7/08S

Network File System
Guide and Reference

Version 2 Release 2

<|lI!

SC23-6883-02

This edition applies to Version 2 Release 2 of z/OS® (5650-Z0S) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC23-6883-00.

© Copyright IBM Corporation 1991, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Copyright IBM Corp. 1991, 2015

iii

iV z/0S V2R2 Network File System Guide and Reference

Contents
Figures. Xxi
Tables. « Xiii

About thisdocument Xxvii

Required product knowledge xvii
Where to find more information xvii
Access to documents. xvil
z/0S information . . . xviil
Access to softcopy documents on CD ROM and
DVD collections and the Internet xix
How to look up message explanations with
LookAt L. ... L. xix
How to read syntax dlagrams R o
Related protocol specificationso xxid
The z/0S Basic Skills Information Center .. xxdid

How to send your comments to IBM xxv

If you have a technical problem xxv
If you have a technical problem xxv
Summary of changes XXvii
Summary of changes for z/OS Version 2 Release

2 (V2R2) as updated December 2015 = xxvii
Summary of changes for SC23-6883-01 xxvii
Summary of changes for SC23-6883-00 xxviii

Part 1. Using z/OS Network File
System. 1

Chapter 1. Introduction

Overview .

z/0S UNIKX files .
z/0S UNIX advantages
NFS protocol compliance . .
Crossing between file systems—NFS server

z/0S conventional MVS data sets
Mounting MVS data sets onto a client mount
point . .
Creating z/OS conventlonal MVS data sets .
Serializing and sharing data sets.

NFS version 2 and version 3 statelessness.

NFS version 4 state . .

Name space and file system management

z/0OS NFS File System Type Selection .
Specifying the path type prefix and the
customer-configurable path resolution heuristic.. 9
Implicit prefix support restrictions. 11

Server control files 13
Attributes dataset 13
Exports dataset. 13
Mount handle dataset. 14
Log dataset 14

gl o1 Ul s W

O 00 NI N OO Ol

© Copyright IBM Corp. 1991, 2015

Tested clients for the z/OS NFS server . . 14
NFS protocol attributes for the z/OS NFS server 15
z/0OS NFS server restrictions 15

Tested servers for the z/OS NFS client 16
z/0S NFS client restrictions. 17

WebNFS support . . T V4

NFS versions with TCP/ IP protocols 18

Internet Protocol version6 19

User-specified port range support 20

Dynamic addressing 20

64-bit exploitation 21

Data transfer and conversion 21
Native ASCII support 21

Chapter 2. Creating z/0S conventional
MVSdatasets 23

Overriding data set creation attributes 23
Preparing to create an MVS file. 23
Naming MVS files
Creating physical sequential flles .
Creating direct access files 25
Creating PDSs and PDSEs . . . 26
Creating a PDS or PDSE - mkdir dsntype(pds)
dsntype(library)26
Removing a PDS or PDSE - 1m, rmdlr ... 26
Accessing PDS or PDSE members . . . 27

Updating or extending a PDS or PDSE member 27
Timing out while wrltlng a PDS or PDSE

member27
Wildcard copy to a PDS or PDSE e .27
LimitationsofaPDS 28
Concurrent writes to a PDSE . . . 28
ISPF extended statistics support for PDS or PDSE
members 28
Creating VSAM files 28
Exploiting SAM striped files. 30
Exploiting large format data sets . . . 30

Exploiting data sets on extended address Volumes 30

Chapter 3. Using z/OS conventional
MVS datasets 31

Special MVS considerations 31
Selection of an MVS data storage format .. 31
File size determination and time stamps. . .. 32
Ownership and permissions. 32
File reading and writing 33
Case sensitivity-maplower, nomaplower. . .. 34
Selection of text or binary processing modes—text,
binary . . .
MVS prefix support B
Number representation 36
Partial record identification . . . < 74
Access to migrated files-retrieve, noretrreve, wait,
nowait39
Access to migrated system managed data sets 39

A\

File handle refresh40
Mapping between the workstatlon and MVS flle
systems. 40

File extens10n mappmg R 40

Mounting of MVS data sets onto a Cl1ent mount

point . . T 1 |

Use of a PDS or PDSE as a d1rectory - 2

Use of multiple mount points 44

Data set serialization and sharing 45

NFS protocol 45

NFS file system attributes . . . 45
Delegating management of a file's resources to an
NFSclient. 46

Chapter 4. Using z/OS UNIX System
Services files. 49

z/0S UNIX file system 49
POSIX compatibility 50
NFS protocol . . . 51

Attributes specific to z / OS UNIX System Serv1ces 51
Synchronous write to a z/OS UNIX file for NFS

version 2 protocol . . . 51
Synchronous write to a z/ OS UNIX f1le for NFS
version 3 or 4 protocol. . . . 51
Authorization checking when wr1t1ng to az / OS
UNIX file B2
HFSPREFIX site attr1bute .. 52
Protecting your z/OS UNIX System Serv1ces flles . 52
Accessing z/OS UNIX files from a client 53
Mount examples. 53
z/0S UNIX data transfer and conversion . . 54

Data transfer under the NFS version 4 protocol 54
Text or binary processing - NFS version 2 and 3

protocols 54
Linking an MVS data set to az / OS UNIX flle
system 5
Creating an external l1nk . . 55
Displaying the contents on an external l1nk . 56
Deleting an external link . . . 56
Accessing symbolic links on z/0OS NFS version 4 56
UNIX look and feel. 58
NFS file system attributes 58
Displaying and modifying remote f1le system access
control lists 58
Remote ACL management restrlctlons ... 59

Chapter 5. z/0OS NFS file Iocking and
access control 61

Locking in NFS versions 2 and 3 (NFS server only) 61
Using Network Lock Manager (NLM) in NFS V2

and V3. . . . 61
Using Network Status Mon1tor (NSM) in NFS V2
and V3.o 62
Locking in NFS version 4 63
Byte-range locking 63
Share reservations 63
Specifying a grace period for reclalmmg locks 63
Listing locks held forafile 64
Releasing locks held for a file 64

Vi z/0S V2R2 Network File System Guide and Reference

Chapter 6. Commands and examples

for AIX and UNIX clients . 65
Using commands on AIX. . 65
Quick reference of AIX and UNIX Commands . 69
Accessing z/0S UNIX file systems and z/0S
conventional MVS files e 69
Myvslogin command examples . . 70
Mount command examples using an MVS preﬁx 72
Mount command example: overriding server
default attributes without an MVS prefix 73
Displaying default and mount point attributes -
showattr 74
Unmounting and logglng out of z / OS 78
Disconnecting your mount point - umount . 78
Ending your z/OS session - mvslogout . 79
Chapter 7. Commands and examples
for zZ/OS NFS clients . - 81
Using commands on the z/OS NFS chent . 81
Accessing z/0OS . . 88
Myvslogin command examples . 88
Mount command syntax and examples . 89
Unmount command syntax and examples . 98
Displaying client and server statistical
information-nfsstat . 99
Displaying server mount
information-showmount . 104
Displaying default and mount po1nt
attributes-showattr 105
Ending your z/OS session - mvslogout 107
Chapter 8. Initialization attributes for
the z/OS NFS client. 109
Client attribute syntax 109
Datacaching attribute. 117
Mount processing parameters and 1nstallat1on
parameters . 118
NFS client translat1on support 119
z/0S NFS client with z/OS NFS server 119
Chapter 9. Initialization attributes for
the z/OS NFS server 121
Attributes used for z/OS UNIX file access. 121
Multipliers . 122
Duplicate attributes 122
Data set creation attributes syntax 122
Processing attributes syntax 127
Timeout attributes. 135
Retrieve attributes. . 136
Mapped keyword processmg attr1bute . 136
Native ASCII processing attributes 137
Site attributes syntax . .o 139
Part 2. Customization and
Operations . 159
Chapter 10. Customization. 161
Protecting your programs and files . 161

Protecting the server control files. 161

Setting up the z/OS NFS authorization. . .. 162

Protecting the file system on z/OS with the NFS

V4 protocol 163

Protecting the file system on z / OS w1th the

Security site attribute. A (074

Customizing installation security ex1ts T V]

Using UNIX style credentials for authentication 172
Converting data . . . 173
Creating the conversion env1ronment for Unlcode
Services . . . R V£
Collecting NFS usage data R V4
Configuring the z/OS NFS client. . . 176

Creating the PARMLIB statement for the chent 176
Updating z/OS system data sets for the client 176

Allocating client log data sets 177
NFS Client with Multiple TCPIP stacks .. 177
Mounting remote file systems 177
Setting up reserved (privileged) ports 178
Configuring a secure z/OS NFS client 179
Configuring the z/OS NFS server 181
Attributes dataset. 181
Exports dataset 181
Checklist dataset 191
Mount handle datasets 191
Lock data sets . . . 192
Converting data between ASCII and EBCDIC -
NFS V2 and V3 only . . . 193

Updating z/OS system data sets for the server 194
Allocating the z/OS NFS server log data sets 196

Side file data set 196
Modifying tcpip.ETC. RPC and etc / rpc .. 196
Setting up a user-specified port range 196
Configuring a secure z/OS NFS server. . .. 199
Using dynamic client IP addressing . . . 202
Terminal ID based restricted MVSLOGIN . 203
SERVAUTH based restricted MVSLOGIN . .. 204
Data Labeling 206
Using multiple TCP/IP stacks ... 206
Installing the client enabling commands 209
Retrieving commands for AIX, Sun Solaris, and
Linux . . . 210
Porting the mvslogln mvslogout and showattr
commands 213
Porting on different compllers and operatmg
systems . . A
NFS v4 protocol name mappmg B V4
Inbound owner/owner_group processing . .. 218
Outbound owner and owner_group attributes
processing . . 219

Domain processmg in NFSV4 Name Mapplng 220

Chapter 11. Network File System

operation e .. 221
Starting the z/OS NFS chent A |
Stopping the z/OS NFS client. . . 222
Starting component tracing for the z/ OS NFS chent 222
Starting the z/OS NFS server 225

Starting multiple servers 227
Stopping the z/OS NFS server 228

Starting the z/OS NFS NSM and z/0S NFS NLM 229

Starting component tracing for the z/OS NFS
server .

Entering operands of the mod1fy command for the

z/OS NFS server .
Addds operand.
bufferusage operand .
bufhigh operand
Cbsniff operand .
CONSOLEMSGS operand .
DlyDTimeout operand
Exportfs operand .
Freeds operand.
Freeze operand .
ID2NAME operand
List operand.
Mapfile operand
racf_cache_reset operand
Release operand
smf operand.
Status operand .
Swapldb operand .
Swapmhdb operand .
Unmount operand.
Unmntall operand.
Unmnthfs operand
Unmntmvs operand .
vddelg operand.

Entering operands of the modify command for

diagnosis .

Debug operand

Flushlog operand .

Listlock operand

Log operand

Smf operand

Sockhang operand.

Switchlog operand

Version operand .
Displaying NFS trace 1nformatlon

Chapter 12. Installation-wide exit
routines for the z/OS NFS server .
Requirements for NFS

Sample link-edit JCL .

Storage blocks of the server exits .
Login installation-wide exit.

Requirements of the login exit.

Options of the login exit.

Structure of the login exit message

Contents of the login exit parameter list

Login exit parameter list.

Request codes to the login exit

Return codes from the login exit .

System initialization routine of the login ex1t

Start of new user session routine of the login
exit. .
User login request routme of the logm ex1t

User logout request routine of the login exit ..
System termination routine of the login exit ..

File security installation-wide exit
Requirements of the file security exit
Structure of the file security exit message .

Contents

229

233
236
236
236
237
238
238
238
239
239
240
240
242
242
242
243
244
244
244
245
245
245
245
246

246
246
247
247
248
249
249
250
250
251

253
253
254
254
255
257
257
257
257
258
258
259
259

259
260
261
261
261
264
264

vii

Contents of the file security exit parameter list 264

File security exit parameter list 266
Request codes to the file security exit 266
Return codes from the file security exit. . .. 266
Validate allocate request routine of the file

security exit. . . . 266
Validate write request routme of the flle securlty
exit. . . 267
Validate read request routme of the f11e securlty

exit. 267
Return security permlss10ns routme of the f1le
security exit. 268

Part 3. Performance Tuning 271

Chapter 13. Performance tuning in the
NFS environment. 273

What is performance tuning? 273
How is performance characterized? 273
What is the NFS environment? 274
How to tune for performance 274

Impact of the NFS protocol on performance . .. 276

Chapter 14. Optimizing the NFS
environment. 279

Network performance tuning 279
NFS client system performance tuning 281
NFS server system performance tuning. = 282

z/0OS constraints 283

Chapter 15. Evaluatlng z/OS NFS
performance.+« 285

Evaluating throughput 285
Single process throughput 285
Multiple process throughput 286
Multiple client throughput 286

Evaluating NFS command response time 286

Evaluating CPU utilization. 286

Collecting server usage data 287

Chapter 16. Tuning the z/0S NFS

server . . . e e e e e ..o 289
Data set creation attrlbutes e e oo w289
Block size and record length 289
Record format 290
Data set organization and data set type .. 290
B37/D37/E37 ABEND handling 291
NFS server cache monitoring and reporting .. 291
Processing attributes 292
Character translation. 292
File size determination 292
Data set timeout specification 2%
Accessing migrated files. 294
Asynchronous z/0S UNIX processmg .. 29
Site attributes 29
Buffer usage and cachmg 2%
Ordering out-of-sequence data. 297
Storage considerations 299
Subtasking 300

viil z/0S V2R2 Network File System Guide and Reference

Chapter 17. Tunlng the z/0S NFS

client . 303
Caching . 303
Dynamicsizead;. 304
Bufhigh 304
Biod . . 304
Readahead 304
syncwrite. 304
Delaywrite 305
Vers . 305
Wsize and rsize 305
Part 4. Diagnosis and Messages 307
Chapter 18. Diagnosis and reporting
of problems . 309
Correcting input errors . . 309
Using keywords to identify a problem . 310
Component identification keyword . 311
Release level keyword 311
Type-of-failure keyword . 311
Service level keyword 313
Using z/OS component tracing 314
Component trace benefits 315
Using NFS component trace PARMLIB members
CTINFSnn and CTINFCnn . . . 315
Capturing NFS Server component trace
information in an SVC dump . . 322
Capturing NFS Client component trace
information in an SVC dump . . 322
Using a z/OS component trace external wrrter 323
Setting up a dump data set for abnormal ends 329
Searching the IBM database for APARs and PTFs 329
Contacting the IBM Support Center 330
Diagnostic aids . . 330
First failure data capture 330
Errors and messages . 332
Debug trace data capture 332
NFS client hang problem analy31s 333
Environmental checklist . . 334
Chapter 19. Network File System
messages . 337
Server messages 337
Client messages . 404
Client/Server Shared Messages . 425
Messages from the client platform (AIX) 437
Chapter 20. Return codes . 441
Chapter 21. Reason codes. 451
Special reason codes (xx is 00-OF). 452
Reason codes from NFS Client or NFS Server
modules (xx is 10-FF). . 466
USS JRcece reason codes (0000- OFFF) 466
Global reason codes (yyyy = 1000 - 3FFF) . .. 470
Module specific reason codes (yyyy 4000 -
4FFF) . . . 474

Part 5. Appendixes 477

Appendix A. File size value for MVS
datasets - Y £° |

Storage of the file size Value . . 479
System-managed PS, VSAM, and PDSE data
sets. . . . N
Migrated system managed data sets N V&
Non-system-managed, PDS, and direct data sets 480

How the file size value is generated. 480
Using fastfilesize to avoid read-for-size. . .. 481
Using nofastfilesize 482

Appendix B. Time stamps for MVS

datasets 483

Time stamps for system- managed VSAM and PS

datasets 483

Time stamps for non—system—managed PS and DA

data sets 483
Storage of time stamps 483
Client program requirements 484
Generating time stamps . . . 484

Time stamps for non—system—managed VSAM data

sets. 484

Time stamps for PDSs and PDSEs B .7

Setting time stamps 486

Appendix C. NFS server attributes 487

NFES file system attributes for MVS data sets . .. 487
NFS file system attributes for z/OS UNIX file

systems . . S 488
NFS protocol attrlbutes O)

Appendix D. NSM (statd) protocol .. 493
Using supported NSM (statd) procedures 493

Appendix E. NFS system server
sample attribute table. 495

Appendix F. Sample exports data set 519

Appendix G. Sample startup

procedures 529
Sample z/OS NFS server startup procedures . 529
Sample z/OS NFS client startup procedures . .. 532

Appendix H. Retrieval of source code
for client enabling commands 537

Appendix I. PCNFSD protocol 539

Accessing data with PCNFSD 539
Accessing z/OS UNIX files. 539
Starting the PCNFSD server . . R
Using supported PCNFSD protocols 540

Version 1 of the PCNFSD protocol 540

Version 2 of the PCNFSD protocol 540

Appendix J. SMF C and assembler

header macros. b43
SMF C header macro GFSASSMF 543
SMF assembler header macro GFSAUSMFE. . .. 551

Appendix K. Capturing diagnostic
information using z/OS NFS log data
sets and from other components. .. 559

Using log datasets 559
Server log datasets 559
Client log datasets 560

Debug trace data capture bel
z/0OS NFS server debug trace capture .. . bel
z/OS NFS server DEBUG trace types 562
z/OS NFS client debug trace capture 562

Related component trace capture. 563
z/0S UNIX System Services activity trace .. 563
z/0OS hierarchical file system (HFS) physmal file
system activity trace . . . 564
z/OS TCP/IP activity trace. 564
AIX client activity trace 565
SUN client activity trace. 565
z/OSdump. 565

Appendix L. GFSAMHDJ sample code
for creating NFS mount handle data
sets and lock datasets 567

Appendix M. Setting up NFS functions
with Kerberos Support 571

Special considerations for Linux Clients 571
Windows recommendations and limitations . .. 571
Setting up a Kerberos Key Distribution Center .. 572

Appendix N. Accessmlllty . « . . 575

Accessibility features 57
Consult assistive technologles .o . . . 575
Keyboard navigation of the user 1nterface . . 575
Dotted decimal syntax diagrams 575
Using assistive technologies 577
Keyboard navigation of the user 1nterface . . 577
z/0S information. 578

Appendix O. Dotted decimal syntax

diagrams 579
Notices -« - . . . 581
Programming interface 1nformat1on b8
Trademarks 58

Glossary 583

Index. b93

Contents 1X

X z/0S V2R2 Network File System Guide and Reference

Figures

—_

@

0O 0N O

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

NES client-server relationship .
Examples of mounting MVS data sets on
Windows, UNIX and Linux clients . .
Example of mounting an HFS or zFS file from
a UNIX client . .
Displaying server attrlbutes .
Displaying mount point attributes .
Displaying mount point attributes, part 2
TSO MOUNT command syntax operands
TSO UNMOUNT command syntax operands
Displaying NFS Server and Client NFSv3
statistical information . .
Displaying NFS client rpc statlstlcal
information . .
Displaying NFS client NFS statlst1cal
information . .
Displaying all of the z / OS NFS Server (RPC
NFSv2, NFSv3, NFSv4) statistical information .
Displaying NFS mounted file system
information . .
Displaying NFS mounted f11e system
information with secure(upd) (Versions 2 and
3 protocol only) .
Displaying NFS mounted f11e system
information with public mountpoint (Version
4 protocol only)
Displaying attributes .
Permission checking for the securlty(none)
attribute
Permission checkmg for the securlty(exports)
attribute
Permission checkmg for the securlty(saf)
attribute
Permission checkmg for the securlty(safexp)
attribute

Sample filesystype parmhb statement
Specifying the mount handle data set in the
MVSNES procedure .
Specifying the lock data set in the MVSNFS
procedure. e

© Copyright IBM Corp. 1991, 2015

44
50
75
77
78
90
98
100
101
102
103

103

104

104

106

167

168

169

170
176

192

193

24.

25.

26.

27.
28.
29.

30.

31.

32.
33.

34.
35.

36.
37.

38.

39.
40.
41.
42.
43.
44.
45.
46.

47.
48.
49.

Modify /etc/services for mountd, mvsmount,

penfsd, showattr, status, and nlockmgr .
Modify tcpip.profile for z/OS NFS server
services .

Retrieving the chent enabhng commands for
AIX, Sun Solaris, and Linux.

Common source files .

Sample link-edit JCL for the NFS
Determining which login checking routines
are used .
Determining wh1ch ﬁle securlty checkmg
routines are used

Displaying NFS client rpc and NFS statlstlcal
information . e e
Sample network topology

Directory list comparison between
DFSMS-managed and non-managed .
Bufhigh utilization with percentsteal .
Relationship between cachewindow and
BIODs . .
Logicalcache utlhzatlon for cachewmdows
z/0OS NFS server component trace PARMLIB
member CTINFS00.

z/OS NFS client component trace PARMLIB
member CTINFCO00 S
CTRACE Display Parameters panel .

NEFS Server Filtering Criteria

NFS Client Filtering Criteria .
NFS system server sample attribute table
Sample exports data set .

Sample z/OS NFS server startup procedures
Sample z/OS NFS client startup procedures
Retrieving source code for client enabling
commands .

SMF C header macro GFSASSMF .
SMF assembler header macro GFSAUSMF
Sample code for creating mount handle data
sets and lock data sets

197
198

212
214
254

256
263

277
280

293
296

298
298

319

321
325
326
326
496
519
530
533

537
543
551

567

xi

xil z/0S V2R2 Network File System Guide and Reference

Tables

—_

18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.

30.

31.
32.

33.
34.

35.
36.
37.
38.
39.
40.
41.
42.

43.
44.
45.
46.

Reference documents xvii
Mount statements based on the IMPPREFIX

setting 10
View of NFS server capab1llty R £
Breakdown of text and binary writes 34
Examples of mounting MVS data sets from

cients 4
NEFS procedures . . . 45

Examples of the mount command for cl1ents 53
Examples of the mvslogin command for clients 70
Examples of the showattr command for clients 74
Examples of the umount command for clients 79
Example of the mvslogout command for

clients . . . 79
Examples of the mvslogm command for cl1ents 88
Attributes - z/OS NFS client 109
Client attributes. (0]
Mount processing parameters o O £
Installation parameters . . 118
z/0OS NFS clients with non-z/ OS based NFS
servers. w119
Attributes - z/ OS NFS server 121
Data set creation attributes 122
Processing attributes . . . 127
The mapped keyword and exrstmg keywords 136
File tagging with Unicode Services active 138
File tagging with Unicode Services not active 139
Site attributes 140
Customizing NFS 161
UID, GID, SGID permission checkmg w1th
security site attribute 17
z/OS server processing of a mount request 171
z/0S server processing of a file request 172
Shorthand for addresses with multiple zero

bits. . . . 190
Shorthand for addresses in m1xed IPV4 and

IPv6 environments. . . .o. 191
Modifying tcpip. ETC.RPC and etc / rpc 196
Files in the prefix NFSTARB data set to

download to clients 210
List of installation-wide exits . . . 253
Format of login installation-wide exit routme
parameter list 258
Request codes to the logm ex1t w259
Return codes from the login exit 259
Codes and fields for system initialization 259
Codes and fields for start of new user session 259
Codes and fields for user login request 260
Codes and fields for logout request 261
Codes and fields for system termination 261
Format of the parameter list for the file

security installation-wide exit = 265
Request codes to the file security exit 266
Return codes from the file security exit 266

Codes and fields for validate allocate request 266
Codes and fields for validate write request 267

© Copyright IBM Corp. 1991, 2015

47.
48.

49.

50.

51.

52.

53.
54.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

77.
78.

79.
80.

81.

Codes and fields for validate read request
Codes and fields for return security
permissions . .

Network performance tunmg symptom and
action information . .

NFS client system performance tunmg
symptom and action information .

z/0OS constraints symptom and action
information . .

Default block sizes for RAMAC 3 or ESS 2105
DASD .

Client installation parameters for tun1ng
Mount parameters for performance and
tuning .

z/0OS NFS FMIDs and release names
Summary of type-of-failure keywords

NFS symptom data .

Dump content and storage areas .
Diagnostic errors and messages

Messages - client operating system, NFS
server, and NFS client.

NFS server z/OS operators console message
format .

Message format for the NFS server log data
set .

NFS client z/ OS operators console message
format . . .
NFS client log data set message format
Common variables.

Message format for the NFS server or NFS
client log data sets .

Externalized return codes defmed by the NFS
version 2 protocol .

Externalized return codes def1ned by the NFS
version 3 protocol .

Externalized return codes defmed by the NFS
version 4 protocol . .

z/0OS NFS Server: z/OS UNIX return codes
mapped to NFS Version 2 return codes .
z/0OS NFS Server: z/OS UNIX return codes
mapped to NFS Version 3 return codes .
z/OS NFS Server: z/OS UNIX return codes
mapped to NFS Version 4 return codes .
Special NFS reason codes

Special NFS reason codes where xx = 05
Parsing error (when reason code is 6E01xxxx)
Parsing error (when reason code is from
6E0111yy to 6E0133yy. .

RPC error (when reason code is 6E03xxxx)
NFS reason codes that match USS JRccece
reason codes (0000-OFFF). .

NFS client global reason codes (1000 3FFF)
Reason codes for module GFSCVNAT (xx =
12) . . .

Reason codes for module GFSCVMNT (

18) .

267

268

279

281

283

290
303

303
310
311
331
331
332
337
337
338
404
405
405
425
441
441
442
444
446
448
452
453
462

463
464

466
470

474

475

xiii

82.
83.
84.

85.

xiv

Time stamp sources for PDS and PDSE

members 48
Time stamp sources for PDS and PDSE data

sets (directories) 485
File system values to get dynamic file system
information 487
File system values to get static file system
information 487

z/0S V2R2 Network File System Guide and Reference

86.

87.

88.

89.

File system values to retrieve POSIX
information .

File system values to get static file system

information . R
File system values to retrieve POSIX
information . L.

NFS Version 4 Attributes.

487

488

488
489

Note:

Before using this information and the product it supports, be sure to read the general information under
[“Notices” on page 581

XVl z/0S V2R2 Network File System Guide and Reference

About this document

This document provides users, system programmers, and operators with
information about using, customizing, operating, tuning, and diagnosing the
z/0S® Network File System (z/OS NFS).

For information about the accessibility features of z/0OS, for users who have a
physical disability, see [Appendix N, “Accessibility,” on page 575

Required product knowledge

To use this document effectively, you should be familiar with the IBM multiple
virtual system (MVS) as a component of the z/OS operating system, the IBM Time
Sharing Option (TSO), and their commands. In addition, you should be familiar
with System Modification Program/Extended (SMP/E) and the basic concepts of
the NFS protocol and networking (Transmission Control Protocol/Internet Protocol
(TCP/IP)).

Where to find more information

Where necessary, this document references information in other documents, using
the shortened version of the document title. For complete titles and order numbers
of the documents for all products that are part of z/OS, see [z/0OS V2R2 Information|

Access to documents
contains additional reference information.

Table 1. Reference documents

Title Order Number
AIX Commands Reference, Volume 1 SC23-2537
AIX Commands Reference, Volume 2 SC23-2538
AIX Commands Reference, Volume 3 SC23-2539
AIX Commands Reference, Volume 4 5C23-2539
AIX Commands Reference, Volume 5 SC23-2639
AIX General Concepts and Procedures for RISC System/6000 GC23-2202
|Character Data Representation Architecture Overview)| GC09-2207
|Character Data Representation Architecture Reference and Registri] SC09-2190
ISMPJ/E for z/OS Reference| SA23-2276
ISMP/E for z/OS User’s Guide SA23-2277
z/OS and Software Products DVD Collection SK3T-4271
[z/0S V2R2.0 Communications Server: IP Configuration Reference| SC27-3651
|z/0S DESMS Introduction| 5C23-6851
[z/0S DFSMS Macro Instructions for Data Sets) 5C23-6852
|z/0S V2R2 Migration] GA32-0889
|z/0S DFSMS Using the New Functions| SC23-6857
[z/0S DFSMS Using Data Sets| SC23-6855
lz/0S DFSMSdfy Advanced Services| 5C23-6861

© Copyright IBM Corp. 1991, 2015 xvii

Table 1. Reference documents (continued)

Title Order Number
|z/0S_DFSMSdfp Diagnosis| 5C23-6863
lz/OS DFSMSdfp Storage Administration| 5C23-6860
|z/0S DFSMShsm Diagnosis| GC52-1387
[z/0S V2R2 Information Roadmap| SA23-2299
[z/0S MVS Installation Exits| SA23-1381
[2/0OS MVS JCL Reference] SA23-1385
[z/0S MVS Programming: Authorized Assembler Services Guide] SA23-1371
lz/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN]| SA23-1372
[2/0S MVS Programming: Authorized Assembler Services Reference EDT-IXG| SA23-1373
lz/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU| SA23-1374
[2/0S MVS Programming: Authorized Assembler Services Reference SET-WTO)| SA23-1375
[z/0S MVS System Codes| SA38-0665
[z/0S MVS Programming: Authorized Assembler Services Guide| SA23-1371
[z/0S MVS System Management Facilities (SMF)| SA38-0667
[z/0S MVS System Messages, Vol 1 (ABA-AOM)| SA38-0668
[z/0S MVS System Messages, Vol 2 (ARC-ASA)| SA38-0669
lz/OS MVS System Messages, Vol 3 (ASB-BPX)| SA38-0670
[2/0S MVS System Messages, Vol 4 (CBD-DMO) SA38-0671
lz/0S MVS System Messages, Vol 5 (EDG-GES)| SA38-0672
[z/0S MVS System Messages, Vol 6 (GOS-IEA)| SA38-0673
[z/0S MVS System Messages, Vol 7 (IEB-IEE)| SA38-0674
[z/0S MVS System Messages, Vol 8 (IEF-IGD)| SA38-0675
lz/0S MVS System Messages, Vol 9 (IGF-IWM)| SA38-0676
lz/0S MVS System Messages, Vol 10 (IXC-1ZP)| SA38-0677
[z/0OS Security Server RACF Security Administrator’s Guide] SA23-2289
[z/0S Security Server RACF System Programmier’s Guide| SA23-2287
[z/OS Security Server RACF Callable Services| SA23-2293
[z/OS Integrated Security Services Network Authentication Service Administration| SC23-6786
lz/OS Integrated Security Services Network Authentication Service Programming] SC23-6787
E/OS TSOJE User’s Guidd SA32-0971
lz/0OS Unicode Services User’s Guide and Reference] SA38-0680
[z/0S UNIX System Services File System Interface Reference| SA23-2285
lz/0OS UNIX System Services Messages and Codes) SA23-2284
|z/0S UNIX System Services Programming: Assembler Callable Services Reference| SA23-2281
[z/0OS UNIX System Services Programming Tools| SA23-2282
[z/0S UNIX System Services Command Reference| SA23-2280
[z/0OS V2R2.0 UNIX System Services User’s Guide| SA23-2279
|z/0S UNIX System Services Planning| GA32-0884

z/0S information

This information explains how z/OS references information in other documents
and on the web.

Xxviil z/0S V2R2 Network File System Guide and Reference

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see |z/0S V2R2 Information Roadmap|

To find the complete z/OS library, go to [[BM Knowledge Center]
[(http: / /www.ibm.com /support/knowledgecenter /SSLTBW / welcome)l

Access to softcopy documents on CD-ROM and DVD
collections and the Internet

This book will also be available on the following collections the next time they are
updated.

z/OS V1Rx Collection, SK3T-4269
z/OS V1Rx and Software Products DVD Collection, SK3T-4271

This book will also be available in BookManager® and PDF format on the z/OS
Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Using a BookManager READ program, you can view and find information quickly
in BookManager documents in a variety of environments. You can view the books
directly from a CD-ROM or DVD, or copy the books to a shared workstation or
local area network (LAN) server. You can also transfer the books to your host
system or view them on the Internet. For instance, the z/OS product includes both
BookManager READ for host viewing and BookManager BookServer, which allows
you to access and read books over an Internet or intranet connection using an
HTML browser. From CD-ROM or DVD you can use any supported IBM
BookManager reader, such as the IBM Softcopy Reader. For more information, see:

http://www.ibm.com/servers/eserver/zseries/softcopy/

You can view and print PDF files using an Adobe Acrobat Reader available free on
the Internet at:

http://www.adobe.com/prodindex/acrobat/

How to look up message explanations with LookAt

LookAt is an online facility that lets you look up explanations for most of the IBM®
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message
explanations for z/OS elements and features, z/ VM®, and VSE:

* The Internet. You can access IBM message explanations directly from the LookAt
Web site at Ihttp: / /www.ibm.com/eserver/zseries/zos/bkserv/lookat/ l

* Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
systems to access IBM message explanations, using LookAt from a TSO/E
command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System
Services running OMVS).

* Your wireless handheld device. You can use the LookAt Mobile Edition with a
handheld device that has wireless access and an Internet browser (for example,
Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for
Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt
Web site.

About this document ~ X1X

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/

How to read syntax diagrams

XX

Throughout this library, diagrams are used to illustrate the programming syntax.
Keyword parameters are parameters that follow the positional parameters. Unless
otherwise stated, keyword parameters can be coded in any order. The following
list tells you how to interpret the syntax diagrams:

* Read the diagrams from left-to-right, top-to-bottom, following the main path
line. Each diagram begins on the left with double arrowheads and ends on the
right with two arrowheads facing each other.

»—| Syntax Diagram i ><

* If a diagram is longer than one line, each line to be continued ends with a single
arrowhead and the next line begins with a single arrowhead.

Y
A

»—I First Line i

»—| Second Line i >«

»—| Last Line i »><

* Required keywords and values appear on the main path line. You must code
required keywords and values.

»»—REQUIRED_KEYWORD ><

If several mutually exclusive required keywords or values exist, they are stacked
vertically in alphanumeric order.

REQUIRED_KEYWORD OR_VALUE_1 2 >
REQUIRED_KEYWORD OR_VALUE 2

* Optional keywords and values appear below the main path line. You can choose
not to code optional keywords and values.

|—KEYWORDJ

If several mutually exclusive optional keywords or values exist, they are stacked
vertically in alphanumeric order below the main path line.

i:KEYWORD_OR_VALU E_l:‘
KEYWORD_OR_VALUE_2

* An arrow returning to the left above a keyword or value on the main path line
means that the keyword or value can be repeated. The comma means that each
keyword or value must be separated from the next by a comma.

z/0OS V2R2 Network File System Guide and Reference

B

»»—Y REPEATABLE_KEYWORD >

An arrow returning to the left above a group of keywords or values means more
than one can be selected, or a single one can be repeated.

- [
> <

;EREPEATABLE_KEYWORD_OR_VALUE_l L
REPEATABLE_KEYWORD OR_VALUE 2

A word in all upper case is a keyword or value you must spell exactly as
shown. In this example, you must code KEYWORD.

»>—KEYWORD >

If a keyword or value can be abbreviated, the abbreviation is discussed in the
text associated with the syntax diagram.

If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code KEYWORD=(001,0.001).

v
A

»»—KEYWORD=(001,0.001)

If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code KEYWORD=(001 FIXED).

»»—KEYWORD= (001 FIXED)

A\
A

Default keywords and values appear above the main path line. If you omit the
keyword or value entirely, the default is used.

DEFAULT
]
|—KEYWORD—|

A word in all lower case italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

»»—variable »<

References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number.

(1)
»>—KEYWORD ><

Notes:

1 An example of a syntax note.

About this document XX1

* Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

»—| Reference to Syntax Fragment i >«

Syntax Fragment:

|—1$T_KEYWORD,2ND_KEYWORD,3RD_KEYWORD I

Related protocol specifications

IBM is committed to industry standards. The internet protocol suite is still evolving
through Requests for Comments (RFC). New protocols are being designed and
implemented by researchers, and are brought to the attention of the internet
community in the form of RFCs. Some of these are so useful that they become a
recommended protocol. That is, all future implementations for TCP/IP are
recommended to implement this particular function or protocol. These become the
de facto standards on which the TCP/IP protocol suite is built.

The Network File System (NFS) is implemented as a set of RPC procedures that
use External Data Representation (XDR) encoding to pass arguments between
clients and servers. The NFS is based on the following RFCs.

Internet Protocol RFEC 791,]J.B. Postel

NFS: Network File System Version 2 Protocol Specification RFC 1094, Sun Microsystems,
Incorporated

NEFS: Network File System Version 3 Protocol Specification RFC 1813, Sun Microsystems,
Incorporated

NEFS: Network File System Version 4 Protocol Specification RFC 3530, Sun Microsystems,
Incorporated

Open Group Technical Standard Protocols for Interworking: | Document Number: C702
XNFS, Version 3W

RPC: Remote Procedure Call Protocol Specification Version 2 | REC 1057, Sun Microsystems
Incorporated

RPC: Remote Procedure Call Protocol Specification Version 2 | RFC 1831, R. Srinivasan

User Datagram Protocol RFC 768,].B. Postel

WebNFS Client Specification REC 2054, B. Callaghan

WebNFS Server Specification RFC 2055, B. Callaghan

XDR: External Data Representation Standard REC 1014, Sun Microsystems,
Incorporated

XDR: External Data Representation Standard RFC 1832, R. Srinivasan

Generic Security Service Application Program Interface, REC 2078,]J.Linn, OpenVision

Version 2 Technologies

RPCSEC_GSS Protocol Specification RFC 2203, M. Eisler, A.Chiu, L. Ling

The Kerberos Version 5 GSS-API Mechanism REC 1964,].Linn, OpenVision
Technologies

The Kerberos Network Authentication Service (V5) REC 1510, J. Kohl, Digital Equipment

Corporation, C. Neuman, ISI

xxil z/0S V2R2 Network File System Guide and Reference

For more information about Request for Comments (RFC), see the Internet
Engineering Task Force (IETF) home page:

http://www.ietf.org/

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:

* Provide basic education and information about z/OS without charge
* Shorten the time it takes for people to become productive on the mainframe

* Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the
following Web site, which is available to all users (no login required): |Z /OS BasiEl
Skills in IBM Knowledge Center (http://www.ibm.com/support/
knowledgecenter/zosbasics/com.ibm.zos.zbasics /homepage.html)

About this document xxiii

http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html

XXiv z/0S V2R2 Network File System Guide and Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.

2. Send an email from the ['Contact us" web page for z/OS (http:/ /|
[www.ibm.com/systems/z/0s/zos/webgs.html)|

Include the following information:

* Your name and address.

* Your email address.

* Your telephone or fax number.

* The publication title and order number:
z/0S V2R2 Network File System Guide and Reference
SC23-6883-02

* The topic and page number that is related to your comment.

* The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:

* Contact your IBM service representative.
* Call IBM technical support.

* Visit the IBM Support Portal at|z/OS Support Portal (http://www-947.ibm.com /|
[systems /support/z/zos/)l

If you have a technical problem

Do not use the feedback methods listed above. Instead, do one of the following:
» Contact your IBM service representative
 Call IBM technical support

* Visit the [I[BM support portal| at fhttp:/ /www.ibm.com/systems /z/support/|

© Copyright IBM Corp. 1991, 2015 XXV

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

XXVl z/0S V2R2 Network File System Guide and Reference

Summary of changes

Changes have been made to this document.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of each change.

Summary of changes for z/0S Version 2 Release 2 (V2R2) as updated

December 2015

The following changes are made for z/OS V2R2 as updated December 2015.

New

APAR OA47371, adds support for rpcsec_gss AES encryption

Client attribute mtxtonly, described in [Table 14 on page 109} [Table 16 on page|
[Table 75 on page 462} and [Table 79 on page 470 for BPXMTEXT support on
NFS reason codes.

New and modified reason codes described in [Table 79 on page 470}

Significant changes to [“Special reason codes (xx is 00-OF)” on page 452
including new tables:

[Table 74 on page 453
[Table 77 on page 464|
The following messages have been added to [Chapter 19, “Network File System|
[messages,” on page 337
GFSA939I (in [“Server messages” on page 337)
GFSC5071 (in [“Client messages” on page 404)
The following messages have been changed in [“Server messages” on page 337
GFSA9301
GFSA9321
GFSA9361
GFSA963E

Summary of changes for SC23-6883-01
The following changes are made to z/OS V2R2.

New

z/0S NFS Client has improved from AMODE31/ILP32 to AMODE64/LP64

New attributes for z/OS NFS Server: alias/noalias, oemhsm/nooemhsm and
memfree().

The ability to dynamically change Ctrace buffer sizes, as described in |”Startin§|
component tracing for the z/OS NES client” on page 222| and [“Starting]
component tracing for the z/OS NFS server” on page 229

Mount option syncwrite(y/n), as described in [“Mount processing parameters|
land installation parameters” on page 118/ to prevent zZNFSC from running out of
memory.

© Copyright IBM Corp. 1991, 2015 xxvii

* Site attribute CONSOLEMSGS, as described in [“CONSOLEMSGS operand” on|
to specify the maximum amount of output lines on console for NFS
operator commands.

* Site attribute ID2Name, as described in ["'ID2NAME operand” on page 240, in
order to enhance NFSv4 performance by utilizing UID/GID caching and
eliminating calls to RACF.

+ LOGSTART, as described in |Appendix K, “Capturing diagnostic information|
[using z/OS NFS log data sets and from other components,” on page 559)|
controls which log dataset as primary and secondary respectively.

* The following messages have been added to [Chapter 19, “Network File System|
[messages,” on page 337

GFSAA477E
GFSAA478E
GFSA5071
GFSA508I
GFSA5091
GFSA5191
GFSA892W
GFSAS882I
GFSA1016E
GFSN5032I1
GFSN5037E

* The following messages have been changed in [“Client messages” on page 404
GFSAA476E renamed to GFSN5038E
GFSA953I renamed to GFSA953A
GFSA974I renamed to GFSA974A
GFSC703E
GFSC711E
GFSC712E
GFSC739E

+ The following messages have been deleted from [Chapter 19, “Network Filel
[System messages,” on page 337 (GFSAnnn) and [“Client messages” on page 404
(GFSCnnn):

GFSA3351
GFSA9611
GFSA968I
GFSC704E
GFSC705E
GFSC706E
GFSC707E
GFSC709E
GFSC710E
GFSC736E

Summary of changes for SC23-6883-00

* The z/OS NFS Server has improved from AMODE31 or ILP32 to AMODE64 or
LP64.

XXxviil z/0S V2R2 Network File System Guide and Reference

+ The following messages have been added to [Chapter 19, “Network File System|
[messages,” on page 337
— GFSA572E
— GFSA7791
— GFSA7801
— GFSN5034E
* The following messages have been changed in |[Chapter 19, “Network File System|
[messages,” on page 337
— GFSA3611
- GFSA3621
— GFSA3851

Summary of changes XX1X

XXX z/0OS V2R2 Network File System Guide and Reference

Part 1. Using 2/OS Network File System

© Copyright IBM Corp. 1991, 2015

2 z/0S V2R2 Network File System Guide and Reference

Chapter 1. Introduction

This topic explains the Network File System's client-server relationship and
introduces the IBM Network File System (z/OS NFS). When used to access z/OS
UNIX System Services (z/OS UNIX) data, which conforms to portable operating
system interface (POSIX) standards, it is similar to other UNIX/AIX Network File
Systems.

Overview

AIX

I\
UNIX

=)

Sun

A client is a computer or process that requests services on the network. A server is
a computer or process that responds to a request for service from a client. A user
accesses a service, which allows the use of data or other resources.

illustrates the client-server relationship. The upper right portion of the
figure shows the z/OS NFS server. The lower right portion of the figure shows the
z/0S NFS client. The left portion of the figure shows various NFS clients and
servers which can interact with the z/OS NFS server and client. The center of the
figure shows the Transmission Control Protocol/Internet Protocol (TCP/IP)
network used to communicate between the clients and servers.

z/0S E—j
Access

] Methods
HHHHH L Network
Linux File System
Server
z/0S MVS data sets

TcPap || UNIX E = j
Network Eﬁw

2z/0S z/OS UNIX File System
/ Network
= File System
Other NFS Client
Clients and
Servers

Figure 1. NFS client-server relationship

© Copyright IBM Corp. 1991, 2015

With the z/OS NFS server, you can remotely access MVS z/OS conventional data
sets or z/OS UNIX files from workstations, personal computers, and other systems
that run client software for the Sun NFS version 2, version 3, and version 4
protocols, and the WebNFS protocols over TCP/IP network.

The z/OS NFS server acts as an intermediary to read, write, create or delete z/OS
UNIX files and multiple virtual storage (MVS'") data sets that are maintained on a
z/0S host system. The remote MVS data sets or z/OS UNIX files are mounted

from the host processor to appear as local directories and files on the client system.
This server makes the strengths of an z/OS host processor (storage management,
high-performance disk storage, security, and centralized data) available to the
client platforms.

With the z/OS NFS client, you can allow basic sequential access method (BSAM),
queued sequential access method (QSAM), virtual storage access method (VSAM),
and z/OS UNIX users and applications transparent access to data on systems that
support the Sun NFS version 2 protocols, the Sun NFS version 3 protocols, and the
Sun NFS version 4 protocols. The remote NFS Server can be a z/0OS, UNIX, AIX®,
or other system. The z/OS NFS client is implemented on z/OS UNIX and
implements the client portion of the Sun NFS version 2 protocols, the Sun NFS
version 3 protocols, and the Sun NFS version 4 protocols.

The NFS uses the communication services provided by TCP/IP, a suite of protocols
that includes the remote procedure call (RPC) and External Data Representation
(XDR) protocols. RPC allows a program on one machine to start a procedure on
another machine, as if the procedure is local. XDR resolves the differences in data
representation of different machines.

The NFS, then, can be used for file sharing between platforms and file serving (as
a data repository).

If you use NFS as a file server, the z/OS UNIX file system might be a better choice
than using z/OS conventional MVS data sets, because of its UNIX-based features.

z/OS UNIX files

The NFS server enables the client user remote access to z/OS UNIX files from a
client workstation.

z/0S UNIX provides a hierarchical file system (HFS) for z/OS. The HFS file
system is similar to a UNIX file system. All z/OS UNIX files reside in a directory,
which in turn is a file in a higher level directory. The highest level directory is
called the root directory.

When client users mount files from your server system, you can use a common
HEFS prefix to distinguish z/OS UNIX files from z/OS conventional MVS data sets
or you can use an implied prefix. You see z/OS UNIX files in a standard UNIX
format on your workstation, but the files are stored on a z/OS host system.

Using the NFS, the client can mount all or part of the z/OS UNIX file system and
make it appear as part of your local file system. From there the client user can
create, delete, read, write, and treat the host-located files as part of the
workstation's own file system. For more information about z/OS UNIX see
[V2R2.0 UNIX System Services User’s Guide,

z/OS UNIX advantages

z/0S UNIKX file system support provides these advantages over z/OS conventional
MVS data sets:

* Support for hierarchical directories

* File names up to 255 characters in length
* Path names up to 1023 characters in length

4 z/0S V2R2 Network File System Guide and Reference

* Mixed case names and special characters, except nulls and slash characters, in
file and path names

* UNIX style access permission support
* Group and user ID support at a file level
* Ability to link z/OS conventional MVS data sets to a POSIX path name.

NFS protocol compliance

The z/0OS Network File Systems provides full NFS protocol compliance for
accessing the z/OS UNIX file system.

Crossing between file systems—NFS server

Crossing file systems means the NFS client can also potentially be a server, and
remote and local mounted file systems can be freely mixed. This leads to some
problems when a client travels down the directory tree of a remote file system and
reaches the mount point on the server for another remote file system. Allowing the
server to follow the second remote mount would require loop detection, server
lookup, and user revalidation. When a client does a lookup on a directory on
which the server has mounted a file system, the client sees the underlying
directory instead of the mounted directory.

The NFS server does not support crossing file systems in NFS protocol versions 2
(NFSv2) and 3 (NFSv3) for either local or remote file systems. In NFS protocol
version 4 (NFSv4) the z/OS NFS server does support crossing local file systems,
but not remote file systems. For example, if a server has a file system called /usr
and mounts another local file system on /usr/src, a client can also mount /usr, but
the server will only see the mounted version of /usr/src with NFSv4. In NFSv2
and NFSv3, a client could perform remote mounts that match the server’s mount
points to maintain the server’s view. In this example, the client would also have to
mount /usr/src in addition to /ust, even if the mounts are from the same server.

z/0S conventional MVS data sets

Using NFS, you can access z/OS conventional MVS data sets from a client
workstation, personal computer, or any client system using software for the NFS
protocol.

In MVS, a file is called a data set. The NFS allows client users to mount z/0OS
conventional MVS data sets from their workstations. It presents the information to
them in the form of a UNIX (or AIX) file, though the information is actually stored
on an MVS-owned DASD.

The files for an operating system are organized into a file system. The UNIX
environment use a file system that is a hierarchy of directories. z/OS conventional
MVS, in contrast to z/OS UNIX, uses a non-hierarchical file system in which
groups of data sets are referred to by specifying a high-level qualifier (HLQ).

The MVS HLQ can include the first (leftmost) qualifier of data sets, or the first and
second qualifiers, or the first, second, and third qualifiers, and so on. For example,
SMITH is the HLQ for the files named SMITH.TEST.DATA and SMITH.PROJ7.SCHED,
while SMITH.TEST is the HLQ of SMITH.TEST.DATA and SMITH.TEST.DOCS.

Mounting MVS data sets onto a client mount point

To access an MVS file system from the client, client users use the mount command
to create a temporary link (until unmounted) between specific MVS data sets and

Chapter 1. Introduction 5

6

their UNIX directory (preferably empty) or an unused logical drive on their
workstations. The empty UNIX directory or logical drive is called a mount point.

Client users use an MVS HLQ in the mount command to specify which MVS data
sets to mount at a mount point. The MVS data sets beginning with the specified
HLQ appear as files under the mount point.

Client users can mount a fully-qualified PDS but not a fully-qualified PS data set.
Only cataloged data sets are supported by the z/OS NFS server. Tape data sets and
generation data sets are not supported.

Some client platforms support both TCP and the user datagram protocol (UDP).
Users can choose either TCP or UDP to access the server. The default protocol
option depends on the NFS client platform. For NFS version 4, some platforms do
not support UDP.

Note: When directly mounting on a fully qualified data set name, the server must
return the mount size as part of getting the attributes for the mount. This can slow
down the completion of the mount command.

Clients using the NFS version 4 protocol must pass mount requests to the server
using a series of lookup operations. Client users may still use the mount
command, and the client must convert the mount command into the lookup
operations.

Creating z/OS conventional MVS data sets

Client users can create MVS data sets from a client system using the NFS. The
default data set creation attributes specified by the system administrator are used
to create MVS data sets, unless the user overrides them. These attributes determine
how the MVS data sets are structured and where they are stored. Client users can
override the default data set creation and processing attributes for a mount point
when issuing the mount command. In addition, you can override these attributes
at file creation time.

Serializing and sharing data sets

The z/OS NFS server handles data set serialization and sharing differently,
depending on the type of data set:

Physical sequential
The server ensures physical sequential data set read/write integrity by
SVC 99 dynamic allocation with exclusive option whenever a physical
sequential data set is opened for output. Otherwise, it allocates with share
option.

Virtual storage access method (VSAM)
The server dynamically allocates a VSAM data set with share option and
allows the VSAM access method to manage data sharing using the
shareoptions specified during data set definition.

Partitioned data set extended (PDSE)
The server dynamically allocates a PDSE data set with share option and
allows the PDSE functions to manage the serialization of the PDSE data set
and its members.

Partitioned data set (PDS)
For read and write, the z/OS NFS server issues ENQ SHR on
QONAME=SYSDSN and RNAME=data_set_name (through an SVC 99). For

z/0OS V2R2 Network File System Guide and Reference

write, the server issues an exclusive ENQ against QNAME=SPFEDIT and
RNAME=data_set_name.member_name, in addition to the serialization of
resources by SVC 99. For all MVS users who are allocating their data set
with exclusive status, this provides write protection. It only provides read
integrity for ISPF users.

NFS version 2 and version 3 statelessness

Under the NFS version 2 and version 3 protocols, the z/OS NFS server strives to
be as stateless as possible; that is, it tries to work correctly without maintaining any
state information about any of its clients. However, a failure of the server causes
cached writes to be lost, some attributes to be reset, and file handles to become
stale, or not valid.

With the NFS version 4 protocol, the z/OS NFS server maintains state information
for some client operations, to prevent such loses.

NFS version 4 state

The NFS version 4 protocol introduces state information that allows clients and
servers to keep track of certain resources.

NFS version 4 uses a value of clientid or stateid to represent the current state
(instance) of client-held resources such as locks, opens, and host restarts. The client
and server pass this state information between them on certain operations,
allowing both to agree on the current instance of resources held by the client.

NFS version 4 includes new states for the following:
1. Client/Server restart instance

2. Open Share/Deny instance

3. Byte Range Locks instance

4. Client Delegation instance.

The NFS version 4 state that is passed between the client and server represents a
single instance in a dynamically changing environment; it is incremented when a
state is changed within a group of held resources (restart, open, or lock). Once
state is established on the server, the client returns what it believes is the current
state. The server compares the client state to the server state to detect stale and out
of order requests.

The client uses the setclientid operation to notify the server of its intention to use
a particular client identifier for subsequent requests that entail creating lock, share
reservation, and delegation state on the server. Upon successful completion the
server returns a shorthand clientid , which, if confirmed in a separate step, will be
used in subsequent file locking and file open requests. Confirmation of the clientid
must be done using the setclientid_confirm operation to return the clientid and
setclientid_confirm values, as verifiers, to the server.

NFS version 2 and version 3 used the Network Status Monitor (NSM) protocol to
determine if resources such as file open share or byte range locks were still in use
by a remote client. NFS version 4 no longer uses NSM to communicate a client or
server restart. NFS version 4 instead uses a current state on both the client and
server, where the state is established and passed in subsequent NFS version 4
operations.

Chapter 1. Introduction 7

In NFS versions 2 and 3, a client or server issues an NSM sm_notify RPC
procedure to notify the remote host of a restart. Server resources such as an
exclusive byte range lock on a file might remain held until explicitly released by
the client. If a client that holds a server resource is removed from the network for a
long period without the server being notified, the server resource would be
unavailable to other clients until timed out by the server.

NFS version 4 provides a protocol for the client to establish or reestablish state,
and associates ownership of subsequent server stateful operations to previously
established states. To resolve the absent client problem, the NFS version 4 client
must routinely refresh the state within the server-specified lease time. Upon lease
time-out, the server may release resources for the client and make them available
to other applications.

* A client obtains the server-specified lease time-out attribute by issuing a getattr
operation. getattr is not a stateful operation, thus it does not require prior state
to be established. A getattr operation may precede a setclientid or
setclientid_confirm operation.

* Refer to the NFS server's leasetime site attribute for setting and tuning lease
time periods.

Name space and file system management

8

NEFS versions 2 and 3 used the mount protocol to define the initial "mount point"
and its associated file handle. File locking was done with the Network Lock
Manager protocol. NFS version 4 uses a well-defined port as an anchor. This
allows the hookup (no longer called "mount") to occur implicitly, because the
concept of a "Root" file handle, in combination with the port, allows the equivalent
of a mount to take place on the server side.

In NFS versions 2 and 3, a client application would request to mount a file system
object; the NFS client would then issue a "mount” protocol operation to the server,
providing usage attributes, and specifying a file system object that is exported by
the server. This mount command would specify to the server the name of the
object to be mounted. The server would then provide a handle to the client for use
in accessing objects related to this mount point.

In NFS version 4, this mount protocol is no longer used. Instead, the server
provides a name space to the objects that are exported by the server. Standard
non-mount operations such as LOOKUP and READDIR are changed by the NFS
version 4 protocol to accomplish this. These changes are transparent to the client
application. The NFS Client translates the mount request into the proper NFS
version 4 operations that accomplish this access.

In NFS versions 2 and 3, objects in the server file system are accessed by a
filehandle. This filehandle is given to the client in response to a mount or lookup
operation, and is provided by the client when attempting to access objects in that
file system. The NFS version 4 protocol specifies a pair of operations,
PUTROOTFH and PUTPUBFH, that allow the client to request a starting point in
the exported (or public, respectively) file system.

The NFS version 4 protocol also uses a COMPOUND procedure in which many
operations can be sent in a single request. For this purpose, a filehandle is known
within the COMPOUND structure as one of two items: a "current filehandle"
and/or a "saved filehandle". NFS Version 4 operation PUTFH allows the client to
provide a previously returned (by operation GETFH) filehandle, and operations

z/0OS V2R2 Network File System Guide and Reference

SAVEFH and RESTOREFH allow the client to manipulate the current and saved
file handles within the compound procedure. Further operations within the
COMPOUND RPC will make use of the handles, once established by these
"filehandle manipulation” operations. Refer to the NFS version 4 protocol
(RFC3530) for usage of the current and saved file handles.

For NFS version 4, when the client receives a mount command from an
application, the client translates the command into a PUTROOTFH operation
followed by a series of LOOKUP operations. If this series of LOOKUPs deviates
from a path that would lead to an exported object, the LOOKUP that starts this
deviation will be rejected with NFSERR_NOENT.

The elimination of the mount/unmount operations from the NFS version 4
protocol means that the NFS client can not tell the NFS server when an application
unmounts a file system. As a result, the NFS server keeps the file system mounted
until the mount point times out. Therefore, those unmounted file systems will still
appear in the mount list produced by a Modify mvsnfs,LIST=MOUNTS operator
command.

z/OS NFS File System Type Selection

The z/OS NFS Server must distinguish between the two different file system types
when processing mount requests and other requests that involve the specification
of path names: z/OS UNIX file systems and MVS data sets. Prior to z/OS NFS
V1R11 this was done via the specification of the special "hfs" prefix for z/OS UNIX
file systems and the absence of the prefix for MVS data sets.

As of NFS V1R11, the z/OS NFS file system type management function has been
expanded by adding an mvs prefix and a customer configurable path resolution
heuristic. The new mvs prefix provides the capability to explicitly specify a prefix
for identifying MVS data sets, as the hfs prefix does for z/OS Unix files. The new
customer-configurable heuristic enables you to specify how to interpret absolute
path names that do not have a prefix specified. By setting the heuristic to indicate
that MVS data sets now require a prefix and z/OS Unix files do not, symbolic
links in z/OS Unix mount paths can be supported.

Specifying the path type prefix and the customer-configurable
path resolution heuristic

The following z/OS NFS server site attributes apply to all NFS path names and
their resolution processing. This includes directories specified in the Exports list
and the checklist in the Exports file, as well as mount and root lookup objects.

HFSPREFIX(prefix)
specifies the z/OS UNIX file system prefix to be appended to the front of
z/0S UNIX file system path names for a mount path directory. The default
value of the prefix is /hfs

MVSPREFIX(prefix)
specifies an MVS data set prefix to be appended to the front of MVS data
set name for a mount path directory. The default value of the prefix is
/muvs.

IMPPREFIX(impprefix)
specifies how to interpret a mount path that does not have a path type
prefix, where impprefix is one of the following:

Chapter 1. Introduction 9

NONE
An explicit prefix must always be specified for an absolute path.
Implicit prefix resolution is not valid in this case.

HFS If no explicit prefix is present, assume the path is a z/OS UNIX file
system.

MVS If no explicit prefix is present, assume the path is an MVS data set.
This is the default.

HFS, MVS
If no explicit prefix is present, first assume the path is a z/OS
UNIKX file system. If no matching z/OS UNIX file system can be
found, assume that it is an MVS data set.

MYVS, HFS
If no explicit prefix is present, first assume the path is an MVS data
set. If no data set with a matching high-level qualifier can be
found, assume that it is a z/OS UNIX file system.

Valid mount path specifications
This section shows valid mount path specifications for back-level (prior to VI1R11),
MVS prefix, and the MVS implicit prefix.

Back-level (prior to V1R11):

Note: An ellipsis (...) denotes that more similarly-specified items are possible.

v2/v3,

/hfs/[,procattr] '/' after the prefix is required
/hfs/abc[/def...][,procattr]
mvsdsn[(mbr)][,procattr]

v4d

/hfs[/][,procattr]
/hfs/abc[/def...][,procattr]
mvsdsn[(mbr)] [,procattr]

MVS prefix:

v2/v3

/mvs/mvsdsn[(mbr)] [,procattr]
v4

/mvs/mvsdsn[(mbr)] [,procattr]

MYVS implicit prefix: [Table 2| summarizes the interpretation of the mount
statements based on the IMPPREFIX setting.

Table 2. Mount statements based on the IMPPREFIX setting

Mount\IMPPREFIX |MVs | HFS MVS,HFS | HFS MVS
v2/v3
/abc[,procattr] MVS HLQ z/0OS UNIX dir 1. MVS HLQ ifa 1. z/0S UNIX dir
data set exists if exists
2. z/OS UNIX dir |[2. MVS HLQ
otherwise otherwise

10 z/0S V2R2 Network File System Guide and Reference

Table 2. Mount statements based on the IMPPREFIX setting (continued)

Mount\IMPPREFIX MVS HFS NMVSHES TFSAVS
/abc[/def...][procattr] Invalid z/0S UNIX dir 1. MVS Invalid, so |[1. z/0S UNIX dir
2. z/0S UNIX dir if exists,
2. Invalid
otherwise

/al.b...][(mbr)][,procattr]

MVS PDS with
member 'mbr' if

z/0OS UNIX dir

1. MVS PDS with
member 'mbr' if

1. z/0S UNIX dir
if exists,

E:iiri:ilszsinvalid PDS exists 2. MVS PDS with
2. z/0S UNIX dir member 'mbr’
otherwise otherwise
v4
/abc[,procattr] MVS HLQ z/0S UNIX dir 1. MVS HLQ if a 1. z/0S UNIX dir
data set exists if exists
2. z/0S UNIX dir |2. MVS HLQ
otherwise otherwise
/abc/ def[,procattr] MYVS PDS with z/0OS UNIX dir 1. MVS PDS with 1. z/0S UNIX dir

member 'def' if PDS
exists; otherwise
invalid

member 'def' if
PDS exists;
otherwise
invalid, so

2. z/0S UNIX dir

if "/abc" exists,

2. MVS PDS with
member 'def' if
PDS exists;
otherwise
invalid

/abc/def/...[,procattr]

Invalid

z/0S UNIX dir

1. MVS Invalid, so
2. z/0S UNIX dir

1. z/0S UNIX dir
if "/abc" exists,

2. Invalid
otherwise

/al.b...][(mbr)][,procattr]

MVS PDS with
member 'mbr' if
PDS exists;
otherwise invalid

z/0S UNIX dir

1. MVS PDS with
member 'mbr' if
PDS exists;
otherwise
invalid, so

2. z/0S UNIX dir
otherwise

1. z/0S UNIX dir
if exists,

2. MVS HLQ
otherwise

Implicit prefix support restrictions

The following processing characteristics and restrictions must be considered when
using the path name prefix processing support provided by the NFS Server Site
Attributes:
When both path options are available based on the IMPPREFIX site attribute
(when IMPPREFIX = mvs,hfs or hfs,mvs), only the existence or nonexistence of
the first path name qualifier is used to determine whether the second option is
tried. That is, if the first path qualifier exists, but the next one does not, the

1.

object is considered not to exist and the mount/lookup fails.

Prior to V1R11, an MVS mount to an HLQ (for example, a.b.c) for which no
data sets exist was considered valid and would mount to that HLQ, allowing
the first data set to be created via NFS. As of V1R11, if the IMPPREFIX site
attribute specifies mvs,hfs, NFS Version 4 mounts to such an HLQ fail on the
MVS side and then attempt to mount z/OS UNIX node /a.b.c. If that z/OS

Chapter 1. Introduction 11

12

UNIX node does not exist, the mount fails. If this behavior is not desired, either
an MVS prefix must be specified on the path or one of the other IMPPREFIX
site attribute values must be specified.

. For IMPPREFIX(HFS,MYVS), if the object does not exist (neither z/OS UNIX nor

MYVS), it creates the mount point as a new MVS HLQ with no entries, just as an
MYVS mount does in prior releases.

Conversely, for IMPPREFIX(MVS, HFS), if the object does not exist (neither
z/0S UNIX nor MVS), it tries MVS, then z/OS UNIX, then fail, just as a z/OS
UNIX mount for a non-existent object did prior to V1R11.

