value

The function return value is the result code from the LDAP result message. In
addition, the following error codes can be returned if an error is detected by the
ldap_result2error() routine:

LDAP_NO_RESULT_MESSAGE
The message chain does not contain an LDAP result.

LDAP_PARAM_ERROR
A parameter is not valid.

ldap_result2error()

230 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldap_ssl_start()
Preferred routines

ldap_ssl_client_init() and ldap_ssl_init()

Purpose

Start an SSL connection with the LDAP server

Format
#include <ldap.h>

int ldap_ssl_start (
LDAP * ld,
const char * keyring,
const char * keyring_pw,
const char * label)

Parameters

Input

ld LDAP handle created by the ldap_open() routine. An error is returned if the
handle is created by the ldap_init() or ldap_ssl_init() routine.

keyring
Specifies the name of the SSL key database, SAF key ring, or PKCS #11 token
as a null-terminated character string in the local EBCDIC code page or UTF-8,
as determined by the LDAP_LIBASCII compiler variable. Specify NULL for this
parameter to use the GSK_KEYRING_FILE environment variable. An SSL key
database must be a z/OS UNIX System Services file and cannot be a
partitioned or sequential data set. Specify a zero-length character string to use
a SAF key ring or PKCS #11 token instead of a key database.

keyring_pw
Specifies the password for the SSL key database as a null-terminated character
string in the local EBCDIC code page or UTF-8, as determined by the
LDAP_LIBASCII compiler variable. Specify file://filename to use an SSL stash
file, where filename is the name of the stash file. An SSL stash file must be a
file system file and cannot be a partitioned or sequential data set. Specify a
zero-length character string to use a SAF key ring instead of a key database.
Specify NULL for this parameter to use the GSK_KEYRING_PW or
GSK_KEYRING_STASH environment variable. If you specify NULL and the
GSK_KEYRING_PW and GSK_KEYRING_STASH environment variables are not defined,
a SAF key ring is used. If you specify NULL for the keyring parameter, this
parameter is ignored.

label
Specifies the label for the client certificate as a null-terminated character string
in the local EBCDIC code page or UTF-8, as determined by the LDAP_LIBASCII
compiler variable. Specify NULL for this parameter to use the GSK_KEY_LABEL
environment variable. If you specify NULL for this parameter and the
GSK_KEY_LABEL environment variable is not defined, the default certificate for
the SSL key database, SAF key ring, or PKCS #11 token is used. A client
certificate is needed only when the LDAP server is configured for client
authentication.

ldap_ssl_start()

Chapter 3. Deprecated LDAP routines 231

Usage

The ldap_ssl_start() routine starts an SSL connection with the LDAP server. The
LDAP handle must be created by the ldap_open() routine and not by the
ldap_init() or ldap_ssl_init() routine. It is not necessary to call the
ldap_ssl_client_init() routine because the ldap_ssl_start() routine initializes the SSL
environment. The keyring and keyring_pw parameters are ignored if the SSL
environment has already been initialized by a prior call to either the
ldap_ssl_client_init() or ldap_ssl_start() routine. LDAP does not support SSL V2
protocol, and disables it from being used. SSL V3, TLS V1.0, TLS V1.1, and TLS
V1.2 protocols are supported. The z/OS System SSL defaults and environment
variables control which of these supported protocols are enabled or disabled. For
example, the environment variable GSK_PROTOCOL_SSLV3 can be set to "ON" to
enable SSL V3 protocol, or "OFF" to disable SSL V3 protocol. The environment
variable GSK_PROTOCOL_TLSV1 can be set to "ON" to enable TLS V1.0 protocol,
or "OFF" to disable TLS V1.0 protocol. TLS V1.1 and TLS V1.2 protocols are
disabled by default. To enable TLS V1.1 protocol, set the environment variable
GSK_PROTOCOL_TLSV1_1 to "ON". Similarly, to enable TLS V1.2 protocol, set the
environment variable GSK_PROTOCOL_TLSV1_2 to "ON".

A SAF key ring name is specified as userid/keyring. The current user ID is used if
userid is omitted. The user must have READ access to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key
ring owned by the current user. The user must have UPDATE access to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key
ring owned by another user. Note certificate private keys are not available when
using a SAF key ring owned by another user.

A PKCS #11 token is specified in the following format:
TOKEN/NAME

where NAME is the name of the PKCS #11 token. The user must have READ access
to the SO.NAME and USER.NAME resources in the CRYPTOZ class when using a PKCS
#11 token.

For more information about System SSL, see z/OS Cryptographic Services System SSL
Programming.

Function return value

The function return value is LDAP_SUCCESS if no error is detected. Otherwise, it is
one of the LDAP error codes listed in the ldap.h include file.

The following are some common errors for this routine:

LDAP_INVALID_STATE
LDAP handle is in incorrect state.

LDAP_PARAM_ERROR
A parameter is not correct.

LDAP_SSL_HANDSHAKE_FAILED
The SSL handshake failed.

LDAP_SSL_INITIALIZE_FAILED
SSL initialization failed.

ldap_ssl_start()

232 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LDAP_SSL_NOT_AVAILABLE
System SSL is not available.

LDAP_SSL_PARAM_ERROR
An SSL parameter is not correct.

ldap_ssl_start()

Chapter 3. Deprecated LDAP routines 233

ldap_ssl_start()

234 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Chapter 4. Using the LDAP client

LDAP client environment variables
The following environment variables are processed during LDAP client run time
initialization when the first LDAP API routine is called. Changes to these
environment variables after this time have no effect.
v LDAP_CLIENT_CACHE

v LDAP_CLIENT_CACHE_MAX_SIZE

v LDAP_CLIENT_CACHE_TTL

v LDAP_DEBUG

v LDAP_DEBUG_FILENAME

v LDAP_ERROR_LOGGING

v LDAP_STDERR_FILENAME

v LDAP_STDOUT_FILENAME

The following environment variables are processed as needed by the LDAP client
run time. Changes to these environment variables take effect the next time they are
used by the LDAP client run time, typically when a new LDAP handle is created.
v LDAP_EXC_ABEND_DUMP

v LDAP_SERVER_INFO_CONF

v LDAP_SSL_CIPHER_FORMAT

v LDAP_VERSION

v LDAP_V2_WIRE_FORMAT

v LOCALDOMAIN

v RESOLVER_CONFIG

v SOCKS_CONF

v SOCKS_PASSWORD

v SOCKS_SERVER

v SOCKS_USERNAME

v SOCKS_VERSION

Each environment variable is briefly described as follows:

LDAP_CLIENT_CACHE
Controls global search result caching. Specify ON to enable global search
result caching. Specify OFF to disable global search result caching. The
default is no global search result caching. All LDAP handles use the global
cache unless you use the ldap_memcache_set() routine to specify a
different cache for an LDAP handle. All search results are cached when
using the global search result cache.

LDAP_CLIENT_CACHE_MAX_SIZE
Specifies the maximum size in bytes for the global search result cache. A
value of 0 indicates that there is no maximum size. The default is 0 if the
LDAP_CLIENT_CACHE_MAX_SIZE environment variable is not defined. Older
entries are removed from the cache to make room for new entries when
the maximum cache size is reached.

© Copyright IBM Corp. 1999, 2015 235

LDAP_CLIENT_CACHE_TTL
Specifies the maximum time in seconds that an entry is retained in the
global search result cache. A value of 0 indicates that there is no expiration
time. The default is 0 if the LDAP_CLIENT_CACHE_TTL environment variable is
not defined.

LDAP_DEBUG
Specifies LDAP trace options. The value for LDAP_DEBUG is a mask that you
can specify in the following ways:
v A decimal value (for example, 32)
v A hexadecimal value (for example, x20 or X20)
v A keyword (for example, FILTER)
v A construct of these values using plus and minus signs to indicate

inclusion or exclusion of a value.

For more information about the LDAP trace options, see “Enabling tracing”
on page 242.

LDAP_DEBUG_FILENAME
Specifies the fully qualified name of the LDAP trace output file. If this
environment variable is not defined the trace output is written to stdout.
The trace file is not used if LDAP tracing is not active.

The current process identifier is included as part of the trace file name
when the name contains a percent sign (%).

Example: If LDAP_DEBUG_FILENAME is set to /tmp/ldap.%.trc and the current
process identifier is 247, the trace file name is /tmp/ldap.247.trc.

Guideline: The trace file name should include a percent sign if the
application creates extra processes that inherit environment variables
because the trace output can be corrupted if multiple processes use the
same trace file.

LDAP_ERROR_LOGGING
Specifies how error messages are logged. The following values can be
specified:

STDOUT Error messages are written to standard output as specified by the
LDAP_STDOUT_FILENAME environment variable.

STDERR Error messages are written to standard error as specified by the
LDAP_STDERR_FILENAME environment variable.

BOTH Error messages are written to both standard output and to
standard error.

If this environment variable is not defined error messages are written to
standard error.

LDAP_EXC_ABEND_DUMP
LDAP provides its own version of TRY/CATCH for handling MVS™

abends. This support uses the LE condition handler support to intercept
abends on a stack frame basis and continues execution within LDAP
instead of ending the application. Because the abend is handled by LDAP,
LE does not generate a dump for the error.

If you want a dump, set the LDAP_EXC_ABEND_DUMP environment variable to
1. This setting causes the LDAP condition handler to call the cdump()
service to dump the current thread before resuming the failing routine. The
cdump() service calls the LE CEE3DMP service to format the activation

236 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

stack and then calls the OS SNAP service to dump the virtual storage. The
formatted activation stack is written to the data set or file identified by the
CEEDUMP DD statement. If the CEEDUMP DD statement is not defined, the
formatted activation stack is placed in the current directory unless LE has
been instructed to use a different directory by the _CEE_DMPTARG
environment variable. The virtual storage dump is written to the data set
or file identified by the CEESNAP DD statement. No virtual storage dump is
generated if the CEESNAP DD statement is not defined.

LDAP_SERVER_INFO_CONF
Specifies the name of the LDAP server information file that is used by the
ldap_init() and ldap_ssl_init() routines when no host name is supplied as
part of the LDAP URL. If this environment variable is not defined the file
name defaults to /etc/ldap/ldap_server_info.conf.

LDAP_SERVER_INFO_CONF
Specifies the name of the LDAP server information file that is used by the
ldap_init() and ldap_ssl_init() routines when no host name is supplied as
part of the LDAP URL. If this environment variable is not defined the file
name defaults to /etc/ldap/ldap_server_info.conf.

LDAP_SSL_CIPHER_FORMAT
Specifies the SSL cipher suites format. Specify CHAR2 to use the 2-byte
cipher specifications that are defined by the z/OS System SSL environment
variable GSK_V3_CIPHER_SPECS. This is the default. Specify CHAR4 to use the
4-byte cipher specifications that are defined by the z/OS System SSL
environment variable GSK_V3_CIPHER_SPECS_EXPANDED.

LDAP_STDOUT_FILENAME
Specifies the fully qualified name of the file to receive standard output
messages generated using LDAP message services. If this environment
variable is not defined messages are written to stdout.

LDAP_VERSION
Specifies the LDAP protocol version that is used when the application does
not set an explicit protocol version. Valid values are 2 and 3. The default is
3 for the ldap_init() and ldap_ssl_init() routines and 2 for the ldap_open()
routine. The default is used if the environment variable is not defined or is
not set to a valid value.

LDAP_V2_WIRE_FORMAT
Specifies the LDAP protocol version 2 attribute value format when an
explicit wire format is not set by the application. Valid values are UTF-8 (or
UTF8) and ISO8859-1. The default is UTF-8 if this environment variable is
not defined or is not set to a valid value.

LOCALDOMAIN
Specifies the local DNS domain name. If this environment variable is not
defined the DNS domain name is obtained from the DNS name resolver
configuration file. The LOCALDOMAIN environment variable is used by the
system name resolver routines and by LDAP.

RESOLVER_CONFIG
Specifies the fully qualified name of the DNS name resolver configuration
file. If this environment variable is not defined the name resolver
configuration file defaults to /etc/resolv.conf. The RESOLVER_CONFIG
environment variable is used by the system name resolver routines and by
LDAP.

Chapter 4. Using the LDAP client 237

For information about the contents of the name resolver configuration file,
see “Name resolver configuration file” on page 244.

SOCKS_CONF
Specifies the fully qualified name of the SOCKS configuration file to be
used by the LDAP client run time. A SOCKS server is not used if the
SOCKS_CONF environment variable or the SOCKS_SERVER environment variable
is defined. The SOCKS_CONF environment variable takes precedence if both
SOCKS_CONF and SOCKS_SERVER are defined.

SOCKS_PASSWORD
Specifies the SOCKS password to be used when connecting to the LDAP
server through a SOCKS server. A SOCKS user name and password are
required when using the SOCKS version 5 protocol and the SOCKS server
is configured to require user authentication. An unauthenticated SOCKS
connection is used if the SOCKS user name and password are not set. Note
authentication for the SOCKS connection is separate from the bind
authentication for the LDAP server. The SOCKS user name and password
are not used for the SOCKS version 4 protocol. The SOCKS_PASSWORD
environment variable is not used if the SOCKS_USERNAME environment
variable is not also defined.

SOCKS_SERVER
Specifies the SOCKS servers to be used by the LDAP client run time as a
comma-separated list of servers. A SOCKS server is not to be used when
the SOCKS_CONF environment variable or the SOCKS_SERVER environment
variable is defined. The SOCKS_CONF environment variable takes precedence
if both SOCKS_CONF and SOCKS_SERVER are defined. Each SOCKS server is
specified as host:port. The host is a DNS name, an IPv4 address in dotted
decimal format, or an IPv6 address in colon-separated format that is
enclosed in square brackets. The port defaults to 1080 if it is not specified.

SOCKS_USERNAME
Specifies the SOCKS user name to be used when connecting to the LDAP
server through a SOCKS server. A SOCKS user name and password are
required when using the SOCKS version 5 protocol and the SOCKS server
is configured to require user authentication. An unauthenticated SOCKS
connection is used if the SOCKS user name and password are not set. Note
authentication for the SOCKS connection is separate from the bind
authentication for the LDAP server. The SOCKS user name and password
are not used for the SOCKS version 4 protocol. The SOCKS_USERNAME
environment variable is not used if the SOCKS_PASSWORD environment
variable is not also defined.

SOCKS_VERSION
Specifies the SOCKS protocol version. Valid values are 4 and 5. The default
is 4. However, the SOCKS version 5 protocol is always used when the
LDAP server address is an IPv6 address, because the SOCKS version 4
protocol does not support IPv6 addresses. You can set the SOCKS_VERSION
environment variable to 5 to cause the LDAP client run time to always use
the SOCKS version 5 protocol.

Using SSL and TLS protected communications
The LDAP client can use Secure Socket Layer (SSL) or Transport Layer Security
(TLS) to protect client communications using one of the following methods:
v To use SSL for only data integrity and confidentiality:

– Initialize the SSL client runtime using ldap_ssl_client_init().

238 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

– Initialize the LDAP handle using ldap_ssl_init().
– Bind to the server using ldap_simple_bind() or ldap_sasl_bind().

Note: This method requires separate ports for SSL and non-SSL connections.
v To use SSL for both user authentication and for data integrity and

confidentiality:
– Initialize the SSL client runtime using ldap_ssl_client_init().
– Initialize the LDAP handle using ldap_ssl_init().
– Bind to the server using ldap_sasl_bind() with the EXTERNAL mechanism.

Note: This method requires separate ports for SSL and non-SSL connections.
v To use SSL for data integrity and confidentiality for only a portion of the

session:
– Initialize the SSL client runtime using ldap_ssl_client_init().
– Initialize the LDAP handle using ldap_init().
– Bind to the server using ldap_simple_bind() or ldap_sasl_bind() with the

EXTERNAL mechanism.
– Initiate® TLS for the connection using ldap_start_tls_s_np(). (This step does

not change the authentication method established for this connection. The
established authentication method remains in place.)

– Optionally, you can rebind with ldap_sasl_bind(), any time after issuing
ldap_start_tls_s_np(), to switch to SSL authentication.

– After the secure portion of the session completes, discontinue TLS using
ldap_stop_tls_s_np().

Note: Using this method, the LDAP server can handle both SSL and non-SSL
connections using a single port.

The ldap_ssl_client_init() and ldap_ssl_init() routines are used to start a secure
connection to the LDAP server. Alternatively, the ldap_start_tls_s_np() routine can
be used to start secure communications after a non-secure connection is established
with the LDAP server.

To use SSL or TLS protected communications, the LDAP client needs access to a
key database, SAF key ring, or PKCS #11 token. A key database is stored in a file
that is accessible to the LDAP client and is created and maintained by the
gskkyman command. A SAF key ring is stored in the external security manager
and is created and maintained by the external security manager. (RACF provides
the RACDCERT command.) A PKCS #11 token is stored and protected by ICSF.
The gskkyman utility or the RACDCERT command provided by RACF can be
used to create or modify PKCS #11 tokens. ICSF uses the CRYPTOZ SAF class to
determine if the issuer of the gskkyman utility or the RACDCERT command is
permitted to perform the operation against a z/OS PKCS #11 token. See z/OS
Cryptographic Services System SSL Programming for more information about the
gskkyman utility and z/OS Security Server RACF Command Language Reference for
more information about the RACDCERT command. The key database, SAF key
ring, or PKCS #11 token must contain the root certificate for the certification chain
of the LDAP server's certificate. If the LDAP server is using a self-signed
certificate, the client key database, SAF key ring, or PKCS #11 token must also
contain this self-signed certificate. If the LDAP server is configured for client and
server authentication and the LDAP client wants to use client authentication, the
LDAP client must have its own certificate and this certificate and its certification
chain must be stored in the key database, SAF key ring, or PKCS #11 token.

Chapter 4. Using the LDAP client 239

Using the socksified client
The LDAP client can be used to contact LDAP servers through a SOCKS server.
The LDAP client has been socksified so that SOCKS Version 4 and SOCKS Version 5
servers can be used to connect to LDAP servers across firewalls on which a SOCKS
server is running. To connect to an LDAP server through a SOCKS server, the
LDAP client must be provided with the location of the SOCKS servers in your
environment. This can be done in one of two ways:
v Through the SOCKS_SERVER environment variable
v Through the SOCKS_CONF environment variable along with the specified SOCKS

configuration file.

Using the SOCKS_SERVER environment variable allows you to specify the locations of
the SOCKS servers. All connections that are made by the LDAP client runtime then
use the specified SOCKS servers. The SOCKS_SERVER environment variable is
specified as a comma-separated list of SOCKS servers. Each SOCKS server is
specified in the following format:

host:port

where:

host A DNS name, an IPv4 address in dotted decimal format, or an IPv6
address in colon-separated format enclosed in square brackets.

port This defaults to 1080 if it is not specified.

Examples:
export SOCKS_SERVER=9.14.33.90,9.130.25.36:8080
export SOCKS_SERVER=[FEC0::F4F7:0:0:7442:7501]:1080
export SOCKS_SERVER=mysockserver.mycompany.com:1075

Using the SOCKS_CONF environment variable allows you to specify the name of a
SOCKS configuration file.

Example:
export SOCKS_CONF=/home/scott/socks.conf

If the SOCKS_SERVER and SOCKS_CONF environment variables are not set, all
connections are assumed to be direct. If both the SOCKS_SERVER and SOCKS_CONF
environment variables are set, the SOCKS_CONF environment variable takes
precedence.

Rules: The following are some rules for the SOCKS configuration file:
v The contents of the file must be in the IBM-1047 code page.
v The maximum line length is 1023 characters. Longer lines are truncated.
v Blank lines are ignored.
v Comment lines must have a # as the first non-blank character.
v The keywords and their values are not case-sensitive except for the values for

the USERNAME and PASSWORD keywords. Whether the USERNAME and
PASSWORD values are case-sensitive depends on the SOCKS server. The LDAP
client run time sends the values as read from the SOCKS configuration file when
authenticating with the SOCKS server.

v Entries that are not recognized or not valid are ignored.

You can use the following keywords in the SOCKS configuration file:

240 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

VERSION
The VERSION keyword sets the SOCKS protocol version. It must be 4 or 5.
The version remains in effect until the next VERSION keyword. The initial
value for the SOCKS protocol version is set by the SOCKS_VERSION
environment variable.
VERSION number

USERNAME
The USERNAME keyword sets the SOCKS authentication user name. This
user name is used for the SOCKS version 5 protocol to authenticate the
connection with the SOCKS server. The user name remains in effect until
the next USERNAME keyword. The initial value for the SOCKS user name
is set by the SOCKS_USERNAME environment variable.
USERNAME name

PASSWORD
The PASSWORD keyword sets the SOCKS authentication password. This
password is used for the SOCKS version 5 protocol to authenticate the
connection with the SOCKS server. The password remains in effect until
the next PASSWORD keyword. The initial value for the SOCKS password
is set by the SOCKS_PASSWORD environment variable.
PASSWORD password

SOCKD
The SOCKD keyword tells the SOCKS client which SOCKS server or
servers to use. The SOCKS protocol version is obtained from the most
recent VERSION keyword. If there is no VERSION keyword preceding the
SOCKD keyword, the SOCKS protocol version is 4 if the LDAP server
address is an IPv4 address and 5 if the LDAP server address is an IPv6
address. An unauthenticated SOCKS connection is always used for the
SOCKS version 4 protocol. An authenticated SOCKS connection is used for
the SOCKS version 5 protocol if the USERNAME and PASSWORD
keywords were specified before the SOCKD keyword. Otherwise, an
unauthenticated SOCKS connection is used.
SOCKD @= server-list destination-address destination-mask

For compatibility with other implementations, the space can be omitted
between the SOCKD keyword and the server list.
SOCKD@= server-list destination-address destination-mask

DENY The DENY keyword tells the SOCKS client which IP address or addresses
it should refuse.
DENY destination-address destination-mask

DIRECT
The DIRECT keyword tells the SOCKS client that it should bypass the
SOCKS server for the given IP address or addresses.
DIRECT destination-address destination-mask

where:

server-list
Consists of one or more comma-separated SOCKS server specifications.
Specify each SOCKS server as host:port,

where:

host A DNS name, an IPv4 address in dotted decimal format, or an IPv6
address in colon-separated format enclosed in square brackets.

Chapter 4. Using the LDAP client 241

port This defaults to 1080 if it is not specified.

destination-address
An IPv4 address in dotted decimal format or an IPv6 address in
colon-separated format.

destination-mask
An IP address in the same format as destination-address (IPv4 or IPv6). An
IPv6 value is not enclosed in square brackets when used for
destination-address or destination-mask because there is no ambiguity with a
port specification.

Matching is performed by ANDing the LDAP server address with the
destination mask and comparing the result to the destination address. The
first matching line in the configuration file is used. Therefore, if you list the
SOCKD keyword before the DIRECT or DENY keywords, all connections
that match the SOCKD line go through the SOCKS server even though
there is another matching line in the configuration file.

Example: The following is a sample SOCKS configuration file:
##
Sample SOCKS Configuration File
#
Entirely blank lines are ignored.
Lines with # in the first column are also ignored.
#
DENY dst_addr dst_mask
DIRECT dst_addr dst_mask
VERSION 5
USERNAME myname
PASSWORD mypw
SOCKD @=serverlist dst_addr dst_mask
#
On connect, each line is processed in order and the first line
that matches is used. If no line matches, the address is assumed
to be direct.
#
In order to cause all non-specified addresses to fail, place the
following line at the end of the file:
#
DENY 0.0.0.0 0.0.0.0
#
In this example, we are on network 192.168.100.x and the
socks server is on the 192.168.100.205 system. All LDAP
traffic to systems on the 192.168.100 net will be connected
directly, while traffic to all other addresses will be
through the SOCKS server.
#
##

DIRECT 192.168.100.0 255.255.255.0
SOCKD @=192.168.100.205 0.0.0.0 0.0.0.0

Enabling tracing
Tracing can be enabled in the LDAP programming interface. Any change to trace
options is global and affects all LDAP handles. There are two methods to enable
tracing:
1. The first method is to use the ldap_set_option() API, specifying the option to

be set as LDAP_OPT_DEBUG or LDAP_OPT_DEBUG_STRING. Once a new debug level is
set using this method, the debug level that is specified with the LDAP_DEBUG
environment variable is no longer in effect.

242 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Example: To enable all trace classes using the ldap_set_option() API, specify
one of the following:

rc = ldap_set_option(ld, LDAP_OPT_DEBUG, LDAP_DEBUG_ANY);

or

rc = ldap_set_option(ld, LDAP_OPT_DEBUG_STRING, "ANY");

The value that is specified for LDAP_OPT_DEBUG_STRING is a string that can have
the same values as the LDAP_DEBUG environment variable. The call to
ldap_set_option() can occur at any point after calling ldap_init() and before
calling ldap_unbind() or ldap_unbind_s() to set or change debug options.

