
z/OS

TSO/E REXX User's Guide
Version 2 Release 1

SA32-0982-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 205.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Who should use this document xi
How this document is organized xi

Terminology xi
Purpose of each chapter xii
Examples xii
Exercises xii

Where to find more information xii

How to send your comments to IBM xiii
If you have a technical problem xiii

z/OS Version 2 Release 1 summary of
changes xv

Part 1. Learning the REXX Language 1

Chapter 1. Introduction 3
What is REXX? 3
Features of REXX 3

Ease of use 3
Free format 3
Convenient built-in functions 3
Debugging capabilities 4
Interpreted language. 4
Extensive parsing capabilities 4

Components of REXX 4
The SAA Solution. 4
Benefits of Using a Compiler 5

Improved Performance 5
Reduced System Load 5
Protection for Source Code and Programs. . . . 5
Improved Productivity and Quality 6
Portability of Compiled Programs 6
SAA Compliance Checking 6

Chapter 2. Writing and Running a REXX
Exec 7
Before You Begin 7
What is a REXX Exec? 7
Syntax of REXX Instructions 8

The Character Type of REXX Instructions 8
The Format of REXX Instructions 9
Types of REXX Instructions 11

Execs Using Double-Byte Character Set Names . . 13
Running an Exec 15

Running an Exec Explicitly 15
Running an Exec Implicitly 16

Interpreting Error Messages 18

Preventing Translation to Uppercase 19
From Within an Exec 19
As Input to an Exec 19

Passing Information to an Exec 20
Using Terminal Interaction 20
Specifying Values when Invoking an Exec . . . 21
Preventing Translation of Input to Uppercase . . 22
Passing Arguments 23

Chapter 3. Using Variables and
Expressions 25
Using Variables 25

Variable Names 25
Variable Values 26
Exercises - Identifying Valid Variable Names . . 27

Using Expressions 27
Arithmetic Operators 27
Comparison Operators 30
Logical (Boolean) Operators 32
Concatenation Operators 34
Priority of Operators 35

Tracing Expressions with the TRACE Instruction . . 36
Tracing Operations 36
Tracing Results 37

Chapter 4. Controlling the Flow Within
an Exec 39
Using Conditional Instructions 39

IF/THEN/ELSE Instructions 39
Nested IF/THEN/ELSE Instructions 41
SELECT/WHEN/OTHERWISE/END Instruction 42

Using Looping Instructions 45
Repetitive Loops. 45
Conditional Loops 49
Combining Types of Loops 52
Nested DO Loops 53

Using Interrupt Instructions 54
EXIT Instruction 55
CALL/RETURN Instructions 55
SIGNAL Instruction 56

Chapter 5. Using Functions 59
What is a Function? 59

Example of a Function. 60
Built-In Functions 60

Arithmetic Functions 61
Comparison Functions. 61
Conversion Functions 61
Formatting Functions 62
String Manipulating Functions 62
Miscellaneous Functions 63
Testing Input with Built-In Functions 64

© Copyright IBM Corp. 1988, 2013 iii

Chapter 6. Writing Subroutines and
Functions 67
What are Subroutines and Functions?. 67
When to Write Subroutines vs. Functions 68
Writing a Subroutine 68

Passing Information to a Subroutine 69
Receiving Information from a Subroutine . . . 73

Writing a Function 75
Passing Information to a Function 76
Receiving Information from a Function 80

Summary of Subroutines and Functions 81

Chapter 7. Manipulating Data 83
Using Compound Variables and Stems 83

What is a Compound Variable? 83
Using Stems 84

Parsing Data 85
Instructions that Parse 85
Ways of Parsing 87
Parsing Multiple Strings as Arguments 90

Part 2. Using REXX 93

Chapter 8. Entering Commands from
an Exec 95
Types of Commands 95
Issuing TSO/E Commands from an Exec 95

Using Quotations Marks in Commands 95
Using Variables in Commands 97
Causing Interactive Commands to Prompt the
User 97
Invoking Another Exec as a Command 98

Issuing Other Types of Commands from an Exec . . 99
What is a Host Command Environment? . . . 99
Examples Using APPC/MVS Services 103
Changing the Host Command Environment . . 104

Chapter 9. Diagnosing Problems
Within an Exec. 109
Debugging Execs 109

Tracing Commands with the TRACE Instruction 109
Using REXX Special Variables RC and SIGL . . 110
Tracing with the Interactive Debug Facility . . 111

Chapter 10. Using TSO/E External
Functions 117
TSO/E External Functions 117

Using the GETMSG Function 117
Using the LISTDSI Function 118
Using the MSG Function 120
Using the MVSVAR Function 120
Using the OUTTRAP Function 121
Using the PROMPT Function 122
Using the SETLANG Function. 122
Using the STORAGE Function. 123
Using the SYSCPUS Function 123
Using the SYSDSN Function 124
Using the SYSVAR Function 125

Additional Examples 128
Function Packages. 131

Search Order for Functions 132

Chapter 11. Storing Information in the
Data Stack 133
What is a Data Stack? 133
Manipulating the Data Stack 134

Adding Elements to the Data Stack 134
Removing Elements from the Stack 134
Determining the Number of Elements on the
Stack 135

Processing of the Data Stack 136
Using the Data Stack 137

Passing Information Between a Routine and the
Main Exec 138
Passing Information to Interactive Commands 140
Issuing Subcommands of TSO/E Commands 140

Creating a Buffer on the Data Stack 140
Creating a Buffer with the MAKEBUF
Command 141
Dropping a Buffer with the DROPBUF
Command 142
Finding the Number of Buffers with the QBUF
Command 142
Finding the Number of Elements In a Buffer 143

Protecting Elements in the Data Stack 145
Creating a New Data Stack with the
NEWSTACK Command 146
Deleting a Private Stack with the DELSTACK
Command 147
Finding the Number of Stacks 147

Chapter 12. Processing Data and
Input/Output Processing 151
Types of Processing 151
Dynamic Modification of a Single REXX Expression 151

Using the INTERPRET Instruction 151
Using EXECIO to Process Information to and from
Data Sets 152

When to Use the EXECIO Command 152
Using the EXECIO Command 152
Return Codes from EXECIO 156
When to Use the EXECIO Command 157

Chapter 13. Using REXX in TSO/E and
Other MVS Address Spaces 169
Services Available to REXX Execs. 169
Running Execs in a TSO/E Address Space. . . . 171

Running an Exec in the Foreground 171
Running an Exec in the Background. 174

Running Execs in a Non-TSO/E Address Space 175
Using an Exec Processing Routine to Invoke an
Exec from a Program 175
Using IRXJCL to Run an Exec in MVS Batch . . 175
Using the Data Stack in TSO/E Background and
MVS Batch 177

Summary of TSO/E Background and MVS Batch 177
CAPABILITIES 177
REQUIREMENTS 178

iv z/OS V2R1.0 TSO/E REXX User's Guide

Defining language processor environments . . . 178
What is a language processor environment? . . 178
Customizing a language processor environment 179

Part 3. Appendixes 181

Appendix A. Allocating Data Sets . . . 183
What is Allocation? 183
Where to Begin 183
Preliminary Checklist. 184
Checklist #1: Creating and Editing a Data Set
Using ISPF/PDF 185
Checklist #2: Creating a Data Set with the
ALLOCATE Command 188
Checklist #3: Writing an Exec that Sets up
Allocation to SYSEXEC 189
Checklist #4: Writing an Exec that Sets up
Allocation to SYSPROC 190

Appendix B. Specifying Alternate
Libraries with the ALTLIB Command . 193
Specifying Alternative Exec Libraries with the
ALTLIB Command 193

Using the ALTLIB Command 193
Stacking ALTLIB Requests 194
Using ALTLIB with ISPF 194

Examples of the ALTLIB Command 194

Appendix C. Comparisons Between
CLIST and REXX 195
Accessing System Information 195
Controlling Program Flow 196
Debugging 197
Execution. 198
Interactive Communication 198
Passing Information 198
Performing File I/O 199
Syntax. 199
Using Functions 199
Using Variables. 200

Appendix D. Accessibility 201
Accessibility features 201
Using assistive technologies 201
Keyboard navigation of the user interface 201
Dotted decimal syntax diagrams 201

Notices 205
Policy for unsupported hardware. 206
Minimum supported hardware 207
Programming Interface Information 207
Trademarks 207

Index 209

Contents v

vi z/OS V2R1.0 TSO/E REXX User's Guide

Figures

1. EXECIO Example 1 162
2. EXECIO Example 2 162
3. EXECIO Example 3 163
4. EXECIO Example 4 163
5. EXECIO Example 5 164

6. EXECIO Example 5 (continued) 165
7. EXECIO Example 6 166
8. EXECIO Example 6 (continued) 167
9. EXECIO Example 6 (continued) 168

© Copyright IBM Corp. 1988, 2013 vii

viii z/OS V2R1.0 TSO/E REXX User's Guide

Tables

1. Language Codes for SETLANG Function That
Replace the Function Call 123

© Copyright IBM Corp. 1988, 2013 ix

x z/OS V2R1.0 TSO/E REXX User's Guide

About this document

This book describes how to use the TSO/E Procedures Language MVS/REXX
processor (called the language processor) and the REstructured eXtended eXecutor
(REXX) language. Together, the language processor and the REXX language are
known as TSO/E REXX. TSO/E REXX is the implementation of the Systems
Application Architecture® (SAA) Procedures Language on the MVS™ system.

Who should use this document
This book is intended for anyone who wants to learn how to write REXX
programs. More specifically, the audience is programmers who may range from the
inexperienced to those with extensive programming experience, particularly in
writing CLISTs for TSO/E. Because of the broad range of experience in readers,
this book is divided into two parts.
v Part 1, “Learning the REXX Language,” on page 1 is for inexperienced

programmers who are somewhat familiar with TSO/E commands and have
used the Interactive System Productivity Facility/Program Development Facility
(ISPF/PDF) in TSO/E. Programmers unfamiliar with TSO/E should first read
the z/OS TSO/E Primer. Experienced programmers new to REXX can also read
this section to learn the basics of the REXX language.

v Part 2, “Using REXX,” on page 93 is for programmers already familiar with the
REXX language and experienced with the workings of TSO/E. It describes more
complex aspects of the REXX language and how they work in TSO/E as well as
in other MVS address spaces.

If you are a new programmer, you might want to concentrate on the first part. If
you are an experienced TSO/E programmer, you might want to read the first part
and concentrate on the second part.

How this document is organized
In addition to the two parts described in the preceding paragraphs, there are three
appendixes at the end of the book.
v Appendix A, “Allocating Data Sets,” on page 183 contains checklists for the tasks

of creating and editing a data set and for allocating a data set to a system file.
v Appendix B, “Specifying Alternate Libraries with the ALTLIB Command,” on

page 193 describes using the ALTLIB command.
v Appendix C, “Comparisons Between CLIST and REXX,” on page 195 contains

tables that compare the CLIST language with the REXX language.

Terminology
Throughout this book a REXX program is called an exec to differentiate it from
other programs you might write, such as CLISTs. The command to run an exec in
TSO/E is the EXEC command. To avoid confusion between the two, this book uses
lowercase and uppercase to distinguish between the two uses of the term "exec".
References to the REXX program appear as exec and references to the TSO/E
command appear as EXEC.

© Copyright IBM Corp. 1988, 2013 xi

Purpose of each chapter
At the beginning of each chapter is a statement about the purpose of the chapter.
Following that are headings and page numbers where you can find specific
information.

Examples
Throughout the book, you will find examples that you can try as you read. If the
example is a REXX keyword instruction, the REXX keyword is in uppercase.
Information that you can provide is in lowercase. The following REXX keyword
instruction contains the REXX keyword SAY, which is fixed, and a phrase, which
can vary.
SAY ’This is an example of an instruction.’

Similarly, if the example is a TSO/E command, the command name and keyword
operands, which are fixed, are in uppercase. Information that can vary, such as a
data set name, is in lowercase. The following ALLOCATE command and its
operands are in uppercase and the data set and file name are in lowercase.
"ALLOCATE DATASET(rexx.exec) FILE(sysexec) SHR REUSE"

This use of uppercase and lowercase is intended to make a distinction between
words that are fixed and words that can vary. It does not mean that you must type
REXX instructions and TSO/E commands with certain words in uppercase and
others in lowercase.

Exercises
Periodically, you will find sections with exercises you can do to test your
understanding of the information. Answers to the exercises are included when
appropriate.

Where to find more information
Please see z/OS Information Roadmapfor an overview of the documentation
associated with z/OS®, including the documentation available for z/OS TSO/E.

xii z/OS V2R1.0 TSO/E REXX User's Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 TSO/E REXX User's Guide
SA32-0982-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2013 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 TSO/E REXX User's Guide

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1988, 2013 xv

xvi z/OS V2R1.0 TSO/E REXX User's Guide

Part 1. Learning the REXX Language

The REXX language is a versatile general-purpose programming language that can
be used by new and experienced programmers. This part of the book is for
programmers who want to learn the REXX language. The chapters in this part
cover the following topics.
v Chapter 1, “Introduction,” on page 3 — The REXX language has many features

that make it a powerful programming tool.
v Chapter 2, “Writing and Running a REXX Exec,” on page 7 — Execs are easy to

write and have few syntax rules.
v Chapter 3, “Using Variables and Expressions,” on page 25 — Variables,

expressions, and operators are essential when writing execs that do arithmetic
and comparisons.

v Chapter 4, “Controlling the Flow Within an Exec,” on page 39 — You can use
instructions to branch, loop, or interrupt the flow of an exec.

v Chapter 5, “Using Functions,” on page 59 — A function is a sequence of
instructions that can perform a specific task and must return a value.

v Chapter 6, “Writing Subroutines and Functions,” on page 67 — You can write
internal and external routines that are called by an exec.

v Chapter 7, “Manipulating Data,” on page 83 — Compound variables and
parsing are two ways to manipulate data.

Note: Although you can write a REXX exec to run in a non-TSO/E address space
in MVS, the chapters and examples in this part assume the exec will run in a
TSO/E address space. If you want to write execs that run outside of a TSO/E
address space, keep in mind the following exceptions to information in Part 1:
v An exec that runs outside of TSO/E cannot include TSO/E commands, unless

you use the TSO/E environment service (see note).
v In TSO/E, several REXX instructions either display information on the terminal

or retrieve information that the user enters at the terminal. In a non-TSO/E
address space, these instructions get information from the input stream and
write information to the output stream.
– SAY — this instruction sends information to the output DD whose default is

SYSTSPRT.
– PULL — this instruction gets information from the input DD whose default is

SYSTSIN.
– TRACE — this instruction sends information to the output DD whose default

is SYSTSPRT.
– PARSE EXTERNAL — this instruction gets information from the input DD

whose default is SYSTSIN.
v The USERID built-in function, instead of returning a user identifier, might return

a stepname or jobname.

Note: You can use the TSO/E environment service, IKJTSOEV, to create a TSO/E
environment in a non-TSO/E address space. If you run a REXX exec in the TSO/E
environment you created, the exec can contain TSO/E commands, external
functions, and services that an exec running in a TSO/E address space can use.
That is, the TSO host command environment (ADDRESS TSO) is available to the

© Copyright IBM Corp. 1988, 2013 1

exec. For more information about the TSO/E environment service and the different
considerations for running REXX execs within the environment, see z/OS TSO/E
Programming Services.

2 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 1. Introduction

This chapter describes the REXX programming language and some of its features.

What is REXX?
REXX is a programming language that is extremely versatile. Aspects such as
common programming structure, readability, and free format make it a good
language for beginners and general users. Yet because the REXX language can be
intermixed with commands to different host environments, provides powerful
functions and has extensive mathematical capabilities, it is also suitable for more
experienced computer professionals.

The TSO/E implementation of the REXX language allows REXX execs to run in
any MVS address space. You can write a REXX exec that includes TSO/E services
and run it in a TSO/E address space, or you can write an application in REXX to
run outside of a TSO/E address space. For more information, see Chapter 13,
“Using REXX in TSO/E and Other MVS Address Spaces,” on page 169.

There is also a set of z/OS UNIX extensions to the TSO/E Restructured Extended
Executor (REXX) language which enable REXX programs to access z/OS UNIX
callable services. The z/OS UNIX extensions, called syscall commands, have names
that correspond to the names of the callable services that they invoke—for
example, access, chmod, and chown. For more information about the z/OS UNIX
extensions, see z/OS Using REXX and z/OS UNIX System Services.

Features of REXX
In addition to its versatility, REXX has many other features, some of which are:

Ease of use
The REXX language is easy to read and write because many instructions are
meaningful English words. Unlike some lower-level programming languages that
use abbreviations, REXX instructions are common words, such as SAY, PULL, IF...
THEN... ELSE..., DO... END, and EXIT.

Free format
There are few rules about REXX format. You need not start an instruction in a
particular column, you can skip spaces in a line or skip entire lines, you can have
an instruction span many lines or have multiple instructions on one line, variables
do not need to be predefined, and you can type instructions in upper, lower, or
mixed case. The few rules about REXX format are covered in “Syntax of REXX
Instructions” on page 8.

Convenient built-in functions
REXX supplies built-in functions that perform various processing, searching, and
comparison operations for both text and numbers. Other built-in functions provide
formatting capabilities and arithmetic calculations.

© Copyright IBM Corp. 1988, 2013 3

Debugging capabilities
When a REXX exec running in TSO/E encounters an error, messages describing the
error are displayed on the screen. In addition, you can use the REXX TRACE
instruction and the interactive debug facility to locate errors in execs.

Interpreted language
TSO/E implements the REXX language as an interpreted language. When a REXX
exec runs, the language processor directly processes each language statement.
Languages that are not interpreted must be compiled into machine language and
possibly link-edited before they are run. You can use the IBM® licensed product,
IBM Compiler and Library for REXX/370, to provide this function.

Extensive parsing capabilities
REXX includes extensive parsing capabilities for character manipulation. This
parsing capability allows you to set up a pattern to separate characters, numbers,
and mixed input.

Components of REXX
The various components of REXX are what make it a powerful tool for
programmers. REXX is made up of:
v Instructions — There are five types of instructions. All but commands are

processed by the language processor.
– Keyword
– Assignment
– Label
– Null
– Command (both TSO/E REXX commands and host commands)

v Built-in functions — These functions are built into the language processor and
provide convenient processing options.

v TSO/E external functions — These functions are provided by TSO/E and
interact with the system to do specific tasks for REXX.

v Data stack functions — A data stack can store data for I/O and other types of
processing.

The SAA Solution
The SAA solution is based on a set of software interfaces, conventions, and
protocols that provide a framework for designing and developing applications.

The SAA Procedures Language has been defined as a subset of the REXX language.
Its purpose is to define a common subset of the language that can be used in
several environments. TSO/E REXX is the implementation of the SAA Procedures
Language on the MVS system.

The SAA solution:
v Defines a common programming interface you can use to develop applications

that can be integrated with each other and transported to run in multiple SAA
environments.

v Defines common communications support that you can use to connect
applications, systems, networks, and devices.

v Defines a common user access that you can use to achieve consistency in panel
layout and user interaction techniques.

Features of REXX

4 z/OS V2R1.0 TSO/E REXX User's Guide

v Offers some applications and application development tools written by IBM.

Several combinations of IBM hardware and software have been selected as SAA
environments. These are environments in which IBM will manage the availability
of support for applicable SAA elements, and the conformance of those elements to
SAA specifications. The SAA environments are the following:
v MVS

– TSO/E
– CICS®

– IMS™

v VM CMS
v Operating System/400® (OS/400®)
v Operating System/2® (OS/2)

Benefits of Using a Compiler

The IBM Compiler for REXX/370 (Program Number 5695-013) and the IBM Library
for REXX/370 (Program Number 5695-014) provide significant benefits for
programmers during program development and for users when a program is run.
The benefits are:
v Improved performance
v Reduced system load
v Protection for source code and programs
v Improved productivity and quality
v Portability of compiled programs
v Checking for compliance to SAA

Improved Performance
The performance improvements that you can expect when you run compiled REXX
programs depend on the type of program. A program that performs large numbers
of arithmetic operations of default precision shows the greatest improvement. A
program that mainly enters commands to the host shows minimal improvement
because REXX cannot decrease the time taken by the host to process the
commands.

Reduced System Load
Compiled REXX programs run faster than interpreted programs. Because a
program has to be compiled only once, system load is reduced and response time
is improved when the program is run frequently.

For example, a REXX program that performs many arithmetic operations might
take 12 seconds to run interpreted. If the program is run 60 times, it uses about 12
minutes of processor time. The same program when compiled might run six times
faster, using only about 2 minutes of processor time.

Protection for Source Code and Programs
Your REXX programs and algorithms are assets that you want to protect.

The Compiler produces object code, which helps you protect these assets by
discouraging people from making unauthorized changes to your programs. You
can distribute your REXX programs in object code only.

Load modules can be further protected by using a security server, such as RACF®.

The SAA Solution

Chapter 1. Introduction 5

Improved Productivity and Quality
The Compiler can produce source listings, cross-reference listings, and messages,
which help you more easily develop and maintain your REXX programs.

The Compiler identifies syntax errors in a program before you start testing it. You
can then focus on correcting errors in logic during testing with the REXX
interpreter.

Portability of Compiled Programs
A REXX program compiled under MVS/ESA can run under CMS. Similarly, a
REXX program compiled under CMS can run under MVS/ESA.

SAA Compliance Checking
The Systems Application Architecture (SAA) definitions of software interfaces,
conventions, and protocols provide a framework for designing and developing
applications that are consistent within and across several operating systems.

The SAA Procedures Language is a subset of the REXX language supported by the
interpreter under TSO/E, and can be used in this operating environment.

To help you write programs for use in all SAA environments, the Compiler can
optionally check for SAA compliance. With this option in effect, a warning message
is issued for each non-SAA item found in a program.

For more information, see IBM Compiler and Library for REXX/370; Introducing the
Next Step in REXX Programming.

Benefits of Using a Compiler

6 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 2. Writing and Running a REXX Exec

This chapter introduces execs and their syntax, describes the steps involved in
writing and running an exec, and explains concepts you need to understand to
avoid common problems.

Before You Begin
Before you can write a REXX program, called an exec, you need to create a data set
to contain the exec. The data set can be either sequential or partitioned, but if you
plan to create more than one exec, it is easier to create a REXX library as a
partitioned data set (PDS) with execs as members.

To create a PDS, allocate a data set with your prefix (usually your user ID) as the
first qualifier, any name as the second qualifier, and preferably "exec" as the third
qualifier. You can allocate the PDS with the Utilities option in ISPF/PDF or with
the TSO/E ALLOCATE command. For specific information about allocating a data
set for an exec, see Appendix A, “Allocating Data Sets,” on page 183.

What is a REXX Exec?
A REXX exec consists of REXX language instructions that are interpreted directly
by the REXX interpreter or compiled directly by a REXX language compiler and
executed by a Compiler Runtime Processor. An exec can also contain commands
that are executed by the host environment.

An advantage of the REXX language is its similarity to ordinary English. This
similarity makes it easy to read and write a REXX exec. For example, an exec to
display a sentence on the screen uses the REXX instruction SAY followed by the
sentence to be displayed.

Note that this simple exec starts with a comment line to identify the program as a
REXX exec. A comment begins with /* and ends with */. To prevent
incompatibilities with CLISTs, IBM recommends that all REXX execs start with a
comment that includes the characters “REXX” within the first line (line 1) of the
exec. Failure to do so can lead to unexpected or unintended results in your REXX
exec. More about comments and why you might need a REXX exec identifier
appears later 13.

When you run the exec, you see on your screen the sentence:

This is a REXX exec.

Even in a longer exec, the instructions flow like ordinary English and are easy to
understand.

Example of a Simple Exec

/**************************** REXX *********************************/
SAY ’This is a REXX exec.’

© Copyright IBM Corp. 1988, 2013 7

When you run the example, the exec interacts with you at the terminal. First you
see on your screen:

Please enter a number.

When you type a number, for example 42, and press the Enter key, the variable
number1 is assigned the value 42. You then see another sentence on the screen.

Now enter a number to add to the first number.

When you enter another number, for example 21, the variable number2 is assigned
the value 21. Then the values in number1 and number2 are added and the total is
assigned to sum. You see a final sentence on the screen displaying the sum.

The sum of the two numbers is 63.

Before you actually try these examples, please read the next two sections:
v “Syntax of REXX Instructions”
v “Running an Exec” on page 15

Syntax of REXX Instructions

Some programming languages have rigid rules about how and where characters
are entered on each line. For example, CLIST statements must be entered in
uppercase, and assembler statements must begin in a particular column. REXX, on
the other hand, has simple syntax rules. There is no restriction on how characters
are entered and generally one line is an instruction regardless of where it begins or
where it ends.

The Character Type of REXX Instructions
You can enter a REXX instruction in lowercase, uppercase, or mixed case. However,
alphabetic characters are changed to uppercase, unless you enclose them in single
or double quotation marks.

Using Quotation Marks in an Instruction
A series of characters enclosed in matching quotation marks is called a literal string.
The following examples both contain literal strings.
SAY ’This is a REXX literal string.’ /* Using single quotes */

SAY "This is a REXX literal string." /* Using double quotes */

Example of a Longer Exec

/**************************** REXX *********************************/
/* This exec adds two numbers and displays their sum. */
/***/

SAY ’Please enter a number.’
PULL number1
SAY ’Now enter a number to add to the first number.’
PULL number2
sum = number1 + number2
SAY ’The sum of the two numbers is’ sum’.’

What is a REXX Exec?

8 z/OS V2R1.0 TSO/E REXX User's Guide

You cannot enclose a literal string with one each of the two types of quotation
marks. The following is not a correct example of an enclosed literal string.
SAY ’This is a REXX literal string." /* Using mismatched quotes */

When you omit the quotation marks from a SAY instruction as follows:
SAY This is a REXX string.

you see the statement in uppercase on your screen.

THIS IS A REXX STRING.

Note: If any word in the statement is the name of a variable that has already been
assigned a value, REXX substitutes the value. For information about variables, see
“Using Variables” on page 25.

If a string contains an apostrophe, you can enclose the literal string in double
quotation marks.
SAY "This isn’t a CLIST instruction."

You can also use two single quotation marks in place of the apostrophe, because a
pair of single quotation marks is processed as one.
SAY ’This isn’’t a CLIST instruction.’

Either way, the outcome is the same.

This isn’t a CLIST instruction.

The Format of REXX Instructions
The REXX language uses a free format. This means you can insert extra spaces
between words and blank lines freely throughout the exec without causing an
error. A line usually contains one instruction except when it ends with a comma (,)
or contains a semicolon (;). A comma is the continuation character and indicates
that the instruction continues to the next line. The comma, when used in this
manner, also adds a space when the lines are concatenated. A semicolon indicates
the end of the instruction and is used to separate multiple instructions on one line.

Beginning an instruction
An instruction can begin in any column on any line. The following are all valid
instructions.
SAY ’This is a literal string.’

SAY ’This is a literal string.’
SAY ’This is a literal string.’

This example appears on the screen as follows:

This is a literal string.
This is a literal string.
This is a literal string.

Continuing an instruction

A comma indicates that the instruction continues to the next line. Note that a space
is added between “extended” and “REXX” when it appears on the screen.

Syntax of REXX Instructions

Chapter 2. Writing and Running a REXX Exec 9

SAY ’This is an extended’,
’REXX literal string.’

This example appears on the screen as one line.

This is an extended REXX literal string.

Also note that the following two instructions are identical and yield the same
result when displayed on the screen:
SAY ’This is’,

’a string.’

is functionally identical to:
SAY ’This is’ ’a string.’

These examples appear on the screen as:

This is a string.

In the first example, the comma at the end of line 1 adds a space when the two
lines are concatenated for display. In the second example, the space between the
two separate strings is preserved when the line is displayed.

Continuing a literal string without adding a space
If you need to continue an instruction to a second or more lines but do not want
REXX to add spaces when the line appears on the screen, use the concatenation
operand (two single OR bars, ||).
SAY ’This is an extended literal string that is bro’||,

’ken in an awkward place.’

This example appears on the screen as one line without adding a space within the
word “broken”.

This is an extended literal string that is broken in an awkward place.

Also note that the following two instructions are identical and yield the same
result when displayed on the screen:
SAY ’This is’ ||,

’a string.’

is functionally identical to:
SAY ’This is’ || ’a string.’

These examples appear on the screen as:

This isa string.

In the first example, the concatenation operator at the end of line 1 causes the
deletion of any spaces when the two lines are concatenated for display. In the
second example, the concatenation operator also concatenates the two strings
without space when the line is displayed.

Syntax of REXX Instructions

10 z/OS V2R1.0 TSO/E REXX User's Guide

Ending an instruction
The end of the line or a semicolon indicates the end of an instruction. If you put
more than one instruction on a line, you must separate each instruction with a
semicolon. If you put one instruction on a line, it is best to let the end of the line
delineate the end of the instruction.
SAY ’Hi!’; say ’Hi again!’; say ’Hi for the last time!’

This example appears on the screen as three lines.

Hi!
Hi again!
Hi for the last time!

The following example demonstrates the free format of REXX.

When the example runs, you see six lines of identical output on your screen
followed by one indented line.

This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.

This is a REXX literal string.

Thus you can begin an instruction anywhere on a line, you can insert blank lines,
and you can insert extra spaces between words in an instruction because the
language processor ignores blank lines and spaces that are greater than one. This
flexibility of format allows you to insert blank lines and spaces to make an exec
easier to read.

Only when words are parsed do blanks and spaces take on significance. More
about parsing is covered in “Parsing Data” on page 85.

Types of REXX Instructions
There are five types of REXX instructions: keyword, assignment, label, null, and
command. The following example is an ISPF/PDF Edit panel that shows an exec
with various types of instructions. A description of each type of instruction appears
after the example. In most of the descriptions, you will see an edit line number
(without the prefixed zeroes) to help you locate the instruction in the example.

Example of Free Format

/************************* REXX ************************************/
SAY ’This is a REXX literal string.’
SAY ’This is a REXX literal string.’

SAY ’This is a REXX literal string.’
SAY,
’This’,
’is’,
’a’,
’REXX’,
’literal’,
’string.’

SAY’This is a REXX literal string.’;SAY’This is a REXX literal string.’
SAY ’ This is a REXX literal string.’

Syntax of REXX Instructions

Chapter 2. Writing and Running a REXX Exec 11

EDIT ---- USERID.REXX.EXEC(TIMEGAME)------------------- COLUMNS 009 080
COMMAND ===> SCROLL ===> HALF
****** ************************ TOP OF DATA ************************************
000001 /************************** REXX ****************************/
000002 /* This is an interactive REXX exec that asks a user for the*/
000003 /* time and then displays the time from the TIME command. */
000004 /**/
000005 Game1:
000006
000007 SAY ’What time is it?’
000008 PULL usertime /* Put the user’s response
000009 into a variable called
000010 "usertime" */
000011 IF usertime = ’’ THEN /* User didn’t enter a time */
000012 SAY "O.K. Game’s over."
000013 ELSE
000014 DO
000015 SAY "The computer says:"
000016 /* TSO system */ TIME /* command */
000017 END
000018
000019 EXIT
****** *********************** BOTTOM OF DATA **********************************

Keyword

A keyword instruction tells the language processor to do something. It begins with
a REXX keyword that identifies what the language processor is to do. For example,
SAY (line 7) displays a string on the screen and PULL (line 8) takes one or more
words of input and puts them into the variable usertime.

IF, THEN (line 11) and ELSE (line 13) are three keywords that work together in one
instruction. Each keyword forms a clause, which is a subset of an instruction. If the
expression that follows the IF keyword is true, the instruction that follows the
THEN keyword is processed. Otherwise, the instruction that follows the ELSE
keyword is processed. If more than one instruction follows a THEN or an ELSE,
the instructions are preceded by a DO (line 14) and followed by an END (line 17).
More information about the IF/THEN/ELSE instruction appears in “Using
Conditional Instructions” on page 39.

The EXIT keyword (line 19) tells the language processor to end the exec. Using
EXIT in the preceding example is a convention, not a necessity, because processing
ends automatically when there are no more instructions in the exec. More about
EXIT appears in “EXIT Instruction” on page 55.

Assignment

An assignment gives a value to a variable or changes the current value of a
variable. A simple assignment instruction is:
number = 4

In addition to giving a variable a straightforward value, an assignment instruction
can also give a variable the result of an expression. An expression is something
that needs to be calculated, such as an arithmetic expression. The expression can
contain numbers, variables, or both.
number = 4 + 4

number = number + 4

Syntax of REXX Instructions

12 z/OS V2R1.0 TSO/E REXX User's Guide

In the first of the two examples, the value of number is 8. If the second example
directly followed the first in an exec, the value of number would become 12. More
about expressions is covered in “Using Expressions” on page 27.

Label
A label, such as Game1: (line 5), is a symbolic name followed by a colon. A label
can contain either single- or double-byte characters or a combination of single- and
double-byte characters. (Double-byte characters are valid only if you have included
OPTIONS ETMODE as the first instruction in your exec.) A label identifies a
portion of the exec and is commonly used in subroutines and functions, and with
the SIGNAL instruction. More about the use of labels appears in Chapter 6,
“Writing Subroutines and Functions,” on page 67 and “SIGNAL Instruction” on
page 56.

Null
A null is a comment or a blank line, which is ignored by the language processor
but make an exec easier to read.
v Comments (lines 1 through 4, 8 through 11, 16)

A comment begins with /* and ends with */. Comments can be on one or more
lines or on part of a line. You can put information in a comment that might not
be obvious to a person reading the REXX instructions. Comments at the
beginning can describe the overall purpose of the exec and perhaps list special
considerations. A comment next to an individual instruction can clarify its
purpose.

Note: To prevent incompatibilities with CLISTs, IBM recommends that all
REXX execs start with a comment that includes the characters “REXX” within
the first line (line 1) of the exec. Failure to do so can lead to unexpected or
unintended results in your REXX exec. This type of comment is called the
REXX exec identifier and immediately identifies the program to readers as a
REXX exec and also distinguishes it from a CLIST. It is necessary to distinguish
execs from CLISTs when they are both stored in the system file, SYSPROC. For
more information about where and how execs are stored, see “Running an Exec
Implicitly” on page 16.

v Blank lines (lines 6, 18)
Blank lines help separate groups of instructions and aid readability. The more
readable an exec, the easier it is to understand and maintain.

Command
An instruction that is not a keyword instruction, assignment, label, or null is
processed as a command and is sent to a previously defined environment for
processing. For example, the word "TIME" in the previous exec (line 16), even
though surrounded by comments, is processed as a TSO/E command.
/* TSO system */ TIME /* command */

More information about issuing commands appears in Chapter 8, “Entering
Commands from an Exec,” on page 95.

Execs Using Double-Byte Character Set Names
You can use double-byte character set (DBCS) names in your REXX execs for literal
strings, labels, variable names, and comments. Such character strings can be
single-byte, double-byte, or a combination of both single- and double-byte names.
To use DBCS names, you must code OPTIONS ETMODE as the first instruction in
the exec. ETMODE specifies that those strings that contain DBCS characters are to

Syntax of REXX Instructions

Chapter 2. Writing and Running a REXX Exec 13

be checked as being valid DBCS strings. DBCS characters must be enclosed within
shift-out (X'0E') and shift-in (X'0F') delimiters. In the following example, the
shift-out (SO) and shift-in (SI) delimiters are represented by the less than symbol
(<) and the greater than symbol (>) respectively. 1 For example, <.S.Y.M.D>
and <.D.B.C.S.R.T.N> represent DBCS symbols in the following examples.

Example 1

The following is an example of an exec using a DBCS variable name and a DBCS
subroutine label.
/* REXX */
OPTIONS ’ETMODE’ /* ETMODE to enable DBCS variable names */
j = 1
<.S.Y.M.D> = 10 /* Variable with DBCS characters between

shift-out (<) and shift-in (>) */
CALL <.D.B.C.S.R.T.N> /* Invoke subroutine with DBCS name */...
<.D.B.C.S.R.T.N>: /* Subroutine with DBCS name */
DO i = 1 TO 10

IF x.i = <.S.Y.D.M> THEN /* Does x.i match the DBCS variable’s
value? */

SAY ’Value of the DBCS variable is : ’ <.S.Y.D.M>
END
EXIT 0

Example 2

The following example shows some other uses of DBCS variable names with the
EXECIO stem option, as DBCS parameters passed to a program invoked through
LINKMVS, and with built-in function, LENGTH.
/* REXX */
OPTIONS ’ETMODE’ /* ETMODE to enable DBCS variable names */

"ALLOC FI(INDD) DA(’DEPTA29.DATA’) SHR REU"

/***/
/* Use EXECIO to read lines into DBCS stem variables */
/***/

"EXECIO * DISKR indd (FINIS STEM <.d.b.c.s__.s.t.e.m>."

IF rc = 0 THEN /* if good return code from execio */

/***/
/* Say each DBCS stem variable set by EXECIO */
/***/

DO i = 1 TO <.d.b.c.s__.s.t.e.m>.0

SAY "Line " i "==> " <.d.b.c.s__.s.t.e.m>.i

END

line1_<.v.a.l.u.e> = <.d.b.c.s__.s.t.e.m>.1 /* line 1 value */

line_len = length(line1_<.v.a.l.u.e>) /* Length of line */

/***/
/* Invoke LINKMVS command "proca29" to process a line. */
/* Two variable names are used to pass 2 parameters, one of */

1. The SO and SI characters are non-printable.

Execs Using Double-Byte Character Set Names

14 z/OS V2R1.0 TSO/E REXX User's Guide

/* which is a DBCS variable name. The LINKMVS host command */
/* environment routine will look up the value of the two */
/* variables and pass their values to the address LINKMVS */
/* command, "proca29". */
/***/

ADDRESS LINKMVS "proca29 line_len line1_<.v.a.l.u.e>"

"FREE FI(INDD)"

EXIT 0

Running an Exec
After you have placed REXX instructions in a data set, you can run the exec
explicitly by using the EXEC command followed by the data set name and the
"exec" keyword operand, or implicitly by entering the member name. You can run
an exec implicitly only if the PDS that contains it was allocated to a system file.
More information about system files appears in the “Running an Exec Implicitly”
on page 16.

Running an Exec Explicitly
The EXEC command runs non-compiled programs in TSO/E. To run an exec
explicitly, enter the EXEC command followed by the data set name that contains
the exec and the keyword operand "exec" to distinguish it from a CLIST.

You can specify a data set name according to the TSO/E data set naming
conventions in several different ways. For example the data set name
USERID.REXX.EXEC(TIMEGAME) can be specified as:
v A fully-qualified data set, which appears within quotation marks.

EXEC ’userid.rexx.exec(timegame)’ exec

v A non fully-qualified data set, which has no quotation marks can eliminate
your profile prefix (usually your user ID) as well as the third qualifier, exec.
EXEC rexx.exec(timegame) exec /* eliminates prefix */
EXEC rexx(timegame) exec /* eliminates prefix and exec */

For information about other ways to specify a data set name, see the EXEC
command in z/OS TSO/E Command Reference.

You can type the EXEC command in the following places:
v At the READY prompt

READY
EXEC rexx.exec(timegame) exec

v From the COMMAND option of ISPF/PDF

----------------------------- TSO COMMAND PROCESSOR -------------------------
ENTER TSO COMMAND OR CLIST BELOW:

===> exec rexx.exec(timegame) exec

ENTER SESSION MANAGER MODE ===> NO (YES or NO)

v On the COMMAND line of any ISPF/PDF panel as long as the EXEC command
is preceded by the word "tso".

Execs Using Double-Byte Character Set Names

Chapter 2. Writing and Running a REXX Exec 15

------------------------------ EDIT - ENTRY PANEL ---------------------------
COMMAND ===> tso exec rexx.exec(timegame) exec

ISPF LIBRARY:
PROJECT ===> PREFIX
GROUP ===> REXX ===> ===> ===>
TYPE ===> EXEC
MEMBER ===> TIMEGAME (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

Running an Exec Implicitly
Running an exec implicitly means running an exec by simply entering the member
name of the data set that contains the exec. Before you can run an exec implicitly,
you must allocate the PDS that contains it to a system file (SYSPROC or
SYSEXEC).

SYSPROC is a system file whose data sets can contain both CLISTs and execs.
(Execs are distinguished from CLISTs by the REXX exec identifier, a comment at
the beginning of the exec the first line of which includes the word "REXX".)
SYSEXEC is a system file whose data sets can contain only execs. (Your installation
might have changed the name to something other than SYSEXEC, but for the
purposes of this book, we will call it SYSEXEC.) When both system files are
available, SYSEXEC is searched before SYSPROC.

Allocating a PDS to a System File
To allocate the PDS that contains your execs to a system file, you need to do the
following:
v Decide if you want to use the separate file for execs (SYSEXEC) or combine

CLISTs and execs in the same file (SYSPROC). For information that will help you
decide, see “Things to Consider When Allocating to a System File (SYSPROC or
SYSEXEC)” on page 171.

v Use one of the following two checklists for a step-by-step guide to writing an
exec that allocates a PDS to a system file.
– “Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC” on page

189
– “Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC” on page

190
After your PDS is allocated to the system file, you can then run an exec by
simply typing the name of the data set member that contains the exec. You can
type the member name in any of the following locations:
– At the READY prompt

READY
timegame

– From the COMMAND option of ISPF/PDF

Running an Exec

16 z/OS V2R1.0 TSO/E REXX User's Guide

----------------------------- TSO COMMAND PROCESSOR -------------------------
ENTER TSO COMMAND OR CLIST BELOW:

===> timegame

ENTER SESSION MANAGER MODE ===> NO (YES or NO)

– On the COMMAND line of any ISPF/PDF panel as long as the member name
is preceded by "tso".

------------------------------ EDIT - ENTRY PANEL ---------------------------
COMMAND ===> tso timegame

ISPF LIBRARY:
PROJECT ===> PREFIX
GROUP ===> REXX ===> ===> ===>
TYPE ===> EXEC
MEMBER ===> TIMEGAME (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

To reduce the search time for an exec that is executed implicitly and to differentiate
it from a TSO/E command, precede the member name with a %:
READY
%timegame

When a member name is preceded by %, TSO/E searches a limited number of
system files for the name, thus reducing the search time. Without the %, TSO/E
searches several files before it searches SYSEXEC and SYSPROC to ensure that the
name you entered is not a TSO/E command.

Exercises - Running the Example Execs
Create a PDS exec library using Checklist #1 or Checklist #2 in Appendix A,
“Allocating Data Sets,” on page 183. Then try the example execs from the
beginning of this chapter. Run them explicitly with the EXEC command and see if
the results you get are the same as the ones in this book. If they are not, why aren't
they the same?

Now write an exec to allocate your PDS to SYSPROC or SYSEXEC using Checklist
#3 on page 189 or Checklist #4 on page 190. Then run the example execs implicitly.
Which way is easier?

Running an Exec

Chapter 2. Writing and Running a REXX Exec 17

Interpreting Error Messages

When you run an exec that contains an error, an error message often displays the
line on which the error occurred and gives an explanation of the error. Error
messages can result from syntax errors and from computational errors. For
example, the following exec has a syntax error.

When the exec runs, you see the following on your screen:

Hello! What’s your name?
7 +++ PULL who /* Get the person’s name.IF who =

’’ THEN SAY ’Hello stranger’ELSE SAY ’Hello’ who
IRX0006I Error running REXX.EXEC(HELLO), line 7: Unmatched "/*" or quote

The exec runs until it detects the error, a missing */ at the end of the comment. As
a result, the SAY instruction displays the question, but doesn't wait for your
response because the next line of the exec contains the syntax error. The exec ends
and the language processor displays error messages.

The first error message begins with the line number of the statement where the
error was detected, followed by three pluses (+++) and the contents of the
statement.

7 +++ PULL who /* Get the person’s name.IF who =
’’ THEN SAY ’Hello stranger’ELSE SAY ’Hello’ who

The second error message begins with the message number followed by a message
containing the exec name, line where the error was found, and an explanation of
the error.
IRX0006I Error running REXX.EXEC(HELLO), line 7: Unmatched "/*" or quote

For more information about the error, you can go to the message explanations in
z/OS TSO/E Messages, where information is arranged by message number.

To fix the syntax error in this exec, add */ to the end of the comment on line 7.
PULL who /* Get the person’s name.*/

Example of an Exec with a Syntax Error

/************************** REXX ***********************************/
/* This is an interactive REXX exec that asks the user for a */
/* name and then greets the user with the name supplied. It */
/* contains a deliberate error. */
/***/

SAY "Hello! What’s your name?"
PULL who /* Get the person’s name.
IF who = ’’ THEN

SAY ’Hello stranger’
ELSE

SAY ’Hello’ who

Interpreting Error Messages

18 z/OS V2R1.0 TSO/E REXX User's Guide

Preventing Translation to Uppercase
As a rule, all alphabetic characters processed by the language processor are
translated to uppercase before they are processed. These alphabetic characters can
be from within an exec, such as words in a REXX instruction, or they can be
external to an exec and processed as input. You can prevent this translation to
uppercase in two ways depending on whether the characters are read as parts of
instructions from within an exec or are read as input to an exec.

From Within an Exec
To prevent translation of alphabetic characters to uppercase from within an exec,
simply enclose the characters in single or double quotation marks. Numbers and
special characters, whether or not in quotation marks, are not changed by the
language processor. For example, when you follow a SAY instruction with a phrase
containing a mixture of alphabetic characters, numbers, and special characters, only
the alphabetic characters are changed.
SAY The bill for lunch comes to $123.51!

results in:

THE BILL FOR LUNCH COMES TO $123.51!

Quotation marks ensure that information from within an exec is processed exactly
as typed. This is important in the following situations:
v For output when it must be lowercase or a mixture of uppercase and lowercase.
v To ensure that commands are processed correctly. For example, if a variable

name in an exec is the same as a command name, the exec ends in error when
the command is issued. It is good programming practice to avoid using variable
names that are the same as commands, but just to be safe, enclose all commands
in quotation marks.

