
z/OS

TSO/E CLISTs
Version 2 Release 1

SA32-0978-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 183.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Who should use this document xi
How this document is organized xi
Where to find more information xii

How to send your comments to IBM xiii
If you have a technical problem xiii

z/OS Version 2 Release 1 summary of
changes xv

Chapter 1. Introduction 1
Features of the CLIST Language 1
Categories of CLISTs. 1

CLISTs that perform routine tasks 1
CLISTs that are structured applications 2
CLISTs that manage applications written in other
languages 2

Chapter 2. Creating, editing, and
executing CLISTs. 3
CLIST data sets and libraries 3
Creating and editing CLIST data sets 3

CLIST data set attributes 4
Considerations for copying CLIST data sets . . . 4

Executing CLISTs 5
Passing parameters to CLISTs. 6

Allocating CLIST libraries for implicit execution . . 6
Specifying alternative CLIST libraries with the
ALTLIB command 6
Examples of the ALTLIB command 8

Chapter 3. Writing CLISTs - Syntax and
conventions 9
Overview of CLIST statements 9
Syntax rules 9

Delimiters 10
Continuation symbols 10
Capitalization 10
Formatting 10
Length 10
Labels 10
Comments 11
Characters supported in CLISTs 11

TSO/E commands and JCL statements 12
TSO/E commands 12
JCL statements 12

Operators and expressions 12
Order of evaluations 13

Valid numeric ranges 14
The double-byte character set (DBCS). 14

DBCS delimiters 14
DBCS restrictions 15

Chapter 4. Using symbolic variables . . 17
What is a symbolic variable? 17

Valid names of variables 17
Valid values of variables 18

Defining symbolic variables and assigning values to
them 18

Using the SET statement 18
Using the READ statement 19
Using the PROC statement 19
Examples 21

More advanced uses of variables 22
Combining symbolic variables 22
Using a variable to preserve leading spaces in a
CLIST 23
Increasing the amount of storage available for
variables 23
Nesting symbolic variables 24

Chapter 5. Using keyword names . . . 27
Using keyword names as variables or labels within
a CLIST 27

Chapter 6. Using control variables . . . 29
Overview of using control variables 29
Getting the current date and time 33

&SYSDATE, &SYSSDATE, and &SYSJDATE . . 33
&SYS4DATE, &SYS4SDATE, and &SYS4JDATE 34
&SYSTIME and &SYSSTIME. 34

Getting terminal characteristics 34
&SYSTERMID 34
&SYSLTERM and &SYSWTERM 35

Getting information about the user 35
&SYSUID 35
&SYSPREF 35
&SYSPROC 36

Getting information about the system 36
&SYSCLONE 36
&SYSCPU and &SYSSRV 36
&SYSDFP 37
&SYSHSM. 37
&SYSISPF 38
&SYSJES 38
&SYSLRACF 38
&SYSAPPCLU 39
&SYSMVS 39
&SYSNAME 39
&SYSNODE 40
&SYSOPSYS 40
&SYSRACF 40
&SYSPLEX 41

© Copyright IBM Corp. 1988, 2013 iii

&SYSSECLAB 41
&SYSSMS 41
&SYSSMFID 41
&SYSSYMDEF 42
&SYSTSOE 42

Getting information about the CLIST 42
&SYSENV 42
&SYSSCAN 43
&SYSICMD 43
&SYSPCMD 43
&SYSSCMD 43
Relationship between &SYSPCMD and
&SYSSCMD 43
&SYSNEST 44

Setting options of the CLIST CONTROL statement 44
&SYSPROMPT 44
&SYSSYMLIST 44
&SYSCONLIST 44
&SYSLIST 45
&SYSASIS 45
&SYSMSG 45
&SYSFLUSH 45

Getting information about user input 46
&SYSDLM. 46
&SYSDVAL 46

Trapping TSO/E command output 47
&SYSOUTTRAP 47
&SYSOUTLINE 47
Considerations for using &SYSOUTTRAP and
&SYSOUTLINE 48

Getting return codes and reason codes 48
&LASTCC 49
&MAXCC 50

Getting results of the TSOEXEC command 50
Getting data set attributes 50

The LISTDSI statement 50

Chapter 7. Using built-in functions. . . 53
Determining the data type of an expression -
&DATATYPE 54
Forcing arithmetic evaluations - &EVAL 54
Determining an expression's length in bytes -
&LENGTH 55

Suppressing arithmetic evaluations 55
Including leading and trailing blanks and leading
zeros 55

Determining an expression's length in characters -
&SYSCLENGTH. 56
Preserving double ampersands - &NRSTR 56

Double ampersands 56
One level of symbolic substitution 56
Records containing JCL statements 56

Defining character data - &STR. 57
Using &STR with &SYSDATE or &SYSSDATE . . 58
Using &STR with leading and trailing blanks . . 58
Using &STR with strings that match CLIST
statement names. 58
Using &STR when supplying input using SYSIN
JCL statements 58

Defining a substring - &SUBSTR 59
Defining a substring - &SYSCSUBSTR 60

Converting character strings to uppercase characters
- &SYSCAPS 61
Converting character strings to lowercase characters
- &SYSLC 61
Determining data set availability - &SYSDSN . . . 61
Locating one character string within another -
&SYSINDEX 62

Using &SYSINDEX with DBCS strings 63
Limiting the level of symbolic substitution -
&SYSNSUB 64
Converting DBCS data to EBCDIC - &SYSONEBYTE 64
Converting EBCDIC data to DBCS -
&SYSTWOBYTE 65

Chapter 8. Structuring CLISTs. 67
Making selections 67

The IF-THEN-ELSE sequence 67
Nesting IF-THEN-ELSE sequences 69
The SELECT statement 69

Loops 71
The DO-WHILE-END sequence. 71
The DO-UNTIL-END sequence 72
The Iterative DO sequence 73
Compound DO sequences 73
Nesting loops. 75
Distinguishing END statements from END
commands or subcommands 76

Subprocedures 77
Calling a subprocedure 77
Returning information from a subprocedure . . 78
Sharing variables among subprocedures 79
Restricting variables to a subprocedure 80
Considerations for using other statements in
subprocedures 80

Nesting CLISTs 81
Protecting the input stack from errors or
attention interrupts 81
Global variables 82
Exiting from a nested CLIST. 82

GOTO statements 83

Chapter 9. Communicating with the
terminal user 85
Prompting the user for input 85

Prompting with the PROC statement 85
Prompting with the WRITE and WRITENR
statements 85
Prompting with TSO/E commands 86

Writing messages to the terminal 88
Using the WRITE and WRITENR statements . . 88
Controlling the display of informational
messages 89

Receiving responses from the terminal 89
Using the READ statement 89
Using the READDVAL statement 92

Passing control to the terminal 93
Returning control after a TERMIN or TERMING
statement 94
Entering input after a TERMIN or TERMING
statement 95

iv z/OS V2R1.0 TSO/E CLISTs

Using ISPF panels 95
ISPF restrictions 95
Sample CLIST with ISPF panels 96

Chapter 10. Performing file I/O 97
Characters supported in I/O 97
Opening a file 97
Closing a file 98
Reading a record from a file 98
Writing a record to a file 99
Updating a file 99
End-of-File processing 100
Special considerations for performing I/O. . . . 101

Chapter 11. Writing ATTN and ERROR
routines. 103
Writing attention routines 103

Canceling attention routines 104
Protecting the input stack from attention
interrupts. 104
Sample CLIST with an attention routine . . . 104
Subprocedures and attention routines 106
CLIST attention facility 106

Writing error routines 107
Canceling error routines 107
Protecting the input stack from errors 108
Sample CLIST with an error routine 108
Subprocedures and error routines 108

Chapter 12. Testing and debugging
CLISTs 111
Using diagnostic options of the CONTROL
statement 111

Messages in diagnostic output 112
How to make diagnostic output optional in a
CLIST 113

Getting help for CLIST messages 113
Obtaining CLIST error codes 113

Chapter 13. Sample CLISTs 119
Including TSO/E Commands - the LISTER CLIST 120
Simplifying routine tasks - the DELETEDS CLIST 120
Creating arithmetic expressions from user-supplied
input - the CALC CLIST. 121
Using front-end prompting - the CALCFTND
CLIST 121
Initializing and invoking system services - the
SCRIPTDS CLIST 122
Invoking CLISTs to perform subtasks - the
SCRIPTN CLIST 124
Including JCL statements - the SUBMITDS CLIST 126
Analyzing input strings with &SUBSTR - the
SUBMITFQ CLIST 126
Allowing foreground and background execution of
programs - the RUNPRICE CLIST 127
Including options - the TESTDYN CLIST 128
Simplifying system-related tasks - the COMPRESS
CLIST 130
Simplifying interfaces to applications - the CASH
CLIST 131

Using &SYSDVAL when performing I/O - the
PHONE CLIST 132
Allocating data sets to SYSPROC - the SPROC
CLIST 133
Writing full-screen applications using ISPF dialogs
- the PROFILE CLIST. 136
Allocating a data set with LISTDSI information -
the EXPAND CLIST 143

Chapter 14. Reference 145
How to read the CLIST statement syntax 145
ATTN statement 148
CLOSFILE statement 148
CONTROL statement 149
DATA-ENDDATA sequence 151
DATA PROMPT-ENDDATA sequence 152
DO statement 152
END statement 154
ERROR statement 154
EXIT statement 155
GETFILE statement 155
GLOBAL statement 156
GOTO statement 157
IF-THEN-ELSE sequence 157
LISTDSI statement. 158

CLIST variables set by LISTDSI 161
Return codes 166
Reason codes 166

NGLOBAL statement 167
OPENFILE statement 168
PROC statement 168
PUTFILE statement 170
READ statement 170
READDVAL statement 170
RETURN statement 171
SELECT statement. 171

Simple SELECT. 172
Compound SELECT 172

SET statement 173
SYSCALL statement 174
SYSREF statement 174
TERMIN and TERMING statement 175
WRITE and WRITENR statements 177
END command. 177
EXEC command 177

Appendix. Accessibility 179
Accessibility features 179
Using assistive technologies 179
Keyboard navigation of the user interface 179
Dotted decimal syntax diagrams 179

Notices 183
Policy for unsupported hardware. 184
Minimum supported hardware 185
Programming interface information 185
Trademarks 185

Index 187

Contents v

vi z/OS V2R1.0 TSO/E CLISTs

Figures

1. Sample CLIST consisting of TSO/E commands 2
2. How a CLIST executes a compound DO

sequence 75
3. Nested CLISTs 81
4. A CLIST containing an attention routine - the

ALLOCATE CLIST. 105
5. An attention handling CLIST - the

HOUSKPNG CLIST 106
6. Sample CLIST with diagnostic CONTROL

options. 112
7. Diagnostic output from sample CLIST 112

8. Error messages in diagnostic output from
sample CLIST 112

9. The LISTER CLIST 120
10. The DELETEDS CLIST 120
11. The CALC CLIST 121
12. The SUBMITDS CLIST 126
13. The SUBMITFQ CLIST 127
14. The RUNPRICE CLIST 128
15. The CASH CLIST 132
16. The PHONE CLIST 133
17. The EXPAND CLIST 143

© Copyright IBM Corp. 1988, 2013 vii

viii z/OS V2R1.0 TSO/E CLISTs

Tables

1. CLIST statement categories. 9
2. Arithmetic, comparative, and logical operators 13
3. Control variable by category 29
4. Modifiable control variables (alphabetically) 31
5. Non-modifiable control variables

(alphabetically) 31
6. Built-in functions. 53
7. TERMIN and TERMING statement comparison 93

8. CLIST statement error codes (decimal) 113
9. Sample CLISTs and their functions 119

10. Purpose of, and figures containing, PROFILE
CLIST and supporting panels 137

11. Variables set by LISTDSI 161
12. LISTDSI return codes 166
13. LISTDSI reason codes 166

© Copyright IBM Corp. 1988, 2013 ix

x z/OS V2R1.0 TSO/E CLISTs

About this document

This document supports z/OS® (5650-ZOS).

This document describes how to use the TSO/E CLIST language to write programs
called CLISTs. You can use CLISTs to perform a wide range of programming tasks
on TSO/E.

Who should use this document
This document is intended for new and experienced CLIST programmers.

If you are a new user of the CLIST language, read each chapter and try coding the
examples.

If you are experienced with CLISTs, review the chapters and familiarize yourself
with the organization of this document. Then you'll be able to refer to the
appropriate chapter when you have a question or want to refresh your memory.

To use the CLIST language effectively, you should be familiar with TSO/E
commands. Familiarity with the Interactive System Productivity Facility (ISPF) is
also helpful. For information about TSO/E commands, see z/OS TSO/E Command
Reference.

How this document is organized
v Chapter 1, “Introduction,” on page 1 describes the types of functions CLISTs

perform.
v Chapter 2, “Creating, editing, and executing CLISTs,” on page 3 describes how

to create and edit CLIST data sets, and how to execute CLISTs.
v Chapter 3, “Writing CLISTs - Syntax and conventions,” on page 9 describes the

rules for using CLIST statements, TSO/E commands, and JCL statements in
CLISTs.

v Chapter 4, “Using symbolic variables,” on page 17 describes how to define
symbolic variables and assign values to them.

v Chapter 6, “Using control variables,” on page 29 describes how to use CLIST
control variables to obtain current information about the processing
environment.

v Chapter 7, “Using built-in functions,” on page 53 describes how to use CLIST
string-handling functions to process numeric data and character strings.

v Chapter 8, “Structuring CLISTs,” on page 67 describes how to use CLIST
statements to make decisions and loops, and how to use CLIST subprocedures
and nested CLISTs.

v Chapter 9, “Communicating with the terminal user,” on page 85 describes how
to write interactive CLISTs.

v Chapter 10, “Performing file I/O,” on page 97 describes how to read and write
records to and from files.

v Chapter 11, “Writing ATTN and ERROR routines,” on page 103 describes how to
write routines that receive control when errors occur or when the user presses
the attention key while a CLIST is running.

© Copyright IBM Corp. 1988, 2013 xi

v Chapter 12, “Testing and debugging CLISTs,” on page 111 describes how to find
and correct CLIST errors. This chapter includes a list of error codes and their
meanings.

v Chapter 13, “Sample CLISTs,” on page 119 provides sample CLISTs that perform
a broad range of application tasks. Each CLIST comes with a description of the
concepts that it illustrates. Generally, the more advanced CLISTs expand upon
concepts introduced in the simpler examples.

v Chapter 14, “Reference,” on page 145 contains complete syntax descriptions of
all of the CLIST statements.

Where to find more information
Please see z/OS Information Roadmapfor an overview of the documentation
associated with z/OS, including the documentation available for z/OS TSO/E.

xii z/OS V2R1.0 TSO/E CLISTs

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 TSO/E CLISTs
SA32-0978-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2013 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 TSO/E CLISTs

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1988, 2013 xv

xvi z/OS V2R1.0 TSO/E CLISTs

Chapter 1. Introduction

The CLIST language enables you to work more efficiently with TSO/E. You can
write programs, called CLISTs, that perform given tasks or groups of tasks. From
then on, you can invoke the CLISTs to do those tasks.

The term CLIST (pronounced “sea list”) is short for Command LIST, because the
most basic CLISTs are lists of TSO/E commands. When you invoke such a CLIST,
it issues the TSO/E commands in sequence.

Besides issuing TSO/E commands, CLISTs can perform more complex
programming tasks. The CLIST language includes the programming tools you need
to write extensive, structured applications. CLISTs can perform any number of
complex tasks, from displaying a series of full-screen panels to managing programs
written in other languages.

The CLIST language is an interpretive language. Like programs in other high-level
interpretive languages, CLISTs are easy to write and test. You don't have to
compile and link-edit them. To test a CLIST, you execute it, correct any errors, and
re-execute it.

The CLIST language is one of two command languages available in TSO/E. For
information about the other command language, REXX, see z/OS TSO/E REXX
User's Guide and z/OS TSO/E REXX Reference.

Features of the CLIST Language
The CLIST language provides a wide range of programming functions. Its features
include:
v An extensive set of arithmetic and logical operators for processing numeric data
v String-handling functions for processing character data
v CLIST statements that let you structure your programs, perform I/O, define and

modify variables, and handle errors and attention interrupts

Categories of CLISTs
A CLIST can perform a wide range of tasks. Three general categories of CLISTs are:
v CLISTs that perform routine tasks
v CLISTs that are structured applications
v CLISTs that manage applications written in other languages

CLISTs that perform routine tasks
As a user of TSO/E, you probably perform certain tasks on a regular basis. These
tasks may involve entering TSO/E commands to check on the status of data sets,
to allocate data sets for particular programs, and to print files.

You can write CLISTs that significantly reduce the amount of time that you have to
spend on these routine tasks. By grouping together in a CLIST the instructions
required to complete a task, you reduce the time, number of keystrokes, and errors
involved in performing the task; thus, you increase your productivity. Such a

© Copyright IBM Corp. 1988, 2013 1

CLIST can consist of TSO/E commands only, or a combination of TSO/E
commands, JCL statements, or CLIST statements.

Figure 1 is an example of a CLIST that consists of TSO/E commands only.

The CLIST in Figure 1 issues TSO/E commands to allocate files for a program, call
the program, and free the files when the program is finished. Whenever you
wanted to perform these related tasks, you can execute the CLIST instead of
retyping the commands.

If tasks require specific input from a user, you can obtain the input in a CLIST by
using CLIST statements or TSO/E commands to prompt the user for the input.

CLISTs that are structured applications
The CLIST language includes the basic tools you need to write complete,
structured applications. Any CLIST can invoke another CLIST, which is referred to
as a nested CLIST. CLISTs can also contain separate routines called subprocedures.
Nested CLISTs and subprocedures let you separate your CLISTs into logical units
and put common functions in a single location. Specific CLIST statements let you:
v Define common data for subprocedures and nested CLISTs
v Restrict data to certain subprocedures and CLISTs
v Pass specific data to a subprocedure or nested CLIST

For interactive applications, CLISTs can issue commands of the Interactive System
Productivity Facility (ISPF) to display full-screen panels. Conversely, ISPF panels
can invoke CLISTs, based on input that a user types on the panel. When the user
changes a value on a panel, the change applies to the value in the CLIST that
displayed the panel. With ISPF, CLISTs can manage extensive panel-driven dialogs.

CLISTs that manage applications written in other languages
You might have access to applications that are written in other programming
languages. However, the interfaces to these applications might not be easy to use
or remember. Rather than write new applications, you can write CLISTs that
provide easy-to-use interfaces between the user and such applications.

A CLIST can send messages to, and receive messages from, the terminal to
determine what the user wants to do. Then, based on this information, the CLIST
can set up the environment and issue the commands required to invoke the
program that performs the requested tasks.

allocate file(ABC) dataset(name1)
allocate file(DEF) dataset(name2)
call (prog1)
free file(ABC DEF)

Figure 1. Sample CLIST consisting of TSO/E commands

Categories of CLISTs

2 z/OS V2R1.0 TSO/E CLISTs

Chapter 2. Creating, editing, and executing CLISTs

CLIST data sets and libraries
CLISTs reside in either sequential or partitioned data sets (PDSs). A sequential
CLIST data set consists of only one CLIST, while a PDS can contain one or more
CLISTs. In a PDS, each CLIST is a member and has a unique member name. When
a PDS consists entirely of CLISTs, it is called a CLIST library.

CLIST libraries make CLISTs easy to maintain and execute. Your installation can
keep commonly used CLISTs in a system CLIST library, and you can keep your
own CLISTs in a private CLIST library. If you allocate a CLIST library to the file
SYSPROC, or specify the library on the ALTLIB command, you can execute the
CLISTs implicitly by typing their member names.

Implicit execution frees you from having to code the name of the CLIST library on
an EXEC command. Besides saving keystrokes, implicit execution lets you keep
different versions of a CLIST in different libraries and control which version
executes at a given time. For more information, see “Allocating CLIST libraries for
implicit execution” on page 6.

CLISTs invoked implicitly, and command processors invoked from CLISTs, should
not have names equal to reserved CLIST words. If name conflicts cannot be
avoided, consider using the &STR built-in function to solve the problem. See
“Defining character data - &STR” on page 57. For example, in the case of the
SELECT subcommand of the RACFRW command, you can specify the
subcommand name as follows, to avoid confusion with the CLIST SELECT
statement:
&STR(SELECT) VIOLATIONS

Creating and editing CLIST data sets
Before coding your first CLIST, you must create a CLIST data set. There are two
ways to create and edit a CLIST data set:
1. Using options 3 (UTILITIES) and 2 (EDIT) of ISPF/PDF:

a. Create a data set using the allocate panel in ISPF (typically option 3.2 on the
primary menu).
v To simplify execution, specify CLIST as the data set type.
v To create a data set with the same attributes as another, such as a system

CLIST library, use option 3.2 to view the attributes of the existing data set
and then allocate the new data set.

b. Code your CLIST in the full-screen environment using the ISPF/PDF editor
(typically option 2).

c. Modify the CLIST by making corrections directly to the data on the screen.
For more information about creating and editing data sets under ISPF/PDF, see
z/OS TSO/E Primer.

2. Using the TSO/E EDIT command and its subcommands (this method includes
option 6 of ISPF/PDF.):
a. Include the CLIST keyword on the EDIT command.

© Copyright IBM Corp. 1988, 2013 3

b. Enter and save your CLIST statements, TSO/E commands, and TSO/E
subcommands.

c. Use subcommands of EDIT to modify the CLIST.
CLISTs created with the EDIT command cannot contain characters of the
double-byte character set (DBCS).
More information about creating and editing data sets under TSO/E can be
found in z/OS TSO/E Command Reference.

CLIST data set attributes
If a CLIST data set is created by one of the previously described methods, and the
CLIST keyword is specified on the EDIT command, the data set will be assigned
the following default attributes (provided that your installation has not changed
the default values):
v A variable-length record format

If you specify a LINE value on the EDIT command, the data set will be of a
fixed-length record format in the specified length.

v A logical record size of 255 characters
v A block size of 3120 bytes
v Line numbers are contained in the last eight bytes of all fixed-length records and

in the first eight bytes of all variable-length records
v All input data and modified data are converted to uppercase characters.

Your installation may have changed these default attributes and may have
established CLIST data set conventions to ease data set tasks.

If you concatenate CLIST data sets, specify the same RECFM and LRECL values
for these data sets.

For a complete description of edited data sets see, the EDIT command in z/OS
TSO/E Command Reference. For a discussion of the formats and characteristics of the
RECFM subparameter of the DCB parameter, see z/OS MVS JCL Reference. If you
want to obtain information about a data set for use in CLIST variables, see
“LISTDSI statement” on page 158.

Considerations for copying CLIST data sets
When creating and editing CLISTs, you might copy an existing CLIST data set into
a new data set. If you do so under ISPF/PDF, be aware of the record formats of
the data sets. Variable-blocked data sets might contain line numbers in columns 1-8
that do not normally appear when you edit the data sets. If you copy a
variable-blocked data set into a fixed-blocked data set, the line numbers are copied
as part of the data. This data must then be removed. To find out if a data set
contains line numbers, use the ISPF EDIT command PROFILE.

If you copy a fixed-blocked data set with line numbers into a variable-blocked data
set, the system copies sequence numbers from columns 73-80 into the
variable-blocked data set. This data must also be removed. For information about
how to remove the sequence numbers from a variable-blocked data set, see z/OS
ISPF Edit and Edit Macros.

Creating and Editing CLIST Data Sets

4 z/OS V2R1.0 TSO/E CLISTs

Executing CLISTs
To execute a CLIST, use the EXEC command. From an ISPF command line, type
TSO in front of the command. In TSO/E EDIT or TEST mode, use the EXEC
subcommand as you need to use the EXEC command. (CLISTs executed under
EDIT or TEST can issue only EDIT or TEST subcommands and CLIST statements,
but you can use the END subcommand in a CLIST to end EDIT or TEST mode and
allow the CLIST to issue TSO/E commands.)

The EXEC command (or subcommand) has two forms:
1. Explicit form: Enter “exec” or “ex” followed by the data set name and the

optional CLIST operand. By default, the EXEC command assumes that the data
set type is CLIST and automatically suffixes all specified names with .CLIST,
unless the name is in quotation marks. For example:
v If a CLIST, LISTPGM, is a member of a PDS named PREFIX.CLISTLIB.CLIST,

enter:
{exec} clistlib(listpgm) [CLIST]
{ex }

v If a CLIST, LISTPGM, is a member of a PDS named PREFIX.CLIST, enter:
{exec} (listpgm) [CLIST]
{ex }

v If the CLIST is in a sequential data set named PREFIX.LISTPGM.CLIST,
enter:
{exec} (listpgm) [CLIST]
{ex }

v If the CLIST is in a sequential data set named PREFIX.LISTPGM, enter:
{exec} ’prefix.listpgm’ [CLIST]
{ex }

If the EXEC command is used to execute a CLIST in a sequential data set, but
the data set is found to be a partitioned one, it will assume a member
TEMPNAME. The system will notify you if this member is not found,
otherwise it will execute it.

2. Implicit form: Enter only the name of the CLIST, optionally preceded by a
percent sign (%). The CLIST must be a member of a PDS allocated to the file
SYSPROC, or an alternative library specified with the ALTLIB command. The
two implicit forms are as follows:
a. Enter only the member name, for example:

listpgm

When you use this form, TSO/E first searches command libraries to ensure
that the name you entered is not a TSO/E command, then searches CLIST
libraries:
v Specified with the ALTLIB command or
v Allocated to the SYSPROC file

b. Enter the member name prefixed with a percent sign (%), for example:
%listpgm

When you use this form, called the extended implicit form, TSO/E searches
only the ALTLIB or SYSPROC libraries for the name, thus reducing the
amount of search time.

For information about preparing a CLIST for implicit execution, see “Allocating
CLIST libraries for implicit execution” on page 6.

You can execute a CLIST in either the foreground (from your terminal) or in the
background (submit it as a batch job). You can also execute a CLIST from another

Executing CLISTs

Chapter 2. Creating, editing, and executing CLISTs 5

CLIST (using the EXEC command) or from a program. To invoke a CLIST from a
program, use the TSO/E service facility described in z/OS TSO/E Programming
Services.

Passing parameters to CLISTs
You can pass parameters to a CLIST when you execute it. Parameters are variable
input that may change from one execution to the next. To receive parameters, a
CLIST must begin with a PROC statement that assigns the parameters to variables.
“Using the PROC statement” on page 19 explains how to code a PROC statement
to receive parameters.

To pass parameters to a CLIST, include them on the EXEC command or
subcommand as follows:
v For the explicit form, pass parameters in single quotation marks:

EX clistname ’parm1 parm2’

v For the implicit or extended implicit form, omit the quotation marks:
%clistname parm1 parm2

For more information about the types of parameters you can pass, and how to use
them in a CLIST, see “Using the PROC statement” on page 19.

For a complete syntactical definition of the EXEC command, including special
considerations for passing parameters that contain single quotation marks, see
Chapter 14, “Reference,” on page 145.

Allocating CLIST libraries for implicit execution
After you have written CLISTs and executed them to make sure they run correctly,
you can allocate them to special files to make them easier to execute.

When CLISTs are members of a partitioned data set (PDS) allocated to a special
file, users and applications can execute the CLISTs implicitly by invoking the
member names. How you can allocate CLIST libraries for implicit execution
depends on the feature of TSO/E installed on your system.

The ALTLIB command gives you more flexibility in specifying CLIST libraries for
implicit execution. With ALTLIB, a user or ISPF application can easily activate and
deactivate CLIST libraries for implicit execution as the need arises. This flexibility
can result in less search time when fewer CLISTs are activated for implicit
execution at the same time.

In addition to CLISTs, the ALTLIB command lets you specify libraries of REXX
execs for implicit execution. For information about using ALTLIB with REXX execs,
see z/OS TSO/E REXX User's Guide.

Specifying alternative CLIST libraries with the ALTLIB
command

The ALTLIB command lets you specify alternative libraries to contain implicitly
executable CLISTs. You can specify alternative libraries on the user, application,
and system levels.
v The user level includes CLIST libraries allocated to the file SYSUPROC. During

implicit execution, these libraries are searched first.

Executing CLISTs

6 z/OS V2R1.0 TSO/E CLISTs

v The application level includes CLIST libraries specified on the ALTLIB command
by data set or file name. During implicit execution, these libraries are searched
after user libraries.

v The system level includes CLIST libraries allocated to file SYSPROC. During
implicit execution, these libraries are searched after user or application libraries.

Using the ALTLIB command
The ALTLIB command offers several functions, which you specify using the
following operands:

ACTIVATE
allows implicit execution of CLISTs in a library or libraries on the specified
level(s), in the order specified.

DEACTIVATE
excludes the specified level(s) from the search order.

DISPLAY
displays the current order in which CLIST libraries are searched for implicit
execution.

RESET
resets searching to the system level only, for CLISTs and REXX execs.

For complete information about the syntax of the ALTLIB command, see z/OS
TSO/E Command Reference.

Note:

1. With ALTLIB, data sets concatenated to each of the levels can have differing
characteristics (logical record length and record format), but the data sets
within the same level must have the same characteristics.

2. At the application and system levels, ALTLIB uses the virtual lookaside facility
(VLF) to provide potential increases in library search speed.

Using ALTLIB with ISPF
ALTLIB works the same in line mode TSO/E and in ISPF. However, if you use
ALTLIB under line mode TSO/E and start ISPF, the alternative libraries you
specified under line mode TSO/E are unavailable until ISPF ends.

Application-level libraries that you define while running an ISPF application are in
effect only while that application has control. When the application completes, the
original application-level libraries are automatically reactivated.

Under ISPF, you can pass the alternative library definitions from application to
application by using ISPEXEC SELECT with the PASSLIB operand. For example, to
pass ALTLIB definitions to a new ISPF application (ABC), code:
ISPEXEC SELECT NEWAPPL(ABC) PASSLIB

The PASSLIB operand passes the ALTLIB definitions to the invoked application.
When the invoked application completes and the invoking application regains
control, the ALTLIB definitions that were passed take effect again, regardless of
whether the invoked application changed them. If you omit the PASSLIB operand,
ALTLIB definitions are not passed to the invoked application.

For more information about writing ISPF applications, see z/OS ISPF Services Guide.

Allocating CLIST Libraries for Implicit Execution

Chapter 2. Creating, editing, and executing CLISTs 7

Stacking ALTLIB requests
On the application level, you can stack up to eight activate requests with the top,
or current, request active.

Examples of the ALTLIB command
In the following example, an application issues the ALTLIB command to allow
implicit execution of CLISTs in the data set NEW.CLIB, to be searched ahead of
SYSPROC:
ALTLIB ACTIVATE APPLICATION(CLIST) DATASET(new.clib)

The application can also allow searching for any private CLISTs that the user has
allocated to the file SYSUPROC, with the following command:
ALTLIB ACTIVATE USER(CLIST)

To display the active libraries in their current search order, use the DISPLAY
operand as follows:
ALTLIB DISPLAY

To deactivate searching for a certain level, use the DEACTIVATE operand; for
example, to deactivate searching for CLISTs on the system level (those allocated to
SYSPROC), issue:
ALTLIB DEACTIVATE SYSTEM(CLIST)

And, to reset CLIST and REXX exec searching back to the system level, issue:
ALTLIB RESET

For more information about the search order EXEC uses for CLISTs and REXX
execs, see z/OS TSO/E Command Reference.

Allocating CLIST Libraries for Implicit Execution

8 z/OS V2R1.0 TSO/E CLISTs

Chapter 3. Writing CLISTs - Syntax and conventions

This chapter provides an overview of CLIST statements and describes how to use
the following:
v Syntax rules of the CLIST language
v TSO/E commands and JCL statements in CLISTs
v CLIST operators and expressions
v The double-byte character set (DBCS) in CLISTs

When you are familiar with the contents of this chapter, read the following
chapters for information about how to use variables and terminal input in CLISTs.

Overview of CLIST statements
CLIST statements set controls, assign values to variables, monitor the conditions
under which CLISTs execute, and perform I/O. CLIST statements execute in both
the command and subcommand environment (under the TSO/E EXEC command
and the EXEC subcommand of TSO/E EDIT). They fall into the categories shown
in Table 1.

Table 1. CLIST statement categories

Control Assignment Conditional I/O

ATTN
CONTROL
DATA-ENDDATA
DATA-PROMPT
ERROR
EXIT
GLOBAL
GOTO
NGLOBAL
PROC
RETURN
SYSCALL
SYSREF
TERMIN
WRITE
WRITENR

READ
READDVAL
SET
LISTDSI

DO
IF-THEN-ELSE
SELECT

CLOSFILE
GETFILE
OPENFILE
PUTFILE

Subsequent topics in this document describe all of the statements in detail.

Note: In addition to these CLIST statements,IBM® provides an installation exit that
lets your installation add its own CLIST statements. For information about this
exit, see z/OS TSO/E Customization.

Syntax rules
This section describes the syntax rules for CLIST statements relative to those for
TSO/E commands.

© Copyright IBM Corp. 1988, 2013 9

Delimiters
Most CLIST statements have operands. Operands are variables or data that provide
information to be used in processing the statement. Include one or more blanks
between a CLIST statement and its first operand. Also, separate operands from
each other by one or more blanks, a comma, or tabs.

Continuation symbols
Line continuation symbols are the same as for TSO/E commands. If used, the
continuation symbol must be the last non-blank character on the line. A hyphen (-)
indicates that leading blanks in the next line are not ignored. A plus sign (+)
indicates that leading blanks in the next line are ignored. For example, the
following command executes successfully:
alloc da(jcl.cntl) shr-

reuse file(input)

However, if you substitute a plus sign for the hyphen in this example, the
command fails because, when the lines are joined logically, there is no blank
between the end of the shr keyword and the beginning of the reuse keyword. You
need to insert a blank before the plus sign for correct execution.

Capitalization
All CLIST statement names must be capitalized. If you use lowercase letters for
CLIST statement names, the CLIST fails. Capitalization of CLIST variable names
and built-in function names is optional. Capitalization of TSO/E commands and
subcommands in a CLIST is also optional.

Formatting
You can use blank lines in a CLIST as a formatting aid, to separate parts of the
CLIST and make the CLIST easier to read. Blank lines do not affect CLIST
processing, except that a blank line after a continuation symbol ends continuation,
unless the blank line is also continued.

Length
The maximum length of a CLIST statement is 32756 bytes.

Labels
You can prefix CLIST statements and TSO/E commands with a label. Other
statements can use the label to pass control to the statement or command. Labels
can consist of 1-31 alphanumeric characters (A-Z, 0-9, #, $, @, _)beginning with an
alphabetic character (A-Z). The label can appear on the same line as the statement
or command, or on the preceding line. A colon must immediately follow the label
name. For example,

label: IF A= ...

or

label: +
v IF A= ...

Syntax Rules

10 z/OS V2R1.0 TSO/E CLISTs

Comments
You can include a comment:
v On a line by itself
v Before, in the middle of, or after a CLIST statement or TSO/E command.

You define a comment by coding a slash-asterisk (comment delimiter) followed by
the descriptive text. If you include the comment before or in the middle of a CLIST
statement or TSO/E command, you must end the comment with a closing
comment delimiter (asterisk-slash). The following example shows a comment
included before a CLIST statement:
/*get return code */ SET RC = &LASTCC

If you include a comment after a CLIST statement or TSO/E command, or on a
line by itself, the closing comment delimiter is not needed, as shown in the
following example:
alloc file(in) da(accounts.data) shr /* Input data set

If a comment appears after a CLIST statement or TSO/E command that continues
on the following line, the comment must end with a closing comment delimiter
and the continuation character must appear after the comment delimiter, as shown
in the following example:
IF &LASTCC ¬= 0 THEN /* error occurred */ +
DO ...

CLISTs can begin with a comment, but the first line of a CLIST must not be a
comment containing the acronym REXX; if the first line contains “REXX” in any
position, the EXEC command attempts to process the CLIST as a REXX exec. Note
that comments can be in both uppercase and lowercase letters. Comments are
unaffected by CLIST processing.

Characters supported in CLISTs
CLIST statements can process all data characters represented by hexadecimal codes
40 through FF. It should be noted that CLISTs translate lowercase letters to
uppercase letters, unless controlled by NOCAPS or ASIS, and translate lowercase
numbers (B0-B9) to standard numbers (F0-F9). CLISTs also support the following
control characters:

Hexadecimal code
Control character

05 HT (horizontal tab)

0E Shift Out (starting delimiter for DBCS data)

0F Shift In (ending delimiter for DBCS data)

14 RES (restore)

16 BS (backscore)

17 IL (idle)

24 BYP (bypass)

25 LF (line feed).

All other hexadecimal codes from 00 to 3F are reserved for internal processing and
can cause errors if they appear in CLIST data. The use of I/O statements to process

Syntax Rules

Chapter 3. Writing CLISTs - Syntax and conventions 11

data sets containing these codes is not supported. For example, OBJ and LOAD
type data sets contain unsupported characters and must not be used for CLIST
I/O.

Note: Some characters supported in CLIST, such as { (X'C0') and } (X'D0'), cannot
be written to the terminal because of TSO/E output processing. To write such
characters to a terminal, create TSO/VTAM translate tables and invoke the tables
with the TSO/E TERMINAL command. For more information about creating
translate tables, see z/OS TSO/E Customization. For CLISTs executed under the
TSO/E Session Manager, these restrictions do not apply.

TSO/E commands and JCL statements
You can include TSO/E commands and subcommands, and JCL statements in a
CLIST as needed.

TSO/E commands
You can include TSO/E commands and subcommands (and user-written
commands and subcommands) in a CLIST at any point where the specific
functions (for example, allocate, free, and so on) are required. For certain
applications, a CLIST might consist entirely of commands and subcommands. You
can also substitute CLIST variables as operands in commands and subcommands,
or as commands themselves. For more information about CLIST variables, see
Chapter 4, “Using symbolic variables,” on page 17.

JCL statements
From a CLIST, you might want to submit a jobstream for execution. In the CLIST,
you can include the required JCL statements (EXEC, DD, and so on). However,
when you include the following JCL statements in a CLIST, you must use a
particular CLIST function to prevent the CLIST from modifying the statements and
causing subsequent JCL errors.
1. Statements following the SYSIN statement - use the &STR built-in function to

preserve leading blanks and statements that have the same names as CLIST
statements.

2. A statement containing a single ampersand (&) or a double ampersand (&&) -
use the &SYSNSUB or &NRSTR built-in functions.

3. JCL comments - use the &STR built-in function. Because CLIST processing
detects the JCL comment as a comment for the CLIST, you must set a variable
equal to &STR(/*) and use this variable in place of the JCL comment.

4. JCL imbedded in a CLIST can use the SUBMIT * form of the SUBMIT
command; however, all JCL is converted to uppercase. If JCL conversion to
uppercase is inappropriate or undesirable, use the SUBMIT (dataset_name)
form of the SUBMIT command. For a description of the SUBMIT command, see
z/OS TSO/E Command Reference.

Examples of using these built-in functions with JCL are provided in Chapter 7,
“Using built-in functions,” on page 53 and in Figure 12 on page 126.

Operators and expressions
Operators cause a CLIST to perform evaluations on data; the data can be numeric
or character, or can be a variable or a built-in function. Operators fall into three
categories: arithmetic, comparative, and logical, as shown in Table 2 on page 13.

Syntax Rules

12 z/OS V2R1.0 TSO/E CLISTs

v Arithmetic operators perform integer arithmeticon numeric operands. The
operators connect integers, variables, orbuilt-in functions to form expressions,
such as 4-2.

v Comparative operators perform comparisonsbetween two expressions, to
formcomparative expressions, such as 4-2=3. The “=” is a comparative operator.
The comparison produces a true or false condition. Comparative expressions are
often used to determine conditional branching within a CLIST.

v Logical operators perform a logical comparison between the results of two
comparative expressions, to form logical expressions, such as &A=4 AND
&B=&C.The ‘AND’ is a logical operator.
Logical expressions produce true or false conditions. Logical expressions are
often used to determine conditional branching within a CLIST.

In Table 2, if more than one accepted value exists for an operator, the values are
separated by commas.

Table 2. Arithmetic, comparative, and logical operators

For the function: Enter:

Arithmetic Addition
Subtraction
Multiplication
Division
Exponentiation
Remainder
Prioritization the order of
evaluation

+
-
*
/
** (See note 1)
//
() (See note 2)

Comparative Equal
Not equal
Less than
Greater than
Less than or equal
Not greater than
Not less than

=,EQ
¬=,NE
<,LT
>,GT
<=,LE
>=,GE
¬>,NG
¬<,NL

Logical And
Or

AND,&&
OR,|

Notes:

1. Negative exponents are handled as exponents of zero, thus the result is always set to 1.

2. Put parentheses around operations to give them priority in the order of evaluation.

CLISTs try to perform evaluation wherever an operator is found, including the
equal sign (=) in assignment statements. If you want CLISTs to treat operators as
character data instead, use the &STR built-in function. For more information, see
“Defining character data - &STR” on page 57.

Order of evaluations
A CLIST evaluates operations in the following default order. (Wherever more than
one operation is listed below, the CLIST performs the operations sequentially, left
to right in the order in which they appear on the CLIST statement.)
1. Exponentiation remainder

Operators and Expressions

Chapter 3. Writing CLISTs - Syntax and conventions 13

2. Multiplication, division
3. Addition, subtraction
4. Comparative operators
5. Logical AND
6. Logical OR

You can override the default order by placing parentheses around the operations
you want executed first. For example, without any parentheses, the following
example performs multiplication, division, then addition. The statement sets X to
the value 24.
SET X = 4+5*8/2

By placing parentheses around 4+5, you indicate to the CLIST that it should
perform addition first and then proceed with the default order (multiplication,
then division). The following statement sets X to the value 36.
SET X = (4+5)*8/2

You can place parentheses around expressions that are themselves enclosed in
parentheses. This process is called nesting parenthesized expressions. The CLIST
evaluates the deepest level of nesting first and proceeds outward until all nesting
has been evaluated. In the following example, X is set to the value 7.
SET X=((1+4)*2+4)/2

The parentheses around 1+4 indicate that the CLIST should add these numbers
before performing multiplication. The parentheses around the compound
expression to the left of the division operator indicate that the CLIST should
evaluate the compound expression before performing division.

In the preceding example, if you omit the outer-level parentheses, the CLIST
performs division as the third operation (4/2) and sets X to the value 12:
SET X=(1+4)*2+4/2

Valid numeric ranges
The values of numeric variables must be integers in the range from -2,147,483,647
(-231+1) to +2,147,483,647 (+231-1).

A CLIST terminates and issues an error message in the following situations:
v You explicitly code a value outside the valid range.
v The evaluation of an expression produces an intermediate or final value outside

the valid range.

The double-byte character set (DBCS)
The CLIST language allows data to contain characters of the double-byte character
set. The double-byte character set (DBCS) is used in national languages such as
Japanese and Korean which have more than 256 characters, the maximum number
that can be represented with one byte of data. As the name implies, double-byte
characters are each composed of two bytes, allowing a vastly increased number of
characters.

DBCS delimiters
The CLIST language uses the hexadecimal codes X'0E' and X'0F' to
distinguishdouble-byte characters from EBCDIC characters. The hexadecimal code
X'0E' indicates the beginning of a string of DBCS characters, and the code X'0F'

Operators and Expressions

14 z/OS V2R1.0 TSO/E CLISTs

indicates the end of a DBCS string. Properly delimited DBCS character strings can
be passed as character data in CLIST variables, in comments, and in the operands
of CLIST statements.

This document commonly refers to the beginning and ending DBCS delimiters as
shift-out and shift-in characters. In examples, this document uses the convention
<d1d2> to represent DBCS strings enclosed in their shift-out and shift-in
characters, where d1 and d2 each represent a DBCS character, < represents X'0E',
and > represents X'0F'.

When DBCS strings are joined by continuation symbols, their contiguous shift-in
and shift-out characters are removed to create a single DBCS string. For example:
SET A = ABC<d1d2> +
<d3d4>DEF /* result: &A = ABC<d1d2d3d4>DEF

DBCS restrictions
The following restrictions apply to DBCS data in CLISTs:
v DBCS data cannot appear in any names, including the names of variables,

functions, statements, data sets, or labels.
v DBCS data cannot be used in variables or operands where numeric data is

expected, nor in any arithmetic operations.

This document lists further DBCS considerations and restrictions wherever they
apply.

Two CLIST built-in functions, &SYSONEBYTE and &SYSTWOBYTE, convert data
between the DBCS and EBCDIC character sets. These functions are described in
Chapter 7, “Using built-in functions,” on page 53.

Double-Byte Character Set (DBCS)

Chapter 3. Writing CLISTs - Syntax and conventions 15

Double-Byte Character Set (DBCS)

16 z/OS V2R1.0 TSO/E CLISTs

Chapter 4. Using symbolic variables

The CLIST language includes several types of variables. This chapter describes
how to use symbolic CLIST variables. Later chapters discuss other types of
variables, including control variables and variables set by CLIST built-in functions.

What is a symbolic variable?
A symbolic variable is a string of characters that you define as a symbol. Because
the variable is a symbol, you can assign different values to it at different times. By
assigning different values, you can do the same processing with different data.

For example, you can use the SET statement to assign different values to a
symbolic variable named PAY_RAISE:
SET PAY_RAISE = 20 /* Set the value of PAY_RAISE equal to 20

or
SET PAY_RAISE = 30 /* Set the value of PAY_RAISE equal to 30

You can use those different values of PAY_RAISE in the following equation, to
calculate your total annual raise based on various weekly raises:
SET ANNUAL_RAISE = &PAY_RAISE * 52

In CLISTs, the ampersand (&) means “the value of.” In the example above, the
CLIST multiplies the value of PAY_RAISE (20 or 30) by 52 and assigns the
resulting value to another variable, ANNUAL_RAISE. (In a SET statement, the
ampersand is required on variables to the right of the equal sign, and is optional
on variables to the left of the equal sign.)

When you execute a CLIST, it scans each line and replaces the symbolic variables
with their actual values. This process is called symbolic substitution.

In a CLIST, you can use symbolic variables to include variable data on TSO/E
commands and subcommands, on JCL statements, and on many of the CLIST
statements.

Valid names of variables
You can define symbolic variables with meaningful names. Meaningful variable
names, like PAY_RAISE, describe the contents of the variable and make CLISTs
easy to read and maintain. Note that an ampersand (&) is not part of a variable
name; it tells the CLIST to use the value of the variable. Follow these rules when
naming a symbolic variable:
1. The first character must be one of the following: A-Z, (a-z), _, #, $, @.

Note: The system recognizes the following hexadecimal codes for these
characters: _ (X'6D'), # (X'7B'), $ (X'5B'), @ (X'7C'). In countries other than the
U.S., these characters on a keyboard might generate different hexadecimal
codes and cause an error. For example, in some countries the $ character might
generate a X'4A'.

2. The remaining characters can be any of the above, and 0 through 9.

© Copyright IBM Corp. 1988, 2013 17

3. The variable name can be up to 252 characters in length (not counting the
ampersand).

4. Variable names must not match the character equivalents of CLIST operators,
such as “EQ” and “NE” (see Table 2 on page 13 for a list).

5. Special rules apply to the PROC statement. On PROC statements:
v All variables must begin with A-Z, and be in uppercase only.
v Names of keyword variables cannot contain the underscore (_), or be longer

than 31 characters. For more information, see “Using the PROC statement”
on page 19.

6. If variables are used on ISPF panels, they cannot exceed eight characters in
length.

7. Do not use the names of statements or their keywords as variable names. This
may cause unexpected results if used in a conditional statement, as in the
following sequence:
SET WHILE = &STR(ABC)
DO UNTIL &WHILE = &STR(ABC) WHILE (&COUNT<5)

SET &COUNT = &COUNT + 1
END

The results are also unpredictable if a keyword is used within a string, as in the
following:
SET COUNT = 0
SET VAR = ABC
DO UNTIL &VAR = &SUBSTR(3:3,WHILE) WHILE &COUNT < 5
SET COUNT = &COUNT + 1
END

Valid values of variables
The values of CLIST variables can generally include any characters you can enter
on a keyboard. See “Characters supported in CLISTs” on page 11 for information
about special characters.

Values of symbolic variables can be up to 32756 bytes long, minus the length of the
CLIST statement that assigns the value. For example, if the assignment statement is
six bytes long (SET A=), the value can contain 32750 bytes.

Defining symbolic variables and assigning values to them
There are several ways to define symbolic variables and assign values to them in a
CLIST. Here are some basic methods:
v Use the SET statement to define variables and give them specific values.
v Use the READ statement to define variables and get their values from a user.
v Use the PROC statement to define variables and get their values from

parameters passed to the CLIST.

The previous statements define variables explicitly. You can also define a variable
implicitly by referring to it in a CLIST statement before you explicitly define it. The
CLIST assigns a null value to such a variable.

Using the SET statement
You can use the SET statement to define a symbolic variable and assign a value to
it. For example, to assign the character string JOHN to the variable NAME, code:
SET NAME=JOHN

The variable NAME contains the value JOHN.

What is a Symbolic Variable?

18 z/OS V2R1.0 TSO/E CLISTs

You can also use the SET statement to assign an initial value to a variable, then
increase or decrease the value as necessary. For example, to control a loop you can
initialize a counter:
SET COUNTER = 1

For each execution of the loop, you can increment the counter:
SET COUNTER = &COUNTER + 1

In the SET statement, the ampersand is required when a variable appears in the
expression on the right side of the equal sign, but is optional when a variable
appears on the left side of the equal sign.

In addition to symbolic variables, you can also use CLIST control variables and
built-in functions in SET statements. For information about control variables and
built-in functions, see Chapter 6, “Using control variables,” on page 29 and
Chapter 7, “Using built-in functions,” on page 53.

Using the READ statement
You can use the READ statement to define a variable and give it a value provided
by the CLIST user. To prompt the user for input, issue a WRITE statement before
the READ statement, for example:
WRITE What is your name?
READ &NAME;

The user sees the question “What is your name?” displayed on the terminal. The
user's typed response, for example, JOHN, becomes the value of the variable
NAME. Your CLIST can then use this value in subsequent statements, such as:
WRITE HELLO &NAME! /* (result: HELLO JOHN!)

For more information about the READ and WRITE statements, see Chapter 9,
“Communicating with the terminal user,” on page 85.

Using the PROC statement
The PROC statement lets you pass parameters to a CLIST at invocation. The PROC
statement defines symbolic variables and assigns the parameters to the variables.
To do so, the PROC statement must be the first functional line of the CLIST (only
comments or blank lines can precede the PROC statement).

Passing parameters to a PROC statement
When invoking a CLIST explicitly, pass parameters in single quotation marks, for
example:
EX clistname ’parm1 parm2(value)’

When invoking the CLIST implicitly, omit the quotation marks:
%clistname parm1 parm2(value)

To pass parameters that contain single quotation marks, you must follow special
rules that are discussed in z/OS TSO/E Command Reference.

