7/08S

XL C/C++
Language Reterence

Version 2 Release 1.1

<|lI!

SC14-7308-01

Note
FBefore using this information and the product it supports, read the information in|‘Notices” on page 661]

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1998, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information .
Who should read this information .
How to use this information .

How this information is organized .
Conventions

. ix
. ix
. ix
. ix

. X

z/OS XL C/C++ and related documents xv

Chapter 1. Scope and Imkage .
Scope. . .
Block/local scope

Function scope

Function prototype scope .

File/global scope .

Examples of scope in C.

Class scope (C++ only) .

Namespaces of identifiers .

Name hiding (C++ only)
Program linkage . .

Internal linkage

External linkage .

No linkage . .

Language linkage (C++ only)

Chapter 2. Lexical elements.
Tokens .
Keywords .
Identifiers .
Literals . .
Punctuators and operators
Source program character set
Multibyte characters
Escape sequences
The Unicode standard .
Digraph characters .
Trigraph sequences .
Comments.

Chapter 3. Data objects and
declarations

Overview of data objects and declaratlons .
Overview of data objects .

Overview of data declarations and def1n1t10ns .

_Static_assert declaration (C11) .

static_assert declaration (C++11)

Storage class specifiers. .
The auto storage class specifier .
The static storage class specifier
The extern storage class specifier .

The mutable storage class specifier (C++ only).

The register storage class specifier .
Type specifiers

Integral types.

Boolean types

© Copyright IBM Corp. 1998, 2015

O 000 NINIONU W WWwN N =

LW WD LD W L) WD W e T
PO RN OWwWW

. 4
.41
.4
.43
.45
. 46
. 48
.49
.49
.51
. 52
. 52
. 54
. 54
. 55

Floating-point types . 56
Fixed point decimal types (C only) . 58
Character types . . . 59
The void type . 59
The atomic type (C11) . 60
User-defined types . . 60
The auto type specifier (C++11) . .76
The decltype(expression) type specifier (C++11). .78
The constexpr specifier (C++11).83
Compatibility of arithmetic types (C only) . 85
Type qualifiers . . . 85
The __callback type qual1f1er . 87
The atomic qualifier (C11) . 87
The const type qualifier . 88
The __far type qualifier (C only) . 88
The __ptr32 type qualifier . .90
The __ptr64 type qualifier (C only) .91
The restrict type qualifier. .91
The volatile type qualifier .92
Type attributes (IBM extension). . .93
The amode31 | amode64 type attr1bute (C only) 93
The armode | noarmode type attribute (C only) 94
The may_alias type attribute. . . 94
Chapter 4. Declarators . . 97
Overview of declarators . . 97
Examples of declarators . 99
Type names .. 99
Pointers . . 100
Pointer ar1thmet1c . 101
Type-based aliasing . 102
Compatibility of pomters (C only) . 103
Arrays. . . 104
Variable length arrays . 106
Compatibility of arrays (C only) . 107
References (C++ only) . . 107
Initializers . . 108
Initialization and storage classes . .. 109

Designated initializers for aggregate types (C
only) . .. 110
Initialization of structures and unions . 112
Initialization of enumerations . . 114
Initialization of pointers . . 116
Initialization of arrays . . 116
Initialization of references (C++ only) . 119
Initialization of complex types (C11) . 123
Declarator qualifiers . . . 124
The _Packed qualifier (C only) . 124
The _Export qualifier (C++ only) . . 125
Variable attributes (IBM extension) . . 125
The aligned variable attribute . . 126
Chapter 5. Type conversions. . 129
Arithmetic conversions and promotions . 129
Integral conversions . . 130
iii

Boolean conversions .

Floating-point conversions .

Packed decimal conversions (C only)

Usual arithmetic conversions . .

Integral and floating-point promotions .
Lvalue-to-rvalue conversions .
Pointer conversions

Conversion to void* . -
Reference conversions (C++ only)
Function argument conversions

Chapter 6. Expressions and operators
Lvalues and rvalues .
Primary expressions .
Names
Literals .
Integer constant expressions
Identifier expressions (C++ only) .
Parenthesized expressions () .
Generic selection (C11) ..
Scope resolution operator :: (C++ only).
Generalized constant expressions (C++11) .
Function call expressions
Member expressions .
Dot operator . .
Arrow operator ->
Unary expressions.
Increment operator ++
Decrement operator --
Unary plus operator +
Unary minus operator - .
Logical negation operator ! .
Bitwise negation operator ~
Address operator &
Indirection operator *.
The typeid operator (C++ only) .
The __alignof__ operator (IBM extension) .
The sizeof operator
The typeof operator (IBM extensron) .
The digitsof and precisionof operators (C only)
The __real and __imag operators (IBM
extension) e
Binary expressions.
Assignment operators
Multiplication operator *
Division operator /
Remainder operator %
Addition operator + .
Subtraction operator -
Bitwise left and right shift operators << >>
Relational operators < > <= >= .
Equality and inequality operators == !=
Bitwise AND operator &
Bitwise exclusive OR operator / .
Bitwise inclusive OR operator |
Logical AND operator && .
Logical OR operator || .
Array subscripting operator []
Comma operator , . e
Pointer to member operators F ->* (C++ only)
Conditional expressions .

iV z/0S V2R1.0 XL C/C++ Language Reference

. 130
. 130
. 132
. 133
. 135
. 137
. 137
. 139
. 139
. 139

141

. 141
. 143
. 143
. 144
. 144
. 145
. 145
. 146
. 148
. 149
. 149
. 150
. 150
. 150
. 151
. 151
. 152
. 153
. 153
. 153
. 153
. 154
. 155
. 155
. 156
. 157
. 159

160

. 160
. 160
. 161
. 163
. 163
. 164
. 164
. 164
. 165
. 165
. 167
. 168
. 168
. 169
. 169
. 170
. 171
. 172

173

. 174

Types in conditional C expressions (C only) .

Types in conditional C++ expressions (C++
only) . .
Examples of cond1tlonal express1ons
Cast expressions
Cast operator (). A
The static_cast operator (C++ only)
The reinterpret_cast operator (C++ only)
The const_cast operator (C++ only) .
The dynamic_cast operator (C++ only) .
Compound literal expressions .
new expressions (C++ only)
Placement syntax .
Initialization of objects created w1th the new
operator . .
Handling new allocat1on fa1lure .
delete expressions (C++ only) .
throw expressions (C++ only) .
Operator precedence and associativity .
Reference collapsing (C++11) .

Chapter 7. Statements
Labeled statements

Labels as values (IBM extens1on)
Expression statements

Resolution of ambiguous statements (C++ only)

Block statements
Example of blocks.
Selection statements .
The if statement
The switch statement.
Iteration statements
The while statement .
The do statement .
The for statement .
Jump statements
The break statement .
The continue statement .
The return statement .
The goto statement
Null statement . .
Inline assembly statements (IBM extens1on)
Restrictions on inline assembly statements.

Chapter 8. Functions .
Function declarations and definitions
Function declarations.
Function definitions . .
Examples of function declarat1ons
Examples of function definitions .
Compatible functions (C only). .
Multiple function declarations (C++ only) .
Function storage class specifiers .
The static storage class specifier .
The extern storage class specifier .
Function specifiers .
The inline function specifier
The _Noreturn function specifier . .
The __cdecl function specifier (C++ only) .
The _Export function specifier (C++ only) .

. 175

. 175
. 175
. 176
. 176
. 177
. 179
. 181
. 182
. 185
. 185
. 187

. 188
. 188
. 189
. 190
. 190
. 194

. 197
. 197
. 198

. 198
198

. 199
. 200
. 200
. 200
. 202
. 206
. 206
. 207
. 208
. 210
. 210
. 210
. 212
. 213
. 215
. 215
. 218

. 219
. 219
. 219
. 220
. 223
. 224
. 224
. 225
. 225
. 226
. 226
. 227
. 228
. 230
. 231
. 233

Function return type specifiers
Function return values
Function declarators .
Parameter declarations
Trailing return type (C++11)
Function attributes (IBM extension) .
always_inline
amode31 | amode64 (C only)
armode | noarmode (C only) .
gnu_inline
malloc.
used .
The main() function . .
Command-line arguments .
Function calls
Pass by value
Pass by pointer . . .
Pass by reference (C++ only)
Allocation and deallocation functions (C++ only)
Default arguments in C++ functions (C++ only)
Restrictions on default arguments (C++ only)
Evaluation of default arguments (C++ only) .
Pointers to functions .
Atomic library (C11) .
Macros (C11)
Types (C11) .
Atomic integer types (Cll)
Atomic library functions (C11).
Atomic library (C++11) .
The memory_order type (C++11)
Lock-free property (C++11).
The atomic types (C++11)
Operations on atomic types (C++11).
Flag type and operations (C++11)
Initialization (C++11) .
Memory synchronization order (C++1l)
Constexpr functions (C++11)

Chapter 9. Namespaces (C++ only)
Defining namespaces .

Declaring namespaces

Creating a namespace alias . .
Creating an alias for a nested namespace .
Extending namespaces

Namespaces and overloading .

Unnamed namespaces

Namespace member definitions
Namespaces and friends.

The using directive o
The using declaration and namespaces .
Explicit access .

Inline namespace defmltlons (C++11)

Chapter 10. Overloading (C++ only)
Overloading functions
Restrictions on overloaded functlons
Overloading operators .
Overloading unary operators .

. 234
. 235
. 235
. 236
. 239
. 242
. 243
. 243
. 244
. 244
. 245
. 246
. 247
. 248
. 249
. 250
. 251
. 252

253
254
255

. 256
. 257
. 259
. 259
. 260
. 261
. 262
. 279
. 279
. 280
. 280
. 296
. 308
. 311
. 312
. 313

317

. 317
. 317
. 317
. 318
. 318
. 319
. 319
. 321
. 321
. 322
. 322
. 323
. 324

327

. 327
. 328
. 329
. 331

Overloading increment and decrement operators 332

Overloading binary operators .

. 333

Overloading assignments
Overloading function calls .
Overloading subscripting
Overloading class member access.
Overload resolution . .
Implicit conversion sequences . .
Resolving addresses of overloaded funct1ons

Chapter 11. Classes (C++ only)
Declaring class types .
Using class objects.
Classes and structures
Scope of class names . .
Incomplete class declaratlons .
Nested classes .
Local classes.
Local type names .

Chapter 12. Class members and

friends (C++ only)
Class member lists
Data members .
Member functions .
Inline member functlons
Constant and volatile member functlons
Virtual member functions
Special member functions
Member scope .
Pointers to members .
The this pointer
Static members . .
Using the class access operators w1th statlc
members . ..
Static data members .
Static member functions .
Member access .
Friends
Friend scope.
Friend access

Chapter 13. Inheritance (C++ only)
Derivation
Inherited member access
Protected members
Access control of base class members
The using declaration and class members .
Overloading member functions from base and
derived classes . .
Changing the access of a class member
Multiple inheritance .
Virtual base classes
Multiple access . .
Ambiguous base classes .
Virtual functions .
Ambiguous virtual functlon calls
Virtual function access
Abstract classes.

. 334
. 335
. 336
. 337
. 337
. 339

344

. 347
. 347
. 348
. 350
. 351
. 352
. 352
. 354
. 355

. 357
. 357
. 358
. 359
. 359
. 360
. 360
. 360
. 361
. 362
. 363
. 366

. 366
. 367
. 369
. 371
. 373
. 377
. 379

381

. 383
. 386
. 386
. 387
. 388

. 389
. 391
. 392
. 393
. 394
. 395
. 399
. 403
. 404
. 404

Contents V

Chapter 14. Special member functions

. 407
. 407
. 408
. 409
. 409
.41
. 413
. 414
. 418
. 420
. 422
. 423
. 424
. 425
. 426
. 427
. 429
. 430

(C++ only). e e .
Overview of constructors and destructors .
Constructors. .
Default Constructors .
Delegating constructors (C++1l)
Constexpr constructors (C++11)
Explicit initialization with constructors .
Initialization of base classes and members.

Constructor execution order for class objects .

Destructors .
Pseudo- destructors
User-defined conversions
Conversion constructors . .
Explicit conversion constructors .
Conversion functions.
Explicit conversion operators (C++11)
Copy constructors . .
Copy assignment operators.

Chapter 15. Templates (C++ only)
Template parameters .

Type template parameters .

Non-type template parameters

Template template parameters.

Default arguments for template parameters

Naming template parameters as friends (C++11)

Template arguments .
Template type arguments
Template non-type arguments .
Template template arguments .
Class templates. .
Class template declaratlons and def1n1t10ns
Static data members and templates .
Member functions of class templates
Friends and templates
Function templates
Template argument deduct1on
Overloading function templates .
Partial ordering of function templates .
Template instantiation
Explicit instantiation .
Implicit instantiation .
Template specialization .
Explicit specialization
Partial specialization .
Variadic templates (C++11) .
Name binding and dependent names
The typename keyword .
The template keyword as quallﬁer

Chapter 16. Exceptlon handllng (C++
only) .
try blocks .
Nested try blocks .
catch blocks .
Function try block handlers
Arguments of catch blocks .
Matching between exceptions thrown and
caught.

Vi z/0S V2R1.0 XL C/C++ Language Reference

. 433

. 434
. 434
. 434
. 435
. 435

436

. 437
. 437
. 438
. 440
. 441
. 443
. 444
. 445
. 445
. 446
. 448
. 454
. 455
. 456
. 456
. 459
. 460
. 460
. 465
. 468
. 480
. 482
. 482

. 485
. 485
. 486
. 487
. 488
. 492

. 492

Order of catching .
throw expressions . .
Rethrowing an exception
Stack unwinding
Exception specifications .
Special exception handling functrons
The unexpected() function .
The terminate() function.
The set_unexpected() and set termlnate()
functions .

. 493
. 494
. 494
. 496
. 498
. 501
. 501
. 502

. 503

Example using the except1on handllng funct1ons 504

Chapter 17. Preprocessor directives
Macro definition directives .
The #define directive .
The #undef directive .
The # operator .
The ## operator . .
Standard predefined macro names
File inclusion directives .
The #include directive .
The #include_next directive (IBM extensmn)
Conditional compilation directives
The #if and #elif directives .
The #ifdef directive
The #ifndef directive .
The #else directive.
The #endif directive .
Extension of #endif and #else (IBM extens10n)
Message generation directives .
The #error directive
The #line directive.
The null directive (#) .
Pragma directives .
The _Pragma preprocessmg operator
Standard pragmas .
C99 preprocessor features adopted in C++11

Chapter 18. zZ/OS XL C/C++ pragmas

Pragma directive syntax.
Scope of pragma directives .
IPA effects
Summary of comp1ler pragmas by functlonal
category . .
Language element control .
C++ template pragmas . .
Floating point and integer control
Error checking and debugging. .
Listings, messages and compiler information
Optimization and tuning
Object code control
Portability and migration
Individual pragma descriptions .
#pragma arch_section (IBM extension) .
#pragma chars .
#pragma checkout.
#pragma comment.
#pragma convert
#pragma convlit
#pragma csect .

507

. 507
. 507
. 512
. 513
. 514
. 514
. 516
. 516
. 517
. 518
. 519
. 520
. 521
. 521
. 521

522

. 523
. 523
. 523
. 525
. 525
. 526
. 526
. 526

531

. 531
. 531
. 532

. 532
. 532
. 533
. 533
. 534

534

. 534
. 535
. 536
. 536
. 537
. 539
. 540
. 541
. 543
. 544
. 545

#pragma define (C++ only).
#pragma disjoint .o .
#pragma do_not_instantiate (C++ only).
#pragma enum . .

#pragma environment (C only)
#pragma execution_frequency .
#pragma export

#pragma extension

#pragma filetag.

#pragma hashome (C++ only)
#pragma implementation (C++ only)
#pragma info (C++ only) .
#pragma inline (C only) / noinline .
#pragma insert_asm (C only) .
#pragma ishome (C++ only)
#pragma isolated_call

#pragma langlvl (C only)

#pragma leaves.

#pragma linkage (C only)

#pragma longname/nolongname .
#pragma map o
#pragma margins/nomargins .
#pragma namemangling (C++ only) .
#pragma namemanglingrule (C++ only)
#pragma object_model (C++ only)
#pragma operator_new (C++ only) .
#pragma option_override

#pragma options (C only)

#pragma pack .

#pragma page (C only)

#pragma pagesize (C only) .

#pragma priority (C++ only)

#pragma prolog (C only) #pragma epllog (C

only) .

#pragma reachable .
#pragma report (C++ only).
#pragma runopts .
#pragma sequence.
#pragma skip (C only)
#pragma strings

#pragma subtitle (C only)
#pragma target (C only) .
#pragma title (C only)
#pragma unroll.

#pragma variable .
#pragma wsizeof .
#pragma XOPTS

Pragma directives for parallel processmg .

. 546
. 547
. 549
. 549
. 551
. 552
. 553
. 554
. 556
. 556
. 558
. 558
. 559
. 560
. 561
. 562
. 564
. 565
. 566
. 569
. 570
. 572
. 573
. 575
. 577
. 578
. 579
. 581
. 583
. 587
. 587
. 588

. 589
. 590
. 591
. 593
. 594
. 595
. 596
. 597
. 597
. 598
. 599
. 601
. 602
. 604
. 604

Chapter 19. Compller predeflned
macros .
General macros.

Macros indicating the z / OS XL C/ C++ compller

Macros related to the platform

Macros related to compiler features . .
Macros related to compiler option settings.
Macros related to language levels

Chapter 20. The IBM XL C/C++
language extensions .

General IBM extensions .

Extensions for C11 compat1b1hty

C++11 compatibility .

Extensions for GNU C/C++ Compatlblllty
Extensions for Unicode support .
Extensions for vector processing support .

Appendix A. C and C++ compatlblllty
on the z/0OS platform

Appendix B. Common Usage C
language level for the z/OS platform

Appendix C. Conforming to POSIX
1003.1

Appendix D. Implementation-defined
behavior

Appendix E. Accessibility .

Using assistive technologies .
Keyboard navigation of the user 1nterface
z/0S information .

Notices . e
Policy for unsupported hardware.
Minimum supported hardware
Programming interface information .
Trademarks .

Standards

Index .

Contents

. 623
. 623

625

. 626
. 627
. 627
. 632

. 639
. 639
. 640
. 640
. 642
. 643
. 643

. 645

. 649

. 651

. 653

. 659
. 659
. 659
. 659

. 661
. 662
. 663
. 663
. 663
. 663

. 665

vii

viili z/0S V2R1.0 XL C/C++ Language Reference

About this information

This information describes the syntax, semantics, and IBM® z/0S® XL, C/C++
implementation of the C and C++ programming languages. Although the XL C
and XL C++ compilers conform to the specifications maintained by the ISO
standards for the C and C++ programming languages, the compilers also
incorporate many extensions to the core languages. These extensions have been
implemented with the aims of enhancing usability in specific operating
environments, supporting compatibility with other compilers, and supporting new
hardware capabilities. For example, on the z/OS platform, language constructs
have been added to provide support for data types that are specific to the IBM
System z® environment.

Note: As of z/OS V1R7, IBM z/0OS C/C++ compiler has been rebranded to IBM
z/0OS XL C/C++.

Who should read this information

This information is a reference for users who already have experience
programming applications in C or C++. Users new to C or C++ can still use this
information to find language and features unique to XL C/C++; however, this
reference does not aim to teach programming concepts nor to promote specific
programming practices.

How to use this information

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and other graphical elements (see below for the
conventions used).

While this information covers both standard and implementation-specific features,
it does not include the following topic:

+ Standard C and C++ library functions and headers. For standard C/C++ library
information, refer to the Standard C++ Library Reference.

How this information is organized

This information is organized to loosely follow the structure of the ISO standard
language specifications and topics are grouped into similar headings.

¢ Chapters 3 through 10 discuss language elements that are common to both C
and C++, including scope and linkage, lexical elements, data types, declarations,
declarators, type conversions, expressions, operators, statements, and functions.
Throughout these chapters, both standard features and extensions are discussed.

¢ Chapters 11 through 18 discuss standard C++ features exclusively, including
classes, overloading, inheritance, templates, and exception handling.

* Chapters 19 through 22 discuss directives to the preprocessor and macros that
are predefined by the compiler.

* Chapters 23 through 25 discuss the compatibility and conformance on the z/OS
platform.

© Copyright IBM Corp. 1998, 2015 ix

* The last chapters discuss implementation-defined behavior, accessibility, and

The following table shows the typographical conventions used in the information.

Example

Lowercase commands, executable
names, compiler options, and

The compiler provides basic
invocation commands, xlc and x1C
(xle++), along with several other
compiler invocation commands to
support various C language levels
and compilation environments.

Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

The default setting of a parameter
of a compiler option or directive.

nomaf | maf

Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined

To compile and optimize
myprogram.c, enter: x1c myprogram.c
-03.

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to

Meaning

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

language.

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++

notices.
Conventions

Typographical conventions
Table 1. Typographical conventions
Typeface Indicates

bold

directives.

italics

underlining

monospace

names.

Qualifying elements (icons)
delineate segments of text as follows:

Table 2. Qualifying elements
Qualifier/Icon

C only, or C only begins

C only ends

C++ only, or C++ only

begins

C++
C++
C++ only ends
X z/0OS V2R1.0 XL C/C++ Language Reference

Table 2. Qualifying elements (continued)

Qualifier/Icon

Meaning

IBM extension, or IBM
extension begins

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

Cl11, or C11 begins
C11

Q
=
=

@)
[—y
=
o
=)
Q.
w

The text describes a feature that is introduced into standard C
as part of C11.

C++11, or C++11 begins

The text describes a feature that is introduced into standard

C++ as part of C++11.

C++11 ends

z/0S only The text describes a feature that is supported only on the z/OS
implementation of the compilers.

C++ and C11, or C++ and
C11 begin

> C+ b Cll |

C++ and C11 end

The text describes a feature that is supported by both C++ and
C11 standards.

Syntax diagrams

Throughout this information, diagrams illustrate z/OS XL C/C++ syntax. This
section will help you to interpret and use those diagrams.

¢ Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The »—— symbol indicates the beginning of a command, directive, or statement.

The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The »— symbol indicates that a command, directive, or statement is continued

from the previous line.

The —>< symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with

the —| symbol.

* Required items are shown on the horizontal line (the main path):

About this information X1

xii

v
A

»>—keyword—required_argument

Optional items are shown below the main path:

»>—keyword >
|—opt ional_argumen t—l

If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main
path.

»»>—keyword required_argumentl >«
|:requ ired_argumen tZJ

If choosing one of the items is optional, the entire stack is shown below the
main path.

»»—keyword <
i:gpt ional_argument]:l

ptional_argument2

An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

v

v
A

»»—keyword repeatable_argument

The item that is the default is shown above the main path.

efault_argumen t—l
»>—keyword lternate_argument

v
A

Keywords are shown in nonitalic letters and should be entered exactly as shown.

Variables are shown in italicized lowercase letters. They represent user-supplied
names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

(1) () (3) (4) (5) \ (9) (10

pragi omment: (ompiler:
at
timestamp:
(6)
copyright:
user‘—I I_ (7) (8)
B

"—token_sequence—"

Notes:

1

This is the start of the syntax diagram.

z/0S V2R1.0 XL C/C++ Language Reference

N G = W

9
10

The symbol # must appear first.

The keyword pragma must appear following the # symbol.

The name of the pragma comment must appear following the keyword pragma.
An opening parenthesis must be present.

The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

A comma must appear between the comment type copyright or user, and an
optional character string.

A character string must follow the comma. The character string must be
enclosed in double quotation marks.

A closing parenthesis is required.

This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment (date)
#pragma comment (user)
#pragma comment (copyright,"This text will appear in the module")

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

About this information Xxiii

Xiv z/0S V2R1.0 XL C/C++ Language Reference

z/0OS XL C/C++ and related documents

z/0S XL C/C++ documents address a variety of application development tasks
and are provided in multiple formats.

For a summary of the information contained in z/OS XL C/C++ documents see
"z/0OS XL C/C++ and related documents" in z/OS XL C/C++ User’'s Guide.

Softcopy documents
The z/OS XL C/C++ documents are supplied in PDF and IBM BookMaster®

formats on the following CD: z/OS Collection, SK3T-4269. They are also available at
[http:/ /www.ibm.com /software /awdtools /czos /library /}

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to Adobe license terms) from the Adobe Web site at
[http:/ /www.adobe.com|

You can also browse the documents on the World Wide Web by visiting the z/OS
library at |ttp:/ /www.ibm.com/systems/z/0s/zos/bkserv /}

Note: For further information on viewing and printing softcopy documents and
using IBM BookManager®, see z/OS Information Roadmap.

Softcopy examples

For information on the labelling used to identify examples that are available as
softcopy files, see "Softcopy examples" in z/OS XL C/C++ User’s Guide.

z/0OS XL C/C++ on the World Wide Web

Additional information on z/OS XL C/C++ is available on the World Wide Web on
the z/OS XL C/C++ home page at: |http:/ /www.ibm.com/software/awdtools/

This page contains late-breaking information about the z/OS XL C/C++ product,
including the compiler, the C/C++ libraries, and utilities. There are links to other
useful information, such as the z/OS XL C/C++ information library and the
libraries of other z/OS elements that are available on the Web. The z/OS XL
C/C++ home page also contains links to other related Web sites.

Technical support

Additional technical support is available from the z/OS XL C/C++ Support page.
This page provides a portal with search capabilities to a large selection of technical
support FAQs and other support documents. You can find the z/OS XL C/C++
Sui i ort page on the Web at: |http:/ /www.ibm.com /software/awdtools/czos /|

PP 1
If you cannot find what you need, you can e-mail:

compinfo@ca.ibm.com

© Copyright IBM Corp. 1998, 2015 XV

http://www.ibm.com/software/awdtools/czos/library/
http://www.adobe.com
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/software/awdtools/czos/support
http://www.ibm.com/software/awdtools/czos/support

xvi

For the latest information about z/OS XL C/C++, visit the product information site
at: |http: / /www.ibm.com /software /awdtools/czos /|

For information about boosting performance, productivity and portability, visit the
C/C++ Cafe at: |http:/ / www-949.ibm.com /software /rational / cafe /community /|

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this document or any other z/OS XL
C/C++ documentation, send your comments by e-mail to:

compinfo@ca.ibm.com

Be sure to include the name of the document, the part number of the document,
the version of, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

z/0OS V2R1.0 XL C/C++ Language Reference

http://www.ibm.com/software/awdtools/czos/
http://www-949.ibm.com/software/rational/cafe/community/ccpp
http://www-949.ibm.com/software/rational/cafe/community/ccpp

Chapter 1. Scope and linkage

Scope is the largest region of program text in which a name can potentially be used
without qualification to refer to an entity; that is, the largest region in which the
name is potentially valid. Broadly speaking, scope is the general context used to
differentiate the meanings of entity names. The rules for scope combined with
those for name resolution enable the compiler to determine whether a reference to
an identifier is legal at a given point in a file.

The scope of a declaration and the visibility of an identifier are related but distinct
concepts. Scope is the mechanism by which it is possible to limit the visibility of
declarations in a program. The visibility of an identifier is the region of program
text from which the object associated with the identifier can be legally accessed.
Scope can exceed visibility, but visibility cannot exceed scope. Scope exceeds
visibility when a duplicate identifier is used in an inner declarative region, thereby
hiding the object declared in the outer declarative region. The original identifier
cannot be used to access the first object until the scope of the duplicate identifier
(the lifetime of the second object) has ended.

Thus, the scope of an identifier is interrelated with the storage duration of the
identified object, which is the length of time that an object remains in an identified
region of storage. The lifetime of the object is influenced by its storage duration,
which in turn is affected by the scope of the object identifier.

Linkage refers to the use or availability of a name across multiple translation units

or within a single translation unit. The term translation unit refers to a source code
file plus all the header and other source files that are included after preprocessing

with the #include directive, minus any source lines skipped because of conditional
preprocessing directives. Linkage allows the correct association of each instance of
an identifier with one particular object or function.

Scope and linkage are distinguishable in that scope is for the benefit of the
compiler, whereas linkage is for the benefit of the linker. During the translation of
a source file to object code, the compiler keeps track of the identifiers that have
external linkage and eventually stores them in a table within the object file. The
linker is thereby able to determine which names have external linkage, but is
unaware of those with internal or no linkage.

The distinctions between the different types of scopes are discussed in [“Scope” o]
age 2| The different types of linkages are discussed in [“Program linkage” on page]
7i

Related reference:

[‘Storage class specifiers” on page 48|

[Chapter 9, “Namespaces (C++ only),” on page 317

© Copyright IBM Corp. 1998, 2015 1

Scope

The scope of an identifier is the largest region of the program text in which the
identifier can potentially be used to refer to its object. In C++, the object being
referred to must be unique. However, the name to access the object, the identifier
itself, can be reused. The meaning of the identifier depends upon the context in
which the identifier is used. Scope is the general context used to distinguish the
meanings of names.

The scope of an identifier is possibly noncontiguous. One of the ways that
breakage occurs is when the same name is reused to declare a different entity,
thereby creating a contained declarative region (inner) and a containing declarative
region (outer). Thus, point of declaration is a factor affecting scope. Exploiting the
possibility of a noncontiguous scope is the basis for the technique called information
hiding.

The concept of scope that exists in C was expanded and refined in C++. The
following table shows the kinds of scopes and the minor differences in
terminology.

Table 3. Kinds of scope

C C++
block
[Fnciod
i|Functi0r1 prototypel| [Function prototypel
[slobal namespace]
namespace
clas

In all declarations, the identifier is in scope before the initializer. The following
example demonstrates this:

int x;
void f() {
int x = x;

}

The x declared in function () has local scope, not global scope.
Related reference:
[Chapter 9, “Namespaces (C++ only),” on page 317

Block/local scope

A name has local scope or block scope if it is declared in a block. A name with local
scope can be used in that block and in blocks enclosed within that block, but the
name must be declared before it is used. When the block is exited, the names
declared in the block are no longer available.

Parameter names for a function have the scope of the outermost block of that
function. Also, if the function is declared and not defined, these parameter names
have function prototype scope.

When one block is nested inside another, the variables from the outer block are
usually visible in the nested block. However, if the declaration of a variable in a

2 z/0S V2R1.0 XL C/C++ Language Reference

nested block has the same name as a variable that is declared in an enclosing
block, the declaration in the nested block hides the variable that was declared in
the enclosing block. The original declaration is restored when program control
returns to the outer block. This is called block visibility.

Name resolution in a local scope begins in the immediately enclosing scope in
which the name is used and continues outward with each enclosing scope. The
order in which scopes are searched during name resolution causes the
phenomenon of information hiding. A declaration in an enclosing scope is hidden
by a declaration of the same identifier in a nested scope.

Related reference:

[“Block statements” on page 199

Function scope

The only type of identifier with function scope is a label name. A label is implicitly
declared by its appearance in the program text and is visible throughout the
function that declares it.

A label can be used in a goto statement before the actual label is seen.
Related reference:

[‘Labeled statements” on page 197

Function prototype scope
In a function declaration (also called a function prototype) or in any function
declarator—except the declarator of a function definition—parameter names have
function prototype scope. Function prototype scope terminates at the end of the
nearest enclosing function declarator.

Related reference:

[“Function declarations” on page 219|

File/global scope

A name has file scope if the identifier's declaration appears outside of any
block. A name with file scope and internal linkage is visible from the point where
it is declared to the end of the translation unit.

Global scope or global namespace scope is the outermost namespace scope of
a program, in which objects, functions, types and templates can be defined. A
name has global namespace scope if the identifier's declaration appears outside of all
blocks, namespaces, and classes.

A name with global namespace scope and internal linkage is visible from the point
where it is declared to the end of the translation unit.

A name with global (namespace) scope is also accessible for the initialization of
global variables. If that name is declared extern, it is also visible at link time in all
object files being linked.

A user-defined namespace can be nested within the global scope using namespace
definitions, and each user-defined namespace is a different scope, distinct from the

global scope.

Related reference:

[Chapter 9, “Namespaces (C++ only),” on page 317

Chapter 1. Scope and linkage 3

[“Internal linkage” on page 7|

[‘The extern storage class specifier” on page 51

Examples of scope in C

The following example declares the variable x on line 1, which is different from the
x it declares on line 2. The declared variable on line 2 has function prototype scope
and is visible only up to the closing parenthesis of the prototype declaration. The
variable x declared on line 1 resumes visibility after the end of the prototype

declaration.

1 int x = 4; /* variable x defined with file scope */
2 long myfunc(int x, Tong y); /* variable x has function */
3 /* prototype scope */
4 int main(void)

5

6 [* . ../

7}

The following program illustrates blocks, nesting, and scope. The example shows
two kinds of scope: file and block. The main function prints the values 1, 2, 3, 0,
3, 2, 1 on separate lines. Each instance of i represents a different variable.

#include <stdio.h>

int i = 1 /* i defined at file scope */
int main(int argc, char * argv[])

— {

1

1 printf("%d\n", i); /* Prints 1 =/

1

1 — {

12 inti=2,3=3; /* i and j defined at block scope */

12 /* global definition of i is hidden */

12 printf("%d\n%d\n", i, j); /* Prints 2, 3 */

1 2

12'_ {

1 23 int i = 0; /* i is redefined in a nested block */

1 23 /* previous definitions of i are hidden */

123 printf("%d\n%d\n", i, j); /* Prints 0, 3 */

1 2 L

1 2

12 printf("%d\n", 1); /* Prints 2 =/

1 2

1 L }

1

1 printf("%d\n", 1); /* Prints 1 =/

1

1 return 0;

1

Loy

Class scope (C++ only)

A name declared within a member function hides a declaration of the same name
whose scope extends to or past the end of the member function's class.

When the scope of a declaration extends to or past the end of a class definition, the
regions defined by the member definitions of that class are included in the scope
of the class. Members defined lexically outside of the class are also in this scope. In
addition, the scope of the declaration includes any portion of the declarator
following the identifier in the member definitions.

4 2/0S V2R1.0 XL C/C++ Language Reference

The name of a class member has class scope and can only be used in the following
cases:

e In a member function of that class
e In a member function of a class derived from that class
* After the . (dot) operator applied to an instance of that class

 After the . (dot) operator applied to an instance of a class derived from that
class, as long as the derived class does not hide the name

* After the -> (arrow) operator applied to a pointer to an instance of that class

 After the -> (arrow) operator applied to a pointer to an instance of a class
derived from that class, as long as the derived class does not hide the name

 After the :: (scope resolution) operator applied to the name of a class

* After the :: (scope resolution) operator applied to a class derived from that class
Related reference:

[Chapter 11, “Classes (C++ only),” on page 347

[“Scope of class names” on page 351|

[“Member scope” on page 361

[“Friend scope” on page 377

[“Access control of base class members” on page 387

[Scope resolution operator :: (C++ only)” on page 148

Namespaces of identifiers

Namespaces are the various syntactic contexts within which an identifier can be
used. Within the same context and the same scope, an identifier must uniquely
identify an entity. Note that the term namespace as used here applies to C as well as
C++ and does not refer to the C++ namespace language feature. The compiler sets
up namespaces to distinguish among identifiers referring to different kinds of
entities. Identical identifiers in different namespaces do not interfere with each
other, even if they are in the same scope.

The same identifier can declare different objects as long as each identifier is unique
within its namespace. The syntactic context of an identifier within a program lets
the compiler resolve its namespace without ambiguity.

Within each of the following four namespaces, the identifiers must be unique:
* Tags of the following types must be unique within a single scope:

— Enumerations

— Structures and unions

* Members of structures, unions, and classes must be unique within a single
structure, union, or class type.

e Statement labels have function scope and must be unique within a function.
* All other ordinary identifiers must be unique within a single scope:

— C function names (C++ function names can be overloaded)

— Variable names

— Names of function parameters

— Enumeration constants

— typedef names

You can redefine identifiers in the same namespace using enclosed program blocks.

Chapter 1. Scope and linkage 5

Structure tags, structure members, variable names, and statement labels are in four
different namespaces. No name conflict occurs among the items named student in
the following example:

int get_item()
{

struct student /* structure tag */

{
char student[20]; /* structure member */
int section;
int id;

} student; /* structure variable %/

goto student;
student:; /* null statement label =/
return 0;

}

The compiler interprets each occurrence of student by its context in the program:
when student appears after the keyword struct, it is a structure tag; when it
appears in the block defining the student type, it is a structure member variable;
when it appears at the end of the structure definition, it declares a structure
variable; and when it appears after the goto statement, it is a label.

Name hiding (C++ only)

If a class name or enumeration name is in scope and not hidden, it is visible. A
class name or enumeration name can be hidden by an explicit declaration of that
same name — as an object, function, or enumerator — in a nested declarative
region or derived class. The class name or enumeration name is hidden wherever
the object, function, or enumerator name is visible. This process is referred to as
name hiding.

In a member function definition, the declaration of a local name hides the
declaration of a member of the class with the same name. The declaration of a
member in a derived class hides the declaration of a member of a base class of the
same name.

Suppose a name x is a member of namespace A, and suppose that the members of
namespace A are visible in namespace B through the use of a declaration. A
declaration of an object named x in namespace B will hide A: :x. The following
example demonstrates this:

#include <iostream>

#include <typeinfo>
using namespace std;

namespace A {
char x;

}s

namespace B {
using namespace A;
int x;
1
int main() {
cout << typeid(B::x).name() << endl;

}

See the output of the above example:
int

6 2z/0S V2R1.0 XL C/C++ Language Reference

The declaration of the integer x in namespace B hides the character x introduced by
the using declaration.

Related reference:
[Chapter 11, “Classes (C++ only),” on page 347
[“Member functions” on page 359

[“Member scope” on page 361

[Chapter 9, “Namespaces (C++ only),” on page 317

Program linkage

Linkage determines whether identifiers that have identical names refer to the same
object, function, or other entity, even if those identifiers appear in different
translation units. The linkage of an identifier depends on how it was declared.
There are three types of linkages:

* |“Internal linkage”| : identifiers can only be seen within a translation unit.

* [“External linkage” on page §|: identifiers can be seen (and referred to) in other
translation units.

* [“No linkage” on page 8 identifiers can only be seen in the scope in which they
are defined.

Linkage does not affect scoping, and normal name lookup considerations apply.

You can also have linkage between C++ and non-C++ code fragments,
which is called language linkage. Language linkage enables the close relationship
between C++ and C by allowing C++ code to link with that written in C. All
identifiers have a language linkage, which by default is C++. Language linkage
must be consistent across translation units, and non-C++ language linkage implies
that the identifier has external linkage.

Related reference:

[“The static storage class specifier” on page 49|

[‘The extern storage class specifier” on page 51|

[“Function storage class specifiers” on page 225|

[“Type qualifiers” on page 85|

[Anonymous unions|

Internal linkage

The following kinds of identifiers have internal linkage:

* Objects, references, or functions explicitly declared static

* Objects or references declared in namespace scope (or global scope in C) with
the specifier const ZJ#¥5Fll or constexpr ¥ and neither explicitly declared
extern, nor previously declared to have external linkage

* Data members of an anonymous union

. Function templates explicitly declared static

. Identifiers declared in the unnamed namespace

A function declared inside a block will usually have external linkage. An object
declared inside a block will usually have external linkage if it is specified extern. If
a variable that has static storage is defined outside a function, the variable has
internal linkage and is available from the point where it is defined to the end of
the current translation unit.

Chapter 1. Scope and linkage 7

If the declaration of an identifier has the keyword extern and if a previous
declaration of the identifier is visible at namespace or global scope, the identifier
has the same linkage as the first declaration.

External linkage

S [n global scope, identifiers for the following kinds of entities declared
without the static storage class specifier have external linkage:

* An object

A function

If an identifier in C is declared with the extern keyword and if a previous
declaration of an object or function with the same identifier is visible, the identifier
has the same linkage as the first declaration. For example, a variable or function
that is first declared with the keyword static and later declared with the keyword

extern has internal linkage. However, a variable or function that has no linkage
and was later declared with a linkage specifier will have the linkage that was

expressly specified.

In namespace scope, the identifiers for the following kinds of entities
have external linkage:

* A reference or an object that does not have internal linkage

A function that does not have internal linkage

* A named class or enumeration

* An unnamed class or enumeration defined in a typedef declaration
* An enumerator of an enumeration that has external linkage

* A template, unless it is a function template with internal linkage

* A namespace, unless it is declared in an unnamed namespace

If the identifier for a class has external linkage, then, in the implementation of that
class, the identifiers for the following entities will also have external linkage:

¢ A member function
e A static data member
* A class of class scope

* An enumeration of class scope

C++

Related reference:

[‘The _Export qualifier (C++ only)” on page 125

[‘The _Export function specifier (C++ only)” on page 233]

No linkage
The following kinds of identifiers have no linkage:
* Names that have neither external nor internal linkage

* Names declared in local scopes (with exceptions of certain entities declared with
the extern keyword)

* Identifiers that do not represent an object or a function, including labels,
enumerators, typedef names that refer to entities with no linkage, type names,
function parameters, and template names lCEEE

8 2z/0S8V2R1.0 XL C/C++ Language Reference

You cannot use a name with no linkage to declare an entity with linkage. For
example, you cannot use the name of a structure or enumeration or a typedef
name referring to an entity with no linkage to declare an entity with linkage. The
following example demonstrates this:
int main() {

struct A { };
// extern A al;

typedef A myA;

// extern myA a2;
1

The compiler will not allow the declaration of al with external linkage. Structure A
has no linkage. The compiler will not allow the declaration of a2 with external
linkage. The typedef name myA has no linkage because A has no linkage.

