
z/OS

Common Debug Architecture User's Guide
Version 2 Release 2

SC14-7310-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 67.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2004, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should use this document v
A note about examples. vi
CDA and related publications vi
Softcopy documents viii
Softcopy examples. viii
Where to find more information viii

Runtime Library Extensions on the World Wide
Web ix
Information updates on the web ix
How to send your comments ix

Chapter 1. About Common Debug
Architecture 1
CDA libraries and utilities 2

libelf 3
libdwarf 3
libddpi 4
isdcnvt 6
dwarfdump. 7

Changes for CDA. 7
CDA requirements and recommendations. 7
CDA limitations 8

Chapter 2. Overview of reading and
writing CDA debugging information . . . 9
Creating an ELF descriptor 9
Writing DWARF data to the ELF object file 12
Reading DWARF data from a GOFF program object
file 14
Reading DWARF data from an ELF object file with
libelf and libdwarf 15
Reading DWARF data from an executable module
with libelf, libdwarf, and libddpi 16
Accessing debugging information from a z/OS XL
C/C++ compiler executable module 19

Accessing z/OS XL C/C++ debugging
information 20
Accessing ISD debugging information generated
by the z/OS XL C/C++ compiler 20
Accessing other debugging information 21

Chapter 3. Using consumer functions 23
Initializing libelf 23
Initializing libdwarf 24
Steps to relocate addresses within an ELF file . . . 25

Example: Relocating addresses within an ELF file 26
Consuming DWARF data 39

Traversing the DIE hierarchy 40
Accessing information in a DIE 40

Terminating libdwarf 41
Terminating libelf 41

Chapter 4. Using producer APIs 43
Steps for creating a line-number table 43
Steps for creating the debug_ppa section 43
Steps for adding symbolic information to
.debug_info section 44

Adding information to accelerated access debug
section 45
Constructing DWARF expressions 45

Chapter 5. Using consumer and
producer functions 47
Creating a consumer application with ISD
conversion functionality 48

Initializing the libddpi environment 48
Creating and using DWARF consumer objects . . 49
Terminating the DWARF and ELF objects . . . 50

Chapter 6. In Storage Debug (ISD)
Information Conversion Utility 51

Chapter 7. Using the module map to
improve performance 55
APIs that support use of the module map 55
Sample statements that illustrate use of a module
map 57

Appendix A. Diagnosing problems . . . 61
Using the diagnosis checklist 61
Avoiding installation problems 62

Appendix B. Accessibility 63
Accessibility features 63
Consult assistive technologies 63
Keyboard navigation of the user interface 63
Dotted decimal syntax diagrams 63

Notices 67
Policy for unsupported hardware 68
Minimum supported hardware 69
Programming interface information 69
Trademarks 69
Standards 69

Bibliography 71
z/OS Runtime Library Extensions 71
z/OS 71
z/OS XL C/C++. 71
Enterprise COBOL 71
z/OS Language Environment 72
z/Architecture 72

Index 73

© Copyright IBM Corp. 2004, 2015 iii

iv z/OS V2R2 Common Debug Architecture User's Guide

About this document

This information introduces the user to Common Debug Architecture (CDA),
which is part of the IBM® z/OS® Run-Time Library Extensions element. This
document first provides a high-level overview of CDA. The document then
illustrates how to use the CDA libraries and utilities, through explanations and
examples that build on each other. Finally, it shows an example implementation,
using the utilities that are shipped with CDA.

This document uses the following terminology:

ABI Application binary interface. A standard interface by which an application
gains access to system services, such as the operating-system kernel. The
ABI defines the API plus the machine language for a central processing
unit (CPU) family. The ABI ensures runtime compatibility between
application programs and computer systems that comply with the
standard.

API Application programming interface. An interface that allows an application
program that is written in a high-level language to use specific data or
functions of the operating system or another program. An extension to a
standard DWARF API can include:
v Extensions to standard DWARF files, objects, or operations
v Additional objects or operations

object In object-oriented design or programming, a concrete realization (instance)
of a class that consists of data and the operations associated with that data.
An object contains the instance data that is defined by the class, but the
class owns the operations that are associated with the data. Objects
described in this document are generally a type definition or data
structure, a container for a callback function prototype, or items that have
been added to a DWARF file.

operation
In object-oriented design or programming, a service that can be requested
at the boundary of an object. Operations can modify an object or disclose
information about an object.

Who should use this document
This document is intended for programmers who will be developing program
analysis applications and debugging applications for the IBM XL C/C++ or
Enterprise COBOL compilers on the z/OS operating system. The libraries provided
by CDA allow applications to create or query DWARF debugging information from
ELF object files on the z/OS operating system.

Purpose

This document is provided as a reference rather than a tutorial. It assumes that
you have a working knowledge of the following items:
v The z/OS operating system
v The libdwarf APIs
v The libelf APIs

© Copyright IBM Corp. 2004, 2015 v

v The ELF ABI
v Writing debugging programs in C, C++ or COBOL on z/OS
v POSIX on z/OS
v The IBM z/OS Language Environment® (LE)
v z/OS UNIX System Services (USS) shell

A note about examples
Examples that illustrate the use of the libelf, libdwarf, and libddpi libraries are
instructional examples, and do not attempt to minimize the run-time performance,
conserve storage, or check for errors. The examples do not demonstrate all the uses
of the libraries. Some examples are code fragments only, and cannot be compiled
without additional code.

CDA and related publications
This section summarizes the content of the CDA publications and shows where to
find related information in other publications.

Table 1. CDA, DWARF, ELF, and other related publications

Document title and
number

Key sections/chapters in the document

z/OS Common Debug
Architecture Library
Reference, SC09-7654

The reference for IBM's libddpi library. It includes:

v General discussion of CDA

v APIs with operations that access or modify information about stacks, processes, operating
systems, machine state, storage, and formatting.

See http://www.ibm.com/software/awdtools/libraryext/library/.

z/OS DWARF/ELF
Extensions Library
Reference, SC09-7655

The reference for IBM extensions to the libdwarf and libelf libraries. It includes:

v Extensions to libdwarf consumer APIs (Chapters 2 through 8)

v Extensions to libdwarf producer APIs (Chapters 9 through 19)

v Extensions to libelf APIs and utilities (Chapter 20)

This document discusses only these extensions, and does not provide a detailed explanation
of DWARF and ELF.

See http://www.ibm.com/software/awdtools/libraryext/library/.

System V Application
Binary Interface Standard

The Draft April 24, 2001 version of the ELF standard.

For more information, go to: http://www.ibm.com/software/awdtools/libraryext/library/.

ELF Application Binary
Interface Supplement

The Draft April 24, 2001 version of the ELF standard supplement.

For more information, go to: http://www.ibm.com/software/awdtools/libraryext/library/.

DWARF Debugging
Information Format,
Version 3

The Draft 8 (November 19, 2001) version of the DWARF standard. This document is
available on the web.

Consumer Library
Interface to DWARF

The revision 1.48, March 31, 2002, version of the libdwarf consumer library.

See http://www.ibm.com/software/awdtools/libraryext/library/.

Producer Library
Interface to DWARF

The revision 1.18, January 10, 2002, version of the libdwarf producer library.

See http://www.ibm.com/software/awdtools/libraryext/library/.

vi z/OS V2R2 Common Debug Architecture User's Guide

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/commondebug/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/

Table 1. CDA, DWARF, ELF, and other related publications (continued)

Document title and
number

Key sections/chapters in the document

MIPS Extensions to
DWARF Version 2.0

The revision 1.17, August 29, 2001, version of the MIPS extension to DWARF.

See http://www.ibm.com/software/awdtools/libraryext/library/.

z/OS XL C/C++ User's
Guide, SC09-4767 Guidance information for:

v z/OS C/C++ examples

v Compiler options

v Binder options and control statements

v Specifying z/OS Language Environment run-time options

v Compiling, IPA linking, binding, and running z/OS C/C++ programs

v Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and Locale, ar and make,
BPXBATCH, c89, xlc, as, CDAHLASM)

v Diagnosing problems

v Cataloged procedures and REXX EXECs supplied by IBM

See http://www.ibm.com/software/awdtools/czos/library.

z/OS XL C/C++
Programming Guide,
SC09-4767

Guidance information for:
v Implementing programs that are written in C and C++
v Developing C and C++ programs to run under z/OS
v Using XPLINK assembler in C and C++ applications
v Debugging I/O processes
v Using advanced coding techniques, such as threads and exception handlers
v Optimizing code
v Internationalizing applications

z/OS Enterprise COBOL
Programming Guide,
SC14-7382

Guidance information for:

v Implementing programs that are written in COBOL

v Developing COBOL programs to run under z/OS

v z/OS COBOL examples

v Compiler options

v Compiling, linking, binding, and running z/OS COBOL programs

v Diagnosing problems

v Optimization and performance of COBOL programs

v Compiler listings

See http://www-01.ibm.com/support/docview.wss?uid=swg27036733.

The following table lists the related publications for CDA, ELF, and DWARF. The
table groups the publications according to the tasks they describe.

About this document vii

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/czos/library/
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Table 2. Publications by task

Tasks Documents

Coding programs v DWARF/ELF Extensions Library Reference, SC09-7655

v z/OS Common Debug Architecture Library Reference, SC09-7654

v z/OS Common Debug Architecture User's Guide, SC09-7653

v DWARF Debugging Information Format

v Consumer Library Interface to DWARF

v Producer Library Interface to DWARF

v MIPS Extensions to DWARF Version 2.0

Compiling, binding, and running programs v z/OS XL C/C++ User's Guide, SC09-4767

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Enterprise COBOL Programming Guide, SC14-7382

General discussion of CDA v z/OS Common Debug Architecture User's Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

Environment and application APIs (objects
and operations)

v z/OS Common Debug Architecture Library Reference, SC09-7654

A guide to using the libraries v z/OS Common Debug Architecture Library Reference, SC09-7654

Examples of producer and consumer
programs

v z/OS Common Debug Architecture User's Guide, SC09-7653

Softcopy documents
The following information describes where you can find softcopy documents.

The IBM z/OS Common Debug Architecture publications are supplied in PDF
formats and IBM BookMaster® formats on the following CD: z/OS Collection,
SK3T-4269. They are also available at the following Web site: www.ibm.com/
software/awdtools/libraryext/library

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to Adobe license terms) from the Adobe web site at
www.adobe.com.

You can also browse the documents on the World Wide Web by visiting the z/OS
library at www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and
using IBM BookManager®, see z/OS Information Roadmap.

Softcopy examples
The example shown in “Initializing the libddpi environment” on page 48,
described in Chapter 5, “Using consumer and producer functions,” on page 47, is
available in the directory /usr/lpp/cbclib/source.

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with IBM z/OS.

viii z/OS V2R2 Common Debug Architecture User's Guide

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.adobe.com
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Runtime Library Extensions on the World Wide Web
Additional information on Common Debug Architecture is available on the World
Wide Web on the Runtime Library Extensions home page at: http://
www.ibm.com/software/awdtools/libraryext/

This page contains links to other useful information, including the Runtime Library
Extensions information library, which includes the Common Debug Architecture
documents.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters
and Documentation APARs for IBM z/OS, refer to the online list of APARs and
PTFs. This document is updated weekly and lists documentation changes before
they are incorporated into z/OS publications.

The online list of APARs and PTFs is found at: http://publibz.boulder.ibm.com/
cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

How to send your comments
Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this document or the IBM
documentation, send your comments by e-mail to: compinfo@ca.ibm.com

Be sure to include the name of the document, the part number of the document,
the version of, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

About this document ix

http://www.ibm.com/software/awdtools/libraryext/
http://www.ibm.com/software/awdtools/libraryext/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

x z/OS V2R2 Common Debug Architecture User's Guide

Chapter 1. About Common Debug Architecture

Common Debug Architecture (CDA) was introduced in z/OS V1R5 to provide a
consistent format for debug information on z/OS. As such, it provides an
opportunity to work towards a common debug information format across the
various languages and operating systems that are supported on the IBM zSeries
eServer™ platform. The product is implemented in the z/OS CDA libraries
component of the z/OS Run-Time Library Extensions element of z/OS (V1R5 and
higher).

CDA components are based on:
v “The DWARF industry-standard debugging information format”
v “Executable and Linking Format (ELF) application binary interfaces (ABIs)”

CDA-compliant applications can store DWARF debugging information in an ELF
object file. However, the DWARF debugging information can be stored in any
container. For example, in the case of the C/C++ compiler, the debug information
is stored in a separate ELF object file, rather than the object file. In the case of the
COBOL compiler, the debug information is stored in a GOFF object file, as well as
the program object. In either approach, memory usage is minimized by avoiding
the loading of debug information when the executable module is loaded into
memory.

The DWARF industry-standard debugging information format

The DWARF 4 debugging format is an industry-standard format developed by the
UNIX International Programming Languages Special Interest Group (SIG). It is
designed to meet the symbolic, source-level debugging needs of different
languages in a unified fashion by supplying language-independent debugging
information. The debugging information format is open-ended, allowing for the
addition of debugging information that accommodates new languages or debugger
capabilities.

DWARF was developed by the UNIX International Programming Languages
Special Interest Group (SIG).

The use of DWARF has two distinct advantages:
v It provides a stable and maintainable debug information format for all

languages.
v It facilitates porting program analysis and debug applications to z/OS from

other DWARF-compliant platforms.

Executable and Linking Format (ELF) application binary
interfaces (ABIs)

Using a separate ELF object file to store debugging information enables the
program analysis application to load specific information only as it is needed. With
the z/OSXL C/C++ compiler, use the DEBUG option to create the separate ELF
object file, which has a *.dbg extension.

© Copyright IBM Corp. 2004, 2015 1

Note: In this information, those ELF object files may be referred to as an ELF
object file, an ELF object, or an ELF file. Such a file stores only DWARF debugging
information.

GOFF program objects

Using a GOFF program object file enables the program analysis application to load
specific information only as it is needed. With the Enterprise COBOL compiler, use
the TEST option to create DWARF debugging information in the GOFF object file.
The debugging information is stored in a NOLOAD class, and will not be loaded
into memory when the program object is loaded into memory.

CDA libraries and utilities
CDA comprises three libraries and two utilities.

The libraries are:
v libelf, header files are available in either:

/usr/lpp/cbclib/include/libelf (elf_repl.h, libelf.h, sys_elf.h)
CEE.SCEEH.H (ELF@REPL, LIBELF, SYS@ELF)

v libdwarf, header files are available in either:
/usr/lpp/cbclib/include/libdwarf (dwarf.h, libdwarf.h)
CEE.SCEEH.H (DWARF, LIBDWARF)

v libddpi, header files are available in either:
/usr/lpp/cbclib/include/libddpi (libddpi.h)
CEE.SCEEH.H (LIBDDPI)

The utilities are:
v isdcnvt

v dwarfdump

To ensure compatibility, the libdwarf and libelf libraries are packaged together in
a single DLL. There are 3 versions:
v 31-bit NOXPLINK
v 31-bit XPLINK
v 64-bit

The libddpi library is available as a dynamic linking library. There are 3 versions
available:
v 31-bit NOXPLINK DLL
v 31-bit XPLINK DLL
v 64-bit DLL

Regardless of whether a 64-bit or 31-bit version of a library is used, the created
information is binary-equivalent. For example, a producer can use a 31-bit version
of libdwarf and libelf to create the debug information and a consumer program
can use a 64-bit version of libdwarf, libelf and libddpi to read the debug
information.

2 z/OS V2R2 Common Debug Architecture User's Guide

libelf
The libelf APIs are used to create the ELF descriptor. The descriptor is then used
by other APIs to read from, and write to, the ELF object file.

libelf is packaged as part of a dynamic link library (DLL). The XPLINK versions
are packaged as part of CEE.SCEERUN2. The NOXPLINK version is packaged as part
of CEE.SCEERUN.
v For 64–bit applications, libelf is shipped in the CDAEQED DLL as part of

CEE.SCEERUN2.
v For 31–bit XPLINK applications, libelf is shipped in the CDAEED DLL as part of

CEE.SCEERUN2.
v For 31–bit NOXPLINK applications, libelf is shipped in the CDAEEDE DLL as part

of CEE.SCEERUN.