Once NFS has switched to option 2, it cannot switch back to option 1.

. For NFS Version 2 or Version 3 mount requests, NFS clients send the entire

mount path to the NFS server as a single string. By contrast, for NFS Version 4
mount requests, NFS clients send a series of lookup requests (there is no mount
request) to the NFS server for one path qualifier at a time. Consequently, the
NFS server does not know whether additional path qualifiers follow. This can
produce unexpected results.

. If a mount request is issued as an NFS Version 2 or Version 3 mount request,

the path is handled as a single string entity and is resolved by z/OS UNIX
resolving the symbolic link to the z/OS UNIX /a directory, ignoring the
IMPPREFIX setting. This is effectively no change from prior releases.

The same is true for NFS Version 4 mount requests if the symbolic link is the
last name in the path and it is followed by some processing attributes.

Note: If the NFS client is z/OS there will always be at least one processing
attribute, automatically added by the client identifying it as z/OS.

However, if the mount request is issued as an NFS Version 4 mount request
and the symbolic link is not the last name in the path, or it is not followed by
any processing attributes, then the symbolic link will be identified as such back
to the NFS client. The client will then read the link data and reinitiate the path
resolution. In this case, assuming the link is defined as an absolute path, then
the path type resolution will come into play based on whether a prefix is
included and based on the implicit prefix resolution heuristic.

Note: This can cause the symbolic link to resolve into MVS space, not just
z/0S UNIX space.

. The implicit prefix heuristic also applies to the exports file; that is, for export

entries that do not include an explicit prefix, the IMPPREFIX() site attribute is
used to determine the specified path. If both the HFS and the MVS options are
specified, the export entry applies to both types of file systems, assuming that

the specified entry exists in both file system spaces.

. When the NFS Server restarts, it attempts to recover mount points recorded in

the MHDB. If the HFS or MVS prefix and/or implicit prefix site attributes were
changed before the restart, the new mount points will reflect the new HFS and
MVS prefixes. Implicit prefix changes will have no effect.

NFS Version 4 mount points that were established without specifying the
MVSMNT processing attribute were not recorded in the MHDB. The NFS
Client will attempt to re-establish these mount points when it receives a stale
file handle response from the NFS Server. However, the NFS Client has no
knowledge of the changed prefix site attributes and will use the original mount
name string in this attempt. This can result in the NFS Client not being able to
reestablish the mount points.

z/0OS V2R2 Network File System Guide and Reference

Note: This statement only applies when the NFS server prefix site attributes
are changed during the server restart. Otherwise, the NFS client should be able
to re-establish the mount points.

8. If the IMPPREFIX(NONE) Site Attribute is specified, all path names, including
those in the exports file (if used), must be specified with a prefix.

Server control files
These special files are used by the z/OS system administrator to control the z/OS
NFS server:
Attributes data set
Exports data set
Mount handle data sets
Log data sets

For information about customizing these control files, see |“Configuring the z/09
[NFS server” on page 181

Attributes data set

The attributes data set contains the settings for the z/OS NFS server. There are
three types of attributes stored in this data set:

Data set creation attributes
Used to define the structure of MVS data sets when creating a file (for
z/0S conventional MVS data sets only).

File processing attributes
Used to control how files are accessed by the client.

Site attributes
Used to control z/OS NFS server resources.

The system administrator changes the default settings by editing the attributes data
set and restarting the server. Client users can override the data set creation and file
processing attributes at the command line. For z/OS conventional MVS data sets,
the client user can specify the data set creation attributes when mounting, creating,
or accessing files. The client user can override the file processing attributes when
mounting, creating, or accessing files. However, some file processing attributes can
only be overridden on a mount point basis.

Note: Many of the attributes are valid only for z/OS conventional MVS files, and
not for z/OS UNIX files. [“Attributes used for z/OS UNIX file access” on page 121
gives a complete list of attributes that are valid for z/OS UNIX.

Exports data set
The exports data set can control which client users can mount which MVS data
sets. The entries in the exports data set specify which MVS high-level qualifiers or
HFS directories can be mounted. The system administrator can use this data set to
limit mounts to accredited clients only. It also controls which client users can
mount all or part of the z/OS UNIX file system, based on the client machine's
specified Internet Protocol (IP) address. To use the exports data set, the security
site attribute must be set to either safexp or exports by the MVS system
administrator.

Chapter 1. Introduction 13

In z/OS V1RS, the exports data set also provides the function previously provided

by the checklist data set: specifying files or directories that are exempt from System
Authorization Facility (SAF) checking even though saf or safexp is specified as the

security option.

Mount handle data set

The z/OS NFS server maintains a list of the active mount points in a pair of files
called the mount handle data sets on MVS also known as the mount handle
database (MHDB). The two data sets are used alternately to automatically
reestablish the client mount points when the server is started. If the file system is
not available, the mount point is not reestablished and the mount failure is
recorded in the log data set.

The z/OS NFS server does the cleanup activity during z/OS NFS server shutdown
and daily at the cleanup time specified by the restimeout site attribute.

During cleanup time, the z/OS NFS server reads the list and checks all mount
points against the retention period specified in the restimeout site attribute. If your
mount points are idle longer than the retention period specified in the restimeout
site attribute, they are removed. Only the active mount points are reconnected.

If a mount handle is removed by the cleanup activity, the client user might receive
the “Stale NFS File Handle” message or some other appropriate message. If so, all
the client user needs to do is unmount the stale mount point and mount it again.

NFS Version 4 mount points that were established without specifying the
MVSMNT processing attribute are not recorded in the MHDB. However, for NFS
Version 4 mount points without the MVSMNT processing attribute, the MHDB is
updated with records at z/OS NFS server shutdown that are used solely for
diagnostic purposes. At z/OS NFS server restart, the server reviews the diagnostic
records and reports the reason why the mount points were not reestablished. This
helps diagnose any problems that may occur during a failover.

Log data set

The log data sets store the messages for the z/OS NFS start-up procedures. This
log can be used to identify the user's correctable errors or the user's problem
errors. There are two logs that this information is stored in; the primary log and
the secondary log. The primary log is used at start-up until it is filled and then
overflows into the secondary log. When the secondary log is full, the primary log
will then be overwritten with new error messages. The number of log records is
dependent on the number of transactions that the server can handle.

The z/OS NFS server also records messages and diagnostic information in a z/OS
component trace buffer, if one is specified. Component trace buffers can be used in
addition to or instead of the log data sets. Using a component trace buffer can
provide performance improvements over the log data sets. For details, see
[z/OS component tracing” on page 314

Tested clients for the z/0S NFS server

Tested clients for the z/OS NEFS server, using the NFS version 2, version 3, and
version 4 protocols, are:

¢ z/0S NFS Client
* Linux

14 z/0S V2R2 Network File System Guide and Reference

— Red Hat EL 5/6
- Intel x86_64
- Linux on Power (ppc64)
- Linux on System z (s390x)
— Suse SLES 11.3
- Intel x86_64
- Linux on Power (ppct4)
- Linux on System z (s390x)
+ AIX
- 6.1
- 71
* Oracle Solaris version 10
— Sparc
— x86_64
* Windows
- Windows 7 with OpenText NFS 14

Note:

1. Older versions of these clients are still supported under the NFS version 2,
version 3, and version 4 protocols, but not all have been tested by IBM.

2. Other client platforms should work as well, since NFS is an industry
standard protocol, but have not been tested by IBM.

NFS protocol attributes for the z/OS NFS server

The NFS protocol defines file attributes that NFS clients can read and set on NFS
servers. In the NFS version 4 protocol, some file attributes are mandatory and
others are recommended for servers to support. For a list of the NFS version 4 file
attributes that the z/OS NFS server supports, see |[Appendix C, “NFS server|
[attributes,” on page 487

z/OS NFS server restrictions

As of the writing of this publication, use of the following functions must be
restricted because they have not been successfully tested on the listed systems:

« AIX 6.1/7.1

— NFSv4 mounts to MVS data sets must include a leading slash "/" before the
HLQ.

¢ Linux
— Red Hat EL 5
- Cannot mount NFSv4 shares that include Symbolic Links

- Cannot recover from FH_Expired after server restart or failover. Mount
attribute mvsmnt should be used to work around this restriction.

— Red Hat EL 6

- Cannot recover from FH_Expired after server restart or failover. Mount
attribute mvsmnt should be used to work around this restriction.

— Suse SLES 11.3

- Cannot recover from FH_Expired after server restart or failover. Mount
attribute mvsmnt should be used to work around this restriction.

Chapter 1. Introduction 15

Note: For NFS version 4 mounts to the z/OS NFS Server with conventional
MVS datasets, it is recommended to use the "nordirplus”" mount option from
Linux NFS Clients.

* Windows

— Double quotes have to be used when OpenText NFS client mounts to the
z/0S NFS server if the remote mount path doesn't exactly match the NFS
exports.

Example 1: Export USS /u/user* or MVS A.B in export file.
Maestro GUI:

"\\server\/hfs/u/user4"
"\\server\/A.B.CD"

DOS/Shell:

nfs link mountdrive \"\\server\/hfs/u/userd4\" /T /4 /A:u
nfs Tink mountdrive \"\\server\/A.B.CD\" /T /4 /A:u

Example 2: Use double quotes when mounting to the z/OS server with z/OS
server attributes.

Maestro GUI:

"\\server\/nfsexport,binary"

DOS/Shell:

nfs Tink mountdrive \"\\server\/nfsexport,binary\" /T /4 /A:u

Note: This is not intended to be an all-inclusive list of remote platform restrictions.

Tested servers for the z/OS NFS client

The z/OS NFS client supports servers that implement the server portion of the Sun
NEFS Version 2, Version 3, and Version 4 protocols:

¢ 7z/0S NFS Server
* Linux
— Red Hat EL 5/6
- Intel x86_64
- Linux on Power (pppc64)
- Linux on System z (s390x)
— Suse SLES 11.3
- Intel x86_64
- Linux on Power (pppc64)
- Linux on System z (s390x)
+ AIX
- 6.1
- 71
* Oracle Solaris version 10
— Sparc
— x86_64
* Windows
— Windows 7 with OpenText NFS 14

Note:

1. Older versions of these servers are still supported under the NFS version 2,
version 3, and version 4 protocols, but not all have been tested by IBM.

16 z/0S V2R2 Network File System Guide and Reference

2. Other server platforms should work as well, since NFS is an industry
standard protocol, but have not been tested by IBM.

A mount parameter vers(x), where x is either 2, 3, or 4 is provided to make the
z/0S NFS client communicate with the server at the specified protocol level. The
z/0S NFS client also communicates at the highest protocol level that is supported
by the server if no level is specified.

* If no version is specified and if the server supports:
— Only the NFS version 2 protocol, then the z/OS NFS client will use the NFS
version 2 protocol to communicate

— The NFS version 2 and 3 protocols, then the z/OS NFS client will use the
NEFS version 3 protocol to communicate

— The NFS version 2, 3 and 4 protocols, then the z/OS NFS client will use the
NEFS version 4 protocol to communicate.

* If vers(2) is specified, then use NFS version 2 protocol to communicate with the
server.

* If vers(3) is specified, then use NFS version 3 protocol to communicate with the
server. z/OS NFS client fails the mount command if the server does not support
NFS version 3 protocol.

* If vers(4) is specified, then use NFS version 4 protocol to communicate with the
server. z/OS NFS client fails the mount command if the server does not support
NEFS version 4 protocol.

z/OS NFS client restrictions

None.

WebNFS support

The z/OS NEFS server supports the WebNFS protocol. WebNFES specification
extends the semantics of NFS versions 2, 3 and 4 protocols to allow clients to
obtain file handles without the mount protocols. The z/OS NFS server supports
the public filehandle and multi-component lookup features as well as other
additional requirements as described in RFC 2055. A keyword, public, is added for
the system administrator to specify the public paths that the public file handle can
access. A public path for z/OS conventional MVS data and a public path for HFS
data can both be specified. When a lookup request comes in from an NFS client
and an absolute path name is specified, it will be matched with the public paths to
determine which public path it is trying to reference. If a relative path is specified
and both HFS and MVS public paths are defined then the lookup request will be
processed relative to the HFS public path.

The following are restrictions for the WebNFS support provided by the z/OS NFS
server in this release.

Export Spanning Pathnames
Lookup requests that reference files or directories outside of the exported
public path, will result in an error condition.

Native Path
Only canonical pathnames will be supported.

Canonical path
A canonical path is a hierarchically-related, slash-separated sequence of
components, in the form: <directory>/<directory>/.../<name>.

Chapter 1. Introduction 17

Processing attributes
NEFS version 2, version 3, and version 4 public MVS mount does not
support attributes inheritance. Therefore server attributes specified with the
mount command (such as text, srv_ccsid(), and cIn_ccsid()) cannot be
inherited when subsequently working with MVS data under a mount
point. The z/OS NFS server processes MVS data as binary.

For example, to work with a PDS member a.b.c(text_memb) in text
processing mode it is necessary to do a public mount directly to the
member:

mount -o vers=x,public zNFSserver:"/a.b.c/text_memb,text" client_mount_path

In this case, the text attribute specified on the mount command will be
taken into account when processing the data.

NFS versions with TCP/IP protocols

18

Information for NFS version 3 and version 4 protocols with proto=tcp can be
found on the mount man page on a UNIX client. The NFS client automatically
selects the proto=tcp option, unless the end-user overrides the option. For example,
you can enter this command:

unix$ mount -o vers=2,proto=udp mvshostl:smith /mnt

This example shows a specification of NFS version 2 with udp protocol, even
though the client platform can handle the NFS version 4 and tcp protocol.

Users can issue the rpcinfo -p <hostname> to show all the RPC programs available
on the server. For example:

$ rpcinfo -p mvshostl

shows the information from this command.
Table 3. View of NFS server capability

program vers proto port service
100000 4 tcp 111 portmapper
100000 3 tcp 111 portmapper
100000 2 tep 111 portmapper
100000 4 udp 111 portmapper
100000 3 udp 111 portmapper
100000 2 udp 111 portmapper
150001 1 udp 4954 penfsd
150001 2 udp 4954 penfsd
100024 1 udp 4955 status
100024 1 tep 4944 status
100021 1 udp 4956 nlockmgr
100021 1 tep 4945 nlockmgr
100021 3 tep 4945 nlockmgr
100021 3 udp 4956 nlockmgr
100021 4 tep 4945 nlockmgr
100021 4 udp 4956 nlockmgr
100003 2 tep 2049 nfs

100003 2 udp 2049 nfs

100003 3 tep 2049 nfs

100003 3 udp 2049 nfs

100003 4 tep 2049 nfs

100059 2 udp 4953

z/0OS V2R2 Network File System Guide and Reference

Table 3. View of NFS server capability (continued)

program vers proto port service
100059 2 tcp 4943

100044 1 udp 4952

100044 1 tcp 4942

100005 1 udp 4951 mountd
100005 1 tep 4941 mountd
100005 3 tcp 4941 mountd
100005 3 udp 4951 mountd

Users can issue rpcinfo -s <hostname> from Solaris clients to show a concise list
of all the RPC programs available on the server.

Here is an example of output from rpcinfo -s <hostname> in an IPv4 environment:

program version(s) netid(s) service owner
100000 4,3,2 udp,tcp rpchind superuser
150001 2,1 udp pcnfsd unknown
100024 1 tcp,udp status unknown
100021 4,3,1 tcp,udp nlockmgr unknown
100003 4,3,2 udp,tcp nfs unknown
100059 2 tcp,udp showattr unknown
100044 1 tcp,udp mvsmount unknown
100005 3,1 tcp,udp mountd unknown

Here is an example of output from rpcinfo -s <hostname> in an IPv4/IPv6

environment:

program version(s) netid(s) service owner
100000 4,3,2 udp,udpb,tcp,tcpb rpcbind superuser
150001 2,1 udp6,udp pcnfsd unknown
100024 1 tcpb,tcp,udpb,udp status unknown
100021 4,3,1 tcpb,tcp,udp,udpb nlockmgr unknown
100003 4,3,2 udpb,udp,tcpb,tcp nfs unknown
100059 2 tcpb,tcp,udpb,udp showattr unknown
100044 1 tcpb,tcp,udpb,udp mvsmount unknown
100005 3,1 tcpb,tcp,udpb,udp mountd unknown

Internet Protocol version 6

Internet Protocol version 6 (IPv6) expands the range of addresses that are available
for internet communications. IPv6 extends address sizes from a 32-bit value to a
128-bit value, vastly expanding the number of globally unique addresses that can
be assigned. Both the z/OS NFS Client and the z/OS NFS Server support the
longer addresses of IPv6, as well as the 32-bit addresses of IPv4 and below. Your
network infrastructure must be enabled to use IPv6; if the network does not
support IPv6, z/OS NFS will use IPv4 instead.

The z/OS NFS server can use both IPv6 and IPv4 for all NFS protocols.

SMEF records for the z/OS NFS server report client IP addresses for both IPv4 and
IPv6, with separate address fields for each.

The z/OS Portmapper does not support IPv6. Therefore, when using IPv6
addresses, the z/OS server host must be configured with RPCBIND, not the
Portmapper. RPCBIND supports both IPv6 and IPv4. As of z/OS VI1RS,
Portmapper should only be used for IPv4 only systems. Otherwise, RPCBIND
should be used.

Chapter 1. Introduction 19

Mount handle database (MHDB) records may be affected in the following
situation: The zOS NFS server is started in an IPv4 system. Subsequently a restart
of the zOS NFS server in an IPv6 system. Then another restart of the zOS NFS
server in an IPv4 system. This may cause the situation where IPv6 addresses
cannot be converted to IPv4 addresses. The MHDB may contain IPv6 addresses
that cannot be referenced when running in IPv4 mode. Thus mounts will not be
rebuilt properly.

User-specified port range support

The z/OS NFS server supports a user-specified range of ports. The z/OS NFS
server allows users to specify port assignments for services mountd, mvsmount,
penfsd, and showattr. Additional ports are also required by the server for locking
functions. The port assignments for these services can be any port number (except
for reserved port 2049 for the NFS program) but must be a contiguous port range
for the z/OS NFS server to identify them. The user specified range of ports
provides a flexible port range to accommodate programs such as a firewall that
supports a range of ports for security purposes.

Users wanting a user-specified port range setup must change the /etc/rpc file for
the z/OS NFS client and the /etc/services and tcpip.profile files for the z/OS NFS
server. For more information, see [“Setting up a user-specified port range” on page|

Dynamic addressing

20

Before z/OS V1R7, the z/OS NFS client and server were based on the static IP
address model to handle all communications with other systems. However, many
systems have migrated from the use of static IP addresses to the dynamic host
configuration protocol (DHCP). Now, the z/OS NFS server accepts dynamic NFS
client IP address changes and properly understands the source of the
communication even if the sender's IP address has changed. Since not all
customers' environments use dynamic IP addresses, NFS server site attributes have
been added to specify whether the NFS server should use the dynamic IP
algorithm (dhcp) or the current static IP algorithm (nodhcp). The default is
nodhcp, to use the static IP algorithm.

To use dynamic IP addressing, the client must:
* Have a constant host name that the NFS server can identify it by.

* Dynamically update the authentication DNS (dynamic name server) with new IP
addresses whenever they change.

* Maintain the TTL (time to live) value that the authentication DNS server
specifies to any caching DNS server, based on the frequency with which system
IP addresses might change.

If you are using the static IP algorithm (nodhcp) and there are changes to network
addressing, the exportfs command will not rebuild the exports list correctly. See
[“TCP/IP” on page 334| for further details.

For more information, see [“Using dynamic client IP addressing” on page 202.|

The z/OS NFS Server continues to have a static IP address, based on the standard
industry practice of assigning static IP addresses to servers.

z/0OS V2R2 Network File System Guide and Reference

64-bit exploitation

When writing to z/OS MVS data sets, the z/OS NFS Server has to buffer the RPC
WRITE data so the buffered data logically appears sequential before the z/OS NFS
Server call DFSMSdfp to write the blocks of data. To handle the large data sets and
the random write from the NFS Clients, you can convert or port the z/OS NFS
Server to AMODES64 (or LP64) to give it access to 64-bit Address Space (16
exabytes) for the logical data buffering and other control blocks management.

For z/0OS V2R1, the meaning of the bufhigh, logicalcache, and cachewindow
attributes have been changed to support the larger address space of AMODEG64.
See [Table 24 on page 140| for more information on these attributes.

Data transfer and conversion

With the NFS version 4 protocol, text data and metadata are transferred between
the server and client in the UTF-8 data format (ASCII text is not transferred
directly). z/OS NFS conversion of UTF-8 text data and metadata requires setting
up a conversion environment using the z/OS Unicode Services by creating a
Unicode conversion image that defines conversion tables with UTF-8 [CCSID 1208].

With the NFS version 4 protocol, stringprep provides preparation of
internationalized strings. Stringprep helps ensure that character string input and
string comparisons work consistently and correctly for users of multilingual text.
The z/OS NFS server supports the UTE-8 encoding and stringprep requirements in
the NFS Version 4 protocol, using z/OS Unicode services to normalize inbound
UTE-8 encoded strings when comparisons are needed.

The server site attributes stringprep and nostringprep let you enable or disable
stringprep normalization. You can use this attribute to disable stringprep
normalization if necessary, for example if needed for compatibility with existing
client workaround utilities. See [“Site attributes syntax” on page 139 for information
on the stringprep attribute.

Native ASCII support

The z/OS NFS client and server support applications running on z/0OS V1R2 (and
higher) in a native ASCII environment. Applications can operate on files in either
EBCDIC or ASCII format, as well as other data formats defined with a coded
character set identifier (CCSID). Native ASCII support is provided with a
mechanism called file tagging where the file is defined with a tag to identify the
CCSID to use for data conversion. File tagging is defined in the appropriate z/OS
UNIX System Services documents. The z/OS NFS client and server provide the
necessary support to provide data conversion between different CCSIDs specified
for the client and server. The z/OS NFS client cIln_ccsid and srv_ccsid parameters
are also supported by the z/OS NFS server to identify the CCSID to be used in the
data conversion. See [“Processing attributes syntax” on page 127] for more
information about the cln_ccsid and srv_ccsid parameters.

Chapter 1. Introduction 21

22 z/0S V2R2 Network File System Guide and Reference

Chapter 2. Creating z/0OS conventional MVS data sets

This topic explains how to create the various types of data sets (files) that are
supported by the z/OS NFS server.

The examples shown are from an AIX client platform perspective. Any examples
for other platforms are so indicated.

Overriding data set creation attributes

When you create an MVS file, default file creation attributes are applied, unless
you override them. The attributes are passed to the z/OS host.

Data set creation attributes are controlled in the following ways, in increasing
order of priority.

e Default server data set creation attributes

* Default installation data set creation attributes, specified by the system
administrator in the attributes data set

* DFSMS data class attributes
* Data set creation attributes specified in the mount (or nfs link) command

* Data set creation attributes specified in the mkdir, vi (edit), or cp (copy)
commands (highest priority)

The z/OS NFS server does not support the following data class attributes.
* (I size of data component

* Number of volumes

* Percentage of CI or CA free space

* Retention period/Expiration date

* VSAM imbed index option

* VSAM replicate index option

Preparing to create an MVS file

When creating an MVS file, you should know whether to process the file in text or

binary mode (see [“Selection of text or binary processing modes—text, binary” on|
and what type of file to create.

The z/0OS NFS server supports the following types of files.

* Physical sequential (PS) data sets, including basic format and extended format
data sets but excluding compressed format data sets.

* Direct access (DA)

* Partitioned data sets (PDS)

» Partitioned data sets extended (PDSE)
*+ VSAM KSDS

* VSAM ESDS

* VSAM RRDS

© Copyright IBM Corp. 1991, 2015 23

Keyed access and relative record number access to files is not supported. GDG
data sets are not supported.

Naming MVS files

The z/0OS NFS server uses the comma (,) as a delimiter to a list of file attributes.
Do not use a comma as a special character in file name. For example, you can
enter this command:

$ vi "/u/smith/new,text"

This indicates to NFS that a file called new is being edited in the attribute text
mode, not file new, text.

When naming z/0OS conventional MVS files, you must follow the MVS file naming
conventions, as described in [z/OS DFESMS Using Data Sets|

For information about the z/OS UNIX System Services naming conventions, see
[Chapter 4, “Using z/OS UNIX System Services files,” on page 49

An MVS file name (or data set name) can consist of one or several simple names
joined so that each represents a level of qualification. For example, the MVS file
name DEPT58.SMITH.DATA3 is composed of three qualifiers.

The following characteristics apply to the MVS file name.

* Each qualifier consists of 1 to 8 alphanumeric characters, national characters (@,
#, $), or a hyphen (-)

* Each qualifier must start with an alphabetical or national character
* The period (.) separates simple names from each other

¢ Including all simple names and periods, the length of the MVS file name must
not exceed 44 characters

* PDS and PDSE member names can be up to 8 characters long

For information about the MVS file system, see|“Mapping between the workstation|
[and MVS file systems” on page 40|

Restrictions on using alias names for MVS files

For non-VSAM files, alias names can be used interchangeably with the true file
name except on remove (rm and rmdir) and rename (mv) requests. Renaming or
removing an alias name results in an I/O error. This is due to an MVS restriction.

If the true name of an MVS file is renamed or removed and alias names have been
defined for the file, MVS deletes the alias names during execution of the rename or
remove request.

Creating physical sequential files

24

When creating a physical sequential (PS) file, specify the dsorg(ps) attribute (if it is
not the default already) with the mount command or a file creation command,
such as the vi UNIX (or AIX) command.

The physical sequential data set can only allocate on a single volume with the
maximum size of 65535 tracks unless defined with a characteristic allowing
increased sizes, such a Large Format. See [z/OS DFSMS Using Data Sets| for
additional information on MVS file size limits.

z/0OS V2R2 Network File System Guide and Reference

To create a PS file, perform the following steps:

1. Create a local directory on your client to be used as a mount point. For
example (with UNIX), enter this command:

$ mkdir /u/smith/mnt
2. Mount the MVS file system. For example, suppose your host is mvshostl, and

you want to issue a mount on the high-level qualifier smith. You can enter this
command:

mount mvshostl:"smith,dsorg(ps)" /u/smith/mnt

If you do not specify any other attributes, the MVS site defaults are used. You
can use the showattr command to display the site defaults.

3. You can use the vi UNIX command to create the new file.
$ vi /u/smith/mnt/new

When you save the file using vi, you have just created a new MVS PS file
named SMITH.NEW.

You can get the same results by specifying dsorg(ps) in the file creation command
rather than in the mount command.

mount mvshostl:smith /u/smith/mnt
$ vi "/u/smith/mnt/new,dsorg(ps)"

Creating direct access files

The z/OS NFS supports sequential access to direct access (DA) files. When creating
a DA file, specify the dsorg(da) attribute (if it is not the default already) with the
mount command or a file creation command (such as the vi UNIX command).

The direct access data set can only allocate on a single volume with the maximum
size of 65535 tracks unless defined with a characteristic allowing increased sizes,
such a Large Format. See lz/0OS DFSMS Using Data Sets| for additional information
on MVS file size limits.

To create a DA file, perform the following steps:

1. Create a local directory on your client to be used as a mount point. For
example (with UNIX), enter this command:

$ mkdir /u/smith/mnt
2. Mount the MVS file system. For example, suppose your host is mvshostl, and

you want to issue a mount on the high-level qualifier smith. You can enter this
command:

mount mvshostl:"/mvs/smith,dsorg(da)" /u/smith/mnt

If you do not specify any other attributes, the multiple virtual system (MVS)
site defaults are used. You can use the showattr command to display the site
defaults.

3. Next, you can use the vi UNIX command to actually create the new file.
$ vi /u/smith/mnt/new
You have just created a new MVS DA file named SMITH.NEW.

You can get the same results by specifying dsorg(da) in the file creation command,
rather than in the mount command.

mount mvshostl:smith /u/smith/mnt
$ vi "/u/smith/mnt/new,dsorg(da)"

Chapter 2. Creating z/OS conventional MVS data sets 25

Creating PDSs and PDSEs

Partitioned data sets (PDS) and partitioned data sets extended (PDSE) can be used
as directories, and their members are files within those directories. An illustration
of the use of PDSs to act as directories is shown in [Figure 2 on page 44| For
general information on PDSs and PDSEs, see [z/0S DFSMS Using Data Sets|

You cannot create new directories within a PDS or PDSE, due to the nature of
these data structures. Updates or appends to a member name are not allowed.

The partitioned data set can only allocate on a single volume with the maximum
size of 65535 tracks. See |z/0S DFSMS Using Data Sets| for additional information on
MVS file size limits.

Creating a PDS or PDSE - mkdir dsntype(pds),
dsntype(library)
To create a PDS or PDSE, perform the following steps:

1. Create a local directory on your client to be used as a mount point. For
example (with UNIX), enter this command:
$ mkdir /u/smith/mnt

2. Mount the MVS file system (accessing files that begin with the high-level
qualifier of smith).

mount mvshostl:"smith,mgmtclas(normal)"
/u/smith/mnt

3. If creating a PDSE, use the mkdir (make directory) UNIX command, specifying
the dsntype(library) attribute to create a PDSE named smith.datalib.
$ mkdir /u/smith/mnt/"datalib,dsntype(Tibrary)"

If creating a PDS, use the mkdir (make directory) UNIX command, specifying
the following dsntype(pds) attribute.

$ mkdir /u/smith/mnt/"datalib,dsntype(pds),dir(20)"

Omitting dsntype(pds): You can omit specifying the dsntype(pds) attribute if
pds has been specified for the dsntype attribute either in your site attribute
data set or in your mount point.

4. You can use the vi UNIX command to create a PDS or PDSE member named
smith.datalib(memberl).
$ vi "/u/smith/mnt/datalib/memberl,text"

Type your text, save it, and quit.

You have now created a PDS or PDSE member, which is processed in text
processing mode. You can use the cat UNIX command to view the contents of your
PDS or PDSE member.

Note: z/OS NFS server supports a maximum of 14,562 members in a PDS or PDSE
data set. When a NFS read-directory request on a PDS or PDSE is processed, the
z/0S NFS server will return up to 14,562 member names. Other requests, such as
read and write, to individual members are not affected.

Removing a PDS or PDSE - rm, rmdir

To remove a PDS or PDSE, first make sure that the PDS or PDSE is empty. You can
delete all members under the directory using the rm UNIX command. Then use

26 z/0S V2R2 Network File System Guide and Reference

the rmdir (remove directory) UNIX command. This example removes the datalib
directory, and confirms its removal by a failed try to query it (Is is the UNIX list
files command).

$ 1s -F /u/smith/mnt/datalib
datal* data2* data3*

$ rm /u/smith/mnt/datalib/~*

$ rmdir /u/smith/mnt/datalib

$ 1s -F /u/smith/mnt/datalib
/u/smith/mnt/datalib not found

Accessing PDS or PDSE members

There is more than one way to mount and access PDS and PDSE members. For
example, you can display the existing PDS member smith.source(bigblue) by
entering either of these command sequences.

$ mkdir /mnt
mount hostname:"smith.source,text" /mnt
$ cat /mnt/bigblue

Or

$ mkdir /mnt
mount hostname:"smith,text" /mnt
$ cat /mnt/source/bigbhlue

These two approaches are equivalent.

Updating or extending a PDS or PDSE member

The z/OS NFS server does not support updating or extending a PDS or PDSE
member directly. To update or extend a PDS or PDSE member, a client program
must follow these steps.

1. Copy the file to the client machine
2. Update or extend the copied version on the local system

3. Truncate the original MVS file to zero size by sending a SETATTR request with
zero file size

4. Copy the updated version on the local host to MVS by writing request

Some client editors follow these steps, for example, the AIX and UNIX vi editor.
Other editors do not follow these steps, for example, the z/OS UNIX OEDIT
editor. In the latter case the user must save the updated version into a new file.

Timing out while writing a PDS or PDSE member

If you are writing to a PDS or PDSE member and a timeout occurs, the timeout
causes the member to close. The remaining write requests appear to append to a
PDS or PDSE member. The write request does not complete successfully and
causes an I/O error. To avoid timing out, increase the time on the timeout setting.

Wildcard copy to a PDS or PDSE

To ensure that a wildcard copy of a PDS or PDSE is completed successfully, the
PDS or PDSE member must be closed and dequeued (if necessary). For example,
for the statement

$ cp smith.x /u/smith/mnt/datalib

the wildcard copy will fail if any member inside of smith.datalib is open.

Chapter 2. Creating z/OS conventional MVS data sets 27

Limitations of a PDS

The PDS support in NFS adheres to the conventions used in MVS. For example,
you cannot have more than one member of a PDS open for output at a time. If you
try to create, remove, rename, or write a member of a PDS while another member
is open for output, you get a “Permission denied” message.

A PDS member stays open for the timeout period specified in the appropriate
timeout processing attribute, or until you try to create or write to another member.

Concurrent writes to a PDSE

NFS does not support concurrent writes to a PDSE. If you are writing to one
member of a PDSE, another NFS client cannot write to any other member in the
same PDSE. However, you can use ISPF, or some other local z/OS application to
edit, or write, a PDSE member while an NFS client is writing to a different
member of the same PDSE.

Note: If you are running multiple NFS servers, for this discussion, the "other" NFS
server should be considered to be "some other local z/OS application" because the
NFS servers are not aware of each other.

ISPF extended statistics support for PDS or PDSE members

As of z/OS V2R1, the z/OS NFS Server supports processing extended ISPF

statistics for PDS or PDSE members with more than 65535 lines (see E/OS V2R2|
[[SPF User’s Guide Vol I and |z/OS V2R2 ISPF User’s Guide Vol II). The z/OS NFS
Server always creates extended ISPF statistics when creating/writing a member.

Note:

1. Use of extended ISPF statistics requires more directory blocks than standard
ISPF statistics for the same number of members in a PDS. So, if members of a
PDS are being written, or created and in the process generates extended
statistics, the directory may run out of directory blocks even though no new
members are added. It is the customer's responsibility to ensure that the PDS is
defined with adequate directory blocks.

2. When accessing a PDS or PDSE member which contains more than 65535 lines,
but only has standard ISPF statistics, and the ISPF statistics do not have a value
of 65535 for the number of lines in the member to indicate that the value is
incorrect, the z/OS NFS Server CANNOT convert the ISPF statistics to
extended statistics. This may lead to an incorrect filesize calculation.

3. Use the "TSO ISPCCONF" command to activate the display of extended ISPF
statistics on ISPF panels. See [z/0S V2R2 ISPF User’s Guide Vol I and [z/OS V2R2|
[[SPF User’s Guide Vol II| for details.

4. In releases prior to V2RI, the z/OS NFS Server will convert extended ISPF
statistics to base statistics when writing to an existing PDS/E member, and will
reset ISPF statistics when truncating a PDS/E member to a size of 0.

Creating VSAM files

28

The z/OS NFS supports three types of VSAM files: key-sequenced (KSDS),
entry-sequenced (ESDS), and relative record (RRDS). However, keyed access and
relative-number access to the files are not supported. Maximum file size supported
for any VSAM file type is less than 4GB. VSAM files should not be defined as
EXTENDED ADDRESSABILITY even though the file size may be less than 4GB.
See |z/0S DFSMS Using Data Sets| for additional information on MVS file size limits.

z/0OS V2R2 Network File System Guide and Reference

If you plan to update a VSAM data set (for example, with the vi editor or with the
cp copy command), the data set must have been defined with the reuse option.
Trying to write back a VSAM data set that was not defined as reusable results in
an “I/O error”, “failure to open”, or similar error message. If you create a VSAM
file using the NFS, the reuse option is used by the server.

For more information on VSAM files, see |z/OS DFSMS Using Data Sets|

In the following example for creating a VSAM KSDS file, the attributes indicate
that:

Spanned records are allowed

Organization is key-sequenced

Keys are 8 bytes long and start in position 0 of each record
Average record size is 1024

Maximum record size is 4096

Space is allocated for 50 records with a secondary allocation of 10
Cross-region and cross-system share options are provided

The file is to be created on a volume named DS8OCAT

$ cp ksds.old "ksds.new2,spanned,dsorg(indexed),keys(8,0),
recordsize(1K,4K),space(50,10),shareoptions(1,3),
vol(D8OCAT)"

In the following example for creating a VSAM ESDS file, the attributes indicate
that:

Spanned records are allowed

Organization is entry-sequenced

Average record size is 1024

Maximum record size is 4096

Space is allocated for 50 records with a secondary allocation of 10
Cross-region and cross-system share options are provided

The file is to be created on a volume named DS80CAT

$ cp esds.old "esds.new3,spanned,dsorg(nonindexed),
recordsize(1K,4K),space(50,10),shareoptions(1,3),
vol (D8OCAT)"

In the following example for creating a VSAM RRDS file, the attributes indicate
that:

* Spanned records are not allowed

* Organization is relative record, numbered in ascending order

* Average record size is 1024

* Maximum record size is 1024

* Space is allocated for 50 records with a secondary allocation of 10
* Cross-region and cross-system share options are provided

¢ The file is to be created on a volume named DSOCAT

$ cp rrds.old "rrds.newd,nonspanned,dsorg(numbered),
recordsize(1K, 1K) ,space(50,10),shareoptions(1,3),
vol(D8OCAT)"

Chapter 2. Creating z/OS conventional MVS data sets 29

Exploiting SAM striped files

With SAM striping, data I/O is done in parallel to improve performance. For a file
with 16 stripes, data is simultaneously processed on the first track of the allocated
space in each of the 16 volumes. This allows for quick access to all the information.

The z/OS NFS server can support data set striping through the use of data class
and storage class attributes that define extended format data sets. The z/OS NFS
server can exploit the performance of extended format data sets by reading
multiple blocks at a time when reading ahead.

For more information about striped files, see [z/0S DFSMS Using Data Sets|

Exploiting large format data sets

Large format data sets are a type of physical sequential data set, other than
extended format data sets, which can grow beyond a size limit of 65 535 tracks on
each volume. That size limit applies to z/OS conventional (basic format) sequential
data sets. Large format data sets can exploit the increased storage capacity of most
hardware storage devices, and reduce the need for very large data sets to span
multiple volumes.

To create a large format data set with z/OS NFS, specify a data class which has a
dsntype value of large. The dsorg value must be ps, psu, or omitted.

For more information about large format data sets, see f/OS DFSMS Using Data

Exploiting data sets on extended address volumes

30

An extended address volume is a volume with more than 65 520 cylinders. NFS
can read, write, and create VSAM data sets on extended address volumes.

For more information about data sets on extended address volumes, see
[DFSMS Using Data Sets|

z/0OS V2R2 Network File System Guide and Reference

Chapter 3. Using z/0OS conventional MVS data sets

This topic explains what you need to know to use z/OS conventional MVS data
sets on a client workstation. This topic discusses the following topics:

* Special MVS considerations

* Reading and writing MVS data sets

* Accessing MVS data sets

* Mapping between the workstation and MVS file systems.

In MVS, a file is called a data set, and the two terms are used interchangeably in
this book. The z/OS NFS server presents information to you in the form of a UNIX
(or AIX) file, though the information is actually stored on MVS-owned DASD in
the form of an MVS data set.

Special MVS considerations

In addition to mapping between the workstation and the MVS file systems, the
z/0S NFS server might be different from non-MVS NFS servers in other ways,
including these differences:

* Selection of an MVS data storage format
* File size determination and time stamps
* Ownership and permissions
* Selecting MVS file systems versus z/OS UNIX file systems
* State
* File reading and writing
— Random access to files
— Cached data writing
* Case sensitivity-maplower, nomaplower
* Selection of text or binary processing modes—text, binary
— Binary processing mode
— Text processing mode
* Number representation
* Partial record identification
* Access to migrated files—retrieve, noretrieve; wait, nowait
* Access to system-managed migrated data sets
* File handle refresh
* File extension mapping

Selection of an MVS data storage format

The files you create with the z/OS NFS server are contained in MVS data sets.
These MVS data sets are record-oriented and can be sequential, direct, VSAM,
partitioned, and so forth. These MVS data sets are variable or fixed in record
length. UNIX files, however, are byte-oriented and typically written or read at
certain offsets in the file.

You can map non-MVS files to most types of MVS data set organizations.
However, how the time stamps and file size value are handled depends on the

© Copyright IBM Corp. 1991, 2015 31

32

type of MVS data set used, and the file size processing can affect performance. See
[Appendix A, “File size value for MVS data sets,” on page 479 |

Direct reads with record format recfm(fbs) or recfm(f) can be fast. In some cases,
the z/OS NFS server can determine the physical block addresses from the record
offsets. The MVS sequential file organization with recfm(fbs) or recfm(f) on DASD
allows for efficient updating or reading at any offset in the file. Other supported
MVS access methods (for example, VSAM) can be used if required by a given
application but, in general, the sequential file organization is the best choice for
files that are used mainly by UNIX clients.

File size determination and time stamps

How the z/OS NFS server handles the file size value and time stamps depends on
the type of MVS data set used and the attributes used to access the data set. See
Appendix A, “File size value for MVS data sets,” on page 479 and [Appendix B/
“Time stamps for MVS data sets,” on page 483

Ownership and permissions

The UNIX UID and GID file attributes are reset to their default state (UID=0 and
GID=0) after a restart of the z/OS NFS server or an unmount of the file system. In
some cases, this requires that a superuser on the client workstation reissue chown
and chgrp commands to reset the UID and GID. These commands can be included
in the same script used to mount the file system.

The permissions checking done by RACF®, a component of the Security Server for
z/0S, or an equivalent security package, is transparent to you. Access to a data set
is granted, provided that the server's exports list, the MVS security subsystem, and
the customized installation security exit allow access to the data set. Which of
these security systems are active depends on the security settings used at your
installation. The UNIX file modes or permission bits are ignored by z/0OS NFS
server and authorization is done with the RACF or equivalent security package.

UNIX's UID, GID, and MODE attributes are not used by the z/OS NFS server for
checking user access to z/OS conventional MVS data sets (see previous
paragraph). UNIX's chown, chgrp, and chmod commands do not update z/OS
RACEF security policies and will not alter access to files. Do not use returned values
to determine access rights. The z/OS NFS server supports the setting and
obtaining of these attributes to minimize impact to client applications. For
performance, validation of passed values is limited to the following checks for
proper operations.

When a new MVS data set is created, the UID and GID are inherited from the NFS
RPC, or from z/OS UNIX segment, or from the RPC Authentication, in the listed
priority order.

CHOWN
Request is failed for a non-root user with EPERM if changing to a value other
than yourself. The root user can make arbitrary changes to MVS data set
ownership. Change to yourself is allowed for mount support.

CHGRP
No checking.

CHMOD
No checking, new value ignored, existing z/OS NFS server value is left
unchanged, “success” is returned to the client.

z/0OS V2R2 Network File System Guide and Reference

File reading and writing

After the z/OS NFS server is started and you have mounted the MVS data set, you
can use regular data access or creation commands from your workstation to access
files that reside on MVS.

For example, suppose you accessed an MVS file named prefix.file3 mounted on
the local directory /mnt. This is how you could use the UNIX cat command (or a
similar command) to display the file:

$ cat /mnt/file3

Suppose you accessed an MVS file named prefix.filel2 mounted on the local
directory /mnt. This is how you could use the UNIX vi command (or a similar
command) to edit the file.

$ vi /mnt/filel2

Writing a file on MVS is straightforward. If the file already exists, the file’s existing
attributes are used; they are not modified during the write operation. For the
priorities of attributes, see [“Overriding data set creation attributes” on page 23]

Random access to files
If your application accesses the files at random offsets, there is a performance
implication.

In the UNIX environment, a file is represented as a byte stream. That byte stream
is accessible for reading and writing at any byte offset for any byte length. In the
MVS environment, a file is represented as a collection of records. The record, rather
than a single byte, is the smallest object that can be processed. Therefore, the z/OS
NFS server has to convert the byte stream operations from NFS clients into
standard access method operations on MVS.

To convert byte stream operations to MVS access method operations, the server has
to determine which record in the MVS file contains the offset specified in the NFS
read or write request. To determine this, the server reads, mapping byte offsets to
records, from the last known location in the file until the record containing the
requested byte offset is located. This mapping byte offsets to records process can
have performance implications depending on the record size used.

For example, suppose a file on MVS contains 10,000 variable-length records with a
maximum length of 80 bytes for any record. Suppose the first NFS request received
tells the server to read 4,000 bytes starting at offset 10,000 bytes. Because the file
has not been opened yet, the server would open the file and start reading at the
first record, searching for the record that contains offset 10,000. Once it found the
record, the server would process the request, which might involve reading more
records to find enough bytes to satisfy the request.

Another complication involved in mapping byte offsets to records is the processing
defined by the user to apply to a file. For example, if you specify text mode
processing with end-of-line terminators, the perceived offset into a file from a
given client changes.

Cached data writing

The z/OS NFS Server always caches writes if out-of-sequence data packets are
received or if a physical block of data is partially filled. If the NFS Server is
processing in the binary data mode, the writes will remain cached until one of the
following occurs: v4 CLOSE occurs, the write timeout for a data set has been

Chapter 3. Using z/OS conventional MVS data sets 33

34

reached or, if the logicalcache attribute is defined at less than 2GB, the number of
cached packets exceeds the number specified in cachewindow . If the NFS Server
is processing text data, the writes remain cached until v4 CLOSE occurs, or the
write timeout for a data set occurs. If the logicalcache attribute is defined at less
than 2GB and the number of cached packets exceeds the number specified in
cachewindow, data processing ends with EIO error code.

The missing data is padded with binary zeroes and record delimiters so that
cached writes for text processing are written in the MVS data set on DASD at the
location specified in each cached data packet. In the case of cached data packets for
binary processing, only binary zeroes will be used to pad the missing data written
at the specified location on DASD. See

Attention: It is recommended that the application and NFS client perform the
writes in offset and length in multiple of 512 bytes in order to optimize the
mapping byte offsets to records process described previously in this section and,
therefore, reduce data flush time. On the other hand, for the NFS version 3 commit
procedure, the z/OS server will only support committing the cached data when
the data set is timed out. For the NFS version 4 commit operation, the z/OS Server
will only support committing the cached data upon receiving the close operation.

Table 4. Breakdown of text and binary writes

Description

Binary

Text

Data is flushed to
DASD when the

Number of cached packets exceeds the
amount specified in cachewindow!, or
the file times out.

File times out. If the number of packets
exceeds the amount specified in
cachewindow?, all new out of sequence
packets will be dropped.

Padding

Binary zeros

Binary zeros

Record delimiters

There are no record delimiters.
Therefore, there is no attempt to add
end of line characters.

There can be record delimiters.
Therefore, an end of line character is
added to the end of the record.

Note:

1. cachewindow is taken into account when the logicalcache attribute is defined
at less than 2GB

Case sensitivity—-maplower, nomaplower

If the processing attribute maplower is specified, the MVS file name is mapped to
the lower case when returned to the client and all client specified names are
mapped to upper case. If the processing attribute nomaplower is specified in the
attributes, all entries in the exports data set are case-sensitive. Therefore the client
mount request must specify the MVS qualifier with the correct case to successfully
match the exports data set entry.

Selection of text or binary processing modes—text, binary

You can specify either text or binary processing mode when you access files. This
processing mode does not describe the type of data in the original file, but rather,
it specifies whether to convert between ASCII and EBCDIC when sending file
contents between the z/0S host and the client workstation. See [“Mount command|
lsyntax and examples” on page 89 for more information about text and binary
processing of files using the z/OS NFS client.

Binary processing mode
The binary processing mode specifies to send and receive file contents between the
z/0S host and the client in binary form, avoiding the ASCII/EBCDIC conversion

z/0OS V2R2 Network File System Guide and Reference

required in text mode. This is faster than text mode. However, users on MVS
cannot read the file, because the contents are not in EBCDIC. Therefore, use the
binary processing mode to create or access a file only if the file is not intended to
be shared with users on the z/OS host, or the file content is binary.

When fixed-length records are written in binary mode, the server pads the last
record of the file with null characters if the last record is less than the fixed record
length. These padding bytes are counted in the file size.

Text processing mode

With the text processing mode, when data is read, record boundaries are marked
with the end-of-line terminators such as 1f or crlf. These terminator characters have
the same data representation as the data that is read (the CCSID of the data read in
is the same as the CCSID of the appended end-of-line terminators). The data
representation of the record formatted data is then changed to the client
representation (client CCSID). If the client data representation is the same as the
data representation of the data that is read, then there is no data translation.

When the record formatted data is received from the client for writing to the data
set, its data representation is changed to the data representation of the data stored
in that data set, with the converted end-of-line terminators used to recognize the
record boundaries.

In text processing mode, the representation of data along with end-of-line
terminators is changed between client representation (client CCSID) and data set
representation. All data and end-of-line terminators are converted according to the
active translation table. Therefore, if the data set contains a mixture of characters
and binary data, binary data is converted as well. In text mode, be careful not to
mix your text data (characters) with binary data. Also pay attention that
end-of-line terminator conversion depends on the Unicode Conversion Technique -
convserv() attribute.

For example:
» With convserv(LRE), ASCII LF 0x0a is converted to EBCDIC NL 0x15 (Language
Environment behavior)

* With convserv(RE), ASCII LF 0x0a is converted to EBCDIC LF 0x25

NEFS version 4 protocol (NFSv4) differs from NFSv2 and NFSv3 protocol in
handling single to multiple byte conversion. Therefore, the technique-search-order
specified in the convserv() attribute should consider the effects of the NFS protocol

being used. Sed“Creating the conversion environment for Unicode Services” onl|
page 174 for further details.

Using the If line terminator: For an AIX or UNIX client, use If as a line
terminator when using text processing mode.

Selection of how blanks are handled-blankstrip, noblankstrip: When
fixed-length records are written in text mode, records are padded with blanks if
the record length is larger than a line, and if the blankstrip processing attribute is
enabled. (When sending data from MVS, blankstrip strips trailing blanks. When
sending data to MVS, blankstrip pads the records with blanks).

If you are writing data to a fixed record length MVS data set in text mode with
blank stripping enabled, and the data contains blanks at the end of the line, an I/O
error occurs. This is because the server is not able to return the blanks to the client
when the file is read back.

Chapter 3. Using z/OS conventional MVS data sets 35

36

If you get an error message when trying to create or access an MVS data set, see
[Chapter 19, “Network File System messages,” on page 337 for further explanation
of the message.

Potential fixed/variable/undefined record length data set logical I/O errors: If
you save a fixed/variable/undefined record length MVS data set in text mode
with one or more lines exceeding the maximum record length, an I/O error occurs.
For example, suppose an MVS data set has fixed-length records of 80 bytes. After
you edit the file using the vi editor on your workstation, one of the file’s records is
83 bytes long (exceeding the fixed length by 3 bytes). When you save the file back
to the server, the MVS data set may be either partially or totally destroyed, and the
“1/0O Error” message appears on your screen. While you are still in the editing
session, save the edited file in an alternate local file. After you correct the local file
so that no line exceeds 80 bytes, save it back into the MVS data set.

For example, suppose a variable-length MVS data set is defined with an LRECL of
132 bytes. The maximum effective record length of the data set is actually 128
bytes, because 4 bytes are reserved by DFSMS SAM to accommodate the record
descriptor word (RDW). As a result, any line that is attempted to be written into
this data set that exceeds this maximum effective record length will result in an
I/0 error.

For more information about I/O errors related to different MVS data set types, see
[z/0S DESMS Using Data Sets|

MVS prefix support

New for VIR11, the MVS prefix support enables you to explicitly specify a prefix
for identifying MVS data sets.

All path type resolution (checking) processing uses the presence or absence of a
leading slash (/) to indicate whether the path is an absolute or relative path. If the
slash is present, the first qualifier after the slash is compared against the MVS
prefix to determine if it matches the prefix. If so, then the path type will be
considered to be explicitly resolved via the prefix. If no match is found, or no slash
was present, the implicit path type resolution heuristic is used. To avoid causing
unnecessary customer impacts, the default settings cause the file system type
resolution algorithm to give the same results as the resolution algorithm in
previous releases.

For more detailed information, see [“z/OS NFS File System Type Selection” on page|

Number representation

The text processing mode does not change the number representation format
between the host and client. When you choose text as the processing mode, the
NEFS converts characters between ASCII format and EBCDIC format, and processes
end-of-line terminators, but no other translation of user data occurs.

When you select binary as the processing mode, NFS stores your data unchanged.
Therefore, regardless of the processing mode you choose, you cannot change
numbers from one client workstation’s format to another client workstation’s
format.

z/0OS V2R2 Network File System Guide and Reference

Partial record identification

The term partial record or incomplete record applies to both z/OS NFS server text
and binary modes whenever processing data blocks in RPC WRITE operations for
the legacy path.

For text mode, the z/OS NFS server finds and extracts a record from the byte data
stream sent by a client by checking sequentially for end-of-line (EOL) delimiters.
The scope of a record being defined as a text partial record is limited to an RPC
WRITE size of a data block.

An RPC WRITE data block usually contains several text records. If the last or the
only record in the first RPC WRITE data block (starting at offset=0 of the byte data
stream) has no tail with EOL then it is a text partial record. The second sequential
RPC WRITE data block (with the byte data stream offset = size of the first RPC
WRITE data block) contains the tail of the partial record from the first RPC WRITE
data block, and so on for further RPC WRITEs.

RPC WRITEs may come to the z/OS NFS server out-of-sequence, so there can be a
lost RPC WRITE data block within the byte data stream and thus RPC WRITE data
blocks cannot be chained together one-by-one by the z/OS NFS server. If an RPC
WRITE data block is not the first one (offset not equal to 0) and the previous
sequential RPC WRITE data block is lost, then the first record in this RPC WRITE
data block may be incomplete as it has no beginning, just some tail bytes before
EOL (or only EOL).

The z/OS NFS server treats a lost or absent RPC WRITE data block as containing a
partial record by default.

For binary mode, there is no need to look for records or EOL in the byte data
stream, but a lost or absent RPC WRITE data block leads to the same partial record
problem (a very long record of the data stream size has data holes somewhere
inside).

For both text and binary modes the z/OS NEFS server counts the number of bytes
of data stream arrived from a client and waits for a new RPC WRITE data block
from the client for a specified writetimeout. After this writetimeout expiration, the
z/0OS NFS server flushes the record_structured cached data (raw data for binary
mode) to disk, and closes/deallocates the data set. The z/OS NFS server fills in the
"holes" caused by lost RPC WRITE data blocks with zeroes during data flushing.
So if an RPC WRITE data block is truly lost (never retransmitted) to the z/OS NFS
server, a closed data set will contain zeroes for that data portion that contains
holes. The zeroes in a closed data set may be put by the z/OS NFS server at the
end of a data set if the last record (referenced by the last data stream byte) is a
partial record.

Also, data flushing may be initiated by the z/OS NFS server on RPC WRITE and
COMMIT operations without the data set being closed or deallocated.

To indicate the cases of lost RPC WRITE data blocks or partial records, APAR
OA16182 introduced special GFSA824W and GFSA825W messages that are issued
to the console/log data sets after original writetimeout(n) expiration before data set
closure/deallocation.

Symptoms of GFSA824W/GFSA825W messages

The GFSA824W message presents that at least one partial /lost record case has
happened during the processing of a data set.

Chapter 3. Using z/OS conventional MVS data sets 37

38

There is an explicit requirement for NFS users who use the z/OS NFS server text
mode for data processing to end the byte data stream with an EOL delimiter for
client applications writing to the z/OS NFS server. If a user's application does not
comply with this requirement, it may provoke partial record conditions for the last
RPC WRITE operation that corresponds to the end of data stream (even if all data
from the client application was sent to the z/OS NEFS server). If a user works with
the z/OS NFS server in text mode and does not end its byte data stream with
EOL, the GFSA824W /GFSA825W messages appear as a reaction on the last partial
record case.

That partial/lost record case results in GFSA824W messages appearing and,
subsequently, data set closure/deallocation problems. If a partial/lost record case
happened in the beginning/middle of user data stream, the impact of data set
closure/deallocation results is data corruption in the beginning/middle of a data
set. The holes of the user data portion is filled in by zeroes by the z/OS NFS
server.

If a partial/lost record case happened at the end of a user data stream (no EOL
delimiter), the impact results in a prolonged timeout before data set
closure/deallocation.

For data sets with F/FB record format, the last record in the data set is filled out
with trailing zeroes. For example if a data set has RECFM=FLRECL=40, but the
last partial record is 20 bytes in the last RPC WRITE data block, the data set
contains hex zeroes in the last physical partial record

YOOI K v evsvsvsvsnnsnnes , where "." is a x'00' hex byte.

For data sets with V/VB/U record format, the last record in the data set is filled in
with one trailing zero. For example if a data set has RECFM=V,LRECL=40, but the
last partial record is 20 bytes in the last RPC WRITE data block, the data set
contains one hex zero in the last physical partial record xxxxxxxxxXXXXXXXXXXX.,
where " is a x'00' hex byte.

The GFSA825W message presents that a data set is closed/deallocated after
extended writetimeout with at least one partial/lost physical partial record.

If any late RPC WRITE operations with lost data portion are sent to the z/OS NFS
server after the data set has been closed/deallocated, the data set will be
re-opened, re-read and updated with the lost portion of data. But this late RPC
WRITE should not alter the existing record structure in the data set. The shorter or
longer record from the update against the existing data set records may cause
logical errors in the z/OS NFS server that will be reported to a client as EIO(5)
error code.

The z/OS NFS server supports correct recovery/extension of the last physical
partial F/FB/V/VB/U record on disk during processing of further RPC WRITEs
from a client which contains the rest of the record.

The z/OS NFS server does not support the last physical partial record recovery for
VS/VBS data sets.

To eliminate conditions reported by GFSA824W /GFSA825W messages, the user
should adhere to the EOL requirement for text mode and tune the z/OS NFS
server by setting the proper timeouts, that is, writetimeout(n) value must be
greater than the maximum delay between WRITE operations in a slow

z/0OS V2R2 Network File System Guide and Reference

client/network. Improper writetimeout settings may cause performance problems
and data set closure/deallocation problems due to partial/lost record conditions.

Access to migrated files-retrieve, noretrieve; wait, nowait

Sometimes files on MVS are migrated to another storage level, such as a
space-saving format on DASD or tape. If your file has been migrated and you try
to access it, it might take a while for it to be recovered back into primary storage.
The retrieve and noretrieve processing attributes control what happens when you
try to access a migrated file.

There are three ways that the retrieve or noretrieve option is controlled.
1. Using the Default Retrieve Attribute

You can use the default retrieve processing attribute by not entering retrieve or
noretrieve in your mount command or file access command.

2. Specifying retrieve with the mount command

You can issue the mount command, specifying retrieve or noretrieve. The
attributes specified in the mount command override the attributes in the
default attribute data set.

In this example, migrated files under the mount point are not retrieved.
However, you can access files under the mount point which are not migrated.
$ mount mvshostl:"smith,noretrieve" /u/smith/mnt
Conversely, the next command causes the migrated files under the mount point
to be retrieved when accessing the files.
$ mount mvshostl:"smith,retrieve" /u/smith/mnt

3. Specifying retrieve with a file access command

You can issue a file access command with the attribute retrieve or noretrieve
specified. The attributes specification in the file access command overrides the
attributes in the mount command and the server default attributes.

This command causes all files under the mount point /u/smith/mnt to be
retrieved if they are migrated:

$ 1s -1 "/u/smith/mnt,retrieve"

This command, however, does not cause migrated files under the mount point
/u/smith/mnt to be retrieved:

$ 1s -1 "/u/smith/mnt,noretrieve"

Access to migrated system-managed data sets

z/0OS DFSMS allows access to data set attributes for migrated SMS-managed data
sets, without having to recall the data set if the data set was migrated under
DFSMS/MVS V1R3 or later. Supported data set types are SMS-managed PS, VSAM
ESDS, VSAM KSDS, VSAM RRDS, PDS, and PDSE. Migrated PDS/PDSE members
are not supported.

The z/OS NFS server is able to obtain the attributes of a supported SMS-managed
migrated data set without recalling the data set. Attributes such as the time stamp
and file size are saved to DASD. Subsequent file size requests do not cause a recall
of the supported SMS-managed migrated data set, thus improving performance.
However, when the data set is modified outside the server by a non-NFS
application (for example, by the TSO/E editor) before it was migrated, the stored
file size could be incorrect. When the data set is accessed again by the server, a
recall must be done to determine the correct file size.

Chapter 3. Using z/OS conventional MVS data sets 39

When a request is made to remove any of the supported SMS-managed migrated
data sets, the data set will be deleted without recall. For PDS and PDSE migrated
data sets, the data set will be recalled in order to read its member information.

File handle refresh

File handles of mounted objects (directories or file systems) are saved on DASD in
a mount handle data set and are automatically established again when the server
restarts. However, file handles for the files within a mounted object are kept in
virtual storage (memory) and they are lost if the server restarts. This may result in
stale file handles for NFS version 2 and 3, or file handle expired in NFS version 4,
and the clients may be required to request a new file handle by redoing the
lookup on the file.

Mapping between the workstation and MVS file systems

40

In MVS, a file is called a data set, and the two terms are used interchangeably in
this book. The z/OS NFS server presents information to you in the form of a UNIX
(or AIX) file, though the information is actually stored on MVS-owned DASD in
the form of an MVS data set.

The files for a computer system are organized into a file system. The UNIX
environment uses a file system that is a hierarchy of directories. MVS, however,
uses a non-hierarchical file system in which groups of data sets are referred to by
specifying a high-level qualifier.

The MVS high-level qualifier can include the first (leftmost) qualifier of data sets,
or the first and second qualifiers, or the first, second, and third qualifiers, and so
on. For example, SMITH is the high-level qualifier for the files named
SMITH.TEST.DATA and SMITH.PROJ7.SCHED, while SMITH.TEST is the high-level
qualifier of SMITH.TEST.DATA and SMITH.TEST.DOCS.

File extension mapping

File extension mapping allows users to access members of z/OS conventional MVS
PDS or PDSE data sets on the z/OS host that are mapped from client machine files
that contain file extensions. File extension mapping also allows the selection of text
or binary processing for members of z/OS conventional MVS data sets and z/OS
UNIX files.

Each PDS or PDSE data set on the host can only be mapped with one unique file
extension. For example: IBMUSER. TEXT(M1), IBMUSER. TEXT(M2) will map to
ml.txt, m2.txt under directory ibmuser.text on the client machine. This capability
allows client machine tools such as editors and compilers, to process host files
remotely without modification. There are site and processing attributes and an
operator command that are associated with the file extension mapping.

The rules for file extension mapping are contained in a data set called a side file.
The side file consists of two sections: NFS.MAPPING and
NFS.MAPPING.MAPPED.

Section NFS.MAPPING is used to define file extension mapping for z/OS
conventional MVS PDS/PDSE data sets. The client user can specify the fileextmap
attribute to turn the file extension mapping on and the nofileextmap attribute to
turn the file extension mapping off. Section NFS.MAPPING.MAPPED is used to
specify whether text or binary processing is performed for file extensions of z/OS
conventional MVS data sets and z/OS UNIX files. The client user can specify the

z/0OS V2R2 Network File System Guide and Reference

mapped attribute to specify when a mixed set of data types is to be processed. For
z/0S conventional MVS data sets, the maplower and nomaplower attribute

controls the mapping of lower case files names to upper case when accessing files
on z/0S.

You can establish a default side file, with the default rules for file extension
mapping, by specifying the sidefile(dsname) attribute in the attributes data set. A
client user can also specify this attribute on a mount command to override the
default side file name, as shown in the following example:

[C:\] mount z: mvshostl:"userl.pds,sidefile(hlq.nfs.mapping)"

The side file specified at the mount command will be searched first followed by
the default side file. The system administrator can specify the maximum space
available for side files using the site attribute sfmax(n). The mapfile operand of the
modify command can be used to have a side file read again and rebuilt without
stopping and restarting the server or remounting of mount points. A sample
mapping side file is provided as GFSAPMAP in the SYS1.NFSSAMP library. See
“Entering operands of the modify command for the z/OS NFS server” on page|
233)|“Processing attributes syntax” on page 127)and |[“Site attributes syntax” o
page 139 for more information.