Language linkage (C++ only)

Linkage between C++ and non-C++ code fragments is called language linkage. All
function types, function names, and variable names have a language linkage,
which by default is C++.

You can link C++ object modules to object modules produced using other source
languages such as C by using a linkage specification.

Linkage specification syntax

»>—extern—string literal declaration J ><
}

|—dec larat ion—|

The string_literal is used to specify the linkage associated with a particular
function. String literals used in linkage specifications should be considered as
case-sensitive. All platforms support the following values for string_literal:

"C++" Unless otherwise specified, objects and functions have this default linkage
specification.

"c" Indicates linkage to a C procedure.

Calling shared libraries that were written before C++ needed to be taken into
account requires the #include directive to be within an extern "C" {} declaration.

extern "C" {
#include "shared.h"

}

The following example shows a C printing function that is called from C++.

// in C++ program
extern "C" int displayfoo(const char *);
int main() {
return displayfoo("hello");
1

/* in C program */
#include <stdio.h>
extern int displayfoo(const char * str) {
while (*str) {
putchar(*str);

Chapter 1. Scope and linkage 9

10

putchar(' ');
++str;

}
putchar('\n');
}

CCNX02J

// This example illustrates linkage specifications.
extern "C" int printf(const charx,...);
int main(void)

printf("hello\n");
}

Here the string_literal "C" tells the compiler that the routine printf(const
char*,...) is a C function.

Note: This example is not guaranteed to work on all platforms. The only safe way
to declare a C function in a C++ program is to include the appropriate header. In
this example you would substitute the line of code with extern with the following
line:

#include <stdio.h>

Name mangling (C++ only)

Name mangling is the encoding of function and variable names into unique names
so that linkers can separate common names in the language. Type names may also
be mangled. Name mangling is commonly used to facilitate the overloading
feature and visibility within different scopes. The compiler generates function
names with an encoding of the types of the function arguments when the module
is compiled. If a variable is in a namespace, the name of the namespace is mangled
into the variable name so that the same variable name can exist in more than one
namespace. The C++ compiler also mangles C variable names to identify the
namespace in which the C variable resides.

The scheme for producing a mangled name differs with the object model used to
compile the source code: the mangled name of an object of a class compiled using
one object model will be different from that of an object of the same class compiled
using a different object model. The object model is controlled by compiler option
or by pragma.

Name mangling is not desirable when linking C modules with libraries or object
files compiled with a C++ compiler. To prevent the C++ compiler from mangling
the name of a function, you can apply the extern "C" linkage specifier to the
declaration or declarations, as shown in the following example:
extern "C" {

int fl(int);

int f2(int);

int f3(int);
b

This declaration tells the compiler that references to the functions f1, f2, and f3
should not be mangled.

The extern "C" linkage specifier can also be used to prevent mangling of functions
that are defined in C++ so that they can be called from C. For example,

z/0S V2R1.0 XL C/C++ Language Reference

extern "C" {
void p(int){
/* not mangled =/
1

1

In multiple levels of nested extern declarations, the innermost extern specification

prevails.

extern "C" {
extern "C++" {
void func();
}

}

In this example, func has C++ linkage.

Related reference:

[“The extern storage class specifier” on page 51|

[‘The extern storage class specifier” on page 226|
[#pragma linkage (C only)” on page 566|

[“The _ cdecl function specifier (C++ only)” on page 231

Chapter 1. Scope and linkage

11

12 z/0S V2R1.0 XL C/C++ Language Reference

Chapter 2. Lexical elements

A lexical element refers to a character or groupings of characters that might legally
appear in a source file. This chapter contains discussions of the basic lexical
elements and conventions of the C and C++ programming languages.

Tokens

Source code is treated during preprocessing and compilation as a sequence of
tokens. A token is the smallest independent unit of meaning in a program, as
defined by the compiler.

Adjacent identifiers, keywords, and literals must be separated with white space.
Other tokens should be separated by white space to make the source code more
readable. White space includes blanks, horizontal and vertical tabs, new lines, form
feeds, and comments.

There are the following different types of tokens:

e ["Keywords”

+ |“Identifiers” on page 16|

+ [“Literals” on page 19

+ [“Punctuators and operators” on page 30|

Keywords

Keywords are identifiers reserved by the language for special use. Although you can
use them for preprocessor macro names, it is considered poor programming style.
Only the exact spelling of keywords is reserved. For example, auto is reserved but
AUTO is not.

Keywords for the C and C++ languages
Table 4. C and C++ keywords

double int struct
break else long switch
case enum register typedef
char externE return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while
Notes:

1. In C++11, the keyword auto is no longer used as a storage class specifier.
Instead, it is used as a type specifier, which can deduce the type of an auto variable from
the type of its initializer expression.

2. The keyword extern was previously used as a storage specifier or as part of a linkage
specification. The C++11 standard adds a third usage to use this keyword to specify

explicit instantiation declarations. IEESENE

© Copyright IBM Corp. 1998, 2015 13

14

Keywords for the C language only

Standard C at the C99 and C11 levels also reserves the following keywords:
Table 5. C99 and C11 keywords

_Atomi inlind®

_Bool _Noretur
_Complex _Static_asserfl
_Generi restricl
_Imaginar

Notes:

1. These keywords are introduced due to the C11 language level. IEEINE

2. The keyword _Imaginary is reserved for possible future use. For complex number
functionality, use _Complex; see [Complex literals (C only)| for details.

3. The keyword inline is only recognized under compilation with ¢99 and above, or with
the LANGLVL(STDC99) or LANGLVL(EXTC99) options.

The keyword restrict is only recognized under compilation with ¢99 and above, or
with the LANGLVL(STDC99) or LANGLVL(EXTC99) options.

>

C++
Keywords for the C++ language only

The C++ language also reserves the following keywords:

Table 6. C++ keywords

bool dynamic_cast new this
catch decltype throw
class explicit operator true
char16_{l export private try
char32_{l false protected typeid
const_cast friend public typename
constexpr inline reinterpret_cast using
delete mutable static_assert virtual
namespace static_cast wchar_t
template
Note:

1. These keywords are reserved only at the C++11 language level. IICEEIE

C++

Keywords for language extensions (IBM extension)

In addition to standard language keywords, the z/OS XL C/C++ compiler reserves
the following keywords for use in language extensions:

z/0S V2R1.0 XL C/C++ Language Reference

Table 7. Keywords for C and C++ language extensions

asm __imag__ (C only) __signed

_asm __inline__ __static_asserfl

_asm__ _Noreturr® typeof (C only)

__attribute__ _real__ (C only) __typeof _

__attribute __ restrict vecto

__complex__ (C only) __restrict__ __vecto

__const__ __signed__ __volatile (C++ only)
__extension__ __volatile__ (C++ only)

Notes:

1. _ static_assert is a keyword for C language extension for compatibility with

the C++11 standard.

2. _Noreturn is a keyword for C++ language extension for compatibility with the
C11 standard. I
3. These keywords are recognized only when the VECTOR compiler option is in effect.

The z/0OS XL C/C++ compiler reserves the following keywords as
language extensions for compatibility with C99.

Table 8. Keywords for C++ language extensions related to C99

restrict

C++

z/0OS XL C/C++ additionally reserves the following for use as extensions:
Table 9. Keywords for C/C++ language extensions on z/OS

C++
__callback
_Packed __cdecl _p:rgi
ked _Export —ptr
P P _fa
Note:

1. Recognized only when the METAL compiler option is in effect, which is
currently only supported by z/OS XL C.

z/0OS XL C/C++ also reserves the following keywords for future use in both C and
C++:

Table 10. Reserved keywords for future use

__alignof__
__extension__
__label__

_Pragma

2/0S

More detailed information regarding the compilation contexts in which extension
keywords are valid is provided in the sections that describe each keyword.

Chapter 2. Lexical elements 15

16

Identifiers

Identifiers provide names for the following language elements:
* Functions

* Objects

* Labels

* Function parameters

* Macros and macro parameters

* Type definitions

* Enumerated types and enumerators
e Structure and union names

. Classes and class members
. Templates

. Template parameters

. Namespaces

An identifier consists of an arbitrary number of letters, digits, or the underscore
character in the form:

Y __letter ><

»—Eletter‘
_4 digit—

Characters in identifiers

The first character in an identifier must be a letter or the _ (underscore) character;
however, beginning identifiers with an underscore is considered poor
programming style.

The compiler distinguishes between uppercase and lowercase letters in identifiers.
For example, PROFIT and profit represent different identifiers. If you specify a
lowercase a as part of an identifier name, you cannot substitute an uppercase A in
its place; you must use the lowercase letter.

Note: If the names have external linkage, and you do not specify the
LONGNAME compiler option, names are truncated to eight characters and
uppercased in the object file. For example, STOCKONHOLD and stockonhold will both
refer to the same object. For more information on external name mapping, see
[“External identifiers (z/OS only).”|

The universal character names for letters and digits outside of the basic source
character set are allowed in C++ and at the C99 language level. In C++,
you must compile with the LANGLVL(UCS) option for universal character name
support.

External identifiers (z/OS only)

By default, external names in C object modules, and external names without C++
linkage in C++ object modules, are formatted as follows:

* All characters are converted to uppercase.

z/0S V2R1.0 XL C/C++ Language Reference

¢ Names longer than 8 characters are truncated to 8 characters.
* Each underscore character is converted to an at sign (@).

For example, if you compile the following C program:

int test name[4] = { 4, 8, 9, 10 };
int test_namesum;

int main(void) {
int 1,
test_namesum = 0;

for (i = 05 i < 4; i++)
test _namesum += test name[i];
printf("sum is %d\n", test_namesum);

}

The C compiler displays the following message:
ERROR CCN3244 ./sum.c:2 External name TEST NAM cannot be redefined.

The compiler changes the external names test_namesum and test_name to
uppercase and truncates them to 8 characters. If you specify the CHECKOUT
compile-time option, the compiler will generate two informational messages to this
effect. Because the truncated names are now the same, the compiler produces an
error message and terminates the compilation.

To avoid this problem, you can do either of the following:

* Map long external names in the source code to 8 or less characters that you
specify, by using the #pragma map directive. For example:

#pragma map(verylongname,"sname")

¢ Compile with the LONGNAME compiler option, and use the binder to produce
a program object in a PDSE, or use the prelinker. This allows up to 1024
characters in external names, mixed-case characters, and preserves the
underscore character. For more information on the binder, prelinker, and
LONGNAME compile-time option, see the z/OS XL C/C++ User’s Guide.

IBM-provided functions have names that begin with IBM, CEE, and PLIL In order
to prevent conflicts between runtime functions and user-defined names, the
compiler changes all static or extern variable names that begin with IBM, CEE,
and PLI in your source program to IB$, CE$, and PL$, respectively, in the object
module. If you are using interlanguage calls, avoid using these prefixes altogether.
The compiler of the calling or called language may or may not change these
prefixes in the same manner as the z/OS XL C/C++ compiler does.

To call an external program or access an external variable that begins with IBM,

CEE, or PLI, use the #pragma map preprocessor directive. The following is an
example of #pragma map that forces an external name to be IBMENTRY:

#pragma map (ibmentry,"IBMENTRY")
Reserved identifiers

Identifiers with two initial underscores or an initial underscore followed by an
uppercase letter are reserved globally for use by the compiler.

Identifiers that begin with a single underscore are reserved as identifiers
with file scope in both the ordinary and tag namespaces.

Chapter 2. Lexical elements 17

18

Identifiers that begin with a single underscore are reserved in the global
namespace.

Although the names of system calls and library functions are not reserved words if
you do not include the appropriate headers, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for the maintainers of your
code and can cause errors at link time or run time. If you include a library in a
program, be aware of the function names in that library to avoid name
duplications. You should always include the appropriate headers when using
standard library functions.

The __func__ predefined identifier

The C99 predefined identifier _ func__ makes a function name available for use
within the function. The z/0OS XL C/C++ compiler supports this feature
as an IBM extension. Immediately following the opening brace of each
function definition, _ func__ is implicitly declared by the compiler. The resulting
behavior is as if the following declaration had been made:

static const char _ func__[] = "function-name";

where function-name is the name of the lexically-enclosing function. The function
name is not mangled.

The function name is qualified with the enclosing class name or function
name. For example, if foo is a member function of class X, the predefined identifier
of foo is X::foo. If foo is defined within the body of main, the predefined identifier
of foo is main::X::foo.

The names of template functions or member functions reflect the
instantiated type. For example, the predefined identifier for the template function
foo instantiated with int, template<classT> void foo() is foo<int>.

For debugging purposes, you can explicitly use the _ func__ identifier to return
the name of the function in which it appears. For example:

#include <stdio.h>

void myfunc(void) {
printf("%s\n", func_);
printf("size of _ func__ = %d\n", sizeof(__func_));

}

int main() {
myfunc();
}

The output of the program is:

myfunc
size of __func__ =7

When the assert macro is used inside a function definition, the macro adds the
name of the enclosing function on the standard error stream.

Related reference:

[“Identifier expressions (C++ only)” on page 145|

[‘The Unicode standard” on page 35|

[“Keywords” on page 13|

[“#pragma map” on page 570

z/0S V2R1.0 XL C/C++ Language Reference

[“#pragma longname /nolongname” on page 569

[“Function declarations and definitions” on page 219|

[Variables in specified registers (IBM extension)|

[“Inline assembly statements (IBM extension)” on page 215|

[‘Command-line arguments” on page 248|

Literals

The term literal constant, or literal, refers to a value that occurs in a program and
cannot be changed. The C language uses the term constant in place of the
noun litera/ M - The adjective literal adds to the concept of a constant the
notion that we can speak of it only in terms of its value. A literal constant is
nonaddressable, which means that its value is stored somewhere in memory, but
we have no means of accessing that address.

Every literal has a value and a data type. The value of any literal does not change
while the program runs and must be in the range of representable values for its

type.

There are the following different types of literals:

* [“Integer literals”|

* [“Boolean literals” on page 23|

+ [“Floating-point literals” on page 23|
. [“Fixed-point decimal literals” on page 27
+ [“Character literals” on page 27]

* |“String literals” on page 28|

+ [“Pointer literal (C++11)” on page 30|

Integer literals

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Integer literals are numbers that do not have a decimal point or an exponential part.
They can be represented as:

* [Decimal integer literals|

+ [Hexadecimal integer literals|

* |Octal integer literals|

An integer literal might have a prefix that specifies its base, or a suffix that
specifies its type.

Chapter 2. Lexical elements 19

Integer literal syntax

decimal_constant
Eoctal_constant— 1
hexadecimal_constant— L i:u—
11 u—
LL
u
- b—
L—
11—
LL—

The long long features

There are two long long features:
* the C99 long long feature
* the non-C99 long long feature

Note: The syntax of integer literals is the same for both of the Tong long features.
BT Both of the two features have the corresponding extension parts:

* the C99 Tong long feature with the associated IBM extensions
* the non-C99 IBM Tong long extension

LBV
Types of integer literals outside of C99 and C++11

The following table lists the integer literals and shows the possible data types
when the C99 Tong long feature is not enabled.

Table 11. Types of integer literals outside of C99 and C++110

v
A

Representation | Suffix | Possible data types
int |unsigned |long unsigned long | BEETEE | SIETE
int int int
long long | unsigned
int long long
int
Decimal None |+ + +
Octal, Hex None |+ + + +
All uorl + +
Decimal lorlL + +
Octal, Hex lor L + +
All Both u +
or U
and 1
or L
Decimal 11 + +
or LL
Octal, Hex 11 or + +
LL

20 z/0S V2R1.0 XL C/C++ Language Reference

Table 11. Types of integer literals outside of C99 and C++118 (continued)

Representation | Suffix | Possible data types

All Both u +
orU
and 11
or LL

Notes:

1. When none of the Tong long features are enabled, types of integer literals include all
the types in this table except the last two columns.

2. I The unsigned Tong int type is not required here in the C++98 and C++03
standards. The C++ compiler includes the type in the implementation for compatibility
purposes only.

Types of integer literals in C99 and C++11

When both the C99 and non-C99 Tong long features are disabled, integer literals
that have one of the following suffixes cause a severe compile-time error:

e 1lorlLL
e BothuorUand 11 or LL

BT A decimal literal without a u or U in the suffix is represented by the
unsigned Tong long int type if both of the following conditions are satisfied. In
this case, the compiler generates a message to indicate that the value of the literal
is too large for any signed integer type.

* The value of the literal can fit into the unsigned Tong Tong int type.

¢ The value cannot fit into any of the possible data types that are indicated in the
following table.

BT To strictly conform to the C++11 standard, the compiler
introduces the extended integer safe behavior to ensure that a signed value never
becomes an unsigned value after a promotion. After you enable this behavior, if a
decimal integer literal that does not have a suffix containing u or U cannot be
represented by the long Tong int type, the compiler issues an error message to
indicate that the value of the literal is out of range. The extended integer safe
behavior is the only difference between the C99 long Tong feature with the
associated IBM extensions and the C99 Tong long feature. EINE

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is enabled.

Table 12. Types of integer literals in C99 and C++11

Representation | Suffix | Possible data types
int |unsigned |long unsigned long unsigned long
int int long int long int |long int

Decimal None |+ +

Octal, Hex None |+ + + +

All uorlU + +

Decimal lTorl +

Octal, Hex lTor L + +

Chapter 2. Lexical elements 21

22

Table 12. Types of integer literals in C99 and C++11 (continued)

Representation | Suffix | Possible data types
All Both u +
orU
and 1
or L
Decimal 11 +
or LL
Octal, Hex 11 or + +
LL
All Both u +
or U
and 11
or LL
Note:
1. BETEM The compiler does not support this type if the extended integer safe
behavior is enabled.
2. In 32-bit mode, an unsuffixed decimal constant of type signed long long is
given the type signed long in 64-bit mode when the constant is less than
ULLONG_MAX.

Decimal integer literals

A decimal integer literal contains any of the digits 0 through 9. The first digit cannot
be 0. Integer literals beginning with the digit 0 are interpreted as an octal integer
literal rather than as a decimal integer literal.

Decimal integer literal syntax

»—digit 1 to 9—Y-digit 0 to 9 >

See the following examples of decimal literals:

485976
5

A plus (+) or minus (-) symbol can precede a decimal integer literal. The operator
is treated as a unary operator rather than as part of the literal. Consider the
following example:

-433132211
+20

Hexadecimal integer literals

A hexadecimal integer literal begins with the 0 digit followed by either an x or X,
followed by any combination of the digits 0 through 9 and the letters a through f
or A through F. The letters A (or a) through F (or f) represent the values 10 through
15, respectively.

z/0S V2R1.0 XL C/C++ Language Reference

Hexadecimal integer literal syntax

Ox————digit_0 to_f >
ox_) Edigit_o_to_FJ

See the following examples of hexadecimal integer literals:

0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Octal integer literals

An octal integer literal begins with the digit 0 and contains any of the digits 0
through 7.

Octal integer literal syntax

»—0—Y—digit 0 _to 7

A\
A

See the following examples of octal integer literals:

0

0125
034673
03245

Related reference:

[“Integral types” on page 54|

[“Integral conversions” on page 130

[“Integral and floating-point promotions” on page 135|

[‘C++11 compatibility” on page 640|

Boolean literals

At the C99 level, C defines true and false as macros in the header file
stdbool.h.

There are only two Boolean literals: true and false.
Related reference:

[“Boolean types” on page 55|

[“Boolean conversions” on page 130

Floating-point literals

Floating-point literals are numbers that have a decimal point or an exponential part.
They can be represented as:

e Real literals

— [Binary floating-point literals]

Chapter 2. Lexical elements 23

24

- |Hexadecimal floating-point literals (C only)|
* |Complex literals|

Binary floating-point literals

A real binary floating-point constant consists of the following:
* An integral part

* A decimal point

* A fractional part

* An exponent part

¢ An optional suffix

Both the integral and fractional parts are made up of decimal digits. You can omit
either the integral part or the fractional part, but not both. You can omit either the
decimal point or the exponent part, but not both.

Binary floating-point literal syntax

—Ydigit «
L‘ exponent ’J f
F
Y digit 1
’7 L

—Y digit .
L‘ exponent ’J

Ldigit——' exponent |

A
Y

Exponent:

| e Y digit |

The suffix f or F indicates a type of float, and the suffix 1 or L indicates a type of
Tong double. If a suffix is not specified, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point literal. However, it is
not part of the literal; it is interpreted as a unary operator.

The following are examples of floating-point literals:

floating-point constant Value
5.3876e4 53,876

4e-11 0.00000000004
le+5 100000

z/0S V2R1.0 XL C/C++ Language Reference

floating-point constant Value

7.321E-3 0.007321
3.2E+4 32000

0.5e-6 0.0000005
0.45 0.45

6.e10 60000000000

Hexadecimal floating-point literals (C only)

Real hexadecimal floating constants, which are a C99 feature, consist of the
following parts.

* a hexadecimal prefix

* a significant part

* a binary exponent part
* an optional suffix

The significant part represents a rational number and is composed of the
following:

* a sequence of hexadecimal digits (whole-number part)
* an optional fraction part

The optional fraction part is a period followed by a sequence of hexadecimal
digits.

The exponent part indicates the power of 2 to which the significant part is raised,
and is an optionally signed decimal integer. The type suffix is optional. The full
syntax is as follows:

Hexadecimal floating-point literal syntax

0x : izg — I_digit_@_to_f]——| exponent f—o——»

0X igit_0_to_f digit_0_to_F

igit 0 to F
—[d' igit 0 to f———. exponent |
dz’git_o_to_F:| B !

—[d' igit 0 to f exponent |
digit_@_to_F]__l !

Chapter 2. Lexical elements 25

26

Exponent:

Y digit 0 _to 9 |

O T
;.

The suffix f or F indicates a type of float, and the suffix 1 or L indicates a type of
Tong doubTe. If a suffix is not specified, the floating-point constant has a type
double. You can omit either the whole-number part or the fraction part, but not
both. The binary exponent part is required to avoid the ambiguity of the type
suffix F being mistaken for a hexadecimal digit.

Complex literals

Complex literals, which were introduced in the C99 standard, are constructed in
two parts: the real part, and the imaginary part.

Complex literal syntax

»—I real part '—Ej—I imaginary part i

A\
A

Real part:

—floating-point constant I

Imaginary part:

|—onating-point constant—»*—_Complex_I {

floating-point constant can be specified as a hexadecimal floating-point literal
(including optional suffixes), in any of the formats described in the previous
sections.

_Complex_I is a macro defined in the complex.h header file, representing the
imaginary unit i, the square root of -1.

For example, the declaration:
varComplex = 2.0f + 2.0f = _Complex_I;

initializes the complex variable varComplex to a value of 2.0 + 2.0i.

Related reference:

[“Floating-point types” on page 56|

[“Floating-point conversions” on page 130|

[“Unary expressions” on page 151]

[Complex floating-point types|

z/0S V2R1.0 XL C/C++ Language Reference

Fixed-point decimal literals

Fixed-point decimal constants are a z/OS XL C extension to Standard C.
This type is available when you specify the LANGLVL(EXTENDED) compile-time
option.

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The numeric part can include a digit sequence that represents the
whole-number part, followed by a decimal point (.), followed by a digit sequence
that represents the fraction part. Either the integral part or the fractional part, or
both must be present.

A fixed-point constant has the form:

V

»—— . —Ydigit 0 to 9 D
mii L]

v
A

Y digit 0 to 9—— . —Ydigit 0 to 9

—Ydigit 0 to 9

Y digit 0 to_ 9

A fixed-point constant has two attributes:
* Number of digits (size)
¢ Number of decimal places (precision).

The suffix D or d indicates a fixed-point constant.

The following are examples of fixed-point decimal constants:

Fixed-point constant (size, precision)
1234567890123456D (16, 0)
12345678.12345678D (16, 8)
12345678.d (8,0
.1234567890d (10, 10)
12345.99d (7,2
000123.990d (9,3)

0.00D (3,2)

For more information on fixed-point decimal data types, see z/OS XL C/C++
Programming Guide. | R

Related reference:

[“Fixed point decimal types (C only)” on page 58|

[“The digitsof and precisionof operators (C only)” on page 160|

Character literals

A character literal contains a sequence of characters or escape sequences enclosed in
single quotation mark symbols, for example 'c'. A character literal may be

Chapter 2. Lexical elements 27

28

prefixed with the letter L, for example L'c'. A character literal without the L prefix
is an ordinary character literal or a narrow character literal. A character literal with the
L prefix is a wide character literal. An ordinary character literal that contains more
than one character or escape sequence (excluding single quotes ('), backslashes (\)
or new-line characters) is a multicharacter literal.

The type of a narrow character literal is int. The type of a wide character
literal is wchar_t. The type of a multicharacter literal is int.

The type of a character literal that contains only one character is char,
which is an integral type. The type of a wide character literal is wchar_t. The type
of a multicharacter literal is int.

Character literal syntax

y

A,
»—L—_I—'——[character !
L escape_sequence—I

v
A

At least one character or escape sequence must appear in the character literal, and
the character literal must appear on a single logical source line.

The characters can be from the source program character set. You can represent the
double quotation mark symbol by itself, but to represent the single quotation mark
symbol, you must use the backslash symbol followed by a single quotation mark
symbol (\' escape sequence). (See [“Escape sequences” on page 34| for a list of
other characters that are represented by escape characters.)

Outside of the basic source character set, the universal character names for letters
and digits are allowed in C++ and at the C99 language level. In C++, you
must compile with the LANGLVL(UCS) option for universal character name
support.

The following are examples of character literals:

a
|\||
L'e'
|(|

Related reference:

[‘Character types” on page 59|

[‘Source program character set” on page 32|

[‘The Unicode standard” on page 35|

String literals

A string literal contains a sequence of characters or escape sequences enclosed in
double quotation mark symbols. A string literal with the prefix L is a wide string
literal. A string literal without the prefix L is an ordinary or narrow string literal.

The type of narrow string literal is array of char. The type of a wide
character string literal is array of wchar_t Both types have static storage duration.

z/0S V2R1.0 XL C/C++ Language Reference

The type of a narrow string literal is array of const char. The type of a
wide string literal is array of const wchar_t. Both types have static storage
duration.

String literal syntax

>>—L——|—"—'|:char'acter _| " >«
L escape_sequence

Multiple spaces contained within a string literal are retained.

Use the escape sequence \n to represent a new-line character as part of the string.
Use the escape sequence \\ to represent a backslash character as part of the string.
You can represent a single quotation mark symbol either by itself or with the
escape sequence \'. You must use the escape sequence \" to represent a double
quotation mark.

Outside of the basic source character set, the universal character names for letters
and digits are allowed in C++ and at the C99 language level. In C++, you
must compile with the LANGLVL(UCS) option for universal character name support.

See the following examples of string literals:

char titles[] = "Handel's \"Water Music\"";
char xtemp_string = "abc" "def" "ghi"; // xtemp_string = "abcdefghi\0"
wchar_t *wide_string = L"longstring";

This example illustrates escape sequences in string literals:

CCNX02K
#include <iostream> using namespace std;

int main () {
char *s ="Hi there! \n";
cout << s;
char *p = "The backslash character \\.";
cout << p << endl;
char *q = "The double quotation mark \".\n";
cout << q ;

}

This program produces the following output:
Hi there! The backslash character \. The double quotation mark ".

To continue a string on the next line, use the line continuation character (\ symbol)
followed by optional whitespace and a new-line character (required). For example:

char *mail_addr = "Last Name First Name MI Street Address \
893 City Province Postal code ";

Note: When a string literal appears more than once in the program source, how
that string is stored depends on whether strings are read-only or writable. By
default, the compiler considers strings to be read-only. z/OS XL C/C++ might
allocate only one location for a read-only string; all occurrences refer to that one
location. However, that area of storage is potentially write-protected. If strings are
writable, then each occurrence of the string has a separate, distinct storage location

Chapter 2. Lexical elements 29

that is always modifiable. You can use the directive or the ROSTRING compiler
option to change the default storage for string literals.

String concatenation

Another way to continue a string is to have two or more consecutive strings.
Adjacent string literals can be concatenated to produce a single string. For

example:
"hello " "there" //equivalent to "hello there"
"hello" "there" //equivalent to "hellothere"

Characters in concatenated strings remain distinct. For example, the strings "\xab"
and "3" are concatenated to form "\xab3". However, the characters \xab and 3
remain distinct and are not merged to form the hexadecimal character \xab3 .

If a wide string literal and a narrow string literal are adjacent, as in the following
example:

"hello " L"there"
the result is a wide string literal.

Note: In C99, narrow strings can be concatenated with wide string
literals. In C++11, the changes to string literal concatenation in the C99
preprocessor are adopted to provide a common preprocessor interface for C and
C++ compilers. Narrow strings can be concatenated with wide string literals in
C++11. For more information, see [‘C99 preprocessor features adopted in C++11"]
on page 526.

Following any concatenation, '\0"' of type char is appended at the end of each
string. For a wide string literal, '\0' of type wchar_t is appended. By convention,
programs recognize the end of a string by finding the null character. For example:
char *first = "Hello "; //stored as "Hello \0"

char *second = "there"; //stored as "there\0"
char *third = "Hello " "there"; //stored as "Hello there\O"

Related reference:

[‘Character types” on page 59|

[‘Source program character set” on page 32|

[“The Unicode standard” on page 35|

[String concatenation of u-literals|

Pointer literal (C++11)

The only pointer literal is the nul1ptr keyword that is a prvalue of type
std::nulTptr_t. A prvalue of this type is a null pointer constant that can be
converted to any pointer type, pointer-to-member type, or bool type.

Related reference:

[“Pointer conversions” on page 137]

Punctuators and operators

A punctuator is a token that has syntactic and semantic meaning to the compiler,
but the exact significance depends on the context. A punctuator can also be a token
that is used in the syntax of the preprocessor.

30 2/0S V2R1.0 XL C/C++ Language Reference

C99 and C++ define the following tokens as punctuators, operators, or
preprocessing tokens:

Table 13. C and C++ punctuators
[] 0) {} , : ;

* #

. -> ++ - ##
& + - ~ !

/ % << >> 1=
< > <= >= ==
A | && I ?
*= /= %= += -=
<<= >>= &= A= | =

In addition to the C99 preprocessing tokens, operators, and punctuators,
C++ allows the following tokens as punctuators:

Table 14. C++ punctuators

i F ->* new delete
and and_eq bitand bitor comp
not not_eq or or_eq xor Xor_eq

C++

Alternative tokens

Both C and C++ provide the following alternative representations for some
operators and punctuators. The alternative representations are also known as

digraphs.

Operator or punctuator Alternative representation
{ <%

} %o>

[<

] >

Yo:

Y%o:%:

Note: The recognition of these alternative representations is controlled by the
DIGRAPHS option; for more information, see |“Digraph characters” on page 37

In addition to the operators and punctuators listed above, C++ and C at the C99
language level provide the following alternative representations. In C, they are
defined as macros in the header file i150646.h.

Operator or punctuator Alternative representation
&& and

| bitor

I or

A XOr

~ compl

Chapter 2. Lexical elements 31

Operator or punctuator Alternative representation

& bitand
&= and_eq
|= or_eq
A= Xor_eq
! not

I= not_eq

Related reference:

[‘Digraph characters” on page 37|

[“Boolean types” on page 55|

[“Boolean conversions” on page 130

[“Floating-point types” on page 56|

[“Floating-point conversions” on page 130|

[“Unary expressions” on page 151

[“Fixed point decimal types (C only)” on page 58|
[“The digitsof and precisionof operators (C only)” on page 160|

[‘Source program character set’]

[‘Character types” on page 59|

[Chapter 6, “Expressions and operators,” on page 141

Source program character set

32

See the following list of the basic source character sets that are available at both
compile time and run time:

* The uppercase and lowercase letters of the English alphabet:
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

* The decimal digits:

0123456789
* The following graphic characters:
P"#% & () +,-./;<=>2[\N]_{}~
— The caret (") character in ASCII (bitwise exclusive OR symbol) or the
equivalent not (-) character in EBCDIC

— The split vertical bar (1) character in ASCII, which may be represented by the

vertical bar (|) character on EBCDIC systems .
* The space character

* The control characters representing new-line, horizontal tab, vertical tab, form
feed, end of string (NULL character), alert, backspace, and carriage return.

BN Depending on the compiler option, other specialized identifiers, such as
the dollar sign ($) or characters in national character sets, may be allowed to
appear in an identifier.

In a source file, a record contains one line of source text; the end of a
record indicates the end of a source line.

z/0S V2R1.0 XL C/C++ Language Reference

If you use the #pragma filetag directive to specify the encoding of input files, the
compiler converts this encoding to the encoding defined by code page IBM-1047. If
you use the LOCALE to specify the encoding for output, the compiler converts the
encoding from code page IBM-1047 to the encoding you have specified. These
conversions apply to:

* Listings that contain identifier names and source code
* String literals and character constants that are emitted in the object code
* Messages generated by the compiler

They do not apply to source-code annotation in the pseudo-assembly listings.
Therefore, the encoding of the following characters from the basic character set

may vary between the source-code generation environment and the runtime
environment:

P#TIN{)~ A

For a detailed description of the #pragma filetag directive and the LOCALE
option, refer to the description of globalization, locales, and character sets in the
z/OS XL C/C++ User’s Guide. JERIE

Related reference:

[Characters in identifiers|

[#pragma filetag” on page 556|

Multibyte characters

The compiler recognizes and supports the additional characters (the extended
character set) which you can meaningfully use in string literals and character
constants. The support for extended characters includes multibyte character sets. A
multibyte character is a character whose bit representation fits into more than one
byte.

z/0S systems represent multibyte characters by using Shiftout <SO> and Shiftin
<SI> pairs. Strings are of the form:

<S0> x y z <SI>

Or they can be mixed:
<S0> x <SI>y z x <SO> y <SI> z

In the above, two bytes represent each character between the <SO> and <SI> pairs.
z/0S XL C/C++ restricts multibyte characters to character constants, string
constants, and comments.

Multibyte characters can appear in any of the following contexts:

* String literals and character constants. To declare a multibyte literal, use a
wide-character representation, prefixed by L. For example:
wchar_t *a = L"wide_char_string";
wchar_t b = L'wide_char';
Strings containing multibyte characters are treated essentially the same way as
strings without multibyte characters. Generally, wide characters are permitted
anywhere multibyte characters are, but they are incompatible with multibyte
characters in the same string because their bit patterns differ. Wherever
permitted, you can mix single-byte and multibyte characters in the same string.

Chapter 2. Lexical elements 33

34

* Preprocessor directives. The following preprocessor directives permit
multibyte-character constants and string literals:

— #define
— #pragma comment
— #include

A file name specified in an #include directive can contain multibyte characters.
For example:

#include <multibyte_char/mydir/mysource/multibyte_char.h>
#include "multibyte char.h"

* Macro definitions. Because string literals and character constants can be part of
#define statements, multibyte characters are also permitted in both object-like
and function-like macro definitions.

* The # and ## operators.

* Program comments.

The following are restrictions on the use of multibyte characters:
e Multibyte characters are not permitted in identifiers.

* Hexadecimal values for multibyte characters must be in the range of the code
page being used.

* You cannot mix wide characters and multibyte characters in macro definitions.
For example, a macro expansion that concatenates a wide string and a multibyte
string is not permitted.

* Assignment between wide characters and multibyte characters is not permitted.

* Concatenating wide character strings and multibyte character strings is not
permitted.

Related reference:
[Character literals]
[“The Unicode standard” on page 35|

[‘Character types” on page 59|

Escape sequences

You can represent any member of the execution character set by an escape sequence.
They are primarily used to put nonprintable characters in character and string
literals. For example, you can use escape sequences to put such characters as tab,
carriage return, and backspace into an output stream.

Escape character syntax

v
A

x—hexadecimal_digits
octal_digits

»—\—Eescape_sequence_character

An escape sequence contains a backslash (\) symbol followed by one of the escape
sequence characters or an octal or hexadecimal number. A hexadecimal escape
sequence contains an x followed by one or more hexadecimal digits (0-9, A-E, a-f).
An octal escape sequence uses up to three octal digits (0-7). The value of the
hexadecimal or octal number specifies the value of the wanted character or wide
character.

z/0S V2R1.0 XL C/C++ Language Reference

Note: The line continuation sequence (\ followed by a new-line character) is not
an escape sequence. It is used in character strings to indicate that the current line
of source code continues on the next line.

The escape sequences and the characters they represent are:

Escape sequence Character represented
\a Alert (bell, alarm)

\b Backspace

\f Form feed (new page)
\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark
\" Double quotation mark
\? Question mark

AN\ Backslash

The value of an escape sequence represents the member of the character set used
at run time. Escape sequences are translated during preprocessing. For example, on
a system using the ASCII character codes, the value of the escape sequence \x56 is
the letter V. On a system using EBCDIC character codes, the value of the escape
sequence \xE5 is the letter V.

Use escape sequences only in character constants or in string literals. An error
message is issued if an escape sequence is not recognized.

In string and character sequences, when you want the backslash to represent itself
(rather than the beginning of an escape sequence), you must use a \\ backslash
escape sequence. For example:

cout << "The escape sequence \\n." << endl;

This statement results in the following output:
The escape sequence \n.

The Unicode standard

The Unicode Standard is the specification of an encoding scheme for written
characters and text. It is a universal standard that enables consistent encoding of
multilingual text and allows text data to be interchanged internationally without
conflict. The ISO standards for C and C++ refer to Information technology —
Programming Languages — Universal Multiple-Octet Coded Character Set (LUCS),
ISO/IEC 10646:2003. (The term octet is used by ISO to refer to a byte.) The ISO/IEC
10646 standard is more restrictive than the Unicode Standard in the number of
encoding forms: a character set that conforms to ISO/IEC 10646 is also conformant
to the Unicode Standard.

The Unicode Standard specifies a unique numeric value and name for each
character and defines three encoding forms for the bit representation of the
numeric value. The name/value pair creates an identity for a character. The
hexadecimal value representing a character is called a code point. The specification
also describes overall character properties, such as case, directionality, alphabetic
properties, and other semantic information for each character. Modeled on ASCII,
the Unicode Standard treats alphabetic characters, ideographic characters, and

Chapter 2. Lexical elements 35

36

symbols, and allows implementation-defined character codes in reserved code
point ranges. According to the Unicode Standard, the encoding scheme of the
standard is therefore sufficiently flexible to handle all known character encoding
requirements, including coverage of all the world's historical scripts.

C99 allows the universal character name construct defined in ISO/IEC 10646 to
represent characters outside the basic source character set. It permits universal
character names in identifiers, character constants, and string literals. To
be compatible with C99, the z/OS XL C/C++ compiler supports universal
character names as an IBM extension. In C++, you must compile with the
LANGLVL(UCS) option for universal character name support. g

The following table shows the generic universal character name construct and how
it corresponds to the ISO/IEC 10646 short name.

Universal character name ISO/IEC 10646 short name

where N is a hexadecimal digit
\UNNNNNNNN NNNNNNNN
\uNNNN 0000NNNN

C99 and C++ disallow the hexadecimal values representing characters in the basic
character set (base source code set) and the code points reserved by ISO/IEC 10646
for control characters.

The following characters are also disallowed:

* Any character whose short identifier is less than 00AQ. The exceptions are 0024
($), 0040 (@), or 0060 ().

* Any character whose short identifier is in the code point range D800 through
DEFFF inclusive.

UTF literals (IBM extension)

The ISO C and ISO C++ Committees have approved the implementation of
u-literals and U-literals to support Unicode UTF-16 and UTF-32 character literals,
respectively.

In C mode, the Unicode literals are enabled under the EXTENDED language level,
and disabled under the strictly-conforming language levels. When the Unicode
literals are enabled, the macro _ IBM_UTF_LITERAL is predefined to 1, otherwise
this macro is not predefined.

In C++ mode, to enable support for UTF literals in your source code, you must
compile with the option LANGLVL(EXTENDEDOX). It can be customized through
the option [NOJKEYWORD(char16_t, char32_t). In C++ mode, the Unicode literals
and character types are enabled under EXTENDED and EXTENDEDOX language
levels, and disabled under other language levels. When the Unicode literals are
enabled, the macros _ IBM_UTF_LITERAL and _ IBMCPP_UTF_LITERAL__ are
predefined to 1, otherwise they are not predefined. Under the EXTENDED
language level, the keywords charl6_t and char32_t are disabled by default (but
are available as typedefs via <uchar.h>). Under the EXTENDEDOX language level,
these keywords are enabled by default.

The following table shows the syntax for UTF literals.

z/0S V2R1.0 XL C/C++ Language Reference

Table 15. UTF literals

Syntax Explanation

u'character’ Denotes a UTF-16 character.
u'character-sequence" Denotes an array of UTF-16 characters.
U'character' Denotes a UTF-32 character.
U'"character-sequence” Denotes an array of UTF-32 characters.

String concatenation of u-literals
The u-literals and U-literals follow the same concatenation rule as wide
character literals: the normal character string is widened if they are
present. The following shows the allowed combinations. All other
combinations are invalid.