As Input to an Exec
When reading input from a terminal or when passing input from another exec, the
language processor also changes alphabetic characters to uppercase before they are
processed. To prevent translation to uppercase, use the PARSE instruction.

For example, the following exec reads input from the terminal screen and
re-displays the input as output.

If you responded to the example with the word tyrannosaurus, you would see on
your screen:

Example of Reading and Re-displaying Input

/************************** REXX ***********************************/
/* This is an interactive REXX exec that asks a user for the name */
/* of an animal and then re-displays the name. */
/***/

SAY "Please type in the name of an animal."
PULL animal /* Get the animal name.*/
SAY animal

Preventing Translation to Uppercase

Chapter 2. Writing and Running a REXX Exec 19

TYRANNOSAURUS

To cause the language processor to read input exactly as it is presented, use the
PARSE PULL instruction.
PARSE PULL animal

Then if you responded to the example with TyRannOsauRus, you would see on
the screen:

TyRannOsauRus

Exercises - Running and Modifying the Example Execs
Write and run the preceding Example of Reading and Re-displaying Input. Try
various input and observe the output. Now change the PULL instruction to a
PARSE PULL instruction and observe the difference.

Passing Information to an Exec
When an exec runs, you can pass information to it in several ways, two of which
are:
v Through terminal interaction
v By specifying input when invoking the exec.

Using Terminal Interaction
The PULL instruction is one way for an exec to receive input as shown by a
previous example repeated here.

The PULL instruction can extract more than one value at a time from the terminal
by separating a line of input, as shown in the following variation of the previous
example.

Example of an Exec that Uses PULL

/**************************** REXX *********************************/
/* This exec adds two numbers and displays their sum. */
/***/
SAY ’Please enter a number.’
PULL number1
SAY ’Now enter a number to add to the first number.’
PULL number2
sum = number1 + number2
SAY ’The sum of the two numbers is’ sum’.’

Variation of an Example that Uses PULL

/**************************** REXX *********************************/
/* This exec adds two numbers and displays their sum. */
/***/
SAY ’Please enter two numbers.’
PULL number1 number2
sum = number1 + number2
SAY ’The sum of the two numbers is’ sum’.’

Preventing Translation to Uppercase

20 z/OS V2R1.0 TSO/E REXX User's Guide

Note: For the PULL instruction to extract information from the terminal, the data
stack must be empty. More information about the data stack appears in Chapter 11,
“Storing Information in the Data Stack,” on page 133.

Specifying Values when Invoking an Exec
Another way for an exec to receive input is through values specified when you
invoke the exec. For example to pass two numbers to an exec named "add", using
the EXEC command, type:

EXEC rexx.exec(add) ’42 21’ exec

To pass input when running an exec implicitly, simply type values (words or
numbers) after the member name.
add 42 21

These values are called an argument. For information about arguments, see
“Passing Arguments” on page 23.

The exec "add" uses the ARG instruction to assign the input to variables as shown
in the following example.

ARG assigns the first number, 42, to number1 and the second number, 21, to
number2.

If the number of values is fewer or more than the number of variable names after
the PULL or the ARG instruction, errors can occur as described in the following
sections.

Specifying Too Few Values
When you specify fewer values than the number of variables following the PULL
or ARG instruction, the extra variables are set to null. For example, you pass only
one number to "add".

EXEC rexx.exec(add) ’42’ exec

The first variable following the ARG instruction, number1, is assigned the value 42.
The second variable, number2, is set to null. In this situation, the exec ends with an
error when it tries to add the two variables. In other situations, the exec might not
end in error.

Specifying Too Many Values
When you specify more values than the number of variables following the PULL
or ARG instruction, the last variable gets the remaining values. For example, you
pass three numbers to "add".

Example of an Exec that Uses the ARG Instruction

/**************************** REXX *********************************/
/* This exec receives two numbers as input, adds them, and */
/* displays their sum. */
/***/
ARG number1 number2
sum = number1 + number2
SAY ’The sum of the two numbers is’ sum’.’

Passing Information to an Exec

Chapter 2. Writing and Running a REXX Exec 21

EXEC rexx.exec(add) ’42 21 10’ exec

The first variable following the ARG instruction, number1, is assigned the value 42.
The second variable gets both '21 10'. In this situation, the exec ends with an error
when it tries to add the two variables. In other situations, the exec might not end
in error.

To prevent the last variable from getting the remaining values, use a period (.) at
the end of the PULL or ARG instruction.
ARG number1 number2 .

The period acts as a "dummy variable" to collect unwanted extra information. If
there is no extra information, the period is ignored. You can also use a period as a
place holder within the PULL or ARG instruction as follows:
ARG . number1 number2

In this case, the first value, 42, is discarded and number1 and number2 get the next
two values, 21 and 10.

Preventing Translation of Input to Uppercase
Like the PULL instruction, the ARG instruction changes alphabetic characters to
uppercase. To prevent translation to uppercase, precede ARG with PARSE as
demonstrated in the following example.

Exercises - Using the ARG Instruction
The left column shows the input values sent to an exec. The right column is the
ARG statement within the exec that receives the input. What value does each
variable assume?

Input Variables Receiving Input

1. 115 -23 66 5.8
ARG first second third

2. .2 0 569 2E6
ARG first second third fourth

3. 13 13 13 13
ARG first second third fourth fifth

4. Weber Joe 91
ARG lastname firstname score

5. Baker Amanda Marie 95
PARSE ARG lastname firstname score

Example of an Exec that Uses PARSE ARG

/**************************** REXX *********************************/
/* This exec receives the last name, first name, and score of */
/* a student and displays a sentence reporting the name and */
/* score. */
/***/
PARSE ARG lastname firstname score
SAY firstname lastname ’received a score of’ score’.’

Passing Information to an Exec

22 z/OS V2R1.0 TSO/E REXX User's Guide

6. Callahan Eunice 88 62
PARSE ARG lastname firstname score

ANSWERS
1. first = 115, second = -23, third = 66 5.8
2. first = .2, second = 0, third = 569, fourth = 2E6
3. first = 13, second = 13, third = 13, fourth = 13, fifth = null

4. lastname = WEBER, firstname = JOE, score = 91
5. lastname = Baker, firstname = Amanda, score = Marie 95
6. lastname = Callahan, firstname = Eunice, score = 88

Passing Arguments
Values passed to an exec are usually called arguments. Arguments can consist of
one word or a string of words. Words within an argument are separated by blanks.
The number of arguments passed depends on how the exec is invoked.

Passing Arguments Using the CALL Instruction or REXX
Function Call
When you invoke a REXX exec using either the CALL instruction or a REXX
function call, you can pass up to 20 arguments to an exec. Each argument must be
separated by a comma.

Passing Arguments Using the EXEC Command
When you invoke a REXX exec either implicitly or explicitly using the EXEC
command, you can pass either one or no arguments to the exec. Thus the ARG
instruction in the preceding examples received only one argument. One argument
can consist of many words. The argument, if present, will appear as a single string.

If you plan to use commas within the argument string when invoking a REXX exec
using the EXEC command, special consideration must be given. For example, if
you specify:
GETARG 1,2

or
ex ’sam.rexx.exec(getarg)’ ’1,2’

the exec receives a single argument string consisting of "1,2". The exec could then
use a PARSE ARG instruction to break the argument string into the
comma-separated values like the following:
PARSE ARG A ’,’ B
SAY ’A is ’ A /* Will say ’A is 1’ */
SAY ’B is ’ B /* Will say ’B is 2’ */

However, because commas are treated as separator characters in TSO/E, you
cannot pass an argument string that contains a leading comma using the implicit
form of the EXEC command. That is, if you invoke the exec using:
GETARG ,2

the exec is invoked with an argument string consisting of "2". The leading comma
separator is removed before the exec receives control. If you need to pass an
argument string separated by commas and the leading argument is null (that is,
contains a leading comma), you must use the explicit form of the EXEC command.
For example:
ex ’sam.rexx.exec(getarg)’ ’,2’

Passing Information to an Exec

Chapter 2. Writing and Running a REXX Exec 23

In this case, the exec is invoked with an argument string consisting of ",2".

For more information about functions and subroutines, see Chapter 6, “Writing
Subroutines and Functions,” on page 67. For more information about arguments,
see “Parsing Multiple Strings as Arguments” on page 90.

Passing Information to an Exec

24 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 3. Using Variables and Expressions

This chapter describes variables, expressions, and operators, and explains how to
use them in REXX execs.

One of the most powerful aspects of computer programming is the ability to
process variable data to achieve a result. The variable data could be as simple as
two numbers, the process could be subtraction, and the result could be the answer.
answer = number1 - number2

Or the variable data could be input to a series of complex mathematical
computations that result in a 3-dimensional animated figure.

Regardless of the complexity of a process, the premise is the same. When data is
unknown or if it varies, you substitute a symbol for the data, much like the "x"
and "y" in an algebraic equation.
x = y + 29

The symbol, when its value can vary, is called a variable. A group of symbols or
numbers that must be calculated to be resolved is called an expression.

Using Variables
A variable is a character or group of characters that represents a value. A variable
can contain either single- or double-byte characters, or a combination of single-
and double-byte characters. (Double-byte characters are valid only if you include
OPTIONS ETMODE as the first instruction of your exec.) The following variable
big represents the value one million or 1,000,000.
big = 1000000

Variables can refer to different values at different times. If you assign a different
value to big, it gets the value of the new assignment, until it is changed again.
big = 999999999

Variables can also represent a value that is unknown when the exec is written. In
the following example, the user's name is unknown, so it is represented by the
variable who.
SAY "Hello! What’s your name?"

PARSE PULL who /* Put the person’s name in the variable "who" */

Variable Names
A variable name, the part that represents the value, is always on the left of the
assignment statement and the value itself is on the right. In the following example,
the word "variable1" is the variable name:
variable1 = 5
SAY variable1

As a result of the above assignment statement, variable1 is assigned the value "5",
and you see on the terminal screen:

© Copyright IBM Corp. 1988, 2013 25

5

Variable names can consist of:

A...Z uppercase alphabetic

a...z lowercase alphabetic

0...9 numbers

@ # $ ¢ ? ! . _
special characters

X'41' ... X'FE'
double-byte character set (DBCS) characters. (ETMODE must be on for
these characters to be valid in a variable name.)

Restrictions on the variable name are:
v The first character cannot be 0 through 9 or a period (.)
v The variable name cannot exceed 250 bytes. For names containing DBCS

characters, count each DBCS character as two bytes, and count the shift-out (SO)
and shift-in (SI) as one byte each.

v DBCS characters within a DBCS name must be delimited by SO (X'0E') and SI
(X'0F'). Also note that:
– SO and SI cannot be contiguous.
– Nesting of SO / SI is not permitted.
– A DBCS name cannot contain a DBCS blank (X'4040').

v The variable name should not be RC, SIGL, or RESULT, which are REXX special
variables. More about special variables appears later in this book.

Examples of acceptable variable names are:
ANSWER ?98B X Word3 number the_ultimate_value

Also, if ETMODE is set on, the following are valid DBCS variable names, where <
represents shift-out, and > represents shift-in, ‘.X’, ‘.Y’, and ‘.Z’ represent DBCS
characters, and lowercase letters and numbers represent themselves.
<.X.Y.Z> number_<.X.Y.Z> <.X.Y>1234<.Z>

Variable Values
The value of the variable, which is the value the variable name represents, might
be categorized as follows:
v A constant, which is a number that is expressed as:

– An integer (12)
– A decimal (12.5)
– A floating point number (1.25E2)
– A signed number (-12)
– A string constant (' 12')

v A string, which is one or more words that may or may not be enclosed in
quotation marks, such as:
This value is a string.
’This value is a literal string.’

v The value from another variable, such as:
variable1 = variable2

Using Variables

26 z/OS V2R1.0 TSO/E REXX User's Guide

In the above example, variable1 changes to the value of variable2, but
variable2 remains the same.

v An expression, which is something that needs to be calculated, such as:
variable2 = 12 + 12 - .6 /* variable2 becomes 23.4 */

Before a variable is assigned a value, the variable displays the value of its own
name translated to uppercase. In the following example, if the variable new was not
assigned a previous value, the word "NEW" is displayed.
SAY new /* displays NEW */

Exercises - Identifying Valid Variable Names
Which of the following are valid REXX variable names?
1. 8eight
2. $25.00
3. MixedCase
4. nine_to_five
5. result

ANSWERS
1. Invalid, because the first character is a number
2. Valid
3. Valid
4. Valid
5. Valid, but it is a reserved variable name and we recommend that you use it

only to receive results from a subroutine

Using Expressions
An expression is something that needs to be calculated and consists of numbers,
variables, or strings, and one or more operators. The operators determine the kind
of calculation to be done on the numbers, variables, and strings. There are four
types of operators: arithmetic, comparison, logical, and concatenation.

Arithmetic Operators
Arithmetic operators work on valid numeric constants or on variables that
represent valid numeric constants.

Types of Numeric Constants

12 A whole number has no decimal point or commas. Results of arithmetic
operations with whole numbers can contain a maximum of nine digits
unless you override the default with the NUMERIC DIGITS instruction.
For information about the NUMERIC DIGITS instruction, see z/OS TSO/E
REXX Reference. Examples of whole numbers are: 123456789 0 91221 999

12.5 A decimal number includes a decimal point. Results of arithmetic
operations with decimal numbers are limited to a total maximum of nine
digits (NUMERIC DIGITS default) before and after the decimal. Examples
of decimal numbers are: 123456.789 0.888888888

1.25E2 A floating point number in exponential notation, is sometimes called
scientific notation. The number after the "E" represents the number of
places the decimal point moves. Thus 1.25E2 (also written as 1.25E+2)

Using Variables

Chapter 3. Using Variables and Expressions 27

moves the decimal point to the right two places and results in 125. When
an "E" is followed by a minus (-), the decimal point moves to the left. For
example, 1.25E-2 is .0125.

Floating point numbers are used to represent very large or very small
numbers. For more information about floating point numbers, see z/OS
TSO/E REXX Reference.

-12 A signed number with a minus (-) next to the number represents a
negative value. A plus next to a number indicates that the number should
be processed as it is written. When a number has no sign, it is processed as
a positive value.

The arithmetic operators you can use are as follows:

Operator
Meaning

+ Add

- Subtract

* Multiply

/ Divide

% Divide and return a whole number without a remainder

// Divide and return the remainder only

** Raise a number to a whole number power

-number
Negate the number

+number
Add the number to 0

Using numeric constants and arithmetic operators, you can write arithmetic
expressions as follows:
7 + 2 /* result is 9 */
7 - 2 /* result is 5 */
7 * 2 /* result is 14 */
7 ** 2 /* result is 49 */
7 ** 2.5 /* result is an error */

Division
Notice that three operators represent division. Each operator displays the result of
a division expression in a different way.

/ Divide and express the answer possibly as a decimal number. For example:
7 / 2 /* result is 3.5 */
6 / 2 /* result is 3 */

% Divide and express the answer as a whole number. The remainder is
ignored. For example:
7 % 2 /* result is 3 */

// Divide and express the answer as the remainder only. For example:
7 // 2 /* result is 1 */

Using Expressions

28 z/OS V2R1.0 TSO/E REXX User's Guide

Order of Evaluation
When you have more than one operator in an arithmetic expression, the order of
numbers and operators can be critical. For example, in the following expression,
which operation does the language processor perform first?
7 + 2 * (9 / 3) - 1

Proceeding from left to right, it is evaluated as follows:
v Expressions within parentheses are evaluated first.
v Expressions with operators of higher priority are evaluated before expressions

with operators of lower priority.

Arithmetic operator priority is as follows, with the highest first:

Thus the preceding example would be evaluated in the following order:
1. Expression in parentheses

7 + 2 * (9 / 3) - 1
___/

3

2. Multiplication
7 + 2 * 3 - 1

___/
6

3. Addition and subtraction from left to right
7 + 6 - 1 = 12

Using Arithmetic Expressions
You can use arithmetic expressions in an exec many different ways. The following
example uses several arithmetic operators to round and remove extra decimal
places from a dollar and cents value.

Arithmetic Operator Priority

- + Prefix operators

** Power® (exponential)

* / % // Multiplication and division

+ - Addition and subtraction

Example Using Arithmetic Expressions

/****************************** REXX *******************************/
/* This exec computes the total price of an item including sales */
/* tax rounded to two decimal places. The cost and percent of the */
/* tax (expressed as a decimal number) are passed to the exec when */
/* it is run. */
/***/

PARSE ARG cost percent_tax

total = cost + (cost * percent_tax) /* Add tax to cost. */
price = ((total * 100 + .5) % 1) / 100 /* Round and remove */

/* extra decimal places.*/
SAY ’Your total cost is $’price’.’

Using Expressions

Chapter 3. Using Variables and Expressions 29

Exercises - Calculating Arithmetic Expressions
1. What will the following program display on the screen?

2. What is the value of:
a. 6 - 4 + 1
b. 6 - (4 + 1)
c. 6 * 4 + 2
d. 6 * (4 + 2)
e. 24 % 5 / 2

ANSWERS
1. There are 5 people in this family.
2. The values are as follows:

a. 3
b. 1
c. 26
d. 36
e. 2

Comparison Operators

Expressions that use comparison operators do not return a number value as do
arithmetic expressions. Comparison expressions return either a true or false
response in terms of 1 or 0 as follows:

1 True

0 False

Comparison operators can compare numbers or strings and ask questions, such as:
v Are the terms equal? (A = B)
v Is the first term greater than the second? (A > B)
v Is the first term less than the second? (A < B)

For example, if A = 4 and B = 3, then the results of the previous comparison
questions are:
v (A = B) Does 4 = 3? 0 (False)
v (A > B) Is 4 > 3? 1 (True)
v (A < B) Is 4 < 3? 0 (False)

The more commonly used comparison operators are as follows:

Operator
Meaning

== Strictly Equal

= Equal

\ == Not strictly equal

Exercise

/***************************** REXX ****************************/
pa = 1
ma = 1
kids = 3
SAY "There are" pa + ma + kids "people in this family."

Using Expressions

30 z/OS V2R1.0 TSO/E REXX User's Guide

\ = Not equal

> Greater than

< Less than

> < Greater than or less than (same as not equal)

> = Greater than or equal to

\ < Not less than

< = Less than or equal to

\ > Not greater than

Note: The not character, "¬", is synonymous with the backslash ("\"). The two
characters may be used interchangeably according to availability and personal
preference. This book uses the backslash ("\") character.

The Strictly Equal and Equal Operators
When two expressions are strictly equal, everything including the blanks and case
(when the expressions are characters) is exactly the same.

When two expressions are equal, they are resolved to be the same. The following
expressions are all true.
’WORD’ = word /* returns 1 */
’word ’ \== word /* returns 1 */
’word’ == ’word’ /* returns 1 */
4e2 \== 400 /* returns 1 */
4e2 \= 100 /* returns 1 */

Using Comparison Expressions
Often a comparison expression is used in IF/THEN/ELSE instructions. The
following example uses an IF/THEN/ELSE instruction to compare two values. For
more information about this instruction, see “IF/THEN/ELSE Instructions” on
page 39.

Example Using A Comparison Expression

/****************************** REXX *******************************/
/* This exec compares what you paid for lunch for two */
/* days in a row and then comments on the comparison. */
/***/
SAY ’What did you spend for lunch yesterday?’
SAY ’Please do not include the dollar sign.’

PARSE PULL last

SAY ’What did you spend for lunch today?’
SAY ’Please do not include the dollar sign.’

PARSE PULL lunch

IF lunch > last THEN /* lunch cost increased */
SAY "Today’s lunch cost more than yesterday’s."

ELSE /* lunch cost remained the same or decreased */
SAY "Today’s lunch cost the same or less than yesterday’s."

Using Expressions

Chapter 3. Using Variables and Expressions 31

Exercises - Using Comparison Expressions
1. In the preceding example of using a comparison expression, what appears on

the screen when you respond to the prompts with the following lunch costs?

Yesterday's Lunch
Today's Lunch

4.42 3.75

3.50 3.50

3.75 4.42
2. What is the result (0 or 1) of the following expressions?

a. "Apples" = "Oranges"
b. " Apples" = "Apples"
c. " Apples" == "Apples"
d. 100 = 1E2
e. 100 \= 1E2
f. 100 \== 1E2

ANSWERS
1. The following sentences appear.

a. Today's lunch cost the same or less than yesterday's.
b. Today's lunch cost the same or less than yesterday's.
c. Today's lunch cost more than yesterday's.

2. The expressions result in the following. Remember 0 is false and 1 is true.
a. 0
b. 1
c. 0 (The first " Apples" has a space.)
d. 1
e. 0
f. 1

Logical (Boolean) Operators
Logical expressions, like comparison expressions, return a true (1) or false (0) value
when processed. Logical operators combine two comparisons and return the true
(1) or false (0) value depending on the results of the comparisons.

The logical operators are:

Operator
Meaning

& AND

Returns 1 if both comparisons are true. For example:
(4 > 2) & (a = a) /* true, so result is 1 */

(2 > 4) & (a = a) /* false, so result is 0 */

| Inclusive OR

Returns 1 if at least one comparison is true. For example:
(4 > 2) | (5 = 3) /* at least one is true, so result is 1 */

(2 > 4) | (5 = 3) /* neither one is true, so result is 0 */

&& Exclusive OR

Returns 1 if only one comparison (but not both) is true. For example:

Using Expressions

32 z/OS V2R1.0 TSO/E REXX User's Guide

(4 > 2) && (5 = 3) /* only one is true, so result is 1 */

(4 > 2) && (5 = 5) /* both are true, so result is 0 */

(2 > 4) && (5 = 3) /* neither one is true, so result is 0 */

Prefix \
Logical NOT

Returns the opposite response. For example:
\ 0 /* opposite of 0, so result is 1 */

\ (4 > 2) /* opposite of true, so result is 0 */

Using Logical Expressions
Logical expressions are used in complex conditional instructions and can act as
checkpoints to screen unwanted conditions. When you have a series of logical
expressions, for clarification, use one or more sets of parentheses to enclose each
expression.
IF ((A < B) | (J < D)) & ((M = Q) | (M = D)) THEN ...

The following example uses logical operators to make a decision.

When arguments passed to this example are "spring yes no", the IF clause
translates as follows:
IF ((season = ’winter’) | (snowing =’yes’)) & (broken_leg =’no’) THEN

______________/ ____________/ _____________/
false true true

___________________/ /
true /

_____________________________/
true

As a result, when you run the exec, you see the message:

Go skiing.

Exercises - Using Logical Expressions
A student applying to colleges has decided to pick ones according to the following
specifications:
IF (inexpensive | scholarship) & (reputable | nearby) THEN

SAY "I’ll consider it."
ELSE

SAY "Forget it!"

Example Using Logical Expressions

/***************************** REXX ********************************/
/* This exec receives arguments for a complex logical expression */
/* that determines whether a person should go skiing. The first */
/* argument is a season and the other two can be ’yes’ or ’no’. */
/***/

PARSE ARG season snowing broken_leg

IF ((season = ’winter’) | (snowing =’yes’)) & (broken_leg =’no’)
THEN SAY ’Go skiing.’

ELSE
SAY ’Stay home.’

Using Expressions

Chapter 3. Using Variables and Expressions 33

A college is inexpensive, did not offer a scholarship, is reputable, but is over 1000
miles away. Should the student apply?

ANSWER

Yes. The conditional instruction works out as follows:
IF (inexpensive | scholarship) & (reputable | nearby) THEN ...

___________/ ___________/ _________/ ______/
true false true false

___________/ _________/
true true

_________________________/
true

Concatenation Operators
Concatenation operators combine two terms into one. The terms can be strings,
variables, expressions, or constants. Concatenation can be significant in formatting
output.

The operators that indicate how to join two terms are as follows:

Operator
Meaning

blank Concatenate terms and place one blank in between. Terms that are
separated by more than one blank default to one blank when read. For
example:
SAY true blue /* result is TRUE BLUE */

|| Concatenate terms and place no blanks in between. For example:
(8 / 2)||(3 * 3) /* result is 49 */

abuttal Concatenate terms and place no blanks in between. For example:
per_cent’%’ /* if per_cent = 50, result is 50% */

Using Concatenation Operators
One way to format output is to use variables and concatenation operators as in the
following example. A more sophisticated way to format information is with
parsing and templates. Information about parsing appears in “Parsing Data” on
page 85.

The result of this example is:

baseball $ 5

Example using Concatenation Operators

/****************************** REXX *******************************/
/* This exec formats data into columns for output. */
/***/

sport = ’base’
equipment = ’ball’
column = ’ ’
cost = 5

SAY sport||equipment column ’$’ cost

Using Expressions

34 z/OS V2R1.0 TSO/E REXX User's Guide

Priority of Operators

When more than one type of operator appears in an expression, what operation
does the language processor do first?
IF (A > 7**B) & (B < 3) | (A||B = C) THEN ...

Like the priority of operators within the arithmetic operators, there is an overall
priority that includes all operators. The priority of operators is as follows with the
highest first.

Thus the previous example presented again below:
IF (A > 7**B) & (B < 3) | (A||B = C) THEN ...

given the following values:
v A = 8
v B = 2
v C = 10

would be evaluated as follows:
1. Convert variables to values

IF (8 > 7**2) & (2 < 3) | (8||2 = 10) THEN ...
2. Compute operations of higher priority within parentheses

v Exponential operation
IF (8 > 7**2) & (2 < 3) | (8||2 = 10) THEN ...

____/
49

v Concatenation operation
IF (8 > 49) & (2 < 3) | (8||2 = 10) THEN ...

____/
82

3. Compute all operations within parentheses from left to right
IF (8 > 49) & (2 < 3) | (82 = 10) THEN ...

____/ ___/ _____/
0 1 0

4. Logical AND
0 & 1 | 0
_______/

0

Overall Operator Priority

\ or ¬ - +
Prefix operators

** Power (exponential)

* / % // Multiply and divide

+ - Add and subtract

blank || abuttal
Concatenation operators

== = >< etc.
Comparison operators

& Logical AND

| && Inclusive OR and exclusive OR

Using Expressions

Chapter 3. Using Variables and Expressions 35

5. Inclusive OR
0 | 0
_____________/

0

Exercises - Priority of Operators
1. What are the answers to the following examples?

a. 22 + (12 * 1)
b. -6 / -2 > (45 % 7 / 2) - 1
c. 10 * 2 - (5 + 1) // 5 * 2 + 15 - 1

2. In the example of the student and the college from “Exercises - Using Logical
Expressions” on page 33, if the parentheses were removed from the student's
formula, what would be the outcome for the college?
IF inexpensive | scholarship & reputable | nearby THEN

SAY "I’ll consider it."
ELSE

SAY "Forget it!"

Remember the college is inexpensive, did not offer a scholarship, is reputable,
but is 1000 miles away.

ANSWERS
1. The results are as follows:

a. 34 (22 + 12 = 34)
b. 1 (true) (3 > 3 - 1)
c. 32 (20 - 2 + 15 - 1)

2. I'll consider it.
The & operator has priority, as follows, but the outcome is the same as the
previous version with the parentheses.
IF inexpensive | scholarship & reputable | nearby THEN

_________/ _________/ _______/ ____/
true false true false

\ ___________/ /
\ false /
_________________/ /

true /
____________________/

true

Tracing Expressions with the TRACE Instruction

You can use the TRACE instruction to display how the language processor
evaluates each operation of an expression as it reads it, or to display the final
result of an expression. These two types of tracing are useful for debugging execs.

Tracing Operations

To trace operations within an expression, use the TRACE I (TRACE Intermediates)
form of the TRACE instruction. All expressions that follow the instruction are then
broken down by operation and analyzed as:
>V> - Variable value - The data traced is the contents

of a variable.
>L> - Literal value - The data traced is a literal

(string, uninitialized variable, or constant).
>O> - Operation result - The data traced is the result

of an operation on two terms.

Using Expressions

36 z/OS V2R1.0 TSO/E REXX User's Guide

The following example uses the TRACE I instruction.

EDIT ---- USERID.REXX.EXEC(SAMPLE) ---------------------- COLUMNS 009 080
COMMAND ===> SCROLL ===> HALF
******* ************************** TOP OF DATA ****************************
000001 /************************* REXX *****************************/
000002 /* This exec uses the TRACE instruction to show how an */
000003 /* expression is evaluated, operation by operation. */
000004 /*** */
000005 x = 9
000006 y = 2
000007 TRACE I
000008
000009 IF x + 1 > 5 * y THEN
000010 SAY ’x is big enough.’
000011 ELSE NOP /* No operation on the ELSE path */
******* ********************** BOTTOM OF DATA *****************************

When you run the example, you see on your screen:

9 *-* IF x + 1 > 5 * y
>V> "9"
>L> "1"
>O> "10"
>L> "5"
>V> "2"
>O> "10"
>O> "0"

First you see the line number (9 *-*) followed by the expression. Then the
expression is broken down by operation as follows:
>V> "9" (value of variable x)
>L> "1" (value of literal 1)
>O> "10" (result of operation x + 1)
>L> "5" (value of literal 5)
>V> "2" (value of variable y)
>O> "10" (result of operation 5 * y)
>O> "0" (result of final operation 10 > 10 is false)

Tracing Results

To trace only the final result of an expression, use the TRACE R (TRACE Results)
form of the TRACE instruction. All expressions that follow the instruction are
analyzed and the results are displayed as:

>>> Final result of an expression

If you changed the TRACE instruction operand in the previous example from an I
to an R, you would see the following results.

9 *-* IF x + 1 > 5 * y
>>> "0"

In addition to tracing operations and results, the TRACE instruction offers other
types of tracing. For information about the other types of tracing with the TRACE
instruction, see z/OS TSO/E REXX Reference.

Exercises - Using the TRACE Instruction
Write an exec with a complex expression, such as:
IF (A > B) | (C < 2 * D) THEN ...

Tracing Expressions with the TRACE Instruction

Chapter 3. Using Variables and Expressions 37

Define A, B, C, and D in the exec and use the TRACE I instruction.

ANSWER

When this exec is run, you see the following:

12 *-* IF (A > B) | (C < 2 * D)
>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- THEN

13 *-* SAY ’At least one expression was true.’
>L> "At least one expression was true."

At least one expression was true.

Possible Solution

/****************************** REXX *******************************/
/* This exec uses the TRACE instruction to show how an expression */
/* is evaluated, operation by operation. */
/***/
A = 1
B = 2
C = 3
D = 4

TRACE I

IF (A > B) | (C < 2 * D) THEN
SAY ’At least one expression was true.’

ELSE
SAY ’Neither expression was true.’

Tracing Expressions with the TRACE Instruction

38 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 4. Controlling the Flow Within an Exec

This chapter introduces instructions that alter the sequential execution of an exec
and demonstrates how those instructions are used.

Generally when an exec runs, one instruction after another executes, starting with
the first and ending with the last. The language processor, unless told otherwise,
executes instructions sequentially.

You can alter the order of execution within an exec by using specific REXX
instructions that cause the language processor to skip some instructions, repeat
others, or jump to another part of the exec. These specific REXX instructions can be
classified as follows:
v Conditional instructions, which set up at least one condition in the form of an

expression. If the condition is true, the language processor selects the path
following that condition. Otherwise the language processor selects another path.
The REXX conditional instructions are:
– IF expression/THEN/ELSE
– SELECT/WHEN expression/OTHERWISE/END.

v Looping instructions, which tell the language processor to repeat a set of
instructions. A loop can repeat a specified number of times or it can use a
condition to control repeating. REXX looping instructions are:
– DO expression/END
– DO FOREVER/END
– DO WHILE expression=true/END
– DO UNTIL expression=true/END

v Interrupt instructions, which tell the language processor to leave the exec
entirely or leave one part of the exec and go to another part, either permanently
or temporarily. The REXX interrupt instructions are:
– EXIT
– SIGNAL label
– CALL label/RETURN

Using Conditional Instructions
There are two types of conditional instructions. IF/THEN/ELSE can direct the
execution of an exec to one of two choices. SELECT/WHEN/OTHERWISE/END
can direct the execution to one of many choices.

IF/THEN/ELSE Instructions

The examples of IF/THEN/ELSE instructions in previous chapters demonstrated
the two-choice selection. In a flow chart, this appears as follows:

© Copyright IBM Corp. 1988, 2013 39

As a REXX instruction, the flowchart example looks like:
IF expression THEN instruction

ELSE instruction

You can also arrange the clauses in one of the following ways to enhance
readability:
IF expression THEN

instruction
ELSE

instruction

or
IF expression

THEN
instruction

ELSE
instruction

When you put the entire instruction on one line, you must separate the THEN
clause from the ELSE clause with a semicolon.
IF expression THEN instruction; ELSE instruction

Generally, at least one instruction should follow the THEN and ELSE clauses.
When either clause has no instructions, it is good programming practice to include
NOP (no operation) next to the clause.
IF expression THEN

instruction
ELSE NOP

If you have more than one instruction for a condition, begin the set of instructions
with a DO and end them with an END.
IF weather = rainy THEN

SAY ’Find a good book.’
ELSE

DO
SAY ’Would you like to play tennis or golf?’
PULL answer

END

Without the enclosing DO and END, the language processor assumes only one
instruction for the ELSE clause.

IF

expression
False True

ELSE THEN

instruction instruction

Using Conditional Instructions

40 z/OS V2R1.0 TSO/E REXX User's Guide

Nested IF/THEN/ELSE Instructions
Sometimes it is necessary to have one or more IF/THEN/ELSE instructions within
other IF/THEN/ELSE instructions. Having one type of instruction within another
is called nesting. With nested IF instructions, it is important to match each IF with
an ELSE and each DO with an END.
IF weather = fine THEN

DO
SAY ’What a lovely day!’
IF tenniscourt = free THEN

SAY ’Shall we play tennis?’
ELSE NOP

END
ELSE

SAY ’Shall we take our raincoats?’

Not matching nested IFs to ELSEs and DOs to ENDs can have some surprising
results. If you eliminate the DOs and ENDs and the ELSE NOP, as in the following
example, what is the outcome?

By looking at the exec you might assume the ELSE belongs to the first IF.
However, the language processor associates an ELSE with the nearest unpaired IF.
The outcome is as follows:

What a lovely day!
Shall we take our raincoats?

Exercise - Using the IF/THEN/ELSE Instruction
Write the REXX instructions for the following flowchart:

Example of Missing Instructions

/******************************** REXX *****************************/
/* This exec demonstrates what can happen when you do not include */
/* DOs, ENDs, and ELSEs in nested IF/THEN/ELSE instructions. */
/***/
weather = ’fine’
tenniscourt = ’occupied’

IF weather = ’fine’ THEN
SAY ’What a lovely day!’
IF tenniscourt = ’free’ THEN

SAY ’Shall we play tennis?’
ELSE

SAY ’Shall we take our raincoats?’

Using Conditional Instructions

Chapter 4. Controlling the Flow Within an Exec 41

ANSWER

SELECT/WHEN/OTHERWISE/END Instruction

To select one of any number of choices, use the SELECT/WHEN/OTHERWISE/
END instruction. In a flowchart it appears as follows:

False

False

False

True

True

True

IF

A=0

A=3

B=2

C=3

A=1

C=2
False True

B=1

IFIF

IF

Possible Solution

IF A = 0 THEN
IF C = 2 THEN

B = 1
ELSE NOP

ELSE
IF B = 2 THEN

IF C = 3 THEN
A = 1

ELSE
A = 3

ELSE NOP

Using Conditional Instructions

42 z/OS V2R1.0 TSO/E REXX User's Guide

As a REXX instruction, the flowchart example looks like:
SELECT

WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction

...
OTHERWISE

instruction(s)
END

The language processor scans the WHEN clauses starting at the beginning until it
finds a true expression. After it finds a true expression, it ignores all other
possibilities, even though they might also be true. If no WHEN expressions are
true, it processes the instructions following the OTHERWISE clause.

As with the IF/THEN/ELSE instruction, when you have more than one instruction
for a possible path, begin the set of instructions with a DO and end them with an
END. However, if more than one instruction follows the OTHERWISE keyword,
DO and END are not necessary.

SELECT

WHEN

False

WHEN

False

WHEN

False

OTHERWISE

END

True

True

True

THEN

THEN

THEN

instruction

instruction

instruction

instruction(s)

Using Conditional Instructions

Chapter 4. Controlling the Flow Within an Exec 43

Each SELECT must end with an END. Indenting each WHEN makes an exec easier
to read.

Exercises - Using the SELECT/WHEN/OTHERWISE/END
Instruction
"Thirty days hath September, April, June, and November; all the rest have
thirty-one, save February alone ..."

Write an exec that provides the number of days in a month. First have the exec ask
the user for a month specified as a number from 1 to 12 (with January being 1,
February 2, and so forth). Then have the exec reply with the number of days. For
month "2", the reply can be "28 or 29".

ANSWER

Example Using SELECT/WHEN/OTHERWISE/END

/******************************** REXX *****************************/
/* This exec receives input with a person’s age and sex. In */
/* reply it displays a person’s status as follows: */
/* BABIES - under 5 */
/* GIRLS - female 5 to 12 */
/* BOYS - male 5 to 12 */
/* TEENAGERS - 13 through 19 */
/* WOMEN - female 20 and up */
/* MEN - male 20 and up */
/***/
PARSE ARG age sex .

SELECT
WHEN age < 5 THEN /* person younger than 5 */

status = ’BABY’
WHEN age < 13 THEN /* person between 5 and 12 */

DO
IF sex = ’M’ THEN /* boy between 5 and 12 */

status = ’BOY’
ELSE /* girl between 5 and 12 */

status = ’GIRL’
END

WHEN age < 20 THEN /* person between 13 and 19 */
status = ’TEENAGER’

OTHERWISE
IF sex = ’M’ THEN /* man 20 or older */

status = ’MAN’
ELSE /* woman 20 or older */

status = ’WOMAN’
END

SAY ’This person should be counted as a’ status ’.’

Using Conditional Instructions

44 z/OS V2R1.0 TSO/E REXX User's Guide

Using Looping Instructions
There are two types of looping instructions, repetitive loops and conditional
loops. Repetitive loops allow you to repeat instructions a certain number of times,
and conditional loops use a condition to control repeating. All loops, regardless of
the type, begin with the DO keyword and end with the END keyword.

Repetitive Loops
The simplest loop tells the language processor to repeat a group of instructions a
specific number of times using a constant following the keyword DO.
DO 5

SAY ’Hello!’
END

When you run this example, you see five lines of Hello!.

Hello!
Hello!
Hello!
Hello!
Hello!

You can also use a variable in place of a constant as in the following example,
which gives you the same results.
number = 5
DO number

SAY ’Hello!’
END

Possible Solution

/******************************** REXX *****************************/
/* This exec requests the user to enter a month as a whole number */
/* from 1 to 12 and responds with the number of days in that */
/* month. */
/***/

SAY ’To find out the number of days in a month,’
SAY ’Enter the month as a number from 1 to 12.’
PULL month

SELECT
WHEN month = 9 THEN

days = 30
WHEN month = 4 THEN

days = 30
WHEN month = 6 THEN

days = 30
WHEN month = 11 THEN

days = 30
WHEN month = 2 THEN

days = ’28 or 29’
OTHERWISE

days = 31
END

SAY ’There are’ days ’days in Month’ month ’.’

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 45

A variable that controls the number of times a loop repeats is called a control
variable. Unless you specify otherwise, the control variable increases by 1 each
time the loop repeats.
DO number = 1 TO 5

SAY ’Loop’ number
SAY ’Hello!’

END
SAY ’Dropped out of the loop when number reached’ number

This example results in five lines of Hello! preceded by the number of the loop.
The number increases at the bottom of the loop and is tested at the top.

Loop 1
Hello!
Loop 2
Hello!
Loop 3
Hello!
Loop 4
Hello!
Loop 5
Hello!
Dropped out of the loop when number reached 6

You can change the increment of the control variable with the keyword BY as
follows:
DO number = 1 TO 10 BY 2

SAY ’Loop’ number
SAY ’Hello!’

END
SAY ’Dropped out of the loop when number reached’ number

This example has results similar to the previous example except the loops are
numbered in increments of two.

Loop 1
Hello!
Loop 3
Hello!
Loop 5
Hello!
Loop 7
Hello!
Loop 9
Hello!
Dropped out of the loop when number reached 11

Infinite Loops
What happens when the control variable of a loop cannot attain the last number?
For example, in the following exec segment, count does not increase beyond 1.
DO count = 1 to 10

SAY ’Number’ count
count = count - 1

END

The result is called an infinite loop because count alternates between 1 and 0 and
an endless number of lines saying Number 1 appear on the screen.

Using Looping Instructions

46 z/OS V2R1.0 TSO/E REXX User's Guide

HI will not halt an infinitely looping or long running external function, subroutine,
or host command written in a language other than REXX and that was called by
your exec. The HI condition is not checked by the REXX interpreter until control
returns from the function, subroutine, or host command.

If myfunct enters an infinite loop, pressing the attention interrupt key and entering
HI will not stop myfunct. However, pressing the attention interrupt key and then
entering HE will stop the function and the exec (EXEC1) that called it. HE does not
automatically stop any exec that called EXEC1, unless you are running under ISPF.
For more information about the HE condition, see z/OS TSO/E REXX Reference.

Note: HE does not alter the halt condition, which is raised by HI. If you entered
HI before you entered HE (for example, you may have first issued HI and it failed
to end your exec), the halt condition will remain set for the exec and all calling
execs. HE will stop your exec, and then the halt condition, raised when you
entered HI, will be recognized by any exec that called your exec.

DO FOREVER Loops

Sometimes you might want to purposely write an infinite loop; for instance, in an
exec that reads records from a data set until it reaches end of file, or in an exec
that interacts with a user until the user enters a particular symbol to end the loop.
You can use the EXIT instruction to end an infinite loop when a condition is met,
as in the following example. More about the EXIT instruction appears in “EXIT
Instruction” on page 55.

IMPORTANT - Stopping An Infinite Loop

When you suspect an exec is in an infinite loop, you can end the exec by pressing the
attention interrupt key, sometimes labeled PA1. You will then see message IRX0920I. In
response to this message, type HI for halt interpretation and press the Enter key. If that
doesn't stop the loop, you can press the attention interrupt key again, type HE for halt
execution, and press the Enter key.

Example of EXEC1, an exec that calls an external function

/********************* REXX **/
/* Invoke a user-written external function, ’myfunct’. */
/* not written in REXX. For example, it might have been coded */
/* in PL/I or assembler. */
/***/
x = myfunct(1)
exit

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 47

This example sends data sets to the printer and then issues a message that the data
set was printed. When the user enters a blank, the loop ends and so does the exec.
To end the loop without ending the exec, use the LEAVE instruction, as described
in the following topic.

LEAVE Instruction
TheLEAVE instruction causes an immediate exit from a repetitive loop. Control
goes to the instruction following the END keyword of the loop. An example of
using the LEAVE instruction follows:

ITERATE Instruction
Anotherinstruction, ITERATE, stops execution from within the loop and passes
control to the DO instruction at the top of the loop. Depending on the type of DO
instruction, a control variable is increased and tested and/or a condition is tested
to determine whether to repeat the loop. Like LEAVE, ITERATE is used within the
loop.
DO count = 1 TO 10

IF count = 8
THEN

ITERATE
ELSE

SAY ’Number’ count
END

Example Using a DO FOREVER Loop

/****************************** REXX *******************************/
/* This exec prints data sets named by a user until the user enters*/
/* a null line. */
/***/

DO FOREVER
SAY ’Enter the name of the next data set or a blank to end.’
PULL dataset_name
IF dataset_name = ’’ THEN

EXIT
ELSE

DO
"PRINTDS DA("dataset_name")"
SAY dataset_name ’printed.’

END
END

Example Using the LEAVE Instruction

/******************************** REXX *****************************/
/* This exec uses the LEAVE instruction to exit from a DO FOREVER */
/* loop that sends data sets to the printer. */
/***/

DO FOREVER
SAY ’Enter the name of the next data set.’
SAY ’When there are no more data sets, enter QUIT.’
PULL dataset_name
IF dataset_name = ’QUIT’ THEN

LEAVE
ELSE

DO
"PRINTDS DA("dataset_name")"
SAY dataset_name ’printed.’

END
END
SAY ’Good-bye.’

Using Looping Instructions

48 z/OS V2R1.0 TSO/E REXX User's Guide

This example results in a list of numbers from 1 to 10 with the exception of
number 8.

Number 1
Number 2
Number 3
Number 4
Number 5
Number 6
Number 7
Number 9
Number 10

Exercises - Using Loops
1. What are the results of the following loops?

a. DO digit = 1 TO 3
SAY digit

END
SAY ’Digit is now’ digit

b. DO count = 10 BY -2 TO 6
SAY count

END
SAY ’Count is now’ count

c. DO index = 10 TO 8
SAY ’Hup! Hup! Hup!’

END
SAY ’Index is now’ index

2. Sometimes an infinite loop can occur when input to end the loop doesn't match
what is expected. For instance, in the previous example using the “LEAVE
Instruction” on page 48, what happens when the user enters Quit and the
PULL instruction is changed to a PARSE PULL instruction?
PARSE PULL dataset_name

ANSWERS
1. The results of the repetitive loops are as follows:

a. 1
2
3
Digit is now 4

b. 10
8
6
Count is now 4

c. (blank)
Index is now 10

2. The user would be unable to leave the loop because "Quit" is not equal to
"QUIT". In this case, omitting the PARSE keyword is preferred because
regardless of whether the user enters "quit", "QUIT", or "Quit", the language
processor translates the input to uppercase before comparing it to "QUIT".