Specifying the side file on an NFS version 4 mount command has the following
effects:

* Loads the side file if it is not loaded

* Does not reload the side file if it was already loaded (does not change the
current side file).

Note: With NFS version 4, an unmount command does not unload the side file,
because no UNMOUNT_RPC is sent to the z/OS NFS server.

Mounting of MVS data sets onto a client mount point

To access an MVS file system from the client, you use the mount command to
create a temporary link between specific MVS data sets and a UNIX directory
(preferably empty) or an unused logical drive. The UNIX directory or drive is
called a mount point.

You use an MVS high-level qualifier in the mount command to specify which MVS
data sets to mount onto a mount point. The MVS data sets beginning with the

specified high-level qualifier appear as files under the mount point. See
|' ge 24

You can also perform a mount using a fully qualified partitioned data set name
(PDS or PDSE) or an alias to a user catalog, but not the catalog name itself. Only
cataloged data sets are supported by the z/OS NFS server, and tape data sets are
not supported.

Data set organizations supported include:
* Physical sequential (PS)

* Direct access (DA)

» Partitioned data sets (PDS)

» Partitioned data sets extended (PDSE)
* VSAM KSDS

* VSAM ESDS

Chapter 3. Using z/OS conventional MVS data sets 41

*« VSAM RRDS
* SAM extended format data sets

Both SMS-managed and non-SMS-managed data sets are supported.
* NFS supports multivolume data sets.

* Generation data sets are not supported.

Note:

1. The filesize for the MVS z/0OS conventional data set as a directory has a
dummy size with a value of 8§192.

2. For the NFS Version 3 CREATE procedure, the z/OS server does not harden the
exclusive create verify token to disk.

Mount examples
shows how to mount z/OS MVS data sets from various platforms.

Table 5. Examples of mounting MVS data sets from clients

Clients Command Examples

UNIX/Linux mount -0 vers=n,sec=r,proto=x
mvshostl:"MVSHLQ,procattrl,procattr2,...." /u/smith/mnt
Note: For NFS version 4 mounts to the z/OS NFS Server, it is
recommended to use the "nordirplus" mount option from Linux
NFES Clients.

Linux Redhat EL 5 mount -t nfs4 -o sec=r,proto=x mvshostl:MVSHLQ /u/smith/mnt

(NFS version 4) Note: For NFS version 4 mounts to the z/OS NFS Server, it is
recommended to use the "nordirplus" mount option from Linux
NFS Clients.

Windows nfs link z:"\\mvshostl\MVSHLQ,procattrl,procattr2,.." id pw

Any (UNIX, Linux, mount ... mvshostl:"/mvs/MVSHLQ"...
Windows), with
explicit MVS prefix

In the examples:

Operand
Description

mvshostl
Specifies the name of the z/OS host.

/mvs
Assuming that MVSPREFIX(/mvs) is set in the site attribute file (this is the
default), identifies this as an MVS mount. Note that this does not need to be
/mvs. It only needs to match the MVSPREFIX value (case-insensitive).

MVSHLQ
Specifies the high-level qualifier of the MVS data set.

procattr
Specifies any valid processing attribute, such as text/binary or hfsfbtimeout(n).

/u/smith/mnt
Specifies the local mount point.

z: Specifies the drive letter on the Windows system.

42 2/0S V2R2 Network File System Guide and Reference

id pw
Specifies login id and password for penfsd.

-t nfs4
Specifies NFS protocol version 4 for Linux (optional).

-0 vers=n
Specifies the NFS protocol version to be used (2 or 3 for Linux; 2, 3 or 4 for
others) (optional).

-0 sec=r
Specifies RPCSEC_GSS security flavors, which is available only on the z/OS
NEFS version 4 server. Valid options are sys, krb5, krb5i, and krb5p.

-0 proto=x
Specifies the transport protocol for the NFS client to communicate with the
NEFS server. Valid options are tcp or udp. (Note for IPv6, some platforms use
proto=tcp6 instead of tcp)

Variants of the mount command

The name of the command that performs the mount operation varies for different
client implementations. For example, the Windows implementation uses the nfs
link command while most UNIX and Linux implementations use the mount
command.

Chapter 3. Using z/OS conventional MVS data sets 43

Windows client
command to access
MVS files that begin

MVS File System

A.B()
AB.C I

with high level
qualifier A.X

AB.C.D
[AXY() f
L AXYZ

——— Data sets residing on MVS

‘ Nfs link z: \\mvshost1\ A.X ‘ ‘

mount mvshost1:A /u/smith/mnt }“* - UNIX or Linux client

Directories and files
appear to reside
on PC drive Z:

Z:
Root

‘ command to access MVS
files that begin with
high-level qualifier A

root
[l
bin u dev tmp

smith

doc mnt }»f Empty directory
‘test.script‘ ‘test.tag‘ B Ea B.C.D| | X.Y ||X.Y.Z

Directories and files
in a UNIX file system ————

]

Figure 2. Examples of mounting MVS data sets on Windows, UNIX and Linux clients. The Windows client is mounting
the MVS data sets which begin with the high-level qualifier “A.X”. The UNIX and Linux clients are mounting the MVS

data sets which begin with the more inclusive high-level qualifier “A”. The parentheses indicate a PDSE containing the
members M1 and M2. The PDSEs A.B() and A.X.Y() appear as directories, and their members appear as files within

those directories.

Use of a PDS or PDSE as a directory

If the data sets specified include partitioned data sets, a second level of hierarchy
is shown. This allows you to define one level of directories under the mount point.
Thus, you can issue mkdir to create a directory (stored as a PDS or PDSE) and
then create files (stored as members of a PDS or PDSE) within that directory.

This use of a PDSE is shown in which illustrates the mapping of file
names between client file systems and the MVS file system resulting from a mount
command.

Use of multiple mount points

You can arrange groups of data sets into several UNIX mount directories (or PC
mount drives) by using MVS naming conventions to mount specific data sets at
each mount point. For example, you could mount userl.projectl to get all data sets
beginning with userl.projectl mounted at one point in the local file system, and
you could mount userl.project2 at another point. This would create the effect of

44 z/0S V2R2 Network File System Guide and Reference

two distinct directories (or drives), one containing the userl.projectl.* data sets,
and the other containing the userl.project2.* data sets.

Data set serialization and sharing

The z/OS NFS server handles data set serialization and sharing differently
depending on the type of data set:

Physical sequential
The server insures the read/write integrity of a physical sequential data set
by SVC 99 dynamic allocation with exclusive option whenever a physical
sequential data set is opened for output; otherwise it is allocated with
share option.

VSAM data set
The server dynamically allocates a VSAM data set with share option and
allows the VSAM access method to manage data sharing using the
SHAREOPTIONS specified during data set definition.

PDSE data set
The server dynamically allocates a PDSE data set with share options and
allows the PDSE functions to manage the integrity of the PDSE data set
and its members.

PDS data set
The server dynamically allocates a PDS data set with share option and
surrounds the PDS and its members with exclusive ENQs against the
QONAME=SPFEDIT and RNAME=data set name. This does not protect the
PDS from other z/OS users who are attempting to access the PDS without
performing ENQ against SPFEDIT similar to the z/OS NFS server.

NFS protocol

illustrates that the NFS procedures are not all supported for z/OS
conventional MVS data sets.

Table 6. NFS procedures

Procedure Version 2 Protocol Version 3 Protocol Version 4 Protocol
link no no no

mknod N/A no no

readlink no no no

readdirplus N/A no no

setattr yes yes yes

statfs yes N/A N/A

symlink no no no

Note: Setattr only supports filesize=0 truncation and UNIX permission is set to 777.

NFS file system attributes

The z/0OS NFS server generates MVS-specific values for certain UNIX file system
attributes. [Table 84 on page 487 [Table 85 on page 487} and [Table 86 on page 487|
illustrate the MVS values that the z/OS NFS server generates.

Chapter 3. Using z/OS conventional MVS data sets 45

Delegating management of a file's resources to an NFS client

46

The NFS version 4 protocol enables an NFS Server to temporarily delegate
management of a file's resources to an NFS Client. The key purpose of the
delegation is to provide improved performance by eliminating communications
with the NFS Server.

When a file’s management is delegated to an NFS Client, all file access requests
can be managed locally by the NFS Client while the file is delegated.

Use the following NFS Server Site Attributes to control the activation of the
delegation function:

DELEGATION/NODELEGATION
specifies whether or not the NFS server allows NFS Version 4 protocol file
management delegation to NFS clients. The default setting is
NODELEGATION.

A new Modify operator command, VADELG=ON/OFF can be used to dynamically
turn on or off NFS Version 4 protocol file management delegation to NFS clients.

* When Modify operator command V4DELG=ON is specified, the server checks
each client for a valid callback path. This will take some time. The server can
only grant the delegation if a valid callback path exists between the server and
the client.

* When Modify operator command V4DELG=OFF is specified, any existing
delegations continue until they are recalled by the NFS server due to a
conflicting request, or returned by the NFS client. However, no new delegations
are started.

File delegation is at the NFS Server’s discretion. When an NFS Client sends a file
open request, the server determines whether to delegate the file or not. The NFS
Client cannot assume that the file will be delegated.

When the client has not contacted the server for a lease time interval, the server
can remove all delegations to the client.

If a local user or another client requests share reservations or access to the
delegated file, the server will recall the delegated file.

The NFS Server may recall the delegation at any time. The NFS Client must then
send any modified data buffers and attributes back to the server. It should also
send any locally established file locks to the server so that those locks can be
established on the NFS Server to maintain the Client’s lock status over those files.

When the delegation is granted to the client, the result is as follows:
* Request for open Read share - Granted: Read delegation (READ Delegation)

* Request for open Write share - Granted: Read and Write delegation (Write
Delegation)

When the file is closed, the delegation returns back to the server.

When another application on the z/OS system requires access to the delegated file,
the system must notify the NFS Server that the delegation is being recalled. The
server must then recall the file from the delegated NFS Client(s). Any modified
data buffers and file attributes must be updated, and any necessary file locks must

z/0OS V2R2 Network File System Guide and Reference

be established before the recall can be completed. .The NFS server initiates a
delegation recall during the following circumstances:

If the NFS server receives an NFS client access request for a file and this request
is not compatible with existing client delegations for the file, then the existing
delegations are recalled and access is granted to the interested clients in a
non-delegated mode, on a normal file open priority order.

If an NFS Client does not respond to a recall request within a reasonable amount
of time, the delegation is treated as having been successfully recalled from the
standpoint of any other delegation requests. At that point, any subsequent file
access operation requests from this client will fail.

When an NFS Client’s lease expires, the z/OS NFS Server recalls any
outstanding delegations as part of the lease expiration process.

Note:

1.

2.
3.

Currently delegation is only supported for MVS data sets. zOS Unix file
delegation is not provided.

Only the AUTH_UNIX RPC flavor is supported for delegation.

NFS V4 delegation reclaim after an NFS Client reboots (that is, Open claim
type, CLAIM_DELEGATE_PREV) is not supported due to potential issues if the

client reboots in close succession.

Chapter 3. Using z/OS conventional MVS data sets 47

48 2/0S V2R2 Network File System Guide and Reference

Chapter 4. Using z/OS UNIX System Services files

This topic explains what you need to know to access z/OS UNIX files from a client
workstation.

* The z/OS UNIX file system

* POSIX compatibility

* Attributes specific to z/OS UNIX

* Protecting your z/OS UNIX files

* Accessing z/OS UNIX files from the client

* Linking an MVS data set to a hierarchical file system

* Selecting z/OS UNIX file systems versus MVS file systems
* UNIX look and feel

* Displaying and modifying remote file system access control lists

For detailed information about z/OS UNIX, see [z/0S V2R2.0 UNIX System Services|

z/OS UNIX file system

z/0S UNIX provides a hierarchical file system (HFS) for z/OS. z/OS UNIX also
provides the z/OS File System (zFS). An HFS or zFS file within z/OS UNIX is
called a z/OS UNIX file. HFS and zFS files are organized in a hierarchy of files
and directories in a tree structure. A directory can contain files or other
sub-directories. The highest level directory is called the root directory.
shows an example of mounting an HFS or zFS directory from a UNIX
client.

© Copyright IBM Corp. 1991, 2015 49

UNIX Client z/0S UNIX
HFS or zFS

UNIX client command to
access z/OS UNIX /

files in directory /H

‘ mount oemhost1:/hfs/H /C ‘

g S

/

Figure 3. Example of mounting an HFS or zFS file from a UNIX client

A z/0S UNIX file system must be mounted by an MVS system operator using a
TSO MOUNT command before that z/OS UNIX file system can be mounted by an
NFS client through the z/OS NFS server. If a z/OS UNIX file system is mounted
after the NFS client mount is already established, this file system's directory
structure and contents will not be visible to the remote NFS Client until the NFS
mount is unmounted and remounted or the z/OS NFS Server is restarted.

z/0S UNIKX files are byte-oriented rather than record-oriented (unlike z/OS
conventional MVS data sets). This data can be shared with TSO/E z/0OS UNIX
users in addition to NFS clients. All data written to a z/0OS UNIX file can be read
by all programs as soon as it is written. You can also copy data between z/0OS
UNIX files and MVS data sets using z/OS UNIX utilities like ISHELL.

POSIX compatibility

The NFS supports file access to the z/OS UNIX file system. z/OS UNIX supports a
set of standards called the portable operating system interface (POSIX). See
[V2R2.0 UNIX System Services User’s Guidd for more information about POSIX
compliance. With z/OS UNIX, the NFS performs the following functions.

* Supports hierarchical directories

* Allows file names up to 255 characters in length
* Allows path names up to 1023 characters in length

* Supports mixed-case names and special characters, except nulls, slashes, and
commas in file and path names

* Supports UNIX-style file access permissions

* Supports group ID and user ID at the file level

* Supports the full NFS protocol (including external links)
* Enables data sharing between clients and the z/OS UNIX

50 z/0S V2R2 Network File System Guide and Reference

* Enables you to link z/OS conventional MVS data sets to a POSIX path name

This support incorporates the basic strengths of the z/OS system for both existing
MVS data and applications and for new POSIX conforming data and applications.

NFS protocol

z/0S UNIX is compliant with all of the z/OS Network File Systems version 2,
version 3 and version 4 protocols.

Attributes specific to z/OS UNIX System Services
The following attributes are specific to the z/OS UNIX:

Attribute Description

alias Optional site attribute to enable alias processing.

sync Processing attribute for version 2 protocol only

hfsprefix Site attribute

extlink Attribute, see [“Linking an MVS data set to a z/OS UNIX file system” on|

|Eage 55|

Note: These attributes are also explained in |[Chapter 9, “Initialization attributes for|
[the z/OS NFS server,” on page 121

Synchronous write to a z/OS UNIX file for NFS version 2
protocol

Use the sync and async processing attributes to specify whether data received by a
write request for a z/OS UNIX file object is committed to nonvolatile storage
before the write response is returned to you.

If sync is specified for a z/OS UNIX file object, the data is written to z/OS UNIX
and immediately committed to non-volatile storage.

For greater throughput, you can alternatively specify async. Your data is then
committed to the disk some time after the write request is received from the NFS
client. Your data is written to disk when the write timeout occurs, or if z/OS UNIX
reclaims buffer cache storage.

The sync and async processing attributes only apply to z/OS UNIX data access.
They are ignored for MVS data set access. A TSO/E z/0OS UNIX user doesn't have
to wait for the data to be committed to nonvolatile storage before accessing. z/OS
UNIX maintains a central buffer cache and a TSO/E z/OS UNIX user can access
the data as if it were in the file once it has been written by the z/OS NFS server.

Synchronous write to a z/OS UNIX file for NFS version 3 or 4
protocol

For the NFS version 3 WRITE procedure or NFS version 4 WRITE operation there
is a processing argument stable and output parameter commit which specifies
whether data received by a write request for a z/OS UNIX file object is committed
to nonvolatile storage before the write response is returned to you.

Chapter 4. Using z/0S UNIX System Services files 51

If the stable processing argument is used during the write procedure, there are
three modes when the write procedure writes to a file:

file_sync
The z/OS NFS server must commit all data written and all file system data
to stable storage before returning commit results.

data_sync
The z/OS NFS server must commit all data written and sufficient metadata
to enable retrieval of data, before it returns a reply to the client.

unstable
The z/OS NFS server may not commit any part of the data and metadata
to stable storage, before returning a reply to the client. The data will be
committed when a timeout occurs.

For the commit procedure, the z/OS server will support committing the entire data
and metadata to stable storage.

Authorization checking when writing to a z/0S UNIX file

The z/OS Network File System server allows the owner of an z/OS UNIX file to
write to the file regardless of the UNIX permission bits setting on the file.

HFSPREFIX site attribute

The HFS Prefix is not required, depending on the implicit prefix selection
algorithm specified in the IMPPREFIX site attribute.

If the system administrator has not specified an implicit prefix selection, then to
access z/0OS UNIX files, you must know the HFS prefix defined by your system
administrator (the default is /hfs). You can use the showattr command to display
the HFS prefix defined for your location. You use this prefix in your mount
command before the path name of the z/OS UNIX directories that you are
mounting. The HFS prefix is used by the NFS server to distinguish z/OS UNIX
directories from z/OS conventional MVS data sets, but the HFS prefix isn't part of
the path name that you see. After you have entered the mount command, you
access HFS files using the local mount point.

See[“z/0S NFS File System Type Selection” on page 9| for more information on
selecting NFS file system types.

Protecting your z/0S UNIX System Services files

52

As an z/0OS UNIX user, you can control the read, write, and execute access to your
files by other users in and outside of your group by setting the permission bits
associated with the files.

To access z/OS UNIX files from the NFS, you must be defined as an z/OS UNIX
user. The system programmer defines you as a z/OS UNIX user by assigning a
z/0S UNIX user ID (UID) and a z/OS UNIX group ID (GID) to you. The UID and
GID are numeric values associated with a TSO/E user ID. The values are set in the
RACEF user profile and group profile when you are authorized to use z/OS UNIX.
The system uses the UID and GID to identify the files that you can access. Your
specific UID value identifies you as a user of z/OS UNIX services. A GID value is
a unique number assigned to a group of related users. These numbers appear in
the RACF user profile. See [z/0S UNIX System Services Planning| for more
information.

z/0OS V2R2 Network File System Guide and Reference

Accessing z/OS UNIX files from a client

Most of the commands that are used to access z/OS UNIX files are identical to the
commands that are used to access z/OS conventional MVS data sets.

mvslogin
showattr
mount
umount

mvslogout

The only command that is changed for z/OS UNIX is the mount command.

Note: The syntax of these commands may vary between platforms; see the
appropriate topic for examples specific to the platform you are using to access

z/0S UNIX files.

If you are using AIX (or any other UNIX-based operating system) see |Chapter 6]

[“Commands and examples for AIX and UNIX clients,” on page 65,

Mount examples

shows how to mount z/OS UNIX files from various platforms.

Table 7. Examples of the mount command for clients

Clients

Command Examples

AIX, UNIX/Linux,
Solaris

mount -o vers=n,sec=r,proto=x mvshostl:"/hfs/smith" /u/smith/mnt
Note: For NFS version 4 mounts to the z/OS NFS Server, it is
recommended to use the "nordirplus” mount option from Linux NFS
Clients.

Linux Redhat EL 5
(NFS version 4
only)

mount -t nfs4 -o sec=r,proto=x mvshostl:"/hfs/smith" /u/smith/mnt
Note: For NFS version 4 mounts to the z/OS NFS Server, it is
recommended to use the "nordirplus” mount option from Linux NFS
Clients.

Windows

nfs link z: "\\mvshostl\hfs/smith' /n id pw
nfs link z: "\\mvshostl\hfs/smith procattrl,procattr2,..." /n id pw

Any (UNIX, Linux,
Windows), with
implicit prefix

mount mvshostl:/smith

In the examples:

Operand
Description

mvshostl

Specifies the name of the MVS host.

/hfs

Specifies the HFS prefix. Note that the HFS Prefix is not required, depending
on the implicit prefix selection algorithm specified in the IMPPREFIX site

attribute.

/smith

Specifies the HFS directory to be mounted.

Chapter 4. Using z/OS UNIX System Services files 53

Ju/smith/mnt
Specifies the local mount point.

-t nfs4
Specifies NFS protocol version 4 for Linux (optional)

-0 vers=n
Specifies the NFS protocol version to be used (2 or 3 for Linux; 2, 3, or 4 for
others) (optional)

-0 sec=r
Specifies RPCSEC_GSS security flavors, which are available only on the z/OS
NFS version 4 server. Valid options are sys, krb5, krb5i, and krb5p.

-0 proto=x
Specifies the transport protocol for the NFS client to communicate with the
NEFS server. Valid options are tcp or udp. (Note for IPv6, some platforms use
proto=tcp6 instead of tcp)

/n Specifies the NFS protocol version for Windows (2, 3, or 4) (optional)

id pw
Specifies login id and password for penfsd.

Note:

1. The /hfs prefix value is used by the z/OS NFS server to determine if a file is a
z/0S UNIX file, and does not appear in the path name of an HFS file once it is
mounted.

2. The HFS prefix is not required, depending on the implicit prefix selection
algorithm specified in the IMPPREFIX site attribute.

z/0OS UNIX data transfer and conversion

54

With the NFS version 4 protocol, text data and metadata are transferred between
the server and client in the UTF-8 data format (ASCII text is not transferred
directly). z/OS NFS conversion of UTF-8 text data and metadata requires setting
up a conversion environment using the z/OS Unicode Services by creating a
Unicode conversion image that defines conversion tables with UTF-8 [CCSID 1208].

Data transfer under the NFS version 4 protocol

With the NFS version 4 protocol, text data and metadata are transferred between
the server and client in the UTF-8 data format. With NFS version 4, ASCII text is
not transferred directly.

Text or binary processing - NFS version 2 and 3 protocols

z/0S UNIX is a byte-oriented, hierarchical, EBCDIC file system. For the NFS
version 2 and version 3 protocols, the z/OS NFS server provides ASCII to EBCDIC
text translation. For these versions of NFS, if you are just using the mainframe as a
repository for your workstation (ASCII) data, you should use the binary mode to
speed processing. If you use text mode, data from your workstation is converted
into EBCDIC when it is stored on the mainframe. Conversely, when the z/OS NFS
server returns the data to your client system, it converts the data back into ASCIL
The conversion can slow processing, but might be necessary if you are sharing
data with other MVS users. All data is converted according to the active translation
table. Therefore, if the data set contains a mixture of characters and binary data,
binary data is converted as well. In text mode, then, be careful not to mix your text
data (characters) with binary data.

z/0OS V2R2 Network File System Guide and Reference

In text mode, you can either use the OEMVS311 translation table or the
replacement customized translation table to convert data between ASCII and
EBCDIC. If you are using z/OS UNIX and text mode processing, specify the
OEMVS311 translation table with the xlat processing attribute. The OEMVS311
table translates ASCII (ISO 8859-1) to and from EBCDIC (1047 - z/OS UNIX
System Services). TCP/IP for MVS version 3.1 provides the OEMVS311 table. This
table translates the UNIX line terminator (If) to the z/OS UNIX line terminator
(nl). See |z/0S V2R2.0 Communications Server: IP Configuration Referencefor more
information about creating and customizing your own translation tables.

This is an example of specifying the OEMVS311 translation table during a mount:

$ mount lstc3mvs:"/hfs/usr/man/C,text,xlat(oemvs311)" /mnt
$ export MANPATH=/mnt
$ man more

In this example:

Operand
Description

Istc3mvs
Specifies the name of the z/OS host.

/hfs
Specifies the HFS prefix.

/urs/man/C
Specifies the HFS directory to be mounted.

text
Specifies that data be converted between ASCII and EBCDIC

xlat (oemvs311)
Specifies that the translation table named OEMVS311 is used to convert data
between ASCII and EBCDIC.

/mnt
Specifies the local mount point.

man more
Obtains a Man Page description of the more command

Linking an MVS data set to a z/0S UNIX file system

This section explains how to access an MVS data set through a z/OS UNIX path
name by using the external link command. It also explains how to display the
contents of an external link and how to delete an external link.

Creating an external link

You can create an external link to an MVS data set, and then transparently access
the MVS data set by referencing the external link. The external link simulates a
UNIX-like hierarchical naming convention for z/OS conventional MVS data sets.
This is done using the In command, for example:

mount mvshostl:USERL /mnt

mount mvshostl:/hfs/u/nfs /samples
Tn -s USERL.MVSFILE /samples/linkfile,"extlink"

In this example a z/OS UNIX file object, /linkfile, of the file type "extlink" is created
containing the file name of the MVS data set USER1.MVSFILE to be accessed. The

Chapter 4. Using z/OS UNIX System Services files 55

source file must be mounted to a z/OS UNIX file system. The external link must
reference an MVS data set. All future references to /samples/linkfile access
USER1.MVSFILE transparently.

In this example the file /usr/pub/myfile is copied to the MVS data set USERL.MVSFILE
that is contained in the external link /samples/linkfile:

cp /usr/pub/myfile /samples/linkfile

Your installation should make sure that the appropriate security permissions have
been obtained to access the MVS data set. You will receive "Permission Denied"
message if the mount point /mnt has not been established on USER1.

A mount point must be established before the external link is established.
Otherwise, the error code ACCESS DENIED is returned. For physical sequential
data sets, the high level qualifier of a data set must be established. For example, if
you had a file called smith.test.data you can mount with smith, smith.test, or
smith.test.data as your high level qualifier. For PDS and PDSE data sets, the fully
qualified name must be established as a mount point. An example of a fully
qualified name would be, smith.test.data.

Displaying the contents on an external link

You can display the contents of an external link by appending the "extlink"
sequence to the external link path name. This permits the user to inspect the
contents of the external link with the 1s -1 command.

This example shows how to display the attributes and contents of the external link
/samples/1inkfile:

1s -1 /samples/linkfile,"extlink"
Trwxrwxrwx 1 userl 13 Jun 17 20:43 /samples/linkfile ->USER1.MVSFILE

This example shows how to display the attributes of the MVS target data set
USERI.MVSFILE:

1s -1 /samples/linkfile
-rw-rw-rw- 1 root 2112 Sep 28 13:50 /samples/linkfile

Deleting an external link

The external link file object is deleted with the remove request:

rm /samples/Tinkfile,"extlink"
rm /samples/Tinkfile

Either rm command results in the z/OS UNIX external link file object alone being
removed. The target MVS data set is not affected.

Accessing symbolic links on zZ/OS NFS version 4

56

The issues associated with accessing symbolic links on z/OS NFS version 4 due to
two file system types has been resolved in z/OS V1R11. This has been done with
enhanced prefix support. See [“z/OS NFS File System Type Selection” on page 9 for
more information.

When using an Exports file (Security(EXPORTS) or Security(SAFEXP) mode), both
the initial path containing the symbolic link and the target path must be exported.
Otherwise, the mount will fail. This is necessary because in NFS v4, the initial

mount emulation (lookup) processing proceeds until the symbolic link is found. If
that is not exported, that initial mount processing will fail. Once the symbolic link

z/0OS V2R2 Network File System Guide and Reference

is discovered, the NFS client starts over with the mount emulation (lookup)
processing using the target path name. If that path is not exported, then that
mount processing will fail.

The NFS version 4 protocol (NFSv4) does not include a mount operation. Instead,
mount requests are processed as a series of lookup operations starting from the
root node. If the mount request includes a symbolic link in the path name, the fact
that the node is a symbolic link is returned to the NFS Client. It is the client's
responsibility to read the link to get the defined data path and then restart the
lookup process starting from the root node, but using this defined data path. From
the NFS Server's perspective, this is a brand new request. A side effect of this
protocol defined processing sequence is that when using an Exports file, both the
original path name and this symbolic link defined path name must be exported, as
previously described.

By contrast, NFSv2 and NFSv3 use the Mount protocol for mount requests which
sends the entire path name to the NFS Server in a single request. In this case, after
that path name has been export checked, the path name is passed to z/OS UNIX
System Services which resolves the entire path, including any symbolic link
resolution, bypassing any separate export checking of the defined symbolic link
path.

One exception to NFSv4 mount request processing that was described previously
in this section is for the case when the symbolic link is the last qualifier in the path
and it is followed by any processing attributes. In this case, the z/OS NFS server
cannot follow the NFSv4 defined process because it would cause the processing
attributes to get lost since non-z/OS NFS Clients do not understand the concept of
z/0OS NFS processing attributes and thus would not append them to the new
lookup path. Therefore, if the z/OS NFS Server detects a lookup operation for a
symbolic link which is followed by processing attributes, instead of returning the
fact that this node is a symbolic link to the NFS Client, the z/OS NFS Server
resolves the mount path in a similar manner to that used for NFSv2 and NFSv3
mount requests. The one difference between the NFSv4 and the NFSv2 and NFSv3
behavior is that NFSv4 performs export checking of the defined symbolic link path,
while NFSv2 and NFSv3 do not.

In the event of a SYSPLEX failover where there is a need to get symlink based
mounts to automatically (and transparently to the client user application) switch to
a different real path when switching to a new NFS Server instance, the following
procedure is recommended:

1. Execute on one NFS Client system at a time
a. Stop any running application (for example, SAP).
b. Unmount the file system.
€. Remove the 'mvsmnt' attribute from the mount statement.
d. Remount the file system.

2. Issue the z/OS NFS Server Operator UNMOUNT command to remove the
symlink mounts from the MHDB

3. Stop and restart the z/OS NFS Server.

Chapter 4. Using z/0S UNIX System Services files 57

UNIX look and feel

Using the z/OS NFS with z/OS UNIX managed files provides UNIX client users
with a transparent view of their data. The file attributes are maintained in the
same way as is found on any UNIX system.

* Regular, directory, link, device, and FIFO file types

* User, group, and other read/write/execute access permissions
* UID and GID file ownership

* File size

To access z/OS UNIX files, it is necessary to be defined to RACF as an z/OS UNIX
user. Some installations might prefer to provide users with unrestricted access to
their z/OS UNIX data by specifying security(none) or security(exports) in the site
attributes. With this setting, the client's user ID and group ID credentials are used
for all file access authentication, and there is no requirement for the user to be
defined to RACF or to perform the mvslogin command.

Note: For the security(none) and security(exports) options, the UID of the root
(UID=0 from the workstation) is mapped to UID of NOBODY (UID=65534) by the
z/0OS NFS server. The implication is that the z/OS NFS server will use the mapped
UID of 65534 for all z/OS UNIX file authorization checking. For example, file
creation owner UID is set to 65534 in the z/OS UNIX file attribute.

NFS file system attributes

For z/0S UNIKX files, see [Table 87 on page 488| and [Table 88 on page 488| for the file
system values that are returned for NFS attributes.

Displaying and modifying remote file system access control lists

58

POSIX provides limited file security management granularity. File access security
can only be controlled via the permission bits as specified for the user, group and
other classes. Some UNIX platforms have introduced additional security
granularity by adding access control list (ACL) support to provide security
specification on an individual user and/or group basis. An ACL is simply a list
that specifies which users and groups get access to a file with what type of
permission. The precise characteristics of this ACL support are platform specific.

The NFS Version 4 protocol provides the ability to remotely manage ACLs by
providing the ability to display and modify ACL values with the ACL attribute.
The NFS v4 protocol has provided a very rich ACL definition with granularity
beyond that provided by many platform ACL implementations. Therefore, it is
necessary to map between the NFS ACL definition and the platform definition. The
key is to ensure that in this mapping process, the mapping should err in the
direction of more restricted access, not less. When the NFS server sets an ACL it
must be set at least as secure as specified by the NFS request. When an NFS server
sends an ACL to an NFS client, the client must not perceive the file as more secure
than it really is. For details on the NFS version 4 ACL definition, see the NFS
version 4 protocol.

For POSIX permission bits, and some flavors of ACLs, a single entry specifies
whether permission is being granted or denied for the target user or group to
access the file. By contrast, NFS version 4 ACLs have two types of ACLs: “Allow”
and “Deny”. An “Allow” indicates that the target user or group is being given the

z/0OS V2R2 Network File System Guide and Reference

specified permission to access the file while a “Deny” indicates that the target user
or group is explicitly being denied the specified permission to access the file.

Further, the ordering of a POSIX ACE (access control entry - an entry in the ACL)
differs from that of an NFS Version 4 ACE. POSIX has a defined ordering as
follows: owner, supplemental users, owning group, supplemental groups, and
other. This is a kernel maintained ordering and can not be changed by the user.
NFS version 4 ACEs do not have a rigid order. It is defined by the order of the
entries in the ACL as created by the user. If an ACL conflict arises because of
differences between the two ordering algorithms, then the POSIX rules will apply,
since the ACL access authority is determined by the underlying z/OS UNIX
system, not by the z/OS NFS server.

NEFS can display and modify remote file system access control lists, provided that
the function is supported by the remote NFS server. This support is limited to
2/0S UNIX access control lists, as described in [z/OS UNIX System Services|

under Using Access Control Lists (ACLs). Access control list checking is
controlled by the underlying file systems on the server systems, not by z/OS NFS
server or client.

Remote ACL management restrictions:

Due to the differences in ACL implementations on the various platforms, the
following restrictions must be applied when attempting to remotely manage ACLs
to/from z/OS.

Note: At this time only the z/OS, AIX and Sun platforms are supported.

AIX restrictions

* AIX supports two kinds of ACLs: AIX ACLs and NFS ACLs. Only the NFS ACLs
can be remotely managed from z/OS.

* The AIX Client requires a mount option on the mount command to enable ACLs
on the mount:
mount -o vers=4,acl maxi:/nfs-authsys/userll acltest2 /nfs-authsys/userll acltest

* AIX only supports NFS ACLs on JFS2 extended attributes v2 file systems.

z/OS client restrictions
* Because z/OS Unix does not have a unique Base Mask ACL entry:

— The z/OS NEFS Client uses the Base Group ACL entry permission value for
calculating the Mask ACL entries sent to NFS Servers.

— The z/OS NFS Client fails 'get attribute' requests containing Mask ACL
entries which do not match the Base Group ACL entry. The failure returns an
ENODEYV error.

— Unlike Sun, the z/OS NFS Client set both the Group and Mask ACL entries
when a 'chmod' is issued for a file/directory which has Extended ACLs. If
only the Group or Mask ACL entry were changed, it would no longer be
possible to display or change the ACLs for this object since the Group and
Mask entries would be different.

* Because z/OS Unix does not have unique Default Base ACL entries:

— The z/OS NFS Client uses the Access Base ACL entries for calculating the
Default Base ACL entries sent to NFS Servers (that is, the Access and Default
Base ACL entries will always match).

Chapter 4. Using z/OS UNIX System Services files 59

— The z/OS NFS Client fails get attribute requests containing Default Base ACL
entries that do not match the Access Base ACL entries. The failure returns an
ENODEV error.

* Because non-z/OS platforms do not have separate File and Directory Default

ACLs:

— The z/0OS NFS Client uses the File Default ACL entries for the NFS Default
ACL entries sent to non-z/OS NFS Servers. The entries are used as both File
and Directory Defaults on the non-z/OS platforms.

The z/OS NFS Client checks any Dir Default ACL set requests to verify that
they match the existing NFS Default ACL entries. If the two lists do not
precisely match (same entries with same permissions), the set request fails
with an ENODEYV error. This requires that the File Default ACL entries must
be set before the Directory Default ACL entries.

— Ideally, Directory Default ACL entry set requests should not be issued in this
case.

— The z/OS NFS Client uses the NFS Default ACL entries sent by a non-z/0OS
Server for both File and Directory Default ACL get requests.

* The z/OS NFS Client supports the File and Directory Default ACL entries as
unique entries when communicating with a z/OS NFS Server. There are no
request order or permission value restrictions for this case.

z/OS server restrictions
* Because z/OS Unix does not have a unique Base Mask ACL entry:

— The z/OS NFS Server uses the Base Group ACL entry permission value for
calculating the Mask ACL entries sent to NFS Clients.

— The z/OS NFS Server fails set attribute requests containing Mask ACL entries
that do not match the Base Group ACL entry. The failure returns an
NFS4ERR_ATTRNOTSUPP error.

* Because z/OS Unix does not have unique Default Base ACL entries:

— The z/OS NEFS Server uses the Access Base ACL entries for calculating the
Default Base ACL entries sent to NFS Clients (that is, the Access and Default
Base ACL entries will always match).

— The z/OS NEFS Server fails set attribute requests containing Default Base ACL
entries that do not match the Access Base ACL entries. The failure returns an
NFS4ERR_ATTRNOTSUPP error.

— Since z/OS Unix only has Default Extended ACLs, Default Base ACLs are
returned by the z/OS Server if Default Extended ACLs are also present.

* Because non-z/OS platforms do not have separate File and Directory Default

ACLs:

— The z/0S NFS Server uses the File Default ACL entries for the NFS Default
ACL entries sent to non-z/OS NFS Clients. The entries are used as both File
and Directory Defaults on the non-z/OS platforms.

The z/0OS NFS Server checks all existing z/OS Unix Directory Default ACL
entries to verify that they match the z/OS Unix File Default ACL entries. If
the two lists do not precisely match (same entries with same permissions), the
get request fails with an NFS4ERR_ATTRNOTSUPP error.

— The z/OS NFS Server uses the NFS Default ACL entries sent by a non-z/0OS
Client to set both the File and Directory Default ACL entries.

* The z/OS NFS Server supports the File and Directory Default ACL entries as
unique entries when communicating with a z/OS NFS Client. There are no ACL
entry restrictions in this case.

60 z/0S V2R2 Network File System Guide and Reference

Chapter 5. Z/OS NFS file locking and access control

This topic provides an overview of the z/OS NFS locking and access control
functions.

Locking in NFS versions 2 and 3 (NFS server only)

This topic provides an overview of the z/OS NFS locking and access control
functions provided by the Network Lock Manager (z/OS NFS NLM) and the z/OS
NFS Network Status Monitor (z/OS NFS NSM). It explains how they work
together to provide file locking and access control capability over z/OS NFS. In
addition, this topic also explains the following features:

* Monitored lock

* Non-monitored locks
* Locking files

* Locking records

In NFS versions 2 and 3, the locking of a file on the z/OS NFS server is managed
by Network Lock Manager (NLM) and Network Status Monitor (NSM). NLM and
NSM are integrated into the z/OS NFS server to facilitate the expanded locking
and serialization functions. Separate procedures for starting and stopping NLM
and NSM were replaced in z/OS V1R7 by the server site attribute nlm | nonlm,
which specifies their startup along with the NFS server. This integration also
coordinates the locking function with stale file handle processing; when a file
handle becomes stale, not only will the code clean up the file related data as it
does in prior releases, but it will also release any locks that remain held for that
file.

Using Network Lock Manager (NLM) in NFS V2 and V3

In NFS version 2 and version 3, the z/OS NFS NLM allows a client on the host to
lock range of bytes or an entire file on the z/OS NFS server. The two types of
locks that the client host uses are monitored locks and non-monitored locks.

The z/OS NFS NLM supports only advisory locking. Advisory locking is when the
operating system keeps track of which files have been locked by which process,
but does not prevent a process from writing to a file that is locked by another
process. This means that a process can ignore an advisory lock if the process has
adequate permission.

Monitored locks

Monitored locks provide the client user with reliability. If the server host on which
the monitored locks are established fails, the locks are reinstated when the server
host recovers. The locks that are held by the client host are discarded by the z/OS
NFS NLM on the server host if the client host fails before the locks are released.
Monitored locks will only work correctly if both the server host and the client host
are running NSM.

Non-monitored locks

Non-monitored locks are used on personal computer (PC) operating systems.
Non-monitored locks provide the same functionality as the monitored locks with
one exception. If the server host on which the locks are established, fails and

© Copyright IBM Corp. 1991, 2015 61

62

Using

recovers, the locks will not be re-established. The client host is responsible for
detecting a server host failure and re-establishing the locks. In addition, the client
host informs the z/OS NFS NLM when it has rebooted so that the client host can
discard all of the locks and file shares held for the client.

Specifying a grace period for reclaiming locks

You can specify a time limit, or grace period, for clients to reclaim NFS V4 or NLM
locks and share reservations when the z/OS NFS server restarts after a failure. To
set this time limit, use the leasetime site attribute. For details, see
[syntax” on page 139

During the reclaim grace period after a z/OS NFS server restart, the grace period
may be extended after an open or lock reclaim event. If the leasetime site attribute
is greater than 1200 seconds (20 minutes), the grace period will not be extended at
a reclaim event; if the leasetimesite attribute is less than 20 minutes, the grace
period will be extended to one lease time after the reclaim event, up to but not
exceeding 20 minutes after the z/OS NFS server completed its restart.

Note: In order for z/OS NFS client to reclaim locks from an AIX NFS server, AIX
must be at Technology level 5 service pack 1 (5300-05-01).

Listing locks held for a file
To diagnose possible problems with conflicting locks, z/OS operators can issue a
listlock command that displays all client programs and users which hold a lock on
a file. The output messages include client and user id, the lock ranges held, and
lock status. The listlock command can be used for MVS data sets, PDS or PDSE
members, or z/OS UNIX files. For more information, see [“Listlock operand” on|
-ae 247

You can use the listlock command to find locking information in cases where a
lock is unavailable and the blocker is managed by another NFS server address
space running on the z/OS system. To determine the identity of the blocker in this
case, the listlock command should be issued on the system which owns the lock.

Releasing locks held for a file

To release all locks for a file, z/OS operators can issue a release command that
releases locks for z/OS UNIX files and MVS data sets or members. The command
also forces the NFS server to release the file, and if the file is active, to close and
deallocate it. For more information, see [“Release operand” on page 242

Note: The NLM protocol does not provide any means for NFS server to notify the
NFS client that the locks were released. Thus, the client may proceed under the
false assumption that it still has the locks. Therefore, the release command should
only be used in extreme circumstances.

Network Status Monitor (NSM) in NFS V2 and V3

In NFS version 2 and version 3, the z/OS NFS NSM is a service that provides
applications with information on the status of network host. Each z/OS NFS NSM
keeps track of its own "state" and notifies any interested parties of a change in its
state.

For correct operation of the z/OS NFS NSM, the client and the server hosts are
required to monitor each other. When a lock request is issued by a process running
on the client host, the NLM on the client host requests the NSM on the client host
to monitor the server host. The client NLM then transmits the lock request to the
z/0OS NFS NLM on the server. On recept of the lock request the z/OS NFS NLM

z/0OS V2R2 Network File System Guide and Reference

on the server host will request the z/OS NFS NSM on the server host to monitor
the client host. In this way, each host is monitored by the NSM on the other host.

For compatibility with supported NFS clients, it is important that the TCPIP.DATA
file "HOSTNAME" parameter represent the hostname exactly as it is returned by a
DNS query (that is, it is case sensitive).

Locking in NFS version 4

With the NFS version 4 protocol, the support for file locking is part of the NFS
protocol. The file locking support is structured so that an RPC callback mechanism
is not required. This is a departure from the previous versions of the NFS file
locking protocol, Network Lock Manager (NLM). The state associated with file
locks is maintained at the server under a lease-based model. The server defines a
single lease period for all states held by an NFS client. If the client does not renew
its lease within the defined period, all state associated with the client's lease may
be released by the server. The client may renew its lease with use of the RENEW
operation or implicitly by use of other operations (primarily READ).

With the NFS version 4 protocol, a client user can choose to lock the entire file, or
a byte range within a file. z/OS NFS client file locking requests can be managed
with the llock(Y | N) parameter on the mount command or as an installation
default.

z/0S NFS supports only advisory locking. Advisory locking is when the operating
system keeps track of which files have been locked by which process, but does not
prevent a process from writing to a file that is locked by another process. This
means that a process can ignore an advisory lock if the process has adequate
permission.

Byte-range locking
Byte-range locking is used to serialize activity to a range of bytes within a file.
Byte-range locking is an advisory locking mechanism; that is, it does not prevent
access to any application, but provides a mechanism for applications to
communicate cooperatively through obtaining locks and querying if a lock is held.

Share reservations

Share reservations are a new concept in the NFS version 4 protocol and are
different than byte-range locking. Share reservations provide a method for
controlling access to a file. When an OPEN request is sent for a file, the requester
can indicate the type of access that should be denied to other requesters
attempting to access the same file, which is NONE, READ, WRITE or BOTH.

Share reservations have an advantage over byte-range locking in that they provide
a mandatory locking interface; any application that attempts to OPEN a file that is
already opened and locked by another application is denied access. However, in
these cases, access to files (and application processing) may be slowed if files are
not shared.

Specifying a grace period for reclaiming locks

You can specify a time limit, or grace period, for clients to hold an exclusive lock
on a z/OS NFS server resource. This time limit, or lease time, determines how long
a client can hold a lock against a conflicting lock request. Once the time limit is
reached, if the client has not extended the lease time, the lock may be revoked, and

Chapter 5. z/OS NFS file locking and access control 63

64

the lock will be revoked if NLM receives a conflicting request for the lock. This
lease time also applies to the grace period that NFS clients have to reclaim NFS V4
locks and share reservations when the z/OS NFS server restarts after a failure. It
also dictates the amount of time that a client ID can remain active on the server
without communicating. To set this time limit, use the leasetime site attribute. For
details, see [Site attributes syntax” on page 139

During the reclaim grace period after a z/OS NFS server restart, the grace period
may be extended after an open or lock reclaim event. If the leasetime site attribute
is greater than 1200 seconds (20 minutes), the grace period will not be extended at
a reclaim event; if the leasetimesite attribute is less than 20 minutes, the grace
period will be extended by one lease time after the reclaim event, up to but not
exceeding 20 minutes after the z/OS NFS server completed its restart.

Note: For the z/OS NFS client to reclaim locks from an AIX NFS server, AIX must
be at Technology level 5 service pack 1 (5300-05-01).

Listing locks held for a file

To diagnose possible problems with conflicting locks, z/OS operators can issue a
listlock command that displays all client programs and users which hold a lock on
a file. The output messages include client and user id, the lock ranges held, and
lock status. The listlock command can be used for MVS data sets, PDS or PDSE
members, or z/OS UNIX files. For more information, see [“Listlock operand” on|
_ae 247

You can use the listlock command to find locking information in cases where a
lock is unavailable and the blocker is managed by another NFS server address
space running on the z/OS system. To determine the identity of the blocker in this
case, the listlock command should be issued on the system which owns the lock.

The listlock command also lists file delegations. For more information, see
[‘Delegating management of a file's resources to an NFS client” on page 46

Releasing locks held for a file

To release all locks for a file, z/OS operators can issue a release command that
releases locks for z/OS UNIX files and MVS data sets or members. The command
also forces the NFS server to release the file, and if the file is active, to close and
deallocate it. For more information, see [“Release operand” on page 242.|

z/0OS V2R2 Network File System Guide and Reference

Chapter 6. Commands and examples for AIX and UNIX clients

This topic gives the syntax and examples of commands that AIX users need to
know to access MVS data sets from a client. Some examples are also provided for
UNIX and Sun Solaris environments. This topic shows how to perform the
following tasks.

* Log on to z/OS from your client

* Access MVS data sets from your client
* Display default mount point attributes
* Query mount points

* Unmount MVS data sets from the client
* Log out of z/OS.

The mount and umount commands are operating system specific commands. They
are not shipped with z/OS NFS. See your NFS client documentation for the exact
syntax and usage.

Using commands on AIX

The mvslogin command is used to log in to z/OS from your workstation. The
mvslogin command can be issued multiple times, and the last one overrides the
previous one.

Note: When the z/OS NFS server site attributes hfssec, mvssec, or pubsec specify
any of the Kerberos security flavors (krb5, krb5i, or krb5p):

* An MVS login is no longer required when using RPCSEC_GSS. The RACF
authentication is done automatically based on your Kerberos principal.

The following is the mvslogin command syntax.

»»—mvslogin >
-p |—-g—group—| |—-nor“pcbind—|
-n
-pn
-P— mvs_passwd—
-P— 'passphrase'—

»-

> hostname <
|—-a—accoun t—l I—mvs_userid—|

where

Operand
Description

-p Causes a prompt for your z/OS password. The password is passed to z/OS to
validate the user logging in. Your security procedures determine whether you
should use this parameter.

© Copyright IBM Corp. 1991, 2015 65

66

-n Causes a prompt for a new password.

_pn
Causes a prompt for the user’s current password and then causes two prompts
for the user’s new password.

-P mvs_passwd
No prompt for your z/OS password; just type your z/OS password after the
-P. This enables you to automate your z/OS login.

-P 'passphrase’
No prompt for your z/OS password phrase, a text string of a minimum of 9 to
14 characters (depending on whether or not ICHPWX11 is installed) to a
maximum of 100 characters. This enables you to automate your z/OS login.
See |z/0S Security Server RACF Command Language Referencel for more
information on the z/OS password phrase and its syntax rules.

-9 group
A group name string passed to z/OS for accounting purposes. The maximum

length is 8 characters.

-norpchind
Specifies that mvslogin should not look for the RPCBIND protocol on the NFS
server system. The default is that mvslogin will first look for the RPCBIND
protocol. If that request fails, or times out, it will then look for the
PORTMAPPER. If this keyword is used, mvslogin will immediately use the
PORTMAPPER protocol. Using this keyword, when it is known that the NFS
server system does not support RPCBIND, can improve the performance of
mvslogin, because it does not look for RPCBIND first. This keyword has no
effect if the client system is not enabled for IP version 6 (IPv6).

-a account
An account string passed to z/OS for accounting purposes. The maximum
length is 16 characters.

hostname
The name of the z/OS host (for example, mvshostl).

mvs_userid
A user ID that z/OS recognizes as valid. If you do not specify this parameter,
your workstation user name is used. The z/OS NFS server does not support
the use of an alias user ID or a mixed case user ID with the mvslogin
command.

The mount command is used to make a connection between a mount point on
your local file system and one or more files in the z/OS file system.

The following is the mount command syntax.

»>—mount |_ _| hostname: " /prefix/mvs_qual >
-0 clInt_opt

> |_ _| "—/localpath «
,attribute

where

z/0OS V2R2 Network File System Guide and Reference

Operand
Description

-0 clnt_opt
The client mount command options (such as soft,timeo=20). Refer to the
documentation of your client operating system for a description of the options
for your client environment.

hostname
The name of the z/OS host (for example, mvshost1).

/prefix
An optional explicit prefix for selecting the z/OS UNIX file system type (the
HFSPREFIX() site attribute value), or for selecting the MVS file system type
(the MVSPREFIX() site attribute value). If no prefix is specified, then the
implicit prefix heuristic specified in the IMPPREFIX site attribute is used for
determining the file system type.

mvs_qual
The path name of a z/OS UNIX directory or an MVS high-level qualifier for
accessing z/OS MVS data sets.

attribute
A z/0OS NFS server data set creation or file processing attribute (such as text).
See |Chapter 9, “Initialization attributes for the z/OS NFS server,” on page 121
If you specify any attributes, make sure you enclose mvs_gual and the
attributes in double quotation marks.

/localpath
The mount point on your client system (for example, /u/smith/mnt). This
should be an empty directory.

The showattr command is used to display the default attributes or the attributes
that have been set for a specific mount point. If you specify a mount point,
showattr shows the attributes for the mount point, including the overriding values.
For descriptions of the attributes, see [Chapter 9, “Initialization attributes for the|
[z/OS NFS server,” on page 121/

The following is the showattr command syntax.

»»—showattr hostname
l—-t—| |—-nor‘pcbind—| I—/Zocalpai.‘h—|

where

Operand
Description

-t Used to specify tersed output.

-norpchind
Specifies that showattr should not look for the RPCBIND protocol on the NFS
server system. The default is that showattr will first look for the RPCBIND
protocol. If that request fails, or times out, it will then look for the
PORTMAPPER. If this keyword is used, showattr will immediately use the
PORTMAPPER protocol. Using this keyword, when it is known that the NFS
server system does not support RPCBIND, can improve the performance of

Chapter 6. Commands and examples for AIX and UNIX clients 67

68

showattr, because it does not look for RPCBIND first. This keyword has no
effect if the client system is not enabled for IP version 6 (IPv6).

hostname
The name of the z/OS host (for example, mvshost1).

/localpath
The mount point on your client system (for example, /u/smith/mnt). This
should be an empty directory.

The umount command is used to break the connection between the mount point
on your client and the server. When you issue this client command, the file you
were editing is released (written to DASD). You do not need to unmount after each
session, unmount only when you no longer have a need to access the z/OS file
system. Check the documentation for your client operating system to ensure that
you enter the umount command correctly.

The following is the umount command syntax.

»»—umount—/localpath

\4
A

where

Operand
Description

/localpath
The mount point on your client system (for example, /u/smith/mnt). This
should be an empty directory.

The mvslogout command is used to disconnect from the remote z/OS NFS server
host. The mvslogout command is only required when the mvslogin command was

used to begin the connection.

The following is the mvslogout command syntax.

»»—mvslogout hostname >«
|——nor‘pcbind—|

where

Operand
Description

-norpchind
Specifies that mvslogout should not look for the RPCBIND protocol on the
NFEFS server system. The default is that mvslogout will first look for the
RPCBIND protocol. If that request fails, or times out, it will then look for the
PORTMAPPER. If this keyword is used, mvslogout will immediately use the
PORTMAPPER protocol. Using this keyword, when it is known that the NFS
server system does not support RPCBIND, can improve the performance of

z/0OS V2R2 Network File System Guide and Reference

mvslogout, because it does not look for RPCBIND first. This keyword has no
effect if the client system is not enabled for IP version 6 (IPv6).

hostname
The name of the z/OS host (for example, mvshost1).

Quick reference of AIX and UNIX commands

The following information is an example of a standard z/OS login and logout
procedure for AIX.

mvslogin mvshostl smith

Password required

GFSA9731 Enter MVS password: password
GFSA9551 smith Togged in ok.

mount mvshostl:"/mvs/smith" /u/smith/mnt
mount: mvshostl:"/mvs/smith"

"/mvs/smith" was attached successfully.

umount /u/smith/mnt

Unmounting '/u/smith/mnt' ... successful
mvslogout mvshostl

UID 200 logged out ok.

In this example:

Operand
Description

smith
Specifies a z/OS user ID and high level qualifier for MVS data sets.

mvshostl
Specifies the system name of the z/OS host.

/mvs/smith
Specifies the MVS prefix followed by the name of the high -level qualifier of
the MVS data sets.

/u/smith/mnt
Specifies the name of the mount point.

GFSAnnnt
Messages starting with GFSA apply towards z/OS NFS requests. These
messaies are explained in [Chapter 19, “Network File System messages,” on|
page 337.

You can use the mount command with no parameters specified to list the mount
points on your client system.

Accessing z/OS UNIX file systems and z/OS conventional MVS files

To access z/OS UNIX files or z/OS conventional MVS data sets, enter both the
mvslogin command to log in to the z/OS host system and the mount command to
mount the files or data sets to your local system. The mvslogin command is only
required when accessing data on systems where the z/OS NFS server site security
attribute is set to saf or safexp. Once the files or data sets are mounted to a local
directory, you can read, write, create, delete, and treat the mounted files as part of
your workstation's local file system. When you are finished with your work, use
the umount and mvslogout commands to break the connection. The mvslogout
command is only required when the mvslogin command was used to begin the
connection.

Chapter 6. Commands and examples for AIX and UNIX clients 69

70

z/0S UNIKX file systems and MVS data sets are very different and require different
management techniques. Prior to z/OS V1R11, the NFS server distinguished
between the two by the fact that z/OS UNIX file system paths are prefixed with an
hfs prefix value (/hfs/pathname) and MVS data sets are not, The hfs prefix is not
actually part of the path name. It is only intended as a trigger to tell the z/OS NFS
Server that the specified path is a z/OS UNIX path, not an MVS data set. Based on
the presence, or absence, of a prefix, the NFS Server invokes its appropriate data
management functions.

Starting in V1R11, the z/OS NFS file system type management function has been
expanded by adding an mvs prefix and a customer-configurable path resolution
heuristic. The new mvs prefix provides the capability for the customer to explicitly
specify a prefix for identifying MVS data sets, like the hfs prefix does for z/OS
Unix files. The customer-configurable heuristic allows the customer to specify how
to interpret absolute path names that do not have a prefix specified.

Note: If the underlying z/OS UNIX file system structure should change due to the
mount of a new HFS or zFS file system into the space accessible by an existing
remote NFS Client mount, this change and new directory structure and contents
will not be visible to the remote NFS Client until the NFS mount is unmounted
and remounted or the z/OS NFS Server is restarted.

To access files on z/OS systems where the z/OS NFS server site security attribute
is set to saf, exports, or safexp, you need a z/OS user ID and password, and
authorization to access the files that you need. You can only establish one z/OS
session for each z/OS user ID. If you do not already have a z/OS user ID, a z/OS
password, and access authorization, request them from your z/OS system
administrator.

Note: If you cannot use the mvslogin, mvslogout, or showattr commands, they
might be installed incorrectly or in another directory. Ensure that your system
administrator has made the executable code for these three commands available to
your workstation and that you have been given the correct path name to find the
commands. Also, make sure that your version of these commands matches the
release of the z/OS NFS that you are using. Otherwise, the commands might not
function properly.

Mvslogin command examples

Use the mvslogin command to log in to z/OS from your workstation. The
mvslogin command can be issued multiple times and the last one overrides the
previous ones. The mvslogin command is only required when accessing data on
systems where the z/OS NFS server site security attribute is set to saf or safexp.

shows examples of the mvslogin command where mvshostl is the name of
the z/OS host and smith is the user’s ID on z/OS.

Table 8. Examples of the mvslogin command for clients

Command Examples

mvslogin -p mvshostl smith

mvslogin -P smithspw -g finance -a 5278 mvshostl smith

mvslogin -P "Smith's password phrase" mvshostl smith

mvslogin -n mvshost1 smith

mvslogin -pn -a 5278 mvshost1 smith

z/0OS V2R2 Network File System Guide and Reference

Table 8. Examples of the mvslogin command for clients (continued)

Command Examples

mvslogin mvshostl

mvslogin mvshostl smith

In the example where the user enters mvslogin mvshostl, the current login client
user ID is used as the z/OS user ID.

In the example where the user enters mvslogin mvshostl smith, the system then
prompts for Smith's z/OS password. If Smith logs in successfully, this message
appears:

GFSA955I smith logged in ok.
Otherwise, an appropriate error message appears.

Note: Messages with the prefix of GFSA and GFSC apply to NFS requests. These
messaies are further explained in [Chapter 19, “Network File System messages,” on|
page 337.

In the example where the user enters mvslogin -P "Smith's password phrase”
mvshostl smith, double-quotation marks are required around the password phrase
because of the apostrophe within the phrase (smith's). Otherwise, only
single-quotation marks are required around the password phrase. See
[Server RACF Command Language Referencel for more information on syntax rules for
password phrases.

When an z/0S UNIX UID or GID segment is defined with the user identification,
an additional check is done to compare the z/OS UNIX UID or GID with the client
UID or GID during the login processing. An informational message is returned
when the server and the client UID or GID do not match. This informational
message contains the z/OS UNIX UID and GID for the z/OS user identification.

Note: The authentication is considered successful even if the UID and GID do not
match. The message is issued for the user's information only.

For the PCNFSD authentication request, the server UID and GID is returned to the
client user if the UID and GID are defined. Otherwise, an arbitrary number is
generated and returned to the client user.

“Permission denied” message
If you have successfully logged in and get the “Permission denied” message while
trying to access data, that can be due to one of the following cases:

* An mvslogout command for the same z/OS host has been entered from the
same client platform. See the description of mvslogout in [“Using commands on|
[the z/OS NFS client” on page 81| for details.

* Your z/OS user ID has been automatically logged out because the logout
attribute value has been exceeded. This can happen when you leave the client
idle for too long. Enter the mvslogin command again, and start your processes
again. To find out how many seconds you can stay logged in while your client is
idle, issue the showattr command and look at the logout attribute.

* Another mvslogin to the same z/OS host using the same z/OS ID has been
entered from the same UID and the same client platform. If this is the case, retry
your access.

Chapter 6. Commands and examples for AIX and UNIX clients 71

72

* In multi-homed environments where a system has more than one network
interface, the remote IP address specified in the mount command should match
the remote IP address specified in the mvslogin and mvslogout. Note that a
loopback IP address and the real IP address for the same system are considered
separate IP addresses and therefore require the mount command and
mvslogin/mvslogout to have matching IP addresses.

* The z/OS NFS server has been re-started. Enter the mvslogin command again,
and start your processes again.

For more information, including additional causes of this message, see the
explanation of the "Permission denied" message in [“Messages from the client]
[platform (AIX)” on page 437

Note: Some clients give a somewhat different message such as “Access is Denied”.

Mount command examples using an MVS prefix

Use the mount command to make a connection between a mount point on your
local file system and one or more files in the z/OS file system.

mount mvshostl:"/mvs/smith" /u/smith/mnt

In this example:

Operand
Description

mvshostl
Specifies the name of the host server.

/mvs
The MVS prefix.

/smith
Specifies the name of the high-level qualifier of the MVS data sets.

/u/smith/mnt
Specifies the name of the mount point (preferably an empty directory).

At the same time, you can specify attributes for the mount point, overriding the
default attributes.

Overriding default attributes
To override the default attributes, specify different attributes with the mount
command or in a file access or creation command (such as vi in AIX or UNIX).

There are two kinds of attributes that you can modify:

Data set creation attributes provide information about an MVS data set to the z/OS
NES server, such as:

* The type of data set
¢ How the data set is allocated

Note: Data set creation attributes do not apply to z/OS UNIX files.

Processing attributes provide information to the z/OS NFS server about how to
handle the file. For example:

* How long the files remain open

z/0OS V2R2 Network File System Guide and Reference

* Whether the file contents are sent and received in text form, or in binary form to
avoid ASCII/EBCDIC conversion

Use the showattr command to display the default data set creation and processing
attributes. For descriptions of the attributes, see [Chapter 9, “Initialization attributes|
[for the z/OS NFS server,” on page 121

Files are created and processed using the mount point attributes that were in effect
when the files were last mounted. If your installation's default attributes have been
changed (by way of the exportfs operand of the modify system operator command
or restart of the server) and you want to apply these new default attributes, you
can unmount and remount (using the umount and mount commands).

When you access the file with a data access or creation command, you can
override some of the attributes that were set by a mount command or the server
default settings.

Mount command example: overriding server default attributes
without an MVS prefix

In this example, the mount command is used to modify two processing attributes,
specifying binary (rather than text), and readtimeout(30) (rather than the server
default readtimeout value):

mount mvshostl:"smith,binary,readtimeout(30)" /u/smith/mnt

In this example:

Operand
Description

mvshostl
Specifies the name of the host server.

smith
Specifies the name of the high-level qualifier of the MVS data sets or z/OS
UNIX directory (depending on the IMPPREFIX() site attribute setting).

binary
Specifies the processing mode for file contents sent between z/OS and the
client (binary mode avoids ASCII/EBCDIC conversion).

readtimeout (30)
Specifies the amount of time (30 seconds) allowed since the last read access
before the file is closed.

/u/smith/mnt
Specifies the name of the mount point (preferably an empty directory).

At the same time, you can specify the MVS prefix for the mount point.

Note: AIX 6.1 NFSv4 clients now require that all remote mount points must
include a leading slash.

Getting authorization to access files

If the mount fails, check with your system administrator to ensure that you are
authorized to access the MVS data sets or z/OS UNIX files and that the data sets
or files are listed in the exports data set. The privilege level required to enter
mount and umount commands varies among client operating system
implementations. Many UNIX implementations limit these commands to the root

Chapter 6. Commands and examples for AIX and UNIX clients 73

user or superuser mode. If the MVS system operator issues the freeze=on operand
of the z/OS NFS server modify command, all new tries to mount an MVS or z/0OS
UNIX file system fail until the z/OS system operator issues the freeze=off operand.
If the z/OS system operator issues the freeze=onhfs operand of the z/OS NEFS server
modify command, z/OS conventional MVS data sets can still be mounted, but all
new tries to mount z/OS UNIX file systems fail until the system operator issues
the freeze=offhfs operand.