When compiling an application that uses the libelf library, you must include
libelf.h which is located in the /usr/lpp/cbclib/include/libelf directory.

Optionally, you can bind the module with an appropriate side deck:
v For 64–bit applications:

– Bind with CEE.SCEELIB(CDAEQED) if you are using an IBM MVS™ file
system

– Bind with /usr/lpp/cbclib/lib/libelfdwarf64.x if you are using a
hierarchical file system

v For 31–bit applications on an MVS file system:
– Bind with CEE.SCEELIB(CDAEED) if you are using XPLINK version of DLL.
– Bind with CEE.SCEELIB(CDAEEDE) if you are using NOXPLINK version of

DLL.
v For 31–bit applications on a z/OS UNIX file system:

– Bind with /usr/lpp/cbclib/lib/libelfdwarf32.x if you are using XPLINK
version of DLL.

– Bind with /usr/lpp/cbclib/lib/libelfdwarf32e.x if you are using
NOXPLINK version of DLL.

Note: IBM has extended the libelf library to support C/C++ on the z/OS
operating system. These extensions enable the libelf library to be used in various
environments without additional extensions. The generic interfaces provided by
libelf are defined as part of the UNIX System V Release 4 ABI. For descriptions
of the interfaces supported by libelf, refer to the following documents:
v System V Application Binary Interface Standard

v DWARF/ELF Extensions Library Reference

libdwarf
The libdwarf APIs:
v Create or read ELF objects that include DWARF debugging information
v Read GOFF program objects that include DWARF debugging information

libdwarf is packaged as a dynamic link library (DLL). The XPLINK versions are
packaged as part of CEE.SCEERUN2. The NOXPLINK version is packaged as part of
CEE.SCEERUN:
v For XPLINK applications, libdwarf is shipped in the CDAEED DLL.

Chapter 1. About Common Debug Architecture 3

v For NOXPLINK applications, libdwarf is shipped in the CDAEEDE DLL.

When compiling an application that uses the libdwarf library, you must include
both libdwarf.h and dwarf.h (which are located in the /usr/lpp/cbclib/include/
libdwarf directory). You can optionally bind the module with an appropriate side
deck:
v For 64–bit applications:

– Bind with CEE.SCEELIB(CDAEQED) if you are using an MVS file system.
– Bind with /usr/lpp/cbclib/lib/libelfdwarf64.x if you are using a

hierarchical file system.
v For 31–bit applications:

– If you are using an MVS file system:
- Bind with CEE.SCEELIB(CDAEED) if you are using XPLINK version of

DLL.
- Bind with CEE.SCEELIB(CDAEEDE) if you are using NOXPLINK version

of DLL.
– If you are using z/OS UNIX file systems:

- Bind with /usr/lpp/cbclib/lib/libelfdwarf32.x if you are using XPLINK
version of DLL.

- Bind with /usr/lpp/cbclib/lib/libelfdwarf32e.x if you are using
NOXPLINK version of DLL.

Note: IBM has extended the libdwarf library to support C/C++ and COBOL on
the z/OS operating system. The IBM extensions to libdwarf provide:
v Improved speed and memory utilization
v Support for the IBM Enterprise COBOL languages

For information that is specific to these extensions, see DWARF/ELF Extensions
Library Reference.

libddpi
The Debug Data Program Information library (libddpi) provides a repository for
gathering information about a program module. A debugger or other program
analysis application can use the repository to collect and query information from
the program module.

libddpi:
v Supports conversion of non-DWARF C/C++ debugging information to the

DWARF format. For example, the libddpi library is used to convert In Store
Debug (ISD) information.

v Puts an environmental context around the DWARF information for both the
producer APIs and the consumer APIs. For library reference information on
libddpi, see Common Debug Architecture Library Reference.

The libddpi library is packaged as the static library libddpi.a in the
/usr/lpp/cbclib/lib directory. This directory contains both the 31-bit and 64-bit
versions of the library.

The libddpi library is also packaged as a dynamic link library (DLL). The
NOXPLINK version is packaged as part of CEE.SCEERUN. Both the 31-bit
XPLINK version and the 64-bit XPLINK version are packaged as part of
CEE.SCEERUN2:

4 z/OS V2R2 Common Debug Architecture User's Guide

|
|
|
|

v For 64-bit applications, libddpi is shipped in the CDAEQDPI DLL.
v For 31-bit XPLINK applications, libddpi is shipped in the CDAEDPI DLL.
v For 31-bit NOXPLINK applications, libddpi is shipped in the CDAEDPIE DLL.

When creating or compiling an application that uses libddpi, you must include
libddpi.h in your source code. The libddpi.h file is located in the
/usr/lpp/cbclib/include/libddpi/ directory.

Optionally, you can bind the module with an appropriate side deck.

For 64-bit applications:
v Bind with CEE.SCEELIB(CDAEQDPI) if you are using an MVS file system
v Bind with /usr/lpp/cbclib/lib/libddpi64.x if you are using a hierarchical file

system.

For 31-bit applications:
v If you are using an MVS file system:

– Bind with CEE.SCEELIB(CDAEDPI) if you are using XPLINK version of DLL.
– Bind with CEE.SCEELIB(CDAEDPIE) if you are using NOXPLINK version of

DLL.
v If you are using z/OS UNIX file system:

– Bind with /usr/lpp/cbclib/lib/libddpi32.x if you are using XPLINK
version of DLL.

– Bind with /usr/lpp/cbclib/lib/libddpi32e.x if you are using NOXPLINK
version of DLL.

The main groups of APIs in libddpi are described in the following table:

API groups Description

CDA application model APIs:

v Ddpi_Init and Ddpi_Finish APIs

v Ddpi_Error APIs

v Processing storage deallocation APIs

v Ddpi_Addr APIs

v Ddpi_Elf loading API

v Ddpi_Info APIs

v Ddpi_Space APIs

v Ddpi_Process APIs

v Ddpi_Thread APIs

v Ddpi_Lock APIs

v Ddpi_Mutex APIs

v Ddpi_Cond APIs

v Ddpi_Module APIs

v Ddpi_Access APIs

v Ddpi_Elf APIs

v Ddpi_Class APIs

v Ddpi_Section APIs

v Ddpi_EntryPt APIs

This group of consumer and producer APIs
allows developers to model applications
they are analyzing and to use those models
to keep track of debugging information.

Chapter 1. About Common Debug Architecture 5

|

|

|

|

|

|

|
|

|

|
|

|
|

API groups Description

CDA APIs that support use of the module
map:

v Ddpi_Function APIs

v Ddpi_Variable APIs

v Ddpi_Type APIs

v Ddpi_Source APIs

The operations in this group:

v Find and extract information about a
specific function, including static
functions. Each Ddpi_Function object is
owned by a Ddpi_Elf object. A
ddpi_function operation queries one or
more Ddpi_Function objects and extracts
information about the specific function.

v Provide information about global
variables. Each Ddpi_Variable object is
owned by a Ddpi_Elf object.

v Provide information about external types.
Each Ddpi_Type object is owned by a
Ddpi_Elf object.

v Provide information about source files.
Each Ddpi_Source object is owned by a
Ddpi_Elf object.

System-dependent APIs This group provides system-specific helper
APIs.

System-independent APIs This group provides generic common helper
APIs.

DWARF-expression APIs This group provides a DWARF expression
evaluator which assists with the evaluation
of some of the DWARF opcodes.

Utilities This group:

v Helps convert ISD debugging information
into DWARF debugging information.

v supports the integrity of the program
analysis application build.

isdcnvt

Note: isdcnvt cannot be used to convert 64-bit objects. Debug information for
64–bit XL C/C++ applications is available only in DWARF format.

isdcnvt is a stand-alone utility that converts objects with In Store Debug (ISD)
information into an ELF object file with DWARF debugging information. In other
words, isdcnvt accepts objects with ISD C/C++ debugging information and
generates an ELF object file containing debugging information in the DWARF
format. It is shipped in the /usr/lpp/cbclib/bin/isdcnvt directory.

This converter supports debugging information generated by the TEST option for
XL C/C++ compilers. For more information, see “CDA limitations” on page 8.

The following restrictions apply to the isdcnvt utility:
v Debugging information cannot be converted if the compilation unit (CU) has

only line number information. This occurs if the GONUMBER and NOTEST
compiler options are used.

v CUs cannot be converted if they have data only and do not contain any
functions.

6 z/OS V2R2 Common Debug Architecture User's Guide

The required ISD information is generated by the IBM XL C/C++ compiler TEST
option.

For more information on isdcnvt, see "Conversion APIs" in Common Debug
Architecture Library Reference.

dwarfdump
The dwarfdump utility displays the debugging information of an ELF object file or
GOFF program objects in user-readable form. It is shipped in the
/usr/lpp/cbclib/bin directory.

dwarfdump works on DWARF objects nested within an ELF container or GOFF
program objects. It can be used to validate the work of a developer who is
accessing and manipulating DWARF debugging information.

The dwarfdump utility is available on both the IBM z/OS UNIX System Services and
on IBM MVS.

On UNIX Systems Services,
dwarfdump [-options] inputfile

On MVS, use the following JCL to run the dwarfdump utility:
//DWFDUMP EXEC PGM=CDADUMP, REGION=0M
// PARM=’<options>’
//SYSIN DD DISP=SHR,DSN=HLW.DBG(INPUTFN)
//STEPLIB DD DSN=CEE.SCEERUN2,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

For a list of supported options or help information for dwarfdump, run dwarfdump
-h.

Changes for CDA
The libdwarf library has been changed to support DWARF in GOFF program
objects such as those produced by Enterprise COBOL compiler. For more
information on consuming DWARF in GOFF program object, refer to “Reading
DWARF data from a GOFF program object file” on page 14.

CDA libraries shipped with IBM z/OS now include a large number of new APIs.
For a list of those APIs as well as some deprecated APIs, refer to the Changes to
DWARF/ELF library extensions in the CDA DWARF/ELF Library Reference.

CDA requirements and recommendations
The CDA libraries are compiled with the z/OS XL C/C++ compiler.

To provide flexibility for developers who want to use the CDA application model,
many libddpi objects have a variable-length user area. This allows the developers
to store their own extra information in the libddpi model.

When you use CDA libraries, be aware of the following requirements and
recommendations:
v To ensure the best possible application performance, run applications with the

HEAPPOOLS(on) runtime option.

Chapter 1. About Common Debug Architecture 7

– For 31-bit applications, you must specify the HEAPPOOLS(on) option in a
pragma or CEEUOPT.

– For 64-bit applications, the HEAPPOOLS(on) option is the default.
v Notice the code set in which strings are accepted and returned. By default, most

character strings accepted and returned by the CDA libraries are encoded in the
ISO8859-1 code set. You can use code set conversion operations to change the
code set. For more information about these operations, see Common Debug
Architecture Library Reference, SC09-7654. For more information about the z/OS
XL C/C++ compiler options, see z/OS XL C/C++ User's Guide, SC09-4767.

CDA limitations
When you use CDA libraries, be aware of the following limitations:
v Conversion support for ISD debugging information is available only for 31-bit

object files, modules or program objects built with:
– IBM C/C++ for MVS/ESA V3R2
– Any release of z/OS XL C/C++
This support is not intended to work with debugging information generated by
the IBM C/370™ or IBM AD/Cycle C/370 compilers.
The CDA converter will be updated to match the TEST option support for the
version of z/OS with which it is shipping. However, a lower-level CDA
converter might not be able to properly convert the debugging data generated
by the TEST option on a newer level of the z/OS C/C++ compiler.
If you bind your application with the CDA sidedeck on a newer level of z/OS,
you will not be able to run the application on an older level of z/OS, because
there might be some new APIs that are missing in the older level of z/OS. If you
want your application to run on an older level of z/OS:
– use dlopen(), dlsym() to explicitly load the CDA DLL and API.
– make sure you only use those CDA APIs that are available on the older level

of z/OS.
v You must gather information and call the appropriate libddpi interface to

generate objects (such as Ddpi_Space and Ddpi_Process) that can be used to
model the behavior of an application under analysis. Although the libddpi
library contains these objects, they are not created automatically when the
application triggers an event.

Note: These libddpi objects were created to:
– Provide a structured information repository in a common format
– Allow CDA to use expanded queries across a whole application, whether or

not the application information is in an ELF object file, or has been modelled
using libddpi elements such as Ddpi_Section

8 z/OS V2R2 Common Debug Architecture User's Guide

Chapter 2. Overview of reading and writing CDA debugging
information

This information discusses how the libelf, libdwarf, and libddpi libraries work
together to access and use debugging information.

Reading and writing CDA debugging information

Note: This information requires that you are familiar with the concepts in
Chapter 1, “About Common Debug Architecture,” on page 1 and the DWARF
format. For more information about Debug Information Entries (DIEs) and their
structure, see DWARF Debugging Information Format.

The information is divided up into the following sections:

Section Description

“Creating an ELF descriptor” This section explains how libelf uses a file
handle and creates an ELF descriptor. An
ELF descriptor can be created for reading or
writing.

“Writing DWARF data to the ELF object file”
on page 12

This section explains how libelf and
libdwarf add DWARF debugging
information to the ELF object file.

“Reading DWARF data from a GOFF
program object file” on page 14

This section explains how libdwarf reads
DWARF debugging information from a
GOFF program object file.

“Reading DWARF data from an ELF object
file with libelf and libdwarf” on page 15

This section explains how libelf and
libdwarf reads the DWARF debugging
information from the ELF object file.

“Reading DWARF data from an executable
module with libelf, libdwarf, and libddpi”
on page 16

This section explains how libelf, libdwarf,
and libddpi can work together to read
DWARF debugging information from an
executable module produced by the z/OS
XL C/C++ compiler.

“Accessing debugging information from a
z/OS XL C/C++ compiler executable
module” on page 19

This section explains how to read other
debugging information from an executable
module produced by the z/OS XL C/C++
compiler.

Creating an ELF descriptor
Producer and consumer operations use ELF descriptors to access ELF object files.
The following diagram shows how an application uses the libelf library to create
an ELF descriptor:

© Copyright IBM Corp. 2004, 2015 9

Table 3 on page 11 describes how producer or consumer operations create an ELF
descriptor with calls to libelf operations.

Version check

Open a file opens ELF object file

Initialize an
ELF object

ELF descriptor

Use ELF APIs

Terminate the
ELF descriptor

creates

operates on

terminates

interacts

Figure 1. Creation of an ELF descriptor

10 z/OS V2R2 Common Debug Architecture User's Guide

Table 3. Stages to create an ELF descriptor with calls to libelf operations

Stage Description

Version check Since libelf is packaged as a DLL, this step will check the version. It is good practice
to validate that the correct version of the DLL exists. For example:

#define _UNIX03_SOURCE
#include <dlfcn.h> /* dlopen,dlsym,dlclose */
#include "libelf.h"

void *cdadll;
unsigned int (*version_chk)(unsigned int);
unsigned int dll_version;

#ifdef _LP64
#define __CDA_ELF "CDAEQED"
#else
#define __CDA_ELF "CDAEED"
#endif

#if LIBELF_IS_DLL
cdadll = dlopen(__CDA_ELF, RTLD_LOCAL | RTLD_LAZY);
if (cdadll == NULL) {
/* elf/dwarf DLL not found */
}

version_chk = (unsigned int (*)(unsigned int))
dlsym(cdadll, "elf_dll_version");
if (version_chk == NULL) {
/* Version API not found, should NEVER happen */
}

dll_version = version_chk (LIBELF_DLL_VERSION);
if (dll_version != 0) {
/* Incompatible DLL version */
}
dlclose(cdadll);
#endif

It is mandatory to perform a verification of the ELF version before using the other
functions offered by libelf. For example:

#include <dll.h>
{

/* Verify existence of libelf DLL */
dllhandle* dll_handle = dllload ("CDAEED");
if (dll_handle == NULL) {

/* DLL not found, verify CEE.SCEERUN2
is in your STEPLIB */

}
/* Verify that the current version of the ELF DLL

meets or exceeds the minimum required version */
if (elf_dll_version (LIBELF_DLL_VERSION) != 0) {

/* DLL version mismatch.
- verify that "libelf.h" comes from:

"/usr/lpp/cbclib/include/libelf"
- verify CEE.SCEERUN2 is the first

dataset on your STEPLIB
- verify you have the latest service

level of CDA libraries
*/

}
}

Chapter 2. Overview of reading and writing CDA debugging information 11

Table 3. Stages to create an ELF descriptor with calls to libelf operations (continued)

Stage Description

Version check (continued) It is mandatory to perform a verification of the ELF version before using the other
operations offered by libelf. For example:

/* Verify that the current version of the ELF DLL
meets or exceeds the minimum required version */

elf_version (EV_NONE);
if (elf_version(EV_CURRENT) == EV_NONE) {
/* libelf is out of date */
}

Open a file The producer or consumer operations create a file handle for the ELF object file. This
file handle is used to create an ELF descriptor. Consult z/OS XL C/C++ Run-Time Library
Reference for more information on opening files and creating file handles.