Conditional Loops
There are two types of conditional loops, DO WHILE and DO UNTIL. Both types
of loops are controlled by one or more expressions. However, DO WHILE loops
test the expression before the loop executes the first time and repeat only when the
expression is true. DO UNTIL loops test the expression after the loop executes at
least once and repeat only when the expression is false.

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 49

DO WHILE Loops
DO WHILE loops in a flowchart appear as follows:

As REXX instructions, the flowchart example looks like:
DO WHILE expression /* expression must be true */

instruction(s)
END

Use a DO WHILE loop when you want to execute the loop while a condition is
true. DO WHILE tests the condition at the top of the loop. If the condition is
initially false, the loop is never executed.

You can use a DO WHILE loop instead of the DO FOREVER loop in the example
using the “LEAVE Instruction” on page 48. However, you need to initialize the
loop with a first case so the condition can be tested before you get into the loop.
Notice the first case initialization in the beginning three lines of the following
example.

Exercise - Using a DO WHILE Loop
Write an exec with a DO WHILE loop that asks passengers on a commuter airline
if they want a window seat and keeps track of their responses. The flight has 8
passengers and 4 window seats. Discontinue the loop when all the window seats
are taken. After the loop ends, display the number of window seats taken and the
number of passengers questioned.

ANSWER

DO WHILE

END

expression
True

False

instruction(s)

Example Using DO WHILE

/******************************** REXX *****************************/
/* This exec uses a DO WHILE loop to send data sets to the system */
/* printer. */
/***/

SAY ’Enter the name of a data set to print.’
SAY ’If there are no data sets, enter QUIT.’
PULL dataset_name
DO WHILE dataset_name \= ’QUIT’

"PRINTDS DA("dataset_name")"
SAY dataset_name ’printed.’
SAY ’Enter the name of the next data set.’
SAY ’When there are no more data sets, enter QUIT.’
PULL dataset_name

END
SAY ’Good-bye.’

Using Looping Instructions

50 z/OS V2R1.0 TSO/E REXX User's Guide

DO UNTIL Loops
DO UNTIL loops in a flowchart appear as follows:

As REXX instructions, the flowchart example looks like:
DO UNTIL expression /* expression must be false */

instruction(s)
END

Use DO UNTIL loops when a condition is not true and you want to execute the
loop until the condition is true. The DO UNTIL loop tests the condition at the end
of the loop and repeats only when the condition is false. Otherwise the loop

Possible Solution

/******************************** REXX *****************************/
/* This exec uses a DO WHILE loop to keep track of window seats in */
/* an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO WHILE (passenger < 8) & (window_seats \= 4)

/**/
/* Continue while you have not questioned all 8 passengers and */
/* while all the window seats are not taken. */
/**/

SAY ’Do you want a window seat? Please answer Y or N.’
PULL answer
passenger = passenger + 1

/* Increase the number of passengers by 1 */
IF answer = ’Y’ THEN

window_seats = window_seats + 1
/* Increase the number of window seats by 1 */

ELSE NOP
END

SAY window_seats ’window seats were assigned.’
SAY passenger ’passengers were questioned.’

DO UNTIL

instruction(s)

expression
False

True

END

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 51

executes once and ends. For example:

Exercise - Using a DO UNTIL Loop
Change the exec in the previous exercise, “Exercise - Using a DO WHILE Loop” on
page 50, from a DO WHILE to a DO UNTIL loop and achieve the same results.
Remember that DO WHILE loops check for true expressions and DO UNTIL loops
check for false expressions, which means their logical operators are often reversed.

ANSWER

Combining Types of Loops
You can combine repetitive and conditional loops to create a compound loop. The
following loop is set to repeat 10 times while a certain condition is met, at which
point it stops.

Example Using DO UNTIL

/******************************** REXX *****************************/
/* This exec uses a DO UNTIL loop to ask for a password. If the */
/* password is incorrect three times, the loop ends. */
/***/

password = ’abracadabra’
time = 0
DO UNTIL (answer = password) | (time = 3)

SAY ’What is the password?’
PULL answer
time = time + 1

END

Possible Solution

/******************************** REXX *****************************/
/* This exec uses a DO UNTIL loop to keep track of window seats in */
/* an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO UNTIL (passenger >= 8) | (window_seats = 4)

/**/
/* Continue until you have questioned all 8 passengers or until */
/* all the window seats are taken. */
/**/

SAY ’Do you want a window seat? Please answer Y or N.’
PULL answer
passenger = passenger + 1

/* Increase the number of passengers by 1 */
IF answer = ’Y’ THEN

window_seats = window_seats + 1
/* Increase the number of window seats by 1 */

ELSE NOP
END
SAY window_seats ’window seats were assigned.’
SAY passenger ’passengers were questioned.’

Using Looping Instructions

52 z/OS V2R1.0 TSO/E REXX User's Guide

quantity = 20
DO number = 1 TO 10 WHILE quantity < 50

quantity = quantity + number
SAY ’Quantity = ’quantity ’ (Loop ’number’)’

END

The result of this example is as follows:

Quantity = 21 (Loop 1)
Quantity = 23 (Loop 2)
Quantity = 26 (Loop 3)
Quantity = 30 (Loop 4)
Quantity = 35 (Loop 5)
Quantity = 41 (Loop 6)
Quantity = 48 (Loop 7)
Quantity = 56 (Loop 8)

You can substitute a DO UNTIL loop, change the comparison operator from < to >,
and get the same results.
quantity = 20
DO number = 1 TO 10 UNTIL quantity > 50

quantity = quantity + number
SAY ’Quantity = ’quantity ’ (Loop ’number’)’

END

Nested DO Loops
Like nested IF/THEN/ELSE instructions, DO loops can also be within other DO
loops. A simple example follows:
DO outer = 1 TO 2

DO inner = 1 TO 2
SAY ’HIP’

END
SAY ’HURRAH’

END

The output from this example is:

HIP
HIP
HURRAH
HIP
HIP
HURRAH

If you need to leave a loop when a certain condition arises, use the LEAVE
instruction followed by the control variable of the loop. If the LEAVE instruction is
for the inner loop, you leave the inner loop and go to the outer loop. If the LEAVE
instruction is for the outer loop, you leave both loops.

To leave the inner loop in the preceding example, add an IF/THEN/ELSE
instruction that includes a LEAVE instruction after the IF instruction.
DO outer = 1 TO 2

DO inner = 1 TO 2
IF inner > 1 THEN

LEAVE inner
ELSE

SAY ’HIP’
END
SAY ’HURRAH’

END

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 53

The result is as follows:

HIP
HURRAH
HIP
HURRAH

Exercises - Combining Loops
1. What happens when the following exec runs?

DO outer = 1 TO 3
SAY /* Write a blank line */
DO inner = 1 TO 3

SAY ’Outer’ outer ’Inner’ inner
END

END

2. Now what happens when the LEAVE instruction is added?
DO outer = 1 TO 3

SAY /* Write a blank line */
DO inner = 1 TO 3

IF inner = 2 THEN
LEAVE inner

ELSE
SAY ’Outer’ outer ’Inner’ inner

END
END

ANSWERS
1. When this example runs, you see on your screen the following:

Outer 1 Inner 1
Outer 1 Inner 2
Outer 1 Inner 3

Outer 2 Inner 1
Outer 2 Inner 2
Outer 2 Inner 3

Outer 3 Inner 1
Outer 3 Inner 2
Outer 3 Inner 3

2. The result is one line of output for each of the inner loops.

Outer 1 Inner 1

Outer 2 Inner 1

Outer 3 Inner 1

Using Interrupt Instructions
Instructions that interrupt the flow of an exec can cause the exec to:
v Terminate (EXIT)
v Skip to another part of the exec marked by a label (SIGNAL)
v Go temporarily to a subroutine either within the exec or outside the exec

(CALL/RETURN).

Using Looping Instructions

54 z/OS V2R1.0 TSO/E REXX User's Guide

EXIT Instruction
The EXIT instruction causes an exec to unconditionally end and return to where
the exec was invoked. If the exec was initiated from the PROC section of an ISPF
selection panel, EXIT returns to the ISPF panel. If the exec was called by a
program, such as another exec, EXIT returns to the program. More about calling
external routines appears later in this chapter and in Chapter 6, “Writing
Subroutines and Functions,” on page 67.

In addition to ending an exec, EXIT can also return a value to the invoker of the
exec. If the exec was invoked as a subroutine from another REXX exec, the value is
received in the REXX special variable RESULT. If the exec was invoked as a
function, the value is received in the original expression at the point where the
function was invoked. Otherwise, the value is received in the REXX special
variable RC. The value can represent a return code and can be in the form of a
constant or an expression that is computed.

CALL/RETURN Instructions

The CALL instruction interrupts the flow of an exec by passing control to an
internal or external subroutine. An internal subroutine is part of the calling exec.
An external subroutine is another exec. The RETURN instruction returns control
from a subroutine back to the calling exec and optionally returns a value.

When calling an internal subroutine, CALL passes control to a label specified after
the CALL keyword. When the subroutine ends with the RETURN instruction, the
instructions following CALL are executed.

Example Using the EXIT Instruction

/******************************** REXX *****************************/
/* This exec uses the EXIT instruction to end the exec and return */
/* a value that indicates whether or not a job applicant gets the */
/* job. A value of 0 means the applicant does not qualify for */
/* the job, but a value of 1 means the applicant gets the job. */
/* The value is placed in the REXX special variable RESULT. */
/***/
SAY ’How many months of experience do you have? Please enter’
SAY ’the months as a number.’
PULL month

SAY ’Can you supply 3 references? Please answer Y or N.’
PULL reference

SAY ’Are you available to start work tomorrow? Please answer Y or N.’
PULL tomorrow

IF (month > 24) & (reference = ’Y’) & (tomorrow = ’Y’) THEN
job = 1 /* person gets the job */

ELSE
job = 0 /* person does not get the job */

EXIT job

Using Interrupt Instructions

Chapter 4. Controlling the Flow Within an Exec 55

When calling an external subroutine, CALL passes control to the exec name that is
specified after the CALL keyword. When the external subroutine completes, you
can use the RETURN instruction to return to where you left off in the calling exec.

For more information about calling subroutines, see Chapter 6, “Writing
Subroutines and Functions,” on page 67.

SIGNAL Instruction
The SIGNAL instruction, like CALL, interrupts the normal flow of an exec and
causes control to pass to a specified label. The label to which control passes can
appear before or after the SIGNAL instruction. Unlike CALL, SIGNAL does not
return to a specific instruction to resume execution. When you use SIGNAL from
within a loop, the loop automatically ends; and when you use SIGNAL from an
internal routine, the internal routine will not return to its caller.

In the following example, if the expression is true, then the language processor
goes to the label Emergency: and skips all instructions in between.

instruction(s)
CALL sub1

instruction(s)
EXIT

sub1:
instruction(s)
RETURN

REXX.EXEC(MAIN)

instruction(s)
CALL sub2

instruction(s)
.
.
.

REXX.EXEC(SUB2)

instruction(s)
RETURN

Using Interrupt Instructions

56 z/OS V2R1.0 TSO/E REXX User's Guide

SIGNAL is useful for testing execs or to provide an emergency course of action. It
should not be used as a convenient way to move from one place in an exec to
another. SIGNAL does not provide a way to return as does the CALL instruction
described in “CALL/RETURN Instructions” on page 55.

For more information about the SIGNAL instruction, see page 111, and z/OS TSO/E
REXX Reference.

IF expression THEN

SIGNAL Emergency

ELSE

instruction(s)

Emergency:

instruction(s)

Using Interrupt Instructions

Chapter 4. Controlling the Flow Within an Exec 57

58 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 5. Using Functions

This chapter defines what a function is and describes how to use the built-in
functions.

What is a Function?
Afunction is a sequence of instructions that can receive data, process that data, and
return a value. In REXX, there are several kinds of functions:
v Built-in functions — These functions are built into the language processor. More

about built-in functions appears later in this chapter.
v User-written functions — These functions are written by an individual user or

supplied by an installation and can be internal or external. An internal function is
part of the current exec that starts at a label. An external function is a
self-contained program or exec outside of the calling exec. More information
about user-written functions appears in “Writing a Function” on page 75.

v Function packages — These are groups of functions and subroutines written by
an individual user or supplied by an installation. They are link-edited into load
modules and categorized as user, local, and system. TSO/E external functions
are provided in a system function package. More information about TSO/E
external functions appears in “TSO/E External Functions” on page 117.

Regardless of the kind of function, all functions return a value to the exec that
issued the function call. To call a function, type the function name directly
followed by one or more arguments within parentheses. There can be no space
between the function name and the left parenthesis.
function(arguments)

A function call can contain up to 20 arguments separated by commas. Each
argument can be one or more of the following.
v Blank

function()

v Constant
function(55)

v Symbol
function(symbol_name)

v Literal string
function(’With a literal string’)

v Option recognized by the function
function(option)

v Another function
function(function(arguments))

v Combination of argument types
function(’With a literal string’, 55, option)

When the function returns a value, and all functions must return values, the value
replaces the function call. In the following example, the value returned is added to
7 and the sum is displayed.
SAY 7 + function(arguments)

© Copyright IBM Corp. 1988, 2013 59

A function call generally appears in an expression. Therefore a function call, like an
expression, does not usually appear in an instruction by itself.

Example of a Function
Calculations represented by functions often require many instructions. For instance,
the simple calculation for finding the highest number in a group of three numbers,
might be written as follows:

Rather than writing multiple instructions every time you want to find the
maximum of a group of three numbers, you can use a built-in function that does
the calculation for you and returns the maximum number. The function is called
MAX and is used as follows:
MAX(number1,number2,number3,...)

To find the maximum of 45, -2, number, 199, and put the maximum into the
symbol biggest, write the following instruction:
biggest = MAX(45,-2,number,199)

Built-In Functions

Over 50 functions are built into the language processor. The built-in functions fall
into the following categories:
v Arithmetic functions

These functions evaluate numbers from the argument and return a particular
value.

v Comparison functions
These functions compare numbers and/or strings and return a value.

v Conversion functions
These functions convert one type of data representation to another type of data
representation.

v Formatting functions
These functions manipulate the characters and spacing in strings supplied in the
argument.

Finding a Maximum Number

/***************************** REXX ********************************/
/* This exec receives three numbers from a user and analyzes which */
/* number is the greatest. */
/***/

PARSE ARG number1, number2, number3 .

IF number1 > number2 THEN
IF number1 > number3 THEN

greatest = number1
ELSE

greatest = number3
ELSE

IF number2 > number3 THEN
greatest = number2

ELSE
greatest = number3

RETURN greatest

What is a Function?

60 z/OS V2R1.0 TSO/E REXX User's Guide

v String manipulating functions
These functions analyze a string supplied in the argument (or a variable
representing a string) and return a particular value.

v Miscellaneous functions
These functions do not clearly fit into any of the other categories.

The following tables briefly describe the functions in each category. For a complete
description of these functions, see z/OS TSO/E REXX Reference.

Arithmetic Functions

Function Description

ABS Returns the absolute value of the input number.

DIGITS Returns the current setting of NUMERIC DIGITS.

FORM Returns the current setting of NUMERIC FORM.

FUZZ Returns the current setting of NUMERIC FUZZ.

MAX Returns the largest number from the list specified, formatted according
to the current NUMERIC settings.

MIN Returns the smallest number from the list specified, formatted
according to the current NUMERIC settings.

RANDOM Returns a quasi-random, non-negative whole number in the range
specified.

SIGN Returns a number that indicates the sign of the input number.

TRUNC Returns the integer part of the input number, and optionally a specified
number of decimal places.

Comparison Functions

Function Description

COMPARE Returns 0 if the two input strings are identical. Otherwise, returns the
position of the first character that does not match.

DATATYPE Returns a string indicating the input string is a particular data type,
such as a number or character.

SYMBOL Returns this state of the symbol (variable, literal, or bad).

Conversion Functions

Function Description

B2X Returns a string, in character format, that represents the input binary
string converted to hexadecimal. (Binary to hexadecimal)

C2D Returns the decimal value of the binary representation of the input
string. (Character to Decimal)

C2X Returns a string, in character format, that represents the input string
converted to hexadecimal. (Character to Hexadecimal)

D2C Returns a string, in character format, that represents the input decimal
number converted to binary. (Decimal to Character)

D2X Returns a string, in character format, that represents the input decimal
number converted to hexadecimal. (Decimal to Hexadecimal)

Built-In Functions

Chapter 5. Using Functions 61

Function Description

X2B Returns a string, in character format, that represents the input
hexadecimal string converted to binary. (Hexadecimal to binary)

X2C Returns a string, in character format, that represents the input
hexadecimal string converted to character. (Hexadecimal to Character)

X2D Returns the decimal representation of the input hexadecimal string.
(Hexadecimal to Decimal)

Formatting Functions

Function Description

CENTER/
CENTRE

Returns a string of a specified length with the input string centered in
it, with pad characters added as necessary to make up the length.

COPIES Returns the specified number of concatenated copies of the input string.

FORMAT Returns the input number, rounded and formatted.

JUSTIFY * Returns a specified string formatted by adding pad characters between
words to justify to both margins.

LEFT Returns a string of the specified length, truncated or padded on the
right as needed.

RIGHT Returns a string of the specified length, truncated or padded on the left
as needed.

SPACE Returns the words in the input string with a specified number of pad
characters between each word.

* Indicates a non-SAA built-in function provided only by TSO/E.

String Manipulating Functions

Function Description

ABBREV Returns a string indicating if one string is equal to the specified
number of leading characters of another string.

DELSTR Returns a string after deleting a specified number of characters, starting
at a specified point in the input string.

DELWORD Returns a string after deleting a specified number of words, starting at
a specified word in the input string.

FIND * Returns the word number of the first word of a specified phrase found
within the input string.

INDEX * Returns the character position of the first character of a specified string
found in the input string.

INSERT Returns a character string after inserting one input string into another
string after a specified character position.

LASTPOS Returns the starting character position of the last occurrence of one
string in another.

LENGTH Returns the length of the input string.

OVERLAY Returns a string that is the target string overlaid by a second input
string.

POS Returns the character position of one string in another.

Built-In Functions

62 z/OS V2R1.0 TSO/E REXX User's Guide

Function Description

REVERSE Returns a character string, the characters of which are in reverse order
(swapped end for end).

STRIP Returns a character string after removing leading or trailing characters
or both from the input string.

SUBSTR Returns a portion of the input string beginning at a specified character
position.

SUBWORD Returns a portion of the input string starting at a specified word
number.

TRANSLATE Returns a character string with each character of the input string
translated to another character or unchanged.

VERIFY Returns a number indicating whether an input string is composed only
of characters from another input string or returns the character position
of the first unmatched character.

WORD Returns a word from an input string as indicated by a specified
number.

WORDINDEX Returns the character position in an input string of the first character in
the specified word.

WORDLENGTH Returns the length of a specified word in the input string.

WORDPOS Returns the word number of the first word of a specified phrase in the
input string.

WORDS Returns the number of words in the input string.

* Indicates a non-SAA built-in function provided only by TSO/E.

Miscellaneous Functions

Function Description

ADDRESS Returns the name of the environment to which commands are currently
being sent.

ARG Returns an argument string or information about the argument strings
to a program or internal routine.

BITAND Returns a string composed of the two input strings logically ANDed
together, bit by bit.

BITOR Returns a string composed of the two input strings logically ORed
together, bit by bit.

BITXOR Returns a string composed of the two input strings eXclusive ORed
together, bit by bit.

CONDITION Returns the condition information, such as name and status, associated
with the current trapped condition.

DATE Returns the date in the default format (dd mon yyyy) or in one of
various optional formats.

ERRORTEXT Returns the error message associated with the specified error number.

EXTERNALS * Returns the number of elements in the terminal input buffer. In TSO/E,
this function always returns a 0.

LINESIZE * Returns the current terminal line width minus 1.

QUEUED Returns the number of lines remaining in the external data queue at the
time when the function is invoked.

Built-In Functions

Chapter 5. Using Functions 63

Function Description

SOURCELINE Returns either the line number of the last line in the source file or the
source line specified by a number.

TIME Returns the local time in the default 24-hour clock format (hh:mm:ss) or
in one of various optional formats.

TRACE Returns the trace actions currently in effect.

USERID * Returns the TSO/E user ID, if the REXX exec is running in the TSO/E
address space.

VALUE Returns the value of a specified symbol and optionally assigns it a new
value.

XRANGE Returns a string of all 1-byte codes (in ascending order) between and
including specified starting and ending values.

* Indicates a non-SAA built-in function provided only by TSO/E.

Testing Input with Built-In Functions
Some of the built-in functions provide a convenient way to test input. When an
interactive exec requests input, the user might respond with input that is not valid.
For instance, in the example “Using Comparison Expressions” on page 31, the exec
requests a dollar amount with the following instructions.
SAY ’What did you spend for lunch yesterday?’
SAY ’Please do not include the dollar sign.’
PARSE PULL last

If the user responds with a number only, the exec will process that information
correctly. If the user responds with a number preceded by a dollar sign or with a
word, such as nothing, the exec will return an error. To avoid getting an error, you
can check the input with the DATATYPE function as follows:
DO WHILE DATATYPE(last) \= ’NUM’

SAY ’Please enter the lunch amount again.’
SAY ’The amount you entered was not a number without a dollar sign.’
PARSE PULL last

END

Other useful built-in functions to test input are WORDS, VERIFY, LENGTH, and
SIGN.

Exercise - Writing an Exec with Built-In Functions
Write an exec that checks a data set member name for a length of 8 characters. If a
member name is longer than 8 characters, the exec truncates it to 8 and sends the
user a message indicating the shortened name. Use the LENGTH and the SUBSTR
built-in functions as described in z/OS TSO/E REXX Reference.

ANSWER

Built-In Functions

64 z/OS V2R1.0 TSO/E REXX User's Guide

Possible Solution

/**************************** REXX *********************************/
/* This exec tests the length of a name for a data set member. If */
/* the name is longer than 8 characters, the exec truncates the */
/* extra characters and sends the user a message indicating the */
/* shortened member name. */
/***/
SAY ’Please enter a member name.’
PULL membername

IF LENGTH(membername) > 8 THEN /* Name is longer than 8 characters*/
DO

membername = SUBSTR(membername,1,8) /* Shorten the name to */
/* the first 8 characters*/

SAY ’The member name you entered was too long.’
SAY membername ’will be used.’

END
ELSE NOP

Chapter 5. Using Functions 65

66 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 6. Writing Subroutines and Functions

This chapter shows how to write subroutines and functions and compares their
differences and similarities.

What are Subroutines and Functions?
Subroutines and functions are routines made up of a sequence of instructions that
can receive data, process that data, and return a value. The routines can be:

Internal
The routine is within the current exec, marked by a label and used only by
that exec.

External
A program or exec in a member of a partitioned data set that can be called
by one or more execs. In order for an exec to call the routine, the exec and
the routine must be allocated to a system file, for example SYSEXEC or
SYSPROC, or be in the same PDS. For more information about allocating to
a system file, see Appendix A, “Allocating Data Sets,” on page 183.

In many aspects, subroutines and functions are the same; yet they are different in a
few major aspects, such as the way they are called and the way they return values.
v Calling a subroutine

To call a subroutine, use the CALL instruction followed by the subroutine name
(label or exec member name) and optionally followed by up to 20 arguments
separated by commas. The subroutine call is an entire instruction.
CALL subroutine_name argument1, argument2,...

Issuing a CALL to internal label names for REXX subroutines and functions that
are greater than eight characters, may have unintended results. Label names will
be truncated to eight characters.

v Calling a function
To call a function, use the function name (label or exec member name)
immediately followed by parentheses that can contain arguments. There can be
no space between the function name and the parentheses. The function call is
part of an instruction, for example, an assignment instruction.
x = function(argument1, argument2,...)

v Returning a value from a subroutine
A subroutine does not have to return a value, but when it does, it sends back
the value with the RETURN instruction.
RETURN value

The calling exec receives the value in the REXX special variable named RESULT.
SAY ’The answer is’ RESULT

v Returning a value from a function
A function must return a value. When the function is a REXX exec, the value is
returned with either the RETURN or EXIT instruction.
RETURN value

The calling exec receives the value at the function call. The value replaces the
function call, so that in the following example, x = value.
x = function(argument1, argument2,...)

© Copyright IBM Corp. 1988, 2013 67

When to Write Subroutines vs. Functions
The actual instructions that make up a subroutine or a function can be identical. It
is the way you want to use them in an exec that turns them into either a
subroutine or a function. For example, the built-in function SUBSTR can be called
as either a function or a subroutine. As a function, you invoke it as follows to
shorten a word to its first eight characters:
x = SUBSTR(’verylongword’,1,8) /* x is set to ’verylong’ */

As a subroutine, you would get the same results with the following instructions:
CALL SUBSTR ’verylongword’, 1, 8 /* x is set to ’verylong’ */
x = RESULT

When deciding whether to write a subroutine or a function, ask yourself the
following questions:
v Is a returned value optional? If so, write a subroutine.
v Do I need a value returned as an expression within an instruction? If so, write a

function.

bThe rest of this chapter describes how to write subroutines, how to write
functions, and finally summarizes the differences and similarities between the two.

Writing a Subroutine
A subroutine is a series of instructions that an exec invokes to perform a specific
task. The instruction that invokes the subroutine is the CALL instruction. The
CALL instruction may be used several times in an exec to invoke the same
subroutine.

When the subroutine ends, it can return control to the instruction that directly
follows the subroutine call. The instruction that returns control is the RETURN
instruction.

Subroutines may be internal and designated by a label, or external and designated
by the data set member name that contains the subroutine. The preceding example
illustrates an internal subroutine named "sub1".

instruction(s)
CALL sub1

instruction(s)
EXIT

sub1:
instruction(s)
RETURN

When to Write Subroutines vs. Functions

68 z/OS V2R1.0 TSO/E REXX User's Guide

The following illustrates an external subroutine named "sub2".

To determine whether to make a subroutine internal or external, you might
consider factors, such as:
v Size of the subroutine. Very large subroutines often are external, whereas small

subroutines fit easily within the calling exec.
v How you want to pass information. It is quicker to pass information through

variables in an internal subroutine. This method is described in “Passing
Information by Using Variables.”

v Whether the subroutine might be of value to more than one exec or user. If so,
an external subroutine is preferable.

Passing Information to a Subroutine
An internal subroutine can share variables with its caller. Therefore you can use
commonly shared variables to pass information between caller and internal
subroutine. You can also use arguments to pass information to and from an
internal subroutine. External subroutines, however, cannot share the same
variables, and information must pass between them through arguments or some
other external way, such as the data stack.

Passing Information by Using Variables
When an exec and its internal subroutine share the same variables, the value of a
variable is what was last assigned, regardless of whether the assignment was in the
main part of the exec or in the subroutine. In the following example, the value of
answer is assigned in the subroutine and displayed in the main part of the exec.
The variables number1, number2, and answer are shared.

IMPORTANT NOTE

Because internal subroutines generally appear after the main part of the exec, when you
have an internal subroutine, it is important to end the main part of the exec with the
EXIT instruction.

REXX.EXEC(MAIN)

instruction(s)
CALL sub2

instruction(s)
.
.
.

REXX.EXEC(SUB2)

instruction(s)
RETURN

Writing a Subroutine;

Chapter 6. Writing Subroutines and Functions 69

Using the same variables in an exec and its internal subroutine can sometimes
create problems. In the following example, the main part of the exec and the
subroutine use the same control variable, "i", for their DO loops. As a result, the
DO loop repeats only once in the main exec because the subroutine returns to the
main exec with i = 6.

To avoid this kind of problem in an internal subroutine, you can use:
v The PROCEDURE instruction as described in the next topic.
v Different variable names in a subroutine and pass arguments on the CALL

instruction as described in “Passing Information by Using Arguments” on page
72.

Protecting Variables with the PROCEDURE Instruction: When you use the
PROCEDURE instruction immediately after the subroutine label, all variables used
in the subroutine become local to the subroutine and are shielded from the main
part of the exec. You can also use the PROCEDURE EXPOSE instruction to protect
all but a few specified variables.

Example of Passing Information in a Variable

/******************************* REXX ******************************/
/* This exec receives a calculated value from an internal */
/* subroutine and displays that value. */
/***/

number1 = 5
number2 = 10
CALL subroutine
SAY answer /* Displays 15 */
EXIT

subroutine:
answer = number1 + number2
RETURN

Example of a Problem Caused by Passing Information in a Variable

/******************************* REXX ******************************/
/* NOTE: This exec contains an error. */
/* It uses a DO loop to call an internal subroutine and the */
/* subroutine also uses a DO loop with same control variable as */
/* the main exec. The DO loop in the main exec repeats only once. */
/***/

number1 = 5
number2 = 10
DO i = 1 TO 5

CALL subroutine
SAY answer /* Displays 105 */

END
EXIT

subroutine:
DO i = 1 TO 5

answer = number1 + number2
number1 = number2
number2 = answer

END
RETURN

Writing a Subroutine;

70 z/OS V2R1.0 TSO/E REXX User's Guide

The following two examples show the differing results when a subroutine uses the
PROCEDURE instruction and when it doesn't.

Exposing Variables with PROCEDURE EXPOSE: To protect all but specific
variables, use the EXPOSE option with the PROCEDURE instruction, followed by
the variables that are to remain exposed to the subroutine.

For more information about the PROCEDURE instruction, see z/OS TSO/E REXX
Reference.

Example Using the PROCEDURE Instruction

/******************************* REXX ******************************/
/* This exec uses a PROCEDURE instruction to protect the variables */
/* within its subroutine. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* displays 10 NUMBER2 */
EXIT

subroutine: PROCEDURE
number1 = 7
number2 = 5
RETURN

Example Without the PROCEDURE Instruction

/******************************* REXX ******************************/
/* This exec does not use a PROCEDURE instruction to protect the */
/* variables within its subroutine. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* displays 7 5 */
EXIT

subroutine:
number1 = 7
number2 = 5
RETURN

Example Using PROCEDURE EXPOSE

/****************************** REXX *******************************/
/* This exec uses a PROCEDURE instruction with the EXPOSE option to*/
/* expose one variable, number1, in its subroutine. The other */
/* variable, number2, is set to null and displays its name in */
/* uppercase. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* displays 7 NUMBER2 */
EXIT

subroutine: PROCEDURE EXPOSE number1
number1 = 7
number2 = 5
RETURN

Writing a Subroutine;

Chapter 6. Writing Subroutines and Functions 71

Passing Information by Using Arguments
A way to pass information to either internal or external subroutines is through
arguments. You can pass up to 20 arguments separated by commas on the CALL
instruction as follows:
CALL subroutine_name argument1, argument2, argument3,......

Using the ARG Instruction: The subroutine can receive the arguments with the
ARG instruction. Arguments are also separated by commas in the ARG instruction.
ARG arg1, arg2, arg3,

The names of the arguments on the CALL and the ARG instructions do not have to
be the same because information is not passed by argument name but by position.
The first argument sent becomes the first argument received and so forth. You can
also set up a template in the CALL instruction, which is then used in the
corresponding ARG instruction. For information about parsing with templates, see
“Parsing Data” on page 85.

The following exec sends information to an internal subroutine that computes the
perimeter of a rectangle. The subroutine returns a value in the variable perim that
is specified after the RETURN instruction. The main exec receives the value in the
special variable "RESULT".

Notice the positional relationships between long and length, and wide and width.
Also notice how information is received from variable perim in the special variable
RESULT.

Using the ARG Built-in Function: Another way for a subroutine to receive
arguments is with the ARG built-in function. This function returns the value of a
particular argument specified by a number that represents the argument position.

For instance, in the previous example, instead of the ARG instruction,
ARG length, width

you can use the ARG function as follows:
length = ARG(1) /* puts the first argument into length */
width = ARG(2) /* puts the second argument into width */

Example of Passing Arguments on the CALL Instruction

/* This exec receives as arguments the length and width of a */

/******************************** REXX ********************************/

/**/

/* rectangle and passes that information to an internal subroutine. */

/* The subroutine then calculates the perimeter of the rectangle. */

PARSE ARG long wide

CALL perimeter long, wide

SAY 'The perimeter is' RESULT 'inches.'

EXIT

perimeter:

ARG length, width

perim = 2 * length + 2 * width

RETURN perim

Writing a Subroutine;

72 z/OS V2R1.0 TSO/E REXX User's Guide

More information about the ARG function appears in z/OS TSO/E REXX Reference.

Receiving Information from a Subroutine
Although a subroutine can receive up to 20 arguments, it can specify only one
expression on the RETURN instruction. That expression can be:
v A number

RETURN 55

v One or more variables whose values are substituted or when no values were
assigned, return their names
RETURN value1 value2 value3

v A literal string
RETURN ’Work complete.’

v An arithmetic, comparison, or logical expression whose value is substituted.
RETURN 5 * number

Example - Writing an Internal and an External Subroutine
Write an exec that plays a simulated coin toss game of heads or tails between the
computer and a user and displays the accumulated scores. Start off with the
message, "This is a game of chance. Type 'heads', 'tails', or 'quit' and press the
Enter key."

This means that there are four possible inputs:
v HEADS
v TAILS
v QUIT
v None of these three (not valid response).

Write an internal subroutine without arguments to check for valid input. Send
valid input to an external subroutine that compares the valid input with a random
outcome. Use the RANDOM built-in function as, RANDOM(0,1), and equate
HEADS = 0, TAILS = 1. Return the result to the main program where results are
tallied and displayed.

Good luck!

ANSWER

Writing a Subroutine;

Chapter 6. Writing Subroutines and Functions 73

Possible Solution (Main Exec)

/**************************** REXX *********************************/
/* This exec plays a simulated coin toss game between the computer */
/* and a user. The user enters heads, tails, or quit. The user */
/* is first checked for validity in an internal subroutine. */
/* An external subroutine uses the RANDOM build-in function to */
/* obtain a simulation of a throw of dice and compares the user */
/* input to the random outcome. The main exec receives */
/* notification of who won the round. Scores are maintained */
/* and displayed after each round. */
/***/
SAY ’This is a game of chance. Type "heads", "tails", or "quit"
SAY ’ and press ENTER.’
PULL response
computer = 0; user = 0 /* initialize scores to zero */
CALL check /* call internal subroutine, check */
DO FOREVER

CALL throw response /* call external subroutine, throw */

IF RESULT = ’machine’ THEN /* the computer won */
computer = computer + 1 /* increase the computer score */

ELSE /* the user won */
user = user + 1 /* increase the user score */

SAY ’Computer score = ’ computer ’ Your score = ’ user
SAY ’Heads, tails, or quit?’
PULL response
CALL check /* call internal subroutine, check */

END
EXIT

Possible Solution (Internal Subroutine named CHECK)

check:
/***/
/* This internal subroutine checks for valid input of "HEADS", */
/* "TAILS", or "QUIT". If the user entered anything else, the */
/* subroutine tells the user that it is an invalid response and */
/* asks the user to try again. The subroutine keeps repeating */
/* until the user enters valid input. Information is returned to */
/* the main exec through commonly used variables. */
/***/
DO UNTIL outcome = ’correct’

SELECT
WHEN response = ’HEADS’ THEN

outcome = ’correct’
WHEN response = ’TAILS’ THEN

outcome = ’correct’
WHEN response = ’QUIT’ THEN

EXIT
OTHERWISE

outcome = ’incorrect’
SAY "That’s not a valid response. Try again!"
SAY "Heads, tails, or quit?"
PULL response

END
END
RETURN

Writing a Subroutine;

74 z/OS V2R1.0 TSO/E REXX User's Guide

Writing a Function
A function is a series of instructions that an exec invokes to perform a specific task
and return a value. As was described in Chapter 5, “Using Functions,” on page 59,
a function may be built-in or user-written. An exec invokes a user-written function
the same way it invokes a built-in function — by the function name immediately
followed by parentheses with no blanks in between. The parentheses can contain
up to 20 arguments or no arguments at all.
function(argument1, argument2,...)

or
function()

A function requires a returned value because the function call generally appears in
an expression.
x = function(arguments1, argument2,...)

When the function ends, it may use the RETURN instruction to send back a value
to replace the function call.

Possible Solution (External Subroutine named THROW)

/****************************** REXX *******************************/
/* This external subroutine receives the valid input from the user,*/
/* analyzes it, gets a random "throw" from the computer and */
/* compares the two values. If they are the same, the user wins. */
/* If they are different, the computer wins. The outcome is then */
/* returned to the calling exec. */
/***/
ARG input
IF input = ’HEADS’ THEN

userthrow = 0 /* heads = 0 */
ELSE

userthrow = 1 /* tails = 1 */

compthrow = RANDOM(0,1) /* choose a random number between */
/* 0 and 1 */

IF compthrow = userthrow THEN
outcome = ’human’ /* user chose correctly */

ELSE
outcome = ’machine’ /* user didn’t choose correctly */

RETURN outcome

instruction(s)

x=func1(arg1,arg2)

instruction(s)

EXIT

Func1:

instruction(s)

RETURN value

Writing a Function

Chapter 6. Writing Subroutines and Functions 75

Functions may be internal and designated by a label, or external and designated
by the data set member name that contains the function. The previous example
illustrates an internal function named "func1".

The following illustrates an external function named "func2".

To determine whether to make a function internal or external, you might consider
factors, such as:
v Size of the function. Very large functions often are external, whereas small

functions fit easily within the calling exec.
v How you want to pass information. It is quicker to pass information through

variables in an internal function. This method is described in the next topic
under “Passing Information by Using Variables” on page 77.

v Whether the function might be of value to more than one exec or user. If so, an
external function is preferable.

v Performance. The language processor searches for an internal function before it
searches for an external function. For the complete search order of functions, see
“Search Order for Functions” on page 132.

Passing Information to a Function
When an exec and its internal function share the same variables, you can use
commonly shared variables to pass information between caller and internal
function. The function does not need to pass arguments within the parentheses
that follow the function call. However, all functions, both internal and external,
must return a value.

IMPORTANT NOTE

Because internal functions generally appear after the main part of the exec, when you
have an internal function, it is important to end the main part of the exec with the EXIT
instruction.

REXX.EXEC(MAIN)

instruction(s)

x=func2(arg1)

instruction(s)

.

.

.

exit

REXX.EXEC(FUNC2)

ARG var1

instruction(s)

RETURN value

Writing a Function

76 z/OS V2R1.0 TSO/E REXX User's Guide

Passing Information by Using Variables
When an exec and its internal function share the same variables, the value of a
variable is what was last assigned, regardless of whether the assignment was in the
main part of the exec or in the function. In the following example, the value of
answer is assigned in the function and displayed in the main part of the exec. The
variables number1, number2, and answer are shared. In addition, the value of answer
replaces the function call because answer follows the RETURN instruction.

Using the same variables in an exec and its internal function can sometimes create
problems. In the following example, the main part of the exec and the function use
the same control variable, "i", for their DO loops. As a result, the DO loop repeats
only once in the main exec because the function returns to the main exec with i =
6.

To avoid this kind of problem in an internal function, you can use:
v The PROCEDURE instruction as described in the next topic.
v Different variable names in a function.

Example of Passing Information in a Variable

/****************************** REXX *******************************/
/* This exec receives a calculated value from an internal */
/* function and displays that value. */
/***/

number1 = 5
number2 = 10
SAY add() /* Displays 15 */
SAY answer /* Also displays 15 */
EXIT

add:
answer = number1 + number2
RETURN answer

Example of a Problem Caused by Passing Information in a Variable

/****************************** REXX *******************************/
/* This exec uses an instruction in a DO loop to call an internal */
/* function. A problem occurs because the function also uses a DO */
/* loop with the same control variable as the main exec. The DO */
/* loop in the main exec repeats only once. */
/***/

number1 = 5
number2 = 10
DO i = 1 TO 5

SAY add() /* Displays 105 */
END
EXIT

add:
DO i = 1 TO 5

answer = number1 + number2
number1 = number2
number2 = answer

END
RETURN answer

Writing a Function

Chapter 6. Writing Subroutines and Functions 77

Protecting Variables with the PROCEDURE Instruction: When you use the
PROCEDURE instruction immediately following the function label, all variables
used in the function become local to the function and are shielded from the main
part of the exec. You can also use the PROCEDURE EXPOSE instruction to protect
all but a few specified variables.

The following two examples show the differing results when a function uses the
PROCEDURE instruction and when it doesn't.

Exposing Variables with PROCEDURE EXPOSE: To protect all but specific
variables, use the EXPOSE option with the PROCEDURE instruction, followed by
the variables that are to remain exposed to the function.

For more information about the PROCEDURE instruction, see z/OS TSO/E REXX
Reference.

Example Using the PROCEDURE Instruction

/****************************** REXX *******************************/
/* This exec uses a PROCEDURE instruction to protect the variables */
/* within its function. */
/***/
number1 = 10
SAY pass() number2 /* Displays 7 NUMBER2 */
EXIT

pass: PROCEDURE
number1 = 7
number2 = 5
RETURN number1

Example Without the PROCEDURE Instruction

/******************************** REXX *****************************/
/* This exec does not use a PROCEDURE instruction to protect the */
/* variables within its function. */
/***/
number1 = 10
SAY pass() number2 /* displays 7 5 */
EXIT

pass:
number1 = 7
number2 = 5
RETURN number1

Example Using PROCEDURE EXPOSE

/****************************** REXX *******************************/
/* This exec uses a PROCEDURE instruction with the EXPOSE option to*/
/* expose one variable, number1, in its function. */
/***/
number1 = 10
SAY pass() number1 /* displays 5 7 */
EXIT

pass: PROCEDURE EXPOSE number1
number1 = 7
number2 = 5
RETURN number2

Writing a Function

78 z/OS V2R1.0 TSO/E REXX User's Guide

Passing Information by Using Arguments
A way to pass information to either internal or external functions is through
arguments. You can pass up to 20 arguments separated by commas in a function
call.
function(argument1,argument2,argument3,..........)

Using the ARG Instruction: The function can receive the arguments with the
ARG instruction. Arguments are also separated by commas in the ARG instruction.
ARG arg1,arg2,arg3

The names of the arguments on the function call and the ARG instruction do not
have to be the same because information is not passed by argument name but by
position. The first argument sent becomes the first argument received and so forth.
You can also set up a template in the function call, which is then used in the
corresponding ARG instruction. For information about parsing templates, see
“Parsing Data” on page 85.

The following exec sends information to an internal function that computes the
perimeter of a rectangle. The function returns a value in the variable perim that is
specified after the RETURN instruction. The main exec uses the value in perim to
replace the function call.

Notice the positional relationships between long and length, and wide and width.
Also notice that information is received from variable perim to replace the function
call.

Using the ARG Built-in Function: Another way for a function to receive
arguments is with the ARG built-in function. This built-in function returns the
value of a particular argument specified by a number that represents the argument
position.

For instance, in the previous example, instead of the ARG instruction,
ARG length, width

you can use the ARG function as follows:

Example of an Internal Function

/* This exec receives as arguments the length and width of a */

/******************************** REXX *********************************** /

/* rectangle and passes that information to an internal function */

/* named perimeter. The function then calculates the perimeter of */

/*** /

/* the rectangle. */

PARSE ARG long wide

SAY 'The perimeter is' perimeter(long,wide) 'inches.'

EXIT

perimeter:

ARG length, width

perim = 2 * length + 2 * width

RETURN perim

Writing a Function

Chapter 6. Writing Subroutines and Functions 79

length = ARG(1) /* puts the first argument into length */
width = ARG(2) /* puts the second argument into width */

More information about the ARG function appears in z/OS TSO/E REXX Reference.

Receiving Information from a Function
Although a function can receive up to 20 arguments in a function call, it can
specify only one expression on the RETURN instruction. That expression can be a:
v Number

RETURN 55

v One or more variables whose values are substituted or when no values were
assigned, return their names
RETURN value1 value2 value3

v Literal string
RETURN ’Work complete.’

v Arithmetic, comparison, or logical expression whose value is substituted.
RETURN 5 * number

Exercise - Writing a Function
Write a function named "AVG" that receives a list of numbers separated by blanks,
and computes their average as a decimal number. The function is called as follows:
AVG(number1 number2 number3 ...)

Use the WORDS and WORD built-in functions. For more information about these
built-in functions, see z/OS TSO/E REXX Reference.

ANSWER

Possible Solution

/****************************** REXX *******************************/
/* This function receives a list of numbers, adds them, computes */
/* their average and returns the average to the calling exec. */
/***/

ARG numlist /* receive the numbers in a single variable */

sum = 0 /* initialize sum to zero */

DO n = 1 TO WORDS(numlist) /* Repeat for as many times as there */
/* are numbers */

number = WORD(numlist,n) /* Word #n goes to number */
sum = sum + number /* Sum increases by number */

END

average = sum / WORDS(numlist) /* Compute the average */

RETURN average

Writing a Function

80 z/OS V2R1.0 TSO/E REXX User's Guide

Summary of Subroutines and Functions

SUBROUTINES FUNCTIONS

Invoked by using the CALL instruction followed by the
subroutine name and optionally up to 20 arguments.

Invoked by specifying the function's name immediately
followed by parentheses that optionally contain up to 20
arguments.

Can be internal or external
v Internal

– Can pass information by using common variables
– Can protect variables with the PROCEDURE

instruction
– Can pass information by using arguments

v External
– Must pass information by using arguments
– Can use the ARG instruction or the ARG built-in

function to receive arguments

Can be internal or external
v Internal

– Can pass information by using common variables
– Can protect variables with the PROCEDURE

instruction
– Can pass information by using arguments

v External
– Must pass information by using arguments
– Can use the ARG instruction or the ARG built-in

function to receive arguments

Uses the RETURN instruction to return to the caller. Uses the RETURN instruction to return to the caller.

Might return a value to the caller. Must return a value to the caller.

Returns a value by placing it into the REXX special
variable RESULT.

Returns a value by replacing the function call with the
value.