2. The second method for enabling tracing is to set the LDAP_DEBUG environment
variable. The value for LDAP_DEBUG is a mask that you can specify as follows:
v A decimal value (for example, 32).
v A hexadecimal value (for example, x20, X20, 0x20, or 0X20)
v A keyword (for example, FILTER)
v A construct of those values using plus and minus signs to indicate inclusion

or exclusion of a value. For example:
– ’32768+8’ is the same as specifying ’x8000+x8’, or ’ERROR+CONNS’
– '2147483647-16' is the same as specifying 'x7FFFFFFF-x10' or 'ANY-BER'
– By beginning the debug level with a minus sign, you can deactivate

debug collection for a debug level. For example, "-CONNS" modifies an
existing debug level by deactivating connection traces.

– By beginning the debug level with a plus sign, you can activate debug
collection for a debug level. For example, "+CONNS" modifies an existing
debug level by activating connection traces.

Note: Specifying the debug level using decimal or hex values with a plus or
minus sign is not necessarily the same as specifying the sum or difference as
the debug level. For example, specifying '7+1' activates the 'TRACE',
'PACKETS', and 'ARGS' debug levels, while specifying '8' activates only the
'CONNS' debug level. Similarly, specifying '16-1' activates only the 'BER'
debug level, while specifying '15' activates 'TRACE', 'PACKETS', ARGS', and
'CONNS'.

Restrictions: To enable or change tracing using this method, the LDAP_DEBUG
environment variable must be set or changed before the client run time is first
initialized. Later changes to the value of LDAP_DEBUG have no effect on the
debug level of the client. If the debug level is set or changed using the
LDAP_OPT_DEBUG or LDAP_OPT_DEBUG_STRING option, the debug level that is
specified with the LDAP_DEBUG environment variable is no longer in effect.
The LDAP trace routine uses the IBM-1047 code page when writing text data to
the trace data set. The trace output is written to stdout unless the
LDAP_DEBUG_FILENAME environment variable is defined. If the application creates
additional processes, specify % as part of the trace file name. This causes the %
to be replaced by the current process identifier, therefore, generating a unique
file name for each process. Failure to do this can cause the trace file to be
corrupted because locking is done on a process basis.
Example: The following example shows the use of % in the trace file name.

export LDAP_DEBUG_FILENAME=/tmp/myapp.%.trc

Table 5 on page 244 lists the debug levels and related decimal, hexadecimal,
and keyword values. Keywords can be abbreviated using the uppercase
characters for each keyword.

Chapter 4. Using the LDAP client 243

Table 5. LDAP debug levels

Keyword Decimal Hexadecimal Description

OFF 0 0x00000000 No debugging

TRACe 1 0x00000001 Entry and exit from routines

PACKets 2 0x00000002 Packet activity

ARGS 4 0x00000004 Data arguments from requests

CONNs 8 0x00000008 Connection activity

BER 16 0x00000010 Encoding and decoding of data, including ASCII
and EBCDIC translations, if applicable

FILTer 32 0x00000020 Search filters

MESSage 64 0x00000040 Messaging subsystem activities and events

ACL 128 0x00000080 Access Control List activities

STATs 256 0x00000100 Operational statistics

THREad 512 0x00000200 Threading activities

REPLication 1024 0x00000400 Replication activities

PARSe 2048 0x00000800 Parsing activities

PERFormance 4096 0x00001000 Performance statistics

SDBM 8192 0x00002000 Backend activities (SDBM)

REFErral 16384 0x00004000 Referral activities

ERROr 32768 0x00008000 Error conditions

SYSPlex 65536 0x00010000 Sysplex/WLM activities

MULTIServer 131072 0x00020000 Multi-server activities

LDAPBE 262144 0x00040000 Connection between a frontend and a backend

STRBuf 524288 0x00080000 UTF-8 support activities

TDBM 1048576 0x00100000 Backend activities (TDBM)

SCHEma 2097152 0x00200000 Schema support activities

BECApabilities 4194304 0x00400000 Backend capabilities

CACHe 8388608 0x00800000 Cache activities

INFO 16777216 0x01000000 General processing information

LDBM 33554432 0x02000000 Backend activities (LDBM)

PLUGin 67108864 0x04000000 Plug-in extension activities

ANY 2147483647 0x7FFFFFFF All levels of debug

ALL 2147483647 0x7FFFFFFF All levels of debug

Note: The minimum abbreviation for each keyword is shown in uppercase letters.

Name resolver configuration file
The name resolver configuration file is used by the LDAP client when it must
locate an LDAP server. The resolver configuration file name is specified by the
RESOLVER_CONFIG environment variable and defaults to /etc/resolv.conf.

Rules: The resolver configuration file must follow these rules:

244 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

v Each line in the configuration file has a maximum length of 255 characters and
consists of a keyword and a value that is separated by one or more white space
characters.

v Comment lines begin with # or ;.
v Blank lines are ignored.
v The configuration file must be in the IBM-1047 code page.
v The keywords and their values are not case-sensitive.
v The NSINTERADDR and NAMESERVER keywords can be specified on multiple

lines and the name server list includes all the specified addresses.
v The SEARCH keyword can be specified on multiple lines and the domain list

includes all the specified names.
v Keywords other than NSINTERADDR, NAMESERVER, and SEARCH should be

specified once. If the resolver configuration file specifies one of these other
keywords more than once, the LDAP name resolver uses the last occurrence.

The LDAP name resolver uses the following keywords in the resolver
configuration file and ignores any other values:

DOMAIN Specifies the default DNS domain name. The DOMAIN and
DOMAINORIGIN keywords are the same and can be used interchangeably.
The DOMAIN, DOMAINORIGIN, and SEARCH keywords are mutually
exclusive. The search list specified by the SEARCH keyword is deleted if
the DOMAIN keyword follows the SEARCH keyword. This keyword is
ignored if the LOCALDOMAIN environment variable is defined.

DOMAINORIGIN
Specifies the default DNS domain name. The DOMAIN and
DOMAINORIGIN keywords are the same and can be used interchangeably.
The DOMAIN, DOMAINORIGIN, and SEARCH keywords are mutually
exclusive. The search list specified by the SEARCH keyword is deleted if
the DOMAINORIGIN keyword follows the SEARCH keyword. This
keyword is ignored if the LOCALDOMAIN environment variable is defined.

NAMESERVER
Specifies the network address of a DNS name server. An IPv4 address is
specified in dotted decimal format. An IPv6 address is specified in
colon-hexadecimal format. The NSINTERADDR and NAMESERVER
keywords are the same and can be used interchangeably.

NSINTERADDR
Specifies the network address of a DNS name server. An IPv4 address is
specified in dotted decimal format. An IPv6 address is specified in
colon-hexadecimal format. The NSINTERADDR and NAMESERVER
keywords are the same and can be used interchangeably.

NSPORTADDR
Specifies the well-known port for the DNS name servers. This is a decimal
number and defaults to 53.

RESOLVERTIMEOUT
Specifies the number of seconds to wait for an answer. This is a decimal
number and defaults to 5 seconds.

RESOLVERUDPRETRIES
Specifies the number of retries when using UDP (User Datagram Protocol).
This is a decimal number and defaults to 1.

SEARCH Specifies one or more DNS domain names. (Multiple domain names are

Chapter 4. Using the LDAP client 245

separated by white space characters.) These domains are searched in order
when looking for an LDAP resource name. The DOMAIN,
DOMAINORIGIN, and SEARCH keywords are mutually exclusive. The
default domain is set to the first domain specified by the SEARCH
keyword and replaces a value specified by the DOMAIN or
DOMAINORIGIN keyword. This keyword is ignored if the LOCALDOMAIN
environment variable is defined.

Example: The following is a sample name resolver configuration file:
##
Sample name resolver configuration file
##
TCPIPJobname CS390IP
DatasetPrefix SHR.CS390IP
ResolveVIA UDP
ResolverTimeout 5
NameServer 9.130.77.115
NameServer 9.130.40.252
NameServer 9.130.40.242
Domain endicott.ibm.com

For more information about the contents of the name resolver configuration file,
see z/OS V2R2.0 Communications Server: IP Configuration Reference.

LDAP server information file
Information about LDAP server locations and capabilities can be saved in a server
information file. The ldap_server_locate() routine can read this server information
file when the LDAP client must locate a server. You can create this file using the
ldap_server_conf_save() routine, or you can create and maintain it manually.

Guideline: Use the ldap_server_conf_save() routine to create the server
information file.

Rules: If you choose to create and manually maintain the server information file,
follow these rules:
v The contents of the file must be in the IBM-1047 code page.
v The maximum line length is 1023 characters.
v Blank lines are ignored.
v Comment lines must have a # as the first non-blank character.
v All parameters are positional.
v The first non-comment line must contain the expiration time for the file. This

time is a decimal number and is expressed as a POSIX time value (number of
seconds since January 1, 1970 UTC). A value of 0 indicates that the file does not
expire.

v Each line following the server-information-file expiration time represents an
LDAP server definition.

v Incorrect numeric values are treated as zero values.

Each LDAP server is defined by a line in the following format:
service domain host [priority [weight [port [replica [security [naming [vendor [general]]]]]]]]

The fields are positional and are defined as follows:

246 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

service
Specifies the service name and is formed by combining the service key and the
optional eNetwork domain name as service_key.enetwork_domain. This field must
be specified.

domain
Specifies the DNS domain name for the LDAP server. This field must be
specified.

host
Specifies the fully qualified DNS name of the LDAP server host. This field
must be specified.

priority
A decimal number that specifies the priority that is assigned to the LDAP
server. The ldap_server_locate() routine returns the server list that is ordered
by priority. (The priority decreases as the priority number increases.) Specify 0
for the priority if the servers are not to be ordered by priority. This field can be
omitted if all the following fields are also omitted, in which case the priority
defaults to 0.

weight
A decimal number that specifies the weight that is assigned to the LDAP
server within the priority classification. The weight is used as a load-balancing
mechanism and indicates the capacity of the LDAP server relative to other
servers with the same priority value. Servers with a larger weight are selected
more often than servers with a smaller weight. Specify 0 for the weight if load
balancing is not needed. This field can be omitted if all the following fields are
also omitted, in which case the weight defaults to 0.

port
A decimal number that specifies the port to use to contact the LDAP server.
This field can be omitted if all the following fields are also omitted, in which
case the port defaults to 389.

replica
Specifies whether the LDAP server is a master or a replica. Specify 1 to
indicate master and 2 to indicate replica. This field can be omitted if all the
following fields are also omitted, in which case replica defaults to 0 (replica
type not specified).

security
Specifies the connection security mechanism. Specify 1 to indicate non-SSL and
2 to indicate SSL. This field can be omitted if all the following fields are also
omitted, in which case the security defaults to 0 (security type not specified).

naming
Specifies the naming context that is supported by the server. The string must
be enclosed in double quotation marks if it contains any white space
characters. A double quotation mark or backslash in the string must be escaped
using a backslash. Multiple server entries must be defined if the LDAP server
supports more than one naming context. This field can be omitted if all the
following fields are also omitted. Otherwise, it must be specified as "" if there
is no naming context for the LDAP server.

vendor
Specifies vendor information for the LDAP server. The string must be enclosed
in double quotation marks if it contains any white space characters. A double
quotation mark or backslash in the string must be escaped using a backslash.

Chapter 4. Using the LDAP client 247

This field can be omitted if the following field is also omitted. Otherwise, it
must be specified as "" if there is no vendor information for the LDAP server.

general
Specifies general information for the LDAP server. The string must be enclosed
in double quotation marks if it contains any white space characters. A double
quotation mark or backslash in the string must be escaped using a backslash.
This field can be omitted or specified as "" if there is no general information
for the LDAP server.

Example of a server information file
Following is a sample server information file:

##
Sample LDAP local configuration file
##
0
ldap.research endicott.ibm.com sysa.endicott.ibm.com 0 0 389 1 1
ldap.research endicott.ibm.com sysa.endicott.ibm.com 0 0 636 1 2
ldap.research endicott.ibm.com backup.endicott.ibm.com 5 0 389 1 1
ldap.research endicott.ibm.com backup.endicott.ibm.com 5 0 636 1 2
_ldap endicott.ibm.com sysb.endicott.ibm.com 0 0 636 1 2 "o=ibm,c=us"
_ldap endicott.ibm.com sysb.endicott.ibm.com 0 0 636 1 2 "dc=ibm,dc=com"
_ldap.endicott.ibm.com replica.endicott.ibm.com 0 0 636 2 2 "o=ibm,c=us"
_ldap encoditt.ibm.com replica.endicott.ibm.com 0 0 636 2 2 "dc=ibm,dc=com"

The sysa.endicott.ibm.com and backup.endicott.ibm.com systems have LDAP
servers that are part of the research eNetwork domain. The LDAP server on
backup.endicott.ibm.com is used only if the LDAP server on
sysa.endicott.ibm.com is not available. Note that there are two entries for each
host: one for the non-SSL connection and the other for the SSL connection.

The sysb.endicott.ibm.com and replica.endicott.ibm.com systems have LDAP
servers that are not part of an eNetwork domain. They support naming contexts
"o=ibm,c=us" and "dc=ibm,dc=com". The LDAP server on sysb.endicott.ibm.com is
the master server and the LDAP server on replica.endicott.ibm.com is a replica
server. Note that there are two entries for each host: one for naming context
"o=ibm,c=us" and the other for naming context "dc=ibm,dc=com".

Publishing LDAP server information in DNS
If DNS is to be used to publish LDAP server information, the relevant DNS name
server or servers must be configured with the appropriate SRV and TXT records
that reflect the LDAP servers available in the enterprise. SRV records are used to
identify the LDAP servers in the enterprise along with appropriate priority and
weight values. TXT records are associated with each LDAP server host to specify
the LDAP URL used to access the LDAP server on that host and to provide
information about the capabilities of the LDAP server. If SRV records are not
supported by the DNS name server, TXT records can be used to emulate the SRV
records or a CNAME record can be used to point directly to a single LDAP server
host.

Domain name service resource names have a maximum length of 255 characters
and use the ISO8859-1 code page. LDAP converts character parameters that are
supplied by the application from the local EBCDIC code page to the ISO8859-1
code page when sending a request to the domain name server, and then converts
the name server response from the ISO8859-1 code page back to the local EBCDIC
code page when returning the results to the application.

248 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The domain name server list must either contain the name server that is
authoritative for the zone containing the LDAP server information, or one of the
domain name servers in the list must support recursion and forward the query to
the authoritative name server.

The DNS lookup routine ignores unrecognized TXT records and TXT records
containing syntax errors.

Using SRV and TXT records
The DNS lookup routine looks for SRV records first. If one or more servers are
found, this server information is used and the second algorithm, which is based on
TXT records that emulate SRV records, is not used. The use of SRV records for
finding the address of servers is described in RFC 2052: A DNS RR for specifying the
location of services (DNS SRV). Proper use of SRV records permits the administrator
to distribute a service across multiple hosts within a domain, to move the service
from host to host without disruption, and to designate certain hosts as primary
and others as alternates.

TXT records are simply character strings that are associated with a DNS resource
name. LDAP uses TXT records to associate LDAP server information with a DNS
host name. To implement the technique that is described in RFC 2052, the DNS
name server must support both SRV and TXT records.

An SRV resource record (RR) has the following components:
service.protocol.domain ttl class SRV priority weight port target

The fields are positional and are defined as follows:

service
Symbolic name of the service. The service name is formed by concatenating the
service key and the eNetwork domain name (if any). The LDAP client accepts
either ldap or _ldap for the service key. The latest version of RFC 2052
recommends the use of _ldap instead of ldap.

protocol
Protocol used to access the service. The LDAP client accepts either tcp or _tcp.
The latest version of RFC 2052 recommends the use of _tcp instead of tcp.

domain
Domain name associated with the resource record.

ttl
Time-to-live in seconds.

class
Class (must be IN for internet).

SRV
Indicates this is an SRV record.

priority
Service priority. LDAP servers are ordered by priority with the lower priority
numbers ordered before the higher priority numbers. Set the priority to 0 if
priority ordering is not wanted.

weight
Load balancing within the same priority. A higher weight number indicates
that the server can handle more requests than a lower weight number. The
probability that a server is ordered early in the list increases as the weight

Chapter 4. Using the LDAP client 249

http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2052.txt.pdf

increases. Set the weight to 0 if load balancing is not wanted. Otherwise, use
nonzero values for all the weights within the same priority. (An SRV record
with a weight of 0 has a low probability of being ordered before an SRV record
with a nonzero weight).

port
The port assigned to the LDAP server. This value is ignored if the target
address record has a service TXT record. If the port number is 0, the port is
set to 389.

target
The name of the target address resource record (A, AAAA, or A6). The host name
used to connect to the LDAP server is obtained from the service TXT record
associated with this resource name. If there is no service TXT record defined
for the target, the IP address is obtained from the address record.

A TXT record has the following format:
name TXT "string"

The fields are positional and are defined as follows:

name
Resource name associated with the TXT record.

TXT
Indicates this is a TXT record.

string
Text value.

A TXT record defining a non-SSL server connection has the following format:
name TXT "service:ldap://host-name[:port][/naming-context]"

The host name must be specified. The port defaults to 389 if it is not specified. A
naming context can be specified to allow server entries to be selectively filtered
based upon a distinguished name. Multiple service TXT records must be defined
if more than one naming context is defined for a single LDAP server or if the
LDAP server supports both SSL and non-SSL connections.

A TXT record defining an SSL server connection has the following format:
name TXT "service:ldaps://host-name[:port][/naming-context]"

The host name must be specified. The port defaults to 636 if it is not specified. A
naming context can be specified to allow server entries to be selectively filtered
based upon a distinguished name. Multiple service TXT records must be defined
if more than one naming context is defined for a single LDAP server or if the
LDAP server supports both SSL and non-SSL connections.

A TXT record defining a master LDAP server has the following format:
name TXT "ldaptype:master"

The last ldaptype TXT record encountered is used if more than one ldaptype TXT
record is defined for the same target.

A TXT record defining a replica LDAP server has the following format:
name TXT "ldaptype:replica"

250 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

The last ldaptype TXT record encountered is used if more than one ldaptype TXT
record is defined for the same target.

A TXT record defining server vendor information has the following format:
name TXT "ldapvendor:vendor-information"

The LDAP client does not use the vendor information but makes it available to the
application. The last ldapvendor TXT record encountered is used if more than one
ldapvendor TXT record is defined for the same target.

A TXT record defining general server information has the following format:
name TXT "ldapinfo:general-information"

The LDAP client does not use the general information but makes it available to the
application. The last ldapinfo TXT record encountered is used if more than one
ldapinfo TXT record is defined for the same target.

Example of DNS resource records
The following are the DNS resource records that correspond to the sample server
information file described in “Example of a server information file” on page 248.
These examples assume that the DNS name server database provides appropriate
default values for the ttl and class fields, the resource record name can be omitted
if it is the same as the preceding record, and the domain origin is
endicott.ibm.com.

ldap.research.tcp SRV 0 0 0 sysa
SRV 5 0 0 backup

_ldap._tcp SRV 0 0 0 sysb
SRV 0 0 0 replica

sysa A 9.130.25.34
TXT "service:ldap://sysa.endicott.ibm.com:389"
TXT "service:ldaps://sysa.endicott.ibm.com:636"

backup A 9.130.25.35
TXT "service:ldap://backup.endicott.ibm.com:389"
TXT "service:ldaps://backup.endicott.ibm.com:636"

sysb A 9.130.36.4
TXT "service:ldaps://sysb.endicott.ibm.com:636/dc=ibm,dc=com"
TXT "service:ldaps://sysb.endicott.ibm.com:636/o=ibm,c=us"
TXT "ldaptype:master"

replica A 9.130.36.5
TXT "service:ldaps://replica.endicott.ibm.com:636/dc=ibm,dc=com"
TXT "service:ldaps://replica.endicott.ibm.com:636/o=ibm,c=us"
TXT "ldaptype:replica"

Note that there are two service TXT records for sysa.endicott.ibm.com and
backup.endicott.ibm.com, one for the non-SSL port and one for the SSL port.
Similarly, there are two service TXT records for sysb.endicott.ibm.com and
replica.endicott.ibm.com: one for naming context "dc=ibm,dc=com" and one for
naming context "o=ibm,c=us".

These LDAP servers could also be defined using a single service TXT record for
each resource name. In this case, multiple SRV and host address records are
needed. While it is preferable to use a single SRV record for each LDAP server,
some implementations of the LDAP DNS support might require multiple SRV
records with a single service TXT record for each resource name. The definitions
would then be as follows:

ldap.research.tcp SRV 0 0 0 sysa
SRV 0 0 0 sysasec
SRV 5 0 0 backup
SRV 5 0 0 backupsec

_ldap._tcp SRV 0 0 0 sysb1
SRV 0 0 0 sysb2
SRV 0 0 0 replica1
SRV 0 0 0 replica2

Chapter 4. Using the LDAP client 251

sysa A 9.130.25.34
TXT "service:ldap://sysa.endicott.ibm.com:389"

sysasec A 9.130.25.34
TXT "service:ldaps://sysa.endicott.ibm.com:636"

backup A 9.130.25.35
TXT "service:ldap://backup.endicott.ibm.com:389"

backupsec A 9.130.25.35
TXT "service:ldaps://backup.endicott.ibm.com:636"

sysb1 A 9.130.36.4
TXT "service:ldaps://sysb.endicott.ibm.com:636/dc=ibm,dc=com"
TXT "ldaptype:master"

sysb2 A 9.130.36.4
TXT "service:ldaps://sysb.endicott.ibm.com:636/o=ibm,c=us"
TXT "ldaptype:master"

replica1 A 9.130.36.5
TXT "service:ldaps://replica.endicott.ibm.com:636/dc=ibm,dc=com"
TXT "ldaptype:replica"

replica2 A 9.130.36.5
TXT "service:ldaps://replica.endicott.ibm.com:636/o=ibm,c=us"
TXT "ldaptype:replica"

Using TXT records to emulate SRV records
If no servers are found using SRV records, the search is repeated using TXT
records to emulate SRV records. The previous example would be defined as
follows using pseudo-SRV records:

Example:
ldap.research.tcp TXT "0 0 0 sysa.endicott.ibm.com."

TXT "5 0 0 backup.endicott.ibm.com."
_ldap._tcp TXT "0 0 0 sysb.endicott.ibm.com."

TXT "0 0 0 replica.endicott.ibm.com."
sysa A 9.130.25.34

TXT "service:ldap://sysa.endicott.ibm.com:389"
TXT "service:ldaps://sysa.endicott.ibm.com:636"

backup A 9.130.25.35
TXT "service:ldap://backup.endicott.ibm.com:389"
TXT "service:ldaps://backup.endicott.ibm.com:636"

sysb A 9.130.36.4
TXT "service:ldaps://sysb.endicott.ibm.com:636/dc=ibm,dc=com"
TXT "service:ldaps://sysb.endicott.ibm.com:636/o=ibm,c=us"
TXT "ldaptype:master"

replica A 9.130.36.5
TXT "service:ldaps://replica.endicott.ibm.com:636/dc=ibm,dc=com"
TXT "service:ldaps://replica.endicott.ibm.com:636/o=ibm,c=us"
TXT "ldaptype:replica"

Fully qualified host names (including the final period) should be used as the target
on the pseudo-SRV records because, unlike SRV records, the DNS name server
does not resolve them when providing the answer to the LDAP client. The LDAP
client assumes that a relative name used as a target host name in a pseudo-SRV
record is in the same domain as the resource name used to access the record.

Using CNAME records
If no servers are found using SRV records or pseudo-SRV records, the search is
repeated using a single host entry designated by a CNAME record. This method
allows a single LDAP server to be associated with a service name. The previous
example could be represented as follows with a single LDAP server for each
service name:

Example:
ldap.research.tcp CNAME sysa
_ldap._tcp CNAME sysb
sysa A 9.130.25.34

TXT "service:ldap://sysa.endicott.ibm.com:389"
TXT "service:ldaps://sysa.endicott.ibm.com:636"

252 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

sysb A 9.130.36.4
TXT "service:ldaps://sysb.endicott.ibm.com:636/dc=ibm,dc=com"
TXT "service:ldaps://sysb.endicott.ibm.com:636/o=ibm,c=us"
TXT "ldaptype:master"

ldap_server_locate() usage by ldap_init() and ldap_ssl_init()
The ldap_init() and ldap_ssl_init() routines are used to establish connections to
LDAP servers. These routines accept a URL to identify the host and port of an
LDAP server. The LDAP URL for a non-SSL connection is:

ldap://host:port/dn?attributes?scope?filter

and the LDAP URL for an SSL connection is:
ldaps://host:port/dn?attributes?scope?filter

where:

host Specifies the DNS host name of the LDAP server.

port Specifies the port number for the LDAP server and defaults to 389 for a
non-SSL connection and 636 for an SSL connection.

dn Specifies a distinguished name used to select available LDAP servers that
are based upon the defined naming contexts.