Saving of mount points

Once the mount command is issued successfully and a mount point is established
between a local directory and the MVS or z/OS UNIX file system, the mount point
information is saved in the mount handle data set by the z/OS NFS server. This
information is used to automatically reestablish active mount points when the
server is started. When accessing z/OS conventional MVS data sets, a mount point
is active if the last activity against this mount point is less than the restimeout
attribute value set by the system administrator.

The mount command does not need to be reissued for the same mount point in
further sessions unless the umount command has been used to disconnect the
mount point or the mount point has been disconnected by the cleanup activity of
the restimeout site attribute. For more information about the restimeout site
ﬁtribute see [Chapter 9, “Initialization attributes for the z/OS NFS server,” on page|
121.

Automatic timed logout - logout attribute

If there is no activity on the client within the period specified in the logout
attribute of the attributes file, or the server stops, the connection between the
server and the client workstation is logged out automatically. You must issue the
mvslogin command again to get access to the z/OS files.

Displaying default and mount point attributes - showattr

74

Use the showattr command to display the default attributes or the attributes that
have been set for a specific mount point. If you specify a mount point, showattr
shows the attributes for the mount point, including the overriding values. For
descriptions of the attributes, see [Chapter 9, “Initialization attributes for the z/OS
[NFS server,” on page 121

If you omit the hostname, you must specify the /Tocalpath.

shows examples of the showattr command for some clients.

Table 9. Examples of the showattr command for clients

Client Environments Command Examples

AIX, UNIX showattr mvshostl /u/smith/mnt
z/0S showattr mvshostl /u/smith/mnt
Solaris showattr mvshostl /u/smith/mnt
Linux showattr mvshostl /u/smith/mnt

Make sure that your version of the showattr command matches the release of the
z/0OS NFS that you are using. Otherwise, the z/OS NFS server attributes do not
display.

z/0OS V2R2 Network File System Guide and Reference

These examples show different ways you can use the showattr and mount

commands.

shows a showattr command with just the host name (mvshostl in this
example) specified. The attributes for the server are displayed.

showattr mvshostl

GFSA988I Remote host does not have AF_INET6 interface.

FMID HDZ222N , last APAR 0A47737, last changed module: GFSA4ULU
Compiled at May 19 2015 11:23:29

z/0S Network File System Server Data Set Creation Attributes:

Trec1(8196)
space(100,10)
dir(27)
recordsize(512,4K)
shareoptions(1,3)
norlse

recfm(vb)
blks
unit()
keys (64,0)
mgmtclas()
dataclas()

blksize(0)
dsorg(ps)
volume()
nonspanned
dsntype(pds)
storclas()

z/0S Network File System Server Processing Attributes:

binary
nofastfilesize
mapleaddot
attrtimeout(120)
sync
srv_ccsid(1047)
convserv(lre)

z/0S Network File System Server Site Attributes:

mintimeout (1)

nfstasks(8,16,8,4,4)

hfsprefix(/hfs)
bufhigh(32M, 80%)
percentsteal (20)
smf (none,off)
lTeadswitch
fn_delimiter(,)
upcase
noremount

nonlm
leasetime(120)
setgid(posix)
nooemhsm

1f

retrieve
executebitoff
readtimeout (90)
nofileextmap
cln_ccsid(819)
nordrverf

nomaxtimeout
restimeout (48,0)
mvsprefix(/mvs)
readaheadmax (16K)
maxrdforszleft(32)
nopcnfsd

sfmax(0)
readdirtimeout (30)
rec878
fileidsize(64)
nodhcp
nodelegation
nosymresolve
noalias

nfsvddomain=(tuc.stglabs.ibm.com)
mvssec(sys,krb5,krb5i,krb5p)

public()

hfssec(sys,krb5,krb5i,krb5p)

id2name(callsaf)

bTankstrip

maplower
setownerroot
writetimeout(30,120)
xlat()

notag

sidefile()

Togout (1800)

impprefix(mvs)
cachewindow(112)
logicalcache(4096G)
security(safexp,safexp,safexp)
nochecklist
hfsfbtimeout (60)
mintasks(4,8,4)
denyrw
nostringprep
D1yDTimeout (10)
mvsTogindelay(0)

pubsec(sys,krb5,krb5i,krb5p)
consolemsgs (10)

Figure 4. Displaying server attributes

If you use the terse (-t) option, the attributes display like this:

Chapter 6. Commands and examples for AIX and UNIX clients

75

showattr -t mvshostl

GFSA988I Remote host does not have AF_INET6 interface.

Trec1(8196) ,recfm(vb),blksize(0),space(100,10),blks,dsorg(ps),dir(27),unit(),
volume(),recordsize(512,4K),keys(64,0),nonspanned,shareoptions(1,3),mgmtclas(),
dsntype(pds),norlse,dataclas(),storclas()
binary,1f,blankstrip,nofastfilesize,retrieve,maplower,mapleaddot,executebitoff,
setownerroot,attrtimeout(120),readtimeout(90) ,writetimeout(30,120),sync,
nofileextmap,xlat(),srv_ccsid(1047),cIn_ccsid(819),notag,convserv(ire),nordrverf,
sidefile()

mintimeout (1) ,nomaxtimeout,logout(1800),nfstasks(8,16,8,4,4),restimeout (48,0),
hfsprefix(/hfs),mvsprefix(/mvs),impprefix(mvs),bufhigh(32M,80%),

readaheadmax (16K) ,cachewindow(112) ,percentsteal (20) ,maxrdforszleft(32),
logicalcache(4096G),smf(none,off),nopcnfsd,security(safexp,safexp,safexp),
leadswitch,sfmax(0),nochecklist,fn_delimiter(,),readdirtimeout(30),
hfsfbtimeout (60),upcase,rec878,mintasks(4,8,4),noremount,fileidsize(64),denyrw,
nonlm,nodhcp,nostringprep,leasetime(120),nodelegation,D1yDTimeout (10),
setgid(posix),nosymresolve,mvslogindelay(0),nooemhsm,noalias,
nfsv4domain=(tuc.stglabs.ibm.com),public(),mvssec(sys,krb5,krb5i,krb5p),
hfssec(sys,krb5,krb5i,krb5p),pubsec(sys,krb5,krb5i,krb5p),id2name(callsaf),
consolemsgs (10)

\

[Figure 5 on page 77| illustrates the showattr command being used to display the
attributes for the z/OS host named mvshostl as well as the mount point,
/u/smith/mnt.

[Figure 6 on page 78| also illustrates the specified options: a second showattr
command, where the client user specifies /u/smith/mnt in addition to mvshostl.
This shows the user's specified settings at that mount point, rather than the
settings in the attributes data set.

76 z/0S V2R2 Network File System Guide and Reference

/; mount mvshostl:"smith,text,space(5,0),trks" /u/smith/mnt
showattr mvshostl
GFSA988I Remote host does not have AF_INET6 interface.

FMID HDZ222N , last APAR 0A47737, last changed module: GFSA4ULU
Compiled at May 19 2015 11:23:29

z/0S Network File System Server Data Set Creation Attributes:

Trec1(8196) recfm(vb) blksize(0)
space(100,10) blks dsorg(ps)
dir(27) unit() volume()
recordsize(512,4K) keys (64,0) nonspanned
shareoptions(1,3) mgmtclas () dsntype(pds)
norlse dataclas() storclas()

z/0S Network File System Server Processing Attributes:

binary 1f blankstrip
nofastfilesize retrieve maplower
mapleaddot executebitoff setownerroot
attrtimeout (120) readtimeout (90) writetimeout (30,120)
sync nofileextmap xTat()
srv_ccsid(1047) cln_ccsid(819) notag
convserv(lre) nordrverf sidefile()
z/0S Network File System Server Site Attributes:
mintimeout (1) nomaxtimeout Togout (1800)
nfstasks(8,16,8,4,4) restimeout (48,0)
hfsprefix(/hfs) mvsprefix(/mvs) impprefix(mvs)
bufhigh(32M, 80%) readaheadmax (16K) cachewindow(112)
percentsteal (20) maxrdforszleft(32) logicalcache(4096G)
smf (none,off) nopcnfsd security(safexp,safexp,safexp)
leadswitch sfmax(0) nochecklist
fn_delimiter(,) readdirtimeout (30) hfsfbtimeout (60)
upcase rec878 mintasks(4,8,4)
noremount fileidsize(64) denyrw
nonim nodhcp nostringprep
leasetime(120) nodelegation D1yDTimeout (10)
setgid(posix) nosymresolve mvslogindelay(0)
nooemhsm noalias
nfsvddomain*(tuc.stglabs.ibm.com)
public() mvssec(sys,krb5,krb5i,krb5p)
hfssec(sys,krb5,krb5i,krb5p) pubsec(sys,krb5,krb5i,krb5p)
id2name(callsaf consolemsgs (10

U () gs(10))

Figure 5. Displaying mount point attributes. The client user changed the space(100,10), blks,
and binary attributes to space(5,0), trks, and text for the mount point /u/smith/mnt, and then
specified that mount point in the second showattr command.

Chapter 6. Commands and examples for AIX and UNIX clients 77

/; showattr mvshostl /u/smith/mnt

server = mvshostl, serverbuf = mvshostl
GFSA988I Remote host does not have AF_INET6 interface.

FMID HDZ222N , last APAR 0A47737, last changed module: GFSA4ULU
Compiled at May 19 2015 11:23:29

z/0S Network File System Server Data Set Creation Attributes:

Trec1(8196) recfm(vb) blksize(0)
space(5,0) trks dsorg(ps)
dir(27) unit() volume()
recordsize(512,4K) keys (64,0) nonspanned
shareoptions(1,3) mgmtclas() dsntype(pds)
norlse dataclas() storclas()

z/0S Network File System Server Processing Attributes:

hfssec(sys,krb5,krb5i,krb5p)

text 1f blankstrip
nofastfilesize retrieve maplower
mapleaddot executebitoff setownerroot
attrtimeout(120) readtimeout (90) writetimeout (30,120)
sync nofileextmap xTat()
srv_ccsid(1047) cln_ccsid(819) notag

convserv(lre) nordrverf sidefile()

NFSv4 mount point; may be unmounted.

z/0S Network File System Server Site Attributes:

mintimeout (1) nomaxtimeout Togout (1800)
nfstasks(8,16,8,4,4) restimeout (48,0)

hfsprefix(/hfs) mvsprefix(/mvs) impprefix(mvs)
bufhigh(32M, 80%) readaheadmax (16K) cachewindow(112)
percentsteal (20) maxrdforszleft(32) logicalcache(4096G)
smf (none,off) nopcnfsd security(safexp,safexp,safexp)
Teadswitch sfmax(0) nochecklist
fn_delimiter(,) readdirtimeout (30) hfsfbtimeout (60)
upcase rec878 mintasks(4,8,4)
noremount fileidsize(64) denyrw

nonim nodhcp nostringprep
leasetime(120) nodelegation D1yDTimeout (10)
setgid(posix) nosymresolve mvslogindelay(0)
nooemhsm noalias

nfsv4domain=*(tuc.stglabs.ibm.com)

pubTic() mvssec(sys,krb5,krb5i,krb5p)

pubsec(sys,krb5,krb5i,krb5p)

id2name(callsaf) consolemsgs (10)

- J

Figure 6. Displaying mount point attributes, part 2. The client specified that mount point in the
showattr command.

Unmounting and logging out of z/0S

78

This section describes the umount and mvslogout commands.

Disconnecting your mount point - umount

Use the umount command to break the connection between the mount point on
your client and the server. When you issue this client command, the file you were
editing is released (written to DASD). You do not need to unmount after each
session, unmount only when you no longer have a need to access the MVS file

z/0S V2R2 Network File System Guide and Reference

system. Check the documentation for your client operating system to ensure that
you enter the umount command correctly.

able 10 shows examples of the umount command for some clients.

Table 10. Examples of the umount command for clients

Client Environments Umount Command Examples

AIX, UNIX umount /u/smith/mnt

Solaris umount /u/smith/mnt

Windows nfs unlink z: (where z: is the NFS mounted
drive)

Linux umount /u/smith/mnt

In this example:

Operand
Description

u/smith/mnt
Specifies the mount point on the local file system.

mvshostl
Specifies the name of the z/OS host system.

For example, suppose that you want to unmount from the server, and the mount
point on your workstation is named /u/smith/mnt. You could enter the umount
command as follows:

umount /u/smith/mnt

“No Such File or Directory” Message - The z/OS system operator can also
unmount your workstation from the server. If this happens before you try to
unmount, you get a “No such file or directory” error message.

Ending your z/OS session - mvslogout

Use the mvslogout command to disconnect from the z/OS host. The mvslogout
command is only required when the mvslogin command was used to begin the
connection.

An mvslogout to an z/OS user ID cancels a prior mvslogin to the same z/OS user
ID from the same local host.

Your account is automatically logged out if it is inactive for the period of time
specified in the logout site attribute.

able 11| shows an example of the mvslogout command for some clients, in which
the name of the z/OS host is mvshost1.

Table 11. Example of the mvslogout command for clients

Client Environments Mvslogout Command Examples
AIX, UNIX mvslogout mvshostl
Solaris mvslogout mvshost1
Linux mvslogout mvshost1

Chapter 6. Commands and examples for AIX and UNIX clients 79

If you log out successfully, a message like this appears:
GFSA9581 uid 215 Togged out ok.

80 z/0S V2R2 Network File System Guide and Reference

Chapter 7. Commands and examples for z/OS NFS clients

This topic gives the syntax and examples of commands that NFS users need to
know to access AIX, UNIX, , and other remote files using the NFS client. This topic
shows how to perform the following tasks.

* Log on to a remote z/OS system from the NFS client if the target server is a
remote NFS server

* Access NFS files from the NFS client

 Display NFS client statistical data

* Query mount points

 Display default mount point attributes

* Mount and unmount remote file systems from the NFS client
* Log out of z/OS, if the target server was a remote NFS server

The command programs are intended to run in an shell environment and are not
implemented as TSO/E commands, with the exception of mount and unmount.

The mount and unmount commands are not part of NFS. See [z/0S UNIX Syster|
[Services Command Reference| for additional details. An example of the syntax and
usage is shown here for your information. You can use the TSO HELP MOUNT
and TSO HELP UNMOUNT commands to see the syntax that is applicable to your
system.

For information about the NFS attributes see |Chapter 8, “Initialization attributes for]
the z/0S NFS client,” on page 109 and [Chapter 9, “Initialization attributes for the|
z/OS NFS server,” on page 121

Using commands on the z/OS NFS client

The following is a summary of the syntax for the commands described in this
topic. See [“Mount command syntax and examples” on page 89 and [“Unmount|
fcommand syntax and examples” on page 98| for information about the mount and
unmount commands.

The mvslogin command is used to log in to z/OS from your workstation. The

mvslogin command can be issued multiple times, and the last one overrides the
previous one. The mvslogin command is required only when accessing data on
systems where the z/OS NFS server site security attribute is set to saf or safexp.

Note: As of z/OS V1R11, mvslogin is no longer required for NFS v4 requests
using RPCSEC_GSS authentication. Instead, for these requests, the z/OS NFS
server will use the user's Kerberos identity associated with the request to establish
the user's RACF identity /authority.

The following is the mvslogin command syntax.

© Copyright IBM Corp. 1991, 2015 81

»»>—mvslogin >
e — |—-g—group—| |—nor‘pcbind—|
-n
_pn
-P—mvs_passwd—
-P—'passphrase '

hos tname
|—-a—accoun t—l I—mvs_userid—l

»
»

v
A

where

Operand
Description

-p Causes a prompt for the user’s z/OS password. The password is passed to
z/0S to validate the user logging in. Your security procedures determine
whether you should use this parameter.

-n Causes a prompt for a new password.

_pn
Causes a prompt for the user’s current password and then causes two prompts
for the user’s new password.

-P mvs_passwd
No prompt for your z/OS password; just type your z/OS password after the
-P. This enables you to automate your MVS login.

-P 'passphrase'
No prompt for your z/OS password phrase, a text string of a minimum of 9 to
14 characters (depending on whether or not ICHPWXI11 is installed) to a
maximum of 100 characters. This enables you to automate your MVS login. See
[z/OS Security Server RACF Command Language Referencel for more information on
the z/OS password phrase and its syntax rules.

-g group
A group name string passed to z/OS for accounting purposes. The maximum
length is 8 characters.

-norpchind
Specifies that mvslogin should not look for the RPCBIND protocol on the NFS
server system. The default is that mvslogin will first look for the RPCBIND
protocol. If that request fails, or times out, it will then look for the
PORTMAPPER. If this keyword is used, mvslogin will immediately use the
PORTMAPPER protocol. Using this keyword, when it is known that the NFS
server system does not support RPCBIND, can improve the performance of
mvslogin, because it does not look for RPCBIND first. This keyword has no
effect if the client system is not enabled for IP version 6 (IPv6).

-a account
An account string passed to z/OS for accounting purposes. The maximum
length is 16 characters.

hostname
The name of the z/OS host (for example, mvshostl). The default is the local
host.

82 2/0S V2R2 Network File System Guide and Reference

mvs_userid
A user ID that z/OS recognizes as valid. If you do not specify this parameter,
your workstation user name is used. The NFS server does not support the use
of an alias user ID or a mixed case user ID with the mvslogin command.

The showattr command is used to display the default attributes or the attributes
that have been set for a specific mount point. If you specify a mount point,
showattr shows the attributes for the mount point, including the overriding values.
For descriptions of the attributes, see [Chapter 9, “Initialization attributes for the]
[z/OS NFS server,” on page 121}

The following is the showattr command syntax.

»»—showattr hostname |
l——t—l l—nor‘pcbi nd—| |—/localpath—|

where

Operand
Description

-t Used to specify tersed output.

-norpchind
Specifies that showattr should not look for the RPCBIND protocol on the NFS
server system. The default is that showattr will first look for the RPCBIND
protocol. If that request fails, or times out, it will then look for the
PORTMAPPER. If this keyword is used, showattr will immediately use the
PORTMAPPER protocol. Using this keyword, when it is known that the NFS
server system does not support RPCBIND, can improve the performance of
showattr, because it does not look for RPCBIND first. This keyword has no
effect if the client system is not enabled for IP version 6 (IPv6).

hostname
The name of the z/OS host (for example, mvshostl). The default is the local
host.

/localpath
The mount point on your client system (for example, /u/smith/mnt). This
should be an empty directory.

The nfsstat command is used to display the NFS client and server statistical
information, to reset the statistical information to zero, to display NFS mount point

information, or to set the debug status.

The following is the nfsstat command syntax.

Chapter 7. Commands and examples for z/OS NFS clients 83

84

»»—nfsstat

\4
A

B

—-m
|—mount poimt—|
—-mi
I—mount poin t—l

S—
\

P
—m module—
Lt task—
—-p———callsaf
—cache—
—reset——

where

Operand

-m

Description

Displays statistics for Version 2 of the z/OS NFS server and z/OS NFS client.
Displays statistics for Version 3 of the z/OS NFS server and z/OS NFS client.
Displays statistics for Version 4 of the z/OS NFS server and z/OS NFS client.

Displays both NFS and RPC statistics about the NFS client. This is the default
option on the nfsstat command.

Displays NFS statistics about the NFS client and NFS servers.

* To display the NFS statistics of only the client, use -cn

+ To display the NFS statistics of only the server(s), use -sn

Displays RPC statistics about the NFS client and NFS servers.
* To display the RPC statistics of only the client, use -cr
* To display the RPC statistics of only the server(s), use -sr

Displays statistics about the NFS servers.

Initializes statistics to zero for the NFS client and NFS servers. Used by root
user only. This option can be combined with options -c, -7, and -r on the
nfsstat command. When combined with these nfsstat options, each particular
set of statistics is set to zero after the statistics are printed.

* To only reset the client side statistics, use -cz
» To reset the server(s) side statistics , use -sn

Displays the name of each NFS mounted file system.

Displays the name of each NFS mounted file system and checks the server's IP
address validity.

z/0OS V2R2 Network File System Guide and Reference

-m mount point
Displays information for the NFS mounted file system on the specified mount
point.

-mi mount point
Displays information for the NFS mounted file system on the specified mount
point and checks the server's IP address validity.

-v Returns information about the latest APAR installed on the z/OS NFS client.

-v a
Returns a list of all the modules in the z/OS NFS client with their current level
information. At the end of the list is information about the latest APAR
installed.

-v m module
Returns information about the APAR level of the specified module.

-v t task
Returns information about the APAR level of the specified task.

Stands for performance. -p requires one of three options (callsaf, cache or
reset).

-p callsaf
Client global flag that disables the client Uid/Gid Cache.

-p cache
Client global flag that enables the client Uid/Gid Cache.

-p reset
clears the client Uid/Gid Cache.

Any of the options specified previously in this section in the nfsstat command can
be used in conjunction with each other to display the desired statistics. The
following are some examples of such usage:

* To display the RPC and NFS statistics of the z/OS NEFS client and the z/OS NFS
server(s): nfsstat (that is, with no options, which is equivalent to nfsstat —cs
or —Csrn or —rn or —csr234)

» To display the RPC statistics of the z/OS NFS client and the z/OS NFS server(s):
nfsstat —csr

* To display the NFS version 2 statistics of the z/OS NFS client: nfststat —c2

* To display the NFS version 3 statistics of the z/OS NFS Client and the z/OS
NFS server(s): nfsstat -cs3

* To display the NFS version 4 statistics of the z/OS NFS server(s): nfsstat -s4

Note: The examples listed previously in this section are not a complete list, but a
sampling of the combinational usage of the nfsstat command's options. As stated
previously, any of the nfsstat command's options can be combined with each other
to achieve the desired level of filtering to display the desired statistics.

The showmount command is used to display the remote NFS server mount
information. If you omit the options, the default option displays hostnames of all
remote mounts from the hostname NFS server. If you omit the hostname parameter,

then the local hostname is used.

The following is the showmount command syntax.

Chapter 7. Commands and examples for z/OS NFS clients 85

86

\4
A

-d
-e

»»—showmount hos tname
E-aj l—norpcbi nd—|

If you omit the options, the default option displays hostnames of all remote
mounts from the hostname NFS server.

where

Operand
Description

-a Displays all mounts in the format hostname:directory from the hostname
specified in the showmount command.

-d Displays only directory names of all mounts from the hostname specified in
the showmount command.

-e Displays the list of exported directories from the hostname specified in the
showmount command. Directory entries are shown as they appear in the
exports data set.

Note that exported directory entries containing symbolic links are displayed
with both the symbolic link path and resolved real path for NFSV4 mounts
only (after the mount has been completed). NFSV3 mounted paths will display
only the symbolic link path.

-norpchind
Specifies that showmount should not look for the RPCBIND protocol on the
NFS server system. The default is that showmount will first look for the
RPCBIND protocol. If that request fails, or times out, it will then look for the
PORTMAPPER. If this keyword is used, showmount will immediately use the
PORTMAPPER protocol. Using this keyword, when it is known that the NFS
server system does not support RPCBIND, can improve the performance of
showmount, because it does not look for RPCBIND first. This keyword has no
effect if the client system is not enabled for IP version 6 (IPv6).

hostname
The name of the NFS server host (for example, mvshostl). The default is the
local host.

The crnl2nl command will remove the carriage-return and end-of-file mark (EOF)
from the input file. No other conversions are performed. Either, or both the input

and output file can be a local or remote file.

The following is the crnl2nl command syntax.

»»>—crnl2nl—input—output

\4
A

The data is assumed to be in EBCDIC format.

where

z/0OS V2R2 Network File System Guide and Reference

Operand
Description

input
Absolute path name of the input file to be converted.

output
Absolute path name of the output file.

The nl2crnl converts the line delimiter from MVS format to carriage-return newline
(CRNL) format; the newline (NL) in the input file is converted to the
carriage-return newline pairs (CR, NL). No other conversions are performed. Both
input and/or output file can be local or remote file.

The following is the nl2crnl command syntax.

»»—nl2crnl—input—output >«
where
Operand
Description
input

Absolute path name of the input file to be converted.

output
Absolute path name of the output file.

Note:
1. The size of the write buffer is double the size of the read buffer.
2. The data is assumed to be in EBCDIC format.

The mvslogout command is used to disconnect from the remote z/OS NFS server
host. The mvslogout command is only required when the mvslogin command was

used to begin the connection.

The following is the mvslogout command syntax.

»»—mvsTogout |_ _| hostname »<
norpcbind

where

Operand
Description

-norpchind
Specifies that mvslogout should not look for the RPCBIND protocol on the
NFS server system. The default is that mvslogout will first look for the
RPCBIND protocol. If that request fails, or times out, it will then look for the
PORTMAPPER. If this keyword is used, mvslogout will immediately use the

Chapter 7. Commands and examples for z/OS NFS clients 87

88

PORTMAPPER protocol. Using this keyword, when it is known that the NFS
server system does not support RPCBIND, can improve the performance of
mvslogout, because it does not look for RPCBIND first. This keyword has no
effect if the client system is not enabled for IP version 6 (IPv6).

hostname
The name of the z/OS host (for example, mvshostl). The default is the local
host.

Accessing z/0S

To access remote z/OS files, enter both the mvslogin command to log in to the
NFS server's host system and the mount command to mount the files or data sets
to your local system. The mvslogin command is only required when accessing data
on systems where the NFS server site security attribute is set to saf or safexp. Once
the files or data sets are mounted to a local mount point, you can read, write,
create, delete and treat the mounted files as part of your local UNIX files. When
you are finished with your work, use the unmount and mvslogout commands to
break the connection. The mvslogout command is only required when the
mvslogin command was used to begin the connection.

Note:

1. Issuing the mount and unmount commands, as well as creation of the mount
point, must be performed by someone with superuser authority.

2. If the underlying z/OS UNIX file system structure should change due to the
mount of a new HFS or zFS file system into the space accessible by an existing
remote NFS Client mount, this change and new directory structure and
contents will not be visible to the remote NFS Client until the NFS mount is
unmounted and remounted or the z/OS NFS Server is restarted.

To access files on z/OS systems where the NFES server site security attribute is set
to saf or safexp, you need a z/OS user ID and password, and authorization to
access the files that you need. You can only establish one z/OS session for each
z/0S user ID. If you do not already have an z/OS user 1D, a z/OS password, and
access authorization on the z/0OS system from which you require NFS services,
request them from your z/OS system administrator.

Note: If you cannot use the mvslogin, mvslogout, or showattr commands, they
might be installed incorrectly. Ensure that your system administrator has made the
executable code for these three commands available to your z/OS user ID and that
you have been given the correct access authority to them.

Mvslogin command examples

Use the mvslogin command to log in to the remote z/OS system. The mvslogin
command can be issued multiple times and the last one overrides the previous
one. The mvslogin command is only required when accessing data on systems
where the NFS server site security attribute is set to saf or safexp.

shows examples of the mvslogin command where mvshostl is the name of
the z/OS host and smith is the user’s ID on z/OS.

Table 12. Examples of the mvslogin command for clients

Command Examples

mvslogin -p mvshostl smith

mvslogin -P smithspw -g finance -a 5278 mvshostl smith

z/0OS V2R2 Network File System Guide and Reference

Table 12. Examples of the mvslogin command for clients (continued)

Command Examples

mvslogin -P "Smith's password phrase" mvshostl smith

mvslogin -n mvshost1 smith

mvslogin -pn -a 5278 mvshost1 smith

mvslogin mvshostl

mvslogin mvshostl smith

In the example where the user enters mvslogin mvshostl, the current login client
user ID is used as the z/OS user ID.

In the example where the user enters mvslogin mvshostl smith, the system then
prompts for Smith's z/OS password. If Smith logs in successfully, this message
displays.

GFSA955I smith Togged in ok.

Otherwise, an appropriate error message displays.

Note: Messages that start with GFSA and GFSC apply to NFS requests. See
[Chapter 19, “Network File System messages,” on page 337,

“Permission denied” message
If you have successfully logged in and get the “Permission denied” message while
trying to access data, that can be due to one of these cases:

* An mvslogout command for the same z/OS host has been entered from the
same client platform. See mvslogout for details.

* Your z/OS user ID has been automatically logged out because the logout
attribute value has been exceeded. This can happen when you leave the client
idle for too long. Enter the mvslogin command again, and start your processes
again. To find out how many seconds you can stay logged in while your client is
idle, issue the showattr command and look at the logout attribute.

* Another mvslogin to the same z/OS host using the same z/OS ID has been
entered from the same UID and the same client platform. If this is the case, retry
your access.

Mount command syntax and examples

Use the TSO MOUNT command to make a connection between a mount point on
your local file system and one or more files on a remote AIX, UNIX, , or other file
system. The MOUNT command can only be used by a z/OS superuser.

Note: The same mount function can also be performed using the UNIX automount
facility or /etc/rc shell scripts support. When the automount facility is used to
manage remote NFS mount points, the NFS client user could experience
ESTALE/EIO errors if the automounter unmounts the accessed mount point when
the time limits specified by the automount DURATION and DELAY parameters
have been exceeded. The automount default, DURATION=NOLIMIT, disables the
DURATION timeout period. The DELAY for unmounting file systems should be
longer than the time NFS clients are likely to keep NFS mounts to the files and
directories active. For more information see |z/0S UNIX System Services Command)

Chapter 7. Commands and examples for z/OS NFS clients 89

90

illustrates the syntax of the TSO MOUNT command. For more
information about the mount command, see |z/OS UNIX System Services Command)

MOUNT FILESYSTEM(file_system_ name)
TYPE(NFS)
MOUNTPOINT (Tocal_mountpoint)
MODE (RDWR | READ)
PARM('hostname:"path_name,server_attributes", client_options')
SETUID|NOSETUID
TAG(TEXT,CCSID)
WAIT |NOWAIT

Figure 7. TSO MOUNT command syntax operands

where

FILESYSTEM(file_system name)
Specifies the name of the file system to be added to the file system hierarchy.
This operand is required. The file system name specified must be unique
among previously mounted file systems. It may be an arbitrary name up to 44
characters in length of a filesystem. You can enclose file_system_name in single
quotes, but they are not required.

TYPE(NFS)
Specifies the type of file system that performs the logical mount request. The
NFS parameter must be used.

MOUNTPOINT (local_mountpoint)
Specifies the path name of the mount point directory, the place within the file
hierarchy where the file system is to be mounted. The local_mountpoint
specifies the mount point path name. The name can be a relative path name or
an absolute path name. The relative path name is relative to the current
working directory of the TSO/E session (usually the home directory).
Therefore, you should usually specify an absolute path name. A path name is
case-sensitive, so enter it exactly as it is to appear. Enclose the path name in
single quotes.

Note: The mount point must be a directory. Any files in that directory are
inaccessible while the file system is mounted. Only one file system can be
mounted to a mount point at any time.

MODE (RDWR | READ)
Specifies the type of access for which the file system is to be opened.

RDWR specifies that the file system is to be mounted for read and write access.
RDWR is the default option.

READ specifies that the file system is to be mounted for read-only access.

PARM('hostname: "path_name,server_attributes”, client_attributes')
Specifies the hostname of the remote NFS server, the path name of the UNIX
file or MVS data set to be mounted, the server attributes, and the client
attributes.

See |Chapter 9, “Initialization attributes for the z/OS NFS server,” on page 121
for descriptions of the server attributes, including the mvsmnt processing
attribute to be used with mount commands using the NFS version 4 protocol.
The “client_attributes” used on the PARM parameter are the same as the NFS
client attributes, although some attributes cannot be used on the mount. See

z/0S V2R2 Network File System Guide and Reference

[Table 15 on page 118| for a list of the parameters that can be used to specify
client attributes on the MOUNT command.

path_name and server attributes are delimited with double quotes. path_name
and server attributes are not parsed for validity by the z/OS NFS client.
path_name is defined as the characters between the first double quote and the
first comma before the server attributes. server attributes is defined as the
characters between the first comma after the path_name and the second double
quote.

If the path_name has no colon and if no server attributes are specified then the
double quotes can be omitted. Enclose the entire string in single quotes.
path_name is defined as the characters between the colon after the hostname
and the first comma before the client_attributes. Any syntax errors that occur
after the colon and before the first comma can cause the mount to fail. If the
automount facility is being used, the single quotes should not be specified.

SETUID|NOSETUID
See |z/0S UNIX System Services Command Referencd for details about SETUID
and NOSETUID.

TAG(TEXT,CCSID)
See |z/0S UNIX System Services Command Referenced for details about the TAG
keyword.

Note: When TAG is specified, xlat(Y) must not be specified; otherwise, mount
will fail.

WALT |NOWAIT
See |z/0S UNIX System Services Command Reference for details on WAIT and
NOWAIT.

Data conversion

The NFS client supports data conversion defined by the universal character
encoding standard known as the Unicode Standard on V1R2 (and later) when
reading data from a remote NFS server or writing data to a remote NFS server.
The Unicode Standard offers character conversion as well as basic case conversion.
Within character conversion, characters are converted from one coded character set
identifier (CCSID) to another. CCSID information is obtained from the cln_ccsid and
srv_ccsid parameters.

Only single byte to single byte data conversion is supported. For example, if a
client file has a CCSID of 437 and a server file has a CCSID of 297, data conversion
will occur between USA ASCII format (CCSID 437) and French EBCDIC format
(CCSID 297). Single byte to multiple byte conversion (including double byte
character set (DBCS)) is not supported and will result in NFS terminating with an
error message. NFS version 4 protocol (NFSv4) differs from NFSv2 and NFSv3
protocol in handling single to multiple byte conversion. Therefore, the
technique-search-order specified in the convserv() attribute should consider the
effects of the NFS protocol being used. Sed“Creating the conversion environment]
[for Unicode Services” on page 174| for further details.

The cIn_ccsid, srv_ccsid, xlat , tag/notag, and convserv attributes identify whether
data conversion is performed, and how data conversion is done. The cln_ccsid,
srv_cesid, xlat , tag/notag, and convserv attributes are supported by the z/OS NFS
client installation parameter and TSO MOUNT command. The parameters on a
TSO MOUNT command override the parameters specified as a NFS client
installation parameter.

Chapter 7. Commands and examples for z/OS NFS clients 91

92

The cln_ccsid and srv_ccsid are always used to correctly display file names from a
remote server. In the case of file names from a multi-byte conversion, the file
names can even be viewed correctly by specifying the correct cln_ccsid, srv_ccsid
and xlat(n) attribute. Note that in the case of xlat(n) there is no data conversion of
a file's content - only the file names.

Sometimes, the source buffer (server file) may contain byte strings that do not
represent a character in the source code page. These characters are referred to as
"malformed characters" and cannot be converted to a valid target code point. These
characters will be substituted during conversion processing in Unicode with the
conversion table's "malformed character" substitution character.

BSAM, QSAM, and VSAM ESDS access to remote files

BSAM, QSAM, and VSAM ESDS applications can access files stored on remote
NEFS servers through the NFS client. This will allow existing MVS application
programs access to data on other systems using BSAM, QSAM, and VSAM ESDS
interfaces. The BSAM, QSAM, and VSAM ESDS access methods assume that all
text files are EBCDIC. When using these access methods, the delim parameter
indicates whether the remote files contain text or binary data. Text data consists of
records that are separated by a delimiter. If the delim parameter is not binary, the
EBCDIC text delimiter is used by the access methods when processing the remote

files. The delim parameter is supported on the NFS client installation parameter
and TSO MOUNT command.

Note: The z/OS NFS client can also access VSAM key-sequenced (KSDS) and
relative record (RRDS) data sets.

All the remote file objects under the same mount point have the same delim value.
The delim parameter cannot be set on a file basis under the mount point. The
delim parameter in the TSO MOUNT command overrides the delim parameter
specified in NFS client installation parameter. However, you can override the
delim parameter on the TSO MOUNT command with the filedata parameter on a
JCL DD statement, SVC 99, or TSO ALLOCATE command. The filedata parameter
can be either text or binary.

For BSAM, QSAM, and VSAM ESDS applications accessing files stored on remote
NFS servers, the NFS client provides data conversion when the xlat=Y parameter is
specified. It uses the cIn_ccsid and srv_ccsid settings. When xlat=N, the NFS client
will not perform data conversion. The filedata parameter on a JCL DD statement is
also used to specify if the data consists of text records separated by delimiters or if
the data is binary and does not contain record delimiters. To avoid undesirable
data conversions, care should be taken to insure the specification of the xlat and
delim parameters are not in conflict with the data type specified by the filedata
parameter on a JCL DD statement. The filedata and delim parameters only affect
BSAM, QSAM, and VSAM ESDS data access and have no affect on the NFS client
data conversion. The NFS client data conversion is only controlled by the xlat
parameter. The significance of different filedata and delim combinations are
described in the following information.

Note: In each case, ensure the NFS client xlat=Y, cln_ccsid, and srv_ccsid parameter
settings are correct for the filedata and delim combination.

FILEDATA=TEXT, delim=notBINARY
Specifies that the data is to be accessed as text. The access method appends a
record delimiter on output and expects delimiters on input. The delimiter used
is that specified on the delim parameter.

z/0OS V2R2 Network File System Guide and Reference

FILEDATA=TEXT, delim=BINARY
Specifies that the data is to be accessed as text. The access method appends a
record delimiter on output and expects delimiters on input. The delimiter used
is the default of the EBCDIC new line character (x'15') since the delim
parameter does not specify a valid text delimiter.

FILEDATA=BINARY, delim=notBINARY
Specifies that the data is to be accessed as binary. The access method does not
append record delimiters on output, does not recognize record delimiters on
input, and it treats all characters as data on input.

FILEDATA=BINARY, delim=BINARY
Specifies that the data is to be accessed as binary. The access method does not
append record delimiters on output, does not recognize record delimiters on
input, and it treats all characters as data on input.

FILEDATA=not specified, delim=specified
Means that the data is to be accessed according to the value specified in the
delim parameter.

FILEDATA=not specified, delim=not specified
Means that the data is to be accessed as binary. The access method does not
append record delimiters on output, does not recognize record delimiters on
input, and it treats all characters as data on input.

The NFS client also provides UNIX authentication for security and provides the
UNIX client's user ID (UID), group ID (GID), and a list of users GIDs to the remote
NFS server for authorization checking. When the remote NFS server is the NFS
server, the mvslogin command can be used to provide additional security checking
through RACF authentication. MVS application programs which require access to
data on remote systems may be required to perform an mvslogin.

For information on BSAM, QSAM, and VSAM ESDS applications access to z/OS
UNIX or remote files and their restrictions, refer to [z/0S DFSMS Using Data Sets|

Invoking the Mount command on the z/OS platform
Use the TSO MOUNT command to make a connection between a local mount
point on the NFS client and an NFS server.

The Mount command can be invoked on the z/OS platform from different
locations. Assume the following values are to be used for the mount point:

Value
NFS
mynfs
tcpj701:

nfstest
text, mvsmnt

,soft,timeo(0),xlat(y)

/nfstest

Description Explanation

file system type indicates that this file system is to mounted as an NFS file
system

file system is the name of the file system to be mounted.

server host name is the NFS Server host name

exported path is the name of the directory to be mounted.

server attributes are the z/OS NFS Server mount attributes to be used for this

mount point.
Note: Other NFS servers, such as AIX, Linux, and SUN, do
not have server attributes.

client attributes are the z/OS NFS Client attributes to be used for this mount
point
mountpoint is the directory in the local client file system where the file

system is to be mounted.

The different styles of mount command are:

Chapter 7. Commands and examples for z/OS NFS clients 93

1. From TSO. The mount command can be issued from the TSO Ready prompt or
from the ISPF TSO commands prompt. (This is the version of the command
that is shown in the examples in [“Additional mount command examples.”)

mount type(NFS) filesystem(mynfs) mountpoint('/nfstest')
parm('tcpj701:"nfstest,text,mvsmnt",soft,timeo(100),xlat(y)")

2. From the OMYVS shell. The mount command can also be invoked from within
the OMVS shell or a shell script. This version of the command looks more like
it would be when issued on other Unix platforms:

/usr/sbin/mount -tnfs -fmynfs -w0
-0'tcpj701:"nfstest,text,mvsmnt",soft,timeo(100),xTat(y)"' /nfstest

3. TSO command from OMVS shell. The mount command can also be invoked
as a TSO command from within the OMVS shell or a shell script. In this case,
the command looks like the TSO version of the command:

tso -t "mount type(NFS) filesystem(mynfs) mountpoint('/nfstest')
parm('tcpj701:\"nfstest,text,mvsmnt\",soft,timeo(100),xTat(y)"')"

Note: The inner double quote must be entered with an escape character (\").
If only a double quote is entered , the double quote will be stripped by the
shell TSO command parser, causing the z/OS NFS server mount attributes to
be misinterpreted as z/OS NEFS client attributes, which will lead to
unpredictable results.

Additional mount command examples

In this example, the mount command is used to mount a set of MVS files. The
PARM operand contains the NFS server text processing attribute and requires the
use of double quotes around the string user,text.

mount filesystem(nfs00) type(nfs) mountpoint('/u/nfsdir')
parm('stimvs3:"user,text",soft,timeo(100)")

In this example:

Operand
Description

nfs00
Specifies the name of the file system to be added to the file system hierarchy.

nfs
Specifies the required file system type.

/u/nfsdir
Specifies the name of the mount point (preferably an empty directory).

stlmvs3
Specifies the name of the host NFS server.

user
Specifies the name of the high-level qualifier of the MVS files on the NFS
server.

Note: Based on the implicit prefix heuristic specified with the IMPPREFIX()
site attribute, you may need to specify the MVS path type prefix to identify the
file system being mounted as an MVS data set path. For example:
parm('stimvs3:"/mvs/user,text",soft,timeo(100)")

text
Specifies the processing attribute for the NFS server.

soft
Specifies the PARM operand option for the NFS client.

94 z/0S V2R2 Network File System Guide and Reference

timeo (100)
Specifies the PARM operand option for the NFS client.

In this example, the mount command is used to mount a z/OS UNIX directory.
The PARM operand contains the NFS server binary processing attribute and requires
the use of double quotes around the string /hfs/u/user,binary.

mount filesystem(nfs0l) type(nfs) mountpoint('/u/nfsdirl')
parm('stimvs3:"/hfs/u/user,binary",soft')

In this example:

Operand
Description

nfs0l
Specifies the name of the file system to be added to the file system hierarchy.

nfs
Specifies the required file system type.

/u/nfsdirl
Specifies the name of the mount point (preferably an empty directory).

stlmvs3
Specifies the name of the host NFS server.

/hfs/u/user
Specifies the name of the z/OS UNIX directory on the NFS server. The '/hfs'
prefix is optional based on the implicit prefix selection setting.

binary
Specifies the processing attribute for the NFS server.

soft
Specifies the PARM operand option for the NFS client.

In this example, the mount command is used to mount an AIX home directory.
mount filesystem(nfs02) type(nfs) mountpoint('/u/nfsdir2')
parm('aix6000:/home/user,xlat(y)")

In this example:

Operand
Description

nfs02
Specifies the name of the file system to be added to the file system hierarchy.

nfs
Specifies the required file system type.

/u/nfsdir2
Specifies the name of the mount point (preferably an empty directory).

aix6000
Specifies the name of the host AIX NFS server.

/home/user
Specifies the name of the home directory on the AIX NFS server.

xlat(y)
Specifies the PARM operand option for the NFS client.

Chapter 7. Commands and examples for z/OS NFS clients 95

96

In this example, the mount command is used to mount an AIX home directory
using the NFS version 4 protocol.

mount filesystem(nfs03) type(nfs) mountpoint('/u/nfsdir2")
parm('aix6000:/home/user,xlat(y),vers(4)"')

In this example:

Operand
Description

nfs03
Specifies the name of the file system to be added to the file system hierarchy.

nfs
Specifies the required file system type.

/u/nfsdir2
Specifies the name of the mount point (preferably an empty directory).

aix6000
Specifies the name of the host AIX NFS server.

/home/user
Specifies the name of the home directory on the AIX NFS server.

xlat(y)
Specifies the PARM operand option for the NFS client.

vers(4)
Specifies the version of NFS protocol that is being used.

In this example, the mount command is used to mount a Windows Share using the
NFS version 4 protocol.

mount filesystem(nfs04) type(nfs) mountpoint('/u/nfsdird"')
parm('windowshost:"D:/",xTat(y),vers(4)")

In this example:

Operand
Description

nfs04
Specifies the name of the file system to be added to the file system hierarchy.

nfs
Specifies the required file system type.

/u/nfsdird
Specifies the name of the mount point (preferably an empty directory).

windowshost
Specifies the hostname of the Windows NFS server.
D:/
Specifies the name of the share on the Windows NFS server.

xTat(y)
Specifies the PARM operand option for the NFS client.

vers(4)
Specifies the version of NFS protocol that is being used.

Automount facility mount: In this example, the mount command in the
automount policy file is used to do ASCII to EBCDIC conversion.

z/0OS V2R2 Network File System Guide and Reference

name *

type NFS

filesystem shared.<asis_name>

mode rdwr

duration 15

delay 10

parm mvshost<asis_name>",convserv(LE)",x1at(Y)
setuid no

In this example:

Operand
Description

type NFS
Identifies the automount file system type as NFS.

parm mvshost<asis_name>",convserv(LE)",x1at(Y)
Specifies the parameter information to be supplied to NFS. mvshost specifies
the name of the NFS Server. /<asis_name> is the remote file system.
convserv(LE) is a z/OS NFS server option convserv to conversion technique.
The string should be enclosed in quotes. xlat(Y) is a z/OS NFS client option
xlat to allow the client to perform ascii to ebcdic conversion. The string should
not be enclosed in quotes.

For more information about the z/OS UNIX automount facility, including the other
parameters in the automount policy, such as filesystem, mode, duration, delay, and
setuid, see [z/0S UNIX System Services Planning|and [z/0S UNIX System Services|
[Command Reference

Getting authorization to access files

If the mount fails, check with your system administrator to ensure that you are
authorized to access the AIX or UNIX file system listed in the exports control file.
The NFS client also provides UNIX authentication for security and provides the
UNIX client's UID, GID, and a list of the GIDs from the UNIX client's groups to
the remote NFS server for authorization checking. When the remote NFS server is
the NFS server, the mvslogin command can be used to provide additional security
checking through RACF authentication. The privilege level required to enter
mount and unmount commands is superuser. When requesting service from the
NFS server, if the z/OS system operator issues the freeze=on operand of the modify
command, all new tries to mount a z/OS UNIX file system fail until the z/OS
system operator issues the freeze=off operand. If the UNIX system operator issues
the freeze=onhfs operand of the modify command, z/OS conventional MVS data
sets can still be mounted, but all new tries to mount UNIX files fail until the
system operator issues the freeze=offhifs operand.

Saving of mount points

Once the mount command is issued successfully and a mount point is established
between a remote directory and the file system, the mount point information is not
saved by the NFS client. The NFS client does not maintain mount persistence
across restart. If UNIX or the NFS client is restarted, all prior session's mount point
information is lost and all mount points must be reestablished.

Automatic timed logout - logout attribute

When using Network File System services from the NFS server, if there is no
activity on the client within the period specified in the logout attribute of the
attributes file, or if the server stops, the connection between the server and the
client workstation is logged out automatically. You must issue the mvslogin
command again to get access to the z/OS files.

Chapter 7. Commands and examples for z/OS NFS clients 97

98

Unmount command syntax and examples

This section describes the unmount command.

Disconnecting your mount point - unmount

Use the unmount command to break the connection between the mount point on
your client and the server (that is, to unmount). You must have superuser
authority to issue the unmount command.

Note: The same unmount function can also be performed using the UNIX
automount facility. When the automount facility is used to manage remote NFS
mount points, the NFS client user could experience ESTALE/EIO errors if the
automounter unmounts the accessed mount point when the time limits specified
by the automount duration and delay parameters have been exceeded. For
additional information on the UNIX automount facility, see [z/0S UNIX Systerm]
[Services Planning|and [z/0S UNIX System Services Command Reference,

illustrates the syntax of the TSO UNMOUNT command. For more
information about the UNMOUNT command, see [z/OS UNIX System Services|
[Command Reference,

UNMOUNT FILESYSTEM(file_system_name)
NORMAL | DRAIN | IMMEDIATE | FORCE | RESET

Figure 8. TSO UNMOUNT command syntax operands

where

FILESYSTEM(file_system_name)
Specifies the name of the file system to be removed from the file system
hierarchy. file_system_name specifies the file_system_name exactly as it was
specified when the file system was originally mounted. You can enclose
file_system_name in single quotes, but they are not required.

NORMAL | DRAIN| IMMEDIATE | FORCE | RESET
NORMAL: Specifies that if no user is accessing any of the files in the specified
file system, the unmount request is processed. Otherwise, the system rejects the
unmount request. NORMAL is the default option.

DRAIN: Specifies that the system is to wait until all uses of the file system
have ended normally before the unmount request is processed or until another
UNMOUNT command is issued.

Note: UNMOUNT can be specified with IMMEDIATE to override a previous
unmount DRAIN request for a file system. If this is used in the foreground,
your TSO/E session waits until the unmount request has completed. The
attention request key (usually ATTN or PA1) will not end the command.

IMMEDIATE: Specifies that the system is to unmount the file system
immediately. Any users accessing files in the specified system receive failing
return codes. All data changes to files in the specified file system are saved. If
the data changes to files cannot be saved, the unmount request fails.

Note: UNMOUNT of an NFS mount point (regardless of soft or hard mount
option) with NORMAL, DRAIN, or IMMEDIATE may fail with the return code
of EBUSY if the z/OS NFS client determines that there are ongoing NFS
requests to the NFS server. The UNMOUNT receiving EBUSY can have the file
system unmounted immediately with FORCE, at the risk of data loss.

z/0S V2R2 Network File System Guide and Reference

FORCE: Specifies that the system is to unmount the file system immediately.
Any users accessing files in the specified file system receive failing return
codes. All data changes to files in the specified file are saved, if possible. If the
data changes cannot be saved to the files, the unmount request continues and
data is lost.

Note: You must issue an UNMOUNT IMMEDIATE request before issuing
UNMOUNT FORCE. Otherwise, UNMOUNT FORCE fails.

RESET: A reset request stops a previous unmount DRAIN request.

The following example unmounts the file system NFSC_001 normally:
UNMOUNT FILESYSTEM('NFSC_001"')

The following example forces an unmount of the file system NFSC_001. You must
issue an UNMOUNT IMMEDIATE before you can issue an unmount FORCE
command.

UNMOUNT FILESYSTEM('NFSC_001') IMMEDIATE
UNMOUNT FILESYSTEM('NFSC_001') FORCE

If you receive a “No Such File or Directory” message, the z/OS system operator
can also unmount your workstation from the server. If this happens before you try
to unmount, you get a “No such file or directory” error message.

Displaying client and server statistical information—nfsstat

Use the nfsstat command to display the NFS client and server statistical
information, to reset the statistical information to zero, to display NFS mount point
information, or to set the debug status.

The following nfsstat command displays the NFS and RPC statistics for the NFS
client:

nfsstat -c

The following nfsstat command resets the NFS and RPC statistics for the NFS
server and client to zero. Only the root user may use this option:

nfsstat -z

You may also use this command as follows:
* To only reset the client side statistics, use nfsstat -cz
* To only reset the z/OS NFS server(s) side statistics , use nfsstat -sz

The following nfsstat command displays the RPC statistics of both the NFS Client
and the NFS server(s):

nfsstat -r

You may also use this command as follows:
* To only display the client side RPC statistics, use nfsstat -cr
* To only display the server(s) side RPC statistics , use nfsstat -sr

The following nfsstat command displays the NFS statistics of both the NFS Client
and the NFS server(s):

nfsstat -n

You may also use this command as follows:

Chapter 7. Commands and examples for z/OS NFS clients 99

* To display the NFS statistics of only the client, use nfsstat -cn
* To display the NFS statistics of only the server(s), use nfsstat -sn

To display NFS version-specific information, use the following values with an
nfsstat command option:

2 NFS version 2
3 NEFS version 3
4 NFS version 4

For example, to display the NFS version 3 statistics of the z/OS NFS Client and
the z/OS NFS server(s), enter:

nfsstat -cs3

displays both z/OS NFS Server and Client NFSv3 statistics, assuming that
the LPAR has one z/OS NFS Server (with the StartUpProcedure name of MVSNEFS)
and one z/0S NFS Client.

f$ /usr/1pp/NFS/nfsstat -3 h
GFSC8571 z/0S Network File System Server : (MVSNFS)

Server NFSv3:

calls badcalls

20019 0

null getattr setattr Tookup access

0 0% 0 0% 753 4% 9123 45% 2424 12%
readlink read write create mkdir

208 1% 1058 5% 941 5% 488 2% 118 0%
symlink mknod remove rmdir rename

312 1% 0 0% 1214 6% 119 0% 725 4%
Tink readdir readdirplus fsstat fsinfo

412 2% 419 2% 0 0% 1508 7% 1 0%
pathconf commit

1 0% 195 1%

GFSC8571 z/0S Network File System Client :

Client NFSv3:

calls badcalls

20035 0

null getattr setattr Tookup access

0 0% 0 0% 754 4% 9124 45% 2427 12%
readlink read write create mkdir

208 1% 1058 5% 948 5% 488 2% 118 0%
symlink mknod remove rmdir rename

312 1% 0 0% 1214 6% 119 0% 725 4%
Tink readdir readdirplus fsstat fsinfo

412 2% 419 2% 0 0% 1509 7% 2 0%
pathconf commit

2 0% 196 1%

Unicode Support service is used. D,

Figure 9. Displaying NFS Server and Client NFSv3 statistical information

[Figure 10 on page 101| shows the output from the nfsstat command using the -r
option to display the remote procedure call (RPC) statistics for the NFS client.

100 z/0S V2R2 Network File System Guide and Reference

USER1:/u/userl:> nfsstat -r

Client rpc:

calls badcalls retrans timeout qfull
107 0 0 0 0
lossconn

0

Unicode Support service is used.

Figure 10. Displaying NFS client rpc statistical information

In this example:

Operand
Description

calls
Specifies the total number of RPC calls sent.

badcalls
Specifies the total of RPC calls rejected by a server.

retrans
Specifies the number of times an RPC call had to be retransmitted.

timeout
Specifies the number of times an RPC call timed out.

qfull
specifies the number of times an RPC call had to be delayed due to insufficient
resources.

lossconn
specifies the number of times an RPC call had to be retransmitted on a new
TCPIP connection.

[Figure 11 on page 102 shows the output from the nfsstat command using the -nc
option to display the NFS statistics for the NFS client.

Chapter 7. Commands and examples for z/OS NFS clients 101

(. N

USER1:/u/userl:> nfsstat -nc

Client NFSv2:

calls badcalls

71 0

null getattr setattr root Tookup

0 0% 1 1% 0 0% 0 0% 68 96%
readlink read writecache write create

0 0% 0 0% 0 0% 0 0% 0 0%
remove rename Tink symlink mkdir

0 0% 0 0% 0 0% 0 0% 0 0%
rmdir readdir fsstat

0 0% 1 1% 1 1%

Client NFSv3:

calls badcalls

10 0

null getattr setattr Tookup access

0 0% 0 0% 0 0% 0 0% 0 0%
readlink read write create mkdir

0 0% 0 0% 0 0% 0 0% 0 0%
symlink mknod remove rmdir rename

0 0% 0 0% 0 0% 0 0% 0 0%
Tink readdir readdirplus fsstat fsinfo

0 0% 0 0% 5 50% 3 30%5 1 10%
pathconf commit

1 10%5 0 0%

Client NFSv4:

calls badcalls

18 0

null access close commit create

0 0% 2 5% 0 0% 0 0% 0 0%
delegpurge delegreturn getattr getfh Tink

0 0% 0 0% 9 21% 4 9% 0 0%
Tock Tockt Tocku Tookup Tookupp

0 0% 0 0% 0 0% 4 9% 0 0%
nverify open openattr open_cfm downgrade

2 5% 0 0% 0 0% 0 0% 0 0%
putfh putpubfh putrootfh read readdir

12 28% 0 0% 2 5% 0 0% 4 9%
readlink remove rename renew restorefh

0 0% 0 0% 0 0% 0 0% 0 0%
savefh secinfo setattr setclid clid_cfm

0 0% 0 0% 0 0% 2 5% 2 5%
verify write rlse_lockowner

0 0% 0 0% 0 0%

Unicode Support service is used.

Figure 11. Displaying NFS client NFS statistical information

In this example:

Operand
Description

calls
Specifies the total number of NFS calls sent.

badcalls
Specifies the total of NFS calls rejected by a server.

[Figure 12 on page 103 shows the output from nfsstat command using the -s option
to display ALL of the z/OS NFS Server (RPC, NFSv2, NFSv3, NFSv4) statistical
information.

102 z/0S V2R2 Network File System Guide and Reference

f# /usr/1pp/NFS/nfsstat -s h
GFSC8571 z/0S Network File System Server : (MVSNFS)

Server RPC:

calls badcalls nullrecv badlen xdrcalls
69130 0 0 0 0

dupreqs

0

Server NFSv2:

calls badcalls

26678 0

null getattr setattr root Tookup

0 0% 3519 13% 264 1% 0 0% 9616 36%
readlink read writecache write create

208 1% 4148 15% 0 0% 3647 14% 487 2%
remove rename Tink symlink mkdir

1212 4% 724 3% 412 1% 312 1% 118 0%
rmdir readdir fsstat

119 0% 388 1% 1504 6%

Server NFSv3:

calls badcalls

20019 0

null getattr setattr Tookup access

0 0% 0 0% 753 4% 9123 45% 2424 12%
readlink read write create mkdir

208 1% 1058 5% 941 5% 488 2% 118 0%
symlink mknod remove rmdir rename

312 1% 0 0% 1214 6% 119 0% 725 4%
Tink readdir readdirplus fsstat fsinfo

412 2% 419 2% 0 0% 1508 7% 1 0%
pathconf commit

1 0% 195 1%

Server NFSvé4:

calls badcalls

22433 0

null access close commit create

0 0% 8109 8% 1039 1% 189 0% 430 0%
delegpurge delegreturn getattr getfh Tink

0 0% 0 0% 28423 30% 9559 10% 412 0%
Tock Tockt Tocku Tookup Tookupp

1028 1% 59 0% 1038 1% 7878 8% 145 0%
nverify open openattr open_cfm downgrade

2707 3% 1041 1% 0 0% 6 0% 0 0%
putfh putpubfh putrootfh read readdir

22843 24% 0 0% 1 0% 1138 1% 1686 2%
readlink remove rename renew restorefh

208 0% 1331 1% 724 1% 1 0% 1334 1%
savefh secinfo setattr setclid clid_cfm

2054 2% 0 0% 752 1% 1 0% 1 0%
verify write rlse_lockowner

0 0% 1180 1% 15 0%

cb_null cb_compound cb_getattr cb_recall

0 0% 0 0% 0 0% 0 0%
o %

Figure 12. Displaying all of the z/OS NFS Server (RPC, NFSv2, NFSv3, NFSv4) statistical

information

shows the output from the nfsstat command using the -m option to
display the server and path name of each NFS mounted file system.

nfsstat -m

mvshostl:"/hfs/sj/sjpl" is mounted on /sj/sjpl/hostl filesystem NFS_MNT1
mvshostl:"/hfs/sj/sjp12" is mounted on /sj/sjpl/host2 filesystem NFS_MNT2

Figure 13. Displaying NFS mounted file system information

Chapter 7. Commands and examples for z/OS NFS clients

103

shows the output from the nfsstat command using the -m option to
display the server name, path name, and attributes of mount point /mnt using the
version 3 protocol with secure(upd).

tso -t "mount type (NFS) filesystem(nfsl) mountpoint('/mnt') parm('mvshostl:/hfs/home/hain,secure(udp),vers(3)"')" h
mount type (NFS) filesystem(nfsl) mountpoint('/mnt') parm('mvshostl:/hfs/home/hain,secure(udp),vers(3)"')
nfsstat -m /mnt
server mvshostl
path /hfs/home/hain,secure(udp),vers(3)
hard vers(3) proto (udp) secure (udp)
timeo(7) retrans(3) rpcbind(y) accesschk(y)
deTim(NA) xTat(n) cln_ccsid(1047) srv_ccsid(819)
convserv(LRE) stringprep(n) 1lock(y)
rsize(32768) wsize(32768) readahead(8) delaywrite(16)
acregmin(3) acregmax (60) acdirmin(30) acdirmax(60)
\fatacaching(y) attrcaching(y) retry(10) dynamicsizeadj (y))

Figure 14. Displaying NFS mounted file system information with secure(upd) (Versions 2 and 3 protocol only)

shows the output from the nfsstat command using the -m option to
display the server name, path name, and attributes of mount point /mnt using the
version 4 protocol with a public mountpoint.

/; tso -t "mount type(NFS) filesystem(nfsl) mountpoint('/mnt') parm('sjvm5151:/hfs/u/public,public')" h
mount type(NFS) filesystem(nfsl) mountpoint('/mnt') parm('sjvm5151:/hfs/u/public,public"')
/usr/1pp/NFS/nfsstat -m /mnt
server sjvm51l51
path /hfs/u/public,public
hard public vers(4) proto(tcp)
timeo(7) retrans(3) rpcbind(y) accesschk(y)
delim(NA) xTat(n) cln_ccsid(1047) srv_ccsid(819)
convserv(LRE) stringprep(n) 1lock(n) syncwrite(n)
rsize(32768) wsize(32768) readahead(8) delaywrite(16)
acregmin(3) acregmax (60) acdirmin(30) acdirmax(60)
\fatacaching(y) attrcaching(y) retry(10) dynamicsizeadj (y))

Figure 15. Displaying NFS mounted file system information with public mountpoint (Version 4 protocol only)

Displaying server mount information-showmount

Use the showmount command to display the remote NFS server mount
information. If you omit the options, the default option displays hostnames of all
remote mounts from the hostname NFS server. If you omit the hostname parameter,
then the local hostname is used.

The following showmount command displays all remote mounts in the format
hostname:directory from the local hostname NFS server.

showmount -a

The following showmount command displays only the directory names of all the
remote mounts from the local hostname NFS server.

showmount -d
The following example shows the output from the showmount command using the

-a option to display all mounts in the format hostname:directory from the
hostname mvshost.

104 z/0S V2R2 Network File System Guide and Reference

showmount -a mvshost
mvshost.sanjose.ibm.com:/IBMUSER
usera.sanjose.ibm.com:/USER2

The following example shows the output from the showmount command using the
-d option to display only the directory names of all mounts from the hostname
mvshost.

showmount -d mvshost

/IBMUSER
JUSER2

The following example shows the output from the showmount command with no
option specified To only display the hostnames of all remote mounts from the
hostname mvshost.

showmount mvshost

mvshost.sanjose.ibm.com
usera.sanjose.ibm.com

The following example shows the output from the showmount command using the
-e option to display the exported directories from the hostname aix_serverl.
USER1:/u/userl:>showmount -e aix_serverl

Export Tist for host aix_serverl:

/home/u/guest/test (everyone)

/usr/1pp/info (everyone)

/tmp (everyone)

The following example shows the output from the showmount command using the
-e option to display the exported directories from the hostname mvshost. In this
case, mvshost has the site attribute set to security(none).

showmount -e mvshost
No exported file systems for host MVSHOST

The following examples shows the output from the showmount command using
the -e option to display the exported directories from the hostname mvshost. In this
case, mvshost has the site attribute set to security(safexp).

showmount -e mvshost

Export 1ist for host MVSHOST:
/IBMUSER userl

Displaying default and mount point attributes—showattr

Use the showattr command to display the default attributes or the attributes that
have been set for a specific mount point of the z/OS NFS server. If you specify a
mount point, showattr shows the attributes for the mount point, including the
overriding values. For descriptions of the attributes, see |Chapter 9, “Initialization|
attributes for the z/OS NFS server,” on page 121/ and ["Mount command syntax|
and examples” on page 89|

If you omit the hostname, you must specify the /localpath.

The following is an example of the showattr command.
showattr mvshostl /u/smith/mnt

Make sure that your version of the showattr command matches the release of NFS
that you are using. Otherwise, the NFS server attributes will not display.

These examples show different ways you can use the showattr command.

