
IBM Compiler and Library for REXX on System z

User’s Guide and Reference
Version 1 Release 4

SH19-8160-06

���

Note
Before using this information and the product it supports, be sure to read the general information under Appendix G,
“Notices,” on page 277.

Seventh Edition, August 2013

This edition applies to version 1 release 4 of IBM Compiler for REXX on System z (product number 5695-013) and
the IBM Library for REXX on System z (product number 5695-014), and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SH19-8160-04.

© Copyright IBM Corporation 1991, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
How to Read the Syntax Notation. vii
How This Book Is Organized vii
How to Send Your Comments viii

What's New in Release 4 ix
IBM Compiler for REXX on System z ix
IBM Library for REXX on System z x

Part 1. Programming Reference
Information. 1

Chapter 1. Overview 3
Background information about compilers 3
The Level of REXX Supported by the Compiler . . . 3
Using the Compiler in Program Development . . . 4

Background information about error checking . . 4
Forms and Uses of Output. 4
Porting and Running Compiled REXX Programs . . 5
Calling and Linking REXX Programs 6
Running above 16 Megabytes in Virtual Storage . . 6
SAA Compliance 6
Choosing the National Language 6
Alternate Library Overview 7
Stream I/O for TSO/E REXX Function Package. . . 7
Alias Definitions and Member Names under z/OS . 8

Chapter 2. Invoking the Compiler 9
Invoking the Compiler under z/OS. 9

Invoking the Compiler with the REXXC (FANC)
EXEC 9
Invoking the Compiler with ISPF Panels 11
Invoking the Compiler with JCL Statements . . 13
Invoking the Compiler with Cataloged
Procedures 13
Invoking the Compiler with the 'REXXCOMP'
Command 13
Standard Data Sets Provided for the Compiler . . 14

Invoking the Compiler under z/VM 15
Invoking the Compiler with REXXD 15
Invoking the Compiler with the REXXC EXEC . 17
Batch Jobs 18

Chapter 3. Compiler Options and
Control Directives 19
Compiler Options 19

ALTERNATE 19
BASE 19
CEXEC 20
COMPILE 21
CONDENSE 22
DDNAMES 23
DLINK 24

DUMP 25
FLAG 26
FORMAT 26
IEXEC 27
LIBLEVEL 28
LINECOUNT 29
MARGINS. 30
OBJECT 30
OLDDATE. 32
OPTIMIZE. 33
PRINT 34
SAA 34
SLINE 35
SOURCE 35
TERMINAL 36
TESTHALT 36
TRACE 37
XREF 37

Control Directives 38
%COPYRIGHT 38
%INCLUDE 39
%PAGE. 41
%STUB 41
%SYSDATE 42
%SYSTIME 42
%TESTHALT 43

Chapter 4. Runtime Considerations . . 45
Organizing Compiled and Interpretable EXECs
under z/OS 45
Organizing Compiled and Interpretable EXECs
under z/VM 46
Organizing Compiled and Interpretable EXECs
under VSE/ESA 46
Use of the Alternate Library (z/OS, z/VM). . . . 47
Other Runtime Considerations 47

Chapter 5. Understanding the Compiler
Listing 51
Compilation Summary. 51
Source Listing 52
Messages 54
Cross-Reference Listing 55
Compilation Statistics 58
Examples with Column Numbers 59
Example of a Complete Compiler Listing 64

Chapter 6. Using Object Modules and
TEXT Files 71
Initial Considerations 71
Object Modules (z/OS) 72

Invoking a REXX Program as a Command or a
Program 72
Improving Packaging and Performance 73
Building Function Packages 74

© Copyright IBM Corp. 1991, 2013 iii

Writing Parts of Applications in REXX 74
REXXL (z/OS) 74

TEXT Files (z/VM) 75
Object Modules (VSE/ESA) 77

REXXPLNK Cataloged Procedure (VSE/ESA) . . 78
REXXLINK Cataloged Procedure (VSE/ESA) . . 79
REXXL Cataloged Procedure (VSE/ESA) . . . 80

Linking External Routines to a REXX Program . . 80
Resolving External References—An Example . . 81

Chapter 7. Converting CEXEC Output
between Operating Systems 85
Compiling on One System and Running on Another
System 85

Converting from z/OS to MVS OpenEdition . . 85
Converting from z/OS to z/VM 85
Converting from z/OS to VSE/ESA 86
Converting from z/VM to z/OS 86
Converting from z/VM to VSE/ESA 87

Copying CEXEC Output 87
REXXF (FANCMF) under z/OS. 87
REXXF under z/VM 87
REXXV (FANV) under z/OS. 88
REXXV under z/VM 89

Chapter 8. Language Differences
between the Compiler and the
Interpreters 91
Differences from the Interpreters on VM/ESA
Release 2.1, TSO/E Version 2 Release 4, and
REXX/VSE 91

Compiler Control Directives 91
Halt Condition 91
NOVALUE Condition 92
OPTIONS Instruction 93
PARSE SOURCE Instruction 93
PARSE VERSION Instruction 94
RANDOM Built-In Function 94
SOURCELINE Built-In Function 94
Start of Clause 95
SYSVAR Function 95
TRACE Instruction and TRACE Built-In Function 96
TS (Trace Start) and TE (Trace End) Commands 96

Differences to Earlier Releases of the Interpreters . . 97
SIGNAL Instruction 97
Integer Divide (%) and Remainder (//)
Operations 97
Exponentiation (**) Operation 97
Location of PROCEDURE Instructions 98
Binary Strings 98
Templates Used by PARSE, ARG, and PULL . . 98
PROCEDURE EXPOSE and DROP. 98
DO LOOPs 98
DBCS Symbols 98
VALUE Built-In Function 99
Argument Counting 99
Options of Built-In Functions 99
Built-In Functions 100
Options of Instructions 100
Strict Comparison Operators 100

LINESIZE Built-In Function in Full-Screen CMS 101
Enhancement to the EXECCOMM Interface . . 101

Chapter 9. Limits and Restrictions 103
Implementation Limits 103
Technical Restrictions. 103

z/OS Restrictions 104
z/VM restrictions 104
VSE/ESA restrictions 104
C restriction 104

Chapter 10. Performance and
Programming Considerations 105
Performance Considerations 105

Optimization, Optimization Stoppers, and Error
Checking 105
Arithmetic 108
Literal Strings 108
Variables 108
Compound Variables 108
Labels within Loops 108
Procedures 109
TESTHALT Option 109
Frequently Invoked External Routines 109

Programming Considerations 109
Verifying the Availability of the Library . . . 109
VALUE Built-In Function 111
Stream I/O 111
Determining whether a Program is Interpreted
or Compiled 112
Creating REXX Programs for Use with the
Alternate Library (z/OS, z/VM) 112
Limits on Numbers 112

Part 2. Customizing the Compiler
and Library. 115

Chapter 11. Customizing the IBM
Compiler and Library for REXX on
z/OS 117
Modifying the Cataloged Procedures Supplied by
IBM 117
Customizing the REXXC EXEC 117
Customizing the REXXL EXEC 117
Message Repository 118

Chapter 12. Customizing the IBM
Compiler and Library for REXX on
z/VM 119
Customizing the Compiler Invocation Shells . . . 119

Modifying the Function of the Compiler
Invocation Shells 119
Setting Up Installation Defaults for the
Compiler Options 120

Customizing the Compiler Invocation Dialog . . . 120
Customizing the Library. 120

Defining the Library as a Physical Segment . . 121
Saving the Physical Segment 121

iv IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Defining the Library as a Logical Segment. . . 121
Selecting the Version of the Library 122
Customizing the Message Repository to Avoid a
Read/Write A-Disk 123
Files Needed to Run Compiled REXX Programs 123

Chapter 13. Customizing the Library
under VSE/ESA 125

Part 3. Stream I/O for TSO/E REXX 127

Chapter 14. How to Read the Syntax
Diagrams 129

Chapter 15. Installing the Function
Package 131
Preparation 131
Assembly, Link-Edit, and Verification 131
Installations with Multiple Function Packages . . 132
Usage Considerations 132

Chapter 16. Understanding the Stream
I/O Concept 133
The Basic Elements of Stream I/O 133
The TSO/E REXX Stream I/O Implementation . . 134

The Stream I/O Functions 134
Naming Streams 135
Transient and Persistent Streams 136
Opening and Closing Streams 136
Stream Formats. 138
Position Pointer Details 139
End-of-Stream Treatment 140
Error Treatments 140
Multiple Read Operations 140

Chapter 17. Stream I/O Functions. . . 143
CHARIN (Character Input) 143
CHAROUT (Character Output) 144
CHARS (Characters Remaining) 145
LINEIN (Line Input) 146
LINEOUT (Line Output) 147
LINES (Lines Remaining) 148
STREAM (Operations) 148

Part 4. Messages 151

Chapter 18. Message Format and
Return Codes 153
Message Format 153
Return Codes 154

Chapter 19. Compilation Messages 155

Chapter 20. Runtime Messages. . . . 181

Chapter 21. Stream I/O Messages. . . 197

Part 5. Appendixes 203

Appendix A. Interface for Object
Modules (z/OS). 205
ISPF Restrictions on Load Modules 205

Earlier Releases of ISPF 205
ISPF Version 4 Release 1. 206
ISPF for z/OS Version 1 Release 5.5 206

Link-Editing of Object Modules 207
DLINK Example 208

Stubs 211
Stub Names 211
Processing Sequence for Stubs 212
Parameter Lists 214
Search Order 218
Testing Stubs 218

PARSE SOURCE 219

Appendix B. Interface for TEXT Files
(z/VM). 221
The Call from the Assembler Program 221

Call Type 221
Registers 221
Extended PLISTs 221

What the REXX Program Gets 222
Invocation with a Tokenized PLIST Only . . . 222
Invocation with an Extended PLIST or a 6-Word
Extended PLIST 222

Example of an Assembler Interface to a TEXT File 223

Appendix C. Interface for Object
Modules (VSE/ESA). 225
Stubs 225

Processing Sequence for Stubs 225
Parameter Lists 227

PARSE SOURCE 229

Appendix D. The z/OS Cataloged
Procedures Supplied by IBM 231
REXXC (FANCMC) 231
REXXCG (FANCMCG) 232
REXXCL (FANCMCL) 233
REXXCLG (FANCMCLG) 235
REXXOEC (FANCMOEC) 236
REXXL (EAGL) 238
MVS2OE (Only Hardcopy Sample) 239

Appendix E. The VSE/ESA Cataloged
Procedures Supplied by IBM 241
REXXPLNK 241
REXXLINK 242

Contents v

REXXL 243

Appendix F. Interlanguage Job
Samples 249
Calling REXX from Assembler 249

EAGGJASM for Calling IRXJCL 250
EAGGXASM for Calling IRXEXEC 252

Calling REXX from C. 256
EAGGJC for Calling IRXJCL 256
EAGGXC for Calling IRXEXEC 258

Calling REXX from Cobol 263
EAGGJCOB for Calling IRXJCL 264
EAGGXCOB for Calling IRXEXEC 266

Calling REXX from PL/I 270
EAGGJPLI for Calling IRXJCL 270
EAGGXPLI for Calling IRXEXEC 272

Appendix G. Notices 277
Programming Interface Information 279
Trademarks 279

Glossary of Terms and Abbreviations 281

Related Publications 285
IBM Compiler and Library for REXX on System z
Publications 285

Other IBM Publications 285
ISPF Publications 285
Learning REXX 286
REXX Reference 286
TSO/E and MVS/ESA Publications 286
OpenEdition Publication. 286
VM/SP Publications 286
VM/XA SP Publications 287
VM/ESA Publications 287
VSE/ESA Publication. 287
C Publication 287
CMS Publications 287
z/VM Publications 287
z/OS Publications 287
OS/390 Publications 287

Index 289

vi IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

About This Book

This book is intended to help you compile and run programs written in the
Restructured EXtended eXecutor (REXX) language. It describes how to use the:
v System z® (referred to as the Compiler)
v IBM Library for REXX on System z (referred to as the Library)
v IBM Library for REXX in REXX/VSE (also referred to as the Library)

It also describes how the Alternate Library can be used by software developers and
users of z/OS® or z/VM® who do not have the IBM Library for REXX on System
z.

In addition to this, it describes the REXX Stream I/O function package and its
usage for z/OS TSO/E.

It is assumed that you are familiar with the REXX language and with the operating
system under which you compile or run your programs:
v z/OS or OS/390® with Time Sharing Option Extensions (TSO/E)
v CMS on Virtual Machine/Extended Architecture (VM/XA), Virtual

Machine/Enterprise System Architecture (VM/ESA), or z/VM
v Virtual Storage Extended/Enterprise System Architecture (VSE/ESA) with

REXX/VSE

Some of the information applies to all systems: z/OS, z/VM, and VSE/ESA.
Information that applies to only one system is indicated in the text.

How to Read the Syntax Notation
The notation used to define the command syntax in this book is as follows:
v A symbol (word) in boldface, such as CEXEC, denotes a keyword.
v Words in italics, such as options-list, denote variables or collections of variables.
v The brackets [and] delimit optional parts of the commands.
v The logical OR character | separates choices within brackets.

The notation of syntax diagrams is described in Chapter 14, “How to Read the
Syntax Diagrams,” on page 129.

How This Book Is Organized
This book is organized as follows:
v Part 1, “Programming Reference Information,” on page 1 provides an overview

and describes how to invoke the Compiler. It also lists the compiler options and
control directives, and explains the differences between the language processed
by the Compiler and the language processed by the interpreters.

v Part 2, “Customizing the Compiler and Library,” on page 115 contains
information for the system programmer about customizing the Compiler and the
Library.

v Part 3, “Stream I/O for TSO/E REXX,” on page 127 describes the REXX Stream
I/O function package and its usage for z/OS TSO/E.

v Part 4, “Messages,” on page 151 contains messages and their explanations.

© Copyright IBM Corp. 1991, 2013 vii

v The appendixes contain reference information, such as cataloged procedures.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
REXX documentation:
v Visit our home page at: http://www.ibm.com/software/awdtools/rexx/ There

you can access the Internet Online Form where you can enter comments and
send them.

v z/OS or z/VM customers can also use the IBM Service Center to raise a PMR
against:
RETAIN queue: RASS,148

Specify the program ID of your IBM Compiler and Library for REXX on System
z installation:
569501303 (Compiler under z/OS)
569501403 (Library under z/OS)
569501304 (Compiler under z/VM)
569501404 (Library under z/VM)

viii IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

What's New in Release 4

Here you find an overview of the latest enhancements, changes, and highlights
provided in Release 4.

Release 4 introduces new naming conventions:
v IBM Compiler and Library for SAA REXX/370 is now IBM Compiler and

Library for REXX on System z
v MVS™ and MVS/ESA are now z/OS
v VM is now z/VM

The IBM Compiler for REXX on System z Release 4 and the IBM Library for REXX
on System z Release 4 are enhanced to meet your continued requirement for REXX
support on z/VM and z/OS. They:
v Include all service since Release 3
v Provide more efficient system management
v Support improved error checking
v Provide more information during debugging
v Improve error checking during compilation
v Allow increased flexibility

IBM Compiler for REXX on System z
For z/VM and z/OS environments:
v Error checking of built-in functions is improved.
v The Compiler now issues messages even if there is no message repository

installed under z/VM and z/OS.
v A new date conversion function is provided that allows you to specify the input

format, the input date, and the output format.
v Debugging capabilities are improved by writing the source code file identifier

into the compiled code.
v Host BIF plausibility checks are provided.
v Date conversion and separation characters are supported.
v The input file ID is written into the CEXEC.
v REXX utilities have been enhanced, such as REXXF for both products.
v New compiler directives provide improved systems management and

debugging:
– %STUB to include a named stub already at compilation time into the object

output file. It simplifies link-editing of object modules for z/OS.
– %SYSTIME to retrieve the compilation time.
– %SYSDATE to retrieve the compilation date.
– %TESTHALT to place testhalt hooks at specific places.

v You can generate link-edited modules supporting nearly all of the previous stub
conventions with only one stub named MULTI.

v The following compiler options have been added or enhanced:

© Copyright IBM Corp. 1991, 2013 ix

– SLINE(A) Automatic SLINE includes the source program depending on the
compiler option TRACE and ALTERNATE, and/or the SOURCELINE built-in
function (BIF) that are used

– NO/OPTIMIZE bypasses the compiler optimization step
– FORMAT(C) formats the error messages and cross references with column

numbers.
– LIBLEVEL(n) restricts the usage of REXX language constructs to a specific

library level
– XREF has been enhanced to provide more details in the compiler listing, such

as information about exposed and dropped variables, variables without
assignment, and optimization stoppers.

For z/VM environments only:
v Hardcoded messages are provided when the message repository is not available.
v The new compiler option OLDDATE(CIOP) sets the file date of the CEXEC,

IEXEC, OBJECT, PRINT output file to the file date of the source. It simplifies
maintenance, because it allows you to set the date/time stamp of various output
files to the date/time stamp of the source file.

v Sequence numbers are supported.

For OS/390 and z/OS environments only:
v The new compiler option DDNAMES allows you to redefine the standard

ddnames by reading a control file.
v The interface to ISPF services is simplified.
v The portability with Stream I/O for TSO/E REXX function package is improved.

IBM Library for REXX on System z
For OS/390 and z/OS environments only:
v Interfaces to operating system functions are simplified with a multi-purpose

STUB.
v Sample code for interfacing with other programming languages such as C,

Cobol, PL/I, or Assembler is available.
v Stubs are enhanced to make the LANG (CREX) parameter obsolete.

x IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Part 1. Programming Reference Information

© Copyright IBM Corp. 1991, 2013 1

2 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 1. Overview

This chapter provides an overview of the features and functions of the:
v IBM Compiler for REXX on System z
v IBM Library for REXX on System z
v Alternate Library

The Compiler translates REXX source programs into compiled programs. The
Library contains routines that are called by compiled programs at runtime. The
Alternate Library contains a language processor that transforms the compiled
programs and runs them with the interpreter. It can be used by z/OS and z/VM
users who do not have the IBM Library for REXX on System z to run compiled
programs.

The Compiler and Library run on z/OS systems with TSO/E, and under CMS on
VM/XA, VM/ESA, and z/VM systems. The IBM Library for REXX in REXX/VSE
runs under VSE/ESA.

You may prefer to leave some programs uncompiled. This would be a good choice
for simple programs that are not used frequently. An example is a program that
renames all the files in a library in accordance with a new naming convention, and
then never needs to be run again.

Background information about compilers
Instructions written in any high-level language, such as REXX, must be prepared
for execution. The two types of programs that can perform this task are:
v An interpreter, which parses and executes an instruction before it parses and

executes the next instruction.
v A compiler, which translates all the instructions of a program into a machine

code program. It can keep the machine code program for later execution. It does
not execute the program.

The input to a compiler is the source program that you write.

The output from a compiler is the compiled program and the listing.

The process of translating a source program into a compiled program is known as
compilation.

The Level of REXX Supported by the Compiler
The Compiler supports REXX language level 3.48 on z/OS in TSO/E Version 2
Release 4, CMS in VM/ESA releases earlier than Release 2.1, and on VSE/ESA in
REXX/VSE Version 1 Release 1. On CMS in VM/ESA Release 2.1 and subsequent
releases, the language level supported is 4.02.

Most of your existing REXX programs should compile without error and should
give the same runtime results without modification.

Most of the language features that are new in VM/ESA Release 2 and TSO/E
Version 2 Release 4 are available when running compiled programs, even when

© Copyright IBM Corp. 1991, 2013 3

they are not accepted by the interpreters. See Chapter 8, “Language Differences
between the Compiler and the Interpreters,” on page 91 for details.

Using the Compiler in Program Development
One effective way of using the Compiler to develop REXX programs is the
following:
1. Compile the program with the TRACE and NOTESTHALT compiler options

and without the %TESTHALT control directive. The SLINE or SLINE(AUTO)
compiler option is required. This step performs comprehensive error checking
and produces an output that can be traced.

2. Debug the program using the output of the previous step.
3. Compile the program with the NOTRACE compiler option and, if required, the

TESTHALT compiler option and %TESTHALT control directive.

Background information about error checking
The compiler scans an entire program for such errors as incorrect instructions and
variable names, even in parts of a program that are not used when the program is
run. By contrast, the interpreter stops as soon as it detects an error. It does not
detect syntax errors in parts of a program that are not used during a particular
invocation.

The compiler, however, cannot detect errors that arise at runtime. Consider this
assignment:
averagescore = totalscore/numberofgames

This is valid during compilation, but could give an error at runtime. For example,
if the variable numberofgames is assigned the value zero, an arithmetic error occurs.

Forms and Uses of Output
The Compiler can produce output in the following forms:
v Compiled EXECs: These behave exactly like interpreted REXX programs. They

are invoked the same way by the system’s EXEC handler, and the search
sequence is the same. The easiest way of replacing interpreted programs with
compiled programs is by producing compiled EXECs. Users need not know
whether the REXX programs they use are compiled EXECs or interpretable
programs. Compiled EXECs can be sent to VSE/ESA to be run there. In this
book, compiled EXECs are often referred to as CEXEC output.

v Object modules under z/OS or TEXT files under z/VM: These must be
transformed into executable form (load modules) before they can be used. Load
modules and MODULE files are invoked the same way as load modules derived
from other compilers, and the same search sequence applies. However, the
search sequence is different from that of interpreted REXX programs and
compiled EXECs. These load modules can be used as commands and as parts of
REXX function packages. Object modules or MODULE files can be sent to
VSE/ESA to build phases.

v IEXEC output: This output contains the expanded source of the REXX program
being compiled. Expanded means that the main program and all the parts
included at compilation time by means of the %INCLUDE directive are
contained in the IEXEC output. Only the text within the specified margins is
contained in the IEXEC output. Note, however, that the default setting of
MARGINS includes the entire text in the input records.

4 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

You can produce all forms of output in one compilation. Compiled EXECs and
object modules contain the compiled code for the program:
v Generate load modules from object modules: Under z/OS, object modules can

be used to generate load modules. You need to link-edit the object modules with
stubs before you can run them or before you can link them with other programs.
See “Object Modules (z/OS)” on page 72 and Appendix A, “Interface for Object
Modules (z/OS),” on page 205 for more information.

v Generate load modules from TEXT files: Under z/VM, a TEXT file can be
processed into a MODULE file. The MODULE file can be invoked like any other
z/VM module. See “TEXT Files (z/VM)” on page 75 and Appendix B, “Interface
for TEXT Files (z/VM),” on page 221 for more information.

v Build phases from object modules: Under VSE/ESA, object modules can be
used to build phases. You need to combine the object modules with the
appropriate stub, before you can use them. See “Object Modules (VSE/ESA)” on
page 77 and Appendix C, “Interface for Object Modules (VSE/ESA),” on page
225 for more information.

v Link TEXT files to Assembler programs: A TEXT file can be linked to an
Assembler program. See “TEXT Files (z/VM)” on page 75 for more information.

Porting and Running Compiled REXX Programs
A REXX program compiled under z/OS can run under z/VM. Similarly, a REXX
program compiled under z/VM can run under z/OS. A REXX program compiled
under z/OS or z/VM can run under VSE/ESA if REXX/VSE is installed.

Note:

1. Machine mode 370 is no longer supported.
2. You must only recompile programs that were compiled with the z/VM REXX

Compiler or with the IBM Compiler for SAA REXX/370 Release 2 if they
contain the CONDENSE compiler option. Otherwise you need not recompile
existing programs to run with the latest release level of REXX.

3. See also Chapter 7, “Converting CEXEC Output between Operating Systems,”
on page 85 for more information.

If you compiled your program under z/OS using:
v The CEXEC option, and want to run it under:

– z/OS, see “CEXEC” on page 20
– MVS OpenEdition, see “Converting from z/OS to MVS OpenEdition” on

page 85
– z/VM , see “Converting from z/OS to z/VM” on page 85
– VSE/ESA, see “Converting from z/OS to VSE/ESA” on page 86

v The OBJECT option, and want to run it under:
– z/OS, see “OBJECT” on page 30
– z/VM, transfer the OBJECT output to z/VM and generate a module; see

“TEXT Files (z/VM)” on page 75
– VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase; see

“Object Modules (VSE/ESA)” on page 77

If you compiled your program under z/VM using:
v The CEXEC option, and want to run it under:

– z/OS, see “Converting from z/VM to z/OS” on page 86

Chapter 1. Overview 5

– z/VM, see “CEXEC” on page 20
– VSE/ESA, see “Converting from z/VM to VSE/ESA” on page 87

v The OBJECT option, and want to run it under:
– z/OS, transfer the OBJECT output to z/OS and generate an object module;

see “Object Modules (z/OS)” on page 72
– z/VM, see “OBJECT” on page 30
– VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase; see

“Object Modules (VSE/ESA)” on page 77

Calling and Linking REXX Programs
Compiled REXX programs can interface with other programs in the same ways as
interpreted REXX programs. For details, refer to TSO/E REXX/MVS: Reference, IBM
VSE/ESA REXX/VSE: Reference, or to the corresponding z/VM documentation.

Running above 16 Megabytes in Virtual Storage
Under z/OS systems and under z/VM systems running in XA mode, the Compiler,
the Library, and the compiled REXX programs can run above 16 megabytes in
virtual storage. Under VSE/ESA, the compiled REXX programs can run above 16
megabytes in virtual storage. This requires no user action. Data used during a
compilation or by a running program can reside above 16 megabytes in virtual
storage.

SAA Compliance
The Systems Application Architecture® (SAA) definitions of software interfaces,
conventions, and protocols provide a framework for designing and developing
applications that are consistent within and across several operating systems.

The SAA REXX interface is supported by the interpreters under TSO/E, CMS, and
VSE/ESA, and can be used in any of these environments. Users whose programs
run under TSO/E, CMS, or VSE/ESA can use the language extensions provided by
these interpreters. If you plan to run your programs in other environments,
however, some restrictions may apply. For details of the restrictions, consult the
Systems Application Architecture Common Programming Interface REXX Level 2
Reference.

To help you to write programs for use in all SAA environments, the Compiler can
optionally check for SAA compliance. With this option in effect, a warning message
is issued for each non-SAA item found in a program.

Choosing the National Language
The Compiler and Library provide optional support for languages other than
American English. The language you select is used for:
v Messages
v Some of the constant text in the compiler listing, such as the page headings
v Help panels
v Compiler invocation panels under z/OS

For information on selecting a national language:
v Under z/OS, see the descriptions of:

– The SETLANG function in the TSO/E REXX/MVS: Reference

6 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

– The PLANGUAGE and SLANGUAGE operands of the PROFILE command in
the TSO/E Command Reference

v Under z/VM, see the description of the SET LANGUAGE command in the
command reference for your system.

v Under VSE/ESA, only English is supported when running the IBM Library for
REXX in REXX/VSE.

Alternate Library Overview
The Alternate Library enables users who do not have the Library installed to run
compiled REXX programs. It contains a language processor that transforms the
compiled programs and runs them with the interpreter, which is part of TSO/E
and CMS.

Software developers can distribute the Alternate Library, free of charge, with their
compiled REXX programs. If their customer:
v Has the Library installed, the programs run as compiled REXX programs
v Installs the Alternate Library, the programs are interpreted

Distributing the compiled REXX program, without the source, offers the following
advantages:
v Maintenance of the program is simplified, because the code cannot be modified

inadvertently.
v Compiled programs can be shipped in load module format and used to create

function packages, even for users who do not have the Library.

Note:

1. With the Alternate Library, the performance of compiled REXX programs is
similar to that of interpreted programs. The performance advantages of
compiled REXX are available only when the Library is installed.

2. To work with the Alternate Library, you must set the ALTERNATE and SLINE
compiler options.

Stream I/O for TSO/E REXX Function Package
This function package is a collection of I/O functions that follow the stream I/O
concept. It extends and enhances the I/O capabilities of REXX for TSO/E, and
shields the complexity of z/OS data set I/O to some degree. Further, the use of
stream I/O functions provides for easier coding syntax and leads to better
portability of REXX programs among different operating system platforms. The
stream I/O concept is introduced in Chapter 16, “Understanding the Stream I/O
Concept,” on page 133.

This function package can be used with TSO/E REXX on z/OS, OS/390, and MVS
systems that provide the MVS Name/Token Services, which are required to hook
the function package into an existing TSO/E REXX installation. It is a loadable file
that contains multiple object files bound together. Before its functions can be
accessed and executed, the function package must be properly integrated into
TSO/E REXX. For more information refer to Part 3, “Stream I/O for TSO/E
REXX,” on page 127.

Note: It is assumed that you are familiar with the REXX language, the TSO/E
environment, and the logical organization of data sets in the z/OS environment.

Chapter 1. Overview 7

Alias Definitions and Member Names under z/OS
The following table provides an overview of alias definitions and member names.
It also identifies the corresponding data sets.

Table 1. Alias and Member Names for Use with the Compiler

Alias Member Data Set

Procedures

REXXC FANCMC prefix.SFANPRC

REXXCG FANCMCG prefix.SFANPRC

REXXCL FANCMCL prefix.SFANPRC

REXXCLG FANCMCLG prefix.SFANPRC

REXXOEC FANCMOEC prefix.SFANPRC

Commands

REXXC FANC prefix.SFANCMD

REXXF FANCMF prefix.SFANCMD

REXXV FANV prefix.SFANCMD

Table 2. Alias and Member Names for Use with the Library

Alias Member Data Set

Procedure

REXXL EAGL prefix.SEAGPRC

Commands

REXXF EAGCMF prefix.SEAGCMD

REXXL EAGCML prefix.SEAGCMD

REXXQ EAGQRLIB prefix.SEAGCMD

REXXV EAGV prefix.SEAGCMD

8 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 2. Invoking the Compiler

This chapter describes in detail the various ways of invoking the IBM Compiler for
REXX on System z under z/OS and under z/VM.

To use the Compiler, you supply:
v A source program.
v Compiler options. These control aspects of the Compiler’s processing.

Depending on the options used, the Compiler produces the following types of
output:
v The compiled program, which can be a compiled EXEC, an object module for

z/OS or VSE/ESA, or a TEXT file for z/VM
v The compiler listing, which may include a source listing, messages, and a

cross-reference listing
v Messages on the terminal
v IEXEC output, which can be interpreted

If you compile a program that was previously only interpreted, you may find that,
at runtime, its behavior is not identical. This is because there are some differences
between the language that is processed by the Compiler and by the interpreters.
For more information refer to Chapter 8, “Language Differences between the
Compiler and the Interpreters,” on page 91.

Invoking the Compiler under z/OS
z/OS users can invoke the Compiler by using:
v REXXC—see “Invoking the Compiler with the REXXC (FANC) EXEC”
v ISPF compiler invocation panels—see “Invoking the Compiler with ISPF Panels”

on page 11
v JCL statements—see “Invoking the Compiler with JCL Statements” on page 13
v Cataloged procedures—see “Invoking the Compiler with Cataloged Procedures”

on page 13
v The 'REXXCOMP' command—see “Invoking the Compiler with the

'REXXCOMP' Command” on page 13

Invoking the Compiler with the REXXC (FANC) EXEC
You can invoke the Compiler in a TSO/E environment by using the compiler
invocation EXEC: REXXC (FANC). (See also “Alias Definitions and Member Names
under z/OS” on page 8.) REXXC is supplied with the Compiler to compile REXX
source programs. It must run in a TSO/E address space.

To start the EXEC, enter the REXXC command in the following format:

REXXC source [options-list]

where:

source Specifies the data set containing the REXX source program.

REXXC allocates the specified or default output data sets if they do not
already exist. It uses defaults for data set attributes and allocation values
that are described in “Customizing the REXXC EXEC” on page 117. For

© Copyright IBM Corp. 1991, 2013 9

information about how the names of the default data sets are derived, see
“Derived Default Data Set Names.”

REXXC checks the data set organization for each output. It ends with an
error rather than overwriting a partitioned data set with a sequential data
set of the same name, and vice versa.

options-list
Any of the compiler options that are described in “Compiler Options” on
page 19. They can be specified in any order.

You can use the following options to explicitly specify where the Compiler
output is to be stored:
v “BASE” on page 19
v “CEXEC” on page 20
v “DUMP” on page 25
v “IEXEC” on page 27
v “OBJECT” on page 30
v “PRINT” on page 34

Derived Default Data Set Names
If you do not specify data set names, REXXC derives default names for output
data sets. The following tables show the default data set names that may be
created by the REXXC command.

Table 3 shows the defaults that are derived from the specified source (or the BASE
option’s value, if specified). The source program was either a member of a
partitioned data set or a sequential data set.

Table 3. Defaults that Are Derived from the Specified Source or the BASE option

Option
Partitioned Data Set
pref.cccc.qual(member)

Sequential Data Set
pref.cccc.qual

CEXEC upref.cccc.CEXEC(member) upref.cccc.qual.CEXEC

IEXEC upref.cccc.IEXEC(member) upref.cccc.qual.IEXEC

OBJECT upref.cccc.OBJ(member) upref.cccc.qual.OBJ

PRINT upref.cccc.member.LIST upref.cccc.qual.LIST

DUMP upref.cccc.member.DUMP upref.cccc.qual.DUMP

The default name for the load-data-set-name parameter of the OBJECT option is
derived from the name of the data set that contains the output from the OBJECT
option. This can be either a member of a partitioned data set or a sequential data
set:

Partitioned Data Set pref.cccc.qual(member)
upref.cccc.LOAD(csect)

Sequential Data Set pref.cccc.qual
upref.cccc.qual.LOAD(csect)

where:

pref
Represents the prefix.

cccc
Represents one or several data-set name qualifiers.

10 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

qual
Represents the last level qualifier.

csect
Represents the name the Compiler puts in the ESD from the OBJECT output.
See Chapter 6, “Using Object Modules and TEXT Files,” on page 71 for more
information on csect.

upref
Represents the user’s default prefix (as set by the PROFILE PREFIX command).
It is used for the output data sets.

An Example
For example, you may have stored an interpretable REXX program named
SAMPLE in the data set pref.REXX.EXEC, which is allocated to the ddname
SYSPROC.

You can generate a compiled REXX EXEC by allocating the data set
pref.REXX.CEXEC to the ddname SYSEXEC and entering the following command:

rexxc rexx.exec(sample) cexec(rexx.cexec(sample)) print(*)

In this command, print(*) is an option that writes the listing to ddname
SYSTERM. Installation defaults are used for options that you do not specify.

You can run a compiled program or an interpreted EXEC, by entering its name as
a command. However, your compiled program must be in the search sequence (see
TSO/E REXX/MVS Reference for information on search sequence). For example, by
entering: sample

Invoking the Compiler with ISPF Panels
Under ISPF, you can invoke the Compiler from the Foreground REXX Compilation
panel or the Batch REXX Compilation panel. The panels, Figure 1 on page 12 and
Figure 2 on page 12, are similar to those for other high-level language compilers.

Because the ISPF panels use the REXXC EXEC to invoke the Compiler, you can
specify the enhanced options as well as all other Compiler options.

To use the Foreground REXX Compilation panel:
1. Select FOREGROUND on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.
3. Enter the appropriate data set names with the extensions as described in the

online help and the compiler options listed in “Compiler Options” on page 19.

Chapter 2. Invoking the Compiler 11

Note: This panel may have been customized by your system administrator.

To use the Batch REXX Compilation panel:
1. Select BATCH on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.
3. Enter the appropriate data set names with the extensions as described in the

online help and the compiler options listed in “Compiler Options” on page 19.

Note: This panel may have been customized by your system administrator.

The source program you specify must be stored in an ISPF library, a partitioned
data set, or a sequential data set. If you do not specify a member name of a library
or partitioned data set, a list is displayed from which you can select the member to
be compiled.

--------------------- FOREGROUND REXX COMPILATION ----------------------
COMMAND ===>

ISPF LIBRARY:
PROJECT ===> TEST
GROUP ===> LIB1 ===> LIB2 ===> LIB3 ===>
TYPE ===> REXX
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>

LIST ID ===>

COMPILER OPTIONS:
===>
===>

INCLUDE DATA SETS:
===>
===>
===>

Figure 1. Foreground REXX Compilation Panel (Panel ID: FANFP14)

------------------------ BATCH REXX COMPILATION ------------------------
COMMAND ===>

ISPF LIBRARY:
PROJECT ===> TEST
GROUP ===> LIB1 ===> LIB2 ===> LIB3 ===>
TYPE ===> REXX
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>

LIST ID ===> (Blank for hardcopy listing)
SYSOUT CLASS ===> * (If hardcopy requested)

COMPILER OPTIONS:
===>
===>

INCLUDE DATA SETS:
===>
===>
===>

Figure 2. Batch REXX Compilation Panel (Panel ID: FANJP14)

12 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

The default output data set names are the same as those described for the REXXC
EXEC (see “Derived Default Data Set Names” on page 10) with the following
additions:
v If the PRINT option is not specified, the compiler listing is named

upref.mmm.LIST, where upref is the user’s default data set prefix and mmm is the
specified list identifier (LIST ID) or the member name of the source program.

v The first group is used for the default output data set names if the source comes
from an ISPF library and more than one group is specified. Figure 1 on page 12
and Figure 2 on page 12 show examples of a first group ISPF library name
TEST.LIB1.REXX.

In contrast to the compilation panels for other languages, not only the compiler
options but all REXXC command options can be specified. For example, you can
explicitly specify data set names for compiler output, thus overriding the defaults.

Online help is available for the invocation panels.

Invoking the Compiler with JCL Statements
You can invoke the Compiler from a z/OS batch environment by writing and
running your own JCL statements or by running the supplied cataloged procedures
as described in “Invoking the Compiler with Cataloged Procedures.”

The JCL statements that you need are:
v A JOB statement that identifies the start of the job.
v An EXEC statement (PGM=REXXCOMP) that identifies the Compiler and the compiler

options. Additionally, a JOBLIB or STEPLIB data definition (DD) statement may
be necessary, so that the system can locate the REXXCOMP program.

v DD statements that identify both the input and the output data sets that the
Compiler requires. These are described in “Standard Data Sets Provided for the
Compiler” on page 14.

v A delimiter statement that separates data in the input stream from the JCL
statements that follow the data.

v Job entry subsystem (JES) control statements that provide information to the JES.

Invoking the Compiler with Cataloged Procedures
You can compile a REXX program in a z/OS batch environment by using a
cataloged procedure that is invoked by an EXEC statement in your job. The main
advantage of using cataloged procedures is that they can include most of the JCL
statements that you would otherwise have to write yourself. This is useful for sets
of JCL statements that you use regularly.

These cataloged procedures are listed in Appendix D, “The z/OS Cataloged
Procedures Supplied by IBM,” on page 231.

Note: Your system administrator may have customized the cataloged procedures
on your system.

Invoking the Compiler with the 'REXXCOMP' Command
You can also invoke the Compiler in the foreground using ADDRESS LINKMVS
'REXXCOMP'. In this case, ensure that an input data set is allocated under SYSIN.
If there is no data set, TSO displays the prompt mode. To exit the prompt mode,
specify /*.

Chapter 2. Invoking the Compiler 13

Standard Data Sets Provided for the Compiler
The Compiler requires some standard input and output data sets. The number of
data sets depends on the compiler options specified. You must define these data
sets in DD statements with the ddnames shown in Table 4. The SYSIN DD
statement is always required. DD statements corresponding to %INCLUDE
directives are also required. Their data control block (DCB) requirements
correspond to those of SYSIN in the following table.

Note:

1. Under SYSIN a data set name must be defined.
2. All data sets of the SYSIN concatenation are compiled in one step. These data

sets can be sequential (PS), a PDS with member specification, or both.
3. A PDS without member specification is not supported.
4. To perform the compile step with ddnames that are selected by the user instead

of using the standard names, the Compiler must read the renaming table from
a data set defined by the standard name FANDDN. For more information refer
to “DDNAMES” on page 23.

Table 4. Data Sets Required by the Compiler (z/OS)

DDNAME Record
Format
RECFM

Record Size
LRECL

Contents Required
for
Option

FANDDN F, FB ≤32 760 Input to the Compiler

V, VB ≤32 756

SYSCEXEC F, FB ≤32 760 and ≥20 Compiled EXEC CEXEC

V, VB ≤32 756 and ≥24

SYSDUMP FA, FBA 121 Formatted dumps DUMP

VA, VBA 125

SYSIEXEC (refer to
“IEXEC” on page 27 for
more details.)

F, FB ≤32 760 Expanded source
program

IEXEC

V, VB ≤32 756

SYSIN F, FB ≤32 760 Input to the Compiler

V, VB ≤32 756

SYSPRINT FA, FBA 121 Listing, including
messages

PRINT

VA, VBA 125

SYSPUNCH F, FB 80 Object module OBJECT

SYSLIB F, FB ≤32 760 Input to the Compiler

V, VB ≤32 756

SYSTERM F, FB 80 (Recommended) Errors, error messages,
message summary

TERMINAL or for
messages of
severity T

FA, FBA 81 (Recommended)

V, VB 84 (Recommended)

VA, VBA 85 (Recommended)

14 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Invoking the Compiler under z/VM
z/VM users can invoke the Compiler by using:
v REXXD—see “Invoking the Compiler with REXXD”
v REXXC—see “Invoking the Compiler with the REXXC EXEC” on page 17
v “Batch Jobs” on page 18

Invoking the Compiler with REXXD
A sample compiler invocation dialog, REXXD, is supplied with the Compiler to
compile REXX source programs. From this panel, you can invoke the Compiler and
perform associated tasks, such as inspecting the listing and editing the source
program. The main advantage of using an interactive dialog is that you do not
have to remember any commands or options: you are prompted for all the
necessary information.

Note: The sample dialog may have been customized by your system administrator.
Ask your system administrator what command you should enter to start this
dialog if you do not succeed in using REXXD.

Start the dialog as follows:

REXXD [source-file-identifier]

where:

source-file-identifier
Is the file identifier of the source program. If you omit the file identifier,
the program last processed with REXXD is used again. You need not fully
specify the source file identifier. If you specify only the file name, all
accessed disks are searched for a REXX program that has this file name
and one of the supported file types (listed in variable $.0ptypes in the file
REXXDX XEDIT; see “Customizing the Compiler Invocation Shells” on
page 119). Alternatively, the file type could be prefixed according to the
rule specified in REXXDX in variable $.0ssft. The selected file identifier
appears in the main panel of the dialog. You can change it there if you
wish.

An Example
Enter the following command, for example, to invoke the dialog:

rexxd test exec a1

The following panel appears:

Chapter 2. Invoking the Compiler 15

Use the various functions of the dialog as you need them:
v In the field Program, type or change the identifier of the program you want to

work with.
v In the field Output disk, you can specify the disk on which the Compiler output

is to be stored.
v To select an action, type its number in the selection field and press the Enter key.
v You can use the default compiler options to begin with.
v Whenever you need further guidance, press the Help key (F1) for online help.

When you start using the Compiler regularly, set up suitable values in the REXX
Compiler Options Specifications panel, shown in Figure 4 on page 17, and save
them for future use. The compiler options are explained in the online help and in
“Compiler Options” on page 19.

Setting the Compiler Options
When you select the “Specify compiler options” action you get the following
panels that prompt you for the compiler options:

IBM Compiler for REXX on System z, Release 4
Specify a program. Licensed Materials - Property of IBM
Then select an action. 5695-013 (C) Copyright IBM Corp. 1989, 2003

All rights reserved.
Program TEST EXEC A1 Output disk: _

Action _ Source active Compiled
1 Compile TEST EXEC A1 into TEST CEXEC A1
2 Switch (rename) source and compiled exec

3 Run active (source) program with argument string
4 Edit source program
5 Inspect compiler listing
6 Print source program
7 Print compiler listing

8 Specify compiler options

Argument string: __

Command ===> ___
Enter F1=Help F2=Filelist F3=Exit

F12=Cancel

Figure 3. Main Panel of the Sample Compiler Invocation Dialog

16 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

The current default options are displayed. You can type and optionally save new
values in any of the fields. The compiler invocation dialog will use the saved
options the next time it is invoked.

Invoking the Compiler with the REXXC EXEC
The compiler invocation EXEC, REXXC, operates in line mode; using it can be
quicker than the dialog. For any options that you do not specify, the EXEC uses
defaults defined when the Compiler was installed. You may prefer this method if
you are an experienced z/VM user.

REXX Compiler Options Specifications 1 of 2

Specify which output files you want and their File-IDs More: +
File identifiers

Program name TEST EXEC A1
Y Compiler listing (Y/N/P) = LISTING =
Y Compiled EXEC (Y/N) = C* =
N TEXT file (Y/N) = TEXT =
N IEXEC file (Y/N) = I* =

Specify compiler messages to be issued
I FLAG Minimum severity of messages to be shown (I/W/E/S/T/N)
N TERM Display messages at the terminal (Y/N)
N SAA SAA-compliance checking (Y/N)
* LL LIBLEVEL (*/2/3/4/5/6)

Specify contents of compiler listing
Y SOURCE Include source listing (Y/N)
N XREF Include cross-reference listing (Y/S/N)
N FORMAT Format with column numbers (Y/N)
55 LC Number of lines per page (10-99 or, for no page headings, 0 or N)

Command ===> ___
Enter F1=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F8=Fwd

F12=Cancel

Figure 4. Options Specification Panel (1 of 2)

REXX Compiler Options Specifications 2 of 2

Specify additional compiler options More: -

Additional options
N SL Support SOURCELINE built-in function (Y/A/N)
N TH Support HI immediate command (Y/N)
S NOC Error level to suppress compilation (*/W/E/S/T)
N COND Condense compiled program (Y/N)
N DL Include ESD and RLD in TEXT output (Y/N)
N ALT Compiled program supports Alternate Library (Y/N)
N TR Compiled program can be traced (Y/N)
N OLDD Apply OLDDATE to Cexec/Print/Object/Iexec (Y/N/(C|P|O|I))
1 * MARGINS Left and right source margins

Special compiler diagnostics
N DUMP Produce diagnostic output (0-2047, Y, or N)
Y OPT Optimize compiled program (Y/N)

Command ===> ___
Enter F1=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F7=Bkwd

F12=Cancel

Figure 5. Options Specification Panel (2 of 2)

Chapter 2. Invoking the Compiler 17

A sample compiler invocation EXEC, REXXC, is supplied with the Compiler to
compile REXX source programs.

Note: Ask your system administrator what command you should enter to start
this EXEC if you do not succeed in using the IBM-supplied EXEC.

Enter the command to start the EXEC in the following format:

REXXC source-file-identifier [(options-list[)]]

where:

source-file-identifier
Is the file identifier of the source program. You need not fully specify the
source file identifier. If the file type is not specified, EXEC is used. If you
do not specify the file mode, it defaults according to the CMS search order.

options-list
Is a list of compiler options to be used, separated by blanks. For details of
the options that can be specified, see “Compiler Options” on page 19. The
defined defaults are used for any options that you do not specify. See
“Setting Up Installation Defaults for the Compiler Options” on page 120
for details.

Batch Jobs
The Compiler can run in a batch machine with the z/VM Batch Facility or with the
IBM licensed program VM Batch Facility (Program Number 5664-364). To run the
compiler invocation EXEC in batch, use your standard procedure for submitting
batch jobs.

18 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 3. Compiler Options and Control Directives

This chapter describes the compiler options, including the enhanced options for
REXXC, and the control directives that are available.

While the Compiler options are specified when the Compiler is invoked, the
control directives are defined within your program as part of the REXX code.

Compiler Options
This section describes the functions and syntax of the compiler options, along with
their abbreviations and defaults supplied by IBM.

Make sure you separate the options by blanks. The last specification of an option
takes precedence.

The compiler options are described in alphabetical order.

ALTERNATE
The ALTERNATE option specifies that at runtime the Alternate Library may be
used.

ALTERNATE
Creates a compiled program of CEXEC or OBJECT type that can run both
with the Alternate Library and the Library.

The SLINE compiler option must also be specified as described in “SLINE”
on page 35.

If the DLINK option is specified, the program can take advantage of
directly linked programs only when running with the Library. For
programs that run with the Alternate Library, DLINK has no effect; the
standard REXX search order is used. See “Creating REXX Programs for Use
with the Alternate Library (z/OS, z/VM)” on page 112 for more
information.

NOALTERNATE
Creates a compiled program of CEXEC or OBJECT type that will run using
the Library. The program cannot run with the Alternate Library.

Abbreviations:
ALT, NOALT

IBM default:
NOALTERNATE

BASE
The BASE option can be used only when invoking the Compiler with the REXXC
EXEC under z/OS (see “Invoking the Compiler with the REXXC (FANC) EXEC”
on page 9) or when invoking REXXC indirectly using the ISPF panels (see
“Invoking the Compiler with ISPF Panels” on page 11).

It can be used to specify the base for constructing the default output data set
names for CEXEC, DUMP, IEXEC, OBJECT, and PRINT output.

© Copyright IBM Corp. 1991, 2013 19

BASE(data-set-name[(member)])
The data set name and member name are used to construct the default
data set names for compiler output.

If the BASE option is not specified, the output data set names are created as
explained in “Derived Default Data Set Names” on page 10.

CEXEC
The CEXEC option specifies whether the Compiler is to produce a compiled EXEC.
See also “OBJECT” on page 30 for an alternative form of compiled output.

CEXEC
Under z/OS, this option produces a compiled EXEC in the data set
allocated to the ddname SYSCEXEC.

CEXEC[(data-set-name)]
Can be used only when invoking the Compiler with the REXXC EXEC
under z/OS (see “Invoking the Compiler with the REXXC (FANC) EXEC”
on page 9). Generates a compiled EXEC.

This option is extended so that you can specify the name of the data set in
which the compiled EXEC is to be stored. A default data set name is used
if you do not specify data-set-name.

CEXEC[(file-identifier)]
Under z/VM, this option produces a compiled EXEC. You need not fully
specify the file identifier. The default file name is the name of the source
file. The default file type is the letter C concatenated with the source file
type. The default file mode is the file mode of the source file, provided you
currently have read/write access to that minidisk; otherwise, file mode A1
is used.

NOCEXEC
Does not produce a compiled EXEC.

Abbreviations:
CE, NOCE

IBM default:
CEXEC

You can use compiled EXECs for:
v Programs to be used in command environments
v XEDIT macros
v PDF edit macros
v GDDM® macros
v Pipe filters
v Any other program that is not required to be in the form of a TEXT file or object

module

Background information about compiled EXECs
You can replace your existing source EXECs with compiled EXECs. The search
order for compiled and interpretable EXECs is the same, and they can be invoked
in the same way. This makes it possible to ensure that there is no difference, from a
user’s point of view, between invoking a compiled EXEC and invoking the
interpreter for the source program.

To achieve this aim:

20 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

v Under z/OS, using the explicit method of invoking EXECs, the TSO/E EXEC
command specifies the location of the REXX EXEC.
Using the implicit method of invoking EXECs, the interpretable EXEC is invoked
as a command using the member name of the interpretable EXEC. For the
system to give control to the compiled EXEC, the EXEC must have the same
member name and must come earlier in the search order than the interpretable
EXEC. For more information, see “Organizing Compiled and Interpretable
EXECs under z/OS” on page 45, TSO/E REXX/MVS Reference, and TSO/E
Command Reference.

v Under z/VM, the compiled EXEC must be given the same file type, such as
EXEC or XEDIT, that the source program would have for interpretation. The
source file must, therefore, be renamed, removed, or moved further down the
search order. The sample compiler-invocation dialog, REXXD, handles this
requirement. See “Invoking the Compiler with REXXD” on page 15 for a
description of this dialog.
A compiled EXEC behaves the same as an interpretable EXEC, the:
– EXECLOAD command makes the EXEC resident
– DCSSGEN utility loads the EXEC in a discontiguous saved segment (DCSS)
– EXEC can be loaded and started through the CMS EXEC handler

Under VSE/ESA, the compiled EXEC must be stored in a sublibrary with
member type PROC. To ensure that the compiled REXX program is found before
the interpretable one, use the LIBDEF statement as described in “Organizing
Compiled and Interpretable EXECs under VSE/ESA” on page 46. See
“Converting from z/OS to VSE/ESA” on page 86 or “Converting from z/VM to
VSE/ESA” on page 87 for details.

The compiler writes information about the source file and the compilation to the
compiled EXEC. The information includes the name of the source file (in z/OS, the
data set name of the first data set in the SYSIN concatenation; in z/VM, the file
ID), and the date and time of the compilation. The first 160 bytes of the compiled
program are reserved for this information. You can use a text editor to browse or
view the information.

Note: If you open a REXX compiled output file in edit mode, you must not update
or save it.

COMPILE
The COMPILE option specifies whether the Compiler is to produce compiled code
after all error checking has been performed. (The CEXEC and OBJECT options
determine which files are created.)

COMPILE
Generates compiled code, unless:
v NOTRACE is in effect and a severe or terminating error is detected
v TRACE is in effect and a terminating error is detected

NOCOMPILE
Unconditionally suppresses the generation of compiled code after all error
checking.

NOCOMPILE(W)
Suppresses the generation of compiled code if a warning, error, severe
error, or terminating error is detected.

Chapter 3. Compiler Options and Control Directives 21

NOCOMPILE(E)
Suppresses the generation of compiled code if an error, severe error, or
terminating error is detected.

NOCOMPILE(S)
Suppresses the generation of compiled code if a severe error or terminating
error is detected.

Abbreviations:
C, NOC

IBM default:
NOCOMPILE(S)

Note:

1. If you specify COMPILE with TRACE in effect, you receive output even if
severe errors are diagnosed. If you specify COMPILE with NOTRACE in effect,
you receive the same output as with NOC(S).

2. You should only run a compiled REXX EXEC if it does not contain any errors.
Otherwise unpredictable results may occur.

CONDENSE
The CONDENSE option specifies whether the generated output is to be condensed
to take up less space. The saving in space can be up to 66%. The condensed
program is uncondensed in storage prior to execution.

Note: The DLINK option and the CONDENSE option are mutually exclusive.

CONDENSE
Condenses the output generated by the CEXEC or the OBJECT compiler
option, or both.

NOCONDENSE
Does not condense the output generated by the CEXEC or the OBJECT
compiler option.

Abbreviations:
COND, NOCOND

IBM default:
NOCONDENSE

Background information about condensed programs
The size of a compiled REXX program often exceeds the size of the source
program. You can use the CONDENSE compiler option to significantly reduce the
size of both CEXEC type output and OBJECT type output. The time taken to load
the condensed program is shorter. However, the execution time is longer because
the program must be uncondensed before it is run.

It is recommended that you:
v Use the CONDENSE compiler option for programs that are not started

frequently, such as active programs on a server or programs that are run only
once a day and do not stop the execution.

v Do not use the CONDENSE compiler option for programs that are run
frequently because of the time required to unpack the program each time it is
run.

This option reduces the amount of:

22 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

v Disk space required by compiled REXX programs
v Virtual storage required by preloaded compiled REXX programs
v I/O activity required to load compiled REXX programs

When a condensed compiled REXX program is invoked, the program is
automatically uncondensed. A condensed compiled REXX program requires more
storage while it is running:
v During the uncondense operation, an additional 128KB (KB equals 1024 bytes) of

storage are required.
v While a condensed compiled REXX program is running, both the condensed and

the uncondensed copy exist in storage.
v Additional CPU time is required to uncondense the compiled REXX program.

Apart from that, the performance characteristics of a condensed program equal
the performance characteristics of an uncondensed program.

Note: The CONDENSE option can also be used to make a program unreadable if
the source lines were included in the compiled program using the SLINE option.

DDNAMES
Under z/OS the DDNAMES option allows you to perform the compilation step
with alternate DDNAMES that are selected by the user instead of using the
standard names (described in Table 4 on page 14). The Compiler must read the
renaming table from the data set defined by the standard name FANDDN.

If a DDNAME, such as SYSIN, is occupied by another program, you can use
FANDDN to define an alternate ddname to replace the standard Compiler
DDNAME.

DDNAMES
The data set defined by FANDDN is read and the specified Compiler
DDNAMES are replaced.

DDNAMES(ddname)
The data set defined by DDNAME (ddname) is read and the specified
Compiler DDNAMES are replaced.

NODDNAMES
The data set defined by FANDDN is not read, and the specified
DDNAMES are not replaced. This is the default option.

Abbreviations:
DD, DD(ddname), NODD

IBM default:
NODDNAMES

The alternate DDNAMES data set may be PO or PS organized with:
RECFM = F | FB

and
LRECL ≥ 17

The records must conform to the following rules:
v Comment records start with an asterisk (*) in the leftmost column.
v Blank records are treated as comment records.

Chapter 3. Compiler Options and Control Directives 23

v Renaming records specify the standard DDNAME in column 1 to 8 and the user
defined DDNAME in column 10 to 17, both left justified.
If the LRECL is greater than 17, there must be a blank character in column 18,
and the remaining columns are ignored.

v Input is not case sensitive, DDNAMES are translated to uppercase.

Here is an example of alternate DDNAME definitions:
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*Alternate DDname definitions:

SYSIN MYIN : input <- REXX source code
SYSCEXEC MYCEXEC : output -> compiled EXEC (CEXEC format)
SYSDUMP MYDUMP : output -> REXX compiler dump
SYSPRINT MYPRINT : output -> REXX compiler listing
SYSPUNCH MYPUNCH : output -> compiled EXEC (OBJECT format)
SYSTERM MYTERM : output -> REXX compiler messages
SYSIEXEC MYIEXEC : output -> expanded source
SYSLIB MYLIB : input <- REXX INCLUDE members

Note:

1. The alternate DDNAME must not be the same as a standard compiler
DDNAME. Otherwise you might overwrite existing input data sets.

2. You cannot rename the standard DDNAME FANDDN, however, you can use
the DDNAMES(ddname) option instead.

3. The alternate ddname applies only to the compilation step where it is defined.

DLINK
The DLINK option specifies whether the OBJECT output is to contain references to
external routines and functions. External references are generated in the form of
weak external references, requiring explicit inclusion of referenced programs when
linking or loading.

Note:

1. The name can have a maximum length of 8 characters.
2. The DLINK option and the CONDENSE option are mutually exclusive.
3. The DLINK option and the TRACE option are mutually exclusive.
4. The DLINK option has no effect for programs that run with the Alternate

Library.

DLINK
Generates weak external references in the OBJECT output for:
v Subroutines preceded by a CALL statement.
v External function calls.

If the name is defined within quotes, blanks are not allowed. The name
should be written in uppercase, because the underlying subsystem might
not support mixed case.

NODLINK
Does not generate weak external references in the OBJECT output.

Abbreviations:
DL, NODL

IBM default:
NODLINK

24 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Background information about directly linked external programs
When external functions and subroutines are linked directly to the REXX program,
the REXX search order is bypassed, and the linked program is invoked directly.
The advantages are:
v Better performance, as no search for the program is needed
v No possibility of accidentally accessing a program with the same name located

earlier in the search order
v Improved packaging, because a program and its external subroutines can be

linked into one load module

External functions and subroutines linked directly to a REXX program can be:
v Compiled REXX programs of type OBJECT.

– In z/OS they must be linked with the EFPL or MULTI stub; see Appendix A,
“Interface for Object Modules (z/OS),” on page 205.

– In VSE/ESA they must be combined with the EFPL stub; see Appendix C,
“Interface for Object Modules (VSE/ESA),” on page 225.

v Programs that are written in any programming language that conforms to the
following linkage conventions:
– Under z/OS and VSE/ESA, a directly linked program is invoked with an

EFPL. It must conform to the linkage conventions for external functions and
subroutines, as described in TSO/E REXX/MVS: Reference and in IBM
VSE/ESA REXX/VSE: Reference.

– Under z/VM, SVC linkage conventions are used, and register 13 must not be
changed by the program. When applicable, the directly linked program is
invoked in AMODE 31, and arguments are not copied below 16MB (MB
equals 1 048 576 bytes) in virtual storage. The call type is X'05', a 6-word
extended PLIST is passed to the invoked program. See Appendix B, “Interface
for TEXT Files (z/VM),” on page 221 for details.

DUMP

Note: The DUMP option is not designed for program debugging. Use this option
only if you suspect an error in the Compiler and if an IBM support representative
asks for interphase dumps.

The DUMP option provides diagnostic information for use by IBM support
personnel. If this option is specified, formatted dumps of the Compiler’s control
blocks and intermediate texts are taken after selected phases. Under z/OS, the
dump is written to the SYSDUMP data set. Under z/VM, the dump file is sent to
the virtual printer.

DUMP(n)
Produces the interphase dumps specified by the value of n, where n is a
number in the range 0 through 2047. The meaning of this parameter is
fully described in the IBM Compiler and Library for REXX on System z:
Diagnosis Guide.

DUMP
Produces all interphase dumps.

DUMP[([data-set-name][,n])]
Can be used only when invoking the Compiler with the REXXC EXEC
under z/OS (see “Invoking the Compiler with the REXXC (FANC) EXEC”
on page 9). Produces formatted dumps.

Chapter 3. Compiler Options and Control Directives 25

This option is extended so that you can specify the name of the data set in
which the formatted dumps are to be stored. A default data set name is
used if you do not specify data-set-name. All possible dumps are produced
if you do not specify n.

NODUMP
Does not produce dumps.

Abbreviations:
DU, NODU

IBM default:
NODUMP

FLAG
The FLAG option specifies the minimum severity of errors for which messages are
to be issued. (The PRINT and TERMINAL options specify where the messages
appear.)

FLAG Is equivalent to FLAG(I).

FLAG(I)
Issues all messages, including informational messages.

FLAG(W)
Issues messages only for warnings, errors, severe errors, and terminating
errors.

FLAG(E)
Issues messages only for errors, severe errors, and terminating errors.

FLAG(S)
Issues messages only for severe errors and terminating errors.

FLAG(T)
Issues messages only for terminating errors.

NOFLAG
Is equivalent to FLAG(T).

Abbreviations:
F, NOF

IBM default:
FLAG(I)

FORMAT
The FORMAT compiler option specifies that, in addition to the line numbers, the
column numbers are to be included in the list of error messages and the
cross-reference listing.

FORMAT
Is equivalent to FORMAT(C).

FORMAT(C)
Formats the error messages and cross reference with column numbers.

NOFORMAT
Does not format the error messages and cross reference with column
numbers.

Abbreviations:
FO, NOFO

26 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

IBM default:
NOFORMAT

IEXEC
The IEXEC option generates an expanded output that contains the REXX source
program and all members included by means of the %INCLUDE control directive.
The IEXEC output is an interpretable REXX program.

The IEXEC output can contain fixed-length or variable-length records. Fixed-length
records are written only if:
v All input files (REXX source and included files) have fixed-length records of

identical record length.
v All %INCLUDE directives are defined either on separate lines or at the very end

of a line to avoid a split of the line.
v Either all files contain sequence numbers or none of the files contains sequence

numbers.
v Under z/OS, the output data set is explicitly defined with RECFM=F or FB.

In all other cases, variable-length records are written.

The Compiler does not write sequence numbers to the IEXEC output. This is
because the sequence numbers from any %INCLUDE file might not be compatible
with the sequence numbers from the main REXX source program and lead to error
messages issued by many text editors. However, the LRECL values provided by
the Compiler as default values provide 8 bytes for any renumbering.

If variable-length records are written to the IEXEC output, the records that
originated from fixed-record-length files contain the trailing blanks they had in the
originating file. This is necessary to ensure that the SOURCELINE built-in function,
if called, gives the same results when the compiled program is run and when the
IEXEC output is interpreted.

If you edit an IEXEC output of variable record length with a text editor like, for
example, XEDIT under CMS, you may inadvertently remove the trailing blanks.

IEXEC Under z/OS, this option produces IEXEC output and stores it in the data
set allocated to the ddname SYSIEXEC.

IEXEC[(data-set-name)]
Can be used only when invoking the Compiler with the REXXC EXEC
under z/OS (see “Invoking the Compiler with the REXXC (FANC) EXEC”
on page 9). Generates IEXEC output.

This option is extended so that you can specify the name of the data set in
which the IEXEC output is to be stored. A default data set name is used if
you do not specify data-set-name.

IEXEC[(file-identifier)]
Under z/VM, this option produces IEXEC output. You need not fully
specify the file identifier. The default file name is the name of the source
file. The default file type is the letter I concatenated with the source file
type. The default file mode is the file mode of the source file, provided you
currently have read/write access to that minidisk; otherwise, file mode A1
is used.

NOIEXEC
Does not produce IEXEC output.

Chapter 3. Compiler Options and Control Directives 27

Abbreviations:
I, NOI

IBM default:
NOIEXEC

Background information about calculating record lengths in z/OS
This box describes the record lengths supported by the Compiler. If you allocate a
file for IEXEC output and assign an LRECL value to it, the value must conform to
the description given in this box. The default values used by the Compiler are
described at the end of the box.

For fixed-record lengths, LRECL must be set to one of the following:
v Without sequence numbers

right_margin - left_margin + 1

v With sequence numbers
right_margin - left_margin + 1 + 8

The MARGINS values apply to the records remaining after the Compiler has
removed the sequence numbers. If you have set MARGINS to the default value
MARGINS(1 *), LRECL is equal to the record length of the record length of the
source files.

For variable-length records, LRECL must be greater than, or equal to, one of the
following:
v If none of the files contain sequence numbers

right_margin - left_margin + 5

v If any of the files contain sequence numbers
right_margin - left_margin + 5 + 8

If you specified * for right_margin, the value of right_margin in the last two
expressions must be set to the length of the longest input record.

If no LRECL, RECFM, and BLKSIZE (z/OS) parameters have been assigned to the
IEXEC output file, the Compiler supplies the following default values:
RECFM = V (CMS file) or VB (z/OS)
LRECL = max. value of (right_margin - left_margin + 5 + x)

where x=8 if the record contains sequence numbers or
x=0 if the record does not contain sequence numbers

BLKSIZE = 10 * LRECL

If you compile fixed-length records and want to have a fixed-length IEXEC file,
create a file that assigns values to the RECFM, LRECL, and BLKSIZE parameters
before calling the Compiler.

LIBLEVEL
The LIBLEVEL option specifies the version of the Library (minimum Library level)
required to run the compiled program.

LIBLEVEL(n)
The level of the Library required to run the compiled program, where n is
the minimum Library level number as shown in Table 5 on page 29. The
Compiler checks that the language features used in the program are
compatible with the Library level specified. If a feature is found that
requires a higher Library level, this is flagged in the source listing.

28 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

LIBLEVEL(*)
Specifies that all levels of the Library are supported.

Abbreviations:
LL(n)

IBM default:
LL(*)

The following table shows the language features supported by the different Library
levels.

Table 5. Library levels

Library Level Library Name New or Changed Features

2 Runtime Library
Release 1 (TSO)

v CALL ON ERROR|FAILURE|HALT
NAME built-in function

v Addressing tails of compound variables
with 1 or 2 components

v Assignments

3 Runtime Library
Release 2

v Arithmetic operations, for example,
addition, multiplication

v Binary strings including B2X and X2B
built-in functions

v Variable reference list (variable name
enclosed in parentheses) in DROP and
EXPOSE

v Alternate Library via PTF

4 Runtime Library
Release 3

v STREAM, LINES, LINEIN, LINEOUT,
CHARS, CHARIN, and CHAROUT
built-in functions

v CALL|SIGNAL OFF NOTREADY
v CALL|SIGNAL ON NOTREADY
v TRACE statement and TRACE built-in

function
v INTERPRET statement

5 Runtime Library
Release 3

v Date conversion

6 Runtime Library
Release 3 and
Release 4

v Date separation character

Note:

1. LIBLEVEL 0 and 1 are no longer supported.
2. The library level has not been changed for Release 4.
3. For more information refer to “TRACE” on page 37.

LINECOUNT
The LINECOUNT option specifies the maximum number of lines to be included on
each page of the compiler listing. This number includes the header lines and any
blank lines. You can specify that there are to be no page breaks within the source
and cross-reference listings; this is useful if you intend to display the listing at a
terminal, because there are no page headers to scroll through. However, if you
print such a listing, your output continues from one page to the next without a
break.

Chapter 3. Compiler Options and Control Directives 29

LINECOUNT(n)
Puts n lines on each page of the compiler listing, where n is a number in
the range 10 through 99.

LINECOUNT(0)
Creates continuous output in the compiler listing.

Abbreviation:
LC

IBM default:
LINECOUNT(55)

MARGINS
The MARGINS option specifies the left and right margins of the REXX program.
Only the text contained within the specified margins is compiled. The compiler
listing, however, always contains the complete input records.

If the SLINE option is specified, the OBJECT or CEXEC output contains only the
text within the specified margins. Similarly, if the IEXEC option is specified, the
IEXEC output contains only the text within the specified margins.

If the first record of the source file contains only decimal digits in the first 8 bytes
(RECFM=V|VB) or in the last 8 bytes (RECFM=F|FB), then the file is assumed to
contain sequence numbers. In this case, the sequence numbers are removed and
the specified margin values are applied to the remaining part of the record. Only
the text contained within the specified margins is compiled.

Each file included by means of the %INCLUDE control directive is checked for
sequence numbers. Therefore, a REXX source file can include files with different
record formats and files with or without sequence numbers.

MARGINS(left [right])

left Specifies the first column of the source file containing valid REXX
code. Valid values for left are:
v Under z/OS: from 1 to 32 760
v Under z/VM: from 1 to 65 535

right Specifies the last column of the source file containing valid REXX
code. Valid values for right are:
v * (asterisk), the default, to indicate the last column of the input

record
v Under z/OS: from left to 32 760
v Under z/VM: from left to 65 535

Abbreviation:
M

IBM default:
MARGINS(1 *)

OBJECT
Under z/OS, the OBJECT option specifies whether the Compiler is to produce an
object module.

30 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Under z/VM, the OBJECT option specifies whether the Compiler is to produce a
TEXT file.

OBJECT
Under z/OS, this option produces an object module in the data set
allocated to the ddname SYSPUNCH.

OBJECT[(obj-data-set-name) |
([obj-data-set-name],stub[,load-data-set-name])]

Generates an object module and, optionally, a load module.

Note: OBJECT can only be used when invoking the Compiler with the
REXXC EXEC under z/OS (see “Invoking the Compiler with the REXXC
(FANC) EXEC” on page 9).

obj-data-set-name
You can specify the name of the data set in which the object output is
to be stored. A default data set name is used if you do not specify
obj-data-set-name.

stub
You can specify a stub, which can be a member name, the name of a
partitioned data set including a member name, or a predefined stub
name. (Refer to “Stubs” on page 211 for a list of stubnames and member
names.) If a stub is specified, a load module is created when the
Compiler creates an OBJECT output.

Note: As the stubs are part of the Library, this form of invocation is
available only if the Library is installed.

load-data-set-name
You can specify the name of the data set that is to contain the load
module. If the member name is omitted, a default member name is
assumed. The default data set name is used if you do not specify
load-data-set-name.

OBJECT[(file-identifier)]
Under z/VM, this option produces a TEXT file that has the file identifier
you specify. The file identifier need not be fully specified. The default file
name is the file name of the source file. The default file type is TEXT. The
default file mode is the file mode of the source file, provided you currently
have read/write access to that minidisk; otherwise, file mode A1 is used.

NOOBJECT
Does not produce an object module or a TEXT file.

Abbreviations:
OBJ, NOOBJ

IBM default:
NOOBJECT

Background information about using OBJECT output under z/OS
Under z/OS, object modules can be used to create load modules. The load modules
can be used as commands and parts of REXX function packages.

Load modules are invoked in the same way as output from other high-level
language Compilers:
v From z/OS JCL statements
v From the TSO/E command line

Chapter 3. Compiler Options and Control Directives 31

v As a host command
v As part of a function package from within a REXX program

See Chapter 6, “Using Object Modules and TEXT Files,” on page 71 for information
about function packages, and Appendix A, “Interface for Object Modules (z/OS),”
on page 205 for more information.

For ISPF restrictions, see ISPF/PDF Guide and Reference.

For more information see Chapter 6, “Using Object Modules and TEXT Files,” on
page 71 and Appendix C, “Interface for Object Modules (VSE/ESA),” on page 225.

Background information about using OBJECT output under z/VM
Under z/VM, the Compiler can produce a TEXT file. A TEXT file can be processed
into a MODULE file, which can then be started like a CMS command. A TEXT file
can also be linked to an Assembler program. A MODULE file can also be used to
create a function package from a REXX program.

Note:

1. MODULE files come after EXEC files in the CMS search order.
2. Although these TEXT files can be linked with other compiled programs, they

must receive standard SVC PLISTs as input, unlike other high-level language
programs. See Appendix B, “Interface for TEXT Files (z/VM),” on page 221 for
details.

3. If your program is in the form of a MODULE file and it calls another module,
the called module may overlay your program in storage. This occurs, for
example, when both modules are loaded at the default start address. You can
avoid this by specifying a start address when loading TEXT files or by using
the NUCXLOAD command or the RLDSAVE option of the LOAD command.

4. For ISPF restrictions, see ISPF/PDF Guide for VM.

For more information on OBJECT output, see Chapter 6, “Using Object Modules
and TEXT Files,” on page 71 and Appendix B, “Interface for TEXT Files (z/VM),”
on page 221.

Background information about using OBJECT output under
VSE/ESA
Under VSE/ESA, the output from the OBJECT option can be used to create a
phase. The output must be generated either on z/OS or on z/VM, then transferred
to VSE/ESA. When it is on VSE/ESA, phases can be built. The phases can be
invoked as programs from JCL, or as parts of REXX function packages.

For more information see Chapter 6, “Using Object Modules and TEXT Files,” on
page 71 and Appendix C, “Interface for Object Modules (VSE/ESA),” on page 225.

OLDDATE
The OLDDATE option controls the creation date and time of the files that are
generated by the Compiler under z/VM. It can be set to the date and time, when
the source file was last changed.

OLDDATE
Applies to all output files.

OLDDATE(nnnn)

Selects the types of output files: (nnnn) can contain a selection list of
generated files. The following rules apply for this selection list:

32 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

v Separator blanks are not allowed.
v The list may be empty or a concatenation of any of the following

characters that select the corresponding output file:

C CEXEC (the compiled EXEC)

P PRINT (the compiler LISTING)

I IEXEC (the expanded EXEC)

O OBJECT (the TEXT file)

Note:

1. You can specify the letters CPIO in any order.
2. If print output is sent to a virtual printer, the OLDDATE option has no

effect.

Here are examples for the OLDDATE(nnnn) option:

OLDDATE(C)
OLDDATE option applies to CEXEC file only.

OLDDATE(IC)
OLDDATE option applies to CEXEC and IEXEC file only.

OLDDATE()
OLDDATE() option applies to all output files, this is identical to
the option OLDDATE and to the option OLDDATE(CPIO).

NOOLDDATE
Generates files with the current date and time. This option is used by
default.