The attributes, scope, and filter values are ignored when binding to the LDAP server.

The ldap_server_locate() routine is called to locate the LDAP server if no host
name is specified as part of the LDAP URL. The ldap_server_locate() routine
searches the server information file followed by the DNS name server. The server
information file is defined by the LDAP_SERVER_INFO_CONF environment variable and
defaults to /etc/ldap/ldap_server_info.conf if this environment variable is not
defined.

The following URL causes the ldap_init() routine to call the ldap_server_locate()
routine to locate an LDAP server that supports naming context "o=IBM,c=US" using
a non-secure (non-SSL) connection:

Example:
ldap:///cn=Scott,o=IBM,c=US

Chapter 4. Using the LDAP client 253

254 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Chapter 5. LDAP client utilities

Several utility programs are provided that implement some of the LDAP APIs.
These utilities provide a way to add, compare, modify, search, and delete entries in
any server accepting LDAP protocol requests.

Each of the following utilities can be run from the z/OS shell or TSO:
v ldapchangepwd

v ldapcompare

v ldapdelete

v ldapadd

v ldapmodify

v ldapmodrdn

v ldapsearch

See “Using the LDAP client utilities” on page 256 for information about how the
utilities authenticate to the targeted LDAP server.

Restriction: This topic does not contain programming interface information.

Running the LDAP client utilities in the z/OS shell
To run any of these utilities in the shell, some environment variables must be set
properly. Ensure that /bin is included in the PATH environment variable. Set
STEPLIB to SYS1.SIEALNKE if that data set is not in the LNKLIST.

Running the LDAP client utilities in TSO
The LDAP client utilities can be run from TSO. To do this, some elements of the
environment must be set up to locate the LDAP programs. Following are the steps
to do this:
1. The PDS (SYS1.SIEALNKE) where the LDAP utility load modules were

installed must be accessible through LNKLIB, LPALIB, or specified on the
TSOLIB command.
tsolib act dsn(’SYS1.SIEALNKE’)

2. The PDS (GLDHLQ.SGLDEXEC) containing the CLISTs needed to run the
utilities must be available in SYSEXEC:
alloc f(SYSEXEC) da(’GLDHLQ.SGLDEXEC’)

3. The default environment variables file for the utilities can be changed by
creating a data set to hold the environment variables and then by using the
TSO alloc command as shown:
alloc f(ENVVAR) da(’datasetname’)

If you are using the utilities in interactive mode (for example, reading Dns,
changetype: lines, and so on, from standard input), you can break out of
interactive mode by pressing the PA1 key. Doing this returns the TSO session to
the READY prompt. This is like pressing Ctrl+C keys in z/OS UNIX System
Services.

© Copyright IBM Corp. 1999, 2015 255

After this setup is complete, running these utilities follows the same syntax as
would be used if running them in z/OS, except that the program names are eight
characters or less. To run these utilities from TSO, use the following names:

Table 6. Names for running LDAP client utilities from TSO

z/OS shell name TSO name

ldapadd ldapadd

ldapchangepwd ldapchpw

ldapcompare ldapcmpr

ldapdelete ldapdlet

ldapmodify ldapmdfy

ldapmodrdn ldapmrdn

ldapsearch ldapsrch

Using the LDAP client utilities
The ldapadd, ldapchangepwd, ldapcompare, ldapdelete, ldapmodify,
ldapmodrdn, and ldapsearch utilities support authenticating with LDAP version 2
or 3 to the targeted LDAP server. By default, the client utilities use LDAP version 3
unless -V 2 is specified on the command line.

If LDAP version 2 is used, the client utilities invoke the ldap_sasl_bind_s() routine
to perform a simple or anonymous bind (authentication) to the targeted LDAP
server.

If LDAP version 3 is used, the client utilities invoke the ldap_sasl_bind() routine
to perform a simple, CRAM-MD5, DIGEST-MD5, GSSAPI (Kerberos), or
EXTERNAL bind and send the password policy control
(1.3.6.1.4.1.42.2.27.8.5.1) as a non-critical control to the targeted LDAP server.
(If an anonymous bind is done while in LDAP version 3, the client utilities do not
invoke a bind routine). The bind mechanism used by the client utilities is
determined by the -m or -S parameter.

When the bind routine is invoked, several results can be returned. Following are
bind results by using various combinations of user IDs and passwords:
1. If a null or zero length DN is specified, the user receives unauthenticated

access.
2. If a non-null, nonzero length DN is specified, a password must also be

specified.
v If the DN falls outside the scope of the suffixes that are managed by the

server, the DN must match one of the adminDN, masterServerDN, or
peerServerDN configuration file options specified in the server configuration
file, and the password must match the corresponding adminPW,
masterServerPW, or peerServerPW configuration file option. In this case, the
user is bound as the LDAP server root administrator or as the master or peer
replica administrator.

v If the DN falls within the scope of a suffix managed by the server, then there
must be an entry in the server directory for that DN. The password specified
by the user must match a password associated with the entry. The user is
then bound with that identity. If the DN also matches one of the adminDN,
masterServerDN, or peerServerDN configuration file options specified in the
server configuration file, then the user is bound as the LDAP server root

256 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

administrator or as the master or peer replica administrator. If the DN has
been assigned one or more administrative roles, then the user is bound with
those administrative roles. See Administration groups and roles in z/OS IBM
Tivoli Directory Server Administration and Use for z/OS for more information
about administrative roles.

An error is returned when binding with any other combination of user ID and
password.

Note: If you are using an LDAP server other than the z/OS LDAP server, the bind
results might be different.

If the targeted LDAP server supports the password policy control and the user
specified during the simple, CRAM-MD5, or DIGEST-MD5 bind is subject to
password policy on the LDAP server, the LDAP server returns a password policy
control response to the client utilities. If a password policy control response is
returned by the targeted LDAP server, the client utilities parse and display the
password policy warning or error message. The following are examples of
password policy warnings and errors displayed by the client utilities after
retrieving the bind result message.
1. This example shows the results of a simple, CRAM-MD5, or DIGEST-MD5

authentication when the user's password is expired. In this example, the user
does not successfully authenticate to the targeted LDAP server because the
password has expired. The utility ends because authentication is not successful.
ldap_sasl_bind: Credentials are not valid
ldap_sasl_bind: additional info: R004196 The ’userpassword’ attribute value has
passed its maximum age of 999999 seconds (srv_pwd_bind_check:3412)

ldap_sasl_bind: Error, password has expired

2. This example shows the results of a simple, CRAM-MD5, or DIGEST-MD5
authentication when the user's password must be changed after a reset and
there is one grace login remaining. In this example, the user is authenticated to
the targeted LDAP server because there are grace logins remaining. The utility
continues running and attempts the operations specified in the input file,
standard input, or on the command line.
ldap_sasl_bind: Password must be changed
ldap_sasl_bind: Warning, 1 grace logins remain
continuing processing...

3. This example shows the results of a simple, CRAM-MD5, or DIGEST-MD5
authentication when the user's password is to expire in just over 10 days. In
this example, the user is authenticated to the targeted LDAP server because the
password has not yet expired. The utility continues running and attempts the
operations specified in the input file, standard input, or on the command line.
ldap_sasl_bind: Warning, time before password expiration is 900643
ldap_sasl_bind: additional info: Time before password expiration is 10
days and 10:10:43

continuing processing...

The first message indicates the password expiration in number of seconds
while the second message converts the number of seconds into a more readable
format.

If LDAP version 3 is used in the ldapadd, ldapchangepwd, ldapcompare, and
ldapmodify utilities, the password policy control is also automatically sent as a
non-critical control to the targeted LDAP server on each add, compare, and modify
operation. If the user being added, compared, or modified is subject to password
policy on that server, the LDAP server returns a password policy control response
to the client utilities. The client utilities parse and display the password policy

Chapter 5. LDAP client utilities 257

warning or error message. The following are examples of password policy
warnings and errors displayed by the client utilities after issuing the add, compare,
or modify operation.
1. This example shows the results of modifying a user's password value after

already being successfully authenticated to the targeted LDAP server. The
modify operation failed because the new password value is not 8 characters or
longer.
ldap_modify: Constraint violation
ldap_modify: additional info: R004194 The ’userpassword’ attribute
value requires a minimum of 8 characters (pwd_validate_password_quality:2542)

ldap_modify: Error, password is too short

2. This example shows the results of comparing a user's password value after
authenticating to the targeted LDAP server. The compare operation failed
because the user being compared has had their account locked.
ldap_compare: Credentials are not valid
ldap_compare: Error, account is locked

3. This example shows the results of adding an entry after already being
successfully authenticated to the targeted LDAP server. The add operation
failed because the password value specified did not abide by the password
syntax checking on the targeted LDAP server.
ldap_add: Constraint violation
ldap_add: additional info: R004190 The ’userpassword’ attribute value
allows a maximum of 3 repeated characters (pwd_validate_password_quality:2508)

ldap_add: Error, password syntax is not valid

Note: When the client utilities display the password policy control response
warning or error message, the LDAP routine called by the client utilities is
indicated in the prefix of the output messages. The prefix of the output messages is
everything before the colon (:). For example:
routine: message

Specifying a value for a file name
When running the ldapadd, ldapchangepwd, ldapcompare, ldapdelete,
ldapmodify, ldapmodrdn, and ldapsearch utilities, the file option (-f) value can be
specified as follows:

/pathname/filename
Specifies the full path name of a file in the z/OS UNIX System Services file
systems.

filename
Specifies a path name that is relative to the current working directory of
the LDAP client utility.

Note: When running from batch, there is no current working directory that
is defined. This format is not suggested.

"//'dataset.name'"
Specifies the fully qualified name of a file that is stored in a sequential
data set.

"//'dataset.name(member)'"
Specifies the fully qualified name of a file that is stored in a partitioned
data set.

258 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

SSL/TLS information for LDAP client utilities
The contents of a client's key database file is managed with the gskkyman utility.
See z/OS Cryptographic Services System SSL Programming for information about the
gskkyman utility. The gskkyman utility is used to define the set of trusted
certificate authorities (CAs) that are to be trusted by the client. By obtaining
certificates from trusted CAs, storing them in the key database file, and marking
them as trusted, you can establish a trust relationship with LDAP servers that use
certificates issued by one of the CAs that are marked as trusted.

If the LDAP servers accessed by the client use server authentication, it is sufficient
to define one or more trusted root certificates in the key database file. With server
authentication, the client can be assured that the target LDAP server has been
issued a certificate by one of the trusted CAs. In addition, all LDAP transactions
that flow over the SSL/TLS connection with the server are encrypted, including
the LDAP credentials that are supplied on the ldap_sasl_bind_s() API.

For example, if the LDAP server is using a high-assurance VeriSign certificate,
obtain a CA certificate from VeriSign, receive it into your key database file, and
mark it as trusted. If the LDAP server is using a self-signed gskkyman server
certificate, the administrator of the LDAP server can supply you with a copy of the
server's certificate request file. Receive the certificate request file into your key
database file and mark it as trusted.

Using the LDAP client utilities without the -Z parameter and calling the secure
port on an LDAP server (in other words, a non-secure call to a secure port) is not
supported. Also, a secure call to a non-secure port is not supported.

SSL/TLS encrypts the key database file therefore either the key database password
or a stash file must be specified on the -P parameter. If a stash file is specified, it
must be specified in the form file:// followed immediately (no blanks in
between) by the file specification of the stash file. See z/OS Cryptographic Services
System SSL Programming for information about using the gskkyman utility to create
a stash file.

Using RACF key rings
Alternately, LDAP supports the use of a RACF key ring. See Certificate/Key
management in z/OS Cryptographic Services System SSL Programming for instructions
on how to migrate a key database to RACF and how to use the RACDCERT
command to protect the certificate and key ring.

The user ID associated with the LDAP client must be authorized by RACF to use
RACF key rings. To authorize the LDAP client, you can use the RACF commands
in the following example (where userid is the user ID associated with the LDAP
client utility).

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACCESS(CONTROL)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(userid) ACCESS(CONTROL)

Remember to refresh the RACF FACILITY class after doing the authorization:
SETROPTS RACLIST(FACILITY) REFRESH

After the RACF key ring is set up and authorized, specify the RACF key ring
name for the -K keyFile option and do not specify the -P keyFilePW option.

Chapter 5. LDAP client utilities 259

Using PKCS #11 tokens
The LDAP client supports the use of PKCS #11 tokens. PKCS #11 tokens are stored
and protected by ICSF. The gskkyman utility or the RACDCERT command can be
used to create or modify PKCS #11 tokens. ICSF uses the CRYPTOZ SAF class to
determine if the issuer of the gskkyman utility or the RACDCERT command is
permitted to perform the operation against a z/OS PKCS #11 token. For
information about using the gskkyman utility, see z/OS Cryptographic Services
System SSL Programming. For information about using the RACDCERT command,
see z/OS Security Server RACF Command Language Reference.

The user ID associated with the LDAP client must be authorized by RACF to use
the PKCS #11 token. To authorize the LDAP client, you can use the RACF
commands in the following example (where NAME is the name of the PKCS #11
token and userid is the user ID associated with the LDAP client utility).

SETROPTS CLASSACT(CRYPTOZ)
RDEFINE CRYPTOZ USER.NAME UACC(NONE)
RDEFINE CRYPTOZ SO.NAME UACC(NONE)
PERMIT USER.NAME CLASS(CRYPTOZ) ID(userid) ACCESS(READ)
PERMIT SO.NAME CLASS(CRYPTOZ) ID(userid) ACCESS(READ)

Remember to refresh RACF after doing the authorizations.
SETROPTS RACLIST(CRYPTOZ) REFRESH

After the PKCS #11 token is set up and authorized, specify the PKCS #11 token for
the -K keyFile option using the following format:
-K *TOKEN*/NAME

Also, do not specify the -P keyFilePW option when using a PKCS #11 token.

SSL initialization failure
If SSL initialization fails, an error message like the following is returned:
ldap_ssl_client_init failed! rc == 113, failureReasonCode == 2
reason text: SSL initialization failed

The failureReasonCode indicates the cause of the SSL failure and is mapped from
the return code of various SSL functions. See Table 7 for these values. The failure
reason code and SSL return code mappings and #defines are documented in file
/usr/include/ldapssl.h.

Table 7. SSL failure reason codes

Failure
reason code SSL return code Failure reason code description

-1 402 No ciphers matched the server and client lists of
acceptable ciphers

-2 403 No client certificate is to be used

-6 405 The certificate type is not supported

-10 406 I/O error communicating with peer application

-11 410 Incorrectly-formatted message received from peer
application

-12 411 Message verification failed

-13 412 SSL protocol or certificate type is not supported

260 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 7. SSL failure reason codes (continued)

Failure
reason code SSL return code Failure reason code description

-14 413 Certificate signature is not correct for a certificate
received from the peer

-15 414 Certificate is not valid

-16 415 Peer application has violated the SSL protocol

-17 416 Not authorized to access key database or SAF
keyring

-18 417 Self-signed certificate cannot be validated

-20 4 Insufficient storage is available

-21 5 The environment or connection is not in the open
state

-22 420 Socket closed by peer

-41 422 V3 cipher is not valid

-99 12 or any other
unmapped SSL reason
code

Unrecognized error

-1000 none Failed loading SSL DLL

-1001 none Failed locating SSL function

1 102 Keyring I/O error

2 202 Keyring open error

4 408 Keyring password is incorrect

12 6, 407 Keyfile label is not valid or certificate is not
trusted

106 106 Key database file is corrupted

109 109 Key database or SAF key ring does not contain
any valid CA certificates

201 201 Key database password or stash filename not set

203 203 Unable to generate temporary RSA key

204 204 Key database password is expired

301 301 Close failed

302 302 Connection has an active write

401 401 Validity time period for the certificate has expired

427 427 Unable to access the LDAP directory

428 428 The client key did not contain a private key

431 431 Certificate has been revoked

432 432 Session renegotiation is not allowed

433 433 Key exceeds allowable export size

434 434 Certificate key is not compatible with the
negotiated cipher suite

435 435 Missing CA certificate

436 436 CRL cannot be processed

437 437 A close notification alert has been sent for the
connection

Chapter 5. LDAP client utilities 261

Table 7. SSL failure reason codes (continued)

Failure
reason code SSL return code Failure reason code description

438 438 Internal error reported by remote partner

439 439 Unknown alert received from remote partner

501 501 The buffer size is negative or zero

502 502 Operation would block

503 503 Read would be blocked

504 504 Write would be blocked

505 505 Record overflow

602 602 Function identifier is not valid

701 701 Attribute ID is not valid

702 702 Attribute length is not valid

703 703 Attribute enumeration value is not valid

705 705 Attribute value is not valid

706 706 Attribute parameter value is not valid

10001 1 Environment or SSL handle not valid

10003 3 Internal SSL error

10007 7 No certificate received from partner

10008 8 Certificate validation error

10009 9 Error processing cryptography

10010 10 Error validating ASN.1 fields in certificate

10011 11 Error connecting to LDAP server

10103 103 The database is not a key database

Using environment variables to control SSL/TLS settings
The z/OS LDAP client utilities do not support SSL V2 protocol, and disable it from
being used. SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 protocols are supported.
The z/OS System SSL defaults and environment variables control which of these
supported protocols are enabled or disabled, and which cipher specifications apply.
For example, the environment variable GSK_PROTOCOL_SSLV3 can be set to
"ON" to enable SSL V3 protocol, or "OFF" to disable SSL V3 protocol. The
environment variable GSK_PROTOCOL_TLSV1 can be set to "ON" to enable TLS
V1.0 protocol, or "OFF" to disable TLS V1.0 protocol.

TLS V1.1 and TLS V1.2 protocols are disabled by default. To enable these protocol
levels or to override the default cipher specifications, the z/OS System SSL
environment variables can be used.
v Set GSK_PROTOCOL_TLSV1_1 "ON" to enable TLS V1.1 protocol.
v Set GSK_PROTOCOL_TLSV1_2 "ON" to enable TLS V1.2 protocol.
v Choose which cipher format is appropriate. Note that only one set of cipher

suite specifications (2-byte or 4-byte) is applicable, depending on the setting of
the LDAP_SSL_CIPHER_FORMAT environment variable.
– If the default 2-byte cipher suites are sufficient, you can allow the settings to

default. If you want to override the cipher suite specifications, and all can be
specified as 2-byte cipher suite values, you can set GSK_V3_CIPHER_SPECS to

262 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

override the default cipher specifications, specifying the set of 2-byte values
you want. You may also set the LDAP_SSL_CIPHER_FORMAT environment
variable to CHAR2, or do not set it.

– If you require any cipher suites that can only be specified as a 4-byte value,
you must set GSK_V3_CIPHER_SPECS_EXPANDED to override the default cipher
specifications, specifying the set of 4-byte values you want. You must also set
the LDAP_SSL_CIPHER_FORMAT environment variable to CHAR4.

v Set GSK_SUITE_B_PROFILE to the value you want to apply Suite B-compliant
options for your SSL connection. See z/OS Cryptographic Services System SSL
Programming for more information. Note that enabling Suite B by using this
environment variable causes the settings of the other environment variables
noted above to be ignored, which includes the LDAP_SSL_CIPHER_FORMAT.

Chapter 5. LDAP client utilities 263

|
|
|

|
|
|
|

|
|
|
|
|

ldapchangepwd utility
Purpose

The ldapchangepwd utility provides an interface to the ldap_modify() API to
allow the userPassword attribute value to be changed for the specified entry.

The ldapchangepwd utility opens a connection to an LDAP server, binds, and
sends modify password requests to the LDAP server. The input consists of a
distinguished name (DN), a current password value, and a new password value.
The current password value is deleted from the userPassword attribute values for
the specified distinguished name and is replaced with the new password value.

Format
ldapchangepwd -D bindDN -w currentpw -n newpw [options]

Parameters

options
Table 8 shows the options you can use for the ldapchangepwd utility:

Table 8. ldapchangepwd options

Option Description

-? Print this text.

-d debugLevel Specify the level of debug messages to be created. The debug level is
specified in the same fashion as the debug level for the LDAP server.
See Table 5 on page 244 for the possible values for debugLevel. The
default is no debug messages.

-D bindDN Use bindDN to bind to the LDAP directory. The bindDN also
identifies the DN whose userPassword attribute value is to be
changed. The bindDN parameter is required and should be a
string-represented DN.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option
is the authorization DN that is used for making access checks.

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind. This
option is required when multiple realms are passed from an LDAP
server to a client as part of a DIGEST-MD5 challenge; otherwise, it is
optional.

-h ldapHost Specify the host name or IP address on which the LDAP server is
running. The default is the local host.

ldapchangepwd utility

264 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 8. ldapchangepwd options (continued)

Option Description

-K keyFile Specify the name of the System SSL key database file, RACF key
ring, or PKCS #11 token. If this option is not specified, this utility
looks for the presence of the SSL_KEYRING environment variable with
an associated name.

If keyFile is specified as *TOKEN*/NAME, then System SSL uses the
specified PKCS #11 token. Otherwise, System SSL uses a key
database file or a RACF key ring. In this case, System SSL first
assumes that keyFile is a key database file name and tries to locate
the file. If keyFile is not a fully qualified z/OS UNIX System Services
file name, the current directory is assumed to contain the key
database file. The name cannot be a partitioned or sequential data
set. If System SSL cannot locate the file, it then assumes that keyFile
is a RACF key ring name.

See “SSL/TLS information for LDAP client utilities” on page 259 for
information about System SSL key databases, RACF key rings, and
PKCS #11 tokens.

This parameter is ignored if -Z is not specified.

-m mechanism See the description of the -S option.

-M Manage referral objects as normal entries. This requires a protocol
level of 3.

-n newpw Specify the new userPassword attribute value for the distinguished
name (DN) specified in the -D option. This value replaces the current
password specified in the -w option. Specify ? to prompt for the new
password value. This option is required.

-N keyFileDN Specify the label associated with the certificate in the System SSL key
database, RACF key ring, or PKCS #11 token.

This parameter is ignored if -Z is not specified

-p ldapPort Specify the TCP port where the LDAP server is listening. The default
LDAP non-secure port is 389 and the default LDAP secure port is
636.

-P keyFilePW Specify either the key database file password or the file specification
for a System SSL password stash file. When the stash file is used, it
must be in the form file:// followed immediately (no blanks) by
the file system file specification (for example, file:///etc/ldap/
sslstashfile). The stash file must be a z/OS UNIX System Services
file and cannot be a partitioned or sequential data set.

This parameter is ignored if -Z is not specified.

-R Do not automatically follow referrals.

ldapchangepwd utility

Chapter 5. LDAP client utilities 265

Table 8. ldapchangepwd options (continued)

Option Description

-S mechanism
or
-m mechanism

Specify the bind method to use. You can use either -m or -S to
indicate the bind method.

Specify GSSAPI to indicate a Kerberos Version 5 bind is requested,
EXTERNAL to indicate that a certificate (SASL external) bind is
requested, CRAM-MD5 to indicate that a SASL Challenge Response
Authentication Mechanism bind is requested, or DIGEST-MD5 to
indicate a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must
have a valid Kerberos Ticket Granting Ticket in their credentials
cache by using the Kerberos kinit command line utility.

The EXTERNAL method requires a protocol level of 3. You must also
specify -Z, -K, and -P to use certificate bind. If there is no default
certificate in the key database file, RACF key ring, or PKCS #11
token or a certificate other than the default must be used, use the -N
option to specify the label of the certificate.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U
option must be specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option
must be specified. Optionally, the -D option can be used to specify
the authorization DN.

If -m or -S is not specified, a simple bind is performed.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The
userName is a short name (for example, the uid attribute value) that is
used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-v Use verbose mode, with many diagnostics written to standard
output.

-V version Specify the LDAP protocol level the client should use. The value for
version can be 2 or 3. The default is 3.