Chapter 7. Commands and examples for z/OS NFS clients 105

shows a showattr command with just the hostname (mvshost1 in this
example) specified. The attributes for the server are displayed.

showattr mvshostl
GFSA988I Remote host does not have AF_INET6 interface.

FMID HDZ222N , last APAR 0A47737, last changed module: GFSA4ULU

106

Compiled at May 19 2015 11:23:29

z/0S Network File System Server Data Set Creation Attributes:

Trecl(8196) recfm(vb) blksize(0)
space(100,10) blks dsorg(ps)
dir(27) unit() volume()
recordsize(512,4K) keys (64,0) nonspanned
shareoptions(1,3) mgmtclas() dsntype(pds)
norlse dataclas() storclas()

z/0S Network File System Server Processing Attributes:

binary 1f bTankstrip
nofastfilesize retrieve maplower
mapleaddot executebitoff setownerroot
attrtimeout (120) readtimeout (90) writetimeout (30,120)
sync nofileextmap xTat()
srv_ccsid(1047) cln_ccsid(819) notag

convserv(lre) nordrverf sidefile()

z/0S Network File System Server Site Attributes:

mintimeout (1) nomaxtimeout Togout (1800)
nfstasks(8,16,8,4,4) restimeout (48,0)

hfsprefix(/hfs) mvsprefix(/mvs) impprefix(mvs)
bufhigh(32M, 80%) readaheadmax (16K) cachewindow(112)
percentsteal (20) maxrdforszleft(32) logicalcache(4096G)
smf (none,off) nopcnfsd security(safexp,safexp,safexp)
Teadswitch sfmax(0) nochecklist
fn_delimiter(,) readdirtimeout (30) hfsfbtimeout (60)
upcase rec878 mintasks(4,8,4)
noremount fileidsize(64) denyrw

nonlm nodhcp nostringprep
leasetime(120) nodelegation D1yDTimeout (10)
setgid(posix) nosymresolve mvslogindelay(0)
nooemhsm noalias

nfsv4domain=(tuc.stglabs.ibm.com)

pubTic() mvssec(sys,krb5,krb5i,krb5p)

hfssec(sys,krb5,krb5i,krb5p) pubsec(sys,krb5,krb5i,krb5p)
id2name(callsaf) consolemsgs (10)

Figure 16. Displaying attributes

If you use the terse (-t) option, the following attributes display.

z/0S V2R2 Network File System Guide and Reference

showattr -t mvshostl

GFSA988I Remote host does not have AF_INET6 interface.

Trec1(8196) ,recfm(vb),blksize(0),space(100,10),blks,dsorg(ps),dir(27),unit(),
volume(),recordsize(512,4K),keys(64,0),nonspanned,shareoptions(1,3),mgmtclas(),
dsntype(pds),norlse,dataclas(),storclas()
binary,1f,blankstrip,nofastfilesize,retrieve,maplower,mapleaddot,executebitoff,
setownerroot,attrtimeout(120),readtimeout(90),writetimeout(30,120),sync,
nofileextmap,xlat(),srv_ccsid(1047),cIn_ccsid(819),notag,convserv(ire),nordrverf,
sidefile()

mintimeout (1) ,nomaxtimeout,logout(1800),nfstasks(8,16,8,4,4),restimeout (48,0),
hfsprefix(/hfs),mvsprefix(/mvs),impprefix(mvs),bufhigh(32M,80%),

readaheadmax (16K) ,cachewindow(112) ,percentsteal (20) ,maxrdforszleft(32),
logicalcache(4096G) ,smf(none,off),nopcnfsd,security(safexp,safexp,safexp),
leadswitch,sfmax(0) ,nochecklist,fn_delimiter(,),readdirtimeout(30),
hfsfbtimeout (60),upcase,rec878,mintasks(4,8,4),noremount,fileidsize(64),denyrw,
nonlm,nodhcp,nostringprep,leasetime(120),nodelegation,D1yDTimeout (10),
setgid(posix),nosymresolve,mvslogindelay(0),nooemhsm,noalias,
nfsv4domain=(tuc.stglabs.ibm.com),public(),mvssec(sys,krb5,krb5i,krb5p),
hfssec(sys,krb5,krb5i,krb5p),pubsec(sys,krb5,krb5i,krb5p),id2name(callsaf),
consolemsgs (10)

\

Ending your z/OS session - mvslogout

Use the mvslogout command to disconnect from the remote NFS server host. The
mvslogout command is only required when the mvslogin command was used to
begin the connection.

An mvslogout to an z/OS user ID cancels a prior mvslogin to the same z/OS user
ID from the same local host.

Your account is automatically logged out if it is inactive for the period of time
specified in the logout site attribute.

The following example disconnects the client from the remote NFS server machine,
mushost1.

mvslogout mvshostl

Chapter 7. Commands and examples for z/OS NFS clients 107

108 z/0S V2R2 Network File System Guide and Reference

Chapter 8. Initialization attributes for the z/0OS NFS client

This topic contains information about the attributes that are used by the z/OS NFS

client. Note that running the z/OS NFS client with attributes from a z/OS NFS

release later than the current z/OS NFS release may lead to unpredictable results.
able 13| contains directive information about this topic's contents:

Table 13. Attributes - z/0OS NFS client

Section Page
|“Client attribute syntax”| “Client attribute

syntax”|
[“Datacaching attribute” on page 117 |”Datacaching

[attribute” on page 117

“Mount processing parameters and installation parameters” on page] [“Mount processing]

118] arameters and
|installation

[parameters” on pagel

118]

Client attribute syntax
Client attributes are described in

Table 14. Client attributes

Attribute Description

accesschk(Y | N)
Specifies whether the z/OS NFS client or NFS server is to check that the user has
the requested access to the file or directory. If accesschk(Y) is specified, the z/OS
NFS client performs the access check. If accesschk(N) is specified, the NFS server
performs the access check.

The accesschk attribute default value is:

Y For mounts established with system authentication (sys)
N For mounts established with RPCSEC_GSS authentication (krb5, krb5i, or
krb5p)
acdirmax(n)

Specifies the maximum lifetime in seconds of cached directory attributes.

The acdirmax attribute default value is 60.

acdirmin(n)
Specifies the minimum lifetime in seconds of cached directory attributes.

The acdirmin attribute default value is 30.

© Copyright IBM Corp. 1991, 2015 109

110

Table 14. Client attributes (continued)

Attribute Description

acregmax(r)
Specifies the maximum lifetime in seconds of cached file attributes.

The acregmax attribute default value is 60.

acregmin()
Specifies the minimum lifetime in seconds of cached file attributes.

The acregmin attribute default value is 3.

attrcaching(Y I N)
Specifies whether to process attributes and data caching.

If attribute caching is in effect, the z/OS NFS client maintains cache consistency
with the copy of the file on the NFS server by performing the consistency check
with the cached file attributes. When a file's data is read, it remains valid on the
z/0S NFS client until the attribute cache is timed out or negated. If attrcaching(N)
is specified, it will automatically set datacaching(N).

The attrcaching attribute default value is:

Y For mounts established with system authentication (sys)
N For mounts established with RPCSEC_GSS authentication (krb5, krb5i, or
krb5p)

Note: attrcaching is not supported for Kerberos mounts (for example, krb5, krb5i,
or krb5p). It is only supported for system authentication (sys) mounts. Specifying
attrcaching(Y) is ignored with RPCSEC_GSS mounts.

biod(n) Specifies the number of asynchronous block input/output (I/O) daemons.

The BIOD daemon runs on all NFS client systems. When a user on a client wants
to read or write to a file on a server, the BIOD daemon sends this request to the
server. The BIOD daemon is activated during system startup and runs
continuously.

The number of daemons is based on the load the client can handle. Six to 8
daemons can handle an average load. You must run at least 1 daemon for NFS to
work.

The valid range is 1 - 32.

The biod attribute default value is 6.

bufthigh(n)
Specifies the storage limit for data buffers for the NFS client.

The valid range is 4 MB to 1 GB.
The bufhigh attribute default is 128 MB.

z/0OS V2R2 Network File System Guide and Reference

Table 14. Client attributes (continued)

Attribute Description

cIn_ccsid(x)
Specifies the coded character set identifier (CCSID) for the local mounted file
system.

The cIn_ccsid attribute default is 1047 (LATIN OPEN SYSTEM EBCDIC).

convserv(technique)
Specifies the conversion technique-search-order that Unicode Services use for
specified srv_ccsid(x) and cln_ccsid(x) code pages. Technique consists of up to five
technique-characters corresponding to the available techniques: R, E, C, L and M.
See [z/OS Unicode Services User’s Guide and Referenced for detailed descriptions on
these conversion techniques.

NFS version 4 protocol (NFSv4) differs from NFSv2 and NFSv3 protocol in
handling single to multiple byte conversion. Therefore, the technique-search-order
that is specified in the convserv() attribute should consider the effects of the NFS
protocol being used. Sed”“Creating the conversion environment for Unicode]
[Services” on page 174| for further details.

The convserv default is LRE.

datacaching(Y IN)
Specifies whether to perform data caching.

The datacaching attribute provides finer granularity in controlling whether file data
should be cached by the z/OS NFS client. By caching the file data, all subsequent
references to the cached data is done locally thus avoiding the network overhead.
This has more significance when obtaining data from NFS server systems that do
not use UNIX access permissions for security as there is a potential security
exposure allowing unauthorized users to access file data.

The datacaching attribute default value is:

Y For mounts established with system authentication (sys)

N For mounts established with RPCSEC_GSS authentication (krb5, krb5i, or
krb5p)

Note:

1. datacaching is not supported for Kerberos mounts (for example, krb5, krb5i, or
krb5p). It is only supported for system authentication (sys) mounts. Specifying
datacaching(Y) is ignored with RPCSEC_GSS mounts.

2. During mount , datacaching is turned off when security negotiation was
attempted such that security was negotiated from sys to any of the krb flavors.

3. If attrcaching(N) is specified, it will automatically set datacaching(IN).

delaywrite(n)
Specifies the maximum number of disk blocks for delay write.

The valid range is 0 - 32. The delaywrite attribute default value is 16. The blocksize
is 8192. This option is valid only when datacaching=Y.

Chapter 8. Initialization attributes for the z/OS NFS client 111

112

Table 14. Client attributes (continued)

Attribute Description

delim (nalbinary Inllcrl1f|crlf | 1fcr)

Specifies the line delimiter for record access to remote files through the basic
sequential access method (BSAM), queued sequential access method (QSAM), and
Virtual Storage Access Method (VSAM).

na Not specified. This value applies when the delim attribute is omitted.
Note that this value must not be specified on the delim attribute. na can
be specified only by omitting the delim attribute from the parameter list.

binary Specifies the data does not have record delimiters. The access method does
not add a delimiter for each record on output and treats any delimiters on
input as data.

The following text options can be specified:

cr Specifies that records are delimited by the EBCDIC carriage return
character (x'0D').

crlf Specifies that records are delimited by the EBCDIC carriage return
character followed by the EBCDIC line feed character (x'0D25').

crnl Specifies that records are delimited by the EBCDIC carriage return
character followed by the EBCDIC new line character (x'0D15).

1f Specifies that records are delimited by the EBCDIC line feed character
(x'25").

Ifcr Specifies that records are delimited by the EBCDIC line feed character
followed by the EBCDIC carriage return character (x250D').

nl Specifies that records are delimited by the EBCDIC new line character
(x'15").

disablella(Y I N)

Specifies the disabling or enabling of Lookup Look-Aside (LLA) caching.

The enabling of LLA cache with disablella(N) provides better performance, but may
cause data integrity issues in a Shared File System sysplex or a network
environment if file objects are altered by more than one system in the sysplex or
network.

The disabling of LLA cache with disablella(Y) causes more LOOKUP requests from
z/0OS NFS client to z/OS NFS Server, thus affecting performance but guaranteeing
data integrity. This is the recommended setting in a Shared File System sysplex
environment or a network environment.

See [z/OS UNIX System Services File System Interface Reference| for further details on
the use of disablella.

dynamicsizeadj(Y | N)

Specifies whether to perform the packet size adjustment for remote procedure call
(RPC).

The dynamicsizeadj attribute default value is Y.

z/0OS V2R2 Network File System Guide and Reference

Table 14. Client attributes (continued)

Attribute Description

llock(YIN)
Specifies whether file locking requests are managed on your local z/OS UNIX file
system or remotely on the NFS Server.

Y the local Byte Range Lock Manager (BRLM) manages the lock.

N The z/OS NFS Client sends various NFS Version 4 locking operations to
the remote NFS Server to manage the file lock requests. The z/OS NFS
Client and other participating NFS Clients can perform Byte Range
Locking on the remote files at the supported NFS Server.

The 1lock attribute default value is N.

Note: This attribute is valid only for the NFS Version 4 protocol. If the NFS
mounted file system is NFS Version 2 or 3 or if the NFS Server does not support
the NFS Version 4 Locking then /usr/lpp/NFS/nfsstat reports llock(y).

mtxtonly
Specifies the minimum configuration of the z/OS NFS Client that it only supports
vfs_pfsctl for bpxmtext . The z/OS NFS Client uses very little virtual memory in
the minimum configuration. This attribute can only be specified in BPXPRMxx
parmlib member.

nfsvddomain(NFSv4_default_domain)
Specifies the default domain for the NFS v4 protocol (NFSv4) name mapping.

The nfsv4domain attribute serves for redefinition of a name of this unique domain.
In accordance with RFC3530 NFSv4 attributes "owner"and "owner_group'are
transferred between the client and server in the form of "user_name@domain"and
"group_name@domain". The client provides the mapping of names to ID’s and vice
versa. NFSv4_default_domain identifies the user/group name space with one to one
correspondence between the names and their numeric identifiers (uid’s and gid’s).

z/0S NFS Client will accept as valid a set of users and groups for default domain.
The client treats other domains as having no valid translations. If the nfsv4domain
attribute is not used, the client uses the system-defined domain. The
NFSv4_default_domain is converted internally to lowercase.

For further details on NFSv4 name mapping, see ["NFS v4 protocol name mapping”|

Chapter 8. Initialization attributes for the z/OS NFS client 113

114

Table 14. Client attributes (continued)

Attribute Description

proto(tcp | udp)

Specifies the transport protocol for the NFS client to communicate with the NFS
server. By default, the NFS client selects the proto and vers with the following
priorities:

1. proto(tcp) and vers(4)

2. proto(tcp) and vers(3)

3. proto(udp) and vers(3)

4. proto(tcp) and vers(2)

5. proto(udp) and vers(2)

Note:

1. proto(udp) is functionally equivalent to secure(udp)

2. proto(udp) is mutually exclusive with the vers(4) parameter. proto(udp) is valid
only for the NFS Version 2 and Version 3 protocols.

3. If proto(tcp) and secure(udp) are both in effect as mount parameters, proto(tcp)
is ignored.

public Forces the use of the public file handle when connecting to the NFS server.

This option is valid only during mount processing. The public keyword is valid
only for the NFS version 4 protocol.

readahead(n)
Specifies the maximum number of disk blocks to read ahead.

The block size is 8192 bytes. The valid range is 0 - 16.

The readahead attribute default value is 1

retrans(n)
Specifies the number of times to retransmit the NFS remote procedure calls (RPC).

The valid range is 0 - 1000.
The retrans attribute default value is 3.

This option is valid only when soft and proto(upd) are specified.

retry(n) Specifies the number of times to retry the mount operation.
The valid range is 0 - 20,000.
The retry attribute default value is 10.

This option is valid only during mount processing.

z/0OS V2R2 Network File System Guide and Reference

Table 14. Client attributes (continued)

Attribute Description

rsize(n) Sets the read buffer size in n bytes.
The valid range is 1 - 8192.
For NFS NFSv2 mounts, the rsize attribute default value is 8192.

For NFSv3 or NFSv4 mounts, the rsize attribute value is negotiated between the
z/0S NFS client and the NFS server. The maximum read buffer size that is
supported by the z/OS NFS client is 32 KB. The specification of an rsize attribute
of any value overrides the negotiated buffer size and result in a default buffer size
of 8192.

rpcbind(Y IN)
Specifies whether the target NFS server platform supports the RPCBIND protocol,
so the NFS client will not have to attempt to use the RPCBIND protocol if that
protocol is not supported. The default is rpcbind(Y), to indicate that RPCBIND is
supported. If N is specified, the z/OS NFS Client will immediately use the
PORTMAPPER protocol instead. This keyword has no effect if the client system is
not enabled for IP version 6 (IPv6).

The rpcbind default value is Y.

secure(sys | krb5 | krb5i | krb5p | udp)
Specifies the transport protocol for the NFS client to use to bind reserved
(privileged) ports when communicating to the NFS server.
Note:

1. secure(sys) uses the system authentication.

2. secure(krb5) provides Kerberos V5 based integrity on the RPC credentials (but
not data) using the DES_MAC_MDS5 integrity algorithm and uses the
RPCSEC_GSS service of rpc_gss_svc_none. secure(krb5) is valid only for the
NFS Version 4 protocol.

3. secure(krb5i) provides Kerberos V5 based integrity on both the RPC credentials
and data using the DES_MAC_MDS5 integrity algorithm and uses the
RPCSEC_GSS service of rpc_gss_svc_integrity. secure(krb5i) is valid only for the
NFS Version 4 protocol.

4. secure(krb5p) provides Kerberos V5 based integrity and privacy on both the
RPC credentials and data using the DES_MAC_MD?5 algorithm for integrity and
56-bit DES for privacy. It uses the RPCSEC_GSS service of rpc_gss_svc_privacy.
secure(krb5p) is valid only for the NFS Version 4 protocol.

5. secure(udp) is functionally equivalent to proto(udp).

6. If secure(udp) is specified, proto(tcp) is ignored and the NFS client uses udp as
the transport protocol to communicate with the NFS server.

7. secure(udp) is mutually exclusive with the vers(4) parameter. secure(udp) is
valid only for the NFS Version 2 and Version 3 protocols.

During mount when sys,krb5,krb5i, or krb5p is specified in the secure keyword, the
client does not attempt a security negotiation.

Chapter 8. Initialization attributes for the z/OS NFS client 115

Table 14. Client attributes (continued)

Attribute Description

soft | hard
Returns an error if the NFS server does not respond or continues to retry the NFS
remote procedure call (RPC) until the NFS server responds.

* If hard is specified, the NFS remote procedure call (RPC) is retried until the NFS
server responds.

* If soft is specified, an error is returned if the NFS server does not respond. The
maximum number of retries is specified with the retrans option.

This option is valid for all NFS RPCs under the mount point.

srv_ccsid(x)
Specifies the coded character set identifier (CCSID) for the remote mounted file
system.

The srv_ccsid attribute default value is 819 (ISO 8859-1 ASCII).

stringprep(Y I N)
Specifies whether z/OS NFS Client is to enable or disable stringprep normalization.
Stringprep normalization is the NFS version 4 globalization function for converting
inbound strings to UTF-8 format. The stringprep attribute default value is N.

syncwrite(Y | N)
Specifies whether the z/OS NFS Client sends implicit v4ACOMMIT or STABLE
v4Write operation to NFS servers. If you specify N, the z/OS NFS Client does not
send implicit v4COMMIT or STABLE v4Write operations to the NFS server. In this
case, if an NFS server crashes and restarts, then all uncommitted data is lost. The
syncwrite attribute default value is Y.

timeo(n)
Sets the remote procedure call (RPC) timeout to # tenths of a second.

The timeo attribute default value is 7

vers(21314)
Specifies the NFS protocol version that the client uses to communicate with the
NFS server. If no version is specified, the z/OS NFS client communicates with the
NFS server at the highest protocol level that is supported by the server.

z/0OS V2R2 Network File System Guide and Reference

Table 14. Client attributes (continued)

Attribute Description

wsize(n)
Sets the write buffer size to n bytes.

The valid range for n is 1 - 8192.
The wsize attribute default value is 8192.

For NFS NFSv2 mounts, the wsize attribute value is negotiated between the z/OS
NFS client and the NFS server. The maximum write buffer size that is supported by
the z/OS NFS client is 32 KB. The specification of a wsize attribute of any value
overrides the negotiated buffer size and result in a default buffer size of 8192.

xlat(YIN)
If Y is specified, the data in all the files are text and the NFS client performs data
conversion according to the cln_ccsid and srv_ccsid parameters.

The xlat attribute default value is N and should be used for binary data.

Datacaching attribute

Security checking is done on the Network File System server to determine whether
the requesting client user is authorized to access the data. On UNIX systems, this
is done by validating the client's user ID and group ID against the file's permission
codes. If the authorization checking is successful, the file data is returned to the
z/0OS NFS client system. Further authorization checking for subsequent access to
the cached data or for other client users is done on the z/OS NFS client system.

For z/OS conventional MVS data set access through the z/OS NFS server, the user
is required to present their z/OS credentials which are checked by the z/0S
security system, such as RACE, before file data is returned. Since the z/OS system
does not maintain UNIX style permission codes for MVS data sets, the z/OS NFS
server returns a code indicating that anyone can access the file. This is done since
passing any lesser access code to the client would result in the client user not
being allowed to use the cached data which was already read. When the file data
is cached on the z/OS NFS client system and another client user on this system
attempts to access the same file data, the z/OS NFS client checks the returned
permission codes to validate access. Since the z/OS NFS server has passed a code
which allows anyone access to the file, all users on the client system can access the
cached data without further restrictions. If data caching is turned off, no client
caching takes place and each user must pass the server security check.

Based on the installation time out values, the file data cached by the client is
flushed and further attempts to access the file data again requires passing server
authorization.

The installation datacaching parameter can be set and it can be overridden for
each mount point so that different mount points can be handled as required for the

files under that mount point.

Note:

Chapter 8. Initialization attributes for the z/OS NFS client 117

1. attrcaching and datacaching are not supported for Kerberos mounts (for
example, krb5, krb5i, or krb5p). It is only supported for system authentication

(sys) mounts.

2. datacaching is turned off whenever there is a security negotiation from sys to

any of the krb flavors during mount.

3. If attrcaching(N) is specified, it will automatically set datacaching(N).

If the potential security exposure can not be tolerated for sensitive file data, the
datacaching should not be used so that no file data is cached by the z/OS NFS

client.

Mount processing parameters and installation parameters
shows the client attributes that can be modified when used as parameters

118

on the MOUNT command.

Table 15. Mount processing parameters

Mount processing parameters

acdirmax(n)

accesschk(Y I N)

acdirmin(n)

acregmax(n)

acregmin(n)

attrcaching(Y I N)

cIn_ccsid(n)
convserv(UNICODE technique)
datacaching(Y IN)

delaywrite(n)

delim (nalbinary Inllcr!1flcrlf|1fcr)
dynamicsizeadj(Y | N)

hard | soft

lock(YIN)

proto(tcp | udp)

public
readahead(n)
retrans(n)
retry(n)
rpcbind(Y I N)
rsize(n)
secure(krb5 | krb5i | krb5p | udp)
stringprep(Y I N)
srv_ccsid(n)
syncwrite(Y | N)
timeo(n)
vers(21314)
wsize(n)
xlat(YIN)

shows installation parameters.

Table 16. Installation parameters

Installation parameters

attrcaching(Y I N)

biod(n)

buthigh(n)

cIn_cesid(n)

convserv(UNICODE technique)
datacaching(Y I N)

delaywrite(n)

delim (binary Inllcr!|1f|crlf | 1fcr)
disablella(Y | N)

dynamicsizeadj(Y | N)

llock(Y IN)

mtxtonly

readahead(n)

rpcbind(Y I N)

secure(krb5 | krb5i | krb5p | udp)
srv_ccsid(n)

stringprep(Y I N)

syncwrite(Y | N)

xlat(YIN)

The following conditions may cause the NFS client to fail its initialization:

* The NFS client is not started in a stand-alone colony address space.

* The NFS client is already started; multiple instances of the NFS client on a single

z/0OS system are not supported.

z/0OS V2R2 Network File System Guide and Reference

* Invalid parameter is specified in the installation parameters.

¢ If Unicode exists, then Unicode is used. If Unicode does not exist and Character
Data Representation Architecture (CDRA) exists, then CDRA is used. If both
Unicode and CDRA do not exist, then initialization fails.

A WTO message is issued to the operator console if the NFS client fails to
initialize.

NFS client translation support

contains NFS client attributes. See [Table 22 on page 138| for more
information about considerations for native ASCII environment support.

Table 17. z/0S NFS clients with non-z/OS based NFS servers

Client Attributes Specified Mount Option Read Write

xlat(Y), cln_ccsid,srv_ccsid No TAG specified NEFS client NFS client
does does
translation translation

xlat(N) TAG(TEXT,CCSID) Logical file Logical file

system does system does
translation translation

xlat(Y) TAG(TEXT,CCSID) Mount will Mount will
fail fail

Notes:

1. The logical file system will do translation when the mount tag option is specified. It will
do translation based on the process tag (calling application) and file tag (if the file tag is
not zeros or untagged). Otherwise, the system will do translation based on the process
tag and mount tag for the CCSID information.

2. It is assumed that the user doing the mount knows the files being accessed from the
remote non-z/OS file systems. So the CCSID needs to be set accordingly. Data written to
the server will be stored in a specific CCSID format. To read it back correctly, the correct
CCSID must be specified (for example, without it being translated with the wrong
CCSID).

For more information about client mount options, see [Chapter 6, “Commands and)|
examples for AIX and UNIX clients,” on page 65|and [Chapter 7, “Commands and|
examples for z/OS NFS clients,” on page 81

z/OS NFS client with z/OS NFS server

Both the client and server operate as described in [“NFS client translation support”|
and [“NFS servers with non-z/0S based NFS clients” on page 138 |

In order to avoid double translation, the mount to the server must specify the
correct cIn_ccsid (server option) and the client TSO MOUNT command should not
have the tag option. The client mount option xlat(N) should be specified so that
only the server will do translation (if needed) and return the data in the correct
CCSID.

mount filesystem(NFS001) type(nfs) mountpoint('/u/nfsdir')

parm('mvsnfs:"/hfs/u/user,text,cln_ccsid(2000)",x1at(N)")
vi /u/nfsdir/filel

*% Translation will be done by the server only based on filel's file tag and
cln_ccsid of 2000.

Chapter 8. Initialization attributes for the z/OS NFS client 119

In all other cases, double translation may occur as the server will do translation
based on its file tag and cln_ccsid settings and the logical file system will do
translation based on the process tag and the CCSID in the mount tag option.
Caution must be used as double translation may result in the data becoming
garbage.

120 z/0S V2R2 Network File System Guide and Reference

Chapter 9. Initialization attributes for the z/0S NFS server

This topic contains information about the attributes that are used to manipulate
files in the z/OS NFS server. Note that running the z/OS NFS server with
attributes from a z/OS NFS release later than the current z/OS NEFS release may
lead to unpredictable results.

able 18| contains directive information about this topic's contents.
Table 18. Attributes - z/OS NFS server

Section Modification Description
“Data set creation Data set creation Data set creation attributes
attributes syntax” attributes can be provide information about an
on page 122| modified by the =~ MVS file to the z/OS NFS server,
client such as the type of file, or how the
file is allocated (for example,
blocks, cylinders, or tracks)
“Processing] Processing Processing attributes provide
attributes syntax”| attributes can be information to the z/OS NFS
on page 122| modified by the server about how to handle the
client file, such as how long the files

remain open, or whether the files
are processed in text or binary
format

“Site attributes| Site attributes can Site attributes control the z/OS
syntax” on page 139 only be modified NFS server resources

by the system

administrator

Attributes used for z/OS UNIX file access

These attributes are specific to the following z/OS UNIX file access.
* alias

* hfs(prefix)

* hfsprefix(prefix)

* sync and async

* extlink

These attributes are relevant to accessing the following z/OS UNIX files as well as
z/0S conventional MVS data sets.

* impprefix(optl, opt2)

* restimeout - Resource timeout

* logout - User log time out

* security - Security checking

* text - ASCII to EBCDIC data conversion and vice versa
* binary - No ASCII and EBCDIC

» xlat - Customized translation table

This attribute is relevant to accessing z/OS conventional MVS data sets.

© Copyright IBM Corp. 1991, 2015 121

* mvsprefix(prefix)

Multipliers

Instead of entering the entire numeric values for the attributes, you can use the
multipliers K (1024), M (1024 x 1024), or G (1024 x 1024 x 1024). For example,
entering 10M is the same as entering 10,485,760.

Duplicate attributes

Specifying an attribute several times on a line does not cause an error. The line is
read from left to right, and the last of any duplicate attribute is used. For example:

$ vi "file,recfm(vb),recfm(fb)"

This results in a file created with a fixed-blocked format.

Data set creation attributes syntax

The data set creation attributes are used to define the structure of MVS data sets
when creating a file. These attributes correspond to the data control block (DCB) or
the job control language (JCL) parameters used to define an MVS data set when it
is created. See [z/0S MVS JCL Referencefor more information about data set creation
attributes.

The data set creation attributes do not apply for z/OS UNIX files.

describes data set creation attributes. Defaults are underlined in this
format. You can override these attributes by using the mount command or file
creation command. For PDS and PDSE, members have the same attributes as the
data set attributes, so the file creation attributes specified for members are ignored.

Table 19. Data set creation attributes

Data Set Creation Attribute Description

blks Specifies that disk space is allocated by blocks, except for VSAM data sets. See the
space attribute in this table.

cyls Specifies that disk space is allocated by cylinders.

recs Specifies that disk space is allocated by records for VSAM data sets. The blks and
recs attribute values are identical for VSAM data sets.

trks Specifies that the disk space is allocated by tracks.

blksize(0 | quan)
Specifies the maximum length, in bytes, of a physical block on disk. The value of
quan can range from 0 (the default value) to 32,760. If blksize(0) is specified, the
system determines an optimal block size to use.

System determined block size is not supported by the system for Direct Access
(DA) data sets. z/OS NFS Server uses the following formula to calculate the block
size for a DA data set depending on the record format:

F | FB blksize = Trecl

V | VB blksize = lrecl + 4
VS | VBS blksize = 6160

122 z/0S V2R2 Network File System Guide and Reference

Table 19. Data set creation attributes (continued)

Data Set Creation Attribute Description

dataclas(class_name)
Specifies the data class associated with the file creation. The class_name must be
defined to DFSMS before it can be used by the client. The system-managed storage
automatic class selection (ACS) routine must also assign a storage class to the file
being created. If a data class is not specified in the attribute file, dataclas() is
displayed by the showattr client enabling command.

For more information about data classes, see |z/70S DFSMSdfp Storage Administration}

dir(27 | quan)
Specifies the number of 256-byte records needed in the directory of a PDS. Use the
dir attribute with the mkdir command when you create a PDS.

The value of quan can range from 1 to 16,777,215. The default value is 27. The
maximum number of PDS members is 14,562.

dsntype(library | pds)
Specifies whether a PDSE or a PDS is to be created when the mkdir client
command is used.

The following options can be specified.

library Specifies partitioned data set extended (PDSE)

pds Specifies partitioned data set (PDS)

You cannot create a PDS (or PDSE) within another PDS (or PDSE).

For more information about creating a PDS or a PDSE, see |z/0S DFSMS Using Data|

dsorg(org)
Specifies the organization of a data set.

The following org values can be specified.
da Direct data set

indexed
VSAM KSDS data set

nonindexed
VSAM ESDS data set

numbered
VSAM RRDS data set

ps Physical sequential (ps) data set
The dsorg attribute is ignored for directory-oriented client commands.

If you are using VSAM data sets in binary mode, then nonindexed is
recommended.

Chapter 9. Initialization attributes for the z/OS NFS server 123

124

Table 19. Data set creation attributes (continued)

Data Set Creation Attribute Description

keys(len, off)

Specifies the length and offset of the keys for VSAM KSDS data sets. The keys
attribute can only be specified when using dsorg(indexed).

The len and off values are specified in bytes.
len Specifies a value between 1 and 255. The default value is 64.
off Specifies a value between 0 and 32,760. The default value is 0.

When you create a VSAM KSDS data set, the records you are loading into it must
be keyed-sequenced or the write fails. Each write of the data set is treated like a
first load, and requires that the records being loaded are in ascending key
sequence.

Irecl(8196 | quan)

The value of quan specifies a record length.

1. Length, in bytes, for fixed-length records.

2. Maximum length, in bytes, for variable-length records. If the blksize attribute is
specified, the value must be at least 4 bytes less than the blksize quantity.

The value of quan can range from 1 to 32,760. The default value is 8196.

mgmtclas(mgmt_class_name)

Specifies the management class associated with the file creation. The
mgmt_class_name must be defined to DFSMS/MVS before it can be used by the
client. The system-managed storage automatic class selection (ACS) routine must
also assign a storage class to the file being created. If a management class is not
specified in the attribute file, mgmtclas() is displayed by the showattr client
enabling command.

For more information about management classes, see [z/0S DFSMSdfp Storaged

Administration

z/0S V2R2 Network File System Guide and Reference

Table 19. Data set creation attributes (continued)

Data Set Creation Attribute Description

recfm(cccc)

Specifies the format and characteristics of the records in the data set. The value of
ccce can be 1 to 4 characters, in one of the following combinations.

[f | fb | fs | fbs] [a|m]
u [a]m]

[v |vb | vs | vbs] [a]m]

The following are valid record format characters.

a ANSI control codes

b Blocked

f Fixed-length records

m Machine control codes

s Spanned for variable records, standard format for fixed records
u Undefined-length records

v Variable-length records

The recfm format characters v, f and u are mutually exclusive. The recfm format
characters a and m are mutually exclusive.The format character s is not allowed for
a PDS or PDSE.

recordsize(avg,max)

Specifies the average and maximum record size for VSAM data sets. The avg and
max values are specified in bytes. They can each range from 1 to 32,760.

The default values are 512 and 4K, respectively. These values must be equal for
VSAM RRDS.

rlse

norlse

Specifies that unused space should be released from the data set the first time a
new data set is closed. For slow clients with long pauses between writes, the rlse
attribute causes space to be released from the primary extent prematurely. Any
additional writes will cause secondary space to be allocated.

Specifies that unused space should not be released from the data set.

shareoptions(xreg,xsys)

Specifies the cross-region and cross-system share options for a VSAM data set.
The value of xreg ranges from 1 to 4.

The value of xsys is either 3 or 4.

The default values are 1 and 3, respectively.

For more information, see "Sharing VSAM Data Sets" in [z/0S DESMS Using Datal

Chapter 9. Initialization attributes for the z/OS NFS server 125

126

Table 19. Data set creation attributes (continued)

Data Set Creation Attribute Description

This applies to VSAM data sets only. For spanned records of non-VSAM data sets,
see the entry for the recfm attribute in this table.

spanned
Specifies that VSAM KSDS or ESDS data sets can contain records that span control
intervals (spanned records).

nonspanned

Specifies that data sets do not have spanned records.

space(prim[,aux])
Specifies the amount of primary and auxiliary space allocated for a new data set on
a direct access volume.

The value of prim is the number (from 0 to 16,777,215) of primary tracks, cylinders,
or data blocks in the data set.

The value of aux (optional) is the number (from 0 to 16,777,215) of additional
tracks, cylinders, or blocks allocated if more space is needed.

If the space attribute is not specified, the default is used. The default values are 100
and 10, respectively.

storclas(class_name)
Specifies the storage class associated with the file creation. The class_name must be
defined to the DFSMS efore it can be used by the client. If a storage class is not
specified in the attribute file, storclas() is displayed by the showattr client enabling
command.

For more information about storage classes, see [z7/0S DFSMSdfp Storage|

Administration

unit(unit_name)
Specifies the unit on which to create a data set. The unit_name is a generic or
symbolic name of a group of DASD devices. The unit_name must be specified as
3390 for extended format data sets. If a side file name is not specified in the
attribute file, unit() is displayed by the showattr client enabling command.

Note:
1. You cannot create or access tape data sets on an z/OS host using the z/OS NFS
server.

2. You cannot create extended format data sets with the z/OS NFS server, except
using ACS routines.

vol(volser) or volume(volser)
Specifies the name of the DASD volume to use to store the created data set.
volume or vol is the keyword, and the value of volser represents the volume name.
If a volume is not specified in the attribute file, volume() is displayed by the
showattr client enabling command.

If a data set is system-managed, as determined by the DFSMS automatic class
selection (ACS) routines, you can omit this attribute.

z/0S V2R2 Network File System Guide and Reference

Processing attributes syntax

Processing attributes are used to control how files are accessed by the client.

able 20| describes processing attributes. Defaults are underlined in this format.
You can override the default processing attributes on the mount command or file
processing commands.

Table 20. Processing attributes

Processing Attribute Description

alias

noalias

Indicates that the exports file can contain exports with the "alias" keyword. An alias
for an export will allow an NFS client, using NFS protocol version 4, to mount or
navigate across the entire export path with a single lookup. If the mount using alias
also contains the "mvsmnt" processing attribute, the mount will be recorded in the
Mount Handle Database with the alias in the pathname, such that upon NFS server
restart, the alias will be detected and the corresponding export entry to be
reevaluated. The alias site attribute MUST be provided to use this feature.

Indicates that any alias keywords in the exports file will not be processed (though
they may be interpreted for proper logic, they will not be retained for mount
processing). This is the default.

See [Appendix F, “Sample exports data set,” on page 519| for sample entries
description.

attrtimeout(n)

The time (in seconds) that the data set remains allocated after a lookup or getattr
server operation.

The default value of n is 120. The value of n can range from 1 to 32,767 (9 hours, 6
minutes, and 7 seconds).
Note:

1. The attrtimeout value is normally greater than the readtimeout or writetimeout
values.

2. With NFS version 2 and version 3 protocols, the lookup operation searches for a
file in the current directory. If it finds the file, lookup returns information on
the file's attributes and a file handle pointing to the file. With NFS version 4,
neither the file's attributes nor the file handle are returned. The file handle is
saved by the server and used as an anchor for accessing the file.

3. When using the NFS version 4 protocol, the attrtimeout value should be set to a
value less than or equal to the lease time. Otherwise, it is possible for
performance problems to occur when attempting to access MVS data sets.

4. With NFS version 2 and version 3 protocols, the data set may be
closed/deallocated before the timeout value has been reached if the data set has
been requested by another application if the delegation site attribute or modify
operator command V4DELG=on is specified.

noattrtimeout

The data set is not deallocated after a lookup or getattr operation.

For more information, see [“Timeout attributes” on page 135

Chapter 9. Initialization attributes for the z/OS NFS server 127

Table 20. Processing attributes (continued)

Processing Attribute Description

binary Indicates that the data set is processed between the client and server using binary
format and no data conversion occurs between ASCII and EBCDIC formats.

text Converts the contents in the data set between EBCDIC and ASCII formats. Use this
format to share text data between clients and z/OS applications.
In text mode, the following attributes apply only to z/OS MVS data sets:
* blankstrip and noblankstrip. (See the entry for blankstrip in this table.)

* End-of-line terminators (cr, crlf, 1f, Ifcr, or noeol) are used to indicate the MVS

logical record boundary. (See the entry for If in this table. See
[mode” on page 35| for rules of coding EOL terminators by the z/OS NFS server.
See the xlat attribute in this table for customized EBCDIC-ASCII tables.)

blankstrip

With text mode, strips trailing blanks from the end of each record of a fixed-length
text file when the file is read. Trailing blanks pad the end of each file or record
when a text file is written.

noblankstrip
Does not strip trailing blanks from the end of fixed-length records when a
fixed-length text file is read. Does not pad records when writing a text file. The file
must be of the correct size or an I/O error is reported to the client.

For information about the text attribute, see the entry for binary in this table.
This attribute does not apply to z/OS UNIX files.

With text mode, use one of the following end-of-line specifiers.

cr Carriage Return is the end-of-line terminator.

crlf Carriage Return followed by Line Feed is the end-of-line terminator
(standard DOS).

1f Line Feed is the end-of-line terminator (standard AIX or UNIX).

Ifcr Line Feed followed by Carriage Return is the end-of-line terminator.

noeol No end-of-line terminator.
For information about the text attribute, see the entry for binary in this table.
This attribute does not apply to z/OS UNIX files.

cln_ccsid(n)
Specifies the coded character set identifier (CCSID) for the remote mounted file
system (NFS client) when text is being translated.

The default value of # is 819 (ISO 8859-1 ASCII).

128 z/0S V2R2 Network File System Guide and Reference

Table 20. Processing attributes (continued)

Processing Attribute Description

convserv(technique)
Specifies the conversion technique-search-order that Unicode Services will use for
specified srv_ccsid(x) and cln_ccsid(x) code pages. Technique consists of up to five
technique-characters corresponding to the available techniques: R, E, C, L and M.
See [z/OS Unicode Services User’s Guide and Reference| for detailed descriptions on
these conversion techniques.

NFS version 4 protocol (NFSv4) differs from NFSv2 and NFSv3 protocol in
handling single to multiple byte conversion. Therefore, the technique-search-order
specified in the convserv() attribute should consider the effects of the NFS protocol
being used. Sed”Creating the conversion environment for Unicode Services” onf

|Eage 17@] for further details.

The default value of technique is LRE.

executebiton
Sets the execute permission bits in user, group, and other (as reported with the 1s
AIX or UNIX command) for a mount point's files. Use when storing executable or
shell scripts on the z/OS system.

This option can only be overridden on a mount point basis — not at a command
level.

The executebiton attribute does not apply to z/OS UNIX files and can only be
used with the mount command.

executebitoff
Does not set execute bits in user, group, and other for the mount point's files. This
value is normally used in the site file.

extlink Specifies the use of the external link command to create, process, and delete a
symbolic link to an MVS data set.

The extlink attribute is used with the following commands.

In -s Create a symbolic link to an MVS data set.

Is -1 Display the attributes and contents of the symbolic link.
rm Delete the symbolic link.

The extlink attribute only applies to z/OS UNIX file objects. If extlink is not
specified then it is not displayed by the showattr client enabling command.

fastfilesize
Specifies to get the file size from SPF statistics, if it exists, for direct data sets, PDSs,
and non-system-managed data sets.

nofastfilesize
Specifies to read the entire file or member to get the file size for direct data sets,
PDSs, PDSEs, and non-system-managed data sets. Using the nofastfilesize attribute
might cause a noticeable delay when first accessing very large data sets.

These attributes apply to MVS data sets, but do not apply to z/OS UNIX files.

For more information, see [“Using fastfilesize to avoid read-for-size” on page 481)

Chapter 9. Initialization attributes for the z/OS NFS server 129

130

Table 20. Processing attributes (continued)

Processing Attribute Description

fileextmap
Enables file extension mapping. The fileextmap attribute can be specified at the file
command level for the client platforms that support passing of attributes. See
lextension mapping” on page 40| for related information.

nofileextmap
Disables file extension mapping.

mapleaddot
Enables mapping of a single leading "." from a client file name to a legal leading
"$" on z/0S. The mapleaddot attribute should normally be enabled for access by
AIX and UNIX clients.

nomapleaddot
Disables mapping of a single leading "." from a client to a leading "$" on z/OS.

These attributes do not apply to z/OS UNIX files.

maplower
Enables mapping of lower case file names to upper case when accessing files on
z/0S, and back to lower case when sending to the network. This option only
affects file names (high-level qualifiers and user catalog aliases). When using this
option, avoid file names that are unique on UNIX-type file systems only because of
case-sensitivity (for example, File and file), as these types of file names are mapped
to the same upper case name by the NFS Server (for example, FILE) and are treated
as the same file.

nomaplower
Disables mapping of lower case file names to upper case and back to lower case
when using files on z/0S; file names are processed as presented to the NFS Server
and will preserve any lower case characters used.
Note: These attributes do not apply to z/OS UNIX files.

mapped
The mapped attribute should be specified at the mount or site level when a mixed
set of data types is to be processed under a single mount point. The determination
of whether the data is to be processed as text or binary depends on the rules that
are established in the specified side file. See [‘File extension mapping” on page 40|
for related information.

If a file extension is not mapped to text or to binary using the side files, then the
data will be processed according to what has been specified at the mount or site
level (binary or text).

If binary or text is specified at the file command level, that overrides the mapped
specification. If mapped is not specified then it is not displayed by the showattr
client enabling command.

z/0S V2R2 Network File System Guide and Reference

Table 20. Processing attributes (continued)

Processing Attribute Description

mvsmnt

It is highly recommended that the mvsmnt processing attribute be specified on all
NFS Version 4 user mount commands issued to the z/OS NFS server for three
reasons.

1. In NFS Version 4, mount requests are passed to the server in the form of a
PUTROOTFH operation followed by a sequence of lookup operations. The
mvsmnt processing attribute indicates to the z/OS NFS server that the
associated lookup operation is emulating a mount procedure and causes the
z/0OS NFS server to write the mount point to the mount handle database
(MHDB), so the z/OS NFS server can automatically recover the mount point
during a server restart. Without the specification of the mvsmnt attribute, the
z/0S NFS server must rely on the mount being restored via the FHEXPIRED
error mount recovery process between the server and client after the server
restart.

Note: Some clients may not be able to recover from an FHEXPIRED error.

See ["Implicit prefix support restrictions” on page 11| for an important note about
the recovery of mount points after z/OS NFS server restart when there has been
a change to the prefix site attributes.

2. If the mvsmnt, or any other, processing attribute is not specified, then saf
checking may be disabled longer than desired due to the z/OS server's inability
to detect the end of the mount and the beginning of other access requests.
However, access is allowed only to information necessary for the completion of
mount related processing, and any non-mount related operations are always
processed with full SAF enforcement. This behavior is required to avoid
requiring an mvslogin to be issued prior to mount processing. The EXPORT file
may be used to restrict access to file systems, regardless of the specification of
any processing attribute.

Note: The mvsmnt attribute must not be specified when mounting a path that
contains a symbolic link whose underlying real path can change between z/0S
NFS server instances, unless the alias feature is also used in the mount
command, and the export entry includes the symlink as part of the exported
path. Without the alias feature, the specification of the mvsmnt attribute will
prevent the z/OS NFS server from recognizing the underlying real path change
upon restart; with alias, the alias portion will be recorded as part of the Mount
Handle Database record, and the corresponding export entry will be reevaluated
with the updated symbolic link location.

3. For any LOOKUPs that do not specify MVSMNT, any processing attributes that
may have been provided will be merged with any that were in effect for the
LOOKUP parent directory before applying to this LOOKUP.

For LOOKUPs that do specify MVSMNT, any other processing attributes
provided will be merged with the site defaults before applying to this LOOKUP.
MVSMNT cannot be specified for any LOOKUP where the parent directory was
navigated to by a mount procedure or a result of an object that was already
LOOKUP'ed with MVSMNT. This is to ensure that only a client system mount
specifies MVSMNT.

mvsmnt is not displayed by the showattr client enabling command.

Chapter 9. Initialization attributes for the z/OS NFS server 131

Table 20. Processing attributes (continued)

Processing Attribute Description

overflow
Specifies x37 detection support for PS/PDS MVS data sets for NFS Version 2,
Version 3, and Version 4 WRITE operations. It allows ENOSPACE errors to be
reported to the NFS Client in a timely manner and to avoid situations when the
z/0OS NFS Server closes a data set on timeout expiration basis with x37 abend
which can not be propagated to the NFS Client. This option may also be activated
on the MOUNT level. Default mode is no overflow detection, and is not displayed
by the showattr client enabling command..
Note: PDSE and VSAM data sets are not supported.

nordrcache
Specifies that the server should not stale the legacy (MVS z/OS conventional data)
internal readdir cache if an addition is made to the directory. This causes the next
READDIR operation to access the directory information from the Physical File
System (PFS) rather than the internal readdir cache.

The default value is nordrcache and is not displayed by the showattr client
enabling command.

The nordrcache attribute does not apply to z/OS UNIX files.

When nordrcache is not specified, the addition of an entry to the legacy internal
readdir cache will not be visible to the client until the next readdir cache timeout or
a remove from that directory. When nordrcache is specified, the addition will be
visible to the client by the subsequent READDIR, whether the readdir cache
timeout has expired or not. This may impair performance because the directory list
must be read from the Physical File System after any addition to the cached
directory. When nordrcache is specified, if no changes are made to the internal
readdir cache, the cache does remain available until the readdir cache timeout
expires.

nordrverf
Specifies not to perform cookie verifier checking for the NFS version 3 readdir and
readdirplus procedures, and the NFS version 4 readdir procedure.
Note: nordrverf does not provide consistency in the listing of a directory's content
and may cause duplicate or omit entries when the directory is changing during the
listing.

rdrverf Specifies to perform cookie verifier checking for the NFS version 3 readdir and
readdirplus procedures, and the NFS version 4 readdir procedure.
Note: rdrverf provides consistency in the listing of a directory content and, as a
result, may impact performance.

readtimeout(n)
The readtimeout attribute specifies the amount of time in seconds before a data set
is released after a read operation.

The value of n can range from 1 to 32,767 (9 hours, 6 minutes, and 7 seconds). The
default value of n is 90. The server closes the file when the file times out.

The readtimeout attribute does not apply to z/OS UNIX files.

Note: When using the NFS version 4 protocol, the readtimeout value should be set
to a value less than or equal to the lease time. Otherwise, it is possible for
performance problems to occur when attempting to access MVS data sets.

noreadtimeout
Specifies the data set is not deallocated after a read operation.

For more information, see [*Timeout attributes” on page 135

132 z/0S V2R2 Network File System Guide and Reference

Table 20. Processing attributes (continued)

Processing Attribute Description

The z/OS NFS server uses DESMShsm to recall or delete migrated files. The action
that the server takes against migrated files depends on which of the retrieve or
noretrieve attributes is active.

The retrieve and noretrieve attributes do not apply to z/OS UNIX files.

retrieve
When the retrieve attribute is active, the server will recall the migrated file if
necessary, upon an NFS_LOOKUP request for the file, depending on the files
status.

The server may be able to obtain the migrated files attributes without recall (see
[‘Retrieve attributes” on page 136/ for additional information). If not, the recall
operation is started by the server. The server waits for the recall operation to
complete if the file resides on DASD. If the file does not reside on DASD, the
server does not wait for the recall operation to complete and returns a “device not
available” message. You can attempt accessing the file again later when the recall is
complete.

retrieve(wait)
When the retrieve(wait) attribute is active, the server waits for the recall to finish.

retrieve(nowait)
When the retrieve(nowait) attribute is active, the server does not wait for the recall
to finish, and immediately returns a “device not available” message. You can
attempt accessing the file again later when the recall is complete.

noretrieve
When the noretrieve attribute is active, the server does not recall the file, and
returns “device not available” upon an NFS_LOOKUP, NFS_READ, or
NFS_CREATE request for a migrated data set.

For more information, see [“Retrieve attributes” on page 136.|

setownerroot
Specifies that z/OS NFS server return root user authority as the owner of a z/OS
MVS data set when the client is logged on as superuser. setownerroot does not
grant root authority for a UID=0 user, instead see the mvslogin command or the
root keyword in the exports file.

The setownerroot attribute can only be used with the mount command and does
not apply to z/OS UNIX files.

setownernobody
Specifies setting the user ID in a file's attributes to nobody (65534), for a superuser.

Chapter 9. Initialization attributes for the z/OS NFS server 133

134

Table 20. Processing attributes (continued)

Processing Attribute Description

sidefile(dsname)

Specifies the name of the data set that contains the rules for file extension mapping
purposes. If a side file name is specified in the attributes data set, then it is used as
the default side file for the NFS server. A user can also specify an additional side
file name during a mount operation to be used along with the default. The
mapping rules will first be searched in the side file specified during the mount
command and then the default side file is searched. To allow file extension
mapping, a side file name must be specified either as a default or in the mount
command. The value of dsname is a fully-qualified MVS data set name without
quotation marks. See [“File extension mapping” on page 40| for related information.

If a side file name is not specified in the attribute file or in the mount command,
sidefile() is displayed by the showattr client enabling command.

srv_ccsid(n)

Specifies the coded character set identifier (CCSID) for the local mounted file
system (NFS server) when a new file is being created.

The srv_cesid attribute has no effect on the translation of an existing file's data.
The default value of n is 1047 (LATIN OPEN SYSTEM EBCDIC).

If the srv_ccsid attribute is not specified, new z/OS UNIX files will continue to be
created as untagged.

sync Specifies that data transmitted with the write request should be committed to
nonvolatile media (for example, DASD) by the server immediately when received.

async The user can alternatively specify the async processing attribute to get improved
performance. When this attribute is specified, the data will be committed
asynchronously.
The sync | async attribute only applies to z/OS UNIX file objects and only for the
NFS version 2 protocol.

tag Specifies that the newly created files should receive a file tag.

notag Specifies that the newly created files should not receive a file tag. The tag is set to

0x0000.

See [“Native ASCII processing attributes” on page 137 and [Table 22 on page 138| for
considerations when using the tag and notag processing attributes.

z/0S V2R2 Network File System Guide and Reference

Table 20. Processing attributes (continued)

Processing Attribute Description

writetimeout(1,0)
Specifies the amount of time 7, in seconds, before a data set is released after a write
operation and the amount of time o, in seconds, that the server will wait for data to
arrive to complete a partial record before closing the data set.

The value of #n can range from 1 to 32,767 (9 hours, 6 minutes, and 7 seconds). The
default value of is 30.

The value of o can range from n to 255 * n. The default value of o is 120.

The server closes the file when the file times out. All cached buffers are forced to
disk. Normally writetimeout values are kept short because write operations result
in exclusive locking. However, for slow client machines with long pauses between
writes, you should increase the writetimeout value.

The server will use the o value to extend the writetimeout value for a data set
processed in text or binary mode in the case of a partial record (no end-of-line
terminator discovered in the record or RPC WRITE data was lost in the network)
on a WRITE operation to delay file closing and wait for the record completion data
to arrive, so that the server is able to correctly process the partial record.

The writetimeout attribute does not apply to z/OS UNIX files.

Note: When using the NFS version 4 protocol, the writetimeout value should be
set to a value less than or equal to the lease time. Otherwise, it is possible for
performance problems to occur when attempting to access MVS data sets.

nowritetimeout
Specifies that the data set is not deallocated after a write operation.

For more information, see [“Timeout attributes.”|

xlat(member_name)
Specifies how to override the installation default translation table during file
processing. The member_name is the member name of the PDS or PDSE that
contains the customized translation table.

The system administrator defines this member name in the attribute data set, and
PDS or PDSE in the startup procedure. The xlat attribute is ignored if specified on
the command line.

If a customized translation table is not specified in the attribute file or in the mount
command, xlat() is displayed by the showattr client enabling command.

znfsclient
Specifies that the NFS client is a z/OS NFS client. The z/OS NFS server uses this
attribute to customize its response to the NFS client.
Note: Do not specify this attribute. This attribute is automatically appended to the
processing attribute string by the z/OS NFS client when it detects that it is sending
the mount request (or the last LOOKUP for an NFS version 4 mount) to a z/OS
NFS Server. znfsclient is not displayed by the showattr client enabling command.

Timeout attributes

The values of the following attributes depend on the settings of the associated site
attributes:

Chapter 9. Initialization attributes for the z/OS NFS server 135

attrtimeout, readtimeout, and writetimeout — These attributes must be within the
ranges specified by the maxtimeout and mintimeout site attributes.

Note: When using the NFS version 4 protocol, these timeout values should be set
to a value less than or equal to the lease time. Otherwise, it is possible for
performance problems to occur when attempting to access MVS data sets.

noattrtimeout, noreadtimeout and nowritetimeout — These attributes are valid
only when nomaxtimeout is specified in the site attributes.

There are three processing attributes which control when files are timed out:
attrtimeout, readtimeout, and writetimeout. The server determines which of these
timeouts are in effect based on the last file operation. Thus when an existing file is
appended, the file cannot be accessed before it times out in the time specified for
writetimeout and is released by the server, because write operations result in
exclusive locking. Similarly, if a file is read, it is not released before it times out in
the time specified for readtimeout seconds.

The readtimeout and writetimeout attributes do not apply to the MVS data set or
member being opened by NFS version 4 OPEN operation because there is a
stateful CLOSE operation that closes and releases the data set or member.

The readdirtimeout site attribute controls the internal readdir cache used by
directory lookups of MVS z/0OS conventional data sets to be timed out or
discarded based on a customizable value. The default is 30 seconds.

Retrieve attributes

The server deletes the migrated file upon an NFS_REMOVE request for a file,
regardless if the retrieve or the noretrieve attribute is active. Typically, an
NFS_REMOVE request is preceded by an NFS_LOOKUP request. If the data set
was migrated with DFSMS/MVS 1.2 or earlier, the retrieve attribute causes a recall
because NFS_LOOKUP processing needs to open the data set and read for size. If
the data set was migrated under DFSMS/MVS 1.3 and DFSMShsm 1.3, and is SMS
managed, its attributes were saved on DASD; therefore it is not always necessary
to recall the data set to read for size and the data set may be deleted without
recall. If the noretrieve attribute is active, the NFS_LOOKUP can return a “device
not available” message. If the client code decides to ignore the error and issue the
NFS_REMOVE, the migrated file is then deleted.

The UNIX command 1Is mvshost does not issue requests for individual files under
the mvshost directory. Migrated files under the mvshost directory are displayed,
but are not recalled. However, the UNIX command 1s -1 mvshost issues
NFS_LOOKUP requests for individual files under the mvshost directory.

Mapped keyword processing attribute
contains mapped and existing keyword information.

Table 21. The mapped keyword and existing keywords

SFMAX SIDEFILE(NAME) MAPPED ACTION
=0 X Data processed using existing rules for
binary/text
Don't care '
I Server won't come up
M MOUNT will fail

136

z/0S V2R2 Network File System Guide and Reference

Table 21. The mapped keyword and existing keywords (continued)

SFMAX

SIDEFILE(NAME) MAPPED ACTION

1-2000

File extension used in the
MOUNT-specified side file and then the
SET site-specified side file. If an extension is
I+M not found, the existing rules for
binary/text will be used.

Data processed using existing rules for

NOT SET binary/text

File extension used in the site-specified
SET side file. If an extension is not found, the
I existing rules for binary/text will be used.

Data processed using existing rules for

NOT SET binary /text

Data processed using existing rules for

X Don't care binary /text

File extension used in the mount-specified
SET side file. If an extension is not found, the
M existing rules for binary/text will be used.

Data processed using existing rules for

NOT SET binary/text

Legend:

I
M
X

side file specified in installation table
side file specified in mount command
no side file specified

Native ASCII processing attributes

The cln_ccsid(n) and srv_cesid(n) attributes can be specified either as installation
defaults or at mount time for more granularity between different mount points.
Unless srv_cesid is specified either as an installation default or at mount time,
newly created files will not have any file tag set (that is, the file tag is all zeros).
These two attributes affect translation only when text processing is involved and
only when an existing file has a nonzero or a nonbinary file tag.

Special attention must be paid to the different server attributes specified. See
[Table 17 on page 119 and [Table 22 on page 138]

Considerations for native ASCIl environment support
For applications running on z/OS V1R2 (and higher), a native ASCII environment
is provided for z/OS UNIX file processing.

In this environment, applications can operate on files in either EBCDIC or ASCII
format as well as other data formats defined with a coded character set identifier
(CCSID) without translation, provided the data is already defined and stored in the
data format wanted.

For the z/OS NFS server to operate properly on z/OS UNIX files in this
environment, consider the following important factors:

* Unicode Services must be installed and set up on the system to let the NFS
server use it for text translation. With the NFS version 4 protocol, z/OS NFS
conversion of UTF-8 text data and metadata requires setting up a conversion
environment using the z/OS Unicode Services by creating a Unicode conversion
image that defines conversion tables with UTF-8 [CCSID 1208].

* Two processing attributes, cIn_ccsid and srv_ccsid, are available for the NFS
server for translation purposes as well as for the creation of new files. The

Chapter 9. Initialization attributes for the z/OS NFS server 137

Table 22. File tagging with Unicode Services active

srv_cesid attribute determines the CCSID of newly created z/OS UNIX files. If
srv_cesid is not specified as an installation default or at mount time, then new
files continue to be created as untagged, or with a tag of 0x0000 and the old
translation method of using translation tables specified by the xlat keyword

applies.

* Processing (read/write) of tagged files depends on the different server options

specified.

NFS servers with non-z/OS based NFS clients
contains NFS server options (file tagging with Unicode Services active).

Src=FileTag and
Tgt=cln_ccsid

Src=cln_ccsid and
Tgt=FileTag

Server Options Specified File Tag Read Write Create

text,notagE Untagged or Translation using the | Translation using the | New file created with
Tag=0x0000 or current xlat tables current xlat tables Tag=0x0000
Tag=0xFFFF

text,notag Yes xlate using xlate using N/A (file exists)

t«ext,c1n7cCsid,srvfccsid,no’tagIZZI

Untagged or
Tag=0x0000 or
Tag=0xFFFF

xlate using
Src=srv_ccsid and
Tgt=cIn_ccsid

xlate using
Src=cln_ccsid and
Tgt=srv_ccsid

New file created with
Tag=0

text,cln_ccsid,srv_ccsid,notag Yed

xlate using
Src=FileTag and
Tgt=cln_ccsid

xlate using
Src=cln_ccsid and
Tgt=FileTag

N/A (file exists)

fail op else no xlate

text,tag Untagged or xlate using Src=site xlate using Src New file created with
Tag=0x0000 or attribute srv_ccsid cln=ccsid and Tgt=site | Tag=srv_ccsi
Tag-OxFFFF and Tgt=cln_ccsi attribute srv_ccsi
text tag Yedd xlate using xlate using N/A (file exists)
Src=FileTag and Src=cln_ccsid and
Tgt=cIn_ccsid Tgt=FileTag
binary,notagﬂ Untagged or No translation No translation New file created with
Tag=0x0000 or Tag=0x0000
Tag-OxFFFF
binary,notag Yed® No translation Fail operation N/A (file exists)
binary,tag Untagged or No translation No translation If ccsid on mount,
Tag=0x0000 or Tag=srv_ccsid else
Tag=0xFFFF Tag=0xFFFF
binary,tag Yedd No translation If FileTag!=srv_ccsid | N/A (file exists)

138 2z/0S V2R2 Network File System Guide and Reference

Table 22. File tagging with Unicode Services active (continued)
File Tag | Read

Server Options Specified Write | Create

Notes:

1. Writing to a file that has a tag that is different form the srv_ccsid (regardless whether the file is empty or not) will result in
the file tag overriding the specified srv_ccsid when text is specified.

2. If srv_ccsid is specified (as an installation default or at mount), then the file is created with the srv_ccsid tag. Otherwise an
untagged file is created.

xlat is ignored when the file being accessed is tagged.

xlat is optional. For untagged files, translation is done using default xlat tables, or custom xlat tables (if specified).
There is no facility in the NFS server to change an existing file tag. This must be done outside the NFS server.
Specifying the binary option overrides any cln_ccsid and srv_ccsid specified.

All files created by the server when text and srv_ccsid are specified will also have the TXTFLAG set to ON.

© N o o kMo

The NFS file tagging function assumes that Unicode Services is installed and activated on the system (available as of OS/390
Vv2.8).

9. If Unicode Services is not activated, only the NOTAG option is valid
a. If the TAG option is specified in the site attributes, the NFS server start-up will fail.
b. If the TAG option is specified on the mount command, the mount will fail.

10. File create and write are atomic operations. A file is created before it can be written. Thus, a file always already exists when it
is written, and the attributes are used accordingly.

11. For reading or writing untagged files when in text, TAG mode, NFS uses the default server CCSID from the site attribute file.
Any srv_ccsid values specified on the mount command will be ignored for reading or writing files in this case. The mount
srv_ccsid will still be used for file creation however.

12. If TAG is specified in site attribute file, the site attribute srv_ccsid and cln_ccsid are always used for translating file names.
If TAG is specified in site attribute file but Unicode Services is not active, the NFS server will shut down.
If NOTAG is specified in the site attribute file, the site attribute xlate(table) is always used for translating file names.

13. These CCSIDs must be specified on the mount.

able 23| contains NFS server options (file tagging with Unicode Services not
active).