Combination Result
u'a" u'b" u"ab"
uHa" Hb” u"abH
"3 u'b" u"ab"
U'a" U'b" U'ab"
Ua" "b" U'ab"
" Uh" U'ab"

Multiple concatentations are allowed, with these rules applied recursively.
Related reference:

[String concatenation|

Digraph characters

You can represent unavailable characters in a source program by using a
combination of two keystrokes that are called a digraph character. The preprocessor
reads digraphs as tokens during the preprocessor phase. To enable processing of
digraphs, use the DIGRAPH compiler option (which is enabled by default).

The digraph characters are:

%: or %% # number sign

< [left bracket

>] right bracket

<% { left brace

%> } right brace

Y%:%: or %% %% #H preprocessor macro concatenation operator

You can create digraphs by using macro concatenation. z/OS XL C/C++ does not
replace digraphs in string literals or in character literals. For example:

char *s = "<%%>; // stays "<%%>"

switch (c) {

case '<%' : { /x ... %/} /] stays '<%'
case '%>' 1 { /x ... %/} /] stays '%>'

}

Chapter 2. Lexical elements 37

Trigraph sequences

Some characters from the C and C++ character set are not available in all
environments. You can enter these characters into a C or C++ source program
using a sequence of three characters called a trigraph. The trigraph sequences are:

Trigraph Single character Description
7= # pound sign
?22([left bracket
??)] right bracket
< { left brace
27> } right brace
2/ \ backslash
7 N caret

|

221
7-

vertical bar
tilde

1

The preprocessor replaces trigraph sequences with the corresponding
single-character representation. For example,

some_array??(i??) = n;

Represents:
some_array[i] = n;

At compile time, the compiler translates the trigraphs found in string
literals and character constants into the appropriate characters they represent.
These characters are in the coded character set you select by using the LOCALE
compiler option. If you do not specify the LOCALE option, the preprocessor uses
code page IBM-1047.

The z/OS XL C/C++ compiler will compile source files that were edited using
different encoding of character sets. However, they might not compile cleanly.
z/0OS XL C/C++ does not compile source files that you edit with the following:

* A character set that does not support all the characters that are specified above,
even if the compiler can access those characters by a trigraph.

* A character set for which no one-to-one mapping exists between it and the
character set above.

Note: The exclamation mark (!) is a variant character. Its recognition depends on
whether or not the LOCALE option is active. For more information on variant
characters, refer to the z/OS XL C/C++ Programming Guide. IR

Comments

A comment is text replaced during preprocessing by a single space character; the
compiler therefore ignores all comments.

There are two kinds of comments:

* The /= (slash, asterisk) characters, followed by any sequence of characters
(including new lines), followed by the */ characters. This kind of comment is
commonly called a C-style comment.

* The // (two slashes) characters followed by any sequence of characters. A new
line not immediately preceded by a backslash terminates this form of comment.
This kind of comment is commonly called a single-line comment or a C++

38 2/0S V2R1.0 XL C/C++ Language Reference

comment. A C++ comment can span more than one physical source line if it is
joined into one logical source line with line-continuation (\) characters. The
backslash character can also be represented by a trigraph. Jilill To enable
C++ comments in C, you must compile with ¢99, or with the SSCOMM or
LANGLVL(STDC99) or LANGLVL(EXTC99) options.

You can put comments anywhere the language allows white space. You cannot nest
C-style comments inside other C-style comments. Each comment ends at the first
occurrence of */.

You can also include multibyte characters.

Note: The /* or */ characters found in a character constant or string literal do not
start or end comments.

In the following program, the second printf() is a comment:
#include <stdio.h>

int main(void)
{

printf("This program has a comment.\n");

/* printf("This is a comment line and will not print.\n"); */
return 0;

}

Because the second printf() is equivalent to a space, the output of this program
is:

This program has a comment.

Because the comment delimiters are inside a string literal, printf() in the
following program is not a comment.

#include <stdio.h>

int main(void)
{

printf("This program does not have \
/* NOT A COMMENT =/ a comment.\n");
return 0;

}

The output of the program is:

This program does not have
/* NOT A COMMENT */ a comment.

In the following example, the comments are highlighted:
/* A program with nested comments. */

#include <stdio.h>

int main(void)

{
test_function();
return 0;

}

int test_function(void)

{

int number;

Chapter 2. Lexical elements 39

char Tetter;

/*

number = 55;
Tetter = 'A';

/* number = 44; x/
*/

return 999;
1

In test_function, the compiler reads the first /* through to the first */. The second
*/ causes an error. To avoid commenting over comments already in the source
code, you should use conditional compilation preprocessor directives to cause the
compiler to bypass sections of a program. For example, instead of commenting out
the above statements, change the source code in the following way:

/* A program with conditional compilation to avoid nested comments. */

#define TEST_FUNCTION 0
#include <stdio.h>

int main(void)

test_function();
return 0;

}

int test_function(void)
{
int number;
char letter;
#if TEST_FUNCTION
number = 55;
letter = 'A';
/*number = 44;x/
#endif /+*TEST_FUNCTION */
1

You can nest single line comments within C-style comments. For example, the
following program will not output anything;:

#include <stdio.h>

int main(void)
{
/*
printf("This Tine will not print.\n");
// This is a single line comment
// This is another single line comment
printf("This Tine will also not print.\n");
*
/
return 0;

}

Note: You can also use the #pragma comment directive to place comments into
an object module.

Related reference:

[“#pragma comment” on page 541]

[“Multibyte characters” on page 33|

40 z/0S V2R1.0 XL C/C++ Language Reference

Chapter 3. Data objects and declarations

The topics in this chapter discuss the various elements that constitute a declaration
of a data object.

Topics are sequenced to loosely follow the order in which elements appear in a
declaration. The discussion of the additional elements of data declarations is also
continued in |[Chapter 4, “Declarators,” on page 97/

Overview of data objects and declarations

The following sections introduce some fundamental concepts regarding data
objects and data declarations that will be used throughout this reference.

Overview of data objects

A data object is a region of storage that contains a value or group of values. Each
value can be accessed using its identifier or a more complex expression that refers
to the object. In addition, each object has a unique data type. The data type of an
object determines the storage allocation for that object and the interpretation of the
values during subsequent access. It is also used in any type checking operations.
Both the identifier and data type of an object are established in the object
declaration.

An instance of a class type is commonly called a class object. The
individual class members are also called objects.

Data types are often grouped into type categories that overlap, such as:

Fundamental types versus derived types
Fundamental data types are also known as "basic", "fundamental” or
"built-in" to the language. These include integers, floating-point numbers,
and characters. Derived types, also known as "compound" types in
Standard C++, are created from the set of basic types, and include arrays,
pointers, structures, unions, enumerations. All C++ classes are considered
compound types.

Built-in types versus user-defined types
Built-in data types include all of the fundamental types, plus types that
refer to the addresses of basic types, such as arrays and pointers.
User-defined types are created by the user from the set of basic types, in
typedef, structure, union, and enumeration definitions. C++ classes are
considered user-defined types.

Scalar types versus aggregate types
Scalar types represent a single data value, while aggregate types represent
multiple values, of the same type or of different types. Scalars include the
arithmetic types and pointers. Aggregate types include arrays, structures.
C++ classes are considered aggregate types.

The following matrix lists the supported data types and their classification into
fundamental, derived, scalar, and aggregate types.

© Copyright IBM Corp. 1998, 2015 41

Table 16. C/C++ data types

Built- User-
Data object Basic Compound |in defined Scalar Aggregate
integer types + + +
floating-point types' + + +
character types + +
Booleans + + +
void type +2 + +
pointers + + +
arrays + + +
structures + + +
unions + +
enumerations + + see note’
classes + + +
Note:

1. Although complex floating-point types are represented internally as
an array of two elements, they behave in the same way as real floating-pointing
types in terms of alignment and arithmetic operations, and can therefore be
considered scalar types.

2. The void type is really an incomplete type, as discussed in [“Incomplete types.”|
Nevertheless, Standard C++ defines it as a fundamental type.

3. The C standard does not classify enumerations as either scalar or
aggregate. Standard C++ classifies enumerations as scalars.

Incomplete types

The following are incomplete types:

* The void type

* Arrays of unknown size

* Arrays of elements that are of incomplete type

e Structure, union, or enumerations that have no definition

. Pointers to class types that are declared but not defined
. Classes that are declared but not defined

However, if an array size is specified by [*], indicating a variable length
array, the size is considered as having been specified, and the array type is then
considered a complete type. For more information, see [“Variable length arrays” on|

The following examples illustrate incomplete types:

void *incomplete_ptr;
struct dimension Tinear; /* no previous definition of dimension */

42 7z/0S V2R1.0 XL C/C++ Language Reference

Compatible and composite types

In C, compatible types are defined as:

* two types that can be used together without modification (as in an assignment
expression)

* two types that can be substituted one for the other without modification

A composite type is constructed from two compatible types. Determining the
resultant composite type for two compatible types is similar to following the usual
binary conversions of integral types when they are combined with some arithmetic
operators.

Obviously, two types that are identical are compatible; their composite type is the
same type. Less obvious are the rules governing type compatibility of non-identical

types, user-defined types, type-qualified types, and so on.[“Type specifiers” on|
discusses compatibility for basic and user-defined types in C.

A separate notion of type compatibility as distinct from being of the same
type does not exist in C++. Generally speaking, type checking in C++ is stricter
than in C: identical types are required in situations where C would only require
compatible types.

Related reference:

[Chapter 11, “Classes (C++ only),” on page 347

[“The void type” on page 59|

[“Incomplete class declarations” on page 352

[“Compatibility of arrays (C only)” on page 107]

[‘Compeatibility of pointers (C only)” on page 103|

[‘Compatible functions (C only)” on page 224|

Overview of data declarations and definitions

A declaration establishes the names and characteristics of data objects used in a
program. A definition allocates storage for data objects, and associates an identifier
with that object. When you declare or define a type, no storage is allocated.

The following table shows examples of declarations and definitions. The identifiers
declared in the first column do not allocate storage; they refer to a corresponding
definition. The identifiers declared in the second column allocate storage; they are
both declarations and definitions.

Declarations Declarations and definitions

extern double pi; double pi = 3.14159265;

struct payroll;
struct payroll {
char *name;
float salary;
} employee;

Chapter 3. Data objects and declarations 43

44

Note: The C99 standard no longer requires that all declarations appear at
the beginning of a function before the first statement. As in C++, you can
mix declarations with other statements in your code.

Declarations determine the following properties of data objects and their

identifiers:

* Scope, which describes the region of program text in which an identifier can be
used to access its object

* Visibility, which describes the region of program text from which legal access
can be made to the identifier's object

¢ Duration, which defines the period during which the identifiers have real,
physical objects allocated in memory

* Linkage, which describes the correct association of an identifier to one particular
object

* Type, which determines how much memory is allocated to an object and how
the bit patterns found in the storage allocation of that object should be
interpreted by the program

The elements of a declaration for a data object are as follows:

* [“Storage class specifiers” on page 48| which specify storage duration and linkage
pecity g g

* ["Type specifiers” on page 54| which specify data types

* [“Type qualifiers” on page 85| which specify the mutability of data values

. which introduce and include identifiers

¢ [“Initializers” on page 108)which initialize storage with initial values

BT In addition, for compatibility with GCC, z/OS XL C/C++ allows you to
use attributes to modify the properties of data objects. They are described in
[Variable attributes (IBM extension)” on page 125. [EINE

All declarations have the form:

Data declaration syntax

|_ _| |_ _| type_specifier———»
storage_class_specifier type_qualifier

»—Y declarator B o : ><
initializer

Tentative definitions

A tentative definition is any external data declaration that has no storage
class specifier and no initializer. A tentative definition becomes a full definition if
the end of the translation unit is reached and no definition has appeared with an
initializer for the identifier. In this situation, the compiler reserves uninitialized
space for the object defined.

The following statements show normal definitions and tentative
definitions.

z/0S V2R1.0 XL C/C++ Language Reference

int il = 10; /* definition, external Tinkage */
static int i2 = 20; /* definition, internal linkage */
extern int i3 = 30; /* definition, external linkage */

int i4; /* tentative definition, external linkage */

static int 1i5; /* tentative definition, internal linkage */

int il; /* valid tentative definition =/

int i2; /* not legal, linkage disagreement with previous */
int i3; /* valid tentative definition =/

int i4; /* valid tentative definition */

int i5; /* not legal, linkage disagreement with previous */

C++ does not support the concept of a tentative definition: an external
data declaration without a storage class specifier is always a definition.

Related reference:

[“Function declarations and definitions” on page 219|

_Static_assert declaration (C11)

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

Static assertions can be declared to detect and diagnose common usage errors at
compile time. A _Static_assert declaration takes the following form:

_Static_assert declaration syntax

A\
A

»»— Static_assert—(—constant_expression—,—string literal—)—;

The constant_expression must be an integer constant expression. If the integer
constant expression evaluates to 0, the compiler issues a severe error containing the
string literal with the source location of the _Static_assert declaration. Otherwise,
the _Static_assert declaration has no effect.

The declaration of static assertions does not declare a new type or object, and does
not imply any size or time cost at run time.

static_assert is a macro defined in assert.h for C.

The addition of static assertions to the C language has the following benefits:

* Libraries can detect common usage errors at compile time.

* Implementations of the C Standard Library can detect and diagnose common
usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.

Chapter 3. Data objects and declarations 45

Examples: _Static_assert declaration

Example 1: The following example demonstrates the use of a _Static_assert
declaration inside a structure.
#include <stddef.h>
struct _ attribute_ ((packed)) B{
char a;
int i;
1
struct A{
struct B b;
_Static_assert(offsetof(struct B,i)==1,"S not packed");
}s

Example 2: The following example contains static assertions declared with
static_assert, so the assert.h header file must be included.

/* static_assert requires <assert.h> */
#include <assert.h>
static_assert(sizeof(long) >= 8, "64-bit not enabled.");

Example 3: The following example shows the use of a _Static_assert declaration
with an invalid constant expression.

_Static_assert(1l / 0, "never shows up!");

When you compile this program, the compiler does not show the string literal in
the _Static_assert declaration. Instead, the compiler issues an error message
indicating that the divisor cannot be zero.

Related reference:

[“Extensions for C11 compatibility” on page 640|

static_assert declaration (C++11)

46

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Static assertions can be declared to detect and diagnose common usage errors at
compile time. A static_assert declaration takes the following form:

static_assert declaration syntax

»»—static_assert—(—constant_expression—,—string literal—)—; »><

The constant_expression must be a constant expression that can be contextually
converted to bool. If the value of the expression converted in such a way is false,
the compiler issues a severe error containing the string literal with the source
location of the static_assert declaration. Otherwise, the static_assert
declaration has no effect.

z/0S V2R1.0 XL C/C++ Language Reference

You can declare static assertions anywhere that you use a using declaration,
including namespace scope, block scope, and class member declaration lists.

The declaration of static assertions does not declare a new type or object, and does
not imply any size or time cost at run time.

The C++ programming language also supports the _Static_assert keyword in all
language levels for improved compatibility with the C programming language.

The addition of static assertions to the C++ language has the following benefits:
* Libraries can detect common usage errors at compile time.

¢ Implementations of the C++ Standard Library can detect and diagnose common
usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.

Examples: static_assert declaration

The following example illustrates the use of a static_assert declaration in
namespace scope.

static_assert(sizeof(long) >= 8, "64-bit code generation not
enabled/supported.");

The following example demonstrates the use of a static_assert declaration in
class scope, with templates.

#include <type_traits>
#include <string>

template<typename T>
struct X {
static_assert(std::trl::is_pod<T>::value, "POD required to
instantiate class template X.");
/...
bs

int main() {
X<std::string> x;

}

The following example demonstrates the use of a static_assert declaration in
block scope, with templates:
template <typename T, int N>
void f() {
static_assert (N >=0, "length of array a is negative.");
T a[N];
/...
}

int main() {
f<int, -1>();
1

The following example shows the use of a static_assert declaration with an
invalid constant expression.

static_assert(l / 0, "never shows up!");

Chapter 3. Data objects and declarations 47

When you compile this program, the compiler does not show the string literal in
the static_assert declaration. Instead, the compiler issues an error message
indicating that the divisor cannot be zero.

Related reference:

[‘C++11 compatibility” on page 640|

Storage class specifiers

A storage class specifier is used to refine the declaration of a variable, a function,
and parameters. Storage classes determine whether:

* The object has internal, external, or no linkage
* The object is to be stored in memory or in a register, if available

* The object receives the default initial value of 0 or an indeterminate default
initial value

* The object can be referenced throughout a program or only within the function,
block, or source file where the variable is defined

* The storage duration for the object is maintained throughout program run time
or only during the execution of the block where the object is defined

For a variable, its default storage duration, scope, and linkage depend on where it
is declared: whether inside or outside a block statement or the body of a function.
When these defaults are not satisfactory, you can use a storage class specifier to
explicitly set its storage class.

In C++11, the keyword auto is no longer used as a storage class specifier. Instead,
it is used as a type specifier. The compiler deduces the type of an auto variable

from the type of its initializer expression. For more information, see [“The auto type

[specifier (C++11)” on page 76

The keyword extern was previously used as a storage specifier or as part of a
linkage specification. The C++11 standard adds a third usage to use this keyword
to specify explicit instantiation declarations. For more information, see
[instantiation” on page 456

The storage class specifiers in C and C++ are:
* auto

* static

* extern

. mutable

* register

Related reference:

[“Function storage class specifiers” on page 225|

[“Initializers” on page 108|

48 z/0S V2R1.0 XL C/C++ Language Reference

The auto storage class specifier

The auto storage class specifier lets you explicitly declare a variable with automatic
storage. The auto storage class is the default for variables declared inside a block. A
variable x that has automatic storage is deleted when the block in which x was
declared exits.

You can only apply the auto storage class specifier to names of variables declared
in a block or to names of function parameters. However, these names by default
have automatic storage. Therefore the storage class specifier auto is usually
redundant in a data declaration.

Storage duration of automatic variables

Objects with the auto storage class specifier have automatic storage duration. Each
time a block is entered, storage for auto objects defined in that block is made
available. When the block is exited, the objects are no longer available for use. An
object declared with no linkage specification and without the static storage class
specifier has automatic storage duration.

If an auto object is defined within a function that is recursively invoked, a new
object is allocated at each invocation of the block.

Linkage of automatic variables

An auto variable has block scope and no linkage.

Note: In C++11, the keyword auto is no longer used as a storage class
specifier. Instead, it is used as a type specifier. The compiler deduces the type of an

auto variable from the type of its initializer expression. For more information, see
[“The auto type specifier (C++11)” on page 76

Related reference:

[“Initialization and storage classes” on page 109

[“Block statements” on page 199|

[“The goto statement” on page 213|

The static storage class specifier

Objects declared with the static storage class specifier have static storage duration,
which means that memory for these objects is allocated when the program begins
running and is freed when the program terminates. Static storage duration for a
variable is different from file or global scope: a variable can have static duration
but local scope.

The keyword static is the major mechanism in C to enforce information
hiding.

C++ enforces information hiding through the namespace language
feature and the access control of classes. The use of the keyword static to limit
the scope of external variables is deprecated for declaring objects in namespace
scope.

The static storage class specifier can be applied to the following declarations:
* Data objects
. Class members

Chapter 3. Data objects and declarations 49

50

* Anonymous unions

You cannot use the static storage class specifier with the following;:
* Type declarations

* Function parameters

At the C99 language level, the static keyword can be used in the
declaration of an array parameter to a function. The static keyword indicates that
the argument passed into the function is a pointer to an array of at least the
specified size. In this way, the compiler is informed that the pointer argument is
never null. See [“Static array indices in function parameter declarations (C only)”]

|0n page 238| for more information.

Linkage of static variables

If a declaration of an object contains the static storage class specifier and has file
scope, the identifier has internal linkage. Each instance of the particular identifier
therefore represents the same object within one file only. If a declaration of an
object contains the static storage class specifier and has function scope, an object is
statically allocated and all the function calls use the same object. For example, if a
static variable x has been declared in function f, when the program exits the scope
of f, x is not destroyed:

#include <stdio.h>

int f(void) {
static int x = 0;
X++;
return x;

}

int main(void) {
int j;
for (§j =05 J <5; j++) {
printf("Value of f(): %d\n", f());

return 0;

}

The following is the output of the above example:

Value of f():
Value of f():
Value of f():
Value of f():
Value of f():

GBS WN =

Because x is a function local static variable, it is not reinitialized to 0 on successive
calls to f.

Related reference:

[“The static storage class specifier” on page 226|

[‘Static members” on page 366|

[“Initialization and storage classes” on page 109

[‘Internal linkage” on page 7|
[Chapter 9, “Namespaces (C++ only),” on page 317

z/0S V2R1.0 XL C/C++ Language Reference

The extern storage class specifier

The extern storage class specifier lets you declare objects that several source files
can use. An extern declaration makes the described variable usable by the
succeeding part of the current source file. This declaration does not replace the
definition. The declaration is used to describe the variable that is externally
defined.

An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier found within a block refers to that same object. If no other
declaration for the identifier exists at file scope, the identifier has external linkage.

C++ restricts the use of the extern storage class specifier to the names of
objects or functions. Using the extern specifier with type declarations is illegal. An
extern declaration cannot appear in class scope.

Storage duration of external variables

All extern objects have static storage duration. Memory is allocated for extern
objects before the main function begins running, and is freed when the program
terminates. The scope of the variable depends on the location of the declaration in
the program text. If the declaration appears within a block, the variable has block
scope; otherwise, it has file scope.

Linkage of external variables

Like the scope, the linkage of a variable declared extern depends on the
placement of the declaration in the program text. If the variable declaration
appears outside of any function definition and has been declared static earlier in
the file, the variable has internal linkage; otherwise, it has external linkage in most
cases. All object declarations that occur outside a function and that do not contain
a storage class specifier declare identifiers with external linkage.

For objects in the unnamed namespace, the linkage may be external, but
the name is unique, and so from the perspective of other translation units, the
name effectively has internal linkage.

Note: The keyword extern was previously used as a storage specifier or
as part of a linkage specification. The C++11 standard adds a third usage to use
this keyword to specify explicit instantiation declarations. For more information,
see [“Explicit instantiation” on page 456

Related reference:

[“External linkage” on page §

[“Initialization and storage classes” on page 109

[‘The extern storage class specifier” on page 226|

[Chapter 9, “Namespaces (C++ only),” on page 317

[“Class scope (C++ only)” on page 4|

Chapter 3. Data objects and declarations 51

52

The mutable storage class specifier (C++ only)

The mutable storage class specifier is used only on a class data member to make it
modifiable even though the member is part of an object declared as const. You
cannot use the mutable specifier with names declared as static or const, or
reference members.

In the following example:
class A

{
public:
A() = x(4), y(5) { };
mutable int x;
int y;
1

int main()
{
const A var2;
var2.x = 345;
// var2.y = 2345;
}

the compiler would not allow the assignment var2.y = 2345 because var2 has been
declared as const. The compiler will allow the assignment var2.x = 345 because
A::x has been declared as mutabTe.

Related reference:

[“Type qualifiers” on page 85|

[‘References (C++ only)” on page 107|

The register storage class specifier

The register storage class specifier indicates to the compiler that the object should
be stored in a machine register. The register storage class specifier is typically
specified for heavily used variables, such as a loop control variable, in the hopes of
enhancing performance by minimizing access time. However, the compiler is not
required to honor this request. Because of the limited size and number of registers
available on most systems, few variables can actually be put in registers. If the
compiler does not allocate a machine register for a register object, the object is
treated as having the storage class specifier auto.

An object having the register storage class specifier must be defined within a
block or declared as a parameter to a function.

The following restrictions apply to the register storage class specifier:

. You cannot use pointers to reference objects that have the register
storage class specifier.

. You cannot use the register storage class specifier when declaring
objects in global scope.

. A register does not have an address. Therefore, you cannot apply the
address operator (&) to a register variable.

. You cannot use the register storage class specifier when declaring
objects in namespace scope.

Unlike C, C++ lets you take the address of an object with the register
storage class. For example:

z/0S V2R1.0 XL C/C++ Language Reference

register int i;
int* b = &i; // valid in C++, but not in C

Storage duration of register variables

Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects defined in that block is
made available. When the block is exited, the objects are no longer available for
use.

If a register object is defined within a function that is recursively invoked, a new
object is allocated at each invocation of the block.

Linkage of register variables

Since a register object is treated as the equivalent to an object of the auto storage
class, it has no linkage.

Variables in specified registers (C only) (IBM extension)

When the GENASM compiler option is in effect, you can specify that a particular
hardware register is dedicated to a global variable by using an asm register variable
declaration. Global register variables reserve registers throughout the program;
stores into the reserved register are never deleted. The register variable must be of
type pointer.

Register variable declaration syntax

»—register—variable_declaration—[_asm_ ("register_specifier")———— >«

The register_specifier is a string representing a hardware register. The register name
is CPU-specific. The following are valid register names:

10 to r15 or RO to R15
General purpose registers

The following are the rules of use for register variables:
* Registers can only be reserved for variables of pointer type.
* A global register variable cannot be initialized.

* The register dedicated for a global register variable should not be a volatile
register, or the value stored into the global variable might not be preserved
across a function call.

* More than one register variable can reserve the same register; however, the two
variables become aliases of each other, and this is diagnosed with a warning.

¢ The same global register variable cannot reserve more than one register.

Note: The register storage class specifier is deprecated in C++11.

Related reference:

[“Initialization and storage classes” on page 109

[“Block /local scope” on page 2|

[‘References (C++ only)” on page 107]

[“Inline assembly statements (IBM extension)” on page 215|

Chapter 3. Data objects and declarations 53

Type specifiers

Type specifiers indicate the type of the object being declared. See the following
available kinds of types:

* Fundamental or built-in types:
— Arithmetic types
- Integral types
- Boolean types
- Floating-point types
- Fixed-point decimal types
Character types

— The void type
* User-defined types

C++
A type is a literal type if it satisfies one of the following conditions:
* It is a scalar type.
* It is a reference type.
* It is an array of literal type.
. It is a class type with all the following properties:

— The class has a trivial destructor.

— Each constructor call and full expression in the initializers for nonstatic data
members (if any) is a constant expression.

— The class is an aggregate type or has at least one constexpr constructor or
constructor template that is not a copy or move constructor.

— All nonstatic data members and base classes of the class are of literal types.

C++

In the C++11 standard, the following type specifiers are introduced:
* The auto type specifier
* The decltype(expression) type specifier

Related reference:

[“Function return type specifiers” on page 234|
[See "C/C++ data mapping" under "Implementation-defined behavior'|

[‘Command-line arguments” on page 248|

Integral types

Integer types fall into the following categories:
* Signed integer types:

— signed char

— short int

54 z/0S V2R1.0 XL C/C++ Language Reference

- int
- long int
- long long int
* Unsigned integer types:
— unsigned char
— unsigned short int
— unsigned int
- unsigned long int
— unsigned long long int

z/0OS XL C++ supports the Tong Tong data type for language levels other
than ANSI by default. You can also control the support for Tong Tong using the
LONGLONG suboption of LANGLVL. For example, specifying LANGLVL(ANSI,
LONGLONG) would add the long Tong data type to the ISO language level. Refer
to the z/OS XL C/C++ User’s Guide for information on using the LANGLVL option.

The unsigned prefix indicates that the object is a nonnegative integer. Each
unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer value than
the equivalent signed type.

The declarator for a simple integer definition or declaration is an identifier. You
can initialize a simple integer definition with an integer constant or with an
expression that evaluates to a value that can be assigned to an integer.

When the arguments in overloaded functions and overloaded operators
are integer types, two integer types that both come from the same group are not
treated as distinct types. For example, you cannot overload an int argument
against a signed int argument.

Related reference:

[Integer literal

[“Integral conversions” on page 130

[“Arithmetic conversions and promotions” on page 129|
[Chapter 10, “Overloading (C++ only),” on page 327

[See "Integers" under "Implementation-defined behavior'|

Boolean types

A Boolean variable can be used to hold the integer values 0 or 1, or the
literals true or false|iZ=8E , which are implicitly promoted to the integers 1 and
0 respectively, whenever an arithmetic value is necessary. The Boolean type is
unsigned and has the lowest ranking in its category of standard unsigned integer
types; it may not be further qualified by the specifiers signed, unsigned, short, or
Tong. In simple assignments, if the left operand is a Boolean type, then the right
operand must be either an arithmetic type or a pointer.

Boolean type is a C99 feature. To declare a Boolean variable, use the
_Bool type specifier.

To declare a Boolean variable in C++, use the bool type specifier. The
result of the equality, relational, and logical operators is of type bool: either of the
Boolean constants true or false. g

Chapter 3. Data objects and declarations 55

You can use Boolean types to make Boolean logic tests. A Boolean logic test is used
to express the results of a logical operation. For example:

_Bool f(int a, int b)

{

return a==b;
1

If a and b have the same value, f returns true. If not, f returns false.
Related reference:

Boolean literals

[“Boolean conversions” on page 130

Floating-point types
Floating-point type specifiers fall into the following categories:
* Real floating-point types
* Complex floating-point types

Real floating-point types

Generic, or binary, floating-point types consist of the following:
e float

* double
* long double

BT Decimal floating-point types consist of the following:
e _Decimal32

e _Decimal64

¢ _Decimall28

Note: In order for the _Decimal32, _Decimal64, and _Decimall28 keywords to be
recognized, you must compile with the DFP compiler option. See DFP compiler
option in the z/OS XL C/C++ User’s Guide for details.

The magnitude ranges of the real floating-point types are given in the following
table.

Table 17. Magnitude ranges of real floating-point types

Type Range

FLOAT(HEX):

float 5.3976057° - 7.237005”
double 5.3976057° - 7.237006”
long double 5.3976057 - 7.237006”
FLOAT(IEEE):

float 1.17549478 - 3.402823%
double 2.2250743% - 1.797693%%
long double 3.362103 % - 1.189731%
DFP:

_Decimal32 0.000001% to 9.999999%

56 z/0S V2R1.0 XL C/C++ Language Reference

Table 17. Magnitude ranges of real floating-point types (continued)

Type Range

_Decimal64 0.0000000000000013 to 9.999999999999999*

_Decimal128 0.000000000000000000000000000000001°** to
9.999999999999999999999999999999999°'+

If a floating-point constant is too large or too small, the result is undefined by the
language.

Note that z/OS XL C/C++ supports IEEE binary floating-point variables
as well as IBM z/ Architecture® hexadecimal floating-point variables. For details on
the FLOAT compiler option, see the z/OS XL C/C++ User’s Guide.

The declarator for a simple floating-point declaration is an identifier. Initialize a
simple floating-point variable with a float constant or with a variable or expression
that evaluates to an integer or floating-point number.

BT You can use decimal floating-point types with any of the operators that
are supported for binary floating-point types. You can also perform implicit or
explicit conversions between decimal floating-point types and all other integral
types, generic floating-point types, or packed decimals. However, there are
restrictions on the use of decimal floating-point types with other arithmetic types
as follows:

* You cannot mix decimal floating-point types with generic floating-point types or
complex floating-point types in arithmetic expressions, unless you use explicit
conversions.

* Implicit conversion between decimal floating-point types and real binary
floating-point types is only allowed via assignment, with the simple assignment
operator =. Implicit conversion is performed in simple assignments, which also
include function argument assignments and function return values. See
[“Floating-point conversions” on page 130| for details.

Complex floating-point types

Complex floating-point types are introduced in the C99 standard. The
z/0S XL C/C++ compiler supports this feature as an IBM extension. The
complex floating-point type specifiers are as follows:

¢ float _Complex
* double _Complex
* long double _Complex

The representation and alignment requirements of a complex type are the same as
an array type containing two elements of the corresponding real type. The real part
is equal to the first element; the imaginary part is equal to the second element.

The equality and inequality operators have the same behavior as for real types.
None of the relational operators may have a complex type as an operand.

BEDMN As an extension to C99, complex numbers may also be operands to the

unary operators ++ (increment), -- (decrement), and ™ (bitwise negation). EEIINE
Related reference:

Chapter 3. Data objects and declarations 57

58

[Floating-point literals|

[“Floating-point conversions” on page 130|

[Arithmetic conversions and promotions” on page 129|

[See "Floating-point numbers" under "Implementation-defined behavior'|

[Complex literals (C only)|

[‘The _real and __imag _ operators (IBM extension)” on page 160

Fixed point decimal types (C only)

Fixed point decimal types are classified as arithmetic types. To declare fixed point
decimal variables and initialize them with fixed point decimal constants, you use
the type specifier decimal. For this type specifier, decimal is a macro that is defined
in the decimal.h header file. Remember to include decimal.h if you use fixed point
decimals in your program.

Fixed point decimal syntax

) »<
)|

»»—decimal—(—significant _digits |_ _|
,—precision_digits

The significant_digits is a positive integral constant expression. The second
argument, precision_digits is optional. If you leave it out, the default value is 0. The
type specifiers decimal(n,0) and decimal(n) are type-compatible.

In the type specifier, significant_digits and precision_digits have a range of allowed
values according to the following rules:

1. precision_digits <= significant_digits
2. 1 <= significant_digits <= DEC_DIG
3. 0 <= precision_digits <= DEC_PRECISION

The decimal.h file defines DEC_DIG (the maximum number of digits) and
DEC_PRECISION (the maximum precision). Currently, it uses a maximum of 31
digits for both limits.

The following examples show how to declare a variable as a fixed point decimal
data type:

decimal(10,2) x;
decimal(5,0) y;
decimal(5) Z;
decimal(18,10) =*ptr;
decimal(8,2) arr[100];

In the previous example:

* x can have values between -99999999.99D and +99999999.99D.

* y and z can have values between -99999D and +99999D.

* ptris a pointer to type decimal(18,10).

* arris an array of 100 elements, where each element is of type decimal(8,2).
Related reference:

[Fixed-point decimal literals (z/OS only)|

[‘The digitsof and precisionof operators (C only)” on page 160|

z/0S V2R1.0 XL C/C++ Language Reference

Character types
Character types fall into the following categories:
* Narrow character types:
— char
— signed char
— unsigned char
* Wide character type wchar_t

The char specifier is an integral type. The wchar_t type specifier is an integral type
that has enough storage to represent a wide character literal. (A wide character
literal is a character literal that is prefixed with the letter L, for example L'x")

A char is a distinct type from signed char and unsigned char, and the
three types are not compatible.

For the purposes of distinguishing overloaded functions, a C++ char is a
distinct type from signed char and unsigned char.

If it does not matter if a char data object is signed or unsigned, you can declare the
object as having the data type char. Otherwise, explicitly declare signed char or
unsigned char to declare numeric variables that occupy a single byte. When a char
(signed or unsigned) is widened to an int, its value is preserved.

By default, char behaves like an unsigned char. To change this default, you can
use the CHARS option or the #pragma chars directive. See [“#pragma chars” on|
and CHARS in the z/OS XL C/C++ User’s Guide for more information.
Related reference:

[Character literals|

tring literals

[Arithmetic conversions and promotions” on page 129|

The void type

The void data type always represents an empty set of values. The only object that
can be declared with the type specifier void is a pointer.

You cannot declare a variable of type void, but you can explicitly convert any
expression to type void. The resulting expression can only be used as one of the
following cases:

* An expression statement
* The left operand of a comma expression
* The second or third operand in a conditional expression.

Related reference:

[Pointers” on page 100]

[‘Comma operator ,” on page 172|

[‘Conditional expressions” on page 174]

[“Function declarations and definitions” on page 219|

Chapter 3. Data objects and declarations 59

60

The atomic type (C11)

Atomic declaration syntax

v
A

»>— Atomi C—E(—t ype_name—)
t ype_nameé

The type_name cannot be an array type, a function type, an atomic type, or a
qualified type.

The properties associated with atomic types are meaningful only for expressions
that are lvalues. If the _Atomic keyword is immediately followed by a left
parenthesis, it is used a type specifier rather than a type qualifier.

The following example shows the declaration of atomic objects:
_Atomic(float) a;

_Atomic(int) b;

_Atomic int c;

To support the compatibility of atomic types between C and C++, you can define a
macro #define Atomic(T) atomic<T>.

User-defined types

See the following user-defined types:
e Structures and unions

* Enumerations

* Typedef definitions

. Classes

. Elaborated type specifiers

C++ classes are discussed in [Chapter 11, “Classes (C++ only),” on page 347
Elaborated type specifiers are discussed in [“Scope of class names” on page 351

Structures and unions

A structure contains an ordered group of data objects. Unlike the elements of an
array, the data objects within a structure can have varied data types. Each data
object in a structure is a member or field.

A union is an object similar to a structure except that all of its members start at the
same location in memory. A union variable can represent the value of only one of
its members at a time.

In C++, structures and unions are the same as classes except that their
members and inheritance are public by default. CEEE

You can declare a structure or union type separately from the definition of
variables of that type, as described in [“Structure and union type definition” on|
[page 61| and [“Structure and union variable declarations” on page 66 or you can
define a structure or union data type and all variables that have that type in one
statement, as described in [“Structure and union type and variable definitions in al
[single statement” on page 67

z/0S V2R1.0 XL C/C++ Language Reference

Structures and unions are subject to alignment considerations. For information
about changing alignment and packing structures, see[The _Packed qualifier (C|
fonly)” on page 124] and [“#pragma pack” on page 583

Structure and union type definition

A structure or union fype definition contains the struct or union keyword followed
by an optional identifier (the structure tag) and a brace-enclosed list of members.

Structure or union type definition syntax

V

»—[struct_I |_ _| {——member_declaration—;——}—;——— >«
union tag_identifier

The tag_identifier gives a name to the type. If you do not provide a tag name, you
must put all variable definitions that refer to the type within the declaration of the
type, as described in [“Structure and union type and variable definitions in a single|
[statement” on page 67]Similarly, you cannot use a type qualifier with a structure
or union definition; type qualifiers placed in front of the struct or union keyword
can only apply to variables that are declared within the type definition.

Member declarations

The list of members provides a structure or union data type with a description of
the values that can be stored in the structure or union. The definition of a member
has the form of a standard variable declaration. The names of member variables
must be distinct within a single structure or union, but the same member name
may be used in another structure or union type that is defined within the same
scope, and may even be the same as a variable, function, or type name.

A structure or union member may be of any type except:
* any variably modified type

e void type

. a function

* any incomplete type

Because incomplete types are not allowed as members, a structure or union type
may not contain an instance of itself as a member, but is allowed to contain a
pointer to an instance of itself. As a special case, the last member of a structure
with more than one member may have an incomplete array type, which is called a
flexible array member, as described in [Flexible array members}

As an extension to Standard C and C++ for compatibility with GNU C/C++, z/OS
XL C/C++ also allows zero-extent arrays as members of structures and unions, as
described in [Zero-extent array members (IBM extension)| IlETNE

A union member cannot be a class object that has a constructor,
destructor, or overloaded copy assignment operator, nor can it be of reference type.
A union member cannot be declared with the keyword static.

Chapter 3. Data objects and declarations 61

62

A member that does not represent a bit field can be qualified with either of the
type qualifiers volatile or const. The result is an Ivalue.

Structure members are assigned to memory addresses in increasing order, with the
first component starting at the beginning address of the structure name itself. To
allow proper alignment of components, padding bytes may appear between any
consecutive members in the structure layout.

The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its member having the most stringent requirements). All of a union's
components are effectively overlaid in memory: each member of a union is
allocated storage starting at the beginning of the union, and only one member can
occupy the storage at a time.

Flexible array members

A flexible array member is an unbounded array that occurs within a
structure. It is a C99 feature and the z/OS XL C/C++ compiler
supports it as an IBM extension JliZz& - Flexible array members can be
used to access a variable-length object. A flexible array member is
permitted as the last member of a structure, provided that the structure has
more than one named member. It is declared with an empty index as
follows:

array_identifier [];

For example, b is a flexible array member of structure f.
struct f{

int a;

int b[];
bs

Because a flexible array member has an incomplete type, you cannot apply the
sizeof operator to a flexible array. In this example, the statement sizeof (f)
returns the same result as sizeof(f.a), which is the size of an integer. The
statement sizeof(f.b) cannot be used, because b is a flexible array member that
has an incomplete type.

Any structure containing a flexible array member cannot be a member of another
structure or an element of an array, for example:
struct f{
int a;
int b[];
}s
struct f fa[10]; // Error.

BT To be compatible with GNU C/C++, the z/OS XL C/C++compiler
extends Standard C and C++, to ease the restrictions on flexible array members
and allow the following situations:

* Flexible array members can be declared in any part of a structure, not just as the
last member. The type of any member that follows the flexible array member is
not required to be compatible with the type of the flexible array member;
however, a warning message is issued when a flexible array member is followed
by members of an incompatible type. The following example demonstrates this:

z/0S V2R1.0 XL C/C++ Language Reference

struct s {
int a;
int b[];
char ¢; // The compiler issues a warning message.
bfs
e Structures containing flexible array members can be members of other structures.

. Flexible array members can be statically initialized only if either of the
following two conditions is true:
— The flexible array member is the last member of the structure, for example:
struct f {
int a;
int b[];
} fl = {15{1:293}}; // Fine.

struct a {
int b;
int c[];
int d[];
}e={1,{1,2},3}; // Error, c is not the last member
// of structure a.

— Flexible array members are contained in the outermost structure of nested
structures. Members of inner structures cannot be statically initialized, for
example:
struct b {

int c;
int d[];
}s

struct c {
struct b f;
int g[];
}oh ={{1,{1,2}},{1,2}}; // Error, member d of structure b is
// in the inner nested structure.