Abbreviations:
OLDD/NOOLDD

IBM default:
NOOLDDATE

OPTIMIZE
The OPTIMIZE option specifies whether the object code is to be optimized to
reduce the amount of CPU time it requires at runtime.

OPTIMIZE
The compiled output is optimized.

NOOPTIMIZE
The compiled output is not optimized.

Abbreviations:
OPT/NOOPT

IBM default:
OPTIMIZE

Note:

1. This option can also be coded as OPTIMISE/NOOPTIMISE to support British
spelling.

2. Use this option only to verify a defect encountered, then report the problem to
your IBM representative.

Chapter 3. Compiler Options and Control Directives 33

PRINT
The PRINT option specifies whether a compiler listing is to be created and, if so,
where it is to be printed or stored.

The listing shows the compiler options used and, depending on which other
compiler options are in effect, the source program, messages, and cross-reference
listing. See also Chapter 5, “Understanding the Compiler Listing,” on page 51.

PRINT
Under z/OS, this option creates a compiler listing in the data set allocated
to the ddname SYSPRINT.

Under z/VM, this option creates a compiler listing and sends it to the
virtual printer.

PRINT[(data-set-name|*|**)]
Can be used only when invoking the Compiler with the REXXC EXEC
under z/OS (see “Invoking the Compiler with the REXXC (FANC) EXEC”
on page 9).

This option is extended so that you can specify the name of the data set
where the compiler output listing is to be stored. If you specify an asterisk,
the listing is written to the terminal. A default data set name is used if you
do not specify data-set-name or * (asterisk). If you specify ** (two asterisks),
any preallocation for SYSPRINT is used.

PRINT([file-identifier])
Under z/VM, this option creates a compiler listing file that has the file
identifier you specify, or a default file identifier. You need not fully specify
the file identifier. The default file name is the file name of the source file.
The default file type is LISTING. The default file mode is the file mode of
the source file, provided you currently have read/write access to that
minidisk; otherwise, file mode A1 is used.

NOPRINT
Does not create a compiler listing.

Abbreviations:
PR, NOPR

IBM default:

v Under z/OS: PRINT
v Under z/VM: PRINT()

SAA
The SAA option specifies whether the Compiler is to check the source program for
REXX language elements that are not part of level 4.02 of the SAA REXX interface.
When this option is in effect and the FLAG option is set to I or W, a warning
message is issued for each non-SAA item found.

Note: The Compiler does not detect the following:
v A non-SAA item if it is contained in an instruction that is not fully analyzed

until runtime. For example, DATE(’C’) is flagged as a non-SAA item. However,
INTERPRET "SAY DATE(’C’)" is not flagged because the contents of the character
string after INTERPRET are evaluated at runtime.

v Wrong arguments in stream I/O built-in functions or a wrong number of
arguments in stream I/O built-in functions.

34 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

v DBCS symbols are not flagged if a program is compiled with Options ’ETMODE’
in effect.

SAA Checks for SAA compliance.

NOSAA
Does not check for SAA compliance.

Abbreviations:
None

IBM default:
NOSAA

SLINE
The SLINE option specifies whether the Compiler is to include the source program
in the compiled output and, consequently, support the SOURCELINE built-in
function at runtime. If you require support for Alternate Libraries or full tracing,
you should also set this option. If the MARGINS option is specified, the compiled
output contains only the text between the specified margins.

This option also determines whether the source code appears in traceback
messages, which are issued for runtime errors. If you specify SLINE, users can see
the source code. Also, the compiled program is larger. See also “SOURCELINE
Built-In Function” on page 94.

SLINE
Includes the source program in the compiled code.

SLINE(AUTO)
Includes the source program in the compiled code only if one or more of
the following are met:
v The SOURCELINE built-in function is found in the program.
v The TRACE compiler option is set.
v The ALTERNATE compiler option is set.

NOSLINE
Does not include the source program in the compiled code.

Abbreviations:
SL, SL(A), NOSL

IBM default:
NOSLINE

SOURCE
The SOURCE option specifies whether the compiler listing is to include a source
listing. If you specify NOSOURCE, only erroneous source lines are included in the
listing with the corresponding messages. See also “Source Listing” on page 52.

SOURCE
Produces a source listing.

NOSOURCE
Does not produce a source listing.

Abbreviations:
S, NOS

IBM default:
SOURCE

Chapter 3. Compiler Options and Control Directives 35

TERMINAL
The TERMINAL option specifies whether messages and the message summary are
to be displayed at the terminal (z/VM) or to be written to the data set allocated to
the ddname SYSTERM (z/OS), in addition to being included in the compiler
listing. The messages depend on the setting of the FLAG option. Use the
TERMINAL option when you expect only a small number of errors.

Note:

1. Under z/OS, if SYSPRINT and SYSTERM are allocated to the same destination,
messages that would otherwise be issued to both SYSPRINT and SYSTERM are
issued only once.

2. Terminating errors are always displayed.

TERMINAL
Displays messages at the terminal. A message displayed at the terminal is
always preceded by the source line that contains the error. If no messages
are issued, the message summary is not displayed.

NOTERMINAL
Does not display messages at the terminal.

Abbreviations:
TERM, NOTERM

IBM default:
NOTERMINAL

TESTHALT
The TESTHALT compiler option specifies whether the compiled program is to
contain code that supports the halt condition. One way to set the halt condition is,
for example, the HI (Halt Interpretation) immediate command.

Specify the TESTHALT option to halt the program without consequently affecting
the operation of any other programs. This is especially useful when you want to
halt an edit macro that is looping, without terminating the whole editing session,
as the HE command would do in z/OS, or as the HX command would do in
z/VM.

To specify TESTHALT hooks in the program independently of the TESTHALT
compiler option, use the %TESTHALT compiler directive:
v For further information, see “%TESTHALT” on page 43.
v For performance considerations, see “TESTHALT Option” on page 109.
v Also see “Halt Condition” on page 91.

TESTHALT
Generates code that supports the HI command.

NOTESTHALT
Does not generate code that supports the HI command.

Abbreviations:
TH, NOTH

IBM default:
NOTESTHALT

36 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

TRACE
The TRACE option specifies that the compiled program can be traced. The
performance of a program compiled with the TRACE option is not as good as that
of the same program compiled with the NOTRACE option. However, a program
compiled with the TRACE option usually has a better performance than the same
program when it is interpreted.

TRACE
Creates a compiled program of CEXEC or OBJECT type that can be traced.
The TRACE instruction and the TRACE built-in function are supported,
except for the trace setting SCAN. The initial trace setting is NORMAL, as
with the interpreter.

Note:

1. You must also specify the SLINE compiler option described in “SLINE”
on page 35.

2. To ensure that all source statements can be run by the Library, the
Compiler performs a pseudo compile of the source to determine the
required Library level and subsequently writes this value to the
compiler listing and object.

3. However, if you define language constructs in interactive TRACE mode
or in the character strings in INTERPRET clauses, which are not
supported by the installed Library, these definitions are flagged at
runtime.

NOTRACE
Creates a compiled program of CEXEC or OBJECT type that cannot be
traced. The compiled program behaves the same as interpreted programs
that run with TRACE set to OFF. At runtime, all valid options in the
TRACE instructions and TRACE built-in functions are set to OFF.

Note: If the program is compiled with the ALTERNATE option and run
with the Alternate Library, it can be traced like a normal interpreted
program.

Abbreviations:
TR, NOTR

IBM default:
NOTRACE

XREF
The XREF option specifies whether the compiler listing is to include a
cross-reference listing for all:
v Variables:

– Dropped (d) variables
– Exposed (e) variables
– Variables that are not initialized (SIMPV+++). These variables do not have an

assignment.
v Labels
v Constants
v Built-in functions
v External routines
v Source lines that contain recognized commands and ADDRESS clauses

Chapter 3. Compiler Options and Control Directives 37

v Lines that contain erroneous clauses may or may not appear in the command list
v Optimizing stoppers from top to bottom. For more information refer to

“Optimization Stoppers” on page 107. If you are using the TESTHALT compiler
option or %TESTHALT compiler directive, refer to “Halt Condition” on page 91.

Note: As this information increases the size of the compiler listing considerably,
you can specify XREF(SHORT) to suppress this information.

The cross-reference listing indicates the numbers of the lines on which the above
items are referenced. It is useful for debugging and program maintenance. See also
“Cross-Reference Listing” on page 55.

XREF Produces a cross-reference listing.

XREF(SHORT)
Produces a cross-reference listing that does not contain the following:
v Constants
v Commands
v Optimizing stoppers

NOXREF
Does not produce a cross-reference listing.

Abbreviations:
X, X(S), NOX

IBM default:
NOXREF

Control Directives
This section describes the functions and syntax of the compiler control directives in
alphabetic order.

A control directive always starts with /*% and ends with */.

%COPYRIGHT
The %COPYRIGHT control directive inserts a notice (for example a copyright
notice) in the form of a visible text string in the CEXEC, OBJECT output, and core
image of the compiled program. The text string starts after the header part.

The %COPYRIGHT control directive is contained in a comment; it is recognized as
a control directive only by the Compiler (it is treated as a normal comment by the
interpreter):
/*%COPYRIGHT (c) copyright MY company 2003*/

The %COPYRIGHT control directive is recognized as such only if it immediately
follows a /* comment delimiter. The word %COPYRIGHT can be in mixed case.

The notice can be broken into several %COPYRIGHT control directives. The text
following %COPYRIGHT, starting with the first nonblank character and up to the
end of the comment, is called a copyright part and is used to build the copyright
notice. The final copyright notice is the concatenation of all copyright parts defined
in the program.

This is an example of a REXX program that contains %COPYRIGHT control
directives:

38 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

/*%COPYRIGHT This is an example of a copyright */
Say ’Hello’
/*%COPYRIGHT notice. */

The following string is taken as the copyright notice:
This is an example of a copyright notice.

Note: Blank characters immediately following %COPYRIGHT are ignored. Blank
characters at the end of a copyright part, preceding the */ delimiter, are taken as
part of the copyright notice.

A copyright part can contain comments. The text in these comments is taken as
such and used as part of the copyright notice, even if the comment contained in a
copyright part begins with a directive. For example:
/*%COPYRIGHT Example of a copyright notice containing a /*%COPYRIGHT comment*/.*/

The resulting copyright notice is:
Example of a copyright notice containing a /*%COPYRIGHT comment*/

%INCLUDE
The %INCLUDE control directive inserts, at compilation time, REXX code
contained in z/OS data sets or in CMS files into the REXX source program.

The %INCLUDE control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):
/*%INCLUDE file1 */

For a %INCLUDE directive to be recognized as such, the following must be true:
v The directive immediately follows a /* comment delimiter.
v The directive is not part of another %INCLUDE directive or of a %COPYRIGHT

directive.
v The name of the file to be included starts with the first nonblank character

following /*%INCLUDE and must not contain any blank characters.
v The z/OS data-set identifiers member and ddname and the CMS file identifiers

filename and ddname are restricted to 8 characters in length.

Note:

1. The word %INCLUDE can be in mixed case.
2. You can only specify nested comments following the file name.
3. Files that are included by means of %INCLUDE directives can contain

%INCLUDE directives.

This is an example of how %INCLUDE directives can be specified:
/*%INCLUDE file1 */
Say ’Hello 1’
/*%INCLUDE file2 */ Say ’Hello 2’

The contents of file1 will be inserted before Say ’Hello 1’. The last line in the
example is split into two parts, forming two lines.
1. /*%INCLUDE file2 */
2. Say ’Hello 2’

Chapter 3. Compiler Options and Control Directives 39

The contents of file2 will be inserted between the first part and the second part,
immediately following the */ delimiter. In the compiler listing and IEXEC output,
the first line is truncated. The second part of the line is not reformatted. However,
the space previously occupied by the %INCLUDE directive and any statements
preceding it, is replaced by blanks. If the IEXEC option has been specified, the
IEXEC output will have, in this case, variable length format (see “IEXEC” on page
27).

Note:

1. At the end of the first part of a split line, a line end is implied.
2. The built-in function SOURCELINE() returns the line number of the final line

in the expanded program, or 0 if the program was compiled with the
NOSLINE option.

The naming convention for included files is as follows:
v Under z/OS:

– /*%INCLUDE member */

Search for member:
1. In the concatenation with ddname SYSLIB, if it is allocated
2. In the same partitioned data set as the source, if the source is in a

partitioned data set
– /*%INCLUDE ddname(member) */

Search for member in the concatenation with ddname.
v Under z/VM:

– /*%INCLUDE filename */

Search for a file with file name filename and file type COPY on all accessed
disks. If it does not exist, search for a file with file name filename and file
type REXXINCL on all accessed disks. If it also does not exist, search for a file
with file name filename and file type EXEC on all accessed disks.
If more than one file is found for a specific file type, the one on the minidisk
which comes earlier in the search order is included.

– /*%INCLUDE ddname(filename) */

1. FILEDEF ddname DISK fn ft [fm]

can be used to specify a collection of files.

Note: ft must be COPY, REXXINCL, or EXEC, otherwise the file will not be
found.
Search for a file with file name fn and file type COPY within the specified
collection. If it does not exist, search for a file with file name fn and file
type REXXINCL within the specified collection. If it also does not exist,
search for a file with file name fn and file type EXEC within the specified
collection.
If more than one file is found for a specific file type, the one on the
minidisk which comes earlier in the search order is included.

2. CREATE NAMEDEF fm ddname (FILEMODE

or
CREATE NAMEDEF dirid ddname

followed by:
ACCESS dirid fm

40 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

can be used to identify a specific minidisk. Search for a file with file name
filename, file type COPY, and file mode fm. If it does not exist, search for a
file with file name filename, file type REXXINCL, and file mode fm. If it also
does not exist, search for a file with file name filename, file type EXEC, and
file mode fm.
If a file is found for a specific file type, it is included.

3. Members of MACLIBs can be included. If ddname is SYSLIB, all
MACLIBs established with the command GLOBAL MACLIB are searched
until a member with name filename is found and included.
If ddname is not SYSLIB, search within the MACLIB with name ddname
for a member with name filename and include it.

The names of the data sets or files that have been included are contained in the
compiler listing.

%PAGE
The %PAGE listing control directive causes an unconditional skip to a new page in
the source listing.

The %PAGE listing control directive is contained in a comment; it is recognized as
a control directive only by the Compiler (it is treated as a normal comment by the
interpreter):
/*%PAGE */

The %PAGE listing control directive is recognized as such only if it immediately
follows a /* comment delimiter and these characters are the first nonblank
characters on the line. The word %PAGE can be in mixed case. The rest of the line
can contain any other characters. It is good practice to close the comment on the
same line.

A line that contains the %PAGE listing control directive is printed as the last line
on the current page of the listing; the next line in the source program starts a new
page. If the compiler option LINECOUNT(0) is specified, however, %PAGE has no
effect.

%STUB
The %STUB prelink control directive simplifies link-editing under z/OS. It
generates object modules that include preselected STUB code. The z/OS stub code
is inserted into the object output.

To define the %STUB prelink control directive you must specify the stub name
stubname in the source:
/*%STUB stubname*/

Refer to “Stubs” on page 211 for a list of stubnames that are supplied with the
Library to provide interfaces with the various types of parameter-passing
conventions.

Note:

1. %STUB code can be compiled under z/OS and z/VM.
2. The OBJECT option must be in effect for the STUB code to be included.
3. CEXEC output is not affected.
4. An example is shown in “Improving Packaging and Performance” on page 73.

Chapter 3. Compiler Options and Control Directives 41

5. Object modules generated with STUB code terminate abnormally when they are
run under z/VM.

6. Stubs are required when running REXX link-edited under z/OS.
7. See also “REXXL (z/OS)” on page 74.
8. See also “Stubs” on page 211.

%SYSDATE
The %SYSDATE control directive inserts, at compilation time, code to create the
variable SYSDATE, which contains the compilation date.

Because %SYSDATE is contained in a comment only the Compiler recognizes it as
a control directive. %SYSDATE must immediately follow a /* comment delimiter.
/*%SYSDATE */
/*%SYSDATE(option) */

The word %SYSDATE can also be in lowercase or mixed case.

The comment containing %SYSDATE must not be contained in a clause:
say /*%sysdate */ ’hello’

Instead, enclose the comment in semicolons (;) or put it on a new line:
say ’hello’
/*%sysdate */

The option for %SYSDATE is one of the formats of the REXX DATE built-in
function, namely B, D, E, M, N, O, S, U, or W. C and J are not supported.

The variable SYSDATE is not set if running with the alternate library or if
compiled with option TRACE. In the latter case, or if executing under the
interpreter, the contents of the variable SYSDATE are set to the character string
"SYSDATE" if no SIGNAL ON NOVALUE has been executed. If a SIGNAL ON
NOVALUE has been executed, the NOVALUE condition is raised during execution.
The code generated by the Compiler does not raise the NOVALUE condition if
compiled with NOTRACE.

The following example raises a NOVALUE condition if interpreted or compiled
with TRACE:
/*%sysdate */
say ’compilation date=’ sysdate

To avoid a NOVALUE condition, change the previous example as follows:
sysdate = ’’
/*%sysdate */
if (sysdate <> ’’) then say ’compilation date=’ sysdate

%SYSTIME
The %SYSTIME control directive inserts, at compilation time, code to create the
variable SYSTIME, which contains the compilation time.

Because %SYSTIME is contained in a comment only the Compiler recognizes it as a
control directive. %SYSTIME must immediately follows a /* comment delimiter.
/*%SYSTIME */
/*%SYSTIME(option) */

42 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

The word %SYSTIME can also be in lowercase or mixed case.

The comment containing %SYSTIME must not be contained in a clause:
say /*%systime */ ’hello’

Instead, enclose the comment in semicolons (;) or put it on a new line:
say ’hello’
/*%systime */

The option for %SYSTIME is one of the formats of the REXX TIME built-in
function, namely C, H, L, M, N, or S. E and R are not supported.

The variable SYSTIME is not set if running with the alternate library or if compiled
with option TRACE. In the latter case, or if executing under the interpreter, the
contents of the variable SYSTIME are set to the character string "SYSTIME" if no
SIGNAL ON NOVALUE has been executed. If a SIGNAL ON NOVALUE has been
executed, the NOVALUE condition is raised during execution. The code generated
by the Compiler does not raise the NOVALUE condition if compiled with
NOTRACE.

The following example raises a NOVALUE condition if interpreted or compiled
with TRACE:
/*%systime */
say ’compilation time=’ systime

To avoid a NOVALUE condition, change the previous example as follows:
systime = ’’
/*%systime */
if (systime <> ’’) then say ’compilation time=’ systime

%TESTHALT
The %TESTHALT control directive inserts, at compilation time, code to support the
HALT condition. It enables you to halt a program at specific statements during
program execution.

The %TESTHALT control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):
/*%TESTHALT */

The %TESTHALT control directive is recognized as such only if it immediately
follows a /* comment delimiter. The word %TESTHALT can be in mixed case.

The generated code for the TESTHALT hook is placed at the beginning of the
clause containing the %TESTHALT compiler directive. In the following example,
the TESTHALT hook is generated before the SAY keyword.
say ’hello’ /*%testhalt */

If you want the TESTHALT hook to be generated after the SAY clause, use a
semicolon (;) to end the clause, or put the compiler directive on a new line:
say ’hello’; /*%testhalt */

say ’hello’
/*%testhalt */

Chapter 3. Compiler Options and Control Directives 43

The %TESTHALT control directive provides better control over the TESTHALT
hooks than the TESTHALT compiler option. It can be used either together with the
TESTHALT compiler option to provide additional hooks, or without. In the latter
case, only the hooks specified by the control directive are generated. Using the
%TESTHALT control directive without the TESTHALT compiler option improves
the runtime performance of the REXX program. This is because each TESTHALT
hook is an overhead in the compiled program and the Compiler optimizes the
program less if it contains TESTHALT hooks.

44 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 4. Runtime Considerations

This chapter contains suggestions for organizing your libraries and other
information for improving the running of compiled programs. (Under z/VM, see
the online help for information on how to run a program from the REXXD
compiler-invocation dialog.)

Note: To run compiled REXX programs, either the IBM Library for REXX on
System z or the Alternate Library must be installed on z/VM or z/OS. REXX/VSE
must be installed on VSE/ESA.

Organizing Compiled and Interpretable EXECs under z/OS
Because REXX programs can either be interpreted or run compiled, you might
inadvertently run the source program with the interpreter when you intend to run
the compiled program.

You can avoid such situations by following the procedure described below. For the
purposes of this procedure, assume that your REXX source programs are stored in
the production library pref.cccc.EXEC, which is in your search order.
1. Compile the programs and store them in the data set pref.cccc.CEXEC. For

example, to compile a REXX program named ROULETTE you could enter the
following REXXC command:

rexxc 'pref.cccc.exec(roulette)' cexec('pref.cccc.cexec(roulette)')

2. Save the source programs in the data set pref.cccc.SEXEC. In this example, the
program ROULETTE is saved in pref.cccc.SEXEC(roulette).

3. Copy the compiled EXECs by means of the REXXF command from the
pref.cccc.CEXEC data set to the pref.cccc.EXEC data set. (See “REXXF (FANCMF)
under z/OS” on page 87.) You now run the compiled EXECs that are in this
data set, because it is in the search order. However, if you want to run an
interpretable REXX EXEC, copy it from the pref.cccc.SEXEC data set to the
pref.cccc.EXEC data set.

The advantages of this organization include the following:
v Users can browse the source code of EXECs in the source library.
v Users can store copies of the source code of EXECs in their private EXEC

libraries for tracing or execution.
v Source EXECs can be maintained in the source library. When the modifications

are completed and tested, the EXECs can be compiled and stored in the
production library.

v Because the data sets containing source programs and compiled EXECs have the
same data set attributes, users can easily move and replace source programs and
compiled EXECs.

For other ways to switch between interpreted and compiled REXX programs, see
“Background information about compiled EXECs” on page 20.

© Copyright IBM Corp. 1991, 2013 45

Organizing Compiled and Interpretable EXECs under z/VM
Because REXX programs can either be interpreted or run compiled, you might
inadvertently interpret the source program when you intend to run the compiled
program. The following examples show how this could occur:
v You have a compiled EXEC called ROULETTE. It is stored on a library disk,

which is accessed as your L-disk. You enter roulette to invoke the compiled
EXEC. But if the source program is on your A-disk and also has a file type of
EXEC, you invoke the interpreter instead.

v You have access to a compiled REXX program called ROULETTE MODULE.
You enter roulette to invoke the module. However, EXEC files precede
MODULE files in the CMS search order. So if you still have access to the source
program and its file type is EXEC, you invoke the interpreter instead.

You can avoid such situations by changing the file type of the source file after
compilation. The following table shows a suggested naming convention.

Type of File Recommended File Type

Source file after compilation SEXEC, SXEDIT, and so on, as applicable

Compiled EXEC immediately after
compilation, when the source file type may
be EXEC.

CEXEC

Compiled EXEC ready for execution EXEC or other required file type, such as
XEDIT

Note: You can also make source files unavailable by removing them from any
disks accessed by the program’s users.

If you are using the compiler-invocation dialog, REXXD, use the Switch (rename)
action to rename the files appropriately. Otherwise, use the CMS RENAME
command, as required.

Organizing Compiled and Interpretable EXECs under VSE/ESA
Because REXX programs can either be interpreted or run compiled, you might
inadvertently run the source program with the interpreter when you intend to run
the compiled program.

You can avoid such situations by following the procedure described below.
v Keep the source for all REXX programs in a library called REXXLIB.EXEC. Each

member has a member type of PROC.
v Once an EXEC is ready to be compiled, send it to either z/VM or z/OS and

compile it.
v After the compilation, send it back to VSE/ESA, and catalog the output in a

library called REXXLIB.CEXEC. The member name is the same as that of the
original source, and the member type is PROC. See “Converting from z/OS to
VSE/ESA” on page 86 and “Converting from z/VM to VSE/ESA” on page 87
for more information.

v Use the following LIBDEF statement when running REXX programs:
LIBDEF PROC,SEARCH=(REXXLIB.CEXEC,REXXLIB.EXEC)

46 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

This ensures that the compiled REXX program, if it exists, is found before the
interpreted REXX program. If there is no compiled REXX program, the
interpreted program is found.

The advantages of this organization include the following:
v The source code of REXX EXECs is maintained in a central sublibrary, and can

always be retrieved.
v If a member with the same name is deleted in the REXXLIB.CEXEC sublibrary, a

subsequent invocation will invoke the interpreted program.

Use of the Alternate Library (z/OS, z/VM)
The Alternate Library is necessary for:
v Customers who want to run compiled REXX programs, but do not have the

Library installed
v Software developers who want to make their programs available to users who

do not have the Library installed

Users of the Library do not need the Alternate Library. The Library provides more
functions and better performance than the Alternate Library. Software developers
must test their applications with the Library and with the Alternate Library.

By enabling their programs to run with both the Library and the Alternate Library,
software developers give their customers the following possibilities:
v Use the Alternate Library provided with the application, if they have no library

installed.
v Use the IBM Library for REXX on System z, if it is installed.

Use the SLINE and ALT options to enable a compiled program to run also with the
Alternate Library. Use the CONDENSE option to hide the source lines.

Other Runtime Considerations
v Activation of the Alternate Library

– Under z/OS, the Alternate Library is activated in different ways depending
on its intended use:
- Software developers use the Alternate Library from the ddname STEPLIB.

This is because they need to have both the Library and the Alternate
Library installed. To lower storage consumption, the Library must reside in
the link pack area (LPA) instead of residing in every address space in the
system. To test their programs with the Alternate Library, software
developers use the ddname STEPLIB to override the Library.

- Customers use the Alternate Library from the LINKLIST. This is because
the LINKLIST is searched after the LPA. Customers should always use the
Library, if it is available. By placing the Alternate Library in the LINKLIST,
they will never override the Library in the LPA.

Table 6 summarizes the possible library locations.

Table 6. Library and Alternate Library Locations (z/OS)

Library name
Library location:
SW developer

Library location:
Customer

IBM Library for REXX on System z LPA LPA

Chapter 4. Runtime Considerations 47

Table 6. Library and Alternate Library Locations (z/OS) (continued)

Library name
Library location:
SW developer

Library location:
Customer

Alternate Library STEPLIB LINKLIST

– Under z/VM, the Alternate Library must always be loaded from disk to
avoid conflicts with the Library.
- Software developers activate the Alternate Library like this:

1. Copy EAGALPRC MODULE, the library loader of the Alternate
Library, to a disk that is ahead of the disk containing the library loader
of the library (EAGRTPRC MODULE) in the system search order.
Name this copy EAGRTPRC MODULE.

2. Copy EAGALUME TXTAMENG, the message repository of the
Alternate Library, to a disk that is ahead of the disk containing the
message repository of the library (EAGUME TXTAMENG) in the
system search order. Name this copy EAGUME TXTAMENG. If in your
installation EAGUME TXTAMENG has been renamed to EAGUME
TEXT, then name your copy EAGUME TEXT, as well.

3. To ensure that the library loader from this disk is being used, you can
either IPL your virtual machine, or issue the command NUCXDROP
EAGRTPRC.

- Customers who do not have the Library installed do not need to do
anything to use the Alternate Library. The Alternate Library is available
after it has been installed.

v Batch mode: Unless your program issues host commands that must be executed
in the foreground or is designed to be run interactively, you can run it in batch
mode. Use your standard procedure for submitting batch jobs.

v Error handling: If an instruction has an error, the Library might not raise the
same error that the interpreter would raise.
If the length of a variable’s value is greater than 16MB, the results are
unpredictable.

v Interfaces with interpreted programs: There are no restrictions on the mutual
invocation of compiled programs and interpreted programs: a compiled program
can call an interpreted program, and an interpreted program can call a compiled
program. When a program is invoked, z/OS, z/VM, or VSE/ESA starts the
correct language processor—either the interpreter or the Library.

v Loading the Library under z/VM: Depending on the system setup, the z/VM
Library can be loaded in two different ways:
1. The Library and the message repository are always available and do not

need to be explicitly loaded, if they are installed as logical segments. See
“Defining the Library as a Logical Segment” on page 121 for more
information.

2. The Library is loaded into virtual storage the first time a compiled REXX
program is run and remains loaded after the program ends. The Library is
loaded in the following way:
a. The library loader (EAGRTPRC MODULE), which is itself loaded from

disk, receives control and runs in the transient program area.
b. The library loader loads the message repository.
c. The library loader loads the Library from a DCSS unless one of the

following conditions applies:
– No DCSS exists.

48 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

– With Release 5 of CMS, the DCSS overlaps the storage of the virtual
machine. With subsequent releases, the storage where the segment
resides is in use. Storage can be reserved with the SEGMENT
RESERVE command in CMS.

– The library loader has been customized so that it does not look for the
Library in a DCSS.

If any of these conditions apply, the Library is loaded from disk.
d. The library loader makes the Library a nucleus extension and names it

EAGRTPRC.

Note:

a. With systems before VM/ESA Release 1.1, the Library is made a nucleus
extension of length 0. This ensures that a NUCXDROP EAGRTPRC or
NUCXDROP * command issued from a compiled REXX program does not
free the storage into which the Library is loaded. If a NUCXDROP
command is issued, a new copy of the Library is loaded the next time a
compiled REXX program is run; the storage occupied by the previous
copy is not regained.

b. With VM/ESA Release 1.1 or a subsequent release, the Library is loaded
by issuing a NUCXLOAD command with the PERM option, so that a
NUCXDROP * command will not release the Library. Storage can be
regained by issuing a NUCXDROP EAGRTPRC command. This command
must not be issued while a compiled REXX program is running,
otherwise unpredictable results may occur.

c. A NUCXDROP EAGRTPRC command must be issued before purging the
segment that contains the Library, otherwise an ABEND will occur.

v Runtime messages: In certain cases, the Library gives more information about
the error than is provided by the interpreter’s error messages. In these cases, a
secondary message then follows the main message. For example, if your
program BRCL EXEC calls, on line 115, the LASTPOS built-in function with a
negative value for the start argument, the following messages are displayed:
– EAGREX4000E Error 40 running compiled BRCL EXEC, line 115: Incorrect

call to routine

– EAGREX4003I Argument not positive

For explanations of the runtime messages, see Chapter 20, “Runtime Messages,”
on page 181.

Note: Secondary messages are for your information only. They are not accessible
through the ERRORTEXT function and do not affect the setting of the special
variable RC.

v SETVAR: Starting with Release 2 of the IBM Compiler and Library, the VALUE
built-in function provides the same support as RXSETVAR.

Note:

1. For compatibility with earlier releases, RXSETVAR and SETVAR are still
supported by Release 4.

2. It is, however, recommended that you now use the VALUE built-in function,
because it provides a better performance.

v Some common errors: This section lists some common errors that can occur at
runtime.
Under z/OS:

Chapter 4. Runtime Considerations 49

– Library not found: If the Library is not in the LPA, in the LINKLIST
concatenation, or defined in the STEPLIB DD statement, the following failure
occurs:

CSV003I REQUESTED MODULE EAGRTPRC NOT FOUND
CSV003I REQUESTED MODULE EAGRTXLD NOT FOUND
CSV003I REQUESTED MODULE EAGRTXVH NOT FOUND
+IRX0158E The runtime processor EAGRTPRC could not be found.

Note: Make sure that the data sets contained in the Library or Alternate Library
have not been dropped from the LPA or STEPLIB concatenation. This can occur
when using APF authorized data sets.
Under z/VM:
– Module A Overlaid by Module B: If your program is in the form of a

module, module A, and it calls another module, module B, module B might
overlay your program in storage. This occurs if, for example, both modules
are loaded at the default starting address. The failure occurs when module B
tries to return control to your program.
To determine whether an overlay caused the failure, recompile the program,
creating a compiled EXEC, and recreate the circumstances in which the failure
occurred. If the problem disappears, the failure was almost certainly caused
by a module overlay. In this case, either continue to run the program as a
compiled EXEC or explicitly specify a different starting address when loading
your module. If the problem persists, the failure has a different cause, and
you should contact your system support personnel.

– Return Code -3: If you get a return code of -3 when you invoke your
program, it usually means that the program was not found. However, it can
alternatively mean that the Library was not found. So, if you get this return
code when the program is available, make the Library available—either in a
DCSS or on disk.

– SVC depth: A maximum supervisor call (SVC) nesting depth of 200 is
supported by CMS. The CMS EXEC processor invokes the Library by means
of an SVC. The invocation of a compiled REXX program of CEXEC type
requires one SVC more than the invocation of an interpreted REXX program.
The maximum SVC nesting depth is reached earlier, for example, in recursive
programs.

v Testing the Halt Condition: Testing for the halt condition is supported only for
programs that are compiled with the TESTHALT Compiler option or use the
%TESTHALT directive. See “Halt Condition” on page 91 for details.

v Tracing compiled programs: Tracing of compiled programs is supported only
for programs that are compiled with the TRACE Compiler option. See “TRACE
Instruction and TRACE Built-In Function” on page 96 for details.

50 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 5. Understanding the Compiler Listing

The Compiler produces a listing for each compilation unless the NOPRINT option
was specified. You can print the listing or store it in a z/OS data set or in a CMS
file; see the description of the PRINT option at “PRINT” on page 34 for details.

The compiler listing consists of the following items:
v The compilation summary
v The source listing, if the SOURCE option was specified
v Any messages that were produced and that were not suppressed by the FLAG

option
v A cross-reference listing, if the XREF option was specified
v The compilation statistics

At the end of this chapter you find an example of a complete compiler listing.

Compilation Summary
The information at the beginning of a compiler listing shows the outcome of the
compilation, and the options in effect for the compilation.

The text Compiled with OPTIONS ’ETMODE’ follows the last compiler option if the
program was compiled with ETMODE in effect.

An example of a compilation summary is shown here:

© Copyright IBM Corp. 1991, 2013 51

Source Listing
Figure 7 on page 54 shows an extract from a source listing. You can control the
page breaks in this listing by using the %PAGE listing control directive, as
described at “Compiler Control Directives” on page 91. Each line of the listing
contains the following information:

If The nesting level of IF instructions

Do The nesting level of DO instructions

Sel The nesting level of SELECT instructions

For example, a 2 in the If column indicates that the instruction on that line is part
of an IF instruction that is nested within another IF instruction.

Line The line number in the expanded source program. Source lines that are
longer than the space available in a listing line are split and continued on
subsequent lines of the listing. The space available depends on whether
sequence numbers, %INCLUDE files, or both, have been found.

C Continuation (C) or splitting (S) of a line.

C Continuation line indicator. Indicates that the source line is longer
than the space available and continues on this line.

S Split line indicator. The source line has been split as a result of text
following the closing */ characters terminating a %INCLUDE
directive. The S is printed to the first split line that follows the
included records.

1===> Compilation Summary ROULETTE EXEC A1
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 1

Compilation successful

Compiler Options

NOALTERNATE
CEXEC (ROULETTE CEXEC A1) RECFM=F,LRECL=1024

NOCOMPILE (S)
NOCONDENSE
NODLINK
NODUMP
FLAG (I)
FORMAT (C)

NOIEXEC
LIBLEVEL (*)
LINECOUNT (55)
MARGINS (1 *)
OBJECT (ROULETTE TEXT A1) RECFM=F,LRECL=80

NOOLDDATE
OPTIMIZE
PRINT (ROULETTE LISTING A1) RECFM=V,LRECL=121

NOSAA
SLINE (A)
SOURCE
SYSIN (ROULETTE EXEC A1) RECFM=V,LRECL=99

NOTERMINAL
NOTESTHALT
NOTRACE
XREF

Minimum Library Level required: 3

SLINE(AUTO) in effect, no source lines included

Figure 6. Extract of Compiler Listing Showing the Compilation Summary as Printed under z/VM

52 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

----+----1----+----2----+
Columns of the source ranging from 1 to the number of columns available.
If margins are specified, the characters > and < indicate which part of the
source has been compiled. The character > is placed one column to the left
of the left margin, if this is >1 and fits on the line. The character < is placed
one column to the right of the right margin, if it fits on the line. For
example, if you specified MARGINS (5 12), the margins indicator shows:
--->+----1--<-+----2----+-

Sequence
Contains the sequence numbers taken from the records from the main
source file and any included files. Sequence numbers are expected in the
last eight character positions of the record for fixed-length records and in
the first eight character positions for variable-length records. If the source
files do not contain sequence numbers, there is no Sequence column, but
the space is used by the REXX source.

The following examples show the sequence number at the beginning (first
example) and at the end (second example) of a record:

Incl Identifies the file, main or included, from which the line was taken.

If the column contains a blank, the print line is taken from the main REXX
source file whose file ID is printed in the first header line of the listing.

A number in this column refers to a %INCLUDE file in the list of included
files that is printed in the compilation statistics sublisting. (See Figure 10 on
page 59.) This number is a reference number, which does not indicate
nesting of included files. The nesting of included files can be derived from
the contents of the Recd column.

If the source files do not have any included files, there is no Incl column,
but the space is used by the REXX source.

Recd Number of REXX lines within the main or the included file. The
numbering begins with 1 for each file, so that nested files can be
recognized by a break in the line number sequence.

If the source files do not have any included files, there is no Recd column.

1===> Source Listing VARTEST EXEC A1
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 14:07:17 Date: 2003-05-20 Page: 2
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9- Sequence

1 /* REXX VARTEST */ 00000000
2 Exit rc 00000002

1===> Source Listing FIXTEST EXEC A1
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 14:07:17 Date: 2003-05-20 Page: 2
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 Sequence Incl Recd

1 /* REXX FIXTEST */ 00100000 1
2 rc=4 00100100 2
3 /*%Include include */ 00200000 3
4 /* REXX INCLUDE COPY A - I am hopefully included */ 00000001 1 1
5 00300000 4
6 Exit rc

Chapter 5. Understanding the Compiler Listing 53

Messages
Compiler messages are preceded by the erroneous source line. However, if the
error does not occur in the REXX program, for example if there is an incorrect
option or an error opening the output file, the error messages precede the first
source line. If you request a source listing, the messages are interspersed in the
listing, as shown in Figure 8 on page 55. Otherwise, only the erroneous source
lines and their corresponding messages are included in the listing.

Notice that there is a vertical bar between the source line and the message line.
This marker is placed at or near the part of the instruction in the printed source
line, continuation line, or split line that caused the message. One error may cause
more than one message.

The result of an expression following an INTERPRET instruction is not analyzed
by the Compiler. If it contains errors, they are detected only when the INTERPRET
instruction is executed.

1===> Source Listing ROULETTE EXEC A1
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 2
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+---- Incl Recd

1 /* REXX ** 1
2 * Roulette Implementation in REXX 2
3 * This program can be used instead of the wheel usually employed in 3
4 * casinos. 4
5 * Press enter to proceed to the game’s next step. 5
6 * After the display of a number you can stop play by entering "end". 6
7 * 7
8 ***/ 8
9 Call set_color /* initialize c.i with color of i */ 9

10 rr.=0 /* initialize statistics */ 10
11 Say ’** Welcome to Roulette **’ /* welcome the user */ 11
12 Do Forever /* repeat till end requested */ 12

1 13 Say /* an empty separator line */ 13
1 14 Say ’Faites vos jeux’ /* ask players to make their bets */ 14
1 15 Call pause(’W’) /* wait for input to proceed */ 15
1 16 Say ’Rien ne va plus’ /* stop them */ 16
1 17 Call pause(’W’) /* wait for input to proceed */ 17
1 18 r=Random(0,36) /* get random number from 0 to 36 */ 18
1 19 rr.r=rr.r+1; /* maintain statistics */ 19
1 20 If r=0 Then /* zero */ 20

1 1 21 Say ’ 0 ZERO’ /* good for the casino */ 21
1 22 Else Do /* any other number (1 to 36) */ 22

1 2 23 If r//2=0 Then /* even number */ 23
2 2 24 pi=’pair’; /* in French */ 24
1 2 25 Else /* odd number */ 25
2 2 26 pi=’impair’; /* in French */ 26
1 2 27 If r<=18 Then /* lower half */ 27
2 2 28 mp=’manque’; /* in French */ 28
1 2 29 Else /* upper half */ 29
2 2 30 mp=’passe’ /* in French */ 30
1 2 31 Say Right(r,2) Left(pi,6) c.r mp /* show where the ball stopped and the number’s att 31

C ributes */
1 1 32 End /* and the number’s attributes */ 32

1 33 If pause(’E’)=’END’ Then /* check if termination request */ 33
1 1 34 Leave /* If so, end the loop */ 34

35 End /* end of one game, ready for next*/ 35
36 Say ’ ** Merci et au revoir **’ /* thanks and good bye */ 36
37 Exit /* Exit the program */ 37
38 38
39 /*%Include setcolor*/ 39
40 set_color: /* Set up c.i to contain the color of each number */ 1 1
41 c.=’noir ’ /* set all of them to black */ 1 2
42 rouge=’1 3 5 7 9 12 14 16 18 19 21 23 25 27 30 32 34 36’ 1 3
43 Do While rouge¬=’’ /* process list of red numbers */ 1 4

1 44 Parse Var rouge t rouge /* pick the first in the list */ 1 5
1 45 c.t=’rouge’ /* set its color to red */ 1 6

46 End 1 7
47 Return

Figure 7. Extract of Source Listing as Printed under z/VM

54 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Cross-Reference Listing
For each item used in a program except for host commands, the cross-reference
listing shows:
v The attribute of the item. Because REXX does not require you to declare the type

of data to be stored in a variable, the attributes do not indicate formal data
types.

v The numbers of the lines on which it is referenced in the program.

Note: If you do not want to list constants, commands, and optimizing stoppers,
specify the XREF(S) compiler option as described in “XREF” on page 37.

Each entry in the cross-reference listing contains the following information:

Item The text of the item. Symbols are shown in uppercase, except for DBCS

1===> Source Listing SYS03140.T154049.RA000.RXTLISTS.SYSINPDS.H01(ROULETTE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:51 Date: 2003-05-20 Page: 2
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 Sequence Incl Recd

1 /* REXX **00010000 1
2 * Roulette Implementation in REXX 00020000 2
3 * This program can be used instead of the wheel usually employed in 00030000 3
4 * casinos. 00040000 4
5 * Press enter to proceed to the game’s next step. 00050000 5
6 * After the display of a number you can stop play by entering "end". 00060000 6
7 * 00070000 7
8 ***/00080000 8
9 Call set_color /* initialize c.i with color of i */00090000 9

10 rr.=0 /* initialize statistics */00100000 10
11 Say ’** Welcome to Roulette **’ /* welcome the user */00110000 11
12 Do Forever /* repeat till end requested */00120000 12

1 13 Say /* an empty separator line */00130000 13
1 14 Say ’Faites vos jeux’ /* ask players to make their bets */00140000 14
1 15 Call pause(’W’) /* wait for input to proceed */00150000 15
1 16 Say ’Rien ne va plus’ /* stop them */00160000 16
1 17 Call pause(’W’) /* wait for input to proceed */00170000 17
1 18 r=Random(0,36) /* get random number from 0 to 36 */00180000 18
1 19 rr,r=rr.r+1; /* maintain statistics */00190000 19

|
+++FANPAR0566S Unexpected "," in expression

1 20 If r=0 Then /* zero */00200000 20
1 1 21 Say ’ 0 ZERO’ /* good for the casino */00210000 21

1 22 Else Do /* any other number (1 to 36) */00220000 22
1 2 23 If r//2=0 Then /* even number */00230000 23
2 2 24 pi=’pair’; /* in French */00240000 24
1 2 25 Else /* odd number */00250000 25
2 2 26 pi=’impair’; /* in French */00260000 26
1 2 27 If r<=18 Then /* lower half */00270000 27
2 2 28 mp=’manque’; /* in French */00280000 28
1 2 29 Else /* upper half */00290000 29
2 2 30 mp=’passe’ /* in French */00300000 30
1 2 31 Say Right(r,2) Left(pi,6) c.r mp /* show where the ball stopped */00310000 31
1 1 32 End /* and the number’s attributes */00320000 32

1 33 If pause(’E’)= Then /* check if termination request */00330000 33
|

+++FANPAR0561S Right operand missing
1 1 34 Leave /* If so, end the loop */00340000 34

35 End /* end of one game, ready for next*/00350000 35
36 Say ’ ** Merci et au revoir **’ /* thanks and good bye */00360000 36
37 Exit /* Exit the program */00370000 37
38 00380000 38
39 set_color: 00390000 39
40 /*%Include setcolor*/ 00400000 40
41 set_color: /* Set up c.i to contain the color of each number */ 00010000 1 1

|
+++FANPAR0071W Duplicate label: Only first occurrence on line 39 used

42 c.=’noir ’ /* set all of them to black */ 00020000 1 2
43 rouge=’1 3 5 7 9 12 14 16 18 19 21 23 25 27 30 32 34 36’ 00030000 1 3
44 Do While rouge¬=’’ /* process list of red numbers */ 00040000 1 4

1 45 Parse Var rouge t rouge /* pick the first in the list */ 00050000 1 5
1===> Source Listing SYS03140.T154049.RA000.RXTLISTS.SYSINPDS.H01(ROULETTE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:51 Date: 2003-05-20 Page: 3
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--<-+----8 Sequence Incl Recd

1 46 c.t=’rouge’ /* set its color to red */ 00060000 1 6
47 End 00070000 1 7
48 Return

Figure 8. Extract of Source Listing with Messages as Printed under z/OS

Chapter 5. Understanding the Compiler Listing 55

characters. Literal strings are shown enclosed in single quotes. If the text is
longer than 30 characters, the rest of the text is continued on subsequent
lines of the listing.

Attribute
The attribute of the item, according to the classification of tokens defined
in REXX. The meanings of the values in this column are:

BIN STR
A binary string

BUILT-IN
A built-in function

COMP VAR
A compound variable

CONST SYM
A constant symbol

DBCS RTN
A function for manipulating DBCS strings

EXT BIF
A stream I/O built-in function

EXT RTN
An external routine

HEX STR
A hexadecimal string

LABEL A label definition

LABEL +++
A multiple-label definition or a reference to an undefined label

LIT STR
A literal string

NUMBER A number

SIMP VAR
A simple variable

SIMPV+++
A variable that is not initialized. It does not have an assignment.

STEM A stem

SYSTM RTN
A function supplied by IBM that is specific to a system, such as
DIAG under z/VM, SYSVAR under z/OS, or ASSIGN under VSE.

Line Reference
The number of each line on which the item is referenced. The meanings of
the characters provided in parentheses in the listing are described in the
following. You can review line references for:
v Labels:

(d) Indicates a valid label definition

(u) Indicates a reference to an undefined label

(m) Indicates a duplicate label definition

(c) The label is referred to in a CALL clause

56 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

(C) The label is referred to in a CALL ON clause

(s) The label is referred to in a SIGNAL clause

(S) The label is referred to in a SIGNAL ON clause

(f) The label is referred to as a function call.
v Variables:

(s) Sets the variable named in the ITEM column

(d) Indicates that the variable was dropped

(e) Indicates that the variable was exposed

(SIMPV+++)
Indicates that the variable is not initialized. It does not have an
assignment.

Figure 9 on page 58 shows the cross-reference listing for the ROULETTE EXEC in
Figure 8 on page 55.

Chapter 5. Understanding the Compiler Listing 57

Compilation Statistics
The compilation statistics at the end of the source listing provide the following
information:
v Number of lines in the source program
v Size of the compiled program in bytes, if compiled code was generated
v Message statistics
v Flagged source lines, if any source lines were flagged
v List of included z/OS data set names or CMS file names, if any %INCLUDE

directives are found

1===> Cross Reference Listing ROULETTE EXEC A1
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 3
Item Attribute Line References

----- Labels, Built-in Functions, External Routines -----

LEFT BUILT-IN 31:20(f)
PAUSE EXT RTN 15:8(c) 17:8(c) 33:6(f)
RANDOM BUILT-IN 18:5(f)
RIGHT BUILT-IN 31:9(f)
SET_COLOR LABEL 9:6(c) 40:1(d)

----- Constants -----

’’ LIT STR 43:19
’ ** Merci et au revoir ** LIT STR 36:5
’
’ 0 ZERO’ LIT STR 21:9
’** Welcome to Roulette **’ LIT STR 11:5
’impair’ LIT STR 26:10
’manque’ LIT STR 28:10
’noir ’ LIT STR 41:6
’pair’ LIT STR 24:10
’passe’ LIT STR 30:10
’rouge’ LIT STR 45:9
’E’ LIT STR 33:12
’END’ LIT STR 33:17
’Faites vos jeux’ LIT STR 14:7
’Rien ne va plus’ LIT STR 16:7
’W’ LIT STR 15:14 17:14
0 NUMBER 10:5 18:12 20:8 23:13
1 NUMBER 19:13
’1 3 5 7 9 12 14 16 18 19 21 2 LIT STR 42:9
3 25 27 30 32 34 36’
18 NUMBER 27:11
2 NUMBER 23:11 31:17
36 NUMBER 18:14
6 NUMBER 31:28

----- Simple Variables -----

MP SIMP VAR 28:7(s) 30:7(s) 31:35
PI SIMP VAR 24:7(s) 26:7(s) 31:25
R SIMP VAR 18:3(s) 19:6 19:11 20:6 23:8 27:8 31:15 31:33
ROUGE SIMP VAR 42:3(s) 43:12 44:15 44:23(s)
T SIMP VAR 44:21(s) 45:7

----- Stems and Compound Variables -----

C. STEM 41:3(s)
C.R COMP VAR 31:31
C.T COMP VAR 45:5(s)

RR. STEM 10:1(s)
RR.R COMP VAR 19:3(s) 19:8

1 ROULETTE EXEC A1
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 4
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+---- Incl Recd

----- Optimizing Stoppers -----

9 Call set_color /* initialize c.i with color of i */ 9
|

1 15 Call pause(’W’) /* wait for input to proceed */ 15
|

1 17 Call pause(’W’) /* wait for input to proceed */ 17
|

1 33 If pause(’E’)=’END’ Then /* check if termination request */ 33
|

40 set_color: /* Set up c.i to contain the color of each number */ 1 1
|

Figure 9. Extract of Cross-Reference Listing as Printed under z/VM

58 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Note: The message statistics and the flagged source lines are produced regardless
of the FLAG compiler-option setting. For more information refer to “FLAG” on
page 26.

An example of compilation statistics is shown in Figure 10. The numbers indicate
how many messages were produced for each particular message severity.

Examples with Column Numbers
The following examples show the Compiler listings where FORMAT(C) and option
SAA are in effect. The column numbers and the line numbers appear in the
cross-reference listing of the variables and in the statistics listing that contains the
flagged lines. The line numbers precede, and the column numbers follow, the colon
(:) sign.

The program to be compiled also contains several host commands. They are
printed in the cross-reference listing in the same format and sequence as in the
source listing. Appendix D, “The z/OS Cataloged Procedures Supplied by IBM,”
on page 231 contains another version of this program without errors.

Figure 11 on page 60 shows an extract of a source listing printed under z/VM.

1===> Compilation Statistics SYS03140.T154049.RA000.RXTLISTS.SYSINPDS.H01(ROULETTE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:51 Date: 2003-05-20 Page: 6

REXX Lines 48

Total messages Informational Warning Error Severe Terminating
3 0 1 0 2 0

The following lines have been flagged

19:5 33:16 41:1

Error No. Line:Col

71 41:1

561 33:16

566 19:5

Included files
1 RXT.FB80.PEXEC(SETCOLOR) RECFM=FB,LRECL=80,BLKSIZE=6160

Finishing time of compilation: 15:40:51

Figure 10. Extract of Compiler Listing Showing Compilation Statistics as Printed under z/OS

Chapter 5. Understanding the Compiler Listing 59

1===> Source Listing SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 2
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

1 /* ------------------------------ REXX ------------------------------ */
2 /* MVS2OE */
3 /* Copy an MVS data set to OpenEdition */
4 /* */
5 /* MVS2OE: This EXEC will copy a sequential data set or a member in */
6 /* a library to OpenEdition. It will run in a TSO environment. */
7 /* However this version is designed to illustrate how the REXX */
8 /* Compiler lists the deliberate errors found herein. It is not */
9 /* meant to run this example. */

10 /**/
11
12 /* try to retrieve previous values */
13 address ISPEXXXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"

|
+++FANGAO0583S Environment name longer than 8 characters

14 if (rc = 0) then do /* vget o.k., confirm values */
1 1 15 say ’MVS data set name’; oedsn = check(oedsn)
1 1 16 say ’OE path name’; oepath = check(oepath, ’lower’)
1 1 17 say ’Binary file (Y or N)’; oebin = check(oebin)
1 18 end

19 else do /* vget not o.k., read in values */
1 1 20 say ’please key in the complete DSNAME with High Level Qualifier

|
+++FANPAR0855W SAA: Literal strings must be completely on one line

1 1 21 ’
1 1 22 pull oedsn
1 1 23 say ’please key in the OE path’
1 1 24 parse pull oepath
1 1 25 say ’is it an executable (binary) program (Y or N)?’
1 1 26 pull oebin
1 27 end

28
29 say ’Abort run? "Y" aborts, anything else performs copy’
30 say ’from’ oedsn ’to’ oepath
31 pull answer
32 if (answer = ’Y’) then exit
33
34 if (oebin = ’Y’) then DO /* set up some of the file’s OE attributes */

1 1 35 mode == ’SIXUSR’
|

+++FANPAR0182S Assignment operator must not be followed by another "="
1 1 36 bin == ’BINARY’

|
+++FANPAR0182S Assignment operator must not be followed by another "="

1 37 end
38 else do

1 1 39 mode = ’’
1 1 40 bin = ’TEXT’
1 41 end

42
43 msg_status = msg(’OFF’) /* suppress msgs from FREE etc. */

|
+++FANGAO0857W SAA: Built-in function not part of SAA Procedures Language

44 "FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
45 "FREE DDNAME(OEOUT)"
46 msg_status = msg(msg_status) /* restore to previous value */

|

Figure 11. Extract of Source Listing as Printed under z/VM (Part 1 of 2)

60 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Figure 13 on page 62 shows an extract of a cross-reference listing printed under
z/OS.

+++FANGAO0857W SAA: Built-in function not part of SAA Procedures Language
47
48 "ALLOC DDNAME(OEIN) DSN(’"oedsn"’) SHR"
49 "ALLOC DDNAME(OEOUT) PATH(’"oepath"’) PATHDISP(KEEP KEEP)" ,
50 "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"
51
52 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
53 if (rc <> 0) then say ’RC from OCOPY=’ rc /* check return code */
54 "FREE DDNAME(OEIN)"
55 "FREE DDNAME(OEOUT)"
56
57 /* save values for next invocation */
58 address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
59 exit 0 /* leave this exec */
60
61 /* subprogram to request user to confirm or overwrite a value */
62 /* -- */
63 check:
64 say ’Use <ENTER> to use’ arg(1) ’or key in new value’

1===> Source Listing SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 3
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

65 if (arg(2) = ’lower’) then do
1 1 66 parse pull answer /* keep case as typed in */
1 67 end

68 else do
1 1 69 parse upper pull answer /* uppercase input */
1 70 end

71 if (answer = ’’) then return arg(1); else return answer
72 Say ’end of program’

|
+++FANGAO0773I Instruction might never be executed

Figure 12. Extract of Source Listing as Printed under z/VM (Part 2 of 2)

Chapter 5. Understanding the Compiler Listing 61

1===> Cross Reference Listing SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 4
Item Attribute Line References

----- Labels, Built-in Functions, External Routines -----

ARG BUILT-IN 64:27(f) 65:6(f) 71:31(f)
CHECK LABEL 15:40(f) 16:40(f) 17:40(f) 63:1(d)
MSG SYSTM RTN 43:14(f) 46:14(f)

----- Constants -----

’’ LIT STR 39:10 71:15
’)’ LIT STR 50:67
’’’) PATHDISP(KEEP KEEP)’ LIT STR 49:35
’’’) SHR’ LIT STR 48:33
’end of program’ LIT STR 72:6
’from’ LIT STR 30:5
’is it an executable (binary) LIT STR 25:7
program (Y or N)?’
’lower’ LIT STR 16:54 65:15
’or key in new value’ LIT STR 64:34
’please key in the complete DS LIT STR 20:7
NAME with High Level Qualifier

’
’please key in the OE path’ LIT STR 23:7
’to’ LIT STR 30:18
’Abort run? "Y" aborts, anythi LIT STR 29:5
ng else performs copy’
’ALLOC DDNAME(OEIN) DSN(’’’ LIT STR 48:1
’ALLOC DDNAME(OEOUT) PATH(’’’ LIT STR 49:1
’Binary file (Y or N)’ LIT STR 17:7
’BINARY’ LIT STR 36:10
’FREE DDNAME(OEIN)’ LIT STR 44:1 54:1
’FREE DDNAME(OEOUT)’ LIT STR 45:1 55:1
ISPEXEC CONST SYM 58:9
ISPEXXXXXXXXXXXXEC CONST SYM 13:9
’MVS data set name’ LIT STR 15:7
’OCOPY INDD(OEIN) OUTDD(OEOUT) LIT STR 52:1
’
’OE path name’ LIT STR 16:7
’OFF’ LIT STR 43:18
’PATHOPTS(ORDWR OCREAT) PATHMO LIT STR 50:15
DE(SIRUSR SIWUSR’
’RC from OCOPY=’ LIT STR 53:23
’SIXUSR’ LIT STR 35:11
’TEXT’ LIT STR 40:9
’Use <ENTER> to use’ LIT STR 64:6
’VGET (OEDSN,OEPATH,OEBIN)’ LIT STR 13:28
’VPUT (OEDSN,OEPATH,OEBIN) PRO LIT STR 58:17
FILE’
’Y’ LIT STR 32:14 34:13
0 NUMBER 14:10 53:11 59:6
1 NUMBER 64:31 71:35
2 NUMBER 65:10

----- Simple Variables -----

ANSWER SIMP VAR 31:6(s) 32:5 66:15(s) 69:21(s) 71:6 71:51
BIN SIMP VAR 36:3(s) 40:3(s) 52:33
MODE SIMP VAR 35:3(s) 39:3(s) 50:63
MSG_STATUS SIMP VAR 43:1(s) 46:1(s) 46:18
OEBIN SIMP VAR 17:31(s) 17:46 26:8(s) 34:5
OEDSN SIMP VAR 15:31(s) 15:46 22:8(s) 30:12 48:28
OEPATH SIMP VAR 16:31(s) 16:46 24:14(s) 30:23 49:29
RC SIMP VAR 14:5 53:5 53:40

Figure 13. Extract of Cross-Reference Listing as Printed under z/OS (Part 1 of 2)

62 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Figure 15 shows an extract of a statistics listing that was created with the FORMAT
compiler option.
Figure 16 on page 64 shows an extract of a statistics listing that was created with

the NOFORMAT compiler option.

----- Commands -----
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

13 address ISPEXXXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"
44 "FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
45 "FREE DDNAME(OEOUT)"
48 "ALLOC DDNAME(OEIN) DSN(’"oedsn"’) SHR"
49 "ALLOC DDNAME(OEOUT) PATH(’"oepath"’) PATHDISP(KEEP KEEP)" ,
50 "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"
52 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
54 "FREE DDNAME(OEIN)"
55 "FREE DDNAME(OEOUT)"

1 SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 5
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

58 address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"

----- Optimizing Stoppers -----

13 address ISPEXXXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"
|

1 1 15 say ’MVS data set name’; oedsn = check(oedsn)
|

1 1 16 say ’OE path name’; oepath = check(oepath, ’lower’)
|

1 1 17 say ’Binary file (Y or N)’; oebin = check(oebin)
|

43 msg_status = msg(’OFF’) /* suppress msgs from FREE etc. */
|

44 "FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
|

45 "FREE DDNAME(OEOUT)"
|

46 msg_status = msg(msg_status) /* restore to previous value */
|

48 "ALLOC DDNAME(OEIN) DSN(’"oedsn"’) SHR"
|

49 "ALLOC DDNAME(OEOUT) PATH(’"oepath"’) PATHDISP(KEEP KEEP)" ,
|

52 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
|

54 "FREE DDNAME(OEIN)"
|

55 "FREE DDNAME(OEOUT)"
|

58 address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
|

63 check:
|

Figure 14. Extract of Cross-Reference Listing as Printed under z/OS (Part 2 of 2)

1===> Compilation Statistics SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 6

REXX Lines 72

Total messages Informational Warning Error Severe Terminating
7 1 3 0 3 0

The following lines have been flagged

13:9 20:7 35:8 36:7 43:14 46:14 72:2

Error No. Line:Col

182 35:8 36:7

583 13:9

773 72:2

855 20:7

857 43:14 46:14

Finishing time of compilation: 16:06:28

Figure 15. Extract of Statistics Listing as Printed under z/VM (using FORMAT)

Chapter 5. Understanding the Compiler Listing 63

Example of a Complete Compiler Listing

1===> Compilation Statistics SYS03140.T161009.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:10:13 Date: 2003-05-20 Page: 6

REXX Lines 72

Total messages Informational Warning Error Severe Terminating
7 1 3 0 3 0

The following lines have been flagged

13 20 35 36 43 46 72

Error No. Line

182 35 36

583 13

773 72

855 20

857 43 46

Finishing time of compilation: 16:10:13

Figure 16. Extract of Statistics Listing as Printed under z/VM (using NOFORMAT)

1===> Compilation Summary SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 1

13 message(s) reported. Highest severity code was 12 - Severe

Compiler Options

NOALTERNATE
CEXEC (SYS03175.T171043.RA000.RXTLISTS.SYSCEXEC.H01(CMPEXAMP))

NOCOMPILE (S)
NOCONDENSE
NODDNAMES
NODLINK
NODUMP

FLAG (I)
NOFORMAT
NOIEXEC

LIBLEVEL (*)
LINECOUNT (0)
MARGINS (1 *)
OBJECT (SYS03175.T171043.RA000.RXTLISTS.SYSPUNCH.H01(CMPEXAMP))
OPTIMIZE
PRINT () RECFM=VBA,LRECL=125,BLKSIZE=1250

NOSAA
SLINE (A)
SOURCE
SYSIN (SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)) RECFM=VB,LRECL=4092,BLKSIZE=4096

NOTERMINAL
NOTESTHALT
NOTRACE

XREF
Minimum Library Level required: N/A

SLINE(AUTO) in effect, no source lines included

Figure 17. A Complete Compiler Listing as Printed under z/OS (Part 1 of 6)

64 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

1===> Source Listing SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 2
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

+++FANENV0673S LINECOUNT value not 0 or a whole number in the range 10-99: LC(100)

1 /* REXX **
2 * Name : CMPEXAMP EXEC
3 * Purpose : Example for a Compilation Listing
4 ***/
5 Parse source . . exfn exft exfm synfn .;
6 Parse version all_ver;
7
8 /* Call - Signal - Function or multiple */
9 id=0001; Call L01;

10 id=0002; x = L02(1);
11 id=0003; Signal L03;
12 L01:;
13 say ’id0001’ Call L01;
14 Return;
15 L02:;
16 Arg num . ;
17 Select;

1 18 When num = 1 then y = ’Test1’;
1 19 When num = 2 then y = ’Test2’;
1 20 Otherwise y = ’no’;

21 End;
22 say ’id0002 Function L02 returns’ y;
23 Return y;
24 L03:; /* first occurrence of label */
25 L03:; /* second occurrence of label */

|
+++FANPAR0071W Duplicate label: Only first occurrence on line 24 used

26 say ’id0003’ Signal L03;
27
28 /* compound variables ***/
29 id=0010; stema.=’’;
30 id=0011; stema.tail1 = L02(1);
31 id=0012; stema.tail2 = L02(2);
32 id=0013; stema.tail3 ,
33 = L02(2);
34 id=0014; stema.tail4.aaaaaaaa.bbbbbbbbbbbbbbbbbbbbbbbbbbb.5=0;
35 /* CV > 250 */
36 id=0015; stema.tail9.00000001.00000002.00000003.00000004.00000005.00000006.00000
37 /* 240 < CV > 250 */
38 id=0016; stema.taila.00000001.00000002.00000003.00000004.00000005.00000006.00000
39 id=0017; stema.tAILb.GRkl = ’test’;
40 id=0018; stema.tailc = ,
41 ;
42 id=0019; Say stema.taild..00000002.;
43 id=0020; stemb.tail1 = stema.tail1;
44
45 /* flagged lines (multiple) */
46 id=0021; RANDOM(20,10,4,5) DATE(’X’);

|
+++FANGAO0770S Invalid number of arguments in built-in function

|
+++FANGAO0868S RANDOM() BIF: either min>max or (max-min)>100000

|
+++FANGAO0866S Invalid option in built-in function invocation

47 id=0022; U = ’A’ / ’B’;
|

+++FANGAO0659S Nonnumeric term
|

+++FANGAO0659S Nonnumeric term
48
49 /* Created a long list of errors */
50 id=0023;
51 Say MIN(33,55,’l’);

|

Figure 18. A Complete Compiler Listing as Printed under z/OS (Part 2 of 6)

Chapter 5. Understanding the Compiler Listing 65

+++FANGAO0659S Nonnumeric term
52
53 /* Error in column 149 */
54 id=0024;
55
56 /* drop */
57 id=0025; vars = ’stema.tail1 stema.taila’; drop (vars); stema.tail1 = 1;
58

C Say MIN(33,55,’l’);
|

+++FANGAO0659S Nonnumeric term
59 /* Verify some DATE(5) */
60 id=0026;
61 Say DATE(’N’,’1 Jan 1000’,’X’);

|
+++FANGAO0866S Invalid option in built-in function invocation

62 Say DATE(’X’,’1 Jan 1000’,’N’);
|

+++FANGAO0866S Invalid option in built-in function invocation
63 Say DATE(’N’,’1 Jan 1000’,’N’,’-’,’q’);

|
+++FANGAO0866S Invalid option in built-in function invocation

64 Say DATE(’E’,’01/01/1000’,’U’,’-’,’//’);
|

+++FANGAO0879S Separator arg (4 or 5) of DATE exceeds one character
1===> Cross Reference Listing SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 3
Item Attribute Line References

----- Labels, Built-in Functions, External Routines -----

DATE BUILT-IN 46(f) 61(f) 62(f) 63(f) 64(f)
L01 LABEL 9(c) 12(d)
L02 LABEL 10(f) 15(d) 30(f) 31(f) 33(f)
L03 LABEL+++ 11(s) 24(d) 25(m)
MIN BUILT-IN 51(f) 58(f)
RANDOM BUILT-IN 46(f)

Figure 19. A Complete Compiler Listing as Printed under z/OS (Part 3 of 6)

66 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

----- Constants -----

’’ LIT STR 29
’-’ LIT STR 63 64
’//’ LIT STR 64
’id0001’ LIT STR 13
’id0002 Function L02 returns’ LIT STR 22
’id0003’ LIT STR 26
’l’ LIT STR 51 58
’no’ LIT STR 20
’q’ LIT STR 63
’stema.tail1 stema.taila’ LIT STR 57
’test’ LIT STR 39
’A’ LIT STR 47
’B’ LIT STR 47
’E’ LIT STR 64
’N’ LIT STR 61 62 63 63
’Test1’ LIT STR 18
’Test2’ LIT STR 19
’U’ LIT STR 64
’X’ LIT STR 46 61 62
0 NUMBER 34
00000 NUMBER 36 38
00000001 NUMBER 36 38
00000002 NUMBER 36 38 42
00000003 NUMBER 36 38
00000004 NUMBER 36 38
00000005 NUMBER 36 38
00000006 NUMBER 36 38
0001 NUMBER 9
0002 NUMBER 10
0003 NUMBER 11
0010 NUMBER 29
0011 NUMBER 30
0012 NUMBER 31
0013 NUMBER 32
0014 NUMBER 34
0015 NUMBER 36
0016 NUMBER 38
0017 NUMBER 39
0018 NUMBER 40
0019 NUMBER 42
0020 NUMBER 43
0021 NUMBER 46
0022 NUMBER 47
0023 NUMBER 50
0024 NUMBER 54
0025 NUMBER 57
0026 NUMBER 60
’01/01/1000’ LIT STR 64
1 NUMBER 10 18 30 57
’1 Jan 1000’ LIT STR 61 62 63
10 NUMBER 46
2 NUMBER 19 31 33
20 NUMBER 46
33 NUMBER 51 58
4 NUMBER 46
5 NUMBER 34 46
55 NUMBER 51 58

Figure 20. A Complete Compiler Listing as Printed under z/OS (Part 4 of 6)

Chapter 5. Understanding the Compiler Listing 67

----- Simple Variables -----

AAAAAAAA SIMPV+++ 34
ALL_VER SIMP VAR 6(s)
BBBBBBBBBBBBBBBBBBBBBBBBBBB SIMPV+++ 34
CALL SIMPV+++ 13
EXFM SIMP VAR 5(s)
EXFN SIMP VAR 5(s)
EXFT SIMP VAR 5(s)
GRKL SIMPV+++ 39
ID SIMP VAR 9(s) 10(s) 11(s) 29(s) 30(s) 31(s) 32(s) 34(s) 36(s) 38(s) 39(s) 40(s) 42(s)

43(s) 46(s) 47(s) 50(s) 54(s) 57(s) 60(s)
L01 SIMPV+++ 13
L03 SIMPV+++ 26
NUM SIMP VAR 16(s) 18 19
SIGNAL SIMPV+++ 26
SYNFN SIMP VAR 5(s)
TAILA SIMPV+++ 38
TAILB SIMPV+++ 39
TAILC SIMPV+++ 40
TAILD SIMPV+++ 42
TAIL1 SIMPV+++ 30 43 43 57
TAIL2 SIMPV+++ 31
TAIL3 SIMPV+++ 32
TAIL4 SIMPV+++ 34
TAIL9 SIMPV+++ 36
U SIMP VAR 47(s)
VARS SIMP VAR 57(s) 57
X SIMP VAR 10(s)
Y SIMP VAR 18(s) 19(s) 20(s) 22 23

----- Stems and Compound Variables -----

STEMA. STEM 29(s)
STEMA.TAILA.00000001.0000000 COMP VAR 38

2.00000003.00000004.000000
05.00000006.00000

STEMA.TAILB.GRKL COMP VAR 39(s)
STEMA.TAILC COMP VAR 40(s)
STEMA.TAILD..00000002. COMP VAR 42
STEMA.TAIL1 COMP VAR 30(s) 43 57(s)
STEMA.TAIL2 COMP VAR 31(s)
STEMA.TAIL3 COMP VAR 32(s)
STEMA.TAIL4.AAAAAAAA.BBBBBBB COMP VAR 34(s)

BBBBBBBBBBBBBBBBBBBB.5
STEMA.TAIL9.00000001.0000000 COMP VAR 36

2.00000003.00000004.000000
05.00000006.00000

STEMB. STEM
STEMB.TAIL1 COMP VAR 43(s)

Figure 21. A Complete Compiler Listing as Printed under z/OS (Part 5 of 6)

68 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

----- Commands -----
If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

36 id=0015; stema.tail9.00000001.00000002.00000003.00000004.00000005.00000006.00000
38 id=0016; stema.taila.00000001.00000002.00000003.00000004.00000005.00000006.00000
46 id=0021; RANDOM(20,10,4,5) DATE(’X’);

----- Optimizing Stoppers -----

9 id=0001; Call L01;
|

10 id=0002; x = L02(1);
|

12 L01:;
|

15 L02:;
|

24 L03:; /* first occurrence of label */
|

30 id=0011; stema.tail1 = L02(1);
|

31 id=0012; stema.tail2 = L02(2);
|

33 = L02(2);
|

36 id=0015; stema.tail9.00000001.00000002.00000003.00000004.00000005.00000006.00000
|

38 id=0016; stema.taila.00000001.00000002.00000003.00000004.00000005.00000006.00000
|

46 id=0021; RANDOM(20,10,4,5) DATE(’X’);
|

57 id=0025; vars = ’stema.tail1 stema.taila’; drop (vars); stema.tail1 = 1;
|

1===> Compilation Statistics SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 4

REXX Lines 64

Total messages Informational Warning Error Severe Terminating
13 0 1 0 12 0

The following lines have been flagged

25 46 47 51 58 61 62 63 64

Error No. Line

71 25

659 47 51 58

673 0

770 46

866 46 61 62 63

868 46

879 64

Finishing time of compilation: 17:10:47

Figure 22. A Complete Compiler Listing as Printed under z/OS (Part 6 of 6)

Chapter 5. Understanding the Compiler Listing 69

70 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 6. Using Object Modules and TEXT Files

This chapter describes circumstances in which you may want to use OBJECT
output rather than CEXEC output. It also describes how to generate executable
modules from the compiler output generated when you select the OBJECT
compiler option.

Initial Considerations
Usually you choose the CEXEC option to compile REXX programs because
compiled programs of this type can replace interpreted REXX programs
transparently and in all circumstances. However, you may want to consider the
OBJECT option for:
v Invoking a REXX program as a command or a program (z/OS)
v Improving the packaging and performance of your application
v Building function packages
v Writing parts of applications in REXX
v Placing programs in a discontiguous saved segment (DCSS) (z/VM)
v Invoking a REXX program from JCL (VSE/ESA)

If you decide to use object output, you may have to:
v Change the invocation of the compiled REXX program if it is invoked by other

programs
v Change the processing of the information obtained with the PARSE SOURCE

instruction
v Check for storage overlaps with other modules (z/VM)

Whether you run object output or CEXEC output for single programs, you can
expect the same runtime performance when the program starts running. The time
required to locate and load the program, however, may be different.

Object modules and TEXT files do not contain operating system dependencies, and
can, therefore, be moved between operating systems. The generated code and the
REXX Library are reentrant and can, therefore, be placed in read-only storage.

Object modules and TEXT files do not normally contain relocation information. If
you want to have relocation information, you must generate the object module or
TEXT file with the DLINK compiler option. This option enables you to link
external functions and subroutines directly to an object module or to a TEXT file.
See the compiler option DLINK at “DLINK” on page 24 and “DLINK Example” on
page 208.

The name of the TEXT file or the object module in the external symbol dictionary
(ESD) record is derived from the name of the input file or input data set when the
REXX program is compiled. For z/VM, it is the CMS file name of the input file.
For z/OS, it is one of the following:
v The member name of the partitioned input data set
v The last qualifier of the name of the sequential input data set
v Or else, COMPREXX (for example, if the source file is part of the job stream)

© Copyright IBM Corp. 1991, 2013 71

To run either type of object code, the Library must be installed on z/VM or z/OS.
REXX/VSE must be installed on VSE/ESA. (See Chapter 4, “Runtime
Considerations,” on page 45 for information on the use of the Alternate Library.)