Table 23. File tagging with Unicode Services not active

Server Options Specified File Tag Read Write Create

text,notag Untagged or Translation using the | Translation using the |New file created with
Tag=0x0000 or current xlat tables current xlat tables Tag=0x0000
Tag=0xFFFF

text Yes Translation using the | Fail operation N/A (file exists)

current xlat tables

binary,notag Untagged or No translation No translation New file created with
Tag=0x0000 or Tag=0x0000
Tag=0xFFFF

Note: The TAG option is not valid if the Unicode Services are not active.

To support the correct use of Unicode Services the CONVSERV processing attribute is added. The values of this attribute defines
the technique search order, or how Unicode Services processes specified code pages. See|“Creating the conversion environment for|

[Unicode Services” on page 174] for descriptions of the values.

The value of this attribute should exactly concur with the value of the technique search order, that was used during the current
Unicode Image generation.

Site attributes syntax

You can use the site attributes to control z/OS NFS server resources.

Chapter 9. Initialization attributes for the z/OS NFS server 139

140

describes the site attributes. Defaults are underlined in this format. Some

initial settings are shown, but the system administrator might have changed these

settings, so use the showattr command to show the actual settings being used. The
site attributes cannot be modified by client users.

Table 24. Site attributes

Site Attribute Description

bufhigh(xx, yy)
Specifies the below-the-2GB bar virtual storage limit for data buffers on z/OS NFS
Server. When this maximum limit of allocated buffer storage is reached buffer
reclamation is initiated (see the percentsteal attribute in this table).

xx the high water mark data buffer storage limit (in bytes, KB, or MB). The
valid range is 1 to 2047 MB.

The default storage limit (xx) is 32 MB.

A higher storage limit (xx) means more caching, and potentially better
read performance.

yy the watermark in percent of the storage limit (xx) for printing a data buffer
utilization alert message. The valid values are 0 (which turns off the data
buffer utilization reporting mechanism) and from 50 to 90. If no
percentage (yy) value is specified, a default value of 80 percent is used. If
an invalid value is specified for the percentage (yy), the default value is
used.

At z/OS Server startup, the actual value (xx) specified with bufhigh may be
adjusted by the z/OS NFS Server internally depending on the available region size
and other z/OS NFS Server memory requirements to enable the z/OS NFS Server
to execute properly.

Within limits, the bufhigh values can be changed while the z/OS NFS Server is
running with the MODIFY operator command (see the bufhigh operand in
“Entering operands of the modify command for the z/OS NFS server” on pagel
233).

The bufhigh attribute does not apply to z/OS UNIX files.

cachewindow(n)

Specifies the window size used in logical I/O to buffer NFS Clients' RPC WRITES

received out of order. The value of n is a number from 1 to 2048 (the default is

112). The cachewindow attribute does not apply to z/OS UNIX files. The

cachewindow attribute is ignored if the server-adjusted logicalcache is greater than

2GB The suggested value is some small multiple of the number of BIODs running
on a client. The general rule in setting the n value of cachewindow(n) is
n = ((num of BIOD + 1) = (client_max_IO _buffer _size/transfer_size))

* num of BIOD is the number of blocked I/O daemons set by the client
workstation. This value is usually set to defaults at the installation of the
operating system or by your system administrator.

e client_max_IO_buffer_size is the amount of I/O data requested by the client (for
example, client writes 8192 bytes of data to the remote file system). This value is
determined by your application programs.

* transfer_size is the actual size of data being sent across the network (for example,
the 8192 bytes of data can be broken down to 16 smaller packets of 512 bytes
(16x512=8192)). This value is determined dynamically by your client workstation.

z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute Description

checklist
When specified, the server bypasses saf checking (even when saf or safexp is
specified) for the list of files and directories underneath mount points which either
matches a mount point entry or is a child of a mount point entry specified on the
dirsuf parameter in the exports data set. CHECKLIST is only valid if SAF checking
is the security option for the particular data access; otherwise, it is ignored even if
it is specified. See GFSAPEXP in NFSSAMP library for a sample exports data set.

nochecklist
When specified, the server operates as before and ignores the information that is
specified on the dirsuf parameter in the exports data set.

consolemsgs(i| ALL)
Specifies the number of messages for NFS operator commands:

LIST=MOUNTS, LIST=DSNAMES, LISTLOCK

will print on console. Full output can be found in NFS log.
Valid range of n is 10 to 100. Default value of # is 10.

If "ALL" option is specified, all messages will be printed on the console.

delegation
When specified, the server temporarily delegates management of a file's resources
to an NFS client for NFS Version 4. When a file's management is delegated to an
NFS client, all file access requests can be managed locally by the NFS client while
the file is delegated.

nodelegation

When specified, the server does not delegate management of a file's resources to an
NFS client for NFS Version 4.

denyrw
When specified, the server honors deny requests for file share reservations (the

Windows Share_Deny value) from the NFS client. The deny requests may be
specified on an NFS V4 Open operation or an NLM_share RPC.

nodenyrw
When specified, the server ignores deny requests from NFS clients (the Windows
Share_Deny value), and treats the requests as if deny_none were specified.

dhcp When specified, the server accepts dynamic IP addresses for the NFS client, using
the dynamic host configuration protocol (dhcp). The client system must have a
static host name and must dynamically update the DNS server with their IP
address changes.

nodhcp
When specified, the server supports only NFS clients that use a static IP address.

Chapter 9. Initialization attributes for the z/OS NFS server 141

Table 24. Site attributes (continued)

Site Attribute Description

DlyDTimeout(n)
Specifies the minimum delay detection time value in sec before the delay detection
mechanism observes a delay in an external call/function and prints message
GFSA1030E on the console.

Valid values are 0 and a range of 5 to 60 seconds. Any value of DlyDtimeout from
1 to 4 seconds is converted to 5 seconds. If DlyDTimeout is set to 0 the delay
detection mechanism is turned off. The default value is 10 seconds.

fileidsize(n)

Specifies how to control the handling of fileid sizes by the NFS server in NFS
objects. Fileids may be recognized either as 32-bit or 64-bit addresses.

Valid values are 32 and 64.
The default value is fileidsize(64).

Note: fileidsize(32) is applicable to NFS version 2/3/4 while fileidsize(64) is only
applicable to NFS version 4.

Client platforms often copy the returned NFS 64 bit object fileid to internal
structure fields such as a UNIX inode. For instance UNIX system function stat/fstat
returns a result in the structure stat, which has field st_ino defined as u_int32.
Older 32-bit applications and operating systems may not support NFS fileids larger
than 32 bits (that is, not zero high 32 bit word) resulting in 'value too large' errors
or unexpected client behavior.

fn_delimiter
Specifies a character 'c' to be used as a delimiter between the file name and the
attributes that follow it. This capability allows those sites that have UNIX data sets
containing commas to copy and store their data on the NFS server. The following
example specifies the default delimiter as a semicolon:

fn_delimiter(;)

So a user can process a file called 'comma,in-name' by entering:

vi "comma,in-name;text,1f"

Note:

1. If the comment symbol was set as ";" with the altsym keyword and the
fn_delimiter(;) attribute uses semicolon then the fn_delimiter semicolon will be
treated as a delimiter between the file name and the attributes that follow, not
as a comment symbol.

2. It is admissible to use the semicolon as the comment symbol after the right
parenthesis if the altseq keyword is used.

3. The following example shows allowable multi-line syntax:
fn_delimiter \

(;) 5 the second semicolon is the comment symbol if altseq kwd is used
(;) must be located on one line.

A user can also include a default file name delimiter as a comma as follows:
fn_delimiter(,)

fn_delimiter(,)
The default file name delimiter is a comma.

142 z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute Description

hfs(prefix) or hfsprefix(prefix)
Specifies a z/OS UNIX file system prefix to be imbedded in the mount directory
path name. The default value of the z/OS UNIX file system prefix is /hfs. Mount
requests received by the z/OS NFS server beginning with the z/OS UNIX file
system prefix value are identified as mount requests for z/OS UNIX. The z/OS
UNIX file system prefix value is not part of the path name.

Note:
1. hfsprefix is preferred and should be used in future updates, but hfs is still
accepted.

2. The z/0S UNIX file system must already be mounted locally by z/OS UNIX.
Otherwise, the client mount request will fail.

3. The prefix value can only be 7 characters or less including the beginning "/"

4. The prefix value is case insensitive. It is always folded to upper case.

hfsfbtimeout(n)
Specifies how to control the timeout of the z/OS UNIX vnode token used by the
NFS server. The timeout value controls how long before vnode tokens saved in file
blocks are released.

The valid range is 1 to 32,767 seconds.

* The value of n can go as low as 1 second but to avoid the possibility of the client
hanging (because of network delays). The value of 7 is not recommended to be
lower than 5 second.

* The value of n may need to be increased if the network is slow and the accessed
directory has a lot of entries.

The hfsfbtimeout attribute default value is 60 seconds.

Chapter 9. Initialization attributes for the z/OS NFS server 143

144

Table 24. Site attributes (continued)

Site Attribute Description

hfssec(krb5,krb5i,krb5p,sys)

Specifies the acceptable network transmission levels of security which can be used
as the authentication flavor on NFS version 4 requests for accesses to z/OS UNIX
files. This attribute is only used when not overridden by authentication
specifications in the exports file. Multiple values for this attribute can be specified
using the comma as delimiter. The following are the supported values:

krb5 Provides Kerberos V5 based integrity on the RPC credentials (but not
data), when the RPC authentication flavor is RPCSEC_GSS. It uses the
DES_MAC_MDS5 integrity algorithm and the RPCSEC_GSS service of
rpc_gss_svc_none.

krb5i Provides Kerberos V5 based integrity on both the RPC credentials and
data, when the RPC authentication flavor is RPCSEC_GSS. It uses the
DES_MAC_MDS5 integrity algorithm and the RPCSEC_GSS service of
rpc_gss_svc_integrity.

krb5p Provides Kerberos V5 based integrity and privacy on both the RPC
credentials and data, when the RPC authentication flavor is RPCSEC_GSS.
It uses the DES_MAC_MD?5 algorithm for integrity and 56 bit DES for
privacy. The RPCSEC_GSS service used here is rpc_gss_svc_privacy.

sys Specifies that the AUTH_SYS authentication flavor can also be used to
access this file system. Note that the AUTH_SYS authentication flavor does
not provide any integrity or privacy protection.

The hfssec attribute default is hfssec(sys, krb5,krb5i krb5p).

Note: File systems that require integrity or privacy protection over network
transmissions of data should explicitly specify the desired settings. Do not rely on
the default settings, because the default settings allow for RPC accesses using the
AUTH_SYS authentication flavor, which does not provide any integrity or privacy
protection.

id2name(cache | callsaf)

Controls the usage of Uid/Gid cache for uid/gid numbers to/from owner/group
names conversion. The caching of the most recently used pairs of (uid, owner) and
(gid, group) reduces SAF calls.

cache Uid/Gid Cache is enabled for z/OS NFS server.

callsaf Uid/Gid Cache is disabled for z/OS NFS server and it calls SAF each time
to do the conversion.

This attribute affects only NFS version 4. The default is "callsaf".

z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute Description

impprefix(impprefix)
Specifies how to interpret a mount path name that does not have a path type
prefix, where immprefix is one of the following:

NONE An explicit prefix must always be specified for an absolute path. Implicit
prefix resolution is not valid in this case.

HFS If no explicit prefix is present, assume the path is a z/OS UNIX file
system.

MVS If no explicit prefix is present, assume the path is an MVS high-level
qualifier. This is the default.

HFS, MVS
If no explicit prefix is present, first assume the path is a z/OS UNIX file
system. If no matching z/OS UNIX file system can be found, assume that
it is an MVS high-level qualifier.

MVS, HFS
If no explicit prefix is present, first assume the path is an MVS high-level
qualifier. If no matching high level qualifier can be found, assume that it is
a z/0S UNIX file system.

Note:

1. For the "MVS,HFS" setting, MVS selection requires that at least one MVS data
set exists in the system catalog with the specified High Level Qualifier (HLQ).

2. The"MVS" setting, results in equivalent implicit prefix processing to releases
prior to VIR11; that is, z/OS UNIX requires a prefix and MVS does not.
However, an MVS prefix can still be specified on path names.

3. Since NFS v4 mount processing is performed one qualifier at a time, when 2
options are specified, the object existence test for determining whether to move
on to the second option is based on the first path name qualifier only. If it
exists, then the first option is selected and that cannot change if a later qualifier
is not found.

leadswitch
Specifies that the server returns ‘/” as the first character in each export entry.

noleadswitch
Specifies that the server will not return ‘/’ as the first character in each export
entry.

The leadswitch attribute is ignored for z/OS UNIX file objects.

Chapter 9. Initialization attributes for the z/OS NFS server 145

146

Table 24. Site attributes (continued)

Site Attribute Description

leasetime(n)

Specifies the length of time (the lease interval) in seconds that the z/OS NFS server
allows clients to:

* Reclaim locks and share reservations following an NFS server restart. During this
grace period, clients can reclaim locks on behalf of their users.

* Remain active without communicating with the NFS server. If an NFS V4 client
does not communicate with the z/OS NFS server for the length of the lease
interval, its client id will expire.

The value of # can range from 5 to 3600. The specified value must be smaller than
the value of the logout attribute, if logout is not set to zero. The default value is
120.

Note: When using the NFS version 4 protocol, the leasetime value should be set to
a value larger than or equal to the attrtimeout, writetimeout and readtimeout
attributes. Otherwise, it is possible for performance problems to occur when
attempting to access MVS data sets.

logicalcache(n)

Specifies the above-the-bar virtual storage for allocated logical cache buffers in the
logical I/O processing. If n is greater than the available storage above-the-bar
(implied by the MEMLIMIT parameter in the startup procedure) at startup, the
z/0S NFS Server shuts down immediately.

The value of # is an integer from 1 to 4096GB. The default value is 16M .
The logicalcache attribute does not apply to z/OS UNIX files.

At z/0OS Server startup, the actual value () specified with logicalcache may be
adjusted by the z/OS NFS Server internally depending on the available
MEMLIMIT and other z/OS NFS Server memory requirements to enable the z/OS
NFS Server to execute properly.

* If n is greater than the available storage above-the-bar after z/OS NFS Server
starts its threads (which uses some memory above-the-bar due to the LE runtime
THREADSTACK64 options), the Server shuts down immediately.

* If n is less than the available storage above-the-bar after z/OS NFS Server starts
its threads, then the server may increase the initial nn specification up to the
smaller of 4096GB or one-half of the available storage if n is smaller than
one-half of the available storage; or the server honors the specified nn if # is
greater than one-half of the available storage (no expansion).

* If the total number of threads in the nfsstasks attributes is X, then LE use X *
0.25MB for thread stacks (due to THREADSTACK64(256K) runtime option). If
MEMLIMIT is 1024GB and there are 100 threads that initially use 25MB (100 *
0.25MB) and the logicalcache is 100MB, then the server may expand the
logicalcache to 512GB.

logout(n)

Specifies the time limit for inactivity in seconds for a given user on a client. The
default value is 1800. When the limit is reached, the user is automatically logged
out. The client user must enter the mvslogin command again to reestablish the
client's z/OS session. This value should normally be the same as the value defined
for TSO/E logout at your site. The value of n can range from 61 seconds to 20
megaseconds (approximately 243 days).

z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute Description

maxrdforszleft(n)
Specifies the number of physical block buffers left after determining a file's size.
This operation is done for later server read requests to the same file. The buffers
left are subject to trimming during a “buffer steal” operation. The value of n is an
integer from 1 to 1024.

The default value is 32.

maxtimeout(n)
Specifies the maximum timeout allowed. This attribute and the mintimeout
attribute define the range of values that client users can specify for attrtimeout,
readtimeout, and writetimeout. The value of n is the number of seconds from 1 to
32,767 (9 hours, 6 minutes, and 7 seconds). This attribute does not affect the logout
attribute.

nomaxtimeout
Allows client users to specify noattrtimeout, noreadtimeout, and nowritetimeout.

memfree()
Specifies unused memory threshold (in Megabytes). When free memory in any
internal NFSS subpool is more than this value, the memory reclamation process is
scheduled in order to avoid possible memory exhaustion.

* To disable automatic memory reclamation, the memfree attribute must not be
specified.

¢ The maximum value for memfree is 999 (MB).

* The minimum value for memfree is 10 (MB).

* If memfree is set to 0, internal memory management is turned off and every
memory request (below 2GB) is translated to GETMAIN or FREEMAIN system
calls.

This value should be chosen based on a particular workload/available job region
size.

If this attribute is used, a value of 20 is recommended unless the attribute is being
tuned.

For memory above 4GB the defined memfree value is multiplied by 4.

Chapter 9. Initialization attributes for the z/OS NFS server 147

148

Table 24. Site attributes (continued)

Site Attribute Description

mintasks(1,m,0)

Defines the minimum number of NFS tasks or threads allowed to run. Tasks may
be terminated for reasons such as 80A or 878 ABEND:s.

n Specifies the minimum number of subtasks which handle the
asynchronous I/O operations or short blocking operations. If the number
of active ‘short’ tasks becomes less than n the shutdown process of the
NFS server starts.

m Specifies the minimum number of subtasks which handle z/OS UNIX file
requests. If the number of active z/OS UNIX tasks becomes less than m
the shutdown process of the NFS server starts.

o Specifies the minimum number of subtasks which handle long blocking
operations. If the number of active legacy long service tasks becomes less
than o the shutdown process of the NFS server starts.

If n, m, or o are greater than the corresponding values in nfstasks, they are
assigned to half the nfstasks values. If 1, m, or o are not specified, they are
assigned default values of 4, 4 and 1, respectively.

Valid range for n is from 4 to 99

Valid range for m is from 4 to 100

Valid range for o is less than or equal to 99
Valid range for n + o is less than or equal to 100

mintimeout(n)

Specifies the minimum timeout. This attribute and maxtimeout define the range of
values that can be specified for attrtimeout, readtimeout, and writetimeout. The
value of 7 is the number of seconds from 1 to 32,767.

The default value is 1.

mixcase/upcase

Specifies messages display in mixed or upper case.
Note: Starting with z/OS NFS V1R10, this attribute is ignored.

mvslogindelay()

Specifies the delay time value in seconds since z/OS NFS Server startup.

To avoid an NFS client's cache invalidation due to access errors after z/OS NFS
server startup, in SECURITY(SAF/SAFEXP) mode, the server maps the reply error
NFS3ERR_ACCES/NFS4ERR_ACCES to NFS3ERR_JUKEBOX/NFS4ERR_DELAY
on NFSv3 and NFSv4 RPC requests, until the mvslogin is received or the
mvslogindelay expires. This allows an NFS client time to reissue an MVSlogin.

* The maximum value for mvslogindelay is 300 seconds.

* The minimum value for mvslogindelay is 0 seconds.

The default value is 0 seconds (off). If mvslogindelay is set to O the error mapping
is turned OFFE.

mvsprefix(prefix)

Specifies an MVS data set prefix to be appended to the front of MVS data set name
for a mount path directory. The default value of prefix is /mvs.

The mvs prefix enables you to explicitly specify a prefix for identifying MVS data
sets, simliar to the way in which the hfs prefix does for z/OS Unix files.

z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute

Description

mvssec(krb5,krb5i,krb5p,sys)
Specifies the acceptable network transmission levels of security which can be used
as the authentication flavor on NFS version 4 requests for accesses to MVS data
sets. This attribute is only used when not overridden by authentication
specifications in the exports file. Multiple values for this attribute can be specified
using the comma as delimiter. The following are the supported values:.

krb5

krb5i

krb5p

sys

Provides Kerberos V5 based integrity on the RPC credentials (but not
data), when the RPC authentication flavor is RPCSEC_GSS. It uses the
DES_MAC_MDS5 integrity algorithm and the RPCSEC_GSS service of
rpc_gss_svc_none.

Provides Kerberos V5 based integrity on both the RPC credentials and
data, when the RPC authentication flavor is RPCSEC_GSS. It uses the

DES_MAC_MDS5 integrity algorithm and the RPCSEC_GSS service of

rpc_gss_svc_integrity.

Provides Kerberos V5 based integrity and privacy on both the RPC
credentials and data, when the RPC authentication flavor is RPCSEC_GSS.
It uses the DES_MAC_MDS?5 algorithm for integrity and 56 bit DES for
privacy. The RPCSEC_GSS service used here is rpc_gss_svc_privacy.

Specifies that the AUTH_SYS authentication flavor can also be used to
access this data set. Note that the AUTH_SYS authentication flavor does
not provide any integrity or privacy protection.

The mvssec attribute default is mvssec(sys,krb5,krb5i,krb5p).

Note: File systems that require integrity or privacy protection over network
transmissions of data should explicitly specify the desired settings. Do not rely on
the default settings, because the default settings allow for RPC accesses using the
AUTH_SYS authentication flavor, which does not provide any integrity or privacy
protection.

Chapter 9. Initialization attributes for the z/OS NFS server 149

150

Table 24. Site attributes (continued)

Site Attribute Description

nfstasks(n,m,o,t,u)

Specifies the number of server processes to initiate on startup.

If nfstasks(n,m) is specified, then the following is true.

* The value of n is the number of subtasks that handle the asynchronous
input/output (I/O) operations or short blocking operations (the maximum
number of concurrent NFS server requests) in the z/OS MVS data path.

* The value of m is the number of subtasks that handle the long blocking
operations (the maximum number of concurrent NFS server recall and z/OS
UNIX requests). Increase this value if your server supports lots of active recall or
z/0S UNIX clients.

Based on system resources available below the 16 Mb line, the maximum 7 value
may not be achievable. The precise maximum value will be system configuration
dependent. If an 80A or 878 Abend is experienced during NFS server startup, use a
smaller value for n.

If nfstasks(n,m,0) or nfstasks(n,m,o,t,u) is specified, then the following is true.

* The value of n is the number of subtasks that handle the asynchronous
input/output (I/O) operations or short blocking operations (the maximum
number of concurrent NFS server requests) in the z/OS MVS data path.

* The value of m is the number of subtasks that handle z/OS UNIX requests.
Increase this value if your server supports lots of active z/OS UNIX requests.

* The value of o is the number of subtasks that handle the long blocking
operations (the maximum number of concurrent NFS server recall requests).
Increase this value if your server supports lots of active recall operations.

* The value of t is the number of transport subtasks that handle TCP network
requests.

* The value of u is the number of transport subtasks that handle UDP network
requests.

Based on system resources available below the 16 Mb line, the maximum n + o
value may not be achievable. The precise maximum value will be system
configuration dependent. If an 80A or 878 Abend is experienced during NFS server
startup, use a smaller value for n + o.

The following are valid value ranges for n, m, o, t, and u.

* Valid range for n is from 4 to 99.

* Valid range for m is from 4 to 100.

* Valid range for o is from 1 to 99.

* Valid range for n + o0 is from 5 to 100

* Valid range for f is from 4 to 32.

* Valid range for u is from 4 to 32.

The nfstasks attribute default is nfstasks(8,16,8,4,4).

z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute Description

nfsvddomain(NFSv4_default_domain)

specifies the default domain for the NFS v4 protocol (NFSv4) name mapping.

The NFSV4DOMAIN attribute serves for redefinition of a name of this unique
domain. In accordance with RFC3530 NFSv4 attributes "owner" and
"owner_group'are transferred between the client and server in the form of
"user_name@domain" and "group_name@domain". The server provides the
mapping of names to ids and vice versa. NFSv4_default_domain identifies the
user/group name space with one to one correspondence between the names and
their numeric identifiers (uids and gids).

z/0OS NFS Server will accept as valid a set of users and groups for default domain.
The server will treat other domains as having no valid translations. If the
NFSV4DOMAIN attribute is not used, the server uses the system-defined domain.
The NFSv4_default_domain will be converted internally to lower case.

For further details on NFSv4 name mapping, see ["NFES v4 protocol name mapping”]|

nlm

nonlm

Specifies that the initialization of the z/OS NFS server should include starting the
NLM and NSM daemons.

Specifies that the initialization of the z/OS NFS server should not include starting
the NLM and NSM daemons. The system will run without lockd and statd.
Specifying nonlm does not affect the availability of byte range locking and share
reservation support for NFS version 4 protocol access.

If nonlm is specified, the NLM may not be started after NFS has initialized. If
NLM is desired, you must stop and restart NFS after specifying the nlm site
attribute. The only way to stop NLM is to shut down the NFS server. It is no
longer necessary to define the NLM and NSM startup procedures to a z/OS UNIX
segment as UID(0) to RACF because the NLM and NSM startup procedures are no
longer supported.

Note:

1. The lock data sets must always be allocated, even if nonlm is specified in the
site attributes.

2. The old startup procedures for NLM and NSM are no longer shipped with
z/0S; these procedures are obsolete and old copies from previous releases
should not be used on z/OS VIR7 or later releases.

oemhsm

When specified, indicates that a non-DFSMS HSM product is used to work with
migrated data sets. z/OS NFS Server starts working with migrated data sets
without checking for HSM availability. If no HSM is installed, a hang may result.

nooemhsm

When specified, the z/OS NFS Server checks whether the DFSMS HSM product is
started when working with migrated data sets. If the DFSMS HSM product is not
started, an error is returned.

penfsd Specifies that z/OS NFS server is to start the PCNFSD server.

nopcnfsd

Specifies that z/OS NFS server is not to start the PCNFSD server.

Chapter 9. Initialization attributes for the z/OS NFS server 151

152

Table 24. Site attributes (continued)

Site Attribute Description

percentsteal(n)

Specifies the percent of data buffers that can be reclaimed for use when the
bufhigh(xx,yy) limit has been reached. A higher value means a reclaim operation is
frequently performed, and the cached data is significantly trimmed on each reclaim.
This can result in poor read performance, because readahead buffers might be
stolen. Lower values result in less frequent reclaim operations, and the cached data
normal water mark is higher, meaning possibly better performance by reading from
cached data.

The value of # is an integer from 1 to 99.
The percentsteal attribute default value is 20.

The percentsteal attribute does not apply to z/OS UNIX files.

public(legacy_path,hfs_path)

Specifies the legacy path (MVS z/0OS conventional data) and HFS path (z/OS UNIX
data) that is associated with the public file handle for WebNFS access. The first
path, if specified, is the legacy path. The second path is the HFS path.

If the first path is not present, a comma must precede the second path. If the
public keyword is specified, then one of the paths must be specified. The public
keyword must be specified after the hfsprefix(), mvsprefix(), and impprefix()
keywords in the site attribute table. A lookup request with the public file handle
determines which of the two paths is being referenced by the pathname that is
specified. An absolute pathname will tell the server which of the paths is
referenced by matching one of the paths specified. A lookup request with a relative
pathname will be interpreted as a z/OS UNIX request if HFS is active (hfs_path
has been provided); otherwise, it is treated as a MVS request.

The public attribute default value is no public path.

z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute Description

pubsec(krb5,krb5i,krb5p,sys)
Specifies the acceptable network transmission levels of security for accesses to
public file systems which can be specified as the authentication flavor of the RPC
request. This attribute is only used when not overridden by authentication
specifications in the exports file. Multiple values for this attribute can be specified
using the comma as delimiter. The following are the supported values:.

krb5 Provides Kerberos V5 based integrity on the RPC credentials (but not
data), when the RPC authentication flavor is RPCSEC_GSS. It uses the
DES_MAC_MDS5 integrity algorithm and the RPCSEC_GSS service of
rpc_gss_svc_none.

krb5i Provides Kerberos V5 based integrity on both the RPC credentials and
data, when the RPC authentication flavor is RPCSEC_GSS. It uses the
DES_MAC_MDS5 integrity algorithm and the RPCSEC_GSS service of
rpc_gss_svc_integrity.

krb5p Provides Kerberos V5 based integrity and privacy on both the RPC
credentials and data, when the RPC authentication flavor is RPCSEC_GSS.
It uses the DES_MAC_MDS?5 algorithm for integrity and 56 bit DES for
privacy. The RPCSEC_GSS service used here is rpc_gss_svc_privacy.

sys Specifies that the AUTH_SYS authentication flavor can also be used to
access file systems. Note that the AUTH_SYS authentication flavor does
not provide any integrity or privacy protection.

The pubsec attribute default is pubsec(sys,krb5,krb5i,krb5p).

Note: File systems that require integrity or privacy protection over network
transmissions of data should explicitly specify the desired settings. Do not rely on
the default settings, because the default settings allow for RPC accesses using the
AUTH_SYS authentication flavor, which does not provide any integrity or privacy
protection.

readaheadmax(n)
Specifies the number of bytes to be read to fill internal buffers during read
processing to enhance satisfying read requests directly from cache. This reduces the
amount of synchronous physical I/O performed for NFS read requests for
sequential read file access. It also reduces context switching overhead on NFS read
requests by allowing more read requests to be satisfied directly from cache.

The value of n is an integer from 1 KB to 128 KB (normally 2 to 4 times the
common block size used for file access, which is recommended at 8 KB for AIX file
activity).

The readaheadmax attribute default value is 16K. Specifying zero (0) will
deactivate readahead.

The readaheadmax attribute does not apply to z/OS UNIX files.

Chapter 9. Initialization attributes for the z/OS NFS server 153

Table 24. Site attributes (continued)

Site Attribute Description

readdirtimeout(n)
Specifies the amount of time, in seconds, before the internal readdir cache that is
used for MVS z/0S conventional data sets is timed out or discarded. The valid
range is from 1 to 32,767 (9 hours, 6 minutes, and 7 seconds). The value of n can go
as low as 1 second, but to avoid the possibility of client hanging (due to network
delays and staled cache), is not recommended to be lower than 5 seconds. The
value of n may need to be increased if the network is slow and the accessed
directory has a lot of entries.

The readdirtimeout attribute default value is 30 seconds.

rec878 Specifies that the recovery processing of 878 and 80A ABENDs will be turned on,
and affected tasks will attempt to recover.

norec878
Specifies that the recovery processing of 878 and 80A ABENDs will be turned off.
That is, if this type of ABEND occurs, the server will shutdown without recovery. It
should only be used for debug.

remount
When specified, the server processes NFS requests after the NFS Server is restarted
even though the HFS file system was remounted with a new HFS file system
number (USS device number) after its last usage. Use of the remount attribute
causes the NFS Server to automatically access a remounted HFS file system even
though it may have been changed prior to remounting. Any active client mounts
are re-established.

noremount
When specified, the server fails NFS requests (with return value NFSERR_STALE) if
the HFS file system was remounted with a new HFS file system number (USS
device number) after its last usage.

The remount/noremount attributes apply only to HFS file systems.

154 z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute

Description

restimeout(n,m)

Specifies a retention period and a clock time for the removal of mount points and
control blocks that have been inactive longer than the specified retention period.

n

Specifies the resource retention period for mounts and associated
resources. If they have been inactive for more than n hours, they are
removed.

The valid range for n is 0 to 720 hours (30 days). The default is 48 hours.
If n is set to 0, the z/OS NFS server does not remove any mount points or
associated resources.

Specifies the time of day to do the cleanup for mounts and associated
resources that have been inactive more than n hours. The time of day is
specified as a 24 hour local time value.

The valid range for m is 0 to 23. The default is 0 (that is, midnight).
Because cleanup work slows down the server, set m so that cleanup work
occurs when the server is lightly loaded. If a mount handle is removed by
the cleanup activity, the user must do the umount and mount operations
to access the mount point again. The resource cleanup is also done when
the server is shutting down.

security(muvs[,hfs,public])
Specifies security options for MVS data sets, z/OS UNIX files, and data that is
accessed using the public file handle.

mos

hfs

public

Specifies the security option for MVS z/OS conventional data sets. The
mus parameter is a required parameter.

Specifies the security option for z/OS UNIX files. The hfs parameter is an
optional parameter.

Specifies the security option for data that is accessed with the public file
handle. The public parameter is an optional parameter.

Note: When the optional parameters (ifs and public) are not specified, they are
assigned the same security option as the first parameter.

You can specify the following security options:

exports Exports list checking. For z/OS UNIX files, checks UNIX permission bits.

none

saf

safexp

The UID is obtained from the client RPC request. No SAF checking.

Neither SAF checking nor exports list checking. For z/OS UNIX files,
checks UNIX permission bits. The UID is obtained from the client RPC
request.

SAF checking. No exports checking. For z/OS UNIX files, checks UNIX
permission bits. The UID is obtained from the z/OS UNIX segment using
mvslogin. There is no transparent access across z/OS NFS server restart.
An mvslogin is required

SAF checking and exports list checking. For z/OS UNIX files, checks
UNIX permission bits. The UID is obtained from the z/OS UNIX segment
using mvslogin. There is no transparent access across z/OS NFS server
restart. An mvslogin is required

The security attribute default is security(safexp,safexp, safexp).

Chapter 9. Initialization attributes for the z/OS NFS server 155

Table 24. Site attributes (continued)

Site Attribute Description

setgid(POSIX | ZOSUNIX)
z/0OS NFS Server uses POSIX rules in GID inheritance for new z/OS UNIX objects.
If the S_ISGID bit of the parent directory is on, the new GID is set to the GID of
the parent directory. Otherwise, it is set from the GID of the process. A new
directory inherits the S_ISGID bit value of the parent directory.

POSIX z/0S NFS Server uses POSIX rules in GID inheritance for new z/0OS
UNIX objects. If the S_ISGID bit of the parent directory is on, the new GID
is set to the GID of the parent directory. Otherwise, it is set from the GID
of the process. A new directory inherits the S_ISGID bit value of the parent
directory.

This is the default value.

ZOSUNIX
z/0OS NFS Server provides compatibility with z/OS UNIX. When the
RACEF profile FILE. GROUPOWNER.SETGID in the UNIXPRIV class is set,
z/OS NFS Server uses POSIX rules, as stated previously. Otherwise, a new
GID is always set to the GID of the parent directory, and for a new
directory, the S_ISGID bit is always set off.
Note: Some NFS clients (such as, SUN and AIX) force GID setting after
object creation and prevent compatibility with z/OS UNIX even though
the setgid(ZOSUNIX) attribute is set.

sfmax(n)
Specifies the maximum size (in kilobytes) of allocated storage for all of the side
files. The value of n is an integer from 0 to 2000. The default value is 0 and it
signifies that no mapping is allowed on the NFS server. If sfmax is set to 0,
specifying the sidefile keyword in the attributes data set will cause the server to
shut down and specifying the sidefile keyword in any subsequent mount
commands causes the mount to fail because mapping is not allowed on the NFS
server. If the amount of storage specified cannot be obtained during server
initialization then the server will shut down immediately.

156 z/0S V2R2 Network File System Guide and Reference

Table 24. Site attributes (continued)

Site Attribute Description

smf(levell switch])
Specifies the level of SMF support and defines whether or not to start SMF record
collection at the NFS server startup.

The following level options can be specified:
none No SMF records are to be produced.

all All SMF NFS type 42 records are to be produced.

userfile
Both user session and file usage SMF records are to be produced.

Alternately a list of levels (subtype_list) delimited by commas, can be specified. In
this mode of specification, at least one of the subtype levels (user, file, audit) must
be specified, and the remaining levels are optional.

file Produces file usages SMF records (subtype 7).

user Produces user session SMF records (subtype 8).

audit Produces file creation, removal, and rename records (subtype 26).
The following switch options can be specified:

off Activation of SMF records collection can be done manually by issuing the
modify command. The switch parameter is optional.

on Activates SMF records collection at the NFS server startup.

The full syntax of the smf attribute follows:
smf (none|all||userfile | subtype list[,on|off])
An example of the smf attribute follows:

smf (user,on)

An example follows that shows the smf attribute when the value of switch is off:
smf (user)

stringprep
Specifies that z/OS NFS server is to enable stringprep normalization. Stringprep
normalization is the NFS version 4 globalization function for converting inbound
strings to UTF-8 format.

nostringprep

Specifies that z/OS NFS server is to not enable stringprep normalization.

Chapter 9. Initialization attributes for the z/OS NFS server 157

Table 24. Site attributes (continued)

Site Attribute Description

symresolve
Specifies that the z/OS NFS server is to resolve a symbolic link (symlink) found in
an EXPORT or CHECKLIST entry and add it to the in-memory EXPORT or
CHECKLIST list. The new entry is created in memory only. This option only
applies to NFSv4 LOOKUP in z/OS UNIX space when a symlink is found within
an EXPORT entry.

Note:
1. Only absolute paths are supported; symlinks pointing to relative paths are not
supported.

2. If the path of a symlink is changed, an EXPORTES command must be run to
allow z/OS NFS Server to reinterpret the new symlink path at the next mount.

3. For effects of using the showmount command, see |“Using commands on the|
|z/OS NFS client” on page 81

nosymresolve
Specifies that z/OS NFS server is not to resolve a symlink found in an EXPORT or

CHECKLIST entry.

158 2z/0S V2R2 Network File System Guide and Reference

Part 2. Customization and Operations

© Copyright IBM Corp. 1991, 2015 159

160 z/0S V2R2 Network File System Guide and Reference

Chapter 10. Customization

This topic describes how to configure NFS and how to make it available to users.

You can perform these tasks to customize NFS:

Table 25. Customizing NFS

Section

Page

[“Protecting your programs and files”|

|”Protecting your|

[programs and files”]

[“Converting data” on page 173

[“Converting data” onl

|Eage 173]

“Creating the conversion environment for Unicode Services” on|

page 174

“Creating the
onversion|
[environment for
[Unicode Services” onl

|Eage 174]

[“Using multiple TCP/IP stacks” on page 206]

|"Using multiple]

[TCP /1P stacks” onl

|Eage 206

[“Collecting NFS usage data” on page 175|

[“Collecting NFS usage|
|[data” on page 175

[“Configuring the z/0OS NFS client” on page 176|

|”Configuring the

|z/OS NFS client” on|

|}2age 176

[“Configuring the z/OS NFS server” on page 181

|”Configuring the

|z/OS NFS server” on|

|Eage 181

[“Installing the client enabling commands” on page 209|

[“Installing the client
lenabling commands”’

|0n page 209

Protecting your programs and files

This section describes security measures that you should take to protect your
programs and files in preparation for customizing NFS. These security measures
help you protect the server control files, the NFS server and client installations,
and the MVS file system. You can customize the NFS security processing and use

UNIX style credentials to verify the identity of a client system.

Protecting the server control files

You should protect the following server control data sets from unauthorized access

with RACF, a component of the Security Server for z/OS.
* Attributes file (read by the server at initialization)
* Exports file (read by the server)

* Mount handle data set (read and updated by the server)

* Checklist data set (read by the server)
* Lock data sets (read and updated by the server)
* Kerberos configuration file (read by the server)

© Copyright IBM Corp. 1991, 2015

161

162

» Kerberos keytab (read by the server)

Setting up the z/OS NFS authorization

The following security measures should be addressed when you install the z/OS
NFS server and client:

* All programs that come with the z/OS NFS server and client must reside in an

APF-authorized program library.

The z/OS NFS server and client must be defined to the resource access control
facility (RACF) and assign the necessary level of authority. This is done by
defining a RACF user ID with an OMVS segment for the z/OS NFS server and
client. Because the z/OS NFS server and client are run as started tasks, it is also
necessary to define an entry in the RACF-started procedures table which
associates the z/OS NFS server and client startup procedure names with the
previously defined user IDs. The z/OS NFS client is run as an LFS Colony
address space started by USS. The ASNAME used to call the started procedure
in BPXPRMxx SYS1.PARMLIB needs to have a RACF ID by the same name. For
more information about coding and replacing the RACF-started procedure table,
see [z/0S Security Server RACF Security Administrator’s Guide and [z/OS Security]
[Server RACF System Programmer’s Guidel

The z/OS NFS server can now be set up with the trusted attribute as follows:

ADDUSER mvsnfs OMVS(UID(1000))

SETROPTS GENERIC(STARTED) (If not already active)

SETROPTS CLASSACT (STARTED) (If not already active)

RDEFINE STARTED mvsnfs.s+ STDATA(USER(mvsnfs) GROUP(sysl) TRUSTED(YES))
SETROPTS RACLIST(STARTED) REFRESH

Note: The UID of 1000 is chosen for illustrative purposes only and can be
specified as any non-0 valid UID value.

The z/OS NFS client can now be set up with the trusted attribute as follows:

ADDUSER mvsnfsc OMVS(UID(0))

SETROPTS GENERIC(STARTED) (If not already active)

SETROPTS CLASSACT(STARTED) (If not already active)

RDEFINE STARTED mvsnfsc.** STDATA(USER(mvsnfsc) GROUP(sysI) TRUSTED(YES))

Note: It is necessary to define a z/OS UNIX segment for the z/OS NFS client in
the RACF user profile. The z/OS NFS client requires UID 0 authority to operate.
If UNIXPRIV SHARED.IDS is in effect, the SHARED keyword is necessary or
else message IRR52741 will be returned by RACE

With trusted authority, the NFS server can perform the following tasks:

— Reconstruct the mount points (from the active mount handle data set) upon
startup

— Handle mount requests from client prior to user login
- Handle Is or nfsdir list commands prior to user login

— Be a trusted user during normal operation

For more information on using trusted authority, see [z/0S MVS Initialization and|
[Tuning Referencd A trusted started procedure or address space is treated as a
z/0S UNIX superuser if a z/OS UNIX user identifier (UID) is assigned to it in
the OMVS segment, even when the assigned UID is not 0.

During actual remote client file access, the z/OS NFS server first RACROUTEs
the remote client's user ID to determine if the remote client is authorized to
access the file system. If the remote client is authorized, the z/OS NFS server
switches to its own user ID, which has trusted authority, to access the file
system.

z/0S V2R2 Network File System Guide and Reference

* The z/OS NFS client can be set up with the trusted attribute in the same way as
the z/OS NFS Server.

For TCP/IP security information, see Iz/OS V2R2.0 Communications Server: IP|
[Configuration Guide

For z/0S UNIX security information, see [z/OS UNIX System Services Planning]

Protecting the file system on z/OS with the NFS V4 protocol

The NFS version 4 protocol improves on the NFS version 2 and 3 protocols with
stronger authentication and network transmission protection for NFS data. The
NFS V4 protections include encryption algorithms for data privacy, multiple
protections per file, and the means to negotiate security as NFS clients explore the
file system. The NFS V4 protocol provides these protections through the required
RPCSEC_GSS security authentication flavor and the SECINFO operation.

The z/OS NFS server enforces these protections, for client RPC requests that use
RPCSEC_GSS, through the site attributes mvssec, hfssec, and pubsec. These
attributes provide the Kerberos V5 Security Mechanism (RFC1964) subset of the V4
protocol, at the file-system level. The z/OS NFS server also continues to support
NFS V2 and V3, as well as V4 protocol requests with the protections provided by
the security site attribute, as described in [“Protecting the file system on z/0S with|
[the Security site attribute” on page 167

The export data set also contains a security keyword, sec, that specifies the
Kerberos authentication level that clients must have to access individual files and
data sets on the z/OS NFS server. That is, specific export entries can be further
constrained with different authentication flavors by using this security keyword.
For example, an important export entry can be protected with krb5p level set by
the security keyword, while other exported entries in the file system can be
accessed by all authentication levels which are specified by the mvssec, hfssec and
pubsec site attributes. The authentication flavors specified by the sec keyword in
the export entries should be a subset of the authentication flavors of site attributes
mvssec, hfssec and pubsec. In other words, an authentication level is effective only
if it is specified by the site attribute logically AND’ed with the security keyword.
For this reason, if the sec keyword is not specified, meaning all flavors are on, the
authentication level is defaulted to the site attribute mvssec, hfssec and pubsec.
For more information on the export security sec keyword, see [“Exports data set”|

The mvssec, hfssec, and pubsec attributes let you specify the default network
security flavors, and order, that can be used by requests accessing MVS, z/OS
UNIX, and public file systems, respectively. These attributes only apply when the
RPCSEC_GSS security mechanism is being used for communicating with the NFS
client. These site attributes apply to all NFS versions. If you protect a data set with
any one of these transmission attributes, NFS V2/V3 requests will get responses of
AUTH TOOWEAK unless 'sys' is listed as a valid authentication flavor. NFS V4
requests that do not comply with these protections will get WRONG SEC. For
more information on these site attributes, see [“Site attributes syntax” on page 139

Note: Since z/OS NFS only supports RPCSEC_GSS security for NFS version 4, if
one of the site attributes is set to require RPCSEC_GSS, then clients using NFS
versions 2 and 3, which only support AUTH_SYS security, cannot access those file
systems. On the other hand, if the attribute is specified at a mount point, then only
that mount point will be affected.

Chapter 10. Customization 163

164

To use the NFS V4 RPCSEC_GSS security flavors, the following changes to the
security infrastructure are required:

* Kerberos services must be activated on the z/OS system where the NFS server is
running. This activation includes the definition of Realms, Inter-Realm
relationships, and the Kerberos Principal for the z/OS NFS server. For details on
these definitions, see the [z/OS Inteqrated Security Services Network Authentication|
[Service Administration]

* The Kerberos principals on NFS clients need to be defined to RACF and
assigned a RACF identity. In addition, for Linux clients a principal
nfs/hostname.domain should be defined to RACF. This is because Linux Clients
use this principal for mounts and some state operations. For further details on
defining principals, see [z/OS Security Server RACF Security Administrator’s Guide|

* When acquiring Kerberos tickets, NFS clients must use MD5 Checksum with
DES encryption.

* No UNIX style user ID checking will be performed. Clients will always be
validated to check for authorization based on their GSS credentials.

¢ The z/OS NFS server must have READ access to the IRR. RUSERMAP resource
in the FACILITY class.

Note: For more information on setting up the z/OS NFS server with RPCSEC_GSS
security, see [“Configuring a secure z/OS NFS server” on page 199

The z/OS NFS client always uses the mvsnfsc kerberos principal during mount
operation for a secure mount (krb5, krb5i or krb5p) regardless of the user's current
principal identity.

For accesses to an already established secure (krb5, krb5i, krb5p) mount point, the
NFS client uses the kerberos principal that was used by the user to obtain the
kerberos ticket via the kinit command. This principal is used to establish security
contexts with the server and the NFS data is exchanged on these contexts.

The effect of a principal switch in the same user session (where a user does a kinit
with a different Kerberos principal) may not be reflected immediately in the client's
communications on established secure mount points with the NFS server (not until
the contexts created using the prior principal have expired).

GSS credential acquisition

GSS credentials enable the communicating applications to establish security
contexts with each other. They can contain multiple cryptographic keys that are
required for authentication and message encryption to be performed with different
algorithms. The z/OS NFS server uses Kerberos V5 as its security mechanism for
acquiring the GSS credentials. The z/OS NFS server initially acquires these
credentials during server startup. The z/OS NFS server uses the credentials for
accepting the security context requests from NFS clients, and the same credentials
may be used for initiating security contexts during RPC callbacks. The Kerberos
principal for the z/OS NFS server must be defined in the Kerberos key table
identified by the KRB5_KTNAME environment variable.

Note: For more information on setting up the z/OS NFS server with RPCSEC_GSS
security, see |“Configuring a secure z/OS NFS server” on page 199/

The z/OS NFS server will attempt to acquire the GSS credentials for the maximum
credential lifetime but the actual lifetime of credentials will depend on the lifetime
of the underlying Ticket Granting Ticket of the Kerberos Security Server, and is not
controlled or governed by the z/OS NEFS server. On expiration of the server's GSS

z/0S V2R2 Network File System Guide and Reference

credentials, client requests will receive the RPCSEC_GSS documented errors and
the client is expected to refresh the contexts and retry the requests.

Security context acceptance

A security context is a data structure that contains information about the
cryptographic state of a program on the client communicating with the server, and
is required for RPC message security services. NFS clients create security contexts
with the z/OS NFS server as part of the RPCSEC_GSS protocol of data flow. The
z/0OS NFS server accepts security context requests subject to the following
restrictions and recommendations:

1. The z/OS NFS server does not support channel bindings.

2. The z/OS NFS server never initiates any requests as an agent of NFES clients
and therefore recommends that clients do not use credential delegation services
while creating security contexts.

3. The z/OS NFS server does not support the Out Of Sequence Detection services
of GSS APL. It expects NFS clients to have the seq_req_flag parameter turned
off on their calls to GSS API gss_init_sec_context.

4. The z/OS NFS server recommends that the clients do not use the Message
Replay services of the GSS APL It expects NFS clients to have the
replay_det_req_flag turned off on their calls to the GSS API
gss_init_sec_context. Note that the z/OS NFS server's implementation of the
RPCSEC protocol provides for the protection against replay attacks.

5. The z/OS NFS server does not allow clients to authenticate as anonymous
principals.

6. The z/0OS NFS server recommends that NFS clients use mutual authentication
services during context creation. The z/OS NFS server will still honor context
creation requests from NFS clients that are unable to, or choose not to, use
mutual authentication services in the GSS-API. However, clients that would
require RPC callbacks from the z/OS NFS server have to support accepting
security contexts with mutual authentication, because the z/OS NFS server
always initiates security contexts with mutual authentication services.

Security negotiation

The NFS version 4 protocol facilitates the use of multiple RPC authentication
flavors. The z/OS NFS server supports the Kerberos V5 security mechanism and
all the pseudo flavors of the Kerberos security mechanism using the cryptographic
algorithms referred to in NFS V4 (RFC3530). To facilitate selection of a particular
pseudo flavor, the z/OS NFS server supports security negotiation using the NFS
V4 protocol's SECINFO operation. IBM strongly recommends that security
negotiation be done by the NFS clients using the SECINFO operation with an RPC
authentication flavor of RPCSEC_GSS with the krb5i or krb5p pseudo security
flavors.

When responding to SECINFO for security negotiation (when multiple security
flavors are present for a file system or file), the z/OS NFS server uses an order of
preference that has RPCSEC_GSS as the most favored flavor followed by
AUTH_SYS. For the authentication flavor of RPCSEC_GSS, the z/0OS NFS server
has krb5, krb5i, and krb5p as its listed pseudo flavors in descending order of
preference. NFS clients are, however, free to choose from any one of the z/OS NFS
server-supported security flavors for their NFS V4 requests.

NEFS V4 clients that decide to use the AUTH_SYS flavor may still have to do an

mvslogin like their V2/V3 counterparts, depending on the settings of the security
site attribute.

Chapter 10. Customization 165

166

Security Negotiation using the SECINFO operation is performed by the z/OS NFS
Client in the following instances:

* During mount point establishment
* During NFS4ERR_WRONGSEC handling

Mount point establishment: When a security flavor is not specified for an NFS
V4 mount, the z/OS NFS client queries the supported security flavors on the NFS
server using the SECINFO operation. The z/OS NFS client chooses a security
flavor returned by the server based on the following order of preference:

sys System Authentication
krb5 Kerberos V5 security providing integrity protection on the RPC header

krb5i Kerberos V5 security providing integrity protection on the RPC header and
the RPC data

krb5p Kerberos V5 security providing encryption protection on the RPC data and
integrity protection on the RPC header

The chosen security flavor serves as the designated flavor for the NFS client for all
future accesses to this mount point.

The following should be noted with regards to Security Negotiation during mount
point establishment:

1. Security Negotiation during mount is not done when a security flavor is
specified in the secure keyword.

2. During mount when datacaching is specified and a security negotiation was
attempted, Datacaching is turned off.

NFS4ERR_WRONGSEC handling

NEFS servers fail an NFS request with NFS4ERR_WRONGSEC if the security policy
on the mount point at the server's end does not allow the authentication flavor
with which the request was issued. After receiving this error, the z/OS NFS client
negotiates security with the NFS server by issuing a SECINFO operation to query
the server-supported security flavors. The z/OS NFS client chooses a security
flavor from the server supported flavors based on the order of preference specified
in [“Mount point establishment”| and retries the failing request with this
newly-chosen security flavor. This security flavor serves as the designated security
flavor for all future accesses to that mount point.

The following should be noted with regards to Security Negotiation during
NFS4ERR_WRONGSEC handling:

1. On existing mount points and objects, the client only negotiates security when
it is an upgrade to a more secure flavor. The order of flavors in the descending
order of security that they provide is as follows:

* krb5p
 krb5i
* krb5
* sys
2. For existing files, Security Negotiation is not done when datacaching is on for
that file.

z/0S V2R2 Network File System Guide and Reference

Protecting the file system on z/OS with the Security site
attribute

You can use the security site attribute, with the NFS V2, V3, and V4 protocols, to
select the level of protection for different types of data access. A different
protection level can be specified for MVS data sets, HFS files, and data that is
accessed using the public file handle. The attribute used to protect data access is
the security attribute. The format of the keyword is security(mvs[,hfs,public]). The
following are the security options: exports, none, saf, and safexp. See
[attributes syntax” on page 139| for syntax rules.) The z/OS NFS server can be
configured to handle security in the following ways:

* None

* Exports list checking

* System Authorization Facility (SAF) checking

* Customized installation security exit

* System Authorization Facility (SAF) checking with checklist processing (to
bypass SAF for files and directories under selected mount points)

* A combination of these approaches

Note: The UNIX permission checking against the z/OS UNIX hierarchical file
system might appear to be inconsistent if the definitions of UID, GID, and SGID
are not consistent throughout the domain of the network.

Unrestricted data access—security(none)
If you do not want to restrict data access, you can use the security(none) attribute.
Neither exports list checking nor SAF checking is done. Client users can access
z/0S files without a z/OS user ID and without using the mvslogin command.
They simply mount the z/OS file systems that they want to access and unmount
when they are finished. For z/OS UNIX files, the UNIX permission bits are
checked before access is granted to the client user. See [Figure 17| and [Table 26 on|
for information on permission checking.

Note: If UID or GID from the RPC request is zero, it will be mapped to 65534
(nobody) before the UNIX permission checking is performed.

security(none) ‘

Unix permission bits,
extended attributes
and tags

OK Not@T
v

file access permission/access
denied

Figure 17. Permission checking for the security(none) attribute

Exports list checking—security(exports)

When you specify security(exports) in the attributes data set, the NFS server
checks the client IP address against the exports list, which is generated from the
exports data set, to determine whether or not a mount is to be granted. The NFS
server also checks the requested directory (or high-level qualifier) to be mounted.

Chapter 10. Customization 167

For z/0OS UNIX data, it also checks the UNIX permission bits before granting file
access to a client user. See [Figure 18/ and [Table 26 on page 171| for information on
permission checking.

Note: If UID or GID from the RPC request is zero, it will be mapped to 65534
(nobody) before the UNIX permission is performed.

security(exports)
exportlist B
OK Not @1
Unix permission bits, permission/access
extended attributes denied
and tags

oKD Not OK
v

‘ file access ‘

Figure 18. Permission checking for the security(exports) attribute

For more information about the exports data set, see [“Exports data set” on page|
-181.

SAF checking-security(saf)

When you specify security(saf) in the attributes data set, the NFS server uses
RACF or an equivalent product to control access to z/OS file systems. All RACF
requests from the server are made through SAF. SAF directs control to RACF, or an
equivalent security product, if it is active.

The server uses SAF to validate the z/OS user id and password supplied by the
client user. It also uses SAF to validate that the client user is allowed to access
z/0S data. A RACF user ID must be defined for each client user that requires
access to the server.

For z/0OS UNIX data, z/OS UNIX checks the UNIX permission bits, or ACLs,
before granting file access to a client user. See [Figure 19 on page 169 and [Table 26|
for information on permission checking. For users accessing z/OS
UNIX, their RACF user ID must have an z/OS UNIX segment defined in the
RACEF profile.

168 z/0S V2R2 Network File System Guide and Reference

security(saf)

RPCSEC_GSS
Auth Flavor

v
YES|]+—— MVSLOGIN [NO

checklist
. «——
exceptions
Yes No 3
permission/access
Unix permission bits, denied
L extended attributes
and tags
OK Not OK
RACF/ACLs
OK Not OK

v
file access

Figure 19. Permission checking for the security(saf) attribute

SAF and exports list checking—security(safexp)

When you specify security(safexp) in the attributes data set, the NFS server checks
for both RACF authorization and exports list authorization before granting a client
user access to z/OS data. For z/OS UNIX data, z/OS UNIX checks the UNIX
permission bits, or ACLs, before granting file access to a client user. See
fon page 170| and [Table 26 on page 171| for information on permission checking.
This is the most restrictive means of limiting file system access. It requires client
users to use the mvslogin command.

Chapter 10. Customization 169

‘ security(safeexp) ‘

RPCSEC_GSS
Auth Flavor

v

"YES]« MVSLOGIN

checklist

exceptions
Yes o}

=

permission/access
denied

> exportlist
OK Not OK A

)

Unix permission bits,
extended attributes

and tags
OK Not OK
RACF/ACLs
OK Not OK

v
‘ file access

Figure 20. Permission checking for the security(safexp) attribute

For more information about the exports data set, see [“Exports data set” on page]
-181.

SAF checking with checklist processing

When you specify security(saf) or security(safexp) with the checklist attribute, the
NEFS server performs SAF as described in [“SAF and exports list|
[checking—security(safexp)” on page 169 The only exception to this is that it will
not check the files and directories that are underneath the mount points that either
match the mount point or the children of the mount points that are specified in the
exports data set using the dirsuf parameter. For more information, see
[data set” on page 181)

170 z/0S V2R2 Network File System Guide and Reference

Table 26. UID, GID, SGID permission checking with security site attribute

Client

z/OS

uid

gid

sgids

uid

gid

sgid

Comments

uid_a

gid_a

sgid_Db,...

N/A

N/A

N/A

When security(none) or security(exports) is used the z/OS NFS
server checks the object owner uid, owner_group gid and its
permission bits against the client uid (uid_a), gid (gid_a), and
supplemental gids (sgid_b,...) in the RPC AUTH_SYS
authentication.

Advantages: Performance may be improved.

Disadvantages:

1. The RPC AUTH_SYS allows only a maximum of 16
supplemental gids.

2. Spoofing of client uids, gids, and sgids cannot be prevented.

3. The object in the underlying physical file system (zFS or
HEFS) could have extended ACL entries, but the z/OS NFS
server does not check

uid_a

gid_a

sgid_b,..

uid_A

gid_A

sgid_B,..

When security(saf) or security(safexp) is used the z/OS NFS
server defers to the underlying physical file system (zFS or
HFS) and RACEF to check the object owner uid, owner_group
gid, and its permission bits against the mapped Client-z/OS
uid (uid_A), gid (gid_A), and supplemental gids (sgid_B,...)
from RACF User's Definition

Note:

1. mvslogin establishes the mapped Client to z/OS uid_A,
gid_A, sgid_B,....

2. The RPC AUTH_SYS authentication (uid_a) is used to find
the mapped Client to z/OS segment (uid_A, gid_A,
sgid_B,...).

Advantages:

1. The RPC AUTH_SYS limitation of maximum 16
supplemental gids is eliminated because of the mapped
Client to z/OS supplemental gids (sgid_B,...).

2. Spoofing of uid/gids/sgids is prevented by mvslogin
3. Exploits the underlying physical file system ACL support

Disadvantages: Performance may be impaired.

File system export

A system administrator issues the mount command to an NFS server and makes a
remote file system available to the user. The z/OS server keeps a list of file
systems and associated access restrictions in an export file. It then compares
incoming mount requests to the entries in the file. If a match is found in the export
file and the client is authorized for access, then the file system is successfully
mounted.

able 27| shows server processing of a mount request.

Table 27. z/OS server processing of a mount request

Security Export File z/OS UNIX File MVS Data Set
Option

none Not required No checking exported No checking exported
saf Not required No checking exported No checking exported
exports Required Checking export file Checking export file

Chapter 10. Customization 171

172

Table 27. z/OS server processing of a mount request (continued)

Security Export File z/OS UNIX File MVS Data Set
Option
safexp Required Checking export file Checking export file

Note: MVSLOGIN is not required for NFS mount request.

Authorization of file operations

After the file system is mounted, the user performs the normal file operations on
the NFS-mounted remote file system. z/OS NFS server adds the z/OS SAF
checking in addition to the UNIX file permissions check.

Note: MVS z/0S conventional data sets do not support UNIX permission bits in
the file attribute structure. By disabling the SAF security, there is no authorization
checking for file operation to MVS z/OS conventional data set. The UNIX
permission bits checking is still performed for z/OS UNIX file operations when the
SAF security is disabled.

shows server processing of a file request.

Table 28. z/OS server processing of a file request

Security Option MVSLOGIN z/OS UNIX File MYVS Data Set
none Not required Check file permission bits No checking
saf Required*** SAF check*** SAF check***
exports Not required Check file permission bits No checking
safexp Required*** SAF check*** SAF check***
Note:

1. z/0OS UNIX segment must be defined for z/OS file operation. (***This does not apply
when checklist requirements are satisfied.)

2. If the file system is mounted with an RPCSEC_GSS authentication flavor, no MVSLOGIN
is required.

Customizing installation security exits

You can write installation-wide exits or replaceable modules that customize
Network File System security processing, by using product-sensitive programming
interfaces provided by the server. Depending on how you code the exit, client
users could be required to use the mvslogin command even for the security(none)
and security(exports) attributes.

For more information about customizing your installation's security exits see
“Login installation-wide exit” on page 255 and [“File security installation-wide exit”|

on page 261.|

Using UNIX style credentials for authentication

Authentication is the process of verifying the identity of a client system. This
ensures that one client system cannot masquerade as another client system
(perhaps with a different set of privileges). Client systems are identified by a set of
credentials and authenticated with verification information passed in messages sent
to server systems. There are several different conventions for exchanging
authentication information in the NFS protocol, including these credentials:

e Null

z/0S V2R2 Network File System Guide and Reference

* UNIX style
* RPCSEC_GSS style
e Other, user written

The z/OS NFS server supports the System Authentication flavor of the RPC
protocol that employs the UNIX style credentials for all supported NFS protocol
versions. For the NFS version 4 protocol, the z/OS NFS server also supports the
RPCSEC_GSS authentication flavor, which employs GSS credentials. For its
RPCSEC_GSS authentication support, the z/OS NFS server only supports the
Kerberos V5 security mechanism.

The z/OS NFS client utilizes z/OS UNIX-socket-enabled RPCs to communicate
with remote z/OS NFS servers over a TCP/IP network. The credential includes the
user ID (UID), group ID (GID), and a list of GIDs to which the user belongs. z/OS
NFS supports all GID groups specified in the GID group list, which extends
support beyond the 16 GID group restriction of the UNIX style AUTH_SYS
authentication flavor. As of VIR11 the z/OS NFS Client also supports the
RPCSEC_GSS authentication flavor.

Converting data

The z/OS NFS client supports data conversion defined by the universal character
encoding standard known as the Unicode Standard on z/OS V1R2 (and later)
when reading data from a remote NFS server or writing data to a remote z/OS
NFS server. The Unicode Standard offers character conversion as well as basic case
conversion. Within character conversion, characters are converted from one coded
character set identifier (CCSID) to another. CCSID information is obtained from the
cln_cesid and srv_cesid parameters.

Only single byte to single byte data conversion is supported. For example, if a
client file has a CCSID of 437 and a server file has a CCSID of 297, data conversion
will occur between USA ASCII format (CCSID 437) and French EBCDIC format
(CCSID 297). Single byte to multiple byte conversion (including double byte
character set (DBCS)) is not supported and will result in NFS terminating with an
error message. NFS version 4 protocol (NFSv4) differs from NFSv2 and NFSv3
protocol in handling single to multiple byte conversion. Therefore, the
technique-search-order specified in the convserv() attribute should consider the
effects of the NFS protocol being used. Sed“Creating the conversion environment]
[for Unicode Services” on page 174| for further details.

The cIn_ccsid, srv_ccsid, xlat, tag/notag, and convserv attributes identify whether
data conversion is performed, and how data conversion is done. These parameters
are supported by the z/OS NFS client installation parameter and TSO MOUNT
command. The parameters on a TSO MOUNT command override the parameters
specified as a z/OS NFS client installation parameter.

The cln_ccsid and srv_ccsid are always used to correctly display file names from a
remote server. In the case of file names from a multi-byte conversion, the file
names can even be viewed correctly by specifying the correct cln_ccsid, srv_ccsid
and xlat(n) attribute. Note that in the case of xlat(n) there is no data conversion of
a file's content - only the file names.