Initialize ELF descriptor An ELF descriptor is required before you can call any other libelf operations. The file
handle is used to initialize libelf and create an ELF descriptor for the ELF object file.
The libelf operation that will create the ELF descriptor is determined by the operation
that creates the file handle. For example, if the fopen operation creates the file handle,
the elf_begin_b operation is used. The following code demonstrates how to use the file
pointer obtained from fopen to create the ELF descriptor:

Elf* elf; /* ELF descriptor */
FILE* fp; /* File pointer */
/* Open test.dbg for reading */
fp = fopen ("test.dbg", "rb");
/* Create ELF descriptor for reading */
elf = elf_begin_b (fp, ELF_C_READ, NULL);

Operate on the descriptor After the ELF descriptor is initialized, you can call any libelf operations. For example,
elf_getscn returns an ELF section, and elf_kind describes that section.

Terminate ELF descriptor When the debugging information is no longer needed, the descriptor is terminated by
the elf_end operation.
Note: If you are using the libdwarf library, you must terminate its objects before you
terminate the ELF descriptor. Close the file handle after the ELF descriptor is
terminated.

Writing DWARF data to the ELF object file
Once an ELF descriptor has been created, a producer application can use it to write
DWARF debugging information to the ELF object file. This section discusses how a
producer application writes to an ELF object file using the libelf and libdwarf
libraries.

The following diagram shows an overview of the process.

12 z/OS V2R2 Common Debug Architecture User's Guide

The following stages show how a producer application writes to an ELF object file
with calls to libelf and libdwarf operations.

Stage Description

Create an ELF descriptor Create an ELF descriptor for writing. This descriptor will be used to write
DWARF debugging information into the ELF object file. For more information,
see “Creating an ELF descriptor” on page 9.

Transform DWARF data

Initialize a
libdwarf object

Use libdwarf APIs

Terminate the
libdwarf object

Terminate the
ELF descriptor

libdwarf

object
producer

ELF
descriptor

creates

creates

operates on

interacts

operates on

terminates

Create an
ELF descriptor

Write the libdwarf object writes

terminates

Figure 2. Write to an ELF object file

Chapter 2. Overview of reading and writing CDA debugging information 13

Stage Description

Initialize a libdwarf object Initialize the Dwarf_P_Debug producer object. The object is initialized using the
ELF descriptor. An ELF header (ehdr) is then created and used to complete the
initialization.

The following code demonstrates how to initialize the DWARF producer object:

Dwarf_P_Debug dbg; /* Producer DWARF object */
/* Initialize libdwarf producer instance */
flag = DW_DLC_WRITE |

DW_DLC_SIZE_32 |
DW_DLC_ISA_ELF_HDR |
DW_DLC_STREAM_RELOCATIONS;

dbg = dwarf_producer_init_b(
flag,

/* callback function for creating ELF
section*/

section_creation_func,
/* error handling callback function*/

error_handling_func,
/* arguments to be passed into
error_handling_func*/

"error arguments",
&dwarf_error

);

Note: The ehdr is extracted from the descriptor. An update to the header will
update the descriptor.

/* Create the ELF header */
ehdr = elf32_newehdr(elf);
/* Initialize the ELF header */
ehdr->e_type = ET_REL;
ehdr->e_machine = EM_S390;
ehdr->e_version = EV_CURRENT;
dwarf_producer_target(dbg, elf, &dwarf_error);

Use libdwarf APIs libdwarf producer operations are called to add DWARF debugging information
to the ELF object file. For example, dwarf_add_line_entry will add one
line-number statement to the line number program matrix. dwarf_new_die will
create a new DIE with a given DIE tag.

Transform DWARF data dwarf_transform_to_disk_form must be called to format the DWARF
debugging information before it can be written to the file. That is, the
debugging information in the Dwarf_P_Debug object must conform to the actual
binary representation of the ELF object file.

Write the libdwarf object The data is written to the ELF object file by calling dwarf_producer_write_elf.
libdwarf interacts with libelf to write all the gathered debug sections to the
ELF object file that is managed by the ELF descriptor.

Terminate the libdwarf object dwarf_producer_finish is called to terminate the Dwarf_P_Debug object.

Terminate the ELF descriptor The ELF descriptor is terminated with elf_end.

Reading DWARF data from a GOFF program object file
DWARF information can be embedded within a GOFF program object file such as
that created with the Enterprise COBOL compiler. This section discusses how
consumer operations read from a GOFF program object file using libdwarf library.

The following diagram shows an overview of the process.

14 z/OS V2R2 Common Debug Architecture User's Guide

The following table shows the stages of reading from a GOFF program object file
with calls to libdwarf operations..

Stage Description

Initialize a libdwarf object Initialize the Dwarf_Debug consumer object by calling
dwarf_goff_init_with_PO_filename with the filename of the GOFF program
object file.

libdwarf sets up the consumer libdwarf object to load debugging information
from the GOFF program object.

Use libdwarf APIs libdwarf operations are called to retrieve DWARF data. For example,
dwarf_get_globals retrieves the list of global symbol entries, and
dwarf_get_dies returns a list of DIEs in a section that match the given name.

Terminate the libdwarf object dwarf_producer_finish is called to terminate the Dwarf_P_Debug object.

Reading DWARF data from an ELF object file with libelf and libdwarf
Once a descriptor has been created, consumer operations can use it to read the
DWARF debugging information from the ELF object file. This section discusses
how consumer operations read from an ELF object file using the libelf and
libdwarf libraries.

The following diagram shows an overview of the process.

Initialize a libdwarf object

Use libdwarf APIs

Terminate the libdwarf object

libdwarf
consumer
object

creates

operates on

terminates

Figure 3. Read from a from a GOFF program object file

Figure 4. Read from a GOFF program object file

Chapter 2. Overview of reading and writing CDA debugging information 15

The following table shows the stages of reading from an ELF descriptor with calls
to libelf and libdwarf operations.

Stage Description

Create an ELF descriptor Create an ELF descriptor for reading. This descriptor will
be used to access the DWARF debugging information in
the ELF object file. For more information, see “Creating
an ELF descriptor” on page 9.

Initialize a libdwarf object Initialize the Dwarf_Debug consumer object by calling
dwarf_elf_init, using the ELF descriptor.

libdwarf sets up the consumer libdwarf object to be able
to load debugging information from the ELF descriptor.

Use libdwarf APIs libdwarf operations are called to retrieve the DWARF
data. For example, dwarf_get_globals will retrieve the
list of global symbol entries, and
dwarf_get_dies_given_name will return a list of DIEs in a
section that match the given name.

Terminate the libdwarf object dwarf_finish is called to terminate the Dwarf_Debug
object.

Terminate the ELF descriptor The ELF descriptor is terminated with elf_end.

Reading DWARF data from an executable module with libelf, libdwarf,
and libddpi

Once a descriptor has been created, consumer operations can use it to read the
DWARF debugging information from the ELF object file. This section discusses
how consumer operations reads from an ELF object file using the libelf, libdwarf,
and libddpi libraries.

Initialize a
libdwarf object

Use libdwarf APIs

Terminate the
libdwarf object

Terminate the
ELF descriptor

libdwarf
consumer
object

ELF
descriptor

creates

creates

interactsoperates on

terminates

Create an
ELF descriptor

terminates

Figure 5. Read from an ELF object file with libelf and libdwarf

16 z/OS V2R2 Common Debug Architecture User's Guide

Note: The concepts in this section are based on “Reading DWARF data from an
ELF object file with libelf and libdwarf” on page 15.

The following diagram shows an overview of the process.

The following stages show how consumer operations read from an ELF object file
using the libelf, libdwarf, and libddpi libraries.

Find the ELF object file

Model the executable module

Retrieve the module information

Relocate the ELF object file

Initialize the libdwarf object

Notify the libddpi object

Use the libdwarf and libddpi APIs

Terminate the libdwarf object

Terminate the ELF descriptor

libdwarf
consumer
object

libddpi
object

creates

creates

creates

creates

operates on

terminates

starts

writes

loads

reads

reads

relocates

Initialize the libddpi object

Terminate the libddpi object

Executable module

Create an ELF descriptor

Run-time
conversion

ELF
descriptor

terminates

terminates

Figure 6. Read from an ELF object file with libelf, libdwarf, and libddpi

Chapter 2. Overview of reading and writing CDA debugging information 17

Stage Description

Initialize libddpi object. To validate the version of libddpi, use the following
code:

#define _UNIX03_SOURCE
#include <dlfcn.h> /* dlopen,dlsym */
#include "libddpi.h"

void *cdadll;
unsigned int (*version_chk)(unsigned int);
unsigned int dll_version;

#ifdef _LP64
#define __CDA_DDPI "CDAEQDPI"
#else
#define __CDA_DDPI "CDAEDPI"
#endif

#if LIBDDPI_IS_DLL
cdadll = dlopen(__CDA_DDPI, RTLD_LOCAL | RTLD_LAZY);
if (cdadll == NULL) {
/* libddpi DLL not found */
}
</dlfcn.h>

version_chk = (unsigned int (*)(unsigned int))
dlsym(cdadll, "ddpi_dll_version");
if (version_chk == NULL) {
/* Version API not found, should NEVER happen */
}

dll_version = version_chk (LIBDDPI_DLL_VERSION);
if (dll_version != 0) {
/* Incompatible DLL version */
}

dlclose(cdadll);
#endif

Call ddpi_init to create a Ddpi_Info object. Ddpi_Info is
a starting point that tracks:

v The objects that model the application environment

v The ELF object(s)

v The DWARF object(s)

Model the executable module. Use libddpi operations to retrieve information from the
executable module. For example:

v ddpi_space_create represents the address space in
which the executable module resides

v ddpi_storagelocn_create provides access to user
storage

v ddpi_module_create represents the actual executable
module

v ddpi_entrypt_create represents the entry point of the
executable module

Retrieve module information. Call ddpi_module_extract_C_CPP_information. This
operation identifies all the compilation units (CU) in the
executable module, then creates a Ddpi_Elf object to
represent each CU. Each object holds the necessary
information to load the DWARF debugging information
that is in the CU.

18 z/OS V2R2 Common Debug Architecture User's Guide

Stage Description

Find ELF object file. Call ddpi_elf_get_elf_file_name to search for the name
of an ELF object file. If the file name can not be found it
returns DW_DLV_NO ENTRY, which indicates that this CU is
not compiled with the DEBUG(FORMAT(DWARF)) option. The
debugging information may need to be converted to
DWARF before calling any other CDA-compliant APIs.
For more information, see “Accessing debugging
information from a z/OS XL C/C++ compiler executable
module.”

Create ELF descriptor. Open the ELF object file for reading and create an ELF
descriptor. This descriptor will be used to access the
DWARF debugging information in the ELF object file.
For more information, see “Creating an ELF descriptor”
on page 9

Relocate ELF object file. Call ddpi_elf_load_cu to relocate the ELF object file.
This ensures that the addresses within the file are the
same as the addresses within the executable module. For
more information, see “Steps for creating the debug_ppa
section” on page 43.

Initialize the libdwarf object Initialize the Dwarf_Debug consumer object by calling
dwarf_elf_init and using the ELF descriptor.

Notify libddpi object about libdwarf object. Call ddpi_access_set_debug to let the Ddpi_Info object
know about the newly created DWARF consumer object.
This is done only once per module/program object.

Use libdwarf and libddpi operations. libdwarf operations are called to retrieve the DWARF
data. For example, dwarf_get_globals will retrieve the
list of global symbol entries, and
ddpi_module_get_major_name will retrieve the major
name from the given Ddpi_Module object.

Terminate the libdwarf object. dwarf_finish is called to terminate the Dwarf_Debug
object.

Terminate ELF descriptor. The ELF descriptor is terminated with elf_end.

Terminate the libddpi objects. ddpi_finish is called to terminate the Ddpi_Info object.

Accessing debugging information from a z/OS XL C/C++ compiler
executable module

This information discusses how libddpi set up access to the debugging
information in an executable module. Debugging information can be produced in
many ways, including:
v DWARF debugging information generated by IBM z/OS XL C/C++ compile.
v ISD debugging information generated by IBM z/OS XL C/C++ compiler.
v DWARF debugging information generated by IBM Enterprise COBOL compiler.
v Debugging information generated by another compiler

The libddpi operations have been created specifically to set up access to executable
modules created with the IBM z/OS XL C/C++ compiler. Accordingly, most of this
information discusses how to use these functions.

The libddpi operations do not support GOFF program objects such as those in
executable modules created with the IBM Enterprise COBOL compiler. For

Chapter 2. Overview of reading and writing CDA debugging information 19

information on processing these executable modules, see “Reading DWARF data
from a GOFF program object file” on page 14

Note: If a module has been created with another compiler, more development
must be done to take the place of these operations. For more information, see
“Accessing other debugging information” on page 21.

Accessing z/OS XL C/C++ debugging information
This section applies to all modules/program objects that have been compiled with
the z/OS XL C and C++ compilers. These modules contain information that allows
libddpi operations to gain access to the relevant debugging information.

The ddpi_module_extract_C_CPP_information operation can determine if the
executable module is made up of z/OS XL C/C++ compilation units (CUs). If so,
the operation:
v Identifies all the C/C++ CUs within the module and creates a Ddpi_Elf object

for each CU.
v Locates the ELF object file for each CU.

The recommended method for creating DWARF debugging information for a
module/program object is by compiling it with the z/OS XL C/C++ DEBUG
compiler option. This creates CU objects, each with its own ELF object file. Each
CU object contains the name and location of the corresponding ELF object file and
an MD5 signature.

Note: For more information about the DEBUG option, refer to the z/OS XL C/C++
User's Guide.

If a CU object was created with the DEBUG compiler option, the
ddpi_elf_get_elf_file_name operation can retrieve the name and location of the
corresponding ELF object file, otherwise, it returns DW_DLV_NO_ENTRY.

If the location of the ELF object file cannot be determined, you must provide the
location of an ELF object file if it exists, or initialize a conversion process. For more
information, see “Accessing ISD debugging information generated by the z/OS XL
C/C++ compiler.”

Finally, the addresses within the ELF object file must be relocated to match the
loaded executable module. The ddpi_elf_load_cu operation:
v Verifies the contents of the ELF object file by making sure that the MD5

signature within the CU object and the ELF object file is the same
v Relocates the ELF object file using the data found within the .debug_ppa section

Note: For more information about the using the .debug_ppa section for relocations,
see “Steps for creating the debug_ppa section” on page 43.

Accessing ISD debugging information generated by the z/OS
XL C/C++ compiler

CDA defines consumer functions (operations) that process DWARF debugging
information. If the debugging information is in a non-DWARF format, it has to be
converted before it can be used by the CDA libraries.

20 z/OS V2R2 Common Debug Architecture User's Guide

ISD information is created by compiling with the IBM z/OS XL C/C++ compiler
with the TEST compiler option. Unlike the DEBUG compiler option, the TEST
compiler option does not create an ELF object file. To use ISD information, it must
be converted to an ELF object file.