The PROC statement accepts two types of parameters: positional parameters and
keyword parameters. Parameter values in lowercase are changed to uppercase.

Defining Symbolic Variables

Chapter 4. Using symbolic variables 19

Using PROC with positional parameters
You can use the PROC statement to assign parameters to variables by position.
First, type a number on the PROC statement telling how many positional
parameters to expect (type 0 if none). Then specify the variables that you want to
use. For example, in the following PROC statement, the number 1 tells the CLIST
to assign the first parameter it receives to the variable NAME.
PROC 1 NAME

Thus, if you invoke the CLIST with the parameter JOE:
EX clistname ’JOE’

the variable NAME contains the value JOE.

Suppose you wanted the PROC statement to assign a second parameter to the
variable ADDRESS. You can write the statement as follows:
PROC 2 NAME ADDRESS

The invoker must know the correct order in which to pass positional parameters,
and must pass as many as you specify by number on the PROC statement. If the
invoker doesn't pass a positional parameter as expected, the CLIST prompts for it.
Positional parameters can have up to 252 characters (A-Z, 0-9, #, $, @, _).

Using PROC with keyword parameters
When input parameters are optional or can have default values, use the PROC
statement to assign the parameters to variables by name rather than by position.
Such parameters (keyword parameters) must match a variable name that you specify
on the PROC statement. See item 5 on page 18 for special rules on naming
variables specified on the PROC statement. The PROC statement can accept
keyword parameters with or without values.

Keyword parameters and their matching variables have up to 31 alphanumeric
characters (A-Z, 0-9, #, $, @). Keyword parameter values have the same length
restriction as symbolic variable values: 32768 bytes.

Keywords with values
If a CLIST has a value that applies to most but not all uses of the CLIST, you can
provide a default value and allow invokers to override it with a keyword
parameter.

In the following example, the 0 tells the CLIST to expect no positional parameters.
(If there are no positional parameters, a zero is required.) The notation STATE(NY)
gives the variable STATE the default value of NY.
PROC 0 STATE(NY)

The invoker can override the default value by passing the keyword parameter with
another value, for example:
EX clistname ’STATE(NJ)’

or
%clistname STATE(NJ)

Then the variable STATE takes the value NJ.

Defining Symbolic Variables

20 z/OS V2R1.0 TSO/E CLISTs

If you want a variable to have no default value but allow invokers to specify a
value, use empty parentheses. The following PROC statement lets invokers pass
keyword parameters such as STATE(NY) or STATE(NJ).
PROC 0 STATE()

In the example above, if an invoker passes the keyword parameter STATE without
a value, the CLIST prompts for the value. If a invoker does not pass the keyword
STATE at all, the variable STATE takes a null value.

Keywords without values
You can use keyword parameters without values to let invokers specify a CLIST
option. For example, to let an invoker tell a CLIST to print its results, you can code
the following:
PROC 0 PRINT

Then, if the invoker passes the keyword parameter PRINT:
EX clistname ’PRINT’

the variable PRINT takes the value PRINT. If the invoker does not pass the
parameter PRINT, the variable PRINT takes a null value. Your CLIST can test the
value to see if the invoker wants the print option. You can code this test using an
IF-THEN-ELSE sequence:
PROC 0 PRINT
IF &PRINT = PRINT THEN (print results) /* If the value of PRINT = print ...*/
ELSE ...

(For more information about the IF-THEN-ELSE sequence, see “The IF-THEN-ELSE
sequence” on page 67.)

Using PROC with both positional and keyword parameters
The following PROC statement receives both positional and keyword parameters:
PROC 2 NAME ADDRESS STATE(NY) ZIP() PRINT

The number 2 indicates that the invoker must pass positional parameters for the
first two variables, NAME and ADDRESS. Invokers can also pass keyword
parameters with values for the variables STATE (the default value is NY) and ZIP
(which has no default). In addition, invokers can pass the keyword parameter
PRINT without a value, to specify a print option.

Examples
The following CLIST addresses a memo based on PROC variables, displaying the
address at the terminal. You can also use I/O statements (described in Chapter 10,
“Performing file I/O,” on page 97) to write the address to a data set.
/********************************
/* Memo-addressing CLIST
/********************************
PROC 2 NAME ADDRESS STATE(NY) ZIP()
WRITE TO: &NAME
WRITE AT: &ADDRESS
WRITE &STATE &ZIP

Assume that the CLIST resides in the member MEMO of a partitioned data set
called PROC.CLIST. If you invoked it as follows:
ex proc(memo) ’Perry_Gordon 22_Oak_St._Pokville ZIP(10101)’

You can see the following output at your terminal:

Defining Symbolic Variables

Chapter 4. Using symbolic variables 21

TO: PERRY_GORDON
AT: 22_OAK_ST._POKVILLE

NY 10101

If you invoked it without parameters, for example,
ex proc(memo)

the CLIST will prompt you for a name and address. The state will default to NY,
and there will be no zip code.

The following CLIST issues the LISTDS command using the PROC, READ, and
SET statements to define variables and assign values to them.
/***/
/* This CLIST issues the LISTDS command, using a data set name and */
/* any options requested by the user. If the user enters OPTIONS */
/* as a parameter, READ and WRITE statements prompt for the options. */
/* The CLIST gets a LISTDS return code from the &LASTCC control */
/* variable, and writes the return code to the screen. */
/***/
PROC 1 DATASET OPTIONS /* Get a data set name */
IF &OPTIONS = OPTIONS THEN /* If the user wants options, */ +

DO /* prompt for input */
WRITE Type LISTDS options (MEMBER, HISTORY, or STATUS)
READ OPT

END
LISTDS &DATASET &OPT /* List data set with any options */
SET RETURN_CODE = &LASTCC /* Get return code from LISTDS */
WRITE RETURN CODE WAS &RETURN_CODE

More advanced uses of variables
The previous sections of this chapter discussed several basic ways to define and
assign values to symbolic variables, using the SET, READ, and PROC statements.
Other chapters describe how to use symbolic variables in more advanced
applications with other CLIST statements:
v The GLOBAL, NGLOBAL, SYSCALL, and SYSREF statements let you define

variables for use in nested CLISTs and CLIST subprocedures. See Chapter 8,
“Structuring CLISTs,” on page 67 for information about using variables with
these statements.

v The I/O statements OPENFILE, CLOSEFILE, GETFILE, and PUTFILE use
symbolic variables to send and receive input between files. See Chapter 10,
“Performing file I/O,” on page 97 for information about using variables with
these statements.

v The LISTDSI statement uses a special set of CLIST variables for retrieving
information about data set attributes. See Chapter 6, “Using control variables,”
on page 29 for information about this statement and its variables.

Combining symbolic variables
You can combine one symbolic variable with another symbolic variable to form a
compound variable.

Suppose a CLIST invokes programs that reside in nine data sets named
PROGRAM1 through PROGRAM9. By combining &PROGRAM and &I; you can
use the iterative DO loop structure to invoke PROGRAM1 through PROGRAM9 as
follows:

Defining Symbolic Variables

22 z/OS V2R1.0 TSO/E CLISTs

SET PROGRAM = PROGRAM
DO &I = 1 to 9
call mylib(&PROGRAM&I)
END

(For more information about using an iterative DO loop, see “The Iterative DO
sequence” on page 73.) By increasing the value of I from one to nine in a loop, a
CLIST can invoke the following set of programs without having to modify the
CALL command.
PROGRAM1
PROGRAM2...
PROGRAM9

You can also combine symbolic variables and character strings. When the variable
precedes the character string, place a period after the symbolic variable to
distinguish it from the character string:
&PROGRAM.A

No period is required when the character string precedes the symbolic variable
because the ampersand distinguishes the variable from the string:
A&PROGRAM

Using a variable to preserve leading spaces in a CLIST
When TSO/E processes a job in a CLIST, statements following the DD * statement
are left adjusted to column 1, thereby removing leading spaces. (This is unique to
CLIST processing and is not a batch concern.) If you need to preserve the blanks,
set a variable to a single blank or a string of blanks to provide as many blanks as
required, that is &STR() and precede all statements following the DD * with that
variable. The following example shows how to include the variable within your
CLIST.
PROC01
CONTROL
SET &A = STR()
SUBMIT * END(XX)
//JOBCARD
//OTHER
//JCL
//CARDS
// DD *
&A COPY ...
&A ...
&A ...
&A ...

Increasing the amount of storage available for variables
You can increase the amount of storage that CLIST can use for variables by
allowing the CLIST variable pool to reside in storage above the 16MB line. Use the
new PROFILE option VARSTORAGE(HIGH/LOW) to indicate whether variables
can use storage above the 16MB line (HIGH) or below the 16MB line (LOW). Using
VARSTORAGE(HIGH) means the system can trap more variables.

See the PROFILE command in z/OS TSO/E Command Reference for more
information.

More Advanced Uses of Variables

Chapter 4. Using symbolic variables 23

Nesting symbolic variables
In some situations, you might want to store the name of a variable in another
variable. For example, if you had to process two variables in the same way, you
can assign their names to a third variable.

When you store the name of a variable in another variable, you are “nesting”
variables.

To nest one variable in another variable, use an assignment statement with double
ampersands. For example, to nest the variable &CAT in the variable &MAMMAL,
code:
SET MAMMAL = &&CAT /* result: &MAMMAL contains &CAT */

The double ampersands (&&) prevent the CLIST from performing symbolic
substitution on the variable string &CAT. In the assignment statement, the CLIST
removes only the first ampersand, setting &MAMMAL to the value &CAT.

It is most useful to nest variables when you have to process many variables that
have similar names. For example, if you have to set &VARIABLE to different
variables such as &LINE1, &LINE2, during processing, you can code many SET
statements, or code the following sequence:
SET NUMBER=0
SET VARIABLE=&&LINE&NUMBER /* Initialize &VARIABLE to &LINE0 */
DO WHILE &NUMBER<8 /* Process from &LINE1-&LINE8 */
SET NUMBER = &NUMBER+1 /* Increase &NUMBER to create next

/* variable name */
SET VARIABLE=&&LINE&NUMBER /* Set &VARIABLE to next variable

/* name */
(processing)
END

For more examples of using nested variables, see “&SYSOUTLINE” on page 47,
and “Allocating data sets to SYSPROC - the SPROC CLIST” on page 133.

If you nest variables whose values contain double ampersands, the outermost
variable contains the name of the innermost variable. For example, after the
following statements execute, VARIABLE contains &LINE1 and DATA contains the
value 430.
SET LINE1=430
SET NUMBER=1
SET VARIABLE=&&LINE&NUMBER
SET DATA=&VARIABLE

Combining nested variables with character strings
As previously stated, you can combine a preceding variable with a character string
by placing a period between them (&PROGRAM.A). If the preceding variable is
nested, place an additional period after the variable for each level of nesting. For
example,
SET &BUDGET = June
SET &PROGRAM = &budget
call mylib(&PROGRAM.A) /* result: call mylib(JuneA)

If the character string precedes the variable, no period is required:
SET &BUDGET = June
SET &PROGRAM = &budget
call mylib(A&PROGRAM) /* result: call mylib(AJune)

More Advanced Uses of Variables

24 z/OS V2R1.0 TSO/E CLISTs

Substitution of nested variables
If a CLIST encounters nested symbolic variables in a line, it normally scans the line
(performs symbolic substitution) multiple times until all symbolic variables are
resolved. For example:
SET A = 50
SET B = &&C /* result: &B contains &C
SET C = &A+50 /* result: &C contains 100
SET D = &&A /* result: &D contains &A
SET X = (&D+&B)/&D /* result: &X contains 3

To resolve the fifth expression the CLIST uses the values assigned to the symbolic
variables A-D and assigns the value 3 to X.

You can limit the number of times the CLIST scans a line of nested variables, using
the &SYSNSUB built-in function. For example, you can specify that the CLIST scan
the fifth expression in the preceding example only once, so the variables were
resolved to only one level of symbolic substitution. As a result, the CLIST needs to
resolve &X from (&D+&B)/&D to (&A+&C)/&A, and go no further. See Chapter 7,
“Using built-in functions,” on page 53 for a description and examples of
&SYSNSUB.

Combining variables containing DBCS data
When variables containing data of the double-byte character set (DBCS) are
combined with other DBCS data, contiguous DBCS delimiters are removed to
create a single DBCS string. For example:
SET A = <d1d2>
SET B = <d3d4>&A<d5d6> /* result: &B = <d3d4d1d2d5d6>

More Advanced Uses of Variables

Chapter 4. Using symbolic variables 25

More Advanced Uses of Variables

26 z/OS V2R1.0 TSO/E CLISTs

Chapter 5. Using keyword names

Using keyword names as variables or labels within a CLIST
You can sometimes use KEYWORD names such as IF, THEN, ELSE, SELECT,
WHEN, OTHERWISE, GT, LE, etc. as variables or labels within a CLIST without a
problem as long as its usage context is not ambiguous and does not infer its
reserved usage. However, it is strongly recommended that you not use CLIST
statement names, built-in function names, or CLIST control variable names for
anything other than their intended use. Doing so might be allowable in a given
context, but it could be confusing to anyone else trying to maintain such a CLIST
over time. For clarity, usage of CLIST instruction or statement names, CLIST
built-in function names, or CLIST built-in variable names should be avoided for
any usage other than its predefined, intended use for those named entities.

CLIST instructions or statements are documented in Chapter 14, “Reference,” on
page 145 and include:
v ATTN
v CLOSFILE
v CONTROL
v DATA-ENDDATA
v DATA PROMPT-ENDDATA
v DO
v END
v ERROR
v EXIT
v GETFILE
v GLOBAL
v GOTO
v IF-THEN-ELSE
v LISTDSI
v NGLOBAL
v OPENFILE
v PROC
v PUTFILE
v READ
v READDVAL
v RETURN
v SELECT
v SET
v SYSCALL
v SYSREF
v TERMIN AND TERMING
v WRITE AND WRITENR

CLIST built-in function names like those documented in Chapter 7, “Using built-in
functions,” on page 53 include:
v &DATATYPE
v &EVAL
v &LENGTH
v &NSTR
v &STR
v &SUBSTR

© Copyright IBM Corp. 1988, 2013 27

v &SYSCAPS
v &SYSCLENGTH
v &SYSCSUBSTR
v &SYSDSN
v &SYSINDEX
v &SYSLC
v &SYSNSUB
v &SYSONEBYTE
v &SYSTWOBYTE

SPECIAL variables and CLIST control variables are discussed in Chapter 6, “Using
control variables,” on page 29, and listed in Table 3 on page 29, Table 4 on page 31,
and Table 5 on page 31. These include variables beginning with &SYS... and the
special variables &LASTCC and &MAXCC.

Note: Generally, a user should not use local defined CLIST variable or label names
that begin with "SYS..." in order to avoid any possible conflict with current or
future CLIST control variables or statements of the same name.

Using keyword names as variables or labels within a CLIST

28 z/OS V2R1.0 TSO/E CLISTs

Chapter 6. Using control variables

The CLIST language includes a set of control variables. Control variables provide
information about MVS™, TSO/E, and the current session, such as levels of
software available, the time of day, and the date. Your CLISTs can use the control
variables to obtain such current information.

You code a control variable as you need a symbolic variable. For example, to get
the time of day, your CLIST can use the control variable &SYSTIME as follows:
WRITE It’s &SYSTIME

If your CLIST was executing at 2:32:58 PM, the result need to be:
It’s 14:32:58

You do not have to define control variables. Control variables have constant
names; you refer to the variable name to obtain information.

Control variables to which you can assign values are called modifiable control
variables. The variable &SYSOUTTRAP is an example of a modifiable control
variable. &SYSOUTTRAP tells how many lines of TSO/E command output should
be saved in a CLIST. If you want to save 100 lines of output from each TSO/E
command in your CLIST, you can set &SYSOUTTRAP to 100, as follows:
SET &SYSOUTTRAP = 100

Your CLIST need then be able to retrieve and process up to 100 lines of output
from each command in the CLIST. If you did not want to save output from some
commands, you need to reset &SYSOUTTRAP to zero before issuing those
commands.

Overview of using control variables
Table 3 lists the control variables in related categories, and indicates what page
they are on, whether they are modifiable, and whether they are retrievable by the
variable access routine, IKJCT441. For more information about IKJCT441, refer to
z/OS TSO/E Programming Services.

Table 4 on page 31 briefly describes the modifiable control variables, and Table 5 on
page 31 briefly describes the control variables you cannot modify.

Table 3. Control variable by category

Category Variable Modifiable
Retrievable by
IKJCT441 Reference

Current date and time &SYSDATE
&SYSJDATE
&SYSSDATE
&SYS4DATE
&SYS4JDATE
&SYS4SDATE
&SYSTIME
&SYSSTIME

No
No
No
No
No
No
No
No

No
No
No
No
No
No
No
No

&SYSDATE
&SYJDATE
&SYSSDATE
&SYS4DATE
&SYS4JDATE
&SYS4SDATE
&SYSTIME
&SYSSTIME

1. Lets you test or modify the CLIST CONTROL statement values.

© Copyright IBM Corp. 1988, 2013 29

Table 3. Control variable by category (continued)

Category Variable Modifiable
Retrievable by
IKJCT441 Reference

Terminal-related &SYSLTERM
&SYSWTERM

No
No

No
No

&SYSLTERM
&SYSWTERM

User-related &SYSUID
&SYSPREF
&SYSPROC

No
No
No

No
No
No

“&SYSUID” on page 35
“&SYSPREF” on page 35
“&SYSPROC” on page 36

System-related &SYSAPPCLU
&SYSCLONE
&SYSCPU
&SYSDFP
&SYSHSM
&SYSISPF
&SYSJES
&SYSLRACF
&SYSMVS
&SYSNAME
&SYSNODE
&SYSOPSYS
&SYSRACF
&SYSPLEX
&SYSSECLAB
&SYSSMFID
&SYSSMS
&SYSSRV
&SYSSYMDEF
&SYSTERMID
&SYSTSOE

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

“&SYSAPPCLU” on page 39
“&SYSCLONE” on page 36
&SYSCPU
“&SYSDFP” on page 37
“&SYSHSM” on page 37
“&SYSISPF” on page 38
“&SYSJES” on page 38
“&SYSLRACF” on page 38
“&SYSMVS” on page 39
“&SYSNAME” on page 39
“&SYSNODE” on page 40
“&SYSOPSYS” on page 40
“&SYSRACF” on page 40
“&SYSPLEX” on page 41
“&SYSSECLAB” on page 41
“&SYSSMFID” on page 41
“&SYSSMS” on page 41
&SYSSRV
“&SYSSYMDEF” on page 42
“&SYSTERMID” on page 34
“&SYSTSOE” on page 42

CLIST-related &SYSSCAN
&SYSENV
&SYSICMD
&SYSPCMD
&SYSSCMD
&SYSNEST

Yes
No
No
No
No
No

Yes
No
No
No
No
No

“&SYSSCAN” on page 43
“&SYSENV” on page 42
“&SYSICMD” on page 43
“&SYSPCMD” on page 43
“&SYSSCMD” on page 43
“&SYSNEST” on page 44

CLIST-related 1 &SYSPROMPT
&SYSSYMLIST
&SYSCONLIST
&SYSLIST
&SYSASIS
&SYSMSG
&SYSFLUSH

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

“&SYSPROMPT” on page 44
“&SYSSYMLIST” on page 44
“&SYSCONLIST” on page 44
“&SYSLIST” on page 45
“&SYSASIS” on page 45
“&SYSMSG” on page 45
“&SYSFLUSH” on page 45

Input-related &SYSDLM
&SYSDVAL

No
Yes

Yes
Yes

“&SYSDLM” on page 46
“&SYSDVAL” on page 46

Output-related &SYSOUTTRAP
&SYSOUTLINE

Yes
Yes

Yes
Yes

“&SYSOUTTRAP” on page 47
“&SYSOUTLINE” on page 47

Return codes &LASTCC
&MAXCC

Yes
Yes

Yes
Yes

“&LASTCC” on page 49
“&MAXCC” on page 50

&SYSABNCD
&SYSABNRC
&SYSCMDRC

Yes
Yes
Yes

Yes
Yes
Yes

“Getting results of the TSOEXEC
command” on page 50

Overview of using Control Variables

30 z/OS V2R1.0 TSO/E CLISTs

Table 4. Modifiable control variables (alphabetically)

Modifiable
variable Contents

&LASTCC Contains the return code from the last operation (TSO/E command,
subcommand, or CLIST statement).

&MAXCC Contains the highest return code issued up to this point in the CLIST or
the highest passed back from a nested CLIST.

&SYSABNCD Contains the ABEND code returned by the command most recently
invoked by the TSOEXEC command.

&SYSABNRC Contains the ABEND reason code returned by the command most
recently invoked by the TSOEXEC command.

&SYSASIS ON specifies CONTROL NOCAPS/ASIS. OFF specifies CONTROL
CAPS.

&SYSCMDRC Contains the command return code returned by the command most
recently invoked by the TSOEXEC command.

&SYSCONLIST ON specifies CONTROL CONLIST. OFF specifies CONTROL
NOCONLIST.

&SYSDVAL (1) Contains the input line supplied by the user when the user returned
control to the CLIST after a TERMIN or TERMING statement. (2)
Contains the input line supplied by the user after a READ statement
without operands. (3) Contains the value after the execution of a SET
SYSDVAL=.

&SYSFLUSH ON specifies CONTROL FLUSH. OFF specifies CONTROL NOFLUSH.

&SYSLIST ON specifies CONTROL LIST. OFF specifies CONTROL NOLIST.

&SYSMSG ON specifies CONTROL MSG. OFF specifies CONTROL NOMSG.

&SYSOUTLINE Contains the number of lines of command output produced by a
TSO/E command; points to the CLIST variables containing the output.

&SYSOUTTRAP Contains the maximum number of lines of TSO/E command output to
be saved.

&SYSPROMPT ON specifies CONTROL PROMPT. OFF specifies CONTROL
NOPROMPT.

&SYSSCAN Contains the maximum number of times a CLIST can rescan a line to
evaluate variables. The default is 16 times. The maximum value is
+2,147,483,647. The minimum is 0.

&SYSSYMLIST ON specifies CONTROL SYMLIST. OFF specifies CONTROL
NOSYMLIST.

Table 5. Non-modifiable control variables (alphabetically)

Non-modifiable
variable Contents

&SYSAPPCLU Contains the APPC/MVS logical unit (LU) name.

&SYS4DATE Contains the current date in the form: month/day/year, where year is
presented as four-digit number.

&SYS4JDATE Contains the Julian date in the form: year.days, where year is presented
as four-digit number.

&SYS4SDATE Contains the date in the form: year/month/day, where year is presented
as four-digit number.

&SYSCLONE Contains the MVS system symbol representing its system name.

Overview of using Control Variables

Chapter 6. Using control variables 31

Table 5. Non-modifiable control variables (alphabetically) (continued)

Non-modifiable
variable Contents

&SYSCPU Contains the number seconds of CPU time used during the session in
the form: seconds.hundredths_of_seconds

&SYSDATE Contains the current date in the form: month/day/year

&SYSDFP Contains the level of DFSMSdfp in the operating system.

&SYSDLM Contains the input line supplied by the user to return control to the
CLIST after a TERMIN or TERMING statement.

&SYSENV Indicates whether the CLIST is executing in the foreground or
background environment.

&SYSHSM Indicates the level of the Data Facility Storage Management Subsystem
Hierarchical Storage Manager (DFSMShsm).

&SYSICMD Contains the name by which the invoker implicitly invoked this CLIST.
(This value is null if the invoker explicitly invoked the CLIST.)

&SYSISPF Indicates whether ISPF dialog management services are available to the
CLIST.

&SYSJDATE Contains the Julian date in the form: year.days

&SYSJES Contains the name and the level of the JES installed.

&SYSLRACF Indicates the level of RACF® available to the CLIST. (See &SYSRACF
below)

&SYSLTERM Contains the number of lines available for applications on your
terminal screen.

&SYSMVS Contains the level of the base control program (BCP) component of
z/OS.

&SYSNAME Contains the system's name your CLIST is running on, as specified on
the SYSNAME statement in SYS1.PARMLIB member IEASYSxx.

&SYSNEST Indicates whether the currently executing CLIST was invoked by
another CLIST.

&SYSNODE Contains the network node name of your installation's JES.

&SYSOPSYS Contains the z/OS name, version, release, modification level, and
FMID.

&SYSPCMD Contains the name (or abbreviation of the name) of the most recently
executed TSO/E command in this CLIST.

&SYSPLEX Contains the MVS sysplex name as found in the COUPLExx or
LOADxx member of SYS1.PARMLIB.

&SYSPREF Contains the prefix that TSO/E uses to fully qualify data set names.

&SYSPROC Contains the name of the logon procedure used when the TSO/E user
logged on.

&SYSRACF Indicates whether RACF is installed and available to the CLIST.

&SYSSCMD Contains the name of the most recently executed subcommand.

&SYSSDATE Contains the date in the form: year/month/day

&SYSSECLAB Contains the security label (SECLABEL) name of the TSO/E session.

&SYSSMFID Identifies the system on which System Management Facilities (SMF) is
active.

&SYSSMS Indicates whether DFSMS/MVS is available to your CLIST.

Overview of using Control Variables

32 z/OS V2R1.0 TSO/E CLISTs

Table 5. Non-modifiable control variables (alphabetically) (continued)

Non-modifiable
variable Contents

&SYSSRV Contains the number of System Resource Manager (SRM) service units
used during the session.

&SYSSYMDEF Contains the symbolic name of the MVS system.

&SYSTERMID Contains the terminal ID of the terminal where the CLIST has been
started.

&SYSSTIME Contains the time of day in the form: hours:minutes

&SYSTIME Contains the time of day in the form: hours:minutes:seconds

&SYSTSOE Indicates the level of TSO/E installed in the form:
version release modification_number

&SYSUID Contains the user ID under which the current session is logged.

&SYSWTERM Contains the width of the screen.

Getting the current date and time
The following control variables provide information related to the current date and
time. You cannot modify any of them with an assignment statement.

&SYSDATE, &SYSSDATE, and &SYSJDATE
Three variables provide the current date. Note that these variables return the
current year as a two-digit number. In support of dates equal or greater than 2000,
another set of variables is provided that returns the current year as four-digit
number.

&SYSDATE provides the date in the American standard form: month/day/year. If
executed on June 9, 2001, the following statement displays the message “Today is
06/09/01”:
WRITE Today is &SYSDATE

&SYSSDATE provides the date in a form that can be sorted: year/month/day. If
executed on June 9, 2001, the following statement displays the message “Today is
01/06/09”:
WRITE Today is &SYSSDATE

&SYSJDATE provides the date in the Julian form: year.days. If executed on June 9,
2001, the following statement displays the message “Today is 01.160”:
WRITE Today is &SYSJDATE

&SYSDATE and &SYSSDATE provide data that contain slashes. As a result, when
they appear in expressions on comparative and assignment statements, enclose
them in &STR built-in functions. For example, in the following example
&SYSDATE appears in a statement containing comparative expressions; therefore,
enclose it in a &STR built-in function. However, the use of &STR is unnecessary on
the WRITE statement.
IF &STR(&SYSDATE) = &STR(06/09/01) THEN +
WRITE On &SYSDATE, the system was down for &TMIN minutes.

Overview of using Control Variables

Chapter 6. Using control variables 33

&SYS4DATE, &SYS4SDATE, and &SYS4JDATE
Three variables provide the current date in a format that presents years as
four-digit numbers. As opposed to the variables that present the current year as
two-digit numbers, these variables are capable to handle years beyond 1999.

&SYS4DATE provides the date in the American standard form: month/day/year. If
executed on November 22, 2001, the following statement displays the message
“Today is 11/22/2001”:
WRITE Today is &SYS4DATE

&SYS4SDATE provides the date in a form that can be sorted: year/month/day. If
executed on November 22, 2001, the following statement displays the message
“Today is 2001/11/22”:
WRITE Today is &SYS4SDATE

&SYS4JDATE provides the date in the Julian form: year.days. If executed on
November 22, 2001, the following statement displays the message “Today is
2001.326”:
WRITE Today is &SYS4JDATE

&SYS4DATE and &SYS4SDATE provide data that contain slashes. As a result,
when they appear in expressions on comparative and assignment statements,
enclose them in &STR built-in functions. For example, in the following example
&SYS4DATE appears in a statement containing comparative expressions; therefore,
enclose it in a &STR built-in function. However, the use of &STR is unnecessary on
the WRITE statement.
IF &STR(&SYS4DATE) = &STR(11/22/2001) THEN +
WRITE On &SYS4DATE, the system was down for &TMIN minutes.

&SYSTIME and &SYSSTIME
Two variables provide the current time of day.

&SYSTIME provides the time in the form: hours:minutes:seconds. If executed at 2:32
and 58 seconds p.m., the following statement displays the message “It's 14:32:58”:
WRITE It’s &SYSTIME

&SYSSTIME provides a shortened version of &SYSTIME, in the form:
hours:minutes. If executed at 2:32 and 58 seconds p.m., the following statement
displays the message “It's 14:32”:
WRITE It’s &SYSSTIME

Getting terminal characteristics
Three control variables provide information about the terminal to which the user is
logged on.

&SYSTERMID
&SYSTERMID contains the terminal ID of the terminal where the CLIST has been
started. For example,
PROC 0
WRITE &SYSTERMID
EXIT

Getting Current Date and Time

34 z/OS V2R1.0 TSO/E CLISTs

may return a terminal ID of M02XA06R, with a maximum length of eight characters.
Trailing blanks are removed.

If your CLIST runs in the background, the &SYSTERMID control variable returns a
null string.

&SYSLTERM and &SYSWTERM
&SYSLTERM provides the number of lines available for applications on your
terminal screen. &SYSWTERM provides the width of the screen.

&SYSLTERM and &SYSWTERM can be used when a CLIST reformats the screen
using Session Manager commands. For example, a CLIST called HORZNTL splits
the terminal screen horizontally based on the number of lines on the screen and its
width. The following section of HORZNTL substitutes the control variables in the
Session Manager commands that define the windows for the reformatted screen.
By using &SYSLTERM and &SYSWTERM instead of explicit screen positions,
HORZNTL makes optimal use of the space available on a given screen.
SET LINE = (&SYSLTERM-5)/2
SET TOPS = &LINE-1;
SET BOT = &LINE+1;
SET BOTS = (&SYSLTERM-1)-&BOT
SET BOTSX = (&SYSLTERM-3)-&BOT
smput /save screen;save.pfk;+

save.win main;save.win line;save.win current;+
del.win main;del.win line;del.win current;+
define.window main 1 1 &TOPS &SYSWTERM;+
define.window line &LINE 1 1 &SYSWTERM;+
define.window current &BOT 1 &BOTS &EVAL(&SYSWTERM-18)/

Getting information about the user
Three control variables provide user-related information including the current user
ID, logon procedure, and data set prefix.

&SYSUID
&SYSUID provides the user ID under which the current TSO/E session is logged
on. Use this variable in messages and wherever logic depends on, or references,
the user ID. For example, the following message displays information about how
the CLIST is invoked:
WRITE CLIST invoked by user &SYSUID at &SYSTIME on &SYSSDATE

&SYSPREF
&SYSPREF provides the current data set name prefix that is prefixed to
non-fully-qualified data set names. The PROFILE command controls this prefix.
Use &SYSPREF when you want to allocate data sets that are unique to the user
who invoked the CLIST. For example, the following ALLOCATE command
allocates unique data sets for invokers of a CLIST containing the command:
alloc da(’&SYSPREF..records.data’) shr reuse

Two periods are required between &SYSPREF and RECORDS; the first indicates
the end of the variable name, and the second is part of the text to be concatenated.
After substitution, the command has the following form:
alloc da(’prefix.records.data’) shr reuse

Getting Terminal Characteristics

Chapter 6. Using control variables 35

&SYSPROC
&SYSPROC provides the name of the logon procedure used when the user logged
on to the current TSO/E session. You can use &SYSPROC to determine whether
programs, such as Session Manager, are available to the user. For example, before
invoking the CLIST (HORZNTL) that reformats the screen using Session Manager
commands, verify that Session Manager is active. One way to make the verification
is to check the logon procedure as follows:
IF &STR(&SYSPROC) = SMPROC THEN +
%horzntl
ELSE +
DO
WRITE Your screen cannot be reformatted.
WRITE Log on using SMPROC as logon proc.
END

&SYSPROC provides the following values:
v When the CLIST is invoked in the foreground (&SYSENV provides 'FORE'),

&SYSPROC will provide the name of the current LOGON procedure.
v When the CLIST is invoked in batch (from a job submitted through the SUBMIT

command), &SYSPROC will provide the value 'INIT', which is the ID for the
initiator.

v When the CLIST is invoked from a Started Task (an address space that is started
through the Start operator command), &SYSPROC will provide the ID of the
started task. If 'S procname' is issued from the operator console, &SYSPROC will
provide the value 'procname'.

Getting information about the system
The following control variables provide information about the system environment
under which the CLIST is executing.

You can use these control variables in your CLISTs for different purposes. For
example, the variables &SYSNAME, &SYSPLEX, &SYSCLONE, and &SYSSYMDEF
allow you to write common CLISTs that are to run in a sysplex environment. You
can build or identify the system-specific data set names by using the values
returned by these control variables.

&SYSCLONE
&SYSCLONE returns the MVS system symbol representing its system name. It is a
1- to 2-byte shorthand notation for the system name. The value is obtained from
SYS1.PARMLIB member IEASYMxx 2. For example, if SYSCLONE(A1) is specified in
IEASYMxx, then
PROC 0
WRITE &SYSCLONE
EXIT

returns a value of A1. A null string is returned if no MVS SYSCLONE ID is
specified in IEASYMxx.

&SYSCPU and &SYSSRV
&SYSCPU provides the number of seconds of central processing unit (CPU) time
used during the session in the form: seconds.hundredths_of_seconds.

2. Introduced with MVS/ESA SP 5.2; provides a mechanism to assign system substitution symbols names and values.

Getting Information about the User

36 z/OS V2R1.0 TSO/E CLISTs

&SYSSRV provides the number of System Resource Manager (SRM) service units
used during the session.

These variables can be used for measuring the performance of applications and
reporting session duration to the user.

For example, to measure the performance of an application invoked from a CLIST,
you can code the following:
SET CPU = &SYSCPU
SET SRV = &SYSSRV
call mylib(payroll) ’50,84’
SET CPU = &STR(&SYSCPU-&CPU)
SET SRV = &STR(&SYSSRV-&SRV)
call mylib(calc) ’&STR(&CPU),&STR(&SRV)’ /* Measure performance */...

/* Do calculations and pass back results */...
WRITE &CPU &SRV

The user can then see the number of seconds of CPU time and SRM service units
used by the program PAYROLL.

&SYSDFP
&SYSDFP contains the level of DFSMSdfp in the operating system. For example,
PROC 0
WRITE &SYSDFP
EXIT

might return a value of 03.01.10.00. That represents z/OS Version 1, Release 10,
Modification Level 0. The value returned is in the format cc.vv.rr.mm, where cc is a
product name code, vv the version, rr the release number, and mm the modification
level. All values are two-digit decimal numbers.

For each level of the operating system, only one value for &SYSDFP is possible.

These are the values for the cc code that have been used in earlier operating
systems:

00 MVS/XA DFP Version 2 or MVS/DFP Version 3 running with MVS/SP on
MVS/XA or MVS/ESA.

01 DFSMSdfp in DFSMS/MVS running with MVS/SP on MVS/ESA or
OS/390®.

02 DFSMSdfp in OS/390 Version 2 Release 10, or in z/OS Version 1 Release 1
or z/OS Version 1 Release 2. All three releases returned "02.02.10.00".

03 DFSMSdfp in z/OS Version 1 Release 3 or later.

&SYSHSM
When DFSMShsm (Data Facility Storage Management Subsystem Hierarchical
Storage Manager) is active, &SYSHSM indicates its level. When DFSMShsm is not
active, &SYSHSM contains a null string.

&SYSHSM contains a character string of four two-digit decimal numbers separated
by periods. The value returned is in the format cc.vv.rr.mm, where cc is a product
name code, vv the version, rr the release number, and mm the modification level.
All values are two-digit decimal numbers.

Getting Information about the System

Chapter 6. Using control variables 37

For each level of the operating system, only one value for &SYSHSM is possible.

These are the values for the cc code that have been used in earlier operating
systems:

02 DFSMShsm in OS/390 Version 2 Release 10, or in z/OS Version 1 Release 1
or Release 2. All three releases returned "02.02.10.00".

03 DFSMShsm in z/OS Version 1 Release 3 or later.

For example, a value of 02.02.10.00 represents DFSMShsm for OS/390 V2R10. A
value of 03.01.10.00 represents z/OS Version 1 Release 10 Modification Level 0.

Before OS/390 V2R10, &SYSHSM contained a character string of four decimal
digits. The first digit represented the version. The second and third digits
represented the release number of DFSMShsm. The fourth digit represented the
modification level. For example, 1050 represented DFSMShsm 1.5.0.

&SYSISPF
&SYSISPF indicates whether ISPF dialog manager services are available. The
variable can have one of two values:

ACTIVE ISPF services are available.

NOT ACTIVE
ISPF is not initialized.

&SYSJES
&SYSJES contains the name and the level of the JES installed. For example,
PROC 0
WRITE &SYSJES
EXIT

may return JES2 OS 2.10. In this example JES2 is the JES name and OS 2.10 is the
JES level, representing version and release number of JES2. The JES level may
contain a modification level as well.

The values returned are provided by the subsystem interface request routine
(IEFSSREQ).

Both strings are separated by a blank character; any trailing blank characters are
removed. If either the JES name or level returns an empty character string, then no
separating blank character is inserted.

If the subsystem is not active the string -INACTIVE- is returned (note the string
delimiters).

If the system finds that the subsystem is neither JES2 4.3 or later nor JES3 5.1.1 or
later, the &SYSJES control variable contains the string -DOWNLEVEL- (note the string
delimiters).

&SYSLRACF
&SYSLRACF indicates the level of RACF installed on the system. If RACF is not
installed, &SYSLRACF contains a null value.

Getting Information about the System

38 z/OS V2R1.0 TSO/E CLISTs

&SYSAPPCLU
&SYSAPPCLU contains the MVS/APPC logical unit (LU) name. The LU name
identifies the TSO/E address space your CLIST will be running in as the SNA
addressable unit for Advanced-Program-to-Program-communication (APPC). The
LU name is obtained through the APPC/MVS Advanced TP Callable Services
(ATBEXAI - Information Extract Service). For example,
PROC 0
WRITE &SYSAPPCLU
EXIT

may return an LU name of LU0001. Trailing blanks are removed. A null string is
returned if:
v There is no APPC activity in the address space the CLIST is running in, or
v No LU name is provided by the APPC/MVS Advanced TP Callable Services.

Note: CLISTs do not support CPI Communication (a method to let one program
communicate with another program on the same or other MVS system in an SNA
network). Therefore the use of the &SYSAPPCLU control variable makes sense
only in a CLIST that is invoked by a program (for example, a REXX exec) that has
established APPC. If the control variable is used outside this environment, a null
string is returned.

&SYSMVS
&SYSMVS contains the level of the base control program (BCP) component of
z/OS. For example,
PROC 0
WRITE &SYSMVS
EXIT

may return SP7.0.1 as the level of the BCP component.

The value returned is that of the CVTPRODN field in the communications vector
table (CVT).

Note: The format of the value returned by &SYSMVS may change in the future,
but will remain the content of the CVTPRODN field.

&SYSNAME
&SYSNAME returns the system's name your CLIST is running on, as specified in
SYS1.PARMLIB member IEASYSxx on the SYSNAME statement. For example,
PROC 0
WRITE &SYSNAME
EXIT

may return ATQS as the MVS system name.

You may want to use the &SYSNAME control variable to identify on which system
in a multi-system global resource serialization complex your CLIST is running on.
For details on how the SYSNAME value is used in a multi-system complex, see the
z/OS MVS Initialization and Tuning Reference.

Getting Information about the System

Chapter 6. Using control variables 39

&SYSNODE
&SYSNODE contains the network node name of your installation's JES. This name
identifies the local JES in a network of systems or system complexes being used for
network job entry (NJE) tasks. For example,
PROC 0
WRITE &SYSNODE
EXIT

may return a value of BOE9, which is the network node name of your local JES.

The node name returned by the &SYSNODE control variable derives from the
NODE initialization statement of JES.

If the system finds that the subsystem is not active, the &SYSNODE control
variable contains the string -INACTIVE- (note the string delimiters).

If the system finds that the subsystem is neither JES2 4.3 or later nor JES3 5.1.1 or
later, the &SYSNODE control variable contains the string -DOWNLEVEL- (note the
string delimiters).

&SYSOPSYS
&SYSOPSYS contains the z/OS name, version, release, modification level, and
FMID of the BCP portion of your installation's operating system. For example,
PROC 0
WRITE &SYSOPSYS
EXIT

may return a string of Z/OS 01.01.00 JBB7713, where Z/OS represents the product
name, followed by a blank character, followed by an eight-character string
representing version, release, modification number, followed by a blank character,
followed by the FMID.

The &SYSOPSYS control variable was introduced after TSO/E Version 2 Release 5
with APAR OW17844. If you use this variable in a environment earlier than TSO/E
2.5, or without the PTF associated with APAR OW17844, the system returns a null
string.

Note: To display the operating system product name as "z/OS" instead of "Z/OS",
a CONTROL ASIS or CONTROL NOCAPS statement must be included before the
&SYSOPSYS statement. Also notice that a “/” character will appear in the product
name, for example, in “z/OS”. CLISTs might interpret that character to be the
divide operator. For example, SET LEVEL=&SYSOPSYS might produce an error
message. To prevent a CLIST from evaluating the resulting string you should use
the &STR function; for example, SET LEVEL=&STR(&SYSOPSYS).

&SYSRACF
&SYSRACF indicates the status of RACF. The variable can have one of three
values:

AVAILABLE
RACF services are available.

NOT AVAILABLE
RACF is not initialized.

Getting Information about the System

40 z/OS V2R1.0 TSO/E CLISTs

NOT INSTALLED
RACF is not installed.

&SYSPLEX
&SYSPLEX returns the MVS sysplex name as found in the COUPLExx or LOADxx
member of SYS1.PARMLIB. For example,
PROC 0
WRITE &SYSPLEX
EXIT

may return a value of PLEXNY02. The value has a maximum of eight characters;
trailing blanks are removed. If no sysplex name is specified in SYS1.PARMLIB,
&SYSPLEX returns a null string.

&SYSSECLAB
&SYSSECLAB returns the SECLABEL name that is valid for the TSO/E session
where the CLIST is started. For example,
PROC 0
WRITE &SYSSECLAB
EXIT

may return a value of SYSHIGH as the current security label name. Trailing blanks
are removed.

Note: The use of the &SYSSECLAB control variable requires that RACF is
installed, and that security label checking has been activated. If no security
information is found, the &SYSSECLAB control variable contains a null string.

&SYSSMS
&SYSSMS indicates whether SMS (storage management subsystem) is available to
your CLIST. For example,
PROC 0
WRITE &SYSSMS
EXIT

returns one of the following character strings:

UNAVAILABLE
Obsolete and should no longer occur. System logic error. Contact your IBM
service representative.

INACTIVE
SMS is available on your system but not active.

ACTIVE SMS is available and active, so your CLIST can depend on it.

&SYSSMFID
&SYSSMFID identifies the system on which System Management Facilities (SMF) is
active. The value returned is as specified in SYS1.PARMLIB member SMFPRMxx
on the SID statement. Trailing blanks are removed. For example,
PROC 0
WRITE &SYSSMFID
EXIT

Getting Information about the System

Chapter 6. Using control variables 41

returns ATQS as the SMF ID. Note that the value returned by &SYSSMFID and
&SYSNAME may be the same in your installation. For details on the SYSNAME
and SID statement in member SMFPRMxxee, see the z/OS MVS Initialization and
Tuning Reference.

&SYSSYMDEF
&SYSSYMDEF(symbol_name) returns the value represented by the variable
"symbol_name" as specified in SYS1.PARMLIB member IEASYMxx on the SYSDEF
... SYMDEF statement. Or, the 'string' can also be one of the system static or
dynamic symbols as defined in z/OS MVS Initialization and Tuning Reference.

For example, if SYMDEF(&SYSTEMA = ’SA’) is specified in IEASYMxx, then
PROC 0
WRITE &SYSSYMDEF(SYSTEMA)
EXIT

returns a value of SA. A null string is returned if the symbolic name is not specified
in IEASYMxx, and it is not one of the MVS defined static or dynamic symbols.

Here, the symbol name SYSTEMA is assigned a name of SA on the SYMDEF
statement in IEASYMxx. The &SYSSYMDEF(symbol_name) control variable resolves
to a string of SA.

You can also retrieve the value for one of the MVS defined static or dynamic
system symbols. For example:
WRITE &SYSSYMDEF(JOBNAME) /*Returns JOBNAME

BOB perhaps */

Refer to z/OS MVS Initialization and Tuning Reference for a discussion and a list of
the currently defined MVS static and dynamic system symbols.

For example, you can retrieve the IPL Volume Serial Name of your system using
WRITE &SYSSYMDEF(SYSR1) /* may return 640S06

as IPL Vol. Ser. Name */

The SYSSYMDEF function goes through CLIST substitution first, the result of
which must be a 1-8 character name specifying the symbol that has been defined in
the SYMDEF statement. Any other values including CLIST delimiters may cause
unpredictable results.

&SYSTSOE
&SYSTSOE indicates the level of TSO/E installed on the system. For OS/390
Version 2 Release 4 and later, &SYSTSOE returns 2060.

Getting information about the CLIST
The following control variables provide information about the CLIST.

&SYSENV
&SYSENV indicates whether the CLIST is executing in the foreground (FORE) or
the background (BACK). You can use this variable when a CLIST must make
logical decisions based on the environment. For example, the way a CLIST obtains
its input is sensitive to background and foreground executions. You can use
&SYSENV to prevent the CLIST executing READ statements in the background as
follows:

Getting Information about the System

42 z/OS V2R1.0 TSO/E CLISTs

GLOBAL LNAME /* Define global variable to be set by FETCHNAM */...
IF &SYSENV=FORE THEN +
DO
WRITE Enter your last name.
READ LNAME
END
ELSE +
%fetchnam

&SYSSCAN
&SYSSCAN contains a number that defines the maximum number of times
symbolic substitution is performed on each line in a CLIST. The default number is
16. You can assign &SYSSCAN a value from 0 to +2,147,483,647 (2³¹-1). A zero
limit inhibits all scans, preventing any substitution of values for symbolic
variables.

For example, to write a record containing an ampersand (&), and prevent a CLIST
from performing erroneous symbolic substitution, you can code the following:
...
SET &SYSSCAN=0 /* Prevent symbolic substitution
WRITE Jack & Jill went up the hill
SET &SYSSCAN=16 /*Reset &SYSSCAN

&SYSICMD
&SYSICMD contains the name by which the user implicitly invoked the currently
executing CLIST. If the user invoked the CLIST explicitly, this variable has a null
value.

&SYSPCMD
&SYSPCMD contains the name of the TSO/E command that the CLIST most
recently executed. The initial value of &SYSPCMD depends on the environment
from which the CLIST was invoked. If the invoker used the EXEC command, the
initial value is EXEC. If the invoker used the EXEC subcommand of EDIT, the
initial value is EDIT.

&SYSSCMD
&SYSSCMD contains the name of the TSO/E subcommand that the CLIST most
recently executed. If invoker used the EXEC command, the initial value of
&SYSSCMD is null. If the invoker used the EXEC subcommand of EDIT, the initial
value is EXEC.

Relationship between &SYSPCMD and &SYSSCMD
The &SYSPCMD and &SYSSCMD control variables are interdependent. Following
the initial invocation, the values of &SYSPCMD and &SYSSCMD depend on the
TSO/E command or subcommand most recently executed. For example, if the
value of &SYSSCMD is EQUATE, a subcommand unique to the TEST command,
the value of &SYSPCMD is TEST.

You can use &SYSPCMD and &SYSSCMD in error and attention exits to determine
where the error or attention interrupt occurred.

Getting Information about the CLIST

Chapter 6. Using control variables 43

&SYSNEST
&SYSNEST indicates whether the currently executing CLIST is nested. (A nested
CLIST is one that was invoked by another CLIST rather than explicitly by the
user.) If the CLIST is nested, &SYSNEST contains the value YES. If it is not nested,
&SYSNEST contains the value NO.

Setting options of the CLIST CONTROL statement
The following control variables let you test or modify options of the CLIST
CONTROL statement. For full information about the CONTROL statement and its
options, see “CONTROL statement” on page 149.

&SYSPROMPT
&SYSPROMPT indicates whether the CONTROL statement's PROMPT or
NOPROMPT option is active. The value ON indicates that CONTROL PROMPT is
active, and TSO/E commands in the CLIST can prompt the terminal for input. OFF
indicates that CONTROL NOPROMPT is active, and TSO/E commands cannot
prompt the terminal.

Your CLISTs can use &SYSPROMPT to test which option is active, or change the
option. For example, if you want the CLIST to allow prompting from the LISTDS
command only, you can code:
SET &SYSPROMPT = ON
LISTDS
SET &SYSPROMPT = OFF

&SYSSYMLIST
&SYSSYMLIST indicates whether the CONTROL statement's SYMLIST or
NOSYMLIST option is active. The value ON indicates that CONTROL SYMLIST is
active, and CLIST statements are displayed at the terminal before being scanned
for symbolic substitution. The value OFF indicates that CONTROL NOSYMLIST is
active, and CLIST statements are not displayed at the terminal before symbolic
substitution.

Your CLISTs can use &SYSSYMLIST to test which option is in effect, or to change
the option. For example, if you suspect an error in part of a CLIST and you want
to display certain statements before substitution, you can code:
SET &SYSSYMLIST = ON...

(suspected statements in error)...
SET &SYSSYMLIST = OFF

&SYSCONLIST
&SYSCONLIST indicates whether the CONTROL statement's CONLIST or
NOCONLIST option is active. The value ON indicates that CONTROL CONLIST is
active, and CLIST statements are displayed at the terminal after symbolic
substitution. The value OFF indicates that CONTROL NOCONLIST is active, and
CLIST statements are not displayed at the terminal after symbolic substitution.

Your CLISTs can use &SYSCONLIST to test which option is in effect, or to change
the option. For example, if you suspect an error in part of a CLIST and you want
to display certain statements after substitution, you can code:

Getting Information about the CLIST

44 z/OS V2R1.0 TSO/E CLISTs

SET &SYSCONLIST = ON...
(suspected statements in error)...

SET &SYSCONLIST = OFF

&SYSLIST
&SYSLIST indicates whether the CONTROL statement's LIST or NOLIST option is
active. The value ON indicates that CONTROL LIST is active, and TSO/E
commands and subcommands are displayed at the terminal after symbolic
substitution. The value OFF indicates that CONTROL NOLIST is active, and
commands and subcommands are not displayed at the terminal after symbolic
substitution.