-w currentpw Use currentpw as the password for simple, CRAM-MD5, and DIGEST-MD5
authentication. This value also specifies the current userPassword
attribute value that is being changed for the distinguished name
(DN) specified by the -D option. This value is replaced by the new
password value specified in the -n option. Specify ? to prompt for
the current password value. This option is required.

-Z Use a secure connection to communicate with the LDAP server.
Secure connections expect the communication to begin with the
SSL/TLS handshake.

The -K keyFile option or equivalent environment variable is required
when the -Z option is specified. The -P keyFilePW option is required
when the -Z option is specified and the key file specifies a file
system key database file. Unless you want to use the default
certificate in the key database file, RACF key ring, or PKCS #11
token, use the -N option to specify the label of the certificate.

Examples

Examples of ldapchangepwd are:

ldapchangepwd utility

266 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

v This example changes the userPassword attribute value for entry
cn=jon,o=ibm,c=us from a1b2c3d4 to wxyz9876 is:
ldapchangepwd -D "cn=jon,o=ibm,c=us" -w a1b2c3d4 -n wxyz9876

v This example performs an EXTERNAL bind with the SSL client certificate,
clientCert, in the /home/user/client.kdb SSL key database file. The
authenticated user changes the userPassword value for entry
cn=stanley,o=ibm,c=us from xyz123abc to abc321zyz:
ldapchangepwd -Z -m EXTERNAL -K /home/user/client.kdb -N clientCert -P secret
-D "cn=stanley,o=ibm,c=us" -w xyz123abc -n abc321xyz

v This example performs a simple bind to prompt for the current and new
userPassword attribute values for entry cn=yvonne,o=ibm,c=us. At the prompts,
the user enters the current and new password values in a non-echoed manner
for user cn=yvonne,o=ibm,c=us.
ldapchangepwd -D "cn=yvonne,o=ibm,c=us" -w ? -n ?
Enter current password ==>
Enter new password ==>

Notes

The LDAP_DEBUG environment variable can be used to set the debug level. For more
information about specifying the debug level using keywords, decimal,
hexadecimal, and plus and minus syntax, see “Enabling tracing” on page 242.

You can specify an LDAP URL for ldapHost on the -h parameter. See “ldap_init()”
on page 107 for more information.

For information about SSL/TLS, see “SSL/TLS information for LDAP client
utilities” on page 259.

The authenticating user must have the appropriate permissions to update the
userPassword attribute for the distinguished name specified in the -D option.

The password prompt (-w ?) is not supported when running from TSO or batch. In
these environments, the password value must be specified on the -w option.

The getpass() routine used to prompt for the password returns at most PASS_MAX
number of characters, truncating any additional characters. See the description of
getpass() in z/OS XL C/C++ Runtime Library Reference for more information. If the
length of the specified password is greater than PASS_MAX, the password value
must be specified on the -w option.

Diagnostics

Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a
diagnostic message being written to standard error. If the errors are caused by the
password policy requirements not being met, the Effective password policy
extended operation is invoked and the effective password policy entries and
attributes values are written to standard output.

ldapchangepwd utility

Chapter 5. LDAP client utilities 267

ldapcompare utility
Purpose

The ldapcompare utility provides an interface to the ldap_compare() API.

The ldapcompare utility opens a connection to an LDAP server, binds, and does
one or more compares for an attribute value in an entry. The input consists of a
distinguished name (DN) and an attribute type and value to compare. For each set
of input, a comparison is performed for the specified attribute in the entry with
that DN. If the DN and attribute type and value are not provided, the input is read
from standard input or from file if the -f option is used, and two lines of input are
read for each comparison. The first line contains the DN and the second line
contains the attribute type and value.

Format
ldapcompare [options] [dn attr=value]...

Parameters

options
Table 9 shows the options you can use for the ldapcompare utility:

Table 9. ldapcompare options

Option Description

-? Print this text.

-c Continuous operation mode. Errors are reported, but ldapcompare
continues with comparisons. The return code from the utility is
determined by the last comparison. The default is to exit after
reporting an error.

-d debugLevel Specify the level of debug messages to be created. The debug level is
specified in the same fashion as the debug level for the LDAP server.
See Table 5 on page 244 for the possible values for debugLevel. The
default is no debug messages.

-D bindDN Use bindDN to bind to the LDAP directory. The bindDN parameter
should be a string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option
is the authorization DN that is used for making access checks. This
directive is optional when used in this manner.

-f file Read the compare input from file instead of from standard input or
the command line (by specifying dn and attr=value). An LDAP
compare is performed for every set of two lines in the file. The first
line in the set specifies the DN of the entry to compare. The second
line contains the attr=value specification, indicating the attribute and
value to compare. Do not put double quotation marks around the
DN or attribute values in the file.

You can specify a partitioned or sequential data set for file on the -f
parameter. See “Specifying a value for a file name” on page 258 for
more information.

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind. This
option is required when multiple realms are passed from an LDAP
server to a client as part of a DIGEST-MD5 challenge; otherwise, it is
optional.

ldapcompare utility

268 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 9. ldapcompare options (continued)

Option Description

-h ldapHost Specify the host name or IP address on which the LDAP server is
running. The default is the local host.

-K keyFile Specify the name of the System SSL key database file, RACF key
ring, or PKCS #11 token. If this option is not specified, this utility
looks for the presence of the SSL_KEYRING environment variable with
an associated name.

If keyFile is specified as *TOKEN*/NAME, then System SSL uses the
specified PKCS #11 token. Otherwise, System SSL uses a key
database file or a RACF key ring. In this case, System SSL first
assumes that keyFile is a key database file name and tries to locate
the file. If keyFile is not a fully-qualified z/OS UNIX System Services
file name, the current directory is assumed to contain the key
database file. The name cannot be a partitioned or sequential data
set. If System SSL cannot locate the file, it then assumes that keyFile
is a RACF key ring name.

See “SSL/TLS information for LDAP client utilities” on page 259 for
information about System SSL key databases, RACF key rings, and
PKCS #11 tokens.

This parameter is ignored if -Z is not specified.

-m mechanism See the description of the -S option.

-M Manage referral objects as normal entries. This requires a protocol
level of 3.

-n Show what would be done, but do not actually compare entries.
Useful for debugging with -v.

-N keyFileDN Specify the label associated with the certificate in the System SSL key
database, RACF key ring, or PKCS #11 token.

This parameter is ignored if -Z is not specified

-p ldapPort Specify the TCP port where the LDAP server is listening. The default
LDAP non-secure port is 389 and the default LDAP secure port is
636.

-P keyFilePW Specify either the key database file password or the file specification
for a System SSL password stash file. When the stash file is used, it
must be in the form file:// followed immediately (no blanks) by
the file system file specification (for example, file:///etc/ldap/
sslstashfile). The stash file must be a z/OS UNIX System Services
file and cannot be a partitioned or sequential data set.

This parameter is ignored if -Z is not specified.

-R Do not automatically follow referrals.

ldapcompare utility

Chapter 5. LDAP client utilities 269

Table 9. ldapcompare options (continued)

Option Description

-S mechanism
or
-m mechanism

Specify the bind method to use. You can use either -m or -S to
indicate the bind method.

Specify GSSAPI to indicate a Kerberos Version 5 bind is requested,
EXTERNAL to indicate that a certificate (SASL external) bind is
requested, CRAM-MD5 to indicate that a SASL Challenge Response
Authentication Mechanism bind is requested, or DIGEST-MD5 to
indicate a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must
have a valid Kerberos Ticket Granting Ticket in their credentials
cache by using the Kerberos kinit command line utility.

The EXTERNAL method requires a protocol level of 3. You must also
specify -Z, -K, and -P to use certificate bind. If there is no default
certificate in the key database file, RACF key ring, or PKCS #11
token or a certificate other than the default must be used, use the -N
option to specify the label of the certificate.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U
option must be specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option
must be specified. Optionally, the -D option can be used to specify
the authorization DN.

If -m or -S is not specified, a simple bind is performed.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The
userName is a short name (for example, the uid attribute value) that is
used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-v Use verbose mode, with many diagnostics written to standard
output.

-V version Specify the LDAP protocol level the client should use. The value for
version can be 2 or 3. The default is 3.

-w passwd Use passwd as the password for simple, CRAM-MD5, and DIGEST-MD5
authentication. The default is a NULL string.

-Z Use a secure connection to communicate with the LDAP server.
Secure connections expect the communication to begin with the
SSL/TLS handshake.

The -K keyFile option or equivalent environment variable is required
when the -Z option is specified. The -P keyFilePW option is required
when the -Z option is specified and the key file specifies a file
system key database file. Unless you want to use the default
certificate in the key database file, RACF key ring, or PKCS #11
token, use the -N option to specify the label of the certificate.

dn Specify the DN of the entry to compare.

attr=value
Specify the attribute type and the value to compare. An error is returned if the
entry does not contain the attribute to be compared.

All other command line inputs result in a syntax error message, after which the
correct syntax is displayed. If the same option is specified multiple times or if both

ldapcompare utility

270 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

-m and -S are specified, the last value specified is used.

Examples

Following are some ldapcompare examples:
v The following command compares the sn attribute within the entry named

cn=Compare Me, o=My Company, c=US. The command returns true if the sn
attribute value is Smith and false if it is not.
ldapcompare "cn=Compare Me, o=My Company, c=US" sn=Smith

v The following example uses file input to compare the telephonenumber attribute
within the entry named cn=ken, o=My Company, c=US and to compare the
description attribute within the entry named cn=jay, o=My Company, c=US. A
separate result is returned for each comparison. Assume that /tmp/compareFile
contains:
cn=ken, o=My Company, c=US
telephonenumber=123-456-7890

cn=jay, o=My Company, c=US
description=LDAP development

The following command performs the comparisons:
ldapcompare -f /tmp/compareFile

v For z/OS LDAP support for RACF access, the following command determines if
the OMVS UID of RACF user u1 is 123. It is assumed that the z/OS LDAP
support for RACF access suffix is sysplex=sysplexa.
ldapcompare -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd

"racfid=u1,profiletype=user,sysplex=sysplexa" racfomvsuid=123

Notes

If no dn and attr=value arguments are provided and the -f option is not used, the
ldapcompare command waits to read a list of DNs and attribute types and values
from standard input. To break out of the wait, press the Ctrl+C keys or the Ctrl+D
keys.

The LDAP_DEBUG environment variable can be used to set the debug level. For more
information about specifying the debug level using keywords, decimal,
hexadecimal, and plus and minus syntax, see “Enabling tracing” on page 242.

You can specify an LDAP URL for ldapHost on the -h parameter. See “ldap_init()”
on page 107 for more information.

For information about SSL/TLS, see “SSL/TLS information for LDAP client
utilities” on page 259.

Diagnostics

Exit status is 5 (LDAP_COMPARE_FALSE) or 6 (LDAP_COMPARE_TRUE) if no errors occur.
Errors result in a nonzero exit status and a diagnostic message being written to
standard error.

ldapcompare utility

Chapter 5. LDAP client utilities 271

ldapdelete utility
Purpose

The ldapdelete utility provides an interface to the ldap_delete() API.

The ldapdelete utility opens a connection to an LDAP server, binds, and deletes
one or more entries. If one or more dn arguments are provided, entries with those
DNs are deleted. If no dn arguments are provided, the input is read from standard
input or from file if the -f option is used. Each line of input contains the DN of an
entry to be deleted. Each entry to be deleted must be a leaf entry (an entry with no
subordinate entries) or it must become a leaf entry when the previously specified
entries are deleted.

Format
ldapdelete [options] [dn]...

Parameters

options
Table 10 shows the options you can use for the ldapdelete utility:

Table 10. ldapdelete options

Option Description

-? Print this text.

-c Continuous operation mode. Errors are reported, but ldapdelete
continues with deletions. The return code from the utility is
determined by the last deletion. The default is to exit after reporting
an error.

-d debugLevel Specify the level of debug messages to be created. The debug level is
specified in the same fashion as the debug level for the LDAP server.
See Table 5 on page 244 for the possible values for debugLevel. The
default is no debug messages.

-D bindDN Use bindDN to bind to the LDAP directory. The bindDN parameter
should be a string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option
is the authorization DN that is used for making access checks. This
directive is optional when used in this manner.

-f file Read a series of lines from file, performing one LDAP delete for the
DN on each line. Do not put quotation marks around the DN values
in the file.

You can specify a partitioned or sequential data set for file on the -f
parameter. See “Specifying a value for a file name” on page 258 for
more information.

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind. This
option is required when multiple realms are passed from an LDAP
server to a client as part of a DIGEST-MD5 challenge; otherwise, it is
optional.

-h ldapHost Specify the host name or IP address on which the LDAP server is
running. The default is the local host.

ldapdelete utility

272 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 10. ldapdelete options (continued)

Option Description

-k Send the Server Administration control with the operation request.
The control requires a protocol level of 3 and its criticality is set to
TRUE. There is no control value. This control enables a server that
would normally refuse updates, such as a quiesced or replica server,
to allow updates. See z/OS IBM Tivoli Directory Server Administration
and Use for z/OS for additional information about this control.

-K keyFile Specify the name of the System SSL key database file, RACF key
ring, or PKCS #11 token. If this option is not specified, this utility
looks for the presence of the SSL_KEYRING environment variable with
an associated name.

If keyFile is specified as *TOKEN*/NAME, then System SSL uses the
specified PKCS #11 token. Otherwise, System SSL uses a key
database file or a RACF key ring. In this case, System SSL first
assumes that keyFile is a key database file name and tries to locate
the file. If keyFile is not a fully-qualified z/OS UNIX System Services
file name, the current directory is assumed to contain the key
database file. The name cannot be a partitioned or sequential data
set. If System SSL cannot locate the file, it then assumes that keyFile
is a RACF key ring name.

See “SSL/TLS information for LDAP client utilities” on page 259 for
information about System SSL key databases, RACF key rings, and
PKCS #11 tokens.

This parameter is ignored if -Z is not specified.

-L Send the Do Not Replicate control with the operation request. The
control requires a protocol level of 3 and its criticality is set to TRUE.
There is no control value. This control prevents the targeted server
from sending replicated entries to the next tier of advanced
replication servers. See z/OS IBM Tivoli Directory Server Administration
and Use for z/OS for additional information about this control.

-m mechanism See the description of the -S option.

-M Manage referral objects as normal entries. This requires a protocol
level of 3.

-n Show what would be done, but do not actually delete entries. Useful
for debugging with -v.

-N keyFileDN Specify the label associated with the certificate in the System SSL key
database, RACF key ring, or PKCS #11 token.

This parameter is ignored if -Z is not specified

-p ldapPort Specify the TCP port where the LDAP server is listening. The default
LDAP non-secure port is 389 and the default LDAP secure port is
636.

-P keyFilePW Specify either the key database file password or the file specification
for a System SSL password stash file. When the stash file is used, it
must be in the form file:// followed immediately (no blanks) by
the file system file specification (for example, file:///etc/ldap/
sslstashfile). The stash file must be a z/OS UNIX System Services
file and cannot be a partitioned or sequential data set.

This parameter is ignored if -Z is not specified.

-R Do not automatically follow referrals.

ldapdelete utility

Chapter 5. LDAP client utilities 273

Table 10. ldapdelete options (continued)

Option Description

-S mechanism
or
-m mechanism

Specify the bind method to use. You can use either -m or -S to
indicate the bind method.

Specify GSSAPI to indicate a Kerberos Version 5 bind is requested,
EXTERNAL to indicate that a certificate (SASL external) bind is
requested, CRAM-MD5 to indicate that a SASL Challenge Response
Authentication Mechanism bind is requested, or DIGEST-MD5 to
indicate a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must
have a valid Kerberos Ticket Granting Ticket in their credentials
cache by using the Kerberos kinit command line utility.

The EXTERNAL method requires a protocol level of 3. You must also
specify -Z, -K, and -P to use certificate bind. If there is no default
certificate in the key database file, RACF key ring, or PKCS #11
token or a certificate other than the default must be used, use the -N
option to specify the label of the certificate.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U
option must be specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option
must be specified. Optionally, the -D option can be used to specify
the authorization DN.

If -m or -S is not specified, a simple bind is performed.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The
userName is a short name (for example, the uid attribute value) that is
used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-v Use verbose mode, with many diagnostics written to standard
output.

-V version Specify the LDAP protocol level the client should use. The value for
version can be 2 or 3. The default is 3.

-w passwd Use passwd as the password for simple, CRAM-MD5, and DIGEST-MD5
authentication. The default is a NULL string.

-Z Use a secure connection to communicate with the LDAP server.
Secure connections expect the communication to begin with the
SSL/TLS handshake.

The -K keyFile option or equivalent environment variable is required
when the -Z option is specified. The -P keyFilePW option is required
when the -Z option is specified and the key file specifies a file
system key database file. Unless you want to use the default
certificate in the key database file, RACF key ring, or PKCS #11
token, use the -N option to specify the label of the certificate.

dn Specify distinguished name (DN) of an entry to delete. You can specify one or
more dn arguments. Each dn should be a string-represented DN.

All other command line inputs result in a syntax error message, after which the
correct syntax is displayed. If the same option is specified multiple times or if both
-m and -S are specified, the last value specified is used.

ldapdelete utility

274 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Examples

Following are some ldapdelete examples:
v The following command attempts to delete the entry named with commonName

Delete Me directly below My Company organizational entry. It might be necessary
to supply a bindDN and passwd for deletion to be allowed. (See the -D and -w
options.)
ldapdelete "cn=Delete Me, o=My Company, c=US"

v The following example uses file input to delete the cn=ken, o=My Company, c=US
and cn=jay, o=My Company, c=US entries. Assume that /tmp/deleteFile contains:
cn=ken, o=My Company, c=US
cn=jay, o=My Company, c=US

The following command performs the deletions:
ldapdelete -f /tmp/deleteFile

v For z/OS LDAP support for RACF access, the following command attempts to
delete the RACF user u1 and remove all the connections of u1 to RACF groups.
It is assumed that the z/OS LDAP support for RACF access suffix is
sysplex=sysplexa and that admin1 has the RACF authority to make this update
to RACF:
ldapdelete -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd

"racfid=u1,profiletype=user,sysplex=sysplexa"

Notes

If no dn arguments are provided and the -f option is not specified, the ldapdelete
command waits to read a list of DNs from standard input. To break out of the
wait, press the Ctrl+C keys or the Ctrl+D keys.

The LDAP_DEBUG environment variable can be used to set the debug level. For more
information about specifying the debug level using keywords, decimal,
hexadecimal, and plus and minus syntax, see “Enabling tracing” on page 242.

You can specify an LDAP URL for ldapHost on the -h parameter. See “ldap_init()”
on page 107 for more information.

For information about SSL/TLS, see “SSL/TLS information for LDAP client
utilities” on page 259.

Diagnostics

Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a
diagnostic message being written to standard error.

ldapdelete utility

Chapter 5. LDAP client utilities 275

ldapmodify and ldapadd utilities
Purpose

The ldapmodify utility provides an interface to the ldap_modify() and ldap_add()
APIs. The ldapadd command is implemented as a renamed version of ldapmodify.
When invoked as ldapadd, the -a (add new entry) flag is turned on automatically.

The ldapmodify utility opens a connection to an LDAP server, binds, and modifies
or adds entries. The entry information is read from standard input (or an input file
that is redirected to standard input) or from file by using the -f option.

Format
ldapmodify | ldapadd [options]

Parameters

options
Table 11 shows the options that you can use for the ldapmodify and ldapadd
utilities:

Table 11. ldapmodify and ldapadd options

Option Description

-? Print this text.

-a Add new entries. The default for ldapmodify is to modify existing
entries. If invoked as ldapadd, this flag is always set.

-b Assume that any attribute values that start with a slash (/) are
binary values that are contained in a file. The location of the binary
file must be specified as a fully qualified z/OS UNIX System
Services file system or as a fully qualified data set name. If a data set
name is specified, it must start with two slashes (//) and the name
must have single quotation marks (’) around it.

-c Continuous operation mode. Errors are reported, but ldapmodify
continues with modifications. The return code from the utility is
determined by the last modification. The default is to exit after
reporting an error.

-d debugLevel Specify the level of debug messages to be created. The debug level is
specified in the same fashion as the debug level for the LDAP server.
See Table 5 on page 244 for the possible decimal values for
debugLevel. The default is no debug messages.

-D bindDN Use bindDN to bind to the LDAP directory. The bindDN parameter
should be a string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option
is the authorization DN that is used for making access checks. This
directive is optional when used in this manner.

-f file Read the entry modification information from file instead of from
standard input.

You can specify a partitioned or sequential data set for file on the -f
parameter. See “Specifying a value for a file name” on page 258 for
more information.

-F Force application of all changes regardless of the contents of input
lines that begin with replica: (by default, replica: lines are
compared against the LDAP server host and port in use to decide if
a replication log record should be applied).

ldapmodify and ldapadd utilities

276 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 11. ldapmodify and ldapadd options (continued)

Option Description

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind.
This option is required when multiple realms are passed from an
LDAP server to a client as part of a DIGEST-MD5 challenge;
otherwise, it is optional.

-h ldapHost Specify the host name or IP address on which the LDAP server is
running. The default is the local host.

-k Send the Server Administration control with the operation request.
The control requires a protocol level of 3 and its criticality is set to
TRUE. There is no control value. This control enables a server that
would normally refuse updates, such as a quiesced or replica server,
to allow updates. See z/OS IBM Tivoli Directory Server Administration
and Use for z/OS for additional information about this control.

-K keyFile Specify the name of the System SSL key database file, RACF key
ring, or PKCS #11 token. If this option is not specified, this utility
looks for the presence of the SSL_KEYRING environment variable with
an associated name.

If keyFile is specified as *TOKEN*/NAME, then System SSL uses the
specified PKCS #11 token. Otherwise, System SSL uses a key
database file or a RACF key ring. In this case, System SSL first
assumes that keyFile is a key database file name and tries to locate
the file. If keyFile is not a fully qualified z/OS UNIX System Services
file name, the current directory is assumed to contain the key
database file. The name cannot be a partitioned or sequential data
set. If System SSL cannot locate the file, it then assumes that keyFile
is a RACF key ring name.

See “SSL/TLS information for LDAP client utilities” on page 259 for
information about System SSL key databases, RACF key rings, and
PKCS #11 tokens.

This parameter is ignored if -Z is not specified.

-L Send the Do Not Replicate control with the operation request. The
control requires a protocol level of 3 and its criticality is set to TRUE.
There is no control value. This control prevents the targeted server
from sending replicated entries to the next tier of advanced
replication servers. See z/OS IBM Tivoli Directory Server Administration
and Use for z/OS for additional information about this control.

-m mechanism See the description of the -S option.

-M Manage referral objects as normal entries. This requires a protocol
level of 3.

-n Show what would be done, but do not actually modify entries.
Useful for debugging with -v.

-N keyFileDN Specify the label associated with the certificate in the System SSL key
database, RACF key ring, or PKCS #11 token.

This parameter is ignored if -Z is not specified.

-p ldapPort Specify the TCP port where the LDAP server is listening. The default
LDAP non-secure port is 389 and the default LDAP secure port is
636.

ldapmodify and ldapadd utilities

Chapter 5. LDAP client utilities 277

Table 11. ldapmodify and ldapadd options (continued)

Option Description

-P keyFilePW Specify either the key database file password or the file specification
for a System SSL password stash file. When the stash file is used, it
must be in the form file:// followed immediately (no blanks) by
the file system file specification (for example, file:///etc/ldap/
sslstashfile). The stash file must be a z/OS UNIX System Services
file and cannot be a partitioned or sequential data set.

This parameter is ignored if -Z is not specified.

-r Replace existing values by default.

-R Do not automatically follow referrals.

-S mechanism
or
-m mechanism

Specify the bind method to use. You can use either -m or -S to
indicate the bind method.

Specify GSSAPI to indicate that a Kerberos Version 5 bind is
requested, EXTERNAL to indicate that a certificate (SASL external) bind
is requested, CRAM-MD5 to indicate that a SASL Challenge Response
Authentication Mechanism bind is requested, or DIGEST-MD5 to
indicate that a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must
have a valid Kerberos Ticket Granting Ticket in their credentials
cache by using the Kerberos kinit command-line utility.

The EXTERNAL method requires a protocol level of 3. You must also
specify -Z, -K, and -P to use certificate bind. If there is no default
certificate in the key database file, RACF key ring, or PKCS #11
token or a certificate other than the default must be used, use the -N
option to specify the label of the certificate.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U
option must be specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option
must be specified. Optionally, the -D option can be used to specify
the authorization DN.

If -m or -S is not specified, a simple bind is performed.