There are two methods that can be used to convert ISD information:
v isdcnvt utility

This stand-alone utility extracts ISD information from within CU object files and
converts it to the DWARF format in an ELF object file. You can use this to create
all the ELF object files for the CU objects that must be created before you can
debug information within the CU objects. Because the location of the ELF object
file is not recorded within the CU object file, it is your responsibility to locate
the converted ELF object file when accessing debug information in these CU
objects.

Note: For more information about the isdcnvt utility, see Chapter 6, “In Storage
Debug (ISD) Information Conversion Utility,” on page 51.

v libddpi conversion operations
The ddpi_convert_c_cpp_isdobj and ddpi_fp_convert_c_cpp_isdobj operations
can be called by any libddpi user during run time to convert CU objects
containing ISD information into DWARF format. If you are converting a CU
object that is part of a loaded executable module, it is not necessary to relocate
the resulting ELF object file.

Note: This method affects runtime performance. For more information see z/OS
Common Debug Architecture Library Reference.

Accessing other debugging information
Extraction is started by calling the ddpi_module_extract_C_CPP_information
operation. If the executable module was not compiled with the IBM z/OS XL
C/C++ compiler, then the format of the debugging information will be unknown
to the CDA libraries. You must create your own conversion process in order to use
the CDA libraries. That is, you will be responsible for identifying the CUs within
the executable module, and adding the necessary information within the Ddpi_Elf
objects. For more information on how to create a converter application, see
Chapter 4, “Using producer APIs,” on page 43.

Chapter 2. Overview of reading and writing CDA debugging information 21

22 z/OS V2R2 Common Debug Architecture User's Guide

Chapter 3. Using consumer functions

This topic explains how to create a CDA-compliant consumer application that uses
the libelf and/or libdwarf libraries. It provides an example of the basic structure
for an application that reads ELF object files and an application that reads GOFF
program object files..

Creating a CDA-compliant consumer application

Note: This information requires that you are familiar with the DWARF format. For
more information about DIEs and their structure, see DWARF/ELF Extensions
Library Reference.

DWARF information can be embedded within an ELF object file. ELF object files
are created by the isdcnvt utility, or by the DEBUG option of the z/OS XL C/C++
compiler. This process is discussed in the following three sections:
v “Initializing libelf”
v “Initializing libdwarf” on page 24
v “Steps to relocate addresses within an ELF file” on page 25
v “Consuming DWARF data” on page 39
v “Terminating libdwarf” on page 41
v “Terminating libelf” on page 41

DWARF information can also be embedded within a GOFF program object file.
GOFF files are created by the TEST option of the z/OS Enterprise COBOL
compiler.This process is discussed in the following three sections:
v “Initializing libdwarf” on page 24
v “Consuming DWARF data” on page 39
v “Terminating libdwarf” on page 41

Initializing libelf
This topic describes how the consumer application initializes libelf to process the
information within an ELF object file.

Steps to initialize libelf
1. Identify the ELF object file containing the data to be used.
2. Create an ELF descriptor to represent the data in the file.

The application uses the elf_begin operation to create an ELF descriptor. This
operation requires a file descriptor for the ELF object file. For example, the
application is given the name of the file from a command line parameter. It then
acquires the descriptor with the following code:
fd = open(opts.file_name, O_RDONLY);

Then validate the libelf interface, using the following code:
elf_version(EV_NONE);
if (elf_version(EV_CURRENT) == EV_NONE) {

/* libelf interface is out of date */
}

© Copyright IBM Corp. 2004, 2015 23

Then create an ELF descriptor with the given ELF object file, using the following
code:
Elf_Cmd cmd = ELF_C_READ;
Elf *elf;
elf = elf_begin(fd, cmd, NULL);

Note: Other operations that can be used are elf_begin_b and elf_begin_c. Consult
the libelf documentation for details on using these operations.

To determine if the input ELF object file is a well-formed ELF object file, use the
elf_getident operations. For example:
char *ehdr_ident = NULL;
ehdr_ident = elf_getident(elf, NULL);
if (ehdr_ident[0] == ’\x7f’ &&

ehdr_ident[1] == ’\x45’ && // ’E’
ehdr_ident[2] == ’\x4C’ && // ’L’
ehdr_ident[3] == ’\x46’) { // ’F’

/* This is a valid ELF object file */
}

To determine if the ELF descriptor represents a 32-bit ELF object or a 64-bit ELF
object. It uses the elf32_getehdr and elf64_getehdr operations. For example:
Elf32_Ehdr *eh32;
Elf64_Ehdr *eh64;
eh32 = elf32_getehdr(elf);
eh64 = elf64_getehdr(elf);

After this sequence the ELF descriptor has been identified as:
v 32 bit if eh32 is not NULL
v 64 bit if eh32 is NULL, and eh64 is not NULL
v Unknown if eh32 and eh64 are both NULL

If the processing was successful, then elf contains the ELF descriptor object which
is used to interfact with libdwarf.

Initializing libdwarf
This topic describes how the consumer application initializes libdwarf to process
the information within an ELF object file or GOFF program object file.

Steps to initialize libdwarf for an ELF object file

If the object format ELF, and the ELF descriptor object is available, use the
dwarf_elf_init operation to initialize the libdwarf object. For example:
Dwarf_Error err;
Dwarf_Debug dbg;
int rc;
rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dbg, &err);

It is important to check the return code to ensure that the processing succeeded.
dwarf_elf_init returns DW_DLV_OK on successful completion. It returns
DW_DLV_ERROR if an error occurs. dwarf_elf_init returns
DW_DLV_NO_ENTRY if the ELF descriptor does not contain DWARF data.

If the processing was successful, then dbg contains the Dwarf_Debug object which is
used to interact with libdwarf.

24 z/OS V2R2 Common Debug Architecture User's Guide

Note: Other operations that can be used are dwarf_elf_init_b. Consult the
libdwarf documentation for details on using these operations.

Steps to initialize libdwarf for an GOFF program object

If reading a GOFF program object, use the dwarf_goff_init_with_PO_filename
operation to initialize the libdwarf object. For example:
Dwarf_Error err;
Dwarf_Debug dbg;
int rc;
rc = dwarf_goff_init_with_PO_filename (file_name, NULL, NULL, 0, &dbg, &err);

It is important to check the return code to ensure that the processing succeeded.
dwarf_elf_init returns DW_DLV_OK on successful completion. It returns
DW_DLV_ERROR if an error occurs. dwarf_elf_init returns
DW_DLV_NO_ENTRY if the ELF descriptor does not contain DWARF. data.
dwarf_goff_init_with_PO_filename returns DW_DLV_NO_ENTRY if the GOFF
program object file does not contain DWARF data.

Unlike ELF object, when handling GOFF program object, the relocation logic is
handled by the libdwarf initialization processing.

Note: Other operations that can be used are
dwarf_goff_init_with_csvquery_token. Consult the libdwarf documentation for
details on using these operations.

Steps to relocate addresses within an ELF file
This information provides code examples that demonstrate how to use libelf
operations to relocate addresses within the ELF file.

Before you begin

Before you can run “elfload.c” on page 26, you must provide the reloc_adj array,
which is the relocation array that contains adjustments that need to be made to
each relocation entry.

About this task

Procedure
1. Compile elfload.c:

c89 -qxplink -qlanglvl=extended
-I/usr/lpp/cbclib/include
elfload.c
/usr/lpp/cbclib/lib/libelfdwarf32.x
-o elfload

2. Run elfload.o, using the following command: elfload

What to do next

The return code should be 0. The generated debug file mytest.dbg should have the
following .symtab entries:

Sect 20 .symtab symtab off=0x2559 0x26a9 size=336 addr=0x0 align=1 flag=0x0 [---] esize=16 info=21 link=19

String table = ".strtab"

Sym 0: value= 0x0000, size= 0 sect= undef, type= none, bind= local, name=

Chapter 3. Using consumer functions 25

Sym 1: value= 0x0000, size= 0 sect= abs, type= file, bind= local,
name= /c390/cbc/zosdev/nightly/libmd5/src/md5.c

Sym 2: value= 0x37b8, size= 0 sect= .text, type= none, bind= local,
name= .ppa2_b_3C2C968222FFB7242B5253006501F60F

Sym 3: value= 0x0000, size= 1 sect= .debug_info, type= sect, bind= local, name=

Example: Relocating addresses within an ELF file
This example that demonstrates how to use libelf operations to relocate addresses
within the ELF file.

For the task steps, see “Steps to relocate addresses within an ELF file” on page 25.

In elfload.c, the following variables are hardcoded:
v In main, the name of the test subject .dbg file (mytest.dbg).
v In main, the MD5 signature found in the .dbg file (variable md5).
v In relocate_elf_load_cu(), the target relocation address (variable reloc_adj)

contains the address delta to be applied to target address.

elfload.c
#include <stdlib.h>
#include "libelf/libelf.h"

/***
Structure used to keep track of information within ELF
***/

typedef unsigned long long int uint64;
typedef signed long long int int64;
typedef char bool;

/* ELF symbol details
*/
typedef struct ElfSymbol_s {

char* es_name; /* ELF symbol: name */
uint64 es_value; /* value */
uint64 es_size; /* size */
unsigned char es_type; /* type */
unsigned char es_bind; /* bind */
unsigned char es_other; /* other */
int64 es_shndx; /* ELF section index */

} *ElfSymbol;

/* ELF file details
*/
typedef struct ElfDetails_s {

Elf* ed_elf; /* ->ELF instance for CU */
bool ed_is_64bit; /* 64-bit: true */

/* 32-bit: false */

/* ELF Section details */
Elf_Scn** ed_elf_scns; /* List of ->ELF scn objects */
char** ed_scn_names; /* List of ELF section names */
int64* ed_infos; /* List of section sh_info values */
char** ed_datas; /* List of ->section data buffer */
uint64* ed_data_sizes; /* List of length of section data */
int64 ed_n_elf_scns; /* Number of ELF sections */

int64 ed_text_idx; /* .text section index */
int64 ed_symtab_idx; /* .symtab section index */
int64 ed_strtab_idx; /* .strtab section index */
int64 ed_shstrtab_idx; /* .shstrtab section index */

/* ELF Symbol details */

26 z/OS V2R2 Common Debug Architecture User's Guide

ElfSymbol ed_symbols; /* List of ->ELF symbol info */
uint64 ed_n_symbols; /* Number of ELF symbols */

} *ElfDetails;

/*--< Local Routines >---*/

/* Examine ELF descriptor and find out all information necessary
for relocating the .dbg.
All information are stored in ’ret_details’.
’ret_details’ is deallocated with _load_elf_term

*/
static int

_load_elf_file_details(
Elf* elf, /* ->ELF instance for CU I*/
ElfDetails* ret_details); /* ->returned ELF file details O*/

/* Terminate ELF loader processing, release resources
*/
static int

_load_elf_term(
ElfDetails details); /* ELF file details I*/

/* Load 64-bit ELF symbol table
*/
static int

_load_elf64_symbol_table(
ElfDetails details); /* ELF file details I*/

/* Load 32-bit ELF symbol table
*/
static int

_load_elf32_symbol_table(
ElfDetails details); /* ELF file details I*/

/* Given the 16 byte raw MD5 signature, verify that it matches the loaded
.dbg file

*/
static int

_validate_MD5_signature(
ElfDetails details, /* ELF file details I*/
unsigned char digest[16]); /* PPA2 MD5 signature I*/

/* Relocate the ELF sections based on the information in ’reloc_adj’
*/
static int

_relocate_elf_sections(
ElfDetails details, /* ELF file details I*/
int64* reloc_adj); /* Adjustment array I*/

/*--< Relocation main routines >---*/
int

relocate_elf_load_cu(
Elf* elf, /* ->ELF instance for CU IO*/
unsigned char md5_sig[16]); /* MD5 signature I*/

/*--< FUNCTION IMPLEMENTATION >--*/
int main ()
{

Elf* elf;
FILE *fp;
int rc;
unsigned char md5[16] = { 0x3C, 0x2C, 0x96, 0x82,

0x22, 0xFF, 0xB7, 0x24,
0x2B, 0x52, 0x53, 0x00,
0x65, 0x01, 0xF6, 0x0F };

elf_version (EV_CURRENT);

Chapter 3. Using consumer functions 27

fp = fopen ("mytest.dbg", "rb");
elf = elf_begin_b (fp, ELF_C_READ, NULL);

rc = relocate_elf_load_cu (elf, md5);
printf ("rc should be zero: %d\n", rc);

elf_end(elf);
}

#pragma convert ("ISO8859-1")
/* Load ELF file and relocate .text to given address(es)
*/
int

relocate_elf_load_cu(
Elf* elf, /* ->ELF instance for CU IO*/
unsigned char md5_sig[16]) { /* MD5 signature I*/

ElfDetails details;
int64* reloc_adj; /* An array keeping track of

address adjustment needed for
each .text symid */

int i;
int rc;

/* Load ELF file section and symbol tables */
rc = _load_elf_file_details(elf, &details;);
if (rc) return rc;

/* Validate MD5 signature */
rc = _validate_MD5_signature(details, md5_sig);
if (rc) return rc;

/* TO BE FILLED IN: create reloc_adj array */
/* This will relocate 0x37b8 to 0xDEADBEEF */
reloc_adj = (int64*) calloc (sizeof(int64), details->ed_n_symbols);
reloc_adj[2] = 0xDEADBEEF;

/* Relocate the ELF sections based on the current section origins */
rc = _relocate_elf_sections(details, reloc_adj);
if (rc) return rc;

/* Processing complete. Remove temporary tables */
rc = _load_elf_term(details);
if (rc) return rc;

/* Terminate reloc_adj */
free (reloc_adj);

return 0;
}

/* Load ELF file section and symbol tables
*/
static int

_load_elf_file_details(
Elf* elf, /* ->ELF instance for CU I*/
ElfDetails* ret_details) { /* ->returned ELF file details O*/

ElfDetails details;

char* ehdr_ident;

Elf32_Ehdr* ehdr32;
Elf64_Ehdr* ehdr64;

Elf32_Shdr* shdr32;
Elf64_Shdr* shdr64;

28 z/OS V2R2 Common Debug Architecture User's Guide

Elf_Scn* scn;

Elf_Data* data;

char* scn_name;

Elf_Scn** section_list;
char** name_list;
char** data_list;
uint64* data_size_list;
int64* info_list;

int64 scn_idx,
n_elf_scns,
shstrtab_idx;

int rc,
is_64bit,
elf_machine;

/* Determine if 64-bit or 32-bit ELF file */
if ((ehdr_ident = elf_getident(elf, NULL)) == NULL) {

return -1; /* ERROR */
}
is_64bit = (ehdr_ident[EI_CLASS] == ELFCLASS64);

/* Access the ELF file header */
if (is_64bit) {

if ((ehdr64 = elf64_getehdr(elf)) == NULL) {
return -1; /* ERROR */

}
elf_machine = ehdr64->e_machine;
n_elf_scns = ehdr64->e_shnum + 1; /* Allow for section 0 */
shstrtab_idx = ehdr64->e_shstrndx;

}
else {

if ((ehdr32 = elf32_getehdr(elf)) == NULL) {
return -1; /* ERROR */

}
elf_machine = ehdr32->e_machine;
n_elf_scns = ehdr32->e_shnum + 1; /* Allow for section 0 */
shstrtab_idx = ehdr32->e_shstrndx;

}

/* Validate machine type */
if (elf_machine != EM_S390) {

return -1; /* ERROR */
}

/* Allocate the new ElfDetails object */
if (n_elf_scns == 0) {

return -1; /* ERROR */
}

details = (ElfDetails) calloc (sizeof(struct ElfDetails_s), 1);
if (details == NULL) {

return -2; /* out of memory */
}

/* Initialize the new object */
details->ed_elf = elf;
details->ed_n_elf_scns = n_elf_scns;
details->ed_shstrtab_idx = shstrtab_idx;

if (is_64bit) {
details->ed_is_64bit = 1;