Object Modules (z/OS)
Generating load modules: Before you can use an object module, you must link it
to the appropriate stub (a stub transforms input parameters into a form
understandable by the compiled REXX program). This can be done with the
REXXL cataloged procedure supplied by IBM, which is listed under “REXXL
(EAGL)” on page 238, with the REXXL EXEC explained in “REXXL (z/OS)” on
page 74, or with the REXXC EXEC as described in “Invoking the Compiler with
the REXXC (FANC) EXEC” on page 9.

Stubs are provided for the parameter-passing conventions as described in “Stubs”
on page 211.

After you have linked the modules to the appropriate stubs, you can use the
modules in the same way you use modules of other high-level language compilers.

Note:

1. By default, the link-edit step adds a dollar ($) sign to the beginning of the
temporary name. If the name consists of 8 characters, the last character is
dropped. That is why you must not use 8-character names that differ only in
the eighth character, for load modules that are made up of multiple object
modules.
To avoid renaming it is recommended that you use a %STUB definition as
described in “%STUB” on page 41.

2. Compiled programs linked with RENT modules located in an APF library can
cause a system abend in the module IRXSTAMP. To avoid this problem,
compile the program using the CONDENSE option. The compiled program is
uncondensed at runtime and the storage is getmained in the TSO subpool 78
for execution of the program. For information on the CONDENSE compiler
option, see “CONDENSE” on page 22.

3. Object modules generated with STUB code terminate abnormally if they are run
under z/VM.

Invoking a REXX Program as a Command or a Program
A program linked with the:
v CPPL stub can be invoked as a command under TSO/E. The command is

usually found earlier in the search order than the same command executed as
either a compiled or interpreted REXX EXEC.

v MVS or the CALLCMD stub enables you to invoke a REXX program just as you
would invoke a program written in another high-level language.

v EFPL stub enables you to store an external function or subroutine in a load
library, where it is usually earlier in the search order than the same function or
subroutine executed as a compiled or interpreted REXX EXEC. It can also be in a
function package that is loaded when the environment is initialized. The EFPL
stub can also be used with the DLINK option, see “DLINK” on page 24 and
“DLINK Example” on page 208 for more information.

v CPPLEFPL stub can be invoked both as a TSO/E command or as a REXX
external routine. The CPPLEFPL stub determines whether the REXX program

72 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

has been invoked as TSO/E command or as a REXX external routine, then gives
control to the compiled REXX program with the appropriate parameters.

v MULTI stub enables you to link-edit and package compiled REXX applications
under z/OS. It is recommended that you use this stub, because it combines
nearly all of the above stub conventions. For more information refer to “Stubs”
on page 211.

Programs and commands can be stored and cached wherever a load module can
be stored and cached.

For an example, see “Link-Editing of Object Modules” on page 207.

Improving Packaging and Performance
You can improve packaging as follows:
v If your application includes many REXX programs, you can create one module

that contains all the REXX programs. You can package it more compactly,
thereby reducing the system load, because the application spends less time
searching for and invoking external functions and subroutines. To generate a
single module:
1. Specify the DLINK compiler option when you compile programs that invoke

external subroutines and functions whose references are intended to be
resolved.

2. Link-edit the main program with the appropriate stub for the intended
invocation.

3. Link-edit each external subroutine and function with an EFPL stub.
4. Link-edit all the programs together into a single module.
For an example, see “DLINK Example” on page 208.

v You can use the %STUB prelink control directive to simplify packaging. The
following example shows a "Hello World" REXX application that can be started
as a TSO/E command. It is assumed that:
– The REXX source is named 'HELLO' and resides in the partitioned data set

'upref.REXX'.
– The user has partitioned data sets for object and load modules called

'upref.OBJ' and 'upref.LOAD'.
– The REXX Compiler is included in the JOBLIB. If not, you must specify a

STEPLIB statement with the data set where the REXX Compiler is located.

In this example you must only insert a %STUB control directive into the REXX
source code. For example, to use the CPPL stub, you must define the following
anywhere in the source code and use a simple link step in the JCL:
/*%STUB CPPL*/

The compile step remains the same as before:
//*---
//COMPSTEP EXEC PGM=REXXCOMP,PARM=’NOCEXEC OBJECT’
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=upref.REXX(HELLO),DISP=SHR
//SYSPUNCH DD DSN=upref.OBJ(HELLO),DISP=SHR
//*---
//LINKSTEP EXEC PGM=HEWL,PARM=’LIST,AMODE=31,RMODE=ANY,RENT,MAP’
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=upref.LOAD,DISP=SHR
//SYSLIN DD DSN=upref.OBJ(HELLO),DISP=SHR

Chapter 6. Using Object Modules and TEXT Files 73

The object output of the compile step includes the stub code at the beginning
and the names of stub and program code adapted to proper values. Extra
INCLUDE or CHANGE cards in the link step are not required.

Note: You can still use the previous linkage method. The name of the new
multi-purpose STUB load module is 'EAGSTMP'.

Building Function Packages
The parts of a function package can be written in REXX, compiled, linked with the
EFPL stub, and then linked to function packages, in which they must be defined as
external routines. See the TSO/E REXX/MVS: Reference manual for details about
function packages.

Writing Parts of Applications in REXX
You can link-edit load modules that are already link-edited with the appropriate
stub with applications written in another programming language. The language
used must be able to provide the parameters in one of the supported
parameter-passing conventions. Otherwise, you can write your own stub to
support the parameter-passing convention of the language in question, modeled
after one of the existing stubs. See “Stubs” on page 211 for more information.

REXXL (z/OS)
There are two possible uses of the REXXL command:
v REXXL can be used in batch to create a load module. REXXL generates the

control cards for the linkage editor to link together a stub and a compiled REXX
program of type OBJECT. The compiled REXX program is read from the data set
allocated to SYSIN. The control cards, including the compiled REXX program,
are written to a data set allocated to SYSOUT.

v REXXL can be used interactively to create a load module. REXXL links together
a stub and the compiled REXX program of type OBJECT and builds a load
module. The SYSPRINT output of the linkage editor is stored in a sequential
data set with a low-level qualifier of LINKLIST.

v REXXL supports both names, EAGSTMP and MULTI. The existing procedures to
link-edit stubs can be used in the same way for the MULTI stub.

See also “Link-Editing of Object Modules” on page 207 for more information.

Enter the REXXL command in the following format:

REXXL stub obj-data-set-name [load-data-set-name]

where:

stub Is one of the following:
v A predefined stub name. Refer to “Stubs” on page 211 for a list of stub

names.
v A member name. The member will be searched for in the default data

set. Refer to “Stubs” on page 211 for a list of member names in the
sample data set.

v The name of a partitioned data set including a member name.

74 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

obj-data-set-name
Is a partitioned or a sequential data set containing the compiled REXX
program of type OBJECT. If it is a partitioned data set, the member name
has to be specified.

load-data-set-name
Is the partitioned data set in which the load module will be stored. If the
member name is not specified, it defaults to the csect name that the
Compiler puts in the ESD from the OBJECT output. If load-data-set-name is
not specified, a default name is used.

Default names of the output data sets:

Partitioned Data Set
pref.cccc.qual(member)

Sequential Data Set
pref.cccc.qual

load data set
name

upref.cccc.LOAD(csect) upref.cccc.qual.LOAD(csect)

listing data set
name

upref.cccc.csect.LINKLIST upref.cccc.qual.LINKLIST

where:

pref and qual represent the prefix and the last level qualifier of obj-data-set-name.
csect represents the name that the compiler puts in the ESD from the OBJECT
output.

Note:

1. The user's default prefix upref (as set by the PROFILE PREFIX command) is
used for the output data sets. If the prefix of obj-data-set-name is different, it is
replaced.

2. If you include a stub at compilation time, you do not need the batch job step
for REXXL to create the object output for the final link. You must only run the
final link step, which creates the executable load module.
REXXL detects if a stub was included at compilation time. Due to this, you
may keep and run your existing procedures. The arguments for REXXL remain
the same. You must still specify the stub name as the first argument. REXXL
compares the name specified by the argument with the stub name included in
the object. If they do not match, an error message is raised and the program
terminates.

TEXT Files (z/VM)
The OBJECT output that the Compiler generates has the same properties as TEXT
files that are generated by other high-level language compilers, with the following
exceptions:
v The compiled program cannot run in the transient program area (TPA).
v The compiled program cannot be invoked from a program that is running in the

TPA.
v A module generated from a TEXT file expects SVC parameter-passing

conventions. See Appendix B, “Interface for TEXT Files (z/VM),” on page 221 for
additional information. You can invoke such a module as a command from the
CMS command line or from a REXX program, but the parameter-passing
convention is different from that used by other high-level language compilers.

Chapter 6. Using Object Modules and TEXT Files 75

Generating modules: To generate a relocatable module from a TEXT file, use the
LOAD command followed by the GENMOD command. For example:

load progname (rldsave
genmod progname

Under CMS Release 5.5 or later, relocatable modules are loaded in free storage,
thereby reducing the probability that one module may overwrite part of another
module that was invoked by a compiled REXX program.

Improving performance: In the REXX search order for external functions and
subroutines, the first step is to search for a program whose name is prefixed with
RX and truncated to 8 characters. If this program is invoked many times, you can
improve its performance if you:
1. Generate a module from the OBJECT output and name it RXmyprog.
2. Load the module as a nucleus extension. For example, enter the NUCXLOAD

command in the following way:

nucxload rxmyprog

3. Invoke the program without the prefix RX. For example:

call myprog
a=myprog()

The nucleus extension RXmyprog is searched for and found first.

Improving packaging: If your application contains a REXX program and several
external subroutines, you can create one module that includes all these programs.
When you do so, your programs are more compactly packaged, thereby reducing
system load, because the application spends less time searching for and invoking
external functions and subroutines. You also eliminate the possibility of invoking
REXX programs that have the same name but are not part of the application. To
generate a single module:
1. Specify the DLINK compiler option when you compile the programs that

invoke external subroutines and functions whose references are intended to be
resolved.

2. Link together the TEXT files to create one relocatable module. For example:

load myprog mysub1 mysub2 mysub3 (rldsave
genmod myprog

3. Optionally, load the resulting module as a nucleus extension before it is
invoked, to avoid storage overlaps with other programs.

Building function packages: The VM/ESA REXX/VM: Reference manual includes a
coding example of a function package whose functions are included in the code.
You can, however, build a function package in which some or all of the functions
are compiled REXX programs of OBJECT type. These functions must be linked to
the function package and their names declared as external. Additionally, to find
out the size of such a function package, you need to link a dummy external
program to the end of the function package.

Writing parts of applications in REXX: You can link a compiled REXX program of
OBJECT type to a program written in another language. If the language enables

76 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

you to invoke programs that require REXX parameter-passing conventions (see
Appendix B, “Interface for TEXT Files (z/VM),” on page 221), you can:
1. Declare the REXX program as an external program.
2. Link the REXX program to the application.
3. Invoke the REXX program from within the application.

Placing programs in a DCSS: You can load TEXT files into a DCSS located above
16 MB in virtual storage. If you decide to do this, you first need to write additional
code that attaches the DCSS and identifies the REXX programs residing in the
DCSS as nucleus extensions.

Object Modules (VSE/ESA)
Generating phases: Before you can use an object module, you must combine it
with the appropriate stub (a stub transforms input parameters into a form
understandable by the compiled REXX program), then you must link-edit it to
generate a phase.

With the cataloged procedure REXXLINK supplied by IBM, you can create a phase
consisting of a single program in one step (see “REXXLINK Cataloged Procedure
(VSE/ESA)” on page 79).

To create a phase consisting of multiple programs (if you have used the DLINK
compiler option), you must combine each object module with the appropriate stub
by means of the cataloged procedure REXXPLNK supplied by IBM (See
“REXXPLNK Cataloged Procedure (VSE/ESA)” on page 78). You must then
link-edit the resulting object modules in an additional step to generate a phase.

Stubs are provided for the following parameter-passing conventions:
v VSE for invocation by means of VSE JCL.
v EFPL (external function parameter list) for invocation with the REXX CALL

instruction or as a function. This must be used when building a function
package.

Note: Do not use 8-character names that differ only in the eighth character, for
phases that are made of multiple object modules. The eighth character of the
program name is lost during the prelink step.

After you have combined the object modules with the appropriate stubs and linked
them together, you can use the resulting phases in the same way you use phases of
high-level language compilers.

Invoking a REXX program as a phase: A program linked with the VSE stub
enables you to invoke a REXX program just as you would invoke a program
written in another high-level language.

Improving packaging and performance: If your application includes many REXX
programs, you can create one phase that contains all the REXX programs. You can
package it more compactly, thereby reducing system load, because the application
spends less time searching for and invoking external functions and subroutines. To
generate a single phase:
1. Specify the DLINK compiler option when you compile programs on z/OS or

z/VM that invoke external subroutines and functions whose references are
intended to be resolved.

2. Generate the object module on z/VM or z/OS and send it to VSE/ESA.

Chapter 6. Using Object Modules and TEXT Files 77

3. Use the REXXPLNK cataloged procedure to combine the main program with
the appropriate stub for the intended invocation.

4. Use the REXXPLNK cataloged procedure to combine each external subroutine
and function with an EFPL stub.

5. Link-edit all the combined object modules together into a single phase.

Building function packages: The parts of a function package can be written in
REXX, compiled, combined with the EFPL stub using REXXPLNK, and then linked
to the function packages, in which they are defined as external routines. See the
IBM VSE/ESA REXX/VSE Reference manual for details about function packages.

Writing parts of applications in REXX: You can link-edit the object modules that
are already combined with the appropriate stub with other object modules written
in another programming language. The language used must be able to provide the
parameters in one of the supported parameter-passing conventions. Otherwise, you
can write your own stub to support the parameter-passing convention of the
language in question, modeled after one of the existing stubs. See “Stubs” on page
225 for more information.

Including a copyright notice in your program: You can provide stubs containing a
copyright notice. The stubs supplied by IBM contain comments that show where
the copyright notice can be easily added. The member names of the stubs are
EAGSDVSE and EAGSDEFP.

REXXPLNK Cataloged Procedure (VSE/ESA)
The cataloged procedure REXXPLNK builds as output an object module that
contains the stub combined with the input object module. The resulting object
module can be combined with other object modules to create a phase.

Invoke REXXPLNK in the following format:
// EXEC PROC=REXXPLNK,[STUBLIB=’lib.sublib’,]

STUBNAM=mn,
INLIB=’lib.sublib’,
INNAME=mn,
OUTLIB=’lib.sublib’,
OUTNAME=mn

where:

STUBLIB='lib.sublib'
Is the name of the sublibrary where the stub resides. If stublib is not
specified, a default name is assumed. (The default name is set in the
cataloged procedure.)

STUBNAM=mn
Is the member name of the stub residing in stublib. Member type is always
OBJ. You can also use one of the predefined stub names:

VSE The program is invoked by VSE JCL as a program.

EFPL The program is invoked as a REXX external routine. This is the
default stub name.

For more information refer to “Stubs” on page 225.

INLIB='lib.sublib'
Is the name of the sublibrary where the input object module resides.

78 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

INNAME=mn
Is the member name of the input object module residing in inlib. Member
type is always OBJ.

OUTLIB='lib.sublib'
Is the name of the sublibrary where the output object module will be
stored.

OUTNAME=mn
Is the member name of the output object module that will be stored in
outlib. Member type is always OBJ.

See also “REXXPLNK” on page 241.

REXXLINK Cataloged Procedure (VSE/ESA)
The cataloged procedure REXXLINK is used to create a phase. REXXLINK does the
following:
1. Builds as output an object module that contains the stub combined with the

input object module
2. Link-edits the resulting object module
3. Catalogs the phase in the sublibrary specified by a

LIBDEF PHASE,CATALOG=lib.sublib statement

Invoke REXXLINK in the following format:
// EXEC PROC=REXXLINK,[STUBLIB=’lib.sublib’,]

STUBNAM=mn,
INLIB=’lib.sublib’,
INNAME=mn,
OUTLIB=’lib.sublib’,
OUTNAME=mn

[,PHASNAM=mn]

where:

STUBLIB='lib.sublib'
Is the name of the sublibrary where the stub resides. If stublib is not
specified, a default name is assumed. (The default name is set in the
cataloged procedure.)

STUBNAM=mn
Is the member name of the stub residing in stublib. Member type is always
OBJ. You also can use one of the predefined stubnames:

VSE The program is invoked by VSE JCL as a program.

EFPL The program is invoked as a REXX external routine. This is the
default sub name.

For more information refer to “Stubs” on page 225.

INLIB='lib.sublib'
Is the name of the sublibrary where the input object module resides.

INNAME=mn
Is the member name of the input object module residing in inlib. Member
type is always OBJ.

OUTLIB='lib.sublib'
Is the name of the sublibrary where the output object module will be
stored.

Chapter 6. Using Object Modules and TEXT Files 79

OUTNAME=mn
Is the member name of the output object module that will be stored in
outlib. Member type is always OBJ.

PHASNAM=mn
Is the member name of the phase that will be cataloged in the sublibrary
specified by a LIBDEF PHASE,CATALOG=lib.sublib statement. The default
member name is that specified in the outname parameter. Member type is
always PHASE.

See also “REXXLINK” on page 242.

REXXL Cataloged Procedure (VSE/ESA)
The REXXL EXEC builds as output an object module that contains the stub
combined with the input object module. The resulting object module can be
link-edited with other object modules to create a phase.

Invoke REXXL in the following format:
// EXEC REXX=REXXL,PARM=’stublib stubnam inlib inname outlib outname’

REXXL can also be called from a REXX program as a subroutine:
CALL REXXL ’stublib stubnam inlib inname outlib outname’

where:

stublib Is the name of the sublibrary, in the form lib.sublib, where the stub resides.

stubnam
Is the member name, in the form mn, of the stub residing in stublib.
Member type is always OBJ. You also can use one of the predefined stub
names:

VSE The program is invoked by VSE JCL as a program.

EFPL The program is invoked as a REXX external routine.

For more information refer to “Stubs” on page 225.

inlib Is the name of the sublibrary, in the form lib.sublib, where the input object
module resides.

inname Is the member name, in the form mn, of the input object module residing
in inlib. Member type is always OBJ.

outlib Is the name of the sublibrary, in the form lib.sublib, where the output object
module will be stored.

outname
Is the member name of the output object module, in the form mn, that will
be stored in outlib. Member type is always OBJ.

See also “REXXL” on page 243.

Linking External Routines to a REXX Program
A REXX program can invoke external routines by means of either the REXX CALL
instruction or a function invocation if a routine of that name is neither an internal
routine nor a built-in function. Note that the DBCS routines behave identically to
built-in functions in terms of the REXX search order. Whenever an external routine
is invoked, the standard REXX search for external routines is performed.

80 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Using the standard REXX search may lead to two problems:
v Invoking external routines frequently may affect performance, because each

invocation follows the search order.
v Name conflicts may occur in applications that invoke external routines whose

names are identical. The external routine that is earlier in the search order is
executed, which is not necessarily what you want to occur.

The DLINK compiler option enables you to create self-contained modules and
avoid these problems. You can selectively link external routines to the main
program. Alternatively, you can turn the main program into a self-contained
module by linking to it all externally referenced routines.

When the DLINK option is specified, the OBJECT output contains references to all
external functions and subroutines. These references are in the form of weak
external references, which means that during the link-edit or load steps the
libraries are not automatically searched to resolve these references.

Under z/OS, the linkage editor resolves the addresses only if you link and load
the referenced module with the module containing the external reference.

Under z/VM, the loader resolves the addresses only if you load the referenced
modules with the module containing the external reference, or if you bring in the
referenced module by means of an INCLUDE command.

Under VSE/ESA, the linkage editor resolves the addresses only if you link and
load the referenced object module with the object module containing the external
reference. If you do not link and load the referenced object module, the linkage
editor ends with return code 4, which indicates unresolved external references.

Resolving External References—An Example
The following example illustrates how to resolve external references selectively. For
the purposes of the example, assume the following:
v Your main program is MYAPPL; that is:

TEST.EXEC(MYAPPL) under z/OS
MYAPPL EXEC under z/VM

v Your main program contains a call to your external routine MYEXTR; that is:
TEST.EXEC(MYEXTR) under z/OS
MYEXTR EXEC under z/VM

It also contains a call to the external routine OTHRPROG contained in some
function package.

Note: If you are working on VSE/ESA, MYAPPL and MYEXTR are REXX
EXECs compiled on either z/OS or z/VM.

v You want to link MYEXTR directly to MYAPPL, but you want the standard
search order performed for OTHRPROG.

To accomplish this:
1. Compile MYAPPL EXEC with the DLINK, NOCEXEC, and OBJECT compiler

options to get:
TEST.OBJ(MYAPPL) under z/OS
MYAPPL TEXT under z/VM

2. Compile MYEXTR EXEC with the NOCEXEC and OBJECT compiler options to
get:

Chapter 6. Using Object Modules and TEXT Files 81

TEST.OBJ(MYEXTR) under z/OS
MYEXTR TEXT under z/VM

3. Generate load modules as follows:

Under z/OS
1. Determine the appropriate parameter convention for MYAPPL. If, for example,

MYAPPL is called either from the TSO/E command line or from another EXEC
as a host command with ADDRESS TSO, the appropriate stub is CPPL.

2. Link the CPPL stub with TEST.OBJ(MYAPPL) and store the result in
TEST.LOAD(MYAPPL). Use the REXXL cataloged procedure or the REXXL
command to perform this task.

3. Because MYEXTR is called as a subroutine, link the EFPL stub with
TEST.OBJ(MYEXTR) and store the result in TEST.LOAD(MYEXTR).

4. Link together the two linked modules from TEST.LOAD(MYAPPL) and
TEST.LOAD(MYEXTR), and store the result in TEST.LOAD(MYAPPL).

Assuming you have allocated the data set TEST.LOAD to ddname INFILE, the
appropriate control statements for the linkage editor are:

INCLUDE INFILE(MYAPPL)
INCLUDE INFILE(MYEXTR)
ENTRY MYAPPL
NAME MYAPPL(R)

Now you have an executable module that can be invoked from the TSO/E
command line or with ADDRESS TSO, where each invocation of MYEXTR from
MYAPPL passes control to MYEXTR directly instead of using the REXX search
order. Recursive calls from MYEXTR to MYEXTR use the REXX search order,
because MYEXTR was not compiled with the DLINK option. Therefore, the
OBJECT output for MYEXTR does not contain external references. Calls from
MYAPPL to OTHRPROG also use the REXX search order, because OTHRPROG
was not included explicitly during the link-edit step.

Under z/VM
Link MYAPPL with MYEXTR, without resolving the reference to OTHRPROG,
and generate a module in either of these ways:

LOAD MYAPPL MYEXTR (RLDSAVE
GENMOD MYAPPL

or:
LOAD MYAPPL (RLDSAVE
INCLUDE MYEXTR (SAME
GENMOD MYAPPL

Now you have an executable module that can be invoked from the CMS command
line as a host command or from another EXEC as an external routine. It can be
loaded as a nucleus extension (by using NUCXLOAD) to avoid address conflicts
when invoking another program that also runs in the CMS user area. Each
invocation of MYEXTR from MYAPPL passes control to MYEXTR directly instead
of following the REXX search order. Recursive calls from MYEXTR to MYEXTR
use the REXX search order, because MYEXTR was not compiled with the DLINK
option. Therefore, the OBJECT output for MYEXTR does not contain external
references. Calls from MYAPPL to OTHRPROG also use the REXX search order,
because OTHRPROG was not included explicitly during the load step.

82 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Under VSE/ESA
1. Send the object modules MYAPPL and MYEXTR from z/OS or z/VM to

VSE/ESA, and store them in the sublibrary REXXLIB.OBJECT under the
names MYAPPL.OBJ and MYEXTR.OBJ

2. Determine the appropriate parameter convention for MYAPPL. If, for example,
MYAPPL is invoked from VSE JCL by means of an EXEC MYAPPL statement,
the appropriate stub is VSE.

3. Combine the appropriate stub with REXXLIB.OBJECT.MYAPPL.OBJ and store
the result in the sublibrary REXXLIB.OBJECT under the name CMYAPPL.OBJ.
Use the REXXPLNK cataloged procedure to perform this task.

4. Because MYEXTR is called as a subroutine, combine the EFPL stub with
REXXLIB.OBJECT.MYEXTR.OBJ and store the result in the sublibrary
REXXLIB.OBJECT under the name CMYEXTR.OBJ. Use the REXXPLNK
cataloged procedure to perform this task.

5. Link together the two object modules REXXLIB.OBJECT.CMYAPPL.OBJ and
REXXLIB.OBJECT.CMYEXTR.OBJ and store the result in the sublibrary
REXXLIB.MODULE under the name MYAPPL.PHASE.

Specify the sublibrary where the phase should reside with a
LIBDEF PHASE,CATALOG=REXXLIB.MODULE statement, and the sublibrary
where the object modules reside with a LIBDEF OBJ,SEARCH=REXXLIB.OBJECT
statement. The appropriate control statements for the linkage editor are:

PHASE MYAPPL,*,SVA
INCLUDE CMYAPPL
INCLUDE CMYEXTR

Now you have an executable phase that can be invoked from VSE JCL, where each
invocation of MYEXTR from MYAPPL passes control to MYEXTR directly, instead
of using the REXX search order. Recursive calls from MYEXTR to MYEXTR use the
REXX search order, because MYEXTR was not compiled with the DLINK option.
Therefore, the OBJECT output for MYEXTR does not contain external references.
Calls from MYAPPL to othrprog also use the REXX search order, because othrprog
was not included explicitly during the link-edit step.

Chapter 6. Using Object Modules and TEXT Files 83

84 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 7. Converting CEXEC Output between Operating
Systems

This chapter describes what to do to run CEXEC output on the operating system
other than the one on which you generated the output. To do this, you may have
to convert the record format and record length of the compiled EXEC. Use the
REXXF EXEC to perform the conversion on z/OS or z/VM. If you want to run
your compiled programs on VSE/ESA, you must prepare the CEXEC file for
transmission from z/OS or z/VM to VSE/ESA. Use the REXXV EXEC to perform
this task.

This chapter also explains how to copy, under z/OS, CEXEC output from one data
set to another. You must use the REXXF EXEC to copy CEXEC output.

The EXECs are described in “REXXF (FANCMF) under z/OS” on page 87, “REXXF
under z/VM” on page 87, “REXXV (FANV) under z/OS” on page 88, and “REXXV
under z/VM” on page 89.

Compiling on One System and Running on Another System
You can compile a REXX program on one operating system, convert the CEXEC
output by using either the REXXF or the REXXV EXEC, as appropriate, and then
run the converted EXEC under the other operating system. You can do this
because the generated code does not contain operating system dependencies.

Converting from z/OS to MVS OpenEdition
Compiled EXECs of type CEXEC can run under MVS OpenEdition. They behave
the same as interpreted REXX programs.

To transfer the CEXEC output to an OpenEdition file system, use the OCOPY
command with the BINARY parameter. See OpenEdition MVS Command Reference
for a description of the OCOPY command, the cataloged procedure REXXOEC, and
the REXX procedure MVS2OE in Appendix D, “The z/OS Cataloged Procedures
Supplied by IBM,” on page 231, for an example.

Compiled EXECs in load module format cannot run under MVS OpenEdition.

Converting from z/OS to z/VM
The two methods for converting CEXEC output from z/OS to z/VM are:
v Method 1:

1. Transfer the CEXEC output to z/VM, maintaining the same record length
and record format that the CEXEC had on z/OS.

2. Use REXXF to convert the CEXEC output to record format F and record
length 1024.

v Method 2:
1. Use REXXF to convert the CEXEC output to record format F or FB with a

record length of 1024.
2. Transfer the CEXEC output to z/VM.

© Copyright IBM Corp. 1991, 2013 85

Converting from z/OS to VSE/ESA
1. Use REXXV on z/OS to prepare the CEXEC output for transmission to

VSE/ESA. The resulting record format must be F or FB, and the record length
must be 80.

2. Create a job containing the following control statements and send it to
VSE/ESA:

// LIBDEF PROC,SEARCH=lib.sublib
// EXEC REXX=REXXV,PARM=’SYSIPT outlib outname [(option]’

.

. prepared CEXEC output from step 1

.
/*

where:

lib.sublib
Specifies the sublibrary where the EXEC REXXV resides.

outlib Is the name of the sublibrary, in the form lib.sublib, where the output
file will reside on VSE/ESA.

outname
Is the member name and member type of the output file that will
reside in outlib, in the form mn.mt. If the member type is not specified,
it defaults to PROC.

option Can be DATA or NODATA. Nested procedures must be cataloged all
in the same way, either all with DATA=YES, or all with DATA=NO.
You cannot mix procedures cataloged with DATA=YES and DATA=NO
in one nesting.

DATA Indicates that the member outname is cataloged with
DATA=YES

NODATA
Indicates that the member outname is cataloged with
DATA=NO

The default for a new member is NODATA. For an existing member
that is cataloged with DATA=YES, the default is DATA, if it is
cataloged with DATA=NO, the default is NODATA.

DATA and NODATA are used as parameters by the EXECIO command
in VSE/ESA. For further information about the EXECIO command,
refer to IBM VSE/ESA REXX/VSE Reference.

Converting from z/VM to z/OS
The two methods for converting CEXEC output from z/VM to z/OS are:
v Method 1:

1. Transfer the CEXEC output to z/OS. Receive the CEXEC output in a data set
with a record format F or FB and a record length of 1024.

2. Use REXXF to copy the CEXEC output to the target data set.
v Method 2:

1. Use REXXF to convert the CEXEC output to record format F or V: F if the
receiving data set has record format F or FB, and V if the receiving data set
has record format V or VB.

86 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

– For record format F or FB, set the record length equal to the record length
of the receiving data set.

– For record format V or VB, set the record length equal to the record length
of the receiving data set minus 4.

2. Transfer the CEXEC output to z/OS.

Converting from z/VM to VSE/ESA
1. Use REXXV on z/VM to prepare the CEXEC output for transmission to

VSE/ESA. The resulting record format must be F or FB, and the record length
must be 80.

2. Continue with step 2 on page 86 of “Converting from z/OS to VSE/ESA” on
page 86.

Copying CEXEC Output
To avoid having characters inserted into CEXEC output when copying it from one
data set to another, use the REXXF EXEC. Use the REXXV EXEC to prepare
compiled REXX programs (CEXEC type) for transmission to VSE/ESA, and then to
reformat them on VSE/ESA.

REXXF (FANCMF) under z/OS
The REXXF EXEC (FANCMF) converts a CEXEC output to a different record
format or a different record length, or both. This EXEC must run in a TSO/E
address space. (See also “Alias Definitions and Member Names under z/OS” on
page 8.)

Enter the REXXF command in the following format:

REXXF input-data-set-name output-data-set-name [REPlace]

where:

input-data-set-name
Is the name of the input data set that contains the CEXEC output. If the
data set has a partitioned organization, a member name must be specified.
The data set can have one of the following record formats: F, FB, V, or VB
with an arbitrary logical record length.

output-data-set-name
Is the name of the output data set that is to contain the converted CEXEC
output. If the data set has a partitioned organization, a member name must
be specified. The data set can have one of the following record formats: F,
FB, V, or VB with an arbitrary logical record length equal to or greater than
20 and equal to or less than 32 767.

REPlace
Specifies that an existing output data set that is not empty is to be
overwritten. The minimum abbreviation is REP.

REXXF under z/VM
The REXXF EXEC converts a CEXEC output to a different record format or a
different record length, or both.

Enter the REXXF command in the following format:

Chapter 7. Converting CEXEC Output between Operating Systems 87

REXXF input-file-identifier [output-file-identifier] [(options]

where:

input-file-identifier
Is the name of the input file. The file name must be specified. If the file
type is not specified, it defaults to CEXEC. If the file mode is not specified,
it defaults to A. If you want to specify an output file identifier, you must
specify all parts of the input file identifier.

output-file-identifier
Is the name of the output file. If a part of the file name is not specified, it
defaults to the corresponding part of the input file identifier. Similarly, an
= character used to specify a part of the output file identifier is replaced by
the corresponding part of the input file identifier. Note that the
output-file-identifier and the input-file-identifier can be the same, if the
REPlace option is used.

options Options can be specified in any order. Each option can be specified only
once. The choices are:

F or V Indicates the record format of the output file. The default record
format is F.

n Indicates the record length of the output file. The default record
length is 1024. The minimum record length is 20.

REPlace
Specifies that an existing output file is to be overwritten. The
minimum abbreviation is REP.

REXXV (FANV) under z/OS
The REXXV EXEC (FANV) prepares a compiled REXX program (CEXEC type) for
transmission to VSE/ESA. It must run in a TSO/E address space. (See also “Alias
Definitions and Member Names under z/OS” on page 8.)

Enter the REXXV command in the following format:

REXXV input-data-set-name output-data-set-name [REPlace]

where:

input-data-set-name
Is the name of the input data set that contains the CEXEC output. If the
data set has a partitioned organization, a member name must be specified.
The data set can have one of the following formats: F, FB, V, or VB with an
arbitrary logical record length.

output-data-set-name
Is the name of the output data set that is to contain the resulting CEXEC
output. If the data set has a partitioned organization, a member name must
be specified. The data set must have record format F or FB and the record
length must be 80. To protect the input data set, the output-data-set-name
must differ from the input-data-set-name.

REPlace
Specifies that an existing output data set that is not empty is to be
overwritten. The minimum abbreviation is the string REP.

88 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

REXXV under z/VM
The REXXV EXEC prepares a compiled REXX program (CEXEC type) for
transmission to VSE/ESA.

Enter the REXXV command in the following format:

REXXV input-file-identifier [output-file-identifier][(REPlace]

where:

input-file-identifier
Is the name of the input file. The file name must be specified. If the file
type is not specified, it defaults to CEXEC. If the file mode is not specified,
it defaults to A. If you want to specify an output file identifier, you must
specify all parts of the input file identifier.

output-file-identifier
Is the name of the output file. The file will have record format F and the
record length will be 80. The file identifier does not need to be fully
specified. For every missing part, the corresponding part of the
input-file-identifier is used. An = character is replaced by the corresponding
part of the input-file-identifier. Note that the output-file-identifier and the
input-file-identifier can be the same, if the REPlace option is used.

REPlace
Specifies that an existing output file is to be overwritten. The minimum
abbreviation is the string REP.

Chapter 7. Converting CEXEC Output between Operating Systems 89

90 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 8. Language Differences between the Compiler and
the Interpreters

This chapter describes the differences between the language processed by the
Compiler and by the interpreters. Programs that run with the Alternate Library are
interpreted, therefore they behave like normal interpreted programs.

For a complete description of the language definition and the other programming
interfaces provided by each of these implementations, refer to TSO/E REXX/MVS:
Reference, IBM VSE/ESA REXX/VSE: Reference, or to the corresponding z/VM
documentation. Under CMS, use the HELP REXXCOMP command to get complete
descriptions of the REXX language elements.

Differences from the Interpreters on VM/ESA Release 2.1, TSO/E
Version 2 Release 4, and REXX/VSE

The language accepted by the Compiler and Library is:
v REXX language level 4.02 on CMS on VM/ESA Release 2.1 and subsequent

releases
v REXX language level 3.48 everywhere else.

This section describes the items that the Compiler and Library handle differently
from the Interpreter. In programs that are affected by these differences, the effects
can usually be eliminated by minimal program changes. The support of some
commands is also different.

Compiler Control Directives
Valid control directives are:

%COPYRIGHT
%INCLUDE
%PAGE
%STUB
%SYSDATE
%SYSTIME
%TESTHALT

The Compiler supports control directives, which are contained in comments. The
interpreter treats them as normal comments. See “Control Directives” on page 38
for an explanation of how to use the control directives.

Halt Condition
The HI (Halt Interpretation) immediate command sets the halt condition. This may
terminate all currently running REXX programs without affecting the operation of
any other programs (as would the HE command under z/OS and the HX
command under CMS).

The HI command and testing for the halt condition are supported only for
programs that are compiled with the TESTHALT option or %TESTHALT control
directive. A program compiled with the NOTESTHALT option and no
%TESTHALT directive continues to run if the HI command is entered; the HALT
condition is not raised.

© Copyright IBM Corp. 1991, 2013 91

Note:

1. A REXX program compiled with the TESTHALT option tests for the HALT
condition:
v At the beginning of a program
v After each host command
v At each label
v At the beginning of the body of a repetitive DO loop
v After the END of each iterative DO
v At the first instruction following a clause containing either the invocation of

an external function or the call (by means of a CALL instruction) to an
external routine:
– If an IF expression contains an invocation of an external function:

- At the beginning of the THEN
- At the beginning of the ELSE or, if there is no ELSE, after the THEN

– If a WHEN expression contains an invocation of an external function:
- At the beginning of the THEN
- At the beginning of the following WHEN or, if there is no following

WHEN, at the beginning of the OTHERWISE or, if there is no
OTHERWISE, before the code that raises the SYNTAX condition.

When you compile a program with the TESTHALT option, the compiled output
may be slightly larger and the runtime performance may be slightly degraded.

2. If a HALT condition is detected at a label, the compiled program stores the line
number of the label in the SIGL special variable, whereas the interpreter stores
the line number of the instruction following the label in the SIGL special
variable.
To avoid this problem, put the label and the beginning of the following
instruction on the same line.

3. When an EXEC runs under NetView®, NetView issues a Halt Immediate
command. An interpreted EXEC will stop the execution. For a compiled EXEC
to show the same behavior, it must be compiled with the TESTHALT compiler
option or the %TESTHALT control directive. If compiled with the default
NOTESTHALT, the HALT condition is not raised and the program continues.

If the expression following a RETURN, EXIT, or SIGNAL VALUE instruction
contains a reference to an external function, the value stored in the special variable
SIGL might be different, depending on whether a program is run compiled or
interpreted.

Hint: Assign the expression to an intermediate variable and use this variable in
the RETURN, EXIT, or SIGNAL VALUE instruction. For example, instead
of coding this:
Return ext_rtn()

code this:
a = ext_rtn()
Return a

NOVALUE Condition
If a program contains a SIGNAL ON NOVALUE instruction but no NOVALUE
label, the interpreter issues the Label not found message if the NOVALUE
condition is raised. The message indicates the line number.

92 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

If a program contains a SIGNAL ON NOVALUE instruction but no NOVALUE
label, the Compiler issues a message and does not generate compiled code.

You can correct this error by adding to the program a routine that handles the
NOVALUE condition. The routine should indicate which line caused the
NOVALUE condition and display the name of the uninitialized variable. The
following code shows an example of a NOVALUE routine:
...
Exit /* End of routine */

NOVALUE:
Say ’NOVALUE raised at line’ sigl
Say ’The referenced variable is’ "CONDITION"(’D’)

Exit

The %SYSDATE and %SYSTIME control directives do not raise a NOVALUE
condition.

The Compiler supports the %SYSDATE and %SYSTIME control directives, which
generate the variables SYSDATE and SYSTIME, which contain the compilation date
and time. The generated code ensures that the NOVALUE condition is not raised
for these variables. If you did not explicitly assign a value to the variables
SYSDATE and SYSTIME the interpreter raises the NOVALUE condition. Therefore,
always assign a value to these variables:
sysdate = ’’
/*%sysdate */
if (sysdate = ’’) then say ’interpreted’

else say ’compiled on’ sysdate

OPTIONS Instruction
The ETMODE option requests checking of any double-byte character set (DBCS)
string, literal string, or comment in the program for proper use of DBCS
representation conventions, and enables the use of DBCS characters in symbols.

The ETMODE option of the OPTIONS instruction is recognized only if:
v It is enclosed within quotes (single or double) by itself, that is, no other option is

enclosed within the quotes.
v Any other options in the same instruction are also enclosed within quotes by

themselves.

If the OPTIONS instruction is not the first non-comment, non-label clause of the
program, the Compiler ignores the ETMODE option. In the same situation, the
interpreter raises the SYNTAX condition.

Examples of valid OPTIONS instructions are:
Options "ETMODE"
Options ’ETMODE’ ’EXMODE’

PARSE SOURCE Instruction
PARSE SOURCE returns information describing the source of the program being
executed.

The PARSE instruction with the SOURCE option returns the same tokens as
returned by the interpreter, except in the following cases:

Chapter 8. Language Differences between the Compiler and the Interpreters 93

v Under z/OS, when an object module is linked with the EFPL stub, it always
shows the string 'SUBROUTINE' as the second token, even when it is invoked as
a function. See “PARSE SOURCE” on page 219 for details.

v Under z/VM, when the compiled program is a TEXT file, the file type and file
mode (the fourth and fifth tokens) are * characters.
When a module is generated from a TEXT file and is invoked using a synonym,
the file name (the third token) is the synonym (which is also provided in the
sixth token). See also “What the REXX Program Gets” on page 222.

v Under VSE/ESA, when an object module is linked with the EFPL stub, it always
has the string 'SUBROUTINE' as the second token, even if it is invoked as a
function. See “PARSE SOURCE” on page 229 for more information.

v Under z/OS and VSE/ESA, link-edited modules with stubs insert a question
mark (?) for the third, fourth, fifth, and sixth tokens (see “PARSE SOURCE” on
page 219 and “PARSE SOURCE” on page 229).

PARSE VERSION Instruction
PARSE VERSION returns information describing the language level and the date of
the language processor.

The PARSE instruction with the VERSION option returns five tokens:
1. The string REXXC370 (interpreters produce REXX370).
2. The language level description. The language level depends on the Operating

System:
v Under VM/ESA Release 2.1 and subsequent releases, the language level is

4.02. This language level supports stream I/O. Programs containing stream
I/O that have been compiled with an earlier release of the Compiler need to
be recompiled.

v Under z/OS, under z/VM (releases earlier than VM/ESA Release 2.1), and
under VSE/ESA, the language level is 3.48.

3. Three tokens describing the release date of the Compiler that was used to
generate the code (for example, 27 Oct 1994).

The general format of the PARSE VERSION information is the same as that
provided by the interpreter, although the values of the tokens differ.

RANDOM Built-In Function
The Compiler and the Interpreter might not produce the same sequence, if you use
the RANDOM built-in function with the third argument 'seed' to obtain a
predictable sequence of quasi-random numbers, even if you use identical values of
'seed'.

SOURCELINE Built-In Function
In the interpreter, the SOURCELINE built-in function works like this:
v SOURCELINE() returns the line number of the final line in the source program.
v SOURCELINE(n) returns the nth line of the source program.

The full functions of the SOURCELINE function are available only if the program
is compiled with the SLINE compiler option.

If you use the SLINE compiler option (described in “SLINE” on page 35), the
source program is included in the compiled program and SOURCELINE continues
to work as just described.

94 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Note:

1. Any implied or specified EXEC compression for the interpreter (specifying
%NOCOMMENT) will not be reflected by the Compiler.

2. The string returned by SOURCELINE(n) from a compiled program contains
only the text within the specified margins. The string returned from a program
interpreted with the system product interpreter, however, contains the complete
line.

3. If source files are included using the %INCLUDE directive (see “%INCLUDE”
on page 39), SOURCELINE() from a compiled program returns the total
number of source lines including those from the included files.

If the NOSLINE compiler option is specified or defaulted to, however,
SOURCELINE works like this:
v SOURCELINE() returns a value of 0.
v SOURCELINE(n) raises the SYNTAX condition at runtime.

To find out whether the SLINE or NOSLINE option is in effect, test whether
SOURCELINE() is 0. The following code shows an example of this test:
Signal On Error
’COPY’ ... /* This command may give a */

/* nonzero return code */
...
Exit /* End of main program */
/*--*/
/* Error handler: common exit for command errors */
/*--*/
ERROR:
Say "Unexpected return code" rc "from command"
/* If the SL option was used, display the source line. */
If Sourceline() ¬= 0 Then

Say " " Sourceline(sigl)
/* Display the line number as shown in the listing. */
Say "at line" sigl"."

Start of Clause
The interpreter considers the line that consists of only a continuation comma (and
possibly comments) as the start of a clause.

The Compiler considers the line where the actual instruction starts as the start of
the clause.

This might lead to different output in the traceback (in case of an error) and in a
different value of the special variable SIGL.

Example:
, /* 16 interpreter sets SIGL here */
SIGNAL X /* 17 Compiler sets SIGL here */

.

.

.
X: SAY SIGL /* interpreter says 16 */

/* Compiler says 17 */

SYSVAR Function
If ISPF variables are accessed with REXX programs running under TSO, note the
following: If SYSICMD is retrieved using the SYSVAR function, link-edited REXX
EXECs return a null string. For compiled EXECs that are not link-edited and are

Chapter 8. Language Differences between the Compiler and the Interpreters 95

therefore equal to interpreted REXX EXECs, SYSVAR('sysicmd') contains the EXEC
name. The name of the link-edited REXX EXEC can be retrieved using
SYSVAR('syspcmd') provided that it is obtained before any other subcommand is
issued. In interpreted REXX EXECs and compiled REXX EXECs that are not
link-edited, the initial value in SYSVAR('syspcmd') is 'EXEC'.

TRACE Instruction and TRACE Built-In Function
The TRACE instruction and the TRACE built-in function are supported (except for
trace setting SCAN) only for programs compiled with the TRACE and SLINE
options in effect.

Programs that have been compiled with the NOTRACE option behave the same as
interpreted programs that run with TRACE set to Off. All valid options in the
TRACE instructions or built-in functions are changed to OFF.

In a compiled program, interactive tracing starts immediately after the clause
requesting it, provided that the clause is eligible. In an interpreted program, the
clause following the eligible clause is executed before tracing is started. Trace ?R,
for example, causes a first pause immediately after this trace instruction (unless the
program is in interactive debug already). Trace ?C causes pauses only after host
commands encountered after this instruction. Interactive debug is, however,
entered immediately after a host command that contains this reference to the
TRACE built-in function: Trace(’?C’).

When tracing Intermediates (with TRACE setting I) of an expression that contains
more than one adjacent concatenation, all intermediate results of the operands are
shown before the intermediate results of the concatenations.

This example shows the difference between the output of the Compiler and that of
the interpreter when the following program is run:
/*REXX*/Trace I
Say ’Tracing’ ’a’ ’concatenation’

Interpreter output Compiler output

2 *-* Say ’Tracing’ ’a’ ’concatenation’
>L> "Tracing"
>L> "a"
>O> "Tracing a"
>L> "concatenation"
>O> "Tracing a concatenation"

Tracing a concatenation

2 *-* Say ’Tracing’ ’a’ ’concatenation’
>L> "Tracing"
>L> "a"
>L> "concatenation"
>O> "Tracing a"
>O> "Tracing a concatenation"

Tracing a concatenation

The indentation of traced clauses reflects only function and subroutine invocations
of internal routines and INTERPRET instructions.

Note: Any implied or specified EXEC compression for the interpreter (specifying
%NOCOMMENT) will not be reflected by the Compiler.

TS (Trace Start) and TE (Trace End) Commands
The TS (Trace Start) and TE (Trace End) immediate commands are used to start
and stop interactive tracing. TS and TE are supported in programs that have been
compiled with the TRACE option.

Note:

96 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

1. TS and TE are not supported on VSE/ESA with REXX/VSE Version 1 Release
1.

2. The TS and TE commands have no effect on programs that have been compiled
with the NOTRACE option.

3. Interactive tracing is started immediately after the TS command has been
executed.

4. If interactive tracing is active and the TE command is executed, no interactive
pause takes place after TE.

Differences to Earlier Releases of the Interpreters
This section describes the differences between the language supported by the
Compiler and by releases of the interpreters earlier than those described in the
preceding section.

SIGNAL Instruction
The SIGNAL instruction changes the flow of control. The VALUE option specifies
an expression, and the result of evaluating this expression determines the label to
get control.

Note:

1. The label name specified on a SIGNAL VALUE instruction must be in
uppercase, because all labels defined in the program are translated to
uppercase. The comparison is case-sensitive, and the result of the expression is
not translated to uppercase.

2. A literal string specified as a label name on a SIGNAL labelname instruction
must also be in uppercase for the same reason. For example:
SIGNAL ’LABEL1’

This restriction is for compatibility with the SAA REXX interface.

Integer Divide (%) and Remainder (//) Operations
The ratio of the operands in integer divide (%) and remainder (//) operations is
checked.

The following condition must be true for integer divide and remainder operations:

first operand < second operand * (10**d)

where d is the current setting of NUMERIC DIGITS. The absolute values of the
terms in the formula are used.

This ensures that the quotient is a whole number within the current setting of
NUMERIC DIGITS. Therefore, the result of an integer division is never rounded.

Exponentiation (**) Operation
In exponentiation (**) operations, the NUMERIC DIGITS setting is increased by k +
1, where k is the number of digits in the second operand. Then, the result is
rounded to NUMERIC DIGITS, if necessary.

For example, in the operation a**500 with NUMERIC DIGITS 9, all intermediate
results are rounded to 13 significant digits (9 + 3 + 1).

Chapter 8. Language Differences between the Compiler and the Interpreters 97

This restricts the possible error in the result to a maximum of 1 in the least
significant position.

If the first operand cannot be expressed precisely within the current setting of
NUMERIC DIGITS, it may be rounded (as the result of a previous operation) or
truncated (as input to the exponentiation). In such cases, the precision of the first
operand must be the precision of the result + k + 1, and the NUMERIC DIGITS
setting must be raised accordingly.

Location of PROCEDURE Instructions
The PROCEDURE instruction:
v Sets up a local environment for the variables in an internal subroutine.
v If used, it must be the first instruction executed after the CALL or function

invocation—that is, it must be the first instruction following the label.

Ensure that your programs contain no “deferred” PROCEDURE instructions when
you compile them.

Binary Strings
Binary strings may not be supported by your Interpreter. A binary string is any
sequence of zero or more binary digits (0 or 1) grouped in fours. The first group
may have fewer than four digits.

The groups of digits are optionally separated by one or more blanks, and the
whole sequence is delimited by single quotes or double quotes and immediately
followed by the symbol b or B.

Examples: ’11110000’b "101 1101"B

Templates Used by PARSE, ARG, and PULL
The templates used by the PARSE, ARG, and PULL instructions may contain
variable column numbers.

A variable within parentheses, where the open parenthesis is preceded by an equal,
plus, or minus sign, means that the value of the variable is used as absolute or
relative positional pattern.

Examples: =(v) +(v) -(v) =(v.1) +(v.1) -(v.1)

PROCEDURE EXPOSE and DROP
The PROCEDURE EXPOSE and DROP instructions are enhanced to support
subsidiary lists.

Examples: Procedure Expose (list)
Drop (list)

DO LOOPs
If variables are named TO, BY, and FOR, they can be used within the expressions
following WHILE and UNTIL, and within the repetitor expression immediately
following the DO.

DBCS Symbols
Symbols may contain DBCS characters, if OPTIONS 'ETMODE' is in effect.

98 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

VALUE Built-In Function
The VALUE built-in function may have up to three arguments.

Three arguments for the VALUE built-in function are supported in compiled REXX
only in CMS Release 6 and subsequent releases.

Argument Counting
Omitted trailing arguments are ignored. The number of arguments passed to a
function or a subroutine is the largest number for which the ARG built-in function
ARG(n,’e’) returns 1. Where:
v n is the position of the last argument string specified.
v ’e’ is the existence test for the nth argument.

Options of Built-In Functions
The following options of built-in functions are supported by the Compiler, but may
not be supported by your Interpreter.

Function Option Definition and Example

DATATYPE Dbcs Returns 1 if the given string is a pure DBCS string
enclosed within a shift-out (SO) and shift-in (SI). For
example:

DATATYPE(’<AABB>’,’D’) → 1
DATATYPE(’a<AABB>b’,’D’) → 0

DATATYPE C Returns 1 if the given string is a valid mixed DBCS
string. For example:

DATATYPE(’<AABB>’,’C’) → 1
DATATYPE(’a<AABB>b’,’C’) → 1
DATATYPE(’abcde’,’C’) → 0

DATE Normal Specifies the default date format, which returns the
date in the format dd mon yyyy. For example:

DATE(’N’) → ’30 Jun 1991’

DATE 2nd to 5th The second to fifth arguments represent an input
date that can be converted to a specific output
format. The fourth and fifth arguments specify the
separation characters of the output and input
strings, respectively. For example:

DATE(’U’,’28 02 90’,’E’,’*’,’ ’)
→ ’02*28*90’

TIME Civil Returns the time in the format hh:mmxx, where the
hours are 1 through 12, and the minutes are 00
through 59. The minutes are immediately followed
by the letters am or pm. For example:

TIME(’C’) → ’4:54pm’

TIME Normal Specifies the default time format, which returns the
time in the format hh:mm:ss. For example:

TIME(’N’) → ’16:54:22’

VERIFY Nomatch Specifies the default option, which returns the
position of the first character in the given string that
is not also in the given reference. For example:

VERIFY(’AB4T’,’1234567890’,’N’) → 1

Note: < represents shift-out (SO), and > represents shift-in (SI).

Chapter 8. Language Differences between the Compiler and the Interpreters 99

Built-In Functions
The following built-in functions are supported by the Compiler, but may not be
supported by your Interpreter.

Function Definition and Example

B2X Converts a string of binary digits into an equivalent string of
hexadecimal characters.

CONDITION Returns condition information associated with the most recently
trapped condition. For example:

CONDITION(’I’) → ’SIGNAL’

DIGITS Returns the current setting of NUMERIC DIGITS. For example:

DIGITS() → 9

FORM Returns the current setting of NUMERIC FORM. For example:

FORM() → ’SCIENTIFIC’

FUZZ Returns the current setting of NUMERIC FUZZ. For example:

FUZZ() → 0

WORDPOS Returns the word number of the first word of a given phrase
found in a given string. Returns 0 if phrase is not found.

WORDPOS(’is the’,’now is the time’) → 2

X2B Converts a string of hexadecimal characters into an equivalent
string of binary digits.

Options of Instructions
The following options of instructions are supported by the Compiler, but may not
be supported by your Interpreter.

Instruction Options Definition

CALL ON/OFF Controls the trapping of certain conditions.

NUMERIC FORM VALUE Enables specification of the SCIENTIFIC or
ENGINEERING form as an expression.

OPTIONS 'EXMODE'
'NOEXMODE'

Enables or disables DBCS data operations
capability1.

SIGNAL ON FAILURE Traps negative return codes from host
commands. (These are trapped by SIGNAL
ON ERROR if trapping of the failure
condition is not enabled.)

SIGNAL ON NAME Specifies the name of a label to get control
if a specified condition occurs.

Strict Comparison Operators
The strict comparison operators carry out a simple character-by-character
comparison. Unlike the other comparison operators, they never pad either of the
strings being compared and never attempt to perform a numeric comparison. The
strict comparison operators that may not be supported by your Interpreter are:

<< Strictly less than

1. The support of DBCS data operations affects all functions that deal with delimiting words and determining length. For example,
the LENGTH function counts each double-byte character between SO and SI as 1 character.

100 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

<<= Strictly less than or equal to

¬<< Strictly not less than

>> Strictly greater than

>>= Strictly greater than or equal to

¬>> Strictly not greater than

The backslash (\) is synonymous with the logical NOT character (¬). The two
characters may be used interchangeably in operators.

LINESIZE Built-In Function in Full-Screen CMS
The LINESIZE built-in function returns the current line width of the terminal. In
full-screen CMS, the LINESIZE function invoked by a compiled REXX program
always returns a value of 999999999.

Enhancement to the EXECCOMM Interface
The EXECCOMM interface enables called commands to access and manipulate the
current generation of REXX variables. The Fetch Private Information operation has
been extended to return information for the following requests:

PARM Fetch the number of parameters (arguments) supplied to the program.

PARM.n
Fetch the nth parameter (argument string).

Chapter 8. Language Differences between the Compiler and the Interpreters 101

102 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 9. Limits and Restrictions

This chapter provides information both on the maximum implementation limits
and on technical restrictions imposed by the Compiler and Library.

If a program runs with the Alternate Library, all the limits and restrictions of the
appropriate interpreter apply.

Implementation Limits
None of the following limits is lower than the corresponding interpreter limit:

Table 7. Compiler Implementation Limits

Item Limit

Literal strings 250 bytes

Symbol (variable name) length 250 bytes

Nesting control structures 999

Clause length Virtual storage

Variable value length 16 megabytes 2

Call arguments 16000

MIN and MAX function arguments 16000

Number of PARSE templates 16000

PROCEDURE EXPOSE items 16000

Queue entries Virtual storage

Queue entry length Same as interpreter

NUMERIC DIGITS value 999 999 999

Notational exponent value 999 999 999

Hexadecimal strings 250 bytes

Binary strings 250 bytes

C2D input string 250 bytes

D2C output string 250 bytes

X2D input string 500 bytes

D2X output string 500 bytes

active PROCEDURES 30000

Technical Restrictions
Restrictions common to all systems:
v The number of lines of the source program is restricted to 99 999. The logical

record length of the source program is restricted:
– Under z/VM, to 65 535

2. If the length of a variable’s value exceeds 16 megabytes, the results are unpredictable.

© Copyright IBM Corp. 1991, 2013 103

– Under z/OS, to 32 760 for fixed length data sets, and to 32 756 for variable
length data sets

v The maximum number of external routines that can be referenced in a program
when compiled with the DLINK option is 65 534.

v The length of the value of variables is restricted to 16MB. If the length of a
variable’s value exceeds 16MB, the results are unpredictable.

v Compiled EXECs or object programs are restricted to 16MB in size.
v Checking of pad characters: some built-in functions that perform string

operations have an argument that specifies a pad character. If a program
contains an OPTIONS or an INTERPRET instruction, the pad characters on
built-in functions are not checked until runtime.

z/OS Restrictions
v You cannot invoke compiled REXX programs as authorized.
v The storage replaceable routine is not used by the Library.
v If the NOESTAE flag is set in the PARM BLOCK, no clean-up can be performed

by the Library in case an ABEND occurs.

z/VM restrictions
v You cannot run compiled programs in the transient program area (TPA). A

program running in the TPA cannot invoke a compiled REXX program.
v A NUCXDROP EAGRTPRC command must be issued before purging the

segment that contains the Library, otherwise an ABEND will occur.
v Under VM/ESA Release 1.1 and subsequent releases, if the command

NUCXDROP EAGRTPRC is issued while a compiled REXX program is running,
unpredictable results may occur.

VSE/ESA restrictions
v The storage replaceable routine is not used by the Library.
v National Language Support: the messages are supported only in English.

C restriction
v The compilation of a program might be abended with the following messages:

DMSABE155T User abend 2100 called from 002BCEB0 reason code 00007203 CMS
DMSMOD109S Virtual storage capacity exceeded

Reason code 7203 states an error when extending the stack.
When such an error occurs, refer to the book IBM C/370™ Programming Guide for
information on how to proceed.

104 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 10. Performance and Programming Considerations

This chapter is intended to help you to improve the performance of your compiled
programs. It also explains how to find out whether the IBM Library for REXX on
System z is available on a system—an important programming consideration.

Performance Considerations
The performance improvements that you can expect when you run compiled REXX
programs depend on the type of program. A program that performs large numbers
of arithmetic operations of default precision shows the greatest improvement. A
program that mainly issues commands to the host shows limited improvement,
because REXX cannot decrease the time taken by the host to process the
commands.

Compiled programs that include many ... Run this much faster

Arithmetic operations
6 to 10 times

String and word processing operations

Constants and variables

4 to 6 timesReferences to procedures and built-in functions

Changes to values of variables

Assignments
2 to 4 times

Reused compound variables

Host commands Minimal improvement

Note: This is true only when:
v The IBM Library for REXX on System z is used. With the Alternate Library, the

performance of compiled REXX programs is similar to that of interpreted
programs.

v The program has been compiled with the NOTRACE option.

Optimization, Optimization Stoppers, and Error Checking
The compiler performs the optimization procedures on a REXX program to
improve error checking at compilation time and performance at runtime. Certain
REXX constructs do not allow the compiler to optimize. They are called
optimization stoppers.

The optimization procedures and stoppers are described in the following sections.

Keeping Track of Variables
After a value is assigned to a variable or the variable is used in an assignment,
such as a target in a PARSE template, the variable is no longer in a dropped state.
For example, in:
SIGNAL ON NOVALUE; X = Y; SAY X

the SAY instruction does not need to include code to test for, and raise, the
NOVALUE condition although such code is needed for the evaluation of the
expression Y in the assignment.

© Copyright IBM Corp. 1991, 2013 105

After a constant is assigned to a simple variable, the compiler can use the constant
instead of the variable. This improves performance and enables the compiler to
find more errors. For example, in:
I = ’A’; SAY SUBSTR(X, I)

the compiler can detect that the argument I for SUBSTR has a value that is not
numeric and therefore not valid.

Even if the compiler cannot predict the exact value of a variable, it can derive
properties of the value from the context in which the variable is used. For example,
in:
X = Y + Z; SAY DATE(X) DATE(Y) DATE(Z)

the compiler can report that the arguments X, Y, and Z for the DATE function are
not valid because they must all be numeric if the assignment is successful.

Performing Operations at Compilation Time
In many cases, the compiler can replace an expression involving only constants
with the result of the expression. Together with keeping track of variables, this
procedure can improve both the performance and error checking.

Note, however, that in the expression X + 1 + 2, for example, the subexpression 1
+ 2 cannot be optimized. The reason for this is that, depending on the constants
involved and the NUMERIC DIGITS setting, the expressions X + (1 + 2) and (X +
1) + 2 can have different results.

Eliminating Several Evaluations
If an expression occurs more than once in a REXX program, it is not always
necessary to evaluate the expression more than once. For example, the compiler
treats SAY X * Y + X * Y like T = X * Y; SAY T + T where multiplication is
performed only once at runtime.

This optimization procedure is even more effective if a compound variable is
involved. For example, for A.I = X; SAY A.I the compiler generates only once the
code for searching the tree belonging to stem A. and the variable belonging to tail
I. In addition, the search is performed only once at runtime.

Improving Access to Compound Variables
In a loop where the tail of the compound variable is the control variable of the
loop, such as:
DO I = 1 TO 1000

SAY I A.I
END

all compound variables belonging to stem A. might be accessed sequentially. In
this case, performing the general tree search for stem A. each time would be
inefficient. Therefore, the code generated for A.I always first checks whether the
next compound variable in stem A. is the one required. It then either uses it or
continues its search.

If the tail is the control variable of an outer loop instead of the immediately
enclosing loop, the same variable might be accessed repeatedly. In many such
cases, the compiler can apply the usual optimization for compound variables. If
this is not possible, it generates code that checks whether the compound variable
used previously is the one required and only continues its search if not.

106 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Note: This optimization procedure is not possible if a loop contains an
optimization stopper.

Optimization Stoppers
An optimization stopper is a point in the REXX program where the compiler’s
information about the state of the variables or the expressions evaluated previously
becomes unreliable.

Such optimization stoppers are:
v A point where the EXECCOMM interface can be invoked because any variable

in the REXX program can be changed by this interface. Examples are the start of
the program, invocations of external procedures, host commands, and
TESTHALT hooks.

v Label definitions.
v INTERPRET instructions.
v Calls of the VALUE built-in function with a second argument.
v NUMERIC instructions. They cause information derived from, or about,

arithmetic or comparison expressions to become unreliable, but do not affect
information about compound variables.

The removal or introduction of an optimization stopper can cause the compiler to
issue more or fewer warnings or error messages. In addition, the performance of
the compiled program is affected if an optimization stopper is introduced into an
inner loop.

Because the TESTHALT compiler option introduces TESTHALT hooks, at least one
in every loop, using this option reduces the possibilities for optimization and error
checking. It is, therefore, recommended that you first compile without the
TESTHALT option to improve error checking, and compile with the option after
you corrected the errors. Similarly, use the %TESTHALT directive after correcting
the errors.

Optimization Limitations
The compiler’s optimization procedures are designed to be compatible with the
interpreter. Therefore, sometimes no optimization occurs where, at first glance, it
seems possible. For example, in the following instruction:
SAY A X Y; SAY B X Y

the generated code evaluates the concatenation X Y only once, whereas no
optimization occurs in:
SAY A + X + Y; SAY B + X + Y

To understand this, add the parentheses implied by the REXX evaluation order.
The expression A X Y is equivalent to (A X) Y. The rules for REXX concatenation
guarantee that the expressions (A X) Y and A (X Y) always produce the same
result. However, in the case of the addition, the expressions (A + X) + Y and A +
(X + Y) can produce different results because of the rounding rules required by
NUMERIC DIGITS. Therefore, there is no common subexpression X + Y in these
two expressions, and the optimizer cannot treat them alike. However, the compiler
can optimize these expressions if they are rewritten as:
SAY X + Y + A ; SAY X + Y + B

Chapter 10. Performance and Programming Considerations 107

Arithmetic
Compiled REXX programs normally use binary arithmetic for whole numbers. But
for NUMERIC DIGITS settings of less than 9, and for whole numbers in
exponential notation, arithmetic operations are performed using string arithmetic,
which is slower. String arithmetic is also used for whole numbers written with
decimal points, such as ’2.’ and ’3.0’.

Hints: Do not set NUMERIC DIGITS to a value less than 9, unless necessary. Do
not write whole numbers with decimal points, unless necessary.

Literal Strings
A string in quotes is considered to be a literal constant; its contents are never
modified. Other symbols can also be used as constants: if no value has been
assigned to a symbol, the defined value is the symbol itself, translated to
uppercase. If a value has been assigned to a symbol the line number in the
Compiler’s cross-reference listing (see page “Cross-Reference Listing” on page 55)
is followed by the characters ’(s)’.

The Compiler does not know whether you intend to use a nonquoted symbol that
could be a variable as a constant, a variable, or both. Therefore, every nonquoted
symbol that could be a variable is checked for a value each time it is referenced.
(No check can be made for value assignment during compilation, because values
can be assigned to variables through the variable pool interface at runtime.)

Hint: Enclose all literal constants in quotes. For example, instead of coding this:
reportheader = customers /* No value assigned to */

/* "customers" yet */

code this:
reportheader = "CUSTOMERS"

Variables
Simple variables and stems are addressed from a static symbol table created during
compilation, whereas compound variables are held in a binary tree created at
runtime. This tree has to be searched to retrieve a compound variable. Therefore,
simple variables and stems are accessed faster than are compound variables.

Hint: Use compound variables only for structures, such as arrays and lists, for
which they are appropriate.

Compound Variables
Compound variables that have three or fewer numeric tail parts can be accessed
faster than compound variables that have nonnumeric characters in their tail.

Hint: If you need tails with nonnumeric and numeric tail parts, the first tail part
should be nonnumeric.

For the best performance, use three or fewer numeric tail parts.

Labels within Loops
If there is a label between a DO and its corresponding END, the performance of
the loop is adversely affected; control may jump incorrectly into the body of the
loop, thus requiring more runtime checking at the end of each pass through the
loop.

108 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Hint: Avoid putting labels within DO loops. Structure your code so that there is
no need for such labels.

Procedures
The EXPOSE option of the PROCEDURE instruction is used to ensure that
references to specified variables within the internal routine refer to the variables
environment owned by the caller.

If you expose a stem, the entire array of compound variables is available to the
internal routine. This is much more efficient than exposing individual compound
variables of the same stem.

Hint: If you expose a compound variable in an internal routine, expose the entire
stem, if practical. For example, instead of coding this:
Procedure Expose x.j

code this:
Procedure Expose x.

TESTHALT Option
When a program is compiled with the TESTHALT option, the Compiler generates
code in several places in the program to check for the HALT condition (see “Halt
Condition” on page 91.) This extra code may adversely affect the performance of
the program.

Hints:
v Compile with the TESTHALT option only when it is necessary.
v Instead of the TESTHALT compiler option, use the %TESTHALT control

directive to check for the HALT condition only at points in the program that
affect the performance less, for example not inside inner loops.

Frequently Invoked External Routines
If your program frequently invokes external routines or functions, consider linking
them to the program that invokes them. This will improve performance by
eliminating the search time. See the compiler option DLINK at “DLINK” on page
24 in topic “DLINK” on page 24 and “DLINK Example” on page 208.

Programming Considerations
This section explains:
v How to find out whether the Library is available on your system
v The different ways in which the z/OS and the z/VM Compilers handle the

VALUE built-in function
v The different ways in which different systems support stream I/O
v How to determine whether an EXEC is compiled or interpreted
v How to create programs that run with the Alternate Library
v The upper and lower limits on the absolute value of numbers

Verifying the Availability of the Library
To find out whether the Library is available on a system, use the following code
sequence in an interpreted program for the system you wish to query:

Under z/OS:

Chapter 10. Performance and Programming Considerations 109

Trace ’O’ /* Suppress trace messages */
Address Linkmvs ’EAGRTPRQ’ /* Check for the Library */
If rc¬=-3 Then /* -3 means the Library is not there */

Say ’IBM Library for REXX on System z available’

Under z/VM:
Trace ’O’ /* Suppress trace messages */
Address Command ’EAGRTPRC’ /* Check for the Library */
If rc¬=-3 Then /* -3 means the Library is not there */

Say ’IBM Library for REXX on System z available’

Under z/OS, the EAGQRLIB EXEC (REXXQ) is located in the data set
prefix.SEAGCMD. Under z/VM, you can find the EAGQRLIB EXEC on the
installation minidisk of the IBM Library for REXX on System z. The source of the
EAGQRLIB EXEC contains the following definition:

Note: Under VSE/ESA, no checking is necessary because the IBM Library for
REXX in REXX/VSE, is always available if REXX/VSE is installed.

/* REXX ---*/
/* Diagnose to query the REXX Runtime Library Symptom string. */
/* */
/* Licensed Materials - Property of IBM */
/* 5695-014 IBM REXX Library */
/* (C) Copyright IBM Corp. 1989, 2003 */
/* */
/* Change Activity: */
/* 03-05-28 Release 4.0 */
/* */
/*---*/

Trace ’O’;
Parse source src;
Say ’Query the REXX Runtime Library symptom string’;
Say ’Source:’ src;
If word(src,1)=’CMS’ then eagname=’EAGRTPRC’;
Else eagname=’EAGRTPRQ’;
Say ’ Calling query entry’ eagname;
If word(src,1)=’CMS’ then do;

’NUCXDROP’ eagname;
ADDRESS COMMAND eagname;

End;
Else ADDRESS LINKMVS eagname;
If rc>0 then do;

Say ’ Address: ’ right(d2x(rc),8,0);
ids=c2d(storage(d2x(rc+16),4));
lvl=storage(d2x(ids+2),c2d(storage(d2x(ids),2)));
Say ’ Symptom:’ lvl;
Say ’ Descrpt: Name Rel APAR LibLevel’;
If word(lvl,1)=’EAGRTALT’ then,

Say ’ The REXX Alternate Library is in effect.’;
Else Say ’ The REXX Runtime Library is in effect.’;

End;
Else Do;

Say ’ ’eagname’ returned RC=’rc;
Say ’ A REXX Runtime System was not found.’;

End;
Exit;

Figure 23. Source of the EAGQRLIB EXEC

110 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

VALUE Built-In Function
When cross-compiling, the z/OS and z/VM Compilers treat the VALUE built-in
function as follows:
v The z/OS compiler issues message FANGAO0600W if the VALUE built-in

function has been coded with the selector argument. If you are compiling a REXX
program with the z/OS compiler for execution under z/VM, you should ignore
this message.

v When compiling under z/VM for execution under z/OS or VSE/ESA, no
message is issued if the selector argument has been coded even though the z/OS
or VSE/ESA runtime support for selector is not available.

Stream I/O
When cross-compiling, you should bear in mind that stream I/O is supported for
execution only under VM/ESA Release 2.1 and subsequent releases.

Table 8 illustrates how stream I/O is supported on the different systems.

Table 8. Stream I/O Support

Function VM/ESA 2.1 Other systems

LINEIN LINEOUT LINES
CHARIN CHAROUT CHARS
STREAM

Built-in function External function

PARSE LINEIN
SIGNAL ON/OFF NOTREADY
CALL ON/OFF NOTREADY

Executed Raise SYNTAX
condition at runtime

The z/OS and z/VM Compilers act as follows:
v The z/OS compiler issues message FANPAR0465W for PARSE LINEIN and

message FANPAR0466W for SIGNAL ON/OFF NOTREADY, and CALL
ON/OFF NOTREADY. If you are compiling a REXX program with the z/OS
compiler for execution under VM/ESA Release 2.1 and subsequent releases, you
should ignore this message.

v When compiling under z/VM for execution under z/OS or VSE/ESA, no
message will be issued for PARSE LINEIN, SIGNAL ON/OFF NOTREADY, and
CALL ON/OFF NOTREADY even though no z/OS or VSE/ESA runtime
support for them is available.

The following Parse statement is flagged by the Compiler because TSO/E does not
support the Stream I/O (CMS supports the Stream I/O):
Parse LineIn x

If you have installed the Stream I/O function package for z/OS (described in
Part 3, “Stream I/O for TSO/E REXX,” on page 127), you can code the Parse
statement as follows:
Parse value LineIn(data_set_name) with aline

The Stream I/O function package for z/OS is described in Part 3, “Stream I/O for
TSO/E REXX,” on page 127.

Chapter 10. Performance and Programming Considerations 111

Determining whether a Program is Interpreted or Compiled
Use the PARSE VERSION instruction to determine whether the EXEC is running
compiled or interpreted. This makes it possible to choose different logic paths
depending on whether the EXEC is compiled or interpreted.

Example:
Parse Version v . /* Use Parse Version to see if compiled */
If left(v,5)=’REXXC’ Then what=’compiled’

Else what=’interpreted’
Say what

Creating REXX Programs for Use with the Alternate Library
(z/OS, z/VM)

Not all programs are good candidates to run with the Alternate Library. This is
because programs that run with the Alternate Library are in fact interpreted.

To create a REXX program that can run with both the Library and the Alternate
Library, do the following:
v Compile the REXX program.

At compilation time, you must consider these options:

ALTERNATE
Is required. It enables the program to run with the Alternate Library. The
program can also run with the Library.

SLINE
Is required. It enables the creation of the control structures required by
the interpreter.

CONDENSE
Is not required. However, because the SLINE option includes the
program source in the compiled program, CONDENSE can be used to
create compacted output, which is unreadable when using ISPF/PDF
browse, view, and edit under z/OS, or browse and XEDIT in CMS.

DLINK
Requires special care. The DLINK option of a single module requires the
Library. To run a program that uses the DLINK option with the
Alternate Library, you must supply the external functions and
subroutines that are in the single module as separate programs. In this
way, the interpreter can locate them and invoke them.

TESTHALT
When running with the Alternate Library the Halt condition is always
tested for by the REXX Interpreter, regardless of whether you specified
TESTHALT, NOTESTHALT or neither as a compiler option.

v Continue with the preparation of the compiled program as explained in
Chapter 6, “Using Object Modules and TEXT Files,” on page 71, if necessary.

v Document that the IBM Library for REXX on System z is not a prerequisite, but
if it is available, using it will result in better runtime performance.