LBV

Zero-extent array members (IBM extension)

Zero-extent arrays are provided for GNU C/C++ compatibility, and can be
used to access a variable-length object.

A zero-extent array is an array with an explicit zero specified as its dimension.
array_identifier [0]

For example, b is a zero-extent array member of structure f.
struct f{

int aj;

int b[0];
b

The sizeof operator can be applied to a zero-extent array, and the value returned
is 0. In this example, the statement sizeof(f) returns the same result as

sizeof(f.a), which is the size of an integer. The statement sizeof(f.b) returns 0.

A structure containing a zero-extent array can be an element of an array, for
example:

Chapter 3. Data objects and declarations 63

64

struct f{
int a;
int b[0];

}s
struct f fa[10]; // Fine.

A zero-extent array can only be statically initialized with an empty set {}.
Otherwise, it must be initialized as a dynamically allocated array. For example:

struct f{
int a;
int b[0];
}s
struct f f1 = {100, {}}; //Fine.
struct f f2 = {100, {1, 2}}; //Error.

If a zero-extent array is not initialized, no static zero filling occurs, because a
zero-extent array is defined to have no members. The following example
demonstrates this:

#include <stdio.h>

struct s {
int a;
int b[0];
}s

struct t1 {
struct s f;
int c[3];
bol = {{1},{1,2}};

struct t2 {
struct s f;
int c[3];
b g2 = {{1,{}},{1,2}};

int main() {
printf("%d %d %d %d\n", gl.f.a, gl.f.b[0], gl.f.b[1], gl.f.b[2]);
printf("%d %d %d %d\n", g2.f.a, g2.f.b[0], g2.f.b[1], g2.f.b[2]);
return 0;

}

In this example, the two printf statements produce the same output:
1120

A zero-extent array can be declared in any part of a structure, not just as the last
member. The type of any member following the zero-extent array is not required to
be compatible with the type of the zero-extent array; however, a warning is issued
when a zero-extent array is followed by members of an incompatible type. For
example:
struct s {

int a3

int b[0];

char c; // Issues a warning message
b

You can declare a zero extent array only as a member of an aggregate type. For
example:
int func(){

int a[0]; // error
struct S{

z/0S V2R1.0 XL C/C++ Language Reference

int x;
char b[0]; // fine
bs
1

Bit field members

Both C and C++ allow integer members to be stored into memory spaces
smaller than the compiler would ordinarily allow. These space-saving
structure members are called bit fields, and their width in bits can be
explicitly declared. Bit fields are used in programs that must force a data
structure to correspond to a fixed hardware representation and are unlikely
to be portable.

Bit field member declaration syntax

A\
A

»>—type_specifier

|_ _| :—constant_expression—;
declarator

The constant_expression is a constant integer expression that indicates the field
width in bits. A bit field declaration may not use either of the type qualifiers const
or volatile.

In C99, the allowable data types for a bit field include _Bool, int, signed int, and
unsigned int.

The width of a _Bool bit field cannot be greater than one bit.

A bit field can be any integral type or enumeration type. K

The following structure has three bit-field members kingdom, phylum, and genus,
occupying 12, 6, and 2 bits respectively:

struct taxonomy {
int kingdom : 12;
int phylum : 6;
int genus : 2;

bs

When you assign a value that is out of range to a bit field, the low-order bit
pattern is preserved and the appropriate bits are assigned.

The following restrictions apply to bit fields. You cannot:
* Define an array of bit fields

* Take the address of a bit field

* Have a pointer to a bit field

* Have a reference to a bit field

Bit fields are bit packed. They can cross word and byte boundaries. No padding is
inserted between two (non-zero length) bit field members. Bit padding can occur
after a bit field member if the next member is a zero length bitfield or a non-bit
field. Non-bit field members are aligned based on their declared type. For example,

Chapter 3. Data objects and declarations 65

66

the following structure demonstrates the lack of padding between bit field
members, and the insertion of padding after a bit field member that precedes a
non-bit field member.
struct {

int larry : 25; // Bit Field: offset 0 bytes and 0 bits.

int curly : 25; // Bit Field: offset 3 bytes and 1 bit (25 bits).

int moe; // non-Bit Field: offset 8 bytes and 0 bits (64 bits).
} stooges;

There is no padding between larry and curly. The bit offset of curly would be 25
bits. The member moe would be aligned on the next 4 byte boundary, causing 14
bits a padding between curly and moe.

Bit fields with a length of 0 must be unnamed. Unnamed bit fields cannot be
referenced or initialized.

A zero-width bit field causes the next field to be aligned on the next container
boundary. However, a _Packed (C only) structure, which has a zero-width bit field,
causes the next field to be aligned on the next byte boundary.

The following example demonstrates padding, and is valid for all implementations.
Suppose that an int occupies 4 bytes. The example declares the identifier kitchen
to be of type struct on_off:

struct on_off {
unsigned Tight : 1;
unsigned toaster : 1;
int count; /* 4 bytes */
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

} kitchen;

The structure kitchen contains eight members totalling 16 bytes. The following
table describes the storage that each member occupies:

Member name Storage occupied

Tight 1 bit

toaster 1 bit

(padding — 30 bits) To the next int boundary
count The size of an int (4 bytes)
ac 4 bits

(unnamed field) 4 bits

clock 1 bit

(padding — 23 bits) To the next int boundary (unnamed field)
flag 1 bit

(padding — 31 bits) To the next int boundary

Structure and union variable declarations

A structure or union declaration has the same form as a definition except the
declaration does not have a brace-enclosed list of members. You must declare the
structure or union data type before you can define a variable having that type.

z/0S V2R1.0 XL C/C++ Language Reference

Structure or union variable declaration syntax

v

»>>-

Ls’cr‘uctJ tag_identifier—declarator—;—»<
union

i:storage_cluss_specifier—
type_qualifier

The tag_identifier indicates the data type of the structure or union.

The keyword struct is optional in structure variable declarations.

C++

You can declare structures or unions having any storage class. The storage class
specifier and any type qualifiers for the variable must appear at the beginning of
the statement. Structures or unions declared with the register storage class
specifier are treated as automatic variables.

The following example defines structure type address:

struct address {
int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

}s

The following examples declare two structure variables of type address:

struct address perm_address;
struct address temp_address;

Structure and union type and variable definitions in a single statement

You can define a structure (or union) type and a structure (or union) variable in
one statement, by putting a declarator and an optional initializer after the variable
definition. The following example defines a union data type (not named) and a
union variable (named length):
union {

float meters;

double centimeters;

long inches;
} length;

Note that because this example does not name the data type, length is the only
variable that can have this data type. Putting an identifier after struct or union
keyword provides a name for the data type and lets you declare additional
variables of this data type later in the program.

To specify a storage class specifier for the variable or variables, you must put the
storage class specifier at the beginning of the statement. For example:

static struct {
int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;
} perm_address, temp_address;

Chapter 3. Data objects and declarations 67

68

In this case, both perm_address and temp_address are assigned static storage.

Type qualifiers can be applied to the variable or variables declared in a type
definition. Both of the following examples are valid:
volatile struct classl {
char descript[20];
long code;
short complete;
} filel, file2;

struct classl {
char descript[20];
long code;
short complete;

} volatile filel, file2;

In both cases, the structures filel and file2 are qualified as volatile.
Access to structure and union members

Once structure or union variables have been declared, members are referenced by
specifying the variable name with the dot operator (.) or a pointer with the arrow
operator (->) and the member name. For example, both of the following:

perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

assign the string "Ontario" to the pointer prov that is in the structure
perm_address.

All references to members of structures and unions, including bit fields, must be
fully qualified. In the previous example, the fourth field cannot be referenced by
prov alone, but only by perm_address.prov.

Anonymous structures (C11)

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

An anonymous structure is a structure that does not have a tag or a name and that
is a member of another structure or union. All the members of the anonymous
structure behave as if they were members of the parent structure. An anonymous
structure must meet the following conditions:

e The structure is nested inside another structure or union.
* The structure has no tag.
e The structure has no name.

For example, the following code fragment demonstrates the conditions that an
anonymous structure must meet.

struct v {
union {
// This is an anonymous structure, because it has no tag, no name,
// and is a member of another structure or union.

z/0S V2R1.0 XL C/C++ Language Reference

struct { int 1, j; };

// This is not an anonymous structure, because it has a name.
struct { long k, 1; } w;

// This is not an anonymous structure, because
// the structure has a tag "phone".
struct phone {int number, areanumber;};

bs

int m;
}ovlg

Anonymous unions

An anonymous union is a union that does not have a tag or a name and that is a
member of another union or structure. It cannot be followed by a declarator. An
anonymous union is not a type; it defines an unnamed object.

z/0S XL C supports anonymous unions only under extended language levels.

The member names of an anonymous union must be distinct from other names
within the scope in which the union is declared. You can use member names
directly in the union scope without any additional member access syntax.

For example, in the following code fragment, you can access the data members i
and cptr directly because they are in the scope containing the anonymous union.
Because i and cptr are union members and have the same address, you should
only use one of them at a time. The assignment to the member cptr will change
the value of the member 1.

void f() {
union { int i; char* cptr ; };
/% . . . x/
i=25;

cptr = "string_in_union"; // Overrides the value 5.

}

An anonymous union cannot have protected or private members, and it
cannot have member functions. A global or namespace anonymous union must be
declared with the keyword static. g

ci1
Related reference:

[Classes and structures” on page 350|

[“Variable length arrays” on page 106|

[‘The aligned variable attribute” on page 126|

[“Initialization of structures and unions” on page 112|

[“Compatibility of structures, unions, and enumerations (C only)” on page 73|

[“Dot operator .” on page 150

[“Arrow operator ->” on page 150

[‘Storage class specifiers” on page 48|

[Type qualifiers” on page 85|

[“The static storage class specifier” on page 49|

[“Member functions” on page 359

Chapter 3. Data objects and declarations 69

70

Enumerations

An enumeration is a data type that consists of a set of named values that represent
integral constants, known as enumeration constants. An enumeration is also referred
to as an enumerated type because you must list (enumerate) each of the values in
creating a name for each of them. In addition to providing a way of defining and
grouping sets of integral constants, enumerations are useful for variables that have
a small number of possible values.

You can declare an enumeration type separately from the definition of variables of
that type, as described in [“Enumeration type definition”] and [“Enumeration|
[variable declarations” on page 72} or you can define an enumeration data type and
all variables that have that type in one statement, as described in |”Enumeratioal
[type and variable definitions in a single statement” on page 72

Enumeration type definition

An enumeration type definition contains the enum keyword followed by an
optional identifier (the enumeration tag) and a brace-enclosed list of enumerators.

A comma separates each enumerator in the enumerator list. C99 allows a
trailing comma between the last enumerator and the closing brace. K

Enumeration definition syntax

—

{(—Y—enumerator }—; ><

»>>—enum

|—tag_identifier‘J

The tag_identifier gives a name to the enumeration type. If you do not provide a
tag name, you must put all variable definitions that refer to the enumeration type
within the declaration of the type, as described in [“Enumeration type and variable|
[definitions in a single statement” on page 72| Similarly, you cannot use a type
qualifier with an enumeration definition; type qualifiers placed in front of the enum
keyword can only apply to variables that are declared within the type definition.

Elaborated type specifier

Elaborated type specifier syntax

»>—enum—tag_identifier—x ><

The elaborated type specifier refers to a previously declared enumeration. The x is
a variable that has the type tag_identifier.

The enum keyword can be used to refer to scoped or unscoped enumerations
during variable declaration or definition. For example:

// a scoped enumeration
enum class color { red, white, black, yellow };

// an unscoped enumeration
enum letter {A, B, C, D};

// valid, regular type name usage

z/0S V2R1.0 XL C/C++ Language Reference

color picl = color :: white;

// valid, elaborated type usage
enum color pic2 = color :: red;

You cannot use enum class or enum struct in the elaborated type specifier. For
example:

enum class color pic3 = color :: black; // invalid

The elaborated type specifier for an unscoped enumeration is the same as that for
a scoped enumeration. For example:

enum Tetter letl = letter :: A; // valid
Enumeration members

The list of enumeration members, or enumerators, provides the data type with a set
of values.

Enumeration member declaration syntax

A\
A

»»—identifier

|—=—enume ration_constan t—l

In C, an enumeration constant is of type int. If a constant expression is
used as an initializer, the value of the expression cannot exceed the range of int
(that is, INT_MIN to INT_MAX as defined in the header Timits.h). Otherwise, the
condition is tolerated, a diagnostic message is issued, but the value of the
enumeration constant is undefined. K

In C++, each enumeration constant has a value that can be promoted to a
signed or unsigned integer value and a distinct type that does not have to be
integral. You can use an enumeration constant anywhere an integer constant is
allowed, or anywhere a value of the enumeration type is allowed. lEEEE

The value of an enumeration constant is determined in the following way:

1. An equal sign (=) and a constant expression after the enumeration constant
gives an explicit value to the enumeration constant. The enumeration constant
represents the value of the constant expression.

2. If no explicit value is assigned to the first enumerator, then it takes the value 0
(zero).

3. Enumeration constants with no explicitly assigned values receive the integer
value that is one greater than the value represented by the previous
enumeration constant.

The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.

enum grain { oats, wheat, barley, corn, rice };
/* 0 1 2 3 4 */

enum grain { oats=1, wheat, barley, corn, rice };
/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };
/* 0 10 11 20 21 */

Chapter 3. Data objects and declarations 71

72

It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend
and hold have the same integer value.

enum status { run, clear=5, suspend, resume, hold=6 };
/* 0 5 6 7 6 */

Each enumeration constant must be unique within the scope in which the
enumeration is defined. In the following example, the second declarations of
average and poor cause compiler errors:

func()
{

enum score { poor, average, good };
enum rating { below, average, above };
int poor;

}

Enumeration variable declarations

You must declare the enumeration data type before you can define a variable
having that type.

Enumeration variable declaration syntax

storage_class_specifier—

>>- ii enum—tag_identifier—declarator—— >«
type_qualifier

The tag_identifier indicates the previously-defined data type of the enumeration.

The keyword enum is optional in enumeration variable declarations.

C++

Enumeration type and variable definitions in a single statement

You can define a type and a variable in one statement by using a declarator and an
optional initializer after the variable definition. To specify a storage class specifier
for the variable, you must put the storage class specifier at the beginning of the
declaration. For example:

register enum score { poor=1, average, good } rating = good;

C++ also lets you put the storage class immediately before the declarator
list. For example:

enum score { poor=1, average, good } register rating = good;
C++

Either of these examples is equivalent to the following two declarations:

enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
rating has the storage class specifier register, the data type enum score, and the
initial value good.

z/0S V2R1.0 XL C/C++ Language Reference

Combining a data type definition with the definitions of all variables having that
data type lets you leave the data type unnamed. For example:

enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday } weekday;

defines the variable weekday, which can be assigned any of the specified
enumeration constants. However, you cannot declare any additional enumeration
variables using this set of enumeration constants.

Related reference:

[“Arithmetic conversions and promotions” on page 129|

[“#pragma enum” on page 549

[“Integral types” on page 54|

[“Initialization of enumerations” on page 114|

[‘Compeatibility of structures, unions, and enumerations (C only)’|

Compatibility of structures, unions, and enumerations (C only)
Within a single source file, each structure or union definition creates a new type
that is neither the same as nor compatible with any other structure or union type.
However, a type specifier that is a reference to a previously defined structure or
union type is the same type. The tag associates the reference with the definition,
and effectively acts as the type name. To illustrate this, only the types of structures
Jj and k are compatible in this example:

struct { int a; int b; } h;

struct { int a; int by } i;

struct S { int a; int b; } j;

struct S k;

Compatible structures may be assigned to each other.

Structures or unions with identical members but different tags are not compatible
and cannot be assigned to each other. Structures and unions with identical
members but using different alighments are not also compatible and cannot be
assigned to each other.

You cannot perform comparisons between packed and nonpacked structures or
unions of the same type. You cannot assign packed and nonpacked structures or
unions to each other, regardless of their type. You cannot pass a packed structure
or union argument to a function that expects a nonpacked structure or union of the
same type and vice versa.

Since the compiler treats enumeration variables and constants as integer types, you
can freely mix the values of different enumerated types, regardless of type
compatibility. Compatibility between an enumerated type and the integer type that
represents it is controlled by compiler options and related pragmas. For a
discussion of the ENUMSIZE compiler option, see the z/OS XL C/C++ User’s Guide.
For a discussion of the #pragma enum directive, see [“#pragma enum” on page 549

Compatibility across separate source files

When the definitions for two structures, unions, or enumerations are defined in

separate source files, each file can theoretically contain a different definition for an
object of that type with the same name. The two declarations must be compatible,
or the run time behavior of the program is undefined. Therefore, the compatibility
rules are more restrictive and specific than those for compatibility within the same

Chapter 3. Data objects and declarations 73

74

source file. For structure, union, and enumeration types defined in separately
compiled files, the composite type is the type in the current source file.

The requirements for compatibility between two structure, union, or enumerated
types declared in separate source files are as follows:

* If one is declared with a tag, the other must also be declared with the same tag.
* If both are completed types, their members must correspond exactly in number,
be declared with compatible types, and have matching names.

For enumerations, corresponding members must also have the same values.

For structures and unions, the following additional requirements must be met for

type compatibility:

* Corresponding members must be declared in the same order (applies to
structures only).

* Corresponding bit fields must have the same widths.

Related reference:

[“Arithmetic conversions and promotions” on page 129|
[Chapter 11, “Classes (C++ only),” on page 347|

[Structure or union type definition|

[[ncomplete types|
[‘The _Packed qualifier (C only)” on page 124
[“#pragma pack” on page 583|

typedef definitions

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

You can use thetypedef declaration to define your own identifiers that can be used
in place of type specifiers such as int, float, and double. A typedef declaration
does not reserve storage. The names you define using typedef are not new data
types, but synonyms for the data types or combinations of data types they
represent.

The name space for a typedef name is the same as other identifiers. When an
object is defined using a typedef identifier, the properties of the defined object are
exactly the same as if the object were defined by explicitly listing the data type
associated with the identifier.

C11

Using typedef redeclaration, you can redefine a name that is a previous typedef
name in the same scope to refer to the same type if the type is not a variably
modified type. For example:

typedef char AChar;
typedef char AChar;

z/0S V2R1.0 XL C/C++ Language Reference

BT When any extended language level is in effect, typedef redeclaration
supports all types, including a variably modified type. EETE

For more information about variably modified types, see [“Variable length arrays”]

C11

Examples of typedef definitions

The following statements define LENGTH as a synonym for int and then use this
typedef to declare Tength, width, and height as integer variables:

typedef int LENGTH;
LENGTH Tength, width, height;

The preceding declarations are equivalent to the following declaration:
int length, width, height;

Similarly, typedef can be used to define a structure, union, or C++ class. For
example:
typedef struct {

int scruples;

int drams;

int grains;

} WEIGHT;

The structure WEIGHT can then be used in the following declarations:
WEIGHT chicken, cow, horse, whale;

In the following example, the type of yds is "pointer to function with no
parameters, returning int".

typedef int SCROLL(void);
extern SCROLL *yds;

In the following typedef definitions, the token struct is part of the type name: the
type of exl is struct a; the type of ex2 is struct b.

typedef struct a { char x; } exl, *ptrl;
typedef struct b { char x; } ex2, *ptr2;

Type exl is compatible with the type struct a and the type of the object pointed
to by ptrl. Type exl is not compatible with char, ex2, or struct b.

C++

In C++, a typedef name must be different from any class type name declared
within the same scope. If the typedef name is the same as a class type name, it can
only be so if that typedef is a synonym of the class name.

A C++ class defined in a typedef definition without being named is given a
dummy name. Such a class cannot have constructors or destructors. Consider the
following example:

typedef class {

“Trees();
} Trees;

Chapter 3. Data objects and declarations 75

76

In this example, an unnamed class is defined in a typedef definition. Trees is an
alias for the unnamed class, but not the class type name. So you cannot define a
destructor ~Trees () for this unnamed class; otherwise, the compiler issues an error.

C++

Declaring typedef names as friends

In the C++11 standard, the extended friend declarations feature is introduced, with
which you can declare typedef names as friends. For more information, see
[“Extended friend declarations” on page 374

Related reference:

[‘Type names” on page 99

[“Type specifiers” on page 54|

[“Structures and unions” on page 60|
[Chapter 11, “Classes (C++ only),” on page 347|
[“Friends” on page 373

The auto type specifier (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

C++11 introduces the keyword auto as a new type specifier. auto acts as a
placeholder for a type to be deduced from the initializer expression of a variable.
With auto type deduction enabled, you no longer need to specify a type while
declaring a variable. Instead, the compiler deduces the type of an auto variable
from the type of its initializer expression.

The following examples demonstrate the usage of auto type deduction.

auto x = 1; //x : int

float* p;

auto x = p; //x : float*

autox y = p; /ly : float=

double f();

auto x = f(); //x : double

const auto& y = f(); //y : const double&
class R;

Rx h();

autox x = h(); //x : R*
auto y = h(); /1y : Rx

z/0S V2R1.0 XL C/C++ Language Reference

int& g();

auto x = g(); //x : int
const auto& y = g(); /ly : const int&
auto* z = g(); //error, g() does not return a pointer type

By delegating the task of type deduction to the compiler, auto type deduction
increases programming convenience, and potentially eliminates typing errors made
by programmers. Auto type deduction also reduces the size and improves the
readability of programs.

The following two examples demonstrate the benefits of enabling auto type
deduction. The first example does not enable auto type deduction.
vector<int> vec;
for (vector<int>::iterator i = vec.begin(); i < vec.end(); i++)
{

int* a = new int(1);

/...
1

With auto type deduction enabled, the first example can be simplified as follows:

vector<int> vec;
for (auto i = vec.begin(); i < vec.end(); i++)
{

auto a = new auto(1);
//...
1

The following rules and constraints apply to the use of auto as a type specifier in
auto type deduction.

* Auto type deduction cannot deduce array types.
int x[5];
auto y[5] = x; //error, x decays to a pointer,
//which does not match the array type
* Auto type deduction cannot deduce cv-qualifier or reference type from the
initializer.

int f();

auto& x = f(); //error, cannot bind a non-const reference
//to a temporary variable

int& g();

auto y = g(); //y is of type int

autod z = g(); //z is of type int&

* Auto type deduction supports multi-variable auto declarations. If the list of
declarators contains more than one declarator, the type of each declarator can be
deduced independently. If the deduced type is not the same in each deduction,
the program is ill-formed.

auto x=3, y=1.2, *z=new auto(l); //error y: deduced as double,
//but was previously deduced as int

* The name of the object that is declared can not be used in its initializer
expression.

auto x = x++; //error
* auto can not be used in function parameters.
int func(auto x = 3) //error

{
/...
}

Note: In C++11, the keyword auto is no longer used as a storage class specifier.

Chapter 3. Data objects and declarations 77

Related reference:

[‘Storage class specifiers” on page 48|

[“The auto storage class specifier” on page 49

[‘Type qualifiers” on page 85|

[‘C++11 compatibility” on page 640|

The decltype(expression) type specifier (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The decltype(expression) specifier is a type specifier introduced in C++11. With this
type specifier, you can get a type that is based on the resultant type of a possibly
type-dependent expression.

decltype(expression) takes expression as an operand. When you define a variable by
using decltype(expression), it can be thought of as being replaced by the compiler
with the type or the derived type of expression. Consider the following example:

int i3
static const decltype(i) j = 4;
In this example, decltype(i) is equivalent to the type name int.

General rules for using decltype

When you use decltype(expression) to get a type, the following rules are applicable:

1. If expression is an unparenthesized id-expression or class member,
decltype(expression) is the type of the entity named by expression. If there is no
such entity, or if expression names a set of overloaded functions, the program is
ill formed.

2. Otherwise, if expression is an xvalue, decltype(expression) is T&&, where T is the
type of expression.

3. Otherwise, if expression is an lvalue, decltype(expression) is T&, where T is the
type of expression.

4. Otherwise, decltype(expression) is the type of expression.

The following example illustrates how these rules are used:

const intx g(){
return new int[0];
}

int&& fun(){
int&& var = 1;

return 1;
}
struct A{
double x;

}s

78 2z/0S V2R1.0 XL C/C++ Language Reference

template <class T> T tf(const T& t){

return t;
1
bool f(){

return false;
1

struct strif

}s

template <typename T, typename U>

static decltype((*(T*)0) * (*(Ux)0)) mult(const U& argl, const T& arg2)({
return argl * arg2;

}

template <typename T, typename U> struct str2{

s

typedef decltype((*(T*)0) + (x(U%)0)) btype;
static btype g(T t, U u);

int main(){

}

In this example, the comment after each decltype statement explains the type of

int i = 4;
const int j = 6;
const int& k = i;

intd& m = 1;

int a[5];

int *p;

decltype(i) varl; // int

decltype(1) var2; // int

decTtype(2+3) var3; // int(+ operator returns an rvalue)

decltype(i=1) vard = i; // int&, because assignment to int
// returns an lvalue

decTtype((i)) var5 = i; // int&

decltype(j) varé = 1; // const int

decltype(k) var7 = j; // const int&

decTtype("decltype") var8 = "decltype"; // const char(&)[9]

decltype(a) var9; // int[5]

decltype(a[3]) varl0 = i; // int&([] returns an lvalue)

decTtype(*p) varll = i; // int&(*operator returns an lvalue)

decltype(fun()) varl2 = 1; // int&&
decltype(tf(A())) varl3; // A

decltype(f()) varld; // bool

decltype((f())) varl5; // bool, parentheses around f() are ignored
decltype(f) varlé; // bool()

decltype(&f) varl7; // bool(*)()

decltype(&A::x) varl8; // double A::x

decltype(strl::mult(3.0, 4u)) varl9; // double
decltype(str2<float, short>::g(1,3)) var20; // float

decTtype(m) var2l = 1; // int&&

decltype((m)) var22 = m; // int&

return 0;

the defined variable.

The following example illustrates an incorrect usage of decltype(expression):
int func(){

}

return 0;

int func(int a){

}

return 0;

int main(){

Chapter 3. Data objects and declarations

79

int i = 4;

// Incorrect usage. func names an overload function
decltype(func) varl;

// Correct usage. The overload operation is not ambiguous
decltype(func(i)) var2;

return 0;

}

In this example, the compiler issues an error message because it does not know
which func function to match.

Rules for using decltype with structure member variables

When you use decltype(expression) to get a type, and expression is an
unparenthesized member variable of an object expression (with a . operator) or a
pointer expression (with a -> operator), the following rules apply:

* If the object expression or the pointer expression is specified with a constant or
volatile qualifier, the type qualifier does not contribute to the result of
decltype(expression).

* The lvalueness or rvalueness of the object expression or the pointer expression
does not affect whether decltype(expression) is a reference type or not.

Example:

struct Foof{
int x;
1

int main(){
struct Foo f;
const struct Foo g = {0};
volatile struct Foox h = &f;
struct Foo func();

decltype(g.x) varl; // int
decltype(h->x) var2; // int
decltype(func().x) var3; /] int
return 0;

}

In this example, the constant qualifier of the object expression g is not desired in
the result of decltype(g.x). Similarly, the volatile qualifier of the pointer
expression h is not desired in the result of decltype(h->x). The object expression g
and the pointer expression h are lvalues, and the object expression func() is an
rvalue, but they do not affect whether the decltype results of their unparenthesized
member variables are reference types or not.

If expression declared in decltype(expression) is a parenthesized nonstatic
non-reference class member variable, the constant or volatile type qualifier of the
parent object expression or pointer expression of expression contributes to the result
of decltype(expression). Similarly, the Ivalueness or rvalueness of the object
expression or the pointer expression affects the result of decltype(expression).

Example:

struct Foof{
int x;
}s

80 z/0S V2R1.0 XL C/C++ Language Reference

int main(){
int i =1;
struct Foo f;
const struct Foo g = {0};
volatile struct Foo* h = &f;
struct Foo func();

decltype((g.x)) varl = i; // const int&
decltype((h->x)) var2 = i; // volatile int&
decltype((func().x)) var3 = 1; // int

return 0;

}

In this example, the result of decltype((g.x)) inherits the constant qualifier of the
object expression g. Similarly, the result of decltype((h->x)) inherits the volatile
qualifier of the pointer expression h. The object expression g and the pointer
expression h are lvalues, so decltype((g.x)) and decltype((h->x)) are reference
types. The object expression func() is an rvalue, so decltype((func().x)) is a
nonreference type.

If you use the built-in operators .* or ->* within a decltype(expression), the constant
or volatile type qualifier of the parent object expression or pointer expression of
expression contributes to the result of decltype(expression), regardless of whether
expression is a parenthesized or an unparenthesized structure member variable.
Similarly, the Ivalueness or rvalueness of the object expression or the pointer
expression affects the result of decltype(expression).

Example:

class Foof
int x;
}s

int main(){
int i = 0;
Foo f;
const Foo & g = f;
volatile Foo* h =
const Foo func();

&f;

decltype(f.*&Foo0::x) varl = i; // int&, f is an lvalue
decltype(g.*&Fo0::x) var2 = i; // const int&, g is an lvalue
decltype(h->*&Fo0::x) var3 = i; // volatile int&, h is an lvalue
decltype((h->*&Fo0::x)) vard = i; // volatile int&, h is an lvalue
decltype(func().*&Foo0::x) var5 = 1; // const int, func() is an rvalue
decltype((func().*&Foo::x)) var6 = 1; // const int, func() is an rvalue
return 0;

}
Side effects and decltype

If you use decltype(expression) to get a type, additional operations in the decltype
parenthetical context can be performed, but they do not have side effects outside of
the decltype context. Consider the following example:

int i = 5;

static const decltype(i++) j = 4; // i is still 5

The variable i is not increased by 1 outside of the decltype context.
There are exceptions to this rule. In the following example, because the expression

given to decltype must be valid, the compiler has to perform a template
instantiation:

Chapter 3. Data objects and declarations 81

template <int N>
struct Foof{

static const int n=N;
1

int i;
decltype(Foo<101>::n,i) var = i; /] int&

In this example, Foo template instantiation occurs, even though var is only
determined by the type of the variable 1.

Redundant qualifiers and specifiers with decltype

Because decltype(expression) is considered syntactically to be a type specifier, the
following redundant qualifiers or specifiers are ignored:

* constant qualifiers
* volatile qualifiers

* & specifiers

The following example demonstrates this case:
int main(){
int i = 5;
int& j = i;
const int k = 13
volatile int m = 1;

// int&, the redundant & specifier is ignored
decltype(j)& varl = i;

// const int, the redundant const qualifier is ignored
const decltype(k) var2 = 1;

// volatile int, the redundant volatile qualifer is ignored
volatile decltype(m) var3;
return 0;

}

Note: The functionality of ignoring the redundant & specifiers in
decltype(expression) is not supported in the current C++11 standard, but it is
implemented in this compiler release.

Template dependent names and decltype

Without using the decltype feature, when you pass parameters from one function
to another function, you might not know the exact types of the results that are
passed back. The decltype feature provides a mechanism to generalize the return
types easily. The following program shows a generic function that performs the
multiplication operation on some operands:
struct Math{

template <typename T>

static T mult(const T& argl, const T& arg2){
return argl * arg2;
1

}s

If argl and arg2 are not the same type, the compiler cannot deduce the return type
from the arguments. You can use the decltype feature to solve this problem, as
shown in the following example:

82 2/0S V2R1.0 XL C/C++ Language Reference

struct Foof{
template<typename T, typename U>
static decltype((*(T*)0)*(*(Ux)0)) mult(const T& argl, const U& arg2)
{

}

return argl * arg2;
1

In this example, the return type of the function is the type of the multiplication
result of the two template-dependent function parameters.

The typeof operator and decltype

BET The decltype feature is similar to the existing typeof feature. One
difference between these two features is that decltype accepts only an expression as
its operand, while typeof can also accept a type name. Consider the following
example:

__typeof__(int) varl; // okay
decltype(int) var2; // error

In this example, int is a type name, so it is invalid as the operand of decltype.

Note: _ typeof__ is an alternate spelling of typeof.

Related reference:

[“Keywords” on page 13|

[‘Name binding and dependent names” on page 480|

[“C++11 compatibility” on page 640|

[‘Lvalues and rvalues” on page 141|

[‘References (C++ only)” on page 107|

The constexpr

specifier (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The C++11 standard introduces a new keyword constexpr as a declaration
specifier. You can apply the constexpr specifier only to the following contexts:

* The definition of a variable
¢ The declaration of a function or function template

e The declaration of a static data member

For example:

constexpr int i = 1; // 0K, definition
constexpr int f1(); // OK, function declaration, but must be defined before use

If you declare a function that is not a constructor with a constexpr specifier, that
function is a constexpr function. Similarly, if you declare a constructor with a

Chapter 3. Data objects and declarations 83

84

constexpr specifier, that constructor is a constexpr constructor. Both constexpr
functions and constexpr constructors are implicitly inline. For example:
struct S {

constexpr S(int i) : mem(i) { } // OK, declaration of a constexpr constructor

private:
int mem;
}s

constexpr S s(55); // OK, invocation of a constexpr constructor

If any declaration of a function or function template is specified with constexpr, all
its declarations must contain the constexpr specifier. For example:
constexpr int f1(); // 0K, function declaration
int f1() { // Error, the constexpr specifier is missing
return 55;

}

Function parameters cannot be declared with the constexpr specifier. The
following example demonstrates this:

constexpt int f4(constexpr int); //Error

A constexpr specifier used in an object declaration declares the object as const.
Such an object must be of a literal type and initialized. If it is initialized by a
constructor call, that call must be a constant expression. Otherwise, if a constexpr
specifier is used in a reference declaration, every full expression that appears in its
initializer must be a constant expression. Each implicit conversion used in
converting the initializer expressions and each constructor call used for the
initialization must be valid in a constant expression. For example:

constexpr int var; // Error, var is not initialized
constexpr int varl = 1; // 0K

void func() {
varl = 5; //Error, varl is const

}

struct L {
constexpr L() : mem(55) { }
constexpr L(double d) : mem((int)d) { }
L(int i) : mem(i) { }
operator int() { return mem; }
private:
int mem;

}s
// Error, initializer involves a non-constexpr constructor.
constexpr L var2(55);

double var3 = 55;

// Error, initializer involves a constexpr constructor with non-constant argument
constexpr L var4(var3);

// Error, involves conversion that uses a non-constexpr conversion function
constexpr int vars = L();

A constexpr specifier for a nonstatic member function that is not a constructor
declares that member function to be const. The class of that constexpr member
function must be a literal type. In the following example, the class NL is a
non-literal type because it has a user-provided destructor.

z/0S V2R1.0 XL C/C++ Language Reference

struct NL {
constexpr int f(){ //error, enclosing class is not a Titeral type
return 55;

}
“NLO) {)

A call to a constexpr function produces the same result as a call to an equivalent
non-constexpr function, except that a call to a constexpr function can appear in a
constant expression.

The main function cannot be declared with the constexpr specifier.
Related reference:

[“Literals” on page 19|

[‘Constexpr functions (C++11)” on page 313|

[‘Constexpr constructors (C++11)” on page 411|

[“Generalized constant expressions (C++11)” on page 149

Compatibility of arithmetic types (C only)

Two arithmetic types are compatible only if they are the same type.

The presence of type specifiers in various combinations for arithmetic types may or
may not indicate different types. For example, the type signed int is the same as
int, except when used as the types of bit fields; but char, signed char, and
unsigned char are different types.

The presence of a type qualifier changes the type. That is, const int is not the
same type as int, and therefore the two types are not compatible.

Type qualifiers
A type qualifier is used to refine the declaration of a variable, a function, and
parameters, by specifying whether:
* The value of an object can be changed

¢ The value of an object must always be read from memory rather than from a
register
¢ More than one pointer can access a modifiable memory address

z/0S XL C/C++ recognizes the following type qualifiers:
* |const]

" [estrici]
 [oTatiTd

z/0S XL C/C++ includes the following additional type qualifiers to meet the
special needs of the z/OS environment:

« [_callback

- G [far] m—ra—"
- [ptr3y

- NG [ptr6d] e

Chapter 3. Data objects and declarations 85

86

Standard C++ refers to the type qualifiers const and volatile as cv-qualifiers. In
both languages, the cv-qualifiers are only meaningful in expressions that are
Ivalues.

When the const and volatile keywords are used with pointers, the placement of
the qualifier is critical in determining whether it is the pointer itself that is to be
qualified, or the object to which the pointer points. For a pointer that you want to
qualify as volatile or const, you must put the keyword between the * and the
identifier. For example:

int * volatile x; /* x is a volatile pointer to an int =/
int * const y = &z; /*y is a const pointer to the int variable z */

For a pointer to a volatile or const data object, the type specifier and qualifier
can be in any order, provided that the qualifier does not follow the * operator. For
example, for a pointer to a volatile data object:

volatile int *x; /* x is a pointer to a volatile int =*/

or

int volatile =x; /* x is a pointer to a volatile int =/

For a pointer to a const data object:
const int *y; /* y is a pointer to a const int =/

or
int const =*y; /* y is a pointer to a const int =/

The following examples contrast the semantics of these declarations:

Declaration Description

const int x ptrl; Defines a pointer to a constant integer: the value
pointed to cannot be changed.

int * const ptr2; Defines a constant pointer to an integer: the
integer can be changed, but ptr2 cannot point to
anything else.

const int * const ptr3; Defines a constant pointer to a constant integer:
neither the value pointed to nor the pointer itself
can be changed.

You can put more than one qualifier on a declaration, and the compiler ignores
duplicate type qualifiers. This is a C99 language feature. To be compatible
with C99, the z/OS XL C/C++ compiler supports it as an IBM extension. lEEg

A type qualifier cannot apply to user-defined types, but only to objects created
from a user-defined type. Therefore, the following declaration is illegal:
volatile struct omega {
int Timit;
char code;

}

However, if a variable or variables are declared within the same definition of the
type, a type qualifier can be applied to the variable or variables by placing it at the
beginning of the statement or before the variable declarator or declarators.
Therefore:

z/0S V2R1.0 XL C/C++ Language Reference

volatile struct omega {
int Timit;
char code;
} group;

provides the same storage as:

struct omega {
int Timit;
char code;
} volatile group;

In both examples, the volatile qualifier only applies to the structure variable
group.

When type qualifiers are applied to a structure, classEZEE , or union
variable, they also apply to the members of the structure, class or union.

Related reference:

[Pointers” on page 100]

[“Constant and volatile member functions” on page 360|

The __callback type qualifier

The keyword __callback is a qualifier that can be applied only to a function
pointer type. The qualifier instructs the compiler to generate extra code in the call
sites to assist the call, and thus allows the function pointer to point to either
XPLINK or non-XPLINK functions. Under normal circumstances, a non-XPLINK
function pointer is incompatible with XPLINK compilation units.

The keyword can appear in the declarator part of a function pointer declaration,
wherever a cv-qualifier can appear. For example,

int (*__callback foo)(int);

declares foo to be a function pointer that might point to non-XPLINK functions.
foo will then have fewer restrictions on what it can reference and can thus be used
with XPLINK compilation units.

XPLINK and non-XPLINK compilation units cannot be statically bound; the two
linkages can be mixed only across DLL boundaries. Moreover, a function pointer
that points to a non-XPLINK function cannot be used in XPLINK DLLs unless the
pointer is passed across the boundary explicitly as a function argument. The
__callback qualifier relaxes the latter restriction, at the expense of extra code
sequences in the call site.

Semantically, the _ callback keyword is a language extension that has a single
effect: to instruct the compiler to generate assistance code. It does not take part in
type definition. The keyword also has no effect on the following:

* Type (such as in overload resolution).
* Name mangling.
* Allocation of the pointer object in memory.

It is the responsibility of the programmer to make sure that the function pointer is
appropriately _ callback-qualified for all call sites that require it.

The atomic qualifier (C11)

The _Atomic qualifier designates an atomic type. The type modified by the _Atomic
qualifier cannot be an array type or a function type.

Chapter 3. Data objects and declarations 87

88

The properties associated with qualified types are meaningful only for expressions
that are lvalues.

If you modify a type with the _Atomic qualifier and other qualifiers, the resulting
type is the so-qualified atomic type. For example, the following statement declares
a pointer to a volatile-qualified atomic type:

_Atomic volatile int =*p;

The const type qualifier

The const qualifier explicitly declares a data object as something that cannot be
changed. Its value is set at initialization. You cannot use const data objects in
expressions requiring a modifiable lvalue. For example, a const data object cannot
appear on the left side of an assignment statement.

A const object cannot be used in constant expressions. A global const
object without an explicit storage class is considered extern by default.

In C++, all const declarations must have initializers, except those
referencing externally defined constants. A const object can appear in a constant
expression if it is an integer and it is initialized to a constant. The following
example demonstrates this:

const int k = 10;
int ary[k]; /* allowed in C++, not legal in C */

In C++ a global const object without an explicit storage class is considered static
by default, with internal linkage.

const int k = 12; /* Different meanings in C and C++ */

120; /* Same meaning in C and C++ */
121; /* Same meaning in C and C++ =/

static const int k2
extern const int k3

Because its linkage is assumed to be internal, a const object can be more easily
defined in header files in C++ than in C. g

An item can be both const and volatile. In this case the item cannot be
legitimately modified by its own program but can be modified by some
asynchronous process.