-u on | off Specify whether the ldapmodify utility sends the
SchemaReplaceByValueControl control to the server. This control
indicates how a schema modify reacts to a replace modification. If
set to off, a schema modification removes all current values for an
attribute and replaces them with the set of values in the replace
operation. If set to on, an attribute value is updated if some value in
the replace operation has the same numeric object identifier as a
value that exists in the schema attribute. An attribute value is added
if the numeric object identifier in the replace operation does not exist
in the schema attribute. No attribute values are removed.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The
userName is a short name (for example, the uid attribute value) that is
used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-v Use verbose mode, with many diagnostics written to standard
output.

-V version Specify the LDAP protocol level the client should use. The value for
version can be 2 or 3. The default is 3.

ldapmodify and ldapadd utilities

278 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 11. ldapmodify and ldapadd options (continued)

Option Description

-w passwd Use passwd as the password for simple, CRAM-MD5, and DIGEST-MD5
authentication. The default is a NULL string.

-Z Use a secure connection to communicate with the LDAP server.
Secure connections expect the communication to begin with the
SSL/TLS handshake.

The -K keyFile option or equivalent environment variable is required
when the -Z option is specified. The -P keyFilePW option is required
when the -Z option is specified and the key file specifies a file
system key database file. Unless you want to use the default
certificate in the key database file, RACF key ring, or PKCS #11
token, use the -N option to specify the label of the certificate.

All other command-line inputs result in a syntax error message, after which the
correct syntax is displayed. If the same option is specified multiple times or if both
-m and -S are specified, the last value specified is used.

LDAP Data Interchange Format (LDIF)

LDAP Data Interchange Format (LDIF) is a standard text format for representing
LDAP objects and LDAP updates (add, modify, delete, modify DN). Files
containing LDIF records are used to transfer data between directory servers or
used as input by LDAP utilities such as ldapadd and ldapmodify.

LDIF content records are used to represent LDAP directory content and consist of a
line identifying the object, followed by optional lines containing controls, which are
then followed by lines containing the attribute-value pairs for the object. This type
of file is used by the ldapadd, ds2ldif, and ldif2ds utilities. See ds2ldif utility and
ldif2ds utility in z/OS IBM Tivoli Directory Server Administration and Use for z/OS for
more information about the ds2ldif and ldif2ds utilities.

LDIF change records are used to represent directory updates. These records consist
of a line identifying the directory object, followed by lines describing the changes
to the object. The changes include adding, deleting, renaming, or moving objects,
and modifying existing objects.

The input styles for content and change records are:
v A standard LDIF style that is defined by RFC 2849: The LDAP Data Interchange

Format (LDIF)

v A non-standard "modify style"

Use of the standard LDIF style is suggested; the non-standard style is documented
later for use with older tools that produce or use that style.

Input styles

The ldapmodify and ldapadd commands accept two forms of input. The type of
input is determined by the format of the first input line supplied to ldapmodify or
ldapadd.

The first line of input to the ldapmodify or ldapadd command must denote the
distinguished name of a directory entry to add or modify. This input line must be
of the form:

ldapmodify and ldapadd utilities

Chapter 5. LDAP client utilities 279

http://www.rfc-editor.org/rfc/pdfrfc/rfc2849.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2849.txt.pdf

dn:distinguished_name

or

distinguished_name

where dn: is a literal string and distinguished_name is the distinguished name of the
directory entry to modify (or add). If dn: is found, the input style is set to RFC
2849 LDIF style. If it is not found, the input style is set to "modify style".

Note:

1. The ldapadd command is equivalent to invoking the ldapmodify -a command.
2. The ldapmodify and ldapadd utilities do not support base64 encoded

distinguished names.

RFC 2849 LDIF input

When using RFC 2849 LDIF input, attribute types and values are delimited by a
single colon (:) or a double colon (::). Furthermore, individual changes to attribute
values are delimited with a changetype: input line. The general form of input lines
for RFC 2849 LDIF is:
change_record
<blank line>
change_record
<blank line>...

In RFC 2849 LDIF input:
1. A comment line is a line that begins with a number sign (#) in column 1.

Comment lines are ignored.
2. A continuation line is a line that begins with a space in column 1. The rest of

the continuation line, starting in column 2, is appended to the previous line.
3. Ensure that there are no extraneous spaces or characters at the end of a line.

Even if not viewable in an editor, these characters are part of the modify input
and can produce unexpected errors or unusable data.

An input file in RFC 2849 LDIF style consists of one or more change_record sets of
lines that are separated by one or more blank lines. Each change_record has the
following form:
dn:distinguished_name
[control:control_oid[true|false][::control_value]]
[changetype:{modify|add|modrdn|delete}]
{change_clause...
}

A change_record consists of a line indicating the distinguished name of the entry
directory to be modified, one or more optional lines indicating controls to be sent
to the server on the modification, an optional line indicating the type of
modification to be performed against the directory entry, and one or more
change_clause sets of lines.

If one or more control: lines are present, the control_oid indicates the OID of the
control, true or false may optionally be specified to indicate the criticality of the
control (defaults to false if not specified), and an optional control_value can be
specified. The control_value is expected to be in base64 format. This format is an

ldapmodify and ldapadd utilities

280 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

encoding that represents every three binary bytes with four text characters. See the
base64encode() function in /usr/lpp/ldap/examples/line64.c for an
implementation of base64 encoding.

The control lines in the RFC 2849 LDIF input style provide a way to apply certain
controls to an individual entry rather than using a command-line option. For
example, the -M, -L, and -k command-line options send the controls that you want
for all entries in the RFC 2849 LDIF input style. Any acceptable server control can
be specified on the control lines. If the same control is specified multiple times for
an entry, the client sends multiple controls for the entry to the server. This can
occur if the control is specified using a command-line option and on a control line
for the entry, or on multiple control lines for the entry.

If the changetype: line is omitted, the change type is assumed to be modify unless
the command invocation was ldapmodify -a or ldapadd, in which case the
changetype is assumed to be add.

When the change type is modify, each change_clause is defined as a set of lines of
the form:
add:x
{attrtype}{sep}{value}...
-

or
replace:x
{attrtype}{sep}{value}...
-

or
delete:{attrtype}
[{attrtype}{sep}{value}]...
-

or
{attrtype}{sep}{value}...

Specifying replace replaces all existing values for the attribute with the specified
set of attribute values except when modifying a schema entry by using the -u
option with SchemaReplaceByValueControl enabled. (See the description of the -u
option in Table 11 on page 276.) Specifying add adds to the existing set of attribute
values. Specifying delete without any attribute-value pair records removes all the
values for the specified attribute. Specifying delete followed by one or more
attribute-value pair records removes only those values specified in the
attribute-value pair records.

If an add:x, replace:x, or delete:attrtype line (a change indicator) is specified, a
line containing a hyphen (-) is expected as a closing delimiter for the changes.
Attribute-value pairs are expected on the input lines that are found between the
change indicator and hyphen line. If the change indicator line is omitted, the
change is assumed to be add for the attribute values specified. However, if the -r
option is specified on ldapmodify, the change_clause is assumed to be replace. The
separator, sep, can be either a single colon (:) or a double colon (::). A single colon

ldapmodify and ldapadd utilities

Chapter 5. LDAP client utilities 281

(:) is used as a separator when value contains printable characters while a double
colon (::) is used as a separator when value contains non-printable characters or
begins with a space. Any white space characters between the separator and the
attribute value are ignored. If a double colon is used as the separator, the input is
expected to be in base64-encoded format. This format is an encoding that
represents every three binary bytes with four text characters. See the
base64encode() function in /usr/lpp/ldap/examples/line64.c for an
implementation of this encoding.

Multiple attribute values are specified by using multiple {attrtype}{sep}{value}
specifications.

Note: RFC 2849 indicates that LDIF file parsers should support the file:// URL
format on a value to indicate that the contents of the referenced file are to be
included verbatim in the integrated input of the LDIF file. However, the z/OS
LDAP client LDIF parser does not support this specification. Also, the z/OS LDAP
client LDIF parser does not support language or syntax tags on attrtype.

When the change type is add, each change_clause is defined as a set of lines of the
form:
{attrtype}{sep}{value}

As with change type of modify, the separator, sep, can be either a single colon (:) or
a double colon (::). A single colon (:) is used as a separator when value contains
printable characters while a double colon (::) is used as a separator when value
contains non-printable characters or begins with a space. Any white space
characters between the separator and the attribute value are ignored. Attribute
values can be continued across multiple lines by using a single space character as
the first character of the next line of input. If a double colon is used as the
separator, the input is expected to be in base64-encoded format.

When the change type is modrdn, each change_clause is defined as a set of lines of
the form:
newrdn:value
deleteoldrdn:{0|1}

These are the parameters that you can specify on a modify RDN LDAP operation.
The value for the newrdn setting is the new RDN to be used when performing the
modify RDN operation. Specify 0 for the value of the deleteoldrdn setting to save
the attribute in the old RDN and specify 1 to remove the attribute values in the old
RDN. You cannot use ldapmodify to move an entry under a new superior DN,
instead, use “ldapmodrdn utility” on page 291 with the -s option.

When the change type is delete, no change_clause is specified.

RFC 2849 LDIF style examples

Here are some examples of valid input for the ldapmodify command using RFC
2849 LDIF style.

Adding a new entry

The following example adds a new entry into the directory using name cn=Tim
Doe, ou=Your Department, o=Your Company, c=US, assuming ldapadd or
ldapmodify -a is invoked:

ldapmodify and ldapadd utilities

282 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

dn:cn=Tim Doe, ou=Your Department, o=Your Company, c=US
changetype:add
cn: Tim Doe
sn: Doe
objectclass: organizationalperson
objectclass: person
objectclass: top

The following example sends the Server Administration Control (OID
1.3.18.0.2.10.15) and the Do Not Replicate Control (OID 1.3.18.0.2.10.23) and
adds a new entry into the directory by using name cn=Tim Doe, ou=Your
Department, o=Your Company, c=US, assuming ldapadd or ldapmodify -a is
invoked:
dn:cn=Tim Doe, ou=Your Department, o=Your Company, c=US
control: 1.3.18.0.2.10.15
control: 1.3.18.0.2.10.23
changetype:add
cn: Tim Doe
sn: Doe
objectclass: organizationalperson
objectclass: person
objectclass: top

The following example adds a new entry that contains a binary user certificate that
is base64-encoded in the userCertificate attribute into the directory by using
name cn=John Doe, ou=Your Department, o=Your Company, c=US, assuming
ldapadd or ldapmodify -a is invoked:
dn: cn=John Doe, ou=Your Department, o=Your Company, c=US
changetype:add
cn: John Doe
sn: Doe
usercertificate:: MIICNjCCAZ+gAwIBAgIBADANBgkqhkiG9w0BAQUFADAvMQswCQYDVQQGEwJ
1czEMMAoGA1UEChMDaWJtMRIwEAYDVQQDEwlyMTNzZXJ2ZXIwHhcNMTAwNjE1MDQwMDAwWhcNMjE
wMTAxMDM1OTU5WjAvMQswCQYDVQQGEwJ1czEMMAoGA1UEChMDaWJtMRIwEAYDVQQDEwlyMTNzZXJ
2ZXIwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMVgV8f3IAZEZ5/h3R2Iy7h4LSHbhsj4diH
iHPIpTRtqJD5d42z2Z4gG9oUzqfYLyZSPoAVlDwVbufZVVvBeiDo7Bgm+1nj4/YYWCpnCkETmriB
bVDJBoaF8W9xxHs38F6LVuJniDMp0VT9lDcqH3RNWgIcDqKurQm2uTHNDs6OtAgMBAAGjYjBgMD8
GCWCGSAGG+EIBDQQyFjBHZW5lcmF0ZWQgYnkgdGhlIFNlY3VyaXR5IFNlcnZlciBmb3Igei9PUyA
oUkFDRikwHQYDVR0OBBYEFLSjexfulLGxaf4xDvXV4Qhocv/JMA0GCSqGSIb3DQEBBQUAA4GBAIz
fNvc3kWSINsVNexPANbUG9i7SR/79B++pBszHwlKsDqCcB/Sa45yIIxni6cCnLFAoKQO76wFXAnC
Y4QDAxxukBdkiBjus0dQ4vfUDU2b5w+7F8mnvzNuHqvqBhk5DaMPbctcBl2E8lJkn3OwAk6VU+b5
F6YJ3NT6y6SNDVk2q
objectclass: inetOrgPerson
objectclass: person
objectclass: top

Adding attribute types

The following example sends the Server Administration Control (OID
1.3.18.0.2.10.15) and adds two new attribute types to the existing entry. Note the
registeredaddress attribute is assigned two values:
dn:cn=Tim Doe, ou=Your Department, o=Your Company, c=US
control: 1.3.18.0.2.10.15
changetype:modify
add:x
telephonenumber: 888 555 1234
registeredaddress: td@yourcompany.com
registeredaddress: ttd@yourcompany.com
-

Changing the entry name

The following example changes the name of the existing entry to cn=Tim Tom Doe,
ou=Your Department, o=Your Company, c=US. The old RDN, cn=Tim Doe, is retained

ldapmodify and ldapadd utilities

Chapter 5. LDAP client utilities 283

as an additional attribute value of the cn attribute. The new RDN, cn=Tim Tom Doe,
is added automatically by the LDAP server to the values of the cn attribute in the
entry:
dn: cn=Tim Doe, ou=Your Department, o=Your Company, c=US
changetype:modrdn
newrdn: cn=Tim Tom Doe
deleteoldrdn: 0

Replacing attribute values

The following example replaces the attribute values for the telephonenumber and
registeredaddress attributes with the specified attribute values.
dn: cn=Tim Tom Doe, ou=Your Department, o=Your Company, c=US
changetype:modify
replace:x
telephonenumber: 888 555 4321
registeredaddress: tim@yourcompany.com
registeredaddress: timtd@yourcompany.com
-

Deleting and adding attributes

The following example deletes the telephonenumber attribute, deletes a single
registeredaddress attribute value, and adds a description attribute:
dn:cn=Tim Tom Doe, ou=Your Department, o=Your Company, c=US
changetype:modify
add:x
description: This is a very long attribute

value that is continued on a second line.
Note the spacing at the beginning of the
continued lines in order to signify that
the line is continued.

-
delete: telephonenumber
-
delete: registeredaddress
registeredaddress: tim@yourcompany.com
-

Modifying multiple entries

The following example adds the postalCode attribute and replaces the description
attribute in the directory entry with name cn=Tim Tom Doe, ou=Your Department,
o=Your Company, c=US and adds a new directory entry with name cn=Ken Smith,
ou=Your Department, o=Your Company, c=US.

Note: A line containing only a dash is used to separate different types of changes
within an entry and a blank line (a line containing no characters) is used to
separate the changes to different entries.
dn: cn=Tim Tom Doe, ou=Your Department, o=Your Company, c=US
changetype: modify
add: x
postalcode: 12345
-
replace: x
description: This is a short description.
-

dn: cn=Ken Smith, ou=Your Department, o=Your Company, c=US

ldapmodify and ldapadd utilities

284 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

changetype: add
cn: Ken Smith
sn: Smith
objectclass: organizationalperson

Deleting an entry

The following example deletes the directory entry with name cn=Tim Tom Doe,
ou=Your Department, o=Your Company, c=US:
dn:cn=Tim Tom Doe, ou=Your Department, o=Your Company, c=US
changetype:delete

Modify style

The "modify style" of input to the ldapmodify or ldapadd commands is not as
flexible as the RFC 2849 LDIF style. However, it is sometimes easier to use than the
LDIF style.

When using modify style input, attribute types and values are delimited by an
equal sign (=). The general form of input lines for modify style is:
change_record
<blank line>
change_record
<blank line>...

In modify style input:
1. A comment line is a line that begins with a number sign (#) in column 1.

Comment lines are ignored.
2. A line can be continued by specifying a backslash (\) as the last character of the

line. If a line is continued, the backslash character is removed and the
succeeding line is appended directly after the character preceding the backslash
character.

An input file in modify style consists of one or more change_record sets of lines
separated by a single blank line. Each change_record has the following form:
distinguished_name
[+|-]{attrtype} = {value_line1[\
value_line2[\
...value_lineN]]}...

Therefore, a change_record consists of a line indicating the distinguished name of
the directory entry to be modified along with one or more attribute modification
lines. Each attribute modification line consists of an optional add or delete
indicator (+ or -), an attribute type, and an attribute value. If a plus sign (+) is
specified, the modification type is set to add. If a hyphen (-) is specified, the
modification type is set to delete. For a delete modification, the equal sign (=) and
value should be omitted to remove an entire attribute. If the add or delete indicator
is not specified, the modification type is set to add unless the -r option is used, in
which case the modification type is set to replace. Any leading or trailing white
space characters are removed from attribute values. If trailing white space
characters are required for attribute values, the RFC 2849 LDIF style of input must
be used. The new-line character at the end of the input line is not retained as part
of the attribute value.

ldapmodify and ldapadd utilities

Chapter 5. LDAP client utilities 285

Multiple attribute values are specified by using multiple attrtype=value
specifications.

Modify style examples

Here are some examples of valid input for the ldapmodify command by using
modify style.

Adding a new entry

The following example adds a new entry into the directory by using name cn=Tim
Doe, ou=Your Department, o=Your Company, c=US:
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
cn=Tim Doe
sn=Doe
objectclass=organizationalperson
objectclass=person
objectclass=top

Adding a new attribute type

The following example adds two new attribute types to the existing entry. Note the
registeredaddress attribute is assigned two values:
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
+telephonenumber=888 555 1234
+registeredaddress=td@yourcompany.com
+registeredaddress=ttd@yourcompany.com

Replacing attribute values

Assuming that the command invocation was:
ldapmodify -r ...

The following example replaces the attribute values for the telephonenumber and
registeredaddress attributes with the specified attribute values. If the -r
command-line option was not specified, the attribute values are added to the
existing set of attribute values.
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
telephonenumber=888 555 4321
registeredaddress: tim@yourcompany.com
registeredaddress: timtd@yourcompany.com

Deleting an attribute type

The following example deletes a single registeredaddress attribute value from the
existing entry.
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
-registeredaddress=tim@yourcompany.com

Adding an attribute

The following example adds a description attribute. The description attribute
value spans multiple lines:

ldapmodify and ldapadd utilities

286 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

cn=Tim Doe, ou=Your Department, o=Your Company, c=US
+description=This is a very long attribute \
value that is continued on a second line. \
Note the backslash at the end of the line to \
be continued in order to signify that \
the line is continued.

Changing the numeric object identifier:

A special input file is required to change the numeric object identifier (OID) of an
attribute or an object class in the z/OS LDAP server schema. This input file must
contain a delete of the existing attribute or object class (with the old OID) followed
by an add of the new version of the attribute or object class (with the new OID).
The value for NAME within the attribute or object class must be identical in the
delete and add modifications. When using the z/OS IBM Tivoli Directory Server,
noncritical values (such as DESC) can be changed in the new version but critical
values (such as the SYNTAX or the MUST and MAY lists) must be the same as in
the existing attribute or object class. The deletion and addition must be the only
modifications that are made to the schema in that operation.

For example, to change the OID for the userHomeAddr attribute from 1.3.21.7777 to
2.5.44.3.9999 in the schema, the input file for ldapmodify should contain:
cn=schema
-attributetypes=(1.3.21.7777 NAME ’userHomeAddr’ DESC ’The home address’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
+attributetypes=(2.5.44.3.9999 NAME ’userHomeAddr’ DESC ’The home address’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

Examples

Following are some ldapmodify and ldapadd examples. It might be necessary to
supply a bindDN and passwd for modify to be allowed.
1. Assume that the /tmp/entrymods file exists and has the following contents:

dn: cn=Modify Me, o=My Company, c=US
changetype: modify
replace: mail
mail: modme@MyCompany.com
-
add: title
title: Vice President
-
add: jpegPhoto
jpegPhoto: /tmp/modme.jpeg
-
delete: description
-

The following command replaces the contents of the Modify Me entry's mail
attribute with the value modme@MyCompany.com, adds a title of Vice President,
adds the contents of the file /tmp/modme.jpeg as the jpegPhoto value, and
completely removes the description attribute.
ldapmodify -b -r -f /tmp/entrymods

The same modifications as above can be performed by using the older
ldapmodify input format:
cn=Modify Me, o=My Company, c=US
mail=modme@MyCompany.com
+title=Vice President
+jpegPhoto=/tmp/modme.jpeg
-description

2. Assume that the /tmp/certuser file exists and has the following contents:

ldapmodify and ldapadd utilities

Chapter 5. LDAP client utilities 287

dn: cn=Karen Smith, o=My Company, c=US
objectclass: inetorgperson
cn: Karen Smith
sn: Smith
userpassword: secret
usercertificate: //’USER.CERTDER’

The following command adds a new entry for Karen Smith by using the values
from the /tmp/certuser file. The usercertificate value is obtained from the
binary data set USER.CERTDER.
ldapadd -b -f /tmp/certuser

3. Assume that the /tmp/newentry file exists and has the following contents:
dn: cn=Joe Smith, o=My Company, c=US
objectClass: person
cn: Joseph Smith
cn: Joe Smith
sn: Smith
title: Manager
mail: jsmith@jsmith.MyCompany.com
uid: jsmith

The following command adds a new entry for Joe Smith by using the values
from the /tmp/newentry file.
ldapadd -f /tmp/newentry

4. Assume that the /tmp/newentry file exists and has the following contents:
dn: cn=Joe Smith, o=My Company, c=US
changetype: delete

The following command removes Joe Smith's entry.
ldapmodify -f /tmp/newentry

5. Assume that hostA contains the referral object:
dn: o=ABC,c=US
ref: ldap://hostB:390/o=ABC,c=US
objectclass: referral

and hostB contains the organization object:
dn: o=ABC,c=US
o: ABC
objectclass: organization
telephoneNumber: 123-4567

and the /tmp/refmods file has the following contents:
dn: o=ABC,c=US
changetype: modify
replace: ref
ref: ldap://hostB:391/o=ABC,c=US
-

and the /tmp/ABCmods file has the following contents:
dn: o=ABC,c=US
changetype: modify
add: telephoneNumber
telephoneNumber: 123-1111
-

The following command replaces the ref attribute value of the referral object
o=ABC,c=US in hostA, changing the TCP port address in the URL from 390 to
391.
ldapmodify -h hostA -r -M -f /tmp/refmods

The following command adds the telephoneNumber attribute value 123-1111 to
o=ABC,c=US in hostB.

ldapmodify and ldapadd utilities

288 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldapmodify -h hostB -p 391 -f /tmp/ABCmods

6. Assume that the /tmp/schemamods file exists and has the following contents:
dn: cn=schema
-attributetypes=(1.2.1 NAME ’attr1’ DESC ’attribute type’ \
EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

+attributetypes=(1.2.1 NAME ’attr1’ DESC ’attribute type - obsoleted’ OBSOLETE \
EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

+attributetypes=(1.2.2 NAME ’attr2’ DESC ’new attribute type’ \
EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

+ibmattributetypes=(1.2.2 ACCESS-CLASS normal)
-objectclasses=(4.5.6 NAME ’oc1’ DESC ’sample object class’ STRUCTURAL MUST (cn))
+objectclasses=(4.5.6 NAME ’oc1’ DESC ’sample object class’ STRUCTURAL MUST (cn) MAY (attr2))

The following command obsoletes the attr1 attribute type definition by
specifying the OBSOLETE keyword in the definition, adds the attr2 attribute type
definition and the associated IBM attribute type information, and modifies the
oc1 object class definition by adding the attr2 attribute type as a MAY attribute.
ldapmodify -f /tmp/schemamods

7. Assume that the /tmp/newentry file exists and has the following contents:
dn: racfid=u1,profiletype=user,sysplex=sysplexa
objectclass: racfuser
objectclass: racfbasecommon
racfid: u1
racfdefaultgroup: racfid=g1,profiletype=group,sysplex=sysplexa
racfconnectgroupUACC: read
racfconnectgroupauthority: join

The following command creates a RACF user named u1, with join authority
and update UACC in the group g1. It is assumed that the z/OS LDAP support
for RACF access suffix is sysplex=sysplexa and that admin1 has the RACF
authority to make this update to RACF.
ldapadd -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd -f /tmp/newentry

8. Assume that the /tmp/modentry file contains the following attributes.

Note: In the following LDIF, the x on the replace: x line is a placeholder for
the attribute name and allows multiple attribute names and values to be
replaced in a single operation.
dn: racfid=u1,profiletype=user,sysplex=sysplexa
changetype: modify
replace: x
racfattributes: OPERATIONS
racfconnectgroupUACC: update

The following command adds OPERATIONS to racfattributes and changes the
racfconnectgroupUACC value to update.
ldapmodify -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd -f /tmp/modentry

Notes

The LDAP_DEBUG environment variable can be used to set the debug level. For more
information about specifying the debug level by using keywords, decimal,
hexadecimal, and plus and minus syntax, see “Enabling tracing” on page 242.