Your CLISTs can use &SYSLIST to test which option is in effect, or to change the
option. For example, if you suspect an error in part of a CLIST and you want to
display certain commands or subcommands, you can code:
SET &SYSLIST = ON...

(suspected commands in error)...
SET &SYSLIST = OFF

&SYSASIS
&SYSASIS indicates whether the CONTROL statement's ASIS option is active. The
value ON indicates that CONTROL ASIS is active, and lowercase characters are not
converted to uppercase before processing. The value OFF indicates that CONTROL
CAPS is active, and lowercase characters are converted to uppercase.

Your CLISTs can use &SYSASIS to test which option is in effect, or to change the
option. For example, if you want READ and WRITE statements to preserve
lowercase letters, you can code:
SET &SYSASIS = ON
WRITE Enter data exactly as you want it to appear.
WRITE Lowercase letters won’t be changed to uppercase.
READ &Ulc_data

&SYSMSG
&SYSMSG indicates whether the CONTROL statement's MSG or NOMSG option is
active. The value ON indicates that CONTROL MSG is active, and the CLIST can
display informational messages at the terminal. The value OFF indicates that
CONTROL NOMSG is active, and the CLIST cannot display informational
messages at the terminal.

Your CLISTs can use &SYSMSG to test which option is in effect, or to change the
option. For example, if you wanted to make sure that informational messages are
displayed at the terminal, you can code:
SET &SYSMSG = ON...

&SYSFLUSH
&SYSFLUSH indicates whether the CONTROL statement's FLUSH or NOFLUSH
option is active. The value ON indicates that CONTROL FLUSH is active, and the
system can erase (flush) any nested CLISTs when an error occurs. The value OFF

Setting Options of the CLIST CONTROL Statement

Chapter 6. Using control variables 45

indicates that CONTROL NOFLUSH is active, and the system cannot flush nested
CLISTs. When CONTROL MAIN is active, &SYSFLUSH cannot be set to ON.

Your CLISTs can use &SYSFLUSH to test which option is in effect, or to change the
option. For example, if your CLIST invokes other CLISTs, you can set &SYSFLUSH
to OFF to protect them from being flushed in the event of an error. You can then
use an error routine to recover from the error and continue processing.
SET &SYSFLUSH = OFF
ERROR +

DO...
(error routine)...
END

For more information about error routines and protecting nested CLISTs, see
Chapter 11, “Writing ATTN and ERROR routines,” on page 103.

Getting information about user input
Two control variables are related to input supplied to a CLIST.

&SYSDLM
&SYSDLM (“DLM” is for delimiter) contains a number that identifies the position
(first, second, third, and so on) of the TERMIN or TERMING statement character
string entered by the user to return control to the CLIST.

You can use this variable to determine what action should be taken when the user
returns control to the CLIST, based on the string chosen. For example, the
following statements inform the user what is requested (WRITE), pass control to
the terminal and establish valid control character strings (TERMIN or TERMING),
and determine the subsequent action based on the string entered.
WRITE The first phase of BUDGET has completed with
WRITE a return code of &RCODE
WRITE Enter YES if you want the results printed.
WRITE Enter NO if you do not want them printed.
TERMIN YES NO
IF &SYSDLM = 1 THEN +...

(Print results)...

&SYSDVAL
&SYSDVAL (“DVAL” is for default value) contains one of the following at any given
time:
v A null value
v The input the user entered when returning control to the CLIST after a TERMIN

or TERMING statement
v The user's response after a READ statement without operands
v The value assigned to &SYSDVAL by an assignment statement.

Initially, &SYSDVAL contains a null value. It can also contain a null value, if:
v The user does not enter anything but a pre-defined character string or null line

after a TERMIN or TERMING statement.
v The user does not enter any input after a READ statement without operands.

Setting Options of the CLIST CONTROL Statement

46 z/OS V2R1.0 TSO/E CLISTs

v You assign a null value to &SYSDVAL.

You can also use &SYSDVAL when performing I/O to a data set. You can assign
the data to variables by defining SYSDVAL as the file name of the data set and
naming the variables on the READVAL statement. For an example of using
&SYSDVAL and READVAL in I/O, see “Using &SYSDVAL when performing I/O -
the PHONE CLIST” on page 132.

Trapping TSO/E command output
Two control variables allow you to trap TSO/E command output in a CLIST:
&SYSOUTTRAP and &SYSOUTLINE. These variables save output from TSO/E
commands and allow a CLIST or application to process the output. You can
modify the values of &SYSOUTTRAP and &SYSOUTLINE with assignment
statements. For example, the assignment statement
SET &SYSOUTTRAP = 100

lets you trap and save 100 lines of output from a TSO/E command.

&SYSOUTTRAP
Use &SYSOUTTRAP to specify the maximum number of lines of TSO/E command
output to be saved. If you want to save all the output from a TSO/E command, set
&SYSOUTTRAP to a number greater than or equal to the number of output lines
that the command produces. Any output lines produced in excess of the
&SYSOUTTRAP value are not saved.

To save the output of a single command, set &SYSOUTTRAP to zero after issuing
the command. Otherwise, output from subsequent commands may replace the
original saved output.

&SYSOUTLINE
When you use &SYSOUTTRAP, the CLIST saves TSO/E command output in
variables beginning with &SYSOUTLINE.

The CLIST uses the variable &SYSOUTLINE to record the number of output lines
produced by a command. The CLIST saves the actual command output in the
variables &SYSOUTLINEnn, where nn represents the positional number of the line
being saved. nn can be any decimal number up to 21 digits in length. However, the
value in &SYSOUTTRAP and the amount of storage available determine the actual
number of lines saved.

The following CLIST traps output from the TSO/E LISTD command, retrieves it
using nested variables, and writes each line of output.
PROC 0 DATASET(DEFAULT)
IF &DATASET = DEFAULT THEN +

DO
WRITE What data set do you want to process?
READ DATASET

END
SET &SYSOUTTRAP = 1000 /* Expect command produces no */

/* more than 1000 lines */
LISTD ’&SYSPREF..&DATASET’ MEMBERS /* List data set members */
SET B = &SYSOUTLINE /* Get number of lines produced */
SET &SYSOUTTRAP = 0 /* Reset &SYSOUTTRAP */
SET A = 1 /* Initialize counter */
DO WHILE /* Loop for the lesser of */

(&A <= 1000) AND /* num of lines expected and */

Getting Information about User Input

Chapter 6. Using control variables 47

(&A <= &B) /* num of lines produced */
SET MEMBER = &STR(&&SYSOUTLINE&A) /* Get a &SYSOUTLINEnn variable */
WRITE &STR(&MEMBER) /* Write the output line */
SET A = &A +1 /* Increase the line counter */

END /* End of loop on counter */

For another example of using &SYSOUTTRAP and &SYSOUTLINE to process
command output, see “Allocating data sets to SYSPROC - the SPROC CLIST” on
page 133.

Considerations for using &SYSOUTTRAP and &SYSOUTLINE
v If you add the CONTROL LIST and SYMLIST options to a CLIST that uses

&SYSOUTTRAP, more output lines are produced and you might need to adjust
&SYSOUTTRAP and &SYSOUTLINEnn values to retrieve the desired output
lines.

v To trap the output of TSO/E commands under ISPF/PDF, you must invoke a
CLIST with command output trapping after ISPF or one of its services has been
invoked.

v The output of authorized commands listed under the AUTHCMDS parameter in
the active IKJTSOxx parmlib member cannot be trapped by a CLIST invoked
under any application that builds its own ECT. For example, a CLIST must be
prefixed by the TSO subcommand of IPCS to trap the output of authorized
commands when invoked from IPCS under ISPF.

v If you try to display a line of output in &SYSOUTLINEnn where nn is greater
than the value of &SYSOUTTRAP, the &SYSOUTLINEnn variable contains
unreliable data.

v If you try to display a &SYSOUTLINEnn variable that contains no command
output, the CLIST returns a null line.

v Because CLISTs use the TSO/E EXEC command to invoke nested CLISTs,
&SYSOUTTRAP saves all output of nested CLISTs as TSO/E command output.
Therefore, if you need to trap all of the output of a command processor that
processes several subcommands, consider using a nested CLIST to do so.

v &SYSOUTTRAP does not save command output sent to the terminal by a TPUT
macro, but does save output from the PUTLINE macro with DATA or INFOR
keywords.

v If you run out of storage, you can use the TSO/E PROFILE option
VARSTORAGE(HIGH) to allow CLIST variables to reside above the 16 MB line.
See “Increasing the amount of storage available for variables” on page 23 in
Chapter 4, “Using symbolic variables,” on page 17.

v Whenever a CLIST starts to execute a TSO/E command or subcommand, it
resets &SYSOUTLINE to zero. However, if a CLIST invokes a CLIST or a
non-CLIST program containing TSO/E commands, the invoked program does
not reset &SYSOUTLINE to zero for each TSO/E command. To record the
number of command output lines in an invoked program, use an assignment
statement to reset &SYSOUTLINE to zero before each TSO/E command. For
information about assigning a value to CLIST variables in a non-CLIST
environment, see z/OS TSO/E Programming Services.

Getting return codes and reason codes
Two control variables enable you to obtain return codes and reason codes. You can
modify both &LASTCC and &MAXCC with an assignment statement.

Trapping TSO/E Command Output

48 z/OS V2R1.0 TSO/E CLISTs

&LASTCC
When you use &LASTCC outside an error routine, &LASTCC contains the return
code from the last TSO/E command or subcommand, nested CLIST, or CLIST
statement executed. Because the value of this variable is updated after the
execution of each statement or command, store its value in a symbolic variable
before executing code that references the value.

In an error routine, &LASTCC is not updated after the execution of each statement
or command. Only the RETURN statement updates the value of &LASTCC. If you
use &LASTCC in an error routine, &LASTCC contains the return code from the
command or statement that was executing when the error occurred.

&LASTCC does not support negative return codes. When a negative return code is
received from a REXX exec, CLIST converts it to binary, removes the first byte, and
stores the remainder in &LASTCC as a positive decimal integer.

When &LASTCC receives an error return code from a TSO/E command,
subcommand, nested CLIST, or CLIST statement, control passes to an error routine
if present in the CLIST. However, when &LASTCC contains the return code from a
subprocedure RETURN statement, control does not pass to an error routine.

&LASTCC can be used in error routines that handle multiple error conditions. For
example, if an error routine handles arithmetic errors, it can use &LASTCC to
determine what type of message to display at the terminal:
ERROR +
DO
SET RCODE = &LASTCC

/* Character data in operands? */
IF &RCODE = 852 THEN +
WRITE Character data was found in numbers being added.

/* Numeric value too large? */
IF &RCODE = 872 THEN +
WRITE A numeric value in the addition was too large.
(Other tests)...

RETURN
END
SET SUM = &VALUE1 + &VALUE2 + &VALUE3;

Note that &LASTCC itself does not get updated within the error routine.

When an error occurs during CLIST I/O processing, use an error routine to obtain
the error code in &LASTCC. For example, to trap the error code generated by
OPENFILE when attempting to open a file (BADFILE) that does not exist, code the
following CLIST:
PROC 0
ERROR DO
SET RC=&LASTCC.
RETURN
END
OPENFILE BADFILE
WRITE LASTCC=&RC

See Table 8 on page 113 for a list of the CLIST error codes that &LASTCC can
contain.

Getting Return Codes and Reason Codes

Chapter 6. Using control variables 49

&MAXCC
&MAXCC contains the highest return code returned by a nested CLIST or by a
TSO/E command, subcommand, or CLIST statement in the currently executing
CLIST.

&MAXCC is not set when a subprocedure returns to the CLIST.

You can use &MAXCC with &LASTCC to determine error conditions. For example,
error codes caused by evaluation errors are in the 800-899 range. You can modify
the error routine in the example under &LASTCC to determine first whether the
error was caused by an arithmetic evaluation. Insert the following IF-THEN-ELSE
sequence before the check for character data in operands:
...
/* Evaluation error? */

IF &MAXCC <800 OR &MAXCC >899 THEN +
GOTO ...

ELSE +...

Getting results of the TSOEXEC command
Three variables are related to the use of the TSOEXEC command: &SYSABNCD,
&SYSABNRC, and &SYSCMDRC. You can modify any one of them with an
assignment statement.

&SYSABNCD, &SYSABNRC, and &SYSCMDRC contain, the ABEND code,
ABEND reason code, and command return code returned by the command most
recently invoked by the TSOEXEC command. You can use these variables in
situations similar to those in which you need to use &LASTCC and &MAXCC. For
example, to determine if the TRANSMIT command terminated abnormally, you
can code:
tsoexec transmit plpsc.d00abc1 dataset(letter.text)
/* Abend code non-zero? */
IF &SYSABNCD¬=0 THEN +
DO
WRITE The transmission of LETTER.TEXT to
WRITE PLPSC.D00ABC1 abended.
END

Getting data set attributes
Control variables include certain predefined variables set by CLIST statements. The
LISTDSI statement sets a number of variables with information about data set
attributes. These LISTDSI variables cannot be modified.

The LISTDSI statement
You can use the LISTDSI (list data set information) statement to retrieve detailed
information about a data set's attributes. The statement stores the information in
CLIST variables. The CLIST can use the information to determine if the data set
has enough space or the correct format for a given task. The CLIST can also use
the information as input to the TSO/E ALLOCATE command to create a new data
set with some attributes of the old data set while modifying others.

To retrieve a data set's allocation information, specify the data set's name on the
LISTDSI statement. You can also specify that a data set migrated by the Data

Getting Return Codes and Reason Codes

50 z/OS V2R1.0 TSO/E CLISTs

Facility Storage Management Subsystem Hierarchical Storage Manager
(DFSMShsm) be recalled, and that directory information be retrieved for a
partitioned data set.

In response to the LISTDSI statement, the CLIST stores each of the data set's
allocation attributes in a specific variable. For example, the data set's primary space
allocation is stored in the variable &SYSPRIMARY, and its organization is stored in
&SYSDSORG. For a complete list of the CLIST variables set by LISTDSI, see
“LISTDSI statement” on page 158.

For an example of using LISTDSI, see “Allocating a data set with LISTDSI
information - the EXPAND CLIST” on page 143.

Getting Data Set Attributes

Chapter 6. Using control variables 51

Getting Data Set Attributes

52 z/OS V2R1.0 TSO/E CLISTs

Chapter 7. Using built-in functions

The CLIST language includes built-in functions that you can perform on variables,
expressions, and character strings. If necessary, CLIST evaluates the variable or
expression first, and then performs the requested function. The CLIST then stores
the result under the name of the built-in function.

To use a built-in function, type its name, followed by the variable, expression, or
character string in parentheses. The variable, expression, or character string is also
called the argument of the built-in function. The argument must immediately follow
the built-in function name, with no blanks between them. Table 6 describes each of
the built-in functions briefly and gives page numbers where you can find more
information.

Table 6. Built-in functions
Built-in function Function Reference

&DATATYPE(expression) Indicates whether the evaluation of expression is a
character string or a numeric value.

“Determining the data type of an expression -
&DATATYPE” on page 54

&EVAL(expression) Performs an arithmetic evaluation of expression. “Forcing arithmetic evaluations - &EVAL” on page
54

&LENGTH(expression) Evaluates expression if necessary and indicates the
number of bytes in the result.

“Determining an expression's length in bytes -
&LENGTH” on page 55

&NRSTR(string) Preserves double ampersands, defines non-rescannable
strings.

“Preserving double ampersands - &NRSTR” on
page 56

&STR(string) Defines data to be used as a character string. “Defining character data - &STR” on page 57

&SUBSTR(exp[:exp],string) Uses certain bytes in a character string. “Defining a substring - &SUBSTR” on page 59

&SYSCAPS(string) Converts the string to uppercase characters. “Converting character strings to uppercase
characters - &SYSCAPS” on page 61

&SYSCLENGTH(expression) Evaluates expression if necessary and indicates the
number of characters in the result.

“Determining an expression's length in characters -
&SYSCLENGTH” on page 56

&SYSCSUBSTR(exp[:exp],string) Uses certain characters in a character string. “Defining a substring - &SYSCSUBSTR” on page 60

&SYSDSN(dsname[(member)]) Indicates whether the specified data set exists. “Determining data set availability - &SYSDSN” on
page 61

&SYSINDEX(string_1,string_2[,start]) Finds the position of a character string (string_1)
within another (string_2), from a specific starting point.

“Locating one character string within another -
&SYSINDEX” on page 62

&SYSLC(string) Converts the string to lowercase characters. “Converting character strings to lowercase
characters - &SYSLC” on page 61

&SYSNSUB(level,expression) Limits the level of symbolic substitution in the
expression.

“Limiting the level of symbolic substitution -
&SYSNSUB” on page 64

&SYSONEBYTE(string) Converts a string of data from the double-byte
character set (DBCS) to EBCDIC.

“Converting DBCS data to EBCDIC -
&SYSONEBYTE” on page 64

&SYSTWOBYTE(string) Converts a string of data from EBCDIC to the
double-byte character set (DBCS).

“Converting EBCDIC data to DBCS -
&SYSTWOBYTE” on page 65

In addition to these built-in functions, TSO/E provides an installation exit that lets
your installation add its own CLIST built-in functions. For information about the
exit, see z/OS TSO/E Customization.

Note: With the exception of &SYSNSUB, built-in functions will not resolve double
ampersands (&&) that appear in an argument.

© Copyright IBM Corp. 1988, 2013 53

Determining the data type of an expression - &DATATYPE
Use the &DATATYPE built-in function to determine what type of data an
evaluated expression contains. After evaluating the expression, a CLIST replaces
this built-in function with one of the following strings: CHAR, NUM, DBCS, or
MIXED. The strings indicate the following:
v CHAR -- The evaluated expression contains at least one non-numeric EBCDIC

character and no double-byte character set (DBCS) characters.
v NUM -- The evaluated expression is entirely numeric.
v DBCS -- The evaluated expression is a single delimited string of DBCS data.
v MIXED -- The evaluated expression contains both DBCS and EBCDIC data.

The following examples show the evaluations of various expressions:
SET A = &DATATYPE(ALPHABET) /* result: &A = CHAR
SET B = &DATATYPE(1234) /* result: &B = NUM
SET C = &DATATYPE(SYS1;PROCLIB) /* result: &C = CHAR
SET D = &DATATYPE(3*2/4) /* result: &D = NUM
SET E = &DATATYPE(12.34) /* result: &E = CHAR

For example, the following clause evaluates as true:
IF &DATATYPE(12.34)=CHAR THEN

The following examples use the convention d1d2 to represent two DBCS characters
and < and > to represent the shift-out and shift-in delimiters (X'0E' and X'0F') that
mark the beginning and end of the DBCS string.
SET A = &DATATYPE(<d1d2>) /* result: &A = DBCS
SET B = &DATATYPE(ABC<d1d2>123) /* result: &B = MIXED
SET C = &DATATYPE(<>) /* result: &C = DBCS
SET D = &DATATYPE(A<>C) /* result: &D = MIXED
SET E = &DATATYPE(<d1d2><d3d4>) /* result: &E = MIXED

For example, the following clauses evaluate as true:
IF &DATATYPE(<d1d2d3>)=DBCS THEN
IF &DATATYPE(A<d1d2d3>B)=MIXED THEN

Forcing arithmetic evaluations - &EVAL
On most statements, the appearance of arithmetic expressions results in evaluations
of those expressions when a CLIST executes the statements. However, on the
WRITE statement, you must explicitly instruct a CLIST to evaluate an arithmetic
expression by using the &EVAL built-in function. For example, to create a WRITE
statement that adds two variables, &FNUM and &SNUM, and displays the results,
code the following:
WRITE &FNUM + &SNUM = &EVAL(&FNUM+&SNUM)

Assuming &FNUM is four and &SNUM is three, the CLIST displays the following
message:

4 + 3 = 7

Determining Data Type Expression - &DATATYPE

54 z/OS V2R1.0 TSO/E CLISTs

Determining an expression's length in bytes - &LENGTH
Use the &LENGTH built-in function to determine the number of bytes in an
expression or character string. &LENGTH performs symbolic substitution and
arithmetic evaluations before determining the length. If a variable has a null value,
&LENGTH returns a value of zero.

For example, after the following statement executes, &LENANSWR has the value 2
because there are two bytes in the result of the addition, 11.
SET LENANSWR = &LENGTH(1+1+9)

&LENGTH can also reference symbolic variables. Assume you want to save a
value that is triple the length of the value of a variable called &CSTRING. To save
the value in a variable called &NXTFIELD, code:
SET NXTFIELD = 3 * &LENGTH(&CSTRING)

If &CSTRING contains the value 100, &NXTFIELD contains the value 9.

If a string contains data of the double-byte character set (DBCS), &LENGTH counts
each DBCS character as two bytes, and counts each DBCS delimiter as one byte.
For example, using d1d2 to denote two DBCS characters and using < and > to
represent the DBCS delimiters X'0E' and X'0F':
SET A = &LENGTH(<d1d2>) /* result: &A = 6

The same is true when a string contains mixed EBCDIC and DBCS characters. For
example:
SET A = &LENGTH(ABC<d1d2>) /* result: &A = 9

Suppressing arithmetic evaluations
If you do not want a CLIST to perform arithmetic evaluations of a &LENGTH
expression, enclose the expression in a &STR built-in function as follows:
SET LENANSWR = &LENGTH(&STR(1+1+9))

After the previous statement executes, &LENANSWR contains the value 5.

Including leading and trailing blanks and leading zeros
If you want leading and trailing blanks and leading zeros in a &LENGTH
expression included in the assignment, enclose the expression in a &STR built-in
function. Otherwise, the blanks and zeros are ignored.

For example, suppose that you want to save the length of the variable &IFIELD in
a variable called &SLNGTH. The contents of &IFIELD are 0 472.20. Include
&IFIELD in the &STR built-in function to include the blanks and the leading zero
as part of the assignment:
SET SLNGTH= &LENGTH(&STR(&IFIELD))

After the previous statement executes, &SLNGTH contains the value 8.

Expression's Length - &LENGTH

Chapter 7. Using built-in functions 55

Determining an expression's length in characters - &SYSCLENGTH
Use &SYSCLENGTH built-in function to determine the number of characters in an
expression or string that contains characters of the double-byte character set
(DBCS). &SYSCLENGTH differs from &LENGTH in that &SYSCLENGTH counts
each DBCS character as one character instead of two bytes, and does not count
DBCS delimiters. For example:
SET A = &SYSCLENGTH(<d1d2>) /* result: &A = 2

The same is true when a string contains mixed EBCDIC and DBCS characters. For
example:
SET A = &SYSCLENGTH(ABC<d1d2>) /* result: &A = 5

Except for the difference in counting DBCS characters, &SYSCLENGTH is identical
to &LENGTH.

Preserving double ampersands - &NRSTR
You can use the &NRSTR built-in function to prevent a CLIST from:
v Removing the first ampersand when it encounters a character string with a

prefix of double ampersands.
v Performing more than one level of symbolic substitution on a variable.

You can use &NRSTR with JCL statements that include the name of a temporary
data set (for example, &&TEMP). Using &NRSTR prevents a CLIST from changing
the name of a temporary data set (&&TEMP) to a symbolic parameter (&TEMP).

Double ampersands
To assign the character string &&DATA to the variable &FILE, code:
SET FILE = &NRSTR(&&DATA)

One level of symbolic substitution
To set two variables, &A and &C, to the value &B code:
...
SET A = &&B
SET C = &NRSTR(&A)...

After the execution of the first SET statement, &A contains the value &B. When the
second SET statement is executed, the CLIST performs symbolic substitution and
substitutes &B for &A. &NRSTR prevents any further scan of the statement;
therefore, &C is assigned the value &B.

Records containing JCL statements
The following paragraphs discuss the use of the &NRSTR built-in function when
processing records that contain JCL statements.

Temporary data set names
If a JCL statement contains a temporary data set name (for example, &&TEMP),
enclose the statement in a &NRSTR built-in function to prevent the CLIST from
removing the first ampersand. The following CLIST uses &NRSTR to preserve a
temporary data set name in a JCL statement.

Express

56 z/OS V2R1.0 TSO/E CLISTs

submit *
//&sysuid job ’Y2803P,?,S=C’,’SteveR’,msgclass=r,class=j
// exec pgm=IEFBR14
//dd1 dd dsn=&NRSTR(&&temp),disp=(,pass),unit=sysda
&null

Symbolic parameters
If a JCL statement contains a symbolic parameter (for example, &LIBRARY),; use
the &SYSNSUB built-in function to prevent the CLIST from performing erroneous
symbolic substitution. Assume that the preceding CLIST contained the JCL
statement:
//dd2 dd dsn=&library,disp=(,pass),unit=sysda

To prevent any symbolic substitution, you can enclose the symbolic parameter
&library in the &SYSNSUB built-in function as follows:
//dd2 dd dsn=&SYSNSUB(0,&library),disp=(,pass),unit=sysda

The number 0 in parentheses after &SYSNSUB tells the CLIST how many levels of
symbolic substitution you want performed on the parameter (in this case, zero
levels). For more information about the &SYSNSUB built-in function, see “Limiting
the level of symbolic substitution - &SYSNSUB” on page 64.

Defining character data - &STR
Use the &STR built-in function to define character data and prevent the CLIST
from evaluating it. The data can be any expression or statement, and can include
nested variables and characters of the double-byte character set (DBCS) within
DBCS delimiters.

For example, the statement SET DIMENSNS=&STR(2*4) defines 2*4 as a character
string and assigns the string to the variable &DIMENSNS; Without the &STR
built-in function, you can not make the desired assignment because a CLIST needs
to evaluate 2*4 as an arithmetic expression and set &DIMENSNS to the value 8.

The &STR built-in function suppresses arithmetic evaluations only for the data
between the parentheses. If you set &STATS to &DIMENSNS,; &STATS; will
contain the value 8, not the character string 2*4. To preserve the character string,
code:
SET STATS=&STR(&DIMENSNS)

Special procedures are required when defining parentheses as character data.
Unlike other CLIST operators, left and right parentheses can appear at the
beginning or in the middle of character data without having to be defined as
character data. Only when they appear at the end of a character string do
parentheses have to be defined with &STR, like the other operators.

The following examples show how to define right and left parentheses to appear
as character data at the end of a character string called TEXT:

Right parenthesis:
SET &A =)
SET &B = TEXT&STR(&A) /* result: B = TEXT)

Left parenthesis:
SET &C = &STR((
SET &D = TEXT&STR(&C) /* result: D = TEXT(

Preserving Double Ampersands - &NRSTR

Chapter 7. Using built-in functions 57

Using &STR with &SYSDATE or &SYSSDATE
If you use &SYSDATE or &SYSSDATE on a CLIST statement other than WRITE,
enclose the variable in an &STR built-in function. Otherwise, a CLIST views the
slashes separating the day, month, and year as division operators and performs
division.
SET TODAY = &STR(&SYSDATE)

Using &STR with leading and trailing blanks
Use the &STR built-in function to preserve leading and trailing blanks in a
character string. For example, the following statement sets the variable
&CMNDFLD to a blank, 2 hyphens, a greater than symbol, and four blanks:
SET CMNDFLD= &STR(-->)

Using &STR with strings that match CLIST statement names
You can use the &STR built-in function to distinguish installation-written
commands that match the names of CLIST statements. For example, if your
installation had written a command named NGLOBAL, you can use &STR to issue
the command from a CLIST and prevent the CLIST from misinterpreting it as the
NGLOBAL statement:
&STR(NGLOBAL)

Similarly, to issue the SELECT subcommand of the RACF command RACFRW, you
need to use the &STR built-in function to distinguish the subcommand from the
SELECT statement. For more information, see “Distinguishing the SELECT
statement from the RACF SELECT subcommand” on page 71.

Using &STR when supplying input using SYSIN JCL
statements

When you submit a background job that invokes a program, you sometimes
include a ‘//SYSIN DD *’ JCL statement that supplies the input statements. If any
input statement contains leading blanks or is the same as a CLIST statement,
enclose that statement in a &STR built-in function. For example, suppose a
hypothetical language called SES has an IF-THEN-ELSE sequence. If you were to
include such a sequence in the SYSIN input statements, you need to have to
enclose it in an &STR built-in function as shown in the following background
invocation of a hypothetical SES program called MATRIX.
PROC 1 FORMAT ACCT() CLASS(A)
CONTROL MAIN...
submit * end(nn)
//&SYSUID1 JOB &ACCT,&SYSUID,CLASS=&CLASS;
//STEP1 EXEC PGM=MATRIX...
//SYSIN DD *
&STR(IF &FORMAT=1 THEN OPEN DS1)
&STR(ELSE OPEN DS2)
GETFILES 1-12
&STR(SET COLUMNS=GETFILES)...
nn

Only those input statements that contain leading blanks or are the same as CLIST
statements are enclosed in &STR built-in functions. If the CLIST invoked MATRIX
in the foreground, the &STR built-in functions need to be unnecessary because the

Defining Character Data - &STR

58 z/OS V2R1.0 TSO/E CLISTs

program's statements need to appear in the data set containing MATRIX. Thus,
they need to be associated with the program, not the CLIST.

Defining a substring - &SUBSTR
Use the &SUBSTR built-in function to request that a CLIST use only certain bytes
of an indicated string when performing substitution. You indicate the starting and
ending positions of the string from which the substitution is made.

For example, assuming a variable called &ANIMALS contains the character string
“DOGSCATSSEALS”, to set a variable called &FELINE to the character string
“CATS”, code the following:
SET FELINE = &SUBSTR(5:8,&ANIMALS)

Note that the character string “CATS” begins in the fifth position of &ANIMALS
and ends in the eighth position.

A &SUBSTR built-in function can contain other built-in functions. Assume your
CLIST receives input from the user and assigns it to a variable called &NAME.
&NAME contains a person's first and middle initial followed immediately by the
family name. To add a blank between the initials and the family name, you can set
a variable called &NFIELD to a character string consisting of the following:
1. The first and middle initials
2. A blank
3. The family name.
SET NFIELD = &STR(&SUBSTR(1:2,&NAME) &SUBSTR(3:&LENGTH(&NAME)+

,&NAME))

If you want the substring to contain only one character, you can omit the colon
and end-expression. For example, if you are interested only in the first letter of the
family name, code the following:
SET FLTRLNAME = &SUBSTR(3,&NAME)

You can substitute variables for starting and ending expressions. For instance, to
set the section of &STRING beginning at the second position and ending at the
eighth position to a variable called &WIDGET, you can create a variable and
substitute it in the SET statement. Assume that the substring data represents a part
number.
SET PART# = &STR(2:8,)
SET WIDGET = &SUBSTR(&PART#&STRING)

When a variable is named in &SUBSTR, arithmetic evaluation of the variable's
contents is suppressed, as in &STR. For example:
SET DIMENSNS = &STR(2*4)
SET X = &SUBSTR(1:2,&DIMENSNS) /result: X = 2*

However, when another built-in function such as &LENGTH is specified in the
&SUBSTR, the variable within the built-in function is evaluated before the
&SUBSTR. To protect that variable from arithmetic evaluation, use &STR.
SET DIMENSNS = &STR(2*4)
SET X = &SUBSTR(1:&LENGTH(&STR(&DIMENSNS)),&DIMENSNS)
/* result: X = 2*4

If a string contains data of the double-byte character set (DBCS), &SUBSTR counts
each DBCS character as two bytes, and counts each DBCS delimiter as one byte.

Defining Character Data - &STR

Chapter 7. Using built-in functions 59

For example, using d1d2 to denote two DBCS characters and using < and > to
denote the DBCS delimiters X'0E' (shift-out) and X'0F' (shift-in):
SET X = &SUBSTR(8:9(A<d1d2>BC) /* result: X = BC

When &SUBSTR returns DBCS data, &SUBSTR encloses the data between the
DBCS delimiters X'0E' and X'0F'. &SUBSTR attempts to return the exact bytes
requested. However, when the starting or ending positions of the substring are
DBCS data or DBCS delimiters, &SUBSTR makes the following adjustments:

If the substring: &SUBSTR does the following:

Starts on the first byte of a DBCS character Replaces that byte with a single-byte blank
and the right-next byte with a shift-out
delimiter

Starts on the second byte of a DBCS
character

Replaces that byte with a shift-out delimiter

Starts on a shift-in delimiter Replaces that byte with a single-byte blank

Ends on shift-out delimiter Replaces that byte with a single-byte blank

Ends on the first byte of a DBCS character Replaces that byte with a shift-in delimiter

Ends on the second byte of a DBCS
character

Replaces that byte with a single-byte blank
and the left-next byte by a shift-in delimiter.

In addition, if the adjustment causes a not valid DBCS character, or a contiguous
pair of DBCS delimiters, &SUBSTR replaces those by single-byte blanks. However,
SUBSTR does not change any contiguous pairs of DBCS delimiters that were part
of the original data string.

The following are several examples of the adjustment process. In the examples, the
characters s, Dn, <, >, and b denote a single-byte character, double-byte character,
shift-out delimiter, shift-in delimiter, and single-byte blank.
&SUBSTR(4:10,ss<D1D2D3D4>) /* result: b<D2D3>

&SUBSTR(5:11,ss<D1D2D3D4>) /* result: <D2D3>b

&SUBSTR(6:10,ss<D1><D3D4>) /* result: b<D3>

&SUBSTR(1:3,ss<D1D2D3D4>) /* result: ssb

&SUBSTR(3:5,ss<D1D2D3D4>) /* result: bbb

Because &SUBSTR may truncate data in DBCS strings, you can use &SYSCSUBSTR
as an alternative to &SUBSTR for DBCS data.

Defining a substring - &SYSCSUBSTR
Use the &SYSCSUBSTR built-in function when you want a CLIST to treat
double-byte character set (DBCS) characters as single characters in a substring
operation. &SYSCSUBSTR differs from &SUBSTR in that &SYSCSUBSTR counts
each DBCS character as one character, and does not count DBCS delimiters. If
resulting substrings begin or end with DBCS characters, &SUBSTR adds DBCS
delimiters as needed. For example:
SET X = &SUBSTR(2:3,<d1d2d3>) /* result: X = <d2d3>

The same is true if a string contains both EBCDIC and DBCS characters:

Defining a Substring - &SUBSTR

60 z/OS V2R1.0 TSO/E CLISTs

SET Y = 1260
&SUBSTR(1:3,AB<d1d2d3>) /* result: X = AB<d1>

Except for the difference in treating DBCS characters, &SYSCSUBSTR is identical to
&SUBSTR.

Converting character strings to uppercase characters - &SYSCAPS
Use &SYSCAPS to convert character strings to uppercase characters. &SYSCAPS
does not modify special characters or DBCS characters included in the string. If a
string begins with leading zeros, &SYSCAPS strips them off. Otherwise,
&SYSCAPS does not modify numbers in the string. You can use variables
containing the character strings in &SYSCAPS built-in functions.

You can use &SYSCAPS with &SYSLC to control the capitalization of text in a
CLIST. For an example, see “Controlling uppercase and lowercase for READ
statement input” on page 91.

Converting character strings to lowercase characters - &SYSLC
Use &SYSLC to convert character strings to lowercase characters. &SYSLC does not
modify numbers, special characters, or DBCS characters included in the string. You
can use variables containing the character strings in &SYSLC built-in functions. For
data to be changed to lowercase, CONTROL ASIS or NOCAPS must be in effect or
&SYSASIS must be set to the value ON.

Determining data set availability - &SYSDSN
Use the &SYSDSN built-in function to determine whether a specified data set or a
specified data set and member exist and are available for use. If a data set has
been migrated, &SYSDSN attempts to recall it. The data set name can be the name
of any cataloged data set or cataloged partitioned data set with a member name.
Additionally, if you specify a member of a partitioned data set, &SYSDSN checks
whether you have access to the data set.

To suppress TSO/E messages issued by the &SYSDSN function, use the CONTROL
NOMSG statement. For information about the CONTROL statement, see
“CONTROL statement” on page 149.

&SYSDSN returns one of the following values:
OK /* the data set or the data set and member exist

/* and are available
MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED
MEMBER NOT FOUND
DATASET NOT FOUND
ERROR PROCESSING REQUESTED DATASET
PROTECTED DATASET /* a member was specified but the

/* data set is RACF-protected
VOLUME NOT ON SYSTEM
UNAVAILABLE DATASET /* another user has an exclusive

/* ENQ on the specified data set
INVALID DATASET NAME, data-set-name
MISSING DATA SET NAME

When a data set is available for use, you may find it useful to get more detailed
information. For example, if you later need to invoke a service that requires a
specific data set organization, then use the LISTDSI statement. For a description of
the LISTDSI statement, see “LISTDSI statement” on page 158.

Defining a Substring - &SYSCSUBSTR

Chapter 7. Using built-in functions 61

For example, you can use the &SYSDSN built-in function with conditional logic
(see Chapter 8, “Structuring CLISTs,” on page 67) to determine which data set to
allocate for use in a CLIST.
IF &SYSDSN(’SYS1.MYLIB’)=OK THEN +

DO
alloc f(utility) da(’SYS1.MYLIB’)
call (iecompar)

END
ELSE +
IF &SYSDSN(’SYS1.INSTLIB(IECOMPAR)’)=OK THEN +

DO
alloc f(utility) da(’SYS1.INSTLIB’)
call iecompar

END
ELSE +...

Enclose fully-qualified data set names in single quotation marks when they appear
in &SYSDSN built-in functions. You can use variables containing data set names in
&SYSDSN built-in functions.

The &SYSDSN function issues message IKJ56709I if a syntactically not valid data
set name is passed to the function. To prevent this message from being displayed,
use CONTROL NOMSG.
PROC 0
SET DSNAME = ABCDEFGHIJ.XYZ /* Syntactically not valid name,

/* because a qualifier is longer
/* than 8 characters

CONTROL NOMSG /* Set OFF to suppress any SYSDSN
/* TSO/E messages

WRITE VALUE RETURNED BY SYSDSN ==> &SYSDSN(&DSNAME)
EXIT CODE(0)

Locating one character string within another - &SYSINDEX
Use the &SYSINDEX built-in function to locate the position where one character
string begins within another character string. In other words, &SYSINDEX returns
the numeric index (or offset) of string_1 within string_2. If SYSINDEX does not find
string_1 within string_2, &SYSINDEX returns a value of zero.

Use the following syntax:
&SYSINDEX(string_1,string_2[,start])

where:

string_1
is the character string that you are searching for.

string_2
is the character string to be searched in.

start
is a numeric expression indicating where in string_2 the search for string_1
should begin. If omitted or zero, this value defaults to one.

In examples 1-4, assume that &X is DOG, &Y is CATDOGSDOG and &Z is 2:
1. SET A = &SYSINDEX(&X,&Y) /* result: A = 4
v &SYSINDEX found DOG in the fourth position of CATDOGSDOG, thus the

index is 4.
2. SET A = &SYSINDEX(&X,&Y,&Z) /* result: A = 4

Determining Data Set Availability - &SYSDSN

62 z/OS V2R1.0 TSO/E CLISTs

v &SYSINDEX started searching at the second position, and found DOG again at
the fourth position.

3. SET A = &SYSINDEX(&X,&Y,3+&Z) /* result: A = 8
Because the search started in the fifth position (3+2) &SYSINDEX found the
second occurrence of DOG, in the eighth position.

4. SET A = &SYSINDEX(&X,&Y,9) /* result: A = 0
v The search started in the ninth position and &SYSINDEX can not find the target

string DOG.

Blanks are valid in string_1 and string_2. For example:
SET A = &SYSINDEX(is full,the car is full) /* result: A = 9

To search for a blank in string_2, you can set string_1 to a variable containing the
value &STR(). For example:
SET BLANK = &STR()
SET TARG = THIS IS A TEST
SET LOC = &SYSINDEX(&BLANK,&TARG) /* result: &LOC = 5

If string_1 or string_2 might contain a comma or right parenthesis, first set the
string to a variable's value using &STR, then use the variable in &SYSINDEX,
again enclosed in &STR(...). For example:
SET ARG = &STR(,)
SET TARG = &STR((80,60))
SET &LOC = &SYSINDEX(&STR(&ARG),&STR(&TARG)) /* result: &LOC = 4

SET ARG = &STR())
SET TARG = &STR((80,60))
SET &LOC = &SYSINDEX(&STR(&ARG),&STR(&TARG)) /* result: &LOC = 7

Using &SYSINDEX with DBCS strings
&SYSINDEX can search for strings that contain characters of the double-byte
character set (DBCS). The following considerations apply:
v Always include DBCS delimiters around DBCS characters in string_1 and

string_2. For example, using < and > to denote the DBCS delimiters X'0E'
(shift-out) and X'0F' (shift-in):
SET A = &SYSINDEX(<d2>,<d1d2d3>) /* result: A = 2

v String_1 and string_2 can have EBCDIC, DBCS, or mixed data. For example:
SET X = &SYSINDEX(CD,A<d1d2>BCD) /* result: X = 5
SET X = &SYSINDEX(<d2>,A<d1d2>BCD) /* result: X = 3

EBCDIC and DBCS strings never match, even when they have the same
hexadecimal values. For example:
SET X = &SYSINDEX(AB,<d1d2d3>) /* result: X = 0
/* where EBCDIC characters ’AB’ and a DBCS character ’d2’
/* have the same hexadecimal value.

v Contiguous shift-out/shift-in delimiters and contiguous shift-in/shift-out
delimiters in string_1 are treated as parts of the target. For example:
SET X = &SYSINDEX(<d1><d2>,A<d1><d2>B) /* result: X = 1
SET X = &SYSINDEX(<d1><d2>,A<d1d2>B) /* result: X = 0

v If string_1 consists of DBCS delimiters only, they are searched for in string_2, and
the result is the position of the character following the delimiters. For example:
SET X = &SYSINDEX(<>,A<>BCD) /* result: X = 3

Locating String Within Another - &SYSINDEX

Chapter 7. Using built-in functions 63

Limiting the level of symbolic substitution - &SYSNSUB
Use the &SYSNSUB built-in function to limit the number of times a CLIST
performs symbolic substitution in a statement. With &SYSNSUB, you can limit the
CLIST to from 0 to 99 levels of substitution.

&SYSNSUB has the following syntax:
&SYSNSUB(level,expression)

where:

level
is a positive whole number, or a symbolic variable that resolves to a positive
whole number, from 0 to 99. This number tells the CLIST how many levels of
symbolic substitution to perform on the expression. The level parameter cannot
contain other built-in functions or expressions.

expression
is a CLIST expression whose level of symbolic substitution is to be controlled,
and whose final value is to be frozen without further evaluation of any kind.

For example,
SET Y = 30 /* result: &Y contains 30
SET X = &&Y /* result: &X contains &Y
SET Z = &&X /* result: &Z contains &X
SET A = &SYSNSUB(2,&Z) /* result: &A contains &Y

As specified, the CLIST performs only two levels of substitution, substituting &X
for &Z and then substituting &Y for &X. The CLIST does not continue and resolve
&Y to 30, as it is required to be without the &SYSNSUB limit.

You can use &SYSNSUB to override the rule for double ampersands, in which the
CLIST removes the first ampersand and does no substitution of the remaining
variable. &SYSNSUB counts removal of the first ampersand as one level of
substitution, and allows substitution to continue until the value in the level
parameter is reached.

For example:
SET X = 10 /* result: &X = 10
SET Y = &&X /* result: &Y = &X (rule for double &&)

SET Y = &SYSNSUB(2,&&X) /* result: &Y = 10 (&SYSNSUB overrides &&)

Note: The control variable &SYSSCAN restricts the levels of substitution that you
can specify with &SYSNSUB. &SYSSCAN must contain a number greater than or
equal to the number you specify in &SYSNSUB's level parameter.

Converting DBCS data to EBCDIC - &SYSONEBYTE
Use the &SYSONEBYTE built-in function to convert character strings from the
double-byte character set (DBCS) to the EBCDIC character set. &SYSONEBYTE
converts only DBCS characters that have EBCDIC equivalents: the DBCS blank
(X'4040') and DBCS characters that begin with the value X'42'.

&SYSONEBYTE converts the DBCS characters that have EBCDIC equivalents by
removing the first byte (X'40' or X'42'). The second byte, which remains, represents
the character in EBCDIC.

Limiting Level of ... - &SYSNSUB

64 z/OS V2R1.0 TSO/E CLISTs

&SYSONEBYTE places DBCS delimiters around DBCS characters that are not
convertible (those that lack EBCDIC equivalents).

The following example represents a complete conversion from DBCS to EBCDIC:
SET X = &SYSONEBYTE(<d1d2d3d4>) /* result: X = ABCD

The following example represents a partial conversion from DBCS to EBCDIC,
assuming that d5 and d6 do not start with X'42' and are not the hex blank
(X'4040'):
SET X = &SYSONEBYTE(<d3d4d5d6d7d8>) /* result: X = CD<d5d6>EF

Converting EBCDIC data to DBCS - &SYSTWOBYTE
Use the &SYSTWOBYTE built-in function to convert EBCDIC characters to the
double-byte character set (DBCS). The EBCDIC characters that can be converted
are those with the hexadecimal equivalents X'40' and in the range from X'41' to
X'FE'. Any other EBCDIC characters cause errors when used with &SYSTWOBYTE.

&SYSTWOBYTE converts the EBCDIC characters to DBCS by prefixing them with
the value X'42'. In the case of the EBCDIC blank (X'40'), &SYSTWOBYTE prefixes it
with the value X'40' to create the DBCS blank.

&SYSTWOBYTE encloses the resulting DBCS strings in DBCS delimiters (X'0E' and
X'0F').

The following example represents a complete conversion from EBCDIC to DBCS:
SET X = &SYSTWOBYTE(ABCD) /* result: X = <dAdBdCdD>

The following example represents a partial conversion from EBCDIC to DBCS:
SET X = &SYSTWOBYTE(CD<d5d6>EF) /* result: X = <dCdDd5d6dEdF>

Converting DBCS Data to EBCDIC - &SYSONEBYTE

Chapter 7. Using built-in functions 65

Converting EBCDIC Data to DBCS - &SYSTWOBYTE

66 z/OS V2R1.0 TSO/E CLISTs

Chapter 8. Structuring CLISTs

A CLIST can be:
v A single list of commands and statements
v A series of short lists connected by statements indicating which list is to be

executed next

When you create a CLIST as a series of short lists, you can connect the lists using
structured programming techniques. In structured programming, you direct the
flow of execution from list to list in a generally top-down sequence, from the
highest to the lowest level of detail. At the lower levels of detail, the lists can be
independent modules (subprocedures and nested CLISTs) containing common code
that you can call from other parts of the CLIST. A structured CLIST helps you
avoid repetitive code and is easier to read and maintain than an unstructured
CLIST.

This chapter describes the structural elements of the CLIST language and how to
use them to move from one list of commands and statements to another. Structural
CLIST statements belong to the following categories:
v Selection
v Loops
v Calls to subprocedures
v Calls to other CLISTs

Making selections
To tell the CLIST which commands or statements to execute next, you can use the
IF Statement or the SELECT statement. These statements combine each selection
with a test; if the test proves true, the CLIST executes the instructions, if not, the
CLIST can execute alternative instructions.

The IF-THEN-ELSE sequence
The IF-THEN-ELSE sequence tests a condition or set of conditions, then determines
the logical path of execution (action) based on the results of the test.

The condition must be either a comparative expression or a variable containing a
comparative expression. You may code multiple conditions, in which case the
comparative expressions, variables or both must be joined by logical operators.

The action can be one or more instructions. If the condition or set of conditions is
true, the CLIST executes the instructions in the THEN action. If the condition or set
of conditions is false, the CLIST executes the instructions in the ELSE action.

The standard format
The standard format includes actions for both true and false conditions, for
example:
IF condition THEN action ELSE action

If an action involves more than one statement or command, it is necessary to
enclose the action in a DO-END sequence, for example:

© Copyright IBM Corp. 1988, 2013 67

IF condition THEN +
DO...
(action) /* action consists of a list of statements or commands...
END
ELSE action /* action consists of a single statement or command

For example, assume a CLIST optionally prints a data set it has updated based on
user input. Assume the CLIST has prompted the user to determine whether to
print the data set and has saved the response in a variable called &PRINT; The
following IF-THEN-ELSE sequence performs the desired processing:
/***/
/* If the user wants data set printed, issue a message */
/* saying that it is being printed and issue the command */
/* that prints it. If user does not want data set printed */
/* just issue a message saying that the data set is not */
/* being printed. */
/***/

IF &PRINT=YES THEN +
DO
WRITE We are printing the data set as you requested.
printds da(&dsn)
END
ELSE +
WRITE The data set will not be printed.

When there is only one instruction in an action, you may place the instruction on
the same line as the THEN or ELSE statement. For example, you can code the
ELSE statement in the previous example as follows:
ELSE WRITE The data set will not be printed.

The Null ELSE format
When a specific ELSE action is not required, you can code a null ELSE clause in
one of two ways: omit the ELSE clause entirely or just code ELSE without
operands (an action). The following IF-THEN-ELSE sequence omits the ELSE
entirely:
IF &PRINT=YES THEN +
DO
WRITE We are printing the data set as you requested.
printds da(&dsn)
END

You can also code the following:
IF &PRINT=YES THEN +
DO
WRITE We are printing the data set as you requested.
printds da(&dsn)
END
ELSE

The Null THEN format
Assume a CLIST prints a data set itself and does not have to invoke another CLIST
to do the printing. By coding a condition that is true when the data set should not
be printed, you define a null THEN clause that effectively branches to the end of
the ELSE clause, avoiding the code that prints the data set.

Making Selections

68 z/OS V2R1.0 TSO/E CLISTs

The following IF-THEN-ELSE sequence bypasses the printing action when
&PRINT=NO; (If &PRINT has any other value, such as YES or null, then printing
is performed.)
IF &PRINT=NO THEN
ELSE +
DO...
(The rest of the CLIST, which prints the data set)...
END

Nesting IF-THEN-ELSE sequences
IF-THEN-ELSE sequences can contain other (nested) IF-THEN-ELSE sequences. For
example, the following IF-THEN-ELSE sequence uses a nested IF-THEN-ELSE
sequence as the action of its ELSE clause:
IF condition1 THEN +

DO
action1 /* Do if condition 1 is true
END

ELSE +
IF condition2 THEN +

DO
action2 /* Do if condition1 is false and
END /* condition2 is true

ELSE +
DO
action3 /* Do if condition1 and condition2
END /* are both false

Nested IF-THEN-ELSE sequences allow you to control the flow of processing
under very precise conditions. However, multiple nested IF-THEN-ELSE sequences
can be difficult to write and maintain. As an alternative, you can use the SELECT
statement in many cases.

The SELECT statement
In situations where you might want to use multiple IF-THEN-ELSE statements,
you can often use a single SELECT statement instead. The SELECT statement
allows a CLIST to select actions from a list of possible actions. An action consists of
one or more statements or commands. The SELECT statement has the following
syntax, ending with the END statement. You can use the SELECT statement with
or without the initial test expression.
SELECT [test expression]

WHEN expression1...
(action)...
WHEN expression2
WHEN expression3

[OTHERWISE]...
(action)...