Chapter 3. Using consumer functions 29

}

/* Allocate list object (array of Dwarf_Ptr) for the ELF sections */
section_list = (Elf_Scn**) calloc (sizeof(Elf_Scn*), n_elf_scns);
if (section_list == NULL) {

return -2; /* out of memory */
}
details->ed_elf_scns = section_list;

/* Allocate list object (array of char*) for the ELF section names */
name_list = (char**) calloc (sizeof(char*), n_elf_scns);
if (name_list == NULL) {

return -2; /* out of memory */
}
details->ed_scn_names = name_list;

/* Allocate list object (array of Dwarf_Ptr) for section data addrs */
data_list = (char**) calloc (sizeof(char*), n_elf_scns);
if (data_list == NULL) {

return -2; /* out of memory */
}
details->ed_datas = data_list;

/* Allocate addr object (array of uint64) for section data lengths */
data_size_list = (uint64*) calloc (sizeof(uint64), n_elf_scns);
if (data_size_list == NULL) {

return -2; /* out of memory */
}
details->ed_data_sizes = data_size_list;

/* Allocate addr object (array of int64) for section sh_info */
info_list = (int64*) calloc (sizeof(int64), n_elf_scns);
if (info_list == NULL) {

return -2; /* out of memory */
}
details->ed_infos = info_list;

/* Populate the ELF section lists */
scn_idx = 0;
scn = NULL;
while ((scn = elf_nextscn(elf,scn)) != NULL) {

/* Save ELF section for section symbol lookup */
scn_idx = elf_ndxscn(scn);
if (scn_idx < n_elf_scns) {

section_list[scn_idx] = scn;
}
else {

return -1; /* ERROR */
}

/* Process ELF section header */
if (is_64bit) {

if ((shdr64 = elf64_getshdr(scn)) == NULL) {
return -1; /* ERROR */

}

/* Get section name */
if ((scn_name = elf_strptr(elf,

shstrtab_idx,
shdr64->sh_name)) == NULL) {

return -1; /* ERROR */
}

info_list[scn_idx] = shdr64->sh_info;
}
else {

30 z/OS V2R2 Common Debug Architecture User's Guide

if ((shdr32 = elf32_getshdr(scn)) == NULL) {
return -1; /* ERROR */

}

/* Get section name */
if ((scn_name = elf_strptr(elf,

shstrtab_idx,
shdr32->sh_name)) == NULL) {

return -1; /* ERROR */
}

info_list[scn_idx] = shdr32->sh_info;
}

/* Note ELF Section names */
name_list[scn_idx] = scn_name;

/* Note index of ELF .text, .symtab, .strtab and .shstrtab sections */
if (strcmp(scn_name,".text") == 0) {

/* Validate .text is z/OS DWARF in ELF packing */
if (is_64bit) {

if (shdr64->sh_type != SHT_NOBITS) {
return -1; /* ERROR */

}
}
else {

if (shdr32->sh_type != SHT_NOBITS) {
return -1; /* ERROR */

}
}

/* Validate there is only 1 .text section */
if (details->ed_text_idx != 0) {

return -1; /* ERROR */
}
details->ed_text_idx = scn_idx;

}

else if (strcmp(scn_name,".symtab") == 0) {
/* Validate there is only 1 .symtab section */
if (details->ed_symtab_idx != 0) {

return -1; /* ERROR */
}
details->ed_symtab_idx = scn_idx;

}

else if (strcmp(scn_name,".strtab") == 0) {
/* Validate there is only 1 .strtab section */
if (details->ed_strtab_idx != 0) {

return -1; /* ERROR */
}
details->ed_strtab_idx = scn_idx;

}

else if (strcmp(scn_name,".shstrtab") == 0) {
/* Validate there is only 1 .shstrtab section */
if (details->ed_shstrtab_idx != scn_idx) {

return -1; /* ERROR */
}

}

/* Prepare to read ELF section Data */
if ((data = elf_getdata(scn, 0)) != NULL) {

data_list[scn_idx] = data->d_buf;
data_size_list[scn_idx] = data->d_size;

}
}

Chapter 3. Using consumer functions 31

/* Ensure the file has all required sections */
if ((details->ed_text_idx == 0) ||

(details->ed_symtab_idx == 0) ||
(details->ed_strtab_idx == 0) ||
(details->ed_shstrtab_idx == 0)) {

return -1; /* ERROR */
}

/* Create the symbol table from the ELF .symtab section */
if (details->ed_is_64bit) {

rc = _load_elf64_symbol_table(details);
}
else {

rc = _load_elf32_symbol_table(details);
}
if (rc) return rc;

/* Return the ElfDetails object to the caller */
*ret_details = details;

return 0;
}

/* Terminate ELF loader processing, release resources
*/
static int

_load_elf_term(
ElfDetails details) { /* ELF file details I*/

/* Delete the resources for this ElfDetails object */
if (details->ed_elf_scns != NULL) {

free (details->ed_elf_scns);
}

if (details->ed_datas != NULL) {
free (details->ed_datas);

}

if (details->ed_data_sizes != NULL) {
free (details->ed_data_sizes);

}

if (details->ed_symbols != NULL) {
free (details->ed_symbols);

}

free (details);

return 0;
}

/* Load 64-bit ELF symbol table
*/
static int

_load_elf64_symbol_table(
ElfDetails details) { /* ELF file details I*/

Elf* elf;

Elf64_Shdr* shdr64;
Elf64_Sym* symtab;

ElfSymbol symbols,
cur_sym;

uint64 link,
shstrtab_idx;

32 z/OS V2R2 Common Debug Architecture User's Guide

uint64 n_symbols,
i;

elf = details->ed_elf;
if (elf == NULL) {

return -1; /* ERROR */
}

shstrtab_idx = details->ed_shstrtab_idx;

/* Allocate the array of ElfSymbol objects */
n_symbols = (details->ed_data_sizes[details->ed_symtab_idx]) /

sizeof(Elf64_Sym);
if (n_symbols == 0) {

return -1; /* ERROR */
}
symbols = (ElfSymbol) calloc (sizeof(struct ElfSymbol_s), n_symbols);
if (symbols == NULL) {

return -2; /* Out of memory */
}
details->ed_symbols = symbols;
details->ed_n_symbols = n_symbols;

/* Process the 64-bit .symtab section */
cur_sym = symbols;
symtab = (Elf64_Sym*)(details->ed_datas[details->ed_symtab_idx]);
link = details->ed_strtab_idx;
for (i = 0;

i < n_symbols;
i++, cur_sym++, symtab++) {

cur_sym->es_value = symtab->st_value;
cur_sym->es_size = symtab->st_size;
cur_sym->es_type = ELF64_ST_TYPE(symtab->st_info);
cur_sym->es_bind = ELF64_ST_BIND(symtab->st_info);
cur_sym->es_other = symtab->st_other;
cur_sym->es_shndx = symtab->st_shndx;

if (symtab->st_name == 0) {
if (cur_sym->es_type == STT_SECTION) {

if (cur_sym->es_shndx == SHN_UNDEF) {
cur_sym->es_name = "undef";

}
else if (cur_sym->es_shndx == SHN_ABS) {

cur_sym->es_name = "abs";
}
else if (cur_sym->es_shndx == SHN_COMMON) {

cur_sym->es_name = "common";
}
else if (cur_sym->es_shndx < details->ed_n_elf_scns) {

/* Get ELF section header */
shdr64 = elf64_getshdr(details->ed_elf_scns[cur_sym->es_shndx]);
if (shdr64 == NULL) {

return -1; /* ERROR */
}

/* Get ELF section name */
cur_sym->es_name = elf_strptr(details->ed_elf,

shstrtab_idx,
shdr64->sh_name);

}
else {

cur_sym->es_name = "<Unknown section="">";
}

}
else {

/* Not section... note NULL */

Chapter 3. Using consumer functions 33

cur_sym->es_name = "<NULL>";
}

}
else {

cur_sym->es_name = elf_strptr(details->ed_elf,
link,
symtab->st_name);

}

if (cur_sym->es_name == NULL) {
return -1; /* ERROR */

}
}

return 0;
}

/* Load 32-bit ELF symbol table
*/
static int

_load_elf32_symbol_table(
ElfDetails details) { /* ELF file details I*/

Elf* elf;

Elf32_Shdr* shdr32;
Elf32_Sym* symtab;

ElfSymbol symbols,
cur_sym;

uint64 link,
shstrtab_idx;

uint64 n_symbols,
i;

elf = details->ed_elf;
if (elf == NULL) {

return -1; /* ERROR */
}

shstrtab_idx = details->ed_shstrtab_idx;

/* Allocate the array of ElfSymbol objects */
n_symbols = (details->ed_data_sizes[details->ed_symtab_idx]) /

sizeof(Elf32_Sym);
if (n_symbols == 0) {

return -1; /* ERROR */
}

symbols = (ElfSymbol) calloc (sizeof(struct ElfSymbol_s), n_symbols);
if (symbols == NULL) {

return -2; /* Out of memory */
}
details->ed_symbols = symbols;
details->ed_n_symbols = n_symbols;

/* Process the 32-bit .symtab section */
cur_sym = symbols;
symtab = (Elf32_Sym*)(details->ed_datas[details->ed_symtab_idx]);
link = details->ed_strtab_idx;
for (i = 0;

i < n_symbols;
i++, cur_sym++, symtab++) {

cur_sym->es_value = symtab->st_value;
cur_sym->es_size = symtab->st_size;
cur_sym->es_type = ELF32_ST_TYPE(symtab->st_info);

34 z/OS V2R2 Common Debug Architecture User's Guide

cur_sym->es_bind = ELF32_ST_BIND(symtab->st_info);
cur_sym->es_other = symtab->st_other;
cur_sym->es_shndx = symtab->st_shndx;

if (symtab->st_name == 0) {
if (cur_sym->es_type == STT_SECTION) {

if (cur_sym->es_shndx == SHN_UNDEF) {
cur_sym->es_name = "undef";

}
else if (cur_sym->es_shndx == SHN_ABS) {

cur_sym->es_name = "abs";
}
else if (cur_sym->es_shndx == SHN_COMMON) {

cur_sym->es_name = "common";
}
else if (cur_sym->es_shndx < details->ed_n_elf_scns) {

/* Get ELF section header */
shdr32 = elf32_getshdr(details->ed_elf_scns[cur_sym->es_shndx]);
if (shdr32 == NULL) {

return -1; /* ERROR */
}

/* Get ELF section name */
cur_sym->es_name = elf_strptr(details->ed_elf,

shstrtab_idx,
shdr32->sh_name);

}
else {

cur_sym->es_name = "<Unknown section="">";
}

}
else {

/* Not section... note NULL */
cur_sym->es_name = "<NULL>";

}
}
else {

cur_sym->es_name = elf_strptr(details->ed_elf,
link,
symtab->st_name);

}

if (cur_sym->es_name == NULL) {
return -1; /* ERROR */

}
}

return 0;
}

/* Given the 16 byte raw MD5 signature, verify that it matches the loaded
.dbg file

*/
static int

_validate_MD5_signature(
ElfDetails details, /* ELF file details I*/
unsigned char digest[16]) { /* PPA2 MD5 signature I*/

ElfSymbol symbols,
cur_sym;

unsigned char md5_chars[32+1];
unsigned char* sym_name;

uint64 n_symbols,
i,
pos;

Chapter 3. Using consumer functions 35

symbols = details->ed_symbols;
n_symbols = details->ed_n_symbols;
if ((symbols == NULL) ||

(n_symbols == 0)) {
return -1; /* ERROR */

}

/* Generate text for MD5 signature portion of symbol */
for (i = 0, pos = 0; i < 16; i++) {

const char * convstring = "0123456789ABCDEF";
char top_nibble,

bottom_nibble;

top_nibble = digest[i] >> 4;
bottom_nibble = digest[i] & 0x0F;
md5_chars[pos] = convstring[top_nibble];
pos++;
md5_chars[pos] = convstring[bottom_nibble];
pos++;

}
md5_chars[pos] = 0x00;

/* Scan the symbol table for the first symobl in .text that resemble MD5 signature */
for (i = 0, cur_sym = symbols;

i < n_symbols;
i++, cur_sym++) {

const int sym_name_len = strlen(cur_sym->es_name);
sym_name = cur_sym->es_name;
if (cur_sym->es_shndx == details->ed_text_idx &&

sym_name_len >= 32 &&
!strcmp(sym_name+sym_name_len-32, md5_chars)) {

/* matching MD5 signature found */
return 0;

}
}

/* MD5 signature not found */
return -1;

}

/* Relocate the ELF sections based on the relocation adjustments array
’reloc_adj’ is an array containing adjustments that needs to be
made to each corresponding relocation entry.
For example:
Typical .symtab entries:
Sym 2: value= 0x000, ..., name= .MD5_3FD489E1D88CB743682E3A44875A1765
Sym 3: value= 0x010, ..., name= func1
Sym 4: value= 0x020, ..., name= func2
Sym 5: value= 0x050, ..., name= func3
If all relocation base on sym 2, and it needs to adjust to 0xDEADBEEF, then
’reloc_adj’ would contain:
{ 0, 0, 0xDEADBEEF, 0, 0, 0 }

^-- index 2 correspond to sym 2
*/
static int

_relocate_elf_sections(
ElfDetails details, /* ELF file details I*/
int64* reloc_adj) { /* .text relocation adjustments I*/

ElfSymbol symbols,
cur_sym;

uint64 reloc_offset;
uint64 reloc_sym;
int64 reloc_scn;

char** scn_names;
int64* infos;

36 z/OS V2R2 Common Debug Architecture User's Guide

unsigned int reloc_type;

char* scn_name,
* relscn_name,
* sym_name,
* reloc_scn_name,
* reloc_name;

char** datas;
uint64* data_sizes;

int64 relscn_idx;

char* reloc_data;
char* relscn_data;
uint64 reloc_data_size,

reloc_data_off,
relscn_data_size;

int64 n_elf_scns,
change;

uint64 n_symbols,
i;

n_elf_scns = details->ed_n_elf_scns;
n_symbols = details->ed_n_symbols;
scn_names = details->ed_scn_names;
symbols = details->ed_symbols;
datas = details->ed_datas;
data_sizes = details->ed_data_sizes;
infos = details->ed_infos;

if ((n_symbols == 0) ||
(n_elf_scns == 0) ||
(scn_names == NULL) ||
(symbols == NULL) ||
(datas == NULL) ||
(data_sizes == NULL)) {

return -1; /* ERROR */
}

/* Scan section lists, processing SHT_REL-format relocation sections */
for (i = 1;

i < n_elf_scns;
i++) {

/* Check for ELF SHT_REL-format section */
scn_name = scn_names[i];
if (strncmp(scn_name, ".rel.",5) == 0) {

/* Access relocation section info */
reloc_data = datas[i];
reloc_data_size = data_sizes[i];

/* Access data section info */
relscn_idx = infos[i];
relscn_name = scn_names[relscn_idx];
relscn_data = datas[relscn_idx];
relscn_data_size = data_sizes[relscn_idx];

if (details->ed_is_64bit) {
/* Relocate all R_390_64 type relocation entries */
for (reloc_data_off = 0;

reloc_data_off < reloc_data_size;
reloc_data_off += sizeof(Elf64_Rel)) {

Chapter 3. Using consumer functions 37

Elf64_Rel* p = (Elf64_Rel*)(reloc_data + reloc_data_off);

reloc_offset = p->r_offset;

reloc_sym = ELF64_R_SYM(p->r_info);
if (reloc_sym >= n_symbols) {

return -1; /* ERROR */
}

cur_sym = symbols + reloc_sym;
reloc_scn = cur_sym->es_shndx;
if (reloc_scn >= n_elf_scns) {

return -1; /* ERROR */
}

reloc_type = ELF64_R_TYPE(p->r_info);
switch (reloc_type) {

case R_390_NONE :
/* No adjustment required... likely DWARF info */
break;

case R_390_32 : {
/* Check for relocation adjustment */
signed int* relscn_ptr;
signed int reloc_item;

change = reloc_adj[reloc_sym];
if (change != 0) {

relscn_ptr = (signed int*)(relscn_data + reloc_offset);
reloc_item = *relscn_ptr;
*relscn_ptr = reloc_item + change;