Chapter 10. Customization 173

Creating the conversion environment for Unicode Services

174

The z/OS client or server uses Unicode Services to support data conversion on
files in either EBCDIC or ASCII formats as well as other data formats that are
defined with a CCSID. No setup is needed to begin using Unicode Services. As of
Version 1 Release 7, z/OS ships with Unicode Services ready to use. See
[Unicode Services User’s Guide and Reference| (previously titled z/OS Support for
Unicode: Using Unicode Services) for more information .

With the NFS version 4 protocol (NFSv4), metadata are transferred between the
server and client in the UTF-8 data format (ASCII text is not transferred directly).
The CCSID used by Unicode Services for UTF-8 is 1208.

The convserv attribute defines how data conversion is performed between CCSIDs
by specifying the conversion technique-search-order which Unicode Services will
use for specified srv_ccsid(x) and cln_ccsid(x) code pages. Technique consists of up
to five technique-characters corresponding to the available techniques (R, E, C, L
and M) used to define the technique search order for Unicode Services to process
the specified code pages.

The technique-characters, with description, are defined as follows. See [z/OS Unicode
[Services User's Guide and Reference| (previously titled z/OS Support for Unicode: Using
Unicode Services) for more information.

R Roundtrip conversion

Roundtrip conversions between two CCSIDs assure that all characters
making the "roundtrip” arrive as they were originally.

E Enforced Subset conversion

Enforced Subset conversions map only those characters from one CCSID to
another that have a corresponding character in the second CCSID. All
other characters are replaced by a substitution character.

C Customized conversion

Customized conversions use conversion tables that have been created to
address some special requirements.

L Language Environment-Behavior conversion

Language Environment-Behavior conversions use tables that map
characters like the iconv() function of the Language Environment Runtime
library.

M Modified Language Environment-Behavior conversion

Modified Language Environment-Behavior conversions use tables that map
characters like the iconv() function of the Language Environment Runtime
library does for converters ending with "C" (for example IBM-932C).

For mixed data format conversion, it is advisable to use more than one
technique-character as one of the sub-conversions might exist only in round-trip
mode and one only in enforced-subset. In the case of NFSv4, a
technique-search-order of convserv(RE) or convserv(ER) would be required. In
contrast, in the case of NFSv2 or NFSv3, convserv(R) would be sufficient for the
data conversion.

The convserv attribute uses a default value of "LRE" which is recommended to
provide correct translation of EBCDIC-newline to ASCII and back.

z/0S V2R2 Network File System Guide and Reference

Collecting NFS usage data

The z/OS NFS client does not produce any System Management Facilities (SMF)

records. However, it does provide the accounting information to z/OS UNIX for

SMF recording. z/OS in turn provides the SMF recording services for all physical
file systems (PFSs).

The z/0OS NFS server does not produce z/OS UNIX SMF records. However, z/OS
UNIX provides the SMF recording services for all physical file systems (PFSs).

You can use the SMF records that the z/OS NFS server produces to keep track of
how MVS z/0S conventional data sets are accessed, and how long each Network
File System user session lasts. The z/OS NFS server writes the following SMF
records:

Record type-42 subtype 7
This record, written when a file times out, provides the Network File
System file usage statistics.

Record type-42 subtype 8
This record, written when a client user logs out of NFS, provides the
Network File System user session statistics.

Record type-42 subtype 26
This record, written when a client creates, removes, or renames the file
objects on the NFS mounted file system, provides the NFS Client’s
information, the type of operation (create, remove, rename) and object
descriptive information (depending on file system type: MVS or z/OS
Unix). For z/OS Unix objects, the file system name, USS device number,
object name, FID, and parent FID information are saved. If the pathname
of an object is desired, it is recommended to enable SMF recording for USS
Type 92 and RACF Type 80 records in order to derive this information. For
MVS objects, the volume name, full data set name, and member name (if
appropriate) are saved.

For records containing Internet Protocol (IP) Version 6 addresses, the z/OS NFS
server writes a specific type of SMF record. This record type is indicated by a
version number of 2 in the smf42psv record field. In these records, the IP address
field (smf42cip) is expanded to hold the larger IP V6 address values. For details on
these record fields, see [Appendix J, “SMF C and assembler header macros,” on|

You can control the SMF data collection in the following ways:

* You can use the smf site attribute, described in [“Site attributes syntax” on page|
to determine which, if any, SMF statistics are to be collected.

* You can use the smf=on or smf=off operand of the modify command. See
[operand” on page 249| for a description of this command, which turns SMF data
collection on and off.

* You can generate an SMF report. Use the SMF report sample routine,
GFSAPSME, that can be found in the NFSSAMP library.

* You can use the SMF C and Assembler header macros. See [Appendix J, “SMF (|
[and assembler header macros,” on page 543| for copies of the C header macro,
GFSASSMF, and the Assembler header macro GFSAUSME. Both header macros
contain the mapping for SMF records and can be found in the NFSMAC library.

* Check the SMF setting in the system in SYS1.PARMLIB(SMFPRMnn) for the
SMEF record type and subtype, where nn is determined by IEASYSmm and the

Chapter 10. Customization 175

operator command (SET SMF=nn). The Network File System uses the SMF type
42 record, subtypes 7 and 8. You specify SMF=nn so the system picks the
member of SMFPRM with suffix nn.

You can display the SMF settings with the d smf,0 operator command.
The SMF write macro, SMFWTM, is used to write the SMF records to the SMF data

set. When the server starts, the SMF option is disabled. Therefore, the operator
needs to explicitly enable the SMF collection.

For more information about SMF see [z/OS MVS System Management Facilities|
-(SMF)

Configuring the z/0S NFS client

176

This section describes the tasks you can perform to configure the z/OS NFS client.
These tasks include creating the PARMLIB statement and updating z/OS system
data sets for the client. This section also includes information about allocating
client log data sets and mounting remote file systems.

Creating the PARMLIB statement for the client

During z/OS UNIX file system initialization, the z/OS NFS client is started and
run in the logical file system (LFS) colony address space. The filesystype parmlib
statement for the z/OS NFS client must be present in the
SYS1.PARMLIB(BPXPRMxx) parmlib member in order to start the z/OS NFS client.
For more information about z/OS UNIX file system reference see
[System Services File System Interface Reference,

Updating z/0S system data sets for the client

To accommodate the z/OS NFS client you must update z/OS system data sets
PARMLIB, PROCLIB, and the DD statement.

PARMLIB updates

Add the data set defined in the GFSCPROC STEPLIB containing the z/OS NFS
client library to the system's APF authorization list IEAAPFxx). A sample
cataloged procedure named GFSCPROC is provided as a member of the sample
library NFSSAMP, see |“Sample z/OS NFS client startup procedures” on page 532

Add the filesystype parmlib statement shown in to the z/0OS UNIX
parmlib member (BPXPRMxx):

FILESYSTYPE
TYPE(NFS)
ENTRYPOINT (GFSCINIT)
PARM('installation parms')
ASNAME (proc_name)

Figure 21. Sample filesystype parmlib statement

The name in the TYPE operand must be NFS, otherwise the utility program nfsstat
fails.

The operand ENTRYPOINT(GFSCINIT) specifies the entry point for the z/OS NFS
client initialization.

z/0S V2R2 Network File System Guide and Reference

The operand PARM('installation parms') specifies the installation parameters for
the z/OS NFS client. See [Table 16 on page 118in [“Mount processing parameters|
land installation parameters” on page 118 for a list of valid installation parameters.

The operand ASNAME(proc_name) specifies the procedure name in
SYS1.PROCLIB that is used by z/OS UNIX to start the address space in which the
z/0OS NFS client is initialized.

Note: The proc_name is also used for the name of the address space.

For data integrity and data isolation among different PFSs, the z/OS NFS client is
required to start in a separate and standalone colony address space. To start the
NES client in a separate and standalone colony address space, a unique proc_name
must be used.

For information about BSAM, QSAM, and VSAM ESDS files, see |”BSAM, QSAM,|
fand VSAM ESDS access to remote files” on page 92|

PROCLIB updates

Add the procedure name, proc_name, specified in the ASNAME(proc_name)
operand to the system PROCLIB.

A sample cataloged procedure named GFSCPROC is provided as a member of the
sample library NFSSAMP, see [“Sample z/OS NFS client startup procedures” on|

Modify the MVSNFSC procedure and place it in your system PROCLIB. Add the
DD statements:

NFSCMSG1 as the DD for the primary log data set
NFSCMSG2 as the DD for the secondary log data set
SYSXDUMP as the DD for the SYSxDUMP data set ('x' = U or M)

Allocating client log data sets

For information about allocating the z/OS NFS client primary and secondary log
data sets, see [Appendix K, “Capturing diagnostic information using z/OS NFS log]|
[data sets and from other components,” on page 559 |

NFS Client with Multiple TCPIP stacks

In order for the NFS client to bind to multiple TCPIP stacks, a single

rpcbind /portmap should be used. The rpcbind/portmap procs should not use
affinity to bind to a specific TCPIP stack. Also, the system should use a single
resolver for all stacks on the system. If you require transport affinity with the NFS
Client, see the section "Using specific transports under CINET" in
[System Services Planning| for information on using PARM=TP(TPNAME) on the
EXEC statement that starts BPXVCLNY in the colony address space procedure.

Note: Multiple instances of the NFS Client are not supported.

Mounting remote file systems

In order to make a connection between a mount point on your local z/OS UNIX
file system and one or more files on a remote MVS, AIX, UNIX, z/OS, or other file
system, any z/OS UNIX mount method may be used, including:

* z/0S UNIX automount facility
* /etc/xc shell scripts support

Chapter 10. Customization 177

178

e 7z/0S UNIX shell mount command
* SO MOUNT
¢ BPXPMRxx MOUNT statement

The remote file system can be mounted only after the z/OS UNIX file system,
z/0OS NFS client, and TCP/IP initializations are complete. The mount can only be
performed by a z/OS UNIX superuser (uid=0). For more information about the
TSO MOUNT command, when used with the z/OS NFS client, see
[command syntax and examples” on page 89

When using the automount facility of z/OS UNIX System Services, the remote file
system is mounted on its first data access attempt if it is not already mounted.

When the automount facility is used to manage remote NFS mount points, the
z/0OS NFS user could experience ESTALE/EIO errors if the automounter unmounts
the accessed mount point when the time limits specified by the automount
duration and delay parameters have been exceeded. The automount default,
DURATION=NOLIMIT, disables the DURATION timeout period. The DELAY for
unmounting file systems should be longer than the time z/OS NFS clients are
likely to keep z/OS NFS mounts to the files and directories active. For more
information about the z/OS UNIX automount facility, see [z/0S UNIX Syster]
[Services Planning| and [z/0S UNIX System Services Command Reference

The remote file system must be mounted on the z/OS UNIX file system prior to
any reference being made to the remote data. Once mounted, the remote file
system can be treated as an extension of the local z/OS UNIX file system.

Note: If the Memory Mapping service (mmap) is used for a NFS file, requests for
this file are sent to the NFS Server using UID(0). The NFS Server must be set up to
allow UID(0) requests to be accepted as UID(0) and not convert the UID(0) to the
userid nobody. See the <root> parm on the -access option of the Exports dataset in
[“Exports data set” on page 181|

Setting up reserved (privileged) ports

The z/OS NFS client uses a reserved (privileged) port to prevent the NFS server
from rejecting a client request. The z/OS client attempts to use reserved port 1023
and if that port is not available, the z/OS client will subtract one from 1023 until a
reserve port is available. If no reserve ports are available, the z/OS client will issue
error message GFSC724E.

The amount of reserved ports the z/OS client can use is based on the client
attribute biod. The amount of reserved ports can be calculated from the following
formula:

reserved ports = 8 + (#biod * 4)

The privileged ports should be reserved in the tcpip.profile file using the
PORTRANGE statement. The default biod(6) and 8 additional ports correspond to
32 privileged ports that can be used by the z/OS client. For biod(6), the
tepip.profile file should include the following PORTRANGE statement:

PORTRANGE 991 32 UDP MVSNFSC
PORTRANGE 991 32 TCP MVSNFSC

This allows ports 991 through 1023 to be used by the z/OS client. Note that
MVSNEFSC is the default z/OS NFS client start-up procedure. Please specify the
correct z/OS NFS client start-up procedure if it is different than the default.

z/0S V2R2 Network File System Guide and Reference

When specifying secure(udp) or proto(udp), the z/OS client uses the privileged
UDP ports to communicate with the NFS servers. When specifying proto(tcp) the
z/0S client uses the privileged TCP ports to communicate the MOUNT RPC or
UNMOUNT RPC with the NFS server. However, the z/OS client uses the
ephemeral TCP ports to communicate NFS RPC with the NFS server. As a result,
the z/OS client does not work with NFS servers that require all source TCP ports
to be privileged.

Configuring a secure z/OS NFS client

In order for the z/OS NFS client to support the RPCSEC_GSS authentication flavor
using the Kerberos V5 Security Mechanism, the following should be done. We are
assuming that a properly configured KDC is already setup in your environment. If
a KDC is not already configured, see |Appendix M, “Setting up NFS functions with|
[Kerberos Support,” on page 571 This document assumes you will be using a KDC
provided by “Security Server and Integrated Security Services” (RACF) provided
by IBM but are not specific to a KDC provided by IBM. The following steps need
to be run on the system that contains the KDC unless otherwise noted:

1. Add the client principal "mvsnfsc" to the Kerberos database on the KDC with a
defined password. This principal should not use randkey as the password. For
example, for the z/OS NDBM type or SUN KDC, issue the command "addprinc
mvsnfsc" in the kadmin interface, then enter the desired password at the
prompt. For the z/OS SAF type KDC, the password can be defined in the
"PASSWORD" field of the RACF "adduser" or "altuser" commands. Please

remember this password; it will be needed in step 3. Refer to

[Kerberos Key Distribution Center” on page 572| for more information.

2. Map the principal "mvsnfsc" in lower case to the z/OS NFS client RACF user.
For example:
ALTUSER mvsnfsc KERB(KERBNAME('mvsnfsc'))
If the SAF KDC is configured on the same system as the z/OS NFS client then
a PASSWORD must be set:

ADDUSER mvsnfsc OWNER(owner) OMVS(UID(0))
ALTUSER mvsnfsc PASSWORD (password) NOEXPIRED KERB(KERBNAME('mvsnfsc'))
PASSWORD USER(mvsnfsc) NOINTERVAL

Note:

a. We expect that the z/OS NFS client's ID has already been defined to RACFE.
If it has not been configured, please see [“Setting up the z/OS NFS|
lauthorization” on page 162

b. If a SAF KDC is NOT being used, create a principal ‘mvsnfsc’ according to
your vendor's KDC documentation.

c. The NFS Client requires that the Kerberos segment use KERBNAME
‘mvsnfsc’ and it must be in lowercase.

d. Including PASSWORD option “NOINTERVAL” prevents the password from
expiring.

3. Regardless of which KDC is used, the system administrator must add the

principal "mvsnfsc" into the keytab from the omvs shell. If

/etc/skrb/krb5 keytab does not exist, create a new one. Failure to do so will

caused the principals "key version" to be incremented causing preciously

created keytabs to become absolute. For example:

IBMUSER:/ :> keytab add mvsnfsc -p password -k /etc/skrb/krb5.keytab -v 1

Note:

Chapter 10. Customization 179

a. The "password" in step 3 must match the "password" entered in step 2,
when the principal was added to the KDC Kerberos database. This principal
"mvsnfsc” is used to perform NFSv4 mounts for all users.

b. The key version used to create the keytab must be the same key version as
in the RACF database. The “-v” option of the keytab command is used to
specify the key version when adding a principal to a keytab. Issue the
following RACF command to see the current key version: "LU mvsnfsc
NORACF KERB" Or from a non SAF or NDBM KDC from kadmin interface
issue: "getprinc mvsnfsc"

c. The password used with the “keytab” command is case sensitive. If mixed
case password support is not in effect you must enter the password in
uppercase.

d. SFTP, or Secure copy the new keytab to the z/OS NFS Client and place in
“/etc/skrb/krb5 keytab".

e. To gain access to a secure mount point, all users should perform a "kinit" to
acquire their Kerberos credentials.

The z/OS NFS client requires the Kerberos configuration file “krb5.conf” be
configured to match your sites Kerberos environment.

Sample /etc/skrb/krb5.conf file to be put on the z/OS NFS client system:

[Tibdefaults]

default_realm = KRB390.IBM.COM

kdc_default_options = 0x40000010

use_dns_lookup = 0

default_tkt_enctypes = aes256-cts-hmac-shal-96,aes128-cts-hmac-shal-96,
des3-chc-shal,des-hmac-shal,des-cbc-md5,des-cbc-md4,des-cbc-crc

default_tgs_enctypes = aes256-cts-hmac-shal-96,aes128-cts-hmac-shal-96,
des3-chc-shal,des-hmac-shal,des-cbc-md5,des-cbc-md4,des-cbc-crc

[realms]

KRB390.IBM.COM = {

kdc = dcesec4.krb390.1ibm.com:88
kpasswd_server = dcesec4.krb390.ibm.com:464
admin_server = dcesec4.krb390.ibm.com:749

}

KRB2000.IBM.COM = {

kdc = sstonel.krb2000.ibm.com:88
admin_server = sstonel.krb2000.ibm.com:749

}

[domain_realm]
.krb390.ibm.com = KRB390.IBM.COM
.krb2000.ibm.com = KRB2000.IBM.COM

Supported etypes:

ENCTYPE_DES_CBC_CRC

ENCTYPE_DES_CBC_MD4

ENCTYPE_DES_CBC_MD5

ENCTYPE_DES_HMAC_SHA1

ENCTYPE_DES3_CBC_SHA1

ENCTYPE_AES128_CTS_HMAC_SHAL 96

ENCTYPE_AES256_CTS_HMAC_SHA1 96

Most issues with kerberos are related to invalid keytabs. Once the keytab has
been placed on the zNFS client's LPAR in "/etc/skrb/krb5.keytab", verify that
the keytab is valid by issuing the following command:

kinit -k mvsnfsc

a. This command should complete with out errors and you should not be
prompted for a password.

b. If this command fails, the keytab is invalid or the Kerberos configuration is
incorrect.

z/0S V2R2 Network File System Guide and Reference

Configuring the z/OS NFS server

This section describes the tasks you can perform to configure the z/OS NFS server.
These tasks include allocating and modifying data sets, allocating mount handle,
lock, side file, and z/OS NFS server log data sets, modifying tcpip.ETC.RPC, and
updating z/OS system data sets for the server. This section also includes
information about the data conversion between EBCDIC and ASCIL

Attributes data set

To allocate and modify the attributes data set, perform the following tasks:

1.

2.

Allocate a fixed-block partitioned data set or a fixed-block sequential data set
with a record length of 80.

Copy the sample member GFSAPATT from the prefix NFSSAMP data set into
the allocated attributes data set.
Modify the attributes to suit your installation. |Appendix E, “NFS system server|

lsample attribute table,” on page 495|shows the sample attributes data set. You
can specify three sets of attributes within the attributes data set.

* Data set creation attributes
* Processing attributes
* Site attributes.

Note:

1.

Client users can override the processing and data set creation attributes (for
their own sessions), but not the site attributes.

The attributes data set specified on the NFSATTR DD statement of the mvsnfs
startup procedure is read during server startup processing. Further changes to
this data set do not take effect until the server is restarted. Also, whenever any
attributes are changed, all the previous existing mount points have to be
unmounted and mounted again (using the umount and mount client
commands) if you want the mount points to pick up the new attributes.

Specify this attributes data set for the NFSATTR DD statement in the MVSNFS
cataloged procedure.

Coding attribute statements

Here are guidelines for coding attribute statements:

You can continue a line in the attributes data set by placing a “\” or “+” at the
end of the line.

A “#” anywhere in the data set indicates a comment that extends to the end of
the line (unless the altsym keyword is used in the start command or the server
startup procedure; if altsym is used, a “;” indicates a comment but with one
exception: If the fn_delimiter(;) attribute uses a semicolon, the fn_delimiter
semicolon is treated as a delimiter between the file name and the attributes that

follow, not as a comment symbol).

If you specify more than one attribute on a line, separate the attributes with a
comma and a space.

Exports data set

To allocate and modify the exports data set, perform the following tasks.

1.

Allocate a fixed block partitioned data set or a fixed block sequential data set
with record length of 80.

Chapter 10. Customization 181

182

2. Copy the sample member GFSAPEXP from the prefix. NFSSAMP data set into
the allocated data set.

3. Modify the sample exports data set to suit your installation.
[‘Sample exports data set,” on page 519 shows the sample exports data set.

4. Specify this exports data set for the EXPORTS DD statement in the MVSNFS
cataloged procedure.

The exports data set contains entries for directories that can be exported to clients.
It is used by the server to determine which data sets' high-level qualifiers or z/OS
UNIX directories can be mounted by a client in a read or write mode.

Note: You cannot specify exporting a “parent directory” or a subdirectory of an
exported directory. For example, if you specify DIR1 in the exports data set, DIR1
and all its subdirectories are exported. You cannot specify any subdirectories under
DIR1 in the exports data set.

When the modified exports data set takes effect

The exports data set specified in the exports DD statement of the MVSNEFS startup
procedure is read during server startup processing. Changes to this file do not take
effect for new mount points until the exportfs operand of the modify command is
completed or the server is restarted. The changes will also be immediately enforced
at z/OS NFS server startup or exportfs operand time regardless of the state of any
pre-existing mount points. For exportfs operand with 'symresolve' attribute effects
for the showmount command, see [“Using commands on the z/OS NFS client” on|
page 81 Note that any pre-existing mount points continue to exist even if they
have been removed from the exports data set. However, any security changes
apply immediately.

When the exportfs operand of the modify command is issued, any errors found in
the file are sent to the system log, the entire exports list is not refreshed, and
processing continues.

When the server is started, if any errors are found in the file, they are sent to the
system log, and the server stops once the entire exports data set has been read.

Directory statement
Use the directory statements in the exports data set to limit access of directories to
specified client workstations.

* Entries can be up to 4096 characters long. Directory names for MVS data sets
must follow z/OS naming conventions.

* Lines can be continued by placing a backslash (\) or a plus sign (+) at the end
of the line.

* A ”#” anywhere in the data set indicates a comment that extends to the end of
the line (unless the altsym keyword is used in the start command or the server

",

startup procedure; if the altsym keyword is used, the “;” indicates a comment).
* Spaces cannot be used in the keywords.

* A vertical bar () acts as a separator character between multiple list entries such
as client ids or network security values. Before z/OS V1RS, the separators were
colon (:) characters . Since client ids can include colons as part of their IPv6
addresses, the separator characters are changed to prevent ambiguity. Any colon
separator characters must be changed to vertical bars in exports files that are
used with z/OS VIRS.

z/0S V2R2 Network File System Guide and Reference

* The parameters to the right of directory are optional. Except for ro and rw, the
parameters can be combined. If they are combined, only the first parameter is
preceded by “-”. For example:

userl.test -access=rs60001|sunl|sun2,ro

Note: Prefix site attributes apply to the exports file. Either the hfsprefix or
mvsprefix can be specified as part of the directory name. If no prefix is specified,
then the implicit prefix algorithm applies. If both implicit options are specified, the
export entry can apply to both z/OS UNIX file systems and MVS data sets. The
existence check is applied to the mount request, not to the export entry itself.

An entry for a directory is specified, as follows:

v

»»—director)
Y I—dirsuf—|

v

»——-10

|
—-rw= "7 lient

i L

|

r

L__access=—Y—client B

(:Zisuf—|

clisuj’—| |

,rw=——client B

cZisufJ

, o

L _sec=—Y—secvalue

v

\
Y
A

i:—symreso]ve—
-nosymresolve—

where

directory
For MVS data sets, the MVS high-level qualifier, partitioned data set name, or
alias to a user catalog; the name must conform to MVS data set naming
conventions. The name may be preceded by the MVS prefix.

For z/OS UNIX file systems, the entire UNIX directory path name, starting
from the root. The name may be preceded by the HFS prefix.

If no prefix is specified, the implicit prefix algorithm is used for determining
which file system type this entry applies to. If both implicit options are active,
and are valid for this entry, then the entry will be assumed to apply to both
file system types. No existence check is performed to refine the file system
type selection to a single option.

Chapter 10. Customization 183

For both MVS data sets and z/OS UNIX directories, wildcard symbols can be
used to create regular expressions, and MVS system symbols can also be used
to create regular expressions for MVS data sets.

dirsuf
Suffix for a directory to be exempt from SAF checking, even though SAF or
SAFEXP is specified as the security option. This parameter emulates an entry
in the NFS checklist data set prior to z/OS V1RS. Prior to z/OS V1RS, the
Checklist used a one-to-one correspondence policy, that is, one checklist entry
should generate one real path that was to be exempted from SAF checking. In
z/0S V1R8 and later, the former checklist one-to-one correspondence policy
remains unchanged; MVS system symbols and wildcard symbols must not be
used in a directory if dirsuf is used together with a directory. The suffix is
ignored if the checklist site attribute is not specified, or the security site
attribute is not set to SAF or SAFEXP. The directory suffix can have the
following values:

blank
If the security site attribute is set to SAF or SAFEXP, SAF checking is
performed for this directory and its sub-directories.

<nosaf>
If the security site attribute is set to SAF or SAFEXP, SAF checking is not
performed for this directory and its sub-directories. This value emulates
the checklist function prior to z/OS V1RS.

<sub-directory list,nosaf>
If the security site attribute is set to SAF or SAFEXP, SAF checking is
performed for this directory. However, for the specified sub_directory_list,
and its sub-directories, SAF checking is not performed.

sub-directory list
A list of sub-directories separated by commas, and optionally client
host lists.

sub-directory[,hosts=client list]

sub-directory
Name of a sub-directory to which the nosaf function is to be
applied. The directory name is appended to the front of each
sub-directory name to generate to full name of the directory
item for which no SAF checking is to be performed.

A sub-directory entry can also refer to a specific member of an
MVS PDS or PDSE for which no SAF checking is to be
performed: sub_directory(member).

client_list
List of client host names to which the nosaf function is to be
applied. If no client_list is specified, then the function applies
to all clients.

Note: The hosts=client_list specification in the directory suffix
expands the checklist functionality beyond that available in
prior releases. This parameter allows you to limit the checklist
applicability to a subset of hosts, only those specified in the
client_list.

-ro
Export the directory as read only. If not specified, the directory is exported as
read/write.

184 2/0S V2R2 Network File System Guide and Reference

-rw=client[clisuf][|client...]
The directory is exported as read/write to specified clients, and read-only to
everyone else. Use a vertical bar (1) to separate client names. Client names may
be specified as shown in [“Client id specification” on page 188

-access=client[clisuf][|client....] [[,rw=client[|client...1]1 | [,rol]
Gives access only to clients listed. Client names may be specified as shown in
[“Client id specification” on page 188

If neither rw nor ro is specified for the -access parameter, then the clients listed
have read/write access and the rest of the clients have no access.

If the rw parameter is specified for the -access parameter, the associated clients
have read/write access to the directory, and the clients specified in the access
list but not in the rw list have read-only access.

If the ro parameter is specified for the -access parameter, the clients in the
access list have read-only access to the directory, and the rest of the clients
have no access.

Use a vertical bar (1) to separate client names.

client
Name of the client to which the specification applies. Client names may be
specified as shown in |“Client id specification” on page 188

clisuf
The client suffix can be specified to give root access to the root user of the
specified client. The client suffix can have the following values:

blank
If no MVSLOGIN has been done, the id of root users from the client
system are converted to id=nobody (-2) before access permissions are
checked. This means that there is a good chance that root users will be
denied access to the directory while other users from that client have
access.

<root>
If no MVSLOGIN has been done, root users from the client system are
given root access to this directory and its subdirectories (that is, the user is
treated as a trusted user).

-sec=secvalue
Specifies the acceptable level of network transmission security access that a
client's RPC request must provide. If a client attempts to access an object in the
directory using a network security level that is not specified on the sec
parameter, the access is denied.

krb5
Provides Kerberos V5 based integrity on the RPC credentials (but not
data), when the RPC authentication flavor is RPCSEC_GSS. It uses the
DES_MAC_MDS?5 integrity algorithm and the RPCSEC_GSS service of
rpc_gss_svc_none.

krb5i
Provides Kerberos V5 based integrity on both the RPC credentials and
data, when the RPC authentication flavor is RPCSEC_GSS. It uses the
DES_MAC_MDS5 integrity algorithm and the RPCSEC_GSS service of
rpc_gss_svc_integrity.

krb5p
Provides Kerberos V5 based integrity and privacy on both the RPC

Chapter 10. Customization 185

186

credentials and data, when the RPC authentication flavor is RPCSEC_GSS.
It uses the DES_MAC_MDS?5 algorithm for integrity and 56 bit DES for
privacy. The RPCSEC_GSS service used here is rpc_gss_svc_privacy.

sys
Specifies that the AUTH_SYS authentication flavor can also be used to
access this file system. Note that the AUTH_SYS authentication flavor does
not provide any integrity or privacy protection.

Use a vertical bar (1) to separate security levels.

If the sec parameter is provided, it further restricts the network transmission
protection of specific export entries, in the domain of the file system wide
network transmission protection, which is controlled by the mvssec, hfssec, or
pubsec site attributes. When this parameter is not specified, the allowed
security levels are governed by the mvssec, hfssec, and pubsec site attributes.

Note: If no options are specified, the default value allows any client to mount the
given directory with read/write access.

-symresolve

The symbolic link (symlink) in the directory path is resolved at time of z/OS
NFS Client access to the directory. New Export entry is created in memory
with a real directory path.

Note:

1. Only absolute paths are supported; symlinks pointing to relative paths are
not supported.

2. If the path of a symlink is changed, an EXPORTFS command must be run

to allow z/OS NFS Server to re-interpret the new symlink path at the next
mount.

3. For effects of using the showmount command, see [“Using commands on|
[the z/OS NFS client” on page 81|

-nosymresolve

The symlink in the directory path is not resolved.

Note: -symresolve and -nosymresolve are optional. If not specified, the server
default attribute value is used.

Examples of entries in an exports data set: Following are examples of entries in
an exports data set.

Examples of specifying directories: The following are examples of specifying
directories for z/OS UNIX files:

/u

/hfs/u
/hfs/u<nosaf>

/hfs/u<vrr,nosaf>

If the IMPPREFIX() site attribute is set to HFS, this entry
will be interpreted to refer to z/0S UNIX directory /u.

If the IMPPREFIX() site attribute is set to MVS, this entry
will be interpreted to refer to MVS high-Tevel qualifier 'u'.
If the IMPPREFIX() site attribute is set to HFS,MVS or MVS,HFS,
this entry will be interpreted to refer to both.

If the SECURITY Site Attribute is set to SAF or SAFEXP,

SAF checking is performed for /hfs/u and its subdirectories.
If the SECURITY Site Attribute is set to SAF or SAFEXP, NO
SAF checking is performed for /hfs/u and its subdirectories.
If the SECURITY Site Attribute is set to SAF or SAFEXP, SAF
checking will be performed for /hfs/u, but NO SAF checking
will be done for /hfs/u/vrr and its subdirectories.

e e S I I3 3 S S 3 I I R H

/hfs/u<vrr,/vrs,nosaf> # If the SECURITY Site Attribute is set to SAF or SAFEXP,

SAF checking will be performed for /hfs/u, but NO SAF checking

z/0S V2R2 Network File System Guide and Reference

will be done for /hfs/u/vrr, /hfs/u/vrs and their
subdirectories.
/hfs/u<vrr,hosts=hostl,host2,vndrcvs,nosaf> # if the SECURITY Site Attribute ist
set to SAF or SAFEXP, SAF checking will be performed for
/hfs/u,and for client hosts other than hostl and host2 for
/hfs/u/vrr. NO SAF checking will be done for hosts hostl and
host2 for /hfs/u/vrr or for any host for /hfs/u/vndrcvs.
The same applies to subdirectories of vndrcvr and vndrcvs.
/hfs/u/symlink_ent -symresolve # z/0S NFS server will resolve 'symlink_ent'
and create a temporary in-memory export entry when an
NFS Client issues NFSv4_LOOKUP for this path.
#
/hfs/u/symlinkl_ent <nosaf> -access=fs1ab008,symresolve # z/0S NFS server will
resolve 'symlink_ent' and create a temporary in-memory export
entry when an NFS Client issues NFSv4_LOOKUP for this path.
Temporary in-memory CHKLIST entry for the resolved path is
also created.

The following are examples of specifying directories for MVS data sets:

/mvs/a.b If the SECURITY Site Attribute is set to SAF or SAFEXP, SAF
checking is performed for a.b and its lower Tlevel qualifiers.
If the SECURITY Site Attribute is set to SAF or SAFEXP
NO SAF checking is performed.
If the SECURITY Site Attribute is set to SAF or SAFEXP,
NO SAF checking is performed for a.b and its lower level
qualifiers.
If the SECURITY Site Attribute is set to SAF or SAFEXP, SAF
checking will be performed for a.b and a.b.c, but NO SAF
checking will be done for a.b.c.d and its lower level
qualifiers.
a.b<c.d(membl),nosaf> # If the SECURITY Site Attribute is set to SAF or SAFEXP,
SAF checking will be performed for a.b, a.b.c, and a.b.c.d
and all its members, except NO SAF checking will be done for
a.b.c.d(membl).
a.b<c.e,c.d(membl) ,nosaf> # If the SECURITY Site Attribute is set to SAF or SAFEXP,
SAF checking will be performed for a.b, a.b.c, and a.b.c.d and
all its members, except NO SAF checking will be done for
a.b.c.e and a.b.c.d(membl).
A.b<c.e,c.d(memberl),hosts=hostl,nosaf> # If the SECURITY Site Attribute is set to
SAF or SAFEXP, SAF checking will be performed for a.b, a.b.c
and a.b.c.d and all its members, except NO SAF checking will
be done for a.b.c.e or for hostl for a.b.c.d(memberl).

/mvs/a.b<nosaf>

a.b<nosaf>

a.b<c.d,nosaf>

e e S R I I R FR I H

Examples of specifying access parameters: Following are examples of specifying access
values in an exports data set.
give read-only access

to all clients with RPCSEC_GSS
security specified

/mvs/mvsnfs -ro,sec=krb5

give read/write
access to all clients

theresa.text

robert.mixds -rw=fsrs001|fs1ab004|fs1ab007
give read/write access
to the clients named
fsrs001, fslab004 and
fs1ab007, and give
read-only access to
all other clients

give read/write access to

this z/0S UNIX directory to the
client named johnson;

give read-only access to

all others

/hfs/newproductdirectory -rw=johnson

SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR S SR SR SR SR

Chapter 10. Customization 187

188

barbara.pds -access=fsrs001|fs1ab0o7 #
give read/write access
only to clients named
fsrs00land fslab007
#
daniel.pds2 -access=fs1ab004,ro # give read-only access
only to the client
named fslab004

e

virginia.vsam —access=fs1ab004|fs]ab007,rw=fs1ab004 #

give read-only

access only to the
client named fs1ab007,
and give read/write
access to fslabh004.
/hfs/u -sec=krb5|krb5i |krb5p client must use krb5, krb5i or
krb5p authentication levels to
access server, provided that
hfssec also allows these
authentication Tevels.

s T e I He S e e I I I

Note:

1.

If your installation cannot use the “#” as a comment delimiter, see [“Starting the
[z/OS NFS server” on page 225.|

The keywords ro and rw are mutually exclusive.

The ability to write (that is, rw specified or access specified without other
parameters) implies read access also.

If access and rw are specified together, the client names in the rw list are
logically or'ed with the access list to determine the total list of clients with read
access.

Multiple lines can be used in the exports data set for a given directory to merge
the access list and the rw list. However, similar clauses (for example, an access
followed by an access) completely replace any previous specification. If ro is
specified for a data set on one line and a further line specifies rw for that data
set, the rw undoes the ro specified earlier. Similarly, a line with null options
completely undoes all previous specifications for that directory, giving

read /write access to all clients.

It is not appropriate to have the same data set or z/OS UNIX directory defined
more than once in the exports data set. If for any reason this is the case, only
the last definition in the exports data set is valid.

If a directory entry is specified without a prefix, the IMPPREFIX() site attribute
specifies both options, and there is nothing in the directory name syntax that
explicitly limits it to one or the other of the two file system types, then the
directory entry is exported for both file system types.

Client id specification

There are several options for specifying the client hostname in the exports data.
Some options apply only when NODHCP is specified in the site attributes file and
others apply regardless of the DHCP mode. The client specification options are as
follows.

Single hostname

This is the most common format and the one supported in releases before
z/0S V1RS. In this format the client is specified by a hostname recognized by
the DNS resolver. This name must be unique and unchanging for the duration
of the NFS connections. A client suffix may be specified with this format.

z/0S V2R2 Network File System Guide and Reference

Netgroup name
Name of a netgroup defined in the local /etc/netgroup file. The group entry in
the file lists the hosts who are members of the group. Only the host part of
each netgroup member is considered for checking for membership. Empty host
parts, or those containing a single dash (-) are ignored. Netgroup names must
be preceded by an at-sign (@), for example @group. A client suffix may not be
specified with this format.

Single IP address
A client may be specified by an IPv4 or IPv6 address. Invalid IPv4 or IPv6
address specifications are ignored. If the NFS server starts in IPv4 mode and
an IPv6 address is specified, it is ignored. If the NFS Server starts in IPv6
mode and an IPv4 address is specified, the address is translated to an
IPv4-mapped address (which is standard IPv4 address handling in IPv6
networks). This option is only valid in NODHCP mode. In DHCP mode such
client specifications are ignored. A client suffix may be specified with this
format.

IP networks
Directories can also be exported to all hosts on an IPv4 or IPv6 network or
subnetwork simultaneously. For IPv4 networks, specify an IP address and
netmask pair as address/netmask where the netmask can be specified in
dotted-decimal format, or as a contiguous mask length. For example, either
'/255.255.252.0' or '/22" appended to the network base address will result in
identical subnetworks with 10 bits of hostname. IPv4 addresses and mask
lengths are checked for format and range, and ignored if invalid. A range from
1 to 31 is assumed.

For IPv6 networks, this is done by specifying IPv6 address/prefix-length. For
example, the node address 12AB:0:0:CD30:123:4567:89AB:CDEF and its subnet
number 12AB:0:0:CD30::/60 can be abbreviated as
12AB:0:0:CD30:123:4567:89AB:CDEF/60. IPv6 addresses and prefix-length are
checked for format and range, and ignored if invalid. A range from 1 to 127 is
assumed.

If the NFS server starts in IPv4 mode and an IPv6 address is specified, it is
ignored. If the NFS Server starts in IPv6 mode and an IPv4 address is
specified, the address is translated to an IPv4-mapped address (standard IPv4
address handling in IPv6 networks).

This is option is only valid in NODHCP mode. In DHCP mode, IP network
entries are ignored. A client suffix may not be specified with this format.

Netgroup definitions: Since z/OS does not support the NIS environment, z/OS
NFS can only support netgroups defined in the local /etc/netgroup file. z/OS NFS
assumes the same file record length restriction as for the NIS environment (that is,
a maximum size of 1024 bytes). A netgroup cannot have a client id list longer than
1024 characters. z/OS NFS assumes the same wildcard character (*' and '?")
restrictions as the NIS environment (that is, no wildcard character specification as
part of a netgroup name, nor as part of client host names specified in a netgroup
file).

z/0S NFS also assumes that the local netgroup file contains netgroup information
without the NIS "+" token. In other words, the local netgroup file does not contain
any LOCAL netgroup information and all network netgroup information put into
the file from the NIS data base without the NIS "+" token. Any "+" tokens
encountered are ignored.

Here is an example of some sample local netgroup files:

Chapter 10. Customization 189

190

/etc/netgroup local file.

#

LocalAdmins (,root,)

NetAdmins (sonne,userl,) (sonne,user2,) LocalAdmins
Gateways (rechnerl,,) (rechner7,,)

Here is another example:

/etc/netgroup local file.
shown one netgroup, it must contain no more than 1024 chars.

cnet2331 (bart.foobar.net,,cnet2331.foobar.net) \
(1isa.foobar.net,,cnet2331.foobar.net) \
(dead.foobar.net,,cnet2331.foobar.net)

Wildcard characters: In DHCP mode, client host names may contain the wildcard
characters ' * 'and ' ? ' . Wildcard characters ' * ' and ' ? ' cannot be specified in
netgroup names, nor as part of client host names specified in a netgroup file. These
characters can be used to make exports files more compact; for example,
*.cs.foo.edu matches all hosts in the domain cs.foo.edu. However, these wildcard
characters do not match the dots in a domain name, so that example does not
include hosts such as a.b.cs.foo.edu.

When wildcard characters are used, the domain name is mandatory because the
NFS server cannot check wildcard host names with DNS or rely on any default
domain name definitions.

When wildcard characters are used, client suffix specification is not permitted.

IP address representation: Text representations of IP addresses must conform to
the industry standard defined in RFC-2373, IP Version 6 Addressing Architecture.
IPv4 addresses and masks must be written in the standard IPv4 dotted-decimal
form:

ddd.ddd.ddd.ddd
where ddd is a one-to-three digit decimal number between 0 and 255.

IPv6 addresses must be written in the standard IPv6 form:

XIXIXIXIXIXiXiX

where the xcharacters are the hexadecimal value of the eight 16-bit pieces of the
address. For example:

FEDC:BA98:7654:3210: FEDC:BA98:7654:3210
1080:0:0:0:8:800:200C:417A

Due to some methods of allocating IPv6 addresses, it is common for addresses to
contain long strings of zero bits. To simplify writing addresses containing zero bits,
you can use a special syntax to compress the zeros. You can use two colons (::) to
indicate multiple groups of 16-bits of zeros. The double colons (:) can only appear
once in an address. They can also be used to compress the leading and/or trailing
zeros in an address. For example, the following shorthand addresses can be used:

Table 29. Shorthand for addresses with multiple zero bits

Address Shorthand Description
1080:0:0:0:8:800:200C:417A 1080::8:800:200C:417A Unicast address
FF01:0:0:0:0:0:0:101 FF01::101 Multicast address
0:0:0:0:0:0:0:1 1 Loopback address

z/0S V2R2 Network File System Guide and Reference

Table 29. Shorthand for addresses with multiple zero bits (continued)
Address | Shorthand | Description
0:0:0:0:0:0:0:0 | i |Unspecified address

An alternative form that is sometimes more convenient in a mixed environment of
IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the x characters are the
hexadecimal values of the six high-order 16-bit pieces of the address, and the d
characters are the decimal values of the four low-order 8-bit pieces of the address
(standard IPv4 representation). Some examples follow:

Table 30. Shorthand for addresses in mixed IPv4 and IPv6 environments

Address Compressed Form Description
0:0:0:0:0:0:13.1.68.3 :113.1.68.3 IPv4-compatible addresses
0:0:0:0:0:FFFF:129.144.52.38 :FFFF:129.144.52.38 IPv4-mapped addresses

Address Prefix Representation: The text representation of IPv6 address prefixes is
similar to that of IPv4 addresses prefixes. They are written in CIDR notation. An
IPv6 address prefix is represented by the notation: Ipv6-address/prefix-length.

Abbreviation: a node address and its subnet address can be abbreviated, as in the
following example:

Node address
12AB:0:0:CD30:123:4567:89 AB:CDEF

Its subnet number
12AB:0:0:CD30:: /60

Abbreviation
12AB:0:0:CD30:123:4567:89 AB:CDEF /60

Checklist data set

In z/OS V1RS, the function of the z/OS NFS checklist data set was merged into
the exports data set. If you used a checklist data set in previous releases, use the
dirsuf parameter to specify its contents in the exports data set. See
[statement” on page 182| for details. With this merger, the checklist information can
be refreshed dynamically using the exportfs operand of the modify mvsnfs
command, instead of requiring a restart of the NFS server.

Mount handle data sets

The mount handle data sets are used to record active mounts during server
operation and allow clients to stay mounted when the server is shut down and
restarted. The Network File System alternates between two data sets to record this
information; only one data set is used at a time, and it is switched at either
shutdown or at resource cleanup timeout.

To create the mount handle data sets, perform the following tasks:
1. Allocate two empty VSAM KSDS data sets with the following attributes:
* Starting with offset 0, the first 16 bytes in the record are the prime key field.

* The maximum record length of the mount handle data set is 2000 bytes, and
the average record length is 1700 bytes.

Chapter 10. Customization 191

192

DEFINE CLUSTER (NAME(mount_handle_data_set name) -
VOL(vsam_volume_name) -
CYL(1 1) -
INDEXED -
REUSE -
KEYS(16 0) -
SHAREOPTIONS(1 3) -
RECSZ (1700 2000))

See |Appendix L, “GFSAMHD] sample code for creating NFS mount handle|
[data sets and lock data sets,” on page 567 for sample JCL showing how to
create the mount handle data sets.

2. Specify these two data sets to the FHDBASE DD statement and FHDBASE2 DD
statement in the MVSNFS procedure (see [Figure 22)).

3. The server switches data sets after resource cleanup has run.

4. Resource cleanup is done at Network File System shutdown and resource
cleanup timeout.

shows how to specify the mount handle data set on the FHDBASE DD
statement and FHDBASE2 DD statement on the MVSNFS procedure.

//* FHDBASE AND FHDBASEZ ARE

//* THE MOUNT HANDLE DATA SETS.

//* THEY NEED TO BE PREALLOCATED

/1* AS EMPTY VSAM KSDS DATA SETS.

/1% THEY WILL BE USED ALTERNATELY.

/1* SAMPLE JCL CAN BE FOUND IN HLQ.NFSSAMP(GFSAMHDJ) .
/1%

//FHDBASE DD DISP=SHR,DSN=MVSNFS.FHDBASE

//FHDBASE2 DD DISP=SHR,DSN=MVSNFS.FHDBASE2

Figure 22. Specifying the mount handle data set in the MVSNFS procedure

Lock data sets

Lock data sets are VSAM key-sequenced data sets that record the client host IP
address and, for NFS V4, the client identification as well as the client host name.
Following a server outage, the z/OS NFS server reads the new lock data sets
during initialization to determine which clients can reclaim locks. The z/OS
Network File System alternates between two data sets to record this information;
only one data set is used at a time, and it is switched at shutdown, at resource
cleanup timeout, and at the end of the grace period at server startup.

Note: The lock data sets must always be allocated, even if nonlm is specified in
the site attributes.

To create the lock data sets, perform the following tasks:

1. Allocate two empty VSAM KSDS data sets, on separate DASD volumes to
reduce the possibility that a single failure would result in the loss of both data
sets. Allocate them with the following attributes:

* Starting with offset 0, the first eight bytes in the record are the prime key
field.

* The maximum record length of the lock data set is 2000 bytes, and the
average record length is 1700 bytes.
DEFINE CLUSTER (NAME(lock_data_set name) -
VOL(vsam_volume_name) -
CYL(1 1) -
INDEXED -

z/0S V2R2 Network File System Guide and Reference

REUSE -

KEYS(8 0) -

SHAREOPTIONS(1 3) -

RECSZ (1700 2000))
See |Appendix L, “GFSAMHD] sample code for creating NFS mount handle]
[data sets and lock data sets,” on page 567 for sample JCL showing how to
create the lock data sets.

2. Specify these two data sets to the LDBASE DD statement and LDBASE2 DD
statement in the MVSNFS procedure (see [Figure 23).

3. The server switches data sets after resource cleanup has run.

4. Resource cleanup is done at Network File System shutdown, resource cleanup
timeout, and at the end of the grace period at server startup.

shows how to specify the lock data set on the LDBASE DD statement
and LDBASE?2 DD statement on the MVSNEFS procedure.

//* LDBASE AND LDBASEZ ARE

//* THE LOCK DATA SETS.

A THEY NEED TO BE PREALLOCATED

/1% AS EMPTY VSAM KSDS DATA SETS.

/]* THEY WILL BE USED ALTERNATELY.

/1% SAMPLE JCL CAN BE FOUND IN HLQ.NFSSAMP(GFSAMHDJ) .
/1%

//LDBASE DD DISP=SHR,DSN=MVSNFS.LDBASE

//LDBASE2 DD DISP=SHR,DSN=MVSNFS.LDBASE2

Figure 23. Specifying the lock data set in the MVSNFS procedure

Converting data between ASCII and EBCDIC - NFS V2 and V3
only

With the NFS version 2 and 3 protocols, data and metadata is converted between
EBCDIC and ASCII as well as other data formats defined with a coded character
set identifier (CCSID). No double byte character set (DBCS) or multiple byte
character set (MBCS) forms of data or metadata are converted.

Customizing the translation table

You can customize the translation table for NFS using the processing attribute
xlat(member_name). The parameter (member_name) is the member name of a
PDS or PDSE containing the customized translation table. This attribute can be
specified either in the mount operation or in the attribute file. It can be specified
on a file operation but is ignored, only the mount or the xlat value takes effect.

If the processing attribute, xlat, is not specified in the attribute file, the NFS
internal translation table is used as the installation default translation table. When
the xlat(member_name) processing attribute is specified in the attribute file, this
customized translation table becomes the installation default translation table. The
NFS internal translation table is derived from EBCDIC code page 0037 and ISO
8859-(ASCII). RPC arguments, such as filenames, are always translated by the
installation default translation table. Data shipped with RPCs are translated by the
mount specified translation table, if any. Otherwise, they are also translated by the
installation default translation table.

A mount request with processing attribute, xlat, specified overrides the installation
default translation table.

When accessing z/OS UNIX files, you must specify the OEMVS311 translation
table or your customized translation table either in the mount request or in the

Chapter 10. Customization 193

194

default attributes. The OEMVS311 table translates ASCII (ISO 8859-1) to and from
EBCDIC (1047 - z/OS UNIX). TCP/IP for MVS version 3.1 provides the OEMVS311
table. This table translates the UNIX line terminator (If) to the z/OS UNIX line
terminator (nl).

See [z/0S V2R2.0 Communications Server: IP Configuration Reference for more
information about creating and customizing your own translation tables.

Enabling the xlat processing attribute
A DD statement, NFSXLAT, is required in the Network File System startup
procedure to enable the xlat(member_name) processing attribute:

//NFSXLAT DD DSN=data_set_name,DSP=SHR

where

data_set_name
Specifies the name of a PDS or PDSE whose member contains the customized
translation table.

A PDS or PDSE, data_set_name, is created by the CONXLAT utility whose member
contains the customized translation table.

Note:

1. See|z/OS V2R2.0 Communications Server: IP Configuration Referencd, “Using
Translation Tables,” for more information about creating and customizing your
own translation tables.

2. You can edit or modify the translation table from your own or from a member
in the tcpip.SEZATCPX data set and then use CONVXLAT utility to convert the
source table into binary format. The CONVXLAT utility can take a PDS or
PDSE as input, and its output data set can be physical sequential, PDS or
PDSE.

3. The Network File System only supports PDS and PDSE. A sequential data set
must be copied to either a PDS or PDSE member.
4. The Network File System does not support the translation for multiple-byte
character sets.
5. Sample steps for creating the xlat member:
a. Run the TCPIP CONVXLAT utility to create a physical sequential (PS) data
set with DSORG=PS, RECFM=F, LRECL=256, BLKSIZE=256;
"convxlat" 'tcpip.sezatcpx(standard)' 'hlg.xlat.output'
b. Allocate a PDS data set with DSORG=PO, RECFM=F, LRECL=256,

BLKSIZE=256; copy the CONVXLAT output data set as a member in the
PDS data set

c. Allocate the xlat member in the z/OS NFS startup procedure.

Updating z/0S system data sets for the server

Update the following z/OS system data sets to accommodate the z/OS NEFS server:
* PARMLIB updates
Add the data set defined in the GFSAPROC STEPLIB containing the z/OS NFS
server library to the system's APF authorization list (IEAAPFxx). A sample

cataloged procedure named GFSAPROC is provided as a member of the sample
library NFSSAMP, see [“Sample z/OS NFS server startup procedures” on page

* PROCLIB updates

z/0S V2R2 Network File System Guide and Reference

A sample cataloged procedure named GFSAPROC is provided as a member of
the sample library NFSSAMP, see [“Sample z/OS NFS server startup procedures’]
Modify the MVSNES procedure and place it in your system
PROCLIB. Add the DD statements:

EXPORTS as the DD for the exports data set

NFSATTR as the DD for the attributes data set

FHDBASE and FHDBASE2 as the DD for the mount handle data set

NFSXLAT as the DD to enable the xTat processing attribute

NFSLOG1 as the DD for the primary log data set

NFSLOG2 as the DD for the secondary log data set

SYSxDUMP as the DD for the SYSxDUMP data set ('x' = U or M)
LDBASE and LDBASE2 as the DD for the Tock data sets

REGION updates

The REGION specifies the total size of usable virtual storage below-the-bar of an
address space.

— If REGION is zero (give the address space ALL the available virtual storage
below the bar) , MEMLIMIT is assigned no limit.

The sample z/OS NFS Server startup procedure GFSAPROC has
REGION=0M.

— If REGION is non-zero, the MEMLIMIT value takes effect. If the MEMLIMIT
is not specified the z/OS NFS Server may not complete startup and
shutdown immediately.

MEMLIMIT updates

The MEMLIMIT specifies the total size of usable virtual storage above-the-bar of
an address space. It can come from the following:

— IEFUSI system exit

— SMFPRMxx MEMLIMT parameter

— SETSMF command

- MEMLIMIT keyword in the JOB and EXEC JCL (that is, z/OS NFS Server

startup procedure). It is worthwhile to update the sample startup procedure
GFSAPROC with an example of a non-zero REGION size and MEMLIMIT.

The following is an example of REGION and MEMLIMIT use in the startup
procedure GFSAPROC.
//**

/1%

//* The REGION specifies the virtual memory below the bar (2GB) GPOAA

//* while the MEMLIMIT specifies the memory above the bar. @POAA

//* 1If REGION=0M then MEMLIMIT=NOLIMIT (default), or @POAA
/1* optionally specify the MEMLIMIT. @POAA
//* 1f REGION=xxxM then specify MEMLIMIT=yyyG rather than OPOAA
//* taking some default value. OPOAA
//* The z/0S Network File System Server will not start if OPOAA
//* MEMLIMIT=0M or if it is too small. OPOAA
/1*

//GFSAMAIN EXEC PGM=&MODULE,

// PARM="'&PARMS ',

// TIME=1440, GPOAM
// REGION=0M

//* REGION=OM,MEMLIMIT=yyyG @POAA
//* REGION=xxxM,MEMLIMIT=yyyG QPOAA
//* REGION=xXxXxM,MEMLIMIT=yyyM OPOAA
/1%

Chapter 10. Customization 195

196

Allocating the z/OS NFS server log data sets

For information about allocating the z/OS NFS server primary and secondary log
data sets, see |Appendix K, “Capturing diagnostic information using z/OS NFS log|
[data sets and from other components,” on page 559 |

Side file data set

A side file data set is allocated as a fully-qualified MVS data set name.
* Record format of FB 80 is required.
* Data set organization of Physical Sequential is required.
* The name must follow the naming convention:
"USERID.MLQ.NFS.MAPPING"
where:

USERID
can be any valid userid.

MLQ
is optional; if present, may be any valid MVS qualifiers

NFS.MAPPING
are required low-level qualifiers

The last two qualifiers of the data set name must be NFS.MAPPING .

A sample side file, GFSAPMAP, is provided in the SYS1.NFSSAMP library. For
information about side files, see [“File extension mapping” on page 40 |[“Processing|
attributes syntax” on page 127 |[“Site attributes syntax” on page 139|and
Appendix E, “NFS system server sample attribute table,” on page 495,

Modifying tcpip.ETC.RPC and etc/rpc

Add the entries in [Table 31| to the tcpip.ETC.RPC and etc/rpc files for the services
provided by the z/OS NFS server:

Table 31. Modifying tcpip.ETC.RPC and etc/rpc

Service Number | Alias Description
nfsd 100003 nfs nfsprog # Network File System daemon
mountd 100005 mount # Mount daemon

showmount

nlockmgr 100021 nlm nfs_lockd # Network Lock Manager

status 100024 nsm nfs_statd # Network Status Monitor

mvsmount | 100044 nfs_mvsmnt # MVSmount daemon (for mvslogin, mvslogout)
showattr 100059 nfs_showattr # showattr daemon

penfsd 150001 nfs_pcnfs # penfs daemon

Setting up a user-specified port range

The /etc/services file must define the port number entries for services mountd,
mvsmount, penfsd, showattr , network status monitor (status), and network lock
manager (nlockmgr) of the z/OS NFS server. [Figure 24 on page 197] outlines the
port numbers for these services, with contiguous port numbers 2043-2049 as
examples.

z/0S V2R2 Network File System Guide and Reference

NFS server
Port 2049 must be used for nfsd.

#

#

#

#

Consecutive port numbers must be assigned for the NFS status,
nlockmgr, mountd, mvsmount, showattr, and pcnfsd services.

The example belows uses ports 2043-2048.
#

#

#

#

#

#

#

When the NFS callback function is being used the services
nfssch b and nfssch_e should reserve 100 consecutive ports.
The example below uses port 10300 for the beginning port
and port 10399 as the ending port.

For additional information see the Network File System Guide
and Reference manual.

#
Service port/protocol Alias Description
status 2043/tcp nfs_statd # NFS State daemon (NSM)
status 2043/udp nfs_statd # NFS State daemon (NSM)
nlockmgr 2044/tcp nfs_lockd # NFS Lock daemon (NLM)
nlockmgr 2044/udp nfs_lockd # NFS Lock daemon (NLM)
mountd 2045/tcp mount # NFS mount daemon
mountd 2045/udp mount # NFS mount daemon
mvsmount 2046/tcp nfs_mvsmnt # NFS mvsmount daemon
mvsmount 2046/udp nfs_mvsmnt # NFS mvsmount daemon
showattr 2047/tcp nfs_showattr # NFS showattr daemon
showattr 2047/udp nfs_showattr # NFS showattr daemon
pcnfsd 2048/udp nfs_pcnfs # NFS pcnfsd daemon
pcnfsd 2048/tcp nfs_penfs # NFS pcnfsd daemon
nfsd 2049/tcp nfs # NFS server daemon

- do not change
nfsd 2049/udp nfs # NFS server daemon

- do not change
#
NFS Callback function port range
#
nfssch b 10300/tcp # NFSS callback port begin
nfssch_e 10399/tcp # NFSS callback port end
nfssch b 10300/udp # NFSS callback port begin
nfssch_e 10399/udp # NFSS callback port end

Figure 24. Modify /etc/services for mountd, mvsmount, pcnfsd, showattr, status, and nlockmgr

The user specified range of ports provides a flexible port range to accommodate
programs such as a firewall that supports a range of ports for security purposes
between the NFS Client and the NFS Server. Firewall security honors a limited port
range so the NFS server has to allow the user to specify a few server ports in
/etc/services to narrow the port ranges used for programs mountd, mvsmount,
penfsd and showattr.

The tcpip.profile file must define the port range entries for services nfsd, mountd,
mvsmount, pcenfsd, showattr, status, and nlockmgr of the z/OS NFS server.
[Figure 25 on page 198| outlines the port ranges for these seven services with
contiguous port numbers 2043-2049 as examples, starting with port 2043 for the
network status monitor.

Chapter 10. Customization 197

198

PORTRANGE 2043 7 UDP mvsnfs ; Reserved for startup JCL,

5 mvsnfs

PORTRANGE 2043 7 TCP mvsnfs ; Reserved for startup JCL,
5 mvsnfs

PORTRANGE 10300 100 UDP mvsnfs ; Reserved for startup JCL,
5 mvsnfs

PORTRANGE 10300 100 TCP mvsnfs ; Reserved for startup JCL,
5 mvsnfs

Figure 25. Modify tcpip.profile for zZ0S NFS server services

Note: Check the z/0OS USS BPXPRMxx parmlib member for INADDRANYPORT
and INADDRANYCOUNT. Their range cannot include the z/OS NFS server port
ranges for the server to initialize. See [z/OS V2R2.0 Communications Server: IP|

[Configuration Guide for more details.

If the z/OS NFS server is started in the TCP/IP Autolog section, then the
NOAUTOLOG parameter should be specified on the PORTRANGE statement,
unless there will always be listeners/sockets on all ports defined in the statement.
For additional information, refer to the section on AUTOLOG in
[Communications Server: IP Configuration Referencel

Add the following two lines in /etc/rpc on the client side to see mvsmount and
showattr information:

mvsmount 100044 mvsmount
showattr 100059 showattr

The query result from the client side will show the following messages:
rpcinfo -p hostname

program vers proto port service
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100024 1 udp 2043 status
100024 1 tep 2043 status
100021 1 udp 2044 nlockmgr
100021 1 tcp 2044 nlockmgr
100021 3 tep 2044 nlockmgr
100021 3 udp 2044 nlockmgr
100021 4 tep 2044 nlockmgr
100021 4 udp 2044 nlockmgr
100005 1 udp 2045 mountd
100005 1 tcp 2045 mountd
100005 3 udp 2045 mountd
100005 3 tcp 2045 mountd
100044 1 udp 2046 mvsmount
100044 1 tcp 2046 mvsmount
100059 2 udp 2047 showattr
100059 2 tcp 2047 showattr
150001 1 udp 2048 pcnfsd
150001 2 udp 2048 pcnfsd
150001 1 tep 2048 pcnfsd
150001 2 tcp 2048 pcnfsd
100003 2 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 udp 2049 nfs
100003 3 tcp 2049 nfs
100003 4 tep 2049 nfs

z/0S V2R2 Network File System Guide and Reference

Configuring a secure z/OS NFS server

In order for the z/OS NFS version 4 server to be able to provide RPCSEC_GSS
security authentication flavors such as krb5, krb5i and krb5p, the z/OS NFS server
must be configured to communicate with the Kerberos facilities. To do so, complete
the following steps.

We are assuming that a properly configured KDC is already setup in your
environment. If a KDC is not already configured please see |[Appendix M, “Setting]
[up NFS functions with Kerberos Support,” on page 571 This section is split up
into two parts to include specific examples using a KDC provided by “Security
Server and Integrated Security Services” (RACF) provided by IBM and generic
examples for non RACF KDC’s. These steps assume that Resource Access Control
Facility (RACF) is available in the system. If you have a different but equivalent
external security manager, please refer to its product documentation for
instructions. A domain name server (DNS) resolver should also be available to the
z/0S system in order to enable the security feature. Otherwise message GFSA7351
is shown during startup of the secure z/OS NFS server. Since there are many
options to set up a DNS resolver, such as /etc/resolv.conf or GLOBAL
TCPIPDATA, specific examples are not given here. For more information on setting
up a DNS resolver, see [z/0S V2R2.0 Communications Server: IP Configuration Guidd

1. The Kerberos key distribution center (KDC) must be running, and must
contain the z/OS NFS server’s principal before the secure z/OS NFS server
starts. If the KDC is not set up correctly, whether the z/OS NFS server can
start depends on the hfssec, mvssec, and pubsec attribute settings. If any of
these three attributes also contains the sys security flavor in addition to any of
the Kerberos flavors, the z/OS NFS server is started with message GFSA7371
and functions with the sys security flavor only. On the other hand, if none of
the hfssec, mvssec, or pubsec attributes contains the sys security flavor and
the KDC is not available, the message GFSA736E is shown and z/OS NFS
server does not start. The KDC can be running on z/OS, either on the same
host as the z/OS NFS server itself or remotely from the z/OS NFS server. It
can also be a KDC running on other platforms, for example, a SUN Solaris
system or any other platform.

For a brief description on how to setup a z/OS KDC, see |”Setting up 5|
Kerberos Key Distribution Center” on page 572 or refer to|z/OS Integrated|
Security Services Network Authentication Service Administration| for more
advanced details. For setting up other platforms' KDCs, refer to the specific
platform’s documentation.

2. Define local realm and default policy. For example, issue the following TSO
command:

RDEFINE REALM KERBDFLT KERB(KERBNAME(KRB390.IBM.COM) PASSWORD(password)

Note: “KRB390.IBM.COM” should match the Kerberos REALM of the KDC.