END

Using SELECT without a test expression (simple SELECT)
If you omit the test expression from the SELECT statement, the CLIST tests the
WHEN expressions in sequence for a true value. If a true value is found (for
example, 1 = 1) the CLIST executes the action of that WHEN clause only. Then the

Making Selections

Chapter 8. Structuring CLISTs 69

CLIST passes control to the END statement. If none of the expressions evaluate to
a true value, the CLIST executes the OTHERWISE action, if any.

For example, the following SELECT statement selects an action based on a return
code from previous processing:
SELECT

WHEN (&RTNCODE = 0) CALL ’A.B.LOAD(PGM)’
WHEN (&RTNCODE = 1) +

DO
SET &X = X + 1
SET RETRY = &STR(YES)

END
OTHERWISE SET &MSG = &STR(SEVERE ERROR)

END

For other examples of using the simple SELECT statement, see “The COPYDATA
CLIST” on page 108 and “The PROFILE CLIST” on page 137.

Using SELECT with a test expression (compound SELECT)
If you include a test expression on the SELECT statement, the CLIST compares the
test expression to the expressions on the WHEN clauses. On each WHEN clause,
you can specify multiple expressions, or a range of values by using a colon (:)
between the low and high values in the range. You can combine expressions and
ranges on a WHEN clause by using the operator OR or |.

If a test expression matches a value or falls within a range of values in a WHEN
expression, the CLIST executes the action for that WHEN clause, then passes
control to the END statement.

For example, in the following SELECT statement, the CLIST executes the action of
the first WHEN clause because the test expression (5) falls within the range of
values 4:6 on that WHEN clause:
SELECT 5

WHEN (3 | 7 | 4:6) action...
WHEN (9 | &A + &Z) action...

END

If no WHEN expressions satisfy the test expression, the CLIST executes the
OTHERWISE action, if any.

For example, the following CLIST uses a SELECT statement to invoke other CLISTs
that print quarterly reports. The CLIST bases its selection on a test expression (the
number of the month) that the invoker supplies. When the number of the month
falls within a certain range, the CLIST prints the appropriate report. Otherwise, the
CLIST writes an error message.
PROC 1 MONTH
SELECT (&MONTH)

WHEN (1:3) %FIRSTQTR
WHEN (4:6) %SECNDQTR
WHEN (7:9) %THIRDQTR
WHEN (10:12) %FORTHQTR
OTHERWISE WRITE The month must be a number from 1 to 12.

END

Distinguishing WHEN clauses from WHEN commands
The WHEN clause in a SELECT statement is syntactically distinct from the WHEN
SYSRC TSO/E command. In a SELECT statement, a left parenthesis must follow a
WHEN clause. If you want to use the WHEN command as part of an action in a
SELECT statement, enclose the WHEN command in a DO-END sequence to

Making Selections

70 z/OS V2R1.0 TSO/E CLISTs

prevent the SELECT statement from interpreting the command as a not valid
WHEN clause. For example, the following syntax is acceptable:
SELECT

WHEN (&X=1) +
DO /* The action of the WHEN clause */
WHEN SYSRC(= 8) TIME /* is the WHEN SYSRC TSO command. */
END /* End of the DO group */

END /* End of the SELECT statement */

For more information about using the WHEN SYSRC TSO/E command, see z/OS
TSO/E Command Reference.

Distinguishing the SELECT statement from the RACF SELECT
subcommand
If, in a CLIST, you invoke the SELECT subcommand of the RACF command
RACFRW, you must distinguish the subcommand from the SELECT statement. To
do so, use the &STR built-in function. For example, you can specify the
subcommand name as follows:
RACFRW
&STR(SELECT) VIOLATIONS

Loops
Unlike the simple DO-END sequence, the other DO-sequences in the CLIST
language create loops. Loops are lists of statements or commands that can be
executed one or more times or not at all, depending on conditions that you specify
in the loop. A CLIST executes a loop as many times as the conditions dictate.
When the conditions are satisfied or no longer true, execution continues at the
instruction after the loop.

The following sections describe how to create loops with the DO statement.

The DO-WHILE-END sequence
The DO-WHILE-END sequence creates a loop that executes while a specified
condition is true. If the condition is not true, the loop does not execute.

To use the DO-WHILE-END sequence, code:
DO WHILE condition...

(action)...
END

The condition must be either a comparative expression or a variable containing a
comparative expression. You can code multiple conditions by joining expressions,
variables, or both with logical operators.

The action can be one or more instructions. The CLIST executes the instructions
within the sequence repeatedly while the condition on the WHILE clause is true.
When the condition is false, the CLIST executes the next instruction after the END
statement.

For example, you can initialize a variable (typically a counter) before the sequence
and include it in the conditional expression. Then, you can modify the variable in
the action so that eventually the condition is false.

Making Selections

Chapter 8. Structuring CLISTs 71

For example, to process a set of instructions five times, you can code the following:
SET &COUNTER = 5 /* Initialize counter */
/* Perform the action while counter is greater than 0 */
DO WHILE &COUNTER > 0...

(Set of instructions)...
SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
END

The variable &COUNTER is a loop counter initially set to a value of five. WHILE
tests of the value of this counter each time the CLIST begins to execute the
DO-WHILE-END sequence. If the value of &COUNTER is greater than zero (the
test condition is true), the CLIST executes the sequence, whose last instruction
decreases the counter's value by one. When the counter's value reaches zero (the
test condition is false), the CLIST ends the loop, and continues processing at the
instruction following the END statement.

If an error occurs in a DO-WHILE sequence, execution stops. In previous releases,
a warning message was issued and execution continued, with the DO-WHILE
sequence treated as a simple DO-END sequence.

The DO-UNTIL-END sequence
The DO-UNTIL-END sequence creates a loop that executes at least once and
continues until a specified condition is true.

To use the DO-UNTIL-END sequence, code:
DO UNTIL condition...

(action)...
END

The condition must be either a comparative expression or a variable containing a
comparative expression. You can code multiple conditions by joining expressions,
variables, or both with logical operators.

The action can be one or more instructions. The CLIST executes the instructions
within the sequence once, then tests whether the condition on the UNTIL clause is
true. If the condition is false, the CLIST repeats the loop until the condition is true.
When the condition is true, the CLIST ends the loop and executes the next
instruction after the END statement.

For example, to repeat some instructions until a condition is true, you can code the
following:
DO UNTIL &INPUT = YES /* Perform action until condition is YES...

(action)...
WRITE Type YES if you are finished
READ &INPUT;

END

The DO UNTIL sequence is useful for requesting input from a user. Because the
decision is made after the input is received, the loop can continue or end
depending on the value of the input.

Loops

72 z/OS V2R1.0 TSO/E CLISTs

The Iterative DO sequence
The iterative DO sequence creates a loop that executes if a numeric value stays
within a given range of values. The values can be variables derived from CLIST
processing. The iterative DO sequence has the following structure:
DO variable = from_expression TO to_expression +
[BY by_expression]...

(action)...
END

where:

variable
is the control variable for the loop. Its value changes each time the loop
executes, increasing by one (the default) or by a value that you specify in the
BY expression.

from_expression
is a decimal integer, or an expression that evaluates to a decimal integer, from
which the control variable starts. The CLIST sets the control variable to this
value when the loop begins.

to_expression
is a decimal integer, or an expression that evaluates to a decimal integer, that
the control variable must increase or decrease to. The CLIST executes the loop
if the value of the control variable stays within the range created by the FROM
and TO expressions.

by_expression
is a decimal integer, or an expression that evaluates to a decimal integer, by
which the control variable increases or decreases. The default value is one.
After the loop executes, the control variable increases or decreases by this
amount. If the control variable is no longer within the FROM-TO range,
execution continues at the instruction after the END statement.

For example, a CLIST need to execute the following loop ten times:
DO &count = 1 to 10 /* using default BY, increase &count by one

/* each time through the loop...
END /* &count is now equal to 11

And a CLIST need to execute the following loop five times:
DO &count = 1 TO 10 BY 2 /* increase &count by two

/* each time through the loop...
END /* &count is now equal to 12

The FROM, TO, and BY expressions can all contain CLIST variables:
DO &count = &min TO &max BY &increment...
END

Compound DO sequences
The preceding sections describe different ways to control the execution of loops.
You can combine these different types of loop control in a compound DO
sequence. A compound DO sequence combines an iterative DO sequence with a
DO-WHILE, DO UNTIL, or both sequences.

Loops

Chapter 8. Structuring CLISTs 73

In a compound DO sequence, the iterative DO sequence comes first, followed by
either the DO-WHILE or DO-UNTIL sequence:
DO variable = from_exp TO to_exp BY by_exp +
WHILE condition1 +
UNTIL condition2 +...

(action)...
END

The CLIST executes the compound DO sequence as shown in Figure 2 on page 75.

The following example demonstrates a possible compound DO sequence:
SET &increment = 2 /* Initialize BY condition
SET &year = 87 /* Initialize WHILE condition
DO &count = 1 TO 10 BY &increment +
WHILE &year=87 UNTIL &input=YES;...

(action)...
WRITE Type YES if you are finished
READ &INPUT;

END

Loops

74 z/OS V2R1.0 TSO/E CLISTs

If you want a WHILE or UNTIL expression to contain a return code from the
action of the DO sequence, obtain the return code from &LASTCC and store it into
another variable as part of the action. For example:
DO &I = 1 to 10 WHILE (&RCODE = 0)...
SET RCODE = &LASTCC
END

Nesting loops
The action of a loop can contain other loops. Loops within loops are called nested
loops. Loops can contain nested loops of the same type or of a different type.

Nested loops of the same type are often iterative DO-loops within other iterative
DO-loops. For example, to execute 100 CLISTs named PROC00 through PROC99,
you can code:
DO &I = 0 to 9
DO &J = 0 to 9
%proc&I&J
END
END

Set control variable to
value of from_expression

If TO value is exceeded,
discontinue execution

If WHILE condition is not
met, discontinue execution

If UNTIL condition is met,
discontinue execution

Use TO value to test
control variable for
termination

Use WHILE expression to
test for termination

Execute Action

Use BY value to update
control variable

Use UNTIL expression to
test for termination

1.

2.

3.

4.

5.

6.

Figure 2. How a CLIST executes a compound DO sequence

Loops

Chapter 8. Structuring CLISTs 75

Nested loops of a different type are often DO-UNTIL loops within DO-WHILE
loops, for example:
SET &COUNTER1 = 0 /* Initialize outer loop counter */
SET &COUNTER2 = 3 /* Initialize nested loop counter */
DO WHILE &COUNTER1 < 5
/* Perform action while &counter1 is less than 5 */...
(action) /* Executes 5 times */...
DO UNTIL &COUNTER2 = 0
/* Perform action until &counter2 is equal to 0 */...
(Subset of action) /* Executes 3 times */...
SET COUNTER2 = &COUNTER2 - 1 /* Increase nested loop counter by 1 */
END...
SET COUNTER1 = &COUNTER1 + 1 /* Increase outer loop counter by 1 */
END

Distinguishing END statements from END commands or
subcommands

You can issue TSO/E END commands or subcommands in a CLIST. The END
command terminates the CLIST, and END subcommands terminate certain
commands, such as the TEST command. When you include TSO/E END
commands or subcommands in the action of a DO-sequence or a SELECT
statement, you must distinguish the END commands or subcommands from the
END statement. You can distinguish the END statement using the CONTROL
statement or the DATA-ENDDATA sequence.

Using the CONTROL statement
One way to distinguish an END statement from an END command or
subcommand is by coding a CONTROL statement with the END operand. The
value you code for the END operand must then be substituted for the END
statement anywhere in the CLIST, unless another CONTROL END overrides the
value.

For example, if you want to substitute ENDO for the END statement, you can code
the following:
CONTROL END(ENDO)
SET COUNTER = 10
DO WHILE &COUNTER GT 0...

(action)...
test datapak(newpgm) /* Issue TSO/E TEST command */...

(TEST subcommands)...
end /* Issue END subcommand of TSO/E TEST */...
(more action)...
SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
ENDO

Loops

76 z/OS V2R1.0 TSO/E CLISTs

Using the DATA-ENDDATA sequence
Another way to identify END commands or subcommands in DO-sequences or
SELECT statements, is to place them in a DATA-ENDDATA sequence. For example:
SET COUNTER = 10
DO WHILE &COUNTER GT 0...

(action)...
DATA
test datapak(newpgm) /* Issue TSO/E TEST command */...
(TEST subcommands)...
end /* Issue END subcommand of TSO/E TEST */
ENDDATA...
(more action)...
SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
END

Only TSO/E commands and subcommands can appear within the
DATA-ENDDATA sequence. If a CLIST statement is included, TSO/E attempts to
execute it as a TSO/E command, causing an error. For more information about the
DATA-ENDDATA sequence, see “Coding responses to prompts - the DATA
PROMPT-ENDDATA sequence” on page 87.

Subprocedures
A subprocedure is a part of a CLIST that you can call from one or more places in a
CLIST. With subprocedures, you can organize a CLIST into logical units, making
the CLIST easier to write and maintain. You can also keep common code in a
single location and call it from other parts of the CLIST, thus avoiding repetitive
code.

Subprocedures offer a variety of ways to communicate information within a CLIST.
You can:
v Pass parameters to and from subprocedures, for reference or modification
v Share variables globally among subprocedures
v Isolate variables in a subprocedure from the rest of the CLIST

Calling a subprocedure
You call a subprocedure using the SYSCALL statement. On the SYSCALL
statement, name the subprocedure and any parameters you want to pass to the
subprocedure. The parameters can be data strings, variable values, or variable
names.

For example, the following CLIST uses the SYSCALL statement to pass a data
string (Jones), a variable value (&A), and a variable name (B) to a subprocedure
(XYZ):

SET &A = AL
SET &B = Jr.
SYSCALL XYZ Jones &A B /* pass parameters to XYZ */

XYZ: PROC 3 PARM1 PARM2 PARM3 /* receive parameters on PROC stmt */
SYSREF PARM3 /* indicate parm3 holds a var. name */
WRITE &PARM1, &PARM2 &PARM3 /* result: JONES, AL Jr. */

END

Loops

Chapter 8. Structuring CLISTs 77

Subprocedures always begin with a labeled PROC statement. The label can consist
of 1-31 characters (A-Z, 0-9, #, $, @) beginning with an alphabetic character (A-Z).
In the example above, the label is XYZ; the number 3 on the PROC statement
indicates that the subprocedure receives 3 positional parameters; those parameters
are assigned to the variables PARM1, PARM2, and PARM3. For more information
about the PROC statement, see “PROC statement” on page 168.

The SYSREF statement tells the CLIST that PARM3 contains the name of a variable
(B). The SYSREF statement allows other statements in subprocedure to reference
and modify the variable's value (Jr.). For more information, see “Using the SYSREF
statement” on page 79.

To pass a parameter containing blanks to a subprocedure, set a variable equal to
the parameter value, then refer to that variable (without the ampersand) using
&STR on the SYSCALL statement. In the subprocedure, use the SYSREF statement
to refer to the PROC statement parameter that corresponds to the variable name
passed on the SYSCALL statement. For example,
SET &A = JOHN AL
SYSCALL XYZ &STR(A) /* Pass variable to XYZ, omitting & from

/* the variable name...
XYZ: PROC 1 PARM /* Subprocedure XYZ
SYSREF &PARM /* indicate PARM holds a variable name
WRITE &PARM /* result: JOHN AL

Subprocedures must always end with the END statement. When subprocedures
end, they pass control back to the statement following the SYSCALL statement.

Subprocedures can use the SYSCALL statement to:
v Call other subprocedures and pass parameters to them
v Call themselves
v Call the CLIST's main procedure, if it has a label

Returning information from a subprocedure
Subprocedures can return information to the caller using:
v Return codes
v SYSREF variables
v NGLOBAL variables

Using the RETURN CODE statement
Subprocedures can return information to the caller using the CODE option of the
RETURN statement. Like return codes from TSO/E commands, return codes from
subprocedures are stored in the control variable &LASTCC, but error return codes
from subroutines will not cause an error routine to receive control.

In the following example, the subprocedure passes a return code to the statement
following SYSCALL:

SET &A = AL
SYSCALL XYZ &A /* pass variable &A to XYZ */
IF &LASTCC = 0 THEN +

WRITE All’s Well!

XYZ: PROC 1 PARM1
WRITE &PARM1
RETURN CODE(0)

END

Subprocedures

78 z/OS V2R1.0 TSO/E CLISTs

Using the SYSREF statement
When a SYSCALL statement passes a variable name (without the ampersand), the
subprocedure can use a SYSREF statement to let following statements reference
and modify the variable's value. All changes to a SYSREF variable are retroactive;
that is, the new values are assigned to the original variable back in the caller.

In the following example, the subprocedure gives a new value to the variable
whose name is passed (A). The new value (GEORGE) replaces the old value (AL)
in the caller.

SET &A = AL
SYSCALL XYZ A /* pass var. &A to XYZ, omitting the &*/;
IF &LASTCC = 0 THEN +

WRITE &A /* result: GEORGE

XYZ: PROC 1 &PARM1
SYSREF &PARM1 /* refer changes to the caller */
SET &PARM1 = GEORGE
RETURN CODE(0)

END

Reminder: For SYSREF variables, always omit the ampersand (&) from
corresponding variables on the SYSCALL statement. By omitting the ampersand on
SYSCALL, you pass the name of the variable, not its value, to the subprocedure.
Using the SYSREF statement, the subprocedure can then assign new values to the
variable.

Sharing variables among subprocedures
In addition to passing return codes and variable values, you can define common
variables to be shared among different CLISTs, or among subprocedures in a single
CLIST.

Variables shared among different CLISTs are called GLOBAL variables. GLOBAL
variables are defined using the GLOBAL statement, and are fully described in
“Nesting CLISTs” on page 81.

Variables shared by subprocedures in one CLIST are called NGLOBAL (named
global) variables. You define named global variables with the NGLOBAL
statement. When you define an NGLOBAL variable, any subprocedure in the same
CLIST can refer to it by name and modify its value.

The NGLOBAL variables differ from GLOBAL variables in that:
v They are not global to (shared with) other CLISTs.
v They are defined by name only (not position).
v They need to be defined only once.

Using the NGLOBAL statement
The NGLOBAL statement names variables that all the subprocedures in a CLIST
can use. The following subprocedure (ABC) defines variables A, B, and C and uses
the NGLOBAL statement to make them available to other subprocedures in the
CLIST:
ABC: PROC 0 /* In subprocedure ABC,
NGLOBAL A,B,C /* define NGLOBAL variables
SET A = apples
SET B = bananas
SET C = cantaloup
SYSCALL XYZ /* call subprocedure XYZ
END

Subprocedures

Chapter 8. Structuring CLISTs 79

XYZ: PROC 0 /* In subprocedure XYZ,
WRITE Mix &A, &B, and &C /* use the NGLOBAL variables
END

The NGLOBAL statement must precede any statement that uses its variables. The
number of variables that you can name on the NGLOBAL statement is unlimited.

For another example of using the NGLOBAL statement with subprocedures, see
“Allocating a data set with LISTDSI information - the EXPAND CLIST” on page
143.

Restricting variables to a subprocedure
Variables that you define in a subprocedure are local to that subprocedure, unless
you specifically name them on a GLOBAL or NGLOBAL statement. Different
subprocedures in a CLIST can have variables with the same name, and each
variable is local to the subprocedure that defined it. Therefore, when you define a
variable, you don't have to check to see if that name has been used in the CLIST
before.

Considerations for using other statements in subprocedures
Some CLIST statements require special consideration when used in subprocedures.
The following sections describe these statements and considerations.

Using ATTN and ERROR statements in subprocedures
Subprocedures can have their own attention and error routines. These are routines
that receive control when the CLIST user presses the attention key on a terminal
keyboard, or an error occurs. See Chapter 11, “Writing ATTN and ERROR
routines,” on page 103 for a full description of these routines, including special
considerations for using them with subprocedures. For example, a subprocedure's
attention or error routine cannot contain a nested attention or error routine.

When a subprocedure receives control, the caller's attention and error routines
remain in effect until the subprocedure issues an ATTN or ERROR statement. Then
the subprocedure's attention or error routine prevails until the routine is turned off
or replaced, or the subprocedure ends. When the subprocedure ends, the caller's
attention and error routines take control again.

Using CONTROL statements in subprocedures
CLISTs can establish special conditions by issuing the CONTROL statement and
certain control variables. These conditions, comprising a CONTROL environment,
remain in effect when you call a subprocedure. Subprocedures can set up their
own CONTROL environment, but it only applies to the subprocedure and any
subprocedures it calls. When a subprocedure ends, the caller's CONTROL
environment takes effect again.

Using GOTO statements in subprocedures
If you use a GOTO statement in a subprocedure, it can only branch to labels in the
same subprocedure. Also, GOTO statements cannot branch to PROC statements.

Subprocedures

80 z/OS V2R1.0 TSO/E CLISTs

Nesting CLISTs
A CLIST can invoke another CLIST, which in turn can invoke another, and so
forth. CLISTs that are invoked by other CLISTs are called nested CLISTs. When a
nested CLIST ends, it automatically branches back to the statement following the
one that invoked it. You can define global variables that allow nested CLISTs to
communicate with each other.

You can structure a series of nested CLISTs in levels. The CLIST invoked by the
user is the top-level or outer-level CLIST in the nesting chain. CLISTs invoked by
the outer-level CLIST are nested within it, and they may have lower-level CLISTs
nested within them.

In Figure 3, PROC1 is the outer-level CLIST. It invokes PROC2 and then PROC3,
which are nested within it. PROC2 invokes PROC4, and PROC4 invokes PROC5.
PROC4 is nested within PROC2, and PROC5 within PROC4.

Because CLISTs are executed sequentially, PROC1 cannot invoke PROC3 until
PROC5, PROC4, and PROC2 finish processing.

The same CLIST can be invoked at two or more levels of a nested hierarchy
because each invocation of a nested CLIST causes a new copy of it to be brought
into storage. For example, PROC2 and PROC4 can both invoke PROC5.

Protecting the input stack from errors or attention interrupts
When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO/E obtains its input (TSO/E commands and CLIST
statements).

PROC1

PROC2

PROC4

PROC5

PROC3

Figure 3. Nested CLISTs

Nesting CLISTs

Chapter 8. Structuring CLISTs 81

For nested CLISTs, the input stack holds the contents of the CLISTs in the order in
which they are nested.

You can protect the input stack from being erased (flushed) when an error or
attention interrupt occurs. To protect the input stack, code the CONTROL
statement with the NOFLUSH or MAIN operand at the beginning of a CLIST that
you want to receive control when an error or attention interrupt occurs.

Any options established by a nested CLIST are in effect only when that nested
CLIST is executing. In particular, a nested CLIST's CONTROL statement options
and attention and error routines are no longer in effect when the nested CLIST
returns control to its caller.

Nested CLISTs in the subcommand environment (those invoked under the EXEC
subcommand of EDIT) can execute only subcommands and CLIST statements.
They cannot execute TSO/E commands, nor can any nested CLISTs that they
invoke, until the END subcommand is executed.

Global variables
Global variables are variables defined on a GLOBAL statement. They allow
communication between nested CLISTs. Any CLIST in the nested chain can modify
or reference the value of a global variable.

All global variables in a given CLIST must have unique names. You cannot have
more global variables on the GLOBAL statement in a nested CLIST than there are
on the GLOBAL statement in the top-level CLIST.

To establish global variables, first determine the total number of symbolic variables
that are referenced by more than one of the CLISTs in the nested chain. (Include
the top-level CLIST among those in the nested chain.) Then, code GLOBAL
statements in each of the CLISTs in the chain that are involved in the passing of
data.

For example, in Figure 3 on page 81, assume the following global variable
definitions in each of the CLISTs:

In PROC1: GLOBAL A B C D
In PROC2: GLOBAL X Y Z
In PROC3: GLOBAL F G H K
In PROC4: GLOBAL Q
In PROC5: GLOBAL R S.

Variables &A, &X, &F, &Q, and &R can be shared by all the CLISTs. If PROC4 sets
&Q equal to D777, then &A, &X, &F, and &R are also set equal to D777.

Within nested CLISTs, global variables are positional; that is, all variables defined
first refer to the same variable; all variables defined second refer to the same
variable; and so on.

Exiting from a nested CLIST
There are three ways to exit from a nested CLIST:
v Let control automatically return to the calling CLIST at the end of the nested

CLIST.
v Issue an END command.

Nesting CLISTs

82 z/OS V2R1.0 TSO/E CLISTs

v Issue an EXIT statement.

Using the END command
The END command only allows you to terminate a CLIST. Control returns to the
CLIST that invoked it, but you cannot set a return code. To use the END
command, code:
end

The END command just terminates a CLIST and should not be used if a return
code is to be passed back to a calling CLIST. A calling CLIST may find the return
code in an unpredictable state. Use the EXIT statement where proper passing of a
return code to a caller is required.

Using the EXIT statement
To cause a nested CLIST to return control to the CLIST that invoked it, you can
also code:
EXIT

You can specify a return code on the EXIT statement. The return code provides a
way for lower-level CLISTs to pass back to their callers indications of errors or
successful execution. To pass a return code when you exit, code:
EXIT CODE(expression)

The expression must be a positive integer, zero, or a symbolic variable whose
value, after substitution, is an integer. The nested CLIST stores the value of the
expression into the control variable &LASTCC.

If an error or attention interrupt occurs, a nested CLIST can pass control back to a
CLIST that is protected from termination by the CONTROL MAIN or CONTROL
NOFLUSH options. To return control to such a CLIST, code:
EXIT QUIT

or
EXIT CODE(expression) QUIT

If a CLIST in the nested chain is protected from termination, execution continues
based on actions in the CLIST's active error or attention routine. For information
about writing error and attention routines, see Chapter 11, “Writing ATTN and
ERROR routines,” on page 103.

If no CLIST in the nested chain is protected from being terminated after an error or
an attention interrupt, coding QUIT causes control to return to the environment
from which the CLIST was invoked: TSO/E, TSO/E EDIT mode, or ISPF.

GOTO statements
The GOTO statement causes an unconditional branch to a label within a CLIST.
The label may be a variable whose value, after symbolic substitution, is a valid
label within the CLIST. Examples of using GOTO statements are:

IF &A = 555 THEN GOTO A1
IF &A NE 0 THEN GOTO A2

A1: processing...
A2: processing

Nesting CLISTs

Chapter 8. Structuring CLISTs 83

...

SET TARGET = B1
IF &X = 777 THEN GOTO &TARGET
ELSE +

DO
SET TARGET = B2...
IF LASTCC = 0 THEN +
SET TARGET = B1
GOTO &TARGET
END

B1: processing
B2: processing

...

GOTO statements cannot branch:
v To another CLIST
v To a subprocedure's PROC statement
v From one subprocedure to another
v From a subprocedure to the CLIST's main procedure

GOTO Statements

84 z/OS V2R1.0 TSO/E CLISTs

Chapter 9. Communicating with the terminal user

The CLIST language offers several ways to communicate with the terminal user.
These methods are:
v Prompting the user for input
v Writing messages to the user
v Receiving replies from the user
v Passing control to the user
v Using ISPF panels

Prompting the user for input
A CLIST can prompt for input by:
v Using a PROC statement with positional or keyword parameters on the first line

of the CLIST
v Using WRITE and WRITENR statements
v Using TSO/E commands

Prompting with the PROC statement
When you include positional parameters on a PROC statement at the beginning of
a CLIST, the CLIST user must supply a value for each of them. If the user does not
specify a value at execution, the CLIST prompts until the user specifies a value.
For example, the PROC statement
PROC 2 NAME ADDRESS

requires the user to pass two positional parameters at execution, for example:
EX clistname ’Jones Fishville’

If the user does not pass a parameter, the CLIST prompts for a NAME and an
ADDRESS. A PROC statement at the beginning of a CLIST also prompts when a
user passes a keyword parameter without a required value. For example, the
following PROC statement allows the user to pass the parameter ACCT with a
value in parentheses:
PROC 0 ACCT()

If the user passes ACCT without a value, for example,
EX clistname ’ACCT’

the CLIST prompts for a value.

Unlike PROC statements at the beginning of a CLIST, PROC statements on
subprocedures do not prompt for missing parameters. For more information about
the PROC statement, see “Using the PROC statement” on page 19.

Prompting with the WRITE and WRITENR statements
You can use either a WRITE or WRITENR statement, or a combination of both, to
send a message to the terminal user and prompt for input. To obtain input after a
WRITE or WRITENR, use the READ statement. For details about how to use the
WRITE and WRITENR statements, see “Using the WRITE and WRITENR
statements” on page 88.

© Copyright IBM Corp. 1988, 2013 85

Prompting with TSO/E commands
Some TSO/E commands, such as LISTDS, require more information than just the
name of the command and they prompt when that information is not supplied.
However, TSO/E commands included in a CLIST can prompt for input only when
the CLIST allows prompting. Prompting in a CLIST is controlled by the TSO/E
commands PROFILE and EXEC, and by the CLIST statement CONTROL and the
control variable &SYSPROMPT.

The following table illustrates the effect on prompting using different explicit
specifications of PROMPT/NOPROMPT on the PROFILE and EXEC commands
and on the CONTROL statement. Note that SET &SYSPROMPT = ON has the
same effect as CONTROL PROMPT and SET &SYSPROMPT = OFF has the same
effect as CONTROL NOPROMPT.

Note:

1. PROFILE PROMPT is the default specification and applies to a TSO/E session,
not to a particular CLIST. You don't need to specify PROFILE PROMPT unless
you want to override a prior PROFILE NOPROMPT command.

2. The PROFILE command can be executed either outside of, or within, a CLIST.
3. EXEC NOPROMPT is the default specification and applies only to the CLIST

that it invokes.
4. The CONTROL statement applies only to the CLIST in which it appears.
5. If a CONTROL statement does not appear in a CLIST, CONTROL NOPROMPT

is implied, unless &SYSPROMPT is set to a value of ON.

profile noprompt
exec prompt
CONTROL PROMPT

profile prompt
exec prompt

profile prompt
CONTROL PROMPT

profile prompt
exec noprompt
CONTROL PROMPT

profile prompt
exec prompt
CONTROL PROMPT

profile prompt

profile prompt
exec noprompt

profile prompt
exec prompt
CONTROL NOPROMPT

Specifications

Prompting by TSO/E commands
allowed in CLIST

YES NO

X

X

X

X

X

X

X

X

Prompting User for Input

86 z/OS V2R1.0 TSO/E CLISTs

Coding responses to prompts - the DATA PROMPT-ENDDATA
sequence
If you execute a CLIST in the background, a user cannot respond to prompts from
the CLIST. To avoid this problem, use the DATA PROMPT-ENDDATA sequence.
The DATA PROMPT-ENDDATA sequence lets you designate responses to prompts
by TSO/E commands or subcommands.

To use the DATA PROMPT-ENDDATA sequence, code:
DATA PROMPT...

/* Responses */
ENDDATA

If the sequence is not immediately preceded by a TSO/E command or
subcommand that prompts, an error occurs (error code 968 appears in control
variable &LASTCC). You can ignore the error condition if a command or
subcommand that might prompt, does not prompt.

The responses in the DATA PROMPT-ENDDATA sequence must appear exactly as
if a user entered the response. Each DATA PROMPT-ENDDATA sequence can
respond only to prompts issued by the immediately preceding command or
subcommand. However, you can include multiple responses to satisfy multiple
prompts. Excess responses can result in an error message and termination of the
CLIST if an error routine is not present.

To stop TSO/E commands from prompting after a DATA PROMPT-ENDDATA
sequence, code a null line after ENDDATA. To code a null line, first set a variable
equal to null:
SET &abc =

Then place that variable on the line after ENDDATA:
ENDDATA
&abc

Some TSO/E commands prompt for input when you code certain operands. For
example, the LINK command invokes the linkage editor. When you substitute an
asterisk (*) for the data set name, TSO/E prompts for control statements. If you
include such a LINK command in a CLIST that might run in the background, place
the control statements within a DATA PROMPT-ENDDATA sequence. The
following CLIST, when run in the background, link-edits the member X, which
resides in the file DD1:
CONTROL PROMPT LIST
IF &SYSENV=FORE THEN /* CLIST is running in the foreground */ +

link (*) /* Prompt user for control statements */ +
load(’d32kds1.load’) pr(*) ncal xref list let

ELSE /* CLIST is being run in the background */ +
DO

SET NULL = /* set null line to stop prompting after ENDDATA
link (*) +
load(’d32kds1.load’) pr(*) ncal xref list let
DATA PROMPT /* Designate responses to prompts */
include dd1(x)
entry x
name x
ENDDATA
&NULL /* null line stops prompting */

END

Prompting User for Input

Chapter 9. Communicating with the terminal user 87

There are additional considerations for using the DATA PROMPT-ENDDATA
sequence:
v The CLIST must allow prompting.
v The CLIST performs symbolic substitution before using the responses to satisfy

the prompt. (You can include variables in the responses.)

Writing messages to the terminal
CLISTs send two types of messages to the terminal user: messages that you
specifically write from the CLIST, and informational messages from commands or
statements in the CLIST.

Using the WRITE and WRITENR statements
Two CLIST statements are available for sending messages to the terminal and
prompting for input:
v WRITE displays a message at the terminal and causes the terminal's display

cursor to return to the beginning of the next line after the message is displayed.
v WRITENR displays a message at the terminal and causes the terminal's display

cursor to remain at the end of the message. (The “NR” in WRITENR is for “No
Return”.)

You can use either statement to send messages. You might find WRITENR
preferable when the message prompts the user for input.

When prompting the user for input, include a READ statement after the WRITE or
WRITENR statement. The READ statement reads the user input into a variable or
variables. For more information, see “Using the READ statement” on page 89.

Both WRITE and WRITENR must be followed by one or more blanks and the text
of the message. For example:
CONTROL ASIS...
WRITE Your previous entry was invalid.
WRITE Do you want to continue?
WRITENR Enter yes or no.

As a result of these statements, the terminal user sees the following messages on
the screen:

Your previous entry was invalid.
Do you want to continue?
Enter yes or no. __

The cursor stops after the period in the last line to indicate the CLIST is waiting
for the user's response. Because CONTROL ASIS is specified the CLIST displays
the message ‘as written’, in both uppercase and lowercase letters.

You can also use the WRITENR statement to join text. For example:
CONTROL CAPS...
WRITENR Please enter your userid
WRITE followed by two blanks.

As a result of these statements, the terminal user sees the following message:

Prompting User for Input

88 z/OS V2R1.0 TSO/E CLISTs

PLEASE ENTER YOUR USERID FOLLOWED BY TWO BLANKS.

Because CONTROL CAPS is specified, the message is translated to all capital
letters before being displayed.

Controlling the display of informational messages
You can request that informational messages from commands or statements in a
CLIST be displayed or suppressed using operands on the CONTROL statement or
the &SYSMSG control variable.
v To request that they be displayed, code:

CONTROL MSG

or
SET &SYSMSG = ON

v To suppress the display of informational messages, code:
CONTROL NOMSG

or
SET &SYSMSG = OFF

The MSG/NOMSG option has no effect on error messages, they are always
displayed.

Receiving responses from the terminal
The READ and READDVAL statements provide two ways for CLISTs to access
user input from the terminal. The READ statement obtains input directly from the
terminal, typically following a WRITE or WRITENR statement. The READDVAL
statement obtains input from the &SYSDVAL control variable.

Using the READ statement
The READ statement makes terminal input available to a CLIST in the form of
symbolic variables. You normally precede a READ statement with one or more
WRITE or WRITENR statements to let the user know that the CLIST is expecting
input, and what sort of input it is expecting.

You can include one or more symbolic variables on a READ statement. If a READ
statement does not include any variables, the CLIST stores the information the user
enters into the control variable &SYSDVAL.

Assume that a WRITE statement requests that the user enter four names. The
accompanying READ statement can be coded as follows:
READ A,B,C,D

Note that variables on a READ statement do not require ampersands.

If the user's response to the previous WRITE statement is:
SMITH,JONES,KELLY,INGALLS,GREENE

The CLIST assigns the names to the symbolic variables on the READ statement as
follows:

Writing Messages to Terminal

Chapter 9. Communicating with the terminal user 89

&A has the value SMITH.
&B has the value JONES.
&C has the value KELLY.
&D has the value INGALLS.

Because the READ statement only includes four variables, the CLIST ignores the
fifth name (GREENE).

You can also code READ statements without variables:
READ

If the user responded with the same five names, they all need to be stored in the
control variable &SYSDVAL. To preserve the input strings, the CLIST does not
remove the delimiters. For example, if the user responds to the previous READ
statement by entering “SMITH,JONES,KELLY,INGALLS,GREENE”, &SYSDVAL has
the following value:
SMITH,JONES,KELLY,INGALLS,GREENE

To assign a null value to one of the variables on a READ statement, the user can
enter either a double comma or a double apostrophe (two single quotation marks).
For example, assume that the CLIST sends a message to the user requesting four
numbers. The READ statement to obtain these numbers is:
READ NUM1,NUM2,NUM3,NUM4

If the user responds either:
15,24,,73

or
’15’ ’24’ ’’ ’73’

The symbolic variables on the READ statement then have the following values:
&NUM1 has the value 15.
&NUM2 has the value 24.
&NUM3 has a null value.
&NUM4 has the value 73.

The fact that single quotation marks are valid delimiters requires that you exercise
care when reading fully-qualified data set names into variables. Precautions are
necessary because, if the user enters the data set name within single quotation
marks (according to TSO/E naming conventions), the CLIST normally reads them
as delimiters, not data. If a WRITE statement requests the name of a fully-qualified
data set, the CLIST can obtain the data set name as entered by the user, with single
quotation marks preserved, by using the READ statement with the &SYSDVAL
control variable.

The following CLIST uses a READ statement and &SYSDVAL to preserve single
quotation marks around a data set name. It also checks for the quotation marks to
see if the user entered a fully-qualified data set name and, if not, adds the
quotation marks and the user's prefix to the name.
PROC 0
WRITE Enter the name of a data set.
READ
SET &DSN = &SYSDVAL /* Get name from &SYSDVAL; */
IF &SUBSTR(1:1,&DSN) ¬= &STR(’) THEN +

Receiving Responses from Terminal

90 z/OS V2R1.0 TSO/E CLISTs

DO /* If not fully qualified, */
SET &DSN = ’&SYSPREF;.&DSN’ /* add prefix and quotation marks. */
END
WRITE &DSN

You can also use the READ statement to obtain values for PROC statement
keywords that were not supplied on the invocation of the CLIST. For example,
suppose a PROC statement defines &ALPHA as a keyword with a default null
value. Assume &ALPHA contains the number of golf balls on the moon and that
the user does not assign a value to &ALPHA when invoking the CLIST. However,
a variable, &SPACEVENTS, in the CLIST results in code being executed that
requires a non-null value for &ALPHA. To obtain a value for &ALPHA, the
following code sends a message to the user requesting a value for &ALPHA. Then,
it issues a READ statement with &ALPHA as a parameter.
PROC 0 ALPHA()...
SET SPACEVENTS = &ALPHA
DO WHILE &SPACEVENTS = /* Null */
WRITE Enter the number of golf balls there
WRITE are on the moon. A null value is unacceptable.
READ ALPHA
SET SPACEVENTS = &ALPHA
END

If a user ends a line of READ input with a plus sign or hyphen, the READ
statement treats it as a continuation symbol and waits for another line of input. For
more information, see “Continuation symbols” on page 10.

Controlling uppercase and lowercase for READ statement input
To control uppercase and lowercase for READ statement input, use the
CAPS/ASIS/NOCAPS operand on the CONTROL statement, or the &SYSASIS
control variable, or the &SYSLC and &SYSCAPS built-in functions. The &SYSASIS
control variable and the CAPS/ASIS/NOCAPS operand indicate whether the
CLIST should translate all READ statement input to uppercase characters. (The
CLIST does not modify numbers, national characters, special characters, or DBCS
characters in such input.)

If you want the CLIST to translate all input obtained by READ statements to
uppercase characters, you can use the default value (CAPS) or code:
CONTROL CAPS

or
SET &SYSASIS = OFF

To request that the CLIST leave all input obtained by READ statements in the
format in which it was entered, code:
CONTROL ASIS

or
CONTROL NOCAPS

or
SET &SYSASIS = ON

The CAPS/ASIS/NOCAPS operands affect output from WRITE statements the
same as they affect input from READ statements.

Receiving Responses from Terminal

Chapter 9. Communicating with the terminal user 91

&SYSLC and &SYSCAPS enable you to tailor individual strings and substrings of
input strings.

For example, a CLIST that prompts for first, middle, and last names, might want to
guarantee that the name is properly capitalized before saving it. The following
section of code shows a way to do so:

CONTROL ASIS /* Do not translate READ input to uppercase */
WRITENR Enter first name:
READ FNAME
WRITENR Enter middle name:
READ MNAME
WRITENR Enter last name:
READ LNAME

/**/
/* Set the lengths of the first, middle, and last names to */
/* variables so that the substring notation is easier to read. */
/**/

SET LGTHFNAME = &LENGTH(&FNAME)
SET LGTHMNAME = &LENGTH(&MNAME)
SET LGTHLNAME = &LENGTH(&LNAME)

/**/
/* Capitalize the first letters in first, middle, and last names */
/* and make sure all other letters are in lowercase characters. */
/**/

SET F = &SUBSTR(1,&SYSCAPS(&FNAME))&SUBSTR(2:&LGTHFNAME,&SYSLC(&FNAME))
SET M = &SUBSTR(1,&SYSCAPS(&MNAME))&SUBSTR(2:&LGTHMNAME,&SYSLC(&MNAME))
SET L = &SUBSTR(1,&SYSCAPS(&LNAME))&SUBSTR(2:&LGTHLNAME,&SYSLC(&LNAME))
SET NAME = &STR(&F &M &L)

If the input entered is CADman haVVy fisH, &NAME contains the string “Cadman
Havvy Fish”.

Using the READDVAL statement
The READDVAL statement accesses the contents of the &SYSDVAL control
variable. &SYSDVAL contains one of three types of information:
v Information obtained by a READ statement without operands
v The non-delimiter data on the line returning control to the CLIST after a

TERMIN statement, as described in “Passing control to the terminal” on page 93
v Information that the CLIST explicitly placed into &SYSDVAL with an assignment

statement

The CLIST successively places each input string in &SYSDVAL into each variable
on the READDVAL statement.

Assume for the remainder of this topic that the following strings are in
&SYSDVAL:
SMITH JONES KELLY

The following statement assigns the strings to symbolic variables:
READDVAL NAME1,NAME2,NAME3

Note that variables on the READDVAL statement do not require ampersands.

Receiving Responses from Terminal

92 z/OS V2R1.0 TSO/E CLISTs

The preceding READDVAL statement produces the following results:
&NAME1; has the value SMITH.
&NAME2; has the value JONES.
&NAME3; has the value KELLY.

Note: The variables &NAME1, &NAME2, and &NAME3 can be set to different
values during the execution of a CLIST. However, if the contents of &SYSDVAL is
not modified and READDVAL is executed again, those variables are reset to the
current value of SYSDVAL.

The following statement also reads all three strings from &SYSDVAL:
READDVAL NAME1,NAME2,NAME3,NAME4

The value of &NAME4 is null because there are not enough input strings in
&SYSDVAL to provide a fourth value.

The following statement, however, assigns values only to the variables NAME1
and NAME2:
READDVAL NAME1,NAME2

Because there are only two variables on READDVAL to which the CLIST can
assign the input strings in &SYSDVAL, the CLIST ignores the excess strings. In the
previous example, the CLIST ignores KELLY.

Passing control to the terminal
Two CLIST statements are available for transferring control to the terminal and
establishing a means for the user to return control to the CLIST:
1. TERMIN transfers control to the terminal and establishes a means for the user

to return control to the CLIST. A CLIST executed from the TERMIN is
considered to be not nested within the CLIST that issued the TERMIN
statement, and global variables sharing between the two CLISTs is not allowed.

2. TERMING transfers control to the terminal and establishes a means for the user
to return control to the CLIST. A CLIST executed from the TERMING is
considered to be nested within the CLIST that issued the TERMING statement,
and global variables sharing between the two CLISTs is allowed.

Other differences in how TERMIN and TERMING transfer control are listed in
Table 7.

Table 7. TERMIN and TERMING statement comparison

Characteristic TERMIN TERMING

Share GLOBAL variables across the TERMIN(G)
element

No Yes

Variable access across the TERMIN(G) element through
CLIST access routine IKJCT441

No Yes

Checking Command Output Trapping - IKJCT441 and
IRXEXCOM recognize CLIST and REXX execs on
opposing sides of a TERMIN(G) element

No Yes

CONTROL NOMSG statement - allow checking the
NOMSG setting on opposing sides of a TERMIN(G)
element

No Yes

Receiving Responses from Terminal

Chapter 9. Communicating with the terminal user 93

Because the TERMIN and TERMING elements are CLIST-generated type elements
which cannot be added to the input stack through the external STACK service
routine, they are considered to be of the same type. If the topmost stack element is
a TERMIN or TERMING element, return code 60 (X'3C') is returned. For more
information see “TERMIN and TERMING statement” on page 175.

Note: If you issue a CLIST containing a TERMIN or TERMING statement, under
either ISPF or a REXX exec, or in the TSO/E background, the TERMIN or
TERMING statement ends the CLIST. For CLISTs issued in the TSO/E background,
TSO/E also issues message IKJ56550I to indicate that the TERMIN or TERMING
statement is not supported for background processing.

The TERMIN or TERMING statement either defines character strings, one of which
the user must enter to return control to the CLIST; or null lines, where the user
must press the Enter key to return control to the CLIST.

The TERMIN or TERMING statement normally does not function alone. WRITE
statements preceding the TERMIN or TERMING statement inform the user why
control is being transferred to the terminal and how to return control to the CLIST.

Unlike the READ statement, TERMIN or TERMING enables the user to enter
commands or subcommands, and invoke programs before responding to the
WRITE statement prompts.

As soon as the CLIST issues the TERMIN or TERMING statement, the user
receives control at the terminal. The user might receive a mode message after the
TERMIN or TERMING statement is issued. If issued, the mode message might be
READY or the name of the command under which the CLIST was invoked. (When
READY is displayed, users might think the CLIST has terminated. You may want
to avoid any confusion by telling them otherwise in the WRITE statement that
precedes the TERMIN or TERMING statement.)

Returning control after a TERMIN or TERMING statement
To return control to the CLIST after a TERMIN or TERMING statement, code the
TERMIN or TERMING statement and define one or more character strings that
return control to the CLIST. For example:
TERMIN IGNORE,PROCESS,TERMINATE

The user then enters IGNORE, PROCESS, or TERMINATE to return control to the
CLIST. The &SYSDLM control variable identifies the position of the string used.
For example, if the user enters TERMINATE to return control, &SYSDLM contains
a 3 because TERMINATE is the third variable on the TERMIN or TERMING
statement. Multiple strings enable the user to indicate desired actions to the CLIST.

You can allow a null line as one of the valid strings but it must be the first string
on the TERMIN or TERMING statement. To do so, place a comma directly before
the first character string as follows:
TERMIN ,PROCESS,TERMINATE

The previous statement enables the user to return control by entering either a null
line (pressing the Enter key), PROCESS, or TERMINATE.

You can issue a TERMIN or TERMING statement that lets the user return control
by entering a null line (pressing the Enter key). To do so, code:
TERMIN

Passing Control to Terminal

94 z/OS V2R1.0 TSO/E CLISTs

Exercise care in using a null line as the means for a user to return control to the
CLIST, because some TSO/E command processors use null lines as function
delimiters (for example, to switch between input and edit modes under EDIT).

Entering input after a TERMIN or TERMING statement
The user can optionally enter input when returning control by appending the input
to the string that returns control. The CLIST stores the input in the &SYSDVAL
control variable, which the CLIST can then access by executing a READDVAL
statement. The READDVAL statement changes the input to uppercase, unless you
code CONTROL ASIS in the CLIST.

Suppose a WRITE statement prompts the user to inform the CLIST, when returning
control after a TERMIN or TERMING statement, if any data sets should be deleted.
The user affirms the request by entering the following:
PROCESS JCL.CNTL(BUDGT) ACCOUNT.DATA

The following CLIST deletes the data sets in the previous statement:
WRITE Check your catalog and enter the names of
WRITE up to two data sets you want deleted.
WRITE They must be separated by a comma or blank and
WRITE the first name must be preceded by the word PROCESS
WRITE and a blank. If you do not want to delete any data
WRITE sets, type in the word IGNORE. If you want to end
WRITE the CLIST, type in TERMINATE.
TERMIN IGNORE,PROCESS,TERMINATE
/* Read the two data set names (if any) in &SYSDVAL into
/* variables called &DSN1 and &DSN2
READDVAL DSN1 DSN2
/* If the user wants to delete data sets (PROCESS),
/* delete them
IF &SYSDLM = 2 THEN +
DO
IF &DSN1¬= THEN +
delete &DSN1
IF &DSN2¬= THEN +
delete &DSN2

END
/* If the user wants the CLIST to ignore the deletion request
/* but continue processing, execute the rest of CLIST. The
/* null ELSE path covers the request to terminate immediately.
IF &SYSDLM = 1 THEN +
DO

(Rest of CLIST)
END

Using ISPF panels
A CLIST can communicate with terminal users by displaying panels of the
Interactive System Productivity Facility (ISPF). ISPF panels allow users to make
selections and enter data; the selections and entries are then available for the
CLIST to use. ISPF panels can also invoke CLISTs based on user input. With ISPF,
CLISTs can conduct extensive panel-driven dialogs with users.

CLISTs use the ISPEXEC command to display ISPF panels. For complete
information about using the ISPEXEC command and its operands, see z/OS ISPF
Services Guide.

ISPF restrictions
The names of variables used on ISPF panels can be no longer than eight characters.

Passing Control to Terminal

Chapter 9. Communicating with the terminal user 95

Sample CLIST with ISPF panels
For an example of displaying ISPF panels from a CLIST, see “Writing full-screen
applications using ISPF dialogs - the PROFILE CLIST” on page 136. The PROFILE
CLIST displays any of four panels, based on input passed at invocation. On two of
the panels, user input (pressing the Enter or END PF key) causes the CLIST to
display another panel or end the session. The panels for the PROFILE CLIST are
illustrated in their ISPF panel-definition form. Instructions for allocating the panels
are included.

Using ISPF Panels

96 z/OS V2R1.0 TSO/E CLISTs

Chapter 10. Performing file I/O

CLISTs can perform I/O to a physical sequential data set, a member of a
partitioned data set (PDS), or the terminal when allocated to a file. Four CLIST
statements are available for opening, reading, writing, and closing files:
v OPENFILE opens a previously allocated file for input, output, or updating. You

may have allocated the file using the TSO/E ALLOCATE command or using
step allocation (JCL statements in a logon procedure).

v GETFILE reads a record from a file opened in the same CLIST.
v PUTFILE writes a record to a file opened in the same CLIST.
v CLOSFILE closes a file opened in the same CLIST.