Related reference:
[“The #define directive” on page 507]
[“The this pointer” on page 363

The __far type qualifier (C only)

When the METAL option is in effect, you can use the _ far keyword to qualify a
pointer type so that it can access additional data spaces in access-register (AR)
mode. The upper half of the pointer contains the access-list-entry token (ALET),
which identifies the secondary virtual address space you want to access. The lower
half the pointer is the offset within the secondary virtual address space. The size of
a __far-qualified pointer is increased to 8 bytes in 31-bit mode and 16 bytes in
64-bit mode. In 31-bit mode, the upper 4 bytes contain the ALET, and the lower 4
bytes is the address within the data space. In 64-bit mode, bytes 0-3 are unused,
bytes 4-7 are the ALET, and bytes 8-15 are the address within the data space.

The __far keyword must appear in the declarator part of a pointer declaration,
wherever a cv-qualifier can be used. For example,

z/0S V2R1.0 XL C/C++ Language Reference

int » _ far p;
declares p to be a __far pointer to int.

__far pointers can appear in global scope and function scope, in simple
assignment and in implicit assignment via function parameter passing. However, if
they are used inside a function in operations that access the data space, such as
dereferencing, the function must be in AR mode (that is, with the ARMODE
compiler option in effect, or qualified with the armode function attribute).

A normal pointer can be converted to a __far pointer explicitly through
typecasting or implicitly through assignment. The ALET of the __far pointer is set
to zero. A __ far pointer can be explicitly converted to a normal pointer through
typecasting; the normal pointer keeps the offset of the _ far pointer and the ALET
is lost. A __far pointer cannot be implicitly converted to a normal pointer.

Pointer arithmetic is supported for _ far pointers, with the ALET part being
ignored. If the two ALETs are different, the results may have no meaning.

Two __ far pointers can be compared for equality and inequality using the == and
!= operators. The whole pointer is compared. To compare for equality of the offset
only, use the built-in function to extract the offset and then compare. To compare
for equality of the ALET only, use the built-in function to extract the ALET and
then compare. For more information on the set of built-in functions that operate on
__far pointers, see z/OS XL C/C++ Programming Guide.

Two __far pointers can be compared using the >, <, >=, and <= relational
operators. The ALET parts of the pointers are ignored in this operation. There is no
ordering between two __far pointers if their ALETs are different, and between a
NULL pointer and any __far pointers. The result is meaningless if they are
compared using relational operators.

When a __far pointer and a normal pointer are involved in an operation, the
normal pointer is implicitly converted to __far before the operation. There is
unspecified behavior if the ALETs are different. For example:

int x _ far p;

int = _ far q;

ptrdiff_t chunk;

it (p=a)
p=p+ 1024;
}
if (p<q) {
chunk = q - p;
}
else {
chunk = p - q;

}

The result of the & (address) operator is a normal pointer, except for the following
cases:

* If the operand of & is the result of an indirection operator (*), the type of & is
the same as the operand of the indirection operator.

e If the operand of & is the result of the arrow operator (->, structure member
access), the type of & is the same as the left operand of the arrow operator.

Chapter 3. Data objects and declarations 89

90

For example:

int * _ far p;
int » _ far q;

q = &(*(p*+2)); // result of & is a _ far pointer; the ALET is the same as p.

struct S {
int b;
} o+ far r;

q =& r->b; // result of & is a _ far pointer; the ALET is the same as r.

For more information on ARMODE and METAL compiler options, see ARMODE
and METAL compiler options in the z/OS XL C/C++ User’s Guide.

Related reference:

[‘armode | noarmode (C only)” on page 244

The __ ptr32 type qualifier

The keyword __ptr32 is a qualifier that can be applied to a pointer type to
constrain its size to 32 bits. This language extension is provided to facilitate
porting structures with pointer members from 31- to 64-bit mode. The qualifier is
accepted and ignored in 31-bit mode.

The size of a pointer type doubles to 64 bits in 64-bit mode. Doubling the size of a
pointer changes the layout of a structure that contains pointer members. If the
object referenced by a pointer member resides within a 31-bit addressing space,
constraining the pointer to 32 bits can reduce some of the unexpected effects of
moving to 64-bit mode.

The _ ptr32 keyword can appear in the declarator part of a pointer declaration,
wherever a cv-qualifier can be used. For example,

int = _ ptr32 p;

declares p to be a 32-bit pointer to int.
int = _ ptr32 *q;

declares q to be a 64-bit pointer to a 32-bit pointer to int.
int * _ ptr32 const r;

declares r to be a const 32-bit pointer.

Pointers with external linkage must be __ ptr32-qualified consistently across all
compilation units. If a pointer is declared 31-bit in one compilation unit and 64-bit
in another, the behavior is undefined.

Assignment of 32-bit and 64-bit pointers to each other is permitted. The compiler
generates an implicit conversion or truncates without emitting a diagnostic.

Note: The terms 31-bit mode and 32-bit mode are used interchangeably when there
is no ambiguity. The term 32-bit mode is commonly used in the industry to refer to
a class of machines, to which z/OS in 31-bit mode belongs. Strictly speaking, 31-bit
mode refers to the addressing mode of the architecture, and 32 bits refers to the size
of the pointer type. In z/OS 31-bit addressing mode, the size of a pointer is four
bytes. However, the high-order bit is reserved for system use, and is not used to
form the address. The addressing range in this mode is therefore 2 gigabytes. In

z/0S V2R1.0 XL C/C++ Language Reference

64-bit mode, the size of a pointer is eight bytes, and all 64 bits participate in
addressing. When a __ptr32 pointer is dereferenced, a 64-bit address is formed by
filling the 33 missing high-order bits with zeros. The program using that address
should make sure it is valid within the address space of the application.

The __ ptr64 type qualifier (C only)

The keyword _ ptr64 is a qualifier that can be applied to a pointer type to
constrain its size to 64 bits. When you need to switch addressing mode (AMODE)
between programs, this language extension enables the handling of a 64-bit pointer
by an AMODE 31 function without dereferencing it, for example, passing it as a
parameter or receiving it as a return value.

Note: The _ ptr64 qualifier can be used only when the METAL compiler option is
specified.

The _ ptr64 keyword can be used only to qualify a pointer type. For example,

int *_ptr64 p; /* 64-bit pointer */

int *r; /* 32-bit pointer, default to the model's size */
int *__ptr64 const q; /* 64-bit const pointer x/

int *_ far _ ptr64 s; /+ 64-bit far pointer =/

For further information on the METAL compiler option, see z/OS XL C/C++ User’s
Guide. For further information on AMODE switching, see z/OS Metal C
Programming Guide and Reference.

The restrict type qualifier

This type qualifier is introduced in the C99 standard. The z/0OS XL
C/C++ compiler supports it as an IBM extension.

A pointer is the address of a location in memory. More than one pointer can access
the same chunk of memory and modify it during the course of a program. The
restrict (or __restrict or _restrict_)' type qualifier can be applied to a
pointer type to form a restrict-qualified pointer. During the execution of the block
that is associated with the declaration of an object that provides a way to designate
a restrict-qualified pointer, the memory addressed via the restrict-qualified pointer
cannot be modified or can be accessed only via this pointer if the pointer does not
point to a const-qualified type. The compiler may choose to optimize code
involving restrict-qualified pointers in a way that might otherwise result in
incorrect behavior. It is the responsibility of the programmer to ensure that
restrict -qualified pointers are used as they were intended to be used. Otherwise,
undefined behavior may result.

If a particular chunk of memory is not modified, it can be aliased through more
than one restricted pointer. The following example shows restricted pointers as
parameters of foo(), and how an unmodified object can be aliased through two
restricted pointers.

void foo(int n, int * restrict a, int * restrict b, int * restrict c)

{

int i;
for (i = 0; i <n; i++)
ali] = b[i] + c[il;

}

Assignments between restricted pointers are limited, and no distinction is made
between a function call and an equivalent nested block.

Chapter 3. Data objects and declarations 91

92

int * restrict x;
int * restrict y;
x =y; // undefined

int * restrict x1 = x; // okay
int * restrict yl = y; // okay
x = yl; // undefined

}

In nested blocks containing restricted pointers, only assignments of restricted
pointers from outer to inner blocks are allowed. The exception is when the block in
which the restricted pointer is declared finishes execution. At that point in the
program, the value of the restricted pointer can be carried out of the block in
which it was declared.

Notes:

1. The restrict qualifier is represented by the following keywords (all have the
same semantics):
* The restrict keyword is recognized in C, under compilation with ¢99 or the
LANGLVL(STDC99) or LANGLVL(EXTC99) options, and in C++ under the
LANGLVL (EXTENDED) or KEYWORD (RESTRICT) options. HMETMM The restrict

and _ restrict__ keywords are recognized in both C, at all language levels,
and C++, at LANGLVL (EXTENDED) . JETIE

The volatile type qualifier

The volatile qualifier maintains consistency of memory access to data objects.
Volatile objects are read from memory each time their value is needed, and written
back to memory each time they are changed. The volatile qualifier declares a data
object that can have its value changed in ways outside the control or detection of
the compiler (such as a variable updated by the system clock or by another
program). This prevents the compiler from optimizing code referring to the object
by storing the object's value in a register and re-reading it from there, rather than
from memory, where it may have changed.

Accessing any lvalue expression that is volatile-qualified produces a side effect. A
side effect means that the state of the execution environment changes.

References to an object of type "pointer to volatile" may be optimized, but no
optimization can occur to references to the object to which it points. An explicit
cast must be used to assign a value of type "pointer to volatile T" to an object of
type "pointer to T". The following shows valid uses of volatile objects.

volatile int * pvol;

int *ptr;
pvol = ptr; /* Legal */
ptr = (int *)pvol; /* Explicit cast required */

A signal-handling function may store a value in a variable of type
sig_atomic_t, provided that the variable is declared volatile. This is an exception
to the rule that a signal-handling function may not access variables with static

storage duration.

An item can be both const and volatile. In this case the item cannot be
legitimately modified by its own program but can be modified by some
asynchronous process.

z/0S V2R1.0 XL C/C++ Language Reference

Type attributes (IBM extension)

Type attributes are language extensions that allow you to use named attributes to
specify special properties of user-defined types. Type attributes apply to the
definitions of user-defined types, such as structures, unions, enumerations,

and classeslEEME - Any objects that are declared as having that type
will have the attribute applied to them.

A type attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires.
Although there are variations, the syntax of a type attribute is of the general form:

Type attribute syntax

v

»>—type_name—__attribute_ —((

attribute name))

v

> |_ _| {—member_definition list—}—; ><
tag_identifier

Type attribute syntax — typedef declarations

»>—typedef—type_declaration—type_name >

»— attribute —((———attribute name))—;

A\
A

For unsupported attribute names, the z/OS XL C/C++ compiler issues diagnostics
and ignores the attribute specification. Multiple attribute names can be specified in
the same attribute specification.

The following type attributes are supported:
* [“The amode31 | amode64 type attribute (C only)”]
* [“The armode | noarmode type attribute (C only)” on page 94|

* [“The may_alias type attribute” on page 94|

Related reference:

[“Variable attributes (IBM extension)” on page 125|

[“Function attributes (IBM extension)” on page 242|

The amode31 | amode64 type attribute (C only)

For use with the METAL compiler option, the amode31 type attribute allows you to
define a typedef of a function or function pointer type to operate in addressing
mode (AMODE) 31 and the amode64 type attribute allows you to define a typedef
of a function or function pointer type to operate in AMODE 64.

Chapter 3. Data objects and declarations 93

94

amode31 | amode64 function attribute syntax

»»— attribute_ —((

amode31 | amode64))

v
A

The following example declares a typedef of function pointer foo that is in
AMODE 64:

typedef void (*foo)(int) _ attribute__ ((amode64));

For information on the METAL compiler option, see the METAL compiler option
description in z/OS XL C/C++ User’s Guide. For information on AMODE switching,
see z/OS Metal C Programming Guide and Reference.

The armode | noarmode type attribute (C only)

For use with the METAL compiler option, the armode type attribute allows you to
define a typedef of function or function pointer type as operating in access-register
(AR) mode. AR mode allows a C function to access multiple additional data
spaces, and manipulate more data in memory.

armode function attribute syntax

A\
A

»»— attribute_ —((|_armode))
noar‘mode—I

Functions in AR mode can call functions not in AR mode, and vice versa.

The following example declares a typedef of function pointer foo that is in AR
mode, and then declares bar as a function that passes function pointer foo as a
parameter:

typedef void (*foo) (int) _ attribute_ ((armode));
void bar (foo);

The attribute overrides the default setting of the ARMODE compiler option for the
specified type. Note that this attribute is only supported when the METAL
compiler option is in effect.

For more information on ARMODE and METAL compiler options, see ARMODE
and METAL compiler options in the z/OS XL C/C++ User’s Guide.

Related reference:

[‘armode | noarmode (C only)” on page 244

“The __far type qualifier (C only)” on page 88
ype 9 y pag

The may_alias type attribute

You can specify the may_alias type attribute for a type so that lvalues with
dereferencing operator of the type can alias objects of any type, similar to a char
type. Types with the may_alias attribute are not subject to type-based aliasing
rules.

may_alias type attribute syntax

»»— attribute —((—[may alias)) ><

-—_may_alias__

z/0S V2R1.0 XL C/C++ Language Reference

You can specify the may_alias type attribute in the following ways:

struct _ attribute_ ((__may alias_)) my struct {} *ps;
typedef long _ attribute_ ((__may alias__)) t_long;
typedef struct _attribute_ ((__may alias_)) my struct {} t_my struct;

Instead of specifying the NOANSIALIAS option, you can alternatively specify the
may_alias type attribute for a type to violate the ANSI aliasing rules when
compiling expressions that contain lvalues of that type. For example:

#define _ attribute_ (x) // Invalidates all _ attribute__ declarations
typedef long _ attribute_ ((__may_alias__)) t_long;

int main (void){
int i = 42;
t long *pa = (t_long *) &i;

if (i == 42
return 1;
return 0;

}

If you compile this code with the ANSIALIAS option at a high optimization level,
such as -03, the executable program returns 1. Because the lvalue *pa is of type
Tong, according to the ANSI aliasing rules, the assignment to lvalue *pa cannot

modify the value of i, which is of type int.

If you remove the #define __attribute__ (x) statement and compile the code with
the same options as before, the executable program returns 0. Because the type of
*pa is Tong __ attribute_ ((__may alias__)), *pa can alias any other object of any
type, and the assignment to Ivalue *pa can modify the value of i to 0.

The usage of the may_alias type attribute can result in less conservative aliasing
relationships and provide more optimization opportunities compared to usage of
compiler option ANSIALIAS.

This attribute is supported at the EXTC89, EXTC99, EXTENDED, and EXTC1X
language levels. EEE

This attribute is supported at the EXTENDED and EXTENDEDOX language
levels. =g

Chapter 3. Data objects and declarations 95

96 z/0S V2R1.0 XL C/C++ Language Reference

Chapter 4. Declarators

This section continues the discussion of data declarations and includes information

on type names, pointers, arrays, references EEEE , initializers, and

variable attributes.

Overview of declarators

A declarator declares an object, function, or reference EME as part of a

declaration.

A declarator has the following form:

Declarator syntax (C only):

} direct_declarator

Y pointer_operator

Declarator syntax (C++ only):

} direct_declarator

Y pointer_operator

(1)

trailing_return_type

Notes:
1 C++11

Direct declarator:

declarator_name

function_declarator
direct_declarator—|

C o] |
constant_expression

(direct_declarator—)—

Y pointer_operator

Pointer operator (C only):

%

l—t ype_qualifi er_seq—|

© Copyright IBM Corp. 1998, 2015

97

Declarator name (C only):

|—identifier_expression |

Pointer operator (C++ only):

I * |

I—type_qual ifier_seq—|
—&

(1)

—&&
—L—_I—nested_name_specifier * |_ _|
o type_qualifier_seq

Notes:
1 C++11

Declarator name (C++ only):

| |
[|
—identifier_expression

type_name—

I—: :—I l—nested_name_specifier—|

Notes:

* The type_qualifier_seq represents one or a combination of type qualifiers. For the
details of type qualifiers, see [“Type qualifiers” on page 85]

. A nested_name_specifier is a qualified identifier expression. An
identifier_expression can be a qualified or unqualified identifier. G

For the details of function declarators, see [“Function declarators” on page 235,

[For the details of trailing return types, see [‘Trailing return type (C++11)"]
i

The following types are known as derived declarator types, and are therefore
discussed in this section:

* [“Pointers” on page 100|

* [“Arrays” on page 104|

+ [“References (C++ only)” on page 107

z/0S XL C/C++ includes two additional qualifiers, which are described in
[‘Declarator qualifiers” on page 124

BT In addition, for compatibility with GNU C and C++, z/OS XL C/C++
allows you to use variable attributes to modify the properties of data objects. As
they are normally specified as part of the declarator in a declaration, they are
described in [“Variable attributes (IBM extension)” on page 125 [lETHE

Related reference:

[“Initializers” on page 108|

[“Type qualifiers” on page 85|

98 2/0S V2R1.0 XL C/C++ Language Reference

Examples of declarators

The following table indicates the declarators within the declarations:

Declaration Declarator Description

int owner; owner owner is an integer data object.

int *node; *node node is a pointer to an integer data
object.

int names[126]; names [126] names is an array of 126 integer
elements.

volatile int min; min min is a volatile integer.

int * volatile volume; * volatile volume volume is a volatile pointer to an
integer.

volatile int * next; *next next is a pointer to a volatile
integer.

volatile int * *sequence[5] sequence is an array of five pointers

sequence[5] ; to volatile integer data objects.

extern const volatile int |clock clock is a constant and volatile

clock; integer with static storage duration
and external linkage.

int » _ far p; x _ farp p is a _ far pointer to an integer

Related reference:

[“Type qualifiers” on page 85|

[“Array subscripting operator []” on page 171

[“Scope resolution operator :: (C++ only)” on page 148|

[“Function declarators” on page 235|

Type names

A type name, is required in several contexts as something that you must specify
without declaring an object; for example, when writing an explicit cast expression
or when applying the sizeof operator to a type. Syntactically, the name of a data
type is the same as a declaration of a function or object of that type, but without
the identifier.

To read or write a type name correctly, put an "imaginary" identifier within the
syntax, splitting the type name into simpler components. For example, int is a
type specifier, and it always appears to the left of the identifier in a declaration. An
imaginary identifier is unnecessary in this simple case. However, int *[5] (an
array of 5 pointers to int) is also the name of a type. The type specifier int *
always appears to the left of the identifier, and the array subscripting operator
always appears to the right. In this case, an imaginary identifier is helpful in
distinguishing the type specifier.

As a general rule, the identifier in a declaration always appears to the left of the
subscripting and function call operators, and to the right of a type specifier, type
qualifier, or indirection operator. Only the subscripting, function call, and
indirection operators may appear in a type name declaration. They bind according
to normal operator precedence, which is that the indirection operator is of lower
precedence than either the subscripting or function call operators, which have
equal ranking in the order of precedence. Parentheses may be used to control the
binding of the indirection operator.

Chapter 4. Declarators 99

It is possible to have a type name within a type name. For example, in a function
type, the parameter type syntax nests within the function type name. The same
rules of thumb still apply, recursively.

The following constructions illustrate applications of the type naming rules.

Table 18. Type names

Syntax Description

int =[5] array of 5 pointers to int

int (*)[5] pointer to an array of 5 integers

int (*)[*] pointer to an variable length array of an
unspecified number of integers

int *() function with no parameter specification
returning a pointer to int

int (%) (void) function with no parameters returning an
int

int (*const []) (unsigned int, ...) array of an unspecified number of constant

pointers to functions returning an int. Each
function takes one parameter of type
unsigned int and an unspecified number of
other parameters.

The compiler turns any function designator into a pointer to the function. This
behavior simplifies the syntax of function calls.

int foo(float); /* foo is a function designator */

int (*p)(float); /* p is a pointer to a function */

p=&foo; /* legal, but redundant */

p=foo; /* legal because the compiler turns foo into a function pointer =/

In C++, the keywords typename and class, which are interchangeable,
indicate the name of the type.

Related reference:

[“Operator precedence and associativity” on page 190|

[“Examples of expressions and precedence” on page 193|

[‘The typename keyword” on page 482

[“Parenthesized expressions ()” on page 145|

Pointers

A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type; it cannot refer to a bit field or a
reference.

Some common uses for pointers are:

* To access dynamic data structures such as linked lists, trees, and queues.
* To access elements of an array or members of a structure or C++ class.

* To access an array of characters as a string.

* To pass the address of a variable to a function. (In C++, you can also use a
reference to do this.) By referencing a variable through its address, a function
can change the contents of that variable.

100 z/0S V2R1.0 XL C/C++ Language Reference

The z/0OS XL C compiler supports only the pointers that are obtained in
one of the following ways:

* Directly from the return value of a library function which returns a pointer

* As an address of a variable

¢ From constants that refer to valid addresses or from the NULL constant

* Received as a parameter from another C function

« Directly from a call to a service in the z/OS IBM Language Environment® that
allocates storage, such as CEEGTST

Any bitwise manipulation of a pointer can result in undefined behavior. K

Note that the placement of the type qualifiers volatile and const affects the
semantics of a pointer declaration. If either of the qualifiers appears before the *,
the declarator describes a pointer to a type-qualified object. If either of the
qualifiers appears between the * and the identifier, the declarator describes a
type-qualifed pointer.

The following table provides examples of pointer declarations.

Table 19. Pointer declarations

Declaration Description

Tong *pcoat; pcoat is a pointer to an object having type
Tong

extern short * const pvolt; pvolt is a constant pointer to an object

having type short

extern int volatile *pnut; pnut is a pointer to an int object having the
volatile qualifier

float * volatile psoup; psoup is a volatile pointer to an object
having type float

enum bird *pfowl; pfowl is a pointer to an enumeration object
of type bird

char (*pvish) (void); pvish is a pointer to a function that takes no
parameters and returns a char

nullptr t pnull; pnull is a null pointer that does not point to
any valid object or function.

Related reference:

[“Type qualifiers” on page 85|

[“Initialization of pointers” on page 116|

[‘Compeatibility of pointers (C only)” on page 103|

[“Pointer conversions” on page 137]

[“Address operator &” on page 154|

[“Indirection operator *” on page 155|

[“Pointers to functions” on page 257|

Pointer arithmetic

You can perform a limited number of arithmetic operations on pointers. These
operations are:

¢ Increment and decrement

¢ Addition and subtraction

Chapter 4. Declarators 101

* Comparison
¢ Assignment

The increment (++) operator increases the value of a pointer by the size of the data
object the pointer refers to. For example, if the pointer refers to the second element
in an array, the ++ makes the pointer refer to the third element in the array.

The decrement (--) operator decreases the value of a pointer by the size of the
data object the pointer refers to. For example, if the pointer refers to the second
element in an array, the -- makes the pointer refer to the first element in the array.

You can add an integer to a pointer but you cannot add a pointer to a pointer.

If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:

P=p+2;
If you have two pointers that point to the same array, you can subtract one pointer

from the other. This operation yields the number of elements in the array that
separate the two addresses that the pointers refer to.

You can compare two pointers with the following operators: ==, !=, <, >, <=,
and >=.

Pointer comparisons are defined only when the pointers point to elements of the
same array. Pointer comparisons using the == and != operators can be performed
even when the pointers point to elements of different arrays.

You can assign to a pointer the address of a data object, the value of another
compatible pointer or the NULL pointer.

Related reference:

[‘Increment operator ++” on page 151|

[“Arrays” on page 104|

[‘Decrement operator --” on page 152

[Chapter 6, “Expressions and operators,” on page 141

Type-based aliasing
The compiler follows the type-based aliasing rule in the C and C++ standards
when the ANSIALIAS option is in effect (which it is by default). This rule, also
known as the ANSI aliasing rule, states that a pointer can only be dereferenced to
an object of the same type or a compatible type. '

1. The C Standard states that an object shall have its stored value accessed only by an lvalue that has one of the following types:
* the declared type of the object,
* a qualified version of the declared type of the object,
* a type that is the signed or unsigned type corresponding to the declared type of the object,
* a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the object,

* an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member
of a subaggregate or contained union), or

* a character type

The C++ standard states that if a program attempts to access the stored value of an object through an Ivalue of other than one of
the following types, the behavior is undefined:

* the dynamic type of the object,

102 z/0S V2R1.0 XL C/C++ Language Reference

The common coding practice of casting a pointer to an incompatible type and then
dereferencing it violates this rule. (Note that char pointers are an exception to this
rule) Refer to the description of the ANSIALIAS option in the z/OS XL C/C++
User’s Guide for additional information.

The compiler uses the type-based aliasing information to perform optimizations to
the generated code. Contravening the type-based aliasing rule can lead to
unexpected behavior, as demonstrated in the following example:

int *p;

double d = 0.0;

int *faa(double =g); /* cast operator inside the function =*/

void foo(double f) {
p = faa(&f); /* turning &f into an int ptr */
f += 1.0; /* The optimizer might move the =/
/* assignment after the printf statement. =/
printf("f=%x\n", *p);
}

int *faa(double *g) { return (intx) g; } /% questionable cast; x/
/* the function can be in =/
/* another translation unit */

int main() {
foo(d);
1

In the above printf statement, *p cannot be dereferenced to a double under the
ANGSI aliasing rule. The compiler determines that the result of f += 1.0 does not
affect the value of *p. Thus, the optimizer might move the assignment after the
printf statement. If you compile the above example with optimization enabled, the
printf statement might output 0 (zero).

Related reference:

[“The may_alias type attribute” on page 94|

[‘The reinterpret_cast operator (C++ only)” on page 179

Compatibility of pointers (C only)
Two pointer types with the same type qualifiers are compatible if they point to

objects of compatible types. The composite type for two compatible pointer types
is the similarly qualified pointer to the composite type.

The following example shows compatible declarations for the assignment
operation:

* a cv-qualified version of the dynamic type of the object,
* a type that is the signed or unsigned type corresponding to the dynamic type of the object,
* a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of the object,

* an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member
of a subaggregate or contained union),

* a type that is a (possible cv-qualified) base class type of the dynamic type of the object,

* a char or unsigned char type.

Chapter 4. Declarators 103

float subtotal;

float * sub_ptr;

JEREY

sub_ptr = &subtotal;

printf("The subtotal is %f\n", *sub_ptr);

The next example shows incompatible declarations for the assignment operation:

double Teague;
int * minor;
/% .0 %/

minor = &league; /* error */

Packed and nonpacked objects have different memory layouts.
Consequently, a pointer to a packed structure or union is incompatible with a
pointer to a corresponding nonpacked structure or union. As a result, comparisons
and assignments between pointers to packed and nonpacked objects are not valid.

You can, however, perform these assignments and comparisons with type casts. In
the following example, the cast operation lets you compare the two pointers, but
you must be aware that ps1 still points to a nonpacked object:

int main(void)

{

_Packed struct ss *psl;
struct ss *psS2;

psl = (_Packed struct ss *)ps2;
.

2/0S
Related reference:
[“The _Packed qualifier (C only)” on page 124

Arrays

An array is a collection of objects of the same data type, allocated contiguously in
memory. Individual objects in an array, called elements, are accessed by their
position in the array. The subscripting operator ([]) provides the mechanics for
creating an index to array elements. This form of access is called indexing or
subscripting. An array facilitates the coding of repetitive tasks by allowing the
statements executed on each element to be put into a loop that iterates through
each element in the array.

The C and C++ languages provide limited built-in support for an array type:
reading and writing individual elements. Assignment of one array to another, the
comparison of two arrays for equality, returning self-knowledge of size are not
supported by either language.

The type of an array is derived from the type of its elements, in what is called
array type derivation. If array objects are of incomplete type, the array type is also
considered incomplete. Array elements may not be of type void or of function
type. However, arrays of pointers to functions are allowed.

Array elements may not be of reference type or of an abstract class type.

C++

The array declarator contains an identifier followed by an optional subscript
declarator. An identifier preceded by an asterisk (*) is an array of pointers.

104 z/0S V2R1.0 XL C/C++ Language Reference

Array subscript declarator syntax

»—Y [—constant_expression—] ><

The constant_expression is a constant integer expression, indicating the size of the
array, which must be positive.

If the declaration appears in block or function scope, a nonconstant
expression can be specified for the array subscript declarator, and the array is
considered a variable-length array, as described in [“Variable length arrays” on page]

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. Each bracketed expression, or subscript,
describes a different dimension and must be a constant expression.

The following example defines a one-dimensional array that contains four elements
having type char:

char
list[4];

The first subscript of each dimension is 0. The array 1ist contains the elements:
Tist[0]
Tist[1]
Tist[2]
Tist[3]

The following example defines a two-dimensional array that contains six elements
of type int:

int

roster[3][2];

Multidimensional arrays are stored in row-major order. When elements are referred
to in order of increasing storage location, the last subscript varies the fastest. For
example, the elements of array roster are stored in the order:

roster[0] [0]

roster[0] [1]

roster[1][0]

roster[1][1]

roster[2][0]

roster[2] [1]

In storage, the elements of roster would be stored as:

! ! !

roster[0] [0] roster[0][1]
roster[1][0]

You can leave the first (and only the first) set of subscript brackets empty in:
* Array definitions that contain initializations

Chapter 4. Declarators 105

106

e extern declarations

e Parameter declarations

In array definitions that leave the first set of subscript brackets empty, the
initializer determines the number of elements in the first dimension. In a
one-dimensional array, the number of initialized elements becomes the total
number of elements. In a multidimensional array, the initializer is compared to the
subscript declarator to determine the number of elements in the first dimension.

Related reference:

[Array subscripting operator []” on page 171]

[“Initialization of arrays” on page 116|

Variable length arrays

A variable length array, which is a C99 feature, is an array of automatic storage
duration whose length is determined at run time. The z/0OS XL C/C++
compiler supports this feature as an IBM extension.

Variable length array declarator syntax

»>—array_identifier— [—|—express ion |] >

I—type-qual ifiers—l

If the size of the array is indicated by * instead of an expression, the variable
length array is considered to be of unspecified size. Such arrays are considered
complete types, but can only be used in declarations of function prototype scope.

A variable length array and a pointer to a variable length array are considered
variably modified types. Declarations of variably modified types must be at either
block scope or function prototype scope. Array objects declared with the extern
storage class specifier cannot be of variable length array type. Array objects
declared with the static storage class specifier can be a pointer to a variable
length array, but not an actual variable length array. The identifiers declared with a
variably modified type must be ordinary identifiers and therefore cannot be
members of structures or unions. A variable length array cannot be initialized.

Note: In C++ applications, storage allocated for use by variable length
arrays is not released until the function they reside in completes execution.

C++

A variable length array can be the operand of a sizeof expression. In this case, the
operand is evaluated at run time, and the size is neither an integer constant nor a
constant expression, even though the size of each instance of a variable array does
not change during its lifetime.

A variable length array can be used in a typedef statement. The typedef name will
have only block scope. The length of the array is fixed when the typedef name is
defined, not each time it is used.

A function parameter can be a variable length array. The necessary size expressions
must be provided in the function definition. The compiler evaluates the size
expression of a variably modified parameter on entry to the function. For a
function declared with a variable length array as a parameter, as in the following,

void f(int x, int a[][x]);

z/0OS V2R1.0 XL C/C++ Language Reference

the size of the variable length array argument must match that of the function
definition.

[BM | The C++ extension does not include support for references to a
variable length array type; neither might a function parameter be a reference to a

variable length array type. [BM 4

Related reference:

[Flexible array members|

Compatibility of arrays (C only)

Two compatible array types must have compatible element types. In addition, if
each array has a size specifier that is an integer constant expression, both size
specifiers must have the same constant value. For example, the types of the
following two arrays are not compatible:

char ex1[25];
const char ex2[25];

The composite type of two compatible array types is an array with the composite
element type. The composite type of two compatible arrays is determined by the
following rules:

1. If one of the original types is an array of known constant size, the composite
type is an array of that size. For example:
// The composite type is char [42].
char ex3[];
char ex4[42];
2. Otherwise, if one of the original types is a variable length array, the composite
type is that type.

3. JEEMM Otherwise, if one of the original types is a variable length array whose
size is specified by an expression that is not evaluated, the behavior is
undefined.

4. Otherwise, if one of the original types is a variable length array whose size is
specified by an expression that is already evaluated, the composite type is a
variable length array of that size. For example:

// The composite type is int [n].
int ex5[];
int ex6[n]; // The value of n is determined
5. Otherwise, if one of the original types is a variable length array of unspecified
size, the composite type is a variable length array of unspecified size.
6. Otherwise, if both the original types are arrays of unknown size, the composite
type is an array of unknown size. For example:

// The composite type is int [].
int ex7[];
int ex8[];

c11
Related reference:

[“External linkage” on page §|

References (C++ only)

A reference is an alias or an alternative name for an object or function. All
operations applied to an object reference act on the object to which the reference
refers. The address of a reference is the address of the aliased object or function.

Chapter 4. Declarators 107

An lvalue reference type is defined by placing the reference modifier & or bitand
after the type specifier. An rvalue reference type is defined by placing the
reference modifier && or and after the type specifier. For the details of rvalue
references, see Using rvalue references (C++11)|@*SEBE Reference types include
both lvalue reference and rvalue reference Ji[Z¥SEE types.

Because arguments of a function are passed by value, a function call does not
modify the actual values of the arguments. If a function needs to modify the actual
value of an argument or needs to return more than one value, the argument must
be passed by reference (as opposed to being passed by value). Passing arguments by
reference can be done using either references or pointers. Unlike C, C++ does not
force you to use pointers if you want to pass arguments by reference. The syntax
of using a reference is simpler than that of using a pointer. Passing an object by
reference enables the function to change the object being referred to without
creating a copy of the object within the scope of the function. Only the address of
the actual original object is put on the stack, not the entire object.

For example:

int f(intd);

int main()
extern int i;
f(i);

}

You cannot tell from the function call f(i) that the argument is being passed by
reference.

The following types of references are invalid:
* References to NULL

* References to void

 References to invalid objects or functions

» References to bit fields

* References to references except with reference collapsing. See
[‘Reference collapsing (C++11)” on page 194 for more information. JZ*SEg

You also cannot declare arrays of references, pointers to references, and

cv-qualifiers on references. If cv-qualifiers are introduced through a typedef or
template argument deduction, the cv-qualifiers are ignored.

For information on references to functions, see [“Pointers to functions” on page 257

Related reference:

[“Initialization of references (C++ only)” on page 119

[“Pointers” on page 100]

[“Address operator &” on page 154|

[“Pass by reference (C++ only)” on page 252

Initializers

An initializer specifies an initial value to a data object and is optional in a data
declaration. Whether an initializer is valid for a particular declaration depends on
the type and storage class of the object to be initialized.

The initializer consists of the = symbol followed by an initial expression or a
brace-enclosed list of initial expressions separated by commas. Individual

108 2z/0S V2R1.0 XL C/C++ Language Reference

expressions must be separated by commas, and groups of expressions can be
enclosed in braces and separated by commas. Braces ({ }) are optional if the
initializer for a character string is a string literal. The number of initializers must
not be greater than the number of elements to be initialized. The initial expression
evaluates to the first value of the data object.

To assign a value to an arithmetic or pointer type, use the simple initializer:
= expression. For example, the following data definition uses the initializer = 3 to
set the initial value of group to 3:

int group = 3;

You initialize a variable of character type with a character literal (consisting of one
character) or with an expression that evaluates to an integer.

You can initialize variables at namespace scope with nonconstant

expressions. You cannot initialize variables at global scope with
nonconstant expressions. K

Related reference:

[“Using class objects” on page 348|

Initialization and storage classes
This topic includes descriptions of the following:
* Initialization of automatic variables
* Initialization of static variables
* Initialization of external variables

¢ Initialization of register variables
Initialization of automatic variables

You can initialize any auto variable except function parameters. If you do not
explicitly initialize an automatic object, its value is indeterminate. If you provide
an initial value, the expression representing the initial value can be any valid C or
C++ expression. The object is then set to that initial value each time the program
block that contains the object's definition is entered.

Note that if you use the goto statement to jump into the middle of a block,
automatic variables within that block are not initialized.

Note: In C++11, the keyword auto is no longer used as a storage class
specifier. Instead, it is used as a type specifier. The compiler deduces the type of an
auto variable from the type of its initializer expression. For more information, see
[‘The auto type specifier (C++11)” on page 76/

Initialization of static variables

You can initialize a static object with a constant expression, or an expression that
reduces to the address of a previously declared extern or static object, possibly
modified by a constant expression. If you do not explicitly initialize a static (or
external) variable, it will have a value of zero of the appropriate type, unless it is a
pointer, in which case it will be initialized to NULL.

Chapter 4. Declarators 109

110

A static variable in a block is initialized only one time, prior to program
execution, whereas an auto variable that has an initializer is initialized every time
it comes into existence.

A static variable in a block can be dynamically initialized when the flow
of control passes through its definition in a block for the first time. Dynamic
initialization of a static variable can occur with non-constant expressions. A static
object of class type will use the default constructor if you do not initialize it.

C++

Initialization of external variables

You can initialize any object with the extern storage class specifier at global scope
in C or at namespace scope in C++. The initializer for an extern object must either:

. Appear as part of the definition, and the initial value must be
described by a constant expression;

. Appear as part of the definition.

* Reduce to the address of a previously declared object with static storage
duration. You may modify this object with pointer arithmetic. (In other words,
you may modify the object by adding or subtracting an integral constant
expression.)

If you do not explicitly initialize an extern variable, its initial value is zero of the
appropriate type. Initialization of an extern object is completed by the time the
program starts running.

Initialization of register variables

You can initialize any register object except function parameters. If you do not
initialize an automatic object, its value is indeterminate. If you provide an initial
value, the expression representing the initial value can be any valid C or C++
expression. The object is then set to that initial value each time the program block
that contains the object's definition is entered.

Related reference:

[“The auto storage class specifier” on page 49|

[“The static storage class specifier” on page 49|

[‘The extern storage class specifier” on page 51|

[“The register storage class specifier” on page 52|

Designated initializers for aggregate types (C only)

Designated initializers, a C99 feature, are supported for aggregate types, including
arrays, structures, and unions. A designated initializer, or designator, points out a
particular element to be initialized. A designator list is a comma-separated list of
one or more designators. A designator list followed by an equal sign constitutes a
designation.

Designated initializers allow for the following flexibility:

* Elements within an aggregate can be initialized in any order.

* The initializer list can omit elements that are declared anywhere in the
aggregate, rather than only at the end. Elements that are omitted are initialized

as if they are static objects: arithmetic types are initialized to 0; pointers are
initialized to NULL.

z/0S V2R1.0 XL C/C++ Language Reference

* Where inconsistent or incomplete bracketing of initializers for multi-dimensional
arrays or nested aggregates may be difficult to understand, designators can more
clearly identify the element or member to be initialized.

Designator list syntax for structures and unions

-

A4 .—member—=—expression } »><

»»—{

Designator list syntax for arrays

>>—{#

v
A

*—[—array subscript—]——=—expression }

In the following example, the designator is .any_member and the designated
initializer is .any_member = 13:

union { /* ... %/ } caw = { .any member = 13 };

The following example shows how the second and third members b and ¢ of
structure variable k1m are initialized with designated initializers:
struct xyz {

int a;

int b;

int c;

} kim = { .a =99, .c = 100 };

In the following example, the third and second elements of the one-dimensional
array aa are initialized to 3 and 6, respectively:

int aa[4] = { [2] =3, [1] = 6 };

The following example initializes the first four and last four elements, while
omitting the middle four:
static short grid[3] [4] = { [0][0]=8, [0][1]=6,
[o][2]1=4, [0][3]=1,
[2][e]=9, [2][1]=3,
[21[2]1=1, [2][3]=1 };

The omitted four elements of grid are initialized to zero:

Element Value |Element Value
grid[0] [0] 8 grid[1] [2] 0

grid[0] [1] grid[1] [3]
grid[0] [2] grid[2] [0]
grid[o] [3] grid[2] [1]
grid[1] [0] grid[2] [2]
grid[1] [1] grid[2] [3]

O | O || =]
—= = W|o | o

Designated initializers can be combined with regular initializers, as in the
following example:

Chapter 4. Declarators 111

112

int a[10] = {2, 4, [8]=9, 10}

In this example, a[0] is initialized to 2, a[1] is initialized to 4, a[2] to a[7] are
initialized to 0, and a[9] is initialized to 10.

In the following example, a single designator is used to "allocate" space from both
ends of an array:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0O
1

The designated initializer, [MAX-5] = 8, means that the array element at subscript
MAX-5 should be initialized to the value 8. If MAX is 15, a[5] through a[9] will be
initialized to zero. If MAX is 7, a[2] through a[4] will first have the values 5, 7, and
9, respectively, which are overridden by the values 8, 6, and 4. In other words, if
MAX is 7, the initialization would be the same as if the declaration had been written:

int a[MAX] = {
1, 3, 8, 6, 4, 2, 0
1

You can also use designators to represent members of nested structures. For
example:
struct a {
struct b {
int c;
int d;
boes
float f;
}g={.ec=31};

initializes member c of structure variable e, which is a member of structure
variable g, to the value of 3.

Related reference:

[“Initialization of structures and unions’]

[‘Initialization of arrays” on page 116|

Initialization of structures and unions

An initializer for a structure is a brace-enclosed comma-separated list of values,
and for a union, a brace-enclosed single value. The initializer is preceded by an
equal sign (=).

C99 and C++ allow the initializer for an automatic member variable of a union or
structure type to be a constant or non-constant expression.