Summary of Subroutines and Functions

Chapter 6. Writing Subroutines and Functions 81

Summary of Subroutines and Functions

82 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 7. Manipulating Data

This chapter describes how to use compound variables and stems, and shows
various ways of parsing using templates.

Using Compound Variables and Stems
Sometimes it is useful to store groups of related data in such a way that the data
can be easily retrieved. For example, a list of employee names can be stored in an
array and retrieved by number. An array is an arrangement of elements in one or
more dimensions, identified by a single name. You could have an array called
employee that contains names as follows:
EMPLOYEE

(1) Adams, Joe
(2) Crandall, Amy
(3) Devon, David
(4) Garrison, Donna
(5) Leone, Mary
(6) Sebastian, Isaac

In some computer languages, you access an element in the array by the number of
the element, such as, employee(1), which retrieves Adams, Joe. In REXX, you use
compound variables.

What is a Compound Variable?
Compound variables are a way to create a one-dimensional array or a list of
variables in REXX. Subscripts do not necessarily have to be numeric. A compound
variable contains at least one period with characters on both sides of it. The
following are examples of compound variables.
FRED.5
Array.Row.Col
employee.name.phone

The first variable in a compound variable always remains a symbol with no
substitution. The remaining variables in a compound variable take on values
previously assigned. If no value was previously assigned, the variable takes on the
uppercase value of the variable name.
first = ’Fred’
last = ’Higgins’
employee = first.last

/* EMPLOYEE is assigned FIRST.Higgins */
SAY employee.first.middle.last

/* Displays EMPLOYEE.Fred.MIDDLE.Higgins */

You can use a DO loop to initialize a group of compound variables and set up an
array.
DO i = 1 TO 6

SAY ’Enter an employee name.’
PARSE PULL employee.i

END

If you entered the same names used in the previous example of an array, you
would have a group of compound variables as follows:

© Copyright IBM Corp. 1988, 2013 83

employee.1 = ’Adams, Joe’
employee.2 = ’Crandall, Amy’
employee.3 = ’Devon, David’
employee.4 = ’Garrison, Donna’
employee.5 = ’Leone, Mary’
employee.6 = ’Sebastian, Isaac’

When the names are in the group of compound variables, you can easily access a
name by its number, or by a variable that represents its number.
name = 3
SAY employee.name /* Displays ’Devon, David’ */

For more information about compound variables, see z/OS TSO/E REXX Reference.

Using Stems
When working with compound variables, it is often useful to initialize an entire
collection of variables to the same value. You can do this easily with a stem. A
stem is the first variable name and first period of the compound variable. Thus
every compound variable begins with a stem. The following are stems:
FRED.
Array.
employee.

You can alter all the compound variables in an array through the stem. For
example, to change all employee names to Nobody, issue the following assignment
instruction:
employee. = ’Nobody’

As a result, all compound variables beginning with employee., whether or not they
were previously assigned, return the value Nobody. Compound variables that are
assigned after the stem assignment are not affected.
SAY employee.5 /* Displays ’Nobody’ */
SAY employee.10 /* Displays ’Nobody’ */
SAY employee.oldest /* Displays ’Nobody’ */

employee.new = ’Clark, Evans’
SAY employee.new /* Displays ’Clark, Evans’ */

You can use stems with the EXECIO command when reading to and writing from
a data set. For information about the EXECIO command, see “Using EXECIO to
Process Information to and from Data Sets” on page 152. You can also use stems
with the OUTTRAP external function when trapping command output. For
information about OUTTRAP, see “Using the OUTTRAP Function” on page 121.

Exercises - Using Compound Variables and Stems
1. After these assignment instructions, what is displayed in the following SAY

instructions?
a = 3 /* assigns ’3’ to variable ’A’ */
b = 4 /* ’4’ to ’B’ */
c = ’last’ /* ’last’ to ’C’ */
a.b = 2 /* ’2’ to ’A.4’ */
a.c = 5 /* ’5’ to ’A.last’ */
x.a.b = ’cv3d’ /* ’cv3d’ to ’X.3.4’ */

a. SAY a
b. SAY B
c. SAY c
d. SAY a.a

Using Compound Variables and Stems

84 z/OS V2R1.0 TSO/E REXX User's Guide

e. SAY A.B
f. SAY b.c
g. SAY c.a
h. SAY a.first
i. SAY x.a.4

2. After these assignment instructions, what is displayed?
hole.1 = ’full’
hole. = ’empty’
hole.s = ’full’

a. SAY hole.1
b. SAY hole.s
c. SAY hole.mouse

ANSWERS
1.

a. 3
b. 4
c. last
d. A.3
e. 2
f. B.last
g. C.3
h. A.FIRST
i. cv3d

2.
a. empty
b. full
c. empty

Parsing Data
Parsing in REXX is separating data into one or more variable names. An exec can
parse an argument to break it up into smaller parts or parse a string to assign each
word to a variable name. Parsing is also useful to format data into columns.

Instructions that Parse

There are several REXX instructions and variations of instructions that parse data.

PULL Instruction
In earlier chapters PULL was described as an instruction that reads input from the
terminal and assigns it to one or more variables. If however, the data stack
contains information, the PULL instruction takes information from the data stack;
and when the data stack is empty, PULL takes information from the terminal. For
information about the data stack, see Chapter 11, “Storing Information in the Data
Stack,” on page 133. PULL changes character information to uppercase and assigns
it to one or more variable names. When PULL is followed by more than one
variable, it parses the information into the available variables.
SAY ’What is the quote for the day?’ /* user enters "Knowledge */

/* is power." */
PULL word1 word2 word3

/* word1 contains ’KNOWLEDGE’ */
/* word2 contains ’IS’ */
/* word3 contains ’POWER.’ */

Using Compound Variables and Stems

Chapter 7. Manipulating Data 85

The PARSE PULL instruction assigns information, without altering it, to variable
names.
SAY ’What is the quote for the day?’ /* user enters "Knowledge */

/* is power." */
PARSE PULL word1 word2 word3

/* word1 contains ’Knowledge’ */
/* word2 contains ’is’ */
/* word3 contains ’power.’ */

PARSE UPPER PULL causes the same result as PULL in that it changes character
information to uppercase before assigning it to one or more variables.

ARG Instruction
The ARG instruction takes information passed as arguments to an exec, function,
or subroutine, and puts it into one or more variable names. Before character
information is put into a variable name, ARG changes it to uppercase. When ARG
is followed by more than one variable name, it parses the information into the
available variable names. For example, if an exec named
USERID.REXX.EXEC(QUOTE) can receive arguments, you can invoke the exec
with the EXEC command and the three arguments as follows:
EXEC rexx.exec(quote) ’Knowledge is power.’ exec

The exec receives the arguments with the ARG instruction as follows:
ARG word1 word2 word3

/* word1 contains ’KNOWLEDGE’ */
/* word2 contains ’IS’ */
/* word3 contains ’POWER.’ */

The PARSE ARG instruction assigns information, without altering it, to variable
names.
PARSE ARG word1 word2 word3

/* word1 contains ’Knowledge’ */
/* word2 contains ’is’ */
/* word3 contains ’power.’ */

PARSE UPPER ARG causes the same result as ARG in that it changes character
information to uppercase before assigning it to one or more variables.

PARSE VAR Instruction
The PARSE VAR instruction parses a specified variable into one or more variable
names that follow it. If the variable contains character information, it is not
changed to uppercase.
quote = ’Knowledge is power.’
PARSE VAR quote word1 word2 word3

/* word1 contains ’Knowledge’ */
/* word2 contains ’is’ */
/* word3 contains ’power.’ */

The PARSE UPPER VAR instruction changes character information to uppercase
before putting it into the variables.
quote = ’Knowledge is power.’
PARSE UPPER VAR quote word1 word2 word3

/* word1 contains ’KNOWLEDGE’ */
/* word2 contains ’IS’ */
/* word3 contains ’POWER.’ */

For more information about parsing instructions, see z/OS TSO/E REXX Reference.

Parsing Data

86 z/OS V2R1.0 TSO/E REXX User's Guide

PARSE VALUE ... WITH Instruction
The PARSE VALUE ... WITH instruction parses a specified expression, such as a
literal string, into one or more variable names that follow the WITH subkeyword.
If the literal string contains character information, it is not changed to uppercase.
PARSE VALUE ’Knowledge is power.’ WITH word1 word2 word3

/* word1 contains ’Knowledge’ */
/* word2 contains ’is’ */
/* word3 contains ’power.’ */

The PARSE UPPER VALUE instruction changes character information to uppercase
before assigning it to the variable names.
PARSE UPPER VALUE ’Knowledge is power.’ WITH word1 word2 word3

/* word1 contains ’KNOWLEDGE’ */
/* word2 contains ’IS’ */
/* word3 contains ’POWER.’ */

Ways of Parsing
Parsing separates data by comparing the data to a template (or pattern of variable
names). Separators in a template can be a blank, string, variable, or number that
represents column position.

Blank
The simplest template is a group of variable names separated by blanks. Each
variable name gets one word of data in sequence except for the last, which gets the
remainder of the data. The last variable name might then contain several words
and possibly leading and trailing blanks.
PARSE VALUE ’Value with Blanks.’ WITH pattern type

/* pattern contains ’Value’ */
/* type contains ’ with Blanks.’ */

When there are more variables than data, the extra variables are set to null.
PARSE VALUE ’Value with Extra Variables.’ WITH data1 data2 data3 data4 data5

/* data1 contains ’Value’ */
/* data2 contains ’with’ */
/* data3 contains ’Extra’ */
/* data4 contains ’Variables.’ */
/* data5 contains ’’ */

A period in a template acts as a place holder. The data that corresponds to the
period is not assigned to a variable name. You can use a period as a "dummy
variable" within a group of variables or at the end of a template to collect
unwanted information.
PARSE VALUE ’Value with Periods in it.’ WITH pattern . type .

/* pattern contains ’Value’ */
/* type contains ’Periods’ */

/* the periods replace the words "with" and "in it." */

String
You can use a string in a template to separate data as long as the data includes the
string as well. The string becomes the point of separation and is not included as
data.
phrase = ’To be, or not to be?’ /* phrase containing comma */
PARSE VAR phrase part1 ’,’ part2 /* template containing comma */

/* as string separator */
/* part1 contains ’To be’ */
/* part2 contains ’ or not to be?’ */

Parsing Data

Chapter 7. Manipulating Data 87

In this example, notice that the comma is not included with 'To be' because the
comma is the string separator.

Variable
When you do not know in advance what string to specify as separator in a
template, you can use a variable enclosed in parentheses. The variable value must
be included in the data.
separator = ’,’
phrase = ’To be, or not to be?’
PARSE VAR phrase part1 (separator) part2

/* part1 contains ’To be’ */
/* part2 contains ’ or not to be?’ */

Again, in this example, notice that the comma is not included with 'To be' because
the comma is the string separator.

Number
You can use numbers in a template to indicate the column at which to separate
data. An unsigned integer indicates an absolute column position and a signed
integer indicates a relative column position.
v Absolute column position

An unsigned integer or an integer prefixed with an equal sign (=) in a template
separates the data according to absolute column position. The first segment
starts at column 1 and goes up to, but does not include, the information in the
column number specified. The subsequent segments start at the column numbers
specified.
quote = ’Ignorance is bliss.’

....+....1....+....2

PARSE VAR quote part1 5 part2
/* part1 contains ’Igno’ */
/* part2 contains ’rance is bliss.’ */

This example could have also been coded as follows. Note the explicit use of the
column 1 indicator prior to part1 that was implied in the previous example and
the use of the =5 part2 to indicate the absolute position, column 5.
quote = ’Ignorance is bliss.’

....+....1....+....2

PARSE VAR quote 1 part1 =5 part2
/* part1 contains ’Igno’ */
/* part2 contains ’rance is bliss.’ */

When a template has more than one number, and a number at the end of the
template is lower than an earlier number, parse loops back to the beginning of
the data.
quote = ’Ignorance is bliss.’

....+....1....+....2

PARSE VAR quote part1 5 part2 10 part3 1 part4
/* part1 contains ’Igno’ */
/* part2 contains ’rance’ */
/* part3 contains ’ is bliss.’ */
/* part4 contains ’Ignorance is bliss.’ */

When each variable in a template has column numbers both before and after it,
the two numbers indicate the beginning and the end of the data for the variable.
quote = ’Ignorance is bliss.’

....+....1....+....2

PARSE VAR quote 1 part1 10 11 part2 13 14 part3 19 1 part4 20

Parsing Data

88 z/OS V2R1.0 TSO/E REXX User's Guide

/* part1 contains ’Ignorance’ */
/* part2 contains ’is’ */
/* part3 contains ’bliss’ */
/* part4 contains ’Ignorance is bliss.’ */

v Relative column position
A signed integer in a template separates the data according to relative column
position, that is, a starting position relative to the starting position of the
preceding part. A signed integer can be either positive (+) or negative (-) causing
the part to be parsed to shift either to the right (with a +) or to the left (with a
-). part1 starts at column 1, the preceding 1 is not coded but implied. In the
following example, therefore, the +5 part2 causes part2 to start in column 1+5=6,
the +5 part3 causes part3 to start in column 6+5=11, and so on.
quote = ’Ignorance is bliss.’

....+....1....+....2

PARSE VAR quote part1 +5 part2 +5 part3 +5 part4
/* part1 contains ’Ignor’ */
/* part2 contains ’ance ’ */
/* part3 contains ’is bl’ */
/* part4 contains ’iss.’ */

The use of the minus sign is similar to the use of the plus sign in that it is used
to identify a relative position in the data string. The minus sign is used to “back
up” (move to the left) in the data string. In the following example, therefore, the
part1 causes part1 to start in column 1 (implied), the +10 part2 causes part2 to
start in column 1+10=11, the +3 part3 causes part3 to start in column 11+3=14,
and the -3 part4 causes part4 to start in column 14-3=11.
quote = ’Ignorance is bliss.’

....+....1....+....2

PARSE VAR quote part1 +10 part2 +3 part3 -3 part4
/* part1 contains ’Ignorance ’ */
/* part2 contains ’is ’ */
/* part3 contains ’bliss.’ */
/* part4 contains ’is bliss.’ */

v Variables
You can define and use variables to provide further flexibility of a PARSE VAR
instruction. Define the variable prior to the parse instruction, such as the movex
variable in the following example. With the PARSE instruction, enclose the
variable in parenthesis, in place of a number. This variable must be an unsigned
integer. Therefore, use a sign outside the parenthesis to indicate how REXX is to
interpret the unsigned integer. REXX substitutes the numeric value for the
variable as follows:
quote = ’Ignorance is bliss.’

....+....1....+....2

movex = 3 /* variable position */
PARSE VAR quote part5 +10 part6 +3 part7 -(movex) part8

/* part5 contains ’Ignorance ’ */
/* part6 contains ’is ’ */
/* part7 contains ’bliss.’ */
/* part8 contains ’is bliss.’ */

Note: The variable movex in the previous example must be an unsigned integer.
Always code a sign prior to the parenthesis to indicate how the integer is to be
interpreted. If you do not, the variable will be interpreted as a string separator.
Valid signs are:
– A plus sign (+) indicates column movement to the right
– A minus sign (-) indicates column movement to the left

Parsing Data

Chapter 7. Manipulating Data 89

– An equal sign (=) indicates an absolute column position.

For more information about parsing, see z/OS TSO/E REXX Reference.

Parsing Multiple Strings as Arguments
When passing arguments to a function or a subroutine, you can specify multiple
strings to be parsed. Arguments are parsed with the ARG, PARSE ARG, and
PARSE UPPER ARG instructions.

To pass multiple strings, separate each string with a comma. This comma is not a
string separator as illustrated in the example on page 87, although you can also
use a string separator within an argument template.

The following example passes three arguments separated by commas to an internal
subroutine. The first argument consists of two words "String One" that are parsed
into three variable names. The third variable name is set to null because there is no
third word. The second and third arguments are parsed entirely into variable
names string2 and string3.
CALL sub2 ’String One’, ’String Two’, ’String Three’...
EXIT

sub2:
PARSE ARG word1 word2 word3, string2, string3

/* word1 contains ’String’ */
/* word2 contains ’One’ */
/* word3 contains ’’ */
/* string2 contains ’String Two’ */
/* string3 contains ’String Three’ */

For more information about passing multiple arguments, see z/OS TSO/E REXX
Reference.

Exercise - Practice with Parsing
What are the results of the following parsing examples?
1. quote = ’Experience is the best teacher.’

PARSE VAR quote word1 word2 word3
v a) word1 =
v b) word2 =
v c) word3 =

2. quote = ’Experience is the best teacher.’
PARSE VAR quote word1 word2 word3 word4 word5 word6
v a) word1 =
v b) word2 =
v c) word3 =
v d) word4 =
v e) word5 =
v f) word6 =

3. PARSE VALUE ’Experience is the best teacher.’ WITH word1 word2 . . word3
v a) word1 =
v b) word2 =
v c) word3 =

4. PARSE VALUE ’Experience is the best teacher.’ WITH v1 5 v2
....+....1....+....2....+....3.

v a) v1 =
v b) v2 =

Parsing Data

90 z/OS V2R1.0 TSO/E REXX User's Guide

5. quote = ’Experience is the best teacher.’
....+....1....+....2....+....3.

PARSE VAR quote v1 v2 15 v3 3 v4
v a) v1 =
v b) v2 =
v c) v3 =
v d) v4 =

6. quote = ’Experience is the best teacher.’
....+....1....+....2....+....3.

PARSE UPPER VAR quote 15 v1 +16 =12 v2 +2 1 v3 +10
v a) v1 =
v b) v2 =
v c) v3 =

7. quote = ’Experience is the best teacher.’
....+....1....+....2....+....3.

PARSE VAR quote 1 v1 +11 v2 +6 v3 -4 v4
v a) v1 =
v b) v2 =
v c) v3 =
v d) v4 =

8. first = 7
quote = ’Experience is the best teacher.’

....+....1....+....2....+....3.

PARSE VAR quote 1 v1 =(first) v2 +6 v3
v a) v1 =
v b) v2 =
v c) v3 =

9. quote1 = ’Knowledge is power.’
quote2 = ’Ignorance is bliss.’
quote3 = ’Experience is the best teacher.’
CALL sub1 quote1, quote2, quote3
EXIT

sub1:
PARSE ARG word1 . . , word2 . . , word3 .
v a) word1 =
v b) word2 =
v c) word3 =

ANSWERS
1.

v a) word1 = Experience
v b) word2 = is
v c) word3 = the best teacher.

2.
v a) word1 = Experience
v b) word2 = is
v c) word3 = the
v d) word4 = best
v e) word5 = teacher.
v f) word6 = ''

3.
v a) word1 = Experience
v b) word2 = is
v c) word3 = teacher.

Parsing Data

Chapter 7. Manipulating Data 91

4.
v a) v1 = Expe
v b) v2 = rience is the best teacher.

5.
v a) v1 = Experience
v b) v2 = is
v c) v3 = the best teacher.
v d) v4 = perience is the best teacher.

6.
v a) v1 = THE BEST TEACHER
v b) v2 = IS
v c) v3 = EXPERIENCE

7.
v a) v1 = 'Experience '
v b) v2 = 'is the'
v c) v3 = ' best teacher.'
v d) v4 = ' the best teacher.'

8.
v a) v1 = 'Experi'
v b) v2 = 'ence i'
v c) v3 = 's the best teacher.'

9.
a) word1 = Knowledge
b) word2 = Ignorance
c) word3 = Experience

Parsing Data

92 z/OS V2R1.0 TSO/E REXX User's Guide

Part 2. Using REXX

In addition to being a versatile general-purpose programming language, REXX can
interact with TSO/E, MVS, APPC/MVS, and ISPF, which expands its capabilities.
This part of the book is for programmers already familiar with the REXX language
and experienced in TSO/E. The chapters in this part cover the following topics.
v Chapter 8, “Entering Commands from an Exec,” on page 95 — A REXX exec can

issue different types of host commands within the same exec.
v Chapter 9, “Diagnosing Problems Within an Exec,” on page 109 — Several

debugging options are available in an exec.
v Chapter 10, “Using TSO/E External Functions,” on page 117 — TSO/E external

functions are provided to interact with the system to do specific tasks.
v Chapter 11, “Storing Information in the Data Stack,” on page 133 — The data

stack is useful in I/O and other types of special processing.
v Chapter 12, “Processing Data and Input/Output Processing,” on page 151 — You

can process information to and from data sets by using the EXECIO command.
v Chapter 13, “Using REXX in TSO/E and Other MVS Address Spaces,” on page

169 — You can run execs in other MVS address spaces besides TSO/E
foreground and background.

Note: Although you can write a REXX exec to run in a non-TSO/E address space
in MVS, the chapters and examples in this part, unless otherwise stated, assume
the exec will run in a TSO/E address space. If you want to write execs that run
outside of a TSO/E address space, keep in mind the following exceptions to
information in this part of the book.
v An exec that runs outside of a TSO/E address space cannot include TSO/E

commands, ISPF commands, or ISPF/PDF edit commands. An exec that runs
outside of a TSO/E address space can include TSO/E commands if you use the
TSO/E environment service (see note).

v An exec that runs outside of TSO/E cannot include most of the TSO/E external
functions. For information about the functions you can use in TSO/E and
non-TSO/E address spaces, see “Services Available to REXX Execs” on page 169.

v In TSO/E, several REXX instructions either display information on the terminal
or retrieve information that the user enters at the terminal. In a non-TSO/E
address space, these instructions get information from the input stream and
write information to the output stream.
– SAY — this instruction sends information to the output DD whose default is

SYSTSPRT.
– PULL — this instruction gets information from the input DD whose default is

SYSTSIN.
– TRACE — this instruction sends information to the output DD whose default

is SYSTSPRT.
– PARSE EXTERNAL — this instruction gets information from the input DD

whose default is SYSTSIN.
v An exec that runs outside of TSO/E cannot interact with CLISTs.

Note: You can use the TSO/E environment service, IKJTSOEV, to create a TSO/E
environment in a non-TSO/E address space. If you run a REXX exec in the TSO/E
environment you created, the exec can contain TSO/E commands, external
functions, and services that an exec running in a TSO/E address space can use.

© Copyright IBM Corp. 1988, 2013 93

That is, the TSO host command environment (ADDRESS TSO) is available to the
exec with some limitations. For more information about the TSO/E environment
service, limitations on the environment it creates, and the different considerations
for running REXX execs within the environment, see z/OS TSO/E Programming
Services.

94 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 8. Entering Commands from an Exec

This chapter describes how to issue TSO/E commands and other types of
commands from a REXX exec.

Types of Commands
A REXX exec can issue many types of commands. The two main categories of
commands are:
v TSO/E REXX commands - Commands provided with the TSO/E

implementation of the language. These commands do REXX-related tasks in an
exec, such as:
– Control I/O processing of information to and from data sets (EXECIO)
– Perform data stack services (MAKEBUF, DROPBUF, QBUF, QELEM,

NEWSTACK, DELSTACK, QSTACK)
– Change characteristics that control the execution of an exec (EXECUTIL and

the immediate commands)
– Check for the existence of a host command environment (SUBCOM).
More information about these TSO/E REXX commands appears throughout the
book where the related task is discussed

v Host commands - The commands recognized by the host environment in which
an exec runs. A REXX exec can issue various types of host commands as
discussed in the remainder of this chapter.

When an exec issues a command, the REXX special variable RC is set to the return
code. An exec can use the return code to determine a course of action within the
exec. Every time a command is issued, RC is set. Thus RC contains the return code
from the most recently issued command.

Issuing TSO/E Commands from an Exec
Like a CLIST, a REXX exec can contain TSO/E commands to be executed when the
exec runs. An exec can consist of nothing but TSO/E commands, such as an exec
that sets up a user's terminal environment by allocating the appropriate libraries of
data sets, or the exec can contain commands intermixed with REXX language
instructions.

Using Quotations Marks in Commands
Generally, to differentiate commands from other types of instructions, enclose the
command within single or double quotation marks. When issuing TSO/E
commands in an exec, it is recommended that you enclose them in double
quotation marks. If the command is not enclosed within quotation marks, it will be
processed as an expression and might end in error. For example, a word
immediately followed by a left parenthesis is processed by the language processor
as a function call. Several TSO/E commands, one of which is ALLOCATE, require
keywords followed by parentheses.
"ALLOC DA(NEW.DATA) LIKE(OLD.DATA) NEW"

© Copyright IBM Corp. 1988, 2013 95

If the ALLOCATE command in the example above was not enclosed in quotation
marks, the parentheses would indicate to the language processor that DA and
LIKE were function calls, and the command would end in an error.

Many TSO/E commands use single quotation marks within the command. For
example, the EXEC command encloses an argument within single quotation marks,
and other commands, such as ALLOCATE, require single quotation marks around
fully-qualified data set names.
EXEC myrexx.exec(add) ’25 78 33’ exec

ALLOC DA(’USERID.MYREXX.EXEC’) F(SYSEXEC) SHR REUSE

As REXX instructions, these commands can be entirely enclosed in double
quotation marks and still retain the single quotation marks for the specific
information within the command. For this reason, it is recommended that, as a
matter of course, you enclose TSO/E commands with double quotation marks.
"EXEC myrexx.exec(add) ’25 78 33’ exec"

"ALLOC DA(’USERID.MYREXX.EXEC’) F(SYSEXEC) SHR REUSE"

Remember that data set names beginning with your prefix (usually your user ID)
can be specified without the prefix and without quotation marks.
"ALLOC DA(MYREXX.EXEC) F(SYSEXEC) SHR REUSE"

More about data sets names and when to enclose them in quotation marks is
covered in the next topic.

Passing Data Set Names as Arguments
How you pass a data set name as an argument depends on the way you specify
the data set name and whether you invoke the exec explicitly or implicitly.

Ways to specify the data set name are controlled by the TSO/E naming
conventions, which define fully-qualified and non fully-qualified data sets. A
fully-qualified data set name specifies all three qualifiers including the prefix and
must appear within a set of quotation marks.
’userid.myrexx.exec’

A non fully-qualified data set name can eliminate the prefix and is not enclosed
within quotation marks.
myrexx.exec

If you use the EXEC command to explicitly invoke an exec, the EXEC command
processor requires a set of single quotation marks around the argument. When
passing a non fully-qualified data set name as an argument, you need not add
additional quotation marks. The following EXEC command is issued at the READY
prompt and passes the data set name REXX.INPUT as an argument to the exec
contained in MYREXX.EXEC(TEST2). Both data sets are specified as non
fully-qualified data set names.
READY
EXEC myrexx.exec(test2) ’rexx.input’ exec

When passing a fully-qualified data set name as an argument with the EXEC
command, you must include more than one set of quotation marks; one to indicate
it is a fully-qualified data set and one to indicate it is the argument to be passed.
Because TSO/E commands process two sets of single quotation marks as one and
do not recognize double quotation marks as does the language processor, you must

Issuing TSO/E Commands from an Exec

96 z/OS V2R1.0 TSO/E REXX User's Guide

use three sets of single quotation marks. The following EXEC command passes
USERID.REXX.INPUT as an argument expressed as a fully-qualified data set name.
READY
EXEC myrexx.exec(test2) ’userid.rexx.input’’ exec

When passing a non fully-qualified data set name as an argument while implicitly
invoking the exec, you need no quotation marks.
READY
test2 rexx.input

To pass a fully-qualified data set name as an argument while implicitly invoking
an exec, enclose the data set name in a single set of quotation marks.
READY
test2 ’userid.rexx.input’

Using Variables in Commands
When a variable is used in a TSO/E command, the variable cannot be within
quotation marks if its value is to be substituted. Only variables outside quotation
marks are processed by the language processor. For example, the variable name is
assigned the data set name MYREXX.EXEC. When name is used in a LISTDS
command, it must remain outside the quotation marks placed around the
command.
name = myrexx.exec
"LISTDS" name "STATUS"

When a variable represents a fully-qualified data set name, the name must be
enclosed in two sets of quotation marks to ensure that one set of quotation marks
remains as part of the value.
name = "’project.rel1.new’"
"LISTDS" name "STATUS"

Another way to ensure that quotation marks appear around a fully-qualified data
set name when it appears as a variable is to include them as follows:
name = project.rel1.new
"LISTDS ’"name"’ STATUS"

Causing Interactive Commands to Prompt the User
If your TSO/E profile allows prompting, when you issue an interactive command
without operands, you are prompted for operands. For example, when you issue
the LISTDS command from READY, you are prompted for a data set name.
READY
listds
ENTER DATA SET NAME -

To have TSO/E commands prompt you when the commands are issued from
within an exec, you can do one of two things:
v Run the exec explicitly with the EXEC command and use the PROMPT operand.

EXEC mynew.exec(create) exec prompt

v Use the PROMPT function within the exec. Because PROMPT is a function, it is
used as an expression within an instruction, such as an assignment instruction
or a SAY instruction. To turn prompting on, write:
saveprompt = PROMPT(’ON’) /* saveprompt is set to the previous

setting of PROMPT */

To turn prompting off, write:

Issuing TSO/E Commands from an Exec

Chapter 8. Entering Commands from an Exec 97

x = PROMPT(’OFF’) /* x is set to the previous setting of PROMPT */

To find out the prompting status, write:
SAY PROMPT() /* displays either "ON" or "OFF" */

To reset prompting to a specific setting saved in variable saveprompt, write:
x = prompt(saveprompt)

Prompting by commands also depends on whether there are elements in the data
stack. If the data stack contains an element, the user at the terminal is not
prompted because the data stack element is used in response to the prompt. For
more information about the data stack, see Chapter 11, “Storing Information in the
Data Stack,” on page 133.

Invoking Another Exec as a Command
Previously, this book discussed how to invoke another exec as an external routine
(Chapter 6, “Writing Subroutines and Functions,” on page 67). You can also invoke
an exec from another exec explicitly with the EXEC command or implicitly by
member name. Like an external routine, an exec invoked explicitly or implicitly
can return a value to the caller with the RETURN or EXIT instruction. Unlike an
external routine, which passes a value to the special variable RESULT, the invoked
exec passes a value to the REXX special variable RC.

Invoking Another Exec with the EXEC Command
To explicitly invoke another exec from within an exec, issue the EXEC command as
you would any other TSO/E command. The called exec should end with a
RETURN or EXIT instruction, ensuring that control returns to the caller. The REXX
special variable RC is set to the return code from the EXEC command. You can
optionally return a value to the caller on the RETURN or EXIT instruction. When
control passes back to the caller, the REXX special variable RC is set to the value of
the expression returned on the RETURN or EXIT instruction.

For example, to invoke an exec named MYREXX.EXEC(CALC) and pass it an
argument of four numbers, you could include the following instructions:
"EXEC myrexx.exec(calc) ’24 55 12 38’ exec"
SAY ’The result is’ RC

'Calc' might contain the following instructions:
ARG number1 number2 number3 number4
answer = number1 * (number2 + number3) - number4
RETURN answer

You might want to invoke an exec with the EXEC command rather than as an
external routine when the exec is not within the same PDS as the calling exec, or
when the PDSs of the two execs are not allocated to either SYSEXEC or SYSPROC.

Important Note

Neither of these options can override a NOPROMPT operand in your TSO/E profile.
Your TSO/E profile controls prompting for all commands issued in your TSO/E session
whether the commands are issued in line mode, in ISPF, in an exec, or in a CLIST. To
display your profile, issue the PROFILE command. To change a profile from
NOPROMPT to PROMPT, issue:

PROFILE PROMPT

Issuing TSO/E Commands from an Exec

98 z/OS V2R1.0 TSO/E REXX User's Guide

Invoking Another Exec Implicitly
To implicitly invoke another exec from within an exec, type the member name
either with or without %. Because it is treated as a command, enclose the member
name and the argument, if any, within quotation marks. As with any other
implicitly invoked exec, the PDSs containing the calling exec and the called exec
must be allocated to either SYSEXEC or SYSPROC. Remember that a % before the
member name reduces the search time because fewer files are searched.

For example, to implicitly invoke an exec named MYREXX.EXEC(CALC) and send
it an argument of four numbers, you could include the following instructions.
"%calc 24 55 12 38"
SAY ’The result is’ RC

'Calc' might contain the following instructions:
ARG number1 number2 number3 number4
answer = number1 * (number2 + number3) - number4
RETURN answer

Issuing Other Types of Commands from an Exec
A REXX exec in TSO/E can issue TSO/E commands, APPC/MVS calls, MVS
module invocations, ISPF commands, and ISPF/PDF EDIT commands. If you have
TSO/E CONSOLE command authority and an extended MCS console session is
active, you can also issue MVS system and subsystem commands in a REXX exec.
Each type of invocation is associated with a different host command environment.

What is a Host Command Environment?
An environment for executing commands is called a host command environment.
Before an exec runs, an active host command environment is defined to handle
commands issued by the exec. When the language processor encounters a
command, it passes the command to the host command environment for
processing.

When a REXX exec runs on a host system, there is at least one default environment
available for executing commands.

The default host command environments available in TSO/E REXX are as follows:
v TSO - the environment in which TSO/E commands and TSO/E REXX

commands execute in the TSO/E address space.
v MVS - the environment in which TSO/E REXX commands execute in a

non-TSO/E address space.
v LINK - an environment that links to modules on the same task level.
v LINKMVS - an environment that links to modules on the same task level. This

environment allows you to pass multiple parameters to an invoked module, and
allows the invoked module to update the parameters. The parameters you pass
to the module include a length identifier.

v LINKPGM - an environment that links to modules on the same task level. This
environment allows you to pass multiple parameters to an invoked module, and
allows the invoked module to update the parameters. The parameters you pass
to the module do not include a length identifier.

v ATTACH - an environment that attaches modules on a different task level.
v ATTCHMVS - an environment that attaches modules on a different task level.

This environment allows you to pass multiple parameters to an invoked module,

Issuing TSO/E Commands from an Exec

Chapter 8. Entering Commands from an Exec 99

and allows the invoked module to update the parameters. The parameters you
pass to the module include a length identifier.

v ATTCHPGM - an environment that attaches modules on a different task level.
This environment allows you to pass multiple parameters to an invoked module,
and allows the invoked module to update the parameters. The parameters you
pass to the module do not include a length identifier.

v ISPEXEC - the environment in which ISPF commands execute.
v ISREDIT - the environment in which ISPF/PDF EDIT commands execute.
v CONSOLE - the environment in which MVS system and subsystem commands

execute. To use the CONSOLE environment, you must have TSO/E CONSOLE
command authority and an extended MCS console session must be active. You
use the TSO/E CONSOLE command to activate an extended MCS console
session. See z/OS TSO/E System Programming Command Reference, for more
information about using the CONSOLE command.

v CPICOMM - the environment that allows you to invoke the SAA common
programming interface (CPI) Communications calls.

v LU62 - the environment that allows you to invoke the APPC/MVS calls that are
based on the SNA LU 6.2 architecture. These calls are referred to as APPC/MVS
calls throughout the book.

v APPCMVS - the environment that allows you to access MVS/APPC callable
services related to server facilities and for the testing of transaction programs.

In a non-TSO/E environment, TSO/E REXX provides the following host command
environments:
v MVS (the initial host command environment)
v LINK
v LINKMVS
v LINKPGM
v ATTACH
v ATTCHMVS
v ATTCHPGM
v CPICOMM
v LU62
v APPCMVS

From TSO/E READY mode, TSO/E REXX provides the following host command
environments:
v TSO (the initial host command environment)
v MVS
v LINK
v LINKMVS
v LINKPGM
v ATTACH
v ATTCHMVS
v ATTCHPGM
v CONSOLE
v CPICOMM
v LU62
v APPCMVS

Issuing Other Types of Commands from an Exec

100 z/OS V2R1.0 TSO/E REXX User's Guide

In ISPF, TSO/E REXX provides the following host command environments:
v TSO (the initial host command environment)
v MVS
v LINK
v LINKMVS
v LINKPGM
v ATTACH
v ATTCHMVS
v ATTCHPGM
v ISPEXEC
v ISREDIT
v CONSOLE
v CPICOMM
v LU62
v APPCMVS

Note: These lists of host command environments represent the defaults. Your
installation may have added or deleted environments.

The default host command environment for execs running in TSO/E and ISPF is
TSO. Thus all commands are sent to TSO/E for processing, unless the exec changes
the host command environment.

When an exec runs in an MVS environment, TSO/E command processors and
services are not available to it. For more information, see “Services Available to
REXX Execs” on page 169. In an MVS host command environment, you can issue
many of the TSO/E REXX commands, such as EXECIO, MAKEBUF, and
NEWSTACK.

APPC/MVS Host Command Environments
The CPICOMM environment enables you to invoke the SAA CPI Communications
calls and the LU62 and APPCMVS environments enable you to invoke APPC/MVS
calls. You can write transaction programs in the REXX language, using the LU62,
CPICOMM, or APPCMVS host command environments, to issue APPC calls to a
partner transaction program. The CPICOMM host command environment allows
transaction programs written in the REXX language to be ported across SAA
environments. The LU62 host command environment allows you to use specific
features of MVS in conversations with transaction programs on other systems.
APPCMVS allows you to access APPC/MVS callable services related to server
facilities and for the testing of transaction programs. Each of these host command
environments enable REXX programs to communicate with other programs on the
same MVS system, different MVS systems, or different operating systems in an
SNA network.

The following APPC/MVS calls are supported under the APPCMVS host
command environment:
v ATBCUC1 (Cleanup_TP(Unauthorized))
v ATBGTE2 (Get_Event)
v ATBPOR2 (Post_on_Receipt)
v ATBQAQ2 (Query_Allocate_Query)
v ATBRAL2 (Receive_Allocate)

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 101

v ATBRFA2 (Register_for_Allocate)
v ATBRJC2 (Reject_Conversation)
v ATBSAQ2 (Set_Allocate_Queue_Attributes)
v ATBSCA2 (Set_Conversation_Accounting_Information)
v ATBSTE2 (Set_Event_Notification)
v ATBTEA1 (Accept_Test)
v ATBTER1 (Register_Test)
v ATBTEU1 (Unregister_Test)
v ATBURA2 (Unregister_for_Allocates)
v ATBVERS (MVS_Version_Check)

The following SAA CPI Communications calls are supported under the CPICOMM
host command environment:
v CMACCP (Accept_Conversation)
v CMALLC (Allocate)
v CMCFM (Confirm)
v CMCFMD (Confirmed)
v CMDEAL (Deallocate)
v CMECS (Extract_Conversation_State)
v CMECT (Extract_Conversation_Type)
v CMEMN (Extract_Mode_Name)
v CMEPLN (Extract_Partner_LU_Name)
v CMESL (Extract_Sync_Level)
v CMFLUS (Flush)
v CMINIT (Initialize_Conversation)
v CMPTR (Prepare_To_Receive)
v CMRCV (Receive)
v CMRTS (Request_To_Send)
v CMSCT (Set_Conversation_Type)
v CMSDT (Set_Deallocate_Type)
v CMSED (Set_Error_Direction)
v CMSEND (Send_Data)
v CMSERR (Send_Error)
v CMSF (Set_Fill)
v CMSLD (Set_Log_Data)
v CMSMN (Set_Mode_Name)
v CMSPLN (Set_Partner_LU_Name)
v CMSPTR (Set_Prepare_To_Receive_Type)
v CMSRC (Set_Return_Control)
v CMSRT (Set_Receive_Type)
v CMSSL (Set_Sync_Level)
v CMSST (Set_Send_Type)
v CMSTPN (Set_TP_Name)
v CMTRTS (Test_Request_To_Send_Received)

Issuing Other Types of Commands from an Exec

102 z/OS V2R1.0 TSO/E REXX User's Guide

The SAA CPI Communications calls are described in SAA Common Programming
Interface Communications Reference.

The following APPC/MVS calls are supported under the LU62 host command
environment:
v ATBALC2 (Allocate)
v ATBALLC (Allocate)
v ATBCFM (Confirm)
v ATBCFMD (Confirmed)
v ATBDEAL (Deallocate)
v ATBFLUS (Flush)
v ATBGETA (Get_Attributes)
v ATBGETC (Get_Conversation)
v ATBGETP (Get_TP_Properties)
v ATBGETT (Get_Type)
v ATBGTA2 (Get_Attribute)
v ATBPTR (Prepare_To_Receive)
v ATBRCVI (Receive_Immediate)
v ATBRCVW (Receive_And_Wait)
v ATBRTS (Request_To_Send)
v ATBSEND (Send_Data)
v ATBSERR (Send_Error)

Note: The numeric suffix within the service name indicates the MVS release in
which the service was introduced and thereby also available in all subsequent
releases, as follows:

none MVS SP4.2 service. For example, ATBGETA

1 MVS SP4.2.2 service. For example, ATBTEA1

2 MVS SP4.3 service. For example, ATBALC2

Therefore, your z/OS base control program (BCP) must be at least at the indicated
level to take advantage of these services.

The parameters for these services and the requirements for using them in
APPC/MVS transaction programs are described in z/OS MVS Programming: Writing
Transaction Programs for APPC/MVS.

Examples Using APPC/MVS Services
The following example illustrates the syntax for invoking an SAA CPI
Communications call under the CPICOMM host command environment:

CPICOMM Example

/* REXX */
ADDRESS CPICOMM 'CMALLC conversation_id return_code'
if return_code = CM_OK then say ’OK!’

else say ’Why not?’

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 103

The following example illustrates the syntax for invoking an APPC/MVS call
under the LU62 host command environment:

Whenever you issue an SAA CPI Communications call or APPC/MVS call from a
REXX program, the entire call must be enclosed in single or double quotes.

SAA CPI Communications calls and APPC/MVS calls can use pseudonyms rather
than integer values. In the CPICOMM example, instead of comparing the variable
return_code to an integer value of 0, the example compares return_code to the
pseudonym value CM_OK. The integer value for CM_OK is 0. TSO/E provides
two pseudonym files, one for the LU62 host command environment and one for
the CPICOMM host command environment. These files define the pseudonyms
and their integer values. The LU62 pseudonym file is REXAPPC1, and the
CPICOMM pseudonym file is REXAPPC2. Both files are found in SYS1.SAMPLIB.
You can include this information from the pseudonym files in your REXX execs.

For more information about host command environments and pseudonym files,
refer to z/OS TSO/E REXX Reference.

Changing the Host Command Environment
You can change the host command environment either from the default or from
whatever environment was previously established. To change the host command
environment, use the ADDRESS instruction followed by the name of an
environment.

The ADDRESS instruction has two forms: one affects all commands issued after the
instruction, and one affects only a single command.
v All commands

When an ADDRESS instruction includes only the name of the host command
environment, all commands issued afterward within that exec are processed as
that environment's commands.
ADDRESS ispexec /* Change the host command environment to ISPF */
"edit DATASET("dsname")"

The ADDRESS instruction affects only the host command environment of the
exec that uses the instruction. When an exec calls an external routine, the host
command environment reverts back to the default environment, regardless of the
host command environment of the exec that called it. Upon return to the
original exec, the host command environment that was previously established by
an ADDRESS instruction is resumed.

v Single command

When an ADDRESS instruction includes both the name of the host command
environment and a command, only that command is affected. After the
command is issued, the former host command environment becomes active
again.
/* Issue one command from the ISPF host command environment */
ADDRESS ispexec "edit DATASET("dsname")"
/* Return to the default TSO host command environment */
"ALLOC DA("dsname") F(SYSEXEC) SHR REUSE"

LU62 Example

/* REXX */
ADDRESS LU62 'ATBDEAL conversation_id deallocate_type',

'notify_type return_code'

Issuing Other Types of Commands from an Exec

104 z/OS V2R1.0 TSO/E REXX User's Guide

Note: Keywords, such as DATASET, within an ISPF command must be in
uppercase when used in a REXX instruction.

Determining the Active Host Command Environment

To find out what host command environment is currently active, use the ADDRESS
built-in function.
x = ADDRESS()

In this example, x is set to the active host command environment, for example,
TSO.

Checking if a Host Command Environment is Available
To check if a host command environment is available before trying to issue
commands to that environment, issue the TSO/E REXX SUBCOM command
followed by the name of the host command environment, such as ISPEXEC.
SUBCOM ISPEXEC

If the environment is present, the REXX special variable RC returns a 0. If the
environment is not present, RC returns a 1. For example, when editing a data set,
before trying to use ISPF/PDF edit, you can find out if ISPEXEC is available as
follows:
ARG dsname
SUBCOM ISPEXEC
IF RC=0 THEN

ADDRESS ISPEXEC "SELECT PGM(ISREDIT)" /* select ISPF/PDF edit */
ELSE

"EDIT" dsname /* use TSO/E line mode edit */

Examples Using the ADDRESS Instruction

ADDRESS Example 1

/****************************** REXX *******************************/
/* This exec must be run in ISPF. It asks users if they know the */
/* PF keys, and when the answer is a variation of "no", it displays*/
/* the panel with the PF key definitions. */
/***/
SAY ’Do you know your PF keys?’

PULL answer .
IF answer = ’NO’ | answer = ’N’ THEN

ADDRESS ispexec "display PANEL(ispopt3c)"
ELSE

SAY ’O.K. Never mind.’