Whenever a CLIST performs I/O, include an error routine that can handle
end-of-file conditions and errors that may occur. “End-of-File processing” on page
100 shows a CLIST with an error routine that handles end-of-file conditions.

Whenever CLISTs are nested, corresponding OPENFILE, GETFILE, PUTFILE, and
CLOSFILE statements must be in the same CLIST.

Characters supported in I/O
CLIST I/O statements can process all data characters represented by hexadecimal
codes 40 through FF. See “Characters supported in CLISTs” on page 11 for more
information and warnings for doing I/O from data sets containing special
characters.

Opening a file
The OPENFILE statement has the following syntax:
OPENFILE filename {INPUT } /* to read records from the file

{OUTPUT} /* to write records to the file
{UPDATE} /* to update records in the file

To open a data set for I/O, you must allocate the data set to a file name, then use
that file name on the OPENFILE statement. To preserve data integrity, after the file
is opened for I/O, CLIST performs only one level of substitution against the file
name variable. That is, after the file name is substituted with a file record, and to
ensure the file record can be saved in its original format, CLIST does not re-scan
the record.

To allocate the data set to a file name, use the ALLOCATE command with the FILE
keyword. The file name is an arbitrary value; you can create it on the allocation.

For example, you can code the following:
...
allocate file(paycheks) da(’d58tan1.checks.data’) shr
OPENFILE PAYCHEKS...

You can also code the file name as a symbolic variable as follows:
...
SET FILEID= PAYCHEKS

© Copyright IBM Corp. 1988, 2013 97

...
allocate file(&FILEID) da(’d58tan1.checks.data’) shr
OPENFILE &FILEID...

You can open a member of a PDS after allocating the member to a file name, for
example:
allocate file(income) da(’d58tan1.receipts(july)’) shr
OPENFILE INCOME

However, do not use OPENFILE statements to open more than one member of a
PDS for output at the same time.

Closing a file
To close an open file, use a CLOSFILE statement that includes the same file name
as that specified on the corresponding OPENFILE statement. For example, if you
opened a file by coding:
OPENFILE &FILEID

close that file by coding:
CLOSFILE &FILEID

If you do not close an open file before the CLIST terminates, you may not be able
to process that file again until you logoff and logon again.

For examples of CLOSFILE, see the examples in “Reading a record from a file” and
“Writing a record to a file” on page 99.

Reading a record from a file
To read a record from an open file, use a GETFILE statement. The CLIST creates a
variable of the same name as the file name and places the record into it. As long as
the file remains open, successive GETFILE statements read successive records from
the file. When the end of the file has been reached, &LASTCC contains the error
code 400. For information about how to detect and handle end-of-file conditions,
see “End-of-File processing” on page 100.

Assume a data set called D58TAN1.CHECKS.DATA contains the following records:
200BLACKBUY
449REFY
450YARRUM

To read the records into three variables, you can code the following:
...

(error routine)...
allocate file(paycheks) da(’d58tan1.checks.data’) shr reu
OPENFILE PAYCHEKS /* Defaults to INPUT */
SET COUNTER=1
DO WHILE &COUNTER ¬> 3
GETFILE PAYCHEKS /* Read a record */
SET EMPLOYEE&COUNTER=&PAYCHEKS /* Store the record */
SET COUNTER=&COUNTER+1 /* Increase counter by one */
END
CLOSFILE PAYCHEKS /* Close the file */

Opening a File

98 z/OS V2R1.0 TSO/E CLISTs

If you use GETFILE to read data from the terminal, the data is translated to
uppercase, and the terminal user must end the data with a symbol that the CLIST
recognizes as an end-of-file.

Writing a record to a file
To write a record to a file, do the following:
1. Open the file for output (OPENFILE filename OUTPUT).
2. Set a variable of the same name as the file name to the record you are writing

to the file.
3. Specify the file name on the PUTFILE statement to write the record to the data

set, for example:
OPENFILE PRICES OUTPUT /* open the file for output
SET PRICES = $2590.00 /* set variable to input record
PUTFILE PRICES /* put variable record into the file

Note: If you use a variable for the filename on a PUTFILE statement, use a nested
variable to contain the record, for example:
OPENFILE &FILEID OUTPUT /* open the file for output
SET &&FILEID = $2590.00 /* set variable to input record
PUTFILE &FILEID /* put variable record into the file

As long as the file remains open, successive PUTFILE statements write successive
records to the data set. For a data set with a disposition of NEW, OLD, or SHR, if
you close the file and then re-open it, a subsequent PUTFILE statement overlays
the first record in the data set. For a data set with a disposition of MOD, if you
close the file and then re-open it, a subsequent PUTFILE statement adds a record
to the end of the data set.

Assume a CLIST contains the following variables:
&EMPLOYEE1,; which contains the value ’BLACKBUY: $200.00’.
&EMPLOYEE2,; which contains the value ’REFY: $449.00’.
&EMPLOYEE3,; which contains the value ’YARRUM: $450.00’.

To place the previous values in a data set called D58TAN1.CURNTSAL.DATA, you
can code the following:
allocate file(salaries) da(’d58tan1.curntsal.data’) shr reu
OPENFILE SALARIES OUTPUT /* Open the file for output */
SET COUNTER=1
DO WHILE &COUNTER ¬> 3
SET EMPLOYEE=&&EMPLOYEE&COUNTER
SET SALARIES=&EMPLOYEE /* Set the record to be written */
PUTFILE SALARIES /* Write the record */
SET COUNTER=&COUNTER+1 /* Increase counter by one */
END
CLOSFILE SALARIES /* Close the file */

Updating a file
To update a record in an open file, use the GETFILE and PUTFILE statements.
After opening a file for updating (OPENFILE filename UPDATE), perform
successive GETFILE statements until the desired record is read. After assigning the
new value to a variable of the same name as the file name, perform a PUTFILE
statement to update the record.

As long as the file remains open, you may update records.

Reading a Record from a File

Chapter 10. Performing file I/O 99

Assume a data set called D58TAN1.CHECKS.DATA has a variable-blocked record
format and contains the following records:
200BLACKBUY
449REFY
450YARRUM

To update the record for REFY, you can code the following:
...

(error routine)...
allocate file(paycheks) da(’d58tan1.checks.data’) shr reu
OPENFILE PAYCHEKS UPDATE /* Open file for updating */
GETFILE PAYCHEKS /* Read first record */
DO WHILE &SUBSTR(4:7,&PAYCHEKS)¬=REFY
GETFILE PAYCHEKS /* Read another record */
END
SET PAYCHEKS = 000REFY /* Set new value */
PUTFILE PAYCHEKS /* Write new value to data set */
CLOSFILE PAYCHEKS /* Close the file */

End-of-File processing
Whenever a CLIST performs I/O, include code that handles end-of-file conditions.
In a CLIST, end-of-file causes an error condition (error code 400). To process this
condition, provide an error routine before the code that performs the I/O.

An error routine is a block of code that gets control when an error occurs in a
CLIST. The error routine can try to identify the error (such as error code 400) and
take appropriate action. For a complete description of how to write an error
routine, see Chapter 11, “Writing ATTN and ERROR routines,” on page 103.

The following error routine saves the value of &LASTCC, closes and frees the open
file, and branches to a statement that determines whether end-of-file was reached.
SET RCODE=0 /* Initialize the return code variable to 0 */
SET EOF=OFF /* Set the end-of-file indicator off */...
ERROR +
DO
SET RCODE = &LASTCC /* Save the value of &LASTCC */
IF &RCODE=400 THEN +
DO
CLOSFILE PAYCHEKS /* Close the open file
free f(paycheks) /* Free the open file
WRITE No record to update because end-of-file was reached.
SET EOF=ON
RETURN /* Branch to statement that tests for
END /* EOF (IF &EOF=ON THEN...)
ELSE EXIT /* For other errors, EXIT
END
allocate file(paycheks) da(’d58tan.checks.data’) shr reu /* Allocate
/* file */
/* and establish file name of paycheks */
OPENFILE PAYCHEKS UPDATE /* Open file for updating */
SET COUNTER=1 /* Initialize counter to 1 */
DO WHILE &COUNTER <= 4
GETFILE PAYCHEKS /* Skip records */
SET COUNTER= &COUNTER+1 /* Increase counter by 1 */
/* If EOF reached, end loop. Null else */
IF &EOF=ON THEN GOTO OUT
END
SET PAYCHEKS = 480BUZZBEE /* Set variable to new value */
PUTFILE PAYCHEKS /* Update fourth record */

Updating a File

100 z/OS V2R1.0 TSO/E CLISTs

CLOSFILE PAYCHEKS /* Close the file */...
(rest of CLIST)...

OUT: END

Special considerations for performing I/O
v MOD operand

When allocating the data set you can use the MOD operand. It allows you to
append data to the end of a sequential data set. For more information about the
MOD operand see z/OS TSO/E Command Reference, and z/OS TSO/E REXX User's
Guide.

v Records Containing JCL Statements
If a CLIST reads or writes records containing JCL statements, that CLIST can
make unwanted modifications to the statements by symbolic substitution. To
prevent the unwanted modifications, use the &NRSTR or &SYSNSUB built-in
functions. See Chapter 7, “Using built-in functions,” on page 53 for details and
examples.

v Concatenated Data Sets
You can perform I/O on multiple data sets that are allocated (concatenated) to a
single file name. However, the first data set in the concatenation must not be
empty: if a GETFILE statement is issued and the first data set in the
concatenation is empty, all other data sets allocated to the file are ignored, and
no records are read.

End-of-File Processing

Chapter 10. Performing file I/O 101

Special Considerations for Performing I/O

102 z/OS V2R1.0 TSO/E CLISTs

Chapter 11. Writing ATTN and ERROR routines

Two types of events cause the execution of a CLIST to halt prematurely: attention
interrupts and errors. The CLIST language provides two statements that enable
you to code routines to handle attention interrupts and errors. They are ATTN and
ERROR. The ATTN statement is described in “Writing attention routines.” The
ERROR statement is described in “Writing error routines” on page 107.

An attention interrupt occurs when the user presses the attention key (typically
PA1 or ATTN) on the terminal keyboard. The user may enter an attention interrupt
for any number of reasons, such as to terminate an infinite loop or to end the
CLIST. The user cannot enter an attention interrupt when a CLIST error routine is
in execution as a result of a CLIST-invoked command processor abend or before a
TSO/E command is executed within the CLIST. Any attention interruption received
while a command abend is in progress is ignored.

An error can occur for any number of reasons, such as a numeric value that
exceeds 231-1, an end-of-file condition, or a non-zero return code from a TSO/E
command.

Writing attention routines
Use the ATTN statement to identify an action to be taken when the user enters an
attention interrupt. The action can be any executable statement and is often a
DO-sequence that performs operations tailored to the CLIST. You can structure an
ATTN action as follows:
ATTN +
DO...
(action)...
END

The ATTN statement and its action must precede the code to which it applies.
Multiple CLIST statements may be executed in the action but only one TSO/E
command, TSO/E subcommand, or null line may be executed. (A null line returns
control to the statement or command that was executing when the attention
interrupt occurred.) If the one TSO/E command executed is an invocation of an
attention handling CLIST, you can execute as many TSO/E commands or
subcommands as you want in the attention handling CLIST.

If an attention action does not execute a TSO/E command, subcommand, or null
line, the action must include an EXIT or RETURN statement. The EXIT statement
ends the CLIST, and the RETURN statement returns control to the CLIST
statement, command, or subcommand following the one that was executing when
the user entered the attention interrupt.

You should inform the user at the beginning of the attention routine that TSO/E is
processing the attention interrupt. Otherwise, the user may enter another attention
interrupt. For a description of how TSO/E processes multiple attention interrupts,
see z/OS TSO/E Programming Services.

© Copyright IBM Corp. 1988, 2013 103

Canceling attention routines
You can cancel an attention routine at any point, letting the CLIST continue
without any special attention processing. To cancel an attention routine, code:
ATTN OFF

This entry nullifies the most recently established attention routine. ATTN OFF
should not be used within an attention routine itself.

You can also code attention routines that override previous ones. Each attention
routine overrides all previous ones. You can initialize new attention routines as
many times as you want.

Protecting the input stack from attention interrupts
When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO/E obtains its input (TSO/E commands, CLIST statements).

If you write an attention routine that does not terminate the CLIST, protect the
input stack from being erased (flushed) from storage when an attention interrupt
occurs. You can protect the input stack by coding a CONTROL statement with the
MAIN operand. The MAIN operand indicates that the CLIST is the main CLIST in
the invoker's TSO/E environment and prevents TSO/E from flushing the input
stack in the event of an attention interrupt.

Attention routine processing depends on whether CONTROL MAIN has been
coded, and whether the routine executes a TSO/E command, RETURN statement,
or null line.
v If CONTROL MAIN has not been coded, the CLIST terminates and the user sees

the READY message, indicating that control has returned to the terminal.
v If CONTROL MAIN has been coded, and a null line executes in the attention

routine, the CLIST continues at the statement or command that was executing
when the user entered the attention interrupt.

v If CONTROL MAIN has been coded, and a TSO/E command or RETURN
statement is issued, the CLIST continues at the statement or command following
the one that was executing when the user entered the attention interrupt.

Also refer to z/OS TSO/E User's Guide, for a further explanation of attention
interrupt processing.

Sample CLIST with an attention routine
The ALLOCATE CLIST shown in Figure 4 on page 105 contains an attention
routine that prompts the user to indicate whether he or she wants to end the
CLIST.

If the user types YES to end the CLIST, and data sets have been allocated, the
attention routine invokes a CLIST called HOUSKPNG (see Figure 5 on page 106),
which frees the allocated data sets. Then the attention routine ends the ALLOCATE
CLIST.

If the user does not type YES to end the ALLOCATE CLIST, the attention routine
issues CONTROL MAIN and a null line to return control to the point where the
attention interrupt occurred.

Writing Attention Routines

104 z/OS V2R1.0 TSO/E CLISTs

Note that the attention routine in Figure 4 issues only one TSO/E command:
%houskpng or the null line. However, the HOUSKPNG CLIST itself issues up to
three commands, depending on how many data sets it has to free.

/***/
/* THE ALLOCATE CLIST ALLOCATES THREE DATA SETS REQUIRED FOR */
/* A PROGRAM. IT IS EQUIPPED TO HANDLE ATTENTION INTERRUPTS */
/* ENTERED AT ANY POINT. WHEN NECESSARY, IT INVOKES HOUSKPNG. */
/***/

PROC 2 &DS1 &DS2
CONTROL END(STOP) /* substitute "STOP" for END statement */
CONTROL PROMPT
ATTN +

DO
WRITE TSO is processing your attention
WRITENR Do you want to end? If so, type YES ====>
READ &END
IF &END = YES THEN +

/* If user wants to end, terminate the CLIST after the HOUSKPNG routine */ +
/* frees any data sets allocated by the CLIST. */

DO
CONTROL FLUSH /* flush the input stack after HOUSKPNG */

STOP
ELSE +

CONTROL MAIN /* return control to the CLIST */
IF &FOOTPRINT = YES AND &END = YES THEN +

%houskpng &ds1 &ds2 &cleanup /* call HOUSKPNG to free data sets */
ELSE +

DO
SET &NULL =
&NULL /* issue null line to continue at the */

/* point where the attention occurred. */
STOP

STOP
alloc f(input) da(&ds1.text) shr reu
SET FOOTPRINT = YES
SET CLEANUP=1
alloc f(output) da(&ds2.text) reu
SET CLEANUP=2
alloc f(temp) da(temp.text)
SET CLEANUP=3
call ’myid.myprog.load(member)’
free f(temp) da(temp.text)
SET CLEANUP=2
free f(output) da(&ds2.text)
SET CLEANUP=1
free f(input) da(&ds1.text)
SET FOOTPRINT = /* Set FOOTPRINT back to null */

Figure 4. A CLIST containing an attention routine - the ALLOCATE CLIST

Writing Attention Routines

Chapter 11. Writing ATTN and ERROR routines 105

Subprocedures and attention routines
Attention routines can call CLIST subprocedures. TSO/E commands in called
subprocedures have the same effect as TSO/E commands in the attention routine
itself: when the first TSO/E command executes, attention processing ends and
control passes to the line in the CLIST following the one that was executing when
the attention interrupt occurred.

Subprocedures can contain attention routines. However, attention routines in
subprocedures cannot contain nested attention or error routines.

CLIST attention facility
The CLIST attention facility (in TSO/E) and the CLSTATTN parameter of the STAX
macro provide greater flexibility in the handling of attention interruptions. The
CLSTATTN parameter of the STAX macro lets a program establish an attention
routine that receives control when an attention interruption occurs during the
processing of a CLIST that contains an attention routine. The program's attention
routine can invoke the CLIST attention facility to process the CLIST attention
routine.

Previously, the terminal monitor program (TMP) handled attention interruptions
for CLISTs with attention routines. Now a program can maintain control by having
its own attention routine perform that processing. For more information about
using the CLIST attention facility and the STAX macro, see z/OS TSO/E
Programming Services.

/***/
/* THE HOUSKPNG CLIST IS INVOKED WHEN THE USER WANTS TO END THE */
/* ALLOCATE CLIST AFTER AN ATTENTION AND DATA SETS ARE ALREADY */
/* ALLOCATED. BASED ON THE VALUE OF THE VARIABLE CLEANUP, */
/* THE CLIST FREES FROM ONE TO THREE OF THE DATA SETS ALLOCATED */
/* IN THE ALLOCATE CLIST. */
/***/

PROC 3 &DS1 &DS2 &CLEANUP
CONTROL END(ENDO)
ATTN +
EXIT QUIT
IF &CLEANUP=1 THEN +
free f(input) da(&ds1.text)
IF &CLEANUP=2 THEN +
DO
free f(input) da(&ds1.text)
free f(output) da(&ds2.text)
ENDO
IF &CLEANUP=3 THEN +
DO
free f(input) da(&ds1.text)
free f(output) da(&ds2.text)
free f(temp) da(temp.text)
ENDO

Figure 5. An attention handling CLIST - the HOUSKPNG CLIST

Writing Attention Routines

106 z/OS V2R1.0 TSO/E CLISTs

Writing error routines
Use the ERROR statement to create an error routine. The error routine defines an
action to be taken when a CLIST receives a non-zero return code from something
other than a CLIST subprocedure. (Table 8 on page 113 lists the CLIST error codes.)
The action can be any executable statement and is often a DO-group that performs
operations tailored to the indicated error. You can structure an ERROR action as
follows:
ERROR +
DO...
(action)...
END

The ERROR statement and its action must precede the code to which it applies. An
action may contain TSO/E commands and subcommands, subject to the mode in
which the CLIST is executing when the error occurs. Unlike attention routines,
error routine actions can issue multiple TSO/E commands or subcommands.

If an error routine action does not end the CLIST, it must include a RETURN
statement. The RETURN statement returns control to the CLIST statement, TSO/E
command, or TSO/E subcommand following the one that was executing when the
error occurred. Repeated errors which activate the same error routine may cause
the CLIST to terminate.

You may also code error routines that override previous ones. Each error routine
overrides all previous ones. You may initialize new error routines as many times as
you want.

Canceling error routines
To cancel the most recently established error routine in a CLIST, code either:
ERROR OFF

or
ERROR

following the error routine to be cancelled.

When ERROR OFF is coded, processing continues as if an error routine had never
been established. When a failure occurs, one of the following occurs depending on
the type of failure:
v If the failure was because of an ABEND or non-zero return code from a TSO/E

command or subcommand, the CLIST continues execution with the next
sequential instruction following the failing instruction.

v If the failure was in a CLIST statement or in expression evaluation, the failing
instruction and explanatory CLIST error messages are displayed, and the CLIST
terminates.

When ERROR is entered with no operands, the CLIST displays the command,
subcommand, or statement on the CLIST that ended in error. No explanatory
CLIST error messages are displayed. &LASTCC is reset to 0 and the CLIST
continues with the next sequential statement or command.

Writing Error Routines

Chapter 11. Writing ATTN and ERROR routines 107

Protecting the input stack from errors
When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO/E obtains its input (TSO/E commands, CLIST statements).

If you write a CLIST that contains an error routine, protect the input stack from
being erased from storage (flushed) when an error occurs. You can protect the
input stack by coding a CONTROL statement that includes the NOFLUSH or
MAIN operand. The CONTROL statement must appear before any error routine,
preferably at the beginning of the CLIST.

Sample CLIST with an error routine
The COPYDATA CLIST, shown in “The COPYDATA CLIST,” contains an error
routine that handles:
v Pre-allocation errors
v End-of-file condition
v Allocation errors

The CLIST allocates the data sets required to copy an existing data set into an
output data set. If the copy is successful, the CLIST cancels the error routine by
executing an ERROR statement with no operands and continues.

Subprocedures and error routines
Error routines can call CLIST subprocedures, and subprocedures can issue the
RETURN statement to return control to the error routine. The error routine itself
must issue RETURN to return control to the statement after the one in error. For
example, the following error routine calls a subprocedure:
ERROR +
DO
SET &ECODE = 8
SELECT
WHEN (&FOOTPRINT=2) SYSCALL ABC ECODE...
END /* End of SELECT
RETURN /* return control to CLIST
END /* End of error routine...
ABC: PROC 1 CODEPARM /* subroutine ABC
SYSREF &CODEPARM /* refer variable back to caller’s &ECODE
free f(indata) /* free data sets
free f(outdata)
SET &CODEPARM = 12 /* set error code
RETURN /* return control to error routine
END /* end of subroutine ABC

Subprocedures can contain error routines. However, error routines in
subprocedures cannot contain nested attention or error routines.

The COPYDATA CLIST

/***/
/* THE COPYDATA CLIST COPIES RECORDS FROM A DATA SET INTO AN */
/* OUTPUT DATA SET. IT IS EQUIPPED TO HANDLE ERRORS CAUSED BY */
/* END-OF-FILE, ALLOCATION ERRORS, AND ERRORS CAUSED BY OTHER */
/* STATEMENTS AND COMMANDS IN THE CLIST. */
/***/

CONTROL NOFLUSH END(ENDO) /* Protect the stack from being flushed

Writing Error Routines

108 z/OS V2R1.0 TSO/E CLISTs

/* so that when error is caused by end-of-file, CLIST can continue
ERROR +
DO
SET RCODE=&LASTCC /* Save return code
/* If end-of-file, branch to CLOSFILE statements
SELECT
WHEN (&RCODE=400) +
DO /* IF End-of-file is reached, */
SET EOFFLAG = YES /* Set flag and return to the */
RETURN /* I/O procedure. */
ENDO
/* If error occurred before allocation, set exit code to 4
WHEN (&FOOTPRINT=0) SET ECODE=4
/* If allocation of file OUTDS failed, free file INDATA and set
/* exit code to 8
WHEN (&FOOTPRINT=1) +
DO
free f(indata) da(text.data)
SET ECODE=8
ENDO
/* If the error was not caused by end-of-file or allocation error,
/* free both files and set exit code to 12. In this case, error was
/* caused by one of the file I/O statements
WHEN (&FOOTPRINT=2) +
DO
free f(indata) da(text.data)
free f(outds)
SET ECODE=12
ENDO
ENDO /* End of SELECT statement
EXIT CODE(&ECODE) /* For all errors except end-of-file condition,
/* exit the CLIST with the appropriate exit code
ENDO /* End of error routine
SET FOOTPRINT=0 /* Identify pre-allocation errors...
SET FOOTPRINT=1 /* Identify allocation error for file INDATA
alloc f(indata) da(d15rbo1.text.data) shr reu /* Allocate input data set
SET FOOTPRINT=2 /* Identify allocation error for file OUTDS
alloc f(outds) sysout(a) /* Allocate output data set
OPENFILE INDATA /* Open input data set
OPENFILE OUTDS OUTPUT /* Open output data set
/* Copy records from input data set to output data set */
DO WHILE &EOFFLAG ¬= YES /* Do the following until EOF is reached*/
GETFILE INDATA /* Read input record
IF &EOFFLAG ¬= YES THEN +
DO
SET OUTDS=&INDATA /* Set output record to value of input record
PUTFILE OUTDS /* Write output record to output data set
ENDO

ENDO
EOF: CLOSFILE INDATA /* Close input data set
CLOSFILE OUTDS /* Close output data set
ERROR /* From this point on, display statement that causes error
/* along with any error messages...

Writing Error Routines

Chapter 11. Writing ATTN and ERROR routines 109

Writing Error Routines

110 z/OS V2R1.0 TSO/E CLISTs

Chapter 12. Testing and debugging CLISTs

This chapter describes how to test CLISTs using diagnostic procedures to find and
correct errors. The diagnostic procedures include:
v Using diagnostic options of the CONTROL statement to find errors in CLIST

statements and TSO/E commands
v Getting help for CLIST messages
v Finding and understanding CLIST error codes

Using diagnostic options of the CONTROL statement
The CONTROL statement lets you define processing options for a CLIST. Some of
the CONTROL statement options can help you diagnose CLIST errors. These
diagnostic options, LIST, CONLIST, SYMLIST, and MSG, cause a CLIST to display
its statements, commands, and any informational messages at the terminal when
you execute the CLIST. From the displayed information, you can often find
statements or commands that contain errors.

You can use the diagnostic options separately or together on the CONTROL
statement. To obtain the most complete diagnostic information, code the options
together (the order is not significant):
CONTROL LIST CONLIST SYMLIST MSG

You can place the CONTROL statement at the top of the CLIST or in any part of
the CLIST that you want to test or debug. Each CONTROL statement overrides
any previous CONTROL statements. To turn off the diagnostic options, type:
CONTROL NOLIST NOCONLIST NOSYMLIST NOMSG

As an alternative to retyping the CONTROL statement when you want to change
options, you can use the control variables &SYSLIST, &SYSCONLIST,
&SYSSYMLIST, and &SYSMSG to test or change the current settings. For more
information about using these control variables, see “Setting options of the CLIST
CONTROL statement” on page 44.

The diagnostic options have the following effects:

SYMLIST
The CLIST displays each TSO/E command, subcommand, or CLIST statement
at the terminal before scanning it for symbolic substitution.

LIST
The CLIST displays each TSO/E command or subcommand at the terminal
after symbolic substitution but before execution.

CONLIST
The CLIST displays each CLIST statement at the terminal after symbolic
substitution but before execution.

MSG
The CLIST displays informational messages at the terminal.

Note: SYMLIST and CONLIST do not display the GLOBAL or NGLOBAL
statements.

© Copyright IBM Corp. 1988, 2013 111

The CLIST in Figure 6 contains diagnostic options on the CONTROL statement.
When you execute the CLIST, the commands and statements appear at the terminal
as shown in Figure 7.

Notice that each statement and command appears twice at the terminal. The first
version is caused by CONTROL SYMLIST and shows the statement or command
as it appears in the CLIST. The second version shows the results of symbolic
substitution on the preceding line. If a line undergoes no substitution (contains no
variables), both versions are the same.

Messages in diagnostic output
The CLIST executes each statement or command after performing symbolic
substitution on it. Therefore, when you use the MSG option with LIST and
CONLIST, messages about execution errors appear at the terminal after the line
that caused the error.

For example, the CLIST in Figure 6 fails when the input data set is not cataloged.
When the input data set is not cataloged, the CLIST displays the following
information at the terminal, with messages after the statement that failed to
execute.

The diagnostic output ends after the ALLOCATE command, when the CLIST
detects the error. Working backwards from the last line, you can find and correct
the source of the error (in this case, the value of &INPUT).

CONTROL LIST CONLIST SYMLIST MSG
SET INPUT = data.set.name
SET DSN = &INPUT;
allocate file(a) dataset(’myid.&dsn’)
free file(a)

Figure 6. Sample CLIST with diagnostic CONTROL options

SET INPUT = data.set.name
SET INPUT = data.set.name
SET DSN = &INPUT;
SET DSN = data.set.name
allocate file(a) dataset(’myid.&dsn’)
allocate file(a) dataset(’myid.data.set.name’)
free file(a)
free file(a)

Figure 7. Diagnostic output from sample CLIST

SET INPUT = data.set.name
SET INPUT = data.set.name
SET DSN = &INPUT;
SET DSN = data.set.name
allocate file(a) dataset(’myid.&dsn’)
allocate file(a) dataset(’myid.data.set.name’)
IKJ56228I DATA SET MYID.DATA.SET.NAME NOT FOUND IN CATALOG
OR CATALOG CANNOT BE ACCESSED
IKJ56701I MISSING DATA SET NAME+
IKJ56701I MISSING NAME OF DATA SET TO BE ALLOCATED

Figure 8. Error messages in diagnostic output from sample CLIST

Diagnostic Options of CONTROL Statement

112 z/OS V2R1.0 TSO/E CLISTs

Note that the last line in Figure 8 on page 112 is a continuation of the preceding
message line. When the CLIST is executed under ISPF, the continuation is
displayed as shown in Figure 8 on page 112. Under line-mode TSO/E, you must
type a question mark (?) after the plus sign to see the continuation.

How to make diagnostic output optional in a CLIST
You can make the diagnostic output available as an option to anyone who invokes
your CLIST. To do so, code a keyword parameter such as DEBUG on the PROC
statement as follows:
PROC 0 DEBUG
IF &DEBUG=DEBUG THEN +
CONTROL LIST CONLIST SYMLIST MSG

The CONTROL options take effect when you invoke the CLIST with the DEBUG
parameter, for example (explicit invocation):
EX clistname ’DEBUG’

or, implicit invocation:
%clistname DEBUG

Getting help for CLIST messages
CLIST message numbers begin with the characters IKJ. For explanations of CLIST
messages, look up the message number in the IKJ section of z/OS TSO/E Messages.
The message explanations include information about the action, if any, you need to
take to correct a problem.

Obtaining CLIST error codes
The CLIST control variable &LASTCC contains an error code from the last TSO/E
command or CLIST statement executed. After each command or statement in a
CLIST, you can retrieve the error code from &LASTCC, for example, by coding
SET ECODE = &LASTCC

You can then write the error code to the terminal or use it as a basis for further
processing. For more information about using &LASTCC, see “Getting return codes
and reason codes” on page 48.

Note: With the exception of the RETURN statement, CLIST statements and TSO/E
commands in error routines do not update the value of &LASTCC If you use
&LASTCC in an error routine, &LASTCC contains the return code from the
command or statement that was executing when the error occurred.

Table 8 lists and explains the error codes that CLIST statements return in
&LASTCC. Except as otherwise noted, the codes are in decimal format.

Table 8. CLIST statement error codes (decimal)

Error code Meaning

16 Not enough virtual storage. Log on with more storage or specify
VARSTORAGE(HIGH) in your TSO/E PROFILE.

300 User tried to update a control variable that can only be updated by
the system.

304 Not valid keyword found on EXIT statement.

Diagnostic Options of CONTROL Statement

Chapter 12. Testing and debugging CLISTs 113

Table 8. CLIST statement error codes (decimal) (continued)

Error code Meaning

308 CODE keyword specified, but no code given on EXIT statement.

312 Internal GLOBAL processing error.

316 TERMIN delimiter has more than 256 characters.

324 GETLINE error.

328 More than 64 delimiters on TERMIN.

332 Not valid file name syntax.

336 File already open.

340 Not valid OPEN type syntax.

344 Undefined OPEN type.

348 File specified did not open. (For example, the file name was not
allocated.) Reallocate the file.

352 GETFILE - file name is not currently open.

356 GETFILE - the file has been closed by the system. (For example, the
file was opened under EDIT mode and EDIT mode has been
terminated.)

360 PUTFILE - file name not currently open.

364 PUTFILE - file closed by system (see code 356).

368 PUTFILE - CLOSFILE - file not opened by OPENFILE.

372 PUTFILE - issued before GETFILE on a file opened for update.

376 Unable to open the directory of a PDS using a variable record
format.

380 Data sets with a logical record length greater than 32767 are not
supported for CLIST I/O.

400 GETFILE - end of file. TSO/E treats this condition as an error that
can be handled by an ERROR action.

404 User tried to write to a file open for INPUT.

408 User tried to read from a file open for OUTPUT.

412 User tried to update a file after end of file was reached.

416 User tried to update an empty file.

500 The TO value on a DO statement is non-numeric.

502 The FROM value on a DO statement is non-numeric.

504 The BY value on a DO statement is non-numeric.

508 A SYSCALL statement contains an undefined procedure name.

512 A RETURN statement contains an undefined keyword.

516 The name of a procedure is used as a variable.

524 Unable to establish an ESTAE routine.

528 A positional specification on the PROC statement was not valid.

532 Not valid characters were found in a symbolic parameter on the
PROC statement.

536 A symbolic parameter name on the PROC statement is too long.

540 The number of positional parameters defined on the PROC
statement is fewer than the number passed.

Obtaining CLIST Error Codes

114 z/OS V2R1.0 TSO/E CLISTs

Table 8. CLIST statement error codes (decimal) (continued)

Error code Meaning

544 No symbolic parameters were defined on the PROC statement.

548 Duplicate parameter names were found on the PROC statement.

552 A keyword parameter has a not valid default value.

556 A default keyword value was missing an ending quote on the PROC
statement.

560 A PARSE error occurred while processing the PROC statement.

568 Abnormal termination

572 SYSREF variable was not passed as a parameter.

576 SYSREF variable was not defined on a PROC statement.

580 An ERROR statement was found within a subprocedure's ERROR or
ATTN routine.

584 An ATTN statement was found within a subprocedure's ERROR or
ATTN routine.

588 A character between DBCS delimiters was outside the range of
double-byte characters.

592 A DBCS string contains an odd number of bytes, indicating that one
of the characters is incomplete.

596 A beginning DBCS delimiter was found without a corresponding
ending delimiter.

600 Two beginning DBCS delimiters were found without an intervening
ending delimiter.

604 An error occurred while processing an installation-written CLIST
built-in function in IKJCT44B.

608 An error occurred while processing an installation-written CLIST
statement in IKJCT44S.

612 An error occurred in an installation exit.

620 EBCDIC &SYSTWOBYTE data is outside valid DBCS range.

624 An error occurred while processing a system variable (see note
below).

708 The preceding statement has a not valid &SYSINDEX expression.

712 The preceding statement has a not valid &SYSINDEX start
parameter; the start parameter must be a non-negative number.

716 The preceding statement has a not valid &SYSNSUB level
parameter; the level parameter must be a number from 0 to 99.

720 The preceding statement has a missing &SYSNSUB level, expression
parameter or both.

724 The preceding statement has a &SYSNSUB level parameter that uses
a built-in function as a symbolic variable.

8xx Evaluation routine error codes.

800 Data was found where operator was expected.

804 An operator was found where data was expected.

808 A comparison operator was used in a SET statement.

812 (Reserved).

816 An operator was found at the end of a statement.

Obtaining CLIST Error Codes

Chapter 12. Testing and debugging CLISTs 115

Table 8. CLIST statement error codes (decimal) (continued)

Error code Meaning

820 Operators are out of order; data may resemble operators.

824 More than one exclusive operator was found.

828 More than one exclusive comparison operator found.

832 The result of an arithmetic calculation is outside the valid range,
-2,147,483,647 to +2,147,483,647.

836 (Reserved).

840 Not enough operands.

844 No valid operators.

848 An attempt was made to load data as character data, but the data
was numeric (an arithmetic operation had been performed on the
data).

852 Addition error - character data.

856 Subtraction error - character data.

860 Multiplication error - character data.

864 Divide error - character data or division by 0.

868 Prefix found on character data.

872 Numeric value is too large.

900 Single ampersand was found.

904 (Reserved).

908 An error occurred in an error action that received control because of
another error.

912 Substring range is not valid.

916 A non-numeric value was found in a substring range.

920 Substring range value too small (zero or negative).

924 Substring syntax is not valid.

932 Substring found outside of the range of the string. (For example, an
&SUBSTR variable attempted to substring the first three positions of
data that contains only two characters.)

936 A built-in variable that requires a value was entered without a
value.

940 Not valid symbolic variable.

944 A label was used as a symbolic variable.

948 Not valid label syntax on a GOTO statement.

952 A GOTO label was not defined.

956 A GOTO statement has no label.

960 &SYSSCAN was set to a not valid value.

964 &LASTCC was set to a not valid value and EXIT tried to use it as a
default value.

968 DATA PROMPT-ENDDATA statements supplied, but no prompt
occurred.

972 TERMIN statement cannot be used in background jobs.

976 READ statement cannot be used in background jobs.

Obtaining CLIST Error Codes

116 z/OS V2R1.0 TSO/E CLISTs

Table 8. CLIST statement error codes (decimal) (continued)

Error code Meaning

980 Maximum statement length (32756) exceeded during symbolic
substitution.

984 TERMING delimiter has more than 256 characters.

988 TERMING has more than 64 delimiters.

992 TERMING statement cannot be used in background jobs.

999 Internal CLIST error.

Sxxx A system abend code, printed in hexadecimal.

Uxxx A user abend code, printed in hexadecimal.

Note: The underlaying error, which is summarized by error code 624, will always be
shown by a more detailed error message; this message will not be suppressed when using
an error routine.

Obtaining CLIST Error Codes

Chapter 12. Testing and debugging CLISTs 117

Obtaining CLIST Error Codes

118 z/OS V2R1.0 TSO/E CLISTs

Chapter 13. Sample CLISTs

This chapter contains examples of CLISTs that illustrate the CLIST functions
described in previous chapters. The examples assume that the CLISTs reside in a
PDS allocated to SYSPROC.

Table 9 lists the names of the CLISTs and provides short descriptions of the
functions they illustrate. Many of these CLISTs include examples of symbolic
variables, control variables, built-in functions, and conditional sequences.

Table 9. Sample CLISTs and their functions

CLIST Function Reference

LISTER Including TSO/E commands Figure 9 on page 120

DELETEDS Simplifying routine tasks “Simplifying routine tasks - the DELETEDS
CLIST” on page 120

CALC Creating arithmetic
expressions from user
supplied input

Figure 11 on page 121

CALCFTND Performing front-end
prompting

“Using front-end prompting - the
CALCFTND CLIST” on page 121

SCRIPTDS Initializing and invoking
system services

“Initializing and invoking system services -
the SCRIPTDS CLIST” on page 122

SCRIPTN Invoking CLISTs to perform
subtasks

“Invoking CLISTs to perform subtasks - the
SCRIPTN CLIST” on page 124

SUBMITDS Including JCL; performing
front-end prompting

“Including JCL statements - the SUBMITDS
CLIST” on page 126

SUBMITFQ Performing substringing;
adding flexibility

“Analyzing input strings with &SUBSTR -
the SUBMITFQ CLIST” on page 126

RUNPRICE Allowing foreground or
background submittal of jobs

“Allowing foreground and background
execution of programs - the RUNPRICE
CLIST” on page 127

TESTDYN Providing invoker with
options and performing
initialization based on options
specified

“Including options - the TESTDYN CLIST”
on page 128

COMPRESS Simplifying routine,
system-related tasks

“Simplifying system-related tasks - the
COMPRESS CLIST” on page 130

CASH Simplifying invoker's interface
to complex applications

“Simplifying interfaces to applications - the
CASH CLIST” on page 131

PHONE Performing I/O; reading
records into &SYSDVAL

“Using &SYSDVAL when performing I/O -
the PHONE CLIST” on page 132

SPROC Using &SYSOUTTRAP and
&SYSOUTLINE variables to
manage command output

“Allocating data sets to SYSPROC - the
SPROC CLIST” on page 133

PROFILE Using ISPF dialog
management services in
CLISTs to create full-screen
applications

“Writing full-screen applications using ISPF
dialogs - the PROFILE CLIST” on page 136

© Copyright IBM Corp. 1988, 2013 119

Table 9. Sample CLISTs and their functions (continued)

CLIST Function Reference

EXPAND Using LISTDSI statement to
allocate a new data set with
characteristics of an existing
data set.

“Allocating a data set with LISTDSI
information - the EXPAND CLIST” on page
143

Including TSO/E Commands - the LISTER CLIST
You can organize related activities so that users can invoke a CLIST to perform a
given task or group of tasks. The simplest example is a CLIST that groups TSO/E
commands together.

The LISTER CLIST consists of two TSO/E commands. (See Figure 9.) The LISTCAT
command lists all of the entries in the invoker's catalog. The LISTALC command
lists the names and status of all data sets allocated to the invoker's user ID. TSO/E
displays the output produced by these commands in the same order as that in
which it executes the commands. The invoker does not have to enter a command,
view its output, then enter another command; all input required from the invoker
is supplied at one time.

Simplifying routine tasks - the DELETEDS CLIST
One way to simplify routine tasks is to write CLISTs that make the process as
interactive as possible. For example, the syntax of the DELETE command can
confuse users who want to delete some of their data sets. For those users, you can
write a CLIST that simplifies the process. The DELETEDS CLIST shown in
Figure 10 is an example of such a CLIST. It prompts the invoker for a data set
name or a completion indicator.

listcat
listalc status

Figure 9. The LISTER CLIST

/**/
/* THIS CLIST PROMPTS THE USER FOR THE NAMES OF THE DATA */
/* SETS TO BE DELETED, ONE AT A TIME. */
/**/

SET DONE=NO
DO WHILE &DONE=NO
WRITE Enter the name of the data set you want deleted.
WRITE Omit the identification qualifier (userid).
WRITE Do not put the name in quotation marks.
WRITE When you are finished deleting all data sets, type an ’f’.
READ DSN
IF &DSN = F THEN SET DONE=YES
ELSE delete &DSN
END

Figure 10. The DELETEDS CLIST

120 z/OS V2R1.0 TSO/E CLISTs

Creating arithmetic expressions from user-supplied input - the CALC
CLIST

The CALC CLIST, shown in Figure 11, contains a PROC statement that requires
three input strings from the invoker:
v A numeric value
v An arithmetic operator
v Another numeric value.

The CLIST creates an arithmetic expression using the positional parameter
variables that represent these three values. A WRITE statement displays a message
made up of the unevaluated expression, an equal sign, and the evaluated
expression. CALC contains no validity-checking statements; therefore, input that
does not meet the above requirements causes the &EVAL; built-in function to fail
and generate an error code.

Using front-end prompting - the CALCFTND CLIST
Front-end prompting verifies input data before the CLIST uses it in other
statements. For example, the CALC CLIST in Figure 11 assumed that &FVALUE
and &LVALUE represented valid numeric values or variables containing valid
numeric values. It also assumed that &OPER represented a valid arithmetic
operator.

In CALCFTND, shown in “The CALCFTND CLIST,” the CLIST first ensures that
&FVALUE is numeric, not character data. The WRITE statement message is
tailored to address the possibility that the invoker is including decimal points in
the value. The CLIST views such a value as character data, not numeric data. The
DO-WHILE-END sequence executes until the invoker supplies a valid numeric
value. A similar DO-WHILE-END sequence is provided for &LVALUE;

The verification of &OPER is somewhat more involved. &OPER must be a valid
arithmetic operator, one of the following symbols: +, -, *, /, **, //. Therefore,
the condition for the corresponding DO-WHILE-END sequence requires a logical
ANDing of comparative expressions. Each expression is true when &OPER does
not equal the operator in the expression. When all of the expressions are true,
&OPER is not a valid arithmetic operator. To ensure that the CLIST views &OPER
and the valid arithmetic operators as character data, enclose them in &STR built-in
functions.

The CALCFTND CLIST
PROC 0 FVALUE() OPER() LVALUE()

/**/

PROC 3 FVALUE OPER LVALUE

/**/
/* DISPLAY THE ENTIRE EQUATION AT THE TERMINAL, INCLUDING THE RESULT */
/* OF THE EXPRESSION. */
/**/

WRITE &FVALUE&OPER&LVALUE = &EVAL(&FVALUE&OPER&LVALUE)

Figure 11. The CALC CLIST

The CALC CLIST

Chapter 13. Sample CLISTs 121

/* IF &FVALUE IS NOT VALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

CONTROL ASIS /* Allow upper and lower case WRITE statements */

SET &NULL =
DO WHILE &DATATYPE(&FVALUE) ¬= NUM

IF &STR(&FVALUE) = &NULL THEN +
WRITE Please enter a first value without decimal points &STR(-)

ELSE +
DO
WRITENR Your first value is not numeric. Reenter a number without
WRITE decimal points &STR(-)
END
READ &FVALUE

END
/**/
/* IF &OPER IS NOT VALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &STR(&OPER)¬=&STR(+) AND &STR(&OPER)¬=&STR(-) AND +
&STR(&OPER)¬=&STR(*) AND &STR(&OPER)¬=&STR(/) AND +
&STR(&OPER)¬=&STR(**) AND &STR(&OPER)¬=&STR(//)

IF &STR(&OPER) = &NULL THEN +
DO
WRITE Please enter a valid arithmetic operator (+,-,*,/,**,//)
WRITE enclosed in parentheses, for example, (+) or (-).
END
ELSE +
DO
WRITE Your second value is not a valid operator (+,-,*,/,**,//).
WRITE Reenter this value, using one of the valid arithmetic
WRITE operators enclosed in parentheses, for example, (+) or (-).
END
READ &OPER

END
/**/
/* IF &LVALUE IS NOT VALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &DATATYPE(&LVALUE) ¬= NUM
IF &STR(&LVALUE) = &NULL THEN +

WRITE Please enter a second value without decimal points &STR(-)
ELSE +
DO
WRITENR Your last value is not numeric. Reenter a number without
WRITE decimal points &STR(-).
END
READ LVALUE

END
/**/
/* ONCE THE OPERANDS HAVE BEEN VERIFIED, EVALUATE THE EXPRESSION AND */
/* DISPLAY THE RESULT AT THE TERMINAL. */
/**/
WRITE &FVALUE&OPER&LVALUE = &EVAL(&FVALUE&OPER&LVALUE)

Initializing and invoking system services - the SCRIPTDS CLIST
The SCRIPTDS CLIST enables a user to run the SCRIPT program against an input
data set and have the output printed.

Using Front-End Prompting - The CALCFTND CLIST

122 z/OS V2R1.0 TSO/E CLISTs

As shown in “The SCRIPTDS CLIST,” SCRIPTDS requires a positional parameter,
&DSN; The invoker supplies the name of a PDS member to be printed. The CLIST
includes the &DSN variable as the member name of the memo.text data set on the
invocation of the SCRIPT program. The invoker does not have to supply input for
&SYSPREF because it is a control variable whose value is available to the CLIST.
The inclusion of &SYSPREF as the identification qualifier of the input data set frees
the invoker from having to enter a fully-qualified data set name. The CLIST also
substitutes &SYSPREF and &DSN on the allocation of the output data set so that
its name corresponds to the name of the input data set.

The SCRIPTDS CLIST
PROC 1 DSN LIST
/**/
/* THIS CLIST (SCRIPTDS) SETS UP THE ENVIRONMENT FOR SCRIPTING A */
/* DATA SET, ISSUES THE SCRIPT COMMAND, AND PRINTS THE OUTPUT. */
/**/
CONTROL NOFLUSH NOMSG
IF &LIST=LIST THEN +

CONTROL LIST
/**/
/* DELETE THE OUTPUT DATA SET INTO WHICH THE SCRIPTED FILE WILL BE */
/* PLACED IN CASE IT IS STILL ALLOCATED FROM A PREVIOUS INVOCATION */
/* OF SCRIPTDS. */
/**/
delete ’&SYSPREF.&DSN.list’
/**/
/* DEFINE A FILE NAME (DDNAME) FOR THE OUTPUT DATA SET SO THAT THE */
/* SCRIPT PROGRAM CAN REFERENCE IT. FREE THE FILE BECAUSE SCRIPT WILL*/
/* ALSO ALLOCATE THE DATA SET. */
/**/
alloc f(a) da(’&SYSPREF.&DSN.list’) dsorg(ps) recfm(v,b,m) +

blk(3156) sp(10,10) tr new release reu
free f(a)
CONTROL LIST
/**/
/* ISSUE THE SCRIPT COMMAND, SPECIFYING THE NAME OF THE DATA SET */
/* MEMBER TO BE SCRIPTED: MEMO.TEXT(&DSN). */
/**/
script ’&SYSPREF.memo.text(&DSN)’ +
message(delay id trace) device(3800n6) twopass +
profile(’script.r3.maclib(ssprof)’) +
lib(’script.r3.maclib’) +
sysvar(c 1 d yes) +
bind(8 8) chars(gt12 gb12) file(’&SYSPREF.&DSN.list’) continue

/**/
/* FREE THE FILES REQUIRED TO PRINT THE SCRIPTED DATA SET. */
/* THEN ALLOCATE THEM, REQUESTING TWO COPIES ON THE 3800 PRINTER. */
/**/
SET RC=&LASTCC /* Get SCRIPT return code */
IF RC<=4 THEN +
DO
CONTROL NOMSG
CONTROL MSG
alloc f(sysprint) dummy reuse
alloc f(sysut1) da(’&SYSPREF.&DSN.list’) shr reuse
alloc f(sysut2) sysout(n) fcb(std4) chars(gt12,gb12) +

copies(2) optcd(j) reuse
alloc f(sysin) dummy reuse

/**/
/* INVOKE THE UTILITY TO HAVE THE DATA SET PRINTED AND FREE THE */
/* FILES. */

System Services - SCRIPTDS CLIST

Chapter 13. Sample CLISTs 123

/**/
call ’sys1.linklib(iebgener)’
free f(sysut1,sysut2,sysprint,sysin)
END

Invoking CLISTs to perform subtasks - the SCRIPTN CLIST
While you can write CLISTs that perform application tasks directly, you can also
write CLISTs that subdivide application tasks among nested CLISTs and control
their execution. For example, you can write a CLIST that invokes two other CLISTs
to perform the same tasks as those performed by SCRIPTDS in “The SCRIPTDS
CLIST” on page 123.

SCRIPTN, shown in “The SCRIPTN CLIST,” produces the same results as
SCRIPTDS. The invoker provides a data set name qualifier as done for SCRIPTDS.
SCRIPTN defines &DSNAM as a global variable because SCRIPTN invokes two
CLISTs that refer to the variable. SCRIPTN invokes a CLIST called SCRIPTD,
which includes the &DSNAM variable as the member name of the memo.text data
set on the invocation of the SCRIPT command (See “The SCRIPTD CLIST”). When
finished with these tasks, SCRIPTD returns control to SCRIPTN and execution
continues at the command following the invocation of SCRIPTD. This command is
the invocation of a CLIST called OUTPUT (See “The OUTPUT CLIST” on page
125). OUTPUT performs the required allocations to invoke the IEBGENER utility to
print the output data set.