The initializer for a static member variable of a union or structure type
must be a constant expression or string literal. See [“Static data members” on page|

@ for more information.

There are two ways to specify initializers for structures and unions:
* With C89-style initializers, structure members must be initialized in the order
declared, and only the first member of a union can be initialized.

. Using designated initializers, a C99 feature which allows you to name
members to be initialized, structure members can be initialized in any order, and

z/0S V2R1.0 XL C/C++ Language Reference

any (single) member of a union can be initialized. Designated initializers are
described in detail in [“Designated initializers for aggregate types (C only)” on|

Using C89-style initialization, the following example shows how you would
initialize the first union member birthday of the union variable people:

union {
char birthday[9];
int age;

float weight;
} people = {"23/07/57"};

Using a designated initializer in the same example, the following
initializes the second union member age :

union {
char birthday[9];
int age;

float weight;
} people = { .age = 14 };

The following definition shows a completely initialized structure:

struct address {
int street_no;
char xstreet_name;
char *city;
char *prov;
char *postal_code;
}s
static struct address perm_address =
{ 3, "Savona Dr.", "Dundas", "Ontario", "L4B 2Al1"};

The values of perm_address are:

Member Value
perm_address.street_no 3

perm_address.street name address of string "Savona Dr."
perm_address.city address of string "Dundas"
perm_address.prov address of string "Ontario"
perm_address.postal_code address of string "LA4B 2A1"

Unnamed structure or union members do not participate in initialization and have
indeterminate value after initialization. Therefore, in the following example, the bit
field is not initialized, and the initializer 3 is applied to member b:
struct {

int a;

int :10;

int b;

bw=1{2 3}

You do not have to initialize all members of structure variables. If a structure
variable does not have an initializer, the initial values of the structure members
depend on the storage class associated with the structure variable:

* If a structure variable has static storage, its members are implicitly initialized to
zero of the appropriate type.

Chapter 4. Declarators 113

114

* If a structure variable has automatic storage, its members have no default
initialization.

If a structure variable is partially initialized, all the uninitialized structure members
are implicitly initialized to zero no matter what the storage class of the structure
variable is. See the following example:
struct one {

int a;

int b;

int c;

void main() {
struct one z1; // Members in z1 do not have default initial values.
static struct one z2; // z2.a=0, z2.b=0, and z2.c=0.
struct one z3 = {1}; // z3.a=1, z3.b=0, and z3.c=0.

1

In this example, structure variable z1 has automatic storage, and it does not have
an initializer, so all the members in z1 do not have default initial values. Structure
variable z2 has static storage, and all its members are implicitly initialized to zero.
Structure variable z3 is partially initialized, so all its uninitialized members are
implicitly initialized to zero.

You do not have to initialize all members of a union. The default initializer for a
union with static storage is the default for the first component. A union with
automatic storage has no default initialization.

To initialize only the third and fourth members of the temp_address
variable, you could use a designated initializer list, as follows:

struct address {
int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;
1
struct address temp_address =
{ .city = "Hamilton", .prov = "Ontario" };

Related reference:

[Structure and union variable declarations|

[“Explicit initialization with constructors” on page 413|

[“Assignment operators” on page 161

Initialization of enumerations

The initializer for an enumeration variable contains the = symbol followed by an
expression enumeration_constant.

In C++, the initializer must have the same type as the associated
enumeration type. IlEEEE

The following statement declares an unscoped JZ¥SEE enumeration
grain.
enum grain { oats, wheat, barley, corn, rice };

z/0S V2R1.0 XL C/C++ Language Reference

The following statement defines a variable g_food and initializes g_food to the
value of barley. The integer value associated with barley is 2.

enum grain g _food = barley;

The following rules apply to both the scoped and unscoped enumerations.

* An enumeration cannot be initialized using an integer or enumeration constant
from a different enumeration, without an explicit cast.

e An uninitialized enumeration variable has undefined value.

The following statement declares an unscoped enumeration color.
enum color { white, yellow, green, red, brown };

The following statement declares a scoped enumeration Tetter and references the
scoped enumerators directly inside the scope of the enumeration. The initial values
of A,B,C,and Dare 0, 1, 1, and 2.

enum class letter { A, B, C=B,D=C+1};

The following statement defines a variable Tetl and initializes letl to the value of
A. The integer value associated with A is 0.

letter letl = Tetter :: A;

To reference scoped enumerators outside of the enumeration's scope, you must
qualify the enumerators with the name of the enumeration. For example, the
following statement is invalid.

letter let2 = A; //invalid

The keyword enum in the following statement is optional and can be omitted.
enum Tetter Tet3 = letter :: B;

The white enumerator is visible in the following statement, because color is an
unscoped enumeration.

color colorl = white; // valid

Unscoped enumerations can also be qualified with their enumeration scope, for
example:

color color2 = color :: yellow; // valid

You cannot initialize an enumeration with an enumeration constant from a
different enumeration or an integer without an explicit cast. For example, the
following two statements are invalid.

letter let4d

color :: white; // invalid

letter let5 = 1; // invalid

You can use explicit cast to initialize an enumeration with an enumeration constant
from a different enumeration or an integer. For example, the following two
statements are valid.

Tetter let6 = (letter) color :: white; // valid
letter let7 = (letter) 2; // valid

Chapter 4. Declarators 115

Related reference:

[Enumeration variable declarations|

Initialization of pointers

The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
time and speed as having type double and amount as having type pointer to a
double. The pointer amount is initialized to point to total:

double time, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first
element in the array. You can assign the address of the first element of an array to
a pointer by specifying the name of the array. The following two sets of definitions
are equivalent. Both define the pointer student and initialize student to the
address of the first element in section:

int section[80];
int *student = section;

is equivalent to:

int section[80];
int *student = §ion[0];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer. The following example defines the
pointer variable string and the string constant "abcd". The pointer string is
initialized to point to the character a in the string "abcd".

char *string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The pointer weekdays[2], for example,
points to the string "Tuesday".

static char *weekdays[] ={
Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

1

A pointer can also be initialized to null using any integer constant expression that
evaluates to 0, for example char *a=0;. Such a pointer is a null pointer. It does not
point to any object.

The following examples define pointers with null pointer values:

char *a = 0;
char *b = NULL;

char *ch = nullptr;

Related reference:

[Pointers” on page 100

Initialization of arrays

The initializer for an array is a comma-separated list of constant expressions
enclosed in braces ({ }). The initializer is preceded by an equal sign (=). You do

116 z/0S V2R1.0 XL C/C++ Language Reference

not need to initialize all elements in an array. If an array is partially initialized,
elements that are not initialized receive the value 0 of the appropriate type. The
same applies to elements of arrays with static storage duration. (All file-scope
variables and function-scope variables declared with the static keyword have
static storage duration.)

There are two ways to specify initializers for arrays:
* With C89-style initializers, array elements must be initialized in subscript order.
. Using designated initializers, which allow you to specify the values of

the subscript elements to be initialized, array elements can be initialized in any
order. Designated initializers are described in detail in |“Designated initializers|

[for aggregate types (C only)” on page 110,

Using C89-style initializers, the following definition shows a completely initialized
one-dimensional array:

static int number[3] = { 5, 7, 2 };

The array number contains the following values: number[0] is 5, number[1] is 7;
number[2] is 2. When you have an expression in the subscript declarator defining
the number of elements (in this case 3), you cannot have more initializers than the
number of elements in the array.

The following definition shows a partially initialized one-dimensional array:
static int numberl[3] = { 5, 7 };

The values of number1[0] and numberl[1] are the same as in the previous
definition, but number1[2] is 0.

The following definition shows how you can use designated initializers to skip
over elements of the array that you don't want to initialize explicitly:

static int number[3] = { [0] =5, [2] =7 };

The array number contains the following values: number[0] is 5; number[1] is
implicitly initialized to 0; number[2] is 7.

Instead of an expression in the subscript declarator defining the number of
elements, the following one-dimensional array definition defines one element for
each initializer specified:

static int item[1 ={ 1, 2, 3, 4, 5 };

The compiler gives item the five initialized elements, because no size was specified
and there are five initializers.

Initialization of character arrays

You can initialize a one-dimensional character array by specifying:

* A brace-enclosed comma-separated list of constants, each of which can be
contained in a character

¢ A string constant (braces surrounding the constant are optional)

Chapter 4. Declarators 117

118

Initializing a string constant places the null character (\0) at the end of the string if
there is room or if the array dimensions are not specified.

The following definitions show character array initializations:

static char namel[] = { 'J', 'a', 'n' };
static char name2[] = { "Jan" };
static char name3[4] = "Jan";

These definitions create the following elements:

Element Value Element Value Element Value
namel[0] T name2[0] T name3[0]]
namel[1] a name2[1] a name3[1] a
namel[2] n name2[2] n name3[2] n
name2[3] \0 name3[3] \0

Note that the following definition would result in the null character being lost:

static char name3[3]="Jan";

When you initialize an array of characters with a string, the number of
characters in the string — including the terminating '\0' — must not exceed the
number of elements in the array.

Initialization of multidimensional arrays

You can initialize a multidimensional array using any of the following techniques:

* Listing the values of all elements you want to initialize, in the order that the
compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following

definition completely initializes the array month_days:

static month_days[2][12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
b
Using braces to group the values of the elements you want initialized. You can
put braces around each element, or around any nesting level of elements. The
following definition contains two elements in the first dimension (you can
consider these elements as rows). The initialization contains braces around each
of these two elements:

static int month_days[2][12] =

{{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

}{ 1, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
Using nested braces to initialize dimensions and elements in a dimension
selectively. In the following example, only the first eight elements of the array
grid are explicitly initialized. The remaining four elements that are not explicitly
initialized are automatically initialized to zero.

static short grid[3] [4] = {8, 6, 4, 1, 9, 3, 1, 1};

The initial values of grid are:

z/0S V2R1.0 XL C/C++ Language Reference

Element Value Element Value
grid[0] [0] 8 grid[1] [2] 1

grid[e] [1] grid[1] [3]
grid[e] [2] grid[2] [6]
grid[6] [3] grid[2] [1]
grid[1] [6] grid[2] [2]
grid[1] [1] grid[2] [3]

wW|lo|~|n|o
o|lo|lo|lo|+

. Using designated initializers. The following example uses designated
initializers to explicitly initialize only the last four elements of the array. The first
eight elements that are not explicitly initialized are automatically initialized to

Zero.
static short grid[3] [4] = { [2][0] = 8, [2][1] = 6,
[21[2] = 4, [2][3] =1 };
The initial values of grid are:
Element Value Element Value
grid[0] [6] 0 grid[1] [2] 0

grid[e] [1]
gridfe] [2]
grid[e] [3]
grid[1] [o]
grid[1] [1]

grid[1] [3]
grid[2] [0]
grid[2] [1]
grid[2] [2]
grid[2] [3]

o |l o |Oo|OC | O
= =[O | O

Related reference:

[“Arrays” on page 104

[‘Designated initializers for aggregate types (C only)” on page 110|

Initialization of references (C++ only)

When you initialize a reference, you bind that reference to an object, which is not
necessarily the object denoted by the initializer expression.

Once a reference has been initialized, it cannot be modified to refer to another
object. For example:

int numl = 10;
int num2 = 20;

int &RefOne = numl; // valid

int &RefOne = num2; // error, two definitions of RefOne
RefOne = num2; // assign num2 to numl

int &RefTwo; // error, uninitialized reference
int &RefTwo = num2; // valid

Note that the initialization of a reference is not the same as an assignment to a
reference. Initialization operates on the actual reference by binding the reference to
the object it is an alias for. Assignment operates through the reference on the object
referred to.

A reference can be declared without an initializer:

Chapter 4. Declarators 119

120

* When it is used in a parameter declaration

* In the declaration of a return type for a function call

* In the declaration of class member within its class declaration
* When the extern specifier is explicitly used

Reference binding

Suppose T and U are two types. If ignoring top-level cv-qualifiers, T is of the same
type as U or is a base class of U, T and U are reference-related.

Example 1

typedef int tl;
typedef const int t2;

In this example, t1 and t2 are reference-related.

If T and U are reference-related, and T is at least as cv-qualified as U, T is
reference-compatible with U. In Example 1, t1 is not reference-compatible with t2, but
t2 is reference-compatible with t1.

If an lvalue reference r to type T is to be initialized by an expression e of type U,
and T is reference-compatible with U, the reference r can be bound directly to e or
a base class subobject of e unless T is an inaccessible or ambiguous base class of U.

Example 2
int a = 1;
const int& ra = a;

struct A {};
struct B: A {} b;

A& rb = b;

In this example, the const int type is reference-compatible with the int type, so
ra can be bound directly to a. Structure A is reference-related to structure B, so rb
can be bound directly to b.

If an Ivalue reference r to type T is to be initialized by an expression e of type U, r
can be bound to the lvalue result of the conversion of e or a base class of e if the
following conditions are satisfied. In this case, the conversion function is chosen by
overload resolution.

* Uis a class type.

e T is not reference-related to U.

* e can be converted to an lvalue of type S, and T is reference-compatible with S.

Example 3

struct A {
operator int&();
}s

const int& x= A();

In this example, structure A is a class type, and the const int type is not
reference-related to structure A. However, A can be converted to an lvalue of type
int, and const int is reference-compatible with int, so reference x of type const
int can be bound to the conversion result of A().

z/0OS V2R1.0 XL C/C++ Language Reference

By default, the compiler cannot bind a non-const or volatile lvalue reference to an
rvalue.

Example 4

int& a = 2; // error
const int& b = 1; // ok

In this example, the variable a is a non-const Ivalue reference. The compiler cannot
bind a to the temporary initialized with the rvalue expression 2, and issues an
error message. The variable b is a nonvolatile const Ivalue reference, which can be
initialized with the temporary initialized with the rvalue expression 1.

If you specify the LANGLVL(COMPATRVALUEBINDING) option, the compiler can bind a
non-const or volatile lvalue reference to an rvalue of a user-defined type where an
initializer is not required. The default value of this option is

LANGLVL (NOCOMPATRVALUEBINDING). This compiler behavior conflicts with the rvalue
references feature, which does not allow a non-const or volatile lvalue reference to
be bound to an rvalue. If both of the features are enabled, the compiler issues an
error message.

Notes:
* A non-const or volatile Ivalue reference cannot be bound to an rvalue of a
built-in type.

e A non-const or volatile Ivalue reference that is a class member cannot be bound
to an rvalue.

Suppose an expression e of type U belongs to one of the following value categories:
* An xvalue

* A class prvalue

* An array prvalue

A function lvalue

If an rvalue reference or a nonvolatile const lvalue reference r to type T is to be
initialized by the expression e, and T is reference-compatible with U, reference r can

be initialized by expression e and bound directly to e or a base class subobject of e
unless T is an inaccessible or ambiguous base class of U.

Example 5

int& funcl();
int& (&&rfl)()=funcl;

int&& func2();
int&& rf2 = func2();

struct A{
int arr[5];

1'r,1t(&&ar_ref) [5] = A().arr;
A&& a_ref = A();

Chapter 4. Declarators 121

In this example, rfl, rf2, ar_ref, and a_ref are all rvalue references. rfl is bound
to the function lvalue funcl, rf2 is bound to the xvalue result of the call func2(),
ar_ref is bound to the array prvalue A() .arr, and a_ref is bound to the class
prvalue A().

Suppose r is an rvalue reference or nonvolatile const Ivalue reference to type T,
and r is to be initialized by an expression e of type U. r can be bound to the
conversion result of e or a base class of e if the following conditions are satisfied.
In this case, the conversion function is chosen by overload resolution.

* Uis a class type.
e T is not reference-related to U.

* e can be converted to an xvalue, class prvalue, or function lvalue type of S, and
T is reference-compatible with S.

Example 6
int i3
struct A {
operator int&&() {
return static_cast<int&&>(i);
}
b

const int& x = A();

int main() {
assert (& == &i);
1

In this example, structure A is a class type, and the const int type is not
reference-related to structure A. However, A can be converted to an xvalue of type
int, and const int is reference-compatible with int, so reference x of const int
can be initialized with A() and bound to variable i.

An rvalue reference can be initialized with an lvalue in the following contexts:

* A function lvalue

* A temporary converted from an lvalue

* An rvalue result of a conversion function for an lvalue object that is of a class

type

Example 7
inti=1;

int&& a = 2; // ok
int&& b = i; // error
doubled& c = i; // ok

In this example, the rvalue reference a can be bound to the temporary initialized
with the rvalue expression 2, but the rvalue reference b cannot be bound to the
Ivalue expression i. You can bind the rvalue reference c to the temporary value 1.0
that is converted from the variable 1.

Related reference:

[‘References (C++ only)” on page 107|

[“Pass by reference (C++ only)” on page 252

122 2/0S V2R1.0 XL C/C++ Language Reference

[“Lvalues and rvalues” on page 141

Initialization of complex types (C11)

When the C11 complex initialization feature is enabled, you can initialize C99
complex types with a value of the form x + yi, where x and y can be any floating
point value, including Inf or NaN.

The C11 complex initialization feature can be enabled by the
-qlanglvi=extclx group option. K

The C11 complex initialization feature can be enabled by the
-qlanglvi=extended or -qlanglvi=extended@x group option. You can also use the
-qlanglvi=complexinit suboption to enable this feature. When you specify the
-qlanglvi=nocomplexinit option, only the C11 form of complex initialization is

disabled.

To enable the initialization of these complex types, macros CMPLX, CMPLXF,
and CMPLXL are defined inside the standard header file complex.h for C11
compilation, which act as if the following functions are used.

float complex CMPLXF(float x, float y);
double complex CMPLX(double x, double y);
long double complex CMPLXL(long double x, long double y);

Note: These macros might infringe upon user namespaces. You must avoid using
the macro names for other purposes.

These macros are available only if the C language header file complex.h is
included, and they result in values that are suitable for static initialization if
arguments are suitable for static initialization. To use the C language
header file complex.h in C++ programs, you must specify the
-qlanglvi=c99complexheader or -qlanglvl=c99complex option. IlEEEE

The following example shows how to initialize a complex type with a value of the
form x + yi.

/] a.c

#include <stdio.h>

#include <math.h>
#include <complex.h>

int main(void) {
float _Complex c = CMPLXF(5.0, NAN);
printf("Value: %e + %e * I\n", _real_ (c), __imag_ (c));
return;

}

You can specify the following command to compile this program:
x1c -qlanglvl=extclx -qfloat=ieee a.c

The result of running the program is:
Value: 5 + NaNQ * I
Related reference:

[“Extensions for C11 compatibility” on page 640|

[“Floating-point literals” on page 23|

Chapter 4. Declarators 123

[“Floating-point types” on page 56|

Declarator qualifiers

124

z/0S XL C/C++ includes two additional qualifiers that are given in declarator
specifications:

. _Packed
y _Export

The _Packed qualifier (C only)

The z/OS XL C compiler aligns structure and union members according to their
natural byte boundaries and ends the structure or union on its natural boundary.
However, since the alignment of a structure or union is that of the member with
the largest alignment requirement, the compiler may add padding to elements
whose byte boundaries are smaller than this requirement. You can use the _Packed
qualifier to remove padding between members of structures or unions. Packed and
nonpacked structures and unions have different storage layouts.

Consider the following example:

union uu{
short a;
struct {
char x;
char y;
char z;
} b;
1
union uu nonpacked[2] ;

_Packed union uu packed[2];

In the array of unions nonpacked, since the largest alignment requirement among
the union members is that of short a, namely, 2 bytes, one byte of padding is
added at the end of each union in the array to enforce this requirement:

nonpacked[0] —————— nonpacked[1]

In the array of unions packed, each union has a length of only 3 bytes, as opposed
to the 4 bytes of the previous case:

packed[0] packed[1]

Note: When the _Packed qualifier is used, the compiler removes padding between
members of structures or unions, regardless of the member type.

If you specify the _Packed qualifier on a structure or union that contains a
structure or union as a member, the qualifier is not passed on to the nested
structure or union.

z/0OS V2R1.0 XL C/C++ Language Reference

Related reference:

[‘Compeatibility of structures, unions, and enumerations (C only)” on page 73|

[“#pragma pack” on page 583|

The _Export qualifier (C++ only)

You can use the _Export keyword with a function name or external variable to
declare that it is to be exported (made available to other modules). The _Export
keyword must immediately precede the object name. For more information, see
[“The _Export function specifier (C++ only)” on page 233/

Related reference:

[“External linkage” on page §|

[“#pragma export” on page 553

Variable attributes (IBM extension)

A variable attribute is a language extension that allows you to use a named
attribute to specify special properties of variables. Currently, only the variable
attribute aligned is supported on the z/OS platform.

A variable attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
variable __attribute__ specification is included in the declaration of a variable,
and can be placed before or after the declarator. Although there are variations, the
syntax generally takes either of the following forms:

Variable attribute syntax: post-declarator

1)

»—declarator—_attribute_—((—'[attribute name)) >
attribute name —|

Variable attribute syntax: pre-declarator

H

v

»—type specifier—_attribute_—((—'Eattribute name))
attribute name —|

»—declarator <
l—initial izer—l

You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the z/OS XL C/C++ compiler issues diagnostics and ignores the
attribute specification. Multiple attribute names can be specified in the same
attribute specification.

In a comma-separated list of declarators on a single declaration line, if a variable
attribute appears before all the declarators, it applies to all declarators in the

Chapter 4. Declarators 125

126

declaration. If the attribute appears after a declarator, it only applies to the
immediately preceding declarator. For example:

struct A {

int b __attribute_ ((aligned)); /* typical placement of variable */
/* attribute =/

int __attribute_ ((aligned)) ¢ = 10; /* variable attribute can also be */
/* placed here */

int d, e, f __attribute_ ((aligned)); /* attribute applies to f only */

int g _attribute_ ((aligned)), h, i; /* attribute applies to g only */

int __attribute_ ((aligned)) j, k, 1; /* attribute applies to j, k, and 1 */
bs

The following variable attributes are supported:

* [“The aligned variable attribute”]

The aligned variable attribute

With the aligned variable attribute, you can override the default memory
alignment mode to specify a minimum memory alignment value, expressed as a
number of bytes, for any of the following types of variables:

* Non-aggregate variables
* Aggregate variables (such as a structures, classes, or unions)

e Selected member variables

The attribute is typically used to increase the alignment of the given variable.

aligned variable attribute syntax

»— attribute —((I_a] igned) ————>«

ah’gned—| l—(—alignment‘_faci.‘or—)—I
The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. On the z/OS platform, the maximum supported
value is 8 bytes in 32-bit mode, and 16 bytes in 64-bit mode. If you omit the
alignment factor (and its enclosing parentheses), the compiler automatically uses
the platform maximum. If you specify an alignment factor greater than the
maximum, the compiler uses the default alignment in effect and ignores your
specification.

When you apply the aligned attribute to a member variable in a bit field structure,
the attribute specification is applied to the bit field container. If the default
alignment of the container is greater than the alignment factor, the default
alignment is used.

Example

In the following example, the structures first_address and second_address are set
to an alignment of 16 bytes:

struct address {
int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

z/0OS V2R1.0 XL C/C++ Language Reference

} first address _ attribute ((__aligned_ (16))) ;

struct address second address _ attribute_ ((__aligned_ (16))) ;

In the following example, only the members first_address.prov and
first_address.postal_code are set to an alignment of 16 bytes:

struct address {
int street_no;
char xstreet_name;
char *city;
char *prov __ attribute_ ((__aligned_ (16))) ;
char *postal_code _ attribute_ ((__aligned_ (16))) ;
} first_address ;

Chapter 4. Declarators 127

128 2/0S V2R1.0 XL C/C++ Language Reference

Chapter 5. Type conversions

An expression of a given type is implicitly converted when it is used in the
following situations:

* As an operand of an arithmetic or logical operation.

* As a condition in an if statement or an iteration statement (such as a for loop).
The expression will be converted to a Boolean (or an integer in C89).

* In a switch statement. The expression is converted to an integral type.
* As the right operand of an assignment or as an initializer.
* As an initialization. This includes the following types:

— A function is provided an argument value that has a different type than the
parameter.

— The value specified in the return statement of a function has a different type
from the defined return type for the function.

The implicit conversion result is an rvalue. K

The implicit conversion result belongs to one of the following value
categories depending on different converted expressions types:

* An lvalue if the type is an Ivalue reference type or an rvalue reference
to a function type =S
. An xvalue if the type is an rvalue reference to an object type lZ=SEE

c A (prvalue) JZ¥SEE rvalue in other cases

C++

You can perform explicit type conversions using a cast expression, as described in
[“Cast expressions” on page 176

Related reference:

[“User-defined conversions” on page 423|

[“Conversion constructors” on page 424

[‘Conversion functions” on page 426

[‘The switch statement” on page 202|

[“The if statement” on page 200

[‘The return statement” on page 212|

[‘Lvalues and rvalues” on page 141|

[‘References (C++ only)” on page 107|

Arithmetic conversions and promotions

The following sections discuss the rules for the standard conversions for arithmetic

types:

+ |“Integral conversions” on page 130|

+ |“Floating-point conversions” on page 130|

* [“Boolean conversions” on page 130|

* [“Packed decimal conversions (C only)” on page 132|

© Copyright IBM Corp. 1998, 2015 129

If two operands in an expression have different types, they are subject to the rules
of the usual arithmetic conversions, as described in [“Usual arithmetic conversions”]

Integral conversions

Unsigned integer to unsigned integer or signed integer to signed integer
If the types are identical, there is no change. If the types are of a different
size, and the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, truncation or
sign shifting will occur.

Signed integer to unsigned integer
The resulting value is the smallest unsigned integer type congruent to the
source integer. If the value cannot be represented by the new type,
truncation or sign shifting will occur.

Unsigned integer to signed integer
If the signed type is large enough to hold the original value, there is no
change. If the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, truncation or
sign shifting will occur.

Signed and unsigned character types to integer
The character types are promoted to type int.

Wide character type wchar_t to integer
If the original value can be represented by int, it is represented as int. If
the value cannot be represented by int, it is promoted to the smallest type
that can hold it: unsigned int, Tong, or unsigned Tong.

Signed and unsigned integer bit field to integer
If the original value can be represented by int, it is represented as int. If
The value cannot be represented by int, it is promoted to unsigned int.

Enumeration type to integer
If the original value can be represented by int, it is represented as int. If
the value cannot be represented by int, it is promoted to the smallest type
that can hold it: unsigned int, Tong, or unsigned long. Note that an
enumerated type can be converted to an integral type, but an integral type
cannot be converted to an enumeration.

Boolean conversions

An unscoped enumeration, pointer, or pointer to member type can be converted to
a Boolean type.

If the scalar value is equal to 0, the Boolean value is 0; otherwise, the
Boolean value is 1.

A zero, null pointer, or null member pointer value is converted to false.
All other values are converted to true.

A null pointer with the nullptr value is converted to false.

Floating-point conversions
The standard rule for converting between real floating-point types is as follows:

130 z/0S V2R1.0 XL C/C++ Language Reference

If the value being converted can be represented exactly in the new type, it is
unchanged. If the value being converted is in the range of values that can be
represented but cannot be represented exactly, the result is rounded, according to
the current compile-time or runtime rounding mode in effect. If the value being
converted is outside the range of values that can be represented, the result is
dependent on the rounding mode.

Integer to floating point
If the value being converted can be represented exactly in the new type, it
is unchanged. If the value being converted is in the range of values that
can be represented but cannot be represented exactly, the result is correctly
rounded. If the value being converted is outside the range of values that
can be represented, the result is quiet NaN.

Floating point to integer
The fractional part is discarded (i.e., the value is truncated toward zero). If
the value of the integral part cannot be represented by the integer type, the
result is one of the following:

* If the integer type is unsigned, the result is the largest representable
number if the floating-point number is positive, or 0 otherwise.

* If the integer type is signed, the result is the most negative or positive
representable number according to the sign of the floating-point number.

Note: The conversion between a floating type and a pointer type is not
allowed. GEE

Implicit conversions of decimal floating-point types (IBM
extension)

The compiler has the following decimal floating-point types:
e _Decimal32

* _Decimal64

e Decimall28

The following implicit conversions are always supported:

* Implicit conversions between decimal floating-point types:

_Decimal32 to _Decimal64
— _Decimal32 to _Decimall28
_Decimal64 to Decimal32
_Decimal64 to _Decimall28
_Decimal128 to _Decimal32
_Decimall28 to _Decimal64

* Implicit conversions between decimal floating-point types and the following
integer types:

— signed char, unsigned char

— signed short int, unsigned short int

— signed int, unsigned int

— signed long int, unsigned long int

— signed Tong long int, unsigned long long int

 Implicit conversions between decimal floating-point types and Boolean types
bool or _Bool.

Chapter 5. Type conversions 131

Implicit conversions between decimal floating-point types and the following
generic floating-point types are supported conditionally. It is supported through
assignment operation using the simple assignment operator =, initialization,
function argument passing and function return statements.

¢ float

e double

* long double

The following examples demonstrate the implicit conversion from a generic
floating-point type to a decimal floating-point type. In this example, variable f1 is
implicitly converted from type float to type _Decimal32 in the initialization.

float f1;
_Decimal32 d1 = f1;

C++

float f1;
_Decimal32 d1(fl);

C++

Restriction: You cannot mix decimal floating-point types with generic
floating-point types or complex floating-point types in arithmetic expressions
unless you use explicit conversions. Here is an example:

Decimal32 dil;

float fl;
float f2 = f1 + dl; // Incorrect
float f3 = f1 + (float)dl; // Correct

Complex conversions

Complex to complex
If the types are identical, there is no change. If the types are of a different
size, and the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, both real and
imaginary parts are converted according to the standard conversion rule
given above.

Complex to real (binary)
The imaginary part of the complex value is discarded. If necessary, the
value of the real part is converted according to the standard conversion
rule given above.

Real (binary) to complex
The source value is used as the real part of the complex value, and
converted, if necessary, according to the standard conversion rule given
above. The value of the imaginary part is zero.

Related reference:

[“Floating-point types” on page 56|

Packed decimal conversions (C only)

Packed decimal to long long integer
The fractional part is discarded.

Long long integer to packed decimal
The resulting size is decimal(20,0).

132 z/0S V2R1.0 XL C/C++ Language Reference

Complex to packed decimal
Only the floating value of the real part is used.

Packed decimal to complex
The real part of the complex type is converted, and the imaginary part is 0.

Packed decimal to decimal floating-point
If the number of significant digits in the packed decimal value exceeds the

precision of the target, the result is rounded to the target precision using
the current decimal floating-point rounding mode.

Decimal floating-point to packed decimal
Before conversion, the decimal floating-point value is rounded or truncated
to match the fractional precision of the resulting type, if necessary. If the
value being converted represents infinity or NaN, or if non-zero digits are
truncated from the left end of the result, the result is undefined.

Usual arithmetic conversions

When different arithmetic types are used as operands in certain types of
expressions, standard conversions known as usual arithmetic conversions are applied.

For example, when the values of two different integral types are added together,
both values are first converted to the same type: when a short int value and an
int value are added together, the short int value is converted to the int type.
[Chapter 6, “Expressions and operators,” on page 141 provides a list of the
operators and expressions that participate in the usual arithmetic conversions.

Conversion ranks for arithmetic types

The ranks in the tables are listed from highest to lowest:

Table 20. Conversion ranks for floating-point types

Operand type

long double or Tong double _Complex

doubTe or double _Complex

float or float _Complex

Table 21. Conversion ranks for decimal floating-point types

Operand type
_Decimal128
_Decimal64
_Decimal32

Table 22. Conversion ranks for integer types

Operand type

long Tong int, unsigned Tong long int

Chapter 5. Type conversions 133

134

Table 22. Conversion ranks for integer types (continued)

Operand type

long int, unsigned long int

int, unsigned int

short int, unsigned short int

char, signed char, unsigned char

Boolean

Notes:

* The long Tong int and unsigned Tong Tong int types are not included in the C89,
C++98 and C++03 standards.

. The wchar_t type is not a distinct type, but rather a typedef for an integer
type. The rank of the wchar_t type is equal to the rank of its underlying type. R

. The rank of enumerated type is equal to the rank of its underlying type.

Rules for floating-point operands

In a context where an operation involves two operands, if either of the operands is
of floating-point type, the compiler performs the usual arithmetic conversions to
bring these two operands to a common type. The floating-point promotions are
applied to both operands. The following rules apply to the promoted operands:

1. If both operands have the same type, no conversion is needed.

2. Otherwise, if both operands have complex types, the type at a lower integer
conversion rank is converted to the type at a higher rank. For more
information, see |“Floating-point conversions” on page 130

3. Otherwise, if one operand has a complex type, the type of both operands after
conversion is the higher rank of the following types:

¢ The complex type corresponding to the type of the generic floating-point
operand

¢ The type of the complex operand

For more information, see [“Floating-point conversions” on page 130

4. Otherwise, both operands have generic floating types. The following rules
apply:
a. If one operand has the Tong double type, the other operand is converted to
long double.

b. Otherwise, if one operand has the double type, the other operand is
converted to double.

c. Otherwise, if one operand has the float type, the other operand is
converted to float.

Rules for integral operands

In a context where an operation involves two operands, if both of the operands are
of integral types, the compiler performs the usual arithmetic conversions to bring
these two operands to a common type. The integral promotions are applied to both
operands and the following rules apply to the promoted operands:

1. If both operands have the same type, no conversion is needed.

z/0OS V2R1.0 XL C/C++ Language Reference

2. Otherwise, if both operands have signed integer types or both have unsigned
integer types, the type at a lower integer conversion rank is converted to the
type at a higher rank.

3. Otherwise, if one operand has an unsigned integer type and the other operand
has a signed integer type, the following rules apply:

a. If the rank for the unsigned integer type is higher than or equal to the rank
for the signed integer type, the signed integer type is converted to the
unsigned integer type.

b. Otherwise, if the signed integer type can represent all of the values of the
unsigned integer type, the unsigned integer type is converted to the signed
integer type.

c. Otherwise, both types are converted to the unsigned integer type that
corresponds to the signed integer type.

Related reference:

[“Integral types” on page 54|

[“Boolean types” on page 55|

[“Floating-point types” on page 56|

[‘Character types” on page 59|

[“Enumerations” on page 70|

[‘Binary expressions” on page 160

Integral and floating-point promotions

The integral and floating-point promotions are used automatically as part of the usual
arithmetic conversions and default argument promotions. The integral and
floating-point promotions do not change either the sign or the magnitude of the
value. For more information about the usual arithmetic conversions, see
[arithmetic conversions” on page 133

Integral promotion rules for wchar_t

If a value is of the wchar_t type, the type of the value can be converted to the first
of the following types that can represent all the values of the underlying type of
wchar_t:

* int

e unsigned int

* Jong int

* unsigned long int

e Tong long int

* unsigned Tong long int

If none of the types in the list can represent all the values of the underlying type of
wchar_t, the wchar_t type is converted to the underlying type of wchar_t.

Chapter 5. Type conversions 135

136

Integral promotion rules for bit field

The rules apply to the following conditions:

* The -qupconv option is in effect.

* The type of an integral bit field is unsigned.

* The type of the integral bit field is smaller than the int type.

If all these conditions are satisfied, one of the following rules applies to the
promotion of the integral bit field:

* If the unsigned int type can represent all the values of the integral bit field, the
bit field is converted to unsigned int.

¢ Otherwise, no integral promotion applies to the bit field.
If any of these conditions is not satisfied, one of the following rules applies to the
promotion of the integral bit field:

 If the int type can represent all the values of the integral bit field, the bit field is
converted to int.

* Otherwise, if the unsigned int type can represent all the values, the bit field is
converted to unsigned int.

* Otherwise, no integral promotion applies to the bit field.

One of the following rules applies to an integral bit field promotion:

* If the int type can represent all the values of an integral bit field, the bit field is
converted to int.

* Otherwise, if the unsigned int type can represent all the values, the bit field is
converted to unsigned int.

* Otherwise, no integral promotion applies to the bit field.

C++

Integral promotion rules for Boolean

If the -qupconv option is in effect, a Boolean value is converted to the
unsigned int type with its value unchanged. Otherwise, if the -gnoupconv option is
in effect, a Boolean value is converted to the int type with its value unchanged.

If a Boolean value is false, it is converted to an int with a value of 0. If
a Boolean value is true, it is converted to an int with a value of 1.

Integral promotion rules for other types

The rules apply to the following conditions:

e The -qupconv option is in effect.

* The type of an integer type other than bit field and Boolean is unsigned.
* The type of the integer type is smaller than the int type.

If all these conditions are satisfied, the integer type is converted to the unsigned
int type.

If any of these conditions is not satisfied, one of the following rules applies to the
promotion of the integer type:

z/0OS V2R1.0 XL C/C++ Language Reference

e If the integer type can be represented by the int type and its rank is lower than
the rank of int, the integer type is converted to the int type.

* Otherwise, the integer type is converted to the unsigned int type.
One of the following rules applies to the promotion of an integer type

other than wchar _t, bit field, and Boolean:

* If the integer type can be represented by the int type and its rank is lower than
the rank of int, the integer type is converted to the int type.

* Otherwise, the integer type is converted to the unsigned int type.

C++

floating-point promotion rules

The float type can be converted to the double type. The float value is not
changed after the promotion.

Lvalue-to-rvalue conversions

If an Ivalue or xvalue 7 EfIE is used in a situation in which the
compiler expects a (prvalue) JIZ¥SEIE rvalue, the compiler converts the
Ivalue or xvalue @K to a (prvalue) E=SEE rvalue.
However, a (prvalue) Z¥SEIE rvalue cannot be converted implicitly to an
Ivalue @ Sl or xvalue lIZ"SEE |, except by user-defined conversions

. The following table lists exceptions to this rule.

Situation before conversion Resulting behavior
The lvalue is a function type. A pointer to function
The lvalue is an array. A pointer to the first element of the array

The type of the lvalue or xvalue compile-time error
is an incomplete type.

The lvalue or xvalue IEEEINE undefined behavior
refers to an uninitialized object.
The lvalue or xvalue IEEEINE undefined behavior

refers to an object not of the type of the

(prvalue) rvalue, nor of a
type derived from the type of the

(prvalue) rvalue.

The Ivalue or xvalue T.hﬁ type after corl1ver§]ion is not qualified by
is a nonclass type, qualified by either const or volatile.
either const or volatile. NINEENE

Related reference:

[‘Lvalues and rvalues” on page 141|

Pointer conversions

Pointer conversions are performed when pointers are used, including pointer
assignment, initialization, and comparison.

Chapter 5. Type conversions 137

Conversions that involve pointers must use an explicit type cast. The
exceptions to this rule are the allowable assignment conversions for C pointers. In
the following table, a const-qualified lvalue cannot be used as a left operand of the
assignment.

Table 23. Legal assignment conversions for C pointers

Left operand type Permitted right operand types

pointer to (object) T « the constant 0
* a pointer to a type compatible with T
* a pointer to void (voidx)

pointer to (function) F « the constant 0

* a pointer to a function compatible with F

The referenced type of the left operand must have the same or more cv-qualifiers
as compared to those of the right operand.

Zero constant to null pointer
An integral constant expression that evaluates to zero is a null pointer
constant. This expression can be converted to a pointer. This pointer is a
null pointer (pointer with a zero value), and is guaranteed not to point to
any object.

A constant expression that evaluates to zero can also be
converted to the null pointer to a member.

Array to pointer
An lvalue or rvalue with type "array of N," where N is the type of a single
element of the array, to N*. The result is a pointer to the initial element of
the array. This conversion is not performed if the expression is used as the
operand of the address operator & or the sizeof operator or when
the array is bound to a reference of the array type lZESE -

Function to pointer

An lvalue that is a function can be converted to a (prvalue)
rvalue that is a pointer to a function of the same type, except
when the expression is used as the operand of the & (address) operator, the
() (function call) operator, or the sizeof operator.

Note: The conversion between a floating type and a pointer type is not
allowed. GEE

Related reference:

[“Pointers” on page 100

[“Integer constant expressions” on page 144

[“Arrays” on page 104

[“Pointers to functions” on page 257|

[“Pointers to members” on page 362
[Ambiguous base classes (C++ only)|

[‘Lvalues and rvalues” on page 141|

138 2/0S V2R1.0 XL C/C++ Language Reference

Conversion to void*

C pointers are not necessarily the same size as type int. Pointer arguments given
to functions should be explicitly cast to ensure that the correct type expected by
the function is being passed. The generic object pointer in C is voidx, but there is
no generic function pointer.

Any pointer to an object, optionally type-qualified, can be converted to void=,
keeping the same const or volatile qualifications.

The allowable assignment conversions involving void+ as the left
operand are shown in the following table.

Table 24. Legal assignment conversions in C for void*

Left operand type Permitted right operand types

(void¥) * The constant 0.
* A pointer to an object. The object may be of incomplete type.
e (voidx)

Pointers to functions cannot be converted to the type void* with a
standard conversion: this can be accomplished explicitly, provided that a void# has
sufficient bits to hold it.

Related reference:

[“The void type” on page 59|

Reference conversions (C++ only)

A reference conversion can be performed wherever a reference initialization occurs,
including reference initialization done in argument passing and function return
values. A reference to a class can be converted to a reference to an accessible base
class of that class as long as the conversion is not ambiguous. The result of the
conversion is a reference to the base class subobject of the derived class object.

Reference conversion is allowed if the corresponding pointer conversion is allowed.