Limits on Numbers
There are upper and lower limits on the absolute values of numbers. These limits
apply regardless of the setting of NUMERIC DIGITS or NUMERIC FORM. If a
string that represents a number exceeds one of the limits, it is treated as
non-numeric (data type CHAR):

112 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

|
|
|

v A number is within the upper limit if the following conditions are true:
– The exponential part does not exceed +999999999. Leading zeros in the

exponent are ignored.
– The absolute value of the number does not exceed 9E+999999999.
Examples:
– 0.1E1000000000 is not numeric, because the exponent is too large.
– 9.1E+999999999 is not numeric, because the value is too large. If this number

is the result of an arithmetic operation, an OVERFLOW occurs and the
SYNTAX condition is raised.

v A number exceeds the lower limit if the following is true for any operand or for
the result:

exponent - number of fractional digits in the mantissa < -999999999

That is: the difference between the exponent and the number of fractional digits
in the mantissa is less than -999999999.
Note that trailing zeros in the fractional part of the mantissa are significant in
REXX.
For example, 1.23E-999999998 causes an UNDERFLOW error and raises the
SYNTAX condition because -999999998 - 2 is less than -999999999. (The exponent
relative to the trailing digit of the mantissa would be -1000000000.)

Chapter 10. Performance and Programming Considerations 113

114 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Part 2. Customizing the Compiler and Library

© Copyright IBM Corp. 1991, 2013 115

116 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 11. Customizing the IBM Compiler and Library for
REXX on z/OS

This chapter describes how to customize the IBM Compiler for REXX on z/OS and
the IBM Library for REXX on z/OS, when they are installed or later. For
instructions on how to install either the Compiler or the Library under z/OS refer
to the corresponding program directories. For more information visit the home
page at: http://www.ibm.com/software/awdtools/rexx/

Modifying the Cataloged Procedures Supplied by IBM
Modify the data set names and parameters (shown in Appendix D, “The z/OS
Cataloged Procedures Supplied by IBM,” on page 231) as necessary for your
system, and store your cataloged procedures in SYS1.PROCLIB.

Customizing the REXXC EXEC
You can set up installation defaults for the compiler options by assigning the
required options to the variable instopts in the customizing section of the REXXC
EXEC.

Other specifications that you can customize in this EXEC include:
v The UNIT specification and the size of data sets that are allocated by the REXXC

EXEC, if they are specified to receive output and do not already exist
v Data set attributes for these data sets (adhering to the limits shown in Table 4 on

page 14)
v The default data set names used for compiler output (see the routine MKDSN

in the REXXC EXEC)
v The text of messages issued by the EXEC

For more information refer to “Invoking the Compiler with the REXXC (FANC)
EXEC” on page 9.

The defaults specified in the REXXC EXEC apply when users invoke the Compiler
from both the command line and from the foreground and background
compilation panels. The defaults do not apply when users use the cataloged
procedures, or if they invoke the Compiler directly.

Customizing the REXXL EXEC
Assign the default name of the data set where stubs in load module form reside to
variable g.0lib in the customizing section of the REXXL EXEC. This is also the
name of the data set where predefined stubs reside. Refer to “Stubs” on page 211
for a list of stub names and member names in the sample data set names.

Other specifications that you can customize in this EXEC include:
v The member names of the predefined stubs
v The names of the predefined stubs that can be used as parameters of REXXL
v The UNIT specification and the size of data sets that are allocated by the REXXL

EXEC, if they are specified to receive output and do not already exist
v The data set attributes for these data sets

© Copyright IBM Corp. 1991, 2013 117

v The linkage editor and the linkage editor options
v The text of messages issued by the EXEC

Message Repository
The Compiler, the Library, and the Alternate Library use the MVS message service
(MMS). Installation message files are provided for U.S. English (FANUMENU and
EAGUMENU) and Japanese (FANUMJPN and EAGUMJPN). For languages other
than U.S. English, Japanese, and Upper Case English, you must supply a version of
the installation message file with the appropriate translated message skeletons. For
information on how to translate messages and on how to activate these translated
messages, see the corresponding z/OS documentation.

The Compiler and Library can run on MVS SP Version 3 systems that have TSO/E
Version 2 Release 4 installed. The Compiler and the Library use MVS Message
Services (MMS) to provide National Language Support (NLS) on z/OS. These
services are not available on a MVS SP Version 3 system, therefore only English is
supported when running the Compiler or the Library on a MVS SP Version 3
system.

Systems that use U.S. English or Upper Case English do not require the MMS. In
these cases, the installation message file for U.S. English is not used.

118 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 12. Customizing the IBM Compiler and Library for
REXX on z/VM

This chapter describes how to customize the IBM Compiler for REXX on z/VM
and the IBM Library for REXX on z/VM, either when they are installed or later.
For instructions on how to install either the Compiler or the Library under z/VM
refer to the corresponding program directories. For more information visit the
home page at: http://www.ibm.com/software/awdtools/rexx/

Customizing the Compiler Invocation Shells
Users can invoke the Compiler from a Compiler invocation shell. Two sample
Compiler invocation shells are supplied with the Compiler: a full-screen interactive
dialog, and an EXEC that operates in line mode. Customization tasks, which are
normally done immediately after installation but can also be done later, are:
v Modify the function of the invocation shells to suit your system’s requirements.
v Set up the installation defaults for the Compiler options.

Modifying the Function of the Compiler Invocation Shells
You can use the sample Compiler invocation shells as supplied. If you want to
customize them, modify the following files:

Compiler invocation EXEC:
REXXC EXEC

Compiler invocation dialog:
REXXD EXEC

REXXDX XEDIT

The shells are written in REXX and can be compiled.

The REXXCOMP Command
Use the REXXCOMP command if you plan to write your own compiler invocation
shell. The Compiler invocation shells use this command to invoke the Compiler.
The syntax of the REXXCOMP command is as follows:

REXXCOMP source-file-identifier [(options-list[)]]

where:

source-file-identifier
Is the file identifier of the source program. The source file identifier need
not be fully specified. If the file type is not specified, EXEC is used. If the
file mode is not specified, it defaults according to the CMS search order.
The REXXCOMP command does not translate the file identifier to
uppercase.

options-list
Is a list of Compiler options to be used, separated by blanks. The Compiler
invocation shell must process any user-defined defaults and explicitly
selected options and pass them to the REXXCOMP command. The default

© Copyright IBM Corp. 1991, 2013 119

values supplied by IBM are used for any options that are not specified. For
information on the syntax of the Compiler options, see “Compiler Options”
on page 19.

Note: The enhanced form of the options must not be passed directly to the
REXX compiler.

Setting Up Installation Defaults for the Compiler Options
The installation default values for the Compiler options are specified in the
Compiler invocation EXEC.

To set up the installation default values:
1. Read the descriptions of the Compiler options in “Compiler Options” on page

19, and decide which options you want.
2. Edit the Compiler invocation EXEC (REXXC EXEC).
3. Find the place near the beginning of the file where the variable for the

Compiler options, InstOpts, is initialized. A comment box after the variable
assignment shows the default values supplied by IBM and the valid values.

4. In the assignment with the target InstOpts, specify any default values that you
want to change.
For the PRINT, CEXEC, OBJECT, and IEXEC options, you can use an equals (=)
sign as the file name or file mode; this specifies that the file name or file mode
are to be the same as the corresponding part of the source file identifier. You
can also use an asterisk at the beginning or end of the file type; this specifies
that part of the file type is to be the same as the corresponding part of the
source file type.
The following example shows a valid specification of installation defaults:
InstOpts=’NOC(E) PRINT(= LIST =) TERM’

Note: This procedure does not change the defaults supplied by IBM in the
REXXCOMP module.

Customizing the Compiler Invocation Dialog
Some customization of the compiler invocation dialog may be required. REXXDX
XEDIT, the XEDIT macro that controls the dialog, contains a section in which you
can specify:
v The compilation command
v The GLOBALV group name for saving dialog information
v The commands for editing, printing, and invoking help
v The REXX file types that are acceptable
v The character set for file names and file types
v The naming convention for compiled and source EXECs

The installation defaults for compiler options are usually those that are specified in
REXXC.

Customizing the Library
This section describes how to customize the Library. For detailed information refer
to z/VM Saved Segments Planning and Administration.

120 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Defining the Library as a Physical Segment
The IBM Library for REXX on z/VM, which is required to run compiled REXX
programs, can be run in a DCSS. Here is an example of how to define the Library
as a physical segment:
1. Define the segment by using the DEFSEG command. For example:

DEFSEG EAGRTSEG 900-94F SR

The segment can be above 16MB in virtual storage.
2. Ensure that the DCSS will not overlap any other DCSS or saved system.

Note: For detailed information refer to z/VM Saved Segments Planning and
Administration.

Saving the Physical Segment
1. For an SP system, ensure that your virtual machine has class-E privilege and a

virtual storage size at least 0.5MB greater than the address of the end of the
segment.
For an XA system, round up this value to the nearest megabyte boundary.

2. Invoke the EAGDCSS EXEC with the DCSS name as an argument. If you do
not supply an argument, EAGRTSEG is used. While the segment is being
saved, the EAGRTPRC module is updated to contain the name of the DCSS.
Therefore, if the segment name you give it is different than the name contained
in the first EAGRTPRC module in the search order, this module must reside on
a disk accessed in read/write mode. For an explanation of how to load the
Library, see “Other Runtime Considerations” on page 47.

Defining the Library as a Logical Segment
With CMS Release 6 or a subsequent release, the Library can be contained in a
logical segment.

Note: For more information refer to z/VM Saved Segments Planning and
Administration.

Here is an example of how to define the Library:
1. Define the physical segment to CP.
2. In file eagrtseg PSEG, define the physical segment contents by means of the

following record:
LSEGMENT NLSxxxxx LSEG

Note: Throughout this section, eagrtseg and xxxxx have the following
meaning:

eagrtseg
Is the name of the segment

xxxxx Is AMENG for American English, or KANJI for Kanji.
3. In file NLSxxxxx LSEG, define the logical saved segment contents by means of

the following records:
MODULE EAGRTLIB (SYSTEM PERM NAME EAGRTPRC)
LANGUAGE EAG xxxxx

Note: The logical segment that contains a language information must be called
NLSxxxxx LSEG regardless of its contents.

Chapter 12. Customizing the IBM Compiler and Library for REXX on z/VM 121

4. Create a LANGMERG control file called EAGxxxxx LANGMCTL that contains the
following records:
ETMODE OFF
MESSAGE EAGUME

5. Enter the LANGMERG command to build EAGNLS TXTxxxxx:
LANGMERG xxxxx EAG

6. Enter the SEGGEN command to save the segment:
SEGGEN eagrtseg PSEG (MAP GEN

7. Access your system disk in read/write mode and copy the updated system
segment identification file SYSTEM SEGID.

To make the logical segment and its contents available, put the following
SEGMENT command into the SYSPROF EXEC:
SEGMENT LOAD NLSxxxxx

Note: If your installation has another logical segment named NLSxxxxx LSEG, you
should add the SEGMENT ASSIGN command to this procedure to select the
appropriate physical segment from which the logical segment will be used:
SEGMENT ASSIGN NLSxxxxx eagrtseg

Selecting the Version of the Library
You may want to have multiple versions of the Library on one z/VM system. For
example, after applying a program temporary fix (PTF), you may want to try the
new version while all other users continue to use the old version.

The product is shipped with a library loader (EAGRTPRC MODULE), which does
not search for the Library in a DCSS and which assumes that the name of the
Library is EAGRTLIB MODULE.

You can customize the library loader to search for the Library in a named DCSS or
to suppress any DCSS search. You can also specify the name under which the
Library is searched for on disk. See “Other Runtime Considerations” on page 47
for a description of how the Library is loaded under CMS.

When the first compiled REXX program is run, the first library loader in the search
order loads the Library. If a new PTF is installed, you can:
1. Use the EAGCUST EXEC to generate a customized version of EAGRTPRC that

searches for the EAGRTNEW library and does not search the DCSS.
2. Copy the new EAGRTLIB MODULE to EAGRTNEW MODULE.
3. Place the customized version of EAGRTPRC ahead of the production version of

EAGRTPRC in the search order. Make sure that other users cannot access it.
4. IPL your CMS system.

Using the EAGCUST EXEC
With the EAGCUST EXEC you can:
v Query the current customization of EAGRTPRC.
v Specify a DCSS that is to be searched for the Library.
v Specify that the Library not be loaded from a DCSS.
v Specify the file name of the module that contains the Library.

These tasks are explained in the following paragraphs. The following definition
applies to all the syntax descriptions in those paragraphs:

122 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

file-identifier
Is the file identifier of the file. The file name defaults to EAGRTPRC; the
file type defaults to MODULE; the file mode defaults to that of the first file
in the search order.

When you generate a customized version of EAGRTPRC, ensure that you have the
EAGRTPRC MODULE on a disk accessed in read/write mode.

To query the current customization of EAGRTPRC, enter:

EAGCUST [file-identifier]

To specify that the Library is to be searched for in a DCSS, enter:

EAGCUST [file-identifier] (S segname

where:

segname
Specifies the name of the DCSS that contains the Library to be used.

To specify that the Library is not to be loaded from a DCSS, enter:

EAGCUST [file-identifier] (NOS

To specify the file name of the module that contains the Library, enter:

EAGCUST [file-identifier] (L libname

where:

libname
Specifies the name of the module that contains the Library.

Customizing the Message Repository to Avoid a Read/Write
A-Disk

The message repository is distributed as EAGUME TXTxxxxx, where xxxxx
indicates the language; it is AMENG (American English) in the base product. In
this form, the SET LANGUAGE command (issued when the Library is loaded)
copies the message repository to your A-disk and loads it from there. Your A-disk
must be accessed in read/write mode.

To avoid the need for an A-disk accessed in read/write mode when a compiled
REXX program is first invoked, change the message repository file type to TEXT.
See the description of the SET LANGUAGE command in the VM/SP CMS:
Command Reference manual for further explanation.

You can load the message repository into a DCSS that contains system-provided
language files, because the repository is loaded with the ALL option of the SET
LANGUAGE command when the Library is loaded. In this case, the message
repository need not be accessible on disk.

Files Needed to Run Compiled REXX Programs
If neither the Library nor the message repository is in a DCSS, you need the
following files to run compiled REXX Programs:

Chapter 12. Customizing the IBM Compiler and Library for REXX on z/VM 123

EAGUME TXTAMENG Message repository
EAGRTPRC MODULE Library loader
EAGRTLIB MODULE Library

If you need to work with compiled REXX CEXECS (not object files) in z/OS
background mode, you need the following files:

EAGRTPRC Runtime library
EAGUME English language messages
EAGUME2 Kanji message repository

If you need to work with compiled REXX EXECS under TSO/E, you must also
have the following file:

IRXCMPTM Compiler programming table

124 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 13. Customizing the Library under VSE/ESA

This chapter describes how to customize the IBM Library for REXX in REXX/VSE:
v Modify the data set names and parameters (shown in Appendix E, “The

VSE/ESA Cataloged Procedures Supplied by IBM,” on page 241) as necessary
for your system, and store your cataloged procedures in REXXLIB.PROCLIB.

v The specifications that you can customize in this REXXL EXEC include:
– The member names of the predefined stubs
– The names of the predefined stubs that can be used as parameters of REXXL
– The text of messages issued by the EXEC

For more information about REXXL refer to “REXXL Cataloged Procedure
(VSE/ESA)” on page 80 and “REXXL” on page 243.

© Copyright IBM Corp. 1991, 2013 125

126 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Part 3. Stream I/O for TSO/E REXX

© Copyright IBM Corp. 1991, 2013 127

128 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 14. How to Read the Syntax Diagrams

The structure of the syntax diagrams shown in Part 3, “Stream I/O for TSO/E
REXX,” on page 127 is described below:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� STATEMENT required_item ��

v Optional items appear below the main path.

�� STATEMENT
optional_item

��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� STATEMENT required_choice1
required_choice2

��

v If choosing one of the items is optional, the entire stack appears below the main
path.

�� STATEMENT
optional_choice1
optional_choice2

��

v If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� STATEMENT
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left above the main line indicates an item that can be
repeated.

© Copyright IBM Corp. 1991, 2013 129

�� STATEMENT � repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v A set of vertical bars around an item indicates that the item is a fragment, a part
of the syntax diagram that appears in greater detail below the main diagram.

�� STATEMENT fragment ��

fragment:

expansion_provides_greater_detail

v Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown, but you can type them in uppercase, lowercase, or mixed case.
Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, you must enter them as part of the syntax.

The following example shows how the syntax is described.

�� MAX(�

,

number) ��

130 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 15. Installing the Function Package

This function package is a collection of I/O functions that follow the stream I/O
concept. It extends and enhances the I/O capabilities of REXX for TSO/E, and
shields the complexity of z/OS data set I/O to some degree. Further, the use of
stream I/O functions provides for easier coding syntax and leads to better
portability of REXX programs among different operating system platforms. The
stream I/O concept is introduced in Chapter 16, “Understanding the Stream I/O
Concept,” on page 133.

This function package can be used with TSO/E REXX on z/OS, OS/390, and MVS
systems that provide the MVS Name/Token Services, which are required to hook
the function package into an existing TSO/E REXX installation. It is a loadable file
that contains multiple object files bound together. Before its functions can be
accessed and executed, the function package must be properly integrated into
TSO/E REXX. Perform the following steps to install the package.

Note: It is assumed that you are familiar with the REXX language, the TSO/E
environment, and the logical organization of data sets in the z/OS environment.

Preparation
1. The z/OS TSO/E REXX Stream I/O function package is shipped together with

the IBM Library for REXX on System z and installed with SMP/E. The
executable load libraries are in the data set prefix.SEAGFUP.

2. To activate the function package it is necessary to assemble and link-edit the
TSO/E parameter modules IRXPARMS and IRXTSPRM.
Customize the JCL job EAGSIOAS, which is in data set prefix.SEAGJENU. It
contains predefined steps to automate the assembly of the TSO/E parameter
modules. You must customize the PROC section as follows:
v Specify the load library data set that has already been allocated. Replace the

uid.REXX with the appropriate naming.
v Ensure that SYS1.MACLIB and SYS1.CSSLIB are referenced in your SYSLIB

concatenation. SYS1.CSSLIB must contain the modules IEANTRT, IEANTCR, and
IEANTDL.
SYS1.CSSLIB contains the stubs for z/OS Name/Token Services that the
stream I/O functions require to share data with TSO/E REXX.

3. The parameter modules IRXPARMS and IRXTSPRM provided with this function
package are modified exclusively for the needs of the REXX Stream I/O
function package. Do not modify them. They are used by the EAGSIOAS job.

Assembly, Link-Edit, and Verification
1. Submit the EAGSIOAS job to assemble and link-edit the modules, and place the

load module into a load library that is accessible by your system.
Upon completion the load library .SEAGFUP should contain these load modules:
EAGEFSIO EAGIOHKP IRXPARMS IRXTSPRM

2. For the functional verification of the z/OS TSO/E REXX Stream I/O function
package customize job RZSIOVER:
v Specify the load library as for EAGSIOAS.

© Copyright IBM Corp. 1991, 2013 131

v A small EXEC is run that issues several REXX Stream I/O function calls. For
more information refer to the corresponding output in the job output.

Note: The load modules IRXPARMS and IRXTSPRM provided with this function
package can only be used if the REXX Stream I/O function package is the only
function package to be used on your system.

Installations with Multiple Function Packages
Your installation might already use other function packages. These are defined in
the parameter modules IRXPARMS and IRXTSPRM installed on your system. You need
to add the definitions for the REXX Stream I/O function package to these modules
to make all function packages work.
1. Inspect the parameter modules IRXPARMS and IRXTSPRM provided with this

function package. They contain the TSO/E default definitions and the
definitions for the REXX Stream I/O function package.

2. Incorporate the modifications for the REXX Stream I/O function package into
the modules IRXPARMS and IRXTSPRM that are installed on your system.

3. Assemble and link-edit the updated parameter modules IRXPARMS and IRXTSPRM.
4. Copy the IRXPARMS, IRXTSPRM, EAGEFSIO, and EAGIOHKP modules to an LPA

library. It is recommended that you copy these modules to a user LPA library
instead of the SYS1.LPALIB.

5. Make sure that the user LPA library is the first in the LPALSTxx parmlib member
and that a SYSLIB LPALIB (userlib.lpalib) is in the PROGxx parmlib member.

More detailed information about function packages is described in z/OS TSO/E
REXX Reference.

Usage Considerations
Your TSO/E REXX installation might use the EXECTERM exec termination exit to
customize the processing after REXX execs complete their processing. This
customized processing can include closing of data sets, and freeing of resources
that were allocated during the exec initialization step. If exec termination is used, a
REXX exec does not necessarily need to close data sets it has opened.

On the other hand, the stream I/O function package provides the STREAM
function, which can issue a CLOSE ALL stream command. If CLOSE ALL is used
in a REXX exec, it also closes the data sets and frees the resources that were
allocated with the first use of stream functions.

If you prefer relying on exec termination functionality (without using CLOSE ALL
in your REXX exec), ensure that exec termination is active and APF-authorized,
otherwise you might receive abend 066D.

To avoid these dependencies, use CLOSE ALL in your REXX execs regardless of
the use of exec termination.

132 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 16. Understanding the Stream I/O Concept

This chapter introduces the stream I/O concept and the implementation for TSO/E
REXX. The terminology, the functions, and the common elements are described.
Further, attention is given to the aspects of TSO/E and z/OS data set handling
from the view of the stream I/O functions.

This knowledge lets you effectively use the information in Chapter 17, “Stream I/O
Functions,” on page 143.

The Basic Elements of Stream I/O
A stream is a popular concept for how to perform input/output to and from a
program. Basically, a stream is a sequence of characters with functions to take
characters out of one end, and put characters into the other end. In the case of
input/output streams, one end of the stream is connected to a physical or logical
I/O device, such as a keyboard, display, file, or queue. If it is an output stream,
your program puts characters into one end of the stream, and an output device
takes characters out of the other end. If it is an input stream, an input device puts
characters into one end of the stream, and your program takes characters out of
the other end.

The purpose of stream I/O is to simplify a programmer's view of input and output
devices. The physical characteristics of I/O devices and the organization of data
remain hidden. The data organization of devices is reduced to two simple forms:
v A sequence of characters that can be read or written character by character
v A sequence of lines that can be read or written line by line. A line in this context

is defined as a sequence of characters that are terminated by means of any
special character, or by means of the organizational form of the storage media.

A simple set of functions performs stream I/O operations from within a program.
v Housekeeping functions declare streams as input or output streams, open and close

streams before and after using them, and allow to query their existence and
characteristics.

v Character input and character output functions let the program read and write data
character by character from input streams or to output streams.

v Line input and line output functions let the program read and write data line by
line from input streams or to output streams.

v Further functions let the program check for the availability of input data from
input streams.

During stream I/O operations a pointer is maintained for each stream. The pointer
references the current position in a stream where a read operation or a write
operation takes place. The position in a stream is relative to its beginning, counted
as number of characters. Position 1 is always the first character. Pointers increase
automatically during read operations and write operations. This eases the
sequential reading from or writing to streams. The stream I/O functions can
modify the position pointers by specifying explicit character or line positions to be
read or written.

© Copyright IBM Corp. 1991, 2013 133

When streams are declared, they are given names. The input and output functions
refer to these names to distinguish among multiple streams in a REXX program.

Generally, a stream can be any source or destination of external data that a
program uses. Typical streams are files and data sets, and consoles for interactive
input and output. The stream I/O concept also allows to view other sources and
destinations as streams, for example, a reader, puncher, printer, program stack,
queue, or a communication path. Programming environments that support stream
I/O usually provide a default input stream, which is often the terminal input buffer,
and a default output stream, often the display.

Data streams have two distinctive traits; they are either finite or conceptually
unbound. An input stream from a file is finite because of the known quantity of
characters; an input stream from a keyboard or communication path is unbound
because of the unknown quantity. Stream I/O functions generally provide a
mechanism of determining that an input stream is exhausted – that all data was
read, and no more data is available. For finite streams they can detect the end of a
file, for example. For unbound streams they might interpret special characters of
the stream as delimiters.

The TSO/E REXX Stream I/O Implementation
Stream I/O is a concept already implemented in REXX for various operating
system platforms. However, on z/OS and its predecessors, programmers needed to
use the EXECIO command to access z/OS data sets. EXECIO requires
programmers to consider many parameters, and to care about the allocation and
deallocation of data sets. The TSO/E REXX Stream I/O functions hide this
complexity. Programmers can use these easy-to-use functions to access z/OS data.
Further, the use of stream I/O functions makes REXX programs more portable
among platforms that support stream I/O.

The following sections describe the implementation of stream I/O for TSO/E
REXX. A good understanding of this information is necessary to effectively use the
individual functions described in Chapter 17, “Stream I/O Functions,” on page 143.

The Stream I/O Functions
The function package provides the following functions:
v The STREAM function controls streams and their status. It opens and closes

streams, declares the type of operation (either read or write), and queries the
existence and details of streams.

v The CHARIN and LINEIN functions are the stream input functions. They
perform character input or line input.

v The CHAROUT and LINEOUT functions are the stream output functions. They
perform character output and line output.

v The CHARS and LINES functions determine whether data exists in input
streams for further read operations.

In this context, the following terms require definitions:
v The term “character” is any single byte in the range of X'00'...X'FF', respectively

0...255. So, a “character stream” is synonymous with a “binary stream” or a
“byte stream”.

v The term “line” is defined as a sequence of characters that makes up the
smallest unit that can be processed by the LINEIN and LINEOUT functions. A
line read by LINEIN or written by LINEOUT does not process any additional

134 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

line-terminating characters (such as new-line character or carriage return
character) if they are not part of the string to be read or written. You might
think of a line as a record of a z/OS data set.

The function calling mechanism for the stream I/O functions is identical to the
REXX built-in functions. Thus, they are called in REXX programs as functions, with
the result being assigned to a variable, like in rexx_variable = CHARS().

Naming Streams
TSO/E REXX provides a default input stream and a default output stream, which are
used implicitly whenever a stream I/O function does not name a stream. In z/OS
these default streams are associated with the console:
v For TSO/E background and z/OS:

– ddname SYSTSIN represents the default input stream.
– ddname SYSTSPRT represents the default output stream.

v For TSO/E foreground:
– ddname SYSIN represents the default input stream.
– ddname SYSOUT represents the default output stream.

If functions are to be performed on other streams, the streams must be named
explicitly. The naming follows the rules and conventions for z/OS data sets as
follows:
v A stream name can be the name of a data set, or the name of a data set member,

for example:
– A fully qualified data set name, for example bill.january.data.
– A partially qualified data set name, for example january.data, where TSO/E

adds a system-defined prefix to the data set name, as in
<user_id>.january.data.

– A fully qualified or partially qualified name of a data set member, for
example bill.year2001.data(january).

Data set names should be enclosed in single quotation marks to avoid a
modification by TSO/E, such as ’year2001.data(january)’.

v A stream name can also be a ddname that is known to TSO/E and has the
required data sets or resources allocated to it, for example, SYSPRINT or
SYSOUT.

v A stream name can be a ddname that is generated from a data set name through
the STREAM function. Each time the STREAM function opens a stream that is
specified as a data set name, it automatically generates enumerated ddnames of
the form &SYSxxxxx. The leading ampersand distinguishes them from data set
names, and xxxxx is an enumeration. These unique ddnames can be used in a
REXX program to explicitly name a stream with the stream I/O functions.
The following example shows how the STREAM function opens the data set
member SYS1.MACLIB(PARM), generates a ddname, assigns this ddname to the
variable infile, and uses this variable in the following CHARIN function call to
name the stream. To recognize the generated ddname you could add SAY infile,
which displays something similar to &SYS00004.
/* Open the file. */
infile = STREAM("’SYS1.MACLIB(PARM)’",’C’,’OPEN’)
if infile ¬= "-ERROR" then

parm = CHARIN(infile,,20)

As an alternative to this example you can also define the following routine:

Chapter 16. Understanding the Stream I/O Concept 135

.

.
if left(infile,1)="&" then

parm = CHARIN(infile,,20)

Note the specification of the data set member name; the inner single quotation
marks avoid a modification by TSO/E, the outer double quotation marks are the
REXX convention for literal strings that include single quotation marks.
A second use of this side effect is more sophisticated. You can open the same
data set multiple times with this method, and the STREAM function will
provide a respective number of unique ddnames. Using these ddnames with the
stream I/O functions lets you maintain multiple position pointers in the same
data set. See “Multiple Read Operations” on page 140 for a detailed description.

After streams are given names, the stream I/O functions use these names to
specify on which stream an operation is to be performed.

Transient and Persistent Streams
Streams might have a variety of sources and destinations, but they are either
transient or persistent. Both types have certain characteristics that should be
known when using the stream I/O functions.
v Transient streams usually communicate with the human user. The default input

stream and the default output stream, if they represent the keyboard and the
display, are typical examples. A communication path in a network is another
example of a transient stream because of its similar behavior.
The distinctive feature of a transient stream is that after a specific character or
line was read from or written to a stream this process cannot be repeated. For
example, if your REXX program reads user input from the default input stream,
the characters are read as they are typed. You cannot change the position in a
stream and read again the same character or line without the character being
typed again.

v Persistent streams are usually files or data sets or equivalent media.
The distinctive feature of a persistent stream is that you can repeatedly change
the position in a persistent stream and read or write from and to different
positions, within the boundaries of the stream.

When you use the stream I/O functions you will find that several parameters, such
as the start position for the CHARIN function, are applicable only for persistent
streams. In transient streams, read positions and write positions always default to
the next character or line in a stream. In persistent streams, read positions and
write positions can generally be changed within the boundaries of a stream.

Note: The current implementation of the TSO/E REXX stream I/O functions is
limited with respect to randomly changing the positions in persistent streams. See
the description of the individual functions for these capabilities. The LINEIN
function might provide the most flexibility.

Opening and Closing Streams
A stream needs to be opened before it can be used, as a means to make the stream
known to a REXX program, and to gain access to this stream for read and write
operations.

136 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

The default input stream and the default output stream are opened when TSO/E
REXX is started. Any stream I/O function that does not specify a stream by name
performs its read operation or write operation on a default stream.

Implicit versus Explicit Opening of Streams
Streams are opened either implicitly or explicitly. All stream I/O functions open a
named stream implicitly upon their first use within a REXX program. The named
stream remains open for further function calls.

Streams can also be opened explicitly with the STREAM function. Explicit opening
(as well as closing) of streams has some advantages. For the sake of a few lines,
your program is more understandable, and you can easily recognize the type of
operation (read or write) allowed on a stream.

You must explicitly open a stream to perform multiple read operations on the same
data set. See also “Naming Streams” on page 135 and “Multiple Read Operations”
on page 140.

Opening Streams for Read or Write Operations
A stream is opened for either read operations or write operations. It is not
recommended to have a stream concurrently open for both types of operations.

If a stream is opened implicitly, the stream I/O function that is used at first decides
the type of operation. A CHARIN, CHARS, LINEIN, or LINES function call opens
a stream for read operations. A CHAROUT or LINEOUT function call opens a
stream for write operations.

If a stream is opened explicitly through the STREAM function, the type of operation
is specified as a parameter of the STREAM function.

After the type of operation is determined for a specific stream, you can use only
the corresponding stream I/O functions, otherwise an error occurs.

To change the type of operation allowed for a stream, you first need to close the
stream, then open it again for a different type of operation.

Note that opening a stream with the stream I/O functions in a TSO/E REXX
program implies an allocation of the corresponding resource. You do not need to
allocate a resource with the TSO/E ALLOCATE command, or by any other means.

Opening Nonexistent Streams
Persistent streams like data sets or files might not exist at the time they are
opened. An attempt to open such a stream for read operations, either implicitly or
explicitly, will fail. An attempt to open such a stream for write operations, either
implicitly or explicitly, allocates an empty data set with VB 255, or whatever the
operating system has defined as default. If you require a different record format,
allocate the data set through the TSO/E ALLOCATE command, ISPF option 3.2, or
a DD statement in batch.

If you name a nonexisting member (directly as data set member, or indirectly
through a ddname) with a stream output function, the member is created and
receives all subsequent output data.

You can use the STREAM function to query the existence of a stream before it is
opened for read operations or write operations.

Chapter 16. Understanding the Stream I/O Concept 137

Closing Streams
All opened streams are closed implicitly when the REXX program ends. You can
also use the STREAM function to explicitly close all or specific streams. You might
want to do so for clarity, to free dynamically allocated working storage, or to
change the type of operations on a stream (from read to write, or vice versa).

Closing a stream causes all pending write operations on this stream to be executed
first. Pending write operations can be, for example, partially written lines on fixed
block data sets.

Stream Formats
The z/OS TSO/E REXX stream I/O functions can work with the following files
and data sets:
v QSAM (queued sequential access method) files
v z/OS sequential data sets and single members of partitioned data sets with the

following record formats:
– Fixed block formats (FB), and fixed length with ASA control characters (FBA)
– Variable length (VB), and variable length with ASA control characters (VBA)

As a rule, the stream I/O functions do not write any additional formatting or
control characters (other than what is specified as string with the stream I/O
function) to a data set. Vice versa, the stream I/O functions read whatever is
considered data from a data set. The read functions do not hide or remove
anything.

Note that the record formats of data sets influence how the output stream
functions succeed:
v The LINEOUT function attempts to write a specified string to a data set as a

single line.
If the length of the string fits in to the LRECL of the data set, the line is written.
For data sets with a fixed record length the line is padded with blanks up to the
logical record length.
If the length of the string exceeds the LRECL of the data set, the line is truncated.
The function returns a 1 as an indication that data remains to be written to the
stream.
Note that, if the LINEOUT function writes a null string, the stream is closed.
Nothing is written to a data set.

v The CHAROUT function attempts to write a specified string to a data set
character by character.
No truncation takes place. Subsequent strings of characters are concatenated to
previously written strings. If a fixed or maximum LRECL is exceeded, the
characters wrap around to the next record. Thus, a large string can cause several
records to be written. A partially filled record is retained internally until it is
filled by subsequent CHAROUT (or LINEOUT) function calls, or until the
output stream is closed. For data sets with fixed record length a partial record is
padded with blanks.

The LINEIN function and the CHARIN function attempt to read a line or a
number of characters from a persistent stream. For data sets with a fixed record
length the string returned includes the padded blanks.

You can combine the use of the CHARIN and LINEIN functions for whatever
purpose. This also applies to the CHAROUT and LINEOUT functions. For

138 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

example, you can write a few characters with CHAROUT, followed by a line
written with LINEOUT. The basic rule is that the line starts at the position where
the character string ended. To use these combinations, understand how the
position pointers in stream work, as described in “Position Pointer Details.”

Position Pointer Details
Each persistent stream maintains a position pointer to mark the position where a
read operation or write operation takes place. By definition, position 1 marks the
first character in a stream, and the positions are counted in number of characters
relative to the beginning of a stream. When a stream is opened, the position
pointer is set to position 1 of the stream.

The general use of position pointers is to ease the sequential reading and writing
of streams. By default the first read operation starts at position 1, reads a number
of characters or a line, and automatically increments the read position to the next
unread character or line. A subsequent read operation starts at the incremented
read position (the current read position). Similarly, a first write operation starts at
position 1, writes a number of characters or a line, and automatically increments
the write position behind the last character written. A subsequent write operation
starts at the incremented write position (the current write position). The current
position is maintained automatically. Thus, for sequential processing of a persistent
stream, the stream I/O functions do not require the specification of a stream
position.

The position pointer in a persistent stream can be manipulated to a certain degree
to set it to a specific position where the next read operation or write operation
should take place.
v A CHARIN or CHAROUT start value of 1 sets the current position to the

beginning of a stream.
v A LINEIN line value can be set to any line number within a stream, which sets

the current position to the beginning of this line.
v A LINEOUT line value of 1 sets the current position to the beginning of the

stream (the beginning of the first line).

Note that the line parameter specifies a line, not the position of a character. Lines
are counted from 1 to n, where line 1 is the first line in a stream.

Each open stream has its own position pointer. If a stream is opened for read
operations, the pointer is either automatically set by any sequence of CHARIN and
LINEIN function calls, or it is explicitly manipulated as described. Likewise, if a
stream is opened for write operations, the pointer is either automatically set by any
sequence of CHAROUT and LINEOUT function calls, or it is explicitly
manipulated as described.

The CHARIN and LINEIN functions manipulate the same read position in a
stream; while the CHAROUT and LINEOUT functions manipulate the same write
position in a stream. For example, if two lines of 80 characters each were written to
a fixed length data set by LINEOUT, followed by a CHAROUT of five characters,
the current write position is 166 (the position where the next write operation
would start). A subsequent LINEOUT with 80 characters would not succeed
because only 75 characters would fit in the record. The line would be truncated.
Conversely, if a line of 50 characters was written by LINEOUT to a fixed length
(80) data set, the line is padded with blanks, and the current write position is 81

Chapter 16. Understanding the Stream I/O Concept 139

(the position where the next write operation would start). A subsequent
CHAROUT or LINEOUT function starts at position 81.

End-of-Stream Treatment
For transient and persistent input streams use the CHARS function or the LINES
function to detect the end of an input stream. These functions return 0 if no more
characters or lines are available for reading, or they return 1 if at least one
character or line is available for reading.

For transient streams, 0 means that the user has terminated the input to the stream
by means of the two-character sequence /*, followed by the Enter key.

For persistent streams, 0 means that the input stream is either empty, or a previous
read operation has already read the last character or line, or repeated read
operations have triggered an end-of-file condition.

An attempt to read beyond the end of a stream returns a null string and triggers
an error message. If this happens, the stream should be closed and reopened. Do
not try to manipulate the position pointer after the end-of-file condition was
triggered.

Error Treatments

Stream I/O Processing Errors
The current implementation of the z/OS TSO/E REXX Stream I/O function
package supports only the SIGNAL ON SYNTAX condition trap. This means that a
SYNTAX condition is raised if a language processing error, a syntax error, or a
runtime error occurs during the execution of a stream I/O function call.

Note that it is not possible to trap NOTREADY conditions. Therefore, before using a
stream, query its existence with the STREAM ... QUERY EXISTS function call.

If a syntax condition is raised because of a stream I/O function call, it is
recommended to exit the REXX program. The recovering from such a syntax
condition might cause unpredictable results.

Messages
The z/OS TSO/E REXX Stream I/O function package adds its own set of messages
to TSO/E REXX. Similar to TSO/E REXX messages, each message consists of a
message identifier and a message text. The message identifier is EAGSIO.

See Chapter 21, “Stream I/O Messages,” on page 197, if required.

Multiple Read Operations
As already described, each open stream maintains its own position pointer. This is
sufficient for most sequential operations on a persistent stream. However, if you
work with a sequential data set and you must perform multiple read operations on
the same stream, you can use the following method. (Multiple write operations as
well as concurrent read and write operations on the same stream are not
supported.)

Use the STREAM function to open a stream explicitly for read operations. Name
the data set to work with by its fully qualified or partially qualified data set name.
The STREAM function returns a ddname, for example &SYS00001. You have now a
stream open with its own position pointer.

140 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Repeat this step with the same data set name. The next ddname might be
&SYS00002. You have now a second stream open with its own position pointer.

Both streams represent the same data set. Both streams have their position
pointers, each set to position 1 at the beginning.

You can now perform various CHARIN and LINEIN function calls on the streams
&SYS00001 and &SYS00002 in any combination, and each stream pointer is
maintained independently.

Note: STREAM OPEN returns either a valid ddname preceded by an ampersand (&),
or in case of an open error the string -ERROR. The error string ERROR was prefixed
with a minus sign (-) to avoid further processing if the STREAM return value is not
verified for correctness. If the string -ERROR is used together with CHARIN, CHAROUT,
LINEIN, LINEOUT, the data set allocation fails. If you define ERROR, the results may be
unpredictable depending on the system installation.

Chapter 16. Understanding the Stream I/O Concept 141

142 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 17. Stream I/O Functions

This chapter lists the stream I/O functions and shows their syntax elements. For
each function, the basic function, the boundary conditions, the parameters, and the
results are described. Examples show possible uses and return values.

CHARIN (Character Input)
Format

�� CHARIN (
name ,

start , length

) ��

Purpose

Returns a string of up to length characters read from the character input stream
name.

For persistent streams, a read position is maintained for each stream. Any read
operation from the stream will by default start at the current read position. When
the read operation is completed, the read position is increased by the number of
characters read.

A start value of 1 can be given, together with a length of 0, to refer to the first
character in a persistent stream. The read position is set to the beginning of the
stream, no characters are read, and the null string is returned.

For transient streams (SYSIN in TSO/E foreground) only: If there are fewer than
length characters available, then the execution of the program will normally stop
until sufficient characters become available.

Parameters

name
Specifies the name of the character input stream. If it is not specified, the
default input stream is assumed.

start
For a persistent stream, specify a value of 1 (and a length of 0) to set the read
position to the first character in the stream. No other value is supported.

For a transient stream do not specify a read position.

length
Specifies the number of characters to be returned. The default is 1.

If length is 0, no characters are read, a null string is returned, and the read
position is set to the value specified by start.

Comments

If a length of 0 is given (to specify an explicit read position, without reading from
the stream) you must also specify start or let start default to 1 (the first character in

© Copyright IBM Corp. 1991, 2013 143

a stream). This combination is only applicable to persistent streams, because for
transient streams you cannot specify an explicit read position.

Results

A string of characters, or a null string.

Examples
CHARIN(myfile,1,3) -> ’MFC’ /* First 3 characters are read. */

CHARIN(myfile,1,0) -> ’’ /* Read position set to start position. */
CHARIN(myfile) -> ’M’ /* 1 character read from start position. */
CHARIN(myfile,,2) -> ’FC’ /* Next 2 characters read. */

/* Reading from default input stream (here, the keyboard). */
/* The user types ’abcd efg’. */
CHARIN() -> ’a’ /* Default is one character. */
CHARIN(,,5) -> ’bcd e’ /* Next 5 characters. */

CHAROUT (Character Output)
Format

�� CHAROUT (
name ,

string , start

) ��

Purpose

Returns the result (0 or 1) of the write operation after attempting to write string to
the character output stream name. string can be the null string, then no characters
are written to the stream and 0 is returned.

For persistent streams, a write position is maintained for each stream. Any write
operation to the stream will by default start at the current write position. When the
write operation is completed, the write position is increased by the number of
characters that are written. The initial write position is the beginning of the stream,
so that calls to CHAROUT will append characters to the beginning of the stream.

A start value of 1 can be given, together with string being omitted (or specified as a
null string), to refer to the first character in a persistent stream. The write position
is set to the beginning of the stream, no characters are written to the stream, and 0
is returned.

If neither start nor string is given, the output stream is closed, and 0 is returned.

The execution of the CHAROUT function will normally stop until the output
operation is effectively complete. If it is impossible for a character to be written,
CHAROUT returns with a result of 1, and a corresponding error message is
shown.

144 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Parameters

name
Specifies the name of the output stream. If it is not specified, the default
output stream is assumed.

string
specifies the string to write.

For transient streams, the length of the string is limited by the capabilities of
your input device, usually 80 characters.

For persistent strings, the length is limited to a maximum of 32760 characters.

start
For a persistent stream, specify a value of 1 and omit string to set the write
position to the first character in the stream. No other value is supported.

For a transient stream do not specify a write position. (If a value is specified, it
is ignored.)

Results

Returns 0 after the specified characters are successfully written, or 1 if the specified
characters could not be written.

Examples
CHAROUT(myfile,’Hi’) -> 0 /* */
CHAROUT(myfile) -> 0
CHAROUT(,’Hi’) -> 0
CHAROUT(V90,’29 BYTES FOR a V90 FILE LRECL’) -> 0 /* Variable format */
CHAROUT(V20,’29 BYTES FOR a V20 FILE LRECL’) -> 9 /* Variable format */

If a string of 29 characters is written to a data set with RECFM=F and LRECL=20,
20 bytes are written to record n, and nine bytes are written to record n+1.

If a string of 29 characters is written to a data set with RECFM=V or VB and
LRECL=20, four bytes are reserved for the RDW, 16 bytes are written to record n,
and 13 bytes are written to record n+1.

In both cases CHAROUT returns 0, as no truncation takes place.

CHARS (Characters Remaining)
Format

�� CHARS ()
name

��

Purpose

Returns 0, or 1 if characters are remaining in the character input stream name.

name
Specifies the name of the input stream. If it is not specified, the default input
stream is assumed.

Chapter 17. Stream I/O Functions 145

Results

Returns 1, if one or more characters are available.

Returns 0, if no character is available. The data set or data set member is empty, or
a previous read operation has already read the last character, or a previous read
operation has triggered an EOF condition.

Examples
CHARS(myfile) -> 1 /* EOF not reached. */
CHARS(empty) -> 0 /* Empty data set. */
CHARS() -> 1 /* TSO/E console. */

LINEIN (Line Input)
Format

�� LINEIN (
name ,

line , count

) ��

Purpose

Returns count (0 or 1) lines read from the character input stream name.

For persistent streams, a read position is maintained for each stream. Any read
operation from the stream will by default start at the current read position.3 When
the read operation is completed, the read position is increased by the number of
characters read.

A line number can be given to set the read position to the start of a specified line.
This line number must be positive and within the boundaries of the stream, and it
must not be specified for a transient stream. A value of 1 for line refers to the first
line in the stream.

If a count of 0 is given, then the read position is set to the start of the specified line,
but no characters are read, and the null string is returned.

For transient streams (SYSIN in TSO/E foreground) only: If a complete line is not
available in the stream, then the execution of the program will normally stop until
the line becomes available.

Parameters

name
Specifies the name of the input stream. If it is not specified, the default input
stream is assumed.

line
For a persistent stream, it specifies an explicit read position. The default is 1, or
the position set by a previous read operation.

For a transient stream do not specify a read position.

3. Under certain circumstances, therefore, a call to LINEIN will return a partial line if the stream has already been read with the
CHARIN function, and part but not all of the line has been read.

146 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

count
Specifies the number of lines to be returned. Only 0 or 1 is allowed. The
default is 1.

If count is 0, no lines are read, a null string is returned, and the read position is
set to the value specified by line.

Comments

If a count of 0 is given (to specify an explicit read position, without reading from
the stream), you must also specify line. This combination is only applicable to
persistent streams, because for transient streams you cannot specify an explicit
read position.

Results

A line or a null string.

LINEOUT (Line Output)
Format

�� LINEOUT (
name ,

string , line

) ��

Purpose

Returns the result (0 or 1) of the write operation after attempting to write string as
a line to the character output stream name. The result is either 0 (the line was
successfully written) or 1 (an error occurred while writing the line). string can be
the null string, then no characters are written to the stream and 0 is returned.

For persistent streams, a write position is maintained for each stream. Any write
operation will by default start at the current write position.4 When the write
operation is completed, the write position is increased by the length of the line
written. The initial write position is the beginning of the stream, so that calls to
LINEOUT will append lines to the beginning of the stream.

Note: The line parameter is provided for compatibility reasons, but does not allow
to set the write position in this implementation.

If neither line nor string is given, the output stream is closed, and 0 is returned.

The execution of the LINEOUT function will normally stop until the output
operation is effectively complete. If it is impossible for a line to be written,
LINEOUT returns with a result of 1, and a corresponding error message is shown.

Parameters

name
Specifies the name of the output stream. If it is not specified, the default
output stream is assumed.

4. Under certain circumstances, therefore, the characters written by a call to LINEOUT might be added to a partial line previously
written to the stream with the CHAROUT routine. LINEOUT conceptually terminates a line at the end of each call.

Chapter 17. Stream I/O Functions 147

string
Specifies the string to write as a line.

line
Specify value of 1, or specify no value. See the previous note.

Results

Returns 0 after the specified line is successfully written, or 1 if the line could not
be written or is only partially written.

Examples
LINEOUT(myfile,’Hi’) -> 0 /* Writes the string. */
LINEOUT(myfile,, -> 0 /* No action. */
LINEOUT(myfile) -> 0 /* Output stream is closed. */
LINEOUT(myfile,’String longer than lrecl’) -> 1 /* Truncated. */

LINES (Lines Remaining)
Format

�� LINES ()
name

��

Purpose

Returns 0, or 1 if lines are remaining in the character input stream name. If the
stream has already been read with the CHARIN function, this might include an
initial partial line.

Parameters

name
Specifies the name of the input stream. If it is not specified, the default input
stream is assumed.

Results

Returns 1, if one or more lines are available.

Returns 0, if no line is available. The data set or data set member is empty, or a
previous read operation has already read the last line, or a previous read operation
has triggered an EOF condition.

Examples
LINES(myfile) -> 0 /* EOF encountered. */
LINES(empty) -> 0 /* Empty data set. */
LINES() -> 1 /* TSO/E console. */

STREAM (Operations)
Format

�� STREAM (name , operation , stream_command) ��

148 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Purpose

Returns a string describing the state of the character stream name, or the result of
an operation upon the character stream name.

This function is used to request information on the state of an input or output
stream, or to carry out some particular operation on the stream.

Parameters

name
Specifies the name of the stream. Use a fully or partially qualified data set
name (with or without a member specification), or a ddname known to
TSO/E.

Note that the STREAM function returns enumerated ddnames of type
&SYSxxxxx when it performs an OPEN, OPEN READ, or OPEN WRITE
command. You can use these ddnames to name a stream in the stream I/O
function calls. For more information see “Naming Streams” on page 135.

operation
Specifies the type of operation. This parameter must be the string Command,
or its leading character C. The first character must be uppercase, and
subsequent characters are ignored.

stream_command
Specifies one of the following commands (in capital letters) to be performed on
the named stream:

CLOSE
Closes the named stream.

CLOSE ALL
Closes all streams that have been opened so far in this REXX exec, and
frees resources that are bound to opened streams. For this stream
command the first parameter name is ignored and can be omitted, such
as in STREAM(,’Command’,’CLOSE ALL’).

It is recommended that you use this stream command in your REXX
execs, regardless of external exec termination exits providing similar
functions. See “Usage Considerations” on page 132 for a detailed
description.

OPEN Is identical with OPEN READ.

OPEN READ
Opens the named stream for input and read operations. The input
stream must already exist.

Note that input functions (CHARIN, CHARS, LINEIN, LINES)
implicitly open streams for input at their first usage. You can explicitly
open a stream for clarity reasons. You need to explicitly open a stream
if you want to maintain multiple position pointers. See “Multiple Read
Operations” on page 140, if required.

OPEN WRITE
Opens a named stream for output and write operations. If the output
stream does not exist, a data set is allocated with the system defaults.
See “Opening Nonexistent Streams” on page 137, if required.

Chapter 17. Stream I/O Functions 149

Note that output functions (CHAROUT, LINEOUT) implicitly open
streams for output at their first usage. You can explicitly open a stream
for clarity reasons.

When the output stream is opened, the position pointer is initially set
to position 1. Thus, the contents are overwritten. See “Position Pointer
Details” on page 139, if required).

QUERY EXISTS
Queries the existence of a named stream and returns the fully qualified
data set name that is allocated to this stream.

QUERY REFDATE
Queries the date when the named stream was last referenced. The date
is returned in Julian form.

Note: You can also use the STREAM function to query the level of the installed
function package. This might be required if you need to report problems. If
required, type STREAM(,’COMMAND’,’QUERY SERVICELEVEL’). The function returns the
service level of the installed function package in the form
REXXSIO <v><r><m> FIX<nnnn> <yyyy><mm><dd>, for example
REXXSIO 140 FIX0000 20030801.

Results
v CLOSE returns 0. If unsuccessful, RC = 4 is returned, and a message is issued.

The named stream might not exist, or it has already been closed.
v OPEN returns a ddname as a string &SYSxxxxx, with xxxxx being an

enumeration. If unsuccessful, the string ERROR is returned.
v QUERY REFDATE returns the date in Julian form (like 2003/360), or a null

string if the stream does not exist or the date cannot be determined.

Examples
STREAM(’MYDATA FILE’,’C’,’CLOSE’) /* Closes the named data set. */

STREAM(strinp,’C’,’OPEN’) /* Opens an input stream. */

STREAM(strout,’C’,’OPEN WRITE’) /* Opens an output stream. */

STREAM(’YOURDATA.FILE’,’C’,’QUERY EXISTS’)
/* Request the fully qualified */
/* data set name. */

STREAM(’MY.DATA.FILE’,’C’,’QUERY REFDATE’)
/* Requests the date when last */
/* referenced. */

150 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Part 4. Messages

© Copyright IBM Corp. 1991, 2013 151

152 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 18. Message Format and Return Codes

This chapter introduces you to the message format and lists the return codes
displayed in messages.

Message Format
Compilation messages are prefixed by the message identifier. Under z/OS, runtime
messages include the identifier only if the TSO/E command PROFILE MSGID ON
has been issued. Under z/VM, runtime messages include the identifier only if the
CP command SET EMSG ON has been issued. The format of the message identifier
is as follows:

ppp Compiler (FAN) or Library (EAG) product prefix

xxx REX (runtime), ALT (Alternate Library, refer to the message with the REX
identifier), SIO (REXX Stream I/O), or the Compiler phase identifier. The
following list shows the identifiers of the Compiler phases:

COD Coder

CON Controller

ENV Environment interface

FLA Flattener

FMU Final make-up

GAO Global analyzer and optimizer

LIS Lister

PAR Parser

POP Post-optimizer

TOK Tokenizer

nnnn Message number

For example, EAGREX3300E is the main message for an error 33.
EAGREX3301I is a secondary message providing more information about
error 33.

s Severity code, it can be:

I Informational

W Warning

E Error

S Severe error

T Terminating error

In runtime messages, the first two digits of the message number are the REXX
error number, and the last two digits are the subcode. The subcode is used in
secondary messages to identify the error more specifically.

© Copyright IBM Corp. 1991, 2013 153

Return Codes
The return code indicates the maximum severity of any messages issued, as
follows:

Return Code Meaning

0 No messages or only informational messages

4 Warning

8 Error

12 Severe error

16 Terminating error

>16 Indicates that the Compiler has terminated abnormally and that it
receives an internal error denoted by a reason code. Contact your IBM
representative.

Note:

1. No compiled code is generated if one of the following occurs:
v NOTRACE is in effect and a severe or terminating error is detected
v TRACE is in effect and a terminating error is detected
v NOCOMPILE is in effect
v Warnings or errors have been issued and the appropriate options, such as

NOCOMPILE(W) or NOCOMPILE(E), apply.
2. You can get unpredictable results if one of the following occurs:

v NOTRACE is in effect and an error is detected
v TRACE is in effect and an error or severe error is detected.

3. If the Compiler issues warning or informational messages, the program might
still run correctly. However, you should examine the source code to assess the
likely effects. For example, if the Compiler detects more than one definition of
the same label, check whether some occurrences are misspellings.

4. It is good programming practice to correct all compilation errors.
5. A program that can be interpreted successfully may give compilation errors.

There could be errors in parts of the program that are rarely, or never, executed.
Also, the program may contain language elements that are either not supported
by the Compiler or that must be coded differently. Refer to Chapter 8,
“Language Differences between the Compiler and the Interpreters,” on page 91
for details.

154 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 19. Compilation Messages

FANCON0050T Source file cannot be opened

Explanation: The source file could not be opened. You
might have mistyped the file name, file type, or file
mode. This problem can also occur when you are
attempting to compile a program from a minidisk for
which you have read-only access, while someone with
read/write access to that minidisk has altered the
program so that it no longer exists in the same place on
the minidisk. Another possibility is that a lowercase file
identifier has been passed to the REXXCOMP
command.

User response: Ensure that you specify the source file
correctly. If necessary, reaccess the minidisk on which
the program resides.

FANFMU0051T Source file cannot be read

Explanation: The source file could not be read from
the minidisk. This problem can occur when you are
compiling a program from a minidisk for which you
have read-only access, while someone with read/write
access to that minidisk has altered the program so that
it no longer exists in the same place on the minidisk.

User response: Reaccess the minidisk on which the
program resides.

FANCON0052T Compiler listing cannot be printed

Explanation: An error occurred when creating the
compiler listing. The most likely cause is insufficient
virtual storage.

User response: Obtain more free storage by releasing
a minidisk or SFS directory (to recover the space used
for the file directory) or by deleting a nucleus
extension. Alternatively, define a larger virtual storage
size for the virtual machine and re-IPL CMS.

FANTOK0053T Required comment not found in
line 1

Explanation: The first line of the program does not
begin with a comment (delimited by /* and */) within
the specified margins setting.

User response: Start the program with a comment.

FANxxx0054T Virtual storage exhausted

Explanation: The Compiler was unable to get the
space needed for its work areas.

User response: Under z/OS, increase your region size.

Under z/VM, obtain more free storage by releasing a

minidisk or SFS directory (to recover the space used for
the file directory) or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for the
virtual machine and re-IPL CMS.

FANxxx0055T Compiler error: Reason code nnn

Explanation: An internal verification check in the
Compiler failed.

User response: Report any occurrence of this message
to your IBM representative. See the IBM Compiler and
Library for REXX on System z: Diagnosis Guide for more
information.

FANPAR0056I No comment found at start of
program

Explanation: The first line of the program does not
begin with a comment within the margins setting.

User response: Start the program with a comment.

FANCON0060T Limit of 99999 source lines exceeded

Explanation: Your program contains more source lines
than the limit of 99999. The limit includes the lines in
the source files, the lines in the included files, and the
lines resulting from the splitting of source lines that
contain %INCLUDE statements.

User response: Reduce the size of the program or split
it into several smaller programs.

FANPAR0071W Duplicate label: Only first
occurrence on line nn used

Explanation: The Compiler found more than one
occurrence of the same label. After a CALL or SIGNAL
instruction with this label as a target, control is always
passed to the first occurrence of the label - namely that
whose line number is shown in the message.

User response: Check whether one of the occurrences
of the label is a misspelling.

FANGAO0072S Label not found

Explanation: The Compiler could not find the label
specified by a SIGNAL instruction or the label
matching an enabled condition.

User response: Check if the label is spelled correctly,
or if you forgot to include it.

FANPAR0073S PROCEDURE not preceded by label

© Copyright IBM Corp. 1991, 2013 155

Explanation: The Compiler found a PROCEDURE
instruction that is not immediately preceded by a label.
The PROCEDURE instruction, if used, must be the first
instruction within a routine.

User response: Move the PROCEDURE instruction to
the beginning of the routine.

FANPAR0074W Label precedes THEN

Explanation: The Compiler found one or more labels
before a THEN clause. This causes a runtime error if
you use the label to transfer control to the THEN
clause.

User response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0075W Label precedes ELSE

Explanation: The Compiler found one or more labels
before an ELSE clause. This causes a runtime error if
you use the label to transfer control to the ELSE clause.

User response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0076W Label precedes WHEN

Explanation: The Compiler found one or more labels
before a WHEN clause. This causes a runtime error if
you use the label to transfer control to the WHEN
clause.

User response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0077W Label precedes OTHERWISE

Explanation: The Compiler found one or more labels
before an OTHERWISE clause. This causes a runtime
error if you use the label to transfer control to the
OTHERWISE clause.

User response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0078W Label precedes END

Explanation: The Compiler found one or more labels
before an END clause. This causes a runtime error if
you use the label to transfer control.

User response: If the label is for tracing, continue as
planned. Otherwise, remove the label. If you used a
label because you wanted to stop the current iteration
of a DO loop, use the ITERATE instruction instead.

FANPAR0079S ":" not preceded by label name

Explanation: The Compiler found a colon that is not
used as a label terminator where it expects the
beginning of a clause. You might have used a colon in
a literal string without enclosing the string in quotes.

User response: Check your code and correct it.

FANPAR0080S More than 16000 arguments/operands/
templates

Explanation: A function invocation or a CALL has
more than 16000 arguments, or an EXPOSE has more
than 16000 operands, or a PARSE has more than 16000
templates.

User response: Reduce the number of
arguments/operands/templates.

FANPAR0081W Label before ITERATE

Explanation: The Compiler found one or more labels
before an ITERATE instruction. This causes a runtime
error if you use the label to transfer control to the
ITERATE instruction.

User response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0082W Label before LEAVE

Explanation: The Compiler found one or more labels
before a LEAVE instruction. This causes a runtime error
if you use the label to transfer control to the LEAVE
instruction.

User response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANGAO0083S Label would match (line nn) if
uppercased

Explanation: The label referred to in a SIGNAL,
SIGNAL VALUE, or SIGNAL ON clause is not defined.
The label contains lowercase characters and would
match the label defined in the indicated line if it were
changed to uppercase.

User response: Change the program such that the
label reference is in uppercase.

FANGAO0084W Label corresponds to a BIF name

Explanation: The label is equal to the name of a
built-in function.

User response: No response is required. However,
always put a function name in quotes if it refers to a
built-in function and specify it without quotes if it
refers to an internal label.

FANPAR0074W • FANGAO0084W

156 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANPAR0090S Maximum nesting level of 999
exceeded

Explanation: You have exceeded the limit of 999 levels
of nesting of control structures such as DO-END and
IF-THEN-ELSE and their components such as IF
clauses and ELSE clauses.

User response: Check your code and correct it.

FANPAR0150S Mismatched DO control variable

Explanation: The variable specified on the END clause
does not match the control variable of the related DO
clause. The most common cause of this message is
incorrect nesting of loops.

User response: See the Do column of the source
listing, which shows the nesting level of each
instruction, to find the incorrectly matched DO
instruction.

FANPAR0151S Incomplete DO instruction: END not
found

Explanation: The Compiler has reached the end of the
source file without finding a matching END for an
earlier DO.

User response: See the Do column of the source
listing, which shows the nesting level of each
instruction, to find the incorrectly matched DO
instruction.

FANPAR0152S FOREVER not followed by
WHILE/UNTIL/";"

Explanation: The Compiler found incorrect data after
DO FOREVER. The only valid subkeywords after DO
FOREVER are WHILE and UNTIL.

User response: Check your code and correct it.

FANPAR0153S TO/BY/FOR found in a DO after DO
FOREVER

Explanation: A BY, TO, or FOR subkeyword has been
found after FOREVER. The only valid subkeywords
after DO FOREVER are WHILE and UNTIL.

User response: Check your code and correct it.

FANPAR0154S TO occurs more than once in a DO

Explanation: A DO clause contains more than one TO
phrase.

User response: Check your code and correct it.

FANPAR0155S BY occurs more than once in a DO

Explanation: A DO clause contains more than one BY
phrase.

User response: Check your code and correct it.

FANPAR0156S FOR occurs more than once in a DO

Explanation: A DO clause contains more than one
FOR phrase.

User response: Check your code and correct it.

FANPAR0157S TO not followed by expression

Explanation: The Compiler expects an expression after
the TO subkeyword in a DO clause.

User response: Check your code and correct it.

FANPAR0158S BY not followed by expression

Explanation: The Compiler expects an expression after
the BY subkeyword in a DO clause.

User response: Check your code and correct it.

FANPAR0159S FOR not followed by expression

Explanation: The Compiler expects an expression after
the FOR subkeyword in a DO clause.

User response: Check your code and correct it.

FANPAR0160S WHILE not followed by expression

Explanation: The Compiler expects an expression after
the WHILE subkeyword in a DO clause.

User response: Check your code and correct it.

FANPAR0161S UNTIL not followed by expression

Explanation: The Compiler expects an expression after
the UNTIL subkeyword in a DO clause.

User response: Check your code and correct it.

FANPAR0162S WHILE or UNTIL not allowed after
WHILE phrase

Explanation: The compiler found the subkeyword
WHILE or UNTIL in the WHILE phrase of a DO
clause.

User response: If WHILE or UNTIL is the name of a
variable, change the name or use the VALUE built-in
function (for example, write VALUE('WHILE') instead
of WHILE). If it is meant as a constant string, enclose it
in quotes. If you intended to use both an UNTIL phrase
and a WHILE phrase, you must modify the program
logic to eliminate one of the phrases.

FANPAR0090S • FANPAR0162S

Chapter 19. Compilation Messages 157

FANPAR0163S WHILE or UNTIL not allowed after
UNTIL phrase

Explanation: The Compiler found the subkeyword
WHILE or UNTIL in the UNTIL phrase of a DO clause.

User response: If WHILE or UNTIL is the name of a
variable, change the name or use the VALUE built-in
function (for example, write VALUE('WHILE') instead
of WHILE). If it is meant as a constant string, enclose it
in quotes. If you intended to use both an UNTIL phrase
and a WHILE phrase, you must modify the program
logic to eliminate one of the phrases.

FANPAR0164S Unexpected END

Explanation: The Compiler has found more END
clauses in your program than DOs or SELECTs, or the
ENDs were placed so that they did not match the DOs
or SELECTs.

User response: Use the Do and Sel columns of the
source listing, which show the nesting level of each
instruction, to check the program’s structure.

FANPAR0180S Initial expression missing in
controlled DO loop

Explanation: The Compiler expects an expression to
be assigned to the control variable after the assignment
operator (=) in a DO.

User response: Check your code and correct it.

FANPAR0181S Variable required to the left of "="

Explanation: The symbol to the left of the "=" in an
assignment begins with a period or digit, hence does
not represent a variable.

User response: If the clause was intended as a
command, enclose the expression in parentheses.

FANPAR0182S Assignment operator must not be
followed by another "="

Explanation: The Compiler found a second "="
immediately after the first one of an assignment.

User response: Delete one "=" to form a correct
assignment, or, if the clause was intended as a
command, enclose the expression in parentheses.

FANPAR0190S THEN expected

Explanation: The Compiler expects a THEN clause
after an IF or WHEN clause.

User response: Insert a THEN clause between the IF
or WHEN clause and the following clause.

FANPAR0191S IF not followed by expression

Explanation: The Compiler expects an expression in
an IF clause.

User response: Check your code and correct it.

FANPAR0192S Unexpected THEN

Explanation: The Compiler has found a THEN that
does not match an IF clause or the WHEN clause of a
SELECT instruction.

User response: Check your code and correct it.

FANPAR0193S Unexpected ELSE

Explanation: The Compiler has found an ELSE that
does not match a corresponding IF clause. This
situation can be caused by a DO-END in the THEN
part of a complex IF-THEN-END construct. For
example:

WRONG RIGHT

If a=b Then Do
Say ’EQUALS’
Exit

Else
Say ’NOT EQUALS’

If a=b Then Do
Say ’EQUALS’
Exit
End

Else
Say ’NOT EQUALS’

User response: Check your code and correct it.

FANPAR0194S Instruction expected after ELSE

Explanation: The next clause after ELSE (not counting
label clauses) must be an instruction or the start of an
instruction. The Compiler found instead a
non-instruction clause (such as END) or the end of the
source program.

User response: Remove the ELSE or insert an
instruction. As an explicit indication that no action is
needed in the ELSE case, you can use a NOP
instruction.

FANPAR0250I No OTHERWISE found in SELECT
instruction ending in line nn

Explanation: The Compiler found a SELECT
instruction that does not contain an OTHERWISE
phrase. This causes a runtime error if all WHEN
expressions are found to be false.

User response: If it is possible that none of the WHEN
expressions will be true, insert an OTHERWISE that
handles this condition.

FANPAR0163S • FANPAR0250I

158 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANPAR0253S SELECT not followed by ";" (WHEN
follows instead)

Explanation: The Compiler expects a semicolon or
implied semicolon between a SELECT and the first
WHEN.

User response: Insert a semicolon or begin a new line
between the SELECT and WHEN.

FANPAR0254S Incomplete SELECT instruction: END
not found

Explanation: The Compiler has reached the end of the
source file and has found a SELECT without a
matching END.

User response: See the Sel column of the source
listing, which shows the nesting level of each
instruction.

FANPAR0255S WHEN expected

Explanation: The Compiler expects a WHEN after a
SELECT.

User response: Insert one or more WHEN clauses
after the SELECT.

FANPAR0256S WHEN/OTHERWISE/END expected

Explanation: The Compiler expects a series of
WHENs, an OTHERWISE, and a terminating END
within a SELECT instruction. This message is issued
when any other instruction is found. The error can be
caused by forgetting to enclose the list of instructions
following a THEN within a DO and END. For example:

WRONG RIGHT

Select
When a=b Then

Say ’A equals B’
Exit

Otherwise Nop
End

Select
When a=b Then Do

Say ’A equals B’
Exit
End

Otherwise Nop
End

User response: Check your code and correct it.

FANPAR0257S WHEN not followed by expression

Explanation: The Compiler expects an expression after
the WHEN in a SELECT instruction.

User response: Check your code and correct it.

FANPAR0258S Unexpected WHEN

Explanation: The Compiler has found a WHEN clause
that does not match a SELECT clause. You might have
accidentally enclosed the WHEN in a DO-END
construct by forgetting the matching END.

User response: Check whether the END is missing.

FANPAR0259S Unexpected OTHERWISE

Explanation: The Compiler has found an OTHERWISE
clause that does not match a SELECT clause. You might
have accidentally enclosed the OTHERWISE in a
DO-END construct by forgetting the matching END.

User response: Check whether the END is missing.

FANPAR0260S Instruction expected after THEN

Explanation: The next clause after THEN (not
counting label clauses) must be an instruction or the
start of an instruction. The Compiler found instead a
non-instruction clause (such as END) or the end of the
source program.

User response: Remove the THEN or insert an
instruction. As an explicit indication that no action is
needed in the THEN case, you can use a NOP
instruction.

FANPAR0270S Unexpected data in template

Explanation: The Compiler found unexpected data,
for example, a symbol that is neither a number nor a
variable, within a parsing template.

User response: Check your code and correct it.

FANPAR0271S "+" not followed by a whole number
or "("

Explanation: The Compiler found an incorrect
positional pattern in a parsing template: a plus sign
must be followed by a whole number or by the name
of a variable in parentheses.

User response: Check your code and correct it.

FANPAR0272S "-" not followed by a whole number
or "("

Explanation: The Compiler found an incorrect
positional pattern in a parsing template: a minus sign
must be followed by a whole number or by the name
of a variable in parentheses.

User response: Check your code and correct it.

FANPAR0273S "(" not followed by a variable

Explanation: The Compiler found an incomplete
pattern in a parsing template: an open parenthesis must
be followed by the name of a variable and a close
parenthesis.

User response: Check your code and correct it.

FANPAR0253S • FANPAR0273S

Chapter 19. Compilation Messages 159

FANPAR0274S PARSE not followed by a valid
subkeyword

Explanation: The Compiler found a PARSE keyword
that is not followed by the UPPER subkeyword or by
one of the subkeywords ARG, EXTERNAL, LINEIN,
NUMERIC, PULL, SOURCE, VALUE, VAR, or
VERSION.

User response: Check your code and correct it.

FANPAR0275S PARSE UPPER not followed by a
valid subkeyword

Explanation: The Compiler found a PARSE UPPER
that is not followed by one of the subkeywords ARG,
EXTERNAL, LINEIN, NUMERIC, PULL, SOURCE,
VALUE, VAR, or VERSION.

User response: Check your code and correct it.

FANPAR0276S PARSE VAR not followed by a
variable

Explanation: The Compiler expects the name of a
variable at this position in a PARSE VAR instruction.

User response: Check your code and correct it.

FANPAR0277S Incomplete PARSE VALUE: WITH
not found

Explanation: The Compiler found a PARSE VALUE
instruction that does not contain a WITH subkeyword.

User response: Check your code and correct it.

FANPAR0278S Variable expected

Explanation: The Compiler found something other
than the name of a variable in the operand list of an
UPPER instruction. The variables can be simple or
compound, but not stems.

User response: Check your code and correct it.

FANPAR0279S Variable pattern not terminated by ")"

Explanation: The Compiler found an open parenthesis
in a parsing template but no corresponding close
parenthesis. Each open parenthesis must be followed
by the name of a variable and a close parenthesis.

User response: Ensure that you close all parentheses.

FANPAR0280S Unexpected ")" in template

Explanation: In a parsing template, the Compiler
found a close parenthesis which does not match an
open parenthesis.

User response: Check your code and correct it.

FANPAR0281S Unexpected ":" in template

Explanation: In a parsing template, a colon was
found. Only variable names, patterns, and periods are
accepted.

User response: Check your code and correct it.

FANPAR0282S Unexpected operator in template

Explanation: An operator, such as ¬ or ││ was found.
Only variable names, patterns, and periods are
accepted.

User response: Check your code and correct it.

FANPAR0283S DROP list must not be empty

Explanation: DROP must be followed by at least one
variable name or at least one variable name in
parentheses.

User response: Check your code and correct it.

FANPAR0284S UPPER list must not be empty

Explanation: The UPPER instruction needs at least
one variable as an operand. The variable must be
simple or compound. No stem variables are accepted.

User response: Check your code and correct it.

FANPAR0285W Variable name WITH found on
PARSE VAR

Explanation: A WITH was found after the variable
operand of a PARSE VAR. The WITH is assumed to be
a variable.

User response: None if you intended WITH to be a
variable. Otherwise, remove it.

FANPAR0290S Expression expected after OPTIONS

Explanation: The keyword OPTIONS must be
followed by an expression.

User response: If you want to write an OPTIONS
instruction, you must add an expression. If you want to
use OPTIONS as a command, do one of the following:

v Enclose OPTIONS in parentheses or quotes.

v Prefix OPTIONS with a null string.

v Choose another name.

FANPAR0350S CALL not followed by routine
name/ON/OFF

Explanation: The Compiler expects the name of a
routine, or ON with a condition name, or OFF with a
condition name at this position in a CALL instruction.

User response: Check your code and correct it.

FANPAR0274S • FANPAR0350S

160 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANPAR0352S CALL ON/OFF not followed by
ERROR/FAILURE/HALT/NOTREADY

Explanation: The Compiler expects one of the
conditions ERROR, FAILURE, HALT, or NOTREADY at
this position in a CALL ON or CALL OFF instruction.

User response: Check your code and correct it.

FANPAR0353S NAME not followed by routine name

Explanation: The Compiler expects the name of a
routine at this position in a CALL ON instruction. This
error can occur if the routine name is in quotes.

User response: Check your code and correct it.

FANPAR0354S ";" or subkeyword NAME expected

Explanation: The Compiler found incorrect data at the
end of a CALL ON instruction. The only subkeyword
accepted after the condition name is NAME.

User response: Check your code and correct it.

FANPAR0371S No stem permitted in UPPER
instruction

Explanation: The Compiler found a stem in an UPPER
instruction. A stem cannot be converted to uppercase.

User response: Issue an UPPER instruction for each
variable referred to by the stem.

FANPAR0381S INTERPRET not followed by
expression

Explanation: The Compiler found an INTERPRET
instruction that does not contain an expression to be
interpreted.

User response: Check your code and correct it.