}
}
break;

case R_390_64 : {
/* Check for relocation adjustment */
int64* relscn_ptr;
int64 reloc_item;

change = reloc_adj[reloc_sym];
if (change != 0) {

relscn_ptr = (int64*)(relscn_data + reloc_offset);
reloc_item = *relscn_ptr;
*relscn_ptr = reloc_item + change;

}
}
break;

default :
return -1; /* ERROR */

}
}

}

else {
/* Relocate all R_390_32 type relocation entries */
for (reloc_data_off = 0;

reloc_data_off < reloc_data_size;
reloc_data_off += sizeof(Elf32_Rel)) {

Elf32_Rel* p = (Elf32_Rel*)(reloc_data + reloc_data_off);

reloc_offset = p->r_offset;

reloc_sym = ELF32_R_SYM(p->r_info);
if (reloc_sym >= n_symbols) {

38 z/OS V2R2 Common Debug Architecture User's Guide

return -1; /* ERROR */
}

cur_sym = symbols + reloc_sym;
fflush(NULL);
reloc_scn = cur_sym->es_shndx;
if (reloc_scn >= n_elf_scns) {

return -1; /* ERROR */
}

reloc_type = ELF32_R_TYPE(p->r_info);
switch (reloc_type) {

case R_390_NONE :
/* No adjustment required... likely DWARF info */
break;

case R_390_32 : {
/* Check for relocation adjustment */
signed int* relscn_ptr;
signed int reloc_item;

change = reloc_adj[reloc_sym];
if (change != 0) {

relscn_ptr = (signed int*)(relscn_data + reloc_offset);
reloc_item = *relscn_ptr;
*relscn_ptr = reloc_item + change;

}
}
break;

case R_390_64 : {
/* Check for relocation adjustment */
int64* relscn_ptr;
int64 reloc_item;

change = reloc_adj[reloc_sym];
if (change != 0) {

relscn_ptr = (int64*)(relscn_data + reloc_offset);
reloc_item = *relscn_ptr;
*relscn_ptr = reloc_item + change;

}
}
break;

default :
return -1; /* ERROR */

}
}

}
}

}

return 0;
}
#pragma convert (0)

Consuming DWARF data
Once a Dwarf_Debug object has been created, its data may be used by the program
analysis application. This information discusses how the application uses libdwarf
operations to extract information from its DWARF objects. That is, it describes how
a consumer function in the application can:
v Traverse the Debug Information Entry (DIE) hierarchy.

Chapter 3. Using consumer functions 39

v Access information contained in DIEs.

Traversing the DIE hierarchy
This information describes how a program analysis application traverses the DIE
hierarchy in the .debug_ppa section. The steps are the same for any function that
traverses any DWARF DIE section.

The first step is to obtain a Dwarf_Section object representing the .debug_ppa
section. For example:

dwarf_debug_section(dbg,
DW_SECTION_DEBUG_PPA,
DW_SECTION_IS_DEBUG_DATA,
§ion, &err);

Now that the application has the .debug_ppa section, it will step through all the
unit headers with the following code:

/* Loop until it returns 0 */
unit_offset = 0;
while((nres = dwarf_next_unit_header(dbg,

section,
&unit_header_length,
&version_stamp,
&abbrev_offset,
&address_size,
&next_unit_offset,
&err)

) == DW_DLV_OK) {
/* Process this unit header. */

unit_offset = next_unit_offset;
}

For each iteration of the above loop, the appllication obtains the root DIE of that
unit by using the following call:
dwarf_rootof(section, unit_offset, &root_die, &err);

Once the application has the root DIE, it can traverse all children of the root DIE
by using the dwarf_child operation as follows:
dwarf_child(in_die, &child, &err);

The in_die variable is the root DIE. The program analysis application continues
processing children until the above dwarf_child operation returns
DW_DLV_NOENTRY (indicating that it has reached the bottom of the hierarchy).

The program analysis application now proceeds to traverse the siblings of the root
DIE by using the dwarf_siblingof operation. For example:
dwarf_siblingof(dbg, in_die, &sibling, &err);

Accessing information in a DIE
This information lists the libdwarf operations used by application to access data
within a DIE.

Table 4. DIE access operations

Call Description

dwarf_tag(
die, &tag, &err

);

This call retrieves the TAG of a DIE.

40 z/OS V2R2 Common Debug Architecture User's Guide

Table 4. DIE access operations (continued)

Call Description

dwarf_diename(
dbg, &tagname, &err

);

This call retrieves the name of a TAG.

dwarf_dieoffset(
die, &overall_offset, &err

);

This call retrieves the overall offset of a DIE.

dwarf_die_CU_offset(
die, &offset, &err

);

This call retrieves the offset of a DIE within
a given compilation unit.

dwarf_attrlist(
die, &atlist, &atcnt, &err

);

This call retrieves a list of the attributes for a
DIE.

dwarf_formudata(
attrib, &val, &err

);

This call retrieves the unsigned value of a
given attribute.

dwarf_whatform(
attrib, &theform, &err

);

This call retrieves the form of a given
attribute.

Terminating libdwarf
This information discusses how the program analysis application terminates its
interaction with libdwarf.

The program analysis application terminates the Dwarf_Debug object with the
following code:
dwarf_finish(dbg, &err);

Terminating libelf
This information discusses how the program analysis application terminates its
interaction with libelf.

When the Dwarf_Debug object has been terminated, the program analysis
application terminates the ELF descriptor with the following code:
elf_end(elf);

Chapter 3. Using consumer functions 41

42 z/OS V2R2 Common Debug Architecture User's Guide

Chapter 4. Using producer APIs

This information explains how to create a producer application that writes
debugging information into DWARF format. For this example, only the libelf and
libdwarf libraries are used.

Creating a producer application

Note: This information requires that you are familiar with the DWARF format. For
more information about DIEs and their structure, see DWARF/ELF Extensions
Library Reference.

The discussion is divided into the following topics:
v “Steps for creating a line-number table”
v “Steps for creating the debug_ppa section”
v “Steps for adding symbolic information to .debug_info section” on page 44

Steps for creating a line-number table
About this task

Before you begin: Create a CU DIE to hold the line number table information.

Complete the following steps to create a line-number table.

Procedure
1. Create a .debug_line section by calling dwarf_add_section_to_debug.
2. There is typically one line number table per compilation unit. To create such a

line number table:
a.

b. Call dwarf_global_linetable to indicate that you want to create a line
number table for the CU DIE.

c. Call dwarf_lne_set_address to set the relative address at the beginning of
the block of lines.

d. Call dwarf_add_line_entry or dwarf_add_line_entry_b for each of the
line-number entries.

e. Call dwarf_lne_end_sequence to set the address at the end of the block of
lines.

Results

Once the DWARF file is finalized, a DW_AT_stmt_list attribute will be appended to
the CU DIE, indicating the location of the line number table. .

Steps for creating the debug_ppa section
About this task

The .debug_ppa section provides access to key control blocks within a compilation
unit. Both the C/C++ compiler and the Enterprise COBOL compiler generate PPA1

© Copyright IBM Corp. 2004, 2015 43

and PPA2 control blocks within the compilation unit. This debug section reflect the
location of these control blocks, as well as providing a way to query a list of
external entry points of a given compilation unit.

Procedure
1. Create a .debug_ppa section by calling dwarf_add_section_to_debug.
2. Create a PPA2 DIE and add it to the .debug_ppa section by calling

dwarf_add_die_to_debug_section.
3. The location of the PPA2 block is indicated on the PPA2 DIE using the attribute

DW_AT_low_pc. Create this attribute by calling dwarf_add_AT_targ_address.
4. The location of the CU DIE within .debug_info section is indicated on the

PPA2 DIE using the attribute DW_AT_IBM_ppa_owner. Create this attribute by
calling dwarf_add_AT_reference_with_reloc.

5. Optionally, create an MD5 signature on the PPA2 DIE using the attribute
DW_AT_name. This can be useful if the generated DWARF is in a separate file
because it provides a way to ensure that the DWARF information matches that
found in the object file. Create this attribute by calling dwarf_add_AT_name.

6. Create a PPA1 DIE and add it as a children of the PPA2 DIE by calling
dwarf_new_die 2. Each PPA1 block within the compilation unit is represented
by a DW_TAG_IBM_ppa1 DIE: 1

7. The location of the PPA1 block is indicated on the PPA1 DIE using the attribute
DW_AT_low_pc. Create this attribute by calling dwarf_add_AT_targ_address.

8. The location of the corresponding subprogram DIE within .debug_info section
is indicated on the PPA1 DIE using the attribute DW_AT_IBM_ppa_owner. Create
this attribute by calling dwarf_add_AT_reference_with_reloc.

Results

The .debug_ppa section is complete.

Steps for adding symbolic information to .debug_info section
About this task

All symbol and type information is captured in .debug_info section. The root DIE
in .debug_info is a CU DIE, that is, . DW_TAG_compile_unit. Any symbol or type
defined in the file scope will be children of the CU DIE. Any local symbol or type
defined in a function/block scope will be children of the corresponding
function/block DIE.

Procedure
1. Create a CU DIE by calling the dwarf_new_die operation. The CU DIE has the

tag DW_TAG_compile_unit, and is initially created with a NULL parent.
2. Add the CU DIE to .debug_info section by calling dwarf_add_die_to_debug.
3. Create a symbol DIE by calling the dwrf_new_die operation. A symbol DIE has

the tag DW_TAG_variable. If the DIE is initially created with a NULL parent, it
can become a child of any other DIE later by calling the dwarf_die_link
operation.

4. Add applicable attributes to the symbol DIE. Each attribute can take on one or
more forms. Call the appropriate API to generate the correct form for the
attribute. For example: .
v To create DW_AT_type of form DW_FORM_ref*, call

dwarf_add_AT_reference

44 z/OS V2R2 Common Debug Architecture User's Guide

v To create DW_AT_artificial of form DW_FORM_flag_present, call
dwarf_add_AT_flag

v To create DW_AT_low_pc of form DW_FORM_addr, call
dwarf_add_AT_targ_address

v To create DW_AT_location of form DW_FORM_exprloc, call
dwarf_add_AT_location_expr. For more information, see “Constructing
DWARF expressions.”

v To create DW_AT_name of form DW_FORM_string, call dwarf_add_AT_name
v To create DW_AT_decl_line of form DW_FORM_data*, call

dwarf_add_AT_unsigned_const.
v dwarf_add_AT_reference_with_reloc adds a reference to a CU DIE, so that

relocation entries are created.

Results

All of the information about the symbol has been added to DIEs, and the DIEs
have been linked. The producer application is complete.

Adding information to accelerated access debug section
Entries can be added to the name lookup table (that is, .debug_pubnames,
.debug_pubtypes) by calling dwarf_add_pubname and dwarf_add_pubtype respectively.

Entries can be added to the address lookup table (that is,. debug_aranges) by
calling dwarf_add_arange.

Constructing DWARF expressions
To construct a DWARF expression, call dwarf_new_expr to get a handle on a
DWARF expression object. To add operators and operands to the DWARF
expression, call one or more of the following operations:
v To add an operator with no operand or an operator with operands that do not

need to be relocated, call dwarf_add_expr_gen. For example DW_OP_minus with no
operand or DW_OP_plus_uconst with one operand.

v To add an operator with an operand that needs to be relocated based on an ELF
symbol table index, call dwarf_add_expr_addr. For example, DW_OP_addr with an
address.

v To add an operator with an operand that references another DIE, call
dwarf_add_expr_ref. For example, DW_OP_call with a variable DIE.

v To add a type conversion operator, call dwarf_add_conv_expr. For example,
DW_OP_IBM_conv to convert packed decimal to integer.

Chapter 4. Using producer APIs 45

46 z/OS V2R2 Common Debug Architecture User's Guide

Chapter 5. Using consumer and producer functions

This information shows how to create an application that both creates and uses
DWARF debugging information. In most cases, DWARF debugging information
will be produced by the z/OS XL C/C++ compiler. Therefore, most program
analysis applications will need only the CDA consumer functions. However, if only
ISD information is available, then the applications might need to use CDA
producer functions to generate DWARF debugging information. For this reason,
the sample code demonstrates the use of both CDA producer and consumer
functions.

The example in this chapter uses the libelf, libdwarf, and libddpi libraries. It
converts ISD debugging information to the DWARF format during run time by
directly calling the converter function in libddpi. The example also shows how to
use the libdwarf producer functions, once the DWARF debugging information
becomes available. This example is not meant to be comprehensive.

Note: For more information about conversion, see Chapter 4, “Using producer
APIs,” on page 43 and Chapter 6, “In Storage Debug (ISD) Information Conversion
Utility,” on page 51.

The example files are delivered in the demo package, which is found in the
/usr/lpp/cbclib/source directory. The package contains:
v hello_isd.c, a C-source file which will be compiled with the TEST compiler

option
v hello_dwarf.c, a C source file which will be compiled with the DEBUG

compiler option
v demoa.s, an assembler source, which implements a function to determine the size

of a module loaded in storage
v democ.c, a C program, which demonstrates the use of functions of the CDA

libraries
v Makefile, a makefile
v README, which is the basis of the content of this chapter

hello_isd.c and hello_dwarf.c create the program whose debugging information
is the subject of this example. The two objects produced from these source files are
linked into an HFS module (hello) which resides in the current directory.

democ.c contains the logic that demonstrates the use of the producer and consumer
functions. democ.c will
v Load the hello module into storage.
v Create libdwarf consumer objects for all available debugging information.
v Print out the names of all global symbols found in the hello module.

© Copyright IBM Corp. 2004, 2015 47

Creating a consumer application with ISD conversion functionality
If DWARF debugging information is available then the ELF object file can be used.
If ISD information is available, a program analysis application can convert it into
DWARF information by using the CDA ISD converter operations. If the debugging
information is in neither format, then you must supply your own converter
function. This information describes how to create a consumer application with
conversion functionality.

Example: Process to create a consumer application with ISD
converters

For more information about the CDA ISD converter operations, see "Conversion
APIs" in Common Debug Architecture Library Reference.

The process for creating a consumer application with ISD conversion functionality
is divided into three topics:
v “Initializing the libddpi environment”
v “Creating and using DWARF consumer objects” on page 49
v “Terminating the DWARF and ELF objects” on page 50

Note: The concepts and terms used in those topics are based on explanations in
“Accessing debugging information from a z/OS XL C/C++ compiler executable
module” on page 19.

Initializing the libddpi environment
About this task

This information explains how to create and load a module, and set up the
environment in order to use the libddpi operations.

Perform the following steps to create an application that converts ISD information
into an ELF descriptor, then uses that descriptor.

Procedure
1. Makefile compiles the hello_isd.c source file into the hello_isd.o object file,

which contains ISD information. The object file resides in the current directory.
For more information about the required compiler options, see “CDA
requirements and recommendations” on page 7.

2. Makefile compiles hello_dwarf.c into the hello_dwarf.o object file and the
hello_dwarf.dbg ELF object file. Only hello_dwarf.dbg contains the DWARF
debugging information. Both files reside in the current directory. For more
information about the required compiler options, see “CDA requirements and
recommendations” on page 7.

3. Makefile links hello_isd.o and hello_dwarf.o into an HFS module (hello).
Makefile now runs democ.c which controls the rest of this process.

4. The hello module is loaded into storage using the BPX1LOD USS Kernel
interface.

5. The __lmsize assembler function determines the size of the hello module
loaded in storage. This value will be used to create a Ddpi_Space object in step
8. __lmsize is implemented in the demoa.s assembler file.

6. operations are called to verify that the current versions of the DLLs meet or
exceed the minimum required version. These operations are:

48 z/OS V2R2 Common Debug Architecture User's Guide

v elf_build_version

v dwarf_build_version

v ddpi_build_version

7. ddpi_init initializes the libddpi environment. Before libddpi operations can
be used, the environment must be initialized with ddpi_init. This creates a
Ddpi_Info object, which holds information about the module loaded in
storage.