Related reference:

[‘References (C++ only)” on page 107|

[“Initialization of references (C++ only)” on page 119

[“Function calls” on page 249|

[“Function return values” on page 235|

Function argument conversions

When a function is called, if a function declaration is present and includes declared
argument types, the compiler performs type checking. The compiler compares the
data types provided by the calling function with the data types that the called
function expects and performs necessary type conversions. For example, when
function funct is called, argument f is converted to a double, and argument c is
converted to an int:

char * funct (double d, int i);

int main(void){
float f;

Chapter 5. Type conversions 139

char c;
funct(f, c) /* f is converted to a double, c is converted to an int */

return 0;

}

If no function declaration is visible when a function is called, or when an
expression appears as an argument in the variable part of a prototype argument
list, the compiler performs default argument promotions or converts the value of
the expression before passing any arguments to the function. The automatic
conversions consist of the following:

* The integral and floating-point promotions are performed.

* Arrays or functions are converted to pointers.

Related reference:
[“Integral and floating-point promotions” on page 135|

[“Function call expressions” on page 149|

[“Function calls” on page 249|

140 z/0S V2R1.0 XL C/C++ Language Reference

Chapter 6. Expressions and operators

Expressions are sequences of operators, operands, and punctuators that specify a
computation.

The evaluation of expressions is based on the operators that the expressions
contain and the context in which they are used. An expression can result in a value
and can produce side effects. A side effect is a change in the state of the execution
environment.

[‘Operator precedence and associativity” on page 190 provides tables listing the
precedence of all the operators described in the various sections listed above.

C++ operators can be defined to behave differently when applied to
operands of class type. This is called operator overloading, and is described in
[‘Overloading operators” on page 329

Lvalues and rvalues

Expressions can be categorized into one of the following value categories:

Lvalue
An expression can appear on the left side of an assignment expression if
the expression is not const qualified.

Xvalue IR

An rvalue reference that is to expire.

(Prvalue) JZ¥SIE rvalue
A non-xvaluel[Z¥EEE expression that appears only on the right

side of an assignment expression.

Rvalues include both xvalues and prvalues. Lvalues and xvalues can be
referred as glvalues. JZ¥SEE

Notes:

e (lass (prvalue) EZ¥SEIE rvalues can be cv-qualified, but non-class
(prvalue) E¥SEE rvalues cannot be cv-qualified.

* Lvalues and xvalues[Z¥5EE can be of incomplete types, but
(prvalue) E¥SEE rvalues must be of complete types or void types.

An object is a region of storage that can be examined and stored into. An Ivalue

or xvalueJl[Z¥SEIE is an expression that refers to such an object. An lvalue
does not necessarily permit modification of the object it designates. For example, a
const object is an Ivalue that cannot be modified. The term modifiable lvalue is used
to emphasize that the lvalue allows the designated object to be changed as well as
examined. Lvalues of the following object types are not modifiable Ivalues:

* An array type

* An incomplete type

¢ A const-qualified type

* A structure or union type with one of its members qualified as a const type

© Copyright IBM Corp. 1998, 2015 141

142

Because these lvalues are not modifiable, they cannot appear on the left side of an
assignment statement, except where a suitable assignment operator exists

C++

C defines a function designator as an expression that has function type. A
function designator is distinct from an object type or an lvalue. It can be the name
of a function or the result of dereferencing a function pointer. The C language also
differentiates between its treatment of a function pointer and an object pointer.

A function call that returns an Ivalue reference is an lvalue. Expressions

can produce an lvalue, an xvalue ¥ , a (prvalue) ISR
rvalue, or no value.

Certain built-inEEME operators require lvalues for some of their
operands. The following table lists these operators and additional constraints on
their usage.

Operator Requirement
& (unary) Operand must be an Ivalue.
++ - Operand must be a modifiable Ivalue. This

applies to both prefix and postfix forms.

= += -= *= %= <<= >>= &= "= | = Left operand must be a modifiable lvalue.

For example, all assignment operators evaluate their right operand and assign that
value to their left operand. The left operand must be a modifiable lvalue.

The address operator (&) requires an lvalue as an operand while the increment (++)
and the decrement (--) operators require a modifiable lvalue as an operand. The
following example shows expressions and their corresponding lvalues.

Expression Lvalue

x = 42 X

*ptr = newvalue *ptr

at+ a

£() The function call to f()

The following expressions are xvalues:
* The result of calling a function whose return type is of an rvalue reference type
* A cast to an rvalue reference

* A nonstatic data member of a non-reference type accessed through an xvalue
expression

¢ A pointer to member access expression in which the first operand is an xvalue
expression and the second operand is of a pointer to member type

See the following example:

int a;

int&& b= static_cast<int&&>(a);

struct str{

z/0OS V2R1.0 XL C/C++ Language Reference

int c;

1

int&& f(){
int&& var =1;
return var;

}

str&é& g();
int&& rc = g().c;

In this example, The initializer for rvalue reference b is an xvalue because it is a
result of a cast to an rvalue reference. A call to the function f() produces an xvalue
because the return type of this function is of the int&& type. The initializer for
rvalue reference rc is an xvalue because it is an expression that accesses a nonstatic
non-reference data member ¢ through an xvalue expression.

Related reference:

[“Arrays” on page 104

[“Lvalue-to-rvalue conversions” on page 137]
[‘References (C++ only)” on page 107|

Primary expressions

Primary expressions fall into the following general categories:

* Names (identifiers)

» Literals (constants)

* Integer constant expressions

* Identifier expressions

* Parenthesized expressions ()

. Generic selection [GINE

. The this pointer (described in [“The this pointer” on page 363)
* Names qualified by the [scope resolution operator (::)|

Names

The value of a name depends on its type, which is determined by how that name
is declared. The following table shows whether a name is an lvalue expression.

Table 25. Primary expressions: Names

Name declared as Evaluates to Is an lvalue?

Variable of arithmetic, An object of that type yes
pointer, enumeration,
structure, or union type

Enumeration constant The associated integer value |no
Array That array. In contexts subject no

to conversions, a pointer to
the first object in the arr.ay, yes
except where the name is
used as the argument to the
sizeof operator.

Chapter 6. Expressions and Operators 143

144

Table 25. Primary expressions: Names (continued)

Name declared as Evaluates to Is an lvalue?

Function That function. In contexts
subject to conversions, a no
pointer to that function,
except where the name is yes
used as the argument to the
sizeof operator, or as the
function in a function call
expression.

As an expression, a name may not refer to a label, typedef name, structure
member, union member, structure tag, union tag, or enumeration tag. Names used
for these purposes reside in a namespace that is separate from that of names used
in expressions. However, some of these names may be referred to within
expressions by means of special constructs: for example, the dot or arrow operators
may be used to refer to structure and union members; typedef names may be used
in casts or as an argument to the sizeof operator.

Literals

A literal is a numeric constant or string literal. When a literal is evaluated as an
expression, its value is a constant. A lexical constant is never an lvalue. However, a
string literal is an lvalue.

Related reference:

[‘Literals” on page 19|

[“The this pointer” on page 363

Integer constant expressions

An integer constant is a value that is determined at compile time and cannot be
changed at run time. An integer constant expression is an expression that is
composed of constants and evaluated to a constant at compile time.

An integer constant expression is an expression that is composed of only the
following elements:

* literals

* enumerators

* const variables initialized with compile-time constant expressions or
constexpr expressions EESIE

e static const data members initialized with compile-time constant expressions
or constexpr expressions ZESEE

* casts to integral types
* sizeof expressions, where the operand is not a variable length array

The sizeof operator applied to a variable length array type is evaluated at run
time, and therefore is not a constant expression.

You must use an integer constant expression in the following situations:
¢ In the subscript declarator as the description of an array bound.

* After the keyword case in a switch statement.

¢ In an enumerator, as the numeric value of an enumeration constant.

* In a bit-field width specifier.

z/0OS V2R1.0 XL C/C++ Language Reference

* In the preprocessor #if statement. (Enumeration constants, address constants,
and sizeof cannot be specified in a preprocessor #if statement.)

Note: The C++11 standard generalizes the concept of constant
expressions. For more information, see [’Generalized constant expressions (C++11)"]

Related reference:

[The sizeof operator” on page 157

Identifier expressions (C++ only)

An identifier expression, or id-expression, is a restricted form of primary expression.
Syntactically, an id-expression requires a higher level of complexity than a simple
identifier to provide a name for all of the language elements of C++.

An id-expression can be either a qualified or unqualified identifier. It can also
appear after the dot and arrow operators.

Identifier expression syntax

> unqualified_id i >
El qualified_id

unqualified_id:

identifier i
operator_function_id—
conversion_function_id—
~—class_name
template_id

qualified_id:
33 identifier I
—Eaperutor_function_id
template_id-
I a2 || Zass_or_namespace—::—L—l—unqualified_id—
|—: ! l—class_or_namespuce—: : template—

|:templ a’cej

Related reference:

[“Identifiers” on page 16|

[Chapter 4, “Declarators,” on page 97|

Parenthesized expressions ()

Use parentheses to explicitly force the order of expression evaluation. The
following expression does not use parentheses to group operands and operators.
The parentheses surrounding weight, zipcode are used to form a function call.
Note how the compiler groups the operands and operators in the expression
according to the rules for operator precedence and associativity:

Chapter 6. Expressions and Operators 145

expression

+
1]
I
function call
]
* parameters
unary minus expression expression
- discount * jtem + handling (weight , zipcode)

The following expression is similar to the previous expression, but it contains
parentheses that change how the operands and operators are grouped:

expression

*
1L

parenthesized expression

[| |
expression

+

|

expression function call

parameters
’_'1 \l_\
unary minus expression expression
= discount * (item + handling (weight , zipcode))

In an expression that contains both associative and commutative operators, you
can use parentheses to specify the grouping of operands with operators. The

parentheses in the following expression guarantee the order of grouping operands

with the operators:

x=f+ (g +h);

Related reference:

[“Operator precedence and associativity” on page 190|

Generic selection (C11)

A generic selection is a primary expression. Its type and value depend on the
selected generic association.

The following diagram shows the generic selection syntax:

146 z/0S V2R1.0 XL C/C++ Language Reference

»>— Generi c—(—assignment-expression—,—'I:type-name—:—assignment-expression |) <
(1)

default—:—assignment-expression

Notes:

1 A generic selection can have at most one default generic association.

where:

type-name
Specifies the type of a generic association. The type name that you specify in a
generic association must be a complete object type other than a variably
modified type.

assignment-expression
Is an assignment expression. The first assignment expression is called the
controlling expression.

The generic association list is a group of generic associations. There are two forms
of generic associations:

* type-name: assignment-expression

* default: assignment-expression

One generic selection cannot have two or more generic associations that specify
compatible types. In one generic selection, the controlling expression can have at
most one compatible type name in the generic association list. If a generic selection
has no default generic association, its controlling expression must have exactly one
compatible type name in its generic association list.

If there is a generic association with a type name that is compatible with the
controlling expression in the generic selection, the expression in the generic
selection is the result expression. Otherwise, the result expression of the generic
selection is the expression in the default generic association. The controlling
expression of a generic selection is not evaluated. None of the expressions from
any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result
expression. For example, a generic selection is an lvalue, a function designator, or a
void expression if its result expression is an lvalue, a function designator, or a void
expression.

Example

The following sample myprogram.c defines a type-generic macro:

#define myfunction(X) _Generic((X), \

Tong double:myfunction_longdouble, \

default:myfunction_double, \

float:myfunction_float \

) (X)

void myfunction_longdouble(long double x){printf("calling %s\n",__func_);}
void myfunction_double(double x){printf("calling %s\n", func_);}

void myfunction_float(float x){printf("calling %s\n", func_);}

int main()

{
long double 1d;

double d;

Chapter 6. Expressions and Operators 147

148

float f;

myfunction(1d);
myfunction(d);
myfunction(f);

}

When you execute the program:

x1c myprogram.c -qlanglvl=extclx
./a.out

the result is as follows:

calling myfunction_longdouble
calling myfunction_double
calling myfunction_float

Scope resolution operator :: (C++ only)

The :: (scope resolution) operator is used to qualify hidden names so that you can
still use them. You can use the unary scope operator if a namespace scope or
global scope name is hidden by an explicit declaration of the same name in a block
or class. For example:

int count = 0;

int main(void) {
int count = 0;
::count = 1; // set global count to 1
count = 2; // set local count to 2
return 0;

}

The declaration of count declared in the main function hides the integer named
count declared in global namespace scope. The statement ::count = 1 accesses the
variable named count declared in global namespace scope.

You can also use the class scope operator to qualify class names or class member
names. If a class member name is hidden, you can use it by qualifying it with its
class name and the class scope operator.

In the following example, the declaration of the variable X hides the class type X,
but you can still use the static class member count by qualifying it with the class
type X and the scope resolution operator.

#include <iostream>
using namespace std;

class X
{
public:
static int count;
1
int X::count = 10; // define static data member
int main ()
int X = 0; // hides class type X

cout << X::count << endl; // use static member of class X

}

Related reference:

[“Scope of class names” on page 351

[Chapter 9, “Namespaces (C++ only),” on page 317

z/0OS V2R1.0 XL C/C++ Language Reference

Generalized constant expressions (C++11)

The C++11 standard generalizes the concept of constant expressions and introduces

a new keyword constexpr as a declaration specifier. A constant expression is an

expression that can be evaluated at compile time by the compiler. The major

benefits of this feature are as follows:

e Improves type safety and portability of code that requires compile-time
evaluation

* Improves support for systems programming, library building, and generic
programming

* Improves the usability of Standard Library components. Library functions that
can be evaluated at compile time can be used in contexts that require constant
expressions.

An object declaration with the constexpr specifier declares that object to be
constant. The constexpr specifier can be applied only to the following contexts:

* The definition of an object
* The declaration of a function or function template

¢ The declaration of a static data member of a literal type

If you declare a function that is not a constructor with a constexpr specifier, then
that function is a constexpr function. Similarly, if you declare a constructor with a
constexpr specifier, then that constructor is a constexpr constructor.

With this feature, constant expressions can include calls to template and
non-template constexpr functions, constexpr objects of class literal types, and
references bound to const objects that are initialized with constant expressions.

Evaluations of floating-point operations at compile time use the default semantics
of the [FLOAT] option.
Related reference:

[“The constexpr specifier (C++11)” on page 83|

[“Constexpr functions (C++11)” on page 313|

[‘Constexpr constructors (C++11)” on page 411]

[‘C++11 compatibility” on page 640|

Function call expressions

A function call is an expression containing the function name followed by the
function call operator, (). If the function has been defined to receive parameters,
the values that are to be sent into the function are listed inside the parentheses of
the function call operator. The argument list can contain any number of
expressions separated by commas. The argument list can also be empty.

The type of a function call expression is the return type of the function. This type
can either be a complete type, a reference type, or the type void.

A function call is always an rvalue. K

A function call belongs to one of the following value categories depending
on the result type of the function:

¢ An lvalue if the result type is an lvalue reference type or an rvalue
reference to a function type 225K

Chapter 6. Expressions and Operators 149

. An xvalue if the result type is an rvalue reference to an object type
A (prvalue) JZ¥SEE rvalue in other cases

C++

Here are some examples of the function call operator:

stub()

overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

The order of evaluation for function call arguments is not specified. In the
following example:

method(samplel, batch.process--, batch.process);

the argument batch.process-- might be evaluated last, causing the last two
arguments to be passed with the same value.

Related reference:

[“Function argument conversions” on page 139

[“Function calls” on page 249|

[‘Lvalues and rvalues” on page 141

[‘References (C++ only)” on page 107]

Member expressions

Member expressions indicate members of classes, structures, or unions. The
member operators are:

* Dot operator .
* Arrow operator ->

Dot operator .

The . (dot) operator is used to access class, structure, or union members. The
member is specified by a postfix expression, followed by a . (dot) operator,
followed by a possibly qualified identifier or a pseudo-destructor name. (A
pseudo-destructor is a destructor of a nonclass type.) The postfix expression must be
an object of type class, struct or union. The name must be a member of that
object.

The value of the expression is the value of the selected member. If the postfix
expression and the name are lvalues, the expression value is also an Ivalue. If the
postfix expression is type-qualified, the same type qualifiers will apply to the
designated member in the resulting expression.

Related reference:

IAccess to structure and union members|

[‘Pseudo-destructors” on page 422|

Arrow operator ->
The -> (arrow) operator is used to access class, structure or union members using a
pointer. A postfix expression, followed by an -> (arrow) operator, followed by a
possibly qualified identifier or a pseudo-destructor name, designates a member of
the object to which the pointer points. (A pseudo-destructor is a destructor of a

150 z/0S V2R1.0 XL C/C++ Language Reference

nonclass type.) The postfix expression must be a pointer to an object of type class,
struct or union. The name must be a member of that object.

The value of the expression is the value of the selected member. If the name is an
Ivalue, the expression value is also an lvalue. If the expression is a pointer to a
qualified type, the same type-qualifiers will apply to the designated member in the
resulting expression.

Related reference:

[‘Pointers” on page 100|

[Access to structure and union members|

[“Structures and unions” on page 60
[Chapter 12, “Class members and friends (C++ only),” on page 357]

[“Pseudo-destructors” on page 422|

Unary expressions

A unary expression contains one operand and a unary operator.

All unary operators have the same precedence and have right-to-left associativity,
as shown in [Table 29 on page 191|

As indicated in the descriptions of the operators, the usual arithmetic conversions
are performed on the operands of most unary expressions.

The supported unary operators are:

* [“Increment operator ++”)

* |“Decrement operator --” on page 152|

* |“Unary plus operator +” on page 153

e [“Unary minus operator -” on page 153
Y 1% pag

[‘Logical negation operator !” on page 153|

[“Bitwise negation operator ~” on page 153|

[“Address operator &” on page 154|

* |“Indirection operator *” on page 155|

.

- T [elignof] T

.

- BT

- M (digitsof and precisionof]
o BETMN | real and __imag_ | TR

Related reference:

[“Pointer arithmetic” on page 101]

[‘Lvalues and rvalues” on page 141

[Arithmetic conversions and promotions” on page 129|

Increment operator ++

The ++ (increment) operator adds 1 to the value of a scalar operand, or if the
operand is a pointer, increments the operand by the size of the object to which it

Chapter 6. Expressions and Operators 151

152

points. The operand receives the result of the increment operation. The operand
must be a modifiable lvalue of arithmetic or pointer type.

You can put the ++ before or after the operand. If it appears before the operand,
the operand is incremented. The incremented value is then used in the expression.
If you put the ++ after the operand, the value of the operand is used in the
expression before the operand is incremented. A pre-increment expression is an
Ivalue. A post-increment expression is an rvalue. For example:

play = ++playl + play2++;

is similar to the following expressions; playl is altered before play:
int temp, templ, temp2;

templ = playl + 1;
temp2 = play2;
playl = templ;

temp = templ + temp2;
play2 = play2 + 1;
play = temp;

The result has the same type as the operand after integral promotion.

The usual arithmetic conversions on the operand are performed.

[By | The increment operator has been extended to handle complex
types. The operator works in the same manner as it does on a real type, except
that only the real part of the operand is incremented, and the imaginary part is

unchanged. o

Decrement operator --

The -- (decrement) operator subtracts 1 from the value of a scalar operand, or if
the operand is a pointer, decreases the operand by the size of the object to which it
points. The operand receives the result of the decrement operation. The operand
must be a modifiable lvalue.

You can put the -- before or after the operand. If it appears before the operand,
the operand is decremented, and the decremented value is used in the expression.
If the -- appears after the operand, the current value of the operand is used in the
expression and the operand is decremented. A pre-decrement expression is an
Ivalue. A post-decrement expression is an rvalue.

For example:
play = --playl + play2--;

is similar to the following expressions; playl is altered before play:
int temp, templ, temp2;

templ = playl - 1;
temp2 = play2;

playl = templ;

temp = templ + temp2;
play2 = play2 - 1;
play = temp;

The result has the same type as the operand after integral promotion, but is not an
lvalue.

z/0OS V2R1.0 XL C/C++ Language Reference

The usual arithmetic conversions are performed on the operand.

[BM | The decrement operator has been extended to handle complex
types, for compatibility with GNU C. The operator works in the same manner as it
does on a real type, except that only the real part of the operand is decremented,

and the imaginary part is unchanged. [BM 4

Unary plus operator +

The + (unary plus) operator maintains the value of the operand. The operand can
have any arithmetic type or pointer type. The result is not an Ivalue.

The result has the same type as the operand after integral promotion.

Note: Any plus sign in front of a constant is not part of the constant.

Unary minus operator -

The - (unary minus) operator negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.
The result has the same type as the operand after integral promotion.

Note: Any minus sign in front of a constant is not part of the constant.

Logical negation operator !

The ! (logical negation) operator determines whether the operand evaluates to 0
(false) or nonzero (true).

The expression yields the value 1 (true) if the operand evaluates to 0, and
yields the value 0 (false) if the operand evaluates to a nonzero value.

The expression yields the value true if the operand evaluates to false (0),
and yields the value false if the operand evaluates to true (nonzero). The operand
is implicitly converted to bool, and the type of the result is bool.

The following two expressions are equivalent:

Iright;
right == 0;

Related reference:

[“Boolean types” on page 55|

Bitwise negation operator ~

The ~ (bitwise negation) operator yields the bitwise complement of the operand.
In the binary representation of the result, every bit has the opposite value of the
same bit in the binary representation of the operand. The operand must have an
integral type. The result has the same type as the operand but is not an lvalue.

Suppose x represents the decimal value 5. The 16-bit binary representation of x is:
0000000000000101

The expression “x yields the following result (represented here as a 16-bit binary
number):

Chapter 6. Expressions and Operators 153

154

1111111111111010
Note that the " character can be represented by the trigraph ?7-.

The 16-bit binary representation of "0 is:
1111111111111111

[By | The bitwise negation operator has been extended to handle
complex types. With a complex type, the operator computes the complex conjugate
of the operand by reversing the sign of the imaginary part. [BM 4

Related reference:

[‘Trigraph sequences” on page 38|

Address operator &

The & (address) operator yields a pointer to its operand. The operand must be an
Ivalue, a function designator, or a qualified name. It cannot be a bit field.

It cannot have the storage class register.

If the operand is an Ivalue or function, the resulting type is a pointer to the
expression type. For example, if the expression has type int, the result is a pointer
to an object having type int.

If the operand is a qualified name and the member is not static, the result is a
pointer to a member of class and has the same type as the member. The result is
not an lvalue.

If p_to_y is defined as a pointer to an int and y as an int, the following
expression assigns the address of the variable y to the pointer p_to_y :

p_to_y = &y;

The ampersand symbol & is used in C++ to form declarators for lvalue
references in addition to being the address operator. The meanings are related but
not identical.

int target;

int &rTarg = target; // rTarg is an Tvalue reference to an integer.

// The reference is initialized to refer to target.
void f(int*& p); // p is an lvalue reference to a pointer

If you take the address of a reference, it returns the address of its target. Using the
previous declarations, &rTarg is the same memory address as &target.

You may take the address of a register variable.

You can use the & operator with overloaded functions only in an initialization or
assignment where the left side uniquely determines which version of the
overloaded function is used.

Related reference:

[“Indirection operator *” on page 155|

[“Pointers” on page 100|

[‘References (C++ only)” on page 107]

z/0OS V2R1.0 XL C/C++ Language Reference

Indirection operator *

The * (indirection) operator determines the value referred to by the pointer-type
operand. The operand can be a pointer to an incomplete type that is not cv void.
The lvalue thus obtained cannot be converted to a prvalue Z=SIE
rvalue. If the operand points to an object, the operation yields an Ivalue referring
to that object. If the operand points to a function, the result is a function
designator EE an lvalue referring to the object to which the operand
pointslEZME - Arrays and functions are converted to pointers.

The type of the operand determines the type of the result. For example, if the
operand is a pointer to an int, the result has type int.

Do not apply the indirection operator to any pointer that contains an address that
is not valid, such as NULL. The result is not defined.

If p_to_y is defined as a pointer to an int and y as an int, the expressions:
p_to_y = &y;

*p_toy = 3;

cause the variable y to receive the value 3.

Related reference:

[“Arrays” on page 104|

[“Pointers” on page 100]

The typeid operator (C++ only)

The typeid operator provides a program with the ability to retrieve the actual
derived type of the object referred to by a pointer or a reference. This operator,
along with the dynamic_cast operator, are provided for runtime type identification
(RTTI) support in C++.

typeid operator syntax

»>—typeid—(I_expr) ><
type-name—|

The typeid operator returns an lvalue of type const std::type_info that
represents the type of expression expr. You must include the standard template
library header <typeinfo> to use the typeid operator.

If expr is a reference or a dereferenced pointer to a polymorphic class, typeid will
return a type_info object that represents the object that the reference or pointer
denotes at run time. If it is not a polymorphic class, typeid will return a type_info
object that represents the type of the reference or dereferenced pointer. The
following example demonstrates this:

#include <iostream>

#include <typeinfo>
using namespace std;

struct A { virtual ~“A() { } };
struct B : A { };

struct C { };
struct D : C { };

int main() {

Chapter 6. Expressions and Operators 155

156

B bobj;

Ax ap = &bobj;

A& ar = bobj;

cout << "ap: " << typeid(*ap).name() << endl;
cout << : " << typeid(ar).name() << endl;

D dobj;

C* cp = &dobj;

C& cr = dobj;

cout << "cp: " << typeid(*cp).name() << endl;
cout << "cr: " << typeid(cr).name() << endl;

}

The following is the output of the above example:
ap: B
ar: B
cp: C
cr: C

Classes A and B are polymorphic; classes C and D are not. Although cp and cr refer
to an object of type D, typeid(*cp) and typeid(cr) return objects that represent
class C.

Lvalue-to-rvalue, array-to-pointer, and function-to-pointer conversions will not be
applied to expr. For example, the output of the following example will be int [10],
not int *:

#include <iostream>

#include <typeinfo>
using namespace std;

int main() {
int myArray[10];
cout << typeid(myArray).name() << endl;

}
If expr is a class type, that class must be completely defined.

The typeid operator ignores top-level const or volatile qualifiers.
Related reference:

[‘Type names” on page 99

“The typeof operator (IBM extension)” on page 159
yp p pag

The __alignof__ operator (IBM extension)

The __alignof__ operator is a language extension to C99 and Standard C++ that
returns the position to which its operand is aligned. The operand can be an
expression or a parenthesized type identifier. If the operand is an expression that
represents an lvalue, the number that is returned by __alignof__ represents the
alignment that the lvalue is known to have. The type of the expression is
determined at compile time, but the expression itself is not evaluated. If the
operand is a type, the number represents the alignment that is usually required for
the type on the target platform.

The __alignof__ operator cannot be applied to the following situations:
e An lvalue that represents a bit field

* A function type

* An undefined structure or class

* An incomplete type (such as void)

z/0OS V2R1.0 XL C/C++ Language Reference

__alignof___ operator syntax

A\
A

»»— al 1'gnof_—|:unary_expression
(—type-id—)J

If type-id is a reference or a referenced type, the result is the alignment of the
referenced type. If type-id is an array, the result is the alignment of the array
element type. If type-id is a fundamental type, the result is implementation-defined.

The sizeof operator

The sizeof operator yields the size in bytes of the operand, which can be an
expression or the parenthesized name of a type.

sizeof operator syntax

A\
A

»»—sjzeof expr
|—(—1,“ype—name—)—|

The result for either kind of operand is not an lvalue, but a constant integer value.
The type of the result is the unsigned integral type size_t defined in the header
file stddef.h.

Except in preprocessor directives, you can use a sizeof expression wherever an
integral constant is required. One of the most common uses for the sizeof operator
is to determine the size of objects that are referred to during storage allocation,
input, and output functions.

Another use of sizeof is in porting code across platforms. You can use the sizeof
operator to determine the size that a data type represents. For example:

sizeof(int);

The sizeof operator applied to a type name yields the amount of memory that can
be used by an object of that type, including any internal or trailing padding.

Using the sizeof operator with a fixed-point decimal type results in the total
number of bytes that are occupied by the decimal type. z/OS XL C/C++
implements decimal data types using the native packed decimal format. Each digit
occupies half a byte. The sign occupies an additional half byte. The following
example gives you a result of 6 bytes:

sizeof (decimal(10,2));

For compound types, results are as follows:

Operand Result

An array The result is the total number of bytes in the array. For
example, in an array with 10 elements, the size is equal to 10
times the size of a single element. The compiler does not
convert the array to a pointer before evaluating the
expression.

A class The result is always nonzero. It is equal to the number of
bytes in an object of that class, also including any padding

required for placing class objects in an array.

A reference The result is the size of the referenced object.

Chapter 6. Expressions and Operators 157

158

The sizeof operator cannot be applied to:
* A bit field

* A function type

¢ An undefined structure or class

* An incomplete type (such as void)

The sizeof operator applied to an expression yields the same result as if it had
been applied to only the name of the type of the expression. At compile time, the
compiler analyzes the expression to determine its type. None of the usual type
conversions that occur in the type analysis of the expression are directly
attributable to the sizeof operator. However, if the operand contains operators that
perform conversions, the compiler does take these conversions into consideration
in determining the type. For example, the second line of the following sample
causes the usual arithmetic conversions to be performed. Assuming that a short
uses 2 bytes of storage and an int uses 4 bytes,

short x; ... sizeof (x) /* the value of sizeof operator is 2 x/
short x; ... sizeof (x + 1) /* value is 4, result of addition is type int */

The result of the expression x + 1 has type int and is equivalent to sizeof(int).
The value is also 4 if x has type char, short, int, or any enumeration typeof the
default enum size.

A variable length array can be the operand of a sizeof expression. In this case, the
operand is evaluated at run time, and the size is neither an integer constant nor a
constant expression, even though the size of each instance of a variable array does
not change during its lifetime.

sizeof... is a unary expression operator introduced by the variadic
template feature. This operator accepts an expression that names a parameter pack
as its operand. It then expands the parameter pack and returns the number of
arguments provided for the parameter pack. Consider the following example:

template<typename...T> void foo(T...args){
int v = sizeof...(args);
1

In this example, the variable v is assigned to the number of the arguments
provided for the parameter pack args.

Notes:

e The operand of the sizeof... operator must be an expression that names a
parameter pack.

* The operand of the sizeof operator cannot be an expression that names a
parameter pack or a pack expansion.

For more information, see [“Variadic templates (C++11)” on page 468§|

Related reference:

[‘Type names” on page 99

[‘Integer constant expressions” on page 144

[“Arrays” on page 104

[‘References (C++ only)” on page 107]

z/0OS V2R1.0 XL C/C++ Language Reference

The typeof operator (IBM extension)

The typeof operator returns the type of its argument, which can be an expression
or a type. The language feature provides a way to derive the type from an
expression. Given an expression e, __typeof__(e) can be used anywhere a type
name is needed, for example in a declaration or in a cast. The alternate spelling of
the keyword, __typeof__, is recommended.

typeof operator syntax

»—[_typeof_ (expr:) <
typeof——l— |—t‘ype—name—|

A typeof construct itself is not an expression, but the name of a type. A typeof
construct behaves like a type name defined using typedef, although the syntax
resembles that of sizeof.

The following examples illustrate its basic syntax. For an expression e:
int e;

__typeof (e + 1) j; /* the same as declaring int j; */

e = (__typeof__(e)) f; /* the same as casting e = (int) f; */

Using a typeof construct is equivalent to declaring a typedef name. Given
typedef int T[2];

int i[2];

you can write

__typeof_ (i) a; /* all three constructs have the same meaning */
__typeof__ (int[2]) a;
__typeof_ (T) a;

The behavior of the code is as if you had declared int a[2];.

For a bit field, typeof represents the underlying type of the bit field. For example,
int m:2;, the typeof(m) is int. Since the bit field property is not reserved, n in
typeof(m) n; is the same as int n, but not int n:2.

The typeof operator can be nested inside sizeof and itself. The following
declarations of arr as an array of pointers to int are equivalent:

int *arr[10]; /* traditional C declaration */
__typeof (__typeof _ (int *)[10]) a; /* equivalent declaration =*/

The typeof operator can be useful in macro definitions where expression e is a
parameter. For example,

#define SWAP(a,b) { _ typeof (a) temp; temp = a; a = b; b = temp; }

Notes:
1. The typeof and _ typeof__ keywords are supported as follows:

* The _ typeof__ keyword is recognized in C under LANGLVL(EXTCS89 |
EXTC99 | EXTENDED), and in C++ under the LANGLVL(EXTENDED).

* The typeof keyword is only recognized when the KEYWORD(TYPEOF)
compiler option is in effect.

Related reference:

[‘The decltype(expression) type specifier (C++11)" on page 78|

[“Type names” on page 99|

Chapter 6. Expressions and Operators 159

[“typedef definitions” on page 74|

The digitsof and precisionof operators (C only)

The digitsof and precisionof operators yield information about fixed-point
decimal types or an expressions of the decimal type. The decimal.h header file
defines the digitsof and precisionof macros.

The digitsof operator gives the number of significant digits of an object, and
precisionof gives the number of decimal digits. That is,

digitsof(decimal(n,p)) =n
precisionof(decimal(n,p)) = p

The results of the digitsof and precisionof operators are integer constants.
Related reference:

[Fixed-point decimal literals (z/OS only)|

[“Fixed point decimal types (C only)” on page 58|

The __real__ and __imag__ operators (IBM extension)

z/0S XL C/C++ extends the C99 standards to support the unary operators
_real__and __imag__. These operators provide the ability to extract the real and
imaginary parts of a complex type. These extensions have been implemented to
ease the porting applications developed with GNU C.

__real__ and __imag__ operator syntax

»—[_r‘ea1_:l—(—var_identifier—) <
imag

The var_identifier is the name of a previously declared complex variable. The
__real__ operator returns the real part of the complex variable, while the __imag__
operator returns the imaginary part of the variable. If the operand of these
operators is an lvalue, the resulting expression can be used in any context where
Ivalues are allowed. They are especially useful in initializations of complex
variables, and as arguments to calls to library functions such as printf and scanf
that have no format specifiers for complex types. For example:

float _Complex myvar;

__imag__(myvar) = 2.0f;

__real__(myvar) = 3.0f;

initializes the imaginary part of the complex variable myvar to 2.0/ and the real part
to 3.0, and

printf("myvar = %f + %f * i\n", _ real_ (myvar), _ imag_ (myvar));

prints:
myvar = 3.000000 + 2.000000 * i
Related reference:

[Complex literals (C only)|

[Complex floating-point types (C only)|

Binary expressions

A binary expression contains two operands separated by one operator.

* |“Assignment operators” on page 161]

160 z/0S V2R1.0 XL C/C++ Language Reference

All binary operators have left-to-right associativity, but not all binary operators
have the same precedence. The ranking and precedence rules for binary operators
is summarized in [Table 30 on page 192|

The order in which the operands of most binary operators are evaluated is not
specified. To ensure correct results, avoid creating binary expressions that depend
on the order in which the compiler evaluates the operands.

As indicated in the descriptions of the operators, the usual arithmetic conversions
are performed on the operands of most binary expressions.

The supported binary operators are as follows:

* |[“Assignment operators”]|

[“Multiplication operator *” on page 163)|

+ |“Division operator /” on page 163|

* ["“Remainder operator %” on page 164

[“Addition operator +” on page 164|

[“Subtraction operator -” on page 164|

[“Bitwise left and right shift operators << >>" on page 165|

[‘Relational operators < > <= >=" on page 165|

[“Equality and inequality operators == !=" on page 167
» |“Bitwise AND operator &” on page 168|
+ [“Bitwise exclusive OR operator A" on page 16|

+ |“Bitwise inclusive OR operator |” on page 169
* [“Logical AND operator &&” on page 169
* [“Logical OR operator | |” on page 170|

* |“Array subscripting operator []” on page 171

+ [“Comma operator ,” on page 172|

* [“Pointer to member operators .* ->* (C++ only)” on page 173|

Related reference:

[“Lvalues and rvalues” on page 141

[Arithmetic conversions and promotions” on page 129|

Assignment operators

An assignment expression stores a value in the object designated by the left operand.
There are two types of assignment operators:

+ |“Simple assignment operator =” on page 162|

+ [“Compound assignment operators” on page 162|

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression
is the value of the left operand after the assignment has completed.

The result of an assignment expression is not an lvalue.
The result of an assignment expression is an Ivalue.

All assignment operators have the same precedence and have right-to-left
associativity.

Chapter 6. Expressions and Operators 161

Simple assignment operator =
The simple assignment operator has the following form:
lvalue = expr

The operator stores the value of the right operand expr in the object designated by
the left operand Ilvalue.

If the left operand is not a class type, the right operand is implicitly converted to
the type of the left operand. This converted type is not be qualified by const or
volatile.

If the left operand is a class type, that type must be complete. The copy
assignment operator of the left operand is called.

If the left operand is an object of reference type, the compiler assigns the value of
the right operand to the object denoted by the reference.

BT A packed structure or union can be assigned to a nonpacked structure or
union of the same type. A nonpacked structure or union can be assigned to a
packed structure or union of the same type.

If one operand is packed and the other is not, z/OS XL C/C++ remaps the layout
of the right operand to match the layout of the left. This remapping of structures
might degrade performance. For efficiency, when you perform assignment
operations with structures or unions, you should ensure that both operands are
either packed or nonpacked.

Note: If you assign pointers to structures or unions, the objects they point to must
both be either packed or nonpacked. See |“Initialization of pointers” on page 116|
for more information on assignments with pointers. JEETNE

Compound assignment operators

The compound assignment operators consist of a binary operator and the simple
assignment operator. They perform the operation of the binary operator on both
operands and store the result of that operation into the left operand, which must
be a modifiable lvalue.

The following table shows the operand types of compound assignment

expressions:

Operator Left operand Right operand
+=or -= Arithmetic Arithmetic
+=or -= Pointer Integral type
*=, /=, and %= Arithmetic Arithmetic
<<=, >>=, &=,"=,and |= |Integral type Integral type

Note that the expression
a=*=b+c

is equivalent to
a=ax(b+c)

162 z/0S V2R1.0 XL C/C++ Language Reference

and not

a=axbhbh+c

The following table lists the compound assignment operators and shows an
expression using each operator:

Operator Example Equivalent expression

+= index += 2 index = index + 2

-= *pointer -= 1 *pointer = *pointer - 1
*= bonus *= increase bonus = bonus * increase
/= time /= hours time = time / hours

Yo= allowance %= 1000 allowance = allowance % 1000
<<= result <<= num result = result << num
>>= form >>= 1 form = form >> 1

&= mask &= 2 mask = mask & 2

N= test "= pre_test test = test © pre_test
|= flag |= ON flag = flag | ON

Although the equivalent expression column shows the left operands (from the
example column) twice, it is in effect evaluated only once.

In addition to the table of operand types, an expression is implicitly
converted to the cv-unqualified type of the left operand if it is not of class type.
However, if the left operand is of class type, the class becomes complete, and
assignment to objects of the class behaves as a copy assignment operation.
Compound expressions and conditional expressions are lvalues in C++, which
allows them to be a left operand in a compound assignment expression.

Related reference:

[‘Lvalues and rvalues” on page 141|

[‘Pointers” on page 100|

[“Type qualifiers” on page 85|

Multiplication operator *

The * (multiplication) operator yields the product of its operands. The operands
must have an arithmetic or enumeration type. The result is not an lvalue. The
usual arithmetic conversions on the operands are performed.

Because the multiplication operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one multiplication operator. For example, the expression:

sites * number * cost

can be interpreted in any of the following ways:

(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

Division operator /

The / (division) operator yields the algebraic quotient of its operands. If both
operands are integers, any fractional part (remainder) is discarded. Throwing away

Chapter 6. Expressions and Operators 163

164

the fractional part is often called truncation toward zero. The operands must have an
arithmetic or enumeration type. The right operand may not be zero: the result is
undefined if the right operand evaluates to 0. For example, expression 7 / 4 yields
the value 1 (rather than 1.75 or 2). The result is not an lvalue.

If either operand is negative, the result is rounded towards zero.

The usual arithmetic conversions on the operands are performed.

Remainder operator %

The % (remainder) operator yields the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 yields 2. The
result is not an lvalue.

Both operands must have an integral or enumeration type. If the right operand
evaluates to 0, the result is undefined. If either operand has a negative value, the
result is such that the following expression always yields the value of a if b is not 0
and a/b is representable:

(a/b)=*=b+asb;

The usual arithmetic conversions on the operands are performed.

Addition operator +

The + (addition) operator yields the sum of its operands. Both operands must have
an arithmetic type, or one operand must be a pointer to an object type and the
other operand must have an integral or enumeration type.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

A pointer to an object in an array can be added to a value having integral type.
The result is a pointer of the same type as the pointer operand. The result refers to
another element in the array, offset from the original element by the amount of the
integral value treated as a subscript. If the resulting pointer points to storage
outside the array, other than the first location outside the array, the result is
undefined. A pointer to one element past the end of an array cannot be used to
access the memory content at that address. The compiler does not provide
boundary checking on the pointers. For example, after the addition, ptr points to
the third element of the array:

int array[5];

int *ptr;

ptr = array + 2;

Related reference:

[“Pointer arithmetic” on page 101]

[“Pointer conversions” on page 137

Subtraction operator -

The - (subtraction) operator yields the difference of its operands. Both operands
must have an arithmetic or enumeration type, or the left operand must have a
pointer type and the right operand must have the same pointer type or an integral
or enumeration type. You cannot subtract a pointer from an integral value.

z/0OS V2R1.0 XL C/C++ Language Reference

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. The result is a pointer
of the same type as the pointer operand.