FANPAR0390S LEAVE not valid outside repetitive
DO loop

Explanation: The Compiler found a LEAVE instruction
outside a repetitive DO loop.

User response: Check your code and correct it.

FANPAR0391S ITERATE not valid outside repetitive
DO loop

Explanation: The Compiler found an ITERATE
instruction outside a repetitive DO loop.

User response: Check your code and correct it.

FANPAR0392S Variable does not match control
variable of an active DO loop

Explanation: The symbol specified on a LEAVE or
ITERATE instruction does not match the control
variable of a currently active DO loop. You might have
mistyped the name.

User response: Check your code and correct it.

FANPAR0393S Name of DO control variable
expected

Explanation: The Compiler expects the name of the
control variable of a currently active DO loop after a
LEAVE or ITERATE instruction. Some other characters
were found.

User response: Check your code and correct it.

FANPAR0394S ";" expected: corresponding DO not
controlled by a variable

Explanation: An END clause specifies a symbol, but
the related DO instruction does not have a control
variable. The most common cause of this message is
incorrect nesting of DO groups.

User response: Check your code and correct it.

FANPAR0450S NUMERIC not followed by
DIGITS/FORM/FUZZ

Explanation: The Compiler expects one of the
subkeywords DIGITS, FORM, or FUZZ after the
keyword NUMERIC.

User response: Check your code and correct it.

FANPAR0451S NUMERIC FORM not followed by
expression/valid subkeyword/";"

Explanation: The Compiler found incorrect data at the
end of a NUMERIC FORM. The only data recognized
after FORM is an expression or one of the subkeywords
VALUE, SCIENTIFIC, or ENGINEERING.

User response: Check your code and correct it.

FANPAR0452S NUMERIC FORM VALUE not
followed by expression

Explanation: The Compiler expects an expression after
the subkeyword VALUE.

User response: Supply the missing expression or, if
you are using VALUE as the name of a variable,
enclose it in parentheses or write VALUE VALUE.

FANPAR0352S • FANPAR0452S

Chapter 19. Compilation Messages 161

FANPAR0460S PROCEDURE not followed by
EXPOSE or ";"

Explanation: The Compiler found incorrect data in a
PROCEDURE instruction. The only subkeyword
recognized on a PROCEDURE instruction is EXPOSE.

User response: Check your code and correct it.

FANPAR0465W PARSE LINEIN not supported under
z/OS

Explanation: PARSE LINEIN is supported only under
VM/ESA Release 2.1 and subsequent releases. The
SYNTAX condition is raised if the program runs under
systems other than VM/ESA Release 2.1 or subsequent
releases.

User response: Check your code and correct it.

Note: If you are compiling a REXX program with the
z/OS compiler for execution under VM/ESA Release
2.1 and subsequent releases, you should ignore this
message.

FANPAR0466W NOTREADY condition not
supported under z/OS

Explanation: The NOTREADY condition is supported
only under VM/ESA Release 2.1 and subsequent
releases. The SYNTAX condition is raised if the
program runs under systems other than VM/ESA
Release 2.1 or subsequent releases.

User response: Check your code and correct it.

Note: If you are compiling a REXX program with the
z/OS compiler for execution under VM/ESA Release
2.1 and subsequent releases, you should ignore this
message.

FANPAR0469S SIGNAL VALUE not followed by
expression

Explanation: The Compiler expects an expression after
the subkeyword VALUE.

User response: Supply the missing expression or, if
you are using VALUE as the name of a variable,
enclose it in parentheses or write VALUE VALUE.

FANPAR0470S SIGNAL not followed by label name
or VALUE/ON/OFF

Explanation: After the keyword SIGNAL the compiler
expects one of the subkeywords ON, OFF or VALUE,
or a symbol, literal string or expression for a label. The
end of the clause (or source program) was found
instead.

User response: If you intended to use SIGNAL as a
command, enclose it in quotes or parentheses.
Otherwise complete the instruction or delete the clause.

FANPAR0471S SIGNAL ON/OFF not followed by
condition name

Explanation: The Compiler expects the name of a
condition (ERROR, FAILURE, HALT, NOTREADY,
NOVALUE, or SYNTAX) after the subkeyword ON or
OFF.

User response: Supply the missing condition or, if you
are using ON or OFF as a label, write it in uppercase
and enclose it in quotes.

FANPAR0472S NAME not followed by label name

Explanation: The subkeyword NAME in a SIGNAL
ON instruction must be followed by a symbol. It is not
permitted at this point to enclose the label name in
quotes or to obtain it by evaluating an expression.

User response: Check your code and correct it.

FANPAR0490S ADDRESS VALUE not followed by
expression

Explanation: The Compiler expects an expression after
the subkeyword VALUE.

User response: Check your code and correct it.

FANPAR0550W Unsupported TRACE options will
default to OFF

Explanation: REXX programs that have been compiled
with Compiler option NOTRACE support no TRACE
options other than OFF. The Compiler has found a
TRACE instruction or a use of the TRACE built-in
function which might require a different option.

User response: Compile your program with Compiler
option TRACE or use an interpreter if you wish to
trace.

FANPAR0560S Left operand missing

Explanation: The Compiler found an expression that
does not have a term before the operator. Only the
following can be used as prefix operators:

+ - ¬ \

User response: Check your code and correct it.

FANPAR0561S Right operand missing

Explanation: The Compiler found an expression that
does not have a term after the operator.

User response: Check your code and correct it.

FANPAR0460S • FANPAR0561S

162 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANPAR0562S Prefix operator not followed by
operand

Explanation: The Compiler found an expression that
does not have a term after a prefix operator.

User response: Check your code and correct it.

FANPAR0564S "(" not followed by an expression or
subexpression

Explanation: The Compiler expects an expression or
subexpression after an open parenthesis, unless it is the
open parenthesis of a function invocation.

User response: Check your code and correct it.

FANPAR0565S Unmatched "(" in expression

Explanation: The Compiler found an unmatched open
parenthesis in an expression. This message is also
displayed if a single parenthesis is included in a
command without being enclosed in quotes. For
example, the instruction:

COPY A B C A B D (REP

should be written as:

COPY A B C A B D ’(’REP

User response: Check your code and correct it.

FANPAR0566S Unexpected "," in expression

Explanation: The Compiler found a comma outside a
routine invocation. This message is also displayed if a
comma is included in a character expression without
being enclosed in quotes. For example, the instruction:

Say Enter A, B, or C

should be written as:

Say ’Enter A, B, or C’

User response: Check your code and correct it.

FANPAR0567S Unexpected ")" in expression

Explanation: The Compiler found too many close
parentheses in an expression.

User response: Check your code and correct it.

FANPAR0568S Unexpected ":" in expression

Explanation: The Compiler found a colon in an
expression. This message is also displayed if a colon is
included in a character expression without being
enclosed in quotes. For example, the instruction:

Say Enter address: city and state

should be written as:

Say ’Enter address: city and state’

User response: Check your code and correct it.

FANPAR0569S Invalid operator

Explanation: The Compiler found an incorrect
sequence of operator tokens in an expression. There
might be two adjacent operators with no data
in-between, or the characters might be in the wrong
order, or special characters might be included in a
character expression without being enclosed in quotes.
For example, the instruction:

LISTFILE * * *

should be written as:

’LISTFILE * * *’

or, if LISTFILE is a variable, as:

LISTFILE ’* * *’

User response: Check your code and correct it.

FANPAR0570S Invalid use of NOT operator

Explanation: The Compiler found a logical NOT
operator (¬ or \), which is not part of a longer
(comparison) operator, after a term in an expression.
You might have meant to write a comparison operator
but omitted the =, < or > characters.

User response: If you intend to concatenate the result
of a NOT operation to the result of the preceding term,
write an explicit concatenation operator (||) before the
NOT operator. If you intend a comparison, append one
or two =, < or > characters to the NOT operator.

FANPAR0580S Variable name longer than 250
characters

Explanation: A symbol used as a variable name is
longer than the limit of 250 characters.

User response: Reduce the length of the variable
name.

FANPAR0581S Invalid hexadecimal constant

Explanation: Hexadecimal constants cannot have
leading or trailing blanks and can have embedded
blanks only at byte boundaries.

The following are all valid hexadecimal constants:

’13’x
’A3C2 1c34’x
’1de8’x

User response: If you want to have a literal (quoted)
string followed by the symbol X, but you do not want
it to be interpreted as a hexadecimal constant, you
must insert a concatenation operator (||) between the
string and the symbol X. Otherwise, ensure that no
digits are mistyped and remove any blanks that do not
correspond to byte boundaries.

FANPAR0562S • FANPAR0581S

Chapter 19. Compilation Messages 163

FANPAR0582S Resulting string longer than 250
characters

Explanation: The Compiler tried to convert a binary
string, a hexadecimal string, or a literal string into
internal format. The length of the resulting string
exceeds the limit of 250 characters. Binary strings are
limited to 2000 binary digits, hexadecimal strings are
limited to 500 hexadecimal digits, and literal strings are
limited to 250 characters.

This error can be caused by a missing ending quote or
by a single quote in a string. For example, the string
’don’t’ must be written as ’don’’t’ or "don’t".

User response: To specify a string longer than 250
characters, concatenate two or more smaller strings,
each with fewer than 250 characters.

FANGAO0583S Environment name longer than 8
characters

Explanation: The Compiler found an environment
name longer than the limit of 8 characters specified on
an ADDRESS instruction.

User response: Correct the environment name.

FANPAR0584S Name longer than 250 characters

Explanation: A symbol used as a label is longer than
the limit of 250 characters.

User response: Reduce the length of the label.

FANPAR0590S Invalid binary constant

Explanation: The Compiler has found a literal string
that is immediately followed by a symbol consisting
only of the letter B, and tries to interpret it as a binary
constant. No leading or trailing blanks are allowed in
the string. Blanks can occur only at four-digit
boundaries.

User response: If you want to have a literal (quoted)
string followed by the symbol B, but you do not want
it to be interpreted as a binary constant, you must
insert a concatenation operator (||) between the string
and the symbol B. Otherwise, ensure that no digits are
mistyped and remove any blanks that do not
correspond to four-digit boundaries.

FANPAR0591S EXPOSE list must not be empty

Explanation: A PROCEDURE instruction contains the
subkeyword EXPOSE but no further data. EXPOSE
must be followed by at least one variable name or one
variable name in parentheses.

User response: If you wish to expose no variables,
omit the subkeyword EXPOSE.

FANPAR0592S "=" not followed by a whole number
or "("

Explanation: The Compiler found an incorrect
positional pattern in a parsing template: an equal sign
must be followed by a whole number or by the name
of a variable in parentheses.

User response: Check your code and correct it.

FANPAR0593S Unmatched "(" in DROP list

Explanation: After each open parenthesis in a DROP
instruction there must be the name of a variable and a
close parenthesis.

User response: Check your code and correct it.

FANPAR0594S Unmatched "(" in EXPOSE list

Explanation: After each open parenthesis in the
EXPOSE list of a PROCEDURE instruction there must
be the name of a variable and a close parenthesis.

User response: Check your code and correct it.

FANPAR0595S Variable expected after "(" in DROP
list

Explanation: After each open parenthesis in a DROP
instruction there must be the name of a variable and a
close parenthesis.

User response: Check your code and correct it.

FANPAR0596S Variable expected after "(" in EXPOSE
list

Explanation: After each open parenthesis in the
EXPOSE list of a PROCEDURE instruction there must
be the name of a variable and a close parenthesis.

User response: Check your code and correct it.

FANPAR0597S Variable or "(" expected in DROP list

Explanation: Each entry in the list following DROP
must be the name of a variable optionally enclosed in
parentheses. The Compiler has found some other token,
such as a symbol that does not begin with a letter.

User response: Check your code and correct it.

FANPAR0598S Variable or "(" expected in EXPOSE
list

Explanation: Each entry in the EXPOSE list of a
PROCEDURE instruction must be the name of a
variable optionally enclosed in parentheses. The
Compiler has found some other token, such as a
symbol that does not begin with a letter.

User response: Check your code and correct it.

FANPAR0582S • FANPAR0598S

164 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANPAR0599S TRACE VALUE not followed by
expression

Explanation: The Compiler expects an expression after
the subkeyword VALUE.

User response: Supply the missing expression or, if
you are using VALUE as the name of a variable,
enclose it in parentheses or write VALUE VALUE.

FANGAO0600W Third argument of VALUE built-in
function not supported

Explanation: VALUE built-in functions with three
parameters are only supported under z/VM. This
message is displayed, for example, if you have coded
the VALUE built-in function with the selector argument.

User response: Check your code and correct it.

Note: If you are compiling a REXX program with the
z/OS Compiler for execution under z/VM, you should
ignore this message.

FANPAR0601W Invalid DBCS data in comment

Explanation: The first instruction of the program is
OPTIONS 'ETMODE', and the Compiler has detected
an invalid DBCS string in a comment. The number of
bytes between shift-out and shift-in is odd.

User response: Correct the comment.

FANPAR0648S Invalid data after SELECT

Explanation: The Compiler expects a semicolon or
implied semicolon after a SELECT.

User response: Remove the incorrect data after the
SELECT, and insert a semicolon or begin a new line
when appropriate.

FANPAR0650S Invalid data at end of clause

Explanation: The Compiler has found extra tokens
after those allowed in the clause. You might have
omitted a semicolon or not have started a new line
after the offending clause.

User response: Insert a semicolon if necessary, or put
the next clause into a new line.

FANPAR0651S Clause not completed before end of
program

Explanation: The Compiler reached the end of the
source program without finding the end of the last
clause. This often occurs because of some other error,
such as an unmatched start of comment or an invalid
DBCS string.

User response: Terminate all quoted strings,
comments and DBCS strings correctly. Do not use a

continuation comma on the last line of the program.

FANPAR0652S Unmatched quote

Explanation: The Compiler reached the end of the
source program without finding the close quote for a
literal string.

User response: Add the close quote.

FANPAR0653S Unmatched shift-out character

Explanation: The Compiler found a character string or
a comment that has unmatched shift-out/shift-in pairs
(that is, a shift-out character without a shift-in
character) with OPTIONS 'ETMODE' in effect.

User response: Supply the appropriate shift-in
character.

FANPAR0654S Unmatched "/*"

Explanation: The Compiler reached the end of the
source program without finding the ending */ for a
comment.

User response: Add the missing */ characters.

FANPAR0655S Invalid character in program

Explanation: The Compiler found an unexpected
character outside a literal (quoted) string or comment
that is not a blank or one of the following:

v A-Z a-z 0-9 (Alphanumerics)

v @ # $ ¢ . ? ! _ (Name Characters)

v & * () - + = \ ¬ ’ " ; : < , > / | % (Special
Characters)

v Any DBCS character when OPTIONS ’ETMODE’ is in
effect

In case the program was imported from another
system: Verify that the translation of the characters was
correct.

User response: Check your code and correct it.

FANPAR0656E Invalid DBCS data in string

Explanation: A character string that has an odd
number of bytes between the shift-out/shift-in
characters was encountered with OPTIONS 'ETMODE'
in effect.

User response: Correct the character string.

FANGAO0657S Invalid whole number

Explanation: The Compiler found a parsing positional
pattern or the right-hand term of the exponentiation (**)
operator that did not evaluate to a whole number
within the current setting of NUMERIC DIGITS, or that

FANPAR0599S • FANGAO0657S

Chapter 19. Compilation Messages 165

was greater than the limit, for these uses, of
999 999 999.

User response: Check your code and correct it.

FANGAO0658S Logical value not 0 or 1

Explanation: The Compiler found a logical expression
that does not result in a 0 or 1. Any term operated on
by a logical operator (¬, \, |, &, or &&) must result in
a 0 or 1. The expression in an IF clause, in a WHEN
clause, or in a WHILE or UNTIL phrase must result in
a 0 or 1.

User response: Check your code and correct it.

FANGAO0659S Nonnumeric term

Explanation: The Compiler found a nonnumeric term
in an arithmetic expression or as an argument of a
built-in function, or in a DO clause.

User response: Check your code and correct it.

FANPAR0660S Program ends with ","

Explanation: The last line of the source file ends with
the line continuation character (a comma).

User response: Check your code and correct it.

FANPAR0661S Invalid DBCS data in symbol

Explanation: With OPTIONS 'ETMODE' in effect
invalid DBCS data in a symbol was detected. DBCS
data in a symbol is considered invalid if:

v A shift-in character immediately follows a shift-out
character

v A shift-out character immediately follows a shift-in
character

v The number of bytes between any shift-out character
and shift-in character is odd

v Any byte between shift-out character and shift-in
character has a value outside the range '41'X through
'FE'X.

User response: Correct the symbol.

FANPAR0662S Unmatched shift-out character in
symbol

Explanation: With OPTIONS 'ETMODE' in effect, a
symbol that has shift-out and possibly shift-in
characters was detected. The shift-in character for
symbols must be defined on the same line as the
symbol.

User response: Correct the symbol.

FANENV0663S Recursive %INCLUDE directives not
allowed

Explanation: A sequence of %INCLUDE directives
was detected that lead to an already included file. This
would cause an endless include activity. For example,
an included file contains a %INCLUDE directive
specifying itself; or, file A includes file B which in turn
includes file A. The Compiler breaks the recursion and
does not execute any more %INCLUDEs within that
recursion.

User response: Correct the erroneous %INCLUDE
directives.

FANENV0669T fileID output file ID must not be
identical with %INCLUDE file ID

Explanation: The file name, file type, and file mode of
one of the %INCLUDE files is equal to the file name,
file type, and file mode of one of the output files. The
value of fileID shows which output file ID is wrong:
CEXEC refers to the compiled EXEC.
IEXEC refers to the expanded IEXEC output.
OBJECT

refers to the TEXT file.
PRINT refers to the compiler listing.

User response: Specify a different file ID for the
output file.

FANENV0670S Compiler option not recognized:
option

Explanation: The command used to invoke the
Compiler contains incorrect data in the options string.
The name of an option might be mistyped.

User response: Invoke the Compiler again with a
valid options list.

FANENV0671T No "(" found to mark start of
compiler options

Explanation: The command used to invoke the
Compiler did not contain an open parenthesis to mark
the start of the options list.

User response: Reissue the command with an open
parenthesis between the source file identifier and the
options list.

FANENV0672T File name, file type, or file mode too
long: fileID-part

Explanation: The identifier you specified for the
source file or for one of the output files is incorrect.
Either the file name or the file type is longer than 8
characters or the file mode is longer than 2 characters.

User response: Invoke the Compiler again with a
valid file identifier.

FANGAO0658S • FANENV0672T

166 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANENV0673S LINECOUNT value not 0 or a whole
number in the range 10-99: value

Explanation: The value of the LINECOUNT (LC)
compiler option is not 0 or a whole number in the
range 10 through 99.

User response: Invoke the Compiler again with a
valid value for the LINECOUNT option.

FANENV0674T option: no ")" found after parameter

Explanation: A keyword parameter in a compiler
option does not contain a close parenthesis.

User response: Add the missing close parenthesis.

FANENV0675T No file ID for REXX source found

Explanation: The command used to invoke the
Compiler did not specify a source file.

User response: Invoke the Compiler again with a
source file identifier.

FANENV0676T option output file ID must not be
identical with source file ID

Explanation: The file name, file type, and file mode of
one of the output files is the same as the file name, file
type, and file mode specified for the source file. The
value of option indicates which output file identifier is
in error: CEXEC refers to the compiled EXEC, IEXEC
refers to the expanded (IEXEC) output, OBJECT refers
to the TEXT file, and PRINT refers to the compiler
listing.

User response: Specify a different file identifier for the
output file.

FANENV0677S Option option ignored because of
missing ")"

Explanation: A compiler option is ignored because a
previous keyword parameter in a compiler option does
not contain a close parenthesis.

User response: Add the missing close parenthesis.

FANENV0678T option1/option2 output file IDs must
not be identical

Explanation: The same file name, file type, and file
mode has been specified for more than one of the
output files. The values of option1 and option2 indicate
which output file identifiers are identical: CEXEC refers
to the compiled EXEC, IEXEC refers to the expanded
(IEXEC) output, OBJECT refers to the TEXT file, and
PRINT refers to the compiler listing.

User response: Specify a unique file identifier for each
output file.

FANENV0679T Invalid file ID: fileID

Explanation: The fileID specified for the source file or
one of the output files is not a valid CMS file name.
The fileID contains one or more asterisks or the file
mode is not in the range A0 to Z6 or A to Z.

User response: Invoke the compiler again with a valid
CMS fileID.

FANFMU0680T Error opening CEXEC file

Explanation: The Compiler could not open the
compiled EXEC file specified in the CEXEC compiler
option. This problem can occur if your virtual machine
does not have read/write access to the minidisk.

User response: Use a minidisk to which your virtual
machine has read/write access.

FANFMU0681T Error opening OBJECT file

Explanation: The Compiler could not open the TEXT
file specified in the OBJECT compiler option. This
problem can occur if your virtual machine does not
have read/write access to the minidisk.

User response: Use a minidisk to which your virtual
machine has read/write access.

FANFMU0682T Error writing to CEXEC file

Explanation: An error occurred when writing to the
compiled EXEC file specified in the CEXEC compiler
option. The most likely cause of this message is a full
disk.

User response: Obtain more free disk space.

FANFMU0683T Error closing CEXEC file

Explanation: The Compiler could not close the
compiled EXEC file specified in the CEXEC compiler
option.

User response: If the problem persists, notify your
system support personnel.

FANFMU0684T Error writing to OBJECT file

Explanation: An error occurred when writing to the
object file specified in the OBJECT compiler option. The
most likely cause of this message is a full disk.

User response: Obtain more free disk space.

FANFMU0685T Error closing OBJECT file

Explanation: The Compiler could not close the TEXT
file specified in the OBJECT compiler option.

User response: If the problem persists, notify your
system support personnel.

FANENV0673S • FANFMU0685T

Chapter 19. Compilation Messages 167

FANCON0686T Error closing source file

Explanation: The Compiler could not close the source
file.

User response: If the problem persists, notify your
system support personnel.

FANLIS0687T Error opening file or virtual printer
for PRINT output

Explanation: The Compiler could not open the
compiler listing specified in the PRINT compiler
option. This problem can occur if your virtual machine
does not have read/write access to the minidisk, if the
virtual printer is not operational, or if the Compiler
was unable to get the space needed for the work areas.

User response: Use a minidisk to which your virtual
machine has read/write access, direct the print output
to the virtual printer, make the virtual printer
operational, or obtain more storage by releasing a
minidisk or SFS directory, or by deleting a nucleus
extension. Alternatively, define a larger virtual storage
size for the virtual machine and re-IPL CMS.

FANLIS0688T Error writing to file or virtual printer
for PRINT output

Explanation: An error occurred when writing to the
compiler listing file specified in the PRINT compiler
option. The most likely causes of this error are a full
disk, or a non-operational virtual printer.

User response: Obtain more free disk space, or use the
PRINT compiler option to send the file to another disk
or to the virtual printer, or make the virtual printer
operational.

FANxxx0689T Error closing file or virtual printer for
PRINT output

Explanation: The Compiler listing specified in the
PRINT compiler option could not be closed. The most
likely cause of this message is that a release-storage
request has failed.

User response: If the problem persists, notify your
system support personnel.

FANENV0690T Source file cannot be opened: record
length greater than number number

Explanation: The source file could not be opened,
because the record length is greater than the specified
number of bytes:

For z/OS:
32 760 bytes

For z/VM:
65 535 bytes

User response: Reduce the record length of the source
file.

FANENV0691W CEXEC file type truncated: source
file type has 8 characters

Explanation: The file type of the compiled EXEC,
which is C concatenated with the source file type, was
truncated because it was longer than 8 characters.

User response: Either specify a valid file type for the
compiled EXEC on the CEXEC option or change the file
type of the source file.

FANENV0692S No blank between ")" and next
option; next option ignored

Explanation: There is no blank between the close
parenthesis of a keyword parameter in a compiler
option and the next compiler option. The next compiler
option is ignored.

User response: Insert a blank between the compiler
options.

FANENV0693T DUMP value not a whole number in
the range 0-2047: value

Explanation: The value of the DUMP (DU) compiler
option is not a whole number in the range 0 through
2047.

User response: Invoke the Compiler again with a
valid value for DUMP.

FANENV0694T Incorrect RECFM value for ddname

Explanation: See “Standard Data Sets Provided for the
Compiler” on page 14 for a list of the valid RECFM
values.

User response: Specify an appropriate output data set.

FANENV0695T Incorrect BLKSIZE value for ddname

Explanation: See “Standard Data Sets Provided for the
Compiler” on page 14 for a list of the valid BLKSIZE
values.

User response: Specify an appropriate output data set.

FANENV0696T Incorrect LRECL value for ddname

Explanation: See “Standard Data Sets Provided for the
Compiler” on page 14 for a list of the valid LRECL
values.

User response: Specify an appropriate output data set.

FANCON0686T • FANENV0696T

168 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANENV0697T DSORG=PO but no member name
given: ddname

Explanation: The data set name associated with the
ddname corresponds to a partitioned data set, but no
member name has been given.

User response: Either specify a member name or
correct the data set name to correspond to a sequential
data set.

FANENV0698T DSORG=PS but member name
given: ddname

Explanation: The data set name associated with the
ddname corresponds to a sequential data set, but a
member name has been given.

User response: Either omit the member name or
correct the data set name to correspond to a partitioned
data set.

FANENV0703S LIBLEVEL not a whole number in
range 2-6, or "*": value

Explanation: The value of the LIBLEVEL (LL)
compiler option is neither a whole number in the range
2 through 6 nor "*".

User response: Invoke the compiler again with a valid
LIBLEVEL option.

FANCON0704S Full TRACE support requires
runtime level value

Explanation: You have requested full TRACE support
for your compiled program (TRACE and SLINE
compiler options) but the Library level specified in the
LIBLEVEL option is too low.

User response: Do one of the following:

v Invoke the compiler again using a higher value for
the LIBLEVEL option. The "value" value in the
message indicates the minimum Library level
required for full TRACE support. For more
information refer to “LIBLEVEL” on page 28.

v Compile the program without the TRACE and SLINE
options.

FANCOD0705S CONDENSE requires runtime level
value

Explanation: You have requested that your compiled
program be condensed (CONDENSE compiler options)
but the Library level specified in the LIBLEVEL option
is too low.

User response: Do one of the following:

v Invoke the compiler again using a higher value for
the LIBLEVEL option. The "value" value in the
message indicates the minimum Library level

required for full CONDENSE support. For more
information refer to “LIBLEVEL” on page 28.

v Compile the program without the CONDENSE
option.

FANxxx0706S Runtime level value needed

Explanation: You specified the LIBLEVEL(x) compiler
options and the compiler has detected a language
feature that requires a higher level of the Library. The
error marker symbol usually points to the start of the
clause containing the language feature.

User response: Do one of the following:

v Invoke the compiler again using a higher value for
the LIBLEVEL option. The "value" value in the
message indicates the minimum Library level
required for the language feature. For more
information refer to “LIBLEVEL” on page 28.

v Rewrite the clause indicated by the error message.

FANENV0708T The ALTERNATE option requires the
SLINE option

Explanation: When specifying the ALTERNATE
Compiler option, the SLINE option is required. The
Alternate Library cannot prepare the control blocks
needed by the interpreter if the source of the REXX
program is not included at compilation time using the
SLINE option.

User response: Compile the REXX program again,
specifying both the ALTERNATE and SLINE Compiler
options.

FANENV0709W DLINK has no effect when running
with the Alternate Library

Explanation: The DLINK option supports a direct link
of an external subroutine or function when a module is
generated from OBJECT output. This option is
supported by the Library, but not by the Alternate
Library. The Alternate Library runs the compiled REXX
program by invoking the interpreter; the standard
system search order is used.

User response: When distributing the compiled REXX
programs, include the external subroutines and
functions that are directly linked for the Library as
separate modules for the Alternate Library.

FANENV0710T The TRACE option requires the
SLINE option

Explanation: When specifying the TRACE option, the
SLINE (or SLINE(AUTO)) option is required.

User response: Recompile the program specifying
both the TRACE and SLINE options.

FANENV0697T • FANENV0710T

Chapter 19. Compilation Messages 169

FANENV0711T DLINK and TRACE must not be
specified together

Explanation: These options are mutually exclusive.

User response: Omit one of the two options.

FANENV0712T DLINK and CONDENSE must not
be specified together

Explanation: These options are mutually exclusive. A
condensed program cannot be used with DLINK.

User response: Omit one of the two options.

FANxxx0713I Message repository not found.
Hardcoded messages used.

Explanation: The Compiler could not load the
message repository. This means that it could not locate
the file containing the error and informational messages
and make it available to the compiler run.

Note:

1. Subsequent messages are issued exactly as if the
user had installed the delivered FANUME
REPAMENG repository.

2. If the repository cannot find the message number,
no error indication occurs. Instead the same
message is issued as if the FANUME REPAMENG
repository has been installed.

User response: Ask your administrator for help.

FANENV0718T Left MARGINS value not a whole
number in the range range: margins

Explanation: The left margin specified by the
MARGINS compiler option must be a whole number.
For more information refer to “MARGINS” on page 30.

User response: Invoke the compiler again with a valid
MARGINS option.

FANENV0719T Right MARGINS value not a whole
number in the range left margin margin
or "*": margins

Explanation: The right margin specified by the
MARGINS compiler option is neither '*' nor a whole
number in the range left margin. For more information
refer to “MARGINS” on page 30.

User response: Invoke the compiler again with valid
values for the MARGINS option.

FANGAO0770S Invalid number of arguments in
built-in function

Explanation: The number of arguments you passed to
a built-in function is either of the following:

v Less than the number of required arguments for the
function

v Greater than the number of arguments defined for
the function.

User response: Check your code and correct it.

FANENV0771S option ignored because of missing "("

Explanation: The option is ignored because the
command used to invoke the Compiler did not contain
an open parenthesis to mark the start of the options
list.

User response: Reissue the command after typing an
open parenthesis between the source-file identifier and
the options list.

FANGAO0772W SOURCELINE built-in function
used and SL option not specified

Explanation: The Compiler found a reference to the
SOURCELINE built-in function and the SLINE
compiler option (abbreviation: SL) was not specified.
The full functions of the SOURCELINE function are
available only if the program is compiled with the
SLINE or SLINE(AUTO) compiler option. For more
information on using the SOURCELINE function with
the Compiler, see “SOURCELINE Built-In Function” on
page 94.

User response: To use the full functions of the
SOURCELINE function, recompile the program with
the SLINE option.

FANGAO0773I Instruction might never be executed

Explanation: The compiler has found that a section of
code starting at the marked point cannot be reached
during execution of the program. Such cases occur
when the code is not labelled or the label is not valid
or is defined several times, and the preceding
instruction transfers control to another part of the
program. Instructions that transfer control are EXIT,
ITERATE, LEAVE, RETURN, and SIGNAL (without ON
or OFF), as well as IF and SELECT instructions that
contain such instructions after every THEN and
ELSE/OTHERWISE.

User response: If the code is unreachable because you
have forgotten a label, misspelled it, or defined it
several times, or because of mismatched DO/END
clauses, correct the error. If you do not want the code
to be executed, but do not wish to remove it
completely, it is more efficient to enclose it in a
comment. Code that is not normally executable can still
be executed using the SOURCELINE built-in function
in connection with INTERPRET, for example.

FANENV0711T • FANGAO0773I

170 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANGAO0774I Number of arguments in standard
function not valid

Explanation: A function of an IBM supplied standard
function package is used with the wrong number of
arguments.

User response: Correct the number of arguments.

FANENV0800E Invalid suboption in OLDDATE
option is not C, P, I or O

Explanation: Only the C, P, I, and O are valid for the
OLDDATE option.

User response: Specify the correct letters C, P, I, or O
as described in “OLDDATE” on page 32.

FANENV0801E OLDDATE option not supported if
system is not Y2K ready

Explanation: You have specified the OLDDATE
option, but your system is not yet enabled for the year
2000.

User response: You can only use the OLDDATE
option, if your system has been enabled for the year
2000.

FANENV0802E OLDDATE option not supported,
missing DMSPLU service

Explanation: The OLDDATE option is only supported,
if the DMSPLU service is provided by your z/VM
installation.

User response: You must not use the OLDDATE
option. Ask your system administrator for help.

FANENV0803E Error processing OLDDATE for file

Explanation: An error occurred when processing the
OLDDATE option for the specified file.

User response: Check your code and correct the error.
For more information refer to “OLDDATE” on page 32.

FANPAR0849W SAA: Source expression in
assignment is missing

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler did not find an
expression after the assignment operator (=).

User response: To assign a null string ('') to the
variable, code it after the =.

FANPAR0850W SAA: UPPER instruction not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found an UPPER
instruction in the program. The UPPER instruction is

supported by the Compiler, but is not part of the SAA
REXX interface.

User response: Use the TRANSLATE built-in function
instead.

FANPAR0851W SAA: PARSE EXTERNAL not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a PARSE
EXTERNAL instruction in the program. PARSE
EXTERNAL is supported by the Compiler, but is not
supported by the SAA REXX interface.

User response: Use PARSE PULL instead.

FANPAR0852W SAA: PARSE NUMERIC not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a PARSE
NUMERIC instruction in the program. PARSE
NUMERIC is supported by the Compiler, but is not
supported by the SAA REXX interface.

User response: Use the DIGITS, FORM, or FUZZ
built-in functions instead.

FANPAR0854W SAA: "@", "#", "$", "¢" might not be
used in symbols

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found one of the
following characters in a symbol:

@ # $ ¢

The use of these characters in symbols is supported by
the Compiler, but is not supported by the SAA REXX
interface. This message is not issued when compiling
with the SAA compiler option while OPTIONS
'ETMODE' is in effect.

User response: Change the symbol.

FANPAR0855W SAA: Literal strings must be
completely on one line

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a literal
string that crosses a line boundary. Such strings are
supported by the Compiler, but are not supported by
the SAA REXX interface.

User response: Either put the entire string on one line
of the source file, or divide the string into smaller
strings and concatenate those strings. For example, the
assignment:

title = ’Director of European Sales and Marketing’

could be written as:

FANGAO0774I • FANPAR0855W

Chapter 19. Compilation Messages 171

title = ’Director of ’||,
’European Sales and Marketing’

FANPAR0856W SAA: "/" must not be used in a
comparison operator

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a / character
being used as part of a comparison operator. This use
of the / character is supported by the Compiler, but is
not supported by the SAA REXX interface.

User response: Use ¬ or \ instead.

FANGAO0857W SAA: Built-in function not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a built-in
function that is supported by the Compiler, but is not
supported by the SAA REXX interface.

User response: For FIND, use WORDPOS instead. For
INDEX, use POS instead. For any other function,
change the program to avoid using the function.

FANGAO0858W SAA: Trace prefix ! not part of SAA
Procedures Language

Explanation: The message warns of noncompliance
with SAA guidelines. The Compiler found a ! character
being used as trace prefix. This use of the ! trace prefix
is supported by the Compiler, but is not supported by
the SAA REXX interface.

User response: Correct the trace prefix.

FANGAO0859S Division by zero

Explanation: The Compiler detected an attempt to
divide by zero (/, %, //), which is not valid. The zero
divisor can be a constant, a variable, or an expression,
which the Compiler recognizes to have a value of zero.

User response: Correct the expression.

FANGAO0860S Not a positive whole number

Explanation: The Compiler expects a number greater
than zero in the indicated position. The number can be
the operand of a NUMERIC DIGITS instruction or an
argument of a built-in function. This operand or
argument can be a constant or a variable which the
Compiler recognizes to have a value equal to or less
than zero; or, it is no number at all.

User response: Correct the operand or argument.

FANGAO0861S Positive whole number or zero
required

Explanation: REXX requires a nonnegative numeric
value at the indicated position, which can be the
operand of a DO, DO FOR, or NUMERIC FUZZ
instruction or an argument of a built-in function. This
operand or argument can be a constant, variable, or
expression. The Compiler recognizes that its value
cannot be numeric or, if numeric, cannot be a whole
number or be positive or zero.

User response: Correct the operand or argument.

FANGAO0862S Not a whole number in the range
0-99

Explanation: The Compiler expects a number from 0
through 99 as the argument of the ERRORTEXT built-in
function. This argument can be a constant or a variable
from which the Compiler recognizes that it has a value
outside this range.

User response: Correct the argument.

FANGAO0863S Required argument in built-in
function missing

Explanation: A required argument of a built-in
function has not been specified.

User response: Supply the argument.

FANGAO0864S Argument of built-in function is not
a single character

Explanation: A built-in function requires an argument
that must be a single character. An argument of another
length has been specified.

Note: If the program contains an OPTIONS instruction,
the Compiler checks only whether this argument has a
length greater than zero.

User response: Supply an argument of 1 character.

FANGAO0865S Argument of built-in function is not
a hexadecimal string

Explanation: An X2C or X2D built-in function
requiring a hexadecimal first argument has been
supplied with a wrong argument. This argument is a
constant, a variable, or an expression which the
Compiler recognizes to have an invalid value.

User response: Supply a hexadecimal argument.

FANGAO0866S Invalid option in built-in function
invocation

Explanation: An option of a built-in function has an
incorrect value, for example:

TIME(’G’),TIME(’GMT’)

FANPAR0856W • FANGAO0866S

172 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

User response: Supply a correct option.

FANGAO0867W SAA: Option in built-in function
invocation invalid under SAA

Explanation: This message warns of noncompliance
with SAA guidelines. An option of a built-in function
has a value that is supported by the Compiler, but not
by the SAA REXX interface. For example:

DATE(’C’),DATE(’Century’)

User response: Supply a correct option.

FANGAO0868S RANDOM() BIF: either min>max or
(max-min)>100000

Explanation: The values found for the max argument,
the min argument, or both in an invocation of a
RANDOM built-in function are not valid for one of the
following reasons:

v The min argument is greater than the max argument.

v The difference max-min is greater than 100000.

Either one or both of the arguments might have
resulted because of defaulting. For example,
RANDOM(2000,) is not a valid min argument because
the max argument defaults to 999.

User response: Specify values for the arguments or
allow them to default so as to comply with the rules
specified above.

FANGAO0869S Expression must evaluate to
SCIENTIFIC or ENGINEERING

Explanation: The expression following NUMERIC
FORM must evaluate to SCIENTIFIC or
ENGINEERING.

User response: Correct the expression.

FANFMU0870S More than 65534 external routine
invocations

Explanation: When the DLINK option is specified, the
Compiler cannot process a program containing
invocations of more than 65 534 external procedures or
functions.

User response: Reduce the number of external
routines or specify the NODLINK option.

FANFMU0871T Size of object module exceeds 16MB

Explanation: The size of an object module (that is,
core image) created by the REXX compiler is limited to
16MB. This restriction applies to both CEXEC and
OBJECT output.

User response: If you have not used the
SOURCELINE built-in function in your program, you
should compile with NOSLINE to avoid incorporating

the source statements into your object module.

Try to reduce the size of the REXX source program by
dividing it into several sources that can be compiled
individually. Obvious candidates for forming new
sources are any PROCEDURE subprograms without
EXPOSE.

FANGAO0872I Positive whole number or zero
expected

Explanation: This argument of the function GETMSG
must be a positive number or zero.

User response: Correct the argument.

FANGAO0873I Asterisk, blank, or nonnegative
number expected

Explanation: This argument of the function OUTTRAP
must be a positive number or zero, or a string
consisting of one asterisk.

User response: Correct the argument.

FANGAO0874I Argument should have 8 hexadecimal
digits

Explanation: This argument of the function STORAGE
must be a string in the range of 1 to 8 hexadecimal
digits.

User response: Correct the argument.

FANGAO0875I Argument should be a nonnegative
whole number

Explanation: This argument of the function STORAGE
must be a positive whole number or zero.

User response: Correct the argument.

FANGAO0878S Separator arg of DATE incompatible
with argument argument

Explanation: You specified a separator for the output
or input date, although the corresponding date format
does not allow for a separator. The formats permitting
no separator are B, C, D, J, M and W. A zero-length
string, too, is a separator and therefore not permitted.

User response: Remove the separator argument. For
example, DATE("C", X, Y, "", Z) is wrong, but
DATE("C", X, Y, , Z) is correct.

FANGAO0879S Separator arg (4 or 5) of DATE
exceeds one character

Explanation: The separator for a date format must not
be longer than one character.

User response: Replace the invalid argument with a
string that contains no or a single character.

FANGAO0867W • FANGAO0879S

Chapter 19. Compilation Messages 173

FANGAO0880S Argument of built-in function is not
a binary string

Explanation: A B2X built-in function requiring a
binary first argument has been supplied with a wrong
argument. This argument is a constant, a variable, or an
expression, which the Compiler recognizes to have an
invalid value.

User response: Supply a binary argument.

FANGAO0881S TRACE option is not valid

Explanation: The option in a TRACE instruction or a
use of the TRACE built-in function is not valid. One of
the following options contain a value that is not valid:
a constant, a variable, or an expression.

User response: Check your code and correct it.

FANGAO0882E Derived variable name longer than
250 characters

Explanation: The Compiler predicts that at runtime
after substitution of values of variables into a
compound symbol, the length of the resulting name
will be greater than the limit of 250 characters.

User response: Check your code and correct it.

FANGAO0883S Argument is not an unbracketed
DBCS string

Explanation: The DBCS processing function
DBBRACKET requires an argument that consists of at
least one pair of bytes, each pair being a valid EBCDIC
DBCS character. The SO and SI characters must not be
present. Valid pairs are:
v Two EBCDIC blanks
v Two characters with hexadecimal values in the range

of '41'X to, and including, 'FE'X

User response: Correct the argument value.

FANGAO0884S Argument is not a valid DBCS string

Explanation: This argument to a DBCS processing
function must be a valid DBCS string or mixed string.
The argument can contain SBCS parts, in which any
character other than SO and SI is permitted, and DBCS
parts. A DBCS part starts with SO and ends with SI.
Between SO and SI there must be pairs of bytes, each
pair being a valid EBCDIC DBCS character. Valid pairs
are:

v Two EBCDIC blanks

v Two characters with hexadecimal values in the range
of '41'X to, and including, 'FE'X

User response: Correct the argument value.

FANGAO0885S Argument is not a single bracketed
DBCS string

Explanation: The DBCS processing function
DBUNBRACKET requires an argument consisting of a
single pure DBCS string. A valid argument value starts
with SO and ends with SI. Between SO and SI there
must be pairs of bytes, each pair being a valid EBCDIC
DBCS character. Valid pairs are:

v Two EBCDIC blanks

v Two characters with hexadecimal values in the range
of '41'X to, and including, 'FE'X

User response: Correct the argument value.

FANGAO0886I Argument is not one of the permitted
values

Explanation: The value defined for the first argument
of a system function is not allowed. For example, the
value of the first argument of the ASSGN built-in
function (BIF) must be "STDIN" or "STDOUT". The
following system BIFs are verified:

z/VM specific functions:
APILOAD, CMSFLAG, CSL, DIAG, DIAGRC,
SOCKET, STORAGE

z/OS specific functions:
STORAGE, GETMSG, LISTDSI, MSG,
MVSVAR, OUTTRAP, PROMPT, SETLANG,
SYSCPUS, SYSDSN, SYSVAR

VSE specific functions:
STORAGE, OUTTRAP, ASSGN

User response: Correct the argument.

FANGAO0887I Incompatible arguments to ASSGN

Explanation: The first argument to the function
ASSGN is "STDIN"and the second is "SYSLST", or the
first is "STDOUT" and the second is "SYSIPT".

User response: Change one of the arguments.

FANGAO0888W Argument must be a single SBCS or
DBCS character

Explanation: This argument to a DBCS processing
function must consist of a single SBCS or DBCS
character. It must be a single character other than SO
and SI, or four bytes consisting of SO, a pair of bytes
representing a valid DBCS character, and SI. Valid pairs
are:

v Two EBCDIC blanks

v Two characters with hexadecimal values in the range
of '41'X to, and including, 'FE'X

User response: Correct the argument.

FANGAO0880S • FANGAO0888W

174 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

FANGAO0889I Argument should be name of a
simple variable or stem

Explanation: This argument to the function GETMSG
or OUTTRAP must be a string containing a valid name
for a simple variable or stem. A valid string can contain
alphanumeric characters, exclamation marks (!),
question mark (?), and underscores (_). It must start
with an alphabetic character and can end with a period.

User response: Correct the argument.

FANENV0890T Incorrect LRECL value for
SYSIEXEC, expected/found:
option1/option2

Explanation: The LRECL value found for the
SYSIEXEC output (option2) is incorrect. The compiler
expected option1. Refer to “IEXEC” on page 27 for
information on how to calculate the record length.

User response: Specify an output data set with the
correct LRECL.

FANENV0891T Incorrect RECFM value (F|FB) for
SYSIEXEC, input records vary in length

Explanation: The data set specified for the SYSIEXEC
output has fixed-length records but the input contains
records of different length. Input means, in z/OS, all
data sets in the SYSIN concatenation and, in z/OS and
z/VM, files inserted into the compilation using
%INCLUDE directives. Records of different length are
the result of a split of the source lines if the source text
is found on the same line as the %INCLUDE directive.

User response: Specify a data set for SYSIEXEC with
variable-length records.

FANENV0892T Incorrect RECFM value (F|FB) for
SYSIEXEC, input with RECFM=V|VB

Explanation: The data set specified for the SYSIEXEC
output has fixed-length records but one or more of the
input data sets has a record format of V or VB (variable
length).

User response: Specify a data set for SYSIEXEC with
variable-length records or change the input data sets
such that they all have a record format of F or FB and
the record lengths (LRECL) are identical.

FANENV0893T Incorrect RECFM value (F|FB) for
SYSIEXEC, input with/without seq no

Explanation: The data set specified for the SYSIEXEC
output has fixed-length records, but some of the input
data sets contain sequence numbers and some do not.

User response: Either specify an output data set with
variable-length records or change the input data sets
such that either all or none of them have sequence
numbers.

FANCON0900T Source data set cannot be opened

Explanation: The Compiler was unable to open the
SYSIN data set.

User response: Check that:

v If the Compiler was invoked from a batch job, a DD
statement with DD name SYSIN was provided in the
job step in which the Compiler was invoked.

v If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSIN is in effect
when the compiler is invoked.

v The data set is accessible when the Compiler is
invoked.

FANxxx0901T Source data set cannot be read

Explanation: The Compiler was unable to read the
SYSIN data set containing the REXX source program to
be compiled.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANENV0902T dataset-name output data set must not
be identical with %INCLUDE data set

Explanation: The data set name of one of the
%INCLUDE data sets is equal to the data set name of
one of the output data sets. The value of dataset-name
shows which output data set name is wrong:
CEXEC refers to the compiled EXEC.
IEXEC refers to the expanded IEXEC output.
OBJECT

refers to the object data set.
PRINT refers to the compiler listing.
TERM refers to the terminal output.
DUMP refers to the DUMP output.

User response: Specify a different name for the output
data set.

FANENV0903T option output data set name must not
be identical with source data set name

Explanation: One of the output data sets and the
source data set have the same data set name. The value
of option indicates which output data set name is in
error. CEXEC refers to the compiled EXEC, IEXEC
refers to the expanded (IEXEC) output, OBJECT refers
to the OBJECT data set, PRINT refers to the compiler
listing, TERM refers to the terminal output, and DUMP
refers to the DUMP output.

User response: Specify a different name for the output
data set.

FANGAO0889I • FANENV0903T

Chapter 19. Compilation Messages 175

FANENV0904T option1/option2 output data set names
must not be identical

Explanation: You have specified the same name for
more than one of the output data sets. The message
indicates which data set names are identical. CEXEC
refers to the compiled EXEC, IEXEC refers to the
expanded (IEXEC) output, OBJECT refers to the
OBJECT data set, PRINT refers to the compiler listing,
TERM refers to the terminal output, and DUMP refers
to the DUMP output.

User response: Specify a unique name for each output
data set.

FANFMU0906T Error opening CEXEC data set

Explanation: The Compiler was unable to open the
SYSCEXEC data set.

User response: Check that:

v If the Compiler was invoked from a batch job, a DD
statement with DD name SYSCEXEC was provided
in the job step in which the Compiler was invoked.

v If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSCEXEC is in
effect when the compiler is invoked.

v The data set is accessible when the Compiler is
invoked.

FANFMU0907T Error opening OBJECT data set

Explanation: The Compiler was unable to open the
SYSPUNCH data set.

User response: Check that:

v If the Compiler was invoked from a batch job, a DD
statement with DD name SYSPUNCH was provided
in the job step in which the Compiler was invoked.

v If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSPUNCH is in
effect when the compiler is invoked.

v The data set is accessible when the Compiler is
invoked.

FANFMU0908T Error writing to CEXEC data set

Explanation: The Compiler was unable to write to the
SYSCEXEC data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANFMU0909T Error closing CEXEC data set

Explanation: The Compiler was unable to close the
SYSCEXEC data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANFMU0910T Error writing to OBJECT data set

Explanation: The Compiler was unable to write to the
SYSPUNCH data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANFMU0911T Error closing OBJECT data set

Explanation: The Compiler was unable to close the
SYSPUNCH data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANCON0912T Error closing source data set

Explanation: The Compiler was unable to close the
SYSIN data set containing the REXX source program to
be compiled.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANLIS0913T Error opening PRINT data set

Explanation: The Compiler was unable to open the
SYSPRINT data set.

User response: Check that:

v If the Compiler was invoked from a batch job, a DD
statement with DD name SYSPRINT was provided in
the job step in which the Compiler was invoked.

v If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSPRINT is in
effect when the compiler is invoked.

v The data set is accessible when the Compiler is
invoked.

FANLIS0914T Error writing to PRINT data set

Explanation: The Compiler was unable to write to the
SYSPRINT data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANLIS0915T Error closing PRINT data set

Explanation: The Compiler was unable to close the
SYSPRINT data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANENV0916T Source data set cannot be opened:
record length greater than 32760

Explanation: The Compiler was unable to open the
source file, because it contains records longer than
32 760 characters (bytes).

FANENV0904T • FANENV0916T

176 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

User response: Reorganize the source file so that the
value of the LRECL parameter of the DCB statement is
less than or equal to 32 760. See “Standard Data Sets
Provided for the Compiler” on page 14.

FANENV0917T Error opening DUMP data set

Explanation: The Compiler was unable to open the
SYSDUMP data set.

User response: Check that:

v If the Compiler was invoked from a batch job, a DD
statement with DD name SYSDUMP was provided in
the job step in which the Compiler was invoked.

v If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSDUMP is in
effect when the compiler is invoked.

v The data set is accessible when the Compiler is
invoked.

FANENV0918T Error writing to DUMP data set

Explanation: The Compiler was unable to write to the
SYSDUMP data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANENV0919T Error closing DUMP data set

Explanation: The Compiler was unable to close the
SYSDUMP data set.

User response: Check that the data set is accessible
when the Compiler is invoked.

FANTOK0920T Source data set is empty

Explanation: The SYSIN data set contains no records
at all.

User response: Makes sure that the SYSIN data set
contains the source program you want to compile.

FANLIS0921T Error opening TERM output

Explanation: The Compiler could not open the target
destination for terminal output.

Under z/OS, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO
ALLOC command).

Under z/VM, the output is directed to the user's
terminal unless the Compiler is running in a batch
machine, in which case output is directed to the
Console Log. The error can occur if the Compiler was
unable to get the space needed for work areas.

Note: You will only see this message in the printed
output. However, even if there is no printed output, for
example if NOPRINT is in effect, the return code

passed from the Compiler to the system, at the end of
the Compiler run, will correspond to the severity of
this message.

User response:

v Under z/OS, check that:

– If the compiler was invoked in a batch job, a DD
statement with DD name SYSTERM was provided
in the job step in which the compiler is invoked.

– If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSTERM is
in effect when the Compiler is invoked.

– The data set is accessible when the Compiler is
invoked.

v Under z/VM, compile without the TERM compiler
option, obtain more storage by releasing a minidisk
or SFS directory, or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for
the virtual machine and re-IPL CMS.

FANLIS0922T Error writing to TERM

Explanation: The Compiler was unable to write to the
target destination for terminal output.

Under z/OS, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO
ALLOC command).

Under z/VM, the output is directed to the user's
terminal. The most likely cause of the error is that the
virtual screen is not defined or insufficient storage was
available to execute the request.

Note: It is very unlikely that you will ever see this
message. The Compiler first writes the PRINT output,
then closes it. Only after the PRINT output has been
closed, the Compiler writes the TERM output. If an
error occurs while writing the TERM output, there is
nowhere to write this error message. However, the
return code that the Compiler passes back to the
system at the end of the Compiler run corresponds to
the severity of this message.

User response:

v Under z/OS, check that the data set is accessible
when the Compiler is invoked.

v Under z/VM, compile without the TERM compiler
option, define the virtual screen, or obtain more
storage by releasing a minidisk or SFS directory, or
by deleting a nucleus extension. Alternatively, define
a larger virtual storage size for the virtual machine
and re-IPL CMS.

FANxxx0923T Error closing TERM output

Explanation: The Compiler was unable to close the
target destination for terminal output.

Under z/OS, the output is directed to the destination

FANENV0917T • FANxxx0923T

Chapter 19. Compilation Messages 177

specified in the SYSTERM DD statement (or TSO
ALLOC command).

Under z/VM, the output is directed to the user's
terminal unless the Compiler is running in a batch
machine in which case the output is directed to the
Console Log. The most likely cause of the error is that
a release storage request has failed.

User response:

v Under z/OS, check that the data set is accessible
when the Compiler is invoked.

v Under z/VM, compile without the TERM compiler
option or notify your system support personnel if the
problem persists.

Note: It is very unlikely that you will ever see this
message. The Compiler first writes the PRINT output,
then closes it. Only after the PRINT output has been
closed, the Compiler writes the TERM output. If an
error occurs while closing the TERM output, there is
nowhere to write this error message. However, the
return code that the Compiler passes back to the
system at the end of the Compiler run corresponds to
the severity of this message.

FANENV0924T Error opening virtual printer for
DUMP

Explanation: The Compiler could not open the virtual
printer for DUMP output. This problem can occur if the
virtual printer is not operational or if the Compiler was
unable to get the space needed for work areas.

User response: Compile with the NODUMP compiler
option, make the virtual printer operational, or obtain
more storage by releasing a minidisk or SFS directory,
or by deleting a nucleus extension. Alternatively, define
a larger virtual storage size for the virtual machine and
re-IPL CMS.

FANENV0925T Error writing to virtual printer for
DUMP

Explanation: An error occurred when writing to the
virtual printer. The most likely cause of this message is
a full disk or a non operational virtual printer.

User response: Compile with the NODUMP compiler
option or make the virtual printer operational.

FANCON0926T Error closing virtual printer for
DUMP

Explanation: The virtual printer could not be closed.
The most likely cause of this is that a release storage
request has failed.

User response: Compile with the NODUMP compiler
option or notify your system support personnel if the
problem persists.

FANENV0927S Error opening %INCLUDE input

Explanation: The Compiler was unable to open a file
specified in a %INCLUDE directive. Either the file
specified does not exist or the file specification contains
characters that are invalid in your Operating System.

Under z/VM, the problem can occur if:

v The file you are including does not exist with file
type COPY, REXXINCL, or EXEC on:
– The accessed disks, for /*%INCLUDE fn*/ directives
– The specified collection, for /*%INCLUDE

ddname(filename) /* with FILEDEF ddname DISK
fn ft [fm]*/ directives

v The file you are including does not exist on:
– The specified MACLIB, for /*%INCLUDE

maclib(fn)*/ directives
– The MACLIBs established with the GLOBAL

MACLIB command, for /*%INCLUDE SYSLIB(fn)*/
directives.

v The specification of the file to be included contains
invalid characters

v You are including a file from a minidisk for which
you have read-only access, while someone with
read/write access to that minidisk has altered the file
so that it no longer exists in the same place on the
minidisk.

User response:

v Under z/OS, check that:

– If the Compiler was invoked in a batch job, a DD
statement with a DD name identical with the DD
name given or defaulted in the %INCLUDE
directive is present.

– If the Compiler was invoked in a TSO session, a
TSO ALLOC command for a DD name identical
with the DD name given or defaulted in the
%INCLUDE directive is in effect when the
Compiler is invoked.

– The data set is accessible when the Compiler is
invoked.

– Check that a member with the specified name is
present in one of the libraries concatenated under
the DD name specified or defaulted in the
%INCLUDE directive at the time the Compiler is
invoked.

v Under z/VM, make sure that the file exists, the file
specification contains valid characters, or reaccess the
minidisk on which the file to be included resides.

FANENV0928S Error reading %INCLUDE input

Explanation: The Compiler was unable to read from a
file specified in a %INCLUDE directive.

Under CMS, the problem can occur when you are
including a file from a minidisk to which you have
read-only access, while someone with read/write access
to that minidisk has altered the file so that it no longer
exists in the same place on the minidisk.

FANENV0924T • FANENV0928S

178 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

User response:

v Under z/OS, check that the specified member is
accessible when the Compiler is invoked.

v Under z/VM, reaccess the minidisk that contains the
file to be included.

FANENV0929S Error closing %INCLUDE input

Explanation: The Compiler was unable to close a file
specified in a %INCLUDE directive.

User response:

v Under z/OS, check that the data set is accessible
when the Compiler is invoked.

v Under z/VM, reaccess the minidisk that contains the
file to be included.

FANENV0930T Error opening IEXEC output

Explanation: The compiler was unable to open the
target destination for IEXEC output.

Under z/OS, the output is directed to the destination
specified in the SYSIEXEC DD statement (or TSO
ALLOC command).

Under z/VM, this problem can occur if your virtual
machine does not have read/write access to the
specified minidisk.

User response:

v Under z/OS, check that the data set is accessible
when the Compiler is invoked.

v Under z/VM, use a minidisk to which your virtual
machine has read/write access.

FANENV0931T Error writing to IEXEC output

Explanation: The compiler was unable to write to the
target destination for IEXEC output.

Under z/OS, the output is directed to the destination
specified in the SYSIEXEC DD statement (or TSO
ALLOC command).

Under z/VM, this problem can occur if your virtual
machine does not have read/write access to the
specified minidisk.

User response:

v Under z/OS, check that the data set is accessible
when the Compiler is invoked.

v Under z/VM, use a minidisk to which your virtual
machine has read/write access.

FANENV0932T Error closing IEXEC output

Explanation: The compiler was unable to close the
target destination for IEXEC output.

User response:

v Under z/OS, check that the data set is accessible
when the Compiler is invoked.

v Under z/VM, compile with the NOIEXEC compiler
option or notify your system support personnel if the
problem persists.

FANENV0934E Invalid %INCLUDE directive

Explanation: The file specification in the %INCLUDE
directive contains embedded blanks, or the length of
the name specified for member, ddname, or filename
exceeds 8 characters.

User response: Correct the %INCLUDE directive.

FANPAR0935E Option for %SYSDATE or
%SYSTIME not valid

Explanation: The option specified for %SYSDATE or
%SYSTIME is too complex for the compiler. The option
must be a single symbol or quoted string and must
only contain alphanumeric characters of which only the
first character is significant.

User response: Simplify or correct the option.

FANPAR0936E Options R and E not valid for
%SYSTIME

Explanation: The elapsed-time options R and E cannot
be used for the compilation time.

User response: Specify a different option.

FANPAR0937E %SYSDATE/%SYSTIME is not
allowed within a clause

Explanation: A %SYSDATE or %SYSTIME control
directive can only be used where a REXX statement is
allowed.

User response: Insert a semicolon in front of the
control directive or write the control directive on a
separate line.

FANxxx0938W IEXEC file type truncated: source file
type has 8 characters

Explanation: The default file type is the letter I
concatenated with the source file type. In this case, the
resulting file type exceeds 8 characters in length, that is
why it is truncated.

User response: Specify a correct file type. For more
information refer to “LIBLEVEL” on page 28.

FANENV0939E Stub name too long

Explanation: The stub name is too long. It can consist
of up to 8 characters.

User response: Enter a correct stub name. For more
information refer to “Stubs” on page 211.

FANENV0929S • FANENV0939E

Chapter 19. Compilation Messages 179

FANENV0940E Stub name missing

Explanation: The stub name could not be found.

User response: Enter a correct stub name. For more
information refer to “Stubs” on page 211.

FANENV0941W Duplicate %STUB directive: Only
first occurrence on line number used

Explanation: A duplicate %STUB directive was found.
Only the first occurrence on the specified line is used.

User response: Check and correct your source code.

FANENV0942E Stub name not one of the allowed
values

Explanation: The name of the stub is not allowed.

User response: Enter a correct stub name. For more
information refer to “Stubs” on page 211.

FANENV0943I Stub name included

Explanation: The stub name is included.

User response: None.

FANENV0944S Error opening DDNAMES input

Explanation: An error occurred when the ddnames
input was opened. The data set specified after the
ddname is not correct.

User response: Check the input and specify a correct
DDNAMES definition. Check if the ddname specified
in the DDNAMES definition points to a valid data set
that contains the alternate DDNAMES.

FANENV0945S Error reading DDNAMES input

Explanation: An error occurred when the DDNAMES
input was read. The data set specified after the
DDNAME is not correct.

User response: Check the input and specify a correct
DDNAMES definition. Check if the DD name specified
in the DDNAMES definition points to a valid data set
that contains the alternate DDNAMES.

FANENV0946S Error closing DDNAMES input

Explanation: An error occurred when the DDNAMES
input was closed. The data set specified after the
DDNAME is not correct.

User response: Check the input and specify a correct
DDNAMES definition. Check if the DD name specified
in the DDNAMES definition points to a valid data set
that contains the alternate DDNAMES.

FANENV0947T Error in alternate DDNAMES file:
line line number

Explanation: An error occurred in the alternate
DDNAMES file that you have created. The line number
where the error was found is displayed.

User response: Check the displayed line of the
alternate DDNAMES file and correct the error.

FANxxx9999 FAN repository not found, message nnn
cannot be retrieved

Explanation: An internal error in the Compiler
occurred. Message number nnn was not issued, because
the message is not defined in the internal Compiler
message table and an external message repository is
not available.

User response: Contact your system administrator.

FANxxx9999 Message number nnn, format 1, line 1,
was not found; it was called from REXX
in application FAN

Explanation: An internal error in the Compiler
occurred. Message number nnn was not issued, because
the message is neither defined in the external message
repository, nor in the internal Compiler message table.

User response: Contact your system administrator.

FANENV0940E • FANxxx9999

180 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 20. Runtime Messages

The Library and the Alternate Library have the same error messages. If you have
both libraries installed, do one of the following:
v Change the message prefix for the Alternate Library from EAGREX to EAGALT.

If you are using the z/OS Message Repository, you must recompile the
messages.

Note: Some of the messages coming from the Alternate Library start with
EAGALT instead of EAGREX. However, they are equal to the EAGREX
messages. For example, if you get message EAGALT0248E, you will find the
explanation for this message under EAGREX0248E in this book.

v Move the member EAGKMENU into a save data set, and run MMS without the
member EAGKMENU.

EAGREX0248E Unable to load IBM REXX Library

Explanation: The program cannot be executed,
because the Library could not be loaded as a nucleus
extension, by means of the NUCXLOAD command.
This error occurs if your virtual machine does not have
access to the Library or does not have sufficient
storage. You cannot run any compiled REXX programs
until this problem is corrected.

User response: Ensure that you have access to the
disk that contains the Library (EAGRTLIB MODULE).
If you already have access, obtain more storage by
releasing a minidisk or SFS directory, or by deleting a
nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine and re-IPL CMS.

EAGREX0249E Unable to load EAG Message
Repository

Explanation: The program cannot be executed for one
of the following reasons. In the following text, * is the
language identifier.

v The message repository is not installed in the
language DCSS, and neither EAGUME TXT* nor
EAGUME TEXT was found on an accessed disk.

v You do not have a read/write A-disk, and the
message repository has the file type TXT*.

v You do not have enough space on your read/write
A-disk, and the message repository has the file type
TXT*.

User response: Check that the message repository is
available either in the language DCSS or on disk. If it is
not available in the language DCSS and its file type is
TXT*, check that your read/write A-disk is large
enough to store the message repository. If the problem
remains unresolved, report it to your IBM
representative. See the IBM Compiler and Library for
REXX on System z: Diagnosis Guide for more
information. The values for the language identifier (*)

can be found in the corresponding z/VM
documentation.

EAGREX0300E Error 3 running compiled program,
line nn: Program is unreadable

Explanation: Refer to the secondary message if one is
displayed. Under z/VM, the REXX program could not
be read from the minidisk. This problem can occur if
you attempt to run a program from a minidisk for
which you have read-only access, while someone with
read/write access to that minidisk has altered the
program so that it no longer exists in the same place on
the minidisk.

Under z/OS and VSE/ESA, this message is always
followed by a secondary message.

User response: Under z/VM, reaccess the minidisk on
which the program resides.

Note: If the length in the REXX LPA library and the
length of what was loaded did not match, check if
there are old LPA modules in one of your existing
libraries. Remove the old library to fix the problem.

EAGREX0301I Compiled EXEC does not have fixed
length records

Explanation: The compiled EXEC does not have
fixed-length records. The Compiler always uses the
fixed-length record format for compiled EXEC files in
z/VM, but the record format might have been changed
later.

User response: Recompile the program or format it for
z/VM by using the REXXF EXEC if the program was
imported from z/OS.

EAGREX0302I Program is not a valid compiled EXEC

Explanation: The compiled code in the program file is

© Copyright IBM Corp. 1991, 2013 181

not in the format that the Compiler generates.

User response: Recompile the program.

EAGREX0303I Level of IBM REXX Library too low

Explanation: The program cannot be run, because it
was compiled for a more recent version of the Library
than the one installed on your system, or it contains
language features that are not supported by the
specified level of the Library.

User response: Do one of the following:

v Run the program on a system with a version of the
Library that corresponds to the version of the
Compiler used to compile the program.

v If you have access to the source file, recompile the
program on the system on which you want to run it.

v Recompile the program with the recommended
minimum library level (LIBLEVEL compiler option).
For more information refer to “LIBLEVEL” on page
28.

If the error persists after recompilation, notify your
system support personnel.

Note: If the length in the REXX LPA library and the
length of what was loaded did not match, check if
there are old LPA modules in one of your existing
libraries. Remove the old library to fix the problem.

EAGREX0304I The program cannot run with the
Alternate Library

Explanation: The program has been compiled with the
NOALTERNATE compiler option.

User response: Do one of the following:

v Compile the program with the ALTERNATE
compiler option.

v Check your installation to make sure that you use
the Library.

EAGREX0400E Error 4 running compiled program,
line nn: Program interrupted

Explanation: The system interrupted execution of the
REXX program. This is usually caused by your issuing
the HI (Halt Interpretation) immediate command under
z/OS or z/VM, or the EXECUTIL HI command under
z/OS.

User response: Check your code and correct it.

EAGREX0500E Error 5 running compiled program,
line nn: Machine storage exhausted or
request exceeds limit

Explanation: The Library was unable to get the
storage needed for its work areas and variables. This
might have occurred because the program that invoked

the compiled program has already used up most of the
available storage.

User response: Under z/OS, use a larger region size.

Under z/VM, you can obtain more free storage by
releasing a minidisk or SFS directory (to recover the
space used for the file directory) or by deleting a
nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine and re-IPL CMS.

Under VSE, use a larger partition size.

EAGREX0600E Error 6 running compiled program,
line nn: Unmatched "/*" or quote

Explanation: A comment or literal string was started
but never finished.

User response: See the secondary message for more
specific information. Correct the literal string or
comment.

EAGREX0601I Unmatched quote

Explanation: A literal string was started but never
finished.

User response: Check your code and correct it.

EAGREX0602I Unmatched "/*"

Explanation: A comment was started but never
finished.

User response: Check your code and correct it.

EAGREX0603I Unmatched shift-out character in
DBCS string

Explanation: A literal string or a comment that has
unmatched shift-out/shift-in pairs (that is, a shift-out
character without a shift-in character or an odd number
of bytes between the shift-out and shift-in characters)
was processed with OPTIONS 'ETMODE' in effect.

User response: Check your code and correct it.

EAGREX0700E Error 7 running compiled program,
line nn: WHEN or OTHERWISE
expected

Explanation: Within a SELECT instruction, at least one
WHEN clause (and possibly an OTHERWISE clause) is
expected. If any other instruction is found (or no
WHEN clause is found before the OTHERWISE) then
this message is issued.

User response: Insert one or more WHEN clauses
after the SELECT.

EAGREX0303I • EAGREX0700E

182 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGREX0800E Error 8 running compiled program,
line nn: Unexpected THEN or ELSE

Explanation: The program tried to execute a THEN or
ELSE clause without first executing the corresponding
IF or WHEN clause. This error occurs when control is
transferred within or into an IF or WHEN construct, or
if a THEN or an ELSE is outside the context of an IF or
WHEN construct.

User response: See the secondary message for more
specific information.

EAGREX0801I Unexpected THEN

Explanation: The program tried to execute a THEN
clause without first executing the corresponding IF or
WHEN clause. This error occurs when control is
transferred to the THEN clause.

User response: Check your code and correct it.

EAGREX0802I Unexpected ELSE

Explanation: The program tried to execute an ELSE
clause without first executing the corresponding IF
clause. This error occurs when control is transferred to
the ELSE clause.

User response: Check your code and correct it.

EAGREX0900E Error 9 running compiled program,
line nn: Unexpected WHEN or
OTHERWISE

Explanation: The program tried to execute a WHEN
or OTHERWISE clause without first executing the
corresponding SELECT instruction. This error occurs
when control is transferred to a WHEN or
OTHERWISE clause, or if a WHEN or an OTHERWISE
appears outside of the context of a SELECT instruction.

User response: See the secondary message for more
specific information.

EAGREX0901I Unexpected WHEN

Explanation: The program tried to execute a WHEN
clause without first executing the corresponding
SELECT instruction. This error occurs when control is
transferred to a WHEN clause.

User response: Check your code and correct it.

EAGREX0902I Unexpected OTHERWISE

Explanation: The program tried to execute an
OTHERWISE clause without first executing the
corresponding SELECT instruction. This error occurs
when control is transferred to an OTHERWISE clause.

User response: Check your code and correct it.

EAGREX1000E Error 10 running compiled program,
line nn: Unexpected or unmatched END

Explanation: The program reached an END clause
when the corresponding DO loop or SELECT clause
was not active. This error can occur if you transfer
control into a loop, or if there are too many ENDs in
the program. Note that the SIGNAL instruction
terminates any current loops, so it cannot be used to
transfer control from one place inside a loop to another.
Another cause for this message is placing an END
immediately after a THEN or ELSE subkeyword or
specifying a name on the END keyword that does not
match the name of the control variable in a DO clause.

User response: Check your code and correct it.

EAGREX1100E Error 11 running compiled program,
line nn: Control stack full

Explanation: This message is issued if the program
exceeds a Library runtime limit.

User response: Check your code and correct it.

EAGREX1101I PROCEDURE nesting exceeds 30000

Explanation: This message is issued if you exceed the
limit of 30 000 active procedures. A recursive
subroutine that does not terminate correctly could loop
until it causes this message to be issued.

User response: Check your code and correct it.

EAGREX1200E Error 12 running compiled program,
line nn: Clause too long

Explanation: The Compiler encountered a clause that
exceeds the allowed limit.

User response: Rewrite the clause.

EAGREX1300E Error 13 running compiled program,
line nn: Invalid character in program

Explanation: The string to be interpreted includes an
unexpected character outside a literal (quoted) string or
comment that is not a blank or one of the following:

v A-Z a-z 0-9 (Alphanumerics)

v @ # $ ¢ . ? ! _ (Name Characters)

v & * () - + = \ ¬ ’ " ; : < , > / | % (Special
Characters)

v Any DBCS character when OPTIONS ’ETMODE’ is in
effect

User response: Check your code and correct it. In case
the program was imported from another system: Verify
that the translation of the characters was correct.

EAGREX0800E • EAGREX1300E

Chapter 20. Runtime Messages 183

EAGREX1400E Error 14 running compiled program,
line nn: Incomplete DO/SELECT/IF

Explanation: On reaching the end of the program (or
end of the string in an INTERPRET instruction), it has
been detected that there is a DO or SELECT without a
matching END, or that a THEN clause or an ELSE
clause is not followed by an instruction.

User response: See the secondary message for more
specific information.

EAGREX1401I Incomplete DO instruction: END not
found

Explanation: No matching END for an earlier DO was
found.

User response: Check your code and correct it.

EAGREX1402I Incomplete SELECT instruction: END
not found

Explanation: No matching END for an earlier SELECT
was found.

User response: Check your code and correct it.

EAGREX1403I Instruction expected after THEN

Explanation: A THEN clause is not followed by an
instruction.

User response: Check your code and correct it.

EAGREX1404I Instruction expected after ELSE

Explanation: An ELSE clause is not followed by an
instruction.

User response: Check your code and correct it.

EAGREX1500E Error 15 running compiled program,
line nn: Invalid hexadecimal or binary
string

Explanation: Hexadecimal strings might not have
leading or trailing blanks, and might only have
embedded blanks at byte boundaries. Only the digits
0-9 and the letters a-f and A-F are allowed. Similarly,
binary strings might only have blanks added at the
boundaries of groups of four binary digits, and only
the digits 0 and 1 are allowed.

User response: Check your code and correct it.

EAGREX1600E Error 16 running compiled program,
line nn: Label not found

Explanation: The label specified in a SIGNAL
instruction, or specified by the result of the expression
on a SIGNAL VALUE instruction, could not be found.
There might be an error in the expression or the label

might not have been defined.

User response: Check your code and correct it.

EAGREX1601I Label reference in SIGNAL is mixed
case, but label is uppercase

Explanation: The label specified in a SIGNAL
instruction, or by the result of the expression on a
SIGNAL VALUE instruction is a mixed-case string, but
the name of the label that probably is intended to be
referenced is defined in uppercase.

User response: Change the expression so that it results
in an uppercase string.

EAGREX1700E Error 17 running compiled program,
line nn: Unexpected PROCEDURE

Explanation: A PROCEDURE instruction was
encountered in an incorrect position. This error is
caused by “dropping through” into a PROCEDURE
instruction, rather than invoking it properly by a CALL
instruction or a function reference.

User response: Check your code and correct it.

EAGREX1800E Error 18 running compiled program,
line nn: THEN expected

Explanation: All IF clauses and WHEN clauses in
REXX must be followed by a THEN clause. Some other
clause was found when a THEN clause was expected.

User response: Check your code and correct it.

EAGREX1900E Error 19 running compiled program,
line nn: String or symbol expected

Explanation: On a SIGNAL or CALL instruction a
literal string or a symbol was expected but neither was
found.