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 105

ADDRESS Example 2

/****************************** REXX *******************************/
/* This exec must be run in ISPF. It blanks out previous data set */
/* name information from the fields of an ISPF panel named newtool.*/
/* It then displays the panel to the user. */
/***/
ADDRESS ispexec
CALL blankem /* Call an internal subroutine */

IF RC = 0 THEN
"display PANEL(newtool)"

ELSE
"setmsg MSG(nt001)" /* Send an error message. */

EXIT

blankem:
’vget (ZUSER)’
ntgroup = ’
nttype = ’
ntmem = ’

RETURN RC

ADDRESS Example 3

/****************************** REXX *******************************/
/* This exec must be run in ISPF. It displays panel named newtool */
/* and gets the name of a data set from input fields named ntproj, */
/* ntgroup, nttype, and ntmem. If no member name is specified (the*/
/* data set is sequential) the data set name does not include it. */
/* If a member name is specified, the member is added to data set */
/* name. The fully-qualified data set name is then inserted into a*/
/* TRANSMIT command that includes single quotation marks and the */
/* destination, which was received from an input field named ntdest*/
/***/
ADDRESS ispexec
"DISPLAY PANEL(newtool)"

ADDRESS tso /* re-establish the TSO host command environment */
IF ntmem = ’’ THEN /* member name is blank */

DO
dsname = ntproj’.’ntgroup’.’nttype
"TRANSMIT" ntdest "DA(’"dsname"’)"

END
ELSE

DO
dsname = ntproj’.’ntgroup’.’nttype’(’ntmem’)’
"TRANSMIT" ntdest "DA(’"dsname"’)"

END

ADDRESS Example 4

To link to or attach a logoff routine named MYLOGOFF and pass it the level of TSO/E
installed, you can issue the following instructions from an exec.

ADDRESS LINK ’MYLOGOFF’ SYSVAR(SYSTSOE)

or

ADDRESS ATTACH ’MYLOGOFF’ SYSVAR(SYSTSOE)

Issuing Other Types of Commands from an Exec

106 z/OS V2R1.0 TSO/E REXX User's Guide

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 107

Issuing Other Types of Commands from an Exec

108 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 9. Diagnosing Problems Within an Exec

This chapter describes how to trace command output and other debugging
techniques.

Debugging Execs
When you encounter an error in an exec, there are several ways to locate the error.
v The TRACE instruction displays how the language processor evaluates each

operation. For information about using the TRACE instruction to evaluate
expressions, see “Tracing Expressions with the TRACE Instruction” on page 36.
For information about using the TRACE instruction to evaluate host commands,
see the next section, “Tracing Commands with the TRACE Instruction.”

v Special variables, RC and SIGL, are set by the system to indicate:
– The return code from a command - (RC)
– The line number from which there was a transfer of control because of a

function call, a SIGNAL instruction, or a CALL instruction - (SIGL)
v The TSO/E command EXECUTIL TS (Trace Start) and EXECUTIL TE (Trace End)

control the interactive debug facility as do various options of the TRACE
instruction. For more information about interactive debug, see “Tracing with the
Interactive Debug Facility” on page 111.

Tracing Commands with the TRACE Instruction
The TRACE instruction has many options for various types of tracing, two of
which are "commands" or "c" and "error" or "e".

TRACE C
When you specify "trace c" in an exec, any command that follows is traced before
it is executed, then it is executed, and the return code from the command is
displayed.

When an exec without "trace c" issues an incorrect TSO/E command, the exec ends
with a TSO/E error message. For example, a LISTDS command specifies an
incorrect data set name.
"LISTDS ?"

This example results in the following error message.

MISSING DATA SET NAME
INVALID KEYWORD, ?

If an exec includes "trace c" and again incorrectly issues the LISTDS command, the
exec displays the line number and the command, executes it, and displays the
error message and the return code from the command, as follows:

© Copyright IBM Corp. 1988, 2013 109

3 *-* "LISTDS ?"
>>> "LISTDS ?"

MISSING DATA SET NAME
INVALID KEYWORD, ?

+++ RC(12) +++

TRACE E
When you specify "trace e" in an exec, any host command that results in a nonzero
return code is traced after it executes and the return code from the command is
displayed.

If an exec includes "trace e" and again issues the previous incorrect LISTDS
command, the exec displays error messages, the line number and the command,
and the return code from the command, as follows:

MISSING DATA SET NAME
INVALID KEYWORD, ?

3 *-* "LISTDS ?"
+++ RC(12) +++

For more information about the TRACE instruction, see z/OS TSO/E REXX
Reference.

Using REXX Special Variables RC and SIGL
As mentioned earlier, the REXX language has three special variables — RC, SIGL,
and RESULT. These variables are set by the system during particular situations and
can be used in an expression at any time. If the system did not set a value, a
special variable displays its name, as do other variables in REXX. You can use two
of these special variables, RC and SIGL, to help diagnose problems within execs.

RC
RC stands for return code and is set every time a command is issued. When a
command ends without error, RC is usually set to 0. When a command ends in
error, RC is set to whatever return code is assigned to that error.

For example, the previous incorrect LISTDS command is issued followed by the
RC special variable in a SAY instruction.
"LISTDS ?"
SAY ’The return code from the command is’ RC

This results in the following:

MISSING DATA SET NAME
INVALID KEYWORD, ?
The return code from the command is 12

The RC variable can be especially useful in an IF instruction to determine which
path an exec should take.
’ALLOC DA(’dsname’) F(SYSPROC) SHR REUSE’
IF RC \= 0 THEN

CALL error1
ELSE NOP

Debugging Execs

110 z/OS V2R1.0 TSO/E REXX User's Guide

Note: The value of RC is set by every command and might not remain the same
for the duration of an exec. When using RC, make sure it contains the return code
of the command you want to test.

SIGL
The SIGL special variable is used in connection with a transfer of control within an
exec because of a function, or a SIGNAL or CALL instruction. When the language
processor transfers control to another routine or another part of the exec, it sets the
SIGL special variable to the line number from which the transfer occurred.
000001 /* REXX */...
000005 CALL routine...
000008
000009 routine:
000010 SAY ’We came here from line’ SIGL /* SIGL is set to 3 */
000011 RETURN

If the called routine itself calls another routine, SIGL is reset to the line number
from which the most recent transfer occurred.

SIGL and the SIGNAL ON ERROR instruction can help determine what command
caused an error and what the error was. When SIGNAL ON ERROR is included in
an exec, any host command that returns a nonzero return code causes a transfer of
control to a routine named "error". The error routine runs regardless of other
actions that would normally take place, such as the display of error messages.
000001 /* REXX */
000002 SIGNAL ON ERROR
000003 "ALLOC DA(new.data) LIKE(old.data)"...
000008 "LISTDS ?"...
000011 EXIT
000012
000013 ERROR:
000014 SAY ’The return code from the command on line’ SIGL ’is’ RC
000015 /* Displays:
000016 The return code from the command on line 5 is 12 */

For more information about the SIGNAL instruction, see z/OS TSO/E REXX
Reference.

Tracing with the Interactive Debug Facility
The interactive debug facility permits a user to interactively control the execution
of an exec. A user can view the tracing of various types of instructions separated
by pauses as the exec runs. During a pause, a user can continue to the next traced
instruction, insert instructions, re-execute the previous instruction, and change or
terminate interactive tracing.

Starting Interactive Tracing
You can start interactive tracing with either the ? option of the TRACE instruction
or with the TSO/E EXECUTIL TS command. When interactive tracing is initiated
with the TRACE instruction, interactive tracing is not carried over into external
routines that are called but is resumed when the routines return to the traced exec.
When interactive trace is initiated by the EXECUTIL TS command, interactive trace
continues in all external routines called unless a routine specifically ends tracing.

Debugging Execs

Chapter 9. Diagnosing Problems Within an Exec 111

? Option of the TRACE Instruction: One way to start interactive tracing is to
include in an exec the TRACE instruction followed by a question mark and a trace
option. For example, TRACE ?I (TRACE ?Intermediates). The question mark must
precede the option with no blanks in between. Interactive tracing then begins for
the exec but not for external routines the exec calls.

The following example includes a TRACE ?R (TRACE ?Results) instruction to
interactively trace the result of each instruction.

If the arguments passed to this exec were "node1.mel" and a sequential data set
named "new.exec", the interactively traced results would be as follows with each
segment separated by a pause.

8 *-* ARG dest dsname .
>>> "NODE1.MEL"
>>> "NEW.EXEC"
>.> ""

+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

9 *-* "TRANSMIT" dest "DA("dsname")"
>>> "TRANSMIT NODE1.MEL DA(NEW.EXEC)"

0 message and 20 data records sent as 24 records to NODE1.MEL
Transmission occurred on 05/20/1989 at 14:40:11.

10 *-* IF RC = 0
>>> "1"

- THEN
11 *-* SAY ’Transmit successful.’

>>> "Transmit successful."
Transmit successful.

EXECUTIL TS Command: Another way to start interactive tracing is to issue the
EXECUTIL TS (trace start) command or cause an attention interrupt and type TS.
The type of interactive tracing begun is equivalent to that of the TRACE ?R
instruction, except that tracing continues through all routines invoked unless it is
specifically ended. For information about ending interactive trace, see “Ending
Interactive Trace” on page 114.

Example of Interactive Trace

/********************************** REXX ***************************/
/* This exec receives as arguments the destination and the name */
/* of a data set. It then interactively traces the transmitting */
/* that data set to the destination and the returning of a message */
/* that indicates whether the transmit was successful. */
/***/

TRACE ?R
ARG dest dsname .
"TRANSMIT" dest "DA("dsname")"
IF RC = 0 THEN

SAY ’Transmit successful.’
ELSE

SAY ’Return code from transmit was’ RC

Debugging Execs

112 z/OS V2R1.0 TSO/E REXX User's Guide

The EXECUTIL TS command can be issued from several environments; it affects
only the current exec and the execs it invokes. Like other TSO/E commands,
EXECUTIL TS can be issued from within an exec, from READY mode, and from an
ISPF panel.
v From Within an Exec

You can issue the EXECUTIL TS command from within an exec.
...
"EXECUTIL TS"...
EXIT

The exec is then interactively traced from the point in the exec at which the
command was issued. Any other execs that the exec invokes are also
interactively traced.
You can also issue EXECUTIL TS from within a CLIST to initiate tracing in execs
that the CLIST invokes.

v From READY Mode
You can issue the command from READY mode.
READY
executil ts

The next exec invoked from READY mode is then interactively traced. If that
exec invokes another exec, the invoked exec is also interactively traced.

v From an ISPF Panel
You can also issue EXECUTIL TS from the ISPF COMMAND option or from the
command line of an ISPF panel.

----------------------------- TSO COMMAND PROCESSOR -------------------------
ENTER TSO COMMAND OR CLIST BELOW:

===> executil ts

---------------------------- ALLOCATE NEW DATA SET ---------------------------
COMMAND ===> tso executil ts

The next exec invoked from ISPF is then interactively traced. If that exec calls
another exec, the called exec is also interactively traced. If you are in split screen
mode in ISPF, an exec run from the opposite screen is not interactively traced
because each side of a split screen is a different environment.

To begin interactive trace after pressing the attention interrupt key, sometimes
labeled PA1, enter TS (trace start) after the message that the attention facility
displays.

ENTER HI TO END, A NULL LINE TO CONTINUE, OR AN IMMEDIATE COMMAND+
ts

The type of tracing is the same as that initiated by issuing the EXECUTIL TS
command.

Options Within Interactive Trace
When you are operating in the interactive debug facility, you have several options
during the pauses that occur between each traced instruction. You can:
v Continue tracing by entering a null line
v Type one or more additional instructions to be processed before the next

instruction is traced

Debugging Execs

Chapter 9. Diagnosing Problems Within an Exec 113

v Enter an equal sign (=) to re-execute the last instruction traced
v End interactive tracing as described in the next topic.

Continuing Interactive Tracing: To continue tracing through an exec, simply
press the Enter key to enter a null line during the pause between each traced
instruction. The next traced instruction then appears on the screen. Repeatedly
pressing the Enter key, therefore, takes you from pause point to pause point until
the exec ends.

Typing Additional Instructions to be Processed: During the pause between
traced instructions, you can enter one or more instructions that are processed
immediately. The instruction can be any type of REXX instruction including a
command or invocation to another exec or CLIST. You can also enter a TRACE
instruction, which alters the type of tracing. After you enter the instruction, you
might need to press the Enter key again to resume tracing.
TRACE L /* Makes the language processor pause at labels only */

The instruction can also change the course of an exec, such as by assigning a
different value to a variable to force the execution of a particular branch in an IF
THEN ELSE instruction. In the following example, RC is set by a previous
command.
IF RC = 0 THEN

DO
instruction1
instruction2

END
ELSE

instructionA

If during normal execution, the command ends with other than a 0 return code,
the ELSE path will be taken. To force taking the IF THEN path during interactive
trace, you can change the value of RC as follows during a pause.
RC = 0

Re-executing the Last Instruction Traced: You can re-execute the last instruction
traced by entering an equal sign (=) with no blanks. The language processor then
re-executes the previously traced instruction with values possibly modified by
instructions, if any were entered during the pause.

Ending Interactive Trace

You can end interactive tracing in one of the following ways:
v Use the TRACE OFF instruction.
v Let the exec run until it ends.
v Use the TRACE ? instruction.
v Issue the EXECUTIL TE command.

TRACE OFF: The TRACE OFF instruction ends tracing as stated in the message
displayed at the beginning of interactive trace.
+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

You can enter the TRACE OFF instruction only during a pause while interactively
tracing an exec.

Debugging Execs

114 z/OS V2R1.0 TSO/E REXX User's Guide

End the Exec: Interactive tracing automatically ends when the exec that initiated
tracing ends. You can cause the exec to end prematurely by entering the EXIT
instruction during a pause. The EXIT instruction causes the exec and interactive
tracing both to end.

TRACE ?: The question mark prefix before a TRACE option can end interactive
tracing as well as begin it. The question mark reverses the previous setting for
interactive tracing.

While interactively tracing an exec, you can also enter the TRACE ? instruction
with any operand to discontinue the interactive debug facility but continue the
type of tracing specified by the operand.

EXECUTIL TE: The EXECUTIL TE (Trace End) command ends interactive tracing
when issued from within an exec or when entered during a pause while
interactively tracing an exec.

For more information about the EXECUTIL command, see z/OS TSO/E REXX
Reference.

Debugging Execs

Chapter 9. Diagnosing Problems Within an Exec 115

Debugging Execs

116 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 10. Using TSO/E External Functions

This chapter shows how to use TSO/E external functions and describes function
packages.

TSO/E External Functions

In addition to the built-in functions, TSO/E provides external functions that you
can use to do specific tasks. Some of these functions perform the same services as
control variables in the CLIST language.

The TSO/E external functions are:
v GETMSG - returns in variables a system message issued during an extended

MCS console session. It also returns in variables associated information about
the message. The function call is replaced by a function code that indicates
whether the call was successful.

v LISTDSI - returns in variables the data set attributes of a specified data set. The
function call is replaced by a function code that indicates whether the call was
successful.

v MSG - controls the display of TSO/E messages. The function returns the
previous setting of MSG.

v MVSVAR - uses specific argument values to return information about MVS,
TSO/E, and the current session.

v OUTTRAP - traps lines of TSO/E command output into a specified series of
variables. The function call returns the variable name specified.

v PROMPT - sets the prompt option on or off for TSO/E interactive commands.
The function returns the previous setting of prompt.

v SETLANG - retrieves and optionally changes the language in which REXX
messages are displayed. The function returns the previous language setting.

v STORAGE - retrieves and optionally changes the value in a storage address.
v SYSCPUS - returns in a stem variable information about all CPUs that are

on-line.
v SYSDSN - returns OK if the specified data set exists; otherwise, it returns an

appropriate error message.
v SYSVAR - uses specific argument values to return information about the user,

terminal, language, exec, system, and console session.

Following are brief explanations about how to use the TSO/E external functions.
For complete information, see z/OS TSO/E REXX Reference.

Using the GETMSG Function
The GETMSG function retrieves a system message issued during an extended MCS
console session. The retrieved message can be either a response to a command or
any other system message, depending on the message type you specify.

The message text and associated information are stored in variables, which can be
displayed or used within the REXX exec. The function call is replaced by a
function code that indicates whether the call was successful. See z/OS TSO/E REXX
Reference for more information about the syntax, function codes, and variables for

© Copyright IBM Corp. 1988, 2013 117

GETMSG. You must have CONSOLE command authority to use the GETMSG
function. Before you issue GETMSG, you must:
v Use the TSO/E CONSPROF command to specify the types of messages that are

not to be displayed at the terminal. The CONSPROF command can be used
before you activate a console session and during a console session if values need
to be changed.

v Use the TSO/E CONSOLE command to activate an extended MCS console
session.

The GETMSG function can be used only in REXX execs that run in the TSO/E
address space.

Using the LISTDSI Function
You can use the LISTDSI (list data set information) function to retrieve detailed
information about a data set's attributes. The attribute information is stored in
variables, which can be displayed or used within instructions. The function call is
replaced by a function code that indicates whether the call was successful.

The LISTDSI function can be used only in REXX execs that run in the TSO/E
address space.

To retrieve the attribute information, include the data set name within parentheses
after LISTDSI. When you specify a fully-qualified data set name, be sure to enclose
it in two sets of quotation marks as follows; one set to define it as a literal string to
REXX and the other to indicate a fully-qualified data set to TSO/E.
x = LISTDSI("’proj5.rexx.exec’") /* x is set to a function code */

or
x = LISTDSI(’proj5.rexx.exec’’) /* x is set to a function code */

When you specify a data set name that begins with your prefix (usually your user
ID), you can use one set of quotation marks to define it as a literal string or no
quotation marks. TSO/E adds your prefix to the data set name whether or not it is
enclosed within a set of quotation marks.
x = LISTDSI(’my.data’) /* x is set to a function code */

x = LISTDSI(my.data) /* x is set to a function code */

When you specify a variable that was previously set to a data set name, do not
enclose the variable in quotation marks. Quotation marks would prevent the data
set name from being substituted for the variable name.
variable = ’my.data’
x = LISTDSI(variable)

You cannot use LISTDSI with the filename parameter if the filename is allocated to
a data set
v which exists more than once with the same name on different volumes, and
v which is already in use

because in this case the system may not retrieve information for the data set you
wanted. After LISTDSI executes, the function call is replaced by one of the
following function codes:

Function Code Meaning

0 Normal completion

TSO/E External Functions

118 z/OS V2R1.0 TSO/E REXX User's Guide

Function Code Meaning

4 Some data set information is unavailable. All data set information other
than directory information can be considered valid.

16 Severe error occurred. None of the variables containing information
about the data set can be considered valid.

The following variables are set to the attributes of the data set specified.

Variable Contents

SYSDSNAME Data set name

SYSVOLUME Volume serial ID

SYSUNIT Device unit on which volume resides

SYSDSORG Data set organization: PS, PSU, DA, DAU, IS, ISU, PO,
POU, VS

SYSRECFM Record format; three-character combination of the
following: U, F, V, T, B, S, A, M

SYSLRECL Logical record length

SYSBLKSIZE Block size

SYSKEYLEN Key length

SYSALLOC Allocation, in space units

SYSUSED Allocation used, in space units

SYSUSEDPAGES Used space of a partitioned data set extended (PDSE) in 4K
pages.

SYSPRIMARY Primary allocation in space units

SYSSECONDS Secondary allocation in space units

SYSUNITS Space units: CYLINDER, TRACK, BLOCK

SYSEXTENTS Number of extents allocated

SYSCREATE Creation date:

Year/day format, for example: 1985/102

SYSREFDATE Last referenced date:

Year/day format, for example: 1985/107
(Specifying DIRECTORY causes the date to be updated.)

SYSEXDATE Expiration date:

Year/day format, for example: 1985/365

SYSPASSWORD Password indication: NONE, READ, WRITE

SYSRACFA RACF indication: NONE, GENERIC, DISCRETE

SYSUPDATED Change indicator: YES, NO

SYSTRKSCYL Tracks per cylinder for the unit identified in the SYSUNIT
variable

SYSBLKSTRK Blocks per track for the unit identified in the SYSUNIT
variable

SYSADIRBLK Directory blocks allocated - returned only for partitioned
data sets when DIRECTORY is specified

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 119

Variable Contents

SYSUDIRBLK Directory blocks used - returned only for partitioned data
sets when DIRECTORY is specified

SYSMEMBERS Number of members - returned only for partitioned data
sets when DIRECTORY is specified

SYSREASON LISTDSI reason code

SYSMSGLVL1 First-level message if an error occurred

SYSMSGLVL2 Second-level message if an error occurred

SYSDSSMS Information about the type of a data set provided by
DFSMS/MVS.

SYSDATACLASS SMS data class name

SYSSTORCLASS SMS storage class name

SYSMGMTCLASS SMS management class name

Using the MSG Function
The MSG function can control the display of TSO/E messages. When the MSG
function is not used, both error and non-error messages are displayed as an exec
runs. These messages can interfere with output, especially when the exec's output
is a user interface, such as a panel.

The MSG function can be used only in REXX execs that run in the TSO/E address
space.

To prevent the display of TSO/E messages as an exec runs, use the MSG function
followed by the word "OFF" enclosed within parentheses.
status = MSG(’OFF’) /* status is set to the previous setting of */

/* MSG and sets the current setting to OFF */

To resume the display of TSO/E messages, substitute the word "ON" for "OFF".

To find out if messages will be displayed, issue the MSG function followed by
empty parentheses.
status = MSG() /* status is set to ON or OFF */

Using the MVSVAR Function

The MVSVAR function retrieves information about MVS, TSO/E, and the current
session, such as the symbolic name of the MVS system, or the security label of the
TSO/E session. The information retrieved depends on the argument specified.

To retrieve the information, use the MVSVAR function immediately followed by an
argument value enclosed in parentheses. For example, to find out the APPC/MVS
logical unit (LU) name, use the MVSVAR function with the argument SYSAPPCLU.
appclu = MVSVAR(’SYSAPPCLU’)

The MVSVAR function is available in any MVS address space. Compare this to
the SYSVAR function which also retrieves system information but can only be used
in REXX execs that run in the TSO/E address space.

Many of the MVSVAR arguments retrieve the same information as do CLIST
control variables.

TSO/E External Functions

120 z/OS V2R1.0 TSO/E REXX User's Guide

The following table lists the items of information that are available for retrieval by
MVSVAR.

Argument Value Description

SYSAPPCLU the APPC/MVS logical unit (LU) name

SYSDFP the level of MVS/Data Facility Product (MVS/DFP)

SYSMVS the level of the base control program (BCP) component of
z/OS

SYSNAME the name of the system your REXX exec is running on, as
specified in the SYSNAME statement in SYS1.PARMLIB
member IEASYSxx

SYSSECLAB the security label (SECLABEL) name of the TSO/E session

SYSSMFID identification of the system on which System Management
Facilities (SMF) is active

SYSSMS indicator whether DFSMS/MVS is available to your REXX
exec

SYSCLONE MVS system symbol representing its system name

SYSPLEX the MVS sysplex name as found in the COUPLExx or
LOADxx member of SYS1.PARMLIB

SYMDEF symbolic variables of your MVS system

Using the OUTTRAP Function

The OUTTRAP function puts lines of command output into a series of numbered
variables, each with the same prefix. These variables save the command output
and allow an exec to process the output. Specify the variable name in parentheses
following the function call.
SAY ’The OUTTRAP variable name is’ OUTTRAP(’var’)
/* Displays the variable name in which command output is trapped. */

In this example, the variable var becomes the prefix for the numbered series of
variables. Var1, var2, var3, and so on, receive a line of output each. If you do not
set a limit to the number of output lines, the numbering of variables continues as
long as there is output. Output from the most recent command is placed after the
previous command's output. The total number of lines trapped is stored in var0.
x = OUTTRAP(’var’)
"LISTC"
SAY ’The number of lines trapped is’ var0

To limit the number of lines of output saved, you can specify a limit, for example
5, after the variable name.
x = OUTTRAP(’var’,5)

This results in up to 5 lines of command output stored in var1, var2, var3, var4,
var5; and var0 contains the number 5. Subsequent lines of command output are
not saved.

The following example traps output from two commands and then displays the
member names from a partitioned data set named MYNEW.EXEC. The stem
variable includes a period, which causes the lines of output to be stored in a series
of compound variables. For more information about compound variables, see
“Using Compound Variables and Stems” on page 83.

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 121

x = OUTTRAP(’var.’)
"LISTC"
SAY ’The number of lines trapped is’ var.0 /* could display 205 */
lines = var.0 + 1
"LISTDS mynew.exec MEMBERS"
SAY ’The number of lines trapped is’ var.0 /* could display 210 */
DO i = lines TO var.0

SAY var.i /* displays 5 members */
END

To turn trapping off, reissue the OUTTRAP function with the word "OFF".
x = OUTTRAP(’OFF’) /* turns trapping OFF */

The OUTTRAP function can be used only in REXX execs that run in the TSO/E
address space.

The OUTTRAP function does not trap all lines of command output from all TSO/E
commands. For more information, see z/OS TSO/E REXX Reference.

Using the PROMPT Function

When your profile allows for prompting, the PROMPT function can set the
prompting option on or off for interactive TSO/E commands, or it can return the
type of prompting previously set. When prompting is on, execs can issue TSO/E
commands that prompt the user for missing operands.

The PROMPT function can be used only in REXX execs that run in the TSO/E
address space.

To set the prompting option on, use the PROMPT function followed by the word
"ON" enclosed within parentheses.
x = PROMPT(’ON’) /* x is set to the previous setting of prompt */

/* and sets the current setting to ON */

To set prompting off, substitute the word "OFF" for "ON".

To find out if prompting is available for TSO/E interactive commands, use the
PROMPT function followed by empty parentheses.
x = PROMPT() /* x is set to ON or OFF */

The PROMPT function overrides the NOPROMPT operand of the EXEC command,
but it cannot override a NOPROMPT operand in your TSO/E profile. To display
your profile, issue the PROFILE command. To change a profile from NOPROMPT
to PROMPT, issue:
PROFILE PROMPT

Using the SETLANG Function
You can use the SETLANG function to determine the language in which REXX
messages are currently being displayed and to optionally change the language. If
you do not specify an argument, SETLANG returns a 3-character code that
indicates the language in which REXX messages are currently being displayed.
Table 1 on page 123 shows the language codes that replace the function call and
the corresponding language for each code.

You can optionally specify one of the language codes on the function call to change
the language in which REXX messages are displayed. In this case, SETLANG sets

TSO/E External Functions

122 z/OS V2R1.0 TSO/E REXX User's Guide

the language to the code specified and returns the language code of the previous
language setting. The language codes you can specify on SETLANG depend on the
language features that are installed on your system.

Table 1. Language Codes for SETLANG Function That Replace the Function Call

Language
Code Language

CHS Simplified Chinese

CHT Traditional Chinese

DAN Danish

DEU German

ENP US English-all uppercase

ENU US English-mixed case (uppercase and lowercase)

ESP Spanish

FRA French

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

To find out the language in which REXX messages are currently being displayed,
issue the SETLANG function followed by empty parentheses:
curlang=SETLANG() /* curlang is set to the 3-character */

/* code of the current language setting. */

To set the language to Japanese for subsequent REXX message displays, issue the
SETLANG function followed by the 3-character code, JPN, enclosed within
parentheses:
oldlang=SETLANG(JPN) /* oldlang is set to the previous */

/* language setting. */
/* The current setting is set to JPN. */

The SETLANG function can be used in REXX execs that run in any MVS address
space.

Using the STORAGE Function

You can use the STORAGE function to retrieve data from a particular address in
storage. You can also use the STORAGE function to place data into a particular
address in storage.

The STORAGE function can be used in REXX execs that run in any MVS address
space.

Using the SYSCPUS Function

The SYSCPUS function places, in a stem variable, information about those CPUs
that are on-line.

The SYSCPUS function runs in any MVS address space.

Example:

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 123

Consider a system with two on-line CPUs. Their serial numbers are FF0000149221
and FF1000149221. Assuming you issue the following sequence of statements
/* REXX */
x = SYSCPUS(’cpus.’)
SAY ’0, if function performed okay: ’ x
SAY ’Number of on-line CPUs is ’ cpus.0
DO i = 1 TO CPUS.0

SAY ’CPU’ i ’ has CPU info ’ cpus.i
END

you get the following output:
0, if function performed okay: 0
Number of on-line CPUs is 2
CPU 1 has CPU info FF0000149221
CPU 2 has CPU info FF1000149221

/* ↑ ↑ */
/* | 4 digits = model number */
/* 6 digits = CPU ID */

Using the SYSDSN Function
The SYSDSN function determines if a specified data set is available for your use. If
the data set is available for your use, it returns "OK".
available = SYSDSN(’myrexx.exec’)
/* available could be set to "OK" */

When a data set is not correct as specified or when a data set is not available, the
SYSDSN function returns one of the following messages:
v MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED

v MEMBER NOT FOUND

v DATASET NOT FOUND

v ERROR PROCESSING REQUESTED DATASET

v PROTECTED DATASET

v VOLUME NOT ON SYSTEM

v UNAVAILABLE DATASET

v INVALID DATASET NAME, data-set-name:

v MISSING DATASET NAME

After a data set is available for use, you may find it useful to get more detailed
information. For example, if you later need to invoke a service that requires a
specific data set organization, then use the LISTDSI function. For a description of
the LISTDSI function, see “Using the LISTDSI Function” on page 118.

When you specify a fully-qualified data set, be sure to use two sets of quotation
marks as follows; one set to define a literal string to REXX and the other set to
indicate a fully-qualified data set to TSO/E.
x = SYSDSN("’proj5.rexx.exec’")

or
x = SYSDSN(’proj5.rexx.exec’’)

When you specify a data set that is not fully-qualified and begins with your prefix
(usually your user ID), you can use one set of quotation marks or none at all.
TSO/E adds your prefix to the data set name whether or not it is enclosed within
a set of quotation marks.
x = SYSDSN(’myrexx.exec’)

TSO/E External Functions

124 z/OS V2R1.0 TSO/E REXX User's Guide

or
x = SYSDSN(myrexx.exec)

When you specify a variable that was previously set to a data set name, do not
enclose the variable in quotation marks. Quotation marks would prevent the data
set name from being substituted for the variable name.
variable = ’myrexx.exec’
x = SYSDSN(variable)

The following example uses the SYSDSN function together with the LISTDSI
function to test whether a data set exists and whether it is a partitioned data set:
DO FOREVER

SAY ’Enter a Data Set Name’
PARSE UPPER PULL dsname
IF SYSDSN(dsname) ¬= ’OK’ THEN ITERATE
FC = LISTDSI(dsname)
IF SYSDSORG ¬= ’PO’ THEN ITERATE
SAY ’Okay: ’ dsname ’is ’ SYSDSORG
LEAVE

END

The SYSDSN function can be used only in REXX execs that run in the TSO/E
address space.

Using the SYSVAR Function

The SYSVAR function retrieves information about MVS, TSO/E, and the current
session, such as levels of software available, your logon procedure, and your user
ID. The information retrieved depends on the argument specified.

To retrieve the information, use the SYSVAR function immediately followed by an
argument value enclosed in parentheses. For example, to find out the name of the
logon procedure of your current session, use the SYSVAR function with the
argument SYSPROC.
proc = SYSVAR(sysproc)

The SYSVAR function can be used only in REXX execs that run in the TSO/E
address space.

Many of the SYSVAR arguments retrieve the same information as do CLIST control
variables. The following tables divide the argument values into categories
pertaining to user, terminal, language, exec, system, and console session
information.

User Information

Argument Value Description

SYSPREF Prefix as defined in user profile

SYSPROC SYSPROC returns the current procedure name (either the
LOGON procedure name, the Started Task procedure name,
or 'INIT' for a batch job). For more information, see z/OS
TSO/E REXX Reference.

SYSUID User ID of current session

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 125

Terminal Information

Argument Value Description

SYSLTERM Number of lines available on screen

SYSWTERM Width of screen

Language Information

Argument Value Description

SYSPLANG Primary language for translated messages

SYSSLANG Secondary language for translated messages

SYSDTERM Whether DBCS is supported for this terminal

SYSKTERM Whether Katakana is supported for this terminal

Exec Information

Argument Value Description

SYSENV Whether exec is running in foreground or background

SYSICMD Name by which exec was implicitly invoked

SYSISPF Whether ISPF is available for exec

SYSNEST Whether exec was invoked from another exec or CLIST.
Invocation could be implicit or explicit.

SYSPCMD Name of most recently executed command

SYSSCMD Name of most recently executed subcommand

System Information

Argument Value Description

SYSCPU Number of CPU seconds used during session in the form:
seconds.hundredths of seconds

SYSHSM Level of Data Facility Hierarchical Storage Manager
(DFHSM) installed

SYSJES Name and level of JES installed

SYSLRACF Level of RACF installed

SYSRACF Whether RACF is available

SYSNODE Network node name of the installation's JES

SYSSRV Number of system resource manager (SRM) service units
used during session

SYSTERMID Terminal ID of the terminal where the REXX exec was
started

SYSTSOE Level of TSO/E installed in the form:
version release modification_number

TSO/E External Functions

126 z/OS V2R1.0 TSO/E REXX User's Guide

Console Session Information

Argument Value Description

SOLDISP Whether solicited messages (command responses) should
be displayed at terminal

UNSDISP Whether unsolicited messages should be displayed at
terminal

SOLNUM The number of solicited messages (command responses) to
be held in message table

UNSNUM The number of unsolicited messages to be held in message
table

MFTIME Whether time stamp should be displayed with messages

MFOSNM Whether originating system name should be displayed with
messages

MFJOB Whether originating job name or job ID should be
displayed with messages

MFSNMJBX Whether system name and job name should be excluded
from display of retrieved messages

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 127

Additional Examples

Example 1 - Using the LISTDSI and SYSDSN Functions

/***************************** REXX ********************************/
/* This exec reallocates a data set with more space. It receives */
/* as arguments the names of a base data set and a new data set. */
/* It uses the SYSDSN function to ensure the base data set exists, */
/* uses the LISTDSI function to set variables with attributes of */
/* the base data set, doubles the primary space variable and then */
/* uses the variables as input to the ALLOCATE command to */
/* reallocate a new data set. */
/***/

PARSE ARG baseds newds /* Receive the data set names */
/* with quotes, if any. */

IF SYSDSN(baseds) = ’OK’ THEN
DO /* If the base data set exists, */

x = LISTDSI(baseds) /* use the LISTDSI function. */
IF x = 0 THEN /* If the function code is 0, */

CALL alc /* call an internal subroutine.*/
ELSE

DO /* Else, display the system */
SAY sysmsglvl1 /* messages and codes for LISTDS*/
SAY sysmsglvl2
SAY ’Function code from LISTDSI is’ x
SAY ’Sysreason code from LISTDSI is’ sysreason

END
END

ELSE
SAY ’Data set’ baseds ’not found.’

EXIT

alc:
newprimary = 2 * sysprimary /* Compute new primary space. */
"ALLOC DA("newds") NEW SPACE("newprimary sysseconds") LIKE("baseds")"

/* Allocate the new data set. */
IF RC = 0 THEN /* If return code from allocate is 0 */

SAY ’Data set’ newds ’was allocated.’
ELSE

SAY ’Data set’ newds ’was not allocated. Return code was’ RC

Additional Examples

128 z/OS V2R1.0 TSO/E REXX User's Guide

Example 2 Part 1 - Using the OUTTRAP Function

/**************************** REXX *********************************/
/* This exec adds a data set to the front of the data sets in the */
/* SYSPROC concatenation. It first asks for the name of the data */
/* set to add, then it finds all data sets currently allocated to */
/* SYSPROC, adds the new data set to the beginning and re-allocates*/
/* the concatenation to SYSPROC. */
/***/
SAY ’Enter the fully-qualified data set name you want added’
SAY ’to the beginning of the SYSPROC concatenation. Do NOT’
SAY ’place quotation marks around the data set name.’

PULL addname .

x = OUTTRAP(’name.’)/*Begin trapping lines of output from commands*/
/* Output goes to variables beginning with ’name.’*/

"LISTA ST" /* List the status of your currently allocations */
found = ’NO’ /* Set the found flag to no */
i = 1 /* Set the index variable to 1 */

/***/
/* Loop through the lines of trapped command output to find lines */
/* 9 characters long or longer. Check those lines for the word */
/* SYSPROC until it is found or until all lines have been checked. */
/* If SYSPROC is found, the index is decreased one and the name of */
/* the first data set concatenated to SYSPROC is stored in variable*/
/* "concat". */
/***/
DO WHILE (found = ’NO’) & (i <= name.0)

IF LENGTH(name.i) >= 9 THEN
IF SUBSTR(name.i,3,7) = ’SYSPROC’ THEN

DO
found = ’YES’
i = i - 1
concat = "’"name.i"’"

END
ELSE

i = i + 1
ELSE

i = i + 1
END

Additional Examples

Chapter 10. Using TSO/E External Functions 129

Example 2 Part 2 - Using the OUTTRAP Function

/***/
/* When SYSPROC is found, loop through data sets until another file*/
/* name is encountered or until all lines are processed. Append */
/* data set names to the one in variable "concat". */
/***/
IF found = ’YES’ THEN

DO WHILE (i + 3) <= name.0
i = i + 3

IF SUBSTR(name.i,1,3) = ’ ’ THEN
DO

i = i - 1
concat = concat",’"name.i"’"

END
ELSE

i = name.0

END
ELSE NOP

/* Allocate the new concatenation to SYSPROC */
"ALLOC F(sysproc) DA(’"addname"’,"concat") SHR REUSE"

Additional Examples

130 z/OS V2R1.0 TSO/E REXX User's Guide

Function Packages
A function package is a group of external routines (functions and subroutines) that
are accessed more quickly than external routines written in interpreted REXX.
Routines in a function package must be written in a programming language that
produces object code, which can be link-edited into a load module. The routine
must also support the system interface for function packages. Some programming
languages that meet these qualifications are assembler, COBOL, and PL/I.

There are three types of function packages.

Example 3 - Using the OUTTRAP Function

/******************************* REXX ******************************/
/* This exec lists datasets allocated to a ddname that is passed */
/* as an argument when the exec is invoked. It uses the OUTTRAP */
/* function to trap output from the LISTA STATUS command. It then */
/* loops through the output looking for a match to the input ddname*/
/* When match is found, the exec will SAY the name of all datasets */
/* allocated to that ddname. */
/* */
/* The LISTA STATUS command produces output of the form */
/* */
/* DATASET-NAME-ALLOCATED-TO-DDNAME */
/* DDNAME DISP */
/* */
/* In this output when the area for DDNAME is blank, then the data */
/* set is allocated to the previous DDNAME that was not blank. This*/
/* condition is one of the tests in the program below. */
/* */
/***/

ARG ddname .

x = OUTTRAP(’ddlist.’) /* start output trapping into DDLIST*/
"LISTA STATUS" /* issue the LISTA command */
x = OUTTRAP(’OFF’) /* turn off output trapping */

done = ’NO’ /* initialize loop control variable */

DO i = 1 TO ddlist.0 WHILE done = ’NO’

IF (words(ddlist.i) = 2) & ddname = word(ddlist.i,1) THEN
DO /* if there is a DDNAME & it matches*/
firstdataset = i - 1 /* back up to first dataset name */
SAY ddlist.firstdataset /* Give the first dataset allocated */
DO j = i+1 TO ddlist.0 BY 2 WHILE done = ’NO’

next = j + 1
IF (next <= ddlist.0) & (words(ddlist.next)\=1) THEN

done = ’YES’ /* if we reach the end of the command
output, or the next DDNAME, we are
done */

ELSE
SAY ddlist.j /* Give the next dataset allocated */

END
END

END
If done = ’NO’ then /* If the DDNAME is not allocated */

say "The DDNAME" ddname "is not allocated."
/* Then say so */

EXIT 0

Function Packages

Chapter 10. Using TSO/E External Functions 131

v User packages — User-written external functions that are available to an
individual. These functions are searched before other types of function packages
and are often written to replace the other types of function packages.

v Local packages — Application or system support functions that are generally
available to a specific group of users. Local packages are searched after user
packages.

v System packages — Functions written for system-wide use, such as the TSO/E
external functions. System packages are searched after user and local packages.

Function packages written by a user or an installation must be pre-loaded at logon
time. The default name for the user packages is IRXFUSER, and the default name
for the local package is IRXFLOC. Other function packages can be named in a
parameter block set up by a system programmer.

For more information about function packages, see z/OS TSO/E REXX Reference.

Search Order for Functions
When the language processor encounters a function call, if defaults have not been
changed, it goes through the following search order:
v Internal functions — Labels in the exec that issued the function call are searched

first (unless the label is in quotation marks in the function call).
v Built-in functions — The built-in functions are next in the search order.
v Function packages — User, local, and system function packages, in that order,

are searched.
v Load libraries — Functions stored in a load library are next in the search order.
v External function — An external function and its caller must either be members

in the same PDS or members of PDSs allocated to a system library, such as
SYSEXEC or SYSPROC.

Function Packages

132 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 11. Storing Information in the Data Stack

This chapter describes how to use the REXX data stack to store information. Also,
this chapter describes how to add a buffer to a data stack and how to create a
private data stack in TSO/E.

What is a Data Stack?

REXX in TSO/E uses an expandable data structure called a data stack to store
information. The data stack combines characteristics of a conventional stack and
queue.

Stacks and queues are similar types of data structures used to temporarily hold
data items (elements) until needed. When elements are needed, they are removed
from the top of the data structure. The basic difference between a stack and a
queue is where elements are added (as shown in the following figure). Elements
are added to the top of a stack and to the bottom of a queue.

Using a stack, the last element added to the stack (elem6) is the first removed.
Because elements are placed on the top of a stack and removed from the top, the
newest elements on a stack are the ones processed first. The technique is called
LIFO (last in first out).

Using a queue, the first element added to the queue (elem1) is the first removed.
Because elements are placed on the bottom of a queue and removed from the top,
the oldest elements on a queue are the ones processed first. The technique is called
FIFO (first in first out).

As shown in the following figure, the data stack that REXX uses combines the
techniques used in adding elements to stacks and queues. Elements can be placed
on the top or the bottom of a data stack. Removal of elements from the data stack,
however, occurs from the top of the stack only.

© Copyright IBM Corp. 1988, 2013 133

Manipulating the Data Stack
There are several REXX instructions that manipulate the data stack. Two
instructions add elements to the data stack and another removes elements from the
data stack.

Adding Elements to the Data Stack

You can store information on the data stack with two instructions, PUSH and
QUEUE.
v PUSH - puts one item of data on the top of the data stack. There is virtually no

limit to the length of the data item.
elem1 = ’String 1 for the data stack’
PUSH elem1

v QUEUE - puts one item of data on the bottom of the data stack. Again, there is
virtually no limit to the length of the data item.
elemA = ’String A for the data stack’
QUEUE elemA

If the two preceding sets of instructions were in an exec, the data stack would
appear as follows:

Note: Some people find it less confusing when adding elements in a particular
order to the data stack, to consistently use the same instruction, either PUSH or
QUEUE, but not both.

Removing Elements from the Stack

To remove information from the data stack, use the PULL and PARSE PULL
instructions, the same instructions used previously in this book to extract
information from the terminal. (When the data stack is empty, PULL removes
information from the terminal.)
v PULL and PARSE PULL - remove one element from the top of the data stack.

PULL stackitem

Manipulating the Data Stack

134 z/OS V2R1.0 TSO/E REXX User's Guide

Using the examples from “Adding Elements to the Data Stack” on page 134, the
variable stackitem then contains the value of elem1 with the characters
translated to uppercase.
SAY stackitem /* displays STRING 1 FOR THE DATA STACK */

When you add PARSE to the preceding instruction, the value is not translated to
uppercase.
PARSE PULL stackitem
SAY stackitem /* displays String 1 for the data stack */

After either of the preceding examples, the data stack appears as follows:

Determining the Number of Elements on the Stack

The QUEUED built-in function returns the total number of elements on a data
stack. For example, to find out how many elements are on the data stack, you can
use the QUEUED function with no arguments.
SAY QUEUED() /* displays a decimal number */

To remove all elements from a data stack and display them, you can use the
QUEUED function as follows:
number = QUEUED()
DO number

PULL element
SAY element

END

Exercise - Using the Data Stack
Write an exec that puts the letters T, S, O, E on the data stack in such a way that
they spell “TSOE” when removed. Use the QUEUED built-in function and the
PULL and SAY instructions to help remove the letters and display them. To put the
letters on the stack, you can use the REXX instructions PUSH, QUEUE, or a
combination of the two.

ANSWER

Manipulating the Data Stack

Chapter 11. Storing Information in the Data Stack 135

Processing of the Data Stack
You can think of a data stack as a temporary holding place for information. Every
TSO/E REXX user has a separate data stack available for each REXX environment
that is initialized. REXX environments are initialized at the READY prompt, when
you enter ISPF, and again when you split the screen in ISPF.

Possible Solution 1

/******************************** REXX *****************************/
/* This exec uses the PUSH instruction to put the letters T,S,O,E,*/
/* on the data stack in reverse order. */
/***/

PUSH ’E’ /**************************/
PUSH ’O’ /* Data in stack is: */
PUSH ’S’ /* (fourth push) T */
PUSH ’T’ /* (third push) S */

/* (second push) O */
number = QUEUED() /* (first push) E */
DO number /**************************/

PULL stackitem
SAY stackitem

END

Possible Solution 2

/******************************** REXX *****************************/
/* This exec uses the QUEUE instruction to put the letters T,S,O,E,*/
/* on the data stack in that order. */
/***/

QUEUE ’T’ /***************************/
QUEUE ’S’ /* Data in stack is: */
QUEUE ’O’ /* (first queue) T */
QUEUE ’E’ /* (second queue) S */

/* (third queue) O */
DO QUEUED() /* (fourth queue) E */

PULL stackitem /***************************/
SAY stackitem

END

Possible Solution 3

/******************************** REXX *****************************/
/* This exec uses the PUSH and QUEUE instructions to put T,S,O,E */
/* on the data stack. */
/***/

PUSH ’S’ /***************************/
QUEUE ’O’ /* Data in stack is: */
PUSH ’T’ /* (second push) T */
QUEUE ’E’ /* (first push) S */

/* (first queue) O */
DO QUEUED() /* (second queue) E */

PULL stackitem /***************************/
SAY stackitem

END

Manipulating the Data Stack

136 z/OS V2R1.0 TSO/E REXX User's Guide

When an exec issues a PULL instruction, and when it issues an interactive TSO/E
command, the data stack is searched first for information and if that is empty,
information is retrieved from the terminal.