You can specify an LDAP URL for ldapHost on the -h parameter. See “ldap_init()”
on page 107 for more information.

For information about SSL/TLS, see “SSL/TLS information for LDAP client
utilities” on page 259.

ldapmodify and ldapadd utilities

Chapter 5. LDAP client utilities 289

Diagnostics

Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a
diagnostic message being written to standard error.

ldapmodify and ldapadd utilities

290 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

ldapmodrdn utility
Purpose

The ldapmodrdn utility provides an interface to the ldap_rename() API.

The ldapmodrdn utility opens a connection to an LDAP server, binds, and
modifies the DN of entries. The input consists of a distinguished name (DN) and a
new relative distinguished name (RDN). The new RDN replaces the existing RDN
in the entry that is specified by the DN. If no dn and newRDN arguments are
provided, the input is read from standard input or from file if the -f option is used,
and two lines are read for each rename. The first line contains the DN and the
second line contains the new RDN. One or more blank lines must separate each
DN and RDN pair.

The entries being renamed can be either leaf entries or non-leaf entries, and entire
subtrees can be relocated in the directory with the -s option.

The ldapmodrdn utility is not supported by z/OS LDAP support for RACF access.

Format
ldapmodrdn [options] [dn newRDN]

Parameters

options
Table 12 shows the options you can use for the ldapmodrdn utility:

Table 12. ldapmodrdn options

Option Description

-? Print this text.

-a Sends an IBMModifyDNRealignDNAttributesControl control with the
operation request. The control criticality is set to TRUE. There is no
control value. See z/OS IBM Tivoli Directory Server Administration and
Use for z/OS for a description of this control.

-c Continuous operation mode. Errors are reported, but ldapmodrdn
continues with DN modifications. The return code from the utility is
determined by the last DN modification. The default is to exit after
reporting an error.

-d debugLevel Specify the level of debug messages to be created. The debug level is
specified in the same fashion as the debug level for the LDAP server.
See Table 5 on page 244 for the possible values for debugLevel. The
default is no debug messages.

-D bindDN Use bindDN to bind to the LDAP directory. The bindDN parameter
should be a string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option
is the authorization DN that is used for making access checks. This
directive is optional when used in this manner.

ldapmodrdn utility

Chapter 5. LDAP client utilities 291

Table 12. ldapmodrdn options (continued)

Option Description

-f file Read the entry rename information from file instead of from standard
input or the command-line (by specifying dn and newRDN). Multiple
pairs of dn and newRDN can be specified in the input file or
standard input. The pairs must be separated by one or more blank
lines. Do not put quotation marks around the dn or newRDN values
in the file. The newSup option cannot be included in file; this option
is only accepted as a command-line option. If the newSup option (-s)
is specified, each entry specified in the file has its RDN updated and
be moved under the new superior entry's DN. If the
IBMModifyDNRealignDNAttributesControl option (-a) is specified, it is
sent on each rename operation that is specified in the file.

You can specify a partitioned or sequential data set for file on the -f
parameter. See “Specifying a value for a file name” on page 258 for
more information.

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind.
This option is required when multiple realms are passed from an
LDAP server to a client as part of a DIGEST-MD5 challenge;
otherwise, it is optional.

-h ldapHost Specify the host name or IP address on which the LDAP server is
running. The default is the local host.

-k Send the Server Administration control with the operation request.
The control requires a protocol level of 3 and its criticality is set to
TRUE. There is no control value. This control enables a server that
would normally refuse updates, such as a quiesced or replica server,
to allow updates. See z/OS IBM Tivoli Directory Server Administration
and Use for z/OS for additional information about this control.

-K keyFile Specify the name of the System SSL key database file, RACF key
ring, or PKCS #11 token. If this option is not specified, this utility
looks for the presence of the SSL_KEYRING environment variable with
an associated name.

If keyFile is specified as *TOKEN*/NAME, then System SSL uses the
specified PKCS #11 token. Otherwise, System SSL uses a key
database file or a RACF key ring. In this case, System SSL first
assumes that keyFile is a key database file name and tries to locate
the file. If keyFile is not a fully-qualified z/OS UNIX System Services
file name, the current directory is assumed to contain the key
database file. The name cannot be a partitioned or sequential data
set. If System SSL cannot locate the file, it then assumes that keyFile
is a RACF key ring name.

See “SSL/TLS information for LDAP client utilities” on page 259 for
information about System SSL key databases, RACF key rings, and
PKCS #11 tokens.

This parameter is ignored if -Z is not specified.

-l timeLimit Send an IBMModifyDNTimelimitControl control with the operation
request, substituting timeLimit as the control value. The control
criticality is set to TRUE. See z/OS IBM Tivoli Directory Server
Administration and Use for z/OS for a description of this control.

ldapmodrdn utility

292 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 12. ldapmodrdn options (continued)

Option Description

-L Send the Do Not Replicate control with the operation request. The
control requires a protocol level of 3 and its criticality is set to TRUE.
There is no control value. This control prevents the targeted server
from sending replicated entries to the next tier of advanced
replication servers. See z/OS IBM Tivoli Directory Server Administration
and Use for z/OS for additional information about this control.

-m mechanism See the description of the -S option.

-M Manage referral objects as normal entries. This requires a protocol
level of 3.

-n Show what would be done, but do not actually change entries.
Useful for debugging with -v.

-N keyFileDN Specify the label associated with the certificate in the System SSL key
database, RACF key ring, or PKCS #11 token.

This parameter is ignored if -Z is not specified.

-p ldapPort Specify the TCP port where the LDAP server is listening. The default
LDAP non-secure port is 389 and the default LDAP secure port is
636.

-P keyFilePW Specify either the key database file password or the file specification
for a System SSL password stash file. When the stash file is used, it
must be in the form file:// followed immediately (no blanks) by
the file system file specification (for example, file:///etc/ldap/
sslstashfile). The stash file must be a z/OS UNIX System Services
file and cannot be a partitioned or sequential data set.

This parameter is ignored if -Z is not specified.

-r Remove old RDN values from the entry. Default is to keep old
values.

-R Do not automatically follow referrals.

-s newSup Specify the DN of the new superior entry under which the renamed
entry is relocated. The newSup argument can be the zero-length
string (-s ""), if the destination server accepts zero-length string
newSup arguments on an LDAP Modify DN operation.

ldapmodrdn utility

Chapter 5. LDAP client utilities 293

Table 12. ldapmodrdn options (continued)

Option Description

-S mechanism
or
-m mechanism

Specify the bind method to use. You can use either -m or -S to
indicate the bind method.

Specify GSSAPI to indicate that a Kerberos Version 5 bind is
requested, EXTERNAL to indicate that a certificate (SASL external) bind
is requested, CRAM-MD5 to indicate that a SASL Challenge Response
Authentication Mechanism bind is requested, or DIGEST-MD5 to
indicate that a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must
have a valid Kerberos Ticket Granting Ticket in their credentials
cache by using the Kerberos kinit command-line utility.

The EXTERNAL method requires a protocol level of 3. You must also
specify -Z, -K, and -P to use certificate bind. If there is no default
certificate in the key database file, RACF key ring, or PKCS #11
token or a certificate other than the default must be used, use the -N
option to specify the label of the certificate.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U
option must be specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option
must be specified. Optionally, the -D option can be used to specify
the authorization DN.

If -m or -S is not specified, a simple bind is performed.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The
userName is a short name (for example, the uid attribute value) that is
used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-v Use verbose mode, with many diagnostics written to standard
output.

-V version Specify the LDAP protocol level the client should use. The value for
version can be 2 or 3. The default is 3.

-w passwd Use passwd as the password for simple, CRAM-MD5, and DIGEST-MD5
authentication. The default is a NULL string.

-Z Use a secure connection to communicate with the LDAP server.
Secure connections expect the communication to begin with the
SSL/TLS handshake.

The -K keyFile option or equivalent environment variable is required
when the -Z option is specified. The -P keyFilePW option is required
when the -Z option is specified and the key file specifies a file
system key database file. Unless you want to use the default
certificate in the key database file, RACF key ring, or PKCS #11
token, use the -N option to specify the label of the certificate.

dn Specify the DN of the entry to change.

newRDN
Specify the new RDN for the entry.

All other command-line inputs result in a syntax error message, after which the
correct syntax is displayed. If the same option is specified multiple times or if both
-m and -S are specified, the last value specified is used.

ldapmodrdn utility

294 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Examples

The following are ldapmodrdn examples.
1. Assume that the /tmp/entrymods file exists and has the following contents:

cn=Modify Me, o=My Company, c=US
cn=The New Me

The following command changes the RDN from cn=Modify Me to cn=The New Me
and removes the old RDN cn=Modify Me from the entry. The DN of the entry is
cn=The New Me, o=My Company, c=US.
ldapmodrdn -r -f /tmp/entrymods

2. The following command is another way to accomplish the same change as
Example 1. An IBMModifyDNTimelimitControl control accompanies the
operation request, specifying a time limit of 30 seconds.
ldapmodrdn -r -l 30 "cn=Modify Me, o=My Company, c=US" "cn=The New Me"

3. The following command changes the RDN from cn=Modify Me to cn=The New Me
and removes the old RDN cn=Modify Me from the entry. The renamed entry is
relocated beneath the new superior entry o=Some Other Company, c=US. The DN
of the entry is changed to cn=The New Me, o=Some Other Company, c=US. If the
renamed entry is a non-leaf node, its subordinate entries are also moved and
renamed to reflect their new locations in the directory hierarchy. An
IBMModifyDNTimelimitControl control accompanies the operation request,
specifying a time limit of 30 seconds, and an
IBMModifyDNRealignDNAttributesControl control accompanies the operation
request.
ldapmodrdn -l 30 -a -s "o=Some Other Company, c=US" "cn=Modify Me, o=My Company, c=US" "cn=The New Me"

Notes

The LDAP_DEBUG environment variable can be used to set the debug level. For more
information about specifying the debug level by using keywords, decimal,
hexadecimal, and plus and minus syntax, see “Enabling tracing” on page 242.

You can specify an LDAP URL for ldapHost on the -h parameter. See “ldap_init()”
on page 107 for more information.

For clients using authenticated binds, the DNs in their identity mappings might
change as a result of a Modify DN operation which is performed concurrently with
their session to the server, and this might affect ACL processing which results in
permission to access, or denial of access to, directory entries for which they
previously were permitted or denied access. The resolution for this situation is to
unbind and rebind, so that identity processing uses the latest DNs.

For information about SSL/TLS, see “SSL/TLS information for LDAP client
utilities” on page 259.

Diagnostics

Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a
diagnostic message being written to standard error.

ldapmodrdn utility

Chapter 5. LDAP client utilities 295

ldapsearch utility
Purpose

The ldapsearch utility provides an interface to the ldap_search() API.

The ldapsearch utility opens a connection to an LDAP server, binds, and performs
a search by using the specified filter. If ldapsearch finds one or more entries, the
specified attributes are retrieved and the entries and values are printed to standard
output.

Restriction: Use of the approximate filter (~=) is not supported on a z/OS LDAP
Server. This filter is processed like an equality (=) filter.

Format
ldapsearch [options] filter [attributes]

Parameters

options
Table 13 shows the options you can use for the ldapsearch utility:

Table 13. ldapsearch options

Option Description

-? Print this text.

-a deref Specify how alias dereferencing is done. The deref should be one of
never, always, search, or find to specify that aliases are never
dereferenced, always dereferenced, dereferenced when searching, or
dereferenced only when locating the base object for the search. The
default is to never dereference aliases.

-A Retrieve attributes only (no values). This is useful when you want to
see if an attribute is present in an entry and are not interested in the
specific values.

-b baseDN Use baseDN as the starting point for the search instead of the default.
If -b is not specified, this utility examines the LDAP_BASEDN
environment variable for a baseDN definition.

If you are running in TSO, set the LDAP_BASEDN environment variable
using the _CEE_ENVFILE Language Environment® runtime
environment variable. See z/OS XL C/C++ Programming Guide for
more information.

If you are running in the z/OS shell, export the LDAP_BASEDN
environment variable.

-B Do not suppress display of non-printable values. This is useful when
dealing with values that appear in alternate character sets such as
ISO8859.1. This option is implied by the -L option.

-C Do not suppress display of printable non-ASCII values (like the -B
option). Values are displayed in the local code page. The LANG
environment variable must be set appropriately in the shell so the
characters you want print. Note the default LANG value of C causes
the characters you want not to print.

-d debugLevel Specify the level of debug messages to be created. The debug level is
specified in the same fashion as the debug level for the LDAP server.
See Table 5 on page 244 for the possible decimal values for
debugLevel. The default is no debug messages.

ldapsearch utility

296 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 13. ldapsearch options (continued)

Option Description

-D bindDN Use bindDN to bind to the LDAP directory. The bindDN parameter
should be a string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option
is the authorization DN that is used for making access checks. This
directive is optional when used in this manner.

-f file Read a series of lines from file, performing one LDAP search for each
line. In this case, the filter given on the command line is treated as a
pattern where the first occurrence of %s is replaced with a line from
file. Do not put quotation marks around the values in the file. If file is
a single hyphen (-) character, then the lines are read from standard
input.

You can specify a partitioned or sequential data set for file on the -f
parameter. See “Specifying a value for a file name” on page 258 for
more information.

-F sep Use sep as the field separator between attribute names and values.
The default separator is an equal sign (=), unless the -L flag has been
specified, in which case this option is ignored.

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind.
This option is required when multiple realms are passed from an
LDAP server to a client as part of a DIGEST-MD5 challenge;
otherwise, it is optional.

-h ldapHost Specify the host name or IP address on which the LDAP server is
running. The default is the local host.

-K keyFile Specify the name of the System SSL key database file, RACF key
ring, or PKCS #11 token. If this option is not specified, this utility
looks for the presence of the SSL_KEYRING environment variable with
an associated name.

If keyFile is specified as *TOKEN*/NAME, then System SSL uses the
specified PKCS #11 token. Otherwise, System SSL uses a key
database file or a RACF key ring. In this case, System SSL first
assumes that keyFile is a key database file name and tries to locate
the file. If keyFile is not a fully-qualified z/OS UNIX System Services
file name, the current directory is assumed to contain the key
database file. The name cannot be a partitioned or sequential data
set. If System SSL cannot locate the file, it then assumes that keyFile
is a RACF key ring name.

See “SSL/TLS information for LDAP client utilities” on page 259 for
information about System SSL key databases, RACF key rings, and
PKCS #11 tokens.

This parameter is ignored if -Z is not specified.

ldapsearch utility

Chapter 5. LDAP client utilities 297

Table 13. ldapsearch options (continued)

Option Description

-l timeLimit Limit the maximum wait time for the search request, overriding the
value of LDAP_OPT_TIMELIMIT in the LDAP handle. Specify NULL for
this parameter if there is no time limit for the request, or else, set the
timeLimit value to the maximum time in seconds.

The LDAP server can also provide a limit on the search time. For
information about the server's search time limit and how it interacts
with the client time limit, see the documentation for your LDAP
server. For the z/OS LDAP servers, see the description of the
timeLimit configuration file option (Customizing the LDAP server
configuration) in z/OS IBM Tivoli Directory Server Administration and
Use for z/OS. The default time limit for the client, which is specified
by a value of 0, indicates that there is no client time limit and that
the maximum number of seconds is limited only by the LDAP server
limit.

-L Display search results in LDIF format. All characters in the LDIF
format output are portable characters that are represented in the
local code page. Binary attribute values are displayed in base64
encoded format. This option also turns on the -B option, and causes
the -F option to be ignored. See “ldapmodify and ldapadd utilities”
on page 276 for more information about the LDIF format.
Note: LDIF output from the ldapsearch utility does not necessarily
produce suitable data for backup and restore purposes. The ds2ldif
utility should be considered as an alternative. The ldapsearch and
ds2ldif utilities have several differences, including options to control
the order of entries in the file (ldapsearch might not produce entries
in correct hierarchical order), options to control entry contents
(including operational attributes), and code pages used for portable
characters in the output file. See ds2ldif utility in z/OS IBM Tivoli
Directory Server Administration and Use for z/OS for more information.

-m mechanism See the description of the -S option.

-M Manage referral objects as normal entries. This requires a protocol
level of 3.

-n Show what would be done, but do not actually perform the search.
Useful for debugging with -v.

-N keyfileDN Specify the label associated with the certificate in the System SSL key
database, RACF key ring, or PKCS #11 token.

This parameter is ignored if -Z is not specified

ldapsearch utility

298 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 13. ldapsearch options (continued)

Option Description

-o sortKey Specifies a sort key that the client requests the server to order the
results by. Multiple -o options can be specified to further define the
sort order.

The syntax of the sortKey parameter is as follows:

[-]attribute_name[:matching_rule_name]

where:

v The optional minus sign (-) indicates to sort the results in reverse
order.

v attribute_name is the name of the attribute to sort by.

v matching_rule_name is the optional name of a matching rule to use
for sorting.

The ibm-slapdDN attribute can be specified in a sort key to sort
search results by entry DN.

Matching rules are not supported by the z/OS LDAP server for a
sorted search request. If specified, valid ordering rules are ignored by
the z/OS LDAP server and the ordering rule associated with the
attribute in the schema is used instead.

This option directs the utility to send and receive the sorted search
request and response controls. The criticality of the request control is
always critical.

-p ldapPort Specify the TCP port where the LDAP server is listening. The default
LDAP non-secure port is 389 and the default LDAP secure port is
636.

-P keyFilePW Specify either the key database file password or the file specification
for a System SSL password stash file. When the stash file is used, it
must be in the form file:// followed immediately (no blanks) by
the file system file specification (for example, file:///etc/ldap/
sslstashfile). The stash file must be a z/OS UNIX System Services
file and cannot be a partitioned or sequential data set.

This parameter is ignored if -Z is not specified.

-q pageSize Specify a page size and request that the server return search results
in pages with the number of entries matching the page size. Multiple
-q values can be specified to request pages of different sizes. In this
case, the first -q value is used on the first page request, the second -q
value is used on the second page request, and so on. If there are
more pages than -q values, the last -q value is used for all remaining
pages. The last page returned may contain fewer entries than the
requested -q value.

This option directs the utility to send and receive the paged search
result control. The criticality is always critical.

This option also turns on the -R option, which means referrals are
not automatically followed.

-R Do not automatically follow referrals.

-s scope Specify the scope of the search. The scope should be one of base, one,
or sub to specify a base object, one-level, or subtree search. The
default is sub.

ldapsearch utility

Chapter 5. LDAP client utilities 299

Table 13. ldapsearch options (continued)

Option Description

-S mechanism
or
-m mechanism

Specify the bind method to use. You can use either -m or -S to
indicate the bind method.

Specify GSSAPI to indicate that a Kerberos Version 5 bind is
requested, EXTERNAL to indicate that a certificate (SASL external) bind
is requested, CRAM-MD5 to indicate that a SASL Challenge Response
Authentication Mechanism bind is requested, or DIGEST-MD5 to
indicate that a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must
have a valid Kerberos Ticket Granting Ticket in their credentials
cache by using the Kerberos kinit command line utility.

The EXTERNAL method requires a protocol level of 3. You must also
specify -Z, -K, and -P to use certificate bind. If there is no default
certificate in the key database file, RACF key ring, or PKCS #11
token or a certificate other than the default must be used, use the -N
option to specify the label of the certificate.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U
option must be specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option
must be specified. Optionally, the -D option can be used to specify
the authorization DN.

If -m or -S is not specified, a simple bind is performed.

-t Write retrieved values to a set of files in the /tmp directory, using file
names like /tmp/ldapsearch-objectclass-bbeFxQ. This option
assumes that values are non-textual (binary), such as jpegPhoto or
audio. There is no character set translation performed on the values.

-T pageTime Specify the number of seconds between paged search requests. This
option requires the -q option. An alternative to the -T option for
requesting a subsequent page is to press the Enter key after paged
results are returned. If the utility is being executed from a batch job
and the -q option is specified, the -T option must be used.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The
userName is a short name (for example, the uid attribute value) that is
used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-v Run in verbose mode, with many diagnostics written to standard
output.

-V version Specify the LDAP protocol level the client should use. The value for
version can be 2 or 3. The default is 3.

-w passwd Use passwd as the password for simple, CRAM-MD5, and
DIGEST-MD5 authentication. The default is a NULL string.

ldapsearch utility

300 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Table 13. ldapsearch options (continued)

Option Description

-z sizeLimit Limit the number of entries that can be returned, overriding the
value of LDAP_OPT_SIZELIMIT in the LDAP handle. A value of 0
indicates that there is no limit.

The LDAP server can also provide a size limit on the number of
entries returned. For information about the server's size limit and
how it interacts with the client size limit, see the documentation for
your LDAP server. For the z/OS LDAP servers, see the description
of the sizeLimit configuration file option (Customizing the LDAP
server configuration) in z/OS IBM Tivoli Directory Server
Administration and Use for z/OS. The default size limit for the client,
specified by a value of 0, indicates that the maximum number of
entries is limited only by the LDAP server limit.

-Z Use a secure connection to communicate with the LDAP server.
Secure connections expect the communication to begin with the
SSL/TLS handshake.

The -K keyFile option or equivalent environment variable is required
when the -Z option is specified. The -P keyFilePW option is required
when the -Z option is specified and the key file specifies a file
system key database file. Unless you want to use the default
certificate in the key database file, RACF key ring, or PKCS #11
token, use the -N option to specify the label of the certificate.

filter
Specify an IETF RFC 1558-compliant LDAP search filter. (See “ldap_search(),
ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()” on
page 164 for more information about filters.)

attributes
Specify a space-separated list of attributes to retrieve. If no attributes list is
given, all are retrieved.

All other command line inputs result in a syntax error message, after which the
correct syntax is displayed. If the same option is specified multiple times or if both
-m and -S are specified, the last value specified is used.

Output format

If one or more entries are found, each entry is written to standard output in the
form:
Distinguished Name (DN)
attributename=value
attributename=value
attributename=value
...

Multiple entries are separated with a single blank line. If the -F option is used to
specify a separator character, it is used instead of the equal sign (=). If the -t option
is used, the name of a temporary file is used in place of the actual value. If the -A
option is given, only the attributename part is written.