The SCRIPTN CLIST
PROC 1 DSN
GLOBAL DSNAM
SET DSNAM=&DSN
IF &LENGTH(&DSN) LE 8 AND /* ENSURE VALID NAME AND */ +

&DATATYPE(&SUBSTR(1,&DSN))=CHAR THEN /* VALID FIRST CHARACTER */ +
DO

/**/
/* INVOKE THE SCRIPTD CLIST TO SET UP THE ENVIRONMENT REQUIRED TO */
/* SCRIPT THE INPUT DATA SET AND THEN RUN THE SCRIPT COMMAND. */

/**/
%scriptd
/**/

/* INVOKE THE OUTPUT CLIST TO PRINT 2 COPIES OF THE SCRIPTED */
/* DATA SET ON THE 3800 PRINTER. */
/**/

IF &LASTCC<=4 THEN /* Test return code from SCRIPTD */ +
DO
%output
END
ELSE WRITE SCRIPTD FAILED
END
ELSE +
WRITE The name entered must be less than 9 characters long and +

the first character must not be numeric.

The SCRIPTD CLIST
GLOBAL DSNAM

/**/
/* THIS CLIST (SCRIPTD) SETS UP THE ENVIRONMENT FOR SCRIPTING A */
/* DATA SET PROVIDED BY THE USER AND ISSUES THE SCRIPT COMMAND. */

System Services - SCRIPTDS CLIST

124 z/OS V2R1.0 TSO/E CLISTs

/**/

CONTROL NOFLUSH NOMSG
ERROR +
DO /* If an error occurs,
SET RC=&LASTCC /* get return code
EXIT CODE(&RC)/* and pass control back to SCRIPTN
END
/**/
/* DELETE THE OUTPUT DATA SET INTO WHICH THE SCRIPTED FILE WILL BE */
/* PLACED IN CASE IT IS STILL ALLOCATED FROM A PREVIOUS INVOCATION */
/* OF SCRIPTN. */
/**/

delete ’&SYSPREF.&DSNAM.list’
/**/
/* DEFINE THE OUTPUT DATA SET SO THAT THE SCRIPT PROGRAM CAN REFERENCE*/
/* IT. FREE THE FILE BECAUSE SCRIPT WILL ALSO ALLOCATE THE DATA SET */
/**/

alloc f(a) da(’&SYSPREF.&DSNAM.list’) dsorg(ps) recfm(v,b,m) +
blk(3156) sp(50,30) tr new release reu

free f(a)
CONTROL LIST
/**/
/* ISSUE THE SCRIPT COMMAND, SPECIFYING THE NAME OF THE DATA SET */
/* MEMBER TO BE SCRIPTED: MEMO.TEXT(&DSNAM). */
/* THEN RETURN CONTROL TO SCRIPTN. */
/**/

script ’&SYSPREF.memo.text(&DSNAM)’ +
message(delay id trace) device(3800n6) twopass +
profile(’script.r3.maclib(ssprof)’) +
lib(’script.r3.maclib’) +
sysvar(c 1 d yes) +
bind(8 8) chars(gt12 gb12) file(’&SYSPREF.&DSNAM.list’) continue

The OUTPUT CLIST
GLOBAL DSNAM

/**/
/* THIS CLIST (OUTPUT) FREES FILES REQUIRED TO PRINT THE SCRIPTED */
/* DATASET, ALLOCATES THEM REQUESTING TWO COPIES ON THE 3800 */
/* PRINTER, AND INVOKES IEBGENER TO HAVE THEM PRINTED. */
/**/

CONTROL NOMSG
CONTROL MSG
alloc f(sysprint) dummy reuse
alloc f(sysut1) da(’&SYSPREF.&DSNAM.LIST’) shr reuse
alloc f(sysut2) sysout(n) fcb(std4) chars(gt12,gb12) +

copies(2) optcd(j) reuse
alloc f(sysin) dummy reuse

/**/
/* INVOKE THE UTILITY TO HAVE THE DATA SET PRINTED AND FREE THE */
/* FILES. THEN RETURN CONTROL TO SCRIPTN. */
/**/

call ’sys1.linklib(iebgener)’
free f(sysut1,sysut2,sysprint,sysin)

Perform Subtasks - The SCRIPTN CLIST

Chapter 13. Sample CLISTs 125

Including JCL statements - the SUBMITDS CLIST
You can include job control language (JCL) statements in CLISTs. The SUBMITDS
CLIST, shown in Figure 12, uses the SUBMIT * command to indicate that the JCL
statements immediately follow the command.

SUBMITDS verifies job card information using front-end prompting and then
submits a job that copies one data set into another. The validity-checking does not
go beyond verifying that the account number is a four-digit number.

Because an account number may contain leading zeros that are ignored by the
&LENGTH built-in function, the CLIST uses the &STR built-in function in the
evaluation of the length of &ACCT.

The SUBMITDS CLIST assumes that:
v The account number is required and must be a four-digit number.
v The account number may contain leading zeros.
v The default CLASS for the job is C.

Analyzing input strings with &SUBSTR - the SUBMITFQ CLIST
You can use the &SUBSTR built-in function to analyze input from the invoker and
to modify the input if necessary.

The SUBMITFQ CLIST, shown Figure 13 on page 127, determines whether the data
set name supplied by the invoker is a fully-qualified name or not. If the data set
name is not fully qualified (does not include a user ID), the SUBMITFQ adds the
user ID and submits the data set name in the correct form on a JCL statement.

PROC 2 DSN ACCT CLASS(C)

/**/
/* IF &ACCT IS NOT VALID, CONTINUE PROMPTING UNTIL THE USER ENTERS */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &LENGTH(&STR(&ACCT)) ¬= 4 OR &DATATYPE(&ACCT) ¬= NUM
WRITE Your account number is invalid.
WRITE Reenter a four-digit number.
READ ACCT
END

/**/
/* ONCE ACCOUNT NUMBER HAS BEEN VERIFIED, SUBMIT THE JOB. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* required for jcl comment statement */
SUBMIT * END($$)
//&SYSUID1 JOB &ACCT,&SYSUID,CLASS=&CLASS,NOTIFY=&SYSUID
/&SLSHASK THIS STEP COPIES THE INPUT DATASET TO SYSOUT=A
//COPY EXEC PGM=COPYDS
//SYSUT1 DD DSN=&SYSUID.&DSN,DISP=SHR;
//SYSUT2 DD SYSOUT=A
$$

Figure 12. The SUBMITDS CLIST

Including JCL Statements - The SUBMITDS CLIST

126 z/OS V2R1.0 TSO/E CLISTs

SUBMITFQ determines whether the data set name is fully qualified by comparing
the first character in &DSN to a single quote ('). If the logical comparison is true,
the CLIST assumes a fully-qualified data set name and removes the quotation
marks. (Unlike on the ALLOCATE command, fully-qualified data set names are not
enclosed in singquotation marksle quotes on JCL statements.) If the first character
of &DSN is not a single quote, the CLIST assumes the data set name is not fully
qualified and prefixes the character string “&SYSUID..” to the value of &DSN. In
either case, &DSN contains a fully-qualified data set name when referred to in the
SYSUT1 JCL statement.

Allowing foreground and background execution of programs - the
RUNPRICE CLIST

You can write CLISTs that invoke programs in either the foreground or the
background. By creating a background job, the CLIST can have the job invoke any
program, including itself, in the background. You can use this type of a CLIST to
enable users who are unfamiliar with JCL to submit programs. By placing the JCL
in a CLIST, you simplify the user's work, while adding greater range to the tasks
the user can perform. The RUNPRICE CLIST, shown in Figure 14 on page 128,
illustrates this type of a CLIST.

RUNPRICE either executes a COBOL program called APRICE in the foreground or
submits a job that executes APRICE in the background. The CLIST determines

PROC 2 DSN ACCT CLASS(C)

/**/
/* IF &ACCT IS NOT VALID, CONTINUE PROMPTING UNTIL THE USER ENTERS */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &LENGTH(&STR(&ACCT)) ¬= 4 OR &DATATYPE(&ACCT) ¬= NUM
WRITE Your account number is invalid.
WRITE Reenter a four-digit number.
READ ACCT
END

/**/
/* IF THE DATA SET IS FULLY QUALIFIED, REMOVE THE QUOTATION MARKS. OTHERWISE, */
/* PREFIX THE CURRENT USERID. */
/**/

IF &STR(&SUBSTR(1,&DSN)) = ’ THEN +
SET DSN = &STR(&SUBSTR(2:&LENGTH(&DSN)-1,&DSN))
ELSE SET DSN=&STR(&SYSUID.&DSN)
WRITE &DSN

/**/
/* ONCE ACCOUNT NUMBER HAS BEEN VERIFIED, SUBMIT THE JOB. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* req. for the jcl comment statement */
SUBMIT * END($$)
//&SYSUID1 JOB &ACCT,&SYSUID,CLASS=&CLASS
/&SLSHASK THIS STEP COPIES THE INPUT DATASET TO SYSOUT=A
//COPY EXEC PGM=COPYDS
//SYSUT1 DD DSN=&DSN,DISP=SHR;
//SYSUT2 DD SYSOUT=A
$$

Figure 13. The SUBMITFQ CLIST

Analyzing Input Strings - The SUBMITFQ CLIST

Chapter 13. Sample CLISTs 127

which type of invocation to perform based on whether the invoker includes the
BATCH keyword on the invocation of RUNPRICE.

Including options - the TESTDYN CLIST
You can code options in a CLIST so that the CLIST performs different functions
depending on what the invoker specifies.

The TESTDYN CLIST, shown in “The TESTDYN CLIST” on page 129, sets up the
environment needed to execute a program called PARMTEST, which tests dynamic
allocation input parameters entered from the terminal. In TESTDYN, conditional
IF-THEN-ELSE sequences and optional keywords on the PROC statement enable
the invoker to select a number of options when invoking the CLIST. For example,
one option is whether the invoker wants the system messages that PARMTEST
produces sent to a data set rather than to the terminal. TESTDYN includes a
keyword parameter, SYSPRINT, on its PROC statement and assigns it a default
value of *, which sends system messages to the terminal. The invoker can override
that default value and have system messages sent to a system output data set.

PROC 0 M(R) BATCH

/**/
/* THIS CLIST (RUNPRICE) SUBMITS A JOB FOR EXECUTION EITHER IN THE */
/* FOREGROUND OR BACKGROUND, BASED ON WHETHER THE INVOKER INDICATES */
/* ’BATCH’ ON THE INVOCATION. THE MESSAGE CLASS DEFAULTS TO ’R’, */
/* THOUGH THE INVOKER MAY CHANGE IT. */
/**/
CONTROL END(ENDO)
/**/
/* IF &BATCH DOES NOT EQUAL A NULL, THIS INDICATES THAT THE INVOKER */
/* INCLUDED THE KEYWORD ON THE INVOCATION. IN THIS CASE, THE INVOKER*/
/* WANTS THE JOB SUBMITTED IN THE BACKGROUND, SO CREATE A JOB THAT */
/* EXECUTES THE TMP AND THEN INVOKES RUNPRICE WITHOUT THE ’BATCH’ */
/* KEYWORD. ON THIS SECOND INVOCATION OF RUNPRICE, ONLY THE */
/* APRICE PROGRAM IS EXECUTED. */
/* IF &BATCH EQUALS A NULL, THIS INDICATES THAT THE INVOKER WANTS */
/* TO START THE PROGRAM IN THE FOREGROUND. IN THIS CASE, SIMPLY */
/* INVOKE THE APRICE PROGRAM DIRECTLY. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* for JOBPARM to a variable */
IF &BATCH=BATCH THEN +
DO
CONTROL NOMSG
SUBMIT * END(NN)
//STEVE1 JOB ’accounting info’,’STEVE’,
// MSGLEVEL=(1,1),CLASS=T,NOTIFY=&SYSUID,MSGCLASS=&M,
// USER=????????,PASSWORD=????????
&SLSHASK JOBPARM COPIES=1
//BACKTMP EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=10
//SYSPRINT DD DUMMY
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ex ’d84rlh1.tsoer2.pubs.clist(runprice)’
NN
ENDO
ELSE call ’d60fot1.allot.cobol(aprice)’

Figure 14. The RUNPRICE CLIST

Execution - The RUNPRICE CLIST

128 z/OS V2R1.0 TSO/E CLISTs

Note that special considerations are taken in the processing that determines
whether SYSOUT has been coded for SYSPRINT. On the IF statement, the variable
&SYSPRINT is enclosed in a &STR built-in function because &SYSPRINT defaults
to an asterisk, which the CLIST views as a multiplication operator. The &STR
built-in function defines the asterisk as character data and prevents the CLIST from
using it arithmetically.

The TESTDYN CLIST
PROC 0 MBR(PARMTEST) SYSPRINT(*) SYSLIB(LOAD) OUTFILE(VLDPARMS) LISTDSETS

/**/
/* THIS CLIST SETS UP THE ENVIRONMENT NEEDED FOR EXECUTION OF */
/* A PROGRAM NAMED ’PARMTEST’ WHICH TESTS DYNAMIC ALLOCATION */
/* INPUT PARAMETERS ENTERED FROM THE TERMINAL. */
/**/

/**/
/* IF THE USER REQUESTED THAT DATA SETS BE LISTED, LIST THEM. */
/**/

IF &LISTDSETS = LISTDSETS THEN +
DO
WRITE PROGRAM: &MBR
WRITE SYSPRINT: &SYSPRINT
WRITE SYSLIB: &SYSLIB
WRITE OUTFILE: &OUTFILE

END
/**/
/* IF THE USER REQUESTED THAT SYSTEM MESSAGES BE SENT TO A SYSTEM */
/* OUTPUT DATA SET, ALLOCATE SYSPRINT TO SYSOUT. OTHERWISE, */
/* ALLOCATE SYSPRINT TO THE DATA SET NAME (OR TERMINAL) AS */
/* INDICATED BY THE USER. */
/**/

IF &STR(&SYSPRINT) = SYSOUT THEN +
alloc f(sysprint) sysout reu
ELSE alloc f(sysprint) da(&SYSPRINT) reu

/**/
/* ALLOCATE THE SYSTEM LIBRARY, WHETHER IT BE THE DEFAULT (LOAD) */
/* OR ANOTHER LIBRARY. */
/**/

alloc f(syslib) da(&SYSLIB) reu shr

/**/
/* ALLOCATE THE OUTPUT DATA SET FOR THE PROGRAM. ALLOCATE THE */
/* INPUT DATA SET TO THE TERMINAL. */
/**/

alloc f(outfile) da(&OUTFILE) lrecl(121) blksize(1210) recfm(f,b) reu
alloc f(sysin) da(*) reu
/**/
/* CALL PARMTEST AND NOTIFY THE USER THAT THE INVOCATION WAS */
/* SUCCESSFUL OR UNSUCCESSFUL. */
/**/

CONTROL NOFLUSH
call ’steve.lib.load(&MBR)’
IF &LASTCC = 0 THEN +
WRITE &MBR invoked successfully at &SYSTIME on &SYSDATE
ELSE +
WRITE &MBR invoked unsuccessfully at &SYSTIME on &SYSDATE

Including Options - The TESTDYN CLIST

Chapter 13. Sample CLISTs 129

Simplifying system-related tasks - the COMPRESS CLIST
From time to time, users must compress a data set they have updated multiple
times to free some space for additional members. The process involves allocating
the data sets required by the IEBCOPY utility, which performs the copying
involved in compressing the data set, and invoking the utility.

The COMPRESS CLIST, shown in “The COMPRESS CLIST,” performs all of the
functions required to compress a data set.

The COMPRESS CLIST includes special procedures to make the best use of storage
space. For example, COMPRESS can allocate a data set to contain the input
required by the IEBCOPY utility. However, IEBCOPY requires only the following
command for input:
copy indd=output,outdd=output

Rather than waste permanent storage for the one command, COMPRESS creates a
virtual I/O (VIO) data set for the SYSIN file using an ALLOCATE command that
does not specify a data set name. The ALLOCATE command assigns the file name
SYSIN to the VIO data set and then writes a record containing the COPY
command to the SYSIN file.

The COMPRESS CLIST
PROC 1 DSNAME DISP(OLD) LIST
CONTROL NOFLUSH /* Preserve the input stack for errors */

/**/
/* THIS CLIST (COMPRESS) COMPRESSES A DATA SET AND INFORMS THE USER */
/* WHETHER THE COMPRESS WAS SUCCESSFUL. */
/**/
/* SET UP AN ERROR ROUTINE TO FREE ALLOCATED FILES WHEN AN ERROR OCCURS.
/**/

ERROR +
DO
ERROR OFF
WRITE An error has occurred prior to the actual compress.
free file(sysin,sysprint,sysut3,sysut4,output)
GOTO FINISH
END
/**/
/* IF THE USER WANTS TO VIEW THE TSO COMMANDS AS THEY START, ISSUE */
/* THE CONTROL LIST STATEMENT. */
/**/

IF &LIST=LIST THEN +
CONTROL LIST
/**/
/* ESTABLISH ENVIRONMENT NEEDED BY IEBCOPY UTILITY. */
/**/

allocate file(sysin) space(1,1) track lrecl(80) recfm(f) blksize(80) reuse
IF &SYSDSN(COMPRESS;LIST) ¬= OK THEN +
allocate file(sysprint) dataset(compress.list) recfm(f,b,a) +

lrecl(121) blksize(12947) space(1,1) track reuse
ELSE +
allocate file(sysprint) dataset(compress.list) shr reuse
allocate file(sysut3) unit(sysda) space(1,1) cylinders reu
allocate file(sysut4) unit(sysda) space(1,1) cylinders reu
allocate file(output) dataset(&DSNAME) &DISP reu
/**/
/* PLACE THE COPY COMMAND INTO THE SYSIN FILE REQUIRED BY IEBCOPY. */

Simplifying System-Related Tasks - The COMPRESS CLIST

130 z/OS V2R1.0 TSO/E CLISTs

/**/

OPENFILE SYSIN OUTPUT
SET SYSIN = &STR(COPY INDD=OUTPUT,OUTDD=OUTPUT)
PUTFILE SYSIN
CLOSFILE SYSIN
/**/
/* Set up an error routine to notify user of compress errors. */
/**/

ERROR +
DO
WRITE Compress error--Details in ’&SYSPREF compress.list’
GOTO FINISH
END
/**/
/* INVOKE IEBCOPY UTILITY TO PERFORM THE COMPRESS. */
/**/

tsoexec call ’sys1.linklib(iebcopy)’ ’size=512k’
WRITE &DSNAME compressed at &SYSTIME

FINISH: end /* End the CLIST */

Simplifying interfaces to applications - the CASH CLIST
You may have access to applications written in other programming languages.
However, the interfaces required to invoke these programs may not be easily
mastered by users who use the system infrequently. Rather than write new
applications, you can write CLISTs that act as intermediaries between users and
such programs.

For example, a program called CASHFLOW creates and prints weekly and
monthly reports. If the invoker wants a weekly report, the invocation is:
call ’sys1.plib(cashflow)’ ’a,,,38,ccfdacr’

If the invoker wants a monthly report, the invocation is:
call ’sys1.plib(cashflow)’ ’x,,,49,ccfmacr’

Not only are the preceding invocations quite technical, they are difficult to
remember.

CASHFLOW also requires the allocation of a file. For weekly reports, it requires:
alloc f(projwkly) da(weekly) shr

For monthly reports, it requires:
alloc f(projmtly) da(monthly) shr

To simplify the process of invoking CASHFLOW, the CASH CLIST, shown in
“Simplifying interfaces to applications - the CASH CLIST,” performs the following
intermediary tasks:
1. It determines whether the invoker wants a weekly or monthly report.
2. It assigns values to the variables substituted in the parameter string on the

CALL command that invokes CASHFLOW. The values correspond to the
parameters required for the type of report requested.

3. It allocates the appropriate data set.

Simplifying System-Related Tasks - The COMPRESS CLIST

Chapter 13. Sample CLISTs 131

Using &SYSDVAL when performing I/O - the PHONE CLIST
Data records often contain related pieces or blocks of information. For instance, a
sequential record can contain a person's name and telephone number. When you
read records of this type, you may want to separate the blocks of information. By
defining SYSDVAL as the file name of the data set containing the records, you read
each record into SYSDVAL, which the CLIST equates with the &SYSDVAL control
variable. Then you can issue a READDVAL statement that contains the names of
the variables into which you want the blocks of information stored.

The PHONE CLIST, shown in Figure 16 on page 133, takes advantage of this
technique. PHONE receives a family name as input using a positional parameter
called NAME. PHONE then allocates a data set called SYS1.STAFF.DIRECTRY and
assigns it the file name SYSDVAL. Each record in SYS1.STAFF.DIRECTRY contains
a family name, followed by a blank and a telephone number. Sample records are:
PICKERELL 555-5555
GORGEN 555-4444

PHONE sets the first character string in the record to a variable called &LNAME
and sets the second string to a variable called &PHONUMBR. Then, it compares
&NAME to &LNAME and, if they are equal, displays the corresponding telephone
number (contained in &PHONUMBR) at the terminal. If the names are not equal,
PHONE reads another record and performs the same test.

If none of the names in the directory match the name supplied by the invoker, the
CLIST branches to the end-of-file error routine. The end-of-file routine informs the
invoker that a name was not found, and sets the variable DONE=YES to cause the

/* PROMPT THE USER FOR THE WORD ’WEEKLY’ or ’MONTHLY’ */

DO WHILE &TYPE¬=WEEKLY AND &TYPE¬=MONTHLY
WRITE Enter the word WEEKLY or MONTHLY to indicate the
WRITE type of report you want to create.
READ TYPE
END

/**/
/* NOW THAT A VALID REQUEST HAS BEEN ESTABLISHED, ALLOCATE THE */
/* APPROPRIATE DATA SET, ASSIGN THE APPROPRIATE VALUES TO CALL */
/* COMMAND PARAMETER VARIABLES, AND INVOKE CASHFLOW. */
/**/

IF &TYPE=WEEKLY THEN +
DO
alloc f(projwkly) da(weekly) shr
SET INVOKE=38
SET CHAR=a
SET OPT=ccfdacr
END
ELSE +
DO
alloc f(projmtly) da(monthly) shr
SET INVOKE=49
SET CHAR=x
SET OPT=ccfmacr
END
call ’sys1.plib(cashflow)’ ’&CHAR,,,&INVOKE,&OPT’

Figure 15. The CASH CLIST

Using &SYSDVAL When Performing I/O ...

132 z/OS V2R1.0 TSO/E CLISTs

loop to terminate.

Allocating data sets to SYSPROC - the SPROC CLIST
The SPROC CLIST allocates a CLIST data set to the file SYSPROC, so users can
implicitly execute CLISTs that are in that data set. The SPROC CLIST allocates the
CLIST data set as the first in the list of data sets allocated to SYSPROC, so TSO/E
searches that data set for CLISTs before searching any of the others.

PROC 1 NAME

/**/
/* THIS CLIST (PHONE) SEARCHES A DATA SET FOR A NAME THAT MATCHES THE */
/* NAME SUPPLIED TO THE CLIST. IF A MATCH IS FOUND, THE CORRESPONDING */
/* TELEPHONE NUMBER IS DISPLAYED AT THE TERMINAL. OTHERWISE, A MESSAGE IS */
/* ISSUED INFORMING THE USER THAT A MATCH WAS NOT FOUND. */
/**/

/**/
/* ALLOCATE THE INPUT DATA SET FOR THE CLIST. */
/**/

alloc f(sysdval) da(’sys1.staff.directry’) shr reu

/**/
/* OPEN THE FILE, AND SET UP AN ERROR ROUTINE TO HANDLE END-OF-FILE. */
/**/

CONTROL NOMSG NOFLUSH
ERROR +
DO
IF &LASTCC = 400 THEN +
DO
WRITENR The name requested, &NAME, was not found in the staff
WRITE directory.
SET DONE=YES
END
RETURN
END /* END OF END-OF-FILE ROUTINE */
SET DONE=NO
OPENFILE SYSDVAL

/**/
/* THIS LOOP RETRIEVES RECORDS FROM THE INPUT DATA SET UNTIL A MATCH */
/* IS FOUND OR END OF FILE IS REACHED. IF A MATCH IS FOUND, THE */
/* SECOND VARIABLE ON THE READDVAL STATEMENT (THE ONE CONTAINING */
/* THE TELEPHONE NUMBER) IS DISPLAYED. */
/**/

DO WHILE &DONE=NO
GETFILE SYSDVAL
READDVAL LNAME PHONUMBR
IF &STR(&NAME) = &STR(&LNAME) THEN +
DO
WRITE &PHONUMBR
SET DONE=YES
END

END
CLOSFILE SYSDVAL
free file(sysdval)

Figure 16. The PHONE CLIST

Using &SYSDVAL When Performing I/O ...

Chapter 13. Sample CLISTs 133

Note: You can also use the ALTLIB command to define CLIST data sets and
establish their search order for implicit execution.

SPROC performs the following steps: finds all data sets currently allocated to
SYSPROC and concatenates them; then adds the invoker's data set to the beginning
of the concatenation and allocates the concatenation to SYSPROC.

The CLIST, shown in “Allocating data sets to SYSPROC - the SPROC CLIST” on
page 133, uses &SYSOUTTRAP to intercept the output from the LISTALC STATUS
command and saves the command output in &SYSOUTLINEnn variables. The
output produced by the LISTALC STATUS command is formatted as follows:
--DDNAME---DISP--
DATA-SET-NAME1

FILE-NAME1 DISPOSITION
DATA-SET-NAME2

FILE-NAME2 DISPOSITION
DATA-SET-NAME3

DISPOSITION
DATA-SET-NAME4

FILE-NAME3 DISPOSITION

In the previous format, DATA-SET-NAME1 is allocated to FILE-NAME1;
DATA-SET-NAME2 and DATA-SET-NAME3 are allocated to FILE-NAME2; and
DATA-SET-NAME4 is allocated to FILE-NAME3. The name of a file always begins
in the third position, whereas a data set name begins in the first position of the
output line. SPROC does the following:
1. Loops through &SYSOUTLINEnn variables until either the string SYSPROC is

found or until all output has been searched. (It is possible no data sets are
allocated to SYSPROC.)

2. If SYSPROC is found, SPROC sets a variable to the name of the previous data
set in the list and encloses it in single quotation marks.

3. Begins with the &SYSOUTLINEnn variable three lines after the one containing
the name of the first data set allocated to SYSPROC. This line either contains a
new file name, in which case SPROC has found all data sets allocated to
SYSPROC, or it contains the disposition of the next data set in the
concatenation. By setting a variable to three blanks, SPROC determines the
contents of the line.
If the line contains a disposition, SPROC decreases &SYSOUTLINEnn by one to
get the data set name and add it to the variable (&CONCAT) representing the
data sets in the new concatenation. SPROC repeats this procedure until another
file name is encountered or until all command output has been searched. After
all data sets have been added to the concatenation list, SPROC issues the
ALLOCATE command, adding the user's data set name to the beginning of the
concatenation list.

SPROC contains an error routine to handle allocation errors should they occur.
SPROC may itself be allocated to SYSPROC, in which case the user can invoke
SPROC implicitly. However, if the CLIST fails after it frees the SYSPROC file, but
before it is able to re-establish the concatenation, the user cannot re-invoke SPROC
implicitly without first logging off and logging on again.

The SPROC CLIST
PROC 0 LIST

IF &LIST=LIST THEN +
CONTROL LIST CONLIST

/**/
/* THIS CLIST (SPROC) CONCATENATES DATA SETS AND ALLOCATES THEM */

Allocating Data Sets to SYSPROC - The SPROC CLIST

134 z/OS V2R1.0 TSO/E CLISTs

/* TO THE FILE SYSPROC. */
/* THE USER IS PROMPTED TO SUPPLY THE NAME OF THE DATA */
/* SET TO BE ADDED TO THE BEGINNING OF THE CONCATENATION. */
/**/
/**/
/* IF ALLOCATION FAILS, TELL THE USER TO LOG OFF, LOG ON, AND, IF */
/* DESIRED, TRY EXECUTING SPROC AGAIN. */
/**/
CONTROL NOFLUSH
ERROR +
DO
WRITE An error has been encountered in the SYSPROC concatenation.
WRITE Please log off, then log on again, and, if desired, re-invoke
WRITE SPROC. If the problem persists, see your system programmer.
GOTO OUT
END
/**/
/* PROMPT THE USER FOR THE NAME OF THE DATA SET TO BE ADDED TO THE */
/* BEGINNING OF THE SYSPROC CONCATENATION. */
/**/
WRITE Enter the fully-qualified data set name you want
WRITE added to the beginning of the SYSPROC concatenation.
WRITE Do N O T place quotation marks around the dataset name.
READ ADD
/**/
/* SET A VARIABLE TO THREE BLANKS. THIS VARIABLE IS USED TO CHECK */
/* THE LISTALC COMMAND OUTPUT FOR THE BEGINNING OF A DIFFERENT */
/* FILENAME AFTER SYSPROC DATA SETS HAVE BEEN LISTED. */
/**/
SET BLANKS = &STR()
/**/
/* SET &SYSOUTTRAP TO A LARGE ENOUGH VALUE TO ENSURE THAT ALL OF */
/* THE LINES OF OUTPUT FROM THE LISTALC COMMAND CAN BE VIEWED. */
/**/

SET &SYSOUTTRAP = 300
/**/
/* ISSUE THE LISTALC STATUS COMMAND AND LOOP THROUGH THE VARIABLES */
/* CONTAINING THE OUTPUT LINES UNTIL THE LINE CONTAINING */
/* THE FILENAME */
/* SYSPROC IS FOUND OR UNTIL ALL LINES HAVE BEEN VIEWED. */
/* (ALL LINES HAVE BEEN VIEWED WHEN A NULL LINE IS RETURNED.) */
/* AN AUXILIARY VARIABLE MUST BE CREATED (&DSN) TO LOOP THROUGH */
/* &SYSOUTLINEnn &I REPRESENTS THE VALUE OF nn. */
/* NOTE THAT, TO SET &DSN TO &SYSOUTLINE, TWO AMPERSANDS */
/* MUST BE PLACED BEFORE SYSOUTLINE TO AVOID SYMBOLIC SUBSTITUTION */
/* OF &SYSOUTLINE */
/* IF SYSPROC IS FOUND, SET THE VARIABLE &CONCAT EQUAL TO */
/* THE PREVIOUS LINE (CONTAINING THE NAME */
/* OF THE FIRST DATA SET ALLOCATED TO SYSPROC). */
/**/
/**/
/* IF SYSPROC WAS FOUND, LOOP THROUGH DATA SETS UNTIL ANOTHER */
/* FILENAME IS ENCOUNTERED OR UNTIL THE REST OF THE OUTPUT HAS */
/* BEEN PROCESSED. SETTING &I = &I+3 MAPS &DSN TO THE LINE AFTER */
/* THE NEXT DATA SET NAME, WHICH WILL CONTAIN ANOTHER FILENAME IF */
/* WE HAVE ALREADY PROCESSED THE LAST DATA SET ALLOCATED TO SYSPROC */
/* AND WE HAVE NOT REACHED THE END OF THE COMMAND OUTPUT. */
/**/
IF &FOUND=YES THEN +

DO WHILE &I+3 <= &SYSOUTLINE
SET I = &I+3;
SET DSN = &&SYSOUTLINE&I
IF &STR(&SUBSTR(1:3,&DSN)) = &BLANKS THEN +
DO
SET I = &I-1
SET DSN = &&SYSOUTLINE&I

Allocating Data Sets to SYSPROC - The SPROC CLIST

Chapter 13. Sample CLISTs 135

SET CONCAT = &CONCAT&STR(’)&DSN’
END
ELSE +
SET I=&SYSOUTLINE

END
/**/
/* WHEN ALL DATA SETS ALLOCATED TO SYSPROC HAVE BEEN ADDED TO THE */
/* VARIABLE &CONCAT, ADD THE USER’S DATA SET TO THE BEGINNING OF */
/* THE CONCATENATION. (INSERT THE VARIABLE &ADD BEFORE &CONCAT) */
/* THIS CLIST ASSUMES THAT THE DATA SET HAS BEEN ENTERED CORRECTLY */
/* BY THE USER. */
/**/
alloc f(sysproc) da(’&ADD’ &CONCAT) shr reu
OUT: end

Writing full-screen applications using ISPF dialogs - the PROFILE
CLIST

The CLIST language is well-suited for applications that invoke ISPF dialog
management services to display full-screen panels. For more information about
ISPF, see z/OS ISPF Services Guide.

The PROFILE CLIST is an example of a CLIST that displays entry panels on which
the user can modify information. The PROFILE CLIST allows the user to perform
any of the following functions to modify his or her profiles:
v Set terminal characteristics.
v Set LOG/LIST parameters.
v Set PF keys (1-12).
v Set PF keys (13-24).

The PROFILE CLIST receives control from a CLIST that displays the primary
selection panel. The primary selection panel prompts the user to indicate which
function is being requested (QCMD); and if the function is setting PF keys, which
PF keys are to be viewed (QKEYS). Then, the CLIST invokes PROFILE, passing the
values for QCMD and QKEYS.

PROFILE determines which selection was requested by referencing PROC
statement keywords called QCMD and QKEYS.

If &QCMD is 1, PROFILE displays the terminal characteristics panel definition.

If &QCMD is 2, PROFILE displays the LOG/LIST parameters panel definition.

If &QCMD is 3 and &QKEYS is 12, PROFILE displays the PF keys 1-12 panel
definition.

If &QCMD is 3 and &QKEYS is 24, PROFILE displays the PF keys 13-24 panel
definition.

Panels are displayed using the ISPEXEC command.

When the user presses the END key after viewing, modifying, or viewing and
modifying a particular panel, the value of &LASTCC is 8. By testing the value of
&LASTCC, PROFILE can determine when the user is finished with the selection.

When the user is viewing one of the two PF key panels, the user can switch to the
other panel by pressing the Enter key. PROFILE sets &QKEYS to the PF key (12 or
24) that represents the other panel so that the user can continue to switch back and

Allocating Data Sets to SYSPROC - The SPROC CLIST

136 z/OS V2R1.0 TSO/E CLISTs

forth if desired. Pressing Enter re-executes the DO-UNTIL-END sequence, causing
PROFILE to test the value of &QKEYS to determine which panel to display. As
with the other selection sequences, the PF key sequence ends when the user
presses the END key.

Values set or changed on any of the four panels displayed by PROFILE are stored
in the corresponding variables on the panel definitions.

Table 10 contains the purpose of, and figures containing, the PROFILE CLIST and
its supporting four panel definitions.

Table 10. Purpose of, and figures containing, PROFILE CLIST and supporting panels

CLIST/Panel Purpose Figure

PROFILE Manage user profile panels 26

XYZABC10 Terminal characteristics panel 27

XYZABC20 LOG/LIST parameters panel 28

XYZABC30 PF keys 1-12 panel 29

XYZABC40 PF keys 13-24 panel 30

The PROFILE CLIST
PROC 0 QCMD(1) QKEYS(12)

/**/
/* THIS CLIST (PROFILE) DISPLAYS THE PANEL THAT CONTAINS THE PROFILE */
/* DATA THE USER WANTS TO UPDATE. IT SETS THE FINISH FLAG TO NO AND */
/* THEN DETERMINES WHICH OF THE FOUR POSSIBLE PANELS THE USER NEEDS */
/* DISPLAYED. */
/**/

CONTROL MSG END(ENDO)
SET FINISH = NO
/**/
/* IF THE USER WANTS TO UPDATE TERMINAL CHARACTERISTICS, DISPLAY */
/* THE ASSOCIATED PANEL. */
/**/

SELECT
WHEN (&QCMD = 1) +
DO UNTIL (&FINISH = YES)
ISPEXEC DISPLAY PANEL(XYZABC10) /* Display first panel */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display */

ENDO
/**/
/* IF THE USER WANTS TO UPDATE LOG/LIST PARAMETERS, DISPLAY */
/* THE ASSOCIATED PANEL. */
/**/

WHEN (&QCMD = 2) +
DO UNTIL (&FINISH = YES)
ISPEXEC DISPLAY PANEL(XYZABC20) /* Display 2nd panel */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display. */
ENDO

/**/
/* IF THE USER WANTS TO UPDATE PF KEYS, DETERMINE WHICH GROUP THE */
/* USER WANTS TO UPDATE: 1-12 or 13-24. DISPLAY THE ASSOCIATED PANEL.*/
/**/
WHEN (&QCMD = 3) +

DO UNTIL (&FINISH = YES)

Applications with ISPF - PROFILE CLIST

Chapter 13. Sample CLISTs 137

IF &QKEYS = 12 THEN +
DO
ISPEXEC DISPLAY PANEL(XYZABC30) /* Display PF keys 1-12 */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display. */
ELSE +
SET QKEYS = 24 /* If user presses ENTER, */

ENDO /* display next panel. */
ELSE +
DO
ISPEXEC DISPLAY PANEL(XYZABC40) /* Display PF keys 13-24 */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display. */
ELSE +
SET QKEYS = 24 /* If user presses ENTER, */

ENDO /* display previous panel. */
ENDO

ENDO /* End of SELECT statement
/*
/* EXIT ROUTINE
/*
FINAL: +
SET FCODE = 0
EXIT CODE(&FCODE)

The panels displayed by the PROFILE CLIST appear on the following pages in
panel definition form. In order for the PROFILE CLIST to display them, the panels
must be members of a partitioned data set allocated to the file ISPPLIB, for
example:
allocate file(ispplib) dataset(test.panels)

For more information about how to create and allocate ISPF panel definitions, see
z/OS ISPF Services Guide.

The Terminal characteristics panel definition (XYZABC10)
)ATTR DEFAULT(%+_)

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET THE TERMINAL CHARACTERISTICS
%COMMAND === _ZCMD +
%
+Type the information where requested, or change the information shown
+by typing over it:
+
+ TERMINAL TYPE %=== @Z + 3277, 3277A, 3278, 3278A, or 3278T +
+ NUMBER OF PF KEYS%===>@Z + 12 or 24
+ INPUT FIELD PAD %===>@Z+ Nulls (N) or Blanks (B)
+ SCREEN FORMAT %===>@Z + (3278 Model 5 only) DATA, STD, or MAX
+ COMMAND DELIMITER%===>@Z+ Any special character
+
+
+
+
+
+
+
+
+
+
+
+

Applications with ISPF - PROFILE CLIST

138 z/OS V2R1.0 TSO/E CLISTs

+
)INIT

.ZVARS = ’(ZTERM ZKEYS ZPADC ZSF ZDEL)’
&ZSF = TRANS (&ZFMT D,DATA S,STD M,MAX *,’ ’)

)PROC
IF (&ZCMD ¬= ’ ’) .MSG = ISPZ001 /* NOT VALID COMMAND */
VER (&ZTERM NB LIST 3277,3277A,3278,3278A,3278T)
&ZCHARLM = TRANS(&ZTERM

3277 , ISP3277
3277A , ISP3277A
3278 , ISP3278
3278A , ISP3278A
3278T , ISP3278T)

VER (&ZKEYS NB LIST 12,24)
IF (&ZKEYS = 24)

VER (&ZTERM LIST 3278 MSG=ISPO002)
VER (&ZPADC NB LIST N,B)
VER (&ZSF,NONBLANK)
&ZFMT = TRUNC (&ZSF,1)
VER (&ZFMT,LIST D,S,M)
VER (&ZDEL NB PICT C)
IF (.MSG ¬= ’ ’)

.RESP = ENTER
)END

The LOG/LIST characteristics panel definition (XYZABC20)
)ATTR DEFAULT(%+_)

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET THE LOG/LIST PARAMETERS
%COMMAND ===>_ZCMD +
%
+Type the information where requested, or change the information shown
+by typing over it:
+
+ %LOG %LIST +
+
+ PROCESS OPTION %===>@Z+ @Z+
+ SYSOUT CLASS %===>@Z + @Z +
+ LOCAL PRINTER ID %===>@Z + @Z +
+ LINES PER PAGE %===>@Z + @Z +
+ PRIMARY PAGES %===>@Z + @Z +
+ SECONDARY PAGES %===>@Z + @Z +
+
+
+
+
+
+
+
+
+
+
)INIT

.ZVARS = ’(ZLOGFDSP,ZLSTFDSP,ZLOGCLA,ZLSTCLA,ZLOGPID,ZLSTPID, +
ZLOGLIN,ZLSTLIN,ZLOG1PG,ZLST1PG,ZLOG2PG,ZLST2PG)’

)PROC
IF (&ZCMD ¬= ’ ’) .MSG = ISPZ001 /* NOT VALID COMMAND */
VER (&ZLOGFDSP LIST J,L,K,D,’ ’)
VER (&ZLSTFDSP LIST J,L,K,D,’ ’)
IF (&ZLOGFDSP = J)

VER (&ZLOGCLA,NB)

Applications with ISPF - PROFILE CLIST

Chapter 13. Sample CLISTs 139

IF (&ZLOGFDSP = L)
VER (&ZLOGPID,NB)

IF (&ZLSTFDSP = J)
VER (&ZLSTCLA,NB)

IF (&ZLSTFDSP = L)
VER (&ZLSTPID,NB)

VER (&ZLOGLIN NB NUM)
VER (&ZLOGLIN RANGE 1,99)
VER (&ZLSTLIN NB NUM)
VER (&ZLSTLIN RANGE 1,99)
VER (&ZLOG1PG NB NUM)
VER (&ZLOG1PG RANGE 0,9999)
VER (&ZLST1PG NB NUM)
VER (&ZLST1PG RANGE 1,9999)
VER (&ZLOG2PG NB NUM)
VER (&ZLOG2PG RANGE 0,9999)
VER (&ZLST2PG NB NUM)
VER (&ZLST2PG RANGE 1,9999)
IF (&ZLOG1PG = 0)

VER (&ZLOG2PG,NB)
VER (&ZLOG2PG,RANGE,0,0)

IF (&ZLOG1PG ¬= 0)
VER (&ZLOG2PG,NB NUM)
VER (&ZLOG2PG,RANGE,1,9999)

IF (.MSG ¬= ’ ’)
.RESP = ENTER

)END

The PF keys 1-12 panel definition (XYZABC30)
)ATTR DEFAULT(%+_)

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET PF KEYS 1-12
%COMMAND ===>_ZCMD +
%
+Type the information where requested, or change the information shown
+by typing over it:
+
+ PF1 %===>@QPF01 +
+ PF2 %===>@QPF02 +
+ PF3 %===>@QPF03 +
+ PF4 %===>@QPF04 +
+ PF5 %===>@QPF05 +
+ PF6 %===>@QPF06 +
+ PF7 %===>@QPF07 +
+ PF8 %===>@QPF08 +
+ PF9 %===>@QPF09 +
+ PF10 %===>@QPF10 +
+ PF11 %===>@QPF11 +
+ PF12 %===>@QPF12 +
+
+
+
+
+
+
)INIT
IF (&QPF01 = ’ ’)

&QPF01 = HELP
IF (&QPF02 = ’ ’)

&QPF02 = SPLIT
IF (&QPF03 = ’ ’)

&QPF03 = END

Applications with ISPF - PROFILE CLIST

140 z/OS V2R1.0 TSO/E CLISTs

IF (&QPF04 = ’ ’)
&QPF04 = RETURN

IF (&QPF05 = ’ ’)
&QPF05 = RFIND

IF (&QPF06 = ’ ’)
&QPF06 = RCHANGE

IF (&QPF07 = ’ ’)
&QPF07 = UP

IF (&QPF08 = ’ ’)
&QPF08 = DOWN

IF (&QPF09 = ’ ’)
&QPF09 = SWAP

IF (&QPF10 = ’ ’)
&QPF10 = LEFT

IF (&QPF11 = ’ ’)
&QPF11 = RIGHT

IF (&QPF12 = ’ ’)
&QPF12 = CURSOR

)PROC
IF (&ZCMD ¬= ’ ’) .MSG = ISPZ001
IF (&QPF01 = ’ ’)

&QPF01 = HELP
IF (&QPF02 = ’ ’)

&QPF02 = SPLIT
IF (&QPF03 = ’ ’)

&QPF03 = END
IF (&QPF04 = ’ ’)

&QPF04 = RETURN
IF (&QPF05 = ’ ’)

&QPF05 = RFIND
IF (&QPF06 = ’ ’)

&QPF06 = RCHANGE
IF (&QPF07 = ’ ’)

&QPF07 = UP
IF (&QPF08 = ’ ’)

&QPF08 = DOWN
IF (&QPF09 = ’ ’)

&QPF09 = SWAP
IF (&QPF10 = ’ ’)

&QPF10 = LEFT
IF (&QPF11 = ’ ’)

&QPF11 = RIGHT
IF (&QPF12 = ’ ’)

&QPF12 = CURSOR
IF (.MSG ¬= ’ ’)

.RESP = ENTER
)END

The PF keys 13-24 panel definition (XYZABC40)
)ATTR DEFAULT(%+_)

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET PF KEYS 13-24
%COMMAND ===>_ZCMD +
%
+Type the information where requested, or change the information shown
+by typing over it; then, to set PF keys 1-12, press ENTER.
+
+ PF13 %===>@QPF13 +
+ PF14 %===>@QPF14 +
+ PF15 %===>@QPF15 +
+ PF16 %===>@QPF16 +
+ PF17 %===>@QPF17 +

Applications with ISPF - PROFILE CLIST

Chapter 13. Sample CLISTs 141

+ PF18 %===>@QPF18 +
+ PF19 %===>@QPF19 +
+ PF20 %===>@QPF20 +
+ PF21 %===>@QPF21 +
+ PF22 %===>@QPF22 +
+ PF23 %===>@QPF23 +
+ PF24 %===>@QPF24 +
+
+
+
+
+
+
)INIT
IF (&QPF13 = ’ ’)

&QPF13 = HELP
IF (&QPF14 = ’ ’)

&QPF14 = SPLIT
IF (&QPF15 = ’ ’)

&QPF15 = END
IF (&QPF16 = ’ ’)

&QPF16 = RETURN
IF (&QPF17 = ’ ’)

&QPF17 = RFIND
IF (&QPF18 = ’ ’)

&QPF18 = RCHANGE
IF (&QPF19 = ’ ’)

&QPF19 = UP
IF (&QPF20 = ’ ’)

&QPF20 = DOWN
IF (&QPF21 = ’ ’)

&QPF21 = SWAP
IF (&QPF22 = ’ ’)

&QPF22 = LEFT
IF (&QPF23 = ’ ’)

&QPF23 = RIGHT
IF (&QPF24 = ’ ’)

&QPF24 = CURSOR
)PROC
IF (&ZCMD ¬= ’ ’) .MSG = ISPZ001
IF (&QPF13 = ’ ’)

&QPF13 = HELP
IF (&QPF14 = ’ ’)

&QPF14 = SPLIT
IF (&QPF15 = ’ ’)

&QPF15 = END
IF (&QPF16 = ’ ’)

&QPF16 = RETURN
IF (&QPF17 = ’ ’)

&QPF17 = RFIND
IF (&QPF18 = ’ ’)

&QPF18 = RCHANGE
IF (&QPF19 = ’ ’)

&QPF19 = UP
IF (&QPF20 = ’ ’)

&QPF20 = DOWN
IF (&QPF21 = ’ ’)

&QPF21 = SWAP
IF (&QPF22 = ’ ’)

&QPF22 = LEFT
IF (&QPF23 = ’ ’)

&QPF23 = RIGHT
IF (&QPF24 = ’ ’)

&QPF24 = CURSOR
IF (.MSG ¬= ’ ’)

.RESP = ENTER
)END

Applications with ISPF - PROFILE CLIST

142 z/OS V2R1.0 TSO/E CLISTs

Allocating a data set with LISTDSI information - the EXPAND CLIST
The EXPAND CLIST, shown in Figure 17, reallocates a data set with more space to
prevent the data set from running out of space.

The EXPAND CLIST uses the LISTDSI statement to retrieve information about a
base data set's allocation. The information is stored in CLIST variables. The CLIST
then uses the information as input to a subprocedure. The subprocedure issues the
TSO/E ALLOCATE command to create a new data set using the same attributes as
the base data set, but doubling the primary space.

For more information about the CLIST variables set by LISTDSI, see “LISTDSI
statement” on page 158.

/**/
/* PROCEDURE: EXPAND */
/* */
/* INPUT: BASEDS - NAME OF DATA SET WITH THE ALLOCATION */
/* ATTRIBUTES YOU WANT THE NEW DATA SET */
/* TO HAVE. */
/* NEWDS - NAME OF NEW DATA SET TO BE ALLOCATED. */
/* */
/* OUTPUT: NEW DATA SET ALLOCATED WITH THE SAME ATTRIBUTES AS */
/* THE BASE DATA SET BUT WITH A PRIMARY ALLOCATION */
/* TWICE THE SIZE OF THE BASE DATA SET. */
/* */
/* DESCRIPTION: ISSUE BUILT-IN FUNCTION &SYSDSN TO ENSURE THE BASE */
/* DATA SET EXISTS. ISSUE LISTDSI STATEMENT TO SET */
/* CLIST VARIABLES WITH ATTRIBUTES OF THE BASE DATA */
/* SET. DOUBLE THE CONTENTS OF THE PRIMARY SPACE */
/* VARIABLE, THEN USE THE VARIABLES AS INPUT TO */
/* THE ALLOCATE COMMAND TO ALLOCATE A NEW DATA SET. */
/**/

PROC 2 BASEDS NEWDS
IF &SYSDSN(&BASEDS) = OK THEN +
DO /* If the base data set exists */
LISTDSI &BASEDS /* Issue LISTDSI statement */
NGLOBAL &SYSPRIMARY,&SYSSECONDS /* Make LISTDSI variables avail- */
SET &RC = &LASTCC /* able to subprocedures */
IF &RC = 0 THEN +
SYSCALL ALC &BASEDS &NEWDS /* Call subprocedure ALC */
ELSE +
DO /* If LISTDSI failed */
WRITE &SYSMSGLVL1 /* First-level message */
WRITE &SYSMSGLVL2 /* Second-level message */
WRITE RETURN CODE = &RC /* Return code */
WRITE REASON CODE = &SYSREASON /* LISTDSI reason code */
END

END
ELSE +
WRITE DATA SET &BASEDS NOT FOUND

ALC: PROC 2 BASE NEW /* Subprocedure ALC */
SET NEWPRIMARY = 2 * &SYSPRIMARY /* Compute new primary space */
ALLOCATE DA(&NEW) NEW SPACE(&NEWPRIMARY,&SYSSECONDS) +

LIKE(&BASE) CATALOG /* Allocate the new data set */
WRITE DATA SET &NEW HAS BEEN ALLOCATED

END

Figure 17. The EXPAND CLIST

Allocating Data Set with LISTDSI Information - EXPAND CLIST

Chapter 13. Sample CLISTs 143

Allocating Data Set with LISTDSI Information - EXPAND CLIST

144 z/OS V2R1.0 TSO/E CLISTs

Chapter 14. Reference

This section describes the syntax and KEYWORD names of the CLIST statements.
For information about the two TSO/E commands—EXEC and END—that you use
to start and end CLIST execution, see z/OS TSO/E Command Reference.

How to read the CLIST statement syntax
Throughout this chapter, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

Double arrows indicate the beginning and ending of a statement.

�� STATEMENT ��

If a statement syntax requires more than one line to be shown, single arrows
indicate their continuation.

�� STATEMENT �

� ��

Required items appear on the horizontal line (the main path).