Some types of input that can be stored on the data stack are:
v Data for the PULL and PARSE PULL instructions

When an exec issues a PULL instruction, the language processor first goes to the
data stack and pulls off the top element. If the data stack is empty, the language
processor goes to the terminal for input. When the data stack is empty, the
PULL instruction can be used with the SAY instruction to interact with a user at
the terminal.

Note: To prevent the language processor from searching the data stack, you can
issue the PARSE EXTERNAL instruction instead of PULL. PARSE EXTERNAL
gets input directly from the terminal and bypasses the data stack.

v Responses to commands
A TSO/E interactive command (such as LISTDS, TRANSMIT, and ALLOCATE)
can prompt a terminal user for information. Similarly, user responses can be put
on the data stack by an exec for the command's use.

v Commands to be issued after the exec ends
When an exec ends, all elements remaining on the data stack are processed
before the READY mode message is displayed. These remaining elements are
treated as TSO/E commands to be issued. If the element is not a TSO/E
command (or an implicit exec or CLIST to be run), you see the message:

COMMAND command_name NOT FOUND

v Information the EXECIO command reads from and writes to data sets when
performing I/O.
For information about the EXECIO command and how it uses the data stack, see
“Using EXECIO to Process Information to and from Data Sets” on page 152.

Using the Data Stack
The data stack has some unique characteristics, such as:

Processing of the Data Stack

Chapter 11. Storing Information in the Data Stack 137

v It can contain a virtually unlimited number of data items of virtually unlimited
size.

v It can contain commands to be issued after the exec ends.
v It can pass information between REXX execs and other types of programs in a

TSO/E or non-TSO/E address space.

Because of the data stack's unique characteristics, you can use the data stack
specifically to:
v Store a large number of data items for a single exec's use.
v Pass a large number of arguments or an unknown number of arguments

between a routine (subroutine or function) and the main exec.
v Pass responses to an interactive command that can run after the exec ends.
v Store data items from an input data set, which were read by the EXECIO

command. For information about the EXECIO command, see “Using EXECIO to
Process Information to and from Data Sets” on page 152.

v Share information between an exec and any program running in MVS. For more
information about running REXX execs in MVS, see Chapter 13, “Using REXX in
TSO/E and Other MVS Address Spaces,” on page 169.

v Execute subcommands of a TSO/E command issued from a REXX exec.

Passing Information Between a Routine and the Main Exec
You can use the data stack to pass information from an exec to an external routine
without using arguments. The exec pushes or queues the information on the stack
and the routine pulls it off and uses it as in the following example.

Using the Data Stack

138 z/OS V2R1.0 TSO/E REXX User's Guide

Example of Using the Data Stack to Pass Information

/***************************** REXX ********************************/
/* This exec helps an inexperienced user allocate a new PDS. It */
/* prompts the user for the data set name and approximate size, */
/* and queues that information on the data stack. Then it calls */
/* an external subroutine called newdata. */
/***/

message = ’A data set name for a partitioned data set has three’,
’qualifiers separated by periods. The first qualifier is usually’,
’a user ID. The second qualifier is any name. The third qualifier’,
’is the type of data set, such as "exec". Generally the user ID’,
’is assumed, so you might specify a data set name as MYREXX.EXEC.’,
’A new data set name cannot be the same as an existing data set’,
’name. Please type a name for the new data set or type QUIT to end.’

SAY ’What is the new data set name? If you are unsure about’
SAY ’naming data sets, type ?. To end, type QUIT.’

PULL name
DO WHILE (name = ’?’) | (name = ’QUIT’)

IF name = ’?’ THEN
DO

SAY message
PULL name

END
ELSE

EXIT
END

SAY ’Approximately how many members will the data set have:’
SAY ’6 12 18 24 30 36 42 48 54 60?’

PULL number
QUEUE name
QUEUE number
CALL newdata

IF RESULT > 0 THEN
SAY ’An error prevented’ name ’from being allocated.’

ELSE
SAY ’Your data set’ name ’has been allocated.’

Example of the External Subroutine NEWDATA

/***************************** REXX ********************************/
/* This external subroutine removes the data set name and the */
/* number of members from the stack and then issues the ALLOCATE */
/* command. */
/***/

PULL name
PULL number

"ALLOCATE DATASET("name") NEW SPACE(50,20) DIR("number%6") DSORG(PO)",
"RECFM(V,B) LRECL(255) BLKSIZE(5100)"

RETURN RC /* The return code from the TSO/E command sets the */
/* REXX special variable, RC, and is returned to the */
/* calling exec. A 0 return code means no errors. */

Using the Data Stack

Chapter 11. Storing Information in the Data Stack 139

Passing Information to Interactive Commands
When your TSO/E profile allows prompting, most TSO/E commands prompt you
for missing operands. For example, the TRANSMIT command prompts you for a
node and user ID when you do not include the destination with the command.

An exec can put responses to command prompts on the data stack. Because of the
information search order, the data stack supplies the necessary information instead
of a user at the terminal.

For example, the following exec puts the TRANSMIT command and its operands
on the data stack. When the exec completes, the TSO/E data stack service
continues to get input from the data stack. Thus the TRANSMIT command is
issued after the exec ends.

Issuing Subcommands of TSO/E Commands
To execute subcommands of a TSO/E command in a REXX exec, you must place
the subcommands onto the data stack before you issue the TSO/E command.

Creating a Buffer on the Data Stack
When an exec calls a routine (subroutine or function) and both the exec and the
routine use the data stack, the stack becomes a way to share information. However,
execs and routines that do not purposely share information from the data stack,
might unintentionally do so and end in error. To help prevent this, TSO/E
provides the MAKEBUF command that creates a buffer, which you can think of as
an extension to the stack, and the DROPBUF command that deletes the buffer and
all elements within it.

Example of Passing Information from the Stack to a Command

/****************************** REXX *******************************/
/* This exec prompts a user for a node and gets the user ID from a */
/* built in function. It then calls an external subroutine to */
/* check if the user’s job is finished. */
/* The TRANSMIT command and its operands, including a message with */
/* the status of the job, are queued on the data stack to run after*/
/* the exec terminates. */
/***/

SAY ’What is your node?’
PULL node
id = USERID()
dest = node’.’id

CALL jobcheck userid /* Go to a subroutine that checks job status */

IF RESULT = ’done’ THEN
note = ’Your job is finished.’

ELSE
note = ’Your job is not finished.’

QUEUE ’transmit’
QUEUE dest ’line’ /* Specify that the message be in line mode */
QUEUE note
QUEUE ’’ /* Insert a null to indicate line mode is over */

Using the Data Stack

140 z/OS V2R1.0 TSO/E REXX User's Guide

Although the buffer does not prevent the PULL instruction from accessing
elements placed on the stack before the buffer was created, it is a way for an exec
to create a temporary extension to the stack. The buffer allows an exec to:
1. Use the QUEUE instruction to insert elements in FIFO order on a stack that

already contains elements.
2. Have temporary storage that it can delete easily with the DROPBUF command.

An exec can create multiple buffers before dropping them. Every time MAKEBUF
creates a new buffer, the REXX special variable RC is set with the number of the
buffer created. Thus if an exec issues three MAKEBUF commands, RC is set to 3
after the third MAKEBUF command.

Note: To protect elements on the stack, an exec can create a new stack with the
NEWSTACK command. For information about the NEWSTACK command, see
“Protecting Elements in the Data Stack” on page 145.

Creating a Buffer with the MAKEBUF Command

To create a buffer on the data stack before adding more elements to the stack, use
the TSO/E REXX MAKEBUF command. All elements added to the data stack after
the MAKEBUF command are placed in the buffer. Below the buffer are elements
placed on the stack before the MAKEBUF command.

Instructions that could be used to create the illustrated buffer are as follows:
’MAKEBUF’
PUSH ’newX’
QUEUE ’newY’

Removing Elements from a Stack with a Buffer
The buffer created by MAKEBUF does not prevent an exec from accessing
elements below it. After an exec removes the elements added after the MAKEBUF
command, then it removes elements added before the MAKEBUF command was
issued.

Using the previous illustration, when the exec issues three PULL instructions, the
following elements are removed from the data stack.
newX
newY
old1

Creating a Buffer on the Data Stack

Chapter 11. Storing Information in the Data Stack 141

To prevent a routine from accessing elements below the buffer, you can use the
QUEUED built-in function as follows:
olditems = QUEUED()
’MAKEBUF’
PUSH ...
QUEUE ...
DO WHILE QUEUED() > olditems /* total items > old number of items */

PULL
...

END
’DROPBUF’

Dropping a Buffer with the DROPBUF Command

When an exec has no more need for a buffer on the data stack, it can use the
TSO/E REXX DROPBUF command to remove the buffer (and its contents). The
DROPBUF command removes the most recently created buffer.

To drop a specific buffer on the data stack and all buffers created after it, issue the
DROPBUF command with the number of the buffer. The first MAKEBUF creates
buffer 1, the second creates buffer 2, and so on. For example, if an exec issued
three MAKEBUF commands that created three buffers, when you issue DROPBUF
2, the second and third buffers and all elements within them are removed.

To remove all elements from the entire data stack including elements placed on the
data stack before buffers were added, issue DROPBUF 0. DROPBUF 0 creates an
empty data stack and should be used with caution.

Note: When an element is removed below a buffer, the buffer disappears. Thus
when elements are unintentionally removed below a buffer, the corresponding
DROPBUF command might remove the incorrect buffer and its elements. To
prevent an exec from removing elements below a buffer, use the QUEUED built-in
function or use the NEWSTACK command as described in “Protecting Elements in
the Data Stack” on page 145.

Finding the Number of Buffers with the QBUF Command

To find out how many buffers were created with the MAKEBUF command, use the
TSO/E REXX QBUF command. QBUF returns in the REXX special variable RC, the
number of buffers created.
’MAKEBUF’...
’MAKEBUF’...
’QBUF’
SAY ’The number of buffers is’ RC /* RC = 2 */

Creating a Buffer on the Data Stack

142 z/OS V2R1.0 TSO/E REXX User's Guide

QBUF returns the total number of buffers created, not just the ones created by a
single exec. Thus if an exec issued two MAKEBUF commands and called a routine
that issued two more, when the routine issues a QBUF command, RC returns the
total number of buffers created, which is four.

Finding the Number of Elements In a Buffer

To find out how many elements are in the most recently created buffer, use the
TSO/E REXX QELEM command. QELEM returns in the REXX special variable RC,
the number of elements in the most recently created buffer.
PUSH A
’MAKEBUF’
PUSH B
PUSH C
’QELEM’
SAY ’The number of elements is’ RC /* RC = 2 */

QELEM does not return the number of elements on a data stack with no buffers
created by the MAKEBUF command. If QBUF returns 0, no matter how many
elements are on the stack, QELEM also returns 0.

For more information about these stack commands, see z/OS TSO/E REXX
Reference.

Exercises - Creating a Buffer on the Data Stack
1. What are the results of the following instructions?

a. What is item?
QUEUE A
QUEUE B
’MAKEBUF’
QUEUE C
PULL item

b. What is element?
PUSH ’a’
PUSH ’b’
’MAKEBUF’
PUSH ’c’
PUSH ’d’
’DROPBUF’
PARSE PULL element

c. What is stackitem?
QUEUE a
’MAKEBUF’
QUEUE b
’MAKEBUF’
QUEUE c
’DROPBUF’
PULL stackitem

d. What is RC?
PUSH A
’MAKEBUF’
PUSH B
CALL sub1
’QBUF’
SAY RC
EXIT

Creating a Buffer on the Data Stack

Chapter 11. Storing Information in the Data Stack 143

sub1:
’MAKEBUF’
RETURN

e. What is RC?
QUEUE A
’MAKEBUF’
PUSH B
PUSH C
’MAKEBUF’
PUSH D
’QELEM’
SAY RC

f. What is RC?
QUEUE A
QUEUE B
QUEUE C
’QELEM’
SAY RC

2. Given the data stack below and the instructions that created it, what are the
results of the subsequent instructions that follow?

’MAKEBUF’
QUEUE ’prompt’
’MAKEBUF’
QUEUE ’data’
QUEUE ’info’
QUEUE ’item’
’MAKEBUF’

a. What is returned to the function?
SAY QUEUED()

b. What is RC?
’QBUF’
SAY RC

c. What is RC?
’QELEM’
SAY RC

d. What are both RCs and the result of the QUEUED() function?

Creating a Buffer on the Data Stack

144 z/OS V2R1.0 TSO/E REXX User's Guide

’DROPBUF 2’
’QBUF’
SAY RC
’QELEM’
SAY RC
SAY QUEUED()

ANSWERS
1.

a. C
b. b
c. B (b was changed to uppercase because it was queued without quotes and

pulled without PARSE.)
d. 2
e. 1
f. 0

2.

a. 4
b. 3
c. 0
d. 1, 1, 1

Protecting Elements in the Data Stack
In certain environments, particularly MVS, where multiple tasks run at the same
time, it is often important for an exec to isolate stack elements from other execs.

Similarly, an exec in TSO/E might want to protect stack elements from a routine
(subroutine or function) that it calls. For example, if an exec puts elements on the
data stack for its own use and then calls a subroutine that issues an interactive
TSO/E command, such as ALLOCATE, the command goes to the data stack first
for input to the command. Because the stack input is incorrect for the command
prompt, the exec ends in error.

Even though the subroutine in the preceding example starts with the MAKEBUF
command, the stack elements will be used because MAKEBUF does not protect
elements previously placed on the stack.

Example of an Interactive Command Error

EXEC1

PUSH prompt1
PUSH prompt2
CALL sub1
7invellip.
EXIT

SUB1:

’MAKEBUF’
’ALLOCATE’...

Creating a Buffer on the Data Stack

Chapter 11. Storing Information in the Data Stack 145

To protect elements on the data stack, you can create a new data stack with the
TSO/E REXX NEWSTACK command. Read the next section to see how the exec in
the previous example can safely issue an interactive TSO/E command.

To delete the new data stack and all elements in it, use the TSO/E REXX
DELSTACK command. Execs can create multiple stacks before deleting them.

Note: Before an exec returns to its caller, the called exec should issue a DELSTACK
command for each NEWSTACK command it issued, unless the called exec intends
for the caller to also use the new data stack.

Creating a New Data Stack with the NEWSTACK Command

The TSO/E REXX NEWSTACK command creates a private data stack that is
completely isolated from the original data stack. The elements on the original data
stack cannot be accessed by an exec or the routines that it calls until a DELSTACK
command is issued. When there are no more elements in the new data stack,
information is taken from the terminal.

Note: When you issue the NEWSTACK, it is your responsibility to issue a
corresponding DELSTACK command.

All elements added to the data stack after the NEWSTACK command are placed in
the new data stack. The original stack contains the elements placed on the stack
before the NEWSTACK command.

Instructions that could be used to create the illustrated new stack are as follows:
PUSH ’oldA’
PUSH ’old1’
’NEWSTACK’
QUEUE ’newY’
PUSH ’newX’

In the Example of an Interactive Command Error, the MAKEBUF command did
not protect the elements in the stack. If you substitute the NEWSTACK command
for the MAKEBUF command, the elements become inaccessible.

Protecting Elements in the Data Stack

146 z/OS V2R1.0 TSO/E REXX User's Guide

Note: To have an interactive command prompt the user for input from the
terminal, run an exec explicitly with the EXEC command and specify prompt or
include the PROMPT(on) function within the exec. For more information, see
“Causing Interactive Commands to Prompt the User” on page 97.

Deleting a Private Stack with the DELSTACK Command

When an exec wants to delete the new stack and remove all elements placed on
the new stack, it can issue the TSO/E REXX DELSTACK command. The
DELSTACK command removes the most recently created data stack. If no stack
was previously created with the NEWSTACK command, DELSTACK removes all
the elements from the original stack.

Finding the Number of Stacks

To find out how many stacks exist, use the TSO/E REXX QSTACK command.
QSTACK returns in the REXX special variable RC, the total number of stacks
including the original data stack.
’NEWSTACK’...
’NEWSTACK’...
’QSTACK’
SAY ’The number of stacks is’ RC /* RC contains 3 */

QSTACK returns the total number of stacks, not just the ones created for a single
exec. Thus if an exec issued two NEWSTACK commands and called a routine that
issued two more, when the routine issues a QSTACK command, RC returns the
total number of stacks, which is five.

For more information about these commands, see z/OS TSO/E REXX Reference.

Example of using NEWSTACK with an Interactive Command

EXEC1

PUSH prompt1
PUSH prompt2
CALL sub1...
EXIT

SUB1:

’NEWSTACK’
’ALLOCATE’...

Protecting Elements in the Data Stack

Chapter 11. Storing Information in the Data Stack 147

Additional Examples

Data Stack Example 1

/********************************* REXX ****************************/
/* This exec tests several of the stack functions to see how they */
/* work together. It uses the NEWSTACK and DELSTACK commands, puts */
/* an element on the stack that exceeds 255 characters, uses the */
/* LENGTH built-in function to see how long the element is, uses */
/* QUEUED built-in function to see how many items are on the stack,*/
/* and then issues more PULL instructions than are elements on the */
/* stack. */
/***/
element = ’Attention please! This is a test.’
PUSH element

’NEWSTACK’ /* Create a new stack and protect elements previously */
/* placed on the stack */

longitem = ’SAA is a definition -- a set of software interfaces,’,
’conventions, and protocols that provide a framework for designing’,
’and developing applications with cross-system consistency.’,
’The Systems Application Architecture defines a common programming’,
’interface you can use to develop applications, and defines common’,
’communications support that you can use to connect those’,
’applications.’

SAY ’The length of the element is’ LENGTH(longitem) ’characters.’
/* The length of the element is 379 characters. */

QUEUE longitem

PULL anyitem
SAY anyitem /* Displays the longitem quote in uppercase */

SAY ’There are’ QUEUED() ’number of elements on the stack.’
/* The QUEUED function returns 0 */

PULL emptyitem /* Pull an element from an empty stack. Results in */
/* a blank screen and PULL waits for terminal */
/* input. To end the wait, press ENTER. */

’DELSTACK’ /* Remove the new stack and return to original stack.*/

PULL anyitem
SAY anyitem /* Displays ATTENTION PLEASE! THIS IS A TEST. */

Protecting Elements in the Data Stack

148 z/OS V2R1.0 TSO/E REXX User's Guide

Data Stack Example 2

/******************************** REXX *****************************/
/* This exec runs another exec implicitly and then sends a message */
/* when the called exec finishes. It receives as an argument the */
/* name of a PDS member to run. It activates the system procedure */
/* file SYSEXEC, allocates the data set to SYSEXEC, pushes some */
/* commands on the data stack and then implicitly executes the exec*/
/***/

ARG dsn

"EXECUTIL SEARCHDD(yes)" /* Establish the system library SYSEXEC*/

PUSH "SEND ’Sequence over’ USER(*)" /* Put a message on the stack*/
PUSH "TIME" /* Push the time command */
PUSH "FREE F(SYSEXEC)" /* Push command to free SYSEXEC*/

PARSE VAR dsn name ’(’ member /* Separate the data set name from */
/* the member name. */

"ALLOC DA("name") F(SYSEXEC) SHR REUSE"

execname = STRIP(member,t,’)’) /* Remove the last parentheses from*/
/* the member name. */

PUSH ’%’execname /* Put the member name on the stack*/

/***/
/* The output from this exec depends on the exec that it runs. */
/* Output can be as follows: */
/* */
/*TIME-01:23:56 PM.CPU-00:00:23 SERVICE-297798 SESSION-04:15:20 MAY*/
/*12,1989 */
/* Sequence over USERID */
/* READY */
/***/

Protecting Elements in the Data Stack

Chapter 11. Storing Information in the Data Stack 149

Protecting Elements in the Data Stack

150 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 12. Processing Data and Input/Output Processing

This chapter describes dynamic modification of a single REXX expression and I/O
processing of data sets.

Types of Processing
The word "processing" is used here to mean the performance of operations and
calculations on data. Normal processing of instructions in REXX occurs every time
the language processor evaluates an expression. This chapter describes two special
types of REXX processing:
v Dynamic modification of a single REXX expression

The INTERPRET instruction evaluates an expression and then treats it as a
REXX instruction.

v Processing information to and from data sets
The TSO/E REXX EXECIO command in an exec reads information from a data
set to the data stack (or a list of variables) and writes information from the data
stack (or list of variables) back to a data set.

Dynamic Modification of a Single REXX Expression
Typically REXX expressions are evaluated and the result replaces the expression.
For example, the arithmetic expression "5 + 5" is evaluated as "10".
answer = 5 + 5 /* answer gets the value 10 */

If the arithmetic expression is in quotation marks, the expression is evaluated as a
string.
answer = ’5 + 5’ /* answer gets the value 5 + 5 */

To both evaluate and execute an expression, you can use the INTERPRET
instruction.

Using the INTERPRET Instruction

The INTERPRET instruction not only evaluates an expression, but also treats it as
an instruction after it is evaluated. Thus if a combination of the previous examples
were used with the INTERPRET instruction, answer becomes "10".
answer = 5 + 5
INTERPRET ’say’ answer ’"= 5 + 5"’ /* displays 10 = 5 + 5 */

You can also group a number of instructions within a string, assign the string to a
variable, and use the INTERPRET instruction to execute the instructions assigned
to the variable.
action = ’DO 3; SAY "Hello!"; END’
INTERPRET action /* results in:

Hello!
Hello!
Hello! */

© Copyright IBM Corp. 1988, 2013 151

Because the INTERPRET instruction causes dynamic modification, use it very
carefully. For more information about the INTERPRET instruction, see z/OS TSO/E
REXX Reference.

Using EXECIO to Process Information to and from Data Sets
An exec uses the EXECIO command to perform the input and output (I/O) of
information to and from a data set. The information can be stored in the data stack
for serialized processing or in a list of variables for random processing.

When to Use the EXECIO Command
The various operands and combination of operands of the EXECIO command
permit you to do many types of I/O. For example, you can use the EXECIO
command to:
v Read information from a data set
v Write information to a data set
v Open a data set without reading or writing any records
v Empty a data set
v Copy information from one data set to another
v Copy information to and from a list of compound variables
v Add information to the end of a sequential data set
v Update information in a data set one line at a time

Using the EXECIO Command

EXECIO reads information from a data set with either the DISKR or DISKRU
operands. Using these operands, you can also open a data set without reading its
records. Refer to “Reading Information from a Data Set” on page 153 for more
information about the DISKR and DISKRU operands. EXECIO writes information
to a data set with the DISKW operand. Using this operand, you can also open a
data set without writing records or empty an existing data set. Refer to “Writing
Information to a Data Set” on page 155 for more information on the DISKW
operand.

Before an exec can use the EXECIO command to read from or write to a data set,
the data set must meet the following requirements. An I/O data set must be:
v Either sequential or a single member of a PDS.
v Previously allocated with the appropriate attributes for its specific purpose.

Some examples of the various uses of EXECIO and the type of data set
allocation appropriate for these uses are shown in and after “Copying
Information From One Data Set to Another” on page 157.

If you use EXECIO to read information from a data set and to the data stack, the
information can be stored in FIFO or LIFO order on the data stack. FIFO is the
default. If you use EXECIO to read information from a data set and to a list of
variables, the first data set line is stored in variable1, the second data set line is
stored in variable2, and so on. Data read into a list of variables can be accessed
randomly. After the information is in the data stack or in a list of variables, the
exec can test it, copy it to another data set, or update it before returning it to the
original data set.

Dynamic Modification of a Single REXX Expression

152 z/OS V2R1.0 TSO/E REXX User's Guide

Reading Information from a Data Set

To read information from a data set to the data stack or to a list of variables, use
EXECIO with either the DISKR or DISKRU operand. A typical EXECIO command
to read all lines from the data set allocated to the ddname MYINDD, might appear
as:
"EXECIO * DISKR myindd (FINIS"

The rest of this topic describes the types of information you can specify with
EXECIO DISKR and EXECIO DISKRU. For further information, see z/OS TSO/E
REXX Reference.

How to specify the number of lines to read: To open a data set without reading
any records, put a zero immediately following the EXECIO command and specify
the OPEN operand.
"EXECIO 0 DISKR mydd (OPEN"

To read a specific number of lines, put the number immediately following the
EXECIO command.
"EXECIO 25 ..."

To read the entire data set, put an asterisk immediately following the EXECIO
command.
"EXECIO * ..."

When all the information is on the data stack, either queue a null line to indicate
the end of the information, or if there are null lines throughout the data, assign the
built-in QUEUED() function to a variable to indicate the number of items on the
stack.

How to read the data set: Depending on the purpose you have for the input data
set, use either the DISKR or DISKRU operand.
v DISKR - Reading Only

To initiate I/O from a data set that you want to read only, use the DISKR
operand with the FINIS option. The FINIS option closes the data set after the
information is read. Closing the data set allows other execs to access the data set
and the ddname.
"EXECIO * DISKR ... (FINIS"

Note: Do not use the FINIS option if you want the next EXECIO statement in
your exec to continue reading at the line immediately following the last line
read.

v DISKRU - Reading and Updating
To initiate I/O to a data set that you want to both read and update, use the
DISKRU operand without the FINIS option. Because you can update only the
last line that was read, you usually read and update a data set one line at a
time, or go immediately to the single line that needs updating. The data set
remains open while you update the line and return the line with a
corresponding EXECIO DISKW command.
"EXECIO 1 DISKRU ..."

More about using DISKRU appears in “Updating Information in a Data Set” on
page 159.

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 153

How to access the data set: An I/O data set must first be allocated to a ddname.
The ddname need not exist previously. In fact, it might be better to allocate it to a
new ddname, such as MYINDD, in order not to interfere with previously
established allocations. You can allocate before the exec runs, or you can allocate
from within the exec with the ALLOCATE command as shown in the following
example.
"ALLOC DA(io.data) F(myindd) SHR REUSE"
"EXECIO * DISKR myindd (FINIS"

Option of specifying a starting line number: If you want to start reading at
other than the beginning of the data set, specify the line number at which to begin.
For example, to read all lines to the data stack starting at line 100, add the
following line number operand.
"EXECIO * DISKR myindd 100 (FINIS"

To read just 5 lines to the data stack starting at line 100, write the following:
"EXECIO 5 DISKR myindd 100 (FINIS"

To open a data set at line 100 without reading lines to the data stack, write the
following:
"EXECIO 0 DISKR myindd 100 (OPEN"

Options for DISKR and DISKRU: Options you can use are:
v OPEN - To open a data set. When you specify OPEN with EXECIO 0, it opens

the data set and positions the file position pointer before the first record.
"EXECIO 0 DISKR myindd (OPEN"

Note: If the data set is already open, no operation is performed for OPEN.
v FINIS - To close the data set after reading it. Closing the data set allows other

execs to access it and its ddname. It also resets the current positional pointer to
the beginning of the data set.

v STEM - To read the information to either a list of compound variables that can
be indexed, or a list of variables appended with numbers. Specifying STEM with
a variable name ensures that a list of variables (not the data stack) receives the
information.
"EXECIO * DISKR myindd (STEM newvar."

In this example, the list of compound variables has the stem newvar. and lines
of information or records from the data set are placed in variables newvar.1,
newvar.2, newvar.3, and so forth. The number of items in the list of compound
variables is placed in the special variable newvar.0.
Thus if 10 lines of information are read into the newvar variables, newvar.0
contains the number 10, indicating that 10 records have been read. Furthermore,
newvar.1 contains record 1, newvar.2 contains record 2, and so forth up to
newvar.10 which contains record 10. All stem variables beyond newvar.10 (for
example, variables newvar.11 and newvar.12) are residual and contain the
value(s) held prior to entering the EXECIO command.
To avoid confusion as to whether a residual stem variable value is meaningful,
you may want to clear the entire stem variable prior to entering the EXECIO
command. To clear all stem variables, you can either:
– Use the DROP instruction as follows, which sets all stem variables to their

uninitialized state.
DROP newvar.

– Set all stem variables to nulls as follows:

Using EXECIO to Process Information ...

154 z/OS V2R1.0 TSO/E REXX User's Guide

newvar. = ’

See EXECIO Example 6 under the heading “Additional Examples” on page 161,
which shows the usage of the EXECIO command with stem variables.

v SKIP - To skip over a specified number of lines in a data set without placing
them on the data stack or into variables.
"EXECIO 24 DISKR myindd (SKIP"

v LIFO - To read the information in LIFO order onto the stack. In other words, use
the PUSH instruction to place the information on the stack.

v FIFO - To read the information in FIFO order onto the stack. In other words, use
the QUEUE instruction to place the information on the stack. If you do not
specify either LIFO or FIFO, FIFO is assumed.

Writing Information to a Data Set

To write information to a data set from the data stack or from a list of variables,
use EXECIO with the DISKW operand. A typical EXECIO command to write all
lines to the data set allocated to the ddname, MYOUTDD, might appear as:
"EXECIO * DISKW myoutdd (FINIS"

The rest of this topic describes the types of information you can specify with
EXECIO DISKW. For further information, see z/OS TSO/E REXX Reference.

How to specify the number of lines to write: To open a data set without writing
records to it, put a zero immediately following the EXECIO command and specify
the OPEN operand.
"EXECIO 0 DISKW myoutdd ... (OPEN"

Note:

1. To empty a data set, issue this command to open the data set and position the
file position pointer before the first record. You then issue EXECIO 0 DISKW
myoutdd ... (FINIS to write an end-of-file mark and close the data set. This
deletes all records in data set MYOUTDD. You can also empty a data set by
issuing EXECIO with both the OPEN and FINIS operands.

2. When you empty a data set, the file to which the data set is allocated should
not have a disposition of MOD. If the file has a disposition of MOD, opening
and then closing the data set will not empty the data set.

To write a specific number of lines, put the number immediately following the
EXECIO command.
"EXECIO 25 DISKW ..."

To write the entire data stack or until a null line is found, put an asterisk
immediately following the EXECIO command.
"EXECIO * DISKW ..."

When you specify *, the EXECIO command will continue to pull items off the data
stack until it finds a null line. If the stack becomes empty before a null line is
found, EXECIO will prompt the terminal for input until the user enters a null line.
Thus when you do not want to have terminal I/O, queue a null line at the bottom
of the stack to indicate the end of the information.
QUEUE ’

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 155

If there are null lines (lines of length 0) throughout the data and the data stack is
not shared, you can assign the built-in QUEUED() function to a variable to indicate
the number of items on the stack.
n = QUEUED()
"EXECIO" n "DISKW outdd (FINIS"

How to access the data set: An I/O data set must first be allocated to a ddname.
The ddname does not need to exist previously. In fact, it might be better to allocate
to a new ddname, such as MYOUTDD, in order not to interfere with previously
established allocations. You can allocate from within the exec with the ALLOCATE
command as shown in the following example, or you can allocate before the exec
runs.
"ALLOC DA(out.data) F(myoutdd) OLD REUSE"
"EXECIO * DISKW myoutdd ..."

Options for DISKW: Options you can use are:
v OPEN - To open a data set. When you specify OPEN with EXECIO 0, it opens

the data set and positions the file position pointer before the first record.
"EXECIO 0 DISKW myoutdd (OPEN"

Note: If the data set is already open, no operation is performed for OPEN.
v FINIS - To close the data set after writing to it. Closing the data set allows other

execs to access it and its ddname. When you specify FINIS, it forces the
completion of all I/O operations by physically writing the contents of any
partially filled I/O buffers to the data set.
"EXECIO * DISKW myoutdd (FINIS"

v STEM - To write the information from compound variables or a list of variables
beginning with the name specified after the STEM keyword. The variables,
instead of the data stack, holds the information to be written.
"EXECIO * DISKW myoutdd (STEM newvar."

In this example, the variables would have the stem newvar. and lines of
information from the compound variables would go to the data set. Each
variable is labeled newvar.1, newvar.2, newvar.3, and so forth.
The variable newvar.0 is not used when writing from compound variables.
When * is specified with a stem, the EXECIO command stops writing
information to the data set when it finds a null value or an uninitialized
compound variable. In this case, if the list contained 10 compound variables, the
EXECIO command stops at newvar.11.
The EXECIO command can also specify the number of lines to write from a list
of compound variables.
"EXECIO 5 DISKW myoutdd (STEM newvar."

In this example, the EXECIO command writes 5 items from the newvar variables
including uninitialized compound variables, if any.

See “Additional Examples” on page 161 Example 6 for usage of the EXECIO
command with stem variables.

Return Codes from EXECIO
After an EXECIO command runs, it sets the REXX special variable "RC" to a return
code. Valid return codes from EXECIO are:

Return Code Meaning

0 Normal completion of requested operation.

Using EXECIO to Process Information ...

156 z/OS V2R1.0 TSO/E REXX User's Guide

Return Code Meaning

1 Data was truncated during DISKW operation.

2 End-of-file reached before the specified number of lines were read
during a DISKR or DISKRU operation. (This return code does not occur
when * is specified for number of lines because the remainder of the
file is always read.)

4 An empty data set was found within a concatenation of data sets
during a DISKR or DISKRU operation. The file was not successfully
opened and no data was returned.

20 Severe error. EXECIO completed unsuccessfully and a message is
issued.

When to Use the EXECIO Command
The various operands and combination of operands of the EXECIO command
permit you to do many types of I/O. For example, you can use the EXECIO
command to:
v Copy information from one data set to another

– Copy an entire data set
– Copy parts of a data set
– Add information to the end of a sequential data set

v Copy information to and from a list of compound variables
v Update information in a data set

Copying Information From One Data Set to Another

Before you can copy one data set to another, the data sets must be either sequential
data sets or members of a PDS, and they must be pre-allocated. Following are
examples of ways to allocate and copy data sets using the EXECIO command.

Copying an entire data set: To copy an entire existing sequential data set named
'USERID.MY.INPUT' into a new sequential data set named 'USERID.NEW.INPUT',
and to use the ddnames DATAIN and DATAOUT respectively, you could use the
following instructions. (Remember that when the first qualifier of a data set name
is your prefix (usually your user ID), you can omit the first qualifier.)

If the null line was not queued at the end of the information on the stack, the
EXECIO command would go to the terminal to get more information and would
not end until the user entered a null line.

Another way to indicate the end of the information when copying an entire data
set, is with the QUEUED() built-in function. If the data set is likely to include null
lines throughout the data, using the QUEUED() function is preferable.

Copying an Entire Data Set

"ALLOC DA(my.input) F(datain) SHR REUSE"
"ALLOC DA(new.input) F(dataout) LIKE(my.input) NEW"
"NEWSTACK" /* Create a new data stack for input only */
"EXECIO * DISKR datain (FINIS"
QUEUE ’’ /* Add a null line to indicate the end of the information */
"EXECIO * DISKW dataout (FINIS"
"DELSTACK" /* Delete the new data stack */
"FREE F(datain dataout)"

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 157

n = QUEUED() /* Assign the number of stack items to "n" */
"EXECIO" n "DISKW dataout (FINIS"

Also, when copying an undetermined number of lines to and from the data stack,
it is a good idea to use the NEWSTACK and DELSTACK commands to prevent
removing items previously placed on the stack. For more information about these
commands, see “Protecting Elements in the Data Stack” on page 145.

Copying a specified number of lines to a new data set: To copy 10 lines of data
from an existing sequential data set named 'DEPT5.STANDARD.HEADING' to a
new member in an existing PDS named 'USERID.OFFICE.MEMO(JAN15)', and use
the ddnames INDD and OUTDD respectively, you could use the following
instructions. (Remember that a data set name that does not begin with your prefix
must be enclosed in single quotes.)

To copy the same 10 lines of data to a list of compound variables with the stem
"data.", substitute the following EXECIO commands.
"EXECIO 10 DISKR indd (FINIS STEM DATA."
"EXECIO 10 DISKW outdd (FINIS STEM DATA."

Note: When copying information to more than one member of a PDS, only one
member of the PDS should be open at a time.

Adding 5 lines to the end of an existing sequential data set: To add 5 lines from
an existing data set member named 'USERID.WEEKLY.INPUT(MAR28)' to the end
of an existing sequential data set named 'USERID.YEARLY.OUTPUT', and use the
ddnames MYINDD and MYOUTDD respectively, you could write the following
instructions. Note the "MOD" attribute on the second allocation, which appends
the 5 lines at the end of the data set rather than on top of existing data.

Note: Do not use the MOD attribute when allocating a member of a PDS to which
you want to append information. You can use MOD only when appending
information to a sequential data set. To append information to a member of a PDS,
rewrite the member with the additional records added.

Copying Information to and from a List of Compound Variables

When copying information from a data set, you can store the information in the
data stack, which is the default, or you can store the information in a list of
compound variables. Similarly, when copying information back to a data set, you
can remove information from the data stack, which is the default, or you can
remove the information from a list of compound variables.

Copying 10 Lines of Data to a New Data Set

"ALLOC DA(’dept5.standard.heading’) F(indd) SHR REUSE"
"ALLOC DA(office.memo(jan15)) F(outdd) SHR REUSE"
"EXECIO 10 DISKR indd (FINIS"
"EXECIO 10 DISKW outdd (FINIS"

Appending 5 Lines of Data to an Existing Data Set

"ALLOC DA(weekly.input(mar28)) F(myindd) SHR REUSE"
"ALLOC DA(yearly.output) F(myoutdd) MOD"
"EXECIO 5 DISKR myindd (FINIS"
"EXECIO 5 DISKW myoutdd (FINIS"

Using EXECIO to Process Information ...

158 z/OS V2R1.0 TSO/E REXX User's Guide

Copying Information from a Data Set to a List of Compound Variables: To copy
an entire data set into compound variables with the stem newvar., and then
display the list, write the following instructions.

When you want to copy a varying number of lines to compound variables, you
can use a variable within the EXECIO command as long as the variable is not
within quotation marks. For example, the variable lines can represent the number
of lines indicated when the exec is run.

Copying Information from Compound Variables to a Data Set: To copy 10
compound variables with the stem newvar., regardless of how many items are in
the list, write the following instructions.

Note: An uninitialized compound variable will default to the value of its name.
For example, if newvar.9 and newvar.10 do not contain values, the data set will
receive the values NEWVAR.9 and NEWVAR.10.

Updating Information in a Data Set

You can update a single line of a data set with the EXECIO command, or you can
update multiple lines. Use the DISKRU form of the EXECIO command to read
information that you may subsequently update.

Note: The line written must be the same length as the line read. When a changed
line is longer than the original line, information that extends beyond the original
number of bytes is truncated and EXECIO sends a return code of 1. If lines must
be made longer, write the data to a new data set. When a changed line is shorter
than the original line, it is padded with blanks to attain the original line length.

Updating a single line: When updating a single line in a data set, it is more
efficient to locate the line in advance and specify the update to it rather than read
all the lines in the data set to the stack, locate and change the line, and then write
all the lines back.

For example, you have a data set named 'DEPT5.EMPLOYEE.LIST' that contains a
list of employee names, user IDs, and phone extensions.

Copying an Entire Data Set into Compound Variables

"ALLOC DA(old.data) F(indd) SHR REUSE"
"EXECIO * DISKR indd (STEM newvar."
DO i = 1 to newvar.0

SAY newvar.i
END

Copying a Varying Number of Lines into Compound Variables

ARG lines
"ALLOC DA(old.data) F(indd) SHR REUSE"
"EXECIO" lines "DISKR indd (STEM newvar."

Copying from Compound Variables

"ALLOC DA(new.data) F(outdd) LIKE(old.data) NEW"
"EXECIO 10 DISKW outdd (STEM NEWVAR."

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 159

Adams, Joe JADAMS 5532
Crandall, Amy AMY 5421
Devon, David DAVIDD 5512
Garrison, Donna DONNAG 5514
Leone, Mary LEONE1 5530
Sebastian, Isaac ISAAC 5488

To change a phone extension to 5500 on a particular line, such as Amy Crandall's,
specify the line number, in this case, 2, and write the following instructions. Notice
the "OLD" attribute on the allocation. The "OLD" attribute guarantees that no one
else can use the data set while you are updating it.

Updating multiple lines: To update multiple lines, you can issue more than one
EXECIO command to the same data set. For example, to update Mary Leone's user
ID in addition to Amy Crandall's phone extension, write the following instructions.

When you issue multiple EXECIO commands to the same data set before closing it
and do not specify a line number, the most current EXECIO command begins
reading where the previous one left off. Thus to scan a data set one line at a time
and allow a user at a terminal to update each line, you might write the following
exec.

Updating a Specific Line in a Data Set

"ALLOC DA(’dept5.employee.list’) F(updatedd) OLD"
"EXECIO 1 DISKRU updatedd 2 (LIFO"
PULL line
PUSH ’Crandall, Amy AMY 5500’
"EXECIO 1 DISKW updatedd (FINIS"
"FREE F(updatedd)"

Updating Multiple Specific Lines in a Data Set

"ALLOC DA(’dept5.employee.list’) F(updatedd) OLD"
"EXECIO 1 DISKRU updatedd 2 (LIFO"
PULL line
PUSH ’Crandall, Amy AMY 5500’
"EXECIO 1 DISKW updatedd"
"EXECIO 1 DISKRU updatedd 5 (LIFO"
PULL line
PUSH ’Leone, Mary MARYL 5530’
"EXECIO 1 DISKW updatedd (FINIS"
"FREE F(updatedd)"

Using EXECIO to Process Information ...

160 z/OS V2R1.0 TSO/E REXX User's Guide

Additional Examples

Example of Scanning Each Line for Update

/***************************** REXX ********************************/
/* This exec scans a data set whose name and size are specified by */
/* a user. The user is given the option of changing each line as */
/* it appears. If there is no change to the line, the user presses*/
/* Enter key to indicate that there is no change. If there is a */
/* change to the line, the user types the entire line with the */
/* change and the new line is returned to the data set. */
/***/

PARSE ARG name numlines /* Get data set name and size from user */

"ALLOC DA("name") F(updatedd) OLD"
eof = ’NO’ /* Initialize end-of-file flag */

DO i = 1 to numlines WHILE eof = ’NO’
"EXECIO 1 DISKRU updatedd" /* Queue the next line on the stack */
IF RC = 2 THEN /* Return code indicates end-of-file */

eof = ’YES’
ELSE

DO
PARSE PULL line
SAY ’Please make changes to the following line.’
SAY ’If you have no changes, press ENTER.’
SAY line
PARSE PULL newline
IF newline = ’’ THEN NOP
ELSE

DO
PUSH newline
"EXECIO 1 DISKW updatedd"

END
END

END

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 161

EXECIO Example 1

/***************************** REXX ********************************/
/* This exec reads from the data set allocated to INDD to find the */
/* first occurrence of the string "Jones". Upper and lowercase */
/* distinctions are ignored. */
/***/
done = ’no’
lineno = 0

DO WHILE done = ’no’
"EXECIO 1 DISKR indd"

IF RC = 0 THEN /* Record was read */
DO

PULL record
lineno = lineno + 1 /* Count the record */
IF INDEX(record,’JONES’) \= 0 THEN

DO
SAY ’Found in record’ lineno
done = ’yes’
SAY ’Record = ’ record

END
ELSE NOP

END
ELSE

done = ’yes’
END

EXIT 0

Figure 1. EXECIO Example 1

EXECIO Example 2

/***************************** REXX ********************************/
/* This exec copies records from data set ’my.input’ to the end of */
/* data set ’my.output’. Neither data set has been allocated to a */
/* ddname. It assumes that the input data set has no null lines. */
/***/
"ALLOC DA(’my.input’) F(indd) SHR REUSE"
"ALLOC DA(’my.output’) F(outdd) MOD REUSE"

SAY ’Copying ...’

"EXECIO * DISKR indd (FINIS"
QUEUE ’’ /* Insert a null line at the end to indicate end of file */
"EXECIO * DISKW outdd (FINIS"

SAY ’Copy complete.’
"FREE F(indd outdd)"

EXIT 0

Figure 2. EXECIO Example 2

Using EXECIO to Process Information ...

162 z/OS V2R1.0 TSO/E REXX User's Guide

EXECIO Example 3

/**************************** REXX *********************************/
/* This exec reads five records from the data set allocated to */
/* MYINDD starting with the third record. It strips trailing blanks*/
/* from the records, and then writes any record that is longer than*/
/* 20 characters. The file is not closed when the exec is finished.*/
/***/
"EXECIO 5 DISKR myindd 3"

DO i = 1 to 5
PARSE PULL line
stripline = STRIP(line,t)
len = LENGTH(stripline)

IF len > 20 THEN
SAY ’Line’ stripline ’is long.’

ELSE NOP
END

/* The file is still open for processing */

EXIT 0

Figure 3. EXECIO Example 3

EXECIO Example 4

/**************************** REXX *********************************/
/* This exec reads first 100 records (or until EOF) of the data */
/* set allocated to INVNTORY. Records are placed on data stack */
/* in LIFO order. If fewer than 100 records are read, a message is */
/* issued. */
/***/
eofflag = 2 /* Return code to indicate end of file */

"EXECIO 100 DISKR invntory (LIFO"
return_code = RC

IF return_code = eofflag THEN
SAY ’Premature end of file.’

ELSE
SAY ’100 Records read.’