Examples

ldapsearch utility

Chapter 5. LDAP client utilities 301

http://www.rfc-editor.org/rfc/pdfrfc/rfc1558.txt.pdf

Following are some ldapsearch examples. Each example makes the assumption
that the LDAP server is running on the local host and listening on the default
LDAP port (389).
v The command:

ldapsearch -b "o=IBM University,c=US" "cn=karen smith" cn telephoneNumber

performs a subtree search using the search base "o=IBM University,c=US" for
entries with a commonName of karen smith. The commonName and telephoneNumber
values are retrieved and printed to standard output. The output might look
something like this if two entries are found:
cn=Karen G Smith, ou=College of Engineering, o=IBM University, c=US
cn=Karen Smith
cn=Karen Grace Smith
cn=Karen G Smith
telephoneNumber=+1 313 555-9489

cn=Karen D Smith, ou=Information Technology Division, o=IBM University, c=US
cn=Karen Smith
cn=Karen Diane Smith
cn=Karen D Smith
telephoneNumber=+1 313 555-2277

v The command:
ldapsearch -b "o=IBM University,c=US" -t "uid=kds" jpegPhoto audio

Performs a subtree search using the search base "o=IBM University,c=US" for
entries with user ID of kds. The jpegPhoto and audio values are retrieved and
written to temporary files. The output might look like this if one entry with one
value for each of the requested attributes is found:
cn=Karen D Smith, ou=Information Technology Division, o=IBM University, c=US
audio=/tmp/ldapsearch-audio-a19924
jpegPhoto=/tmp/ldapsearch-jpegPhoto-a19924

v The command:
ldapsearch -L -b "c=US" "(&(usercertificate=*)(objectclass=inetOrgPerson))" usercertificate cn

Performs a subtree-level search at the c=US level for all users that have an
objectclass value of inetOrgPerson and a userCertificate value. Search results
are displayed in the LDIF format. The userCertificate attribute value is
displayed in base64-encoded format because it is a binary value. The
userCertificate and cn attribute values are retrieved and printed to standard
output, resulting in output like the following:
dn: cn=John Doe, ou=Your Department, o=Your Company, c=US
cn: John Doe
usercertificate:: MIICNjCCAZ+gAwIBAgIBADANBgkqhkiG9w0BAQUFADAvMQswCQYDVQQGEwJ
1czEMMAoGA1UEChMDaWJtMRIwEAYDVQQDEwlyMTNzZXJ2ZXIwHhcNMTAwNjE1MDQwMDAwWhcNMjE
wMTAxMDM1OTU5WjAvMQswCQYDVQQGEwJ1czEMMAoGA1UEChMDaWJtMRIwEAYDVQQDEwlyMTNzZXJ
2ZXIwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMVgV8f3IAZEZ5/h3R2Iy7h4LSHbhsj4diH
iHPIpTRtqJD5d42z2Z4gG9oUzqfYLyZSPoAVlDwVbufZVVvBeiDo7Bgm+1nj4/YYWCpnCkETmriB
bVDJBoaF8W9xxHs38F6LVuJniDMp0VT9lDcqH3RNWgIcDqKurQm2uTHNDs6OtAgMBAAGjYjBgMD8
GCWCGSAGG+EIBDQQyFjBHZW5lcmF0ZWQgYnkgdGhlIFNlY3VyaXR5IFNlcnZlciBmb3Igei9PUyA
oUkFDRikwHQYDVR0OBBYEFLSjexfulLGxaf4xDvXV4Qhocv/JMA0GCSqGSIb3DQEBBQUAA4GBAIz
fNvc3kWSINsVNexPANbUG9i7SR/79B++pBszHwlKsDqCcB/Sa45yIIxni6cCnLFAoKQO76wFXAnC
Y4QDAxxukBdkiBjus0dQ4vfUDU2b5w+7F8mnvzNuHqvqBhk5DaMPbctcBl2E8lJkn3OwAk6VU+b5
F6YJ3NT6y6SNDVk2q

v The command:
ldapsearch -L -s one -b "c=US" "o=university*" o description

Performs a one-level search at the c=US level for all organizations whose
organizationName begins with university. Search results are displayed in the
LDIF format. The organizationName and description attribute values are
retrieved and printed to standard output, resulting in output like the following:

ldapsearch utility

302 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

dn: o=University of Alaska Fairbanks, c=US
o: University of Alaska Fairbanks
description: Preparing Alaska for a brave new tomorrow
description: leaf node only

dn: o=University of Colorado at Boulder, c=US
o: University of Colorado at Boulder
description: No personnel information
description: Institution of education and research

dn: o=University of Colorado at Denver, c=US
o: University of Colorado at Denver
o: UCD
o: CU/Denver
o: CU-Denver
description: Institute for Higher Learning and Research

dn: o=University of Florida, c=US
o: University of Florida
o: UFl
description: Shaper of young minds
...

v The command:
ldapsearch -h ushost -M -b "c=US" "objectclass=referral"

Performs a subtree search for the c=US subtree within the server at host ushost
(TCP port 389) and returns all referral objects. Note that the search is limited to
the single server. No referrals are followed to other servers to find additional
referral objects. The output might look something like this if two referral objects
are found:
o=IBM,c=US
objectclass=referral
ref=ldap://ibmhost:389/o=IBM,c=US

o=XYZ Company,c=US
objectclass=referral
ref=ldap://XYZhost:390/o=XYZ%20Company,c=US

v The command:
ldapsearch -b "o=Deltawing, c=AU" -o sn -o -ibm-slapdDN -q 3 -q 2 -T 10
-v "(|(sn=Harris)(sn=Stephens))" sn

Performs a verbose sorted and paged search sorting first by surname, then by
distinguished name, with the distinguished name being sorted in reverse
(descending) order as specified by the prefixed minus sign. The first page
contains 3 entries. The second page contains 2 entries. The last page contains the
final entry, where six entries were found. Each subsequent page is requested 10
seconds after the preceding page is returned. The output might look something
like this:

Note: In the following example output, text in this format is the returned search
entries, while text in this format is the verbose ldapsearch utility output.
-q option implies -R option. Referrals will not be followed.
ldap_init(MYHOST, 389)
filter pattern: (|(sn=Harris)(sn=Stephens))
returning: sn
sorted search keys: sn -ibm-slapdDN
paged search sizes: 3 2
paged search time: 10

filter is: ((|(sn=Harris)(sn=Stephens)))
cn=Virginia Harris, o=Deltawing, c=AU
sn=Harris

ldapsearch utility

Chapter 5. LDAP client utilities 303

cn=Michael Harris, o=Deltawing, c=AU
sn=Harris

cn=Martin Harris, o=Deltawing, c=AU
sn=Harris
3 matches
3 total paged entries have been returned
6 entries in entire paged results set
The next page will be retrieved in 10 seconds...

cn=Paul Stephens, o=Deltawing, c=AU
sn=Stephens

cn=David Stephens, o=Deltawing, c=AU
sn=Stephens
2 matches
5 total paged entries have been returned
6 entries in entire paged results set
The next page will be retrieved in 10 seconds...

cn=Brian Stephens, o=Deltawing, c=AU
sn=Stephens
1 matches
6 total paged entries have been returned
6 entries in entire paged results set

v The command:
ldapsearch -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd

-b "profiletype=user,sysplex=sysplexa" "racfid=G*"

performs a search in the user subtree of the z/OS LDAP support for RACF
access for the RACF users whose names begin with G. Only the DN of each
matching entry is displayed. The z/OS LDAP support for RACF access suffix is
assumed to be sysplex=sysplexa. The output might look like:
racfid=G\#126,profiletype=USER,sysplex=sysplexa
racfid=GDCEBLD,profiletype=USER,sysplex=sysplexa
racfid=GKUPERM,profiletype=USER,sysplex=sysplexa
racfid=GLDSRV,profiletype=USER,sysplex=sysplexa
...

To then retrieve the entire entry for one of the matching users, use the
command:
ldapsearch -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd

-b "racfid=gldsrv,profiletype=user,sysplex=sysplexa" "objectclass=*"

The results might look like:
racfid=GLDSRV,profiletype=USER,sysplex=sysplexa
racfid=GLDSRV
racfauthorizationdate=05/15/07
racfowner=RACFID=SUIMGVD,PROFILETYPE=USER,SYSPLEX=SYSPLEXA
racfpasswordinterval=186
racfdefaultgroup=RACFID=AUDIT,PROFILETYPE=GROUP,SYSPLEX=SYSPLEXA
racflogondays=SUNDAY
racflogondays=MONDAY
racflogondays=TUESDAY
racflogondays=WEDNESDAY
racflogondays=THURSDAY
racflogondays=FRIDAY
racflogondays=SATURDAY
racflogontime=ANYTIME
racfconnectgroupname=RACFID=AUDIT,PROFILETYPE=GROUP,SYSPLEX=SYSPLEXA
racfhavepasswordenvelope=NO
racfhavepassphraseenvelope=NO

ldapsearch utility

304 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

racfattributes=PASSWORD
objectclass=TOP
objectclass=RACFBASECOMMON
objectclass=RACFUSER

The following examples use file input to perform multiple searches with the same
search base and scope, but with different filters. Each line in the file is used to
replace the first occurrence of %s in the filter. The %s can be anywhere in the filter,
and can be the entire filter.
v Assume file /tmp/searchFile has the following contents:

Smith
Jones
Doe

The command:
ldapsearch -f /tmp/searchFile -L -s sub -b "o=My Company" "(&(cn=John)(sn=%s*))"

replaces the %s in the filter value with each line of the input file. This is
equivalent to issuing these search commands:
ldapsearch -L -s sub -b "o=My Company" "(&(cn=John)(sn=Smith*))"
ldapsearch -L -s sub -b "o=My Company" "(&(cn=John)(sn=Jones*))"
ldapsearch -L -s sub -b "o=My Company" "(&(cn=John)(sn=Doe*))"

v Assume file /tmp/searchFile has the following contents:
o=university*
cn=Karen Smith

The command:
ldapsearch -f /tmp/searchFile -s one -b "c=US" "%s" description

replaces the entire filter with each line of the input file. This is equivalent to
issuing these search commands:
ldapsearch -s one -b "c=US" "o=university*" description
ldapsearch -s one -b "c=US" "cn=Karen Smith" description

Searching a server's root DSE

The command:
ldapsearch -h ushost -s base -b "" "objectclass=*"

provides the root DSE (DSA-specific entry, where a DSA is a directory server)
information for a server. This request can be directed to servers supporting LDAP
Version 3 protocol to obtain information about support available in the server. See
IETF RFC 2251: Lightweight Directory Access Protocol (v3) for a description of the
information provided by the server. See z/OS IBM Tivoli Directory Server
Administration and Use for z/OS for more information about the root DSE and what
the IBM Tivoli Directory Server for z/OS returns.

The command:
ldapsearch -h ushost -s sub -b "" filter

searches the directories within the LDAP server for entries that match the filter.
This type of search is commonly referred to as a null-based subtree search. See
z/OS IBM Tivoli Directory Server Administration and Use for z/OS for more
information about the z/OS LDAP server support for null-based subtree searches.

ldapsearch utility

Chapter 5. LDAP client utilities 305

http://www.rfc-editor.org/rfc/pdfrfc/rfc2251.txt.pdf

Note: The scope option (-s) must be specified when specifying -b "" to search a
server's root DSE.

Notes

The LDAP_DEBUG environment variable can be used to set the debug level. For more
information about specifying the debug level using keywords, decimal,
hexadecimal, and plus and minus syntax, see “Enabling tracing” on page 242.

You can specify an LDAP URL for ldapHost on the -h parameter. See “ldap_init()”
on page 107 for more information.

For information about SSL/TLS, see “SSL/TLS information for LDAP client
utilities” on page 259.

Diagnostics

Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a
diagnostic message being written to standard error.

ldapsearch utility

306 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1999, 2015 307

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

308 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 309

310 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2015 311

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

312 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
z/OS IBM Tivoli Directory Server Client Programming for z/OS primarily documents
intended Programming Interfaces that allow the customer to write programs to
obtain services of z/OS LDAP.

z/OS IBM Tivoli Directory Server Plug-in Reference for z/OS also documents
information that is not intended to be used as Programming Interfaces of z/OS
LDAP. This information is identified where it occurs with an introductory
statement to a chapter.

Programming interface information

End Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available at Copyright and Trademark
information (http://www.ibm.com/legal/copytrade.shtml).

Notices 313

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

314 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

Index

Special characters
~= filter 296

A
abandoning LDAP operation 30
abend dump

environment variable 236
accessibility 307

contact IBM 307
features 307

adding entry
example 6

alias
retrieving how handled during search request 96
specifying how to handle during search 186

approximate filter 296
array

binary, counting number of elements 51
character string, counting number of elements 50

array of attribute modifications
releasing storage for 126

ASCII support 3
assistive technologies 307
asynchronous LDAP operation 20
attribute

counting in LDAP search entry 46
modifying for LDAP directory entry 122
releasing storage allocated for array of modifications 126

attribute type
returning attribute values for 105, 106

attribute value
returning for an attribute type 106

attribute values
comparing

example 8
reading

example 9
returning for an attribute type 105
returning format of 104
specifying format of 193

attributes
LDAP 2
type 2

authentication on SASL bind
CRAM-MD5 161
DIGEST-MD5 161
external using TCP/IP connection 158, 159
GSSAPI 160

authentication, overview of methods
certificate 6
CRAM-MD5 6
DIGEST-MD5 6
Kerberos 6
methods 5
simple 6

B
binary value

releasing storage for 37
releasing storage for array 217

bind result message, SASL
parsing 146

bind, SASL
authentication mechanisms 158

binding to Directory Service 5
binding to LDAP server 196
binding with SASL GSSAPI 6
binding, static and runtime 90

C
C programming language

utility routines 2
cache, global search result

maximum size, environment variable 235
maximum time to retain entry, environment variable 236

cache, search result
creating 117
destroying 113
removing entries from 114
removing expired entries 120
returning 116
setting 119

caching
client-side search results 20

caching global search result
environment variable 235

callback routine
retrieving 98

cancelling LDAP operation 30
certificate authentication 6
changing RDN of entry 8
character string

releasing storage for array of 216
cipher suite, SSL

retrieving 101
specifying 191, 192

client API, LDAP 3
client control

LDAP_OPT_CLIENT_CONTROLS option 94
overview 16

client utilities
utility 255

client-side caching 20
CNAME record 252
COBOL application, calling the C LDAP client APIs 21
command-line utilities

ldapadd 276
ldapchangepwd 264
ldapcompare 268
ldapdelete 272
ldapmodify 276
ldapmodrdn 291
ldapsearch 296

compiling a program that uses LDAP API 4

© Copyright IBM Corp. 1999, 2015 315

confidentiality level
retrieving 99

configuration
LDAP server, saving 172

configuration file, local
example of 248
format of 246

connection with LDAP server
LDAP_OPT_CONNECT option 94

connection, SSL
retrieving cipher specification or cipher suite 101
retrieving session timeout value 103
retrieving whether used to bind 101

contact
z/OS 307

control 15
client 16
releasing storage for 42
releasing storage for array of 43
session 16

control, client
LDAP_OPT_CLIENT_CONTROLS option 94

control, server
returning from search entry message 88
specifying default list of 190

controls
inserting a control 110
removing a control 150

conversion
text string, EBCDIC to UTF-8 44
text string, UTF-8 to EBCDIC 45

CRAM-MD5 authentication 6
CRAM-MD5 authentication on SASL bind 161
create

page_control 52
persistentsearch_control 55
sort_control() 57
sort_keylistl 59

credentials
allowing LDAP server to use client's 186

credentials, Kerberos
authentication 6

D
data model

LDAP 2
data sets

z/OS 2
data, text

retrieving format of 103
debug

file name
retrieving 96

levels 244
options

retrieving 94
trace level

retrieving 94
trace options

retrieving 96
deleting LDAP entries 61
deleting LDAP entry

example 8
deprecated APIs

listing of 23
DIGEST-MD5 authentication 6

DIGEST-MD5 authentication on SASL bind 161
directory

access protocol (LDAP) 1
entry

naming 2
Directory Service

extracting information from using LDAP 1
directory, LDAP

adding entry 32
comparing attribute values for entries 38
deleting entries 61
modifying existing entry 122
renaming an entry 151
searching 164

distinguished name
relative

parsing into array of attributes 75
distinguished name (DN) 2

parsing into array of relative distinguished names 71
parsing into RDNs 73
parsing with ldap_dn2ufn_np() 65
parsing with ldap_dn2ufn() 64
returning from a search entry 87

DLL (dynamic link library) 3
DN (distinguished name) 2

parsing into array of relative distinguished names 71
parsing into RDNs 73
parsing with ldap_dn2ufn_np() 65
parsing with ldap_dn2ufn() 64
returning from a search entry 87

DNS
using to publish LDAP server information 248

DNS domain name
environment variable 237

DNS name resolver configuration file
description of contents 244
environment variable 237

domain, eNetwork
returning for current user 66
setting for current user 68

dump for abend
environment variable 236

dynamic link library (DLL) 3

E
EBCDIC

converting text string from UTF-8 to 45
converting text string to UTF-8 44
mode 3

eNetwork domain
returning for current user 66
setting for current user 68

entries
LDAP 2

entry
adding to LDAP directory 32
changing RDN

example 8
deleting

example 8
listing all subentries

example 9
reading contents

example 9
entry in LDAP directory

renaming 151

316 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

entry, adding
example 6

entry, modifying
example 7

entry, search
counting number in LDAP result 47
retrieving attribute type for first attribute 79
retrieving first 81

environment variable
abend dump 236
DNS name resolver configuration file 237
error message logging 236
global search result caching 235
LDAP server information file 237
LDAP_CLIENT_CACHE 235
LDAP_CLIENT_CACHE_ MAX_SIZE 235
LDAP_CLIENT_CACHE_TTL 236
LDAP_DEBUG 236
LDAP_DEBUG_FILENAME 236
LDAP_ERROR_LOGGING 236
LDAP_EXC_ABEND_DUMP 236
LDAP_SERVER_INFO_CONF 237
LDAP_SSL_CIPHER_FORMAT 237
LDAP_STDOUT_FILENAME 237
LDAP_V2_WIRE_FORMAT 237
LDAP_VERSION 237
local DNS domain name 237
LOCALDOMAIN 237
maximum size of global search result cache 235
maximum time to retain entry in global search result

cache 236
output message file 237
PATH, setting 255
protocol version 237
RESOLVER_CONFIG 237, 244
SOCKS configuration file 238
SOCKS password 238
SOCKS protocol version 238
SOCKS server 238
SOCKS user name 238
SOCKS_CONF 238
SOCKS_PASSWORD 238
SOCKS_SERVER 238
SOCKS_USERNAME 238
SOCKS_VERSION 238
standard error message file 237
standard output message file 237
trace options 236
trace output file name 236
when changes take effect 235

error
last extended

retrieving 97
last, descriptive text for

retrieving 97
last, number of

retrieving 97
error code

retrieving description of 70
retrieving for LDAP result message 230
retrieving last for LDAP handle 89

error handling 13
error message

printing on stderr 229
error message logging

environment variable 236
extended operation, performing 76

extended result message, LDAP
retrieving extended response information from 136

F
filter

approximate 296
syntax 168
using for search 296

free
sort_keylist 85

function vector
obtaining address of 90

G
global search result cache

maximum size, environment variable 235
maximum time to retain entry, environment variable 236

global search result caching
environment variable 235

GSSAPI authentication on SASL bind 160

H
handle, LDAP

creating and initializing 107, 200, 226
host name list

retrieving 97

I
ibm-saslBindCramUserName 18
ibm-saslBindDigestRealmName 19
ibm-saslBindDigestUserName 17
ibm-serverHandledSearchRequest 16
information file, LDAP server

environment variable 237
integrity level

retrieving 99
interface

programming interface information 313
programming, LDAP 1

J
Java Naming and Directory Interface (JNDI) 21
JNDI (Java Naming and Directory Interface) 21

K
Kerberos

authentication 6
Kerberos delegated credentials

passing to server 96
specifying whether LDAP client passes to LDAP

server 186
keyboard

navigation 307
PF keys 307
shortcut keys 307

Index 317

L
LDAP

defining 1
programming 1

LDAP client utilities
using 256

LDAP directory
modifying existing entry 122

LDAP handle
creating and initializing 107, 200, 226

LDAP option
retrieving value of 93

LDAP SPI (service provider interface) 21
LDAP URL

determining if a URL is 111, 112
parsing 207, 210

ldap_abandon_ext() routine 30
ldap_abandon() routine 30
ldap_add_control routine 36
ldap_add_ext_s() routine 32
ldap_add_ext() routine 32
ldap_add_s 7
ldap_add_s() routine 32
ldap_add() routine 32
ldap_berfree_np() routine 37
ldap_bind_() routine 222
ldap_bind() routine 222
LDAP_CLIENT_CACHE environment variable 235
LDAP_CLIENT_CACHE_MAX_SIZE environment

variable 235
LDAP_CLIENT_CACHE_TTL environment variable 236
ldap_compare_ext_s() routine 38
ldap_compare_ext() routine 38
ldap_compare_s() routine 38
ldap_compare() routine 38
ldap_control_free() routine 42
ldap_controls_free() routine 43
ldap_convert_local_np() routine 44
ldap_convert_utf8_np() routine 45
ldap_count_attributes() routine 46
ldap_count_entries() routine 47
ldap_count_messages() routine 48
ldap_count_references() 49
ldap_count_values_len() routine 51
ldap_count_values() routine 50
ldap_create_page_control() 52
ldap_create_persistentsearch_control() 55
ldap_create_sort_control() 57
ldap_create_sort_keylist() 59
LDAP_DEBUG environment variable 236
LDAP_DEBUG_FILENAME environment variable 236
ldap_delete() routine ldap_delete_s() routine ldap_delete_ext()

routine ldap_delete_ext_s() routine 61
ldap_dn2ufn_np() routine 65
ldap_dn2ufn() routine 64
ldap_enetwork_domain_get() routine 66
ldap_enetwork_domain_set() routine 68
ldap_err2string() routine 70
LDAP_ERROR_LOGGING environment variable 236
LDAP_EXC_ABEND_DUMP environment variable 236
ldap_explode_dn_np() routine 73
ldap_explode_dn() routine 71
ldap_explode_rdn() routine 75
ldap_extended_operation_s() routine 76
ldap_extended_operation() routine 76
ldap_first_attribute() routine 79
ldap_first_entry() routine 81

ldap_first_message() routine 82
ldap_first_reference() routine 83
ldap_free_dndesc_np() routine 84
ldap_free_sort_keylist() 85
ldap_free_urldesc() routine 86
ldap_get_dn() routine 87
ldap_get_entry_controls_np() routine 88
ldap_get_errno() routine 89
ldap_get_function_vector() routine 90
ldap_get_lderrno routine 92
ldap_get_option() routine 93
ldap_get_values_len() routine 106
ldap_get_values() routine 105
ldap_init routine 107
ldap_insert_control() 110
ldap_is_ldap_url_np() routine 112
ldap_is_ldap_url() routine 111
ldap_memcache_destroy() routine 113
ldap_memcache_flush() routine 114
ldap_memcache_get() routine 116
ldap_memcache_init() routine 117
ldap_memcache_set() routine 119
ldap_memcache_update() routine 120
ldap_memfree() routine 121
ldap_modify_ext_s() routine 122
ldap_modify_ext() routine 122
ldap_modify_s() routine 122
ldap_modify() routine 122
ldap_modrdn_s() routine 224
ldap_modrdn() routine 224
ldap_mods_free() routine 126
ldap_msgfree() routine 127
ldap_msgid() routine 128
ldap_msgtype() routine 129
ldap_next_attribute() routine 130
ldap_next_entry() routine 131
ldap_next_message() routine 132
ldap_next_reference() routine 133
ldap_open() routine 226
LDAP_OPT_CLIENT_CONTROLS option

retrieving 94
setting 183

LDAP_OPT_CONNECT option
retrieving 94

LDAP_OPT_DEBUG option
retrieving 94
setting 184

LDAP_OPT_DEBUG_FILENAME option
retrieving 96
setting 185

LDAP_OPT_DEBUG_STRING option
retrieving 96
setting 186

LDAP_OPT_DELEGATION option
retrieving 96
setting 186

LDAP_OPT_DEREF option
retrieving 96
setting 186

LDAP_OPT_ERROR_NUMBER option
retrieving 97

LDAP_OPT_ERROR_STRING option
retrieving 97

LDAP_OPT_EXT_ERROR option
retrieving 97

LDAP_OPT_EXT_REBIND_FN
setting 187

318 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

LDAP_OPT_EXT_REBIND_FN option
retrieving 97

LDAP_OPT_HOST_NAME option
retrieving 97

LDAP_OPT_IO_CALLBACK option
retrieving 98
setting 187

LDAP_OPT_MATCHED_DN option
retrieving 98

LDAP_OPT_MAX_SASL_LEVEL option
retrieving 98
setting 188

LDAP_OPT_MIN_SASL_LEVEL option
retrieving 98
setting 189

LDAP_OPT_PROTOCOL_VERSION option
retrieving 98
setting 189

LDAP_OPT_REBIND_FN option
retrieving 99
setting 189

LDAP_OPT_REFERRALS option
retrieving 99
setting 190

LDAP_OPT_REFHOPLIMIT option
retrieving 99
setting 190

LDAP_OPT_RESTART option
retrieving 99
setting 190

LDAP_OPT_SASL_QOP option
retrieving 99

LDAP_OPT_SERVER_CONTROLS option
retrieving 100
setting 190

LDAP_OPT_SIZELIMIT option
retrieving 100
setting 190

LDAP_OPT_SOCKS_CONF option
retrieving 100
setting 190

LDAP_OPT_SOCKS_PASSWORD option
retrieving 100
setting 190

LDAP_OPT_SOCKS_SERVER option
retrieving 100
setting 191

LDAP_OPT_SOCKS_USERNAME option
retrieving 100
setting 191

LDAP_OPT_SOCKS_VERSION option
retrieving 101
setting 191

LDAP_OPT_SSL option
retrieving 101

LDAP_OPT_SSL_CIPHER option
retrieving 101
setting 191

LDAP_OPT_SSL_CIPHER_EXPANDED option 103
setting 192

LDAP_OPT_SSL_CIPHER_FORMAT option 103
setting 192

LDAP_OPT_SSL_TIMEOUT option
retrieving 103
setting 193

LDAP_OPT_TIMELIMIT option
retrieving 103

LDAP_OPT_TIMELIMIT option (continued)
setting 193

LDAP_OPT_UTF8_IO option
retrieving 103
setting 193

LDAP_OPT_V2_WIRE_FORMAT option
retrieving 104
setting 193

ldap_parse_extended_result() routine 136
ldap_parse_page_control() 138
ldap_parse_reference_np() routine 142
ldap_parse_result() routine 144
ldap_parse_sasl_bind_result() routine 146
ldap_parse_sort_control() 147
ldap_perror() routine 229
ldap_pwdpolicy_err2string() routine 149
ldap_remove_control() 150
ldap_rename_s() routine 151
ldap_rename() routine 151
ldap_result() routine 154
ldap_result2error() routine 230
ldap_sasl_bind_s() routine 157
ldap_sasl_bind() routine 157
ldap_search_ext_s() routine 164
ldap_search_ext() routine 164
ldap_search_s() routine 164
ldap_search_st() routine 164
ldap_search() routine 164
ldap_server_conf_sav()e routine 172
ldap_server_free_list() routine 174
LDAP_SERVER_INFO_CONF environment variable 237
ldap_server_locate() routine 175
ldap_set_option() routine 182
ldap_set_rebind_proc() routine 195
ldap_simple_bind_s() routine 196
ldap_simple_bind() routine 196
LDAP_SSL_CIPHER_FORMAT environment variable 237
ldap_ssl_client_init() routine 198
ldap_ssl_init() routine 200
ldap_ssl_start() routine 231
ldap_start_tls_s_np() routine 203
LDAP_STDOUT_FILENAME environment variable 237
ldap_stop_tls_s_np() routine 205
ldap_unbind_s() routine 206
ldap_unbind() routine 206
ldap_url_parse_np() routine 210
ldap_url_parse() routine 207
ldap_url_search_s() routine 212
ldap_url_search_st() routine 212
ldap_url_search() routine 212
LDAP_V2_WIRE_FORMAT environment variable 237
ldap_value_free_len() routine 217
ldap_value_free() routine 216
LDAP_VERSION environment variable 237
ldap_version() routine 218
ldapadd utility

description 276
modify mode of input 285
RFC 2849 280
running 255

ldapchangepwd utility
description 264

ldapcompare utility
description 268

ldapdelete utility
description 272
running 255

Index 319

LDAPMod address array and structures
releasing storage for 126

ldapmodify utility 280
description 276
modify mode of input 285
running 255

ldapmodrdn utility
description 291
running 255

ldapsearch utility
description 296
running 255

linking a program that uses LDAP API 4
listing all subentries

example 9
local configuration file

example of 248
format of 246

LOCALDOMAIN environment variable 237

M
matched DN routine

retrieving 98
message

counting number in LDAP result 48
result for LDAP request, returning 154

message file
standard output

environment variable 237
message, error

printing on stderr 229
message, LDAP

releasing storage for 127
retrieving identifier 128
retrieving message type 129
retrieving next 132

message, LDAP extended result
retrieving extended response information from 136

message, LDAP result
parsing 144

message, SASL bind result
parsing 146

message, search continuation reference
parsing 142

mode for ldapmodify and ldapadd utilities
LDIF 280
modify 285

model data
LDAP 2

modify mode 285
modify style examples 286

adding a new attribute type 286
adding a new entry 286
adding an attribute 286, 287
deleting an attribute type 286
replacing attribute values 286

modifying
schema 289

modifying LDAP entry
example 7

multiple operations 20

N
name

typed 2
name resolver configuration file

description of contents 244
environment variable 237
sample 246

navigation
keyboard 307

non-secure LDAP URL 10
Notices 311
NULL security mechanism for SASL bind 158
numeric object identifier, example of changing 287