�� STATEMENT required_item ��

Optional items appear below the main path.

�� STATEMENT
optional_item

��

If you can choose from two or more items, they are stacked vertically.
v If you must choose one of the items, an item of the stack appears on the main

path.

�� STATEMENT required_choice_1
required_choice_2

��

v If choosing one of the items is optional, the entire stack appears below the main
path.

�� STATEMENT
optional_choice_1
optional_choice_2

��

© Copyright IBM Corp. 1988, 2013 145

An arrow returning to the left above the main line indicates an item that can be
repeated.

�� STATEMENT � repeatable_item ��

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

�� STATEMENT � repeatable_item_1
repeatable_item_2

��

Default values appear above the main path. For example, if you choose neither
choice_2 nor choice_3, choice_1 is assumed. (Defaults can be coded for clarity
reasons.)

�� STATEMENT
choice_1

choice_2
choice_3

��

If a syntax diagram becomes too large or too complex to be printed or shown,
fragments of it are shown below the main diagram as details.

�� STATEMENT required_variable
'optional_parameter'

FRAGMENT ��

FRAGMENT:

OPERAND
optional_choice_1a
optional_choice_1b

optional_choice_2a
optional_choice_2b

�

�
optional_choice_3a
optional_choice_3b

optional_choice_4a
optional_choice_4b

The previous syntax diagram is equivalent to the following diagram:

�� STATEMENT required_variable
'optional_parameter'

OPERAND �

�
optional_choice_1a
optional_choice_1b

optional_choice_2a
optional_choice_2b

optional_choice_3a
optional_choice_3b

�

How to Read CLIST Statement Syntax

146 z/OS V2R1.0 TSO/E CLISTs

�
optional_choice_4a
optional_choice_4b

��

In a CLIST statement, use uppercase letters, numbers, and the set of symbols listed
below exactly as shown in the syntax.

apostrophe or single quote
’

asterisk
*

comma
,

equal sign
=

parentheses
()

period .

ampersand
&

percent
%

colon :

Lowercase italic letters and symbols appearing in the syntax represent variable
information for which you substitute specific information in the statement. For
example, if name appears in the syntax, substitute a specific value (for example,
ALPHA) for the variable when you enter the statement.

Hyphens join lowercase words and symbols to form a single variable. For example,
if member-name appears in the syntax, substitute a specific value (for example,
BETA) for the variable in the statement.

Alphanumeric characters: unless otherwise indicated, an alphanumeric character is
one of the following:

Alphabetic:
A-Z

Numeric:
0-9

Special:
$ # @.

CLIST statements may be prefixed with a label consisting of 1-31 alphanumeric
characters, beginning with an alphabetic character. The label may appear on a
separate line. A colon must immediately follow the label name. For example,

label: +
v IF A= ...

How to Read CLIST Statement Syntax

Chapter 14. Reference 147

ATTN statement
Use the ATTN statement to define a routine that TSO/E executes when the user
causes an attention interrupt. The attention interrupt halts execution of a CLIST so
that the user can terminate or alter its processing.

��
label:

ATTN
OFF
action ��

label
A name the CLIST can reference in a GOTO statement to branch to this ATTN
statement. label is one-to-31 alphanumeric characters, beginning with an
alphabetic character.

OFF
Any previous attention action is nullified. Do not use ATTN OFF within an
attention routine.

action
specifies either:
1. One TSO/E command, commonly an EXEC command that invokes an

attention processing CLIST, or a null (blank) line. An attention processing
CLIST can execute multiple TSO/E commands, while the action can execute
only one.

2. A DO-END sequence constituting an attention exit routine. This routine can
contain CLIST statements, including the RETURN statement or EXIT
statement, and one TSO/E command, or a null line.

If a null line is executed, TSO/E ignores the attention and execution continues
at the point where the interruption occurred.

If an EXIT statement is executed, the attention is ignored and the CLIST is
terminated.

If a TSO/E command is executed, control is given to the command.

When a TSO/E command, an EXIT statement, or a null line is executed,
TSO/E ignores all other.

If the attention routine does anything other than terminate the CLIST, use the
MAIN operand of the CONTROL statement to protect the CLIST from being
flushed from the input stack when an attention interrupt occurs. For more
information, see “CONTROL statement” on page 149.

CLOSFILE statement
Use the CLOSFILE statement to close a QSAM file that has been previously
opened by an OPENFILE statement. Only one file can be closed with each
CLOSFILE statement.

Note: The CLOSFILE statement must be issued in the same CLIST as the
corresponding OPENFILE statement.

��
label:

CLOSFILE file_name
&symbolic_variable_name

��

ATTN Statement

148 z/OS V2R1.0 TSO/E CLISTs

label
A name the CLIST can reference in a GOTO statement to branch to this
CLOSFILE statement. label is one-to-31 alphanumeric characters, beginning
with an alphabetic character.

file_name | symbolic_variable_name

file_name
is the file name (ddname) assigned to the file (data set) when it was
allocated in the current session.

symbolic_variable_name
is the symbolic variable to which you assigned file_name.

CONTROL statement
Use the CONTROL statement to define processing options for a CLIST. The options
are in effect from the time CONTROL executes until either the CLIST terminates or
it issues another CONTROL statement.

You can also set CONTROL options on or off in the following variables:

&SYSPROMPT
ON equals PROMPT, OFF equals NOPROMPT

&SYSSYMLIST
ON equals SYMLIST, OFF equals NOSYMLIST

&SYSCONLIST
ON equals CONLIST, OFF equals NOCONLIST

&SYSLIST
ON equals LIST, OFF equals NOLIST

&SYSASIS
ON equals ASIS, OFF equals CAPS

&SYSMSG
ON equals MSG, OFF equals NOMSG

&SYSFLUSH
ON equals FLUSH, OFF equals NOFLUSH.

CLISTs that do not issue CONTROL statements or one of the above variables
execute with the following options: NOPROMPT, NOSYMLIST, NOLIST,
NOCONLIST, CAPS, MSG, and FLUSH. The user can set PROMPT and LIST by
entering them as keywords on the EXEC command or subcommand issued to
invoke the CLIST.

CONTROL has no default operands. If you enter CONTROL with no operands, the
system uses options already defined by system default, the EXEC command, or a
previous CONTROL statement. In addition, when there are no operands specified,
the system displays those options currently in effect.

Note: CONTROL operands cannot be entered as symbolic variables.

��
label:

CONTROL
PROMPT
NOPROMPT

SYMLIST
NOSYMLIST

LIST
NOLIST

�

CLOSFILE Statement

Chapter 14. Reference 149

�
CONLIST
NOCONLIST

CAPS
NOCAPS
ASIS

MSG
NOMSG

FLUSH
NOFLUSH

MAIN END(string)
��

label
A name the CLIST can reference in a GOTO statement to branch to this
CONTROL statement. label is one-to-31 alphanumeric characters, beginning
with an alphabetic character.

PROMPT |NOPROMPT

PROMPT
TSO/E commands in the CLIST may prompt the terminal for input. (The
PROMPT operand on the PROFILE command must also be in effect.)

NOPROMPT
TSO/E commands in the CLIST may not prompt the terminal for input.

SYMLIST | NOSYMLIST

SYMLIST
Each executable statement is displayed at the terminal before it is scanned
for symbolic substitution. Executable statements include commands,
subcommands, and CLIST statements.

NOSYMLIST
Executable statements are not displayed at the terminal before symbolic
substitution.

LIST | NOLIST

LIST
Commands and subcommands are displayed at the terminal after symbolic
substitution but before execution.

NOLIST
Commands and subcommands are not displayed at the terminal.

CONLIST | NOCONLIST

CONLIST
CLIST statements are displayed at the terminal after symbolic substitution
but before execution.

NOCONLIST
CLIST statements are not displayed at the terminal after symbolic
substitution.

CAPS | NOCAPS | ASIS

CAPS
Character strings are converted to uppercase letters before being processed.

NOCAPS or ASIS
Character strings are not converted to uppercase before being processed.

MSG | NOMSG

MSG
Informational messages from commands and statements in the CLIST are
displayed at the terminal.

CONTROL Statement

150 z/OS V2R1.0 TSO/E CLISTs

NOMSG
Informational messages from commands and statements in the CLIST are
not displayed at the terminal.

FLUSH | NOFLUSH

FLUSH
The system can erase (flush) the queue of nested CLISTs called the input
stack unless NOFLUSH or MAIN is encountered. The system normally
flushes the stack when an execution error occurs.

NOFLUSH
The system cannot flush the CLIST when an error occurs.

Note: To protect a CLIST from being flushed, the CLIST must contain an
error routine.

MAIN
This is the main CLIST in your TSO/E environment and cannot be deleted by
a stack flush request from the system. When MAIN is specified, the NOFLUSH
condition is assumed for this CLIST, regardless of whether FLUSH was in
effect. This operand is required for CLISTs containing attention routines that do
anything other than terminate the CLIST.

END(string)
A character string recognized by the CLIST as a replacement for an END
statement that concludes a DO or SELECT statement, or a subprocedure. string
is 1-4 alphanumeric characters, beginning with an alphabetic character.

DATA-ENDDATA sequence
Use the DATA-ENDDATA sequence when you do not want a command or
subcommand to be interpreted as a CLIST statement. The CLIST views the group
of commands and subcommands in the DATA-ENDDATA sequence as data to be
ignored and passed to TSO/E for execution.

Do not include CLIST statements in a DATA-ENDDATA sequence because TSO/E
attempts to execute them as commands or subcommands.

Symbolic substitution is performed before execution of the group.

��
label:

DATA � commands
subcommands

ENDDATA ��

label
A name the CLIST can reference in a GOTO statement to branch to this
DATA-ENDDATA sequence. label is one-to-31 alphanumeric characters,
beginning with an alphabetic character.

commands | subcommands
The data to be ignored and passed to TSO/E for execution.

CONTROL Statement

Chapter 14. Reference 151

DATA PROMPT-ENDDATA sequence
Use the DATA PROMPT-ENDDATA sequence to designate responses to prompts
by TSO/E commands or subcommands. An error condition (error code 968) occurs
unless the sequence is immediately preceded by a command or subcommand
issuing a prompt.

��
label:

DATA PROMPT responses ENDDATA ��

Note: When using the DATA PROMPT-ENDDATA sequence, the following rules
apply:
v The CLIST must allow prompting.
v Symbolic substitution is performed before a reply is sent.

DO statement
Use the DO statement to execute sequences of commands, subcommands, and
statements (DO-sequences). You can use the DO statement to execute
DO-sequences once, repeatedly, and when certain conditions are true.

To execute a DO-sequence once, include only the DO and END statements.

To execute a DO-sequence repeatedly, include a variable with a starting value, a TO
value, and, optionally, a BY value.

To execute a DO-sequence conditionally, include a WHILE or UNTIL clause. The
WHILE clause contains a leading decision and executes while a comparative
expression is true, and the UNTIL clause contains a trailing decision and executes
until a comparative expression is true.

To execute a DO-sequence repeatedly and conditionally (compound DO), the
WHILE, UNTIL, or both clauses must follow the from, TO, and optional BY
clauses.

The DO statement indicates the beginning of a DO-sequence. The END statement
concludes the DO-sequence. If you want to use the TSO/E END command in a
DO-sequence, you must redefine the END statement, using the END operand of
the CONTROL statement.

��
label:

DO Type of Execution (DO-sequence)
label:

END ��

Type of Execution

Repeated Execution
Leading Decision Execution
Trailing Decision Execution

Repeated Execution

DATA PROMPT-ENDDATA Sequence

152 z/OS V2R1.0 TSO/E CLISTs

BY 1
variable = from_expr. TO to_expr.

BY by_expr.

Leading Decision Execution

WHILE condition

Trailing Decision Execution

UNTIL condition

label
A name the CLIST can reference in a GOTO statement to branch to this DO
statement. label is one-to-31 alphanumeric characters, beginning with an
alphabetic character.

variable
A symbolic variable that controls execution of the DO-sequence. With each
execution, the variable value increases or decreases by a certain amount. When
the value passes a certain limit, the CLIST stops executing the DO-sequence
and executes the next instruction after the END statement.

from_expression
A decimal integer, or an expression that evaluates to a decimal integer, forming
the initial value of the DO variable.

to_expression
A decimal integer, or an expression that evaluates to a decimal integer, forming
the terminal value of the DO variable.

by_expression
A decimal integer, or an expression that evaluates to a decimal integer, by
which the DO variable increases or decreases each time the DO-sequence
executes.

condition
A comparative expression or a sequence of comparative expressions sequenced
by logical operators. The expression or expressions can include character data,
including characters of the double-byte character set.

In the absence of a BY clause, the value of the DO variable increases by 1 with
each execution of the DO sequence.

If the by-expression evaluates to a negative number or consists of a number
beginning with a minus sign, the DO variable decreases by that amount.

If the statements in a DO-sequence modify a DO variable, the CLIST uses the new
value in determining whether to repeat the DO-sequence.

DO-sequences can contain nested DO statements.

DO Statement

Chapter 14. Reference 153

END statement
Use the END statement to mark the end of a DO-sequence, a SELECT statement, or
a subprocedure. The END statement must appear on a line by itself following the
DO-sequence, SELECT statement, or subprocedure.

�� END ��

The END statement is distinct from the TSO/E END command. If you use both the
END statement and END command in a CLIST, you must distinguish them by
redefining the END statement. Using the CONTROL statement, you can redefine
the END statement as follows:
CONTROL END(string)

where string is 1-4 alphanumeric characters, beginning with an alphabetic
character. You then use the string in place of END statements in the CLIST.

ERROR statement
Use the ERROR statement to set up an environment that checks for non-zero
return codes from commands, subcommands, and CLIST statements in the
currently executing CLIST. When an error code is detected, processing continues at
the ERROR routine active for the command, subcommand, or CLIST statement that
registered the error. If an ERROR routine is not active, the CLIST either terminates
or continues, depending on the severity of the error.

The error exit must be protected from being flushed from the input stack by the
system. Stack flushing makes the error return codes unavailable. Use the MAIN or
NOFLUSH operands of the CONTROL statement to prevent stack flushing.

When ERROR is entered with no operands, the CLIST displays the command,
subcommand, or statement in the CLIST that ended in error. No explanatory CLIST
ERROR messages are displayed. &LASTCC is reset to 0 and the CLIST continues
with the next sequential statement or command.

If the LIST option was requested for the CLIST, the null ERROR statement is
ignored.

The ERROR statement must precede any statements that might cause a branch to
it.

��
label:

ERROR
OFF
action

��

label
A name the CLIST can reference in a GOTO statement to branch to this
ERROR statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

OFF | action

OFF
Any action previously set up by an ERROR statement is nullified.

END Statement

154 z/OS V2R1.0 TSO/E CLISTs

action
Any executable statement, commonly a DO-sequence constituting a
routine. The action can execute TSO/E commands, subcommands, and
CLIST statements.

Note: Coding ERROR OFF within the DO-sequence routine itself prevents
the routine from returning control to the CLIST.

EXIT statement
Use the EXIT statement to return control to the program that called the currently
executing CLIST. The return code associated with this exit can be specified by the
user or allowed to default to 0.

A CLIST that is called by another CLIST is said to be nested. Multiple levels of
nesting are allowed. The structure of the nesting is called the hierarchy. You go
“up” in the hierarchy when control passes back to the calling CLIST. TSO/E itself
is at the top of the hierarchy.

Entering EXIT causes control to go up one level. When EXIT is entered with the
QUIT operand, the system attempts to pass control upward to the first CLIST
encountered that has MAIN or NOFLUSH in effect (see “CONTROL statement” on
page 149). If no such CLIST is found, control passes to TSO/E, which flushes all
CLISTs from the input stack and passes control to the terminal.

��
label:

EXIT
CODE(expression) QUIT

��

label
A name the CLIST can reference in a GOTO statement to branch to this EXIT
statement. label is one-to-31 alphanumeric characters, beginning with an
alphabetic character.

CODE (expression)
A CLIST-defined return code. expression must be a positive integer, zero, or an
expression that evaluates to a decimal integer. When CODE is not specified,
the system uses 0 as the default return code.

QUIT
Control is passed up the nested hierarchy until either a CLIST is found with
the MAIN or NOFLUSH option active or TSO/E receives control.

GETFILE statement
Use the GETFILE statement to read a record from a QSAM file opened by the
OPENFILE statement. One record is obtained by each execution of GETFILE.

After GETFILE executes, the file name variable contains the record obtained. If you
use GETFILE to read data from the terminal, the data is translated to uppercase.

Note: The GETFILE statement must be issued in the same CLIST as the
corresponding OPENFILE statement.

��
label:

GETFILE file_name ��

ERROR Statement

Chapter 14. Reference 155

label
A name the CLIST can reference in a GOTO statement to branch to this
GETFILE statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

file_name
The file name (ddname) assigned to the file (data set) when it was allocated in
the current session. Do not specify a symbolic variable containing the file
name.

GLOBAL statement
Use the GLOBAL statement to share values between nested CLISTs. In the
hierarchy of nested CLISTs, the highest-level CLIST must contain a GLOBAL
statement with the maximum number of variables used throughout the nested
chain. Lower-level CLISTs must include a GLOBAL statement if they intend to
refer to the global variables defined in the highest-level CLIST.

Note: The GLOBAL statement cannot be used to give a REXX exec access to a
CLIST's global variables. CLIST variables cannot be accessed by REXX execs.

The global variables are positional, and the order is defined by the GLOBAL
statement in the highest-level CLIST. All lower-level CLISTs that reference this
same set of variables must follow this order to reference the same values. The
variable names may be unique to the lower-level CLISTs. This means that the Nth
name on any level GLOBAL statement refers to the same value, even though the
symbolic name at each level may be different. For example, if a nested CLIST
references the fifth global variable, then it must define five global variables. If it
references the second global variable, then it needs to define only two global
variables.

Multiple GLOBAL statements are cumulative. For example, if a CLIST has a
GLOBAL statement that defines three variables followed by another GLOBAL
statement that defines two variables, then five variables have been defined. The
second GLOBAL statement defines the fourth and fifth variables.

The GLOBAL statement must precede any statement that uses or defines its
variables.

��
label:

GLOBAL variable_1 �

variable
��

label
A name the CLIST can reference in a GOTO statement to branch to this
GLOBAL statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

variable_1 / variable
A symbolic variable name for this CLIST. The name refers to a variable that is
either being created by this GLOBAL statement or that was created by a
GLOBAL statement in the highest-level CLIST.

GETFILE Statement

156 z/OS V2R1.0 TSO/E CLISTs

GOTO statement
Use the GOTO statement to cause an unconditional branch within a CLIST.
Branching to another CLIST is not allowed.

��
label:

GOTO target
&variable

��

label
A name the CLIST can reference in a GOTO statement to branch to this GOTO
statement. label is one-to-31 alphanumeric characters, beginning with an
alphabetic character.

target | variable

target
A label on a statement or command.

variable
A symbolic variable that contains a valid label.

GOTO statements cannot branch:
v To another CLIST
v To a subprocedure's PROC statement
v From one subprocedure to another
v From a subprocedure to the CLIST's main procedure

IF-THEN-ELSE sequence
Use the IF-THEN-ELSE sequence to define a condition, test the truth of that
condition, and initiate an action based on the test results. Do not code THEN and
ELSE on the same logical line.

��
label:

IF logical_expression THEN
action ELSE

action

��

label
A name the CLIST can reference in a GOTO statement to branch to this
IF-THEN-ELSE sequence. label is one-to-31 alphanumeric characters, beginning
with an alphabetic character.

logical_expression
A comparative expression or a sequence of comparative expressions sequenced
by logical operators. The expression or expressions can include character data,
including characters of the double-byte character set.

action
An executable command, subcommand, or CLIST statements. (Enclose an
action consisting of more than one statement in a DO-sequence.) The THEN
action is invoked if the logical expression is true. The ELSE action is invoked if
the logical expression is false. If a null THEN or null ELSE statement is
executed, control passes to the next sequential statement after the
IF-THEN-ELSE sequence.

The action must be on the same line as a THEN or ELSE clause, or be joined to
the line by a continuation character. For example, the following are correct:

GOTO Statement

Chapter 14. Reference 157

IF &FOOTPRINT = 0 THEN SET ECODE = 4

IF &FOOTPRINT = 0 THEN +
SET ECODE = 4

IF &FOOTPRINT = 0 THEN +
DO

SET ECODE = 4...
END

LISTDSI statement
Use the LISTDSI statement to obtain information about a data set that is available
on DASD. The LISTDSI statement can retrieve information about a data set's
allocation, protection, and directory, and store the information in CLIST variables.

The LISTDSI statement supports generation data group (GDG) data sets, but it
does not support the following types of data or data sets:
v data that is on tape
v relative GDG names
v UNIX file system data sets

Otherwise, unpredictable results might occur.

The CLIST can use the LISTDSI information to determine whether the data set is
the right size or has the right organization or format for a given task. It can also
use the LISTDSI information as input to the ALLOCATE command, to create a new
data set using some attributes from the old data set while modifying others.

If you use LISTDSI to retrieve information about a VSAM data set, the CLIST
stores only the volume serial ID (in variable &SYSVOLUME), the generic device
type (in variable &SYSUNIT), and the data set organization (in variable
&SYSDSORG). The CLIST sets all other LISTDSI variables to question marks.

If you use LISTDSI to retrieve information about a multiple volume data set, the
CLIST stores information for the first volume only. Similarly, if you specify a file
name or the PREALLOC parameter and you have other data sets allocated to the
same file name, then the system might not retrieve information for the data set you
wanted.

When you use LISTDSI to obtain information about a concatenation of more than
one data set, LISTDSI returns information only about the first data set in the
concatenation. Likewise, if the file name identifies a multi-volume data set,
LISTDSI can return information only about the first volume, and is not able to
detect that the data set is multi-volume.

If the data set is SMS managed and is capable of expanding to multiple volumes,
but has not yet done so, it is considered a single volume data set by LISTDSI until
it has expanded to the second volume. In any case, LISTDSI will only retrieve
information for the first volume referenced by the request.

As part of its processing, LISTDSI issues a RACF authority check against the
provided data set which will cause a security violation to occur if the user does
not have at least READ access to the data set. RACF does not issue an ICH408I
message due to message suppression requested by LISTDSI, and therefore LISTDSI

IF-THEN-ELSE Sequence

158 z/OS V2R1.0 TSO/E CLISTs

issues a return code of 0. The only indication a security violation has occurred is
that an SMF type-80 RACF audit record is created.

LISTDSI considers file names in the form SYSnnnnn as system-generated file names.
If LISTDSI is used to obtain information about a data set that was pre-allocated
multiple times using a file name of the form SYSnnnnn, an existing file may be
unintentionally freed.

To suppress TSO/E messages issued by the LISTDSI statement, use the CONTROL
NOMSG statement. For information about the CONTROL statement, see
“CONTROL statement” on page 149.

��
label:

LISTDSI data_set_name
VOLUME(serial_id)
PREALLOC

file_name FILE

�

�
NODIRECTORY
DIRECTORY

NOSMSINFO

SMSINFO RECALL
NORECALL

NOMULTIVOL

MULTIVOL

RACF

NORACF
��

label
A name the CLIST can reference in a GOTO statement to branch to this
LISTDSI statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

data_set_name | file_name

data_set_name
The name of the data set about which you want to retrieve information.

file_name
The name of an allocated file (ddname) about which you want to retrieve
information.

VOLUME(serial_id) | PREALLOC
VOLUME(serial_id)

specifies the serial number of the volume where the data set is located.
PREALLOC

specifies that the location of the specified data set is determined by
allocating the data set, rather than through a catalog search. PREALLOC
allows data sets that have been previously allocated to be located without
searching a catalog and allows unmounted volumes to be mounted.

If you do not specify either VOLUME or PREALLOC, the system locates the
data set through catalog search.

If you specify a file_name, LISTDSI ignores the VOLUME and PREALLOC
parameters.

FILE
specifies that you provided a file_name instead of a data_set_name. If you do not
specify FILE, LISTDSI assumes that you provided a data set name.

DIRECTORY | NODIRECTORY

LISTDSI Statement

Chapter 14. Reference 159

DIRECTORY
indicates that you want directory information for a partitioned data set
(PDS or PDSE).

Requesting DIRECTORY information for a PDS may cause the date last
referenced (&SYSREFDATE) to be updated by LISTDSI. Refer to the
description of the &SYSREFDATE variable for more information about
when &SYSREFDATE might be updated by LISTDSI.

NODIRECTORY
indicates that you do not want directory information for a partitioned data
set. If you do not require directory information, NODIRECTORY can
significantly speed up processing. NODIRECTORY is the default.

SMSINFO | NOSMSINFO
indicates whether you want SMS information about an SMS-managed data set,
like the type of data set, the used space, the data -, storage -, and management
class names. See also Table 11 on page 161.

SMSINFO
indicates that you want SMS information about data_set_name or file_name.
Neither data_set_name nor file_name may refer to a VSAM index or a data
component.

If the specified data set is not managed by SMS, LISTDSI continues, but no
SMS information is provided in the corresponding CLIST variables.

Specify SMSINFO only if you want SMS information about a data set.
NOSMSINFO (the default) may significantly reduce the execution time of
the LISTDSI statement.

Requesting SMSINFO for a PDSE data set may cause the date last
referenced (&SYSREFDATE) to be updated by LISTDSI. Refer to the
description of the &SYSREFDATE variable for more information about
when &SYSREFDATE might be updated by LISTDSI.

NOSMSINFO
indicates that you do not want SMS information about the specified data
set. NOSMSINFO is the default.

RECALL | NORECALL

RECALL
indicates that you want to recall a data set migrated by HSM. The system
recalls the data set regardless of its level of migration or the type of device
it has been migrated to.

NORECALL
indicates that you do not want to recall a data set. If the data set has been
migrated, the system displays an error message.

If you do not specify either RECALL or NORECALL, the system recalls the
data set only if it has been migrated to a direct access storage device (DASD).

MULTIVOL | NOMULTIVOL
indicates whether data size calculations should include all volumes, when a
data set resides on more than one volume. The new SYSNUMVOLS and
SYSVOLUMES variables are not affected by this operand, as these are always
set.

LISTDSI Statement

160 z/OS V2R1.0 TSO/E CLISTs

If the VOLUME keyword and the MULTIVOL keyword are both specified, the
MULTIVOL keyword is ignored. In this case, data set size information is
returned just for the specified volume.

RACF | NORACF
indicates whether a check for RACF authority is done or not. If not, the data
set will not be opened by LISTDSI, for example, to read directory information.

The LISTDSI function issues message IKJ56709I if a syntactically incorrect data set
name is passed to the function. To prevent this message from being displayed, use
CONTROL NOMSG.
PROC 0
SET DSNAME = ABCDEFGHIJ.XYZ /* Syntactically not valid name,

/* because a qualifier is longer
/* than 8 characters

CONTROL NOMSG /* Set OFF to suppress any LISTDSI
/* TSO/E messages

LISTDSI &DSNAME /* Obtain data set information
WRITE Return code from LISTDSI is ==> &LASTCC
EXIT CODE(0)

CLIST variables set by LISTDSI
Table 11 describes the contents of the CLIST variables set by LISTDSI. For VSAM
data sets, only the variables &SYSDSNAME, &SYSEATTR, &SYSEADSCB,
&SYSVOLUME, &SYSUNIT, and &SYSDSORG are accurate; all other variables are
set to question marks.

Table 11. Variables set by LISTDSI

Variable Contents

&SYSDSNAME Data set name

&SYSVOLUME Volume serial ID

&SYSUNIT Generic device type on which volume resides, for example,
“3390”.

&SYSDSORG Data set organization:

PS Physical sequential

PSU Physical sequential unmovable

DA Direct organization

DAU Direct organization unmovable

IS Indexed sequential

ISU Indexed sequential unmovable

PO Partitioned organization

POU Partitioned organization unmovable

VS VSAM

??? Unknown

LISTDSI Statement

Chapter 14. Reference 161

Table 11. Variables set by LISTDSI (continued)

Variable Contents

&SYSRECFM
Record format; 1- to 6-character combination of the
following:

U Records of undefined length

F Records of fixed length

V Records of variable length

T Records written with the track overflow feature of
the device (no currently supported device supports
the track overflow feature)

B Records blocked

S Records written as standard or spanned
variable-length blocks

A Records contain ANSI control characters

M Records contain machine code control characters

?????? Unknown

&SYSLRECL Logical record length

&SYSBLKSIZE Block size

&SYSKEYLEN Key length

&SYSALLOC Allocation, in space units

&SYSUSED Allocation used, in space units. For a partitioned data set
extended (PDSE) “N/A” will be returned; see the
description of the &SYSUSEDPAGES for used space of a
PDSE.

&SYSUSEDPAGES The used space of a partitioned data set extended (PDSE)
in 4K pages.

&SYSPRIMARY Primary allocation in space units

&SYSSECONDS Secondary allocation in space units

&SYSUNITS Space units:

CYLINDER
Space units in cylinders

TRACK
Space units in tracks

BLOCK
Space units in blocks

????????
Space units are unknown

&SYSEXTENTS Number of extents allocated

&SYSUSEDEXTENTS
Indicates the number of extents used. For a partitioned data
set extended (PDSE), this variable returns 'N/A'; see the
descriptions of variables SYSUSEDPAGES and
SYSUSEDPERCENT for more information about used space
of a PDSE.

&SYSCREATE Creation date in Year/day format, for example: 1985/102.

LISTDSI Statement

162 z/OS V2R1.0 TSO/E CLISTs

Table 11. Variables set by LISTDSI (continued)

Variable Contents

&SYSREFDATE Last referenced date in Year/day format, for example:
2010/107.

Specifying DIRECTORY or SMSINFO may cause the last
referenced date to be updated to the current date under the
following circumstances:

v Specifying DIRECTORY causes the date to be updated
only if the data set is a PDS and the user running
LISTDSI has RACF READ authority to the data set. In all
other cases, including when the data set is a PDSE,
DIRECTORY has no effect on this date.

v Specifying SMSINFO causes the date to be updated only
if the data set is a PDSE and the user running LISTDSI
has RACF READ authority to the data set. In all other
cases, SMSINFO has no effect on this date.

&SYSEXDATE Expiration date in Year/day format, for example: 1995/365.

&SYSPASSWORD Password indication:

NONE No password protection

READ Password required to read

WRITE Password required to write

&SYSRACFA RACF indication:

NONE No RACF protection

GENERIC
Generic profile covers this data set

DISCRETE
Discrete profile covers this data set

&SYSUPDATED Backup change indicator:

YES Data set has been updated since its last backup by
DFSMShsm (or its equivalent).

NO Data set has not been updated since its last
backup.

&SYSTRKSCYL Tracks per cylinder for the unit identified in the &SYSUNIT
variable

&SYSBLKSTRK Blocks of &SYSBLKSIZE per track for the unit identified in
the &SYSUNIT variable. For a PDSE, the value “N/A” is
returned because a block of size &SYSBLKSIZE can 'span' a
track in a PDSE. The value contained in &SYSUSEDPAGES
is a more meaningful measurement of space usage for a
PDSE.

&SYSADIRBLK For a partitioned data set (PDS), the number of directory
blocks allocated will be returned. For a partitioned data set
extended (PDSE), “NO_LIM” will be returned because there
is no static allocation for its directory. A value is returned
only if DIRECTORY is specified on the LISTDSI statement.

&SYSUDIRBLK For a partitioned data set (PDS), the number of directory
blocks used will be returned. For a partitioned data set
extended (PDSE), “N/A” will be returned because it is not
a static value. A value is returned only if DIRECTORY is
specified on the LISTDSI statement.

LISTDSI Statement

Chapter 14. Reference 163

Table 11. Variables set by LISTDSI (continued)

Variable Contents

&SYSMEMBERS Number of members - returned only for partitioned data
sets when DIRECTORY is specified

&LASTCC LISTDSI return code

&SYSREASON LISTDSI reason code

&SYSMSGLVL1 First-level message if an error occurred

&SYSMSGLVL2 Second-level message if an error occurred

&SYSDSSMS Contains information about the type of a data set, provided
by DFSMS/MVS.

If the SMS data set type information could not be retrieved,
the SYSDSSMS variable contains:

SEQ for a sequential data set

PDS for a partitioned data set

PDSE for a partitioned data set extended

If the data set is a PDSE and the and the SMSINFO
operand was specified on the LISTDSI call and SMS data
set type information could be retrieved, the SYSDSSMS
variable contains:

LIBRARY
for an empty PDSE

PROGRAM_LIBRARY
for a partitioned data set extended program library

DATA_LIBRARY
for a partitioned data set extended data library

Note: This detailed data set type information for a PDSE is
not returned if the user issuing the LISTDSI call does not
have RACF READ authority to the data set.

&SYSDATACLASS(1) The SMS data class name - returned only if SMSINFO is
specified on the LISTDSI statement and the data set is
managed by SMS.

&SYSSTORCLASS(1) The SMS storage class name - returned only if SMSINFO is
specified on the LISTDSI statement and the data set is
managed by SMS.

&SYSMGMTCLASS(1) The SMS management class name - returned only if
SMSINFO is specified on the LISTDSI statement and the
data set is managed by SMS.

&SYSSEQDSNTYPE
Indicates the type of sequential data set:

BASIC - regular sequential data set

LARGE - large sequential data set

EXTENDED - an extended sequential data set

If the data set is not sequential, this variable returns a null
string.

LISTDSI Statement

164 z/OS V2R1.0 TSO/E CLISTs

Table 11. Variables set by LISTDSI (continued)

Variable Contents

&SYSEATTR
Indicates the current status of the EATTR bits in the DSCB
that describe the EAS eligibility status of a data set. A data
set can reside in the EAS only when it is EAS-eligible.

Default blank indicates that the EATTR bits are
‘00’b. The defaults for EAS eligibility apply:

v VSAM data sets are EAS-eligible, and can have
extended attributes (format 8 and 9 DSCBs).

v Non-VSAM data sets are not EAS-eligible, and
cannot have extended attributes (format 8 and 9
DSCBs).

NO Indicates that ‘01’b is specified for the EATTR bits.
The data set is not EAS-eligible, and cannot have
extended attributes (format 8 and 9 DSCBs).

OPT Indicates that ‘10’b is specified for the EATTR bits.
The data set is ESA-eligible, and can have
extended attributes (format 8 and 9 DSCBs).

&SYSEADSCB
Indicates whether the data set has extended attributes:

YES The data set has extended attributes (format 8 and
9 DSCBs) and can reside in the EAS.

NO The data set does not have extended attributes
(format 8 and 9 DSCBs) and can not reside in the
EAS.

&SYSALLOCPAGES
Indicates number of pages allocated to a PDSE.

&SYSUSEDPERCENT
Indicates percentage of pages used out of pages allocated
for a PDSE. This is a number from 0 to 100, rounded down
to the nearest integer value.

&SYSNUMVOLS
Indicates a number from 1 to 59 as tape is not supported
but will always return 1 if a volume is specified, instead of
trying LOCATE all volumes for the data set.

&SYSVOLUMES
Indicates up to 412 characters with a list of volumes
separated by spaces where the first six characters will
always match SYSVOLUME and each volume name takes
up six spaces padded with blanks to help simplify parsing.
If a volume is specified on the LISTDSI call, just that
volume name is returned.

&SYSCREATETIME
Indicates the time a data set was created in the format
hh:mm:ss where hh is hours since midnight, mm is minutes
since midnight, and ss is seconds since midnight. This
variable is only set for EAV data sets and can be used
together with the SYSCREATE variable to determine the
date and time when a data set was created.

&SYSCREATESTEP
Indicates the name of the job step that created the data set.

&SYSCREATEJOB
Indicates the name of the job that created the data set.

LISTDSI Statement

Chapter 14. Reference 165

Table 11. Variables set by LISTDSI (continued)

Variable Contents

Note: For data sets not managed by SMS, these variables return a null string.

Return codes
Return codes from the LISTDSI statement appear in CLIST variable &LASTCC.
Error routines do not receive control when a CLIST receives a non-zero return code
from LISTDSI. Table 12 lists the LISTDSI return codes and their meanings.

Table 12. LISTDSI return codes

Return code Meaning

0 Processing successful

4 Some data set information is unavailable. Review the reason code in the
returned variable &SYSREASON and check the messages returned in
&SYSMSGLVL1 and &SYSMSGLVL2 to determine which information is
unavailable.

16 Processing unsuccessful. None of the CLIST variables can be considered
valid.

Reason codes
Reason codes from the LISTDSI statement appear in CLIST variable
&SYSREASON. Table 13 lists the LISTDSI reason codes and their meanings. With
each reason code the CLIST variable &SYSMSGLVL2 is set to message IKJ584nnI,
where nn is the reason code. These messages are described in z/OS TSO/E Messages.

Table 13. LISTDSI reason codes

Reason code Meaning

0 Normal completion

1 Error parsing the statement.

2 Dynamic allocation processing error (SVC 99 error).

3 The data set is a type that cannot be processed.

4 Error determining UNIT name (IEFEB4UV error).

5 Data set not cataloged (LOCATE macro error).

6 Error obtaining the data set attributes (OBTAIN macro error).

7 Error finding device type (DEVTYPE macro error).

8 The data set does not reside on a direct access device.

9 DFSMShsm migrated the data set, NORECALL prevents retrieval.

11 Directory information was requested, but you lack authority to access
the data set.

12 VSAM data sets are not supported.

13 The data set can not be opened.

14 Device type not found in unit control block (UCB) tables.

17 System or user abend occurred.

18 Partial data set information was obtained.

19 Data set resides on multiple volumes. Consider using the MULTIVOL
keyword to obtain data set size information totaled across all volumes.

LISTDSI Statement

166 z/OS V2R1.0 TSO/E CLISTs

Table 13. LISTDSI reason codes (continued)

Reason code Meaning

20 Device type not found in eligible device table (EDT).

21 Catalog error trying to locate the data set.

22 Volume not mounted (OBTAIN macro error).

23 Permanent I/O error on volume (OBTAIN macro error).

24 Data set not found by OBTAIN macro.

25 Data set migrated to non-DASD device.

26 Data set on MSS (Mass Storage) device.

27 No volume serial is allocated to the data set.

28 ddname must be one to eight characters.

29 Data set name or ddname must be specified.

30 Data set is not SMS-managed.

31 ISITMGD macro returned with bad return code and reason code.
Return code and reason code can be found in message IKJ58431I, which
is returned in variable &SYSMSGLVL2.

32 Unable to retrieve SMS information. SMS has incorrect level.

33 Unable to retrieve SMS information. SMS is not active.

34 Unable to retrieve SMS information. OPEN error.

35 Unexpected error from DFSMSdfp internal service IGWFAMS.

36 Unexpected error from the SMS service module.

37 Unexpected error from DFSMSdfp service IGGCSI00.

NGLOBAL statement
Use the NGLOBAL statement to share values between subprocedures in a CLIST.

The NGLOBAL (named global) statement defines variables by name. When you
define an NGLOBAL variable, other subprocedures in the same CLIST can refer to
it by name and modify its value. Other CLISTs cannot access or modify an
NGLOBAL variable.

There is no limit to the number of variables that can be defined on an NGLOBAL
statement. The NGLOBAL statement must precede any statement that uses its
variables.

��
label:

NGLOBAL variable_1 �

variable
��

label
A name the CLIST can reference in a GOTO statement to branch to this
NGLOBAL statement. label is one-to-31 alphanumeric characters, beginning
with an alphabetic character.

variable_1 / variable
A symbolic variable name for this CLIST. The name refers to a variable that is
being defined by this NGLOBAL statement.

LISTDSI Statement

Chapter 14. Reference 167

Note: Variables named on an NGLOBAL statement cannot appear on a PROC
statement.

OPENFILE statement
Use the OPENFILE statement to open a QSAM file for I/O. The file must have
been allocated during the session and assigned a file name. Each execution of
OPENFILE can open only one file, and files cannot be open for different members
of the same PDS at the same time. The files must represent data sets with logical
record lengths no greater than 32767 bytes.

Note: The OPENFILE statement sets any I/O variables to nulls. Always execute
the OPENFILE statement before using any SET statements to create I/O records.

Complete your file I/O on a specific file before changing from command to
subcommand mode and vice versa. Cross-mode file I/O is not supported and
causes unpredictable abnormal terminations.

Specify NOFLUSH for a CLIST that uses file I/O. (See the CONTROL statement.)
If a system action causes TSO/E to flush the input stack because you did not
specify NOFLUSH, a user may have to log off the system to recover. The user will
recognize the condition by receiving a message similar to “FILE NOT FREED,
DATA SET IS OPEN.”.

��
label:

OPENFILE file_name
&symbolic_variable_name

INPUT
OUTPUT
UPDATE

��

label
A name the CLIST can reference in a GOTO statement to branch to this
OPENFILE statement. label is one-to-31 alphanumeric characters, beginning
with an alphabetic character.

file_name | symbolic_variable_name

file_name
The file name (ddname) you assigned to the file (data set) when allocating
it in the current session.

symbolic_variable_name
The symbolic variable to which you assigned file_name.

INPUT | OUTPUT | UPDATE

INPUT
Open the file for input.

OUTPUT
Open the file for output.

UPDATE
Open the file for updating in place; that is, the CLIST can execute GETFILE
and PUTFILE statements before closing the file.

PROC statement
Use the PROC statement to:

NGLOBAL Statement

168 z/OS V2R1.0 TSO/E CLISTs

v Define parameters to be passed on the EXEC command to the CLIST. In this case
PROC is optional, but if you use it, it must be the first executable statement in
the CLIST.

v Define a subprocedure and any parameters passed on the SYSCALL statement to
the subprocedure. A subprocedure must begin with a PROC statement. In this
case the PROC statement must have a label, and a corresponding END statement
to mark the end of the subprocedure.

��
label:

PROC positional_number �

positional_parameter
�

� � keyword_parameter
()

default_value
END

��

label
A name the CLIST can reference in a SYSCALL statement to pass control to
this PROC statement. Required on PROC statements that begin subprocedures,
label is one-to-31 alphanumeric characters, beginning with an alphabetic
character.

positional_number
The number of required positional parameters to be passed. Enter 1-5 decimal
digits. If none, enter 0.

positional_parameter
A positional parameter passed to the CLIST or subprocedure.

A positional parameter name may be 1-252 alphanumeric characters in length,
beginning with an alphabetic character. Lowercase values are changed to
uppercase.

If the name of a positional parameter on the PROC statement is the same as
the name of a GLOBAL variable, an error occurs.

keyword_parameter
A keyword parameter passed to the CLIST or subprocedure.

A keyword parameter name can be 1-31 alphanumeric characters in length,
beginning with an alphabetic character, and cannot contain the character
underscore (_). Lowercase values are changed to uppercase.

default_value
The value assigned to the corresponding variable in the CLIST or subprocedure
if the user does not specify a value on the associated keyword on the EXEC
command or SYSCALL statement.

If the value is omitted (empty parentheses) the user may supply a value on the
associated keyword on the EXEC command or SYSCALL statement.

Note: Symbolic substitution does not occur for default values of a keyword
parameter.

All parameters have an initial value at the time the CLIST or subprocedure begins
execution. Each parameter name becomes the name of a symbolic variable that has
the initial value of the associated parameter. The values of passed parameters are

PROC Statement

Chapter 14. Reference 169

in effect only while the CLIST or subprocedure is active. Values passed in
lowercase are converted to uppercase by the exec command.

PUTFILE statement
Use the PUTFILE statement to write a record to an open QSAM file. Each
execution of PUTFILE writes one record. Unless the user wants the same record
sent more than once, the file name variable must be assigned a different record
using an assignment statement before the next PUTFILE statement is issued.

Note: The PUTFILE statement must be issued in the same CLIST as the
corresponding OPENFILE statement.

��
label:

PUTFILE file_name ��

label
A name the CLIST can reference in a GOTO statement to branch to this
PUTFILE statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

file_name
The file name (ddname) assigned to the file (data set) when it was allocated in
the current session. Do not specify a symbolic variable containing the file
name.

READ statement
Use the READ statement to read input from the terminal and store it in symbolic
variables. These variables may be defined on the READ statement or elsewhere in
the CLIST. The READ statement is typically preceded by a WRITE or WRITENR
statement that requests the user to enter the expected input at the terminal.

��
label:

READ

�variable_1
variable

��

label
A name the CLIST can reference in a GOTO statement to branch to this READ
statement. label is one-to-31 alphanumeric characters, beginning with an
alphabetic character.

variable_1 / variable
Any valid variable name. The variables are positional in that values in the
input data entered by the terminal user are stored sequentially into the
specified variables.

If the operand is omitted the input is stored in the &SYSDVAL control variable.

READDVAL statement
Use the READDVAL statement to assign the current contents of the &SYSDVAL
control variable to one or more specified symbolic variables.

PROC Statement

170 z/OS V2R1.0 TSO/E CLISTs

The assignment is done sequentially to the variables in the order specified;
variables not assigned values default to null values. If there are more values than
variables, the excess values from &SYSDVAL are not assigned.

��
label:

READDVAL variable_1 �

variable
��

label
provides a name the CLIST can reference in a GOTO statement to branch to
this READDVAL statement. label is one-to-31 alphanumeric characters,
beginning with an alphabetic character.

variable_1 / variable
Any valid variable name. A variable need not have been previously defined.

RETURN statement
Use the RETURN statement to:
v Return control from an error routine or an attention routine to the statement

following the one that ended in error or the one that was interrupted by an
attention.

v Provide a return code from a subprocedure. Control will pass to the statement
following the SYSCALL statement that called the subprocedure. The return code
is stored in the control variable &LASTCC (Note, however, that return codes
from CLIST subprocedures do not cause an error routine to receive control.)

RETURN is valid only when issued from a subprocedure, an activated error
routine, or an activated attention routine. If issued from any other place, RETURN
is treated as a no-operation.

��
label:

RETURN
CODE()

expression

��

label
A name the CLIST can reference in a GOTO statement to branch to this
RETURN statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

CODE
Subprocedures can issue a return code. Control will pass to the statement
following the SYSCALL statement that called the subprocedure.

expression
A CLIST-defined return code. expression can be a character string, a decimal
integer, or an expression that evaluates to a decimal integer. The expression is
stored in the control variable &LASTCC. If CODE appears without an
expression, &LASTCC takes a null value.

SELECT statement
Use the SELECT statement to conditionally perform one of several alternative
actions. There are two forms of the SELECT statement: the simple SELECT and the
compound SELECT.

READDVAL Statement

Chapter 14. Reference 171

Simple SELECT
In the simple SELECT statement, the CLIST tests one or more expressions. When
the CLIST finds an expression that evaluates to a true value, the CLIST performs
the associated action, then passes control to the END statement. If none of the
expressions are true, the CLIST performs the action on the OTHERWISE clause, if
any, or passes control to the END statement.

��
label:

SELECT ——————— �

� � WHEN (logical_expression)
action

——————— �

�
OTHERWISE action

—————————————————
label:

END ��

Note: Each WHEN and OTHERWISE statement must be on a separate line, and
must be separated from the SELECT and END. See syntax diagram above.

label
A name the CLIST can reference in a GOTO statement to branch to this
SELECT statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

logical_expression
A comparative expression, such as &A = 3 or &B ¬> 10, that evaluates to a true
or false condition.

action
Any CLIST statement, TSO/E command, or DO sequence. A null action passes
control to the END statement. The action can include nested IF, DO, and
SELECT statements. Any statements in the action can have labels, allowing
GOTO statements to branch to them.

Compound SELECT
A compound SELECT statement includes an initial test expression. The CLIST
evaluates the test expression and compares its value to those of the WHEN
expressions.

In a compound SELECT statement, a WHEN expression can contain multiple
expressions separated by the logical operator | (OR). WHEN expressions can also
include ranges of values, represented by a colon (:) between the lowest and highest
values of the range. For example, 3:5 represents 3, 4, and 5.

When a test expression matches a value or falls within a range of values in a
WHEN expression, the CLIST performs the associated action and passes control to
the END statement. If no matches are found, the CLIST performs the action on the
OTHERWISE clause, if any, or passes control to the END statement.

SELECT Statement

172 z/OS V2R1.0 TSO/E CLISTs

��
label:

SELECT test_expression �

� � WHEN (expression)
: expression action
|
OR

�

�
OTHERWISE action label:

END ��

label
A name the CLIST can reference in a GOTO statement to branch to this
SELECT statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

test_expression
A character string or a logical expression that results in a value to be compared
to the expressions in the WHEN clauses.

expression
A character string, a single logical expression, or a range such as 1:5. Values
and ranges can be combined, for example: WHEN (&A-3 | &B | 4:6)

action
Any CLIST statement, TSO/E command, or DO sequence. A null action passes
control to the END statement. The action can include nested IF, DO, and
SELECT statements. Any statements in the action can have labels of their own.

SET statement
Use the SET statement to assign a value to a symbolic variable or a control
variable.

��
label:

SET
&

symbolic_variable_name
&control_variable_name

=
EQ

value ��

label
A name the CLIST can reference in a GOTO statement to branch to this SET
statement. label is one-to-31 alphanumeric characters, beginning with an
alphabetic character.

symbolic_variable_name | control_variable_name

symbolic_variable_name
The symbolic variable to which you are assigning a value.

control_variable_name
The control variable to which you are assigning a value. (See Table 4 on
page 31 for those control variables that you can modify.)

EQ | =
The operator ‘equal’.

SELECT Statement

Chapter 14. Reference 173

value
Any valid numeric value or character string.

SYSCALL statement
Use the SYSCALL statement to pass control to a subprocedure. The SYSCALL
statement contains the name of the subprocedure and any parameters to be passed.
The name of the subprocedure must match the label on the PROC statement that
begins the subprocedure.

��
label:

SYSCALL procname

�parameter_1
parameter

��

label
A name the CLIST can reference in a GOTO statement to branch to this
SYSCALL statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

procname
The label of the PROC statement that begins the subprocedure.

parameter_1 / parameter
Any valid CLIST expression, including constants, symbolic variables, built-in
functions, and arithmetic expressions. All parameters are separated by CLIST
delimiters (blanks, commas, or tabs). For information about how to pass a
parameter that contains blanks, see “Calling a subprocedure” on page 77.

If the parameter is the name of a variable that is referred to in a SYSREF
statement in the subprocedure, the variable name must not include an
ampersand on the SYSCALL statement.

The PROC statement of the subprocedure is responsible for defining variables
to receive the parameters.

SET &A = John
SET &B = AL
SYSCALL XYZ &A B

.
WRITE &B
.
.

XYZ: PROC 2 PARM1 PARM2
.
SYSREF &PARM2
WRITE &PARM2
SET &PARM2 = GEORGE

END

/* pass variables to XYZ, omitting & from
/* the variable name referenced on SYSREF
/* result: GEORGE

/* Subprocedure XYZ */

/* Indicate PARM2 holds a variable name
/* result: AL

SYSREF statement
Use the SYSREF statement in a subprocedure to identify the names of variables,
passed from the caller, whose values the subprocedure can reference and modify.
When you assign a new value to a SYSREF variable, the new value is retroactive;
that is, the new value takes effect both in the caller and in the subprocedure.