EXIT return_code

Figure 4. EXECIO Example 4

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 163

EXECIO Example 5

/**************************** REXX *********************************/
/* This exec illustrates the use of "EXECIO 0 ..." to open, empty, */
/* or close a file. It reads records from file indd, allocated */
/* to ’sams.input.dataset’, and writes selected records to file */
/* outdd, allocated to ’sams.output.dataset’. In this example, the */
/* data set ’smas.input.dataset’ contains variable-length records */
/* (RECFM = VB). */
/***/
"FREE FI(outdd)"
"FREE FI(indd)"
"ALLOC FI(outdd) DA(’sams.output.dataset’) OLD REUSE"
"ALLOC FI(indd) DA(’sams.input.dataset’) SHR REUSE"
eofflag = 2 /* Return code to indicate end-of-file */
return_code = 0 /* Initialize return code */
in_ctr = 0 /* Initialize # of lines read */
out_ctr = 0 /* Initialize # of lines written */

/***/
/* Open the indd file, but do not read any records yet. All */
/* records will be read and processed within the loop body. */
/***/

"EXECIO 0 DISKR indd (OPEN" /* Open indd */

/***/
/* Now read all lines from indd, starting at line 1, and copy */
/* selected lines to outdd. */
/***/

DO WHILE (return_code ¬ = eofflag) /* Loop while not end-of-file */
’EXECIO 1 DISKR indd’ /* Read 1 line to the data stack */
return_code = rc /* Save execio rc */
IF return_code = 0 THEN /* Get a line ok? */
DO /* Yes */

in_ctr = in_ctr + 1 /* Increment input line ctr */
PARSE PULL line.1 /* Pull line just read from stack*/
IF LENGTH(line.1) > 10 then /* If line linger than 10 chars */
DO

"EXECIO 1 DISKW outdd (STEM line." /* Write it to outdd */
out_ctr = out_ctr + 1 /* Increment output line ctr */

END
END

END "EXECIO 0 DISKR indd (FINIS" /* Close the input file, indd */

IF out_ctr > 0 THEN /* Were any lines written to outdd?*/
DO /* Yes. So outdd is now open */

Figure 5. EXECIO Example 5

Using EXECIO to Process Information ...

164 z/OS V2R1.0 TSO/E REXX User's Guide

EXECIO Example 5 (continued)

/**/
/* Since the outdd file is already open at this point, the */
/* following "EXECIO 0 DISKW ..." command will close the file, */
/* but will not empty it of the lines that have already been */
/* written. The data set allocated to outdd will contain out_ctr*/
/* lines. */
/**/

"EXECIO 0 DISKW outdd (FINIS" /* Closes the open file, outdd */
SAY ’File outdd now contains ’ out_ctr’ lines.’

END
ELSE /* Else no new lines have been */

/* written to file outdd */
DO /* Erase any old records from the file*/

/**/
/* Since the outdd file is still closed at this point, the */
/* following "EXECIO 0 DISKW ..." command will open the file, */
/* write 0 records, and then close it. This will effectively */
/* empty the data set allocated to outdd. Any old records that */
/* were in this data set when this exec started will now be */
/* deleted. */
/**/

"EXECIO 0 DISKW outdd (OPEN FINIS" /*Empty the outdd file */
SAY ’File outdd is now empty.’
END

"FREE FI(indd)"
"FREE FI(outdd)"
EXIT

Figure 6. EXECIO Example 5 (continued)

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 165

EXECIO Example 6

/***************************** REXX ********************************/
/* This exec uses EXECIO to successively append the records from */
/* ’sample1.data’ and then from ’sample2.data’ to the end of the */
/* data set ’all.sample.data’. It illustrates the effect of */
/* residual data in STEM variables. Data set ’sample1.data’ */
/* contains 20 records. Data set ’sample2.data’ contains 10 */
/* records. */
/***/

"ALLOC FI(myindd1) DA(’sample1.data’) SHR REUSE" /* input file 1 */
"ALLOC FI(myindd2) DA(’sample2.data’) SHR REUSE" /* input file 2 */

"ALLOC FI(myoutdd) DA(’all.sample.data’) MOD REUSE" /* output append
file */

/***/
/* Read all records from ’sample1.data’ and append them to the */
/* end of ’all.sample.data’. */
/***/

exec_RC = 0 /* Initialize exec return code */

"EXECIO * DISKR myindd1 (STEM newvar. FINIS" /* Read all records */

IF rc = 0 THEN /* If read was successful */
DO
/***/
/* At this point, newvar.0 should be 20, indicating 20 records */
/* have been read. Stem variables newvar.1, newvar.2, ... through*/
/* newvar.20 will contain the 20 records that were read. */
/***/

SAY "---"
SAY newvar.0 "records have been read from ’sample1.data’: "
SAY
DO i = 1 TO newvar.0 /* Loop through all records */

SAY newvar.i /* Display the ith record */
END

"EXECIO" newvar.0 "DISKW myoutdd (STEM newvar." /* Write exactly
the number of records read */

Figure 7. EXECIO Example 6

Using EXECIO to Process Information ...

166 z/OS V2R1.0 TSO/E REXX User's Guide

EXECIO Example 6 (continued)

IF rc = 0 THEN /* If write was successful */
DO

SAY
SAY newvar.0 "records were written to ’all.sample.data’"

END
ELSE

DO
exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 1st EXECIO ... DISKW, return code is " RC
SAY

END
END

ELSE
DO

exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 1st EXECIO ... DISKR, return code is " RC
SAY

END

IF exec_RC = 0 THEN /* If no errors so far... continue */
DO
/***/
/* At this time, the stem variables newvar.0 through newvar.20 */
/* will contain residual data from the previous EXECIO. We */
/* issue the "DROP newvar." instruction to clear these residual*/
/* values from the stem. */
/***/
DROP newvar. /* Set all stem variables to their

uninitialized state */
/***/
/* Read all records from ’sample2.data’ and append them to the */
/* end of ’all.sample.data’. */
/***/
"EXECIO * DISKR myindd2 (STEM newvar. FINIS" /*Read all records*/
IF rc = 0 THEN /* If read was successful */
DO
/***/
/* At this point, newvar.0 should be 10, indicating 10 */
/* records have been read. Stem variables newvar.1, newvar.2,*/
/* ... through newvar.10 will contain the 10 records. If we */
/* had not cleared the stem newvar. with the previous DROP */
/* instruction, variables newvar.11 through newvar.20 would */
/* still contain records 11 through 20 from the first data */
/* set. However, we would know that these values were not */
/* read by the last EXECIO DISKR since the current newvar.0 */
/* variable indicates that only 10 records were read by */
/* that last EXECIO. */
/***/

Figure 8. EXECIO Example 6 (continued)

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 167

EXECIO Example 6 (continued)

SAY
SAY
SAY "---"
SAY newvar.0 "records have been read from ’sample2.data’: "
SAY
DO i = 1 TO newvar.0 /* Loop through all records */

SAY newvar.i /* Display the ith record */
END

"EXECIO" newvar.0 "DISKW myoutdd (STEM newvar." /* Write
exactly the number of records read */

IF rc = 0 THEN /* If write was successful */
DO

SAY
SAY newvar.0 "records were written to ’all.sample.data’"

END
ELSE

DO
exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 2nd EXECIO ...DISKW, return code is " RC
SAY

END
END

ELSE
DO

exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 2nd EXECIO ... DISKR, return code is " RC
SAY

END
END

"EXECIO 0 DISKW myoutdd (FINIS" /* Close output file */

"FREE FI(myindd1)"
"FREE FI(myindd2)"
"FREE FI(myoutdd)"
EXIT 0

Figure 9. EXECIO Example 6 (continued)

Using EXECIO to Process Information ...

168 z/OS V2R1.0 TSO/E REXX User's Guide

Chapter 13. Using REXX in TSO/E and Other MVS Address
Spaces

This chapter describes how to use REXX in TSO/E and in non-TSO/E address
spaces in MVS. It also briefly describes the concept of a language processor
environment.

Services Available to REXX Execs
This book, until now, has described writing and running REXX execs in the TSO/E
address space. Besides TSO/E, execs can run in other address spaces within MVS.
Where an exec can run is determined by the types of services the exec requires.
There are services that are available to an exec that runs in any address space,
TSO/E or non-TSO/E; and there are more specific services available only in a
TSO/E address space. The following table lists all the services and where they are
available.

Service
Non-TSO/E
Address Space

TSO/E Address
Space

REXX language instructions — These instructions are used throughout this
book. For a description of each one, see z/OS TSO/E REXX Reference.

X X

Built-in functions — A brief description of each built-in function appears
in “Built-In Functions” on page 60. A longer description appears in z/OS
TSO/E REXX Reference.

X X

TSO/E REXX commands — These commands consist of:

v Data stack commands — For more information, see Chapter 11, “Storing
Information in the Data Stack,” on page 133.

v DELSTACK X X

v DROPBUF X X

v MAKEBUF X X

v NEWSTACK X X

v QBUF X X

v QELEM X X

v QSTACK X X

v Other commands —

v EXECIO — controls I/O processing X X

v EXECUTIL — changes how an exec runs X

v Immediate commands:

v HI (from attention mode only) X

v HE (from attention mode only) X

v HT (from attention mode only) X

v RT (from attention mode only) X

© Copyright IBM Corp. 1988, 2013 169

Service
Non-TSO/E
Address Space

TSO/E Address
Space

v TE X X

v TS X X

v SUBCOM — queries the existence of a host command environment X X

TSO/E commands — All TSO/E commands, both authorized and
unauthorized can be issued from an exec that runs in a TSO/E address
space. For a description of these commands, see z/OS TSO/E Command
Reference.

X

TSO/E External Functions:

v GETMSG — retrieves system messages issued during an extended MCS
console session

X

v LISTDSI — returns data set attributes X

v MSG — controls the display of messages for TSO/E commands X

v MVSVAR — returns information about MVS, TSO/E and the current
session

X X

v OUTTRAP — traps lines of TSO/E command output X

v PROMPT — controls prompting for TSO/E interactive commands X

v SETLANG — controls the language in which REXX messages are
displayed

X X

v STORAGE — retrieves and optionally changes the value in a storage
address

X X

v SYSCPUS — returns information about CPUs that are online X X

v SYSDSN — returns information about the availability of a data set X

v SYSVAR — returns information about the user, the terminal, the exec,
and the system

X

Services Available to REXX Execs

170 z/OS V2R1.0 TSO/E REXX User's Guide

Service
Non-TSO/E
Address Space

TSO/E Address
Space

Interaction with CLISTs — Execs and CLISTs can call each other and pass
information back and forth. For more information, see “Running an Exec
from a CLIST” on page 172.

X

ISPF and ISPF/PDF services — An exec that is invoked from ISPF can use
that dialog manager's services.

X

Running Execs in a TSO/E Address Space
Earlier sections in this book described how to run an exec in TSO/E explicitly and
implicitly in the foreground. When you run an exec in the foreground, you do not
have use of your terminal until the exec completes. Another way to run an exec is
in the background, which allows you full use of your terminal while the exec runs.

Running an Exec in the Foreground
Interactive execs and ones written that involve user applications are generally run
in the foreground. You can invoke an exec in the foreground in the following ways:
v Explicitly with the EXEC command. For more information, see “Running an

Exec Explicitly” on page 15.
v Implicitly by member name if the PDS containing the exec was previously

allocated to SYSPROC or SYSEXEC. (Your installation might have a different
name for the system file that contains execs. For the purposes of this book, it is
called SYSEXEC.) For more information, see “Running an Exec Implicitly” on
page 16 and Appendix A, “Allocating Data Sets,” on page 183.

v From another exec as an external function or subroutine, as long as both execs
are in the same PDS or the PDSs containing the execs are allocated to a system
file, for example SYSPROC or SYSEXEC. For more information about external
functions and subroutines, see Chapter 6, “Writing Subroutines and Functions,”
on page 67.

v From a CLIST or other program. For more information, see “Running an Exec
from a CLIST” on page 172.

Things to Consider When Allocating to a System File (SYSPROC
or SYSEXEC)

Allocating a partitioned data set containing execs to a system file allows you to:
v Run execs implicitly - After a PDS is allocated to a system file, you can run the

exec by simply entering the member name, which requires fewer keystrokes and
is therefore faster to invoke.

v Invoke user-written external functions and subroutines written in REXX that are
in PDSs also allocated to SYSEXEC or SYSPROC.

v Control search order - You can concatenate the data sets within the file to control
search order. This is useful in testing a version of an exec placed earlier in the
search order than the original version.

v Compression - In certain situations a REXX exec will be compressed to optimize
usage of system storage. These situations can arise only when the exec is stored
in either SYSPROC or the application-level CLIST file using the ALTLIB
command. The compression removes comment text between the comment
delimiters /* and */, removes leading and trailing blanks, and replaces blank
lines with null lines. Blanks and comments within literal strings or DBCS strings
are not removed. If the system finds the characters "SOURCELINE" outside of a

Services Available to REXX Execs

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 171

comment, the exec is not compressed. Additionally, if you do not want an exec
to be compressed, you can allocate the exec to the CLIST user-level file, or any
of the levels used for execs.

v Improve performance - Depending on your installation's setup, you can affect
the performance of execs you run by allocating the data sets that contain them
to either SYSEXEC or SYSPROC. More about this technique appears in the
following sections on allocating to a specific system file.

Allocating to SYSEXEC

SYSEXEC is a system file that can contain execs only. SYSEXEC precedes SYSPROC
in the search order. Therefore execs in PDSs allocated to SYSEXEC are retrieved
more rapidly than execs in PDSs allocated to SYSPROC.

Allocating to SYSPROC

SYSPROC is a system file that originally contained only CLISTs written for
applications or for an individual's use. SYSPROC now can also contain execs as
long as the execs are distinguishable from CLISTs.

The SYSEXEC file is searched first, followed by SYSPROC. If your installation uses
a large number of CLISTs that are in data sets allocated to SYSPROC and you do
not have a large number of REXX execs, you may want to use SYSPROC only and
not use SYSEXEC. To use SYSPROC only, a system programmer can change the
search order on an installation-wide basis, or an individual can change the search
order using the EXECUTIL SEARCHDD(NO) command. You can issue the
EXECUTIL SEARCHDD(NO) command directly from the terminal, from an exec or
CLIST, and from the JCL input stream run in TSO/E background. The ALTLIB
command can also affect search order. For general information about ALTLIB, see
Appendix B, “Specifying Alternate Libraries with the ALTLIB Command,” on page
193. For more information about the EXECUTIL and ALTLIB commands, see z/OS
TSO/E Command Reference.

Running an Exec from a CLIST

A CLIST can invoke an exec with the EXEC command explicitly or implicitly. If it
invokes an exec implicitly, the exec must be in a PDS allocated to SYSEXEC or
SYSPROC. The CLIST that invokes the exec does not have to be allocated to
SYSPROC. After the invoked exec and other programs it might call complete,
control returns to the CLIST instruction following the invocation.

Similarly, an exec can invoke a CLIST with the EXEC command explicitly or
implicitly. If it invokes a CLIST implicitly, the CLIST must be in a PDS allocated to
SYSPROC, yet the exec does not have to be in a PDS allocated to a system file.

Note: Execs and CLISTs cannot access each other's variables and GLOBAL
variables cannot be declared in a CLIST that is invoked from an exec.

The following examples demonstrate how a CLIST invokes an exec and how a
number is returned to the invoking CLIST. The CLIST named TEST explicitly
executes an exec named EXEC1. EXEC1 calls EXEC2, which returns the result "A
OK". EXEC1 then returns to the CLIST with a numeric return code of 100 if
information was passed correctly and 50 if information was not passed correctly.

Running Execs in a TSO/E Address Space

172 z/OS V2R1.0 TSO/E REXX User's Guide

The results from this series of programs is as follows:

We are now in Exec1.
Exec2 speaking.
The result from Exec2 is A OK
The result is 100% correct.
THE RESULT FROM THE EXECS IS 100

Sending a Return Code Back to the Calling CLIST: As demonstrated in the
previous example, an exec can return a number to a CLIST with the EXIT
instruction followed by the number or a variable representing the number. The
CLIST receives the number in the variable &LASTCC.

When an exec invokes a CLIST, the CLIST can return a number to the exec by the
EXIT CODE() statement with the number to be returned enclosed in parentheses
after CODE. The exec receives the number in the REXX special variable RC.

Note: &LASTCC is set after each CLIST statement or command executes as
compared to RC, which is set after each command executes. To save the values of
each special variable, set a new variable with the value at the point where you
want the special variable value saved.

In the following two examples, exec USERID.MYREXX.EXEC(TRANSFER) passes
an argument to CLIST USERID.MY.CLIST(RECEIVE), and the CLIST returns a

USERID.MY.CLIST(TEST)

EXEC MYREXX.EXEC(EXEC1) EXEC

WRITE THE RESULT FROM THE EXECS IS &LASTCC.

END

USERID.MYREXX.EXEC(EXEC1)

SAY 'We are now in Exec1.'

CALL Exec2

SAY 'The result from Exec2 is' RESULT

IF RESULT = 'A OK' THEN

DO

SAY 'The result is 100% correct.'

EXIT 100

END

ELSE

DO

SAY 'The result is less than perfect.'

EXIT 50

END

USERID.MYREXX.EXEC(EXEC2)

SAY 'Exec2 speaking.'

var = 'A OK'

RETURN var

Running Execs in a TSO/E Address Space

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 173

number through the CODE parameter of the EXIT statement.

Running an Exec in the Background

Execs run in the background are processed when higher priority programs are not
using the system. Background processing does not interfere with a person's use of
the terminal. You can run time-consuming and low priority execs in the
background, or execs that do not require terminal interaction.

Running an exec in the background is the same as running a CLIST in the
background. The program IKJEFT01 sets up a TSO/E environment from which you
can invoke execs and CLISTs and issue TSO/E commands. For example, to run an
exec named SETUP contained in a partitioned data set USERID.MYREXX.EXEC,
submit the following JCL.

The EXEC statement defines the program as IKJEFT01. In a DD statement, you can
assign one or more PDSs to the SYSEXEC or SYSPROC system file. The SYSTSPRT
DD allows you to print output to a specified data set or a SYSOUT class. In the
input stream, after the SYSTSIN DD, you can issue TSO/E commands and invoke
execs and CLISTs.

USERID.MYREXX.EXEC(TRANSFER)

/***************************** REXX *******************************/
/* This exec passes a percent sign to a CLIST and depending on */
/* the success of the transfer, the CLIST returns 100 (if it was */
/* successful) or 50 (if it was not successful). */
/**/

SAY ’We are about to execute CLIST RECEIVE and pass it % ’

"EXEC my.clist(receive) ’%’ clist"

SAY ’We have returned from the CLIST.’
IF RC = 100 THEN

SAY ’The transfer was a success.’
ELSE

SAY ’The transfer was not a success.’

USERID.MY.CLIST(RECEIVE)

PROC 1 &VAR
IF &VAR = % THEN SET SUCCESS = 100
ELSE SET SUCCESS = 50
EXIT CODE(&SUCCESS)

Example of JCL to Run an Exec in the Background

//USERIDA JOB ’ACCOUNT,DEPT,BLDG’,’PROGRAMMER NAME’,
// CLASS=J,MSGCLASS=C,MSGLEVEL=(1,1)
//*
//TMP EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
%SETUP
/*
//

Running Execs in a TSO/E Address Space

174 z/OS V2R1.0 TSO/E REXX User's Guide

The preceding example must be written in a fixed block, 80 byte record data set.
To start the background job, issue the SUBMIT command followed by the data set
name, for example, REXX.JCL.
SUBMIT rexx.jcl

For more information about running jobs in the background, see z/OS TSO/E User's
Guide.

Running Execs in a Non-TSO/E Address Space

Because execs that run in a non-TSO/E address space cannot be invoked by the
TSO/E EXEC command, you must use other means to run them. Ways to run
execs outside of TSO/E are:
v From a high level program using the IRXEXEC or IRXJCL processing routines.
v From MVS batch with JCL that specifies IRXJCL in the EXEC statement.

TSO/E provides the TSO/E environment service, IKJTSOEV. Using IKJTSOEV, you
can create a TSO/E environment in a non-TSO/E address space. You can then run
REXX execs in the environment and the execs can contain TSO/E commands,
external functions, and services that an exec running in a TSO/E address space can
use. For information about the TSO/E environment service and how to run REXX
execs within the environment, see z/OS TSO/E Programming Services.

Using an Exec Processing Routine to Invoke an Exec from a
Program

To invoke an exec from a high-level language program running in an MVS address
space, use one of the exec processing routines (IRXEXEC or IRXJCL). If you use
IRXEXEC, you must specify parameters that define the exec to be run and supply
other related information. For more information, see z/OS TSO/E REXX Reference.

You can also use an exec processing routine to invoke an exec in a TSO/E address
space. Two reasons to use them in TSO/E are:
v To pass more than one argument to an exec. When invoking an exec implicitly

or explicitly, you can pass only one argument string. With IRXEXEC, you can
pass multiple arguments.

v To call an exec from a program other than a CLIST or exec.

Using IRXJCL to Run an Exec in MVS Batch

To run a REXX exec in MVS batch, you must specify program IRXJCL in the JCL
EXEC statement. SYSEXEC is the default load DD. Running an exec in MVS batch
is similar in many ways to running an exec in the TSO/E background, however,
there are significant differences. One major difference is that the exec running in
MVS batch cannot use TSO/E services, such as TSO/E commands and most of the
TSO/E external functions. Additional similarities and differences appear in
“Summary of TSO/E Background and MVS Batch” on page 177.

The following series of examples show how an MVS batch job named USERIDA
invokes a REXX exec in a PDS member named USERID.MYREXX.EXEC(JCLTEST).
The member name, JCLTEST, is specified as the first word after the PARM
parameter of the EXEC statement. Two arguments, TEST and IRXJCL, follow the
member name. Output from the exec goes to an output data set named

Running Execs in a TSO/E Address Space

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 175

USERID.IRXJCL.OUTPUT, which is specified in the SYSTSPRT DD statement. The
SYSTSIN DD statement supplies the exec with three lines of data in the input
stream. This exec also uses EXECIO to write a 1-line timestamp to the end of the
sequential data set USERID.TRACE.OUTPUT, which is allocated in the OUTDD
statement.

USERID.JCL.EXEC

//USERIDA JOB ’ACCOUNT,DEPT,BLDG’,’PROGRAMMER NAME’,
// CLASS=J,MSGCLASS=H,MSGLEVEL=(1,1)
//*
//MVSBACH EXEC PGM=IRXJCL,
// PARM=’JCLTEST Test IRXJCL’
//* | | | |
//* Name of exec <-----> | |
//* Argument <--------->
//OUTDD DD DSN=USERID.TRACE.OUTPUT,DISP=MOD
//SYSTSPRT DD DSN=USERID.IRXJCL.OUTPUT,DISP=OLD
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR
//SYSTSIN DD *
First line of data
Second line of data
Third line of data
/*
//

USERID.MYREXX.EXEC(JCLTEST)

/****************************** REXX ******************************/
/* This exec receives input from its invocation in JCL.EXEC, pulls*/
/* data from the input stream and sends back a condition code of */
/* 137. */
/**/
TRACE error
SAY ’Running exec JCLTEST’
ADDRESS MVS
PARSE ARG input
SAY input
DATA = start

DO UNTIL DATA = ’
PARSE PULL data /* pull data from the input stream */
SAY data

END

/**/
/* Now use EXECIO to write a timestamp to the sequential */
/* data set that was allocated to the OUTDD file by the JCL */
/* used to invoke this exec. */
/**/
OUTLINE.1 = ’Exec JCLTEST has ended at’ TIME()
"EXECIO 1 DISKW OUTDD (STEM OUTLINE. FINIS" /* Write the line */

SAY ’Leaving exec JCLTEST’
EXIT 137 /* send a condition code of 137 */

USERID.TRACE.OUTPUT

Exec JCLTEST has ended at 15:03:06

Running Execs in a Non-TSO/E Address Space

176 z/OS V2R1.0 TSO/E REXX User's Guide

Using the Data Stack in TSO/E Background and MVS Batch

When an exec runs in the TSO/E background or MVS batch, it has the same use of
the data stack as an exec that runs in the TSO/E foreground. The PULL
instruction, however, works differently when the data stack is empty. In the TSO/E
foreground, PULL goes to the terminal for input. In the TSO/E background and
MVS batch, PULL goes to the input stream as defined by ddname SYSTSIN. When
SYSTSIN has no data, the PULL instruction returns a null. If the input stream has
no data and the PULL instruction is in a loop, the exec can result in an infinite
loop.

Summary of TSO/E Background and MVS Batch

CAPABILITIES

TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

Execs run without terminal interaction. Execs run without terminal interaction.

Execs can contain:
v REXX instructions
v Built-in functions
v TSO/E REXX commands
v TSO/E commands
v TSO/E external functions

Execs can contain:
v REXX instructions
v Built-in functions
v TSO/E REXX commands
v The TSO/E external functions, STORAGE and

SETLANG

USERID.IRXJCL.OUTPUT

Running exec JCLTEST
Test IRXJCL
First line of data
Second line of data
Third line of data

Leaving exec JCLTEST

Segment of Output from the JCL Listing

ALLOC. FOR USERIDA MVSBACH
224 ALLOCATED TO OUTDD
954 ALLOCATED TO SYSTSPRT
7E0 ALLOCATED TO SYSEXEC
JES2 ALLOCATED TO SYSTSIN
USERIDA MVSBACH - STEP WAS EXECUTED - COND CODE 0137

USERID.TRACE.OUTPUT KEPT
VOL SER NOS= TSO032.
USERID.IRXJCL.OUTPUT KEPT
VOL SER NOS= TSO032.
USERID.MYREXX.EXEC KEPT
VOL SER NOS= TSO001.
JES2.JOB28359.I0000101 SYSIN

STEP / MVSBACH / START 88167.0826
STEP / MVSBACH / STOP 88167.0826 CPU 0MIN 00.16SEC SRB ...
JOB / USERIDA / START 88167.0826
JOB / USERIDA / STOP 88167.0826 CPU 0MIN 00.16SEC SRB ...

Running Execs in a Non-TSO/E Address Space

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 177

TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

Execs are invoked through the PARM parameter on the
EXEC statement and through explicit or implicit use of
the EXEC command in the input stream.

Execs are invoked through the PARM parameter on the
EXEC statement. The first word on the PARM parameter
is the member name of the PDS to be invoked. Following
words are arguments to be passed.

Information in the input stream is processed as TSO/E
commands and invocations of execs and CLISTs.

Information in the input stream is processed as input
data for the exec that is running.

Output sent to a specified output data set or to a
SYSOUT class.

Output sent to a specified output data set or to a
SYSOUT class.

Messages are displayed in the output file. Messages may appear in two places; the JCL output
listing and in the output file. To suppress messages in
the output file, use the TRACE OFF instruction.

REQUIREMENTS

TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

The default DDs are SYSTSPRT and SYSTSIN. The default DDs are SYSTSPRT and SYSTSIN.

Initiated by executing program IKJEFT01. Initiated by executing program IRXJCL.

JCL should be written in a fixed block, 80-byte record
data set.

JCL should be written in a fixed block, 80-byte record
data set.

Exec that is invoked can be either a member of a PDS or
a sequential data set.

Exec that is invoked must be a member of a PDS.

Data set may be allocated to either SYSEXEC or
SYSPROC.

Data set must be allocated to the SYSEXEC DD.

Defining language processor environments

Before an exec can be processed, a language processor environment must exist. A
language processor environment defines the way a REXX exec is processed and
how it accesses system services. Because MVS contains different types of address
spaces and each one accesses services a different way, REXX in TSO/E provides
three default parameters modules that define language processor environments.
They are:
v IRXTSPRM - for TSO/E
v IRXPARMS - for non-TSO/E
v IRXISPRM - for ISPF

The defaults are set by TSO/E but they can be modified by a system programmer.

What is a language processor environment?
A language processor environment defines characteristics, such as:
v The search order used to locate commands and external routines
v The ddnames for reading and writing data and from which execs are loaded
v The valid host command environments and the routines that process commands

in each host command environment
v The function packages (user, local, and system) that are available in the

environment and the entries in each package
v Whether execs running in the environment can use the data stack

Summary of TSO/E Background and MVS Batch

178 z/OS V2R1.0 TSO/E REXX User's Guide

v The names of routines that handle system services, such as I/O operations,
loading of an exec, obtaining and freeing storage, and data stack requests

Note: A language processor environment is different from a host command
environment. The language processor environment is the environment in which a
REXX exec runs. The host command environment is the environment to which the
language processor passes commands for execution. The valid host command
environments are defined by the language processor environment.

For more information about defining language processor environments, see z/OS
TSO/E REXX Reference.

Customizing a language processor environment
An individual or an installation can customize a language processor environment
in two ways:
v Change the values in the three default parameters modules, IRXTSPRM,

IRXISPRM, and IRXPARMS.
v Call an initialization routine IRXINIT and specifying parameters to change

default parameters.

For more information about customizing a language processor environment, see
z/OS TSO/E REXX Reference.

Defining Language Processor Environments

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 179

Defining Language Processor Environments

180 z/OS V2R1.0 TSO/E REXX User's Guide

Part 3. Appendixes

© Copyright IBM Corp. 1988, 2013 181

182 z/OS V2R1.0 TSO/E REXX User's Guide

Appendix A. Allocating Data Sets

Execs can be stored in either sequential data sets or partitioned data sets (PDSs). A
sequential data set contains only one exec, while a PDS can contain one or more
execs. In a PDS, each exec is a member and has a unique member name. When a
PDS consists entirely of execs, it is called an exec library.

Exec libraries make execs easy to maintain and execute. Your installation can keep
commonly used execs in a system library and you can keep your own execs in a
private exec library. To learn important information about data sets at your
installation, use the “Preliminary Checklist” on page 184.

What is Allocation?

Before you can store execs in a data set, you must create the data set by allocation.
Allocation can mean different things depending on your purpose. In this book
allocation means two things:
v Creating a new data set in which to store REXX execs. You can create a new

data set with the ISPF/PDF UTILITIES option or with the TSO/E ALLOCATE
command.
Checklists for creating a data set appear in:
– “Checklist #1: Creating and Editing a Data Set Using ISPF/PDF” on page 185
– “Checklist #2: Creating a Data Set with the ALLOCATE Command” on page

188
v Accessing an existing data set and associating it, and possibly other data sets, to

a system file. Allocating a data set to a system file (SYSEXEC or SYSPROC)
enables you to execute the execs implicitly by simply typing their member
names. When more than one PDS is specified in the allocation, they are
concatenated or logically connected in the order in which they are specified.
The association of the PDS to the system file remains for the duration of your
terminal session or until another ALLOCATE command alters the association.
You can allocate a data set to a system file in the foreground with the TSO/E
ALLOCATE command or in the background with a JCL DD statement. You
cannot use ISPF/PDF to allocate a data set to a system file.
Checklists for allocating a data set to SYSEXEC and SYSPROC appear in:
– “Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC” on page

189
– “Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC” on page

190

Where to Begin
Before creating a PDS in which to store your execs, use the “Preliminary Checklist”
on page 184 to find out information that you can use to make your PDS
compatible with other PDSs at your installation. Then create a PDS with either
“Checklist #1: Creating and Editing a Data Set Using ISPF/PDF” on page 185 or
“Checklist #2: Creating a Data Set with the ALLOCATE Command” on page 188.

After the PDS is created, if you want to be able to invoke those execs implicitly
during that terminal session, you must allocate the PDS to a system file (SYSEXEC

© Copyright IBM Corp. 1988, 2013 183

or SYSPROC). The allocation is temporary and must be established for each
terminal session. One way to establish the allocation is to write a setup exec that
automatically executes when you log on. Information about how to write a setup
exec is in Checklist #3 on page 189 and Checklist #4 on page 190. If you do not
know which checklist to use, use Checklist #3.

The following checklists assume that the defaults shipped with TSO/E have not
been altered by your installation. Also if your installation changes system
allocations after you have used the checklists to set up your private allocation, you
might need to use the checklists again to keep your allocations up-to-date.

Preliminary Checklist
1. Issue the LISTALC STATUS command to see the names of all data sets

allocated to SYSEXEC and SYSPROC.

To see what data sets are already defined to SYSEXEC and SYSPROC at your
installation, issue the LISTALC command with the STATUS keyword.
READY
listalc status

You then see several screens of data set names that might look something like
the following. Scroll until you find SYSEXEC and SYSPROC.
--DDNAME---DISP--
ICQ.INFOCTR.LOAD.

STEPLIB KEEP
CATALOG.VTSO022

SYS00006 KEEP,KEEP
CATALOG.VTSO028

KEEP,KEEP
ISP.PHONE.EXEC

SYSEXEC KEEP
ICQ.INFOCTR.ICQCLIB

SYSPROC KEEP
SYS1.TSO.CLIST

KEEP
ISP.ISPF.CLISTS

KEEP

In this example, one data set ISP.PHONE.EXEC is allocated to SYSEXEC, and
three data sets ICQ.INFOCTR.ICQCLIB, SYS1.TSO.CLIST, and ISP.ISPF.CLISTS
are allocated to SYSPROC. (When a space appears below the data set name, the
data set is allocated to the previously-specified file (DDNAME)).

2. Write down the names of the data sets at your installation that are allocated
to SYSEXEC.
v First data set: __
v Remaining data sets: __

__
__
__

3. Write down the names of the data sets at your installation that are allocated
to SYSPROC.
v First data set: __
v Remaining data sets: __

__
__
__

4. Issue the LISTDS command for the first data set in each system file to
display the record format, logical record length, and block size.

Where to Begin

184 z/OS V2R1.0 TSO/E REXX User's Guide

To see the attributes of data sets used at your installation, issue the LISTDS
command for the first data set in each system file concatenation to display
something like the following:
READY
LISTDS ’sysexec.first.exec’

SYSEXEC.FIRST.EXEC
--RECFM-LRECL-BLKSIZE-DSORG

VB 255 5100 PO
--VOLUMES--

TSO026

READY
LISTDS ’sysproc.first.clist’

SYSPROC.FIRST.CLIST
--RECFM-LRECL-BLKSIZE-DSORG

FB 80 19040 PO
--VOLUMES--

TSOL07

5. Write down the attributes of the first data set in your SYSEXEC
concatenation.
v RECFM = ______________________________
v LRECL = ______________________________
v BLKSIZE = ______________________________

6. Write down the attributes of the first data set in your SYSPROC
concatenation.
v RECFM = ______________________________
v LRECL = ______________________________
v BLKSIZE = ______________________________

Checklist #1: Creating and Editing a Data Set Using ISPF/PDF
1. Select the ISPF/PDF DATASET UTILITIES option (option 3.2).

From the ISPF/PDF Primary Option Menu, select the UTILITIES option (option
3) and press the Enter key.

------------------------ ISPF/PDF PRIMARY OPTION MENU -------------------------
OPTION ===> 3

USERID - YOURID
0 ISPF PARMS - Specify terminal and user parameters TIME - 12:47
1 BROWSE - Display source data or output listings TERMINAL - 3277
2 EDIT - Create or change source data PF KEYS - 12
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO command or CLIST
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products
C CHANGES - Display summary of changes for this release
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

Enter END command to terminate ISPF.

Please Note

Save this information for use with the following checklists.

Preliminary Checklist

Appendix A. Allocating Data Sets 185

Then select the DATASET option (option 2) and press the Enter key.

-------------------------- UTILITY SELECTION MENU ----------------------------
OPTION ===> 2

1 LIBRARY - Compress or print data set. Print index listing.
Print, rename, delete, or browse members

2 DATASET - Allocate, rename, delete, catalog, uncatalog, or
display information of an entire data set

3 MOVE/COPY - Move, copy, or promote members or data sets
4 DSLIST - Print or display (to process) list of data set names

Print or display VTOC information
5 RESET - Reset statistics for members of ISPF library
6 HARDCOPY - Initiate hardcopy output
8 OUTLIST - Display, delete, or print held job output
9 COMMANDS - Create/change an application command table
10 CONVERT - Convert old format menus/messages to new format
11 FORMAT - Format definition for formatted data Edit/Browse
12 SUPERC - Compare data sets (Standard dialog)
13 SUPERCE - Compare data sets (Extended dialog)
14 SEARCH-FOR - Search data sets for strings of data
D DATA MGMT - Data Management Tools

2. Specify a new data set name on the Data Set Utility panel and type A on the
OPTION line.

On the next panel that appears, type the name of the data set you want to
allocate, for example USERID.REXX.EXEC, and enter A on the OPTION line.

------------------------------- DATA SET UTILITY -----------------------------
OPTION ===> a

A - Allocate new data set C - Catalog data set
R - Rename entire data set U - Uncatalog data set
D - Delete entire data set S - Data set information (short)
blank - Data set information

ISPF LIBRARY:
PROJECT ===> userid
GROUP ===> rexx
TYPE ===> exec

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> left 0If not cataloged, required for option "C")

DATA SET PASSWORD ===> (If password protected)

3. Specify the data set attributes on the Allocate New Data Set panel.

After you name the data set, a panel appears on which you define the
attributes of the data set. Use the attributes recommended by your installation
for REXX libraries, and include the record format (RECFM), record length
(LRECL), and block size (BLKSIZE) from the appropriate system file from the
Preliminary Checklist #5 on page 185. If you are unsure about which system
file is appropriate, use the values from SYSEXEC.
If your installation has no attribute recommendations and you have no
attributes from the Preliminary Checklist, you can use the following attributes
on the ISPF/PDF Allocate New Data Set panel:

Checklist #1

186 z/OS V2R1.0 TSO/E REXX User's Guide

---------------------------- ALLOCATE NEW DATA SET ---------------------------
COMMAND ===>

DATA SET NAME: USERID.REXX.EXEC

VOLUME SERIAL ===> (Blank for authorized default volume)*
GENERIC UNIT ===> (Generic group name or unit address)*
SPACE UNITS ===> blks (BLKS, TRKS or CYLS)
PRIMARY QUAN ===> 50 (in above units)
SECONDARY QUAN ===> 20 (in above units)
DIRECTORY BLOCKS ===> 10 (Zero for sequential data set)
RECORD FORMAT ===> VB
RECORD LENGTH ===> 255
BLOCK SIZE ===> 6120
EXPIRATION DATE ===> (YY/MM/DD

YY.DDD in julian form
DDDD for retention period in days
or blank)

(* Only one of these fields may be specified)

4. Edit a member of the newly created PDS by selecting the EDIT option
(option 2) and specifying the PDS name with a member name.

After you have allocated a PDS, you can press the RETURN PF key (PF4) to
return to the Primary Option Menu and begin an edit session. Select the EDIT
option (option 2) from the ISPF/PDF Primary Option Menu.

------------------------ ISPF/PDF PRIMARY OPTION MENU ----------------------
OPTION ===> 2

USERID - YOURID
0 ISPF PARMS - Specify terminal and user parameters TIME - 12:47
1 BROWSE - Display source data or output listings TERMINAL - 3277
2 EDIT - Create or change source data PF KEYS - 12
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO command or CLIST
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products
C CHANGES - Display summary of changes for this release
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

Enter END command to terminate ISPF.

Then specify the data set name and member name on the Edit - Entry Panel. In
the example that follows, the member name is timegame.

Checklist #1

Appendix A. Allocating Data Sets 187

------------------------------ EDIT - ENTRY PANEL ---------------------------
COMMAND ===>

ISPF LIBRARY:
PROJECT ===> userid
GROUP ===> rexx ===> ===> ===>
TYPE ===> exec
MEMBER ===> timegame (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

In the edit session, you can type REXX instructions, such as the ones that
follow.

EDIT ---- USERID.REXX.EXEC(TIMEGAME)---------------- COLUMNS 009 080
COMMAND ===> SCROLL ===> HALF
****** ************************ TOP OF DATA **************************
000001 /************************** REXX ****************************/
000002 /* This is an interactive REXX exec that compares the time */
000003 /* from a user’s watch with computer time. */
000004 /**/
000005
000006 SAY ’What time is it?’
000007 PULL usertime /* Put the user’s response
000008 into a variable called
000009 "usertime" */
000010 IF usertime = ’’ THEN
000011 SAY "O.K. Game’s over."
000012 ELSE
000013 DO
000014 SAY "The computer says:"
000015 /* TSO system */ "time" /* command */
000016 END
000017
000018 EXIT
****** *********************** BOTTOM OF DATA **********************************

Checklist #2: Creating a Data Set with the ALLOCATE Command
1. Type an ALLOCATE command at the READY prompt to define the attributes

of the new data set.

You can use the ALLOCATE command to create a PDS instead of using
ISPF/PDF panels. If you noted attributes in the Preliminary Checklist #5 on
page 185, substitute the attributes from the appropriate system file in the
following example. If you are unsure about which system file is appropriate,
use the values from SYSEXEC.

Note: In the ALLOCATE command, specify a record format of VB as
RECFM(v,b) and a record format of FB as RECFM(f,b).
If your installation has no attribute recommendations and you have no
attributes from the Preliminary Checklist, you can use the attributes in the
following example.
ALLOCATE DA(rexx.exec) NEW DIR(10) SPACE(50,20) DSORG(po)

RECFM(v,b) LRECL(255) BLKSIZE(6120)

Checklist #1

188 z/OS V2R1.0 TSO/E REXX User's Guide

For more information about the ALLOCATE command, see z/OS TSO/E REXX
User's Guide and z/OS TSO/E Command Reference.

2. Edit a member of the newly created PDS by selecting the ISPF/PDF EDIT
option (option 2) and specifying the PDS name with a member name.

See the description for this step in the previous checklist #4 on page 187.

Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC
1. Write an exec named SETUP that allocates data sets to SYSEXEC.

Create a data set member named SETUP in your exec PDS. In SETUP issue an
ALLOCATE command that concatenates your PDS to the beginning of all the
data sets already allocated to SYSEXEC. Include the data sets allocated to
SYSEXEC from the list in the “Preliminary Checklist” on page 184. If there are
no other data sets allocated to SYSEXEC, specify your PDS only. Your SETUP
exec could look like the following example.

Note: The order in which you list data sets in an ALLOCATE command is the
order in which they are concatenated and searched. To give your execs priority
in the search order, list your data set of execs before other data sets.

Generally all the data sets in the list should have the same record format (either
RECFM=VB or RECFM=FB) and logical record length, LRECL. Also, the first
data set in the list can determine the block size, BLKSIZE, for the data sets that
follow. If the block size of the first data set is smaller than the block sizes of
subsequent data sets, you might end in error. To avoid error, use the
Preliminary Checklist and the other checklists provided, and follow directions
carefully.

2. Execute SETUP by entering the following EXEC command:
READY
EXEC rexx.exec(setup) exec

If the allocation was successful, you should then see displayed on your screen:

Allocation to SYSEXEC completed.

To have SETUP execute when you log on and automatically allocate your data
set to SYSEXEC, type the same EXEC command in the COMMAND field of
your LOGON panel.

Sample SETUP Exec

/****************************** REXX *******************************/
/* This exec is an example of how to allocate a private PDS named */
/* USERID.REXX.EXEC to the beginning of a concatenation to SYSEXEC */
/* that consists of one other data set named ’ISP.PHONE.EXEC’. To */
/* make sure that SYSEXEC is available, the exec issues EXECUTIL */
/* SEARCHDD(yes) command. After the ALLOCATE command executes, a */
/* message indicates whether the command was successful or not. */
/***/

"EXECUTIL SEARCHDD(yes)" /* to ensure that SYSEXEC is available*/

"ALLOC FILE(SYSEXEC) DATASET(rexx.exec,",
"’isp.phone.exec’) SHR REUSE"

IF RC = 0 THEN
SAY ’Allocation to SYSEXEC completed.’

ELSE
SAY ’Allocation to SYSEXEC failed.’

Checklist #2

Appendix A. Allocating Data Sets 189

------------------------------- TSO/E LOGON ----------------------------------
PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a ’?’ in
any entry field.

ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> YOURID

PASSWORD ===> NEW PASSWORD ===>

PROCEDURE ===> MYPROC GROUP IDENT ===>

ACCT NMBR ===> 00123

SIZE ===> 5800

PERFORM ===>

COMMAND ===> EXEC rexx.exec(setup) exec

ENTER AN ’S’ BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC
1. Write an exec named SETUP that allocates data sets to SYSPROC.

Create a data set member named SETUP in your exec PDS. In SETUP issue an
ALLOCATE command that concatenates your PDS to the beginning of all the
data sets already allocated to SYSPROC. Include the data sets allocated to
SYSPROC from the list in the “Preliminary Checklist” on page 184. If there are
no other data sets allocated to SYSPROC, specify your PDS only. Your SETUP
exec could look like the following example.

Note: The order in which you list data sets in an ALLOCATE command is the
order in which they are concatenated and searched. To give your execs priority
in the search order, list your data set of execs before other data sets.

Sample SETUP Exec

/****************************** REXX *******************************/
/* This exec is an example of how to allocate a private PDS named */
/* USERID.REXX.EXEC to the beginning of a concatenation to SYSPROC */
/* that consists of 3 other data sets named ’ICQ.INFOCNTR.ICQCLIB’ */
/* ’SYS1.TSO.CLIST’, and ’ISP.ISPF.CLISTS’. After the ALLOCATE */
/* command executes, a message indicates whether the command was */
/* successful or not. */
/***/

"ALLOC FILE(SYSPROC) DATASET(rexx.exec,",
"’icq.infocntr.icqclib’,",
"’sys1.tso.clist’,",
"’isp.ispf.clists’) SHR REUSE"

IF RC = 0 THEN
SAY ’Allocation to SYSPROC completed.’

ELSE
SAY ’Allocation to SYSPROC failed.’

Checklist #3

190 z/OS V2R1.0 TSO/E REXX User's Guide

Generally all the data sets in the list should have the same record format,
(either RECFM=VB or RECFM=FB) and logical record length, LRECL. Also, the
first data set in the list can determine the block size, BLKSIZE, for the data sets
that follow. If the block size of the first data set is smaller than the block sizes
of subsequent data sets, you might end in error. To avoid error, use the
Preliminary Checklist and the other checklists provided, and follow directions
carefully.

2. Execute SETUP by entering the following EXEC command:
READY
EXEC rexx.exec(setup) exec

If the allocation was successful, you should then see displayed on your screen:

Allocation to SYSPROC completed.

To have SETUP execute when you log on and automatically allocate your data
set to SYSPROC, type the same EXEC command in the COMMAND field of
your LOGON panel.

------------------------------- TSO/E LOGON ----------------------------------
PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a ’?’ in
any entry field.

ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> YOURID

PASSWORD ===> NEW PASSWORD ===>

PROCEDURE ===> MYPROC GROUP IDENT ===>

ACCT NMBR ===> 00123

SIZE ===> 5800

PERFORM ===>

COMMAND ===> EXEC rexx.exec(setup) exec

ENTER AN ’S’ BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

Checklist #4

Appendix A. Allocating Data Sets 191

Checklist #4

192 z/OS V2R1.0 TSO/E REXX User's Guide

Appendix B. Specifying Alternate Libraries with the ALTLIB
Command

The ALTLIB command gives you more flexibility in specifying exec libraries for
implicit execution. With ALTLIB, a user or ISPF application can easily activate and
deactivate exec libraries for implicit execution as the need arises. This flexibility
can result in less search time when fewer execs are activated for implicit execution
at the same time.

In addition to execs, the ALTLIB command lets you specify libraries of CLISTs for
implicit execution.

Specifying Alternative Exec Libraries with the ALTLIB Command
The ALTLIB command lets you specify alternative libraries to contain implicitly
executable execs. You can specify alternative libraries on the user, application, and
system levels.
v The user level includes exec libraries previously allocated to the file SYSUEXEC

or SYSUPROC. During implicit execution, these libraries are searched first.
v The application level includes exec libraries specified on the ALTLIB command by

data set or file name. During implicit execution, these libraries are searched after
user libraries.

v The system level includes exec libraries previously allocated to file SYSEXEC or
SYSPROC. During implicit execution, these libraries are searched after user or
application libraries.

Using the ALTLIB Command

The ALTLIB command offers several functions, which you specify using the
following operands:

ACTIVATE
Allows implicit execution of execs in a library or libraries on the specified
level(s), in the order specified.

DEACTIVATE
Excludes the specified level from the search order.

DISPLAY
Displays the current order in which exec libraries are searched for implicit
execution.

RESET
Resets searching to the system level only (execs allocated to SYSEXEC or
SYSPROC).

For complete information about the syntax of the ALTLIB command, see z/OS
TSO/E Command Reference.

Note:

1. With ALTLIB, data sets concatenated to each of the levels can have differing
characteristics (logical record length and record format), but the data sets
within the same level must have the same characteristics.

© Copyright IBM Corp. 1988, 2013 193

2. At the application and system levels, ALTLIB uses the virtual lookaside facility
(VLF) to provide potential increases in library search speed.

Stacking ALTLIB Requests
On the application level, you can stack up to eight activate requests with the top,
or current, request active. Application-level libraries you define while running an
ISPF application are in effect only while that application has control. When the
application completes, the original application-level libraries are automatically
reactivated.

Using ALTLIB with ISPF
Under ISPF, ALTLIB works the same as in line mode TSO/E. However, if you use
ALTLIB under line mode TSO/E and start ISPF, the alternative libraries you
specified under line mode TSO/E are unavailable until ISPF ends.

When you use ALTLIB under ISPF, you can pass the alternative library definitions
from application to application by using ISPEXEC SELECT with the PASSLIB
operand; for example:
ISPEXEC SELECT NEWAPPL(ABC) PASSLIB

The PASSLIB operand passes the ALTLIB definitions to the invoked application.
When the invoked application completes and the invoking application regains
control, the ALTLIB definitions that were passed take effect again, regardless of
whether the invoked application changed them. If you omit the PASSLIB operand,
ALTLIB definitions are not passed to the invoked application.

For more information about writing ISPF applications, see z/OS ISPF Services Guide.

Examples of the ALTLIB Command
In the following example, an application issues the ALTLIB command to allow
implicit execution of execs in the data set NEW.EXEC, to be searched ahead of
SYSPROC:
ALTLIB ACTIVATE APPLICATION(exec) DATASET(new.exec)

The application could also allow searching for any private execs that the user has
allocated to the file SYSUEXEC or SYSUPROC, with the following command:
ALTLIB ACTIVATE USER(exec)

To display the active libraries in their current search order, use the DISPLAY
operand as follows:
ALTLIB DISPLAY

For more information about the search order EXEC uses for execs and CLISTs, see
z/OS TSO/E Command Reference.

To deactivate searching for a certain level, use the DEACTIVATE operand; for
example, to deactivate searching for execs on the system level (those allocated to
SYSEXEC or SYSPROC), issue:
ALTLIB DEACTIVATE SYSTEM(exec)

And, to reset exec searching back to the system level, issue:
ALTLIB RESET

Specifying Alternative Exec Libraries ...

194 z/OS V2R1.0 TSO/E REXX User's Guide

Appendix C. Comparisons Between CLIST and REXX

Both the CLIST language and the REXX language can be used in TSO/E as
procedures languages. Some major features of REXX that are different from CLIST
are:
v Host command environments - TSO/E REXX has the ability to invoke

commands from several environments in MVS and ISPF, as well as from TSO/E.
The ADDRESS instruction sets the environment for commands. For more
information, see “Issuing Other Types of Commands from an Exec” on page 99.

v Parsing capabilities - For separating data into variable names and formatting
text, REXX provides extensive parsing through templates. For more information,
see “Parsing Data” on page 85.

v Use of a data stack - REXX offers the use of a data stack in which to store data.
For more information, see Chapter 11, “Storing Information in the Data Stack,”
on page 133.

v Use of mixed and lowercase characters - Although variables and most input are
translated to uppercase, REXX provides ways to maintain mixed and lowercase
representation. For more information, see “Preventing Translation to Uppercase”
on page 19.

In some ways CLIST and REXX are similar. The following tables show similarities
and differences in the areas of:
v Accessing system services
v Controlling program flow
v Debugging
v Execution
v Interactive communication
v Passing information
v Performing file I/O
v Syntax
v Using functions
v Using variables

Accessing System Information

CLIST REXX

LISTDSI statement

LISTDSI &BASEDS

LISTDSI external function

x = LISTDSI(baseds)

&SYSOUTTRAP and &SYSOUTLINE

SET SYSOUTTRAP = 100

OUTTRAP external function

x = OUTTRAP(var,100)

CONTROL statement

CONTROL PROMPT

PROMPT external function

x = PROMPT(on)

&SYSDSN built-in function

IF &SYSDSN(’SYS1.MYLIB’) = OK THEN...

SYSDSN external function

IF SYSDSN(’SYS1.MYLIB’) = OK THEN...

© Copyright IBM Corp. 1988, 2013 195

CLIST REXX

Control Variables:

For User Information

&SYSPREF

WRITE &SYSPREF

&SYSPROC
&SYSUID

For Terminal Information

&SYSLTERM
&SYSWTERM

For CLIST Information

&SYSENV
&SYSICMD
&SYSISPF
&SYSNEST
&SYSPCMD
&SYSSCMD

For System Information

&SYSCPU
&SYSHSM
&SYSJES
&SYSLRACF
&SYSNODE
&SYSRACF
&SYSSRV
&SYSTERMID
&SYSTSOE

Arguments of the SYSVAR external function:

For User Information

SYSPREF

SAY SYSVAR(syspref)

SYSPROC
SYSUID

For Terminal Information

SYSLTERM
SYSWTERM

For Exec Information

SYSENV
SYSICMD
SYSISPF
SYSNEST
SYSPCMD
SYSSCMD

For System Information

SYSCPU
SYSHSM
SYSJES
SYSLRACF
SYSNODE
SYSRACF
SYSSRV
SYSTERMID
SYSTSOE

Control Variables:

For System Information

&SYSAPPCLU
&SYSDFP
&SYSMVS
&SYSNAME
&SYSSECLAB
&SYSSMFID
&SYSSMS
&SYSCLONE
&SYSPLEX
&SYSSYMDEF

Arguments of the MVSVAR external function:

For System Information

SYSAPPCLU
SYSDFP
SYSMVS
SYSNAME
SYSSECLAB
SYSSMFID
SYSSMS
SYSCLONE
SYSPLEX
SYMDEF

Controlling Program Flow

CLIST REXX

Branching Branching

IF/THEN/ELSE statements IF/THEN/ELSE instructions

SELECT/WHEN/OTHERWISE/END statements SELECT/WHEN/OTHERWISE/END instructions

Looping Looping

Iterative DO Iterative DO

DO/WHILE/END statements DO/WHILE/END instructions

Accessing System Information

196 z/OS V2R1.0 TSO/E REXX User's Guide

CLIST REXX

DO/UNTIL/END statements DO/UNTIL/END instructions

Interrupting Interrupting

END, EXIT statements EXIT instruction

GOTO statement SIGNAL instruction

LEAVE instruction

CALL instruction

Calling another CLIST Calling another exec as an external subroutine

EXEC command
...
EXEC MYNEW.CLIST(CLIST1) ’VAR’...
END

PROC 1 VAR...
EXIT

CALL instruction
...
call exec1 var...
exit

arg var...
return

Calling a subprocedure Calling an internal subroutine

SYSCALL statement
...
SYSCALL SOMESUB VAR...
END
SOMESUB: PROC 1 VAR...
EXIT

CALL instruction
...
call sub1 var...
exit
sub1:
arg var...
return

Debugging

CLIST REXX

Debugging a CLIST Debugging an exec

CONTROL SYMLIST LIST CONLIST MSG TRACE instruction

trace i

Interactive debug facility (EXECUTIL TS and TRACE ?R)

Return codes for commands and statements Return codes for commands

&LASTCC, &MAXCC

SET ECODE = &LASTCC

RC

ecode = RC

Trapping TSO/E command output Trapping TSO/E command output

&SYSOUTTRAP, &SYSOUTLINE OUTTRAP external function

Error handling Error handling

ERROR and ATTN statements SIGNAL ON ERROR,
SIGNAL ON FAILURE,
SIGNAL ON HALT,
SIGNAL ON NOVALUE, and
SIGNAL ON SYNTAX instructions.
CALL ON ERROR, CALL ON FAILURE, and
CALL ON HALT
instructions.¹

Controlling Program Flow

Appendix C. Comparisons Between CLIST and REXX 197

CLIST REXX

Note:

1 For more information about REXX error handling instructions, see z/OS TSO/E REXX Reference.

Execution

CLIST REXX

Explicit Explicit

EXEC command

EXEC MYNEW.CLIST(CLIST1)

EXEC command

EXEC MYNEW.EXEC(FIRST) EXEC

Implicit Implicit

1. Allocate/concatenate to SYSPROC

2. Specify member name of PDS with or without %

1. Allocate/concatenate to SYSPROC or SYSEXEC

2. Specify member name of PDS with or without %

Interactive Communication

CLIST REXX

Reading from the terminal Reading from the terminal

READ, READDVAL statements

READ INPUTA, INPUTB, INPUTC

PULL, PARSE PULL, PARSE UPPER PULL, PARSE EXTERNAL
instructions

pull inputa, inputb, inputc

Writing to the terminal Writing to the terminal

WRITE statement

WRITE Your previous entry was not valid.

SAY instruction

say ’Your previous entry was not valid.’

Passing Information

CLIST REXX

Receiving parameters in a CLIST Receiving arguments in an exec

PROC statement

PROC 1 DSNAME MEMBER() DISP(SHR)

CLISTs can receive positional, keyword, and keyword value
parameters.

ARG, PARSE ARG, PARSE UPPER ARG instructions

arg dsname member disp

An exec receives positional parameters. Use the PARSE ARG and PARSE UPPER
ARG instructions to receive keywords, for example:

my.data member(member1) disp(old)

parse upper arg dsname .
parse upper arg ’MEMBER(’mem’)’
parse upper arg ’DISP(’disp’)’

Recognizing comments within a parameter Recognizing comments within a parameter

A CLIST PROC statement recognizes a comment within a
parameter sent by the EXEC command and ignores that
comment.

An ARG instruction does not recognize a comment within a parameter sent by the
EXEC command. It is treated as part of the argument.

Sending parameters to a CLIST Sending arguments to an exec

EXEC command

EXEC MY.CLIST(NEW) -
’MY.DATA MEMBER(MEMBER1) DISP(OLD)’

EXEC command from TSO/E READY

’EXEC MY.EXEC(NEW)’,
"’my.data member(member1) disp(old)’ EXEC"

Sending information to a subprocedure Sending information to a subroutine

SYSCALL statement

SYSCALL SOMESUB &VAR

CALL instruction

call somsub var

Debugging

198 z/OS V2R1.0 TSO/E REXX User's Guide

CLIST REXX

Sending information from a subprocedure Sending information from a subroutine

RETURN statement
...
SYSCALL SOMESUB &VAR
SET ANSWER = &LASTCC...
END

SOMESUB: PROC 1 V1...
RETURN CODE(33) /* code goes to &LASTCC */

RETURN instruction
...
call somesub var
answer = RESULT
exit

somesub:
arg v1...
value = 4 * v1 / 3
return value /* value goes to RESULT */

Performing File I/O

CLIST REXX

Reading from a file Reading from a file

OPENFILE, GETFILE, CLOSFILE statements

OPENFILE PAYCHEKS
SET COUNTER=1
DO WHILE &COUNTER \> 3
GETFILE PAYCHEKS
SET EMPLOYEE&COUNTER=&PAYCHEKS
SET COUNTER=&COUNTER+1;

END
CLOSFILE PAYCHEKS

EXECIO DISKR, EXECIO DISKRU commands

’EXECIO 3 DISKR indd (stem employee. FINIS’
/* Read 3 records from the data set in indd. */
/* The 3 records go to a list of compound */
/* variables with the stem of employee. They */
/* are employee.1, employee.2 and employee.3 */

Writing to a file Writing to a file

OPENFILE, PUTFILE, CLOSFILE statements

OPENFILE PRICES OUTPUT
SET PRICES = $2590.00
PUTFILE PRICES
CLOSFILE PRICES

EXECIO DISKW

push ’$2590.00’ /* put amount on data stack */
’EXECIO 1 DISKW outdd (finis’

/*Write from data stack to data set in outdd */

Syntax

CLIST REXX

Continuing a statement over more than one line Continuing an instruction over more
than one line

Use - or +

IF &STR(SYSDATE)=&STR(10/13/87) THEN +
WRITE On &SYSDATE the system was down.

Use ,

say ’This instruction’,
’covers two lines.’

Separating statements within a line Separating instructions within a line

No more than one statement per line Use ;

do 5; Say ’Hello’; end

Character set of statements Character set of instructions

Must be in uppercase Can be upper, lower, or mixed case

Comments Comments

Enclose between /* */, closing delimiter optional at the end of a line. Enclose between /* */, closing delimiter
always required.

Using Functions

CLIST REXX

Calling a function Calling a function

Passing Information

Appendix C. Comparisons Between CLIST and REXX 199

CLIST REXX

&FUNCTION(expression)

SET A = &LENGTH(ABCDE) /* &A = 5 */

function(arguments)

a = length(’abcde’) /* a = 5 */

Using Variables

CLIST REXX

Assigning value to a variable Assigning value to a variable

SET statement

SET X = 5 /* &X gets the value 5 */
SET NUMBER = &X /* &NUMBER gets the value 5 */
SET Y = NUMBER /* &Y gets the value NUMBER */

assignment instruction

x = 5 /* X gets the value 5 */
NUMBER = x /* NUMBER gets the value 5 */
Y = ’number’ /* Y gets the value number */

Using Functions

200 z/OS V2R1.0 TSO/E REXX User's Guide

Appendix D. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1988, 2013 201

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

202 z/OS V2R1.0 TSO/E REXX User's Guide

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix D. Accessibility 203

204 z/OS V2R1.0 TSO/E REXX User's Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2013 205

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

Notices

206 z/OS V2R1.0 TSO/E REXX User's Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This publication documents information that is NOT intended to be used as
programming Interfaces of JES2.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices

Notices 207

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

208 z/OS V2R1.0 TSO/E REXX User's Guide

Index

Special characters
/ 28
// 28
* 28
** 28
\ 32
\ > 31
\ < 31
\= 30
\== 30
% 17, 28
> 31
> < 31
> = 31
>>> - final result 37
>L> - literal value 36
>O> - operation result 36
>V> - variable value 36
< 31
< = 31
| 32
& 32
&& 32
= 30
== 30

A
accessibility 201

contact IBM 201
features 201

ADDRESS built-in function 105
ADDRESS instruction 104
ALLOCATE command 188, 189, 190
allocation

description 183
to a system file 16, 171, 183
to SYSEXEC 189
to SYSPROC 190

allocation checklist
creating a data set with

ALLOCATE 188
creating and editing a data set using

ISPF/PDF 185
preliminary 184
writing an exec to allocate to

SYSEXEC 189
writing an exec to allocate to

SYSPROC 190
ALTLIB command 193

using under ISPF 194
ARG built-in function 72, 79
ARG instruction 21, 72, 79, 86
argument 23

ARG instruction 72, 79
data set name 96
definition 23
in the EXEC command 96
passing to an exec 23

argument (continued)
used to pass information to a

function 79
used to pass information to a

subroutine 72
arguments

passing 23
using CALL instruction 23
using EXEC command 23
using REXX function call 23

arithmetic operator
division, type of 28
priority 29
type of 27

array 154
assignment instruction 12
assistive technologies 201

B
background (TSO)

JCL 174
running an exec 174

batch (MVS)
JCL 175
running an exec 175

blank line 13
Boolean 32
built-in function

ADDRESS 105
ARG 72
comparison 61
conversion 61
DATATYPE 64
description 59
formatting 62
QUEUED 135, 142
REXX language 60

arithmetic 61
comparison 61
conversion 61
formatting 62
string manipulating 62

SUBSTR 68

C
CALL/RETURN instruction 55, 68
character, uppercase

preventing with PARSE 19, 22
preventing with quotation mark 19

checklist
creating a data set with

ALLOCATE 188
creating and editing a data set using

ISPF/PDF 185
preliminary 184
writing an exec to allocate to

SYSEXEC 189

checklist (continued)
writing an exec to allocate to

SYSPROC 190
checklist #1 - creating and editing a data

set using ISPF/PDF 185
checklist #2 - creating a data set with

ALLOCATE 188
checklist #3 - writing an exec to allocate

to SYSEXEC 189
checklist #4 - writing an exec to allocate

to SYSPROC 190
clause

as a subset of an instruction 12
CLIST

comparison to REXX 195
invoking an exec 172
returning information to an exec 173
running from an exec 172

comma
to continue an instruction 9

commands
ALLOCATE 188, 189, 190
ALTLIB 193
as an instruction 13
DELSTACK 147
DROPBUF 142
enclosing in quotation marks 19, 95
EXEC 15, 21, 147

prompt option 97
with data set name as

argument 96
EXECIO 152
EXECUTIL HI 47
EXECUTIL SEARCHDD 172
EXECUTIL TE 115
EXECUTIL TS 111, 112
issuing from an exec 99
LISTALC STATUS 184
LISTDS 185
MAKEBUF 141
NEWSTACK 146
QBUF 142
QELEM 143
QSTACK 147
SUBCOM 105
TSO/E REXX 95

comment
beginning an exec 7, 13
distinguishing an exec from a

CLIST 13
identifying as an exec 13
to clarify the purpose of an exec 13

comparison operator
equal 31
false (0) 30
strictly equal 31
true (1) 30
types of 30

compiler
benefits 5

© Copyright IBM Corp. 1988, 2013 209

Compiler Runtime Processor
portability 6

compound variable
changing all variables in an array 84
description 83
initializing 83
used in EXECIO command 154, 156,

158
used in LISTDSI 121
using stems 84

concatenation
of data sets 183

concatenation operator
type of

|| 34
abuttal 34
blank 34

continuation
of an instruction 9

control variable 117
copy

information to and from data
sets 157

information to compound
variables 158

information to the end of a data
set 158

D
data set

adding information with EXECIO
command 158

adding to SYSEXEC 189
adding to SYSPROC 190
allocating 7, 183
attributes 186
concatenation 189, 190
copying information with EXECIO

command 157
creating 7, 183
creating in ISPF/PDF 185
creating with ALLOCATE 188
creating with the ALLOCATE

command 188
editing 187
finding the allocation status of 184
fully-qualified vs. non

fully-qualified 96
library 183
name as argument 96
naming convention 96
partitioned (PDS) 183
prefix 96
reading information from with

EXECIO 153
sequential 183
to contain an exec 7
updating information with EXECIO

command 159
writing information to with

EXECIO 155
data stack

adding an element 134
characteristic 137
creating a buffer 140
creating a new stack 146

data stack (continued)
deleting a private stack 147
description 133
determining the number of elements

on the stack 135
dropping one or more buffers 142
finding the number of buffers 142
finding the number of elements

in 143
finding the number of stacks 147
manipulating 134
passing information between an exec

and a routine 138
passing information to an interactive

command 140
protecting an element 145
removing an element 134
removing an element from a stack

with a buffer 141
search order for processing 137
type of input 137
using in MVS batch 177
using in TSO/E background 177

DATATYPE built-in function 64
DBCS 13
ddname

allocating to for I/O 154, 156
use in EXECIO command 154, 156

debug
for error 109
interactive debug facility 111
with REXX special variable 110, 111

DELSTACK command 147
diagnosis

problem within an exec 109
DO FOREVER loop 47
DO UNTIL loop

flowchart 51
DO WHILE loop

flowchart 50
DO/END instruction 45
double-byte character set names

in execs 13
DROPBUF command 142

E
edit

an exec 187
environment

defining in REXX 178
host command 99
language processor 178

error
debugging 36, 109
tracing command 109
tracing expression 36

error message
getting more information 18
interpreting 18
syntax error 18

example
use of uppercase and lowercase xii

exclusive OR 32
exec

allocating to a file 16
comment line 7

exec (continued)
description xi, 7
editing in ISPF 187
example 8
identifying as an exec 7
interactive 8
invoking a CLIST 172
invoking as a command 98
passing information to 20
prompting a user for input to a

TSO/E command 97
prompting the user for input to a

TSO/E command 122, 147
receiving input 21
returning information to a CLIST 173
running

error message 18
explicitly 15, 171
from a CLIST 171, 172
from another exec 171
implicitly 16, 171, 183
implicitly with ALTLIB 193
in a TSO/E address space 171
in non-TSO/E address space 175
in the background 174
in the foreground 171
where to run 15
with % 17
with IKJEFT01 174
with IRXEXEC 175
with IRXJCL 175
with JCL 174

service available 169
using blank line 13
using double-byte character set

names 13
writing 8

EXEC command 15, 21, 147
prompt option 97
with data set name as argument 96

exec identifier 7, 13, 172
EXECIO command

adding information to a data set 158
copying information to a data

set 157
copying information to and from

compound variables 158
description 152
example 161
reading information from a data

set 153
return code 156
updating information to a data

set 159
writing information to a data set 155

EXECUTIL HI command 47
EXECUTIL SEARCHDD 172
EXECUTIL TE command 115
EXECUTIL TS command 111, 112
EXIT instruction 55, 68, 76
explicit execution

EXEC command 15
from ISPF/PDF command line 15
from ISPF/PDF command option 15
from READY 15

expression
arithmetic 27

210 z/OS V2R1.0 TSO/E REXX User's Guide

expression (continued)
order of evaluation 29

Boolean 32
comparison 30
concatenation 34
definition 27
logical 32
tracing 36

external subroutine 69

F
FIFO (first in first out) 133
file 193
file I/O 152
foreground processing

explicit execution 171
implicit execution 171
of an exec 171

function
ADDRESS built-in 105
ARG built-in 72, 79
argument 59
built-in

arithmetic 60
comparison 61
conversion 61
formatting 62
string manipulating 62
testing input with 64

comparison to a subroutine 67, 81
description 67

built-in 59
function package 59, 131
TSO/E external 59, 117
user-written 59

exposing a specific variable 78
external 76
internal 75
passing information to 79

possible problem 77
using a variable 76

PROMPT 97
protecting a variable 78
QUEUED built-in 135, 142
receiving information from 80

using the ARG built-in
function 79

returning a value 59
search order 132
TSO/E external

MVSVAR 120
SYSCPUS 123

using EXIT 75
using PROCEDURE 78
using PROCEDURE EXPOSE 78
using RETURN 75
when to make internal or external 76
writing 75

function package
description 131
local 132
system 132
user 132

G
GOTO 56

H
HI (halt interpretation) 47
host command environment 99

changing 104
checking if it is available 105
compared to language processor

environment 179
finding the active environment 105

I
IBM Compiler for REXX/370

benefits 5
IBM Library for REXX/370

benefits 5
identifier

of an exec 7, 13, 172
IF/THEN/ELSE instruction

flowchart 39
matching clauses 41
nested 41
using DO and END 40
using NOP 41

IKJEFT01 174
implicit execution 16, 183

from ISPF/PDF command line 17
from ISPF/PDF command option 16
from READY 16
speeding up search time 17
using % 17

inclusive OR 32
infinite loop

from TSO/E background and MVS
batch 177

stopping 46
input

passing argument 23
preventing translation to

uppercase 22
receiving with ARG 21
receiving with PULL 20
sending with EXEC command 21
to an exec

preventing translation to
uppercase 19, 22

using a period as a place holder 22
input/output (I/O)

allocating a ddname 154, 156
reading from a data set 153
reading to compound variables 154,

156
using the EXECIO command 152
writing from compound

variables 156
writing to a data set 155

instruction 68
adding during interactive trace 114
ADDRESS 104
ARG 21, 72, 79, 86
blank 13
CALL/RETURN 55
comment 13

instruction (continued)
conditional 39
continuing to the next line 9
DO FOREVER 47
DO UNTIL 51
DO WHILE 50
DO/END 45
EXIT 55, 68, 76, 114
formatting 9
IF/THEN/ELSE 39
INTERPRET 151
interrupt 39
ITERATE 48
LEAVE 48, 53
literal string 8
looping 39
PARSE 19, 22
PARSE ARG 86
PARSE EXTERNAL 137
PARSE PULL 86, 134
PARSE UPPER ARG 86
PARSE UPPER PULL 86
PARSE UPPER VALUE 87
PARSE UPPER VAR 86
PARSE VALUE...WITH 87
PARSE VAR 86
PROCEDURE 70, 78
PROCEDURE EXPOSE 71, 78
PULL 20, 85, 134
PUSH 134
QUEUE 134
re-executing during interactive

trace 114
SAY 7
SELECT/WHEN/OTHERWISE/

END 42
SIGNAL 56
SIGNAL ON ERROR 111
syntax 8
TRACE

ending tracing 115
interactive tracing 111
tracing command 109
tracing expression 36

type of
assignment 12
command 13
keyword 12
label 13
null 13

using blank 9
using comma 9
using quotation mark 95
using semicolon 11

interactive debug facility
adding an instruction 113
continuing 113
description 111
ending 113, 114
option 113
re-executing the last instruction

traced 113
starting 111

interactive trace 114
internal function 75
internal subroutine 68
INTERPRET instruction 151

Index 211

IRXEXEC 175
IRXJCL 175
ITERATE instruction 48

J
JCL (job control language)

in MVS batch 175
in TSO background 174

K
keyboard

navigation 201
PF keys 201
shortcut keys 201

keyword instruction 12

L
label instruction 13
language processor environment 178

compared to host command
environment 179

customizing 179
definition 178
IRXISPRM 178
IRXPARMS 178
IRXTSPRM 178

LEAVE instruction 48, 53
library

alternative (ALTLIB) 193
application level 193
exec 183
system 183

SYSEXEC 16, 171, 172
SYSPROC 16, 171, 172

system level 193
user-level 193

LIFO (last in first out) 133
LISTALC STATUS command 184
LISTDS command 185
LISTDSI external function 118
literal string 8
logical (Boolean) operator

false (0) 32
true (1) 32
type of 32

logical AND 32
logical NOT 32
loop

altering the flow 48
combining types 52
conditional 49
DO FOREVER 47
DO UNTIL 51
DO WHILE 50
DO/END 45
exiting prematurely 48
infinite 46, 47
ITERATE 48
LEAVE 48
nested DO loop 53
repetitive 45
stopping 46

lowercase character
changing to uppercase 19, 22
preventing the change to

uppercase 19, 22

M
MAKEBUF command 141
message

error 18
getting more information 18

explanation 18
interpreting 18
tracing 36

move
information from one data set to

another 157
MVS batch

comparison to TSO/E
background 177

running an exec 175
using IRXJCL 175
using the data stack 177

MVSVAR external function 120

N
name for variable

restriction on naming 26
valid name 26

navigation
keyboard 201

NEWSTACK command 146
non-TSO/E address space

running an exec 175
Notices 205
null instruction 13
numeric constant

decimal number 27
floating point number 27
signed number 28
whole number 27

O
operator

arithmetic 27
order of priority 29

Boolean 32
comparison 30
concatenation 34
logical 32
order of priority 35

OUTTRAP external function 121

P
parameter 23
parentheses 95
PARSE ARG instruction 86
PARSE EXTERNAL instruction 137
PARSE instruction

preventing translation to
uppercase 19, 22

PARSE PULL instruction 86, 134

PARSE UPPER ARG instruction 86
PARSE UPPER PULL instruction 86
PARSE UPPER VALUE instruction 87
PARSE UPPER VAR instruction 86
PARSE VALUE...WITH instruction 87
PARSE VAR instruction 86
parsing

description 85
instruction

ARG 86
PARSE ARG 86
PARSE PULL 86
PARSE UPPER ARG 86
PARSE UPPER PULL 86
PARSE UPPER VALUE 87
PARSE UPPER VAR 86
PARSE VALUE...WITH 87
PARSE VAR 86
PULL 85

multiple strings 90
separator

blank 87
number 88
string 87
variable 88

template 87
partitioned data set

creating in ISPF/PDF 185
creating with ALLOCATE 188
description 183
for an exec 7

passing arguments 23
PDS 7
period

as place holder 22
portability of compiled REXX

programs 6
prefix

in a data set name 7, 96
preliminary checklist 184
PROCEDURE instruction 70, 71, 78
prompt

from TSO/E command 97, 122
overridden by an item in the data

stack 145
overridden by item in the data

stack 98
overridden by NOPROMPT in the

PROFILE 98, 122
PROMPT external function 122
PROMPT function 97, 147
protection

of an element on a data stack 145
PULL instruction 20, 85, 134
PUSH instruction 134

Q
QBUF command 142
QELEM command 143
QSTACK command 147
queue

description 133
FIFO order 133

QUEUE instruction 134
QUEUED built-in function 135, 142
quotation mark 95

212 z/OS V2R1.0 TSO/E REXX User's Guide

quotation mark (continued)
around a literal string 8
around command 19, 95
in an instruction 8
to prevent translation to

uppercase 19

R
RC special variable

for debugging 110
used with a command 95
used with stack command 142, 143,

147
repetitive loop 45
RESULT special variable 72, 73, 98

used with EXIT 55
REXX compiler

benefits 5
REXX environment

definition 178
REXX exec identifier 7, 13, 172
REXX instruction 68

adding during interactive trace 114
ADDRESS 104
ARG 21, 72, 79, 86
blank 13
CALL/RETURN 55
comment 13
conditional 39
continuing to the next line 9
DO FOREVER 47
DO UNTIL 51
DO WHILE 50
DO/END 45
EXIT 55, 68, 76, 114
formatting 9
IF/THEN/ELSE 39
INTERPRET 151
interrupt 39
ITERATE 48
LEAVE 48, 53
literal string 8
looping 39
PARSE 19, 22
PARSE ARG 86
PARSE EXTERNAL 137
PARSE PULL 86, 134
PARSE UPPER ARG 86
PARSE UPPER PULL 86
PARSE UPPER VALUE 87
PARSE UPPER VAR 86
PARSE VALUE...WITH 87
PARSE VAR 86
PROCEDURE 70, 78
PROCEDURE EXPOSE 71, 78
PULL 20, 85, 134
PUSH 134
QUEUE 134
re-executing during interactive

trace 114
SAY 7
SELECT/WHEN/OTHERWISE/

END 42
SIGNAL 56
SIGNAL ON ERROR 111
syntax 8

REXX instruction (continued)
TRACE

ending tracing 115
interactive tracing 111
tracing command 109
tracing expression 36

type of
assignment 12
command 13
keyword 12
label 13
null 13

using blank 9
using comma 9
using quotation mark 95
using semicolon 11

REXX language
comparison to CLIST 195
description 3
example

use of uppercase and
lowercase xii

exec
description xi, 7

feature of 3
program (exec) xi
SAA (Systems Application

Architecture) 4
REXX program

portability of 6
REXX special variable

RC
for debugging 110
used with a command 95
used with stack command 142,

143, 147
RESULT 72, 73, 98

used with EXIT 55
SIGL

for debugging 110, 111
rules

syntax 8

S
SAA (Systems Application

Architecture) xi
general description 6
Procedures Language 4

SAA Procedures Language 6
SAY instruction 7
SELECT/WHEN/OTHERWISE/END

instruction
flowchart 42

semicolon
to end an instruction 11

sending comments to IBM xiii
service

for REXX in MVS 169
shortcut keys 201
SIGL special variable

for debugging 110, 111
SIGNAL instruction 56
SIGNAL ON ERROR instruction 111
special variable 98
stack 133

stem
used with OUTTRAP function 121

STORAGE external function 123
string 8
SUBCOM command 105
subcommand environment 99
SUBMIT command 175
subroutine

calling 55
comparison to a function 67, 81
description 67
exposing a specific variable 71
external 69
internal 68
passing information

using an argument 72
passing information to

possible problem 70
using a variable 69

protecting variable 70
receiving information from

RESULT 73
using the ARG built-in

function 72
returning a value 55
using CALL/RETURN 68
using PROCEDURE 70
using PROCEDURE EXPOSE 71
when to make internal or external 68
writing 68

SUBSTR built-in function 68
Summary of changes xv
SYMDEF 121
syntax

rules of REXX 8
SYSAPPCLU 121
SYSCLONE 121
SYSCPUS external function 123
SYSDFP 121
SYSDSN external function 124
SYSEXEC 16, 172

allocating to 189
SYSJES 126
SYSMVS 121
SYSNAME 121
SYSNODE 126
SYSPLEX 121
SYSPROC 13, 16, 172

allocating to 190
SYSSECLAB 121
SYSSMFID 121
SYSSMS 121
system file

allocating to 16, 183
SYSEXEC 16, 172, 193
SYSPROC 13, 16, 172, 193
SYSUEXEC 193
SYSUPROC 193

SYSTERMID 126
SYSUEXEC 193
SYSUPROC 193
SYSVAR external function 125

T
template 87
trace 113

Index 213

TRACE instruction 109
ending tracing 115
interactive tracing 111
tracing operation 36
tracing result 37

trademarks 207
TSO/E background

comparison to MVS batch 177
using the data stack 177

TSO/E commands
ALLOCATE 188, 189, 190
ALTLIB 193
EXEC 15, 21, 147

prompt option 97
with data set name as

argument 96
EXECUTIL HI 47
EXECUTIL SEARCHDD 172
EXECUTIL TE 115
EXECUTIL TS 111, 112
issuing from an exec 95
LISTALC STATUS 184
LISTDS 185
prompting 97, 122

overridden by item in the data
stack 98

overridden by NOPROMPT in the
PROFILE 98

SUBMIT 175
using parentheses 95
using quotation mark 95
using variable 97
with interactive prompt 97, 122, 147

TSO/E external function
MVSVAR 120
SYSCPUS 123

TSO/E REXX command
DELSTACK 147
description 95
DROPBUF 142
EXECIO 152
EXECUTIL HI 47
EXECUTIL SEARCHDD 172
EXECUTIL TE 115
EXECUTIL TS 111, 112
MAKEBUF 141
NEWSTACK 146
QBUF 142
QELEM 143
QSTACK 147
SUBCOM 105

U
uppercase character

changing from lowercase 19, 22
preventing the change to 19, 22

user interface
ISPF 201
TSO/E 201

V
variable

compound 83
control 46

variable (continued)
description 25
naming 25
RC 26
representing a value in quotation

marks 97
restriction on naming 26
RESULT 26
shared variable in an internal

function 77
shared variable in an internal

subroutine 69
SIGL 26
stem 84
type of value 26
used to pass information to a

function 77
used to pass information to a

subroutine 69
valid name 26
value 26
within TSO/E command 97

variable of a stem
description 121
used with EXECIO function 154, 156
used with OUTTRAP function 84,

121

214 z/OS V2R1.0 TSO/E REXX User's Guide

����

Product Number: 5650-ZOS

Printed in USA

SA32-0982-00

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How this document is organized
	Terminology
	Purpose of each chapter
	Examples
	Exercises

	Where to find more information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Part 1. Learning the REXX Language
	Chapter 1. Introduction
	What is REXX?
	Features of REXX
	Ease of use
	Free format
	Convenient built-in functions
	Debugging capabilities
	Interpreted language
	Extensive parsing capabilities

	Components of REXX
	The SAA Solution
	Benefits of Using a Compiler
	Improved Performance
	Reduced System Load
	Protection for Source Code and Programs
	Improved Productivity and Quality
	Portability of Compiled Programs
	SAA Compliance Checking

	Chapter 2. Writing and Running a REXX Exec
	Before You Begin
	What is a REXX Exec?
	Syntax of REXX Instructions
	The Character Type of REXX Instructions
	Using Quotation Marks in an Instruction

	The Format of REXX Instructions
	Beginning an instruction
	Continuing an instruction
	Continuing a literal string without adding a space
	Ending an instruction

	Types of REXX Instructions
	Keyword
	Assignment
	Label
	Null
	Command

	Execs Using Double-Byte Character Set Names
	Running an Exec
	Running an Exec Explicitly
	Running an Exec Implicitly
	Allocating a PDS to a System File
	Exercises - Running the Example Execs

	Interpreting Error Messages
	Preventing Translation to Uppercase
	From Within an Exec
	As Input to an Exec
	Exercises - Running and Modifying the Example Execs

	Passing Information to an Exec
	Using Terminal Interaction
	Specifying Values when Invoking an Exec
	Specifying Too Few Values
	Specifying Too Many Values

	Preventing Translation of Input to Uppercase
	Exercises - Using the ARG Instruction

	Passing Arguments
	Passing Arguments Using the CALL Instruction or REXX Function Call
	Passing Arguments Using the EXEC Command

	Chapter 3. Using Variables and Expressions
	Using Variables
	Variable Names
	Variable Values
	Exercises - Identifying Valid Variable Names

	Using Expressions
	Arithmetic Operators
	Division
	Order of Evaluation
	Using Arithmetic Expressions
	Exercises - Calculating Arithmetic Expressions

	Comparison Operators
	The Strictly Equal and Equal Operators
	Using Comparison Expressions
	Exercises - Using Comparison Expressions

	Logical (Boolean) Operators
	Using Logical Expressions
	Exercises - Using Logical Expressions

	Concatenation Operators
	Using Concatenation Operators

	Priority of Operators
	Exercises - Priority of Operators

	Tracing Expressions with the TRACE Instruction
	Tracing Operations
	Tracing Results
	Exercises - Using the TRACE Instruction

	Chapter 4. Controlling the Flow Within an Exec
	Using Conditional Instructions
	IF/THEN/ELSE Instructions
	Nested IF/THEN/ELSE Instructions
	Exercise - Using the IF/THEN/ELSE Instruction

	SELECT/WHEN/OTHERWISE/END Instruction
	Exercises - Using the SELECT/WHEN/OTHERWISE/END Instruction

	Using Looping Instructions
	Repetitive Loops
	Infinite Loops
	DO FOREVER Loops
	LEAVE Instruction
	ITERATE Instruction
	Exercises - Using Loops

	Conditional Loops
	DO WHILE Loops
	Exercise - Using a DO WHILE Loop
	DO UNTIL Loops
	Exercise - Using a DO UNTIL Loop

	Combining Types of Loops
	Nested DO Loops
	Exercises - Combining Loops

	Using Interrupt Instructions
	EXIT Instruction
	CALL/RETURN Instructions
	SIGNAL Instruction

	Chapter 5. Using Functions
	What is a Function?
	Example of a Function

	Built-In Functions
	Arithmetic Functions
	Comparison Functions
	Conversion Functions
	Formatting Functions
	String Manipulating Functions
	Miscellaneous Functions
	Testing Input with Built-In Functions
	Exercise - Writing an Exec with Built-In Functions

	Chapter 6. Writing Subroutines and Functions
	What are Subroutines and Functions?
	When to Write Subroutines vs. Functions
	Writing a Subroutine
	Passing Information to a Subroutine
	Passing Information by Using Variables
	Passing Information by Using Arguments

	Receiving Information from a Subroutine
	Example - Writing an Internal and an External Subroutine

	Writing a Function
	Passing Information to a Function
	Passing Information by Using Variables
	Passing Information by Using Arguments

	Receiving Information from a Function
	Exercise - Writing a Function

	Summary of Subroutines and Functions

	Chapter 7. Manipulating Data
	Using Compound Variables and Stems
	What is a Compound Variable?
	Using Stems
	Exercises - Using Compound Variables and Stems

	Parsing Data
	Instructions that Parse
	PULL Instruction
	ARG Instruction
	PARSE VAR Instruction
	PARSE VALUE ... WITH Instruction

	Ways of Parsing
	Blank
	String
	Variable
	Number

	Parsing Multiple Strings as Arguments
	Exercise - Practice with Parsing

	Part 2. Using REXX
	Chapter 8. Entering Commands from an Exec
	Types of Commands
	Issuing TSO/E Commands from an Exec
	Using Quotations Marks in Commands
	Passing Data Set Names as Arguments

	Using Variables in Commands
	Causing Interactive Commands to Prompt the User
	Invoking Another Exec as a Command
	Invoking Another Exec with the EXEC Command
	Invoking Another Exec Implicitly

	Issuing Other Types of Commands from an Exec
	What is a Host Command Environment?
	APPC/MVS Host Command Environments

	Examples Using APPC/MVS Services
	Changing the Host Command Environment
	Determining the Active Host Command Environment
	Checking if a Host Command Environment is Available
	Examples Using the ADDRESS Instruction

	Chapter 9. Diagnosing Problems Within an Exec
	Debugging Execs
	Tracing Commands with the TRACE Instruction
	TRACE C
	TRACE E

	Using REXX Special Variables RC and SIGL
	RC
	SIGL

	Tracing with the Interactive Debug Facility
	Starting Interactive Tracing
	Options Within Interactive Trace
	Ending Interactive Trace

	Chapter 10. Using TSO/E External Functions
	TSO/E External Functions
	Using the GETMSG Function
	Using the LISTDSI Function
	Using the MSG Function
	Using the MVSVAR Function
	Using the OUTTRAP Function
	Using the PROMPT Function
	Using the SETLANG Function
	Using the STORAGE Function
	Using the SYSCPUS Function
	Using the SYSDSN Function
	Using the SYSVAR Function
	User Information
	Terminal Information
	Language Information
	Exec Information
	System Information
	Console Session Information

	Additional Examples
	Function Packages
	Search Order for Functions

	Chapter 11. Storing Information in the Data Stack
	What is a Data Stack?
	Manipulating the Data Stack
	Adding Elements to the Data Stack
	Removing Elements from the Stack
	Determining the Number of Elements on the Stack
	Exercise - Using the Data Stack

	Processing of the Data Stack
	Using the Data Stack
	Passing Information Between a Routine and the Main Exec
	Passing Information to Interactive Commands
	Issuing Subcommands of TSO/E Commands

	Creating a Buffer on the Data Stack
	Creating a Buffer with the MAKEBUF Command
	Removing Elements from a Stack with a Buffer

	Dropping a Buffer with the DROPBUF Command
	Finding the Number of Buffers with the QBUF Command
	Finding the Number of Elements In a Buffer
	Exercises - Creating a Buffer on the Data Stack

	Protecting Elements in the Data Stack
	Creating a New Data Stack with the NEWSTACK Command
	Deleting a Private Stack with the DELSTACK Command
	Finding the Number of Stacks
	Additional Examples

	Chapter 12. Processing Data and Input/Output Processing
	Types of Processing
	Dynamic Modification of a Single REXX Expression
	Using the INTERPRET Instruction

	Using EXECIO to Process Information to and from Data Sets
	When to Use the EXECIO Command
	Using the EXECIO Command
	Reading Information from a Data Set
	Writing Information to a Data Set

	Return Codes from EXECIO
	When to Use the EXECIO Command
	Copying Information From One Data Set to Another
	Copying Information to and from a List of Compound Variables
	Updating Information in a Data Set
	Additional Examples

	Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces
	Services Available to REXX Execs
	Running Execs in a TSO/E Address Space
	Running an Exec in the Foreground
	Things to Consider When Allocating to a System File (SYSPROC or SYSEXEC)
	Allocating to SYSEXEC
	Allocating to SYSPROC
	Running an Exec from a CLIST

	Running an Exec in the Background

	Running Execs in a Non-TSO/E Address Space
	Using an Exec Processing Routine to Invoke an Exec from a Program
	Using IRXJCL to Run an Exec in MVS Batch
	Using the Data Stack in TSO/E Background and MVS Batch

	Summary of TSO/E Background and MVS Batch
	CAPABILITIES
	REQUIREMENTS

	Defining language processor environments
	What is a language processor environment?
	Customizing a language processor environment

	Part 3. Appendixes
	Appendix A. Allocating Data Sets
	What is Allocation?
	Where to Begin
	Preliminary Checklist
	Checklist #1: Creating and Editing a Data Set Using ISPF/PDF
	Checklist #2: Creating a Data Set with the ALLOCATE Command
	Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC
	Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC

	Appendix B. Specifying Alternate Libraries with the ALTLIB Command
	Specifying Alternative Exec Libraries with the ALTLIB Command
	Using the ALTLIB Command
	Stacking ALTLIB Requests
	Using ALTLIB with ISPF

	Examples of the ALTLIB Command

	Appendix C. Comparisons Between CLIST and REXX
	Accessing System Information
	Controlling Program Flow
	Debugging
	Execution
	Interactive Communication
	Passing Information
	Performing File I/O
	Syntax
	Using Functions
	Using Variables

	Appendix D. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