O
object class 2
object identifier (OID), example of changing 287
operation, extended, performing 76
option, LDAP

LDAP_OPT_CLIENT_CONTROLS
retrieving 94
setting 183

LDAP_OPT_CONNECT
retrieving 94

LDAP_OPT_DEBUG
retrieving 94
setting 184

LDAP_OPT_DEBUG_FILENAME
retrieving 96
setting 185

LDAP_OPT_DEBUG_STRING
retrieving 96
setting 186

LDAP_OPT_DELEGATION
retrieving 96
setting 186

LDAP_OPT_DEREF
retrieving 96
setting 186

LDAP_OPT_ERROR_NUMBER
retrieving 97

LDAP_OPT_ERROR_STRING
retrieving 97

LDAP_OPT_EXT_ERROR
retrieving 97

LDAP_OPT_EXT_REBIND_FN
retrieving 97
setting 187

LDAP_OPT_HOST_NAME
retrieving 97

LDAP_OPT_IO_CALLBACK
retrieving 98
setting 187

LDAP_OPT_MATCHED_DN
retrieving 98

LDAP_OPT_MAX_SASL_LEVEL
retrieving 98
setting 188

LDAP_OPT_MIN_SASL_LEVEL
retrieving 98
setting 189

LDAP_OPT_PROTOCOL_VERSION
retrieving 98
setting 189

320 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

option, LDAP (continued)
LDAP_OPT_REBIND_FN

retrieving 99
setting 189

LDAP_OPT_REFERRALS
retrieving 99
setting 190

LDAP_OPT_REFHOPLIMIT
retrieving 99
setting 190

LDAP_OPT_RESTART
retrieving 99
setting 190

LDAP_OPT_SASL_QOP
retrieving 99

LDAP_OPT_SERVER_CONTROLS
retrieving 100
setting 190

LDAP_OPT_SIZELIMIT
retrieving 100
setting 190

LDAP_OPT_SOCKS_CONF
retrieving 100
setting 190

LDAP_OPT_SOCKS_PASSWORD
retrieving 100
setting 190

LDAP_OPT_SOCKS_SERVER
retrieving 100
setting 191

LDAP_OPT_SOCKS_USERNAME
retrieving 100
setting 191

LDAP_OPT_SOCKS_VERSION
retrieving 101
setting 191

LDAP_OPT_SSL
retrieving 101

LDAP_OPT_SSL_CIPHER
retrieving 101
setting 191

LDAP_OPT_SSL_CIPHER_EXPANDED 103
setting 192

LDAP_OPT_SSL_CIPHER_FORMAT
setting 192

LDAP_OPT_SSL_TIMEOUT
retrieving 103
setting 193

LDAP_OPT_TIMELIMIT
retrieving 103
setting 193

LDAP_OPT_UTF8_IO
retrieving 103
setting 193

LDAP_OPT_V2_WIRE_FORMAT
retrieving 104
setting 193

retrieving value of 93
setting 182

output message file, standard
environment variable 237

P
parse

page_control 138
sort_control 147

program structure 5
programming interface

LDAP 1
programming interface information 313
protocol

LDAP 1
protocol version

environment variable 237
protocol version used by LDAP client

retrieving 98

Q
QOP (quality-of-protection)

retrieving 99
quality-of-protection (QOP)

retrieving 99

R
RACF (Resource Access Control Facility) 19
RDN (relative distinguished name) 2

changing
example 8

modifying 291
parsing DN into 73
parsing into array of attributes 75

reading entry contents
example 9

rebind routine
specifying 195

rebind routine, specifying 187
rebinding

while following referral 12
referral

description 10
for LDAP Version 2 11
for LDAP Version 3 11
rebinding while following 12
retrieving maximum number of servers to contact when

following 99
retrieving whether client follows 99

relative distinguished name (RDN) 2
changing

example 8
parsing DN into 73
parsing into array of attributes 75

releasing storage
for an LDAP DN description 84
for an LDAP URL description 86

removing LDAP entries 61
renaming

entry in LDAP directory 151
request, LDAP

returning result message 154
resolver configuration file

description of contents 244
environment variable 237
sample 246

RESOLVER_CONFIG environment variable 237, 244
Resource Access Control Facility (RACF) 19
restart of select() system call, retrieving option for 99
result message

for LDAP request, returning 154
parsing 144

Index 321

result, LDAP
retrieving first message in 82
retrieving first search entry in 81
retrieving first search reference in 83
retrieving next search reference in 133

RFC 2849 LDIF input 280
separator

single colon/double colon 280
single colon (:)

double colon (::) 280
RFC 2849 LDIF style examples 282

Adding a new entry 282
Adding attribute types 283
Changing the entry name 283
Deleting an entry 285
Deleting and adding attributes 284
Modifying multiple entries 284
Replacing attribute values 284

root DSE 305
routines

control 15
ldap_abandon_ext() 30
ldap_abandon() 30
ldap_add_control() 36
ldap_add_ext_s() 32
ldap_add_ext() 32
ldap_add_s() 32
ldap_add() 32
ldap_berfree_np() 37
ldap_bind_s() 222
ldap_bind() 222
ldap_compare_ext_s() 38
ldap_compare_ext() 38
ldap_compare_s() 38
ldap_compare() 38
ldap_control_free() 42
ldap_controls_free() 43
ldap_convert_local_np() 44
ldap_convert_utf8_np() 45
ldap_count_attributes() 46
ldap_count_entries() 47
ldap_count_messages() 48
ldap_count_references() 49
ldap_count_values_len() 51
ldap_count_values() 50
ldap_create_page_control() 52
ldap_create_persistentsearch_control() 55
ldap_create_sort_control() 57
ldap_create_sort_keylist() 59
ldap_delete_ext_s() 61
ldap_delete_ext() 61
ldap_delete_s() 61
ldap_delete() 61
ldap_dn2ufn_np() 65
ldap_dn2ufn() 64
ldap_enetwork_domain_get() 66
ldap_enetwork_domain_set() 68
ldap_err2string() 70
ldap_explode_dn_np() 73
ldap_explode_dn() 71
ldap_explode_rdn() 75
ldap_extended_operation_s() 76
ldap_extended_operation() 76
ldap_first_attribute() 79
ldap_first_entry() 81
ldap_first_message() 82
ldap_first_reference() 83

routines (continued)
ldap_free_dndesc_np() 84
ldap_free_sort_keylist() 85
ldap_free_urldesc() 86
ldap_get_dn() 87
ldap_get_entry_controls_np() 88
ldap_get_errno() 89
ldap_get_function_vector() 90
ldap_get_lderrno() 92
ldap_get_option() 93
ldap_get_values_len() 106
ldap_get_values() 105
ldap_init 107
ldap_insert_control() 110
ldap_is_ldap_url_np() 112
ldap_is_ldap_url() 111
ldap_memcache_destroy() 113
ldap_memcache_flush() 114
ldap_memcache_get() 116
ldap_memcache_init() 117
ldap_memcache_set() 119
ldap_memcache_update() 120
ldap_memfree() 121
ldap_modify_ext_s() 122
ldap_modify_ext() 122
ldap_modify_s() 122
ldap_modify() 122
ldap_modrdn_s() 224
ldap_modrdn() 224
ldap_mods_free() 126
ldap_msgfree() 127
ldap_msgid() 128
ldap_msgtype() 129
ldap_next_attribute() 130
ldap_next_entry() 131
ldap_next_message() 132
ldap_next_reference() 133
ldap_open() 226
ldap_parse_extended_result() 136
ldap_parse_page_control() 138
ldap_parse_pwdpolicy _response() 140
ldap_parse_reference_np() 142
ldap_parse_result() 144
ldap_parse_sasl_bind_result() 146
ldap_parse_sort_control() 147
ldap_perror() 229
ldap_pwdpolicy_err2string() 149
ldap_remove_control() 150
ldap_rename_s() 151
ldap_rename() 151
ldap_result() 154
ldap_result2error() 230
ldap_sasl_bind_s() 157
ldap_sasl_bind() 157
ldap_search_ext_s() 164
ldap_search_ext() 164
ldap_search_s() 164
ldap_search_st() 164
ldap_search() 164
ldap_server_conf_save() 172
ldap_server_free_list() 174
ldap_server_locate() 175
ldap_set_option_np() 182
ldap_set_option() 182
ldap_set_rebind_proc() 195
ldap_simple_bind_s() 196
ldap_simple_bind() 196

322 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

routines (continued)
ldap_ssl_client_init() 198
ldap_ssl_init() 200
ldap_ssl_start() 231
ldap_start_tls_s_np() 203
ldap_stop_tls_s_np() 205
ldap_unbind_s() 206
ldap_unbind() 206
ldap_url_parse_np() 210
ldap_url_parse() 207
ldap_url_search_s() 212
ldap_url_search_st() 212
ldap_url_search() 212
ldap_value_free_len() 217
ldap_value_free() 216
ldap_version() 218

runtime binding 90

S
SASL

authentication mechanisms for bind 158
SASL (Simple Authentication and Security Layer) bind result

message
parsing 146

SASL GSSAPI bind 6
SASL protection level, maximum

retrieving 98
SASL protection level, minimum

retrieving 98
schema

modifying 289
search

control 16
specifying time limit for 193

search continuation reference message
parsing 142

search entry
counting number in LDAP result 47
retrieving attribute type for first attribute 79
retrieving attribute type for next attribute 130
retrieving first 81
retrieving next 131

search filter, syntax 168
search reference

counting number in LDAP result 49
search request

retrieving maximum number of entries returned 100
specifying maximum number entries returned 190

search result
cache, creating 117
cache, destroying 113
cache, removing entries from 114
cache, removing expired entries 120
cache, returning 116
cache, setting 119
processing 9

search result cache, global
maximum size, environment variable 235
maximum time to retain entry, environment variable 236

search result caching, global
environment variable 235

search results
retrieving time to wait for 103

search results, caching 20
secure LDAP URL 10

Secure Sockets Layer (SSL)
initializing client runtime 198
using protected communications 238

security
supported by LDAP 1

security mechanism for SASL bind
CRAM-MD5 161
DIGEST-MD5 161
external using TCP/IP connection 159
GSSAPI 160
NULL 158
simple authentication 158

select() system call, retrieving option for restart of 99
sending comments to IBM ix
server

authenticating connection with
retrieving routine for 97, 99

SSL connection, retrieving session timeout value 103
SSL connection, retrieving whether used to bind 101
using server information file to locate 246

server control
overview 15
returning from search entry message 88
sent with each request, retrieving default list of 100
specifying default list of 190

server information file
environment variable 237
example of 248
format of 246

server information list
releasing storage for 174

server, LDAP
configuration, saving 172
connecting to 226
LDAP_OPT_CONNECT option 94
locating 175
name resolver configuration file 244
retrieving whether connection established 94

service provider interface (SPI), LDAP 21
session control 16
shell, z/OS

running client utilities from 255
shortcut keys 307
SIGPIPE signals 5
simple authentication 6
Simple Authentication and Security Layer (SASL) bind result

message
parsing 146

simple bind 6
SOCKS

configuration file
environment variable 238
keywords valid in 240
retrieving name of 100
sample 242
specifying contents 240
specifying name of 190

password
environment variable 238
retrieving 100
specifying 190

protocol version
environment variable 238
specifying 191

server
environment variable 238

server list, retrieving 100

Index 323

SOCKS (continued)
servers to use, specifying 191
socksified LDAP client, using 240
user name

environment variable 238
retrieving 100
specifying 191

version, retrieving 101
SOCKS_CONF environment variable 238
SOCKS_PASSWORD environment variable 238
SOCKS_SERVER environment variable 238
SOCKS_USERNAME environment variable 238
SOCKS_VERSION environment variable 238
socksified client 240
SPI (service provider interface), LDAP 21
SRV record 249
SSL (Secure Sockets Layer)

cipher suite, specifying 191, 192
initializing client runtime 198
using protected communications 238

SSL connection
retrieving cipher specification or cipher suite 101
retrieving session timeout value 103
retrieving whether used to bind 101
starting 231

SSL session timeout value, setting 193
SSL/TLS information for LDAP client utilities 259
standard error stream 13
standard output message file

environment variable 237
static binding 90
stderr

printing error message on 229
storage

allocated by LDAP run time, releasing 121
allocated for array of attribute modifications,

releasing 126
releasing for an LDAP DN description 84
releasing for an LDAP URL description 86
releasing for array of binary values 217
releasing for array of character strings 216
releasing for array of LDAP controls 43
releasing for binary value 37
releasing for LDAP control 42
releasing for LDAP message 127
releasing for server information list 174

string
converting from EBCDIC to UTF-8 44
converting from UTF-8 to EBCDIC 45

structure
LDAP program 5

subentries, listing
example 9

summary of changes xi
Summary of changes xi
synchronous LDAP operation 20
System SSL (Secure Sockets Layer)

using a key ring stash file 198

T
TCP/IP (Transmission Control Protocol/Internet Protocol) 23
TCP/IP connection, external authentication using 159
text data

retrieving format of 103
specifying format of 193

text string
converting from EBCDIC to UTF-8 44
converting from UTF-8 to EBCDIC 45

thread safety 19
time limit

to wait for search results, retrieving 103
TLS (Transport Layer Security) 5

initiating 203
stopping for a connection 205
using protected communications 238

trace
debug levels 244
enabling 242
level

retrieving 94
options

retrieving 96
options, environment variable 236
output file name

retrieving 96
output file name, environment variable 236

trademarks 313
Transmission Control Protocol/Internet Protocol (TCP/IP) 23
Transport Layer Security (TLS) 5

initiating 203
stopping for a connection 205
using protected communications 238

TSO (Time Sharing Option)
running client utilities from 255

TXT record 249
typed

name 2

U
unbinding LDAP API 5
URL, LDAP

determining if a URL is 111, 112
parsing 207, 210

user interface
ISPF 307
TSO/E 307

Using ldap_err2string() and ldap_get_option() 14
Using ldap_get_errno() and ldap_parse_result() 14
Using ldap_get_lderrno() 14
Using ldap_parse_pwdpolicy_response() and

ldap_pwdpolicy_err2string() 15
UTF-8

converting text string from EBCDIC to 44
converting text string to EBCDIC 45
I/O mode 3

utility 291
ldapadd 276
ldapchangepwd 264
ldapcompare 268
ldapdelete 272
ldapmodify 276
ldapsearch 296

V
version

protocol
retrieving 218

runtime library
retrieving 218

324 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

version, LDAP protocol
environment variable 237

W
wire format

environment variable 237

X
X.500, naming concepts 2
XDS/XOM 2

Z
z/OS data sets 2
z/OS shell

running client utilities from 255

Index 325

326 z/OS V2R2 IBM Tivoli Directory Server Client Programming for z/OS

����

Product Number: 5650-ZOS

Printed in USA

SA23-2295-01

	Contents
	Tables
	About this document
	Intended audience
	Conventions used in this document
	Where to find more information
	Internet sources

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 2 summary of changes for IBM Tivoli Directory Server Client Programming for z/OS
	Summary of changes for z/OS Version 2 Release 1

	Chapter 1. LDAP programming
	How LDAP is defined
	Current RFCs
	Draft RFCs
	Superseded RFCs

	Data model
	LDAP names
	Function overview
	ASCII support
	Compiling, linking, and running a program
	Rules
	Using TSO and batch jobs

	Using the API
	Basic structure

	Authentication methods
	Performing an operation
	Adding an entry
	Modifying an entry
	Deleting an entire entry
	Changing the RDN of an entry and relocating the entry
	Comparing an attribute value with its value in an entry in the directory
	Reading a directory entry's contents
	Listing the objectClass attribute values for all entries directly below a given entry
	Reading the objectClass attribute values for all entries below a given entry

	Getting results
	Referrals
	Using LDAP Version 2 referrals
	Using LDAP Version 3 referrals
	Rebinding while following referrals

	Error processing
	Using ldap_get_lderrno()
	Using ldap_get_errno() and ldap_parse_result()
	Using ldap_err2string() and ldap_get_option()
	Using ldap_parse_pwdpolicy_response() and ldap_pwdpolicy_err2string()

	LDAP controls
	Session controls
	Supported client controls
	ibm-serverHandledSearchRequest
	ibm-saslBindDigestUserName
	ibm-saslBindCramUserName
	ibm-saslBindDigestRealmName

	Using RACF data
	Thread safety
	Client-side search results caching
	Synchronous versus asynchronous operation
	Calling the LDAP APIs from other languages
	LDAP client for Java

	Chapter 2. LDAP routines
	ldap_abandon(), ldap_abandon_ext()
	ldap_add(), ldap_add_s(), ldap_add_ext(), ldap_add_ext_s()
	ldap_add_control()
	ldap_berfree_np()
	ldap_compare(), ldap_compare_s(), ldap_compare_ext(), ldap_compare_ext_s()
	ldap_control_free()
	ldap_controls_free()
	ldap_convert_local_np()
	ldap_convert_utf8_np()
	ldap_count_attributes()
	ldap_count_entries()
	ldap_count_messages()
	ldap_count_references()
	ldap_count_values()
	ldap_count_values_len()
	ldap_create_page_control()
	ldap_create_persistentsearch_control()
	ldap_create_sort_control()
	ldap_create_sort_keylist()
	ldap_delete(), ldap_delete_s(), ldap_delete_ext(), ldap_delete_ext_s()
	ldap_dn2ufn()
	ldap_dn2ufn_np()
	ldap_enetwork_domain_get()
	ldap_enetwork_domain_set()
	ldap_err2string()
	ldap_explode_dn()
	ldap_explode_dn_np()
	ldap_explode_rdn()
	ldap_extended_operation(), ldap_extended_operation_s()
	ldap_first_attribute()
	ldap_first_entry()
	ldap_first_message()
	ldap_first_reference()
	ldap_free_dndesc_np()
	ldap_free_sort_keylist()
	ldap_free_urldesc()
	ldap_get_dn()
	ldap_get_entry_controls_np()
	ldap_get_errno()
	ldap_get_function_vector()
	ldap_get_lderrno()
	ldap_get_option()
	ldap_get_values()
	ldap_get_values_len()
	ldap_init()
	ldap_insert_control()
	ldap_is_ldap_url()
	ldap_is_ldap_url_np()
	ldap_memcache_destroy()
	ldap_memcache_flush()
	ldap_memcache_get()
	ldap_memcache_init()
	ldap_memcache_set()
	ldap_memcache_update()
	ldap_memfree()
	ldap_modify(), ldap_modify_s(), ldap_modify_ext(), ldap_modify_ext_s()
	ldap_mods_free()
	ldap_msgfree()
	ldap_msgid()
	ldap_msgtype()
	ldap_next_attribute()
	ldap_next_entry()
	ldap_next_message()
	ldap_next_reference()
	ldap_parse_entrychange_control()
	ldap_parse_extended_result()
	ldap_parse_page_control()
	ldap_parse_pwdpolicy_response()
	ldap_parse_reference_np()
	ldap_parse_result()
	ldap_parse_sasl_bind_result()
	ldap_parse_sort_control()
	ldap_pwdpolicy_err2string()
	ldap_remove_control()
	ldap_rename(), ldap_rename_s()
	ldap_result()
	ldap_sasl_bind(), ldap_sasl_bind_s()
	ldap_search(), ldap_search_s(), ldap_search_st(), ldap_search_ext(), ldap_search_ext_s()
	ldap_server_conf_save()
	ldap_server_free_list()
	ldap_server_locate()
	ldap_set_option(), ldap_set_option_np()
	ldap_set_rebind_proc()
	ldap_simple_bind(), ldap_simple_bind_s()
	ldap_ssl_client_init()
	ldap_ssl_init()
	ldap_start_tls_s_np()
	ldap_stop_tls_s_np()
	ldap_unbind(), ldap_unbind_s()
	ldap_url_parse()
	ldap_url_parse_np()
	ldap_url_search(), ldap_url_search_s(), ldap_url_search_st()
	ldap_value_free()
	ldap_value_free_len()
	ldap_version()

	Chapter 3. Deprecated LDAP routines
	ldap_bind(), ldap_bind_s()
	ldap_modrdn(), ldap_modrdn_s()
	ldap_open()
	ldap_perror()
	ldap_result2error()
	ldap_ssl_start()

	Chapter 4. Using the LDAP client
	LDAP client environment variables
	Using SSL and TLS protected communications
	Using the socksified client
	Enabling tracing
	Name resolver configuration file
	LDAP server information file
	Example of a server information file

	Publishing LDAP server information in DNS
	Using SRV and TXT records
	Example of DNS resource records

	Using TXT records to emulate SRV records
	Using CNAME records
	ldap_server_locate() usage by ldap_init() and ldap_ssl_init()

	Chapter 5. LDAP client utilities
	Running the LDAP client utilities in the z/OS shell
	Running the LDAP client utilities in TSO
	Using the LDAP client utilities
	Specifying a value for a file name
	SSL/TLS information for LDAP client utilities
	Using RACF key rings
	Using PKCS #11 tokens
	SSL initialization failure
	Using environment variables to control SSL/TLS settings

	ldapchangepwd utility
	ldapcompare utility
	ldapdelete utility
	ldapmodify and ldapadd utilities
	ldapmodrdn utility
	ldapsearch utility

	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