8. ddpi_space_create creates a Ddpi_Space object which holds information about
the hello module.

9. ddpi_storagelocn_create creates a storage location object (Ddpi_StorageLocn)
which holds the storage-location information of the hello module.

10. ddpi_storagelocn_get_space obtains an associated space object from a given
location object. The information about the module is kept in the space object,
so the space object is set as the module owner. In this example, the space
object has just been created, and could immediately be set as the owner.
However, it is more likely that ownership will be set after several objects have
been created. The Ddpi_StorageLocn is the recommended interface to the
Ddpi_Space object.

11. ddpi_module_create creates a Ddpi_Module object that represents the hello
module.

12. ddpi_class_create creates a class object of type Ddpi_CT_Program_code. This
class maps the portion of memory occupied by hello. Certain portions of
memory occupied by the module are mapped according to their use, such as
program code, WSA, or heap. ddpi_class_create is called to create a class
object that maps the storage occupied by the program code, as this is the
location of the debugging information.

13. ddpi_entrypt_create describes the entry point of the module. The entry point
of the module is the key to finding the debugging information in the program
code.

14. ddpi_module_extract_C_CPP_information goes through the module and
identifies the CUs. This operation creates a list of Ddpi_Elf objects, each
representing a CU found in the module. This includes CUs that have
non-DWARF debugging information.

Results

The consumer application can now start to create consumer objects.

Creating and using DWARF consumer objects
About this task

The ddpi_module_extract_C_CPP_information operation identifies each CU in the
module. It is necessary to determine the format of the available debugging
information. If DWARF debugging information is available, the ELF object file can
be used. If ISD information is available, then it can be converted to DWARF using
the ISD conversion operations. If the debugging information is in neither format,
then you must supply your own conversion functions.

The following steps describe how to find CUs and create a Dwarf_Debug object for
each of them.

Chapter 5. Using consumer and producer functions 49

Procedure
1. ddpi_elf_get_elf_file_name queries the name of an ELF object file. If the

executable module was compiled with the DEBUG(FORMAT(DWARF))
compiler option, then an ELF object file has been created, and its name and
location are stored in the CU. ddpi_elf_get_elf_file_name will retrieve this
information. In this case, proceed to step 5.
If no file exists, the function returns DW_DLV_NO_ENTRY. For this example,
this means that the information is in the ISD format. In general, this may not be
the case, and additional logic is required to determine the kind of debugging
information that is available. For more information on the possible types of
debugging data, see “Accessing debugging information from a z/OS XL C/C++
compiler executable module” on page 19.

2. ddpi_elf_get_csect_addrs retrieves the boundaries of the CU from the current
ELF descriptor.

3. ddpi_fp_convert_c_cpp_isdobj converts the ISD debugging information. The
ISD information is converted to the DWARF format using the CU boundaries.

4. ddpi_elf_set_source sets the source of the ELF descriptor associated with
hello. The converted debugging information is kept in a temporary memory
file. This can be seen as a temporary ELF object file, which will be used as the
source of the ELF descriptor for the consumer process.
At this point, skip step 5 and proceed to step 6.

5. The name returned by ddpi_elf_get_elf_file_name is used to open the file,
read the ELF information, and create an ELF descriptor. All character strings
accepted and returned by the CDA libraries are in ASCII(ISO8859-1). The file
name has to be converted to EBCDIC before calling fopen.

6. dwarf_elf_init_b initializes a libdwarf consumer object. Once all the CUs have
been processed, a libdwarf consumer object (Dwarf_Debug) is initialized by
calling dwarf_elf_init_b.

7. ddpi_dealloc frees the list of Ddpi_Elf objects. The list created by
ddpi_module_extract_C_CPP_information is no longer needed.

8. display_global_symbols (a democ.c function) retrieves and prints out the global
symbols found in hello. The debugging information is ready for consumption.
This operation demonstrates a small subset of libdwarf operations that return
the information to print out. More examples of DWARF operations can be
found in the dwarfdump utility.

Terminating the DWARF and ELF objects
About this task

The main object of the example is now complete. The final steps show how to
terminate the created objects.

Procedure
1. dwarf_get_elf returns the ELF descriptors associated with the libdwarf

consumer object.
2. dwarf_finish terminates the libdwarf consumer object. This function does not

free all the storage used for ELF objects, which is why dwarf_get_elf was
called before terminating the object.

3. elf_end terminates the ELF descriptor.
4. ddpi_finish releases any storage that was acquired while processing the

module.

50 z/OS V2R2 Common Debug Architecture User's Guide

Chapter 6. In Storage Debug (ISD) Information Conversion
Utility

In Storage Debug (ISD) information is produced by C/C++ compilers and other
language translators to enable debugging tools to present information and aid
developers in debugging. ISD information is not a programmable interface as the
knowledge and understanding of the information is encapsulated in the debugging
tools. This effectively limits the field of debug related tools. To remove this
limitation a new form of debugging information has been introduced. The data
uses the DWARF format, and is stored in ELF object files. For the convenience of
the zSeries user, the debugging information can be accessed using the Common
Debug Architecture (CDA) libraries and utilities. One of these utilities is the
isdcnvt utility.

Prior to z/OS V1R6, the only method for generating debugging information was to
use the TEST option to generate ISD information. As of z/OS V1R6, the DWARF
debugging information is generated by using the DEBUG compiler option.
However, DWARF debugging information can also be generated from ISD
information by using isdcnvt.

The input to isdcnvt is an object file generated by the C/C++ compiler using the
TEST or DEBUG(FORMAT(ISD)) compiler options. The utility produces a file
containing the new debugging information which is suitable for use with debug
tools that support ELF and DWARF interfaces, such as dbx.

The following syntax is used to invoke isdcnvt:
isdcnvt [-v] -o object_file_name

where:
v -v is an optional command line flag that produces version information for the

libelf, libdwarf, and libddpi libraries
v object_file_name is the name of an object file that contains the ISD information

Object file formats supported by isdcnvt are OBJ, XOBJ and GOFF. Object files can
have XPLINK or non-XPLINK linkage, but only object files produced by the IBM
XL C/C++ compilers are currently supported.

Note: For more information about the supported compilers, see “CDA
requirements and recommendations” on page 7.

The output file name is based on object_file_name. Although the object file name
can have any suffix, only the standard .o suffix is recognized and replaced with
the standard .dbg suffix when constructing the output file name. All other suffixes,
including no suffix at all, are kept, and the standard .dbg suffix is appended when
constructing the output file name.

Note: This process will overwrite any existing file with the same name as the
expected output file.

isdcnvt is a UNIX System Services utility that runs in the shell environment. It
supports only zFS files for input and output. If no errors are encountered during

© Copyright IBM Corp. 2004, 2015 51

the conversion, the utility terminates with return code zero. If an error condition is
detected during the conversion, the utility returns an error code with the following
format:
CRR

where
v C is a decimal digit indicating the error code
v RR is a two-digit decimal number indicating the reason code

The error codes are:
v 1 - a recoverable error condition
v 2 - an internal error that should be reported to the IBM service team.

The reason codes associated with the error code 1 are:
v 01 - empty compilation unit

This error indicates that the compilation unit contained no code sections, which
is typical for data-only compilation units. If this is an expected condition, the
build process can check for this return code and continue processing.

v 02 - invalid usage
This error indicates that the utility was not invoked using the correct invocation
syntax. To resolve the problem, ensure that the correct invocation syntax is used.

Note: The isdcnvt utility uses the getopt() runtime library function, which may
emit error messages.

v 03 - failed to load debug APIs
To perform the conversion, the conversion utility requires debug APIs that are
loaded at initialization. The APIs are provided in the CDAEED DLL, which is
found in the CEE.SCEERUN2 MVS data-set. To resolve the problem, ensure that
CDAEED is found by the loader using the MVS search order. For example,
ensure that CEE.SCEERUN2 is in the STEPLIB environment variable.

v 04 - compilation unit has no debugging information
This error indicates that the compilation unit did not contain any debugging
information. To resolve this problem, ensure that the compilation unit is
compiled with the TEST or DEBUG(FORMAT(ISD)) compiler option.

v 05 - failed to open input file
This error can occur if an invalid object file has been specified, or if it does not
have sufficient read permission. To resolve the problem, ensure that a valid
object file is specified and that it has sufficient read permission.

v 06 - failed to open output file
An output file for the converted debugging information could not be opened.
This can be caused by conditions such as insufficient space in the file system
that is hosting the current directory, or no write permission for the current
directory. To resolve the problem, ensure that the file system has sufficient space
(usually one third of the input file size), and that the write permission is set for
the current directory.

v 07 - version mismatch
The conversion utility dynamically loads debug APIs, so the version of the
utility may not match the version of the debug APIs. To resolve the problem,
ensure that the correct version of the debug APIs is found by the loader using
the MVS search order.

52 z/OS V2R2 Common Debug Architecture User's Guide

The reason code associated with the error code 2 is a two-digit decimal number
providing further information that can help diagnose the problem. This error code
usually indicates a problem in the conversion utility or a language translator that
produced the object file. To resolve this problem, contact IBM support and provide
the test case that reproduces the problem.

Chapter 6. In Storage Debug (ISD) Information Conversion Utility 53

54 z/OS V2R2 Common Debug Architecture User's Guide

Chapter 7. Using the module map to improve performance

Given any program that is compiled with the DEBUG compiler option, the dbgld
command can create a module map for the program. The module map associates
each of the compiled program's functions, global variables, external types, and
source files to the .dbg file that contains its debugging information.

A debugger that is written to use the module map will perform more efficiently for
the following reasons:
v The start up time will be shorter, because the .dbg files are opened by CDA

instead of the debugger. Only one .dbg file is loaded into memory at any given
time, depending on which one is needed. The debugger also requires less
memory because the entire DWARF debug instance is never loaded into memory
at one time.

v Each libdwarf operation can complete an operation more quickly because the
debugger needs to search only that information associated with the program
element being debugged, instead of the entire DWARF debug instance.

Notes:

1. Debuggers that are written to use earlier versions of CDA will continue to load
all of the debug side files (merged together into one large DWARF debug
instance) at startup. There will be no significant change in startup time or
operation execution time.

2. A debugger that can use the module map does not need to open the .dbg files
or call the elf_init_b() or dwarf_elf_init_b() operation. CDA will do this
automatically whenever it is required.

3. If using the module map, a debugger can set the DWARF error handler and
error argument by calling ddpi_info_set_dwarf_error_handler(). This
operation needs to be called only once, before the first call to any operation
that returns a Ddpi_Access object.

Existing debuggers require considerable modification before they can make use of
a module map. See “APIs that support use of the module map.”

APIs that support use of the module map
The purpose of a Ddpi_Access object is to provide a way of accessing the DWARF
debug information from DDPI. Because the debug information for each of the
Ddpi_Elf objects can be accessed separately, each Ddpi_Elf object will be owned by
a separate Ddpi_Access object. The Ddpi_Module object will contain the list of
Ddpi_Access objects.

Table 5. Debugger tasks and the operations that execute them

Debugger task Process

Look for the Ddpi_Access object that
corresponds to a specific external type name.

1. Call the ddpi_module_list_type()
operation, passing in the type name, to
get a list of type names in the module
that match the given type name.

2. Call the ddpi_type_get_access()
operation, to retrieve the Ddpi_Access
object for a specific external type name.

© Copyright IBM Corp. 2004, 2015 55

Table 5. Debugger tasks and the operations that execute them (continued)

Debugger task Process

Look for the Ddpi_Access object that
corresponds to a specific function.

1. Call the ddpi_module_list_function()
operation, passing in the function name,
to get a list of functions in the module
that match the given function name.

2. Call the ddpi_function_get_access()
operation, to retrieve the Ddpi_Access
object for a specific external function
name.

Look for base type information for specific
types that aren't in the current compilation
unit.

Call the ddpi_module_list_type() operation,
passing in the base type name.

Look for the Ddpi_Access object that
corresponds to a specific source file.

1. Call the
ddpi_module_list_sourcefiles()
operation, passing in the file name, to get
a list of source files in the module that
match the given file name.

2. Call the ddpi_sourcefile_get_access()
operation to retrieve the Ddpi_Access
object for the specific source file name.

Look for the Ddpi_Access object that
corresponds to a specific global variable.

1. Call the ddpi_module_list_variable()
operation, passing in the variable name,
to get a list of global variables in the
module that match the given global
variable name.

2. Call the ddpi_variable_get_access()
operation to retrieve the Ddpi_Access
object that corresponds to a specific
global variable.

Look for the Ddpi_Access object that
corresponds to a specific address in the
loaded module (for example, when stopping
at a breakpoint).

1. Call the
ddpi_module_find_elf_given_address()
operation to specify the address of a
breakpoint or other event.

2. Call the ddpi_elf_get_owner() operation
to retrieve the Ddpi_Access object that is
active at the step identified by the given
address.

Indicate which directories to search for .dbg
or .mdbg files.
Notes:

1. This is necessary only if the .dbg or
.mdbg files have been moved from their
original location.

2. The .mdbg files are opened by
ddpi_module_extract_debug_info().

3. The .dbg files are opened by
ddpi_access_get_debug() and
ddpi_access_get_dwarf_error(), but
only if their contents are not already in
the .mdbg file.

Call the ddpi_info_set_dbg_dirs()
operation before any of the .dbg or .mdbg
files need to be opened.

56 z/OS V2R2 Common Debug Architecture User's Guide

Table 5. Debugger tasks and the operations that execute them (continued)

Debugger task Process

Retrieve the Dwarf_Error object from a
Ddpi_Access object.
Note: The debugger will need to pass a
separate Dwarf_Error object to the libdwarf
operations for each Dwarf_Debug instance.

Call the ddpi_access_get_dwarf_error()
operation.

Set a DWARF error handler and error
argument.

Call the
ddpi_info_set_dwarf_error_handler()
before the first call to any operation that
returns a Ddpi_Access object.

Sample statements that illustrate use of a module map
This topic provides some sample statements that a debugger can use to extract
debugging information for the function fun from the automatically generated
module map.

Before using the code in Figure 10 on page 59, create the source files that it debugs,
shown in Figure 7 and Figure 8.

/* hello.c */
int main() {

return fun();
}

Figure 7. hello.c - The main module.

/* hello2.c */
int fun() {

int a=5;

return a;
}

Figure 8. hello2.c - Declaration of the function named "fun".

Chapter 7. Using the module map to improve performance 57

�1� Ddpi_Module module;
�2� Ddpi_Error* error;
�3� Dwarf_Bool mod_map;
�4� Ddpi_Function* function_list;
�5� Dwarf_Unsigned function_count;
�6� Ddpi_Access access;
�7� Dwarf_Debug dbg;
�8� Dwarf_Error* dwarf_error;

Notes:

1. Each Ddpi_Module object contains the list of Ddpi_Access objects for the compilation unit (main module). The
Ddpi_Module object should be created prior to execution of the code in Figure 10 on page 59.

2. The Ddpi_Error object is a required parameter that handles error information generated by the producer or
consumer application.

3. The Dwarf_Bool object indicates whether or not a module map was found for the main module.

4. Each Ddpi_Function object contains information about a specific function, including static functions. This object
can be queried to get:

v The fully qualified name of the function.

v The unqualified name of the function.

v The Ddpi_Access object that identifies the .dbg file for the function.

5. The Dwarf_Unsigned object contains the number of functions with a given name that are found.

6. The Ddpi_Access object provides a way of accessing the debugging information for the compilation unit in which
the function is defined.

7. The Dwarf_Debug object contains the DWARF debugging information for the compilation unit in which the
function is defined.

8. The Dwarf_Error object contains error information generated by DWARF operations.

Figure 9. Variables used in Figure 10 on page 59.