User response: See the secondary message for more
specific information.

EAGREX1901I CALL not followed by routine
name/ON/OFF

Explanation: The name of a routine, or ON with a
condition name, or OFF with a condition name is
expected in a CALL instruction.

User response: Check your code and correct it.

EAGREX1902I SIGNAL not followed by label name
or VALUE/ON/OFF or expression

Explanation: SIGNAL is not followed by a label name,
or by ON, or OFF, or VALUE, or an expression.

User response: Check your code and correct it.

EAGREX1400E • EAGREX1902I

184 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGREX2000E Error 20 running compiled program,
line nn: Symbol expected

Explanation: In the clauses CALL ON, END,
ITERATE, LEAVE, and SIGNAL ON, a single symbol is
expected. Either it was not present when required, or
some other token was found, or a symbol followed by
some other token was found.

Alternatively, the DROP, UPPER, and PROCEDURE
EXPOSE instructions expect a list of symbols or
variable references. Some other token was found.

User response: See the secondary message for more
specific information.

EAGREX2001I Variable expected

Explanation: Some other token was found where a
variable was expected.

User response: Check your code and correct it.

EAGREX2002I UPPER list can contain only simple or
compound variables

Explanation: The list of variables for the UPPER
instruction contains items other than the permitted
ones.

User response: Check your code and correct it.

EAGREX2003I NAME not followed by routine name

Explanation: In a CALL ON clause the subkeyword
NAME must be followed by the name of a routine.

User response: Check your code and correct it.

EAGREX2004I NAME not followed by label name

Explanation: In a SIGNAL ON clause the subkeyword
NAME must be followed by a label name.

User response: Check your code and correct it.

EAGREX2100E Error 21 running compiled program,
line nn: Invalid data at end of clause

Explanation: A clause is followed by some token other
than a comment, where no other token was expected.

User response: Check your code and correct it.

EAGREX2200E Error 22 running compiled program,
line nn: Invalid character string

Explanation: Under OPTIONS 'ETMODE' a symbol
was detected which contains characters or character
combinations not allowed for symbols containing DBCS
characters.

User response: Check your code and correct it.

EAGREX2300E Error 23 running compiled program,
line nn: Invalid SBCS/DBCS mixed
string

Explanation: A character string that has unmatched
shift-out—shift-in pairs (that is, a shift-out character
without a shift-in character) or an odd number of bytes
between the shift-out—shift-in characters was processed
with OPTIONS 'EXMODE' in effect or was passed to a
DBCS function.

User response: Correct the character string.

EAGREX2400E Error 24 running compiled program,
line nn: Invalid TRACE request

Explanation: The setting specified on a TRACE
instruction starts with a character that does not match
one of the valid TRACE settings.

User response: Check your code and correct it.

EAGREX2500E Error 25 running compiled program,
line nn: Invalid subkeyword found

Explanation: The language processor expected a
particular subkeyword in an instruction but found
something else. For example, in the NUMERIC
instruction the second token must be the subkeyword
DIGITS, FORM, or FUZZ. If NUMERIC is followed by
anything else, this message is issued.

User response: Check your code and correct it.

EAGREX2501I PARSE not followed by a valid
subkeyword

Explanation: A PARSE keyword was found that is not
followed by the UPPER subkeyword, or by one of the
subkeywords ARG, EXTERNAL, LINEIN, NUMERIC,
PULL, SOURCE, VALUE, VAR, or VERSION.

Note: LINEIN is a valid subkeyword only on VM/ESA
Release 2.1 or subsequent releases.

User response: Check your code and correct it.

EAGREX2502I PARSE UPPER not followed by a
valid subkeyword

Explanation: A PARSE UPPER was found that is not
followed by one of the subkeywords ARG, EXTERNAL,
LINEIN, NUMERIC, PULL, SOURCE, VALUE, VAR, or
VERSION.

User response: Check your code and correct it.

EAGREX2503I CALL ON/OFF not followed by
supported condition name

Explanation: One of the conditions: ERROR,
FAILURE, HALT or, on VM/ESA Release 2.1 or
subsequent releases, NOTREADY is expected in a

EAGREX2000E • EAGREX2503I

Chapter 20. Runtime Messages 185

CALL ON or CALL OFF instruction.

User response: Check your code and correct it.

EAGREX2504I ";" or subkeyword NAME expected

Explanation: Incorrect data was found at the end of a
CALL ON instruction. The only subkeyword accepted
after the condition name is NAME.

User response: Check your code and correct it.

EAGREX2505I NUMERIC not followed by
DIGITS/FORM/FUZZ

Explanation: One of the subkeywords DIGITS, FORM,
or FUZZ is expected in a NUMERIC instruction.

User response: Check your code and correct it.

EAGREX2506I NUMERIC FORM not followed by
expression/valid subkeyword/";"

Explanation: Incorrect data was found at the end of a
NUMERIC FORM. The only data recognized after
FORM is an expression or one of the subkeywords
VALUE, SCIENTIFIC, or ENGINEERING.

User response: Check your code and correct it.

EAGREX2507I PROCEDURE not followed by
EXPOSE or ";"

Explanation: Incorrect data were found in a
PROCEDURE instruction. The only subkeyword
recognized on a PROCEDURE instruction is EXPOSE.

User response: Check your code and correct it.

EAGREX2508I SIGNAL ON/OFF not followed by
supported condition name

Explanation: One of the conditions: ERROR,
FAILURE, HALT, NOVALUE, SYNTAX or, on
VM/ESA Release 2.1 or subsequent releases,
NOTREADY is expected in a SIGNAL ON or SIGNAL
OFF instruction.

User response: Check your code and correct it.

EAGREX2600E Error 26 running compiled program,
line nn: Invalid whole number

Explanation: An expression that was expected to
evaluate to a whole number either did not evaluate to a
whole number within the current setting of NUMERIC
DIGITS or was greater than the limit, for the intended
use, of 999 999 999.

User response: Check your code and correct it.

EAGREX2601I Exponent not a whole number

Explanation: The right-hand term of the
exponentiation (**) operator did not evaluate to a whole
number within the current setting of NUMERIC
DIGITS or was greater than the limit, for the intended
use, of 999 999 999.

User response: Check your code and correct it.

EAGREX2602I Returned value not a whole number

Explanation: The return code passed back from an
EXIT or RETURN instruction (when a REXX program is
invoked as a command) is not a whole number in the
range from -2147483648 through 2147483647.

User response: Check your code and correct it.

EAGREX2603I NUMERIC setting not a whole
number

Explanation: An expression in the NUMERIC
instruction did not evaluate to a whole number within
the current setting of NUMERIC DIGITS or was greater
than the limit, for the intended use, of 999 999 999.

User response: Check your code and correct it.

EAGREX2604I Quotient from integer division not a
whole number

Explanation: The result of an integer division (%) is
not a whole number within the current setting of
NUMERIC DIGITS.

User response: Check your code and correct it.

EAGREX2605I Quotient from remainder operation
not a whole number

Explanation: The result of the integer division
performed to obtain the remainder (//) is not a whole
number within the current setting of NUMERIC
DIGITS.

User response: Check your code and correct it.

EAGREX2606I Repetition value in DO not a whole
number

Explanation: The repetition value in a DO clause did
not evaluate to a whole number within the current
setting of NUMERIC DIGITS or was greater than the
limit, for the intended use, of 999 999 999.

User response: Check your code and correct it.

EAGREX2504I • EAGREX2606I

186 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGREX2607I Column number in PARSE not a
whole number

Explanation: A column number in an absolute
positional pattern or the value of a variable specified in
a variable pattern used as absolute positional pattern
on a PARSE instruction is either not a whole number
within the current setting of NUMERIC DIGITS, or is
greater than the limit, for the intended use, of
999 999 999.

User response: Check your code and correct it.

EAGREX2608I Relative position in PARSE not a
whole number

Explanation: A number specified as a relative
positional pattern or the value of a variable specified in
a variable pattern used as relative positional pattern on
a PARSE instruction is either not a whole number
within the current setting of NUMERIC DIGITS, or is
greater than the limit, for the intended use, of
999 999 999.

User response: Check your code and correct it.

EAGREX2609I Input to stream I/O function not a
whole number

Explanation: A number specified as input to a stream
I/O function is not a whole number.

User response: Check your code and correct it.

EAGREX2700E Error 27 running compiled program,
line nn: Invalid DO syntax

Explanation: Some syntax error was found in the DO
clause.

User response: See the secondary message for more
specific information.

EAGREX2701I FOREVER not followed by
WHILE/UNTIL/";"

Explanation: Incorrect data were found after DO
FOREVER. The only valid subkeywords after DO
FOREVER are WHILE and UNTIL.

User response: Check your code and correct it.

EAGREX2703I TO/BY/FOR phrase occurs more than
once in a DO

Explanation: A DO clause contains more than one TO,
BY, or FOR-phrase.

User response: Check your code and correct it.

EAGREX2706I TO/BY/FOR not followed by
expression

Explanation: An expression is expected after a TO, BY,
or FOR subkeyword in a DO clause.

User response: Check your code and correct it.

EAGREX2800E Error 28 running compiled program,
line nn: Invalid LEAVE or ITERATE

Explanation: The program tried to execute a LEAVE
or ITERATE instruction when no loop was active. This
error occurs when control transfers within or into a
loop, or if the LEAVE or ITERATE was encountered
outside a repetitive DO loop. A SIGNAL instruction
terminates all active loops; any ITERATE or LEAVE
instruction issued then causes this message to be
issued.

User response: See the secondary message for more
specific information.

EAGREX2801I Invalid LEAVE

Explanation: The program tried to execute a LEAVE
instruction when no loop was active.

User response: Check your code and correct it.

EAGREX2802I Invalid ITERATE

Explanation: The program tried to execute an
ITERATE instruction when no loop was active.

User response: Check your code and correct it.

EAGREX2803I LEAVE not valid outside repetitive
DO loop

Explanation: A LEAVE instruction was found outside
a repetitive DO loop.

User response: Check your code and correct it.

EAGREX2804I ITERATE not valid outside repetitive
DO loop

Explanation: An ITERATE instruction was found
outside a repetitive DO loop.

User response: Check your code and correct it.

EAGREX2805I Variable does not match control
variable of an active DO loop

Explanation: The symbol specified on a LEAVE or
ITERATE instruction does not match the control
variable of a currently active DO loop.

User response: Check your code and correct it.

EAGREX2607I • EAGREX2805I

Chapter 20. Runtime Messages 187

EAGREX2806I Name of DO control variable
expected

Explanation: The name of the control variable of a
currently active DO loop is expected after a LEAVE or
ITERATE instruction. Some other token was found.

User response: Check your code and correct it.

EAGREX2900E Error 29 running compiled program,
line nn: Environment name too long

Explanation: The environment name on an ADDRESS
instruction was specified as the value of an expression,
and the result of evaluating the expression is longer
than the limit of 8 characters.

User response: Check your code and correct it.

EAGREX3000E Error 30 running compiled program,
line nn: Name or string > 250 characters

Explanation: A name or string that is longer than the
limit of 250 characters was found.

User response: See the secondary message for more
specific information.

EAGREX3001I Name of compound variable > 250
characters

Explanation: The name of a compound variable, after
substitution, is longer than the limit of 250 characters.

User response: Check your code and correct it.

EAGREX3002I Label name > 250 characters

Explanation: The name of a label specified as an
expression on a SIGNAL VALUE instruction is longer
than the limit of 250 characters.

User response: Check your code and correct it.

EAGREX3004I String > 250 characters

Explanation: A quoted string, after substitution of
hexadecimal or binary strings, exceeds the limit of 250
characters.

User response: Check your code and correct it.

EAGREX3005I Name > 250 characters

Explanation: The name of a symbol exceeds the limit
of 250 characters.

User response: Check your code and correct it.

EAGREX3100E Error 31 running compiled program,
line nn: Name starts with number or "."

Explanation: A value must not be assigned to a
variable whose name starts with a digit or a period.
Similarly, a symbol whose name starts with a digit or a
period can not be contained in the list of variables of a
DROP, EXPOSE, or UPPER instruction, and cannot
follow the VAR subkeyword of the PARSE instruction.

User response: See the secondary message for more
specific information.

EAGREX3101I "(" not followed by a variable name

Explanation: A variable name denoting a subsidiary
list was expected in a DROP instruction or after the
subkeyword EXPOSE of a PROCEDURE instruction.

User response: Check your code and correct it.

EAGREX3102I Variable name expected

Explanation: A name starting with a digit or a period
was found in the list of a DROP instruction or after the
subkeyword EXPOSE of a PROCEDURE instruction.

User response: Check your code and correct it.

EAGREX3104I Variable required to the left of "="

Explanation: The target of an assignment was found
to be a symbol starting with a digit or a period.

User response: Check your code and correct it.

EAGREX3200E Error 32 running compiled program,
line nn: Invalid use of stem

Explanation: The name of a stem has been found in
the list of an UPPER instruction.

User response: Check your code and correct it.

EAGREX3300E Error 33 running compiled program,
line nn: Invalid expression result

Explanation: An expression result was encountered
that is incorrect in its particular context.

User response: Check your code and correct it.

EAGREX3301I Invalid NUMERIC expression result

Explanation: The result of an expression on the
NUMERIC instruction is incorrect. The most common
cause of this error is a DIGITS or FUZZ value that is
not a whole number.

User response: Check your code and correct it.

EAGREX2806I • EAGREX3301I

188 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGREX3302I NUMERIC DIGITS not greater than
NUMERIC FUZZ

Explanation: The program issued a NUMERIC
instruction that would make the current NUMERIC
DIGITS value less than or equal to the current
NUMERIC FUZZ value. The DIGITS value must be
greater than the FUZZ value.

User response: Check your code and correct it.

EAGREX3304I SIGNAL VALUE not followed by
expression

Explanation: In a SIGNAL VALUE instruction the
required expression is missing.

User response: Check your code and correct it.

EAGREX3305I ADDRESS VALUE not followed by
expression

Explanation: In the ADDRESS VALUE instruction the
required expression is missing.

User response: Check your code and correct it.

EAGREX3306I NUMERIC FORM VALUE not
followed by expression

Explanation: In the NUMERIC FORM VALUE
instruction the required expression is missing.

User response: Check your code and correct it.

EAGREX3400E Error 34 running compiled program,
line nn: Logical value not 0 or 1

Explanation: The expression in an IF-, WHEN-, DO
WHILE-, or DO UNTIL-phrase must result in a 0 or 1,
as must any term operated on by a logical operator
(that is, ¬, \, |, &, or &&). For example, the phrase:

If result Then Exit rc

fails if result has a value other than 0 or 1. Thus, the
phrase might be better written as:

If result¬=0 Then Exit rc

User response: Check your code and correct it.

EAGREX3401I WHILE not followed by expression

Explanation: The subkeyword WHILE must be
followed by an expression.

User response: Check your code and correct it.

EAGREX3402I UNTIL not followed by expression

Explanation: The subkeyword UNTIL must be
followed by an expression.

User response: Check your code and correct it.

EAGREX3403I IF not followed by expression

Explanation: The keyword IF must be followed by an
expression.

User response: Check your code and correct it.

EAGREX3404I WHEN not followed by expression

Explanation: The keyword WHEN must be followed
by an expression.

User response: Check your code and correct it.

EAGREX3500E Error 35 running compiled program,
line nn: Invalid expression

Explanation: An expression contains a grammatical
error.

User response: See the secondary message for more
specific information.

EAGREX3501I Assignment operator must not be
followed by another "="

Explanation: A second "=" was found immediately
after the first one of an assignment.

User response: Delete one "=" to form a correct
assignment, or, if the clause was intended as a
command, enclose the expression in parentheses.

EAGREX3502I Left operand missing

Explanation: An operator was found that is not a
prefix operator, and whose left operand is missing.

User response: Check your code and correct it.

EAGREX3503I Right operand missing

Explanation: An operator is not followed by an
operand.

User response: Check your code and correct it.

EAGREX3504I Prefix operator not followed by
operand

Explanation: A prefix operator was found that is not
followed by a symbol or by a literal string or by an
open parenthesis.

User response: Check your code and correct it.

EAGREX3505I "(" not followed by an expression or
subexpression

Explanation: An open parenthesis was found that is
not followed by a valid expression or subexpression.

User response: Check your code and correct it.

EAGREX3302I • EAGREX3505I

Chapter 20. Runtime Messages 189

EAGREX3506I Invalid operator

Explanation: An expression contains an invalid
sequence of operator characters.

User response: Check your code and correct it.

EAGREX3507I Invalid use of NOT operator

Explanation: An expression or subexpression of the
form a¬b or (a)¬b was found.

User response: If you want to concatenate a negated
term:

v To some other operand, enclose it into parentheses,
for example: left(a,3)(¬b).

v To a symbol or a literal string, use the concatenation
operator, for example: a||(¬b).

EAGREX3508I Missing expression

Explanation: An expression is missing where one is
expected. Example: INTERPRET;

User response: Check your code and correct it.

EAGREX3600E Error 36 running compiled program,
line nn: Unmatched "(" in expression

Explanation: The parentheses in an expression are not
paired correctly. There are more open parentheses than
close parentheses.

User response: Check your code and correct it.

EAGREX3700E Error 37 running compiled program,
line nn: Unexpected "," or ")"

Explanation: In an expression, either a comma was
found outside a function invocation, or there are too
many close parentheses.

User response: Check your code and correct it.

EAGREX3800E Error 38 running compiled program,
line nn: Invalid template or pattern

Explanation: Within a parsing template, a special
character that is not allowed was found, or the syntax
of a variable pattern is incorrect. This message is also
issued if the WITH subkeyword is omitted in a PARSE
VALUE instruction.

User response: Check your code and correct it.

EAGREX3801I Incomplete PARSE VALUE: WITH not
found

Explanation: The WITH subkeyword is omitted in a
PARSE VALUE instruction.

User response: Check your code and correct it.

EAGREX3900E Error 39 running compiled program,
line nn: Evaluation stack overflow

Explanation: INTERPRET or TRACE caused a stack
overflow. You exceeded the maximum number of
nesting levels.

User response: Check your code and correct it.

EAGREX4000E Error 40 running compiled program,
line nn: Incorrect call to routine

Explanation: The program invoked a built-in function
with incorrect parameters, or invoked an external
routine, which ended with a SYNTAX condition that
was not trapped.

If you were not trying to invoke a routine, you might
have a symbol or a string adjacent to a left parenthesis
when you meant it to be separated by a space or an
operator. A symbol or a string in this position causes
the phrase to be read as a function call. For example,
TIME(4+5) should be written as TIME*(4+5) if a
multiplication was intended.

User response: Check your code and correct it.

EAGREX4001I Null string specified as option

Explanation: The program invoked a built-in function
that has an option argument, and passed a null string as
the option.

User response: Specify a valid value for the option.

EAGREX4002I Invalid option

Explanation: The program invoked a built-in function
that has an option argument, and passed an incorrect
value for the option.

User response: Specify a valid value for the option.

EAGREX4003I Argument not positive

Explanation: The program invoked a built-in function
with an argument whose value is less than or equal to
zero.

User response: Check your code and correct it.

EAGREX4004I Argument not a single character

Explanation: A built-in function expected an argument
of length 1; one of a different length was supplied.

User response: Check your code and correct it.

EAGREX4005I Argument not a whole number

Explanation: The value of an argument on the
invoked built-in function must be a whole number, but
the program supplied something else. For example, a
length argument is expected to be a whole number.

EAGREX3506I • EAGREX4005I

190 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

User response: Check your code and correct it.

EAGREX4006I First argument negative and second
argument not supplied

Explanation: The program did not supply the second
argument of the D2C or D2X function, but this
argument is required when the first argument is a
negative number.

User response: Check your code and correct it.

EAGREX4007I String longer than 250 characters (500
hexadecimal digits)

Explanation: The program invoked the C2D or X2D
function with an input string that exceeds one of the
following limits:

v The input string for the C2D function must not have
more than 250 characters that are significant in
forming the result of the function.

v The input string for the X2D function must not have
more than 500 hexadecimal digits that are significant
in forming the final result.

User response: Check your code and correct it.

EAGREX4008I Argument not a valid hexadecimal
string

Explanation: The value of an argument on the
invoked built-in function must be a hexadecimal string,
but the program supplied something else. A
hexadecimal string can contain only the characters 0-9,
a-f, and A-F. Blanks may only occur only at byte
boundaries and are not allowed at the beginning or the
end of the string.

User response: Check your code and correct it.

EAGREX4009I Output string longer than 250
characters (500 hexadecimal digits)

Explanation: The output string on an invocation of the
D2C or D2X function would exceed one of the
following limits:

v The output string of the D2C function must not have
more than 250 significant characters.

v The output string of the D2X function must not have
more than 500 significant hexadecimal characters.

User response: Check your code and correct it.

EAGREX4010I Result not a whole number

Explanation: The data returned by the invoked
built-in function is not a whole number and cannot be
formatted without an exponent. This can occur if the
NUMERIC DIGITS value is not large enough. For
example, this error occurs if you set NUMERIC DIGITS
to 2 and then invoke the C2D function with C2D(1); the

result is 241, which needs three digits, but only two
digits are allowed for.

User response: Check your code and correct it.

EAGREX4011I Result too long

Explanation: The data returned by the invoked
built-in function is too large for the available memory.
This error can occur if you use, for example, the
COPIES, INSERT, OVERLAY, or SPACE built-in
functions.

User response: Specify smaller string or count
arguments, or obtain more storage.

EAGREX4012I Failure in system service, no clock
available

Explanation: The invoked built-in function was unable
to obtain the system time, due to a failure in a system
service.

User response: If the problem persists, notify your
system support personnel.

EAGREX4013I "min" > "max" on RANDOM function

Explanation: The program invoked the RANDOM
built-in function with a value for the min argument
greater than the value for the max argument. The min
argument must be less than or equal to the max
argument.

User response: Check your code and correct it.

EAGREX4014I "max" - "min" exceeds 100000 in
RANDOM function

Explanation: The range between the min and max
arguments in an invocation of the RANDOM built-in
function is greater than the limit of 100 000.

User response: Check your code and correct it.

EAGREX4015I Error number out of range in
ERRORTEXT function

Explanation: The program invoked the ERRORTEXT
built-in function with an incorrect value for the error
number argument. The error number must be in the
range of 0 through 99.

User response: Check your code and correct it.

EAGREX4017I Argument not positive or zero

Explanation: The program invoked a built-in function
with a value less than zero for an argument that must
be greater than or equal to zero.

User response: Check your code and correct it.

EAGREX4006I • EAGREX4017I

Chapter 20. Runtime Messages 191

EAGREX4018I Invalid pad character

Explanation: The value of the pad argument on the
invoked built-in function must be a single character,
but the program supplied something else.

User response: Check your code and correct it.

EAGREX4019I Elapsed-time clock out of range in
TIME function invocation

Explanation: The elapsed-time clock was out of range
in an invocation of the TIME built-in function. This
error occurs if the number of seconds in the
elapsed-time clock exceeds nine digits.

User response: This error might be caused by a
system problem; notify your system support personnel.

EAGREX4020I Line number out of range in
SOURCELINE function

Explanation: An invocation of the SOURCELINE
built-in function was incorrect for one of these reasons:

v The program passed an incorrect line number to the
function.

v The program was compiled with the NOSLINE
(NOSL) option.

User response: If the program was compiled with the
SLINE option, ensure that the line number does not
exceed the number of the final line in the source file. If
the program was compiled with the NOSLINE option,
either change the program or recompile with the SLINE
option.

EAGREX4021I Invalid symbol in name argument of
VALUE function

Explanation: The value of the name argument in the
VALUE built-in function must be a valid REXX symbol,
but the program supplied something else. The most
common cause of this message is the use of special
characters that are not valid within symbols.

User response: Check your code and correct it.

EAGREX4022I Incorrect call to built-in function or
DBCS function package

Explanation: An error occurred when a function was
invoked with OPTIONS 'EXMODE' in effect. This error
can occur for functions in the DBCS function package
and for built-in functions that perform string
operations.

User response: If the cause of the problem is not
obvious, debug the program using the interpreter.

EAGREX4023I Argument not a number

Explanation: The value of an argument on the
invoked built-in function must be a number, but the
program supplied something else.

User response: Check your code and correct it.

EAGREX4024I Exponent exceeds specified digits in
FORMAT function

Explanation: The value supplied for the exponent
argument of the FORMAT built-in function is out of
range for the result. This error occurs if the FORMAT
built-in function is invoked with an exponent size too
small for the number to be formatted.

User response: Check your code and correct it.

EAGREX4025I Integer part exceeds specified digits
in FORMAT function

Explanation: The program invoked the FORMAT
built-in function with a value for the before argument
that is not large enough to contain the integer part of
the number to be formatted. For example, this error
occurs if the function is invoked with FORMAT(225.1,2);
there are three integer digits in the number, but space
has been specified for only two digits.

User response: Check your code and correct it.

EAGREX4026I External routine returned with
non-zero return code

Explanation: An external routine returned with a
nonzero return code.

User response: Correct the external routine.

EAGREX4027I External routine could not obtain an
EVALBLOCK

Explanation: An external routine could not obtain an
EVALBLOCK control block, because there was not
enough storage.

User response: Use a larger region size.

EAGREX4028I External routine could not locate
language processor environment

Explanation: An external routine could not locate a
language processor environment.

User response: Notify your system support personnel.

EAGREX4029I External routine encountered an
ABEND

Explanation: An external routine abnormally ended.

User response: Correct the external routine.

EAGREX4018I • EAGREX4029I

192 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGREX4030I Invalid number of arguments on
built-in function invocation

Explanation: A built-in function was invoked, but the
number of arguments passed is not in the range of
arguments expected by the function.

User response: Check your code and correct it.

EAGREX4031I Required argument missing in
built-in function invocation

Explanation: A built-in function was invoked, but an
argument required by this function was not provided.

User response: Check your code and correct it.

EAGREX4032I Argument not a valid binary string

Explanation: The value of an argument on the
invoked built-in function must be a binary string, but
the program supplied something else. A binary string
can contain only the digits 0 and 1. Blanks may only
occur at the boundaries of groups of four binary digits
and are not allowed at the beginning or the end of the
string.

User response: Check your code and correct it.

EAGREX4033I Selector not supported for VALUE
function

Explanation: A selector for the VALUE built-in
function is only supported on CMS Release 6 or
subsequent releases.

User response: Check your code and correct it.

EAGREX4034I Global variable name longer than 255
characters

Explanation: The VALUE built-in function was
invoked with a selector on CMS Release 6 or
subsequent releases, but the length of the name of the
variable exceeds the allowed maximum of 255
characters.

User response: Check your code and correct it.

EAGREX4035I New global variable value longer
than 255 characters

Explanation: The VALUE built-in function was
invoked with a selector on CMS Release 6 or
subsequent releases, but the length of the value exceeds
the allowed maximum of 255 characters.

User response: Check your code and correct it.

EAGREX4036I Invalid selector

Explanation: The VALUE built-in function was
invoked with a selector on CMS Release 6 or a
subsequent release, but the first token in the selector is
not valid. Valid tokens are GLOBAL, SESSION, and
LASTING.

User response: Check your code and correct it.

EAGREX4037I Error upon invocation of system
service in VALUE function

Explanation: The VALUE built-in function was
invoked with a selector on CMS Release 6 or
subsequent releases, but the attempt to perform the
desired action was unsuccessful. This might be caused
by a full A-disk, or by an A-disk not accessed in
read/write mode, or by not having accessed an A-disk.

User response: Check your code and correct it.

EAGREX4038I Variable expected

Explanation: The first argument on an invocation of
the VALUE built-in function was a symbol starting
with a numeric digit or a period, and a selector is not
supplied.

User response: Check your code and correct it.

EAGREX4039I Start value of CHARIN or CHAROUT
function must be 1

Explanation: A value other than 1 was specified as
start value of the CHARIN or CHAROUT function.

User response: Check your code and correct it.

EAGREX4040I Count value of the LINEIN function
must be 0 or 1

Explanation: A value other than 0 or 1 was specified
as count value of the LINEIN function.

User response: Check your code and correct it.

EAGREX4041I Command required for operation 'C'

Explanation: Invocation of the STREAM function with
operation 'C' requires a command as third parameter.

User response: Check your code and correct it.

EAGREX4042I Command not allowed with operation
other than 'C'

Explanation: A command can be specified only if the
STREAM function is invoked with operation 'C'.

User response: Check your code and correct it.

EAGREX4030I • EAGREX4042I

Chapter 20. Runtime Messages 193

EAGREX4043I Operation value of STREAM function
must be 'C', 'D', or 'S'

Explanation: The only valid STREAM function
operations are:
v 'C' (command)
v 'D' (description)
v 'S' (state)

User response: Check your code and correct it.

EAGREX4044I Invalid argument value in stream I/O
function

Explanation: A stream I/O function (CHARIN,
CHAROUT, CHARS, LINEIN, LINEOUT, LINES, or
STREAM) returned an error.

User response: Check your code and correct it.

EAGREX4045I Argument 2 is not in the format
described by argument 3

Explanation: The second argument specified is not in
the format described by the third argument.

User response: Check the format definitions of the
built-in function for which the error is reported. Either
correct the value of the second argument or change the
format specified in the third argument.

EAGREX4046I BIF argument 4/5 must be a single
non-alphanumeric character or the null
string

Explanation: You specified a wrong date separation
character.

User response: Check your code and correct it.

EAGREX4047I BIF argument 1/3 is in a format
incompatible with separator in
argument 4/5

Explanation: You specified a separator character for a
date type that does not allow for separators.

User response: Check your code and correct it.

EAGREX4048I Argument 2 is not in the format
described by argument 5

Explanation: The separator character in the input date
in argument 2 does not correspond to the date
separator character specified in argument 5.

User response: Check your code and correct it.

EAGREX4100E Error 41 running compiled program,
line nn: Bad arithmetic conversion

Explanation: In an arithmetic expression, a term was
found that was not a valid number or that had an
exponent outside the range of -999 999 999 through
+999 999 999.

A variable might have been incorrectly used or an
arithmetic operator might have been included in a
character expression without being put in quotes. For
example, the command MSG * Hi! should be written as
’MSG * Hi!’, otherwise the program will try to
multiply MSG by Hi!.

User response: Check your code and correct it.

EAGREX4101I Initial expression missing in
controlled DO loop

Explanation: No initial expression was found in a
controlled DO loop where one was expected.

User response: Check your code and correct it.

EAGREX4200E Error 42 running compiled program,
line nn: Arithmetic overflow/underflow

Explanation: A result of an arithmetic operation was
encountered that required an exponent greater than the
limit of nine digits (more than +999 999 999 or less than
-999 999 999). This error can occur during evaluation of
an expression or during the stepping of a DO loop
control variable.

User response: Check your code and correct it.

EAGREX4201I Overflow occurred during addition or
subtraction

Explanation: The result of an addition or subtraction
required an exponent greater than 999 999 999.

User response: Check your code and correct it.

EAGREX4202I Overflow occurred during
multiplication

Explanation: The result of a multiplication required an
exponent greater than 999 999 999.

User response: Check your code and correct it.

EAGREX4203I Underflow occurred during
multiplication

Explanation: The result of a multiplication required an
exponent less than -999 999 999.

User response: Check your code and correct it.

EAGREX4043I • EAGREX4203I

194 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGREX4204I Overflow occurred during division

Explanation: The result of a division required an
exponent greater than 999 999 999.

User response: Check your code and correct it.

EAGREX4205I Underflow occurred during division

Explanation: The result of a division required an
exponent less than -999 999 999.

User response: Check your code and correct it.

EAGREX4206I Division by zero

Explanation: The program tried to divide a number
by zero.

User response: Check your code and correct it.

EAGREX4207I Integer division by zero

Explanation: The program tried to divide a number
by zero with the % (integer division) operator.

User response: Check your code and correct it.

EAGREX4208I Remainder of division by zero

Explanation: The program tried to divide a number
by zero with the // (remainder) operator.

User response: Check your code and correct it.

EAGREX4209I Overflow occurred during
exponentiation

Explanation: The result of an exponentiation operation
required an exponent greater than 999 999 999.

User response: Check your code and correct it.

EAGREX4210I Underflow occurred during
exponentiation

Explanation: The result of an exponentiation operation
required an exponent less than -999 999 999.

User response: Check your code and correct it.

EAGREX4211I Value zero to a negative power

Explanation: The program tried to raise zero to a
negative power in an exponentiation operation.

User response: Check your code and correct it.

EAGREX4300E Error 43 running compiled program,
line nn: Routine not found

Explanation: An external routine called in your
program could not be found. The simplest, and
probably most common, cause of this error is a

mistyped name. Another possibility is that one of the
standard function packages is not available.

If you were not trying to invoke a routine, you might
have put a symbol or string adjacent to a left
parenthesis when you meant it to be separated by a
space or operator. The Compiler would see that as a
function invocation. A symbol or a string in this
position causes the phrase to be read as a function call.
For example, the string 3(4+5) should be written as
3*(4+5) if a multiplication was intended.

User response: Check your code and correct it.

EAGREX4400E Error 44 running compiled program,
line nn: Function did not return data

Explanation: The program invoked an external routine
as a function within an expression. The routine seemed
to end without error, but it did not return data for use
within the expression.

User response: Check your code and correct it.

EAGREX4500E Error 45 running compiled program,
line nn: No data specified on function
RETURN

Explanation: A REXX program or internal routine has
been called as a function, but an attempt is being made
to return (by a RETURN instruction) without passing
back any data.

User response: Check your code and correct it.

EAGREX4600E Error 46 running compiled program,
line nn: Invalid variable reference

Explanation: Within a DROP or PROCEDURE
instruction, the syntax of a variable reference (a
variable whose value is to be used, indicated by its
name being enclosed in parentheses) is incorrect. The
close parenthesis that should immediately follow the
variable name is missing.

User response: Check your code and correct it.

EAGREX4700E Error 47 running compiled program,
line nn: Unexpected label

Explanation: A label was found in the string of an
INTERPRET instruction.

User response: Check your code and correct it.

EAGREX4800E Error 48 running compiled program,
line nn: Failure in system service

Explanation: Either a system service, such as user
input, output, or manipulation of the console stack, has
failed to work correctly, or a system exit detected such
an error in a system service.

User response: Ensure that your input is correct and

EAGREX4204I • EAGREX4800E

Chapter 20. Runtime Messages 195

that your program is working correctly. If the problem
persists, notify your system support personnel.

EAGREX4801I Error in EXECINIT invocation

Explanation: The EXECINIT routine specified in the
module name table either could not be invoked, or
returned a nonzero return code.

User response: Notify your system support personnel.

EAGREX4802I Error in EXECTERM invocation

Explanation: The EXECTERM routine specified in the
module name table either could not be invoked, or
returned a nonzero return code.

User response: Notify your system support personnel.

EAGREX4803I EVALBLOCK cannot be obtained

Explanation: The Library attempted to obtain an
EVALBLOCK control block by calling the IRXRLT
system routine with the GETEVAL function, but did
not succeed.

User response: Notify your system support personnel.

EAGREX4804I Error in invocation of global exit for
REXX programs

Explanation: A global exit for REXX programs on
z/VM was specified, but cannot be invoked due to
missing system interfaces. You might be missing a
prerequisite z/VM PTF.

User response: Notify your system support personnel.

EAGREX4805I System interfaces for invocation of
stream I/O function not available

Explanation: Stream I/O on VM/ESA Release 2.1 and
VM/ESA Release 2.2 was specified, but cannot be
invoked due to missing system interfaces. You might be
missing a prerequisite z/VM PTF.

User response: Notify your system support personnel.

EAGREX4806I Error in stream I/O function

Explanation: A stream I/O function (CHARIN,
CHAROUT, CHARS, LINEIN, LINEOUT, LINES, or
STREAM) returned an error.

User response: Check your code and correct it.

EAGREX4900E Error 49 running compiled program,
line nn: Language processor failure

Explanation: An internal self-consistency check of the
INTERPRET processor indicated an error.

User response: Report any occurrence of this message
to your IBM representative.

EAGREX9999S Message number nnn

Explanation: The Library was about to issue a
message but the message could not be found in the
message repository currently allocated. This can occur
when you have different product releases or PTF levels
installed.

User response:

v Under z/VM

If this message has been issued only a few times,
you are probably using a back-level version of the
message repository and the Compiler cannot find the
newer messages. Upgrade your repository.

If this message has been issued several times and the
Compiler’s listing does not contain correct headers
and text, the Compiler cannot find the repository. If
you did not customize the repository, see
“Customizing the Message Repository to Avoid a
Read/Write A-Disk” on page 123 for the correct
names supplied by IBM. Issue a FILELIST command
to see if one of these repositories is in your current
search order. If you wish to customize the repository,
make sure you issued the GENMSG and SET LANG
commands with the correct parameters and file IDs.

v Under z/OS

If this message has been issued only a few times,
you are probably using a back-level version of the
message repository and the Compiler cannot find the
newer messages. Check with your Systems
Programming staff.

If this message has been issued several times and the
Compiler’s listing is mainly in English although you
have been trying to use another language, the
Compiler cannot find the text in the message
repository and has switched to hard-coded English
text. Check with your Systems Programming staff
and see “Message Repository” on page 118 for more
details.

EAGREX4801I • EAGREX9999S

196 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Chapter 21. Stream I/O Messages

One or more of the following messages might occur in response to a problem
during a stream I/O function call. If the problem cause is likely to be with your
REXX program, detailed information is given with each message. If the problem
cause is outside your REXX program, you need to see the appropriate TSO/E or
z/OS documentation or to contact the system administrator for further help.

Note: The abbreviation REXXIO refers to the REXX Stream I/O function package.

EAGSIO0001 Invalid numeric parameter for
REXXIO.

Explanation: A function call contains a numeric
parameter that is not allowed. A line, count, or start
parameter value might be negative or outside the
boundaries of a stream.

User response: Check your code and correct the value.

EAGSIO0002 Invalid ''count'' value for LINEIN.

Explanation: The count parameter contains a value
other than 0 or 1.

User response: Check your code and correct the value.
You can only define a value of 0 or 1.

EAGSIO0003 Invalid number of parameters for
LINEIN.

Explanation: There might be a syntax problem with
the LINEIN function call or more than three parameter
values have been specified. Check the use of commas
in the function call.

User response: Check your code and correct it. For
more information refer to “LINEIN (Line Input)” on
page 146.

EAGSIO0004 Invalid file specification for REXXIO.

Explanation: A stream name is not properly specified.
The name might contain invalid characters, or a
qualifier might be more than eight characters long.

User response: Check your code and correct it. For
more information refer to “Naming Streams” on page
135.

EAGSIO0005 Invalid number of parameters for
LINES.

Explanation: There might be a syntax problem with
the LINES function call or more than one parameter
value has been specified (no commas in the function
call).

User response: Check your code and correct it. For

more information refer to “LINES (Lines Remaining)”
on page 148.

EAGSIO0007 Invalid number of parameters for
LINEOUT.

Explanation: There might be a syntax problem with
the LINEOUT function call or more than three
parameter values have been specified. Check the use of
commas in the function call.

User response: Check your code and correct it. For
more information refer to “LINEOUT (Line Output)”
on page 147.

EAGSIO0008 Invalid line number for LINEOUT.

Explanation: The line parameter contains a value for a
transient stream, or a value other than 1 for a persistent
stream.

User response: Check your code and correct it. For
more information refer to “LINES (Lines Remaining)”
on page 148.

EAGSIO0009 The file failed to open for REXXIO.

Explanation: The specified stream failed to open. The
ddname might not be allocated or it might be
misspelled.

User response: Check if the ddname is allocated in
foreground or background. Then check your code and
correct it.

EAGSIO0010 The file is a partitioned data set, but
no member name was specified.

Explanation: You must specify the stream name with
an explicit member name because the data set is
partitioned.

User response: Check your code and specify the
stream name with an explicit member name because
the data set is partitioned. For more information refer
to “Naming Streams” on page 135.

© Copyright IBM Corp. 1991, 2013 197

EAGSIO0011 The file is a sequential data set, but a
member name was specified.

Explanation: The data set is not partitioned, that is
why you must not specify the stream name with an
explicit member name.

User response: Check your code and make sure that
you do not specify the stream name with an explicit
member name, because the data set is not partitioned.
For more information refer to “Naming Streams” on
page 135.

EAGSIO0012 Record format of file is not supported.

Explanation: You have tried to open a persistent
stream with a record format that is not supported.

User response: Check your code and correct it. For
more information refer to “Stream Formats” on page
138.

EAGSIO0013 Data set organization of file is not
supported.

Explanation: You have tried to open a persistent
stream with a data set organization that is not
supported.

User response: Check your code and correct it. For
more information refer to “Stream Formats” on page
138.

EAGSIO0014 Warning: Output record truncated.

Explanation: A LINEOUT function call attempted to
write a string that exceeds the LRECL of the data set. A
preceding CHAROUT function call might have already
written several characters, or the string length exceeds
the LRECL of the data set.

User response: Check your code and correct it. For
more information refer to “Stream Formats” on page
138.

EAGSIO0015 Cannot allocate data set. Insufficient
storage.

Explanation: The Region size is too small.

User response: Increase the Region size or contact
your administrator.

EAGSIO0016 Cannot allocate data set. Data set
cannot be accessed exclusively.

Explanation: Opening a stream for write operations
requires exclusive allocation. Someone else has already
allocated the data set.

User response: Contact your administrator to check
who has allocated the data set.

EAGSIO0017 Cannot allocate data set. Data set in
use by another user or job.

Explanation: Someone else has already allocated the
data set exclusively. You cannot open the stream for
read operations or write operations yet.

User response: Contact your administrator to check
who has allocated the data set.

EAGSIO0018 Cannot allocate data set. No unit
available.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0019 Cannot allocate data set. Volume
cannot be mounted.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0020 Cannot allocate data set. Volume
allocated to another user or job.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Contact your administrator to check
who has allocated the data set.

EAGSIO0021 Cannot allocate data set. Number of
required devices unavailable.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0022 Cannot allocate data set. Volume or
unit in use by system.

Explanation: You specified a stream name as a data
set that cannot be allocated (exclusively used by
someone else).

User response: Ask the system administrator for help.

EAGSIO0023 Cannot allocate data set. Volume
mounted on an ineligible device.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0011 • EAGSIO0023

198 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGSIO0024 Cannot allocate data set. Specified
device in use.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0025 Cannot allocate data set. Specified
volume is on another device.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0026 Cannot allocate data set. Limit of data
sets allocated is exceeded.

Explanation: You have already allocated too many
data sets. The maximum number of allocations is
specified in TSO/E and z/OS.

User response: Either try to free some other
allocations, or ask the system administrator for help.

EAGSIO0027 Cannot allocate data set. Maximum
number of allocations exceeded.

Explanation: The maximum number of concurrent
allocations is reached.

User response: Either try to free some ddnames, or
ask the system administrator for help.

EAGSIO0028 Cannot allocate data set. Job Entry
Subsystem unavailable.

Explanation: The JES is not available to verify an
allocation request. Ask the system administrator for
help.

User response: Ask the system administrator for help.

EAGSIO0029 Cannot allocate data set. Number of
volumes exceeds limit.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0030 Cannot allocate data set. Request
cancelled by the operator.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0031 Cannot allocate data set. MSS volume
not accessible from unit.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0032 Cannot allocate data set. MSS volume
does not exist.

Explanation: You specified a stream name as a data
set that cannot be allocated.

User response: Ask the system administrator for help.

EAGSIO0033 Cannot allocate data set. Data set name
not found.

Explanation: You specified a stream name as a data
set that cannot be allocated (the data set name is not
cataloged).

User response: Ask the system administrator for help.

EAGSIO0034 Cannot allocate data set. Locate I/O
error.

Explanation: You specified a stream name as a data
set that cannot be allocated (probably a system
problem).

User response: Ask the system administrator for help.

EAGSIO0035 Cannot allocate data set. DADSM I/O
error.

Explanation: You specified a stream name as a data
set that cannot be allocated (probably a system
problem).

User response: Ask the system administrator for help.

EAGSIO0036 Cannot allocate data set. Data set not
on volume as denoted by catalog.

Explanation: You specified a stream name as a data
set that cannot be allocated (probably a system
problem).

User response: Ask the system administrator for help.

EAGSIO0037 Cannot allocate data set. OBTAIN I/O
error.

Explanation: You specified a stream name as a data
set that cannot be allocated (probably a system
problem).

User response: Ask the system administrator for help.

EAGSIO0024 • EAGSIO0037

Chapter 21. Stream I/O Messages 199

EAGSIO0038 Cannot allocate data set. Required
catalog not mounted.

Explanation: You specified a stream name as a data
set that cannot be allocated (probably a system
problem).

User response: Ask the system administrator for help.

EAGSIO0039 The requested member is not in the
specified data set.

Explanation: An attempt was made to open a
partitioned data set for a read operation, but the data
set member does not exist.

User response: Check your code and specify or create
the data set member again.

EAGSIO0040 The STOW failed during the close of a
data set.

Explanation: Probably a system problem.

User response: Ask the system administrator for help.

EAGSIO0041 Invalid number of parameters for
CHARIN.

Explanation: There might be a syntax problem with
the CHARIN function call or more than three
parameter values have been specified. Check the use of
commas in the function call.

User response: Check your code and correct it. For
more information refer to “LINEIN (Line Input)” on
page 146.

EAGSIO0042 Invalid number of parameters for
CHAROUT.

Explanation: There might be a syntax problem with
the CHAROUT function call, or more than three
parameter values have been specified. Check the use of
commas in the function call.

User response: Check your code and correct it. For
more information refer to “LINEIN (Line Input)” on
page 146.

EAGSIO0043 Invalid number of parameters for
CHARS.

Explanation: There might be a syntax problem with
the CHARS function call, or more than one parameter
value has been specified (no commas in the function
call).

User response: Check your code and correct it.

EAGSIO0044 Invalid ''start'' value for CHAROUT.

Explanation: The start parameter contains a value
other than 1.

User response: Check your code and correct it. The
parameter value must be 1.

EAGSIO0045 Invalid ''start'' value for CHARIN.

Explanation: The start parameter contains a value
other than 1.

User response: Check your code and correct it. The
parameter value must be 1.

EAGSIO0046 Invalid ''line'' value for LINEIN.

Explanation: The line parameter contains a value that
is negative or not within the boundaries of the stream
(the specified line might not exist).

User response: Check your code and correct it. The
parameter value must be positive and within the
boundaries of the stream.

EAGSIO0047 Read error in REXXIO.

Explanation: TSO/E returned with a Read error. See
the subsequent messages for further information.

User response: If required, ask the TSO/E support for
help.

EAGSIO0048 CLOSE ignored. File already closed, or
not found.

Explanation: The stream was already closed by a
preceding STREAM CLOSE command or by an implicit
close, or the named stream does not exist.

User response: None.

EAGSIO0049 Logic error IEANTRT token retrieval.

Explanation: A severe error occurred.

User response: Contact your IBM representative.

EAGSIO0050 Invalid command for STREAM
specified.

Explanation: The stream_command parameter of the
STREAM function call contains an invalid value.

User response: Check your code and correct it. For
more information refer to “STREAM (Operations)” on
page 148.

EAGSIO0038 • EAGSIO0050

200 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

EAGSIO0051 Invalid parameter for STREAM
QUERY specified.

Explanation: The stream_command parameter of the
STREAM function call contains an invalid value.

User response: Check your code and correct it. Only
QUERY EXISTS, QUERY REFDATE, and QUERY SERVICELEVEL
are supported. For more information refer to “STREAM
(Operations)” on page 148.

EAGSIO0052 I/O RC=12, DCB already opened for a
different type of I/O operation.

Explanation: Error returned by TSO/E. A data set
operation was tried in a mode different from the initial
mode.

User response: Check your code, correct it, and rerun
it.

EAGSIO0053 I/O RC=16, Output data was truncated
for WRITE option.

Explanation: A LINEOUT function call failed to write
a string. The LRECL value of the data set in question
might be too small.

User response: Check if the LRECL value of the data
set is too small or adjust the stream length to the
existing LRECL.

EAGSIO0054 I/O RC=20, unsuccessful processing,
function not performed.

Explanation: Error returned by TSO/E. Subsequent
messages might provide further information.

User response: If required, ask the TSO/E support for
help.

EAGSIO0055 I/O RC=24, unsuccessful processing,
file cannot be opened.

Explanation: Error returned by TSO/E. Subsequent
messages might provide further information.

User response: If required, ask the TSO/E support for
help.

EAGSIO0056 I/O RC=28, unsuccessful processing.
Language processor cannot be located.

Explanation: Error returned by TSO/E. Subsequent
messages might provide further information.

User response: If required, ask the TSO/E support for
help.

EAGSIO0057 I/O RC=32, unsuccessful processing.
Internal error in REXXIO.

Explanation: Error returned by TSO/E. Subsequent
messages might provide further information.

User response: If required, ask the TSO/E support for
help.

EAGSIO0058 Record for console must be Fixed 80.

Explanation: An attempt to read from SYSTSIN with
IRXJCL failed. The DSN must be F 80.

User response: Verify the data set allocation for record
format and LRECL.

EAGSIO0059 SVC99 allocation error in EAGIODYN,
see error code below:

Explanation: Check the SVC99 error code listed in the
subsequent message.

User response: Contact your system administrator or
your IBM representative.

EAGSIO0060 Allocation failed. Too many attempts.

Explanation: Too many unsuccessful allocation
attempts from within the REXX program have used up
the available storage.

User response: Check your code and correct it.

EAGSIO0061 Allocation failed. Invalid data set
name, SVC99 error code 9700.

Explanation: The allocation failed because the data set
name is not valid.

User response: Verify in your code whether you used
a ddname instead of a data set name. If you used the
stream function, you should also check if the return
code is zero. Otherwise, contact your system
administrator or your IBM representative.

EAGSIO0062 Allocation failed. SMS error, see
SVC99 error code below:

Explanation: Check the SVC99 error code listed in the
subsequent message.

User response: Contact your system administrator or
your IBM representative.

EAGSIO0063 Allocation failed. SMS VTOC error, see
SVC99 error code below:

Explanation: Check the SVC99 error code listed in the
subsequent message.

User response: Contact your system administrator or
your IBM representative.

EAGSIO0051 • EAGSIO0063

Chapter 21. Stream I/O Messages 201

EAGSIO9999 <-Logic error, this MSG ID is not
defined. Call ''IBM'' service center.

Explanation: A severe error occurred.

User response: Contact your IBM representative.

EAGSIO9999

202 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Part 5. Appendixes

© Copyright IBM Corp. 1991, 2013 203

204 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Appendix A. Interface for Object Modules (z/OS)

This appendix explains in detail the preparatory steps for generating a load
module from a REXX program that has been compiled to an object module under
z/OS, and the ISPF restrictions on load modules. It also describes the
parameter-passing conventions for the different stubs and how the stubs invoke
the EXEC handler, IRXEXEC. This appendix also describes the PARSE SOURCE
information, as it appears in the REXX program.

ISPF Restrictions on Load Modules
To run compiled REXX load modules for ISPF you must consider the installed ISPF
Version.

The use of a REXX load module as an external routine is supported. This program
is created using the EFPL stub. If an application is to be completely packaged, it
can use an interpreted REXX program in a SELECT CMD statement, and this
interpreted REXX program can invoke the packaged external routine with the
REXX CALL instruction.

As an example, assume that you have an interpreted REXX program, called
MYISPFRX, that has many external routines, all written in REXX. Your program
can be invoked as follows:
SELECT CMD(MYISPFRX)

One way of improving the performance is to create a load module containing the
MYISPFRX program and all its external routines. To do this, use the DLINK
option (see “Object Modules (z/OS)” on page 72).

If ISPF variables are accessed with REXX programs running under TSO:
v If SYSICMD is retrieved using the SYSVAR function, link-edited REXX EXECs

return a null string.
v For compiled EXECs that are not link-edited and are therefore equal to

interpreted REXX EXECs, SYSVAR('sysicmd') contains the EXEC name. The
name of the link-edited REXX EXEC can be retrieved using SYSVAR('syspcmd')
provided that it is obtained before any other subcommand is issued.

v In interpreted REXX EXECs and compiled REXX EXECs that are not link-edited,
the initial value in SYSVAR('syspcmd') is 'EXEC'.

Earlier Releases of ISPF
For earlier releases of ISPF you must use the VDEFINE service to define all
variables that will be manipulated by ISPF services, such as VGET. The VDEFINE
service cannot be invoked from a REXX program, therefore the creation of a load
module from a REXX program is not supported, if the load module is to run
directly from the SELECT service.

To run the load module, the MYISPFRX program must be linked with either the
EFPL or the CPPLEFPL stub. You must write another REXX program that can be
either interpreted or of CEXEC type. The source of your new program called, for
example, MYISPFST EXEC is:

© Copyright IBM Corp. 1991, 2013 205

Invoke this program as follows:
SELECT CMD(MYISPFST)

The load module consisting of REXX programs will now run successfully.

ISPF Version 4 Release 1
Starting with ISPF Version 4.1, compiled REXX load modules are supported
through the ISPSTART command and the SELECT service by a new value, CREX,
for the LANG parameter of the CMD keyword.

To run the load module, the MYISPFRX program must be linked with either the
CPPL or the CPPLEFPL stub. Invoke the program as follows:
SELECT CMD(MYISPFRX) LANG(CREX)

ISPF uses the correct function pool for the variables. For example:
v To copy a variable to the ISPF pool:

/* Copy variable to variable to ISPF pool */
myvar=’-TESTING VPUT-’;
ADDRESS ISPEXEC "VPUT MYVAR PROFILE";
Exit;

v To get a variable from the ISPF pool:
/* Get a variable from the ISPF pool */

ADDRESS ISPEXEC ’VGET MYVAR PROFILE’;
SAY ’Variable myvar holds:’ myvar;
Exit;

v To call a load module:
/* Call a load module */

"SELECT CMD(MYVPUT) LANG(CREX)";
SAY ’VPUT RC=’rc;
"SELECT CMD(MYVGET) LANG(CREX)";
SAY ’VGET RC=’rc;

The load module consisting of REXX programs will now run successfully.

ISPF for z/OS Version 1 Release 5.5
REXX stubs are required to build a link-edited module from the object output of
the REXX Compiler. If ISPF services are used by the module, the invocation
parameter LANG(CREX) must be specified. With ISPF for z/OS Version 1
Release 5.5 the value CREX for the LANG parameter is obsolete.

The following items are prepared for this change:
1. The REXX stubs EAGSTCE, EAGSTCPP, and EAGSTMP are updated to denote

ISPF that a REXX module is invoked.
2. ISPF will be updated with Release 5.5 to recognize the information of the stub

to provide the full service as if it were invoked with parameter LANG(CREX).

Note:

/* REXX * MYISPFST ***
* This EXEC calls MYISPFRX
***/

CALL MYISPFRX

Figure 24. MYISPFST Sample Program

206 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

1. To use the update of the stubs, you must rebuild all REXX modules using ISPF
with REXXC or REXXL. If they are not rebuilt, the modified stubs are not
incorporated.

2. For more information about stubs refer to “%STUB” on page 41.
3. See also “REXXL (z/OS)” on page 74.
4. See also “Stubs” on page 211.

Link-Editing of Object Modules
There are various parameter-passing conventions. Stubs are used to:
v Transform the input parameters into a form understandable by the compiled

REXX program
v Invoke the compiled REXX program
v Transform the returned result into a form understandable by the caller

You must link-edit the OBJECT output of the Compiler with a stub.

To compile a program and link-edit the resulting OBJECT output with a stub, use
the REXXC EXEC with the enhanced OBJECT option (see “Compiler Options” on
page 19), or the REXXCL cataloged procedure which is supplied with the
Compiler. Note that these require that the Library is also installed on your system.

To link-edit a stub and a compiled REXX program, use the REXXL cataloged
procedure, which is supplied with the Library, or the REXXL EXEC to link-edit a
stub and a compiled REXX program.

When used in a batch job, REXXL EXEC generates the control statements for the
linkage editor to link-edit a stub and a compiled REXX program of type OBJECT.
The compiled REXX program is read from the data set allocated to SYSIN. The
control statements, including the compiled REXX program, are written to a data set
allocated to SYSOUT.

When used interactively, REXXL EXEC link-edits a stub and the compiled REXX
program of type OBJECT and builds a load module. The SYSPRINT output of the
linkage editor is stored in a sequential data set, where the last identifier is
LINKLIST.

Note: For object modules, do not use 8-character names that differ only in the
eighth character, because the eighth character of the program name is lost during
the link-edit step.

The original name of each stub is EAGSTUB. Each stub contains an external
reference to the compiled REXX program named EAGOBJ.

The name of the OBJECT module in the external symbol dictionary (ESD) record is
derived from the name of the input data set when the REXX program is compiled.
It is one of the following:
v The member name of the partitioned input data set
v The last qualifier of the name of the sequential input data set
v Or else, COMPREXX (for example, if the source file is part of the job stream)

To link a stub with a program, REXXL generates the following linkage editor input:

Appendix A. Interface for Object Modules (z/OS) 207

CHANGE EAGSTUB(csect),EAGOBJ(temp_name)
INCLUDE SYSLIB(stub_name)
CHANGE csect(temp_name)

compiled REXX program is included here
ENTRY csect

An example of this code is provided in “REXXL (EAGL)” on page 238.

For example, if the REXX program AGOODPGM is to be link-edited with the
EFPL stub, the control statements are as follows:

CHANGE EAGSTUB(AGOODPGM),EAGOBJ($AGOODPG)
INCLUDE SYSLIB(EAGSTEFP)
CHANGE AGOODPGM($AGOODPG)

compiled REXX program AGOODPGM is included here
ENTRY AGOODPGM

With this input, the linkage editor performs the following:
v Changes the external name of the stub to the original name of the compiled

REXX program. The name of the compiled REXX program becomes a temporary
name, which is the original name contained in the ESD record, prefixed with a $
character, and truncated to eight characters.

v Includes the stub
v Changes the external name of the REXX program to the temporary name
v Includes the compiled REXX program

The csect name, which is now the external name of the stub, is the recognized
entry point.

Instead of invoking the Compiler and the linkage editor separately, you can create
a load module with a single invocation of the REXXC command. Assuming that
the source for AGOODPGM is located in the partitioned data set
upref.REXX.EXEC, the following statement generates a load module with name
AGOODPGM, with an EFPL stub in the partitioned data set upref.REXX.LOAD:
REXXC REXX.EXEC(AGOODPGM) OBJECT(,EFPL)

Note:

1. You can link different stubs to a compiled REXX program to make a program
known under different names for invocation with different parameter-passing
conventions. Or you can use your own renaming scheme by preparing the
necessary linkage editor control statements yourself.

2. For more information refer to “Compiler Options” on page 19.
3. See also “REXXL (z/OS)” on page 74.

DLINK Example
The use of the DLINK option is discussed in “DLINK” on page 24. The following
is a step-by-step example of an application that is packaged using the DLINK and
OBJECT options of the Compiler.

This particular application is simply a performance test for the DLINK option. It is
made up of the following REXX programs:

DLT: Is the main program. The source code is shown in Figure 25 on page 209.

CPUTIME:
Returns the CPU time that has been used. The source code is shown in
Figure 26 on page 210.

208 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

ECHO:
Is a simple EXEC that returns the argument that was passed to it. The
source code is shown in Figure 27 on page 210.

Note: The names are unique in the first seven characters, to prevent a naming
conflict when the stubs are added.
The DLT EXEC was originally stored in a partitioned data set allocated to the
ddname SYSPROC. It was invoked using a command equal to its name, DLT. The
other two EXECs were included in the same partitioned data set, and were found
as external routines only after all function packages and all the appropriate load
libraries had been searched.

The CPUTIME program can be used on several operating systems. The CPU time
is calculated using an operating-system-dependent facility. Logic is also included to
return the output when the program is invoked as an external routine.

/* REXX * DLT **
* Performance Test for DLINK option:
* Invoke external routine ECHO 50 times and tell how long it took
***/

n=’DLT’
Parse Version v . /* Use Parse Version to see if compiled */
If left(v,5)=’REXXC’ Then what=n ’compiled’

Else what=n ’interpreted’
Say what
num=50

t0=cputime()
Call time ’r’
Say num ’invocations of ECHO will be measured’
Do i=1 To num

Call echo i
End

Say ’This took me’ (cputime()-t0) ’CPU-seconds.’
Say ’(elapsed:’ time(’E’)’)’

Figure 25. DLT Sample Program

Appendix A. Interface for Object Modules (z/OS) 209

ECHO is a simple EXEC that returns its first argument.

To package this application, the following steps are required:
1. Compile all the routines that will be included in the application with both the

OBJECT and DLINK options. In our example, DLT, CPUTIME, and ECHO are
the appropriate routines.

2. Create a load module with the OBJECT code for the main routine and the
appropriate stub, using either the REXXL cataloged procedure, or the REXXL
command provided with the Library. In our example, we create a load module
with DLT and the CPPL stub.

3. Once again, using the REXXL cataloged procedure, or the REXXL command
provided with the Library, create a load module with the OBJECT code for each
of the external routines and the EFPL stub. In our example, we combine both
the CPUTIME and the ECHO routine with an EFPL stub. This creates two
separate load modules both having their own EFPL stub.

/* REXX * CPUTIME **
* Return the cpu-time used up so far
***/

Parse Version v
Parse Source s

Parse Var s sys .

Select /* Figure out which system we are on */
When sys=’CMS’ Then Do

qt="DIAG"(8,’Q TIME’)
Parse Var qt . ’VIRTCPU=’ mm . ’:’ +1 ss +6
cpu=mm*60+ss
End

When sys=’TSO’ Then Do
cpu=sysvar(’SYSCPU’)
End

When wordpos(sys,’PCDOS OS/2’)>0 Then Do
t=Time()
Parse Var t hh ’:’ mm ’:’ ss
cpu=(hh*60+mm)*60+ss
End

Otherwise Do
Say ’System’ sys ’is unknown to CPUTIME’
cpu=0
End

End
If word(s,2)=’COMMAND’ Then

Say ’CPU time used so far:’ cpu
Else /* When an external routine */

Return cpu /* Return the CPU time */

Figure 26. CPUTIME Sample Program

/* REXX * ECHO ***
* Performance Test for DLINK option:
* Return the argument
***/

Return arg(1)

Figure 27. ECHO Sample Program

210 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

4. Combine all these load modules into a single load module using the linkage
editor. The entry point for this load module is DLT. In our example, BJVLIB is
the ddname of the load library containing the programs. The control statements
for the linkage editor are:

INCLUDE BJVLIB(DLT)
INCLUDE BJVLIB(ECHO)
INCLUDE BJVLIB(CPUTIME)
ENTRY DLT
NAME DLT(R)

Place the load module in the appropriate load library so that it will get control
before the REXX EXEC. The application is packaged and ready to run.

Notes on recursive routines that are compiled with the DLINK option:
v Routines that are called from other external routines recursively must be linked

to the appropriate EFPL or CPPLEFPL stub.
v Routines that call themselves recursively must be renamed to a temporary name

before compilation, otherwise the internal recursive call resolves to the
beginning of the OBJECT module instead of the beginning of the stub.
If, for example, DLT contained a Call DLT instruction, the following actions
would be required:
1. Rename DLT to a temporary name, for example: DLT1

2. Compile DLT1 with compiler options DLINK, NOCE, and OBJ
3. Link DLT1 to the CPPLEFPL stub:

CHANGE EAGSTUB(DLT),EAGOBJ(DLT1)
INCLUDE SYSLIB(EAGSTCE)
INCLUDE OBJECTS(DLT1)
ENTRY DLT
NAME DLT(R)

Stubs
A stub is code that:
v Provides an interface between a certain parameter-passing convention and the

parameter-passing convention defined for REXX programs
v Invokes the compiled REXX program using IRXEXEC
v Transforms the result of the compiled REXX program into a form

understandable by the caller
v Is selected using a %STUB control directive in the source as described in

“%STUB” on page 41.

Stub Names
The following stub names are supplied with the Library to provide interfaces with
the following types of parameter-passing conventions (see also “Object Modules
(z/OS)” on page 72):

CPPL (command processor parameter list)
For running REXX applications from the TSO/E command line as a TSO
command processor or if the program was invoked from an EXEC that
contained ADDRESS TSO. See also “CPPL Parameter List” on page 215.

EFPL (external function parameter list)
For REXX applications that are invoked by a REXX CALL statement or as
function program_name(). EFPL must be used when building a function
package. See also “EFPL Parameter List” on page 216.

Appendix A. Interface for Object Modules (z/OS) 211

CPPLEFPL
This is a combination of the CPPL and EFPL stubs. It determines if the
program is invoked as a TSO/E command or as a REXX external routine.
It is recommended for most compiled REXX applications running under
TSO/ISPF. See also “CPPLEFPL” on page 217.

MVS For invoking the link-edited REXX load module from z/OS JCL using
EXEC PGM=program_name, or as a host command from an EXEC with
ADDRESS LINKMVS or ADDRESS ATTCHMVS. See also “MVS
Parameter List” on page 217.

CALLCMD
For calling the program from the TSO/E command line using the TSO/E
CALL command, or from another REXX EXEC using ADDRESS TSO for
invoking the TSO/E CALL command. See also “CALLCMD Parameter
List” on page 217.

MULTI (multi-purpose stub)
Simplifies link-edit and packaging (linking together into one load module)
of compiled REXX applications under z/OS. It combines:
v EFPL
v CPPLEFPL
v CALLCMD
v Part of the MVS functionality ('EXEC PGM=name')
v ADDRESS LINK
v ADDRESS ATTACH

Note:

1. For ADDRESS LINKMVS and ADDRESS ATTCHMVS the existing MVS
stub must be selected.

2. The multi-purpose stub load module member is located as 'EAGSTMP'
in the existing SEAGLMD library.

Note: Object modules generated with STUB code terminate abnormally if they are
run under z/VM.
If you want to create additional stubs, you can use the stubs shipped in the sample
data set as models.

Stub name Member name in the SEAGLMD data set

CPPL EAGSTCPP

EFPL EAGSTEFP

CPPLEFPL EAGSTCE

MVS EAGSTMVS

CALLCMD EAGSTCAL

MULTI EAGSTMP

Processing Sequence for Stubs
For each stub, the general processing sequence is as follows:
1. Save the registers.
2. Obtain storage required to execute the stub. For an EFPL parameter list, storage

is requested from the same subpool as REXX. For CPPL and CALLCMD

212 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

parameter lists, storage is requested from subpool 78. For MVS parameter lists,
no subpool parameter is supplied for obtaining the required storage.

3. Build a parameter list to invoke IRXEXEC. How the input parameter list maps
into the parameter list for the invocation of IRXEXEC is shown separately for
each type of parameter list.

4. Invoke IRXEXEC.
5. Convert the result supplied by IRXEXEC to the form needed for a specific type

of invocation (described separately for each type of invocation).
6. Free the storage obtained in Step 2 on page 212.
7. Restore the registers and return to the caller.

Parameter List for Invoking IRXEXEC
The parameter list for invoking IRXEXEC is as follows:

Parameter 1
The address of an EXECBLK. An EXECBLK address is never supplied;
therefore the value of the parameter is 0.

Parameter 2
The address of the argument list.

Parameter 3
Specify the type of invocation (COMMAND, SUBROUTINE, or
FUNCTION) and whether extended return codes are requested.

The COMMAND invocation is specified except for EFPL parameter lists
where the SUBROUTINE invocation is specified. Extended return codes are
always requested.

Parameter 4
The address of the in-storage control block describing the compiled
program. An in-storage control block is always supplied.

Parameter 5
The address of the CPPL. The value of the parameter is 0 if no CPPL is
supplied.

Parameter 6
The address of the EVALBLOCK control block that is to contain the result.

For EFPL parameter lists, the passed EVALBLOCK control block is used. In
all other cases, an EVALBLOCK control block with a data length of 16
bytes is used. This is large enough to hold any expected result. It holds the
result of a COMMAND invocation, which must be numeric and must fit
into a fullword.

Parameter 7
A work area vector address is never supplied; therefore the value of the
parameter is 0.

Parameter 8
The address of a user field or 0. A user field address is never supplied;
therefore the value of the parameter is 0.

Parameter 9
The address of the environment block.

For EFPL parameter lists, the address of the environment block as passed
in register 0 is supplied. Otherwise, no parameter is supplied.

Appendix A. Interface for Object Modules (z/OS) 213

For a complete description of the parameters, refer to the TSO/E REXX/MVS:
Reference.

In-Storage Control Block
The in-storage control block supplied when IRXEXEC is invoked is as follows (the
default values are indicated in parentheses):

ACRONYM
String ’IRXINSTB’.

HDRLEN
Length of the in-storage control block.

ADDRESS
Address of the vector of entries. A vector of records containing one address
and length pair is supplied. The address points to the setup code, and the
length is 20; this is the length needed for IRXEXEC to identify the header.

USEDLEN
Length of the vector of records (8).

MEMBER
Name of the EXEC ('? ').

DDNAME
Name of the DD from which the program was loaded (' ').

SUBCOM
Name of the initial host command environment (' ').

DSNLEN
Length of the data set name (0).

DSNAME
Name of the data set (X'00').

If the environment is known (because a program is linked to the EFPL stub), the
environment is passed to IRXEXEC when IRXEXEC is called. Otherwise, a value of
0 is passed to register 0. IRXEXEC locates the last non-reentrant environment and
uses it when it executes your program.

Parameter Lists
Each of the following sections contains a figure showing, in the upper part, the
parameter list that is passed to the stub when the stub is invoked. Register 1 points
to this parameter list. The upper part of the figure also shows the relevant
surrounding structures. The lower part of the figure shows the parameter list that
is passed to IRXEXEC when IRXEXEC is invoked. Register 1 points to this
parameter list. The lower part of the figure also shows the surrounding structures
built by the stub for the invocation of IRXEXEC.

The following sections also describe, for each type of parameter list, how to obtain
the return code (to be passed back in register 15) and, for EFPL, the necessary
EVALBLOCK control block processing. For more information about registers refer
to “Registers for Stubs.”

Note: The MULTI stub combines the parameter lists of the stubs that are shown in
this section.

Registers for Stubs
On entry to each stub, registers are set as follows:

214 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Register 0
Address of the environment block (EFPL stub only)

Register 1
Address of the parameter list

Registers 2-12
Unpredictable

Register 13
Address of a register save area

Register 14
Return address

Register 15
Entry point address

On exit of each stub, registers are set as follows:

Registers 0-14
Same as on entry

Register 15
Return code

CPPL Parameter List
A CPPL parameter list is supplied if, on the TSO/E command line, the user issued
the command program_name, or if the program was invoked from an EXEC that
used ADDRESS TSO.

Storage is obtained from subpool 78.

If the return code from IRXEXEC is not 0, the return code is passed back in register
15. Otherwise, the value contained in the EVALBLOCK control block is converted
to a fullword and passed back in register 15.

Figure 28. CPPL Parameter List Mapping

Appendix A. Interface for Object Modules (z/OS) 215

EFPL Parameter List
An EFPL parameter list is supplied if, from within an EXEC, either the instruction
CALL program_name is issued or a program is invoked through the function
invocation program_name(). The compiled REXX program is always invoked as a
subroutine, because the information specifying whether the program is to be
invoked as a subroutine or as a command is not accessible.

Storage is obtained from the same subpool as REXX. The subpool number is
contained in the parameter block, which is addressed through the environment
block. The address of the environment block is passed in register 0 when the stub
is entered.

Note: Most NetView applications require the EFPL stub.

The required, final EVALBLOCK control block handling (and the determination of
the return code to pass back in register 15) is:

rc_to_pass_back = 0
If rc_from_irxexec ¬=0 Then

rc_to_pass_back=rc_from_irxexec
Else Do

If evalblock shows truncated result Then Do
invoke irxrlt ’GETBLOCK’
If rc ¬= 0 Then

rc_to_pass_back=rc
Else Do

put new evalblock Address INTO parameter list
invoke irxrlt ’GETRLTE’ With new evalblock
If rc ¬= 0 Then

rc_to_pass_back=rc
End

End
End

Figure 29. EFPL Parameter List Mapping

216 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

If the return code passed back from IRXEXEC is 100 or 104 (which indicates an
abend), register 0 contains the value passed back by IRXEXEC (abend code and
reason code).

CPPLEFPL
This stub is a combination of the CPPL and EFPL stubs. It contains the logic to
determine if the REXX program is being invoked as a TSO/E command or as a
REXX external routine. Once this has been determined, the compiled REXX
program is given control with the appropriate parameters.

CPPLEFPL is recommended for most compiled REXX programs running under
TSO/ISPF.

MVS Parameter List
An MVS parameter list is supplied when a program is invoked from z/OS JCL by
means of EXEC PGM=program_name, or as a host command from an EXEC with
ADDRESS LINKMVS or ADDRESS ATTCHMVS.

The end of the parameter list is indicated by the high-order bit of the last element
of the address list being set to 1.

When obtaining storage, no subpool parameter is supplied.

If the return code from IRXEXEC is not 0, the return code is passed back in register
15. Otherwise, the value contained in the EVALBLOCK control block is converted
to a fullword and passed back in register 15.

CALLCMD Parameter List
A CALLCMD parameter list is supplied when the CALL program_name command is
issued from the TSO/E command line, or when the CALL program_name host
command is issued from within an EXEC executing under TSO/E.

Figure 30. z/OS Parameter List Mapping

Appendix A. Interface for Object Modules (z/OS) 217

The address pointed to by register 1 on entry is an AMODE 24 address (the first
byte must be ignored).

Storage is obtained from subpool 78.

If the return code from IRXEXEC is not 0, it is passed back in register 15.
Otherwise, the value contained in the EVALBLOCK control block is converted to a
fullword and passed back in register 15.

Search Order
When an external function or subroutine is invoked from a compiled REXX
program of OBJECT type, the standard REXX search order applies. The in-storage
control block that is set up in the stubs indicates that the compiled REXX program
has been loaded from the default system file in which you can store REXX EXECs.

Testing Stubs
You can use the following program to test that a stub is invoked and the
parameter list is passed correctly.
/* Tell me who I am */

Parse source allsrc;
Arg allp;
Say ’Source;’ allsrc;
Say ’says hello world...’;
If allp /=’’ then Say ’Parmlist:’ allp;
Else Say ’No parmlist received...’;
Exit;

If you are using the wrong stub, one of the following might happen:
v 0C4 Abend in the stub before calling the compiled program.
v The parameters are not all passed to the compiled program.

In either case, use a different stub. For example, if you used CALLCMD stub, use
MVS stub instead.