SET Statement

174 z/OS V2R1.0 TSO/E CLISTs

On the SYSREF statement in the subprocedure, list the PROC statement parameter
that corresponds to the variable name that the caller passed. The SYSREF statement
must precede any subprocedure statement that uses its variables.

��
label:

SYSREF

�variable_1
variable

��

label
A name the CLIST can reference in a GOTO statement to branch to this
SYSREF statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

variable_1 / variable
The name of a parameter from the PROC statement. The parameters
correspond to variable names that were passed to the PROC statement.
Ampersands (&) are optional on the variable name.

In the following example, the subprocedure assigns a new value to the variable
whose name was passed (B). The new value (GEORGE) replaces the variable's old
value (AL) in the caller.

SET &A = John
SET &B = AL
SYSCALL XYZ &A B

.
WRITE &A
WRITE &B
.

XYZ: PROC 2 PARM1 PARM2
.
SET &parm1 = Joe
WRITE &parm2
SYSREF &PARM2
WRITE &PARM2
SET &PARM2 = GEORGE

END

/* pass variables to XYZ, omitting & from
/* the variable name referenced on SYSREF
/* result: JOHN (original value)
/* result: GEORGE (changed value)

/* Subprocedure XYZ */

/* change value of &parm1
/* result: JOE
/* indicate PARM2 holds a variable name
/* result: AL
/* change value of SYSREF variable

TERMIN and TERMING statement
Use the TERMIN or TERMING statement to pass control from the CLIST to the
terminal user. You can also use TERMIN or TERMING to define the character
strings, including a null line, that a user enters to return control to the CLIST.
TERMIN is typically preceded by a WRITE statement that requests the expected
response from the terminal user.

The TERMIN or TERMING statement ends a CLIST when you issue a CLIST in
any of the following ways:
v Under ISPF
v In the background
v From a REXX exec (a nested CLIST)

Control returns to the CLIST at the statement after TERMIN or TERMING. When
control returns, &SYSDLM and &SYSDVAL have been set.

SYSREF Statement

Chapter 14. Reference 175

��
label:

TERMIN
TERMING string_1

user_input
,

�

� �

string
user_input

,

��

label
A name the CLIST can reference in a GOTO statement to branch to this
TERMIN statement. label is one-to-31 alphanumeric characters, beginning with
an alphabetic character.

TERMIN | TERMING
transfers control to the terminal and establishes a means for the user to return
control to the CLIST.

TERMIN
A CLIST executed from the TERMIN is not considered nested within the
CLIST that issued the TERMIN statement, which has the following effects:
v Sharing GLOBAL variables - GLOBAL variables cannot be shared across

the TERMIN. Global variable sharing between the CLIST executed from
the TERMIN and the CLIST that issued the TERMIN is not allowed.

v Variable access - variable access across the TERMIN cannot be
communicated through the CLIST variable access routine IKJCT441.

v Checking command output trapping (&SYSOUTTRAP) - IKJCT441 and
IRXEXCOM do not recognize CLISTs or REXX execs on opposing sides of
a TERMIN element.

v CONTROL NOMSG statement - checking the NOMSG setting on
opposing sides of a TERMIN element is not allowed.

TERMING
A CLIST executed from the TERMING is considered nested within the
CLIST that issued the TERMING statement, which has the following
effects:
v Sharing GLOBAL variables - GLOBAL variables can be shared across the

TERMING. Global variable sharing between the CLIST executed from
the TERMING and the CLIST that issued the TERMING is allowed.

v Variable access - variable access across the TERMING can be
communicated through the CLIST variable access routine IKJCT441.

v Checking command output trapping (&SYSOUTTRAP) - IKJCT441 and
IRXEXCOM recognize CLISTs or REXX execs on opposing sides of a
TERMING element.

v CONTROL NOMSG statement - checking the NOMSG setting on
opposing sides of a TERMING element is allowed.

string_1 / string
A character string that the terminal user enters to return control to the CLIST.

TERMIN and TERMING Statement

176 z/OS V2R1.0 TSO/E CLISTs

The &SYSDLM control variable contains a number corresponding to the
position of the string that the user entered (1 for string1, 2 for string2, and so
on).

user_input
Additional input entered by the terminal user. The input is stored in the
&SYSDVAL control variable.

, If you specify a comma in place of a string, the terminal user can enter a null
line (press the Enter key) to return control to the CLIST.

If no operands are specified the terminal user enters a null line to return control to
the CLIST.

WRITE and WRITENR statements
Use the WRITE and WRITENR statements to define text and have it displayed at
the terminal. This text can be used for messages, information, or prompting.

��
label:

WRITE
WRITENR

text ��

label
A name the CLIST can reference in a GOTO statement to branch to this
WRITE/WRITENR statement.label is one-to-31 alphanumeric characters,
beginning with an alphabetic character.

WRITE | WRITENR

WRITE
The cursor moves to a new line after the text is displayed.

WRITENR
The cursor does not move to a new line after the text is displayed.

text
What is displayed at the terminal. You can enter any character string, including
symbolic variables. Unless you enclose an arithmetic expression in an &EVAL
built-in function, the WRITE/WRITENR statement does not perform evaluation
on the expression. The CLIST also displays any comments on the same line as
the WRITE/WRITENR statement.

END command
For information about the END command, see z/OS TSO/E Command Reference.

EXEC command
For a description of the EXEC command, see z/OS TSO/E Command Reference.

TERMIN and TERMING Statement

Chapter 14. Reference 177

EXEC Command

178 z/OS V2R1.0 TSO/E CLISTs

Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1988, 2013 179

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

180 z/OS V2R1.0 TSO/E CLISTs

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 181

182 z/OS V2R1.0 TSO/E CLISTs

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2013 183

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

Notices

184 z/OS V2R1.0 TSO/E CLISTs

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This document describes intended Programming Interfaces that allow the customer
to write programs to obtain the services of z/OS TSO/E.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices

Notices 185

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

186 z/OS V2R1.0 TSO/E CLISTs

Index

Special characters
- (minus sign) 13
/ (division symbol)

as an arithmetic operator 13
// (remainder symbol)

as an arithmetic operator 13
* (multiplication symbol)

as an arithmetic operator 13
** (exponentiation symbol)

as an arithmetic operator 13
> (greater than symbol) 13
>= (greater than or equal to) 13
< (less than symbol) 13
<= (less than or equal to) 13
| (logical OR symbol) 13
&& (logical AND symbol) 13
&DATATYPE built-in function 54
&EVAL built-in function 54
&LASTCC 164
&LASTCC control variable 48
&LENGTH built-in function 55
&MAXCC control variable 50
&NRSTR built-in function 56
&STR built-in function 57
&SUBSTR built-in function 59
&SYS4DATE control variable 34
&SYS4JDATE control variable 34
&SYS4SDATE control variable 34
&SYSABNCD control variable 50
&SYSABNRC control variable 50
&SYSADIRBLK 163
&SYSALLOC 162
&SYSAPPCLU control variable 39
&SYSASIS control variable 45
&SYSBLKSIZE 162
&SYSBLKSTRK 163
&SYSCAPS built-in function 61
&SYSCLENGTH built-in function 56
&SYSCLONE control variable 36

possible uses 36
&SYSCONLIST control variable 44
&SYSCPU control variable 36
&SYSCREATE 162
&SYSCSUBSTR built-in function 60
&SYSDATACLASS 164
&SYSDATE control variable 33
&SYSDFP control variable 37
&SYSDLM control variable 46
&SYSDSN built-in function 61
&SYSDSNAME 161
&SYSDSORG 161
&SYSDSSMS 164
&SYSDVAL control variable 46
&SYSENV control variable 42
&SYSEXDATE 163
&SYSEXTENTS 162
&SYSFLUSH control variable 45
&SYSHSM control variable 37
&SYSICMD control variable 43
&SYSINDEX built-in function 62
&SYSISPF control variable 38

&SYSJDATE control variable 33
&SYSJES control variable 38
&SYSKEYLEN 162
&SYSLC built-in function 61
&SYSLIST control variable 45
&SYSLRACF control variable 38
&SYSLRECL 162
&SYSLTERM control variable 35
&SYSMEMBERS 164
&SYSMGMTCLASS 164
&SYSMSG control variable 45
&SYSMSGLVL1 164
&SYSMSGLVL2 164
&SYSMVS control variable 39
&SYSNAME control variable 39

possible uses 36
&SYSNEST control variable 44
&SYSNODE control variable 40
&SYSNSUB built-in function 64
&SYSONEBYTE built-in function 64
&SYSOPSYS control variable 40
&SYSOUTLINE control variable 47
&SYSOUTTRAP control variable 47
&SYSPASSWORD 163
&SYSPCMD control variable 43
&SYSPLEX control variable 41

possible uses 36
&SYSPREF control variable 35
&SYSPRIMARY 162
&SYSPROC control variable 36
&SYSPROMPT control variable 44
&SYSRACF control variable 40
&SYSRACFA 163
&SYSREASON 164
&SYSRECFM 162
&SYSREFDATE 163
&SYSSCAN control variable 43
&SYSSCMD control variable 43
&SYSSDATE control variable 33
&SYSSECLAB control variable 41
&SYSSECONDS 162
&SYSSMFID control variable 41
&SYSSMS control variable 41
&SYSSRV control variable 36
&SYSSTIME control variable 34
&SYSSTORCLASS 164
&SYSSYMDEF control variable 42
&SYSSYMLIST control variable 44
&SYSTERMID control variable 34
&SYSTIME control variable 34
&SYSTRKSCYL 163
&SYSTSOE control variable 42
&SYSTWOBYTE built-in function 65
&SYSUDIRBLK 163
&SYSUID control variable 35
&SYSUNIT 161
&SYSUNITS 162
&SYSUPDATED 163
&SYSUSED 162
&SYSUSEDPAGES 162
&SYSVOLUME 161

&SYSWTERM control variable 35
+ (plus sign)

as an arithmetic operator 13
++

as an arithmetic operator 13
= (equal sign) 13
¬> (not greater than) 13
¬< (not less than) 13
¬= (not equal sign) 13

A
accessibility 179

contact IBM 179
features 179

action
of an attention routine

attention interrupt 103
canceling 104
protecting the input stack for 104
protecting using the MAIN

operand of CONTROL 104
of an error routine 107

canceling 107
listing instruction causing

error 107
protecting the input stack for 108
protecting using MAIN or

NOFLUSH operand of
CONTROL 108

ALLOCATE CLIST
attention routine 104

allocating CLIST libraries
implicit execution 6

allocation information
retrieving with LISTDSI 50

alphanumeric character
definition of 10, 147

ALTLIB command
example 8
specifying alternative CLIST libraries

with 6
using under ISPF 7

ampersand (&)
in the SET statement 19
meaning of, preceding a variable

name 17
using double ampersands 24

AND
logical operator 13

APPC/MVS
finding name 39

application
CLIST 2
different languages

using CLIST to manage 2
full-screen

writing 136
arithmetic expression

creating from user supplied
input 121

© Copyright IBM Corp. 1988, 2013 187

arithmetic operator 13
ASIS

CONTROL statement operand 45,
150

assigning value
to symbolic variable 18

assistive technologies 179
attention facility for CLIST 106
attention handling CLIST 103

example 106
attention interrupt 103

canceling action for 104
defining action 103
protecting the input stack for 104

attention routine
canceling 104
establishing 103
example 105
protecting the input stack for 104

ATTN statement
creating a CLIST attention routine

with 103
protecting the input stack for 104
syntax 148
using in a subprocedure 80

attribute, data set
default 4
retrieving with LISTDSI 50

availability test
data set 61

B
background

executing a CLIST 5
executing a job from a CLIST

example 128
tailoring a CLIST for background

execution, using &SYSENV 42
base control program

finding level of 39
BCP

finding level of 39
branching within a CLIST

using GOTO statement 83
built-in function 53

&DATATYPE 54
&EVAL 54
&LENGTH 55
&NRSTR 56
&STR 57
&SUBSTR 59
&SYSCAPS 61
&SYSCLENGTH 56
&SYSCSUBSTR 60
&SYSDSN 61
&SYSINDEX 62
&SYSLC 61
&SYSNSUB 64
&SYSONEBYTE 64
&SYSTWOBYTE 65
overview 53
writing your own 53

BY expression
in an iterative DO loop 73

C
CALC CLIST

adding front-end prompting to 121
creating arithmetic expression from

input 121
CALCFTND CLIST 121
capital letter

converting from lowercase
with &SYSCAPS 61
with CONTROL CAPS 150

converting to lowercase
with &SYSLC 61

capitalization in a CLIST 10
CAPS

CONTROL statement operand 150
CASH CLIST 131
category of CLIST

managing applications written in
other languages 2

performing routine tasks 1
self-contained applications 1

character set
double-byte 14
supported in CLIST 11
supported in I/O 97

CLIST
attention facility 106
data set

copying 4
creating 3
default attributes 4
editing 3

debugging 111
error code 113
executing 5
language 1
library 3

allocating using ALTLIB 8
implicit execution 6
installation-defined 3
user-defined 3

naming restrictions 3
reserved words 3
restriction on naming 3
statement

list of 9
writing your own 9

testing 111
CLIST variable

set by LISTDSI
&LASTCC 164
&SYDSORG 161
&SYSADIRBLK 163
&SYSALLOC 162
&SYSBLKSIZE 162
&SYSBLKSTRK 163
&SYSCREATE 162
&SYSDATACLASS 164
&SYSDSNAME 161
&SYSDSSMS 164
&SYSEXDATE 163
&SYSEXTENTS 162
&SYSKEYLEN 162
&SYSLRECL 162
&SYSMEMBERS 164
&SYSMGMTCLASS 164
&SYSMSGLVL1 164

CLIST variable (continued)
set by LISTDSI (continued)

&SYSMSGLVL2 164
&SYSPASSWORD 163
&SYSPRIMARY 162
&SYSRACFA 163
&SYSREASON 164
&SYSRECFM 162
&SYSREFDATE 163
&SYSSECONDS 162
&SYSSTORCLASS 164
&SYSTRKSCYL 163
&SYSUDIRBLK 163
&SYSUNIT 161
&SYSUNITS 162
&SYSUPDATED 163
&SYSUSED 162
&SYSUSEDPAGES 162
&SYSVOLUME 161

CLOSFILE statement
syntax 148
using 98

closing a file 98
code, error

list of 113
coding statements and commands 145
combining variable 22
command

installation-written
distinguishing from CLIST

statement name 58
TSO/E

using in a CLIST 1, 12
commands

naming restrictions 3
restriction on naming 3

comment, in a CLIST 11
comparative operator 13
compound DO sequence

using to create a loop 73
compound SELECT statement

using 172
compound variable 22
COMPRESS CLIST 130
compressing a data set 130
concatenating

CLIST data set to SYSPROC
sample CLIST for 133

CLIST data sets with ALTLIB 6
compound 22
data set for I/O 101
variable 22

continuation symbol 10
CONTROL statement

syntax 149
using for CLIST diagnosis 111
using in a subprocedure 80

control variable 31
controlling

the display of messages 89
uppercase and lowercase

using &SYSLC and &SYSCAPS
control variables 91

using CAPS operand of
CONTROL 91

converting READ statement input
to lowercase character (&SYSLC) 61

188 z/OS V2R1.0 TSO/E CLISTs

converting READ statement input
(continued)

to uppercase character
(&SYSCAPS) 61

copying a CLIST
considerations 4

creating a CLIST
TSO/E EDIT and full-screen editor 3

D
DATA PROMPT-ENDDATA sequence

syntax 152
using to code responses to

prompts 87
data set

allocating using ALTLIB
example 8

attribute
default 4
retrieving with LISTDSI 50

availability
checking with &SYSDSN 61

I/O
performing 97

information about attributes 158
name

determining qualification 126
performing substringing on 126
reading in a CLIST, precautions

for 90
specifying on the EXEC

command 5
DATA-ENDDATA sequence

syntax 151
using to distinguish a command from

a statement 77
DATATYPE 54
date formats, four-digit years 34
date formats, two-digit years 33
date, obtaining the

in Julian form 33, 34
in sortable form 33, 34
in standard form 33, 34

DBCS (double-byte character set) 15, 57
CLIST support 14
combining variables containing DBCS

data 25
converting DBCS data to EBCDIC,

using &SYSONEBYTE 64
converting EBCDIC data to DBCS,

using &SYSTWOBYTE 65
counting DBCS bytes with

&LENGTH 55
counting DBCS characters with

&SYSCLENGTH 56
defining a DBCS string as character

data
using &STR 57

determining if a string contains DBCS
data, using &DATATYPE 54

error code involving DBCS 115
restriction on using DBCS data in

CLIST
general 15
using &SYSINDEX 63
with EDIT command 4

DBCS (double-byte character set)
(continued)

subdividing strings containing DBCS
characters

using &SUBSTR 60
using &SYSCSUBSTR 60

debugging a CLIST 111
defining

non-rescannable character string
(&NRSTR) 56

real value (&STR) 57
substring (&SUBSTR) 59
substring (&SYSCSUBSTR) 60
symbolic variable 18

DELETEDS CLIST 120
delimiter

delimiter for a DBCS string in a
CLIST 14

for CLIST statement 10
for the double-byte character set 14
period

used to distinguish variable from
data 126

determining
an expression's data type

(&DATATYPE) 54
an expression's length

in bytes (&LENGTH) 55
in characters

(&SYSCLENGTH) 56
data set availability (&SYSDSN) 61

DFHSM (Data Facility Hierarchical
Storage Manager)

determining level
using &SYSHSM 37

DFSMS/MVS
availability to CLISTs 41

diagnostic procedure
for a CLIST 111

dialog, ISPF
creating 95
sample 136

displaying
CLIST statement

after substitution, using
&SYSCONLIST 44

before substitution, using
&SYSSYMLIST 44

panel from a CLIST 2
TSO/E commands

after substitution, using
&SYSLIST 45

distinguishing
END statement from END

subcommand
in general 76
using the CONTROL

statement 76
using the DATA-ENDDATA

sequence 77
RACF SELECT subcommand from the

SELECT statement 71
strings that match CLIST statement

names 58
WHEN clause from WHEN

command 70

DO statement
syntax 152

DO-END sequence
in an attention routine 103
using

in the IF-THEN-ELSE
sequence 67

DO-UNTIL-END sequence
using to create a loop 72

DO-WHILE-END sequence
using to create a loop 71

double ampersands
preserving, with &NRSTR 56
use of 24

E
EDIT command

creating a CLIST under 3
executing a CLIST under 5

editing a CLIST
TSO/E EDIT and full-screen editor 3

END command 83
END statement

distinguishing from END command or
subcommand 76

syntax 154
end-of-file processing

example 108
performing 100

entry panel
PROFILE CLIST example 137

EQ (equal sign) 13
error

canceling action for 107
code

list of 113
obtaining in a CLIST 113

condition
end-of-file processing 100

defining action for 107
protecting the input stack from 108
routine

canceling 107
creating 107
end-of-file 100
protecting the input stack for 108
sample CLIST 108

error message
CLIST error routine 117
getting help for 113
viewing at the terminal 112

ERROR statement 107
canceling error action using 107
listing instruction causing error 107
protecting the input stack for 108
syntax 154
using in a subprocedure 80

EVAL 54
evaluation

order of 13
example of a CLIST

list of 119
executing a CLIST

explicitly 5
finding how a CLIST was

executed 43

Index 189

executing a CLIST (continued)
implicitly 5
in general 5

exit
installation

writing a built-in function 53
writing a CLIST 9

routine
establishing 103

EXIT statement
syntax 155
to exit a CLIST specifying a return

code 83
to exit a CLIST without specifying a

return code 83
exiting

CLIST using the END command 83
CLIST using the EXIT statement 83

specifying a return code 83
from a nested CLIST 82

EXPAND CLIST 143
explicit execution of a CLIST 5
expression

arithmetic 13
comparative 13
logical 13
simple 13

F
file input/output

performing 97
closing a file 98
end-of-file processing 100
on a JCL statement 101
on concatenated data set 101
opening a file 97
significance of file name 97
using &SYSDVAL 132
using READDVAL 132

reading a record from a file 98
updating a file 99
writing a record to a file 99

file name
significance of in file I/O 97

FLUSH option of CONTROL
statement 151

flushing the input stack
with &SYSFLUSH 45

footprint (flag)
setting

in a CLIST 105
testing

in an attention handling
CLIST 106

forcing arithmetic evaluation 54
foreground

executing a CLIST 5
executing a job from a CLIST

example 128
tailoring a CLIST for foreground

execution using &SYSENV 42
formatting in a CLIST 10
front-end prompting

adding to the CALC CLIST 121
example 121, 126

full-screen application
example 137
writing 136

fully-qualified data set name
processing

example 126
function

built-in
converting DBCS data to EBCDIC

(&SYSONEBYTE) 64
converting EBCDIC data to DBCS

(&SYSTWOBYTE) 65
converting READ input to

lowercase (&SYSLC) 61
converting READ input to

uppercase (&SYSCAPS) 61
defining a non-rescannable

character string (&NRSTR) 56
defining a real value (&STR) 57
defining a substring

(&SUBSTR) 59
defining a substring

(&SYSCSUBSTR) 60
determining data set availability

(&SYSDSN) 61
limiting symbolic substitution

(&SYSNSUB) 64
locating strings within strings

(&SYSINDEX) 62
overview 53

built-in function
determining an expression's length

in bytes (&LENGTH) 55
determining data type

(&DATATYPE) 54
forcing arithmetic evaluation

(&EVAL) 54
function,

built-in 53
determining an expression's length

in characters
(&SYSCLENGTH) 56

G
GE (greater than or equal to symbol) 13
GETFILE statement

syntax 155
using 98

GLOBAL statement
syntax 156

global variable
establishing 82
example 82
in error routine

protecting using the MAIN
operand of CONTROL 108

GOTO statement
example 83
syntax 157
using in a subprocedure 80

GT (greater than symbol) 13

H
HOUSKPNG CLIST 104

hyphen
as continuation symbol 10

I
I/O

performing file 97
IF-THEN-ELSE sequence

nesting 69
null ELSE format 68
null THEN format 68
standard format 67
syntax 157
using to make a decision 67

implicit execution
allocating a CLIST for 6
benefit of 3
of a CLIST 5

implicitly defining variable 18
input

obtaining from the terminal 85
input stack

protecting
for attention routine 104
for error routine 108
for nested CLISTs 81
using MAIN operand of

CONTROL 104, 108
using NOFLUSH operand of

CONTROL 108
input string

performing substringing on
example 126

installation exit
writing a built-in function 53
writing a CLIST 9

Interactive System Productivity
Facility(ISPF) 2

intercepting
command output from a CLIST

example 133
command output from CLISTs

using &SYSOUTTRAP 47
interface to application

simplifying 131
interpretive language

advantage 1
introduction 1
ISPEXEC command of ISPF

using in a CLIST 136
ISPF (Interactive System Productivity

Facility)
availability

determining with &SYSISPF 38
command, in a CLIST 3, 95
copying a CLIST under ISPF 4
creating and editing a CLIST under

ISPF 3
dialog

example 137
writing 136

executing a CLIST under ISPF 5
panel, using with a CLIST 136
restriction for a CLIST

length of variable 18
trapping TSO/E command output

under ISPF 48

190 z/OS V2R1.0 TSO/E CLISTs

ISPF (Interactive System Productivity
Facility) (continued)

using ALTLIB under 7
iterative DO sequence

using to create a loop 73

J
JCL (job control language)

including in a CLIST
example 126
precaution 12

protecting those containing /* 126
special consideration for performing

I/O on 101
JES

finding level 38
finding name 38
finding network node name 40

job
foreground and background execution

example 128
jobcard information

verifying
example 126

K
keyboard

navigation 179
PF keys 179
shortcut keys 179

keyword parameter
on PROC statement

description 20
example 128
prompting with 85

L
label 10, 147
LASTCC 48
LE (less than or equal to symbol) 13
LENGTH 55
length of a CLIST statement 10
levels of searching

specifying with ALTLIB 6
list of CLIST error codes 113
list of sample CLISTs 119
LISTALC command

managing command output 133
LISTDSI statement

reason code 166
return code 166
sample CLIST 143
syntax 158
using to assign values to variables 50
variables set by 161

LISTER CLIST 120
LOG/LIST parameter

setting 136, 139
logical operator 13
loop, creating

using the compound DO
sequence 73

loop, creating (continued)
using the DO-UNTIL-END

sequence 72
using the DO-WHILE-END

sequence 71
using the iterative DO sequence 73

lowercase letter
converting from uppercase

with &SYSLC 61
converting to uppercase

with &SYSCAPS 61
with CONTROL CAPS 150

preserving
with &SYSASIS 45
with CONTROL NOCAPS 150

LT (less than symbol) 13

M
MAIN operand of CONTROL

using to protect
global variable for attention

routine 104
global variable for error

routine 108
the input stack for attention

routine 104
the input stack for error

routine 108
managing command output

LISTALC command 133
MAXCC 50
message

controlling the display of
with &SYSMSG 45
with CONTROL MSG 89, 150

writing to the terminal
using WRITE and WRITENR 88

minus sign
as an arithmetic operator 13
as continuation symbol (hyphen) 10

MVS/DFP
finding the level installed 37

N
navigation

keyboard 179
NE (not equal sign) 13
nesting

CLIST
example 81
example - the SCRIPTN

CLIST 124
protecting the input stack for

nested CLISTs 45, 81
determining if CLISTs are nested 44
IF-THEN-ELSE Sequence 69
loop 75
nesting CLISTs

limitations with file i/o 97
variable 24

network node name
finding 40

NG (not greater than symbol) 13

NGLOBAL statement
syntax 167
using in a subprocedure 79

NL (not less than symbol) 13
NOCAPS

CONTROL statement operand 150
NOFLUSH operand of CONTROL

using to protect the input stack
for error routine 108

NOFLUSH option of CONTROL
statement 151

Notices 183
NRSTR 56
null

ELSE format 68
line

coding for use with DATA
PROMPT-ENDDATA 87

issuing in an attention
routine 105

THEN format 68
variable

creating 18
numeric value allowed in variable 14

O
obtaining

current date and time 33
input from within a CLIST

using the DATA
PROMPT-ENDDATA
sequence 87

offset of a string within a string
finding, with &SYSINDEX 62

OPENFILE statement 97
syntax 168
using 97

opening a file 97
operator

arithmetic 13
comparative 13
logical 13

option
including in a CLIST

example 129
using TESTDYN 128

OR
in the SELECT statement 172
logical operator 13

order of evaluation 13
organizing related activities 120
OUTPUT CLIST 124
output trapping

&SYSOUTLINE 47
&SYSOUTTRAP 47
example (the SPROC CLIST) 134

P
panel, ISPF

displaying from a CLIST 2, 95
example 137
ISPF command in a CLIST 2
sample

XYZABC10 138

Index 191

panel, ISPF (continued)
sample (continued)

XYZABC20 139
XYZABC30 140
XYZABC40 141

parameter
defining on the PROC statement

keyword parameter 20, 169
positional parameter 19, 169

passing to a CLIST 6
parentheses

as arithmetic operator 13
defining as character data 57

passing control to the terminal
returning control after a TERMIN

statement 95
TERMIN statement 93

percent sign (%)
using in implicit execution of a

CLIST 5
performing file I/O

using &SYSDVAL 132
using READDVAL statement 132

period
used to distinguish variable from data

example 23, 126
PF key definition

setting 136
setting (1-12) 140
setting (13-24) 141

PHONE CLIST 132
plus sign

as an arithmetic operator 13
as continuation symbol 10

position of a string within a string
finding, with &SYSINDEX 62

positional parameter
on PROC statement

description 20
prompting with 85

preserving double ampersands
with &NRSTR 56

PROC statement
assigning value to variable with 19
defining parameter with 19
in a subprocedure 78
prompting with 85
syntax 168

PROFILE CLIST 136, 137
prompting for input 85

coding response to prompt
using DATA PROMPT-ENDDATA

sequence 87
controlling uppercase and

lowercase 91
example 121, 126
methods 85
permitting from a CLIST

using &SYSPROMPT 44
precaution when reading

fully-qualified data set name 90
returning control after a TERMIN

statement 94
significance of &SYSDLM control

variable after a TERMIN
statement 94

prompting for input (continued)
storing input in &SYSDVAL control

variable 92
using statement

PROC 85
READ 89
READDVAL 92
TERMIN 93
WRITE 88
WRITENR 88

protecting
input stack

for attention routine 104
for error routine 108
for nested CLISTs 81
using MAIN operand of

CONTROL 104, 108
using NOFLUSH operand of

CONTROL 108
JCL statement containing /*

example 126
PUTFILE statement

syntax 170
using 99

R
RACF availability

determining with &SYSRACF 40
READ statement

assigning value to variable with 19
defining variable with 19
syntax 170
using for prompting 89

READDVAL statement
syntax 170
using when performing file I/O 132

reading a record from a file 98
reading input from the terminal

precaution when reading
fully-qualified data set name 90

storing input in &SYSDVAL control
variable 92

to obtain value for PROC statement
keyword 91

using the READ statement
controlling uppercase and

lowercase 91
description 89

using the READDVAL statement 92
using the TERMIN statement

description 93
returning control after a TERMIN

statement 95
significance of &SYSDLM control

variable 94
using the TERMING statement

returning control after a TERMING
statement 95

significance of &SYSDLM control
variable 94

reading input from within the CLIST
using the DATA PROMPT-ENDDATA

sequence
example 87

reason code
set by LISTDSI statement 166

record
copying directly into variable using

&SYSDVAL 132
performing file I/O consideration

concatenated data set 101
general 97
JCL statement 101

reading from a file 98
updating in a file 99
writing to a file 99

retroactive variable
defining in a subprocedure

using SYSREF 79
return code

from subprocedure 78
obtaining from a CLIST

statement 113
set by LISTDSI statement 166

RETURN statement
in a subprocedure 78
syntax 171

routine
attention 103
error 107

routine task
performing with CLIST 1
simplifying 120

RUNPRICE CLIST 127

S
sample CLIST 132

adding
front-end prompting to the CALC

CLIST 121
allowing

background execution of a
CLIST 128

foreground execution of a
CLIST 128

attention routine 105
background execution of a job 128
concatenating

data set to SYSPROC 134
creating

arithmetic expression from
input 121

VIO data set 130
distinguishing

operator from an operand 129
variable from data 126

error routine 108
foreground execution of a job 128
full-screen application

writing 137
including

JCL statement 126
option 129
TSO/E command 120

initializing
system service 122

interface to application
simplifying 131

invoking
nested CLISTs to perform

subtasks 124
system service 122

192 z/OS V2R1.0 TSO/E CLISTs

sample CLIST (continued)
job card information

verifying 126
keyword

using to run foreground/
background job 128

option
including 129

organizing
related activities 120

protecting
JCL statement containing /* 126
leading zeros 126

READDVAL statement
using when performing file

I/O 133
routine task

simplifying 120
simplifying

interface to application 131
routine task 120
system-related task 130

substringing
avoiding when performing file

I/O 133
performing on input string 126

system-related task
simplifying 130

TSO/E command
including 120

using
keyword to run

foreground/background job 128
verifying

job card information 126
VIO data set

creating 130
writing

full-screen application 137
saving command output in a CLIST

example 133
SCRIPTD CLIST 124
SCRIPTDS CLIST 122
SCRIPTNEST CLIST 124
SELECT statement

distinguishing from the RACF
SELECT subcommand 71

syntax 171
using to make a selection 69

selection menu
relevance to PROFILE CLIST 136

self-contained application 2
sending comments to IBM xiii
Session Manager

determining availability, with
&SYSPROC 36

reformatting a screen with 35
SET statement

assigning value to variable with 18
defining variable with 18
syntax 173

setting
LOG/LIST parameter 136, 139
PF key definition 136
PF key definition (1-12) 140
PF key definition (13-24) 141
terminal characteristics 136, 138

shift-in character, for DBCS string 15
shift-out character, for DBCS string 15
shortcut keys 179
simple SELECT statement

syntax 172
simplifying

interface to application 131
process of invoking CASHFLOW 131
routine task 120
system-related task 130

SPROC CLIST 133
standard format for IF-THEN-ELSE

sequence 67
STR 57
string

performing substringing on input
example 126

structuring a CLIST 67
branching within a CLIST

using GOTO statement 83
consideration 67
exiting

CLIST using the END
command 83

CLIST using the EXIT
statement 83

from a nested CLIST 82
global symbolic variables

establishing 82
example 82

IF-THEN-ELSE sequence
null THEN format 68

nesting CLISTs 81
example 81

subprocedure 77
using a DO-group

consideration 71
distinguishing END statement

from subcommand 76
the DO-END sequence 67

using SELECT statement
distinguishing a WHEN clause

from a command 70
distinguishing END statement

from subcommand 76
using the compound DO

sequence 73
using the DO statement

nesting DO-loops 75
using the DO-UNTIL-END

sequence 72
using the DO-WHILE-END

sequence 71
example 71

using the IF-THEN-ELSE sequence
condition 67
nesting IF-THEN-ELSE 69
null ELSE format 68
null THEN format 68
standard format 67

using the iterative DO sequence 73
using the SELECT statement 69

with a test expression 70
without a test expression 69

subcommand
environment

effect on nested CLISTs 82

subcommand (continued)
of the EDIT command

executing a CLIST with 5
using to modify a CLIST 4

of the TEST command
executing a CLIST with 5

SUBMIT * command
example 126

SUBMITDS CLIST 126
SUBMITFQ CLIST 126
subprocedure

calling, using SYSCALL 77
defining with the PROC

statement 78
passing control to 77
returning information from

retroactive (SYSREF) variable 79
return code 78

sharing variables among
using the NGLOBAL

statement 79
using SYSREF in 79

substitution, symbolic 17
SUBSTR 59
substringing

avoiding when performing file
I/O 132

on input string
example 126

subtask
performing using nested CLISTs 124

OUTPUT 124
SCRIPTD 124

Summary of changes xv
symbol

continuation 10
symbolic substitution

limiting
with &NRSTR 56
with &SYSCAN 43
with &SYSNSUB 64

of nested variables 25
of variable 17

symbolic variable
assigning value to 17
naming 17
value of 18

syntax
ATTN statement 148
CLOSFILE statement 148
CONTROL statement 149
DATA PROMPT-ENDDATA

sequence 152
DATA-ENDDATA sequence 151
DO statement 152
END statement 154
ERROR statement 154
EXIT statement 155
GETFILE statement 155
GLOBAL statement 156
GOTO statement 157
IF-THEN-ELSE sequence 157
LISTDSI statement 158
NGLOBAL statement 167
OPENFILE statement 168
PROC statement 168
PUTFILE statement 170

Index 193

syntax (continued)
READ statement 170
READDVAL statement 170
RETURN statement 171
SELECT statement 171
SET statement 173
SYSCALL statement 174
SYSREF statement 174
TERMIN statement 175
TERMING statement 175
WRITE statement 177
WRITENR statement 177

syntax diagram 145
syntax rule 9

CLIST
capitalization 10
comment 11
delimiter 9
formatting 10
label 10
length of a CLIST statement 10

continuation symbol 10
SYS4DATE 34
SYS4JDATE 34
SYS4SDATE 34
SYSABNCD 50
SYSABNRC 50
SYSAPPCLU 39
SYSASIS 45
SYSCALL statement

syntax 174
using to call a subprocedure 77

SYSCAPS 61
SYSCLENGTH 56
SYSCLONE 36
SYSCONLIST 44
SYSCPU 36
SYSCSUBSTR 60
SYSDATE 33
SYSDFP 37
SYSDLM 46
SYSDSN 61
SYSDVAL 46
SYSENV 42
SYSFLUSH 45
SYSHSM 37
SYSICMD 43
SYSINDEX 62
SYSISPF 38
SYSJDATE 33
SYSJES 38
SYSLC 61
SYSLIST 45
SYSLRACF 38
SYSLTERM 35
SYSMSG 45
SYSMVS 39
SYSNAME 39
SYSNEST 44
SYSNODE 40
SYSNSUB 64
SYSONEBYTE 64
SYSOPSYS 40
SYSOUTLINE 47
SYSOUTTRAP 47
SYSPCMD 43
SYSPLEX 41

sysplex name
finding 41

SYSPREF 35
SYSPROC 36
SYSPROMPT 44
SYSRACF 40
SYSREF statement

in a subprocedure 79
syntax 174

SYSSCAN 43
SYSSCMD 43
SYSSDATE 33
SYSSECLAB 41
SYSSMFID 41
SYSSMS 41
SYSSRV 36
SYSSTIME 34
SYSSYMDEF 42
SYSSYMLIST 44
System Management Facilities

SMF ID 41
system name

finding 39
system service

initializing and invoking
example 122

system-related task
simplifying 130

SYSTERMID 34
SYSTIME 34
SYSTSOE 42
SYSTWOBYTE 65
SYSUID 35
SYSWTERM 35

T
TERMIN statement

passing control to the terminal 93
syntax 175

terminal
prompting for input from the 85
receiving response from the 89
writing a message to 88

terminal characteristics
setting 136, 138
variables that describe 34

TERMING statement
syntax 175

TEST command
executing a CLIST under 5

test expression
using the SELECT statement with

a 69
using the SELECT statement without

a 70
TESTDYN CLIST 128
testing a CLIST 111
time of day

obtaining the 34
TO expression

in an iterative DO loop 73
trademarks 185
translating READ statement input

to lowercase character (&SYSLC) 61
to uppercase character

(&SYSCAPS) 61

trapping TSO/E command output
&SYSOUTLINE 47
&SYSOUTTRAP 47
example (the SPROC CLIST) 134

TSO/E
finding level installed 42
finding MVS symbolic name 42
finding MVS system symbol 36
finding MVS/DFP level 37
finding security level 41
finding terminal ID 34

TSO/E commands
prompting for input with 86
trapping output from

description 47
example 134

using in a CLIST 2, 12
TSO/E service facility

using to run a CLIST from another
language 6

TSOEXEC command 50

U
understanding CLIST error code 113
updating a file 99
uppercase letter

converting from lowercase
with &SYSCAPS 61
with CONTROL CAPS 150

converting to lowercase
with &SYSLC 61

user interface
ISPF 179
TSO/E 179

using keyword names 27
using keyword names as labels within a

CLIST 27
using keyword names as variables within

a CLIST 27

V
variable

assigning value
description 17

combining
containing DBCS data set 25
symbolic and character strings 23

control
&LASTCC 49
&MAXCC 50
&SYS4DATE 34
&SYS4SDATE 34
&SYSAPPCLU 39
&SYSASIS 45
&SYSCLONE 36
&SYSCONLIST 44
&SYSCPU 36
&SYSDATE 33
&SYSDFP 37
&SYSDLM 46
&SYSDVAL 46
&SYSENV 42
&SYSFLUSH 45
&SYSICMD 43

194 z/OS V2R1.0 TSO/E CLISTs

variable (continued)
control (continued)

&SYSISPF 38
&SYSJDATE 33
&SYSJES 38
&SYSLIST 45
&SYSLRACF 38
&SYSLTERM 35
&SYSMSG 45
&SYSMVS 39
&SYSNAME 39
&SYSNEST 44
&SYSNODE 40
&SYSOPSYS 40
&SYSOUTLINE 47
&SYSOUTTRAP 47
&SYSPCMD 43
&SYSPLEX 41
&SYSPREF 35
&SYSPROC 36
&SYSPROMPT 44
&SYSRACF 40
&SYSSCAN 43
&SYSSCMD 43
&SYSSDATE 33
&SYSSECLAB 41
&SYSSMFID 41
&SYSSMS 41
&SYSSRV 36
&SYSSTIME 34
&SYSSYMDEF 42
&SYSSYMLIST 44
&SYSTERMID 34
&SYSTIME 34
&SYSTSOE 42
&SYSUID 35
&SYSWTERM 35
consideration for &SYSDATE and

&SYSSDATE 33, 34
describing terminal

characteristics 34
description 29
for TSO/E command output

trapping 47
i&SYS4JDATE 34
in an iterative DO loop 73
modifiable 31
non-modifiable 31
related to input 46
related to return and reason

codes 48
related to the CLIST 42
related to the CLIST CONTROL

statement 44
related to the current date and

time 33
related to the system 36
related to the user 35
related to TSOEXEC command 50
relationship between &SYSPCMD

and &SYSSCMD 43
defining symbolic variable 18
GLOBAL 82
LISTDSI statement 161
naming

description 17
on PROC statement 18

variable (continued)
nesting 24
NGLOBAL 79
related to the TSOEXEC command

&SYSABNCD 50
&SYSABNRC 50

set by LISTDSI statement 161
subprocedure variable 80
symbolic substitution of 17, 25
using double ampersands with 24
value of 18

VIO data set
creating 130

W
WHEN clause of SELECT statement

distinguishing from the WHEN
command 70

WRITE statement
prompting with 19, 85
syntax 177

WRITENR statement
prompting with 85
syntax 177

writing
full-screen application 136
message to the terminal 88
record to a file 99

Y
year formats, four-digit years 34
year formats, two-digit years 33

Z
z/OS name, version, and so on

finding 40

Index 195

196 z/OS V2R1.0 TSO/E CLISTs

����

Product Number: 5650-ZOS

Printed in USA

SA32-0978-00

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How this document is organized
	Where to find more information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introduction
	Features of the CLIST Language
	Categories of CLISTs
	CLISTs that perform routine tasks
	CLISTs that are structured applications
	CLISTs that manage applications written in other languages

	Chapter 2. Creating, editing, and executing CLISTs
	CLIST data sets and libraries
	Creating and editing CLIST data sets
	CLIST data set attributes
	Considerations for copying CLIST data sets

	Executing CLISTs
	Passing parameters to CLISTs

	Allocating CLIST libraries for implicit execution
	Specifying alternative CLIST libraries with the ALTLIB command
	Using the ALTLIB command
	Using ALTLIB with ISPF
	Stacking ALTLIB requests

	Examples of the ALTLIB command

	Chapter 3. Writing CLISTs - Syntax and conventions
	Overview of CLIST statements
	Syntax rules
	Delimiters
	Continuation symbols
	Capitalization
	Formatting
	Length
	Labels
	Comments
	Characters supported in CLISTs

	TSO/E commands and JCL statements
	TSO/E commands
	JCL statements

	Operators and expressions
	Order of evaluations
	Valid numeric ranges

	The double-byte character set (DBCS)
	DBCS delimiters
	DBCS restrictions

	Chapter 4. Using symbolic variables
	What is a symbolic variable?
	Valid names of variables
	Valid values of variables

	Defining symbolic variables and assigning values to them
	Using the SET statement
	Using the READ statement
	Using the PROC statement
	Passing parameters to a PROC statement
	Using PROC with positional parameters
	Using PROC with keyword parameters
	Keywords with values
	Keywords without values
	Using PROC with both positional and keyword parameters

	Examples

	More advanced uses of variables
	Combining symbolic variables
	Using a variable to preserve leading spaces in a CLIST
	Increasing the amount of storage available for variables
	Nesting symbolic variables
	Combining nested variables with character strings
	Substitution of nested variables
	Combining variables containing DBCS data

	Chapter 5. Using keyword names
	Using keyword names as variables or labels within a CLIST

	Chapter 6. Using control variables
	Overview of using control variables
	Getting the current date and time
	&SYSDATE, &SYSSDATE, and &SYSJDATE
	&SYS4DATE, &SYS4SDATE, and &SYS4JDATE
	&SYSTIME and &SYSSTIME

	Getting terminal characteristics
	&SYSTERMID
	&SYSLTERM and &SYSWTERM

	Getting information about the user
	&SYSUID
	&SYSPREF
	&SYSPROC

	Getting information about the system
	&SYSCLONE
	&SYSCPU and &SYSSRV
	&SYSDFP
	&SYSHSM
	&SYSISPF
	&SYSJES
	&SYSLRACF
	&SYSAPPCLU
	&SYSMVS
	&SYSNAME
	&SYSNODE
	&SYSOPSYS
	&SYSRACF
	&SYSPLEX
	&SYSSECLAB
	&SYSSMS
	&SYSSMFID
	&SYSSYMDEF
	&SYSTSOE

	Getting information about the CLIST
	&SYSENV
	&SYSSCAN
	&SYSICMD
	&SYSPCMD
	&SYSSCMD
	Relationship between &SYSPCMD and &SYSSCMD
	&SYSNEST

	Setting options of the CLIST CONTROL statement
	&SYSPROMPT
	&SYSSYMLIST
	&SYSCONLIST
	&SYSLIST
	&SYSASIS
	&SYSMSG
	&SYSFLUSH

	Getting information about user input
	&SYSDLM
	&SYSDVAL

	Trapping TSO/E command output
	&SYSOUTTRAP
	&SYSOUTLINE
	Considerations for using &SYSOUTTRAP and &SYSOUTLINE

	Getting return codes and reason codes
	&LASTCC
	&MAXCC

	Getting results of the TSOEXEC command
	Getting data set attributes
	The LISTDSI statement

	Chapter 7. Using built-in functions
	Determining the data type of an expression - &DATATYPE
	Forcing arithmetic evaluations - &EVAL
	Determining an expression's length in bytes - &LENGTH
	Suppressing arithmetic evaluations
	Including leading and trailing blanks and leading zeros

	Determining an expression's length in characters - &SYSCLENGTH
	Preserving double ampersands - &NRSTR
	Double ampersands
	One level of symbolic substitution
	Records containing JCL statements
	Temporary data set names
	Symbolic parameters

	Defining character data - &STR
	Using &STR with &SYSDATE or &SYSSDATE
	Using &STR with leading and trailing blanks
	Using &STR with strings that match CLIST statement names
	Using &STR when supplying input using SYSIN JCL statements

	Defining a substring - &SUBSTR
	Defining a substring - &SYSCSUBSTR
	Converting character strings to uppercase characters - &SYSCAPS
	Converting character strings to lowercase characters - &SYSLC
	Determining data set availability - &SYSDSN
	Locating one character string within another - &SYSINDEX
	Using &SYSINDEX with DBCS strings

	Limiting the level of symbolic substitution - &SYSNSUB
	Converting DBCS data to EBCDIC - &SYSONEBYTE
	Converting EBCDIC data to DBCS - &SYSTWOBYTE

	Chapter 8. Structuring CLISTs
	Making selections
	The IF-THEN-ELSE sequence
	The standard format
	The Null ELSE format
	The Null THEN format

	Nesting IF-THEN-ELSE sequences
	The SELECT statement
	Using SELECT without a test expression (simple SELECT)
	Using SELECT with a test expression (compound SELECT)
	Distinguishing WHEN clauses from WHEN commands
	Distinguishing the SELECT statement from the RACF SELECT subcommand

	Loops
	The DO-WHILE-END sequence
	The DO-UNTIL-END sequence
	The Iterative DO sequence
	Compound DO sequences
	Nesting loops
	Distinguishing END statements from END commands or subcommands
	Using the CONTROL statement
	Using the DATA-ENDDATA sequence

	Subprocedures
	Calling a subprocedure
	Returning information from a subprocedure
	Using the RETURN CODE statement
	Using the SYSREF statement

	Sharing variables among subprocedures
	Using the NGLOBAL statement

	Restricting variables to a subprocedure
	Considerations for using other statements in subprocedures
	Using ATTN and ERROR statements in subprocedures
	Using CONTROL statements in subprocedures
	Using GOTO statements in subprocedures

	Nesting CLISTs
	Protecting the input stack from errors or attention interrupts
	Global variables
	Exiting from a nested CLIST
	Using the END command
	Using the EXIT statement

	GOTO statements

	Chapter 9. Communicating with the terminal user
	Prompting the user for input
	Prompting with the PROC statement
	Prompting with the WRITE and WRITENR statements
	Prompting with TSO/E commands
	Coding responses to prompts - the DATA PROMPT-ENDDATA sequence

	Writing messages to the terminal
	Using the WRITE and WRITENR statements
	Controlling the display of informational messages

	Receiving responses from the terminal
	Using the READ statement
	Controlling uppercase and lowercase for READ statement input

	Using the READDVAL statement

	Passing control to the terminal
	Returning control after a TERMIN or TERMING statement
	Entering input after a TERMIN or TERMING statement

	Using ISPF panels
	ISPF restrictions
	Sample CLIST with ISPF panels

	Chapter 10. Performing file I/O
	Characters supported in I/O
	Opening a file
	Closing a file
	Reading a record from a file
	Writing a record to a file
	Updating a file
	End-of-File processing
	Special considerations for performing I/O

	Chapter 11. Writing ATTN and ERROR routines
	Writing attention routines
	Canceling attention routines
	Protecting the input stack from attention interrupts
	Sample CLIST with an attention routine
	Subprocedures and attention routines
	CLIST attention facility

	Writing error routines
	Canceling error routines
	Protecting the input stack from errors
	Sample CLIST with an error routine
	Subprocedures and error routines

	Chapter 12. Testing and debugging CLISTs
	Using diagnostic options of the CONTROL statement
	Messages in diagnostic output
	How to make diagnostic output optional in a CLIST

	Getting help for CLIST messages
	Obtaining CLIST error codes

	Chapter 13. Sample CLISTs
	Including TSO/E Commands - the LISTER CLIST
	Simplifying routine tasks - the DELETEDS CLIST
	Creating arithmetic expressions from user-supplied input - the CALC CLIST
	Using front-end prompting - the CALCFTND CLIST
	Initializing and invoking system services - the SCRIPTDS CLIST
	Invoking CLISTs to perform subtasks - the SCRIPTN CLIST
	Including JCL statements - the SUBMITDS CLIST
	Analyzing input strings with &SUBSTR - the SUBMITFQ CLIST
	Allowing foreground and background execution of programs - the RUNPRICE CLIST
	Including options - the TESTDYN CLIST
	Simplifying system-related tasks - the COMPRESS CLIST
	Simplifying interfaces to applications - the CASH CLIST
	Using &SYSDVAL when performing I/O - the PHONE CLIST
	Allocating data sets to SYSPROC - the SPROC CLIST
	Writing full-screen applications using ISPF dialogs - the PROFILE CLIST
	Allocating a data set with LISTDSI information - the EXPAND CLIST

	Chapter 14. Reference
	How to read the CLIST statement syntax
	ATTN statement
	CLOSFILE statement
	CONTROL statement
	DATA-ENDDATA sequence
	DATA PROMPT-ENDDATA sequence
	DO statement
	END statement
	ERROR statement
	EXIT statement
	GETFILE statement
	GLOBAL statement
	GOTO statement
	IF-THEN-ELSE sequence
	LISTDSI statement
	CLIST variables set by LISTDSI
	Return codes
	Reason codes

	NGLOBAL statement
	OPENFILE statement
	PROC statement
	PUTFILE statement
	READ statement
	READDVAL statement
	RETURN statement
	SELECT statement
	Simple SELECT
	Compound SELECT

	SET statement
	SYSCALL statement
	SYSREF statement
	TERMIN and TERMING statement
	WRITE and WRITENR statements
	END command
	EXEC command

	Appendix. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