58 z/OS V2R2 Common Debug Architecture User's Guide

�1�/* Call the extraction function for the module */
ddpi_module_extract_debug_info(module, 0, &mod_map, error);

�2�/* Locate the debugging information for the function named "fun" */
ddpi_module_list_function(module, "fun", &function_list, &function_count, error);

�2a� �2b�

�3�/* Get the Ddpi_Access object for "fun" */
ddpi_function_get_access(function_list[0], &access, error);

�4�/* Get the Dwarf debug instance from the Ddpi_Access object*/
ddpi_access_get_debug(access, &dbg, error);

�5�/* Get the Dwarf_Error object from the Ddpi_Access object */
ddpi_access_get_dwarf_error(access, &dwarf_error, error);

/* Since "fun" is a function in hello2.c, debugging can now
be done on any symbols in hello2.c.

*/

Notes:

1. Extract the debugging information from module. If the module map is found, mod_map is set.

2. Locate the debugging information for the function named “fun”.

a. function_list should contain a single Ddpi_Function object because there is one function named "fun".

b. function_count should be equal to “1” because there is one function named "fun".

3. Get the Ddpi_Access object access from the first entry in function_list.

4. Get the Dwarf debug instance dbg from access.

5. Get the Dwarf_Error object error from access.

Figure 10. Statements for extraction of specific debugging information for a specific function

Chapter 7. Using the module map to improve performance 59

60 z/OS V2R2 Common Debug Architecture User's Guide

Appendix A. Diagnosing problems

This information tells you how to diagnose failures in the Common Debug
Architecture (CDA) libraries and utilities. If you discover that the problem is a
valid CDA problem, please refer to http://techsupport.services.ibm.com/guides/
handbook.html for information on obtaining IBM service and support.

Using the diagnosis checklist
This checklist is designed to either solve your problem or help you gather the
diagnostic information required for determining the source of the error. It can help
you to confirm if the suspected failure is caused by an error in the CDA libraries
and utilities, or by incorrect usage of them.

Step through each of the items in the diagnosis checklist below to see if they apply
to your problem:
v Verify that your installation is at the most current maintenance level. That is,

verify that you have received all issued IBM Program Temporary Fixes (PTFs)
and have installed them. Your installation may have already received a PTF that
fixes the problem.

v Check if the preventive service planning (PSP) bucket contains information
related to your problem. The PSP is an online database available through IBM
service channels. It gives information about product installation problems and
other problems.

v Verify that the appropriate header files have been included and that the include
paths are specified correctly, if the error occurs during compilation. That is:
– Include libelf.h if libelf operations are called.
– Include libdwarf.h and dwarf.h if libdwarf operations are called.
– Include libddpi.h if libddpi operations are called.

v Verify that your application is compiled with the XPLINK compiler option if it
calls libddpi operations. If your application is not compiled with the XPLINK
compiler option, you will need to specify the runtime option XPLINK(ON) when
executing your application.

v Verify that the sidedeck is included during the link step when linking your
application. The libelf and libdwarf libraries are packaged for 31-bit as a single
DLL module named CDAEED and for 64-bit as a single DLL module named
CDAEQED. The libddpi library is packaged for 31-bit as a DLL module named
CDAEDPI and for 64-bit as a DLL module named CDAEQDPI.

v Verify that CDAEED exists during the execution of your application. You can
use the following code:

Note: CDAEED in the code sample below is a 32-bit library. If your application is
64-bit, replace CDAEED with CDAEQED.
#include <dll.h>
dllhandle*dllhand;
dllhand = dllload("CDAEED");
/*CDAEED is the name of the libdwarf/libelf DLL module */
if (dllhand ==NULL){
/*libdwarf/libelf DLL not found!*/
/*make sure CDAEED can be found
either through the STEPLIB or the LIBPATH */
}

© Copyright IBM Corp. 2004, 2015 61

http://techsupport.services.ibm.com/guides/handbook.html
http://techsupport.services.ibm.com/guides/handbook.html

v Verify that you are using the correct version of CDAEED. (If your application
uses a libdwarf or a libelf header file that is incompatible with the CDAEED,
your application might fail.) You can use the following code:
if (elf_dll_version(LIBELF_DLL_VERSION)!=0) {
/*Version mismatched */
/*Make sure your application is compiled with the
libdwarf/libelf header file that are found together
with the DLL module */
}

v If an abend occurs, then verify that it is caused by product failures and not by
program errors. Read the CEEDUMP to determine if the abend happens within
the CDA libraries or utilities. For example, the CEEDUMP would show if the
exception occurred in the CDAEED load module for 31-bit or in the CDAEQED
load module for 64-bit. Similarly, if the error occurred at an API entry point,
then where the exception occurred would contain one or more of the keywords
dwarf, elf, ddpi, dwarfdump, or isdcnvt.

v Consider writing a small test case that recreates the problem, after you identify
the failure. The test case could help you determine if the error is in a user
function or in CDA. Do not make the test case larger than 75 lines of code. The
test case is not required, but it could expedite the process of finding the
problem.
If the error is not a CDA failure, refer to the diagnosis procedures for the
product that failed.

v If you are experiencing a no-response problem, try to force a dump, and cancel
the program with the dump option.

v Record the sequence of events that led to the error condition and any related
programs or files. It is also helpful to record the service level of the CDA
libraries.
The following table lists how to find the level.

Library API

libelf elf_build_level

libdwarf dwarf_build_level

libddpi ddpi_build_level

Avoiding installation problems
Perform the following steps to avoid or solve most installation problems:
1. Review the step-by-step installation procedure for the Run-Time Library

Extensions element. This documentation is located in the z/OS Program
Directory.

2. Consult the PSP bucket as described in “Using the diagnosis checklist” on page
61.

If you still cannot solve the problem, develop a keyword string and contact your
IBM Support Center.

You may need to reinstall CDA by using the procedure that is documented in the
z/OS Program Directory. This procedure is tested for each product release and
successfully installs the product.

62 z/OS V2R2 Common Debug Architecture User's Guide

Appendix B. Accessibility

Accessible publications for this product are offered through .

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 2004, 2015 63

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A

64 z/OS V2R2 Common Debug Architecture User's Guide

default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix B. Accessibility 65

66 z/OS V2R2 Common Debug Architecture User's Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2004, 2015 67

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

68 z/OS V2R2 Common Debug Architecture User's Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see:
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain services of Common Debug Architecture.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States and/or other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, and service names may be trademarks or service marks
of others.

Standards
The libddpi library supports the DWARF Version 3 and Version 4 format and ELF
application binary interface (ABI).

DWARF was developed by the UNIX International Programming Languages
Special Interest Group (SIG). CDA's implementation of DWARF is based on the
DWARF 4 standard.

ELF was developed as part of the System V ABI. It is copyrighted 1997, 2001, The
Santa Cruz Operation, Inc. All rights reserved.

Notices 69

70 z/OS V2R2 Common Debug Architecture User's Guide

Bibliography

This bibliography lists the publications for IBM products that are related to
Common Debug Architecture. It includes publications covering the application
programming task.

The bibliography is not a comprehensive list of the publications for these products,
however, it should be adequate for most z/OS CDA users. Refer to z/OS
Information Roadmap, SA23-2299, for a complete list of publications belonging to the
z/OS product.

Related publications not listed in this section can be found in z/OS DFSMS Using
the New Functions, SC23-6857, in z/OS Collection, SK3T-4269, or on a tape that is
available with z/OS.

z/OS Runtime Library Extensions
v DWARF/ELF Extensions Library Reference, SC14-7312

v z/OS Common Debug Architecture Library Reference, SC14-7311

z/OS
v z/OS Introduction and Release Guide, GA32-0887

v z/OS Planning for Installation, GA32-0890

v z/OS Summary of Message and Interface Changes, SA23-2300

v z/OS Information Roadmap, SA23-2299

z/OS XL C/C++
v z/OS XL C/C++ Programming Guide, SC14-7315

v z/OS XL C/C++ User's Guide, SC14-7307

v z/OS XL C/C++ Language Reference, SC14-7308

v z/OS XL C/C++ Messages, GC14-7305

v z/OS XL C/C++ Runtime Library Reference, SC14-7314

v z/OS XL C Curses, SA38-0690

v z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application
Programmer, GC14-7306

v Standard C++ Library Reference, SC14-7309

Enterprise COBOL
Documentation for Enterprise COBOL V5.1 can be found on the COBOL library
web page http://http://www-01.ibm.com/support/
docview.wss?uid=swg27036733:
v Enterprise COBOL Programming Guide, SC14-7382

v Enterprise COBOL Language Reference, SC14-7381

v Enterprise COBOL Migration Guide, GC14-7383

v Enterprise COBOL Customization Guide, SC14-7380

v Enterprise COBOL Program Directory, GI11-9180

© Copyright IBM Corp. 2004, 2015 71

http://http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://http://www-01.ibm.com/support/docview.wss?uid=swg27036733

z/OS Language Environment
v z/OS Language Environment Concepts Guide, SA38-0687

v z/OS Language Environment Customization, SA38-0685

v z/OS Language Environment Debugging Guide, GA32-0908

v z/OS Language Environment Programming Guide, SA38-0682

v z/OS Language Environment Programming Reference, SA38-0683

v z/OS Language Environment Runtime Application Migration Guide, GA32-0912

v z/OS Language Environment Writing ILC Applications, SA38-0684

v z/OS Language Environment Runtime Messages, SA38-0686

z/Architecture®

v z/Architecture Principles of Operations, SA22-7832 which is available at:
www-03.ibm.com/servers/eserver/zseries/zos/bkserv/zswpdf/zarchpops.html

72 z/OS V2R2 Common Debug Architecture User's Guide

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/zswpdf/zarchpops.html

Index

A
accessibility 63

contact IBM 63
features 63

accessing DIEs 40
addresses

relocation 43
addresses in memory image 43
API types, libddpi

CDA-application model 4
conversion 4
DWARF-expression 4
support 4
system-dependent 4
system-independent 4

APIs
consumer 2
producer 2

application module, extracting debugging
information 19

ASCII
codeset 7
compiler option 7

assistive technologies 63

C
CDA

definition 1
libraries 2

changes 7
CDA 7

checklist 61
codeset

ASCII(ISO8859-1) 7
Common Debug Architecture 1
compiler options

ASCII 7
DEBUG 19, 55
GONUMBER 6
NOTEST 6
TEST 6
XPLINK 7

compiler version requirements 7
consumer

API 2
example 47
object 19

consuming a DWARF object 39
contact

z/OS 63
conversion

application 43, 47
direct function calls 19
supported formats 51
symbol 44
utility 6

D
DEBUG compiler option 19, 55
debugging information

converting 19
non-DWARF 19
read from ELF descriptor 15, 16
read from GOFF 14
testing for DWARF format 19
write to ELF descriptor 12

descriptor 9
DIEs

accessing 40
navigating 40
traversing 40

DWARF
consumer object 39
definition 1
format 3
objects 1
producer object 14

Dwarf_Debug 1
Dwarf_P_Debug 1
dwarfdump 7

E
ELF 3

definition 1
ELF

descriptor 9
object file, definition 1
object file, loading 43
object file, read from 16
read from descriptor 15
using a descriptor 16
write to descriptor 12

ELF file
relocating addresses 26

ELF file structure 26
ELF files

relocating addresses 25
ELF symbol structure 26
ELF symbol table, loading 26
elfload.c

relocating addresses within an ELF
file 26

error codes, isdcnvt 51
examples, location viii
Executable and Linking Format 3
existing debuggers

modifying to use the module map 55

G
GONUMBER compiler option 6

H
HEAPPOOLS(on) run-time option 7

I
In Store Debug 6
initializing libdwarf 24
initializing libelf 23
ISD 6
isdcnvt 6

error codes 51
options 51
supported object file formats 51
syntax 51

K
keyboard

navigation 63
PF keys 63
shortcut keys 63

L
libddpi library 4
libdwarf library 3
libdwarf objects definition 1
libelf library 3
libraries

CDA 2
interaction overview 9
libddpi 4
libdwarf 3
libelf 3
using libelf and libdwarf 12, 14, 15,

23, 43
using libelf, libdwarf, and

libddpi 16, 47
location expression 45

M
MD5 signature

and relocation of addresses within an
ELF file 26

module map
description 55

N
navigating DIEs 40
navigation

keyboard 63
non-DWARF debugging information 19
NOTEST compiler option 6
Notices 67

O
object

consumer 1, 16
DWARF 1

© Copyright IBM Corp. 2004, 2015 73

object (continued)
ELF object file 1
libdwarf 1
producers 1

options
compiler 6, 7

DEBUG 55
isdcnvt 51
run-time 7

P
performance

enhancement, as of z/OS V1R10 55
PPA1 section 43
PPA2 section 43
producer

API 2
example 43

R
read

DWARF debugging information 14,
15, 16

from ELF descriptor 15
from ELF object file 16
from GOFF 14

relocation 43
of addresses within an ELF file 25

relocation array 25
reporting failures 61
requirements

CDA 7
compiler 7
user v

run-time option
HEAPPOOLS(on) 7

S
sample applications

consumer 23, 47
dwarfdump 7
producer 43

samples
elfload.c 26

shortcut keys 63
standards

DWARF 3
ELF 3

supported object file formats 51
symbol, conversion 44

T
tasks

avoiding installation problems
steps for 62

converting a symbol
steps for 44

creating a line-number table
steps for 43

preparing a .debug_ppa section
steps for 43

terminating libdwarf 41
terminating libelf and libdwarf 41
TEST compiler option 6
testing for DWARF debugging

information 19
traversing DIEs 40

U
user area 7
user interface

ISPF 63
TSO/E 63

user requirements v
using DWARF object 39
utilities

dwarfdump 7
isdcnvt 6

V
variable-length user area 7

W
write

DWARF debugging information 12
to ELF descriptor 12

X
XPLINK compiler option 7

74 z/OS V2R2 Common Debug Architecture User's Guide

����

Product Number: 5650-ZOS

Printed in USA

SC14-7310-01

	Contents
	About this document
	Who should use this document
	A note about examples
	CDA and related publications
	Softcopy documents
	Softcopy examples
	Where to find more information
	Runtime Library Extensions on the World Wide Web
	Information updates on the web
	How to send your comments

	Chapter 1. About Common Debug Architecture
	CDA libraries and utilities
	libelf
	libdwarf
	libddpi
	isdcnvt
	dwarfdump

	Changes for CDA
	CDA requirements and recommendations
	CDA limitations

	Chapter 2. Overview of reading and writing CDA debugging information
	Creating an ELF descriptor
	Writing DWARF data to the ELF object file
	Reading DWARF data from a GOFF program object file
	Reading DWARF data from an ELF object file with libelf and libdwarf
	Reading DWARF data from an executable module with libelf, libdwarf, and libddpi
	Accessing debugging information from a z/OS XL C/C++ compiler executable module
	Accessing z/OS XL C/C++ debugging information
	Accessing ISD debugging information generated by the z/OS XL C/C++ compiler
	Accessing other debugging information

	Chapter 3. Using consumer functions
	Initializing libelf
	Initializing libdwarf
	Steps to relocate addresses within an ELF file
	Example: Relocating addresses within an ELF file

	Consuming DWARF data
	Traversing the DIE hierarchy
	Accessing information in a DIE

	Terminating libdwarf
	Terminating libelf

	Chapter 4. Using producer APIs
	Steps for creating a line-number table
	Steps for creating the debug_ppa section
	Steps for adding symbolic information to .debug_info section
	Adding information to accelerated access debug section
	Constructing DWARF expressions

	Chapter 5. Using consumer and producer functions
	Creating a consumer application with ISD conversion functionality
	Initializing the libddpi environment
	Creating and using DWARF consumer objects
	Terminating the DWARF and ELF objects

	Chapter 6. In Storage Debug (ISD) Information Conversion Utility
	Chapter 7. Using the module map to improve performance
	APIs that support use of the module map
	Sample statements that illustrate use of a module map

	Appendix A. Diagnosing problems
	Using the diagnosis checklist
	Avoiding installation problems

	Appendix B. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks
	Standards

	Bibliography
	z/OS Runtime Library Extensions
	z/OS
	z/OS XL C/C++
	Enterprise COBOL
	z/OS Language Environment
	z/Architecture®

	Index
	A
	C
	D
	E
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