Figure 31. CALLCMD Parameter List Mapping

218 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

PARSE SOURCE
For a REXX program compiled into an object module, the source string that can be
obtained by means of the PARSE SOURCE instruction contains the following
tokens:
v The characters TSO
v If the program is linked with the EFPL stub, the string SUBROUTINE; otherwise,

the string COMMAND
v A question mark (?) to indicate that the name of the EXEC is not known
v A question mark (?) to indicate that the name of the DD statement from which

the EXEC was loaded is not known
v A question mark (?) to indicate that the name of the data set from which the

EXEC was loaded is not known
v A question mark (?) to indicate that the name of the EXEC as it was invoked is

not known
v The initial host command environment in uppercase
v The name of the address space in uppercase
v An 8-character user token

Appendix A. Interface for Object Modules (z/OS) 219

220 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Appendix B. Interface for TEXT Files (z/VM)

This appendix explains how an Assembler program can invoke a REXX program
that has been compiled into a TEXT file under z/VM. It also describes the
parameters and the PARSE SOURCE information received by the REXX program.

The Call from the Assembler Program
A TEXT file can be linked to an Assembler program and may be called by using
any of the standard forms of PLIST.

Call Type
Under z/VM the call type is specified in the byte that follows the 24-word save
area.

Registers
On entry to the called program, the following registers are defined:

R0 For call type X'05', the address of a 6-word extended PLIST (see “Extended
PLISTs”) and, in the high-order bit, an indication of the invocation type.

For call types X'01', X'0B', X'02', and X'06', the address of an extended
PLIST (see “Extended PLISTs”).

R1 The address of a tokenized PLIST.

R2 User word (meaningful only for non-SVC invocation).

R13 The address of a 24-word save area.

The byte that follows the save area specifies the call type.

For SVC invocations, the SVC handler provides the save area and sets
register 13.

R14 The return address.

For SVC invocations, the SVC handler sets this register.

R15 The entry point address.

For SVC invocations, the SVC handler sets this register.

On return to the Assembler program, the following register is defined:

R15 The return code.

For call type X'05', this is the return code produced by the last operation
that set the return code during execution of the REXX program. The value
specified in the RETURN or EXIT instruction is passed back by means of
the 6-word extended PLIST.

For all other call types, this is the return code specified on the RETURN or
EXIT instruction.

Extended PLISTs
The extended PLIST has the form:

© Copyright IBM Corp. 1991, 2013 221

EPLIST DS 0F PLIST with pointers:
DC A(COMVERB) → C’synonym’ CL1’ ’

* (Note that this area must precede
* the area containing the Argstring.)

DC A(BEGARGS) → start of Argstring
DC A(ENDARGS) → character after end of the Argstring
DC A(FBLOK) → file block

* (If there is no file block,
* this pointer must be 0.
* The high-order byte is ignored.)

The 6-word extended PLIST has the same four pointers followed by:
DC AL4(ARGLIST) → Argument list.

* If there is no argument list,
* this pointer is 0, and BEGARGS/ENDARGS
* are used for the ARG string.

DC A(SYSFUNRT) → SYSFUNRT location, which:
* - contains a 0 on entry
* - will be unchanged if no result is
* returned
* - will contain the address of an
* EVALBLOK if a result is returned

What the REXX Program Gets
The arguments accessible through the PARSE ARG instruction and the ARG
built-in function, and the information returned by the PARSE SOURCE instruction,
depend on the type of PLIST used.

Invocation with a Tokenized PLIST Only
If the program is invoked with only a tokenized PLIST, the argument string is
available to the program as a single argument. This is taken from the second token
of the parameter list, which is delimited by X'FFFFFFFF'. There is one blank
between each token of the argument.

The information returned by PARSE SOURCE is as follows:

Description of Token Value

— CMS
Invocation type COMMAND
File name The first token of the PLIST or *
File type *
File mode *
Synonym The first token of the PLIST or ?
Initial (default) address for
commands

CMS

Invocation with an Extended PLIST or a 6-Word Extended
PLIST

If the program is invoked with an extended PLIST, the argument string (as defined
by BEGARGS and ENDARGS) is available to the program as a single argument.

If the program is invoked with a 6-word extended PLIST and an argument list is
supplied, the arguments are taken from the argument list. If the address of the
argument list is 0, the argument string (as defined by BEGARGS and ENDARGS)
is available to the program as a single argument.

222 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

The information returned by PARSE SOURCE is as follows:

Description of
Token

Value

— CMS

Invocation type For call type X'05', when high-order bit of R0=1: FUNCTION
For call type X'05', when high-order bit of R0=0: SUBROUTINE
For all other call types: COMMAND

File name The file name in the file block or, if there is no file block, the first
token of the tokenized PLIST.

File type The file type in the file block.

If the file type in the file block is blank: EXEC.
If there is no file block: *

File mode The file mode in the file block. If there is no file block: *

Synonym For files of type CEXEC: a question mark or the first token
(delimited by an open parenthesis, close parenthesis, or blank)
from the area identified by BEGARGS and ENDARGS.

For files of type OBJ: the synonym from the extended PLIST.

Initial (default)
address for
commands

If a named PSW is specified in the file block, that name is used. If
an unnamed PSW is specified in the file block, ? is used. If the file
type is EXEC or blank, or if there is no file block, CMS is used.
Otherwise, the file type is used.

Example of an Assembler Interface to a TEXT File
The following code shows an example of how an Assembler program can invoke a
TEXT file that has been linked to it. Note that the setting of the high-order bit of
register 1 depends on the CMS release. The code in the example works correctly on
all the releases of CMS supported by the Compiler and the Library. On XA
systems, the example works with both 24-bit and 31-bit addressing.

.

. set up R0 if necessary
LA 13,SAVE address save area
IC 15,TYPE get call type
SLL 15,24 to HOB, fill rest with 0s
LA 1,0(,15) 0 for non-XA or type ’00’x or ’80’x
LTR 1,1 is it 0 ?
LA 1,TOKPL address tokenized PLIST
BNZ $1 skip for A and not ’00’x or ’80’x
OR 1,15 insert HOB of R1 for non-XA machine

or when type is ’00’x or ’80’x
$1 L 15,PROG entry point

BALR 14,15 invoke REXX program
. REXX program will return here
.

PROG DC V(REXXPRG) entry of compiled program, name of
the source file goes here

TOKPL DC CL8’REXXPRG’ tokenized PLIST
DC CL8’token 1’ parameter starts here (if passed by means of
DC CL8’token 2’ tokenized PLIST)
.
.
DC 8X’FF’ tokenized PLIST ended by fence

SAVE DS 24F save area
TYPE DC X’00’ call type follows save area, enter

required call type here

Appendix B. Interface for TEXT Files (z/VM) 223

Note: In this case, HOB stands for high order byte.

224 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Appendix C. Interface for Object Modules (VSE/ESA)

This appendix describes the parameter passing conventions for the different stubs
and how the stubs invoke the EXEC handler, ARXEXEC. This appendix also
describes the PARSE SOURCE information, as it appears in the REXX program.

Stubs
A stub is code that:
v Provides an interface between a certain parameter-passing convention and the

parameter-passing convention defined for REXX programs
v Invokes the compiled REXX program
v Transforms the result of the compiled REXX program into a form

understandable by the caller

Two stubs are supplied with the Library to provide interfaces with the following
types of parameter-passing conventions:
v VSE (refer to “VSE Parameter List” on page 228)
v EFPL (refer to “EFPL Parameter List” on page 228)

If you want to create additional stubs, you can use the supplied stubs as models.

Processing Sequence for Stubs
For each stub, the general processing sequence is as follows:
1. Save the registers.
2. Obtain storage required to execute the stub.
3. Build a parameter list to invoke ARXEXEC. How the input parameter list maps

into the parameter list for the invocation of ARXEXEC is shown separately for
each type of parameter list.

4. Invoke ARXEXEC.
5. Convert the result supplied by ARXEXEC to the form needed for a specific type

of invocation (described separately for each type of invocation).
6. Free the storage obtained in Step 2.
7. Restore the registers and return to the caller.

Parameter List for Invoking ARXEXEC
The parameter list for invoking ARXEXEC is as follows:

Parameter 1
The address of an EXECBLK. An EXECBLK address is never supplied;
therefore the value of the parameter is 0.

Parameter 2
The address of the argument list.

Parameter 3
Specify the type of invocation (COMMAND, SUBROUTINE, or
FUNCTION) and whether extended return codes are requested.

The COMMAND invocation is specified except for EFPL parameter lists
where the SUBROUTINE invocation is specified. Extended return codes are
always requested.

© Copyright IBM Corp. 1991, 2013 225

Parameter 4
The address of the in-storage control block describing the compiled
program. An in-storage control block is always supplied.

Parameter 5
Reserved, must be 0.

Parameter 6
The address of the EVALBLOCK control block that is to contain the result.

For EFPL parameter lists, the passed EVALBLOCK control block is used.
For VSE parameter lists, an EVALBLOCK control block with a data length
of 16 bytes is used. This is large enough to hold any expected result. It
holds the result of a COMMAND invocation, which must be numeric and
must fit into a fullword.

Parameter 7
The address of a work area vector or 0. A work area vector address is
never supplied; therefore the value of the parameter is 0.

Parameter 8
The address of a user field or 0. A user field address is never supplied;
therefore the value of the parameter is 0.

Parameter 9
The address of the environment block.

For EFPL parameter lists, the address of the environment block as passed
in register 0 is supplied. Otherwise, no parameter is supplied.

For a complete description of the parameters, refer to IBM VSE/ESA REXX/VSE
Reference.

In-Storage Control Block
The in-storage control block supplied when ARXEXEC is invoked is as follows (the
default values are indicated in parentheses):

ACRONYM
String ’ARXINSTB’.

HDRLEN
Length of the in-storage control block.

ADDRESS
Address of the vector of records. A vector of records containing one
address and length pair is supplied. The address points to the setup code,
and the length is 20; this is the length needed for ARXEXEC to identify the
header.

USEDLEN
Length of the vector of records (8).

MEMBER
Name of the EXEC ('? ').

DDNAME
Name of the member that represents the load data set (' ').

SUBCOM
Name of the initial host command environment (' ').

DSNLEN
Length of the data set name (0).

226 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

DSNAME
Name of the data set (X'00').

If the environment is known (because a program is linked to the EFPL stub), the
environment is passed to ARXEXEC when ARXEXEC is called. Otherwise, a value
of 0 is passed to register 0. ARXEXEC locates the last non-reentrant environment
and uses it when it` executes your program.

Parameter Lists
Each of the following sections contains a figure showing in the upper part the
parameter list that is passed to the stub when the stub is invoked. Register 1 points
to this parameter list. The upper part of the figure also shows the relevant
surrounding structures. The lower part of the figure shows the parameter list that
is passed to ARXEXEC when ARXEXEC is invoked.

The following sections also describe, for each type of parameter list, how to obtain
the return code (to be passed back to register 15) and, for EFPL, the necessary
EVALBLOCK control block processing.

Registers for VSE/ESA Stubs
On entry to the VSE stub, registers are set as follows:
Register 0

Unpredictable
Register 1

Address of the parameter list if the contents of Register 1 and Register 15
are different.

Registers 2-12
Unpredictable

Registers 13
Address of a register save area

Register 14
Return address

Register 15
Unpredictable

On exit from the VSE stub, registers are set as follows:

Registers 0-14
Same as on entry

Register 15
Return code

On entry to the EFPL stub, registers are set as follows:

Register 0
Address of the environment block

Register 1
Address of the parameter list

Registers 2-12
Unpredictable

Register 13
Address of a register save area

Register 14
Return address

Appendix C. Interface for Object Modules (VSE/ESA) 227

Register 15
Entry point address

On exit from the EFPL stub, registers are set as follows:

Registers 0-14
Same as on entry

Register 15
Return code

VSE Parameter List
A VSE parameter list is supplied when a program is invoked from VSE JCL by
means of EXEC program_name.

No parameter list is provided if on entry to the stub register 1 and register 15 are
set to the same value.

The high-order bit of the fullword addressed by register 1 on entry to the stub is
set to 1 if the parameter length is greater than 0, otherwise it is set to 0. The
address pointed to by Register 1 on entry is an AMODE 24 address (the first byte
must be ignored).

A return code of 4095 is passed back in register 15 if either storage could not be
obtained, or ARXEXEC could not be loaded, or ARXEXEC issued a return code
different from 0 (indicating that the program did not complete successfully). If the
return code from ARXEXEC is 0, the value contained in the EVALBLOCK control
block is divided by 4096, and the remainder is passed back in register 15.

EFPL Parameter List
An EFPL parameter list is supplied if, from within an EXEC, either the instruction
CALL program_name is issued or a program is invoked through the function
invocation program_name(). The compiled REXX program is always invoked as a
subroutine, because the information specifying whether the program is to be
invoked as a subroutine or as a command is not accessible.

The address of the environment block is passed in register 0 when the stub is
entered.

Figure 32. VSE Parameter List Mapping

228 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

The required, final EVALBLOCK control-block handling (and the determination of
the return code to pass back in register 15) is:

rc_to_pass_back = 0
If rc_from_arxexec ¬=0 Then

rc_to_pass_back=rc_from_arxexec
Else Do

If evalblock shows truncated result Then Do
invoke arxrlt ’GETBLOCK’
If rc ¬= 0 Then

rc_to_pass_back=rc
Else Do

put new evalblock Address INTO parameter list
invoke arxrlt ’GETRLTE’ With new evalblock
If rc ¬= 0 Then

rc_to_pass_back=rc
End

End
End

If storage could not be obtained, a return code of 100 is passed back in register 15.
In this case, register 0 contains a cancel code of 0. If the return code passed back
from ARXEXEC is either 100 or 104 (which indicates an abend), register 0 contains
the value passed back by ARXEXEC (cancel code).

PARSE SOURCE
For a REXX program compiled into an object module, the source string that can be
obtained by means of the PARSE SOURCE instruction contains the following
tokens:
v The characters VSE
v If the program is linked with the EFPL stub, the string SUBROUTINE; otherwise,

the string COMMAND
v A question mark (?) to indicate that the name of the EXEC is not known

Figure 33. EFPL Parameter List Mapping

Appendix C. Interface for Object Modules (VSE/ESA) 229

v A question mark (?) to indicate that the name of the DD statement from which
the EXEC was loaded is not known

v A question mark (?) to indicate that the name of the file from which the EXEC
was loaded is not known

v A question mark (?) to indicate that the name of the file as it was passed to the
language processor (that is, the name is not translated to uppercase) is not
known

v The initial host command environment in uppercase
v The name of the address space in uppercase
v An 8-character user token

230 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Appendix D. The z/OS Cataloged Procedures Supplied by IBM

You can compile a REXX program in a z/OS batch environment by using a
cataloged procedure that is invoked by an EXEC statement in your job.

Note: Your system administrator may have customized the cataloged procedures
on your system.

The following cataloged procedures are supplied by IBM:
v “REXXC (FANCMC)”—supplied with the Compiler
v “REXXCG (FANCMCG)” on page 232—supplied with the Compiler
v “REXXCL (FANCMCL)” on page 233—supplied with the Compiler
v “REXXCLG (FANCMCLG)” on page 235—supplied with the Compiler
v “REXXOEC (FANCMOEC)” on page 236—supplied with the Compiler
v “REXXL (EAGL)” on page 238—supplied with the Library
v “MVS2OE (Only Hardcopy Sample)” on page 239

REXXC (FANCMC)
REXXC compiles a REXX program. FANCMC is located in the data set
prefix.SFANPRC.
//**
//*
//* REXXC Compile a REXX program.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF OBJECT
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG) and to keep the resulting
//* CEXEC output and OBJECT output in MYREXX.CEXEC(MYPROG) and
//* MYREXX.OBJ(MYPROG), respectively, use the following
//* invocation:
//*
//* //S1 EXEC REXXC
//* //REXX.SYSCEXEC DD DSN=MYREXX.CEXEC(MYPROG),DISP=SHR
//* //REXX.SYSPUNCH DD DSN=MYREXX.OBJ(MYPROG),DISP=SHR
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//*

© Copyright IBM Corp. 1991, 2013 231

//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXC PROC OPTIONS=’XREF OBJECT’, REXX Compiler options
// COMPDSN=’#HLQREXX.SFANLMD’ REXX Compiler load lib
//*
//*---
//* Compile REXX program.
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM=’&OPTIONS’
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100,1))
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))

REXXCG (FANCMCG)
REXXCG compiles and runs a REXX program of type CEXEC. FANCMCG is
located in the data set prefix.SFANPRC.
//**
//*
//* REXXCG Compile and run a REXX program of CEXEC type.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* LIBLPA DSN of IBM REXX Library LPA library.
//* If &LIBLPA is in the search order, you may deactivate
//* the GO.STEPLIB and the PROC LIBLPA definition.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled and run.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG), to keep the resulting CEXEC
//* output in MYREXX.CEXEC(MYPROG), and to run this compiled
//* program, passing the string MYPARM as parameter for this run,
//* use the following invocation (note that the first token in the
//* PARM of the GO step specifies the name of the program):
//*
//* //S1 EXEC REXXCG,PARM.GO=’MYPROG MYPARM’
//* //REXX.SYSCEXEC DD DSN=MYREXX.CEXEC(MYPROG),DISP=SHR

232 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //GO.SYSEXEC DD DSN=MYREXX.CEXEC,DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXCG PROC OPTIONS=’XREF’, REXX Compiler options
// COMPDSN=’#HLQREXX.SFANLMD’, REXX Compiler load lib
// LIBLPA=’#HLQREXX.SEAGLPA’ REXX Library LPA lib
//*
//*---
//* Compile REXX program.
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM=’&OPTIONS’
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100,1))
//SYSPUNCH DD DUMMY
//*
//*---
//* Run the compiled REXX program.
//*---
//GO EXEC PGM=IRXJCL,PARM=’GO’,
// COND=(9,LT,REXX)
//*
//STEPLIB DD DSN=&LIBLPA,DISP=SHR
//SYSEXEC DD DSN=&&CEXEC,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=*

REXXCL (FANCMCL)
REXXCL compiles and link-edits a REXX program of type OBJECT. FANCMCL is
located in the data set prefix.SFANPRC.
//**
//*
//* REXXCL Compile and link edit a REXX program of OBJ type.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* STUB Stub type: MVS, CPPL, CALLCMD, EFPL, CPPLEFPL,
//* MULTI
//* Default: EFPL.
//*
//* OPTIONS Compilation options.
//* Default: XREF OBJECT NOCEXEC
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* LIBDSN DSN of IBM REXX Library load library for Stubs.

Appendix D. The z/OS Cataloged Procedures Supplied by IBM 233

//*
//* LIBXDSN DSN of IBM REXX Library exec library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled and link
//* edited.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG) and to link edit the resulting
//* OBJECT output together with a stub suitable for invocation
//* of the program from a REXX EXEC with the CALL instruction or
//* via function invocation, and to keep the resulting load module
//* in MYREXX.LOAD(MYPROG), use the following invocation:
//*
//* //S1 EXEC REXXCL
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXCL PROC STUB=EFPL, Type of stub
// OPTIONS=’XREF OBJECT NOCEXEC’, REXX Compiler options
// COMPDSN=’#HLQREXX.SFANLMD’, REXX Compiler load lib
// LIBDSN=’#HLQREXX.SEAGLMD’, REXX Library stub load
// LIBXDSN=’#HLQREXX.SEAGCMD’ REXX Library exec lib
//*
//*---
//* Compile REXX program.
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM=’&OPTIONS’
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//*SYSCEXEC DD DUMMY
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))
//*
//*---
//* Prepare SYSLIN data set for subsequent link step.
//*---
//*
//PLKED EXEC PGM=IRXJCL,PARM=’REXXL &STUB’,
// COND=(9,LT,REXX)
//*
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=*
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(800,(800,100))
//*
//*---
//* Link together stub and program.
//*---
//*
//LKED EXEC PGM=HEWL,PARM=’LIST,AMODE=31,RMODE=ANY,RENT,MAP’,
// COND=((9,LT,REXX),(0,NE,PLKED))
//*

234 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

REXXCLG (FANCMCLG)
REXXCLG compiles, link-edits, and runs a REXX program of type OBJECT.
FANCMCLG is located in the data set prefix.SFANPRC.
//**
//*
//* REXXCLG Compile, link edit, and run a REXX program of OBJ type.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF OBJECT NOCEXEC
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* LIBDSN DSN of IBM REXX Library load library for Stubs.
//*
//* LIBLPA DSN of IBM REXX Library LPA library.
//* If &LIBLPA is in the search order, you may deactivate
//* the GO.STEPLIB and the PROC LIBLPA definition.
//*
//* LIBXDSN DSN of IBM REXX Library exec library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled, link edited,
//* and run.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG), to link edit the resulting
//* OBJECT output together with a stub suitable for invocation
//* in MVS batch, to keep the resulting load module in
//* MYREXX.LOAD(MYPROG), and to run this load module, use the
//* following invocation:
//*
//* //S1 EXEC REXXCLG
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXCLG PROC STUB=MVS, Type of stub
// OPTIONS=’XREF OBJECT NOCEXEC’, REXX Compiler options
// COMPDSN=’#HLQREXX.SFANLMD’, REXX Compiler load lib
// LIBDSN=’#HLQREXX.SEAGLMD’, REXX Library stub load

Appendix D. The z/OS Cataloged Procedures Supplied by IBM 235

// LIBLPA=’#HLQREXX.SEAGLPA’, REXX Library LPA lib
// LIBXDSN=’#HLQREXX.SEAGCMD’ REXX Library exec lib
//*
//*---
//* Compile REXX program.
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM=’&OPTIONS’
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//*SYSCEXEC DD DUMMY
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))
//*
//*---
//* Prepare SYSLIN data set for subsequent link step.
//*---
//*
//PLKED EXEC PGM=IRXJCL,PARM=’REXXL &STUB’,
// COND=(9,LT,REXX)
//*
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=*
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(800,(800,100))
//*
//*---
//* Link together stub and program.
//*---
//*
//LKED EXEC PGM=HEWL,PARM=’LIST,AMODE=31,RMODE=ANY,RENT,MAP’,
// COND=((9,LT,REXX),(0,NE,PLKED))
//*
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//*
//*---
//* Run the compiled REXX program.
//*---
//*
//GO EXEC PGM=*.LKED.SYSLMOD,
// COND=((9,LT,REXX),(0,NE,PLKED),(0,NE,LKED))
//*
//STEPLIB DD DSN=&LIBLPA,DISP=SHR
//SYSTSPRT DD SYSOUT=*

REXXOEC (FANCMOEC)
REXXOEC compiles source programs into CEXECs to run under MVS
OpenEdition. FANCMOEC is located in the data set prefix.SFANPRC.
//**
//*
//* REXXOEC Compile a REXX program for OpenEdition MVS
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003

236 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG) and to keep the resulting
//* CEXEC output in ’/vienna/myprog’ and the listing in
//* ’/vienna/myprogl’ use the following invocation:
//*
//* //STEP1 EXEC REXXOEC
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //REXX.SYSPRINT DD DSN=&&LIST,DISP=(NEW,PASS),UNIT=SYSDA
//* //OCOPY.OUT DD PATH=’/vienna/myprog’,PATHDISP=(KEEP,DELETE),
//* // PATHOPTS=(ORDWR,OCREAT),PATHMODE=(SIRUSR,SIWUSR)
//* //OCOPY.IN2 DD DSN=&&LIST,DISP=(OLD,DELETE)
//* //OCOPY.OUT2 DD PATH=’/vienna/myprogl’,PATHDISP=(KEEP,DELETE),
//* // PATHOPTS=(ORDWR,OCREAT),PATHMODE=(SIRUSR,SIWUSR)
//* //OCOPY.SYSTSIN DD *
//* OCOPY INDD(IN) OUTDD(OUT) BINARY
//* OCOPY INDD(IN2) OUTDD(OUT2)
//* /*
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXOEC PROC OPTIONS=’XREF’, REXX Compiler options
// COMPDSN=’#HLQREXX.SFANLMD’ REXX Compiler load lib
//*
//*---
//* Compile REXX program
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM=’&OPTIONS’
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))
//OCOPY EXEC PGM=IKJEFT01,
// COND=(9,LT,REXX)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//IN DD DSN=&&CEXEC,DISP=(OLD,DELETE)
//OUT DD DUMMY

Appendix D. The z/OS Cataloged Procedures Supplied by IBM 237

REXXL (EAGL)
REXXL link-edits a REXX program of type OBJECT. EAGL is located in the data set
prefix.SEAGPRC. “Link-Editing of Object Modules” on page 207 describes the
following code.
//**
//*
//* REXXL Link edit a REXX program of OBJ type.
//*
//* Licensed Materials - Property of IBM
//* 5695-014 IBM REXX Library
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* STUB Stub type: MVS, CPPL, CALLCMD, EFPL, CPPLEFPL.
//* Default: EFPL.
//*
//* LIBDSN DSN of IBM REXX Library load library for Stubs.
//*
//* LIBXDSN DSN of IBM REXX Library exec library.
//*
//* Required:
//*
//* PLKED.SYSIN DDNAME, REXX program of OBJ type to be link
//* edited.
//*
//* Example:
//*
//* To link MYREXX.OBJ(MYPROG), a compiled REXX program of OBJECT
//* type, together with a stub suitable for invocation in MVS
//* batch, and to place the resulting load module in
//* MYREXX.LOAD(MYPROG), use the following invocation:
//*
//* //S1 EXEC REXXL,STUB=MVS
//* //PLKED.SYSIN DD DSN=MYREXX.OBJ(MYPROG),DISP=SHR
//* //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXL PROC STUB=EFPL, Type of stub
// LIBDSN=’#HLQREXX.SEAGLMD’, REXX Library stub load
// LIBXDSN=’#HLQREXX.SEAGCMD’ REXX Library exec lib
//*
//*---
//* Prepare SYSLIN data set for subsequent link step.
//*---
//*
//PLKED EXEC PGM=IRXJCL,PARM=’REXXL &STUB’
//*
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(800,(800,100))
//*
//*---

238 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

//* Link together stub and program.
//*---
//*
//LKED EXEC PGM=HEWL,PARM=’LIST,AMODE=31,RMODE=ANY,RENT,MAP’,
// COND=(0,NE,PLKED)
//*
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

MVS2OE (Only Hardcopy Sample)
The following REXX program is a simple example of an interactive procedure for
copying a sequential data set, such as a CEXEC (compiled EXEC) to OpenEdition.
This example is provided in hardcopy only.
/* ------------------------------ REXX ------------------------------ */
/* MVS2OE */
/* Copy a z/OS data set to OpenEdition */
/* */
/* MVS2OE: This EXEC will copy a sequential data set or a member in */
/* a library to OpenEdition (OE). It will run in a TSO environment. */
/* You may find it helpful when you copy a compiled REXX program */
/* to OE for execution there. However, it has intentionally been */
/* kept simple but you can adapt it to your own purposes. You can */
/* improve plausibility checking, for example by using the sysdsn() */
/* function to see if the data set to be copied exists and is */
/* available. You can read in the DSNAME from the invocation line */
/* (with ARG or PARSE ARG) and only prompt the user if no arguments */
/* have been given. For your convenience, debugging routines for */
/* NOVALUE and SYNTAX have been included in case you do want to
/* modify this program. */
/* */
/* This exec uses 3 values: 1) the DSNAME of the sequential data set */
/* to be written, 2) the path name under OE to be written to, 3) an */
/* indication if the data set is binary (for example, a load module */
/* or compiled exec, a CEXEC). These values are saved at the end of */
/* this exec, the saved values are retrieved at the start of this */
/* exec. */
/* */
/* This exec is invoked by: */
/* EXEC lib(MVS2OE) */
/* from the TSO prompt, usually selection 6 from the ISPF primary */
/* option menu, where ’lib’ is the name of the library containing */
/* this exec. If the name of the library does not start with the */
/* prefix specified in your profile, you must enclose lib(MVS2OE) */
/* within single quotes. This exec does not expect any arguments */
/* from the invocation line. */
/**/

signal on novalue; signal on syntax

/* try to retrieve previous values */
address ISPEXEC "VGET (OEDSN,OEPATH,OEBIN)"
if (rc = 0) then do /* vget o.k., confirm values */

say ’MVS data set name’; oedsn = check(oedsn)
say ’OE path name’; oepath = check(oepath, ’lower’)
say ’Binary file (Y or N)’; oebin = check(oebin)

end
else do /* vget not o.k., read in values */

say ’please key in the complete DSNAME with High Level Qualifier’
pull oedsn
say ’please key in the OE path’

Appendix D. The z/OS Cataloged Procedures Supplied by IBM 239

parse pull oepath
say ’is it an executable (binary) program (Y or N)?’
pull oebin

end

say ’Abort run? "Y" aborts, anything else performs copy’
say ’from’ oedsn ’to’ oepath
pull answer
if (answer = ’Y’) then exit

if (oebin = ’Y’) then DO /* set up some of the file’s OE attributes */
mode = ’SIXUSR’
bin = ’BINARY’

end
else do

mode = ’’
bin = ’TEXT’

end

msg_status = msg(’OFF’) /* suppress msgs from FREE etc. */
"FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
"FREE DDNAME(OEOUT)"
msg_status = msg(msg_status) /* restore to previous value */

"ALLOC DDNAME(OEIN) DSN(’"oedsn"’) SHR"
"ALLOC DDNAME(OEOUT) PATH(’"oepath"’) PATHDISP(KEEP KEEP)" ,

"PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"

"OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
if (rc <> 0) then say ’RC from OCOPY=’ rc /* check return code */
"FREE DDNAME(OEIN)"
"FREE DDNAME(OEOUT)"

/* save values for next invocation */
address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
exit 0 /* leave this exec */

/* subprogram to request user to confirm or overwrite a value */
/* -- */
check:
say ’Use <ENTER> to use’ arg(1) ’or key in new value’
if (arg(2) = ’lower’) then do

parse pull answer /* keep case as typed in */
end
else do

parse upper pull answer /* uppercase input */
end
if (answer = ’’) then return arg(1); else return answer

/* Debugging routines for NOVALUE and SYNTAX */
/* --- */
novalue: say ’ ’
say ’ Novalue condition from line’ sigl
say sourceline(sigl)
say ’ variable:’ condition(’D’); trace ?r; nop; exit

syntax: say ’ ’
say ’ Syntax error no.’ rc ’from line’ sigl
say ’ ’errortext(rc)
say sourceline(sigl)
say ’ description:’condition(’D’); trace ?r ; nop

240 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Appendix E. The VSE/ESA Cataloged Procedures Supplied by
IBM

This appendix contains the following cataloged procedures supplied by IBM:
v “REXXPLNK”
v “REXXLINK” on page 242
v “REXXL” on page 243

REXXPLNK
For more information about the REXXPLNK format refer to “REXXPLNK
Cataloged Procedure (VSE/ESA)” on page 78.
// PROC STUBLIB=’PRD1.BASE’,STUBNAM=’EFPL’
GOTO SKIPCOM
* **
*
* REXXPLNK Combine a program of OBJ type with the appropriate stub.
*
* Licensed Materials - Property of IBM
* 5695-014 IBM REXX Library
* (C) Copyright IBM Corp. 1989, 2003
*
* Change Activity:
* 03-05-28 Release 4.0
*
* **
*
* Parameters:
*
* STUBLIB is the name of the sublibrary where the stub resides.
* Default: PRD1.BASE
*
* STUBNAM is the member name of the stub residing in STUBLIB
* or one of the predefined stub names: VSE, EFPL.
* Default: EFPL
*
* INLIB is the name of the sublibrary where the input object
* module resides.
*
* INNAME is the member name of the input object module
* residing in INLIB.
*
* OUTLIB is the name of the sublibrary where the output object
* module will be stored.
*
* OUTNAME is the member name of the output object module that
* will be stored in OUTLIB.
*
*
* Example:
*
* To combine the program MYAPPL.OBJ residing in the sublibrary
* MYLIB.TEST with the EFPL stub, which is appropriate if the
* program will be invoked as a REXX external routine, and to
* store the resulting object module under the name CMYAPPL.OBJ
* residing in the sublibrary MYLIB.TEST, use the following
* invocation:
*
* // EXEC PROC=REXXPLNK,INLIB=’MYLIB.TEST’,INNAME=MYAPPL,

© Copyright IBM Corp. 1991, 2013 241

* OUTLIB=’MYLIB.TEST’,OUTNAME=CMYAPPL
*
* **
*
/. SKIPCOM
// EXEC REXX=REXXL,PARM=’&STUBLIB &STUBNAM &INLIB &INNAME &OUTLIB &OUTNC

AME’
/+

REXXLINK
For more information about the REXXLINK format refer to “REXXLINK Cataloged
Procedure (VSE/ESA)” on page 79.
// PROC STUBLIB=’PRD1.BASE’,STUBNAM=’EFPL’,PHASNAM=’’
GOTO SKIPCOM
* **
*
* REXXLINK Link-edit a program of OBJ type and catalog the resulting
* phase in a VSE/ESA library.
*
* Licensed Materials - Property of IBM
* 5695-014 IBM REXX Library
* (C) Copyright IBM Corp. 1989, 2003
*
* Change Activity:
* 03-05-28 Release 4.0
*
* **
*
* Parameters:
*
* STUBLIB is the name of the sublibrary where the stub resides.
* Default: PRD1.BASE
*
* STUBNAM is the member name of the stub residing in STUBLIB
* or one of the predefined stub names: VSE, EFPL.
* Default: EFPL
*
* INLIB is the name of the sublibrary where the input object
* module resides.
*
* INNAME is the member name of the input object module
* residing in INLIB.
*
* OUTLIB is the name of the sublibrary where the output object
* module will be stored.
*
* OUTNAME is the member name of the output object module that
* will be stored in OUTLIB.
*
* PHASNAM is the member name of the phase that will be
* cataloged in the sublibrary specified by a
* LIBDEF PHASE,CATALOG=lib.sublib statement.
* Default: OUTNAME
*
*
* Example:
*
* To link-edit the program MYAPPL.OBJ residing in the sublibrary
* MYLIB.TEST with the VSE stub, which is appropriate if the program
* will be invoked as a VSE program, and to catalog the resulting
* phase under the name MYAPPL.PHASE in the sublibrary MYLIB.TEST,
* you have to specify as well the name of the resulting object
* module serving as input for the linkage editor: for example
* CMYAPPL.OBJ in the sublibrary MYLIB.TEST.
* To perform this task use the following invocation:

242 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

*
* // LIBDEF PHASE,CATALOG=MYLIB.TEST
* // EXEC PROC=REXXLINK,STUBNAM=VSE,INLIB=’MYLIB.TEST’,INNAME=MYAPPL,
* OUTLIB=’MYLIB.TEST’,OUTNAME=CMYAPPL,PHASNAM=MYAPPL
*
* **
*
/. SKIPCOM
IF PHASNAM=’’ THEN
// SETPARM PHASNAM=&OUTNAME
// EXEC REXX=REXXL,PARM=’&STUBLIB &STUBNAM &INLIB &INNAME &OUTLIB &OUTNC

AME’
IF $RC NE 0 THEN
GOTO $EOJ
// LIBDEF OBJ,SEARCH=&OUTLIB
// OPTION CATAL

PHASE &PHASNAM,*,SVA
INCLUDE &OUTNAME

// EXEC LNKEDT
/+

REXXL
For more information about the REXXL format refer to “REXXL Cataloged
Procedure (VSE/ESA)” on page 80.
/*REXX **
*
* REXXL - Combine a stub with the input object module and build an
* object module which serves as input for the linkage editor.
*
* Licensed Materials - Property of IBM
* 5695-014 IBM REXX Library
* (C) Copyright IBM Corp. 1989, 2003
*
* Change Activity:
* 03-05-28 Release 4.0
*
**/
/**
* Syntax:
*
* // EXEC REXX=REXXL,PARM=’stublib stubnam inlib inname outlib outname’
* or
* Call rexxl ’stublib stubnam inlib inname outlib outname’
*
* where:
* stublib Is the name of the sublibrary where the stub resides in the
* form lib.sublib.
*
* stubnam Is the member name of the stub residing in stublib in the
* form mn. Member type is always OBJ. You can also use one of
* the predefined stub names:
* VSE The program will be invoked by VSE JCL as a program.
* EFPL The program will be invoked as a REXX external
* routine.
*
* inlib Is the name of the sublibrary where the input object module
* resides in the form lib.sublib.
*
* inname Is the member name of the input object module residing in
* inlib in the form mn. Member type is always OBJ.
*
* outlib Is the name of the sublibrary where the output object
* module will be stored in the form lib.sublib.
*
* outname Is the member name of the output object module that will be

Appendix E. The VSE/ESA Cataloged Procedures Supplied by IBM 243

* stored in outlib in the form mn. Member type is always OBJ.
*
* Semant:
*
* The REXXL EXEC builds as output an object module that contains the
* stub combined with the input object module. The resulting object
* module can be link-edited with other object modules to create a
* phase.
*
**/

/*
** Initialize all global variables, catch variables used before set,
** catch syntax errors and handle Attention / HI
*/

Signal On Novalue
Signal On Syntax
Signal On Halt
g. = ’’

/*
** Customization Section:
**
** stubmembs Member names of predefined stubs.
** stubnames Name under which the stub is known to REXXL,
** i.e. the stub name passed as argument to REXXL.
*/

stubmembs=’EAGSDVSE EAGSDEFP’
stubnames=’VSE EFPL’

/*
** Messages issued by this procedure
*/

g.0m.1 = ’Unexpected rc=&1 from "&2"’
g.0m.3 = ’One or more parameters missing’
g.0m.4 = ’Extraneous parameters "&1"’
g.0m.7 = ’The &1 "&2" specified for parameter &3 is longer than’!!,
’ 8 characters’
g.0m.8 = ’No sublibrary specified for parameter &1: "&2"’
g.0m.9 = ’The &1 "&2" specified for parameter &3 is longer than 7’!!,
’ characters’
g.0m.11 = ’The &1 "&2" specified for parameter &3 consists of’!!,
’ non-alphanumeric characters’
g.0m.12 = ’The first character of the library name "&1" specified’!!,
’ for parameter &2 is not alphabetic’
g.0m.13 = ’Invoke REXXL in the following format:’
g.0m.14 = "// EXEC REXX=REXXL,PARM=’stublib stubnam inlib inname"!!,
" outlib outname’ or"
g.0m.15 = "CALL REXXL ’stublib stubnam inlib inname outlib outname’"

/*
** Get the arguments and give help if necessary.
** If a predefined stubname is used, assign the appropriate member name
** to the variable stubnam.
*/

Parse Upper Arg stublib stubnam inlib inname outlib outname rest
If (stublib = ’’) ! (outname = ’’) Then Do

Call msg 3
Call msg 13
Call msg 14
Call msg 15
Exit 20
End

244 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

ind = Wordpos(stubnam,stubnames)
If ind > 0 Then

stubnam = Word(stubmembs,ind)

/*
** Check the arguments.
** If errors occurred, issue a message and exit with rc=20.
*/

message_written = ’no’
If rest <> ’’ Then

Call msg 4,rest
Call testsyn ’STUB’,stublib,stubnam
Call testsyn ’IN’,inlib,inname
Call testsyn ’OUT’,outlib,outname
If message_written = ’yes’ Then

Exit 20

/*
** Set the full names for the members stubnam, inname and outname
** in the variables stub, input and output.
*/

stub = stublib’.’stubnam’.OBJ’
input = inlib’.’inname’.OBJ’
output = outlib’.’outname’.OBJ’

/*
** Read from stub and input.
** Some variables are set:
** inline1 will contain the contents of the stub in object module form
** inline2 will contain the contents of the input object module
*/

cmd = ’EXECIO * DISKR’ stub ’(STEM INLINE1. FINIS’
Call excmd cmd
cmd = ’EXECIO * DISKR’ input ’(STEM INLINE2. FINIS’
Call excmd cmd

/*
** Prepare the input for the linkage editor in the variable inline1:
** Get the csect name, that is the name of the object module in the ESD
** record. For the stub and the input object module make the following
** changes: Change the external name of the stub to the csect name, and
** the name of the compiled REXX program to a temporary name, which is
** the csect name, prefixed with a ’$’ sign, and turncated to eight
** characters. Append the contents of the input object module to the
** variable inline1.
** Finally the variable inline1 contains the stub combined with the
** compiled REXX program, ready to be link-edited.
*/

csect = Substr(inline2.1,17,8)
unin=’$’Left(csect,7)
inline1.1 = Left(inline1.1,16)!!csect!!Substr(inline1.1,25,8)!!,

unin!!Right(inline1.1,40)
index = inline1.0 + 1
inline1.index = Left(inline2.1,16)!!unin!!Substr(inline2.1,25)
Do i = 2 To inline2.0

index = index + 1
inline1.index = inline2.i
End

/*
** Write the input for the linkage editor to the member outname
** and exit with rc=0, if no errors occurred.
*/

Appendix E. The VSE/ESA Cataloged Procedures Supplied by IBM 245

cmd = ’EXECIO’ index ’DISKW’ output ’(STEM INLINE1. FINIS’
Call excmd cmd
Exit 0

excmd:Procedure Expose g. inline1. inline2.
/*
** Execute an EXECIO command
** and exit with rc=12, if an error occurred.
** arg: the EXECIO command
** set: message_written to ’yes’, if an error occurred
** ref: inline1 contains data that are read or are written
** inline2 contains data that are read
** out: result of the executed command
*/

Arg cmd
cmd
cmdrc = rc
If cmdrc <> 0 Then Do

Call msg 1,cmdrc,cmd
Exit 12
End

Return

testsyn:Procedure Expose g. message_written
/*
** Test the syntax of the arguments.
** arg: the type of the argument; it can be STUB, IN or OUT
** the library name in the form lib.sublib
** the member name
** set: message_written to ’yes’, if an error occurred
*/

Arg type,lib,mn
Parse Var lib lib ’.’ sublib

/*
** Test the library name: 1-7 characters, alphanumeric, the first
** character has to be alphabetic.
*/

If Length(lib) > 7 Then
Call msg 9,’library name’,lib,type’LIB’

If Datatype(lib,’A’) <> 1 Then
Call msg 11,’library name’,lib,type’LIB’

If Datatype(Left(lib,1),’U’) <> 1 Then
Call msg 12,lib,type’LIB’

/*
** Test the sublibrary name: 1-8 characters, alphanumeric.
** Test it only if lib is specified.
*/

If sublib = ’’ Then
Call msg 8,type’LIB’,lib

Else Do
If Length(sublib) > 8 Then

Call msg 7,’sublibrary name’,sublib,type’LIB’
If Datatype(sublib,’A’) <> 1 Then

Call msg 11,’sublibrary name’,sublib,type’LIB’
End

/*
** Test the member name: 1-8, alphanumeric.
*/

246 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

If Length(mn) > 8 Then
Call msg 7,’member name’,mn,Left(type’NAME’,7)

If Datatype(mn,’A’) <> 1 Then
Call msg 11,’member name’,mn,Left(type’NAME’,7)

Return

msg:Procedure Expose g. message_written
/*
** Issue a message (after substituting the inserts).
** arg: the message number
** the message inserts
** set: message_written is set to ’yes’
** out: display the message with inserts on the terminal
*/

Parse Arg msgnum,i1,i2,i3
msgtxt = g.0m.msgnum
Do ii = 1 To 3

mi = ’&’ii
If Pos(mi,msgtxt) > 0 Then Do

Parse Var msgtxt ma (mi) mb
msgtxt = ma!!Value(’I’ii)!!mb
End

End
Say msgtxt
message_written = ’yes’
Return

halt:
/*
** HALT condition was raised.
** arg: none
** out: display message
*/

Say ’REXXL has been halted’
Exit 20

syntax:
/*
** SYNTAX condition was raised.
** arg: none
** out: display invalid line
*/

zsigl = sigl
Say ’Syntax error’ rc ’at line’ zsigl’:’ Errortext(rc)
If Sourceline() <> 0 Then

Say ’Line’ zsigl’:’ Sourceline(zsigl)
Exit 20

novalue:
/*
** NOVALUE condition was raised, undefined variable referenced.
** arg: none
** out: display invalid line
*/

zsigl = sigl
Say ’Undefined variable referenced:’ Condition(’D’)
If Sourceline() <> 0 Then

Say ’Line’ zsigl’:’ Sourceline(zsigl)
Exit 20

Appendix E. The VSE/ESA Cataloged Procedures Supplied by IBM 247

248 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Appendix F. Interlanguage Job Samples

This appendix contains interlanguage job samples that show how to call a REXX
exec from within another program written in a different programming language,
such as Assembler, C, Cobol, or PL/I under z/OS. It provides sample jobs that
show how to pass parameters back and forth between REXX programs and an
Assembler, C, Cobol, or PL/I program.

You must use the IRXJCL and IRXEXEC interfaces to call the REXX program from
an Assembler, C, Cobol, or PL/I program. These interfaces are available in any
address space and are applicable to interpreted and compiled REXX execs.

Note: Under z/OS these samples are located in the data set prefix.SEAGSAM.

The following jobs show the use of interpreted programs. Each job consists of:
v A step which copies the REXX exec as a member into a temporary partitioned

data set.
v An invocation of a cataloged procedure to compile, link, and execute the

Assembler, C, Cobol, or PL/I program for calling the REXX exec. The execute
step is assigned additional DD statements that are required by the REXX exec.

The IRXJCL interface is easier to use, but it is not as flexible as the IRXEXEC
interface. If you use the IRXJCL:
v You can only set the parameters to call IRXJCL.
v You can only pass one argument string to the REXX program, however, this

string can contain any number of tokens or words.
v The REXX exec can only return a numeric return code, limited to a maximum

number of 4095 (decimal).

If you use the IRXEXEC interface:
v You must set up the EXEC block. the evaluation block, and the arguments to

IRXEXEC. The EXEC block is a control block that describes the REXX exec to be
loaded.

v You can use multiple argument strings. Each argument string can consist of
multiple tokens or words.

v The REXX exec can return to its caller, by using the RETURN or EXIT clause,
which is a variable length character string that consists of any number of tokens
or words. This character string and its length is returned in a control block
called the evaluation block.

Note: In the following example the character string is restricted to a maximum
length of 256 bytes.

For more information on IRXJCL and IRXEXEC routines, and the control blocks
used in the examples, refer to z/OS TSO/E REXX Reference.

Calling REXX from Assembler
The following samples show how to call a REXX exec from an Assembler program
under z/OS.

© Copyright IBM Corp. 1991, 2013 249

EAGGJASM for Calling IRXJCL
This is the EAGGJASM sample for calling IRXJCL from an Assembler program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from ASSEMBLER
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXJCL from an Assembler program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The ARGUMENT for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - This simple REXX EXEC is called by an Assembler */
Parse source src
Arg n

Say ’I am’ src
Say ’Received parm:’ n
If n=’’ Then n=1
Do i=1 TO n

Say ’Hello World the’ i’. time ...’
End

Return n /* Set Return Code to n */
$$
//*---*
//*
//* Compile, link and execute an Assembler program.
//* The cataloged procedure below is for HLASM.
//*
//*---*
//ASMACLG EXEC ASMACLG
//C.SYSIN DD *

* Invoke REXX procedure HELLO with TSO IRXJCL
* HELLO is to be called with number 3 as a parameter

ASMPROG CSECT
* RMODE 24 is because the DCB must be below 16M
ASMPROG RMODE 24
ASMPROG AMODE 31

SPACE 1

250 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

* Standard starting (housholding) sequence

SAVE (14,12)
BASR 11,0 establish ...
USING *,11 ...addressability
ST 13,SA+4 chain...
LR 12,13 ...the...
LA 13,SA ...save...
ST 13,8(12) ...areas

SPACE 1

* Put out starting message

OPEN (ASMOUT,(OUTPUT))
PUT ASMOUT,MESSAGE1

SPACE 1

* Set up input parameters, in our case: HELLO 3

LA 3,L’ARGUMENT get length of argument...
STH 3,ARGLEN ...bring to halfword

SPACE 1

* Invoke IRXJCL

LINK EP=IRXJCL,PARAM=ARGLEN
LR 5,15 save return code for later

SPACE 1

* Print out the returncode

CVD 5,DWORD start editing return code
ED DIGITS,DWORD+4 last 7 digits from return code
PUT ASMOUT,MESSAGE2
CLOSE (ASMOUT)

SPACE 1

* Standard exiting sequence

L 13,SA+4
LR 15,5 return code to reg 15 again
RETURN (14,12),RC=(15)

SPACE 1

* Definiton area.

DS 0F align on fullword
ARGLEN DC H’0’ length of exec name+argument...

* You may try different arguments for REXX -------------------*

ARGUMENT DC C’HELLO 3’ ... string for REXX

SPACE 1
DWORD DC D’0’ doubleword scratch area

SPACE 1
MESSAGE1 DC CL40’Starting Assembler prog’

SPACE 1
MESSAGE2 DC CL40’ ’

ORG MESSAGE2 redefine the message SPACE 1
DC C’Return code from REXX =’

* stencil for ED instruction to print out a numeric value
DIGITS DC X’4020202020202120’

DC C’ (dec.)’
ORG , return to high water (address) mark

SPACE 1
SA DC 18F’0’ save area

Appendix F. Interlanguage Job Samples 251

SPACE 1
ASMOUT DCB DDNAME=ASMOUT,RECFM=FB,LRECL=40,MACRF=PM,DSORG=PS

END
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//G.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//G.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//G.SYSTSPRT DD SYSOUT=*
//*---*
//* Next DD is for the Assembler program’s output
//*---*
//G.ASMOUT DD SYSOUT=*
//*---*
//

EAGGXASM for Calling IRXEXEC
This is the EAGGXASM sample for calling IRXEXEC from an Assembler program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from ASSEMBLER
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXEXEC from an Assembler program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The ARGUMENT for the REXX procedure
//* may be taylored for your needs.
//* The use of IRXEXEC is more complex than the use of IRXJCL.
//* Refer to the TSO guide SC28-1883 for using these services.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - This simple REXX EXEC is called by an Assembler */
Parse source src
Arg n

252 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Say ’I am’ src
Say ’Received parm:’ n
If n=’’ Then n=1
Do i=1 TO n

Say ’Hello World the’ i’. time ...’
End

Return n /* Set Return Code to n */
$$
//*---*
//*
//* Compile, link and execute an Assembler program.
//* The cataloged procedure below is for HLASM.
//*
//*---*
//ASMACLG EXEC ASMACLG
//C.SYSIN DD *

SPACE 1

* Invoke REXX procedure HELLO with parameter 3 using IRXEXEC.
* Note that use is made of two mapping macros, so not all the
* symbolic addresses used here are defined in this source. You
* should assemble this program for clarity.
* Procedure HELLO is to be called with number 3 as a parameter

ASMPROG CSECT
* RMODE 24 is because the DCB must be below 16M
ASMPROG RMODE 24
ASMPROG AMODE 31

SPACE 1

* Standard starting (housholding) sequence

SAVE (14,12)
BASR 11,0 establish ...
USING *,11 ...addressability
ST 13,SA+4 chain...
LR 12,13 ...the...
LA 13,SA ...save...
ST 13,8(12) ...areas

SPACE 1

* Put out starting message

OPEN (ASMOUT,(OUTPUT))
PUT ASMOUT,MESSAGE1

SPACE 1

* Mainline section
* Set up input parameters and call IRXEXEC,
* Print out the return code from REXX exec

* Make EXECBLOCK addressable, fill in fields
* The setup here is for calling member HELLO.
* You may use either a member name or a DD name
* Be careful when modifying EXECBLOCK

LA 4,EXECBLK# point to storage
USING EXECBLK,4
MVC EXEC_BLK_ACRYN,EXECB_ID move acronym (identifier)
LA 5,EXECBLEN length of block in bytes...
ST 5,EXEC_BLK_LENGTH ...to length field
MVC EXEC_MEMBER,=CL8’HELLO’ exec (member) name
MVC EXEC_DDNAME,=CL8’ ’ blank out ddname
MVC EXEC_SUBCOM,=CL8’ ’ blank out subcom field
SR 5,5 clear to zeroes, bring to...
ST 5,EXEC_BLK_LENGTH+4 ...reserved field
ST 5,EXEC_DSNPTR ...pointer to DSN

Appendix F. Interlanguage Job Samples 253

ST 5,EXEC_DSNLEN ...length of DSN field
DROP 4 do not need base reg any more

SPACE 1

* EVALBLOCK already addressable, fill in fields

ST 5,EVALBLOCK_EVPAD1 reg5 is still zero, bring...
ST 5,EVALBLOCK_EVPAD2 ...zeros to padding fields
LA 5,EVALBLEN length of block in bytes...
SRA 5,3 ...now in double words
ST 5,EVALBLOCK_EVSIZE size in double words to evalblock

SPACE 1

* Invoke the IRXEXEC service routine
* This setup is fairly basic, you probably do not need
* to change it

LINK EP=IRXEXEC, *
VL=1, variable length switch *
PARAM=(EXECBLK_PTR, *
ARGTABLE_PTR, *
FLAGS, *
INSTBLK_PTR, *
RES_PARM5, *
EVALBLK_PTR, *
RESERVED_WORKAREA_PTR, *
RESERVED_USERFIELD_PTR, *
RESERVED_ENVBLOCK_PTR, *
REXX_RETURN_CODE_PTR)

SPACE 1

* Put out the results, i.e. return code and REXX string
* in reserved REXX variable result
* (contents of REXX_RETURN_CODE are the same as in reg 15)

CVD 15,DWORD start editing return code
ED DIGITS,DWORD+4 last 7 digits from return code
PUT ASMOUT,MESSAGE2 put out message
PUT ASMOUT,MESSAGE3 put out another message
L 15,EVALBLOCK_EVLEN get length of string from REXX
LTR 15,15 check if length is 0
BZ NORESULT nothing returned from REXX
LA 6,L’MESSAGE4 check length of message area...
CR 15,6 ...against length of REXX result
BNH LENOK branch if result fits in area
LR 15,6 result too long, truncate

LENOK EQU * when here, string fits in area
BCTR 15,0 reduce length by one for MVC
EX 15,MOVEIT move result to message area
PUT ASMOUT,MESSAGE4 put out string returned by REXX

NORESULT EQU *
PUT ASMOUT,MESSAGE5 put out closing message

CLOSE (ASMOUT)
SPACE 1

* Standard exiting sequence, pass on REXX retcode

L 13,SA+4
L 15,REXX_RETURN_CODE REXX return code to reg 15
RETURN (14,12),RC=(15)

SPACE 1

* Data areas

DWORD DC D’0’ doubleword scratch area

SPACE 1

254 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

MESSAGE1 DC CL40’Starting Assembler prog’
SPACE 1

MESSAGE2 DC CL40’ ’ space for next message
ORG MESSAGE2 redefine the message
DC C’Ret code from IRXEXEC =’

* Stencil for ED instruction to print out a numeric value
DIGITS DC X’4020202020202120’

DC C’ (dec.)’
ORG , return to high water (address) mark

SPACE 1
MESSAGE3 DC CL40’Result from REXX exec in next line:’
MESSAGE4 DC CL40’ ’ work area for REXX output string
MESSAGE5 DC CL40’End of Assembler prog’

SPACE 1
SA DC 18F’0’ save area

SPACE 1

* Map the EXEC block, define storage for it, init to blanks
* Note that the IRXECEXB macro contains a DSECT.

IRXEXECB
* revert to CSECT as IRXEXECB contains a DSECT
ASMPROG CSECT
EXECBLK# DC CL(EXECBLEN)’ ’

SPACE 1

* Define storage for the EVAL block, map it. Note that
* this invocation of IRXEVALB does not contain a DSECT
* because of DECLARE=YES.

EVALBLK# DC 5F’0’

DC CL256’ ’ for result from REXX exec
EVALBLEN EQU *-EVALBLK# length of block

ORG EVALBLK# go back to map it
IRXEVALB DECLARE=YES map the EVAL block
ORG , back to high water mark

SPACE 1

* The parameters to be passed to IRXEXEC

EXECBLK_PTR DC A(EXECBLK#) pointer to EXECBLOCK
ARGTABLE_PTR DC A(ARGTABLE) pointer to table of arguments
FLAGS DC X’40000000’
INSTBLK_PTR DC A(0)
RES_PARM5 DC A(0)
EVALBLK_PTR DC A(EVALBLK#)
RESERVED_WORKAREA_PTR DC A(0)
RESERVED_USERFIELD_PTR DC A(0)
RESERVED_ENVBLOCK_PTR DC A(0)
REXX_RETURN_CODE_PTR DC A(REXX_RETURN_CODE)

SPACE 1
REXX_RETURN_CODE DC A(0)

SPACE 1

* The REXX argument string

ARG1 DC C’3’ argument for REXX exec

SPACE 1

ARGTABLE DS 0F align
ARGSTRING_PTR DC A(ARG1) pointer to first argument
ARGSTRING_LENGTH DC A(L’ARG1) length of first argument
ARGTABLE_LAST DC XL8’FFFFFFFFFFFFFFFF’ end of argument fence

SPACE 1
MOVEIT MVC MESSAGE4,EVALBLOCK_EVDATA

SPACE 1
ASMOUT DCB DDNAME=ASMOUT,RECFM=FB,LRECL=40,MACRF=PM,DSORG=PS

Appendix F. Interlanguage Job Samples 255

END
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//G.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//G.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//G.SYSTSPRT DD SYSOUT=*
//*---*
//* Next DD is for the Assembler program’s output
//*---*
//G.ASMOUT DD SYSOUT=*
//*---*
//

Calling REXX from C
The following samples show how to call a REXX exec from a C program under
z/OS.

EAGGJC for Calling IRXJCL
This is the EAGGJC sample for calling IRXJCL from a C program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//* *
//* Interlanguage Communication in z/OS *
//* Calling REXX from C *
//* *
//*---*
//* *
//* Licensed Materials - Property of IBM *
//* 5695-013 *
//* (C) Copyright IBM Corp. 1989, 2003 *
//* *
//*---*
//* Sample JCL for calling IRXJCL from a C program. *
//* For a description also refer to the REXX Compiler guide *
//* SH19-8160. *
//* You may modify this sample for your needs by including *
//* a REXX of your own. The ARGUMENT for the REXX procedure *
//* may be taylored for your needs. *
//* *
//* Change Activity: 030708 - new for Release 4 *
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs *
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX *
//* SYSUT1 is setup for card input, modify to a DSN if desired *
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$

256 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

/* REXX ** START sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */

Say ’I am’ src /* sample exec */
Say ’Received parm:’ n /* sample exec */
If n=’’ Then n=1 /* sample exec */
Do i=1 TO n /* sample exec */

Say ’Hello World the’ i’. time ...’ /* sample exec */
End /* sample exec */

Return n /* Set Return Code to n */ /* sample exec */
/*** END sample exec */
$$
//*---*
//* *
//* Compile, link and execute a ’C’ program *
//* *
//*---*
//* invocate cataloged procedure EDCCLG to compile, link and *
//* execute the below listed C Program. *
//* the C program calls the above listed REXX sample exec stored *
//* in a temporary dataset using TSO service IRXEXEC. *
//*---*
//EDCC EXEC EDCCLG,CPARM=’XREF,SOURCE’
//COMPILE.SYSIN DD *,DLM=$$
/** START C-program */

/* invoke REXX procedure HELLO with parameter 3 using IRXJCL */

#include <stdlib.h> /* for fetch() prototype */

typedef int (*funcPtr) (); /* pointer to a function returning an int */
funcPtr fetched;

/***/
/* define IRXJCL parameter block */
/***/
typedef struct IRXJCL_type
{
short int arg_length;
char argument[9];
} IRXJCL_type;

/***/
/* define local variables */
/***/
IRXJCL_type this_param;
IRXJCL_type* param_ptr;
int return_code;

main()
{

printf("Start of C program\n");

fetched = (funcPtr) fetch("IRXJCL");
if (fetched == 0)
{

printf("ERROR: fetch() failed\n");
}
else
{

printf("now execute fetched module\n");
/***/
/* generate IRXJCL parameter block */
/***/
this_param.arg_length = 8; /* <============= */
strcpy(this_param.argument,"HELLO 3"); /* <============= */
param_ptr = &this_param;

Appendix F. Interlanguage Job Samples 257

/***/
/* call the REXX Exec */
/***/
return_code = (*fetched)(param_ptr);
printf("REXX return code= %d\n", return_code);

}

printf("End of C program\n");
}
/** END C-program */
$$
//*---*
//* Define the library containing the REXX exec *
//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input *
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output *
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

EAGGXC for Calling IRXEXEC
This is the EAGGXC sample for calling IRXEXEC from a C program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//* *
//* Interlanguage Communication in z/OS *
//* Calling REXX from C *
//* *
//*---*
//* *
//* Licensed Materials - Property of IBM *
//* 5695-013 *
//* (C) Copyright IBM Corp. 1989, 2003 *
//* *
//*---*
//* Sample JCL for calling IRXEXEC from a C program. *
//* For a description also refer to the REXX Compiler guide *
//* SH19-8160. *
//* You may modify this sample for your needs by including *
//* a REXX of your own. The ARGUMENT for the REXX procedure *
//* may be taylored for your needs. *
//* The use of IRXEXEC is more complex than the use of IRXJCL. *
//* Refer to the TSO guide SC28-1883 for using these services. *
//* *
//* Change Activity: 030708 - new for Release 4 *
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs *
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX *
//* SYSUT1 is setup for card input, modify to a DSN if desired *
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$

258 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

/* REXX ** START sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */

Say ’I am’ src /* sample exec */
Say ’Received parm:’ n /* sample exec */
If n=’’ Then n=1 /* sample exec */
Do i=1 TO n /* sample exec */

Say ’Hello World the’ i’. time ...’ /* sample exec */
End /* sample exec */

Return n /* Set Return Code to n */ /* sample exec */
/*** END sample exec */
$$
//*---*
//* *
//* Compile, link and execute a ’C’ program *
//* *
//*---*
//* invocate cataloged procedure EDCCLG to compile, link and *
//* execute the below listed C Program. *
//* the C program calls the above listed REXX sample exec stored *
//* in a temporary dataset using TSO service IRXEXEC. *
//*---*
//EDCC EXEC EDCCLG,CPARM=’XREF,SOURCE’
//COMPILE.SYSIN DD *,DLM=$$
/** START C-program */

/* invoke REXX procedure HELLO with parameter 3 using IRXEXEC */

#include <stdlib.h> /* for fetch() prototype */

typedef int (*funcPtr) (); /* pointer to a function returning an int */
funcPtr fetched;

/***/
/* define EXECBLOCK control block */
/***/
typedef struct EXECBLK_type
{
char EXECBLK_ACRYN[8];

/* The description of each bit is as follows: */
/* An eight-character field that */
/* identifies the exec block. It */
/* must contain the character */
/* string ’IRXEXECB’. */

int EXECBLK_LENGTH;
/* Specifies the length of the */
/* exec block in bytes. */

int EXECBLK_reserved;
char EXECBLK_MEMBER[8];

/* Specifies the member name of */
/* the exec if the exec is in a */
/* partitioned data set. If the */
/* exec is in a sequential data */
/* set, this field must be blank. */

char EXECBLK_DDNAME[8];
/* Specifies the name of the DD */
/* from which the exec is loaded. */
/* An exec cannot be loaded from */
/* a DD that has not been */
/* allocated. The ddname you */
/* specify must be allocated to a */
/* data set containing REXX execs */
/* or to a sequential data set */
/* that contains an exec. */
/* */
/* If this field is blank, the */
/* exec is loaded from the DD */

Appendix F. Interlanguage Job Samples 259

/* specified in the LOADDD field */
/* of the module name table (see */
/* topic 14.8). The default is */
/* SYSEXEC. */

char EXECBLK_SUBCOM[8];
/* Specifies the name of the */
/* initial host command */
/* environment when the exec */
/* starts running. */
/* */
/* If this field is blank, the */
/* environment specified in the */
/* INITIAL field of the host */
/* command environment table is */
/* used. For TSO/E and ISPF, the */
/* default is TSO. For a */
/* non-TSO/E address space, the */
/* default is MVS. The table is */
/* described in "Host Command */
/* Environment Table" in */
/* topic 14.9. */

void * EXECBLK_DSNPTR;
/* Specifies the address of a */
/* data set name that the PARSE */
/* SOURCE instruction returns. */
/* The name usually represents */
/* the name of the exec load data */
/* set. The name can be up to 54 */
/* characters long (44 characters */
/* for the fully qualified data */
/* set name, 8 characters for the */
/* member name, and 2 characters */
/* for the left and right */
/* parentheses). */
/* */
/* If you do not want to specify */
/* a data set name, specify an */
/* address of 0. */

int EXECBLK_DSNLEN;
/* Specifies the length of the */
/* data set name that is pointed */
/* to by the address at offset */
/* +40. The length can be 0-54. */
/* If no data set name is */
/* specified, the length is 0. */

} EXECBLK_type;

/***/
/* define ARGUMENT block */
/***/
typedef struct one_parameter_type
{
void * ARGSTRING_PTR;
int ARGSTRING_LENGTH;
} one_parameter_type;

/***/
/* define EVALBLOCK control block */
/***/
typedef struct EVALBLK_type
{
int EVALBLK_EVPAD1;
int EVALBLK_EVSIZE;

/* Specifies the total size of the */
/* evaluation block in doublewords. */

int EVALBLK_EVLEN;
int EVALBLK_EVPAD2;

260 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

char EVALBLK_EVDATA[256];
} EVALBLK_type;

/*

/***/
/* define IRXEXEC argument block */
/***/
typedef struct IRXEXEC_type
{
EXECBLK_type ** execblk_ptr;

/* Specifies the address of the exec block */
/* (EXECBLK). The exec block is a control */
/* block that describes the exec to be */
/* loaded. It contains information needed */
/* to process the exec, such as the DD */
/* from which the exec is to be loaded and */
/* the name of the initial host command */
/* environment when the exec starts running. */

one_parameter_type ** argtable_ptr;
/* Specifies the address of the arguments */
/* for the exec. The arguments are */
/* arranged as a vector of address/length */
/* pairs followed by a fence */

int * flags_ptr; /***/
/* The description of each bit is as follows: */
/* */
/* Bit 0 - This bit must be set on if the exec is*/
/* being invoked as a "command"; that is, the */
/* exec is not being invoked from another exec as*/
/* an external function or subroutine. If you */
/* pass more than one argument to the exec, do */
/* not set bit 0 on. */
/* */
/* Bit 1 - This bit must be set on if the exec is*/
/* being invoked as an external function */
/* (a function call). */
/* */
/* Bit 2 - This bit must be set on if the exec is*/
/* being invoked as a subroutine for example, */
/* when the CALL keyword instruction is used. */
/***/

int * instblk_ptr;
/* Specifies the address of the in-storage */
/* control block (INSTBLK), which defines */
/* the structure of a preloaded exec in storage. */
/* This parameter is required if the */
/* caller of IRXEXEC has preloaded the */
/* exec. Otherwise, this parameter must be 0. */

int * reserved_parm5;
/* Specifies the address of the command */
/* processor parameter list (CPPL) if you */
/* call IRXEXEC from the TSO/E address */
/* space. If you do not pass the address */
/* of the CPPL (you specify an address of */
/* 0), TSO/E builds the CPPL without a */
/* command buffer. */
/* If you call IRXEXEC from a non-TSO/E */
/* address space, specify an address of 0. */

EVALBLK_type ** evalblk_ptr;
/* Specifies the address of an evaluation */
/* block (EVALBLOCK). IRXEXEC uses the */
/* evaluation block to return the result */
/* from the exec that was specified on */
/* either the RETURN or EXIT instruction. */

int * reserved_workarea_ptr;

Appendix F. Interlanguage Job Samples 261

/* Specifies the address of an 8-byte */
/* field that defines a work area for the */
/* IRXEXEC routine. In the 8-byte field, the: */
/* First four bytes contain the */
/* address of the work area */
/* Second four bytes contain the */
/* length of the work area. */
/* If you do not want to pass a work area, */
/* specify an address of 0. */

int * reserved_userfield_ptr;
/* Specifies the address of a user field. */
/* If you do not want to use a user field, */
/* specify an address of 0. */

int * reserved_envblock_ptr;
/* The address of the environment block */
/* that represents the environment in */
/* which you want IRXEXEC to run. */

int * REXX_return_code_ptr;
/* A 4-byte field that IRXEXEC uses to */
/* return the return code. */

} IRXEXEC_type;

/***/
/* define local variables */
/***/
IRXEXEC_type this_param;
EXECBLK_type this_EXECBLK;
EXECBLK_type * an_EXECBLK_ptr;
EVALBLK_type this_EVALBLK;
EVALBLK_type * an_EVALBLK_ptr;
one_parameter_type this_argument[2];
one_parameter_type * an_argtable_ptr;
char arg1;
int flags;
int REXX_return_code;
int dummy_zero;

main()
{

printf("Start of CPROG\n");

fetched = (funcPtr) fetch("IRXEXEC");
if (fetched == 0)
{

printf("ERROR: fetch() failed\n");
}
else
{

/***/
/* generate REXX Exec parameter block, finished with fence */
/***/
arg1 = ’3’;
this_argument[0].ARGSTRING_PTR = &arg1;
this_argument[0].ARGSTRING_LENGTH = 1;
this_argument[1].ARGSTRING_PTR = (void *)0xFFFFFFFF;
this_argument[1].ARGSTRING_LENGTH = 0xFFFFFFFF;
an_argtable_ptr = &this_argument[0];
/***/
/* generate EXECBLOCK */
/***/
an_EXECBLK_ptr = &this_EXECBLK;
strcpy(this_EXECBLK.EXECBLK_ACRYN,"IRXEXECB");
this_EXECBLK.EXECBLK_LENGTH = 48;
this_EXECBLK.EXECBLK_reserved = 0;
strcpy(this_EXECBLK.EXECBLK_MEMBER,"HELLO"); /* <================*/
strcpy(this_EXECBLK.EXECBLK_SUBCOM," ");

262 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

this_EXECBLK.EXECBLK_DSNPTR = 0;
this_EXECBLK.EXECBLK_DSNLEN = 0;
/***/
/* generate EVALBLOCK */
/***/
an_EVALBLK_ptr = &this_EVALBLK;
this_EVALBLK.EVALBLK_EVPAD1 = 0;
this_EVALBLK.EVALBLK_EVSIZE = 34;
this_EVALBLK.EVALBLK_EVLEN = 0;
this_EVALBLK.EVALBLK_EVPAD2 = 0;
/***/
/* generate IRXEXEC parameter block */
/***/
this_param.execblk_ptr = &an_EXECBLK_ptr;
this_param.argtable_ptr = &an_argtable_ptr;
this_param.flags_ptr = &flags;
this_param.instblk_ptr = &dummy_zero;
this_param.reserved_parm5 = &dummy_zero;
this_param.evalblk_ptr = &an_EVALBLK_ptr;
this_param.reserved_workarea_ptr = &dummy_zero;
this_param.reserved_userfield_ptr = &dummy_zero;
this_param.reserved_envblock_ptr = &dummy_zero;
this_param.REXX_return_code_ptr = &REXX_return_code;
this_param.REXX_return_code_ptr =

(int *)((int)this_param.REXX_return_code_ptr | 0x80000000);
dummy_zero = 0;
flags = 0x20000000; /* exec invoked as subroutine */
REXX_return_code = 0;
/***/
/* call the REXX Exec */
/***/
REXX_return_code = (*fetched)(this_param);
/***/
/* handle return code and result */
/***/
printf("REXX return code is: %d\n", REXX_return_code);
printf("REXX result is: %-*.*s\n",

this_EVALBLK.EVALBLK_EVLEN,
this_EVALBLK.EVALBLK_EVLEN,
this_EVALBLK.EVALBLK_EVDATA);

}

printf("End of CPROG\n");
}
/** END C-program */
$$
//*---*
//* Define the library containing the REXX exec *
//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input *
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output *
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

Calling REXX from Cobol
The following samples show how to call a REXX exec from a Cobol program under
z/OS.

Appendix F. Interlanguage Job Samples 263

EAGGJCOB for Calling IRXJCL
This is the EAGGJCOB sample for calling IRXJCL from a Cobol program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from COBOL
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXJCL from COBOL program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */

Say ’I am’ src /* sample exec */
Say ’Received parm:’ n /* sample exec */
If n=’’ Then n=1 /* sample exec */
Do i=1 TO n /* sample exec */

Say ’Hello World the’ i’. time ...’ /* sample exec */
End /* sample exec */

Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a COBOL program
//*---*
//* Invoke the cataloged procedure IGYWCLG to compile, link and
//* execute the below listed Cobol program.
//* The Cobol program below calls the above listed REXX sample
//* exec as stored in the temporary dataset using the
//* TSO service IRXJCL.
//*---*
//IGYWCLG EXEC IGYWCLG
//COBOL.SYSIN DD *
CBL NOADV,NODYN,NONAME,NONUMBER,QUOTE,SEQ,XREF,VBREF,DUMP,LIST

TITLE "COBOL TEST PROGRAM ".
Identification Division.

Program-id. COBPRG.

264 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

IA0040 Author. ...
*** **
*** Invoke REXX procedure HELLO with parameter 3 using IRXJCL **
*** **
*** Expected display messages: **
*** "PROGRAM CONPRG - BEGINNING" **
*** "PROGRAM COBPRG - NORMAL END" **
*** **

Environment division.
IA0970 Configuration section.

Special-names.
Input-output section.

File-control.
Select PRINT-FILE

assign to SYS014-S-UPDPRNT
file status is UPDPRINT-FILE-STATUS.

Data division.
File section.

IA1570 FD PRINT-FILE
recording mode F
block 0 records
record 121 characters
label record standard.

IA1620 01 print-record pic x(121).
Working-storage section.

01 Working-storage-for-COBPRG pic x.

01 ARGUMENT.
03 ARG-SIZE pic 9(2) comp.
03 ARG-CHAR pic x(8).

77 UPDPRINT-file-status pic xx.

77 PGM-NAME pic x(8).

/**
*** D O M A I N L O G I C **

procedure division.

000-do-main-logic.
display "PROGRAM COBPRG - Beginning".
display "Return code before call is " RETURN-CODE.

*
* Pass the procedure pame HELLO to IRXJCL.
* Pass 3 to REXX procedure ’HELLO’.
* Set the size of the argument.
*

move "HELLO 3" to ARG-CHAR.
move 8 to arg-size.

* Call "IRXJCL" in order to execute the REXX procedure
move "IRXJCL" to PGM-NAME.
CALL PGM-NAME USING ARGUMENT.

* Display the return code.
display "Return code after call is " RETURN-CODE.
display "PROGRAM COBPRG - Normal end".
stop run.