3. Define IRR.RUSERMAP and grant READ authority to all system users, issuing
TSO commands:

RDEFINE FACILITY IRR.RUSERMAP UACC(READ) SETROPTS RACLIST (FACILITY)
REFRESH PERMIT IRR.RUSERMAP CLASS(FACILITY) ID(mvsnfs) ACCESS(READ)
SETROPTS CLASSACT (FACILITY)

Note: If “mvsnfs” is the RACFID of the z/OS NFS server. It is recommended
that you add this path in the z/OS UNIX /.profile:

"PATH=/usr/1pp/skrb/bin:§PATH"

and export the "PATH."

Chapter 10. Customization 199

200

4. Add a kerberos segment to the RACF user ids for the z/OS NFS server.

Issue the TSO command:

ALTUSER mvsnfs
KERB (KERBNAME (nfs/hos tname.domain))

If the SAF KDC is configured on the same system as the z/OS NFS sever then
a PASSWORD must be set:
ALTUSER mvsnfs PASSWORD(password) NOEXPIRED

KERB (KERBNAME (nfs/hostname.domain))
PASSWORD USER(mvsnfs)NOINTERVAL

If the Kerberos segment is not defined correctly to RACE, the following error
message appears on the server when an NFS client tries to mount to z/OS
NFS server with Kerberos.

GFSA728E SAF APPLICATION USER MAPPING FAILED WITH SAF RETURN CODE 8,
RACF RETURN CODE 8, AND RACF REASON CODE 16

Note:

a. We expect that the z/OS NFS server's ID was already defined to RACEF. If
it has not been configured please see |“Setting up the z/OS NFS|
lauthorization” on page 162

b. If a SAF KDC is NOT being used, create a principal
"nfs/hostname.domain" according to your vendor's KDC documentation.

c. The ALTUSER command converts the password to upper case if the
MIXEDCASE SETROPTS option is not set. If MIXEDCASE is not set, you
must ensure that the upper case value is used when you request an initial
ticket. The principal name is not converted to upper case and the realm
name is not included. You must change the password for the user in order
to create the Kerberos secret key.

d. The Kerbname must be the fully qualified hostname and domain. For
example hostname.domain could be "hostl.ibm.com"

e. Including PASSWORD option “NOINTERVAL” prevents the password
from expiring.

The z/0OS NFS server requires the Kerberos configuration file “krb5.conf” be

configured to match your sites Kerberos environment.

Sample /etc/skrb/krb5.conf file to be put on the z/OS NFS server host:

[Tibdefaults]

default_realm = KRB390.IBM.COM

kdc_default_options = 0x40000010

use_dns_lookup = 0

default_tkt enctypes = aes256-cts-hmac-shal-96,aes128-cts-hmac-shal-96,
des3-cbc-shal,des-hmac-shal,des-chc-md5,des-cbc-md4,des-cbc-crc

default_tgs_enctypes = aes256-cts-hmac-shal-96,aes128-cts-hmac-shal-96,
des3-cbc-shal,des-hmac-shal,des-chc-md5,des-cbc-md4,des-cbc-crc

[realms]

KRB390.IBM.COM = {

kdc = dcesec4.krb390.1ibm.com:88
kpasswd_server = dcesec4.krb390.1ibm.com:464
admin_server = dcesec4.krb390.ibm.com:749

}

KRB2000.IBM.COM = {

kdc = sstonel.krb2000.ibm.com:88
admin_server = sstonel.krb2000.ibm.com:749

}

z/0S V2R2 Network File System Guide and Reference

[domain_realm]
.krb390.1ibm.com = KRB390.IBM.COM
.krb2000.ibm.com = KRB2000.IBM.COM

Supported etypes:

ENCTYPE_DES_CBC_CRC
ENCTYPE_DES_CBC_MD4
ENCTYPE_DES_CBC_MD5
ENCTYPE_DES_HMAC_SHA1
ENCTYPE_DES3_CBC_SHA1
ENCTYPE_AES128_CTS_HMAC_SHA1 96
ENCTYPE_AES256_CTS_HMAC_SHA1 96

Generate the keytab from the KDC and put it in /etc/skrb of the z/OS NFS
server unless otherwise defined. For more detailed examples of generating
keytabs see [“Setting up a Kerberos Key Distribution Center” on page 572| or in
[z/OS Integrated Security Services Network Authentication Service Administration}

From the omvs shell, the system administrator must add the principal
"nfs/hostname.domain" into the keytab. If /etc/skrb/krb5.keytab does not
exist, create a new one. For example for a SAF or NDBM KDC

IBMUSER:/ :> keytab add nfs/hostname.domain -p password -k /etc/skrb/krb5.keytab -v 1

For example for a Unix KDC in kadmin:
Kadmin: ktadd —k /etc/krb5/krb5.keytab nfs/hostname.domain

Note:

a. The "password" in this step must match the "password" entered in step 4,
when the principal was added to the SAF KDC Kerberos database. This
principal is used to authenticate the z/OS NFS Sertver to the KDC.

b. The key version used to create the keytab must be the same key version as
in the racf database. The “-v” option of the keytab command is used to
specify the key version when adding a principal to a keytab. Issue the
following RACF command to see the current key version:

LU mvsnfs NORACF KERB

c. The password used with the “keytab” command is case sensitive. If mixed
case password support is not in effect you must enter the password in
uppercase

For systems with multiple TCPIP stacks you must create the keytab with
principals for each stack. If a stack is part of a different REALM then keys will
need to be added to the keytab from each KDC. Cross REALM trusts must
also be created.

IBMUSER:/:>klist -k

Key table: /etc/skrb/krb5.keytab

Principal: nfs/hostl.domain.com@KRB390.IBM.COM

Key version: 4

Principal: nfs/host2.domain.com@KRB390.IBM.COM

Key version: 4

Principal: nfs/host3.domain.com@KRB2000.IBM.COM

Key version: 2

For Systems having TCP/IP stacks with multiple IP addresses (IPv4/IPv6),
their DNS entries must map all of the IP addresses to the default host name
for their associated stack.

If there is any multi-realm setup in the environment, the z/OS NFS server
needs to have the foreign principals mapped to a RACF ID.

For example: To map a foreign principal “fprinc” in “KRB2000.IBM.COM” to
RACF ID “fprealm2”, issue the TSO commands:

Chapter 10. Customization 201

202

ADDUSER (fprealm2) OWNER(owner) OMVS(UID(102))

ALTUSER fprealm2 PASSWORD(password) NOEXPIRED

PASSWORD USER(fprealm2) NOINTERVAL

RDEFINE KERBLINK /.../KRB200O.IBM.COM/fprealm2 APPLDATA(''fprealm2')

To map the entire foreign realm (every principal in the trusted foreign realm)
to a RACF user, issue the TSO command:

RDEFINE KERBLINK /.../KRB2000.IBM.COM/ APPLDATA('fprealm2')

Note: the /.../ and trailing slash are required. “KRB2000.IBM.COM” is the
foreign realm.
10. Start the z/OS NFS server. If set up is correct, the following message should
be shown:
GFSA730T NETWORK FILE SYSTEM SERVER KERBEROS INITIALIZATION SUCCESSFUL
11. Most issues with kerberos are related to invalid keytabs. Once the keytab has
been placed on the zNFS server's LPAR in "/etc/skrb/krb5 keytab", verify that
the keytab is valid by issuing the following command:
kinit -k nfs/host.domain.com
a. This command should complete with out errors and you should not be
prompted for a password.
b. If you have multiple stacks, This command should be performed for each
principal in the keytab.

c. If this command fails, the keytab is invalid or the Kerberos configuration is
incorrect.

Note:

1. These are the minimal requirements to set up a secure z/OS NFS server in
order for it to communicate with Kerberos facilities. For more advanced
configurations, please see [z/OS Inteqrated Security Services Network Authentication|
[Service Administration]

2. If z/OS NFS server is configured to use a KDC that resides on a remote host,
the local KDC procedure (for example, skrbkdc) on the same host as the z/OS
NFS server should not be started.

Using dynamic client IP addressing

By default, the z/OS NFS server expects to communicate with clients based on a
static client IP address. The server can also use the dynamic host configuration
protocol (DHCP) to accept dynamic client IP address changes. To use dynamic
client IP addressing, specify the dhcp server site attribute. The default attribute,
nodhcp, tells the server to use the static IP algorithm.

To use dynamic IP addressing, the client must:
* Have a constant host name that the NFS server can identify it by.

* Dynamically update the authentication DNS (dynamic name server) with new IP
addresses whenever they change.

* Maintain the TTL (time to live) value that the authentication DNS server
specifies to any caching DNS server, based on the frequency with which system
IP addresses might change. The larger the TTL value, the greater the possibility
that the caching DNS server will have obsolete information. If dynamic
addressing is used, the TTL value should be small, ideally zero, but a small
value defeats the benefit of caching, so a compromise must be set with the
understanding that cached values can become obsolete during the TTL interval
and report incorrect information to querying systems like the NFS server.

z/0S V2R2 Network File System Guide and Reference

Regardless of the dhcp/modhcp attribute value, the z/OS NFS server itself
continues to have a static IP address.

Terminal ID based restricted MVSLOGIN

When the z/OS NFS Server is used in SECURITY (saf or safexp) mode, it is
necessary for users on NFS clients to issue an NFS Client Enabling Utility
MVSLOGIN command from the NFS client system before they can access any files
on the NFS Server. Normally, assuming the user has a valid z/OS userid and
password, this is not a problem and will successfully provide the user with access
to the z/OS system through NFS. However, with the appropriate RACF
configuration specifications, the z/OS NFS server also provides the ability to
restrict MVSLOGINs based on an NFS client's IP address.

In order to support this capability, the z/OS NFS server transforms an NFS client's
IP address into an 8-byte character string, which is then used as the Terminal ID
(termid) for that NFS Client. Each decimal number of the IP address is transformed
into two hex digits. For example:

IP address
is transformed into

12.15.16.32
0COF1020

9.157.161.12
099DA10C

To use this capability, the z/OS system administrator must:
1. Activate the RACF class TERMINAL. This is done with the RACF command:
SETROPTS CLASSACT (TERMINAL) RACLIST(TERMINAL)

2. Define the proper resource in the TERMINAL class. This is done with the
RACF command:

RDEFINE TERMINAL termid UACC(NONE)

where termid is the terminal Id as generated by the z/OS NFS server using the
algorithm cited previously in this section.
Assume a termid value of 099DA10C is specified, then NFS client with IP
address 9.157.161.12 cannot successfully execute the MVSLOGIN NFS Client
Enabling Utility for users, which have NONE access for the termid class.

3. Refresh the RACF class TERMINAL. This is done with the RACF command:
SETROPTS RACLIST(TERMINAL) REFRESH

4. Grant permission to some users (for example, USER4 and USER5) from the

NEFS client with IP address 9.157.161.12 to successfully execute the MVSLOGIN
NEFS Client Enabling Utility. This is done with the RACF command:

PERMIT 099DA10C CLASS(TERMINAL) ID(USER4 USER5) ACCESS(ALTER)
SETROPTS RACLIST(TERMINAL) REFRESH

For more details on the RACF configuration specifications, see [z/0S Security Server]
[RACF Security Administrator’s Guidel

This feature is supported by z/OS NFS only for IPv4 IP addresses in saf or safexp
SECURITY mode, and only in NODHCP mode. The z/OS NFS Server does not
support this capability for IPv6 IP addresses (because an IPv6 IP address is too
large for this mapping algorithm), or in DHCP mode (because IP addresses
change dynamically in DHCP mode).

Chapter 10. Customization 203

Note: This feature is also supported with RPCSEC_GSS authentication. However,
since mvslogin is no longer required with RPCSEC_GSS, the RACF authentication
is done automatically based on the Kerberos segment of the RACF ID.

SERVAUTH based restricted MVSLOGIN

The z/0OS NFS server relies on the z/OS Communications Server (CS) and RACF
to protect several resources and to restrict access from a network, subnetwork, or
particular IP address in the network. Using NETACCESS statements in a TCPIP
profile, z/OS CS can map networks, subnetworks, and IP addresses to RACF
resource names in the SERVAUTH class (see [z/0S V2R2.0 Communications Server: IP|
[Configuration Guidd). Users that are not permitted access to a particular RACF
resource are not allowed to execute MVSLOGIN from the corresponding network,
subnetwork, or IP address.

User access to MVS data sets through the z/OS NFS Server can be
protected /permitted restricted to/from some network, subnetwork, or IP address
(see |z/OS Security Server RACF Security Administrator’s Guide).

To use this capability, the z/OS system administrator must:

1. Add the NETACCESS section in your TCPIP profile if it does not exist, and
modify the NETACCESS section in your TCPIP profile to prevent/permit users
from/to accessing a given network, subnetwork, or host.

NETACCESS examples:

NETACCESS INBOUND OUTBOUND ; check both ways
192.168.0.55 255.255.255.255 SUN1 ; specific UNIX host
192.168.0.56/32 MVSNFS ; the z/0S NFS server Requires

; matching "PERMIT" to grant access

192.168.0.0/16 CORPNET ; Net address
192.168.113.19/32 HOST1 ; Specific host address
192.168.113.0 255.255.255.0 SUBNET1 ; Subnet address
192.168.192.0/24 SUBNET1 ; Subnet address
Fe80::6:2900:1dc:21bc/128 HOST2 ; IPv6 specific host address
2001:0DB8:/16 GLBL ; IPv6 global network

DEFAULTHOME HOME ; Required Tocal zone
DEFAULT 0 DEFZONE ;Optional Default security zone
ENDNETACCESS

2. Define and activate a RACF profile for each resource specified in the
SERVAUTH class via th NETACCESS statement. Issue the following RACF
commands (see [z/OS Security Server RACF Security Administrator’s Guide):

RDEFINE SERVAUTH (EZB.NETACCESS.SYSTEM1.TCPIPRX.MVSNFS)
RDEFINE SERVAUTH (EZB.NETACCESS.SYSTEM1.TCPIPRX.SUNI)
RDEFINE SERVAUTH (EZB.NETACCESS.SYSTEM1.TCPIPRX.HOME)
RDEFINE SERVAUTH (EZB.NETACCESS.SYSTEM1.TCPIPRX.DEFZONE)
SETROPTS CLASSACT(SERVAUTH) REFRESH RACLIST(SERVAUTH)

where SYSTEM1 is the sysname, TCPIPS] is the tcpname, and MVSNES is the
saf_resname as described later in this section.

The corresponding RACF profile name has the following format (see
[V2R2.0 Communications Server: IP Configuration Reference):

EZB.NETACCESS.sysname .tcpname .saf_resname

where

EZB.NETACCESS
is constant.

sysname
is the value of the MVS &SYSNAME. system symbol.

204 z/0S V2R2 Network File System Guide and Reference

tcpname
is the name of the procedure used to start the TCP stack.

saf_resname
is 8-character value from the NETACCESS section.

An asterisk is allowed as sysname and tcpname. For example:

EZB.NETACCESS.*.*.CORPNET
EZB.NETACCESS.*.*.SUBNET1
3. To allow an NFS client to create connections with the z/OS NFS Server, socket
activity for the NFS Server and the Port mapper, (or RPCBIND) must be
permitted with the following RACF commands:
PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.MVSNFS ACCESS(ALTER) CLASS(SERVAUTH) ID(IBMUSER)
PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.SUN1 ACCESS(ALTER) CLASS(SERVAUTH) ID(IBMUSER)

PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.HOME ACCESS(ALTER) CLASS(SERVAUTH) ID(IBMUSER)
PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.DEFZONE ACCESS(NONE) CLASS(SERVAUTH) ID(IBMUSER)

In this example, assuming IBMUSER is the owning ID of both NFS Server and
RPCBIND, it is needed to grant ALTER access to IBMUSER.

4. To allow an NFS client to access the z/OS NFS Server with specific RACF ID
(for example, USER3), issue the following RACF PERMIT commands:
PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.MVSNFS ACCESS(ALTER) CLASS(SERVAUTH) ID(USER3)
PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.SUN1 ACCESS (ALTER) CLASS(SERVAUTH) ID(USER3)
PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.HONME ~ ACCESS(ALTER) CLASS(SERVAUTH) ID(USER3)

PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.DEFZONE ACCESS(ALTER) CLASS(SERVAUTH) ID(USER3)
SETROPTS CLASSACT(SERVAUTH) REFRESH RACLIST(SERVAUTH)

NFS client SUN1 (192.168.0.55) can now execute MVSLOGIN with RACF ID
USERS3, but not other RACF users.

5. To prevent an NFS client to access the z/OS NFS Server with specific RACF ID
(for example, USER3), issue the following RACF PERMIT commands:

PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.DEFZONE ACCESS(NONE) CLASS(SERVAUTH) ID(USER3)
PERMIT EZB.NETACCESS.SYSTEM1.TCPIPRX.DEFZONE ACCESS(ALTER) CLASS(SERVAUTH) ID(USER5)
SETROPTS CLASSACT(SERVAUTH) REFRESH RACLIST(SERVAUTH)

NFS client SUN1 (192.168.0.55) can now execute MVSLOGIN with RACF ID
USERS5, but not USER3 and other RACF users.

By using conditional PERMIT commands, the system administrator can restrict
access to a data set profile (for instance 'USER2.*") for USERS. The RACF will
permit the access only if USER5 executes MVSLOGIN from SUBNET1 (IP address
192.168.113.19).

PERMIT 'USER2.*' ID(USER5) ACCESS(ALTER)
WHEN (SERVAUTH (EZB.NETACCESS. *.* . SUBNET1))

For more informaiton, see |[z/OS Security Server RACF Command Language Reference,

Note:
1. The z/OS NFS server supports this capability only in saf or safexp SECURITY
mode.

2. SERVAUTH supports both IPv4 and IPv6 modes.

3. To change between TERMID and SERVAUTH will require user configuration
changes to switch between TERMINAL class security specification and
SERVAUTH class specification, respectively.

Chapter 10. Customization 205

206

4. This feature is also supported with RPCSEC_GSS authentication. However,
since mvslogin is no longer required with RPCSEC_GSS, the RACF
authentication is done automatically based on the Kerberos segment of the
RACF ID.

Data Labeling

Using

The z/OS NFS server supports the RACF Data Labeling option MLNAMES (also
known as name-hiding). For more details on this option, see |z/OS Security Server|
[RACF Security Administrator’s Guidel

This option is activated by RACF command:
SETROPTS MLNAMES

and is deactivated by RACF command:
SETROPTS NOMLNAMES

When this option is active MVS data set names will be hidden from NFS users
who do not have at least READ access to the data sets. Therefore, it may change
the contents of an MVS data set index list produced by the Is -1 command.

Note:
1. The z/OS NFS server supports this option only in saf or safexp SECURITY
mode.

2. This function only applies to MVS data set access, not to z/OS Unix file access.

3. The name-hiding function can degrade system performance because it requires
authorization checks for every object for which a non-SPECIAL user attempts
to list the name.

multiple TCP/IP stacks

Configuring multiple NFS servers with multiple TCP/IP stacks
The following tasks should be performed to set up the NFS servers for multiple
TCP/IP stacks:

* Invocation

* Example procedure to start a NFS server in a multiple server environment

* User interactions

* Errors

* Messages and codes

An NFS server can exploit the ability of the z/OS Communication Server to
configure up to eight TCP/IP stacks simultaneously. Each TCP/IP stack can
support only one NFS server. All NFS servers have their own IP-address and work
independently of each other with each connecting to a specific transport provider.
Each NFS server will use its own unique set of data sets for mount handle
database, error log, and startup procedures.

The client works with any NFS server as an independent host. At startup, the
client selects an NFS server using the servers IP-address or HOST-NAME on the
mount parameter. On shutdown of one of the NFS servers, all the clients connected
to that server will be forced to make new connections with another NFS server and
to repeat the startup procedures such as mvslogins and mount connections.

Multiple NFS server support provides an environment on z/OS where applications
can have system flexibility by running a NFS server on each LPAR of one z/OS

z/0S V2R2 Network File System Guide and Reference

system. This lets you, for example, have a production and test NFS server run on
one z/0S system. The use of multiple NFS servers also provides the ability to
define separate security-schemes, to separate workload on different NFS servers,
and use separate attribute definitions.

The z/OS NFS Server is a generic server (refer to the section entitled "Generic
server versus server with affinity for a specific transport provider" in
[Communications Server: IP Confiquration Guidd). The z/OS NFS Server relies on
another generic server that is the z/OS PORTMAP or z/OS RPCBIND. When
configuring a z/OS NFS Server as a generic server, the z/OS PORTMAP or z/OS
RPCBIND should be configured as a generic server. When configuring z/OS NFS
Servers as multiple servers with transport affinity, multiple z/OS PORTMAP or
z/0OS RPCBIND should be configured with transport affinity. Mixing generic
servers along with servers with transport affinity is not recommended and could
lead to undesirable results.

Invocation: To run multiple NFS servers on one z/OS system, it is necessary to
have a corresponding number of active TCP/IP stacks each with their own
portmapper or rpcbind. A properly configured BPXPRMxx with CINET is required.
The NFS server and TCP/IP startup procedures for each TCP/IP stack should have
different names.

Example CINET configuration in BPXPRMxx to start an NFS server in a multiple
server environment:

FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK TYPE (CINET)
DOMAINNAME (AF_INET)
DOMAINNUMBER (2)
MAXSOCKETS (64000)
INADDRANYPORT (4901)
INADDRANYCOUNT (100)
NETWORK TYPE(CINET)
DOMAINNAME (AF_INET6) /% activate IPv6 +/
DOMAINNUMBER (19)
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIPRX) ENTRYPOINT(EZBPFINI) DEFAULT
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIPRY) ENTRYPOINT(EZBPFINI)

Each NFS server startup procedure needs to have the following change:
1. Add the envar parameter with the _BPXK_SETIBMOPT_TRANSPORT
environment variable to point to the TCP/IP startup procedure.

2. SYSTCPD DD statement to point to its TCP/IP stack profile. See the example in
[“Example procedure to start an NES server in a multiple server environment.”|

Example procedure to start an NFS server in a multiple server environment: The
following contains a sample procedure to start an NFS server in a multiple server
environment.

//MVSNFS PROC MODULE=GFSAMAIN,PARMS="INFO',

// NFSPRFX=MVSNFS,TCPIP=TCPIP.0S390R10
//GFSAMAIN EXEC PGM=&MODULE,

// REGION=0M,

// TIME=1440,

//* Use environment variable _BPXK_SETIBMOPT_TRANSPORT to
//* set affinity for a specific TCP/IP stack. TCPIPRX is name of

//* start procedure for a selected TCP/IP stack.

/1%

// PARM= (" ENVAR("_BPXK_S ETIBMOPT_TRANSPORT=TCPIPRX") ',
// ' /&PARMS?)

/1*

//* Define dataset name of selected TCP/IP stack.

Chapter 10. Customization 207

208

//SYSTCPD DD DISP=SHR,DSN=&TCPIP..TCPIP.DATA(TCPDATA)
//STEPLIB DD DISP=SHR,DSN=&SYSNFS..NFSLIBE

//SYSPRINT DD SYSOUT=*

/1%

//*SYSMDUMP DD DISP=SHR,DSN=&NFSPRFX..SYSMDUMP
//OUTPUT DD SYSOUT=+

//SYSERR DD SYSQUT=*

/1%

//* Define dataset names which will be used by current NFS server
//NFSLOG1 DD DISP=SHR,DSN=&NFSPRFX..TCPIPRX.LOG11
//NFSLOG2 DD DISP=SHR,DSN=&NFSPRFX..TCPIPRX.L0G21
//NFSATTR DD DISP=SHR,DSN=&NFSPRFX..CNTL(NFSATTRV)
//EXPORTS DD DISP=SHR,DSN=&NFSPRFX..CNTL(EXPORT1)
//FHDBASE DD DISP=SHR,DSN=&NFSPRFX..TCPIPRX.FHDBASE
//FHDBASE2 DD DISP=SHR,DSN=&NFSPRFX..TCPIPRX.FHDBASE2
//LDBASE DD DISP=SHR,DSN=&NFSPRFX..TCPIPRX.LDBASE
//LDBASE2 DD DISP=SHR,DSN=&NFSPRFX..TCPIPRX.LDBASE2

User interactions: For more information about configuring multiple TCP /IP
stacks, see [z/0S UNIX System Services Planning| and |z/OS V2R2.0 Communications
[Server: IP Confiquration Reference

Console operators will need to distinguish between different NFS server console
messages received from multiple NFS servers on one z/OS system.

System administrators can use the new support to define separate
security-schemes, separate workload on different NFS servers, and use separate
attribute definitions.

Errors: Existing NFS Server console messages display the start procedure name
for a specific NFS server.

Messages and codes: Each NFS Server console message displays the NFS server
start procedure as in the following example:

GFSA320I (procname) NETWORK FILE SYSTEM SERVER INITIALIZATION FAILED: text

Where (procname) is the name of the NFS server start procedure.

Configuring a single NFS server with multiple TCP/IP stacks

You can perform the following tasks to set up an NFS server for multiple TCP/IP
stacks:

* Invocation

* Example procedure to start a NFS server in a multiple server environment

* User interactions

* Errors

* Messages and codes

An NFS server can exploit the ability of the z/OS Communication Server to
configure up to eight TCP/IP stacks simultaneously. An NFS server can interact
with multiple TCP/IP stacks. A single NFS server will use the IP addresses
associated with each stack.

The client works with any NFS server as an independent host. At startup, the
client selects an NFS server using the server's IP address or HOST-NAME on the
mount parameter. On shutdown of the NFS server, all the clients connected to that
server will be forced to make new connections with another NFS server and to
repeat the startup procedures, such as mvslogin and mount connections.

z/0S V2R2 Network File System Guide and Reference

Invocation: To run a single NFS server with multiple TCP/IP stacks on one z/0OS
system, properly configure BPXPRMxx with CINET and a single rpcbind or
portmapper for all stacks.

Note: The envar parameter should not be used when configuring a single NFS
server with multiple stacks.

Example CINET configuration in BPXPRMxx to start a single NFS server in a
multi stack environment:

FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK TYPE (CINET)
DOMAINNAME (AF_INET)
DOMAINNUMBER (2)
MAXSOCKETS (64000)
INADDRANYPORT (4901)
INADDRANYCOUNT (100)
NETWORK TYPE(CINET)
DOMAINNAME (AF_INET6) /+ activate IPv6 */
DOMAINNUMBER (19)
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIPRX) ENTRYPOINT(EZBPFINI) DEFAULT
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIPRY) ENTRYPOINT(EZBPFINI)

User interactions: For more information about configuring multiple TCP/IP
stacks, see [z/0S UNIX System Services Planning|and |z/0S V2R2.0 Communications
[Server: IP Confiquration Reference]

Errors: Existing NFS Server console messages display the start procedure name
for a specific NFS server.

Messages and codes: Each NFS Server console message displays the NFS server
start procedure as in the following example.

GFSA320I (procname) NETWORK FILE SYSTEM SERVER INITIALIZATION FAILED: text

Where (procname) is the name of the NFS server start procedure.

Installing the client enabling commands

This section describes the tasks you must perform to install and port the client
enabling commands. These tasks include retrieving commands for AIX and Sun
Solaris. This section also includes information about porting the mvslogin,
mvslogout, and showattr commands and dealing with different compilers and
operating systems.

To enable client users to access the z/OS system and to display system attributes,
you must install the mvslogin, mvslogout, and showattr commands on the client
workstations. For some client machines, you might need to modify the code to port
these commands so they run on your client machine. See |[“Porting the mvslogin,)
imvslogout, and showattr commands” on page 213 Before you install the
commands, make sure that TCP/IP and File Transfer Protocol (FTP) are running
both on z/0OS and on the client.

Note: The z/OS NFS client utilities, including mvslogin, mvslogout, and showattr,
are installed when the z/OS NFS client and TCP/IP are installed. The target
library NFSCUTIL is a DDDEF to an existing z/OS UNIX directory
(/usr/lpp/NFS/IBM) and will contain the client commands for the z/OS NFS
client after installation. There is no need to port the z/OS NFS client utilities as
you would for the remote NFS clients which use the z/OS NFS server.

Chapter 10. Customization 209

Follow these installation procedures:

1. Delete any previous versions of the mvslogin, showattr, and mvslogout
commands and their source code from your client workstation.

2. Retrieve the mvslogin, mvslogout, and showattr commands (in tarbin file
format for AIX or UNIX, or in source code format for any other platform) from
the prefix. NFSTARB data set, where prefix is an installation-specified variable.
Use FTP with a binary transfer to send the tarbin or executable files to a client
workstation for UNIX or AIX (no character conversion should be made). Use
FTP with text transfer to send the source code of the three commands to a
client workstation for any platform.

3. Use the tar utility to extract the files only if the client uses AIX or UNIX.

4. Compile the source code only if it is not in executable code format. (You might
need to modify the code for your specific client machine.)

5. Make executable code versions of the commands available to all clients.

Recommendation: We recommend placing these commands on a LAN server
(possibly in /usr/local/bin) that is available to many workstations, rather than
installing them on each client workstation.

is a list of all files stored in prefix NFSTARB data set related to the server's
client commands (mvslogin, mvslogout, and showattr):

Table 32. Files in the prefix NFSTARB data set to download to clients

File Name Download as: Description Client Environment
prefix NFSTARB(GFSAWAIX) client.tarbin (or any name) Binary file AIX, UNIX
Source Code for Commands

prefix NFSTARB(GFSAWMNT) gfsawmnt.h C header files All
prefix NFSTARB(GFSAWSHO) gfsawsho.h

prefix NFSTARB(GFSAWRP6) gfsawrp6.h

prefix NFSTARB(GFSAWRS6) gfsawrs6.h

prefix NFSTARB(GFSAWAXD) gfsawaxd.c C modules All
prefix NFSTARB(GFSAWLIN) gfsawlin.c

prefix NFSTARB(GFSAWLOU) gfsawlou.c

prefix NFSTARB(GFSAWMOU) gfsawmou.c

prefix NFSTARB(GFSAWSHA) gfsawsha.c

prefix NFSTARB(GFSAWJCL) makefile All

Note:

1. For AIX or UNIX, you do not need to download every individual file if you download the GFSAWAIX file.

The following sample client screens show how to retrieve and create the mvslogin,
mvslogout, and showattr client commands for the following platforms.

* AIX, Sun Solaris, and Linux; see page [“Retrieving commands for AIX, Sunl|
|Solaris, and Linux.”|

[Appendix H, “Retrieval of source code for client enabling commands,” on page 537
shows how to retrieve the necessary source code to install the client commands on
any platform except for an AIX or UNIX workstation.

Retrieving commands for AIX, Sun Solaris, and Linux

[Figure 26 on page 212 shows how to retrieve the necessary files to install the client
commands on workstations with AIX, Sun Solaris, or Linux. Use the "Make"

210 z/0S V2R2 Network File System Guide and Reference

section that is appropriate for your platform and omit the others. Use MVSHOST1
as the name of the z/OS host, and smith is a z/OS user ID.

Note: The compiler name can be changed to match the installed compiler name.

Chapter 10. Customization 211

§ ftp mvshostl

Connected to mvshostl

220-FTPSERVE at MVSHOST1, 01:44:24 on 6/02/07

220 Connection closes if idle for more than 5 minutes.
Name (mvshostl:w42dept): smith

<Press ENTER key>

331 Send password please.

Password: password

230 smith is logged on.

ftp> bin

200 Representation type is IMAGE.

ftp> get 'prefix.nfstarb(gfsawaix)' client.tarbin

200 Port request OK.

125 Sending data set PREFIX.NFSTARB(GFSAWAIX)

250 Transfer completed successfully.

Tocal: client.tarbin remote: 'prefix.nfstarb(gfsawaix)'
213504 bytes received in 2.4 seconds (87 Kbytes/s)

ftp> quit

221 Quit command received. Goodbye. $

$ mkdir mvsnfs.client

$ cd mvsnfs.client

$ tar -xvf ../client.tarbin

tar: record size = 20 blocks

x ./makefile, 8234 bytes, 17 tape blocks

x ./gfsawaxd.c, 13474 bytes, 27 tape blocks

$

$ touch *.*

(Following are Make sections for each supported platform - use the appropriate one

SUN:

$ make sun

gcc -D SUN -D _UTILS -D SOLARIS -Insl1 -l1socket -o showattr gfsawsha.c gfsawaxd.c
gcc -D SUN -D _UTILS -D SOLARIS -Tnsl -Tsocket -o mvslogin gfsawlin.c gfsawmou.c
gcc -D SUN -D _UTILS -D SOLARIS -Insl1 -l1socket -o mvslogout gfsawmou.c gfsawlou.c

Sun binaries for NFS Tools are made

LINUX:

make Tinux

gcc -D LINUX -D _UTILS -o showattr gfsawsha.c gfsawaxd.c
gcc -D LINUX -D _UTILS -o mvslogin gfsawlin.c gfsawmou.c
gcc -D LINUX -D _UTILS -o mvslogout gfsawmou.c gfsawlou.c

Linux binaries for NFS Tools are made

AIX:

$ make aix

gcc -D AIX -D _UTILS -D AIX RT -o showattr gfsawsha.c gfsawaxd.c
gcc -D AIX -D _UTILS -D AIX_RT -o mvslogin gfsawlin.c gfsawmou.c
gcc -D AIX -D _UTILS -D AIX RT -o mvslogout gfsawmou.c gfsawlou.c

AIX binaries for NFS Tools are made

$./mvslogin mvshostl smith

(MVSNFS must be operational. Password Required on host side.)
GFSA988I Remote host does not have AF_INET6 interface.
GFSA973A Enter MVS password: password

GFSA9551 smith logged in ok.

$

Figure 26. Retrieving the client enabling commands for AIX, Sun Solaris, and Linux

After retrieving the files of client enabling source code for the AIX or UNIX
environment, follow these steps as shown in to create the executable
commands:

212 z/0S V2R2 Network File System Guide and Reference

1. To make sure the source files have the current date. Some platforms do not
have correct time stamps and cause make files to fail; issue the following
command.
touch x.*

2. To create the executable commands mvslogin, mvslogout, and showattr, issue
one of these commands for the environment that IBM supports.

make aix
Creates executables for AIX.

make sun
Creates executables for Sun.

make linux

Creates executables for Linux.
The IBM-supplied makefile for the NFS client enabling commands provides the
following keywords to enable the use of 64-bit addressing on various platforms:

make aix64
Creates 64-bit executables for AIX.

make sun64
Creates 64-bit executables for Sun.

make linux64
Creates 64-bit executables for Linux.

Porting the mvslogin, mvslogout, and showattr commands

The z/OS NFS server supports any client machine that has an NFS client software
package implemented according to the Sun NFS protocol. See [“Tested clients for]
[the z/OS NFS server” on page 14 for a list of supported platforms.

Note: NFS supports the authentication procedures of PCNFSD Version 1 and
Version 2 protocols. If a PC client supports PCNFSD and keeps the UID and GID
to each mount point base, you do not need to port the mvslogin command. See
[Appendix I, “PCNFSD protocol,” on page 539| for details on PCNFSD support.

To port the mvslogin, mvslogout, and showattr commands successfully, you
should understand the following:

* C language - The source code for these commands is written in C.

* System calls for your client machine's operating system - For example, the FAT
file system under DOS only allows up to eight characters for file names, and up
to three characters for file name extensions. AIX and UNIX do not have this
restriction. Therefore, while mvslogout is a valid file name in an AIX or UNIX

environment, it is too long to be a valid file name in a FAT file system under
DOS.

As another example, the way that you get mount information varies for different
platforms. The mount command is in the following (or similar) format:

mount <server>:<remote file system> <local mount point>

The minimum information for porting the client enabling commands is:
1. Server name

2. Remote file system (high-level qualifier)

3. Local Mount point

4. UID and GID

Chapter 10. Customization 213

The system calls to get the information for porting the client enabling commands
are platform-dependent. If you cannot find the information in the following
types of documents for the platform, you must call the support telephone
number for the platform and ask to speak with their NFS development
department:

— Operating system development toolkit
— TCP/IP development toolkit
— NFS development toolkit
* The source code for mvslogin, mvslogout, and showattr.

For example, mvslogin tells the server the z/OS user id and its associated client
UID number. This client UID number is expected to be passed to the server for
all further client requests to the NFS. If the client user does not specify the z/OS
user id and password on the mvslogin command, the z/OS login ID is taken
from the login ID on the workstation with no password assumed. If
authentication for this default login ID from the workstation fails, then mvslogin
prompts the user to enter the z/OS login password.

shows the common source files for the mvslogin, mvslogout, and
showattr commands on all platforms:
Five .c files

gfsawaxd.c
XDR encode and decode routines for attributes service.

gfsawlin.c
Main program to generate mvslogin command.

gfsawlou.c
Main program to generate mvslogout command.

gfsawmou.c
XDR protocol definitions for mvslogin and mvslogout.

gfsawsha.c
Main program to generate showattr command mvslogout.
Four .h files

gfsawmnt.h
Protocol definitions for mvslogin and mvslogout.

gfsawsho.h
Attribute definition and procedures.

gfsawrp6.h
IPv6 RPC library definitions.

gfsawrs6.h
IPv6 RPC support functions.

One makefile

Figure 27. Common source files

Porting on different compilers and operating systems

Procedures for porting vary for different C compilers and operating systems.
Differences can occur during compiling, linking, and run time.

214 z/0S V2R2 Network File System Guide and Reference

Compiling

The following items might vary for your client machine's operating system:

Different set of compilation flags

There are different sets of compilation flags based on compilers or operating
systems. For example:

- AIX (on System p) has the unique flags _BSD, _SUN, and BSD_INCLUDES.

— DOS compilers have different compiler models, which require the
corresponding compiler flag (for example, -AL and -AS).

Include files in different directories

Because the include files can be installed differently based on the operating
systems and their toolkits, the include files could be in different directories.
Include file has a different name

Include files for the same or similar functions could have the same or similar file
names. For example, DOS uses the file name “string.h”, and the other platforms
use “strings.h”.

System variables in different include files

The system variables are usually in different include files, based on the
operating systems. For example, to access the mount table some AIX and UNIX
clients use mntent.h.

System variables have different names

The variables related to operating systems could have different variable names.
For example; some AIX and UNIX clients use getuid to get the real UID.
System variables have different structure

The structures related to operating systems could be different. For example, DOS
FAT file systems have file name length restrictions which cause them to have a
different directory structure from AIX or UNIX.

System variables not supported

Some system variables are supported by one operating system but not another.
Sequence of include files

Some include files are based on the precedence of another include file. The
prerequisite include file has to come before the other include files. For example,
some Programming Libraries offer types.h which is based on C compiler
sys/types.h. Therefore, #include <sys/types.h> should be before #include
<types.h>.

Mount information varies depending on the client operating system

The information about mount points provided by vendors of the client operating

systems and client TCP/IP products varies and might not always be complete.
To find the mount information:

1. Search through the documentation (for example, the TCP/IP development
toolkit and the installation and administration guides).

2. If you cannot find the mount information in the documentation, contact the
vendor that offers the TCP/IP development toolkit.

32-bit mode and 64-bit mode

IBM supports the compilation of the client enabling commands in 32-bit mode

and in 64-bit mode on AIX, Sun, and Linux.

IBM has tested the client enabling commands in 32-bit mode and 64-bit mode on
both 32-bit and 64-bit capable systems using the standard gcc (GNU Compiler
collection) 4.0.x compiler command for Linux, gcc 3.4.x compiler command for
Sun, and gcc 4.0.x compiler command for AIX. Compiler support has been
expanded to include Sun Studio 11 for Solaris 10 and XLC v11 for AIX.

Chapter 10. Customization 215

216

The IBM-supplied makefile for the NFS client enabling commands also provides
the following keywords to override some of the default values:

CC Allows the default compiler used by the makefile for the target platform
to be overridden with a different compiler name. For example, “make
cc=gcc sun” builds the utilities for the SUN Solaris platform using the
gcc compiler.

CFLAGS
Allows the default compiler options to be used for the target platform to
be overridden with a different set of compiler options. The options
string must be placed in double quotes, because the string can include
any characters, including blanks.

Note:

1. IBM cannot test all possible compiler/option combinations. Any compilation
or execution failures experienced when the default compiler/option values
are overridden are the customer’s responsibility to resolve.

2. The required system run-time libraries for 64-bit support must be available
on the platform.

Linking

After linking the programs together, check for attention messages and error
messages. The following items might vary for your client machine's operating
system:

* Different set of linker/loader flags
Some programs require a different set of linker/loader flags.
* Library files in a different directory

The library files required to complete the linkage could be in a different
directory.

* Library files have different names

Depending on how the client machines' operating systems are installed, the
library files might have different names.

* Different libraries required

The system variables could be in different libraries for the different operating
systems.

* Compiler is not compatible with the system toolkit

Some operating systems support multiple versions of C compilers. Some C
compilers, however, might not match the various system toolkits.

* Different library model required
The library models have to match with the compilation time.
* System variables not supported

Some system variables are supported during compile time but not supported by
the link time.

Running commands

After the compilation and linkage are successful, run the command to see if the
result is as expected. If not, figure out the difference of the result or failure. The
difference or failure can be in the following areas:

* Definition of the standard C variables is different

The definition of the standard C variables could be different for the different
operating systems or compilers. Some special handling might be required. For
example:

z/0S V2R2 Network File System Guide and Reference

— int is 2 bytes long for DOS but it is 4 bytes long for the z/OS NFS, AIX, and
Sun.

— tab has a different value, causing the spacing of the output to be different.
* Definition of function calls is slightly different

Although a given function is supported, it might work slightly differently. For
example, the “mount table” has a different format in AIX from Sun Solaris.

* Library functions might have a defect

Some functions in the C libraries do not function as the documentation
describes. You might report the problems or write your own functions to replace
them.

NFS v4 protocol name mapping

Using NFS v4 protocol (NFSv4) name mapping, a user can map owner and group
names on a single DNS domain (INET environment) or on multiple DNS domains
(CINET environment) to z/OS USS uid and gid numeric values.
nfsvddomain(NFSv4_default_domain) specifies the "pseudo" NFSv4 domain for the
NFSv4 name mapping. The "pseudo” NFSv4 domain allows various NFSv4 Clients
from various network domains to seamlessly access the server provided that these
NFSv4 Clients are also configured with the same "domain,"

Advantages: NFSv2 and NFSv3 protocol has been limited to the use of the
UNIX-centric user identification mechanism of numeric user id (uid and gid).
However, for NFS to move beyond the limits of large work groups, the NFS v4
protocol changed the user identification to be string based. It provides:

* The owner and group names to be administered on a DNS domain basis
* Flexibility (support of multiple internal naming schemes).

NFSv4 Name Mapping requires:
* The same owner and group names to be defined on both the server and client.

* The owner and group names must be defined to RACF with appropriate uid
and gid values on z/OS.

* nfsvddomain(NFSv4_default_domain) attribute should be appropriately set. When
nfsv4domain is omitted, the participating NFSv4 Client's domain must match
one of the Server's network domain for the proper NFSv4 name mapping.

Name resolution is not supported through any global name server such as LDAP.

The NFS client and NFS server can have their own local representation of owner
and owner_group attributes that is used for local storage or presentation to the end
user. Owner and owner_group attributes are transferred between the NFSv4 client
and server in the form of "user@dns_domain". To provide a greater degree of
compatibility with NFSv2 and NFSv3, which identified users and groups by 32-bit
unsigned uids and gids, the owner and group strings that consist of decimal
numeric values can be given a special interpretation by clients and servers.

Examples of owner, owner_group attributes syntax:
* vndrcvr@storage.tucson.ibm.com

* sys@storage.tucson.ibm.com

* 100 (numeric string "100").

z/0OS NFS server has supported NFSv4 since VIR7. z/OS NFS server VIR7, V1RS,
VIR9 only support the limited interpretation (i.e. only numeric strings). z/OS NFS

Chapter 10. Customization 217

218

server VIR10 added full name@domain strings. The inability of z/OS NFS server
prior to VIR10 to interpret the owner and owner_group attributes caused problems
with NFSv4 root support (See z/OS NFS APAR OA22311).

» z/0S NFS server has supported <root> suffix in Export List since z/OS NFS
server VIR8

* Root support widely uses the functions (chown, chgrp) demanding full
name@domain strings.

The z/OS NFS server performs the following:
* Mapping inbound owner/owner_group attributes to local representation

Usage of RPC uid and gid as local representation in case of unsuccessful
interpretation.

* Mapping local representation to outbound owner/owner_group attributes

Usage of z/OS NFS server uid and gid cache in case of the absence of the local
representation in the RACF database.

* Mapping owner and group names to a single DNS domain or multiple DNS
domains

Inbound owner/owner_group processing

Inbound owner/owner_group attributes may be present in:
* CREATE, NVERIFY, OPEN, SETATTR, VERIFY NFSv4 operations
* Access Control List NFSv4 (ACL) attribute.

Owner/owner_group attributes can be in the form of:

* "user@dns_domain" strings

* Special strings, like anonymous user/group strings or superuser strings
* Numeric string (for example, "100").

There are special strings representation:
¢ Client anonymous user
* Client superuser.

owner attribute for anonymous user consists of: String "nobody" with the at sign
"@" and the domain

owner_group attribute for anonymous user consists of: String "nobody" with the at
sign "@" and the domain

owner attribute for client superuser consists of: String "root" with the at sign "@"
and the domain

owner_group attribute for client superuser can be anyone.

The z/OS NFS server uses the implicit interpretation on the base of hardcoded
strings "nobody" and "root" (without the reference to RACF database) to designate
a client anonymous user and client superuser, except for owner_group attribute for
client superuser.

The z/OS NFS server stores anonymous uid and gid:

* At z/OS NFS server start up, the RACF database is queried for user with
"nobody" name

z/0S V2R2 Network File System Guide and Reference

* If that user is found in the RACF database, its RACF uid and gid are used
* Otherwise 65534 (not ‘-2’) is used.

z/0OS NFS server maps:

* Anonymous owner string to RACF uid of "nobody"

* Anonymous owner_group string to RACF gid of "nobody"
* Superuser owner string to 0

* Superuser owner_group string in the standard way (using z/OS NFS server
internal cache and RACF database). z/OS NFS server does not use default name
for superuser group name.

The subsequent processing of UID=0:

* If the z/OS NFS server is in EXPORTS mode and EXPORT list entry includes
<root> suffix, UID keeps the value

* Otherwise, UID maps to the stored RACF UID of "nobody"

Outbound owner and owner_group attributes processing
Outbound owner and owner_group attributes may be present in:
* GETATTR, READDIR NFSv4 operations

Owner and owner_group attributes can be sent to the client in the form of:
* "user@dns_domain" strings
* Special strings like anonymous user/group strings and superuser strings

* Numeric string (for example, "100")

Translation of UID, GID to owner and owner_group attributes uses (in the
following order):

1. Internal z/OS NFS server cache of UIDs, GIDs
2. RACF database

For invalid translation z/OS NFS server uses numeric string representation for
outbound owner and owner_group attributes.

Special strings "nobody" and "root" generation :

+ If UID is equal to the stored uid of "nobody", z/OS NFS server maps it to
anonymous owner string using the default "nobody" name.

* If GID is equal to the stored gid of "nobody", z/OS NFS server maps it to
anonymous owner_group string using the same default "nobody" name.

+ If UID is equal to 0, z/OS NFS server maps it to superuser owner string using
default "root" name.

* If GID is equal to 0, z/OS NFS server maps it from RACF cache and derives the
group name from the RACF database.

z/0OS NFS server uses internal z/OS NFS server uid and gid cache and RACF
database to find user/group names and their UIDs/GIDs.

During mapping inbound owner and owner_group attributes to numeric
identifiers:

* The z/OS NFS server gets UID by user name from the RACF database.
* The z/OS NFS server gets GID by group name from the RACF database.

Chapter 10. Customization 219

220

During mapping numeric identifiers to outbound owner and owner_group
attributes:

* The z/0OS NFS server searches for the numeric identifier (UID or GID) in
internal z/OS NFS server cache.

* If the numeric identifier is found in z/OS NFS server cache then there is no
reason to obtain it from the RACF database (invalid translation uses numeric
string representation).

* Otherwise the z/OS NFS server attempts to obtain a name by numeric identifier
from the RACF database.

* If the name is not found in the RACF database, the z/OS NFS server puts
numeric identifier into internal z/OS NFS server cache and uses the numeric
string representation.

Domain processing in NFSv4 Name Mapping

The domain portion of the owner or owner_group attribute refers to a DNS
domain name. For example,

user@us.ibm.com

For inbound mapping, the z/OS NFS server validates the domain portion of the
owner or owner_group attribute .

* ¢+ The z/OS NFS server identifies the domain to be used to verify the domain
portion of owner/group strings coming from the client. It does so as follows:

If the nfsvddomain attribute was set, the z/OS NFS server uses it as its domain
for NFSv4 name mapping; otherwise, the z/OS NFS server gets the domain
from the TCP/IP stack which connects with the client; if the z/OS NFS server
cannot get the domain from TCP/IP stack, it uses the default server domain. The
z/0OS NFS server compares this domain with the domain portion of the
owner/group string that the server has received from the client.

* « If the domain portion of owner/group string is not valid, z/OS NFS server
attempts to derive UID and GID from the RPC packet.

For outbound mapping z/OS NFS server puts the domain portion to the owner or
owner_group attribute

* For an invalid translation, z/OS NFS server uses numeric string representation
for outbound owner and owner_group attributes (without domain).

Users can override the DNS domain(s) with the z/OS NFS server or z/OS NFS
client attribute nfsvddomain(NFSv4_default_domain).

z/0S V2R2 Network File System Guide and Reference

Chapter 11. Network File System operation

This topic describes how to start and stop the z/OS Network File System, and
describes the operands of the MVS modify and display commands that are related
to the z/OS NFS server. The operands for collecting diagnostic information are also
described.

Starting the z/OS NFS client

If you want to use the z/OS NFS client, do the following;:

* Define the z/OS client as a file system in the z/OS UNIX BPXPRMxx member of
SYS1.PARMLIB. Start the z/OS UNIX address space, which will cause the
BPXPRMxx member to be used. As part of the z/OS UNIX startup, the z/OS
NFS client will be started in an z/OS UNIX colony address space. Wait until this
message appears before proceeding:

BPXIO04I OMVS INITIALIZATION COMPLETE

See |z/0OS UNIX System Services Planning] for more information.
¢ Ensure that TCP/IP and PORTMAP are active.

During z/0OS UNIX file system initialization, the z/OS NFS client is started and
run in the z/OS UNIX colony address space. The FILESYSTYPE parmlib statement
for the z/OS NFS client must be present in the SYS1.PARMLIB(BPXPRMxx)
parmlib member in order to start the z/OS NFS client. BPXPRMxx can specif
optional component trace options for the NFS client, as shown in |”Using NF§)|
[component trace PARMLIB members CTINFSnn and CTINFCrnn” on page 315 For
more information on z/OS UNIX file system, see [z/OS UNIX System Services Fild
[System Interface Referencel

If the z/OS NFS client fails to initialize, a write to operator (WTO) message is
issued to the operator console. The following conditions can cause z/OS NFS client
initialization to fail.

* The z/OS NFS client is not started in a standalone colony address space.

* The z/OS NFS client is already started. Multiple instances of the z/OS NFS
client on a single z/OS system is not supported.

* Using a security product that is downlevel, the z/OS NFS client requires RACF
2.2 or later.

* An incorrect parameter is specified in the installation parameters.

¢ Unicode services is not installed or is not active.

When the z/OS NFS client initializes, messages like these example messages are
displayed on the operator's console.

$HASP373 NFSCR STARTED

BPXI0041 OMVS INITIALIZATION COMPLETE

GFSC700I z/0S NETWORK FILE SYSTEM CLIENT
(HDZ222N) started. HDZ222N, GFSCMAIN, Jun 14 2014 15:29:05.

If the z/OS NFS client is stopped, canceled, or for any other reason terminates,
z/0S UNIX issues the following message:

BPXFO32D FILESYSTYPE type TERMINATED. REPLY 'R' WHEN READY TO RESTART.
REPLY 'I' TO IGNORE

© Copyright IBM Corp. 1991, 2015 221

To restart the z/OS NFS client, specify 'R’ in reply to the message. Replying with T
will cause z/OS UNIX to ignore the termination of the z/OS NFS client. If 'T' was
replied and you still wish to restart the z/OS NFS client, use the SET command as
follows. If z/OS UNIX has been initialized but the z/OS NFS client is not active,
issue a SETOMVS RESET=(xx) command to the BPXPRMxx member of
SYS1.PARMLIB that defines the z/OS NFS file system. z/OS UNIX will then start
the z/OS NFS client.

Stopping the z/OS NFS client

The z/OS NFS client is started when the z/OS UNIX file system is initialized and
is persistent until z/OS UNIX is stopped. To stop the z/OS NFS client gracefully
the system operator can use the modify operator command omvs,stoppfs
specifying the NFS client, as follows:

f omvs,stoppfs=NFS

If this command fails to gracefully shut down the z/OS NEFS client, the operator
can force an abnormal termination using the operator command cancel with the
z/0S NFS client address space name; for example:

cancel mvsnfsc

It is imperative and necessary to stop the z/OS NFS client gracefully so it can save
its important data (RPC transaction ID) for the subsequent restart.

Attention: The destruction of the z/OS NFS client address space can cause
unpredictable abnormal z/OS UNIX address space behavior. If a z/OS UNIX
process tries to access the NFS client data during its address space destruction,

then an OC4 protection exception in the z/OS UNIX BPXVCLNY load module can
occur.

To bring down the NFS client during shutdown, follow these steps:

1. Stop the NFS client. It runs in a colony address space; to terminate it, enter
either of the following:

* f omvs,stoppfs=nfs

* CANCEL <nfsv> (if STOPPFS did not work)
2. Stop TCPIP, because it is a registered blocker of OMVS SHUTDOWN.
3. Terminate z/OS UNIX System Services

f omvs,shutdown

Starting component tracing for the z/0S NFS client

222

To start recording diagnostic information for the z/OS NFS client in z/OS
component trace buffers, follow these steps:

1. Decide on the trace options to use. These can be in a CTINFCnn member of
SYS1.PARMLIB to be specified on the TRACE CT command, or individual
options to be specified when prompted in response to the TRACE CT
command. Note that if TRACEOPTS OFF is used, no other TRACEOPTS value
can be specified. See z/OS MVS Initialization and Tuning Referencd for further
information.

2. From the master console or another console with master authority, issue the
TRACE CT command as follows:

z/0S V2R2 Network File System Guide and Reference

»»—TRACE CT[,ON] [,—buffsize—],COMP=—mvsnfsc

I—, parm=CTINFCnn—|

where

buffsize
Specifies the buffer size in kilobytes or megabytes (for example, 1500K, 2M, or
500M). The valid size range is 600K-600M.

mvsnfsc
Specifies the name of the procedure in your system PROCLIB used to start up
the client.

parm=CTINFCnn
Specifies that diagnostic information for the NFS client be recorded in z/OS
component trace buffers using trace options specified in member CTINFCnn of
SYS1.PARMLIB. To use the default trace options for the z/OS NFS client,
specify parm=CTINFCOO for the default SYS1.PARMLIB member CTINFCOO.

If you do not specify a CTINFCnn PARMLIB member on the CTRACE CT
command, the following message will prompt you to enter trace operands:

* id ITTOO6A SPECIFY OPERAND(S) FOR TRACE CT COMMAND.

In response to the message, reply with the identification number id from the
message, an external writer program if any to receive the records, and a trace
option or options to use from the list shown later in this section. Here is the
response syntax:

v

»»—R(eply)—id—OPTIONS=—(name, name. . .) |_
,WTR=

|
prochame
Lorscomnect

»——,CONT e
_I:,END

where:
id Specifies the identification number from the ITTO06A message.

name, name. . .
Specifies a trace option or options for tracing NFS client records. The possible
options are:

Buffer
Buffer management (BUFNODE)

CB_Mgmt
Control Block Management (creation, initialization, modification, deletion).

Detail
Detailed Trace Record. This is used for low level debug.

Dispatch
Unit of work is dispatched from a queue to resume processing.

Entry
Entry into a function

Chapter 11. Network File System operation 223

224

Exit
Exit from a function.

FFDC
First Failure Data Capture. This option is on by default and cannot be
turned off.

General
General Trace Record.

Lock _Release
Control block lock release

Lock_Request
Control block lock requests

Lock_Resume
Control block lock request resumes after lock request either succeeds or
fails.

Msg
Existing NFS Trace Error, Warning and Informational Records. This option
is on by default and cannot be turned off.

Network
Network communication related trace.

NFS_Request
Request sent to NFS server.

NFS_Return
Return from NFS request.

Resume
Unit of work resumed due to availability of resource (for example, latch
acquired).

Schedule
Unit of work is scheduled onto another queue (for example, ipcqueue of
this or another task, array queue.).

Suspend
Unit of work must suspend due to unavailability of resource (for example,
waiting for a latch).

Trap
For use in special temporary trap code created to aid in the analysis of a
problem.

USS_Request
Request issued to z/OS UNIX System Services.

USS_Return
Returned from z/OS UNIX System Services request.

In addition to these basic options, you can also enter the following shorthand
values to specify multiple record types:

Al
All record types.

Call
Entry and Exit record types.

z/0S V2R2 Network File System Guide and Reference

Lock
Lock_Request, Lock_Result, and Lock_Release record types.

NFS
NFS_Request and NFS_Return record types.

Task_Flow
Suspend, Resume, Schedule, and Dispatch record types.

uss
USS_Request and USS_Return record types.

Note:

1. An option can be turned off by preceding the option value with a minus
sign (for example, OPTIONS=(-GENERAL)).

2. Options are processed from left to right, first processing all values to turn
on options and then processing all values to turn off options. Thus all
options except Network can be turned on with the following specification:
OPTIONS=(ALL, -NETWORK).

3. If an option value of -ALL is specified, only the minimum set of options
remains active (FFDC and MSG).

WTR=procname | DISCONNECT
Connects or disconnects the component trace external writer and the trace.
procname identifies the name of the member that contains the source JCL that
invokes the external writer. The member can be a SYS1.PROCLIB cataloged
procedure or a job. The procname in the WIR parameter must match the
procname in a previous TRACE CT,WTRSTART command.

WTR=DISCONNECT disconnects the writer and the trace. The component
continues tracing and placing the trace records in the address-space buffer, but
stops passing trace records to the external writer.

You must also specify a TRACE CT,WTRSTART or TRACE CT,WTRSTOP
command to start or stop the writer.

CONT or END
Specifies that the reply continues on another line. The system reissues the same
prompting message. You then can continue the reply. You can repeat any
parameters on the continuation line, except END. Repeated parameters are
strung together. They do not overlay each other. You must specify END to
complete the response. END identifies the end of the REPLY.

Starting the z/OS NFS server

Make sure that z/OS UNIX is customized to be able to start automatically during
IPL.

If you want to use the z/OS NFS server, TCP/IP and PORTMAP need to be
started and active on your system. Then, start the z/OS NFS server.

You might also need to start up NAMESRV to map machine names into their
corresponding Internet addresses. If you use the dynamic host configuration
protocol (DHCP), NAMESRYV is required.

Note:

1. PORTMAP is synonymous with portmapper, which is a program provided by
z/0S Communications Server that maps registered server programs to port

Chapter 11. Network File System operation 225

»»—START—mvsnfs

».

numbers. NAMESRYV is the cataloged procedure of the Domain Name Server
which is provided by Communications Server that maps a host name to an
internet address or an internet address to a host name. See [;/0S V2R2.0]
Communications Server: IP Confiquration Guide and [z/0S V2R2.0 Communications|
Server: IP Configuration Referencefor information on configuring PORTMAP,
starting PORTMAP, configuring the Domain Name Server, and starting
NAMESRV automatically with z/OS Communications Server.

2. The z/0OS Portmapper does not support IPv6. Therefore, when using IPv6
addresses, the z/OS server host must be configured with RPCBIND, not the
Portmapper. RPCBIND supports both IPv6 and IPv4. As of z/OS VIRS,
Portmapper should only be used for IPv4 only systems. Otherwise, RPCBIND
should be used.

The z/OS NFS server does not support file persistence. That is, when the server is
restarted, files cannot be accessed using old file handles.

To start the z/OS NFS server, enter the start command from a console. Enter the
command as follows:

info J
L,parms='~|§erro_| '

r
warnJ l—,a]tsym—| l—,ctrace=nn—| I—,dsps=nn—| I—,version—|

L' ,startfaﬂ=£

ignore J
dump——l—'

where

mvsnfs
Specifies the name of the procedure in your system PROCLIB used to start up
the server.

info
The first parameter specifies the level for diagnostic messages (the default is
info).

altsym
If altsym is specified in the second parameter, the semicolon (;) is used as the
comment symbol in the attributes (with one exception: If the fn_delimiter(;)
attribute uses a semicolon, the fn_delimiter semicolon is treated as a delimiter
between the file name and the attributes that follow, not as a comment symbol)
and exports data sets. Otherwise, the pound sign (#) is used as the comment
symbol.

For example, suppose you have some data sets with a high-level qualifier of
#USERO05, and you want client users to be able to read them. First, you would
modify the exports data set and attributes data set by using ‘;" as the comment
symbol rather than ‘#. Next you would specify #user05 -ro as an entry in the
exports data set. Finally, you would specify the altsym parameter when you
enter the start command.

ctrace=nn
Specifies that diagnostic information for the NFS server be recorded in z/OS
component trace buffers, using trace options specified in member CTINFSnn of
SYS1.PARMLIB. To use the default trace options for the z/OS NEFS server,

226 z/0S V2R2 Network File System Guide and Reference

specify ctrace=00 for the default SYS1.PARMLIB member CTINFSOQ0. If the
ctrace operand is not specified, then the default SYS1.PARMLIB member
CTINFS00 is used.

dsps=nn
Specifies the size of the data space to be allocated for the NFS component trace
buffers, where nn equals the number of megabytes to be allocated for each
trace buffer. NFS uses 3 trace buffers in rotation. The value of nn can be
between 10 and 600. If a value outside this range is specified, it will be
adjusted accordingly. The default value is 10 (representing 10 MB).

version
Causes the server to place a GFSA9471 message on behalf of each module in
the server into the server log and component trace, at startup. Similar to using
the MODIFY musnfs, version=all operator command.

startfail
Specifies the action the z/OS Network File System Server should take if it
encounters a terminating error during startup, or later during execution which
did not otherwise create a dump.

* ignore: No special action is taken. The z/OS Network File System server
proceeds with termination as it has done prior to z/OS NFS V1R11. This is
the default setting if the parameter is not specified.

* dump: For terminating errors, an SVC dump is created before terminating, if
no dump was otherwise created.

Note: No dump is produced if the z/OS Network File System server is
stopped by the operator stop request. A dump is generated if the z/OS
Network File System server shuts down because of a TCP/IP termination.

These parameters override the parameter settings in the server startup procedure.

When you enter start, the following console message appears; if you installed
HDZ222N, then this FMID is displayed in the GFSA348I message text.

GFSA3481 z/0S NETWORK FILE SYSTEM SERVER
(HDZ222N, HDZ222N) STARTED.

Starting multiple servers

More than one z/OS NFS server on a single z/OS system can be started, but each
must be at the same release level. If a server is running, attempts to start another
release level of the server on the same system will fail.

Note: The NFS server and NFS client can be at different release levels on the same
system; there is no requirement for server and client release levels to match.

Within a sysplex, different levels of NFS servers and clients on different systems
can exist. However, each running NFS server will require its own unique set of
data sets for mount handle database, lock data set, error log, and startup
procedures. A configuration can include a high availability scenario wherein the
NEFS server is moved from one system to another reusing the same datasets;
however, at no time are two NFS servers accessing the datasets at once. Byte-range
locking and file share reservations are not communicated across systems within the
sysplex. Therefore, in sysplex environments where byte range locking and share
reservations are required for accessing MVS data sets with NFS, IBM recommends
that only one NFS server be started.

Chapter 11. Network File System operation 227

Stopping the z/OS NFS server

228

When shutting down your system, follow these sequential steps.
1. Stop the z/OS NFS server

2. Shut down the TCP/IP server

3. Shut down z/OS UNIX if it is running

Use the stop command to shut down the z/OS NFS server. All current
input/output (I/O) operations are completed and all OPEN data sets are closed.
The z/OS NF