IA9990 end program COBPRG.
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//GO.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX

Appendix F. Interlanguage Job Samples 265

//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//GO.SYSOUT DD SYSOUT=*
//*---*
//

EAGGXCOB for Calling IRXEXEC
This is the EAGGXCOB sample for calling IRXEXEC from a Cobol program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from COBOL
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXEXEC from COBOL program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */

Say ’I am’ src /* sample exec */
Say ’Received parm:’ n /* sample exec */
If n=’’ Then n=1 /* sample exec */
Do i=1 TO n /* sample exec */

Say ’Hello World the’ i’. time ...’ /* sample exec */
End /* sample exec */

Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a COBOL program
//*---*
//* Invoke the cataloged procedure IGYWCLG to compile, link and

266 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

//* execute the below listed Cobol program.
//* The Cobol program below calls the above listed REXX sample
//* exec as stored in the temporary dataset using the
//* TSO service IRXEXEC.
//*---*
//IGYWCLG EXEC IGYWCLG
//COBOL.SYSIN DD *
CBL NOADV,NODYN,NONAME,NONUMBER,QUOTE,SEQ,XREF,VBREF,DUMP,LIST
CBL TRUNC(OPT)

TITLE "COBOL TEST PROGRAM ".
Identification Division.

Program-id. COBPRG.
IA0040 Author. ...

*** **
*** Invoke REXX procedure HELLO with parm 3 using IRXEXEC **
*** **
*** Expected display messages: **
*** "PROGRAM COBPRG - BEGINNING" **
*** "PROGRAM COBPRG - NORMAL END" **
*** **

Environment division.
IA0970 Configuration section.

Special-names.
Input-output section.

File-control.
Select PRINT-FILE

assign to SYS014-S-UPDPRNT
file status is UPDPRINT-FILE-STATUS.

Data division.
File section.

IA1570 FD PRINT-FILE
recording mode F
block 0 records
record 121 characters
label record standard.

IA1620 01 print-record pic x(121).
Working-storage section.

01 Working-storage-for-COBPRG pic x.

77 PGM-NAME pic X(8).

*
* Define the IRXEXEC argument blocks
*

01 EXECBLK.
03 EXECBLK-ACRYN pic X(8).
03 EXECBLK-LENGTH pic S9(8) binary.
03 EXECBLK-reserved pic S9(8) binary.
03 EXECBLK-MEMBER pic X(8).
03 EXECBLK-DDNAME pic X(8).
03 EXECBLK-SUBCOM pic X(8).
03 EXECBLK-DSNPTR POINTER.
03 EXECBLK-DSNLEN pic 9(4) comp.

01 EVALBLK.
03 EVALBLK-EVPAD1 pic S9(8) binary.
03 EVALBLK-EVSIZE pic S9(8) binary.
03 EVALBLK-EVLEN pic S9(8) binary.
03 EVALBLK-EVPAD2 pic S9(8) binary.
03 EVALBLK-EVDATA pic x(256).

77 flags pic S9(8) binary.
77 REXX-return-code pic S9(8) binary.
77 dummy-zero pic S9(8) binary.

Appendix F. Interlanguage Job Samples 267

01 ARGUMENT.
02 ARGUMENT-1 OCCURS 1 TIMES.
05 ARGSTRING-PTR POINTER.
05 ARGSTRING-LENGTH pic S9(8) binary.
02 ARGSTRING-LAST1 pic S9(8) binary.
02 ARGSTRING-LAST2 pic S9(8) binary.

77 arg1 pic x(1).
77 execblk-ptr POINTER.
77 argtable-ptr POINTER.
77 evalblk-ptr POINTER.

77 UPDPRINT-file-status pic xx.

/**
*** D O M A I N L O G I C **

procedure division.

000-do-main-logic.
display "PROGRAM COBPRG - Beginning".

*--- Pass 3 as argument to the REXX procedure ’HELLO’.
move "3" to arg1.

call "GET-ARG1-PTR" using arg1 ARGSTRING-PTR(1).
move 1 to ARGSTRING-LENGTH(1).
move -1 to ARGSTRING-LAST1.
move -1 to ARGSTRING-LAST2.
call "GET-ARGUMENT-PTR" using argument argtable-ptr.

move "IRXEXECB" to EXECBLK-ACRYN.
move 48 to EXECBLK-LENGTH.
move 0 to EXECBLK-reserved.

*--- Pass the procedure name HELLO to IRXEXEC.
move "HELLO" to EXECBLK-MEMBER.
move " " to EXECBLK-SUBCOM.
move " " to EXECBLK-DDNAME.
set EXECBLK-DSNPTR to NULL.
move 0 to EXECBLK-DSNLEN.
call "GET-EXECBLK-PTR" using EXECBLK execblk-ptr.
move 0 to EVALBLK-EVPAD1.
move 34 to EVALBLK-EVSIZE.
move 0 to EVALBLK-EVLEN.
move 0 to EVALBLK-EVPAD2.
call "GET-EVALBLK-PTR" using EVALBLK evalblk-ptr.
move 0 to dummy-zero.

*--- Set flags to HEX 20000000
* i.e. exec invoked as subroutine

move 536870912 to flags.
move 0 to REXX-return-code.

*--- Call the REXX exec ---
move "IRXEXEC " to PGM-NAME.
CALL PGM-NAME USING execblk-ptr

argtable-ptr
flags
dummy-zero
dummy-zero
evalblk-ptr
dummy-zero
dummy-zero
dummy-zero
REXX-return-code.

CANCEL PGM-NAME.

*--- Display the return code.

268 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

display "REXX return code is: " REXX-return-code.
display "REXX result is: " EVALBLK-EVDATA.
display "PROGRAM COBPRG - Normal end".
stop run.

*--- Addressing helper
Identification Division.
Program-id. GET-ARG1-PTR.
Environment division.
Data division.
Working-storage section.
Linkage section.

77 arg1 pic x(1).
77 arg-ptr POINTER.

procedure division using arg1 arg-ptr.
set arg-ptr to address of arg1.
goback.

end program GET-ARG1-PTR.

*--- Addressing helper
Identification Division.
Program-id. GET-ARGUMENT-PTR.
Environment division.
Data division.
Working-storage section.
Linkage section.

01 ARGUMENT.
02 ARGUMENT-1 OCCURS 1 TIMES.
05 ARGSTRING-PTR POINTER.
05 ARGSTRING-LENGTH pic S9(8) binary.
02 ARGSTRING-LAST1 pic S9(8) binary.
02 ARGSTRING-LAST2 pic S9(8) binary.

77 argtable-ptr POINTER.

procedure division using ARGUMENT argtable-ptr.
set argtable-ptr to address of ARGUMENT.
goback.

end program GET-ARGUMENT-PTR.

*--- Addressing helper
Identification Division.
Program-id. GET-EXECBLK-PTR.
Environment division.
Data division.
Working-storage section.
Linkage section.

01 EXECBLK.
03 EXECBLK-ACRYN pic X(8).
03 EXECBLK-LENGTH pic 9(4) comp.
03 EXECBLK-reserved pic 9(4) comp.
03 EXECBLK-MEMBER pic X(8).
03 EXECBLK-DDNAME pic X(8).
03 EXECBLK-SUBCOM pic X(8).
03 EXECBLK-DSNPTR POINTER.
03 EXECBLK-DSNLEN pic 9(4) comp.

77 execblk-ptr POINTER.

procedure division using EXECBLK execblk-ptr.
set execblk-ptr to address of EXECBLK.
goback.

end program GET-EXECBLK-PTR.

Appendix F. Interlanguage Job Samples 269

*--- Addressing helper
Identification Division.
Program-id. GET-EVALBLK-PTR.
Environment division.
Data division.
Working-storage section.
Linkage section.

01 EVALBLK.
03 EVALBLK-EVPAD1 pic 9(4) comp.
03 EVALBLK-EVSIZE pic 9(4) comp.
03 EVALBLK-EVLEN pic 9(4) comp.
03 EVALBLK-EVPAD2 pic 9(4) comp.
03 EVALBLK-EVDATA pic x(256).

77 evalblk-ptr POINTER.

procedure division using EVALBLK evalblk-ptr.
set evalblk-ptr to address of EVALBLK.
goback.

end program GET-EVALBLK-PTR.

IA9990 end program COBPRG.
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//GO.SYSOUT DD SYSOUT=*
//*---*
//

Calling REXX from PL/I
The following samples show how to call a REXX exec from a PL/I program under
z/OS.

EAGGJPLI for Calling IRXJCL
This is the EAGGJPLI sample for calling IRXJCL from a PL/I program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from PLI
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXJCL from PL/I program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure

270 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */

Say ’I am’ src /* sample exec */
Say ’Received parm:’ n /* sample exec */
If n=’’ Then n=1 /* sample exec */
Do i=1 TO n /* sample exec */

Say ’Hello World the’ i’. time ...’ /* sample exec */
End /* sample exec */

Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a PL/1 program
//*
//* an alternative catlogued procedure is
//* IBMZCBG for z/OS Enterprise PL/1
//*---*
//* Invoke the cataloged procedure to compile, link and
//* execute the below listed PL/1 program.
//* The PL/1 program below calls the above listed REXX sample
//* exec as stored in the temporary dataset using the
//* TSO service IRXJCL.
//*---*
//IEL1CLG EXEC IEL1CLG
//PLI.SYSIN DD *
*PROCESS INCLUDE,SYSTEM(MVS),FLAG(I),XREF(SHORT),MAP,LIST;
*PROCESS LINECOUNT(100);

PLIPROG: PROC OPTIONS(MAIN);

/* invoke REXX procedure HELLO with parameter 3 using IRXJCL */

DCL IRXJCL ENTRY EXTERNAL OPTIONS(ASSEMBLER RETCODE);
DCL 1 IRXJCL_PARM,

3 ARG_LENGTH FIXED BINARY(15),
3 ARGUMENT CHAR(9);

DCL PLIRETV BUILTIN;
DCL RETURN_CODE FIXED BINARY(31);

PUT SKIP EDIT (’Start of PLIPROG’) (A);
ARG_LENGTH = 8;

/* Pass the procedure name HELLO to IRXJCL. */
/* Pass 3 as argument to the REXX procedure ’HELLO’. */
ARGUMENT = ’HELLO 3’;

/* Call the REXX exec */

Appendix F. Interlanguage Job Samples 271

FETCH IRXJCL;
CALL IRXJCL(IRXJCL_PARM);

/* Handle the return code. */
RETURN_CODE = PLIRETV;
PUT SKIP EDIT (’REXX RETURN CODE: ’ , RETURN_CODE) (A, F(4));
PUT SKIP EDIT (’End of PLIPROG’) (A);
RETURN;

END PLIPROG;
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//GO.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

EAGGXPLI for Calling IRXEXEC
This is the EAGGXPLI sample for calling IRXEXEC from a PL/I program:
//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from PLI
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXEXEC from PL/I program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */

272 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Arg n /* sample exec */
Say ’I am’ src /* sample exec */
Say ’Received parm:’ n /* sample exec */
If n=’’ Then n=1 /* sample exec */
Do i=1 TO n /* sample exec */

Say ’Hello World the’ i’. time ...’ /* sample exec */
End /* sample exec */

Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a PL/1 program
//*
//* an alternative catlogued procedure is
//* IBMZCBG for z/OS Enterprise PL/1
//*---*
//* Invoke the cataloged procedure to compile, link and
//* execute the below listed PL/1 program.
//* The PL/1 program below calls the above listed REXX sample
//* exec as stored in the temporary dataset using the
//* TSO service IRXEXEC.
//*---*
//IEL1CLG EXEC IEL1CLG
//PLI.SYSIN DD *
*PROCESS INCLUDE,SYSTEM(MVS),FLAG(I),XREF(SHORT),MAP,LIST;
*PROCESS LINECOUNT(100);

PLIPROG: PROCEDURE OPTIONS(MAIN);

/* invoke REXX procedure HELLO with parameter 3 using IRXEXEC */
DCL IRXEXEC ENTRY EXTERNAL OPTIONS(ASSEMBLER RETCODE);

/* Declare the IRXEXEC argument blocks */
DCL 1 EXECBLK,

3 EXECBLK_ACRYN CHAR(8),
3 EXECBLK_LENGTH FIXED BINARY(31),
3 EXECBLK_reserved FIXED BINARY(31),
3 EXECBLK_MEMBER CHAR(8),
3 EXECBLK_DDNAME CHAR(8),
3 EXECBLK_SUBCOM CHAR(8),
3 EXECBLK_DSNPTR PTR,
3 EXECBLK_DSNLEN FIXED BINARY(31);

DCL 1 EVALBLK,
3 EVALBLK_EVPAD1 FIXED BINARY(31),
3 EVALBLK_EVSIZE FIXED BINARY(31),
3 EVALBLK_EVLEN FIXED BINARY(31),
3 EVALBLK_EVPAD2 FIXED BINARY(31),
3 EVALBLK_EVDATA CHAR(256);

DCL 1 ARGTABLE,
3 ARGUMENTS(1),

5 ARGSTRING_PTR PTR,
5 ARGSTRING_LENGTH FIXED BINARY(31),

3 ARGTABLE_LAST CHAR(8);

DCL EXECBLK_PTR PTR;
DCL ARGTABLE_PTR PTR;
DCL INSTBLK_PTR PTR;
DCL reserved_parm5 PTR;
DCL EVALBLK_PTR PTR;
DCL reserved_workarea_ptr PTR;
DCL reserved_userfield_ptr PTR;
DCL reserved_envblock_ptr PTR;
DCL REXX_return_code_ptr PTR;
DCL ARG1 CHAR;
DCL flags CHAR(4);

Appendix F. Interlanguage Job Samples 273

DCL REXX_return_code FIXED BINARY(31);
DCL PLIRETV BUILTIN;
DCL SYSNULL BUILTIN;
DCL ADDR BUILTIN;
DCL SUBSTR BUILTIN;
DCL RETURN_CODE FIXED BINARY(31);

PUT SKIP EDIT (’Start of PLIPROG’) (A);

/* Pass 3 as argument to the REXX procedure ’HELLO’. */
ARG1 = ’3’;
ARGSTRING_PTR(1) = ADDR(ARG1);
ARGSTRING_LENGTH(1) = 1;
ARGTABLE_LAST = ’FFFFFFFFFFFFFFFF’X;
ARGTABLE_PTR = ADDR(ARGSTRING_PTR(1));
EXECBLK_PTR = ADDR(EXECBLK);
EXECBLK_ACRYN = ’IRXEXECB’;
EXECBLK_LENGTH = 48;
EXECBLK_reserved = 0;

/* Pass the procedure name HELLO to IRXEXEC. */
EXECBLK_MEMBER = ’HELLO’;
EXECBLK_SUBCOM = ’ ’;
EXECBLK_DSNPTR = SYSNULL;
EXECBLK_DSNLEN = 0;
EXECBLK_DDNAME = ’ ’;
EVALBLK_PTR = ADDR(EVALBLK);
EVALBLK_EVPAD1 = 0;
EVALBLK_EVSIZE = 34;
EVALBLK_EVLEN = 0;
EVALBLK_EVPAD2 = 0;

/* Set flags for exec invokation */
flags = ’40000000’x;
REXX_return_code_ptr = ADDR(REXX_return_code);
REXX_return_code = 0;
INSTBLK_PTR = SYSNULL;
reserved_parm5 = SYSNULL;
reserved_workarea_ptr = SYSNULL;
reserved_userfield_ptr = SYSNULL;
reserved_envblock_ptr = SYSNULL;

/* Call the REXX exec */
FETCH IRXEXEC;
CALL IRXEXEC(EXECBLK_PTR,

ARGTABLE_PTR,
flags,
INSTBLK_PTR,
reserved_parm5,
EVALBLK_PTR,
reserved_workarea_ptr,
reserved_userfield_ptr,
reserved_envblock_ptr,
REXX_return_code_ptr);

/* Handle the return code. */
RETURN_CODE = PLIRETV;
PUT SKIP EDIT (’ RETURN CODE: ’ , RETURN_CODE) (A, F(4));
PUT SKIP EDIT (’REXX RETURN CODE: ’ , REXX_RETURN_CODE) (A, F(4));
PUT SKIP EDIT (’REXX RESULT IS: ’ ||

SUBSTR(EVALBLK_EVDATA,1,EVALBLK_EVLEN)) (A);
PUT SKIP EDIT (’End of PLIPROG’) (A);
RETURN;
END PLIPROG;
/*
//*---*
//* Define the library containing the REXX exec

274 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

Appendix F. Interlanguage Job Samples 275

276 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

© Copyright IBM Corp. 1991, 2013 277

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

278 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This User’s Guide and Reference documents intended Programming Interfaces that
allow the customer to write programs to obtain services of the IBM Compiler and
Library for REXX on System z.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:

C/370
GDDM
IBM
MVS
MVS/ESA
NetView
OpenEdition
OS/390
SAA
Systems Application Architecture
SP
VM/ESA
VSE/ESA
z/Architecture
z/OS
z/VM

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix G. Notices 279

280 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you cannot find the term you are
looking for, refer to the Dictionary of Computing
New York: McGraw-Hill, 1994.

�A�

allocate
To assign a resource, such as a disk file, to
a specific task. Contrast with deallocate.

authorized program facility (APF)
Allows to identify system programs and
user programs that can use sensitive
system functions, and restricts the use of
such functions to APF-authorized
programs.

�B�

BIF Built-in function.

�C�

CEXEC output
Output produced by the IBM Compiler
for REXX on System z licensed program
when the CEXEC option is specified.

clause According to SAA Common Programming
Interface REXX Level 2 Reference, a REXX
program is built from a series of clauses
that are composed of:
v Zero or more blanks (which are

ignored)
v A sequence of tokens
v Zero or more blanks (again, ignored)
v A semicolon (;) delimiter that may be

implied by line-end, certain keywords,
or the colon (:)

CMS Conversational Monitor System.

compiled EXEC
A compiled REXX program file that has
the same file type that the corresponding
source file would have for interpretation.

Conversational Monitor System (CMS
A virtual machine operating system that
provides general interactive time sharing,
problem solving, and program
development capabilities, and operates
only under control of the z/VM control
program.

CPPL TSO/E command processor parameter
list.

CPPLEFPL
A stub that is a combination of the CPPL
and EFPL stubs. It contains the logic to
determine if the REXX program is being
invoked as a TSO/E command or as a
REXX external routine. Once this has been
determined, the compiled REXX program
is given control with the appropriate
parameters.

cross-reference listing
The portion of the compiler listing that
contains information on where symbols
are referenced in a program.

�D�

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access.

DBCS Double-byte character set.

DCSS Discontiguous saved segment. Also
known as discontiguous shared segment.

ddname
Data definition name.

DD statement
Data definition statement.

discontiguous saved segment (DCSS)
An area of storage beyond the address of
your virtual machine address space (not
contiguous with your virtual storage)
where segments are loaded as needed.

double-byte character set (DBCS)
A character set, such as Kanji, for
languages that require 2 bytes to uniquely
define each character.

�E�

EFPL External function parameter list.

ESD External symbol dictionary.

external symbol dictionary (ESD)
Control information associated with an

© Copyright IBM Corp. 1991, 2013 281

object or load module that identifies the
external symbols in the module.

�F�

FMID Function modification identifier.

�H�

HFS data set
A hierarchical file system data set, which
is used to store, and is essentially
identified with, a file system.

�I�

IEXEC output
Output produced by the IBM Compiler
for IBM Compiler for REXX on System z
licensed program when the IEXEC option
is specified.

Interactive System Productivity Facility (ISPF)
An IBM-licensed program that provides a
common dialog management facility
across operating system environments.

interpreter
A program that translates and executes
each instruction of a high-level
programming language before it translates
and executes the next instruction.

ISPF Interactive System Productivity Facility.

�K�

KB Kilobyte; 1024 bytes.

keyword
A language-defined word which identifies
a clause. Examples of keywords are: IF,
THEN, SAY.

�L�

LPA Link pack area.

�M�

MB Megabyte; 1 048 576 bytes.

MMS MVS message service.

module
An object code file whose external
references have been resolved.

MVS Multiple Virtual Storage.

MVS/ESA
Multiple Virtual Storage/Enterprise
System Architecture.

�N�

NLS National Language Support.

�O�

OBJECT output
Output produced by the IBM Compiler
for REXX on System z licensed program
when the OBJECT option is specified.

object program
A target program suitable for execution.
An object program may or may not
require linking. Contrast with source
program. Object program is used on only.

OpenEdition
Pertaining to the elements of OS/390 that
incorporate the UNIX interfaces
standardized in POSIX.

OS/390 Operating System
The IBM licensed program OS/390
includes and integrates functions
previously provided by many IBM
software products. OS/390 is made up of
elements and features. The elements
deliver essential operating system
functions. When you order OS/390, you
receive all of the elements. The features
are orderable with OS/390 and provide
additional operating system functions.

�P�

partitioned data set (PDS)
A data set in direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data. A partitioned data
set has a directory that contains
information about each member. Each
member can be accessed individually by
its unique 1- to 8-character name.

partitioned data set extended (PDSE)
A partitioned data set managed by the
Storage Management Subsystem (SMS).
Similar to PDS, but with a number of
enhancements.

PDF Program Development Facility.

phase In VSE, the smallest complete unit of
executable code that can be loaded into
virtual storage. It is the output of the
linkage editor.

phrase
A language construct associated with a
sub-keyword. Examples of phrases are:
TO-phrase, WHILE-phrase.

�S�

282 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

SBCS Single-byte character set.

sequential data set
A data set in which the contents are
arranged in successive physical order and
are stored as an entity. The data set can
contain data, text, a program, or part of a
program. Contrast with partitioned data
set (PDS).

SFS Shared file system.

SI The shift-in character (X'0F') indicating
the end of a double-byte character string.

SO The shift-out character (X'0E') indicating
the start of a double-byte character string.

SPI System Product Interpreter.

stub A code segment that transforms
parameter lists from one format into
another.

sub-keyword
A language-defined word occurring in
(but not identifying) a clause. Examples of
sub-keywords are: TO, BY, FOR, VALUE.

supervisor call (SVC)
A request that serves as the interface into
operating system functions, such as
allocating storage. The SVC protects the
operating system from inappropriate user
entry. All operating system requests must
be handled by SVCs.

supervisor call instruction
An instruction that interrupts a program
being executed and passes control to the
supervisor so that it can perform a
specific service indicated by the
instruction.

SVC Supervisor call.

System Product Interpreter (SPI)
The component of the VM/XA SP
operating system that processes
procedures, XEDIT macros, and programs
written in the Restructured Extended
Executor (REXX) language.

�T�

TEXT file
An object-code file whose external
references have not been resolved. This
term is used on z/VM only.

token According to SAA Common Programming

Interface REXX Level 2: Reference, a token
is the unit of low-level syntax from which
clauses are built.

TPA Transient program area.

transient program area (TPA)
In CMS, the virtual storage area
occupying locations X'E000' to X'10000'.
Some CMS commands and user programs
can be executed in this area of CMS
storage.

TSO/E Time Sharing Option Extensions.

�V�

Virtual Machine/Enterprise Systems Architecture
(VM/ESA)

An IBM licensed program that manages
the resources of a single computer so that
multiple computing systems appear to
exist. Each virtual machine is the
functional equivalent of a real machine.

Virtual Machine/Extended Architecture System
Product (VM/XA SP)

An IBM-licensed program with extended
architecture support that manages the
resources of a single computing system so
that multiple computing systems (virtual
machines) appear to exist.

VM/ESA
Virtual Machine/Enterprise Systems
Architecture.

VM/XA SP
Virtual Machine/Extended Architecture
System Product.

VSE/ESA
Virtual Storage Extended/Enterprise
Systems Architecture.

�X�

XA Extended architecture.

�Z�

z/OS The IBM-licensed program z/OS is a
highly secure, scalable, high-performance
enterprise operating system on which to
build and deploy Internet and
Java-enabled applications, providing a
comprehensive and diverse application
execution environment.

z/VM The IBM-licensed program z/VM is the
newest VM operating system and is based
on the new 64-bit z/Architecture®. It
provides a highly flexible test and

Glossary of Terms and Abbreviations 283

production environment for enterprises
deploying the latest e-business solutions.
Built upon the solid VM/ESA base, z/VM
exploits the z/Architecture and helps
enterprises meet their growing demands
for multi-user server solutions with a
broad range of support for operating
system environments such as z/OS,
OS/390, TPF, VSE/ESA, CMS, or Linux
on System z.

284 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Related Publications

This section lists each book in the REXX library. There is also a list of publications
for other IBM products that you might use with REXX.

IBM Compiler and Library for REXX on System z Publications
The following books are part of the IBM Compiler and Library for REXX on
System z publications:

IBM Compiler and Library for REXX on System z: User’s Guide and Reference,
SH19-8160, describes how to compile and run programs written in the REXX
language.

IBM Compiler and Library for REXX on System z: Diagnosis Guide, SH19-8179,
provides information for system programmers and other data processing
professionals responsible for maintaining the IBM Compiler and Library for REXX
on System z. It explains how to diagnose suspected errors in the product and how
to report them to the appropriate IBM personnel.

IBM Compiler and Library for REXX on System z: Licensed Program Specifications,
GH19-8161, describes the software and hardware requirements of IBM Compiler
and Library for REXX on System z.

IBM Compiler for REXX on z/OS: Program Directory, GI10-8170 describes the
requirements and installation of IBM Compiler for REXX on z/OS.

IBM Library for REXX on z/OS: Program Directory, GI10-9910 describes the
requirements and installation of IBM Library for REXX on z/OS.

IBM Alternate Library for REXX on z/OS: Program Directory, GI10-3243 describes the
requirements and installation of the IBM Alternate Library for REXX on z/OS.

You can also find the library of the IBM Compiler and Library for REXX on System
z on the home page at: http://www.ibm.com/software/awdtools/rexx/

The unlicensed REXX books with prefix SH are also available on the following
collection kits:
v IBM eServer System z Online Library VM Collection CD-ROM, SK2T-2067
v IBM eServer System z Online Library VSE Collection CD-ROM, SK2T-0060
v IBM eServer System z Online Library z/OS Software Products Collection CD-ROM,

SK3T-4270

Other IBM Publications
These books contain information related to REXX or its related products.

ISPF Publications
ISPF V4 R2.0 Dialog Developer's Guide and Reference, SC34-4486

ISPF V4 R2.0 Services Guide, SC34-4485

© Copyright IBM Corp. 1991, 2013 285

ISPF V4 R2.0 User's Guide, SC34-4484

ISPF/PDF Guide (ISPF 3.2 & ISPF/PDF 3.1) for VM, SC34-4299

ISPF/PDF Guide and Reference V3.4 for MVS, SC34-4258

ISPF/PDF Guide Version 3, Release 2 for VM, SC34-4306

Learning REXX
v TSO/E Version 2 REXX/MVS: User’s Guide, SC28-1882
v VM/SP System Product Interpreter: User’s Guide, SC24-5238
v VM/XA SP Interpreter: User’s Guide, SC23-0375
v VM/ESA REXX/VM: User’s Guide, SC24-5465

REXX Reference
v TSO/E Version 2 Procedures Language MVS/REXX, SC28-1883
v VM/XA SP Interpreter: Reference, SC23-0374
v VM/ESA Release 2 REXX/VM: Reference, SC24-5466
v IBM VSE/ESA REXX/VSE Reference, SC33-6529, is interesting for experienced

programmers, particularly those who have used a structured high-level
language. They list the REXX messages and describes instructions, functions,
debugging aids, and parsing.

v Systems Application Architecture Common Programming Interface: REXX Level 2
Reference, SC24-5549, describes the SAA REXX interface.

TSO/E and MVS/ESA Publications
v TSO/E Version 2: Primer, GC28-1879
v TSO/E Version 2: Customization, SC28-1872
v TSO/E Version 2 REXX/MVS: User’s Guide, SC28-1882
v TSO/E Version 2 REXX/MVS: Reference, SC28-1883
v TSO/E Version 2: Command Reference, SC28-1881
v MVS/DFP 3.3: Linkage Editor and Loader, SC26-4564
v MVS/ESA SP V4 Planning: Operations, GC28-1625
v MVS/ESA SP V4 Assembler Programming Guide, GC28-1644

OpenEdition Publication
v OpenEdition MVS Command Reference, SC23-3014

VM/SP Publications
v VM/SP CMS: Primer, SC24-5236
v VM/SP CMS: Primer for Line-Oriented Terminals, SC24-5242
v VM/SP CMS: User’s Guide, SC19-6210
v VM/SP CMS: Command Reference, SC19-6209
v VM/SP System Product Editor: User’s Guide, SC24-5220
v VM/SP: Administration, SC24-5285
v VM/SP System Messages and Codes, SC19-6204

286 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

VM/XA SP Publications
VM/XA SP CMS: Primer, SC23-0368
VM/XA SP CMS: User’s Guide, SC23-0356
VM/XA SP CMS: Command Reference, SC23-0354
VM/XA SP System Product Editor: User’s Guide, SC23-0373
VM/XA SP: Administration, SC23-0353
VM/XA SP Interpreter Reference, SC23-0374
VM/XA SP CP Command Reference, SC23-0358

VM/ESA Publications
v VM/ESA R2.2 REXX/VM User's Guide, SC24-5465
v VM/ESA V2R3.0 Diagnosis Guide, GC24-5854
v VM/ESA V2R4.0 REXX/VM Reference, SC24-5770
v VM/ESA V2R4.0 CP Command and Utility Reference, SC24-5773

VSE/ESA Publication
v VSE/ESA V2R1.0 System Control Statements, SC33-6613
v VSE/ESA V2R1.0 System Utilities, SC33-6617
v VSE/ESA V2R4.0 Guide for Solving Problems, SC33-6710

C Publication
v IBM C/370 Programming Guide Version 2 Release 1, SC09-1384

CMS Publications
v VM/ESA CMS: Primer, SC24-5458
v VM/ESA CMS: User’s Guide, SC24-5775
v VM/ESA CMS: Command Reference, SC24-5776
v VM/ESA XEDIT: User’s Guide, SC24-5779
v z/VM V4R1.0 CMS User's Guide, SC24-6009
v z/VM V4R3.0 CMS Command and Utility Reference, SC24-6010
v z/VM V4R3.0 CMS Planning and Administration, SC24-6042

z/VM Publications
v z/VM V3R1.0 CP Command and Utility Reference, SC24-5967
v z/VM V4R3.0 CP Command and Utility Reference, SC24-6008
v z/VM V4R3.0 Saved Segments Planning and Administration, SC24-6056

z/OS Publications
v z/OS V1R2.0 TSO/E REXX User's Guide, SA22-7791
v z/OS V1R4.0 TSO/E REXX Reference, SA22-7790
v z/OS V1R4.0 TSO/E Command Reference, SA22-7782
v z/OS V1R3.0 MVS Planning: Operations, SA22-7601

OS/390 Publications
v OS/390 V2R9.0 TSO/E REXX User's Guide, SC28-1974
v OS/390 V2R10.0 TSO/E REXX Reference, SC28-1975

Related Publications 287

v OS/390 V2R9.0 TSO/E System Programming Command Reference, SC28-1972
v OS/390 V2R10.0 MVS Planning: Operations, GC28-1760

288 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

Index

Special characters
// (remainder operator) 97
** (exponentiation operator) 97
\ (NOT operator) 101
\>> (strictly not greater than

operator) 100
\<< (strictly not less than operator) 100
% (integer divide operator) 97
%COPYRIGHT control directive 38, 91
%INCLUDE control directive 39, 91
%PAGE control directive 41, 52, 91
%STUB control directive 41
%SYSDATE control directive 42, 91
%SYSTIME control directive 42, 91
%TESTHALT control directive 43, 91, 92

optimization stopper 107
>> (strictly greater than operator) 100
>>= (strictly greater than or equal

operator) 100
<< (strictly less than operator) 100
<<= (strictly less than or equal

operator) 100
¬ (NOT operator) 101
¬>> (strictly not greater than

operator) 100
¬<< (strictly not less than operator) 100

Numerics
6-word extended parameter list,

invocation with 222

A
abend 066D 132
active PROCEDURES 103
Alias 8
ALLOCATE

TSO/E command 137
ALT, NOALT compiler option 19
ALTERNATE (ALT) compiler option 19
Alternate Library

activation 47
creating REXX programs for use

with 112
overview 7, 13
types of 13
use of 47

APF-authorization 132
application

writing part in REXX (z/OS) 74
writing part in REXX (z/VM) 76

argument string, tokenized parameter
list 222

arithmetic
integer divide and remainder

operations 97
limits on numbers 112
performance 108

ARXEXEC EXEC handler
in-storage control block 226
parameters 225

Assembler
call REXX 250
interface to TEXT file, example 223
program call for TEXT file 221

B
B2X built-in function 100
backslash, use of 101
BASE compiler option 19
Batch REXX Compilation panel

(z/OS) 12
batch, running jobs in 18, 48
binary

see definition, character 134
stream definition 134
string, maximum length 103

BLKSIZE 14
built-in function

differences between compiler and
interpreter 100

LINESIZE (CMS) 101
options of 99
SOURCELINE 94
TRACE 96
VALUE 99, 107, 111

byte
see definition, character 134
stream definition 134

C
C compiler option 22
C, call REXX 256
C2D input string, maximum length 103
CALL

instruction 100
call arguments, implementation

limit 103
CALL ON condition 140
CALLCMD

parameter list 217
stub 212

CALLCMD stub 72
calling and linking REXX programs 6
cataloged procedure

customizing 117
EAGL 238
FANCMC 231
FANCMCG 232
FANCMCL 233
FANCMCLG 235
FANCMOEC 236
modifying 125
MVS2OE 239
REXXC 231
REXXCG 232

cataloged procedure (continued)
REXXCL 233
REXXCLG 235
REXXL 238, 243
REXXL - linking stub and compiled

REXX program 207
REXXLINK 242
REXXOEC 236
REXXPLNK 241

CE, NOCE compiler option 20
CEXEC

(CE) compiler option 20
converting output 85, 87
copying output (z/OS) 87
file type 46

character
definition 134
input definition 133
stream definition 134

CHARIN
with LINEIN 139

CHAROUT
partial record 138
with LINEOUT 139

CHARS
end-of-stream detection 140

clause, maximum length 103
closing stream

purpose 138
CMS Batch Facility 48
Cobol, call REXX 264
code, compiled

generating 21, 22, 154
in condensed form 22
optional code 35, 36

coexistence with the interpreter 45
command

Halt Interpretation (HI) 91
NUCXDROP 49
REXXC (z/OS) 9, 11
REXXC (z/VM) 17
REXXCOMP 119
REXXD (z/VM) 15
REXXF 87
Trace End (TE) 96
Trace Start (TS) 96

comments, reserved wording 38, 41
comparison operators 100
compatibility, cross-system 85
compilation

errors, summary 54
messages 155
messages shown in compiler

listing 54
messages summary 54
statistics 58

COMPILE (C) compiler option 21
compiled EXEC

converting from z/OS to MVS
OpenEdition 85

converting from z/OS to z/VM 85

© Copyright IBM Corp. 1991, 2013 289

compiled EXEC (continued)
converting from z/VM to z/OS 86
cross-system compatibility 85
file identifier 20
files needed to run (z/VM) 123
general description 5
organizing with interpretable EXEC

(VSE/ESA) 46
organizing with interpretable EXEC

(z/OS) 45
organizing with interpretable EXEC

(z/VM) 46
producing 20
when to use 20

compiled REXX program
formats 4
general description 3
portability 5
reducing size of 20

compiler and interpreter language
differences 91

compiler invocation
from cataloged procedures 13
in batch (z/VM) 15
overview 9
overview (z/VM) 15
with ISPF panels (z/OS) 11, 12
with the REXXC EXEC (z/OS) 9
with the REXXC EXEC (z/VM) 17
with the REXXD EXEC (z/VM) 15

compiler invocation dialog (REXXD) for
z/VM

customizing 120
using 15

compiler invocation EXEC
customizing 119
introduction (z/OS) 9
introduction (z/VM) 15
using under z/OS 9
using under z/VM 17

compiler invocation shells,
customizing 119

compiler listing
attribute 56
continuing on next line 52
controlling lines per page 29, 41
cross-reference 37, 55
description 51, 59
example 54, 55, 64
included files 53
item 55
line numbers 53
line reference 56
margins indicator 53
message summary 54
name (z/OS) 13
nesting of included files 53
options summary 51
producing 34
sequence numbers 53
source 35, 52
split lines 52
statistics 58
suppressing 34

compiler options
ALT, NOALT 19
ALTERNATE (ALT) 19

compiler options (continued)
BASE 19
C 22
CE, NOCE 20
CEXEC (CE) 20
COMPILE (C) 21
COND, NOCOND 22
CONDENSE (COND) 22
customizing installation defaults

(VSE/ESA) 125
customizing installation defaults

(z/OS) 117
customizing installation defaults

(z/VM) 120
customizing with REXXCOMP

command 119
DD, DD(ddname), NODD 23
DDNAMES (DD) 23
DDNAMES (ddname) 23
defaults supplied by IBM 19
DL, NODL 24
DLINK (DL) 24
DU, NODU 26
DUMP (DU) 25
F, NOF 26
FLAG (F) 26
FO, NOFO 26
FORMAT 26
I, NOI 28
IEXEC (I) 27
LC 30
LIBLEVEL 28
LINECOUNT (LC) 29
LL(n) 29
M 30
MARGINS (M) 30
NOALTERNATE (NOALT) 19
NOC 22
NOCEXEC (NOCE) 20
NOCOMPILE (NOC) 22
NOCONDENSE (NOCOND) 22
NODDNAMES (NODD) 23
NODLINK (NODL) 24
NODUMP (NODU) 25
NOFLAG (NOF) 26
NOFORMAT 26
NOIEXEC (NOI) 27
NOOBJECT (NOOBJ) 30
NOOLDDATE (OPT) 32
NOOPTIMIZE (NOOPT) 33
NOPRINT (NOPR) 34
NOSAA 35
NOSLINE (NOSL) 35
NOSOURCE (NOS) 35
NOTERMINAL (NOTERM) 36
NOTESTHALT (NOTH) 36, 91, 92
NOTRACE (NOTR) 37
NOXREF (NOX) 38
OBJ, NOOBJ 31
OBJECT (OBJ) 30
OLDD/NOOLDD 33
OLDDATE (OPT) 32
OPT/NOOPT 33
OPTIMIZE (OPT) 33
PR, NOPR 34
PRINT (PR) 34
S, NOS 35

compiler options (continued)
SAA 34
shown in compiler listing 51
SL, SL(A), NOSL 35
SLINE (SL) 35
SOURCE (S) 35
TERM, NOTERM 36
TERMINAL (TERM) 36
TESTHALT (TH) 36, 91, 92
TH, NOTH 36
TR, NOTR 37
TRACE (TR) 37
X, X(S), NOX 38
XREF (SHORT) 38
XREF (X) 37, 38

compiler output, types of 9
compiling

a program 155
performing operations during 106
summary of errors 54

compliance checking, SAA 34
compound variables

improving access to 106
performance 108

COND, NOCOND compiler option 22
CONDENSE (COND) compiler

option 22
condense operation 23
condition

NOVALUE 92
SYNTAX 95, 112

CONDITION built-in function 100
condition trap

NOTREADY 140
SYNTAX 140

constants 108
continuation lines in source listing 52
control directive

%COPYRIGHT 38
%INCLUDE 39
%PAGE 41, 52
%STUB 41
%SYSDATE 42
%SYSTIME 42
%TESTHALT 43, 92

convention
use of single quotation mark 136

converting CEXEC output
from z/OS to MVS OpenEdition 85
from z/OS to VSE/ESA 86
from z/OS to z/VM 85
from z/VM to VSE/ESA 87
from z/VM to z/OS 86, 87

copying CEXEC output (z/OS) 87
copyright 38
count

parameter of LINEIN 146
CPPL parameter list 215
CPPL stub 72, 211
CPPLEFPL stub 72, 212
cross-reference listing

description 55
example 58, 62
producing 37

cross-system compatibility 85
current read position

see position pointer 139

290 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

current write position
see position pointer 139

customizing
cataloged procedures 117, 125
compiler invocation dialog

(z/VM) 120
compiler invocation shells

(z/VM) 119
compiler options 119
EAGCUST EXEC 122
installation defaults for compiler

options (VSE/ESA) 125
installation defaults for compiler

options (z/OS) 117
installation defaults for compiler

options (z/VM) 120
Library (z/VM) 120
message repository (z/OS) 118
message repository (z/VM) 123
the Compiler and Library

under z/OS 117
under z/VM 119

the Library 125

D
D2C output string, maximum

length 103
D2X output string, maximum length 103
data set name

as stream name 135
derived defaults 10

data sets required by the compiler
(z/OS) 14

DATATYPE function 112
DBCS (double-byte character set) 93
DCB 14
DCSS (discontiguous saved segment)

defining
for VM/XA and for VM/ESA with

ESA feature 121
placing programs in (z/VM) 77
saving 121

DCSSGEN utility 21
DD (DDNAMES) compiler option 23
DD, DD(ddname), NODD compiler

option 23
ddname

as stream name 135
enumerated 135
generated by STREAM function 135

DDNAME 14
DDNAMES (DD) compiler option 23
DDNAMES (ddname) compiler

option 23
debugging 96
default data set names 10
default input stream

ddname 135
default output stream

ddname 135
default stream

opening 137
definition

character 134
line 134

derived data set names 10

derived default data set names 10
development cycle 4
DIGITS built-in function 100
DIGITS value of NUMERIC

instruction 103, 108
directly linked external programs 25
DL, NODL compiler option 24
DLINK (DL) compiler option 24
DO loops

labels within 108
nesting level 52

double-byte character set (DBCS) 93
DSNAME 10, 14
DU, NODU compiler option 26
dump

compiler diagnostics 25
interphase 25

DUMP (DU) compiler option 25
duplicate labels 56

E
EAGALT 153
EAGALT (message identifier) 153, 181
EAGCMF

REXXF EXEC 8
EAGCML

REXXL EXEC 8
EAGCUST EXEC 122

querying the current customization of
EAGRTPRC 123

specifying that the Library is searched
for in DCSS 123

specifying that the Library not be
loaded from a DCSS 123

specifying the name of the module
containing the Library 123

EAGDCSS EXEC 121
EAGGJASM 250
EAGGJC 256
EAGGJCOB 264
EAGGJPLI 270
EAGGXASM 252
EAGGXC 258
EAGGXCOB 266
EAGGXPLI 272
EAGL

REXXL cataloged procedure 8
EAGL cataloged procedure 238
EAGQRLIB

REXXQ EXEC 8
EAGQRLIB EXEC 110
EAGREX 153
EAGREX (message identifier) 153
EAGRTPRC library loader 48, 122
EAGSIO

message ID 140
EAGV

REXXV EXEC 8
EFPL parameter list 216, 228
EFPL stub 72, 211, 225
end-of-stream

detection 140
enhanced options 10
error

checking 4, 105
list of messages 197

error (continued)
OVERFLOW 112
statistics 54
UNDERFLOW 113

errors 36
runtime 48

ESD (external symbol dictionary)
record 71, 207

ETMODE option of OPTIONS
instruction 93

EVALBLOCK control block handling,
example 216, 229

EXEC file type 46
EXEC handler 5, 21
EXEC, EAGQRLIB 110
EXECCOMM interface

enhancements 101
optimization stoppers 107

EXECIO
purpose 134

EXECLOAD command 21
executing compiled programs 4
exponent, maximum value 103
exponentiation (**) operator 97
EXPOSE option of PROCEDURE

instruction 109
extended architecture (XA) mode 6
extended parameter list 221
external function, frequently

invoked 109
external programs, directly linked 25
external references, example of

resolving 81
external routine

frequently invoked 109
linking to a REXX program 80

external symbol dictionary (ESD)
record 71, 207

F
F, NOF compiler option 26
FANC

REXXC EXEC 8
under z/OS 9

FANCMC
REXXC cataloged procedure 8

FANCMC cataloged procedure 231
FANCMCG

REXXCG cataloged procedure 8
FANCMCG cataloged procedure 232
FANCMCL

REXXCL cataloged procedure 8
FANCMCL cataloged procedure 233
FANCMCLG

REXXCLG cataloged procedure 8
FANCMCLG cataloged procedure 235
FANCMF

REXXF EXEC 8
under z/OS 87

FANCMOEC
REXXOEC cataloged procedure 8

FANCMOEC cataloged procedure 236
FANDDN 14, 24
FANV

REXXV EXEC 8
under z/OS 88

Index 291

FANxxx 153
FANxxx (message identifier) 153
file identifiers

compiled EXEC 20
requirements for file type 20, 46
source program 18, 119
TEXT file (z/VM) 31

file naming convention (z/VM) 46
FLAG (F) compiler option 26
FO, NOFO compiler option 26
Foreground REXX Compilation panel

(z/OS) 11
FORM built-in function 100
FORMAT compiler option 26
function

calling mechanism 135
function package

building (z/OS) 74
building (z/VM) 76
installation 7, 131

FUZZ built-in function 100

G
generated ddname

usage 135, 140
generating a load module 72, 82
generating compiled code 21, 154

in condensed form 22

H
Halt condition 36, 92, 109
Halt Condition 91
Halt Interpretation (HI) immediate

command 36, 91
help

for compiler invocation dialog 16
for REXX language elements 91

hexadecimal string, maximum
length 103

HI (Halt Interpretation) immediate
command 36, 91

hiding source code 35, 46
host commands 107

I
I, NOI compiler option 28
identifier

of messages 140
IEXEC (I) compiler option 27
IEXEC output 4
IF nesting level 52
implementation limits 103
in-storage control block 214, 226
include data sets 12
informational messages 154
installation 7, 131
instructions

CALL 100
NUMERIC FORM 100
OPTIONS 93, 100
options of 100
PARSE SOURCE 93, 219, 229
PARSE VERSION 94

instructions (continued)
PROCEDURE 109
SIGNAL 94
SIGNAL ON 100
TRACE 96

integer divide (%) operator 97
interface

between compiled programs and
interpreted programs 48

between REXX programs and other
programs 6

for object modules (VSE/ESA) 225
for object modules (z/OS) 205
for TEXT files 221

interlanguage job samples 249
interphase dump 25
INTERPRET 107
interpretable EXEC

organizing with compiled EXEC
(VSE/ESA) 46

organizing with compiled EXEC
(z/OS) 45

organizing with compiled EXEC
(z/VM) 46

interpretable program
invoking from a compiled

program 48
invoking unintentionally 45, 46

interpreter, language differences 91
interrupting program execution 91
invoking the compiler

from cataloged procedures 13
overview (z/OS) 9
overview (z/VM) 15
using JCL statements 13
with ISPF panels (z/OS) 11, 12
with REXXCOMP 13
with the REXXC EXEC (z/OS) 9
with the REXXC EXEC (z/VM) 17
with the REXXD EXEC (z/VM) 15

IRXEXEC
EXEC handler

in-storage control block 214
parameters 213

from Assembler 252
from C 258
from Cobol 266
from PL/I 272

IRXJCL
from Assembler 250
from C 256
from Cobol 264
from PL/I 270

IRXPARMS 131
IRXTSPRM 131

J
job control language 13
job samples, interlanguage 249

L
labels

optimization stopper 107
referenced with SIGNAL 97

labels (continued)
shown in cross-reference listing 56
within loops, performance 108

language differences 91, 103
from the interpreter 91
to the interpreter 97

language level of Compiler 3, 91, 97
language processing 3
language, national 6
LC compiler option 30
length

parameter of CHARIN 143
LIBLEVEL compiler option 28
Library 3, 48

customizing (z/VM) 120
not found 50
selecting version of (z/VM) 122
verifying availability of 109

library loader EAGRTPRC 48, 122
limitation

CALL ON 140
SIGNAL ON 140

limits and restrictions
implementation limits 103
technical restrictions 103

line
definition 134, 135
input definition 133
numbers 52, 55
parameter of LINEIN 146
parameter of LINEOUT 147
width of terminal 101

LINECOUNT (LC) compiler option 29,
41

LINEIN
with CHARIN 139

LINEOUT
padding 138
truncation condition 138
with CHAROUT 139

LINES
end-of-stream detection 140

lines per page, compiler listing 29, 41
LINESIZE built-in function 101
link-editing object modules

description 207
external references 81

linking
object modules to external

routines 72
REXX programs to external

routines 80
TEXT files to external routines 75

listing control directive (%PAGE) 41, 52
literal strings

maximum length 103
performance 108

LL(n) compiler option 29
load module

generating 72, 82
generating from object modules 5
load library 131

location of PROCEDURE instruction
(z/VM) 98

logical segment 121
loops 106

labels within 108

292 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

LRECL 14

M
M compiler option 30
macros 20
MARGINS (M) compiler option 30
MAX function arguments 103
maximum implementation limits 103
member list under z/OS 8
member name in the sample data

set 212
message identifier 153
message repository

customizing (z/OS) 118
customizing (z/VM) 123

message summary in compiler listing 54
messages

compilation
displaying at terminal 36
explanations 155
suppressing 26

data sets required by the compiler
(z/OS) 14

description 54
identifier 140
list of 197
runtime

explanations 181
general description 49

summary 54
traceback 35

MIN function arguments 103
modification level 150
module file 93

generate from TEXT files (z/VM) 5
MULTI

parameter lists 214
MULTI stub 73, 212
multiple labels 56
multiple read

on same stream 140
MVS parameter list 217
MVS stub 72, 212
MVS2OE

example 239

N
name

parameter of CHARIN 143
parameter of CHAROUT 144
parameter of CHARS 145
parameter of LINEIN 146
parameter of LINEOUT 147
parameter of LINES 148
parameter of STREAM 149

naming convention (z/VM) 46
national language selection 6
nesting of control structures

maximum 103
shown in cross-reference listing 52

NetView 92
NOALTERNATE (NOALT) compiler

option 19
NOC compiler option 22

NOCEXEC (NOCE) compiler option 20
NOCOMPILE (NOC) compiler

option 22
NOCONDENSE (NOCOND) compiler

option 22
NODD (NODDNAMES) compiler

option 23
NODDNAMES (NODD) compiler

option 23
NODLINK (NODL) compiler option 24
NODUMP (NODU) compiler option 25,

26
NOFLAG (NOF) compiler option 26
NOFORMAT compiler option 26
NOIEXEC (NOI) compiler option 27
NOOBJECT (NOOBJ) compiler

option 30, 31
NOOLDDATE compiler option 32
NOOPTIMISE 33
NOOPTIMIZE (NOOPT) compiler

option 33
NOPRINT (NOPR) compiler option 34
NOSAA compiler option 35
NOSLINE (NOSL) compiler option 35,

95
NOSOURCE (NOS) compiler options 35
NOTERMINAL (NOTERM) compiler

option 36
NOTESTHALT (NOTH) compiler

option 36, 91, 92
Notices 277
NOTRACE (NOTR) compiler option 37
NOTREADY

condition trap 140
NOVALUE condition 92
NOXREF (NOX) compiler option 38
nucleus extension 77
NUCXDROP command 49
NUCXLOAD command 32
number of PARSE templates 103
numbers 108, 112
NUMERIC DIGITS

performance 108
value 103, 106

NUMERIC FORM instruction 100
NUMERIC instruction 107

O
OBJ, NOOBJ compiler option 31
OBJECT (OBJ) compiler option 30
object module

cataloged procedures,
link-editing 207

data set name 31
deriving name of 71, 207
external routines, linking 72
general description 5
interface (VSE/ESA) 225
interface (z/OS) 205
link-editing 207
linking external routines 72
naming restriction 72, 207
PARSE SOURCE 219, 229
producing 31
search order 219, 229
when to use 31

OBJECT output
background information 31
deriving name of 71
MODULE file (z/OS) 31
object module (z/OS) 72
TEXT file (z/VM) 75
when to use 71

OLDD/NOOLDD compiler option 33
OLDDATE compiler option 32
online help

for compiler invocation dialog 16
for REXX language elements 91

opening data set member
nonexistent 137

opening default stream 137
opening stream

explicitly 137
for read 137
for write 137
implicitly 137
nonexistent 137
purpose 136

operating systems 91
operation

parameter of STREAM 149
operators

\>> (strictly not greater than) 100
\<< (strictly not less than) 100
>> (strictly greater than) 100
>>= (strictly greater than or

equal) 100
<< (strictly less than) 100
<<= (strictly less than or equal) 100
¬>> (strictly not greater than) 100
¬<< (strictly not less than) 100
exponentiation (**) operator 97
integer divide (%) 97
remainder (//) 97
strictly greater than (>>) 100
strictly greater than or equal

(>>=) 100
strictly less than (<<) 100
strictly less than or equal (<<=) 100
strictly not greater than (\>>) 100
strictly not greater than (¬>>) 100
strictly not less than (\<<) 100
strictly not less than (¬<<) 100

OPT/NOOPT compiler option 33
OPTIMISE 33
optimization

description 105
limitations 107
stoppers 107

OPTIMIZE (OPT) compiler option 33
options

enhanced 10
on built-in functions (z/VM) 99
on instructions (z/VM) 100

OPTIONS instruction 100
effect on checking of pad

characters 104
ETMODE option 93

output, forms of 4
OVERFLOW error 112

Index 293

P
packaging

improving (z/OS) 73
improving (z/VM) 76

pad characters 104
padding

record 138
page break, in source listing 41
PAGE listing control directive 41
panel

Batch REXX Compile (z/OS) 12
compiler invocation dialog

(z/VM) 16
Foreground REXX Compile

(z/OS) 11
REXX Compiler Options Specifications

(z/VM) 17
parameter list 214, 227

6-word extended, invocation
with 222

CALLCMD 217
CPPL 215
CPPLEFPL 217
EFPL 216, 228
extended 221
invocation with 222
MVS 217
tokenized 222
VSE stub 228

parameter-passing convention
CALLCMD 212
CPPL 211
CPPLEFPL 212
EFPL 211
MULTI 212
MVS 212
VSE 225

PARSE SOURCE instruction 93, 219, 229
PARSE VERSION instruction 94
performance and programming

considerations 105, 113
%TESTHALT control directive 107
arithmetic 108
compound variables 106, 108
error checking 105
EXECCOMM interface 107
frequently invoked external routines

and functions 109
host commands 107
improving performance (z/OS) 73
improving performance (z/VM) 76
INTERPRET instruction 107
labels 107
labels within loops 108
literal strings 108
loops 106
NUMERIC DIGITS 106
NUMERIC instruction 107
optimization stoppers 107
PROCEDURE instruction 109
TESTHALT (TH) compiler

option 107, 109
VALUE function 107
variables 108
verifying Library availability 109

persistent stream
definition 136

persistent stream (continued)
end-of-stream detection 140

phase, naming restriction 77
physical segment

defining
for VM/XA and for VM/ESA with

ESA feature 121
saving 121

PL/I, call REXX 270
PLIST 32
portability of compiled REXX

programs 5
position pointer

changing 139
general purpose 139
initial setting 139
limitation 136
purpose of 133
truncated record 140

PR, NOPR compiler option 34
prelink control directive (%STUB) 41
prelink, compilation under z/OS 41
PRINT (PR) compiler option 34
problems

query service level 150
PROCEDURE EXPOSE items 103
PROCEDURE instruction

location of (z/VM) 98
performance 109

program
development cycle 4

purpose
of stream I/O 131

Q
QUERY EXISTS

usage 140
queue entries, length 103
queue entries, maximum number 103
quotes

use with ETMODE option 93
use with literal strings 108

R
read operation

multiple 140
read position

see position pointer 139
RECFM 14
record format

CHAROUT 138
LINEOUT truncation 138
padding 138

record length, maximum value for source
files 103

reentrant modules 71
release level 150
remainder (//) operator 97
renaming program files 20, 46
resolving external references 81
resource authorization 132
restrictions, technical 103
return codes 154

REXX
control directives 91
from Assembler 250
from C 256
from Cobol 264
from PL/I 270
implementation 3, 91
language differences 91

argument counting instruction
(z/VM) 99

built-in functions (z/VM) 100
copyright control directive 38
EXECCOMM interface

(z/VM) 101
exponentiation (**) operator 97
Halt Interpretation (HI) immediate

command 91
include control directive 39
integer divide (%) operator 97
introduction 91
limits on numbers 112
LINESIZE built-in function in

full-screen CMS 101
listing control directive 41
location of PROCEDURE

instruction (z/VM) 98
NOVALUE condition 92
operators 100
OPTIONS instruction 93
options of built-in functions

(z/VM) 99
options of instructions

(z/VM) 100
PARSE SOURCE instruction 93
PARSE VERSION instruction 94
prelink directive 41
remainder (//) operator 97
SIGNAL instruction 94
SOURCELINE built-in

function 94, 96
TE (Trace End) command 96
TS (Trace Start) command 96

language level of Compiler 3
writing applications in (z/OS) 74
writing applications in (z/VM) 76

REXX program
calling and linking 6
invoked as command or program

(z/OS) 72
linking an external routine 80
portability of 5

REXXC cataloged procedure 231
FANCMC 8

REXXC EXEC 9, 18
CEXEC option (z/OS) 20
customizing 117
default data set names 10
DUMP option (z/OS) 20, 25
enhanced options (z/OS) 10
FANC 8
invoking the compiler (z/OS) 9
OBJECT option (z/OS) 31
PRINT option (z/OS) 34

REXXCG cataloged procedure 232
FANCMCG 8

REXXCL cataloged procedure 233
FANCMCL 8

294 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

REXXCLG cataloged procedure 235
FANCMCLG 8

REXXCOMP 13
REXXCOMP command 119
REXXD command 15
REXXD XEDIT 15
REXXDX XEDIT 119
REXXF EXEC

converting CEXEC output 85, 87
copying CEXEC output 87
EAGCMF 8
FANCMF 8

REXXL cataloged procedure 80, 207,
238, 243

EAGL 8
REXXL EXEC 74

customizing 117, 125
default data set names 75
EAGCML 8

REXXLINK cataloged procedure 79, 242
REXXOEC cataloged procedure 85, 236

FANCMOEC 8
REXXPLNK cataloged procedure 78, 241
REXXQ EXEC 110

EAGQRLIB 8
REXXV EXEC

converting CEXEC output 86, 87
copying CEXEC output 88, 89
EAGV 8
FANV 8

running
above 16MB in virtual storage 6
compiled programs 4, 50

runtime 48
batch mode 48
considerations 45
errors 50
including support for HI

command 50
interfaces with interpreted

programs 48
loading the Library (z/VM) 48
messages 49, 181
organizing compiled and interpretable

EXECs (VSE/ESA) 46
organizing compiled and interpretable

EXECs (z/OS) 45
organizing compiled and interpretable

EXECs (z/VM) 46
performance 105
tracing compiled programs 50

S
S, NOS compiler option 35
SAA (Systems Application Architecture)

compliance checking 34
general description 6

SAA compiler option 34
SAA REXX interface 6, 34
sample (MVS2OE) 239
samples, interlanguage job 249
search order

compiled and interpretable
EXECs 20, 45

object modules 218
secondary messages 49

SELECT nesting level 52
service level

of function package 150
SETVAR 49
severe errors 154
SEXEC file type 46
SIGNAL instruction 94
SIGNAL ON condition 140
SIGNAL ON instruction 100
single quotation mark

use with data set name 136
SL, SL(A), NOSL compiler option 35
SLINE (SL) compiler option 35, 94
SOURCE (S) compiler option 35
source code

displayed at terminal 36
hiding 35, 46
included in compiled program 35
referencing at runtime 94

source listing
%PAGE control directive 52
controlling page breaks 41
description 52
example 54, 55, 60
producing 35
with messages 54

SOURCE option of PARSE
instruction 93

source program
file identifier

for REXXC EXEC 18
for REXXCOMP command 119
for REXXD EXEC 15

general description 3
maximum number of lines 103
maximum record length 103

SOURCELINE built-in function 35, 94
split lines in source listing 52
start

parameter of CHARIN 143
parameter of CHAROUT 144

statistics listing, example 63, 64
stem of a variable 109
stream

characteristics 134
default 134
multiple ddnames 140
multiple open 140
name 134
opening explicitly 137
opening for read 137
opening for write 137
opening implicitly 137
opening nonexistent 137
position pointer 133
purpose of closing 138

STREAM function
generating ddname 135, 140

stream I/O 111
definition 133
error detection 140
functions, overview 134
minimum TSO/E REXX level 131
purpose 131, 133

stream_command
parameter of STREAM 149

strict comparison operators 100

string
parameter of CHAROUT 144
parameter of LINEOUT 147

stub
names 212

stub (VSE/ESA)
definition 225
EFPL 225
parameter lists 225
processing sequence

ARXEXEC parameter 225
in-storage control block 226

processing sequence (VSE/ESA) 225
registers set (VSE/ESA) 227
VSE 225
VSE types of stubs 225

stub (z/OS)
CALLCMD 212
CPPL 211
CPPLEFPL 212
definition 211
EFPL 211
linkage editor input 207
MULTI 212
MVS 212
parameter lists 213
parameter-passing conventions 72
processing sequence

in-storage control block 214
IRXEXEC parameter 213

processing sequence (z/OS) 212
registers set (z/OS) 214
types of 211
using REXXL to link program 207

STUB prelink control directive 41
supported data set 138
suppressing

code generation 21, 22
compilation messages 26

symbols, maximum length 103
synonyms for module files 93
SYNTAX

condition 95
condition trap 140

syntax checking 21, 22
syntax notation vii, 129
SYS1.CSSLIB 131
SYS1.MACLIB 131
SYSCEXEC 14
SYSDUMP 14
SYSIEXEC 14
SYSIN 14
SYSLIB 14
SYSPRINT 14
SYSPUNCH 14
System Product Interpreter 91
SYSTERM 14

T
TE (Trace End) command 96
technical restrictions 103
TERM, NOTERM compiler option 36
TERMINAL (TERM) compiler option 36
terminal, finding line width 101
terminating errors 36, 154

Index 295

TESTHALT (TH) compiler option 36, 91,
92

optimization stopper 107
performance 109

TEXT file (z/VM)
Assembler interface to, example 223
call from Assembler program

call type 221
extended parameter list 221
registers 221

deriving name of 71
file identifier 31
general description 4, 5, 32
generating module files from 5
interface 221
linking to Assembler programs 75
PARSE SOURCE information for 93
producing 32
when to use 32

TH, NOTH compiler option 36
Token Service, z/OS 131
tokenized parameter list, argument

string 222
TPA (transient program area) 75, 104
TR, NOTR compiler option 37
TRACE (TR) compiler option 37
TRACE built-in function 96
Trace End (TE) command 96
Trace Start (TS) command 96
traceback messages 35
tracing 96
trademarks 279
transient program area (TPA) 75, 104
transient stream

definition 136
end-of-stream detection 140

truncation
LINEOUT 138
position pointer 140

TS (Trace Start) command 96
TSO/E command

ALLOCATE 137

U
UNDERFLOW error 113

V
VALUE function 99, 107, 111
VALUE option of SIGNAL

instruction 97
variables

keeping track of 105
performance and programming

considerations of 108
setting, shown in cross-reference

listing 57
value, maximum length 103

version level 150
VERSION option of PARSE

instruction 94
virtual storage, running above 16MB 6
VSE parameter list 228
VSE stub 225

W
warning messages 154
WORDPOS built-in function 100
write position

see position pointer 139

X
X, X(S), NOX compiler option 38
X2B built-in function 100
X2D input string, maximum length 103
XA (extended architecture) mode 6
XREF (X) compiler option 37, 38
XREF(SHORT) compiler option 38

Z
z/OS Batch Facility 48
z/VM Batch Facility 18, 48

296 IBM Compiler and Library for REXX on System z V1 R4 User’s Guide and Reference

����

Printed in USA

SH19-8160-06

	Contents
	About This Book
	How to Read the Syntax Notation
	How This Book Is Organized
	How to Send Your Comments

	What's New in Release 4
	IBM Compiler for REXX on System z
	IBM Library for REXX on System z

	Part 1. Programming Reference Information
	Chapter 1. Overview
	Background information about compilers
	The Level of REXX Supported by the Compiler
	Using the Compiler in Program Development
	Background information about error checking

	Forms and Uses of Output
	Porting and Running Compiled REXX Programs
	Calling and Linking REXX Programs
	Running above 16 Megabytes in Virtual Storage
	SAA Compliance
	Choosing the National Language
	Alternate Library Overview
	Stream I/O for TSO/E REXX Function Package
	Alias Definitions and Member Names under z/OS

	Chapter 2. Invoking the Compiler
	Invoking the Compiler under z/OS
	Invoking the Compiler with the REXXC (FANC) EXEC
	Derived Default Data Set Names
	An Example

	Invoking the Compiler with ISPF Panels
	Invoking the Compiler with JCL Statements
	Invoking the Compiler with Cataloged Procedures
	Invoking the Compiler with the 'REXXCOMP' Command
	Standard Data Sets Provided for the Compiler

	Invoking the Compiler under z/VM
	Invoking the Compiler with REXXD
	An Example
	Setting the Compiler Options

	Invoking the Compiler with the REXXC EXEC
	Batch Jobs

	Chapter 3. Compiler Options and Control Directives
	Compiler Options
	ALTERNATE
	BASE
	CEXEC
	Background information about compiled EXECs

	COMPILE
	CONDENSE
	Background information about condensed programs

	DDNAMES
	DLINK
	Background information about directly linked external programs

	DUMP
	FLAG
	FORMAT
	IEXEC
	Background information about calculating record lengths in z/OS

	LIBLEVEL
	LINECOUNT
	MARGINS
	OBJECT
	Background information about using OBJECT output under z/OS
	Background information about using OBJECT output under z/VM
	Background information about using OBJECT output under VSE/ESA

	OLDDATE
	OPTIMIZE
	PRINT
	SAA
	SLINE
	SOURCE
	TERMINAL
	TESTHALT
	TRACE
	XREF

	Control Directives
	%COPYRIGHT
	%INCLUDE
	%PAGE
	%STUB
	%SYSDATE
	%SYSTIME
	%TESTHALT

	Chapter 4. Runtime Considerations
	Organizing Compiled and Interpretable EXECs under z/OS
	Organizing Compiled and Interpretable EXECs under z/VM
	Organizing Compiled and Interpretable EXECs under VSE/ESA
	Use of the Alternate Library (z/OS, z/VM)
	Other Runtime Considerations

	Chapter 5. Understanding the Compiler Listing
	Compilation Summary
	Source Listing
	Messages
	Cross-Reference Listing
	Compilation Statistics
	Examples with Column Numbers
	Example of a Complete Compiler Listing

	Chapter 6. Using Object Modules and TEXT Files
	Initial Considerations
	Object Modules (z/OS)
	Invoking a REXX Program as a Command or a Program
	Improving Packaging and Performance
	Building Function Packages
	Writing Parts of Applications in REXX
	REXXL (z/OS)

	TEXT Files (z/VM)
	Object Modules (VSE/ESA)
	REXXPLNK Cataloged Procedure (VSE/ESA)
	REXXLINK Cataloged Procedure (VSE/ESA)
	REXXL Cataloged Procedure (VSE/ESA)

	Linking External Routines to a REXX Program
	Resolving External References—An Example
	Under z/OS
	Under z/VM
	Under VSE/ESA

	Chapter 7. Converting CEXEC Output between Operating Systems
	Compiling on One System and Running on Another System
	Converting from z/OS to MVS OpenEdition
	Converting from z/OS to z/VM
	Converting from z/OS to VSE/ESA
	Converting from z/VM to z/OS
	Converting from z/VM to VSE/ESA

	Copying CEXEC Output
	REXXF (FANCMF) under z/OS
	REXXF under z/VM
	REXXV (FANV) under z/OS
	REXXV under z/VM

	Chapter 8. Language Differences between the Compiler and the Interpreters
	Differences from the Interpreters on VM/ESA Release 2.1, TSO/E Version 2 Release 4, and REXX/VSE
	Compiler Control Directives
	Halt Condition
	NOVALUE Condition
	OPTIONS Instruction
	PARSE SOURCE Instruction
	PARSE VERSION Instruction
	RANDOM Built-In Function
	SOURCELINE Built-In Function
	Start of Clause
	SYSVAR Function
	TRACE Instruction and TRACE Built-In Function
	TS (Trace Start) and TE (Trace End) Commands

	Differences to Earlier Releases of the Interpreters
	SIGNAL Instruction
	Integer Divide (%) and Remainder (//) Operations
	Exponentiation (**) Operation
	Location of PROCEDURE Instructions
	Binary Strings
	Templates Used by PARSE, ARG, and PULL
	PROCEDURE EXPOSE and DROP
	DO LOOPs
	DBCS Symbols
	VALUE Built-In Function
	Argument Counting
	Options of Built-In Functions
	Built-In Functions
	Options of Instructions
	Strict Comparison Operators
	LINESIZE Built-In Function in Full-Screen CMS
	Enhancement to the EXECCOMM Interface

	Chapter 9. Limits and Restrictions
	Implementation Limits
	Technical Restrictions
	z/OS Restrictions
	z/VM restrictions
	VSE/ESA restrictions
	C restriction

	Chapter 10. Performance and Programming Considerations
	Performance Considerations
	Optimization, Optimization Stoppers, and Error Checking
	Keeping Track of Variables
	Performing Operations at Compilation Time
	Eliminating Several Evaluations
	Improving Access to Compound Variables
	Optimization Stoppers
	Optimization Limitations

	Arithmetic
	Literal Strings
	Variables
	Compound Variables
	Labels within Loops
	Procedures
	TESTHALT Option
	Frequently Invoked External Routines

	Programming Considerations
	Verifying the Availability of the Library
	VALUE Built-In Function
	Stream I/O
	Determining whether a Program is Interpreted or Compiled
	Creating REXX Programs for Use with the Alternate Library (z/OS, z/VM)
	Limits on Numbers

	Part 2. Customizing the Compiler and Library
	Chapter 11. Customizing the IBM Compiler and Library for REXX on z/OS
	Modifying the Cataloged Procedures Supplied by IBM
	Customizing the REXXC EXEC
	Customizing the REXXL EXEC
	Message Repository

	Chapter 12. Customizing the IBM Compiler and Library for REXX on z/VM
	Customizing the Compiler Invocation Shells
	Modifying the Function of the Compiler Invocation Shells
	The REXXCOMP Command

	Setting Up Installation Defaults for the Compiler Options

	Customizing the Compiler Invocation Dialog
	Customizing the Library
	Defining the Library as a Physical Segment
	Saving the Physical Segment
	Defining the Library as a Logical Segment
	Selecting the Version of the Library
	Using the EAGCUST EXEC

	Customizing the Message Repository to Avoid a Read/Write A-Disk
	Files Needed to Run Compiled REXX Programs

	Chapter 13. Customizing the Library under VSE/ESA
	Part 3. Stream I/O for TSO/E REXX
	Chapter 14. How to Read the Syntax Diagrams
	Chapter 15. Installing the Function Package
	Preparation
	Assembly, Link-Edit, and Verification
	Installations with Multiple Function Packages
	Usage Considerations

	Chapter 16. Understanding the Stream I/O Concept
	The Basic Elements of Stream I/O
	The TSO/E REXX Stream I/O Implementation
	The Stream I/O Functions
	Naming Streams
	Transient and Persistent Streams
	Opening and Closing Streams
	Implicit versus Explicit Opening of Streams
	Opening Streams for Read or Write Operations
	Opening Nonexistent Streams
	Closing Streams

	Stream Formats
	Position Pointer Details
	End-of-Stream Treatment
	Error Treatments
	Stream I/O Processing Errors
	Messages

	Multiple Read Operations

	Chapter 17. Stream I/O Functions
	CHARIN (Character Input)
	CHAROUT (Character Output)
	CHARS (Characters Remaining)
	LINEIN (Line Input)
	LINEOUT (Line Output)
	LINES (Lines Remaining)
	STREAM (Operations)

	Part 4. Messages
	Chapter 18. Message Format and Return Codes
	Message Format
	Return Codes

	Chapter 19. Compilation Messages
	Chapter 20. Runtime Messages
	Chapter 21. Stream I/O Messages
	Part 5. Appendixes
	Appendix A. Interface for Object Modules (z/OS)
	ISPF Restrictions on Load Modules
	Earlier Releases of ISPF
	ISPF Version 4 Release 1
	ISPF for z/OS Version 1 Release 5.5

	Link-Editing of Object Modules
	DLINK Example

	Stubs
	Stub Names
	Processing Sequence for Stubs
	Parameter List for Invoking IRXEXEC
	In-Storage Control Block

	Parameter Lists
	Registers for Stubs
	CPPL Parameter List
	EFPL Parameter List
	CPPLEFPL
	MVS Parameter List
	CALLCMD Parameter List

	Search Order
	Testing Stubs

	PARSE SOURCE

	Appendix B. Interface for TEXT Files (z/VM)
	The Call from the Assembler Program
	Call Type
	Registers
	Extended PLISTs

	What the REXX Program Gets
	Invocation with a Tokenized PLIST Only
	Invocation with an Extended PLIST or a 6-Word Extended PLIST

	Example of an Assembler Interface to a TEXT File

	Appendix C. Interface for Object Modules (VSE/ESA)
	Stubs
	Processing Sequence for Stubs
	Parameter List for Invoking ARXEXEC
	In-Storage Control Block

	Parameter Lists
	Registers for VSE/ESA Stubs
	VSE Parameter List
	EFPL Parameter List

	PARSE SOURCE

	Appendix D. The z/OS Cataloged Procedures Supplied by IBM
	REXXC (FANCMC)
	REXXCG (FANCMCG)
	REXXCL (FANCMCL)
	REXXCLG (FANCMCLG)
	REXXOEC (FANCMOEC)
	REXXL (EAGL)
	MVS2OE (Only Hardcopy Sample)

	Appendix E. The VSE/ESA Cataloged Procedures Supplied by IBM
	REXXPLNK
	REXXLINK
	REXXL

	Appendix F. Interlanguage Job Samples
	Calling REXX from Assembler
	EAGGJASM for Calling IRXJCL
	EAGGXASM for Calling IRXEXEC

	Calling REXX from C
	EAGGJC for Calling IRXJCL
	EAGGXC for Calling IRXEXEC

	Calling REXX from Cobol
	EAGGJCOB for Calling IRXJCL
	EAGGXCOB for Calling IRXEXEC

	Calling REXX from PL/I
	EAGGJPLI for Calling IRXJCL
	EAGGXPLI for Calling IRXEXEC

	Appendix G. Notices
	Programming Interface Information
	Trademarks

	Glossary of Terms and Abbreviations
	Related Publications
	IBM Compiler and Library for REXX on System z Publications
	Other IBM Publications
	ISPF Publications
	Learning REXX
	REXX Reference
	TSO/E and MVS/ESA Publications
	OpenEdition Publication
	VM/SP Publications
	VM/XA SP Publications
	VM/ESA Publications
	VSE/ESA Publication
	C Publication
	CMS Publications
	z/VM Publications
	z/OS Publications
	OS/390 Publications

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