If both operands are pointers to elements in the same array, the result is the
number of objects separating the two addresses. The number is of type ptrdiff_t,
which is defined in the header file stddef.h. Behavior is undefined if the pointers
do not refer to objects in the same array.

Related reference:

[Pointer arithmetic” on page 101]

[“Pointer conversions” on page 137

Bitwise left and right shift operators << >>

The bitwise shift operators move the bit values of a binary object. The left operand
specifies the value to be shifted. The right operand specifies the number of
positions that the bits in the value are to be shifted. The result is not an lvalue.
Both operands have the same precedence and are left-to-right associative.

Operator Usage
<< Indicates the bits are to be shifted to the left.
>> Indicates the bits are to be shifted to the right.

Each operand must have an integral or enumeration type. The compiler performs
integral promotions on the operands, and then the right operand is converted to
type int. The result has the same type as the left operand (after the arithmetic
conversions).

The right operand should not have a negative value or a value that is greater than
or equal to the width in bits of the expression being shifted. The result of bitwise
shifts on such values is unpredictable.

If the right operand has the value 0, the result is the value of the left operand
(after the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if 1eft_op has the value
4019, the bit pattern (in 16-bit format) of Teft_op is:

0000111110110011

The expression left_op << 3 yields:
0111110110011000

The expression left_op >> 3 yields:
0000000111110110

Relational operators < > <= >=

The relational operators compare two operands and determine the validity of a
relationship. The following table describes the four relational operators:

Chapter 6. Expressions and Operators 165

166

Operator Usage

< Indicates whether the value of the left operand is less than the
value of the right operand.

> Indicates whether the value of the left operand is greater than
the value of the right operand.

<= Indicates whether the value of the left operand is less than or
equal to the value of the right operand.

>= Indicates whether the value of the left operand is greater than
or equal to the value of the right operand.

Both operands must have arithmetic or enumeration types or be pointers to the
same type.

The type of the result is int and has the values 1 if the specified
relationship is true, and 0 if false.

The type of the result is bool and has the values true or false.
The result is not an lvalue.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

When the operands are pointers, the result is determined by the locations of the
objects to which the pointers refer. If the pointers do not refer to objects in the
same array, the result is not defined.

A pointer can be compared to a constant expression that evaluates to 0. You can
also compare a pointer to a pointer of type void*. The pointer is converted to a
pointer of type voidx.

If two pointers refer to the same object, they are considered equal. If two pointers
refer to nonstatic members of the same object, the pointer to the object declared
later is greater, provided that they are not separated by an access specifier;
otherwise the comparison is undefined. If two pointers refer to data members of
the same union, they have the same address value.

If two pointers refer to elements of the same array, or to the first element beyond
the last element of an array, the pointer to the element with the higher subscript
value is greater.

You can only compare members of the same object with relational operators.

Relational operators have left-to-right associativity. For example, the expression:

a<bh<=c

is interpreted as:

(a <b) <=c¢

If the value of a is less than the value of b, the first relationship yields 1 in C, or
true in C++. The compiler then compares the value true (or 1) with the value of ¢
(integral promotions are carried out if needed).

z/0OS V2R1.0 XL C/C++ Language Reference

Equality and inequality operators == !=
The equality operators, like the relational operators, compare two operands for the
validity of a relationship. The equality operators, however, have a lower
precedence than the relational operators. The following table describes the two
equality operators:

Operator Usage

== Indicates whether the value of the left operand is equal to the
value of the right operand.

1= Indicates whether the value of the left operand is not equal to
the value of the right operand.

Both operands must have arithmetic or enumeration types or be pointers to the
same type, or one operand must have a pointer type and the other operand must
be a pointer to void or a null pointer.

The type of the result is int and has the values 1 if the specified
relationship is true, and 0 if false. The type of the result is bool and has
the values true or false.

The type of the result is bool and has the values true or false.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

If the operands are pointers, the result is determined by the locations of the objects
to which the pointers refer.

If one operand is a pointer and the other operand is an integer having the value 0,
the == expression is true only if the pointer operand evaluates to NULL. The !=
operator evaluates to true if the pointer operand does not evaluate to NULL.

You can also use the equality operators to compare pointers to members that are of
the same type but do not belong to the same object. The following expressions
contain examples of equality and relational operators:

time < max_time == status < complete
letter != EOF

Note: The equality operator (==) should not be confused with the assignment (=)
operator.

For example,

if (x == 3)
evaluates to true (or 1) if x is equal to three. Equality tests like this should
be coded with spaces between the operator and the operands to prevent
unintentional assignments.

while

if (x = 3)
is taken to be true because (x = 3) evaluates to a nonzero value (3). The
expression also assigns the value 3 to x.

Related reference:

[Simple assignment operator =

Chapter 6. Expressions and Operators 167

168

Bitwise AND operator &

The & (bitwise AND) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1's, the corresponding bit
of the result is set to 1. Otherwise, it sets the corresponding result bit to 0.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands.

Because the bitwise AND operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise AND operator.

The following example shows the values of a, b, and the result of a & b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a & b 0000000000001100

Note: The bitwise AND (&) should not be confused with the logical AND. (&)
operator. For example,

1 & 4 evaluates to 0
while
1 && 4 evaluates to true

Bitwise exclusive OR operator

The bitwise exclusive OR operator (in EBCDIC, the ” symbol is represented by the
- symbol) compares each bit of its first operand to the corresponding bit of the
second operand. If both bits are 1's or both bits are 0's, the corresponding bit of the
result is set to 0. Otherwise, it sets the corresponding result bit to 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise exclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise exclusive OR operator. Note that the ” character can be
represented by the trigraph ??'.

The following example shows the values of a, b, and the result of a ~ b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a * b 0000000001110010

Related reference:

[“Trigraph sequences” on page 38|

z/0OS V2R1.0 XL C/C++ Language Reference

Bitwise inclusive OR operator |

The | (bitwise inclusive OR) operator compares the values (in binary format) of
each operand and yields a value whose bit pattern shows which bits in either of
the operands has the value 1. If both of the bits are 0, the result of that bit is 0;
otherwise, the result is 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise inclusive OR operator. Note that the | character can be
represented by the trigraph ??!.

The following example shows the values of a, b, and the result of a | b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a | b 0000000001111110

Note: The bitwise OR (|) should not be confused with the logical OR (| |) operator.
For example,

1 | 4 evaluates to 5
while
1 || 4 evaluates to true

Related reference:

[“Trigraph sequences” on page 38|

Logical AND operator &&

The && (logical AND) operator indicates whether both operands are true.

If both operands have nonzero values, the result has the value 1.
Otherwise, the result has the value 0. The type of the result is int. Both operands
must have an arithmetic or pointer type. The usual arithmetic conversions on each
operand are performed.

If both operands have values of true, the result has the value true.
Otherwise, the result has the value false. Both operands are implicitly converted
to bool and the result type is bool.

Unlike the & (bitwise AND) operator, the && operator guarantees left-to-right
evaluation of the operands. If the left operand evaluates to 0 (or false), the right
operand is not evaluated.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

Expression Result

18 0 false or 0

Chapter 6. Expressions and Operators 169

170

Expression Result

18 4 true or 1

0 && 0 false or 0

The following example uses the logical AND operator to avoid division by zero:
(y 1=0) && (x / y)

The expression x / y is not evaluated when y != 0 evaluates to 0 (or false).

Note: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example:

1 && 4 evaluates to 1 (or true)
while
1 & 4 evaluates to 0

Logical OR operator I

The || (logical OR) operator indicates whether either operand is true.

If either of the operands has a nonzero value, the result has the value 1.
Otherwise, the result has the value 0. The type of the result is int. Both operands
must have an arithmetic or pointer type. The usual arithmetic conversions on each
operand are performed.

If either operand has a value of true, the result has the value true.
Otherwise, the result has the value false. Both operands are implicitly converted
to bool and the result type is bool.

Unlike the | (bitwise inclusive OR) operator, the || operator guarantees
left-to-right evaluation of the operands. If the left operand has a nonzero (or true)
value, the right operand is not evaluated.

The following examples show how expressions that contain the logical OR
operator are evaluated:

Expression Result
1]]o true or 1
1] 4 true or 1
01]o false or 0

The following example uses the logical OR operator to conditionally increment y:
+x || ++y;

The expression ++y is not evaluated when the expression ++x evaluates to a
nonzero (or true) quantity.

Note: The logical OR (| |) should not be confused with the bitwise OR (|) operator.
For example:

z/0OS V2R1.0 XL C/C++ Language Reference

1 || 4 evaluates to 1 (or true)
while
1 | 4 evaluates to 5

Array subscripting operator []

A postfix expression followed by an expression in [] (brackets) specifies an
element of an array. The expression within the brackets is referred to as a subscript.
The first element of an array has the subscript zero.

By definition, the expression a[b] is equivalent to the expression *((a) + (b)),
and, because addition is associative, it is also equivalent to b[a]. Between
expressions a and b, one must be a pointer to a type T, and the other must have
integral or enumeration type. The result of an array subscript is an Ivalue. The
following example demonstrates this:

#include <stdio.h>

int main(void) {
int a[3] = { 10, 20, 30 };
printf("a[0] = %d\n", a[0]);
printf("a[1] = %d\n", 1[a]);
printf("a[2] = %d\n", *(2 + a));
return 0;

}

See the output of the above example:

af[0] = 10
a[1] = 20
a[2] = 30

The above restrictions on the types of expressions required by the
subscript operator, as well as the relationship between the subscript operator and
pointer arithmetic, do not apply if you overload operator[] of a class. lEEEE

The first element of each array has the subscript 0. The expression contract[35]
refers to the 36th element in the array contract.

In a multidimensional array, you can reference each element (in the order of
increasing storage locations) by incrementing the right-most subscript most
frequently.

For example, the following statement gives the value 100 to each element in the
array code[4] [3][6]:
for (first = 0; first < 4; ++first)

{

for (second = 0; second < 3; ++second)

for (third = 0; third < 6; ++third)
{
code[first] [second] [third] =
100;
}
}
}

C99 allows array subscripting on arrays that are not Ivalues. The
following example is valid in C99:

Chapter 6. Expressions and Operators 171

172

struct trio{int a[3];};
struct trio f();
foo (int index)

return f().a[index];

}

Related reference:

[Pointers” on page 100

[“Integral types” on page 54|

[“Lvalues and rvalues” on page 141

[“Arrays” on page 104

[“Overloading subscripting” on page 336|

[“Pointer arithmetic” on page 101]

Comma operator ,

A comma expression contains two operands of any type separated by a comma and
has left-to-right associativity. The left operand is fully evaluated, possibly
producing side effects, and its value, if there is one, is discarded. The right
operand is then evaluated. The type and value of the result of a comma expression
are those of its right operand, after the usual unary conversions.

The result of a comma expression is not an lvalue.

In C++, the result is an lvalue if the right operand is an lvalue. The
following statements are equivalent:

r = (a,b,...,c);
a; b; r =cy

The difference is that the comma operator may be suitable for expression contexts,
such as loop control expressions.

Similarly, the address of a compound expression can be taken if the right operand
is an Ivalue.

&(a, b)
a, &b

C++

Any number of expressions separated by commas can form a single expression
because the comma operator is associative. The use of the comma operator
guarantees that the subexpressions will be evaluated in left-to-right order, and the
value of the last becomes the value of the entire expression. In the following
example, if omega has the value 11, the expression increments delta and assigns the
value 3 to alpha:

alpha = (delta++, omega % 4);

A sequence point occurs after the evaluation of the first operand. The value of
delta is discarded. Similarly, in the following example, the value of the expression:

intensity++, shade * increment, rotate(direction);

is the value of the expression:

rotate(direction)

z/0OS V2R1.0 XL C/C++ Language Reference

In some contexts where the comma character is used, parentheses are required to
avoid ambiguity. For example, the function

f(a, (t =3, t+2),c);

has only three arguments: the value of a, the value 5, and the value of c. Other
contexts in which parentheses are required are in field-length expressions in
structure and union declarator lists, enumeration value expressions in enumeration
declarator lists, and initialization expressions in declarations and initializers.

In the previous example, the comma is used to separate the argument expressions
in a function invocation. In this context, its use does not guarantee the order of
evaluation (left to right) of the function arguments.

The primary use of the comma operator is to produce side effects in the following
situations:

* Calling a function
* Entering or repeating an iteration loop
¢ Testing a condition

¢ Other situations where a side effect is required but the result of the expression is
not immediately needed

The following table gives some examples of the uses of the comma operator.

Statement Effects

for (i=0; i<2; ++i, f()); A for statement in which 1 is incremented and f()
is called at each iteration.

if ((f(), ++i, i>1) { /* ... An if statement in which function () is called,

x/ } variable i is incremented, and variable i is tested
against a value. The first two expressions within
this comma expression are evaluated before the
expression i>1. Regardless of the results of the first
two expressions, the third is evaluated and its result
determines whether the if statement is processed.

func((++a, f(a))); A function call to func() in which a is incremented,
the resulting value is passed to a function f(), and
the return value of f() is passed to func(). The
function func() is passed only a single argument,
because the comma expression is enclosed in
parentheses within the function argument list.

Pointer to member operators .* ->* (C++ only)

There are two pointer to member operators: .* and ->*.

The .* operator is used to dereference pointers to class members. The first operand
must be of class type. If the type of the first operand is class type T, or is a class
that has been derived from class type T, the second operand must be a pointer to a
member of a class type T.

The ->* operator is also used to dereference pointers to class members. The first
operand must be a pointer to a class type. If the type of the first operand is a
pointer to class type T, or is a pointer to a class derived from class type T, the
second operand must be a pointer to a member of class type T.

Chapter 6. Expressions and Operators 173

The .* and ->* operators bind the second operand to the first, resulting in an
object or function of the type specified by the second operand.

If the result of .* or ->* is a function, you can only use the result as the operand
for the () (function call) operator. If the second operand is an lvalue, the result of
.* or ->* is an lvalue.

Related reference:

[“Class member lists” on page 357

[‘Pointers to members” on page 362

Conditional expressions

174

A conditional expression is a compound expression that contains a condition that is
implicitly converted to type bool in C++(operand,), an expression to be evaluated if
the condition evaluates to true (operand,), and an expression to be evaluated if the
condition has the value false (operand;).

The conditional expression contains one two-part operator. The ? symbol follows
the condition, and the : symbol appears between the two action expressions. All
expressions that occur between the ? and : are treated as one expression.

The first operand must have a scalar type. The type of the second and third
operands must be one of the following:

* An arithmetic type
* A compatible pointer, structure, or union type
* void

The second and third operands can also be a pointer or a null pointer constant.

Two objects are compatible when they have the same type but not necessarily the
same type qualifiers (volatile or const). Pointer objects are compatible if they
have the same type or are pointers to void.

The first operand is evaluated, and its value determines whether the second or
third operand is evaluated:

e If the value is true, the second operand is evaluated.

e If the value is false, the third operand is evaluated.

The result is the value of the second or third operand.

If the second and third expressions evaluate to arithmetic types, the usual
arithmetic conversions are performed on the values. The types of the second and
third operands determine the type of the result.

Conditional expressions have right-to-left associativity with respect to their first
and third operands. The leftmost operand is evaluated first, and then only one of
the remaining two operands is evaluated. The following expressions are equivalent:
a?b:c?d:e?f:g

a?b:(c?2d: (e?f:qg))

z/0OS V2R1.0 XL C/C++ Language Reference

Types in conditional C expressions (C only)

In C, a conditional expression is not an lvalue, nor is its result.

Table 26. Types of operands and results in conditional C expressions

Type of one operand

Type of other operand

Type of result

Arithmetic

Arithmetic

Arithmetic type after usual
arithmetic conversions

Structure or union type

Compatible structure or
union type

Structure or union type with
all the qualifiers on both
operands

void

void

void

Pointer to compatible type

Pointer to compatible type

Pointer to type with all the
qualifiers specified for the
composite type

Pointer to type

NULL pointer (the constant 0)

Pointer to type

Pointer to object or
incomplete type

Pointer to void

Pointer to void with all the
qualifiers specified for the

type

Types in conditional C++ expressions (C++ only)

Table 27. Types of operands and results in C++ conditional expressions

Type of one operand

Type of other operand

Type of result

Reference to type

Reference to type

Reference after usual
reference conversions

Class T

Class T

Class T

Class T

Class X

Class type for which a
conversion exists. If more
than one possible conversion
exist, the result is ambiguous.

throw expression

Other (type, pointer,
reference)

Type of the expression that is
not a throw expression

Examples of conditional expressions

The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:

x=(y>z)?y: z;

The following statement is equivalent to the previous expression.

if (y > z)
X =Y;
else
X = Z3

The following expression calls the function printf, which receives the value of the
variable ¢, if ¢ evaluates to a digit. Otherwise, printf receives the character

constant 'x'.

printf(" ¢ = %c\n", isdigit(c) ? ¢ : 'x');

Chapter 6. Expressions and Operators

175

If the last operand of a conditional expression contains an assignment operator, use
parentheses to ensure the expression evaluates properly. For example, the =
operator has lower precedence than the ?: operator in the following expression:
int 1,3,k;

(i==7)23+:k=3j;

The compiler will interpret this expression as if it were parenthesized this way:
int 1,j,k;
((1==7) 23+ :k =

That is, k is treated as the third operand, not the entire assignment expression k =
J.

To assign the value of j to k when i == 7 is false, enclose the last operand in
parentheses:

int i,j,k;

(i==7) 23+ : (k=1]);

Cast expressions

176

A cast operator is used for explicit type conversions. It converts the value of an
expression to a specified type.

The following cast operators are supported:

Cast operator ()

Cast expression syntax

»»>— (—type—)—expression ><

In C, the result of the cast operation is not an lvalue. K

In C++, the cast result belongs to one of the following value categories:

 If type is an lvalue reference type or an rvalue reference to a function
type IZESEIE , the cast result is an Ivalue.

. If type is an rvalue reference to an object type, the cast result is an
xvalue. J=SIE
* In all other cases, the cast result is a (prvalue) E¥SIE rvalue.

C++

The following example demonstrates the use of the cast operator to dynamically
create an integer array of size 10:

#include <stdlib.h>

int main(void) {
int* myArray = (intx) malloc(10 * sizeof(int));
free(myArray) ;
return 0;

}

The malloc library function returns a void pointer that points to memory that
holds an object of the size of its argument. The statement int* myArray = (int*)
malloc(10 * sizeof(int)) has the following steps:

z/0OS V2R1.0 XL C/C++ Language Reference

* Creates a void pointer that points to memory that can hold ten integers.

* Converts that void pointer into an integer pointer with the use of the cast
operator.

* Assigns that integer pointer to myArray.

In C++ you can also use the following objects in cast expressions:
* Function-style casts
* C++ conversion operators, such as static_cast.

Function-style notation converts the value of expression to the type type:

type(expression)

The following example shows the same value cast with a C-style cast, the C++
function-style cast, and a C++ cast operator:

#include <iostream>
using namespace std;

int main() {
float num = 98.76;
int x1 = (int) num;

int x2 = int(num);
int x3 = static_cast<int>(num);
cout << "x1 = " << x1 << endl;

cout << "x2
cout << "x3

}

" << x2 << endl;
" << x3 << endl;

See the output of the above example:

x1 = 98
x2 = 98
x3 = 98

The integer x1 is assigned a value in which num has been explicitly converted to an
int with the C-style cast. The integer x2 is assigned a value that has been
converted with the function-style cast. The integer x3 is assigned a value that has
been converted with the static_cast operator.

For C++, the operand of a cast expression can have class type. If the operand has
class type, it can be cast to any type for which the class has a user-defined
conversion function. Casts can invoke a constructor, if the target type is a class, or
they can invoke a conversion function, if the source type is a class. They can be
ambiguous if both conditions hold.

Related reference:

[“Structures and unions” on page 60|

[“Type names” on page 99|

[‘Conversion functions” on page 426

[“Conversion constructors” on page 424

[“Lvalues and rvalues” on page 141

[‘References (C++ only)” on page 107|

The static_cast operator (C++ only)

The static_cast operator converts a given expression to a specified type.

Chapter 6. Expressions and Operators 177

178

static_cast operator syntax

»»—static_cast—<—Type—>—(—expression—)

v
A

With the right angle bracket feature, you may specify a template_id as
Type in the static_cast operator with the >> token in place of two consecutive >
tokens. For details, see [“Class templates” on page 441 | i

The result of static_cast<Type>(expression) belongs to one of the following value
categories:

 If Type is an lvalue reference type or an rvalue reference to a function
typelZESEIE , static_cast<Type>(expression) is an Ivalue.

. If Type is an rvalue reference to an object type,
static_cast<Type>(expression) is an xvalue. Z¥5EE

 In all other cases, static_cast<Type>(expression) is a (prvalue)
rvalue.

An example of the static_cast operator:

#include <iostream>
using namespace std;
int main()
int j
int v
float
float
cout <<
cout <<

. = —
we

Jlvs
static_cast<float>(j)/v;
=" << m << endl;

=" << d << endl;

o3 I I~
R R |

a3

}

The output of this example is:

10
10.25

m
d

In this example, m = j/v; produces an answer of type int because both j and v are
integers. Conversely, d = static_cast<float>(j)/v; produces an answer of type
float. The static_cast operator converts variable j to type float. This allows the
compiler to generate a division with an answer of type float. All static_cast
operators resolve at compile time and do not remove any const or volatile
modifiers.

Applying the static_cast operator to a null pointer converts it to a null pointer
value of the target type.

The compiler supports the following types of cast operations:
* An lvalue of type A to type B&, and the cast result is an lvalue of type B

. An lvalue or xvalue of type A to type B&8§, and the cast result is an
xvalue of type BZ¥SIE
e A (prvalue) E¥SEIE rvalue of pointer to A to pointer to B

. An lvalue of type A to type B&& if an xvalue of type A can be bound
directly to a reference of type B3 Z¥SEE

* An expression e to type T if the direct initialization T t(e) is valid.

To support the first three cast operations, the following conditions must be
satisfied:

z/0OS V2R1.0 XL C/C++ Language Reference

e Ais a base class of B.

* There exists a standard conversion from a pointer to type B to a pointer to type
A.

* Type B is the same as or more cv-qualified than type A.
e A is not a virtual base class or a base class of a virtual base class of B.

You can cast a (prvalue) E¥SEIE rvalue of a pointer to member of A
whose type is cvl T to a (prvalue) E¥SEE rvalue of a pointer to member
of B whose type is cv2 T if the following conditions are satisfied:

e B is a base class of A.

* There exists a standard conversion from a pointer to member of B whose type is
T to a pointer to member of A whose type is T.

* cv2 is the same or more cv-qualification than cv1.

You can explicitly convert a pointer to cvl void to a pointer to cv2 void if cv2 is
the same or more cv-qualification than cvl.

Related reference:

[“User-defined conversions” on page 423|

[Type-based aliasing” on page 102|

[‘Lvalues and rvalues” on page 141|

[‘References (C++ only)” on page 107|

The reinterpret_cast operator (C++ only)

A reinterpret_cast operator handles conversions between unrelated types.

reinterpret_cast operator syntax

A\
A

»»—reinterpret_cast—<—Type—>—(—expression—)

With the right angle bracket feature, you may specify a template_id as
Type in the reinterpret_cast operator with the >> token in place of two
consecutive > tokens. For details, see [“Class templates” on page 441 [*SEE

The result of reinterpret_cast<Type>(expression) belongs to one of the following
value categories:

 If Type is an Ivalue reference type or an rvalue reference to a function
typelIZESEIE , reinterpret_cast<Type>(expression) is an Ivalue.

. If Type is an rvalue reference to an object type,
reinterpret_cast<Type>(expression) is an xvalue. JZ¥SEIE

* In all other cases, reinterpret_cast<Type>(expression) is a (prvalue)
rvalue.

The reinterpret_cast operator produces a value of a new type that has the same bit
pattern as its argument. You cannot cast away a const or volatile qualification.
You can explicitly perform the following conversions:

* A pointer to any integral type large enough to hold it

* A value of integral or enumeration type to a pointer

* A pointer to a function to a pointer to a function of a different type
e A pointer to an object to a pointer to an object of a different type

Chapter 6. Expressions and Operators 179

180

* A pointer to a member to a pointer to a member of a different class or type, if
the types of the members are both function types or object types

A null pointer value is converted to the null pointer value of the destination type.

Given a type T and an lvalue expression x, the following two expressions for lvalue
references have different syntax but the same semantics:

* reinterpret_cast<T&>(x)
« xreinterpret_cast<T*>(&(x))

Given a type T and an lvalue expression x, the following two expressions
for rvalue references have different syntax but the same semantics:

e reinterpret_cast<T&&>(x)
* static_cast<T&&>(*reinterpret cast<T*>(&(x)))

Reinterpreting one type of pointer as an incompatible type of pointer is usually
invalid. The reinterpret_cast operator, as well as the other named cast operators,
is more easily spotted than C-style casts, and highlights the paradox of a strongly
typed language that allows explicit casts.

The C++ compiler detects and quietly fixes most but not all violations. It is
important to remember that even though a program compiles, its source code may
not be completely correct. On some platforms, performance optimizations are
predicated on strict adherence to standard aliasing rules. Although the C++
compiler tries to help with type-based aliasing violations, it cannot detect all
possible cases.

The following example violates the aliasing rule, but executes as expected when
compiled unoptimized in C++ or in K&R C or with NOANSIALIAS. It also
successfully compiles optimized in C++ with ANSIALIAS, but does not necessarily
execute as expected. The offending line 7 causes an old or uninitialized value for x
to be printed.

1 extern inty =7.;

2

3 int main() {

4 float x;

5 int i;

6 X =Y

7 i = *(int *) &x;

8 printf("i=%d. x=%f.\n", i, X);
9 }

The next code example contains an incorrect cast that the compiler cannot even
detect because the cast is across two different files.

1 /* separately compiled file 1 */

2 extern float f;

3 extern int * int_pointer_to f = (int %) &f; /* suspicious cast */

4

5 /* separately compiled file 2 */

6 extern float f;

7 extern int = int_pointer_to_f;

8 f=1.0;

9 int i = *int_pointer_to_f; /* no suspicious cast but wrong x/

In line 8, there is no way for the compiler to know that f = 1.0 is storing into the
same object that int i = xint_pointer_to_f is loading from.

z/0OS V2R1.0 XL C/C++ Language Reference

Related reference:

[“User-defined conversions” on page 423|

[“Lvalues and rvalues” on page 141|

[‘References (C++ only)” on page 107|

The const_cast operator (C++ only)

A const_cast operator adds or removes a const or volatile modifier to or from a

type.

const_cast operator syntax

A\
A

»»—const_cast—<—Type—>—(—expression—)

With the right angle bracket feature, you may specify a template_id as
Type in the const_cast operator with the >> token in place of two consecutive >
tokens. For details, see [“Class templates” on page 441 |

The result of const_cast<Type>(expression) belongs to one of the following value
categories:

* If Type is an lvalue reference to an object type, const_cast<Type>(expression) is
an lvalue.

. If Type is an rvalue reference to an object type,
const_cast<Type>(expression) is an xvalue. Z=SEE

* In all other cases, const_cast<Type>(expression) is a (prvalue) EEsEE
rvalue.

Type and the type of expression may only differ with respect to their const and
volatile qualifiers. Their cast is resolved at compile time. A single const_cast
expression may add or remove any number of const or volatile modifiers.

If a pointer to T1 can be converted to a pointer to T2 using const_cast<T2>, where
T1 and T2 are object types, you can also make the following types of conversions:

* An lvalue of type T1 to an Ivalue of type T2 using const_cast<T2&>

. An lvalue or xvalue of type Tl to an xvalue of type T2 using
const_cast<T23&> ¥SIE

. A prvalue of class type T1 to an xvalue of type T2 using
const_cast<T2&&> esiE

If a conversion from a (prvalue) E¥SEIE rvalue of type pointer to T1 to
type pointer to T2 casts away constness, the following types of conversions also
cast away constness:

* An lvalue of type Tl to an lvalue of type T2
. An expression of type T1 to an xvalue of type T2 25K

* A (prvalue) E¥SERE rvalue of type pointer to data member of X of type
T1 to type pointer to data member of Y of type T2

Types cannot be defined within const_cast.
The following demonstrates the use of the const_cast operator:

#include <iostream>
using namespace std;

Chapter 6. Expressions and Operators 181

void f(intx p) {
cout << *p << endl;

}

int main(void) {
const int a = 10;
const intx b = &a;

// Function f() expects int*, not const int=

[/ f(b);

int* ¢ = const_cast<int*>(b);
f(c);

// Lvalue is const

[/l *b = 20

// Undefined behavior

/]l *c = 30;

int al = 40;

const intx bl = &al;
int* cl = const_cast<int*>(bl);

// Integer al, the object referred to by cl, has
// not been declared const
*cl = 50;

return 0;

}

The compiler does not allow the function call f(b). Function f() expects a pointer
to an int, not a const int. The statement int* ¢ = const_cast<int>(b) returns a
pointer ¢ that refers to a without the const qualification of a. This process of using
const_cast to remove the const qualification of an object is called casting away
constness. Consequently the compiler does allow the function call f(c).

The compiler would not allow the assignment *b = 20 because b points to an
object of type const int. The compiler does allow the *c = 30, but the behavior of
this statement is undefined. If you cast away the constness of an object that has
been explicitly declared as const, and attempt to modify it, the results are
undefined.

However, if you cast away the constness of an object that has not been explicitly
declared as const, you can modify it safely. In the above example, the object
referred to by bl has not been declared const, but you cannot modify this object
through bl. You may cast away the constness of bl and modify the value to which
it refers.

Related reference:

[“Type qualifiers” on page 85|

[‘Type-based aliasing” on page 102

[‘Lvalues and rvalues” on page 141

[‘References (C++ only)” on page 107]

The dynamic_cast operator (C++ only)
The dynamic_cast operator checks the following types of conversions at run time:
* A pointer to a base class to a pointer to a derived class
* An lvalue referring to a base class to an lvalue reference to a derived class

182 2/0S V2R1.0 XL C/C++ Language Reference

. An xvalue referring to a base class to an rvalue reference to a derived

class ST

A program can thereby use a class hierarchy safely. This operator and the typeid
operator provide runtime type identification (RTTI) support in C++.

dynamic_cast operator syntax

A\
A

»»—dynamic_cast—<—T—>—(—v—)

With the right angle bracket feature, you may specify a template_id as T
in the dynamic_cast operator with the >> token in place of two consecutive >
tokens. For details, see [“Class templates” on page 441 |

The expression dynamic_cast<T>(v) converts the expression v to type T. Type T
must be a pointer or reference to a complete class type or a pointer to void.

The following rules apply to the dynamic_cast<T>(v) expression:

e If T is a pointer type, v must be a (prvalue) Z¥SEE rvalue, and
dynamic_cast<T>(v) is a (prvalue) E¥SEE rvalue of type T.

* If T is an lvalue reference type, v must be an lvalue, and dynami c_cast<T>(v) is
an lvalue of the type that is referred by T.

. If T is an rvalue reference type, dynamic_cast<T>(v) is an xvalue of the
type that is referred by T. Z¥SIE

If T is a pointer and the dynamic_cast operator fails, the operator returns a null
pointer of type T. If T is a reference and the dynamic_cast operator fails, the
operator throws the exception std::bad_cast. You can find this class in the
standard library header <typeinfo>.

If T is a void pointer, then dynamic_cast returns the starting address of the object
pointed to by v. The following example demonstrates this:

#include <iostream>
using namespace std;

struct A {
virtual ~“A() { };
1

struct B : A { };

int main() {
B bobj;
Ax ap = &bobj;
void * vp = dynamic_cast<void *>(ap);
cout << "Address of vp : " << vp << endl;
cout << "Address of bobj: " << &bobj << endl;

}

The output of this example is similar to the following result. Both vp and &bobj
refer to the same address:

Address of vp : 12FF6C
Address of bobj: 12FF6C

The primary purpose for the dynamic_cast operator is to perform type-safe

downcasts. A downcast is the conversion of a pointer or reference to a class A to a
pointer or reference to a class B, where class A is a base class of B. The problem

Chapter 6. Expressions and Operators 183

184

with downcasts is that a pointer of type Ax might point to an object that is not a
base class subobject of type A that belongs to an object of type B or a class derived
from B. The dynamic_cast operator ensures that if you convert a pointer to class A
to a pointer to class B, the object of type A pointed to by the former belongs to an
object of type B or a class derived from B as a base class subobject.

The following example demonstrates the use of the dynamic_cast operator:

#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "Class A" << endl; }

bs

struct B : A {
virtual void f() { cout << "Class B" << endl; }

}s

struct C : A {
virtual void f() { cout << "Class C" << endl; }

}s

void f(A* arg) {
B* bp = dynamic_cast<B*>(arg);
C* cp = dynamic_cast<C*>(arg);

if (bp)
bp->f();
else if (cp)
cp->F();
else
arg->f();
}s

int main() {
A aobj;
C cobj;
Ax ap = &cobj;
Ax ap2 = Raobj;
f(ap);
f(ap2);

}

See the output of the above example:

Class C
Class A

The function f() determines whether the pointer arg points to an object of type A,
B, or C. The function does this by trying to convert arg to a pointer of type B, then
to a pointer of type C, with the dynamic_cast operator. If the dynamic_cast operator
succeeds, it returns a pointer that points to the object denoted by arg. If
dynamic_cast fails, it returns 0.

You may perform downcasts with the dynamic_cast operator only on polymorphic
classes. In the above example, all the classes are polymorphic because class A has a
virtual function. The dynamic_cast operator uses the runtime type information
generated from polymorphic classes.

Related reference:

[‘Derivation” on page 383]

[“User-defined conversions” on page 423|

z/0OS V2R1.0 XL C/C++ Language Reference

[“Type-based aliasing” on page 102

[‘Lvalues and rvalues” on page 141

[‘References (C++ only)” on page 107|

Compound literal expressions

A compound literal is a postfix expression that provides an unnamed object whose
value is given by an initializer list. The C99 language feature allows you to pass
parameters to functions without the need for temporary variables. It is useful for
specifying constants of an aggregate type (arrays, structures, and unions) when
only one instance of such types is needed. To be compatible with C99, the
z/0S XL C/C++ compiler supports this feature as an IBM extension.

The syntax for a compound literal resembles that of a cast expression. However, a
compound literal is an lvalue, while the result of a cast expression is not.
Furthermore, a cast can only convert to scalar types or void, whereas a compound
literal results in an object of the specified type.

Compound literal syntax

v

»>—(—type_name—)—{

A\
A

initializer list 1

The type_name can be any data type, including user-defined types. It can be an
array of unknown size, but not a variable length array. If the type is an array of
unknown size, the size is determined by the initializer list.

The following example passes a constant structure variable of type point
containing two integer members to the function drawline:

drawline((struct point){6,7});

If the compound literal occurs outside the body of a function, the initializer list
must consist of constant expressions, and the unnamed object has static storage
duration. If the compound literal occurs within the body of a function, the
initializer list need not consist of constant expressions, and the unnamed object has
automatic storage duration.

BEDMN For compatibility with GNU C, a static variable can be initialized with a
compound literal of the same type, provided that all the initializers in the
initializer list are constant expressions. NEINE

Related reference:

tring literals

new expressions (C++ only)

The new operator provides dynamic storage allocation.

new operator syntax

»» _lj_ne'w' (—type_) .
e |—(—argument_l ist—)—| I—new_typeJ

Chapter 6. Expressions and Operators 185

186

»
>

v
A

L)

l—initial_value—l

If you prefix new with the scope resolution operator (::), the global operator new()
is used. If you specify an arqument_list, the overloaded new operator that
corresponds to that argument_list is used. The type is an existing built-in or
user-defined type. A new_type is a type that has not already been defined and can
include type specifiers and declarators.

An allocation expression containing the new operator is used to find storage in free
store for the object being created. The new expression returns a pointer to the object
created and can be used to initialize the object. If the object is an array, a pointer to
the initial element is returned.

You cannot use the new operator to allocate function types, void, or incomplete
class types because these are not object types. However, you can allocate pointers
to functions with the new operator. You cannot create a reference with the new
operator.

When the object being created is an array, only the first dimension can be a general
expression. All subsequent dimensions must be integral constant expressions that
evaluate to positive values. The first dimension can be a general expression even
when an existing type is used. You can create an array with zero bounds with the
new operator. For example:

char * ¢ = new char[0];
In this case, a pointer to a unique object is returned.

An object created with operator new() or operator new[] () exists until the
operator delete() or operator delete[]() is called to deallocate the object's
memory. A delete operator or a destructor will not be implicitly called for an
object created with a new that has not been explicitly deallocated before the end of
the program.

If parentheses are used within a new type, parentheses should also surround the
new type to prevent syntax errors.

In the following example, storage is allocated for an array of pointers to functions:

void f();
void g();

int main(void)

{
void (**p) (), (**q)();
// declare p and g as pointers to pointers to void functions
p = new (void (x[3])());
// p now points to an array of pointers to functions
q = new void(*[3])(); // error
// error - bound as 'q = (new void) (*[31)();"'
p[0] = f; // p[0] to point to function f
ql2] = g; // q[2] to point to function g
ple1()s // call f()
ql21 () // call g()

return (0);

z/0OS V2R1.0 XL C/C++ Language Reference

However, the second use of new causes an erroneous binding of g = (new void)

(+[31) ().

The type of the object being created cannot contain class declarations, enumeration
declarations, or const or volatile types. It can contain pointers to const or
volatile objects.

For example, const char= is allowed, but char* const is not.
Related reference:

[Generalized constant expressions (C++11)|

Placement syntax

Additional arguments can be supplied to new by using the argument_list, also called
the placement syntax. If placement arguments are used, a declaration of operator
new() or operator new[] () with these arguments must exist. For example:

#include <new>
using namespace std;

class X
{
pubTic:
void* operator new(size t,int, int){ /* ... */ }
}s

/...

int main ()

{
}

X* ptr = new(1,2) X;

The placement syntax is commonly used to invoke the global placement new
function. The global placement new function initializes an object or objects at the
location specified by the placement argument in the placement new expression.
This location must address storage that has previously been allocated by some
other means, because the global placement new function does not itself allocate
memory. In the following example, no new memory is allocated by the calls
new(whole) X(8);, new(seg2) X(9);, or new(seg3) X(10); Instead, the constructors
X(8), X(9), and X(10) are called to reinitialize the memory allocated to the buffer
whole.

Because placement new does not allocate memory, you should not use delete to
deallocate objects created with the placement syntax. You can only delete the entire
memory pool (delete whole). In the example, you can keep the memory buffer but
destroy the object stored in it by explicitly calling a destructor.

#include <new>

class X

{
public:
X(int n): id(n){ }
~“X({ }
private:
int id;
/] ...
1
int main()

{

char* whole = new char[3 * sizeof(X) 1; // a 3-part buffer

Chapter 6. Expressions and Operators 187

188

X * pl = new(whole) X(8); // fill the front

char* seg2 = &whole[sizeof(X) 1; // mark second segment
X * p2 = new(seg2) X(9); // fi11 second segment
char* seg3 = &whole[2 * sizeof(X) I; // mark third segment
X * p3 = new(seg3) X(10); // fill third segment

p2->¥X(); // clear only middle segment, but keep the buffer
/] ...

return 0;

}

The placement new syntax can also be used for passing parameters to an allocation
routine rather than to a constructor.

Related reference:

[“delete expressions (C++ only)” on page 189

[Scope resolution operator :: (C++ only)” on page 148

[‘Overview of constructors and destructors” on page 407

Initialization of objects created with the new operator

You can initialize objects created with the new operator in several ways. For
nonclass objects, or for class objects without constructors, a new initializer
expression can be provided in a new expression by specifying (expression) or ().
For example:

double* pi = new double(3.1415926);

int* score = new int(89);

float* unknown = new float();

If a class does not have a default constructor, the new initializer must be provided
when any object of that class is allocated. The arguments of the new initializer
must match the arguments of a constructor.

You cannot specify an initializer for arrays. You can initialize an array of class
objects only if the class has a default constructor. The constructor is called to
initialize each array element (class object).

Initialization using the new initializer is performed only if new successfully
allocates storage.

Related reference:

[‘Overview of constructors and destructors” on page 407

Handling new allocation failure

When the new operator creates a new object, it calls the operator new() or operator
new[] () function to obtain the needed storage.

When new cannot allocate storage to create a new object, it calls a new handler
function if one has been installed by a call to set_new_handler(). The
std::set_new_handler() function is declared in the header <new>. Use it to call a
new handler you have defined or the default new handler.

Your new handler must perform one of the following:
* obtain more storage for memory allocation, then return

 throw an exception of type std::bad_alloc or a class derived from
std::bad_alloc

 call either abort() or exit()

z/0OS V2R1.0 XL C/C++ Language Reference

The set_new_handler() function has the prototype:

typedef void(*PNH) ();
PNH set_new_handler(PNH);

set_new_handler() takes as an argument a pointer to a function (the new handler),
which has no arguments and returns void. It returns a pointer to the previous new
handler function.

If you do not specify your own set_new_handler() function, new throws an
exception of type std::bad_alloc.

The following program fragment shows how you could use set_new_handler() to
return a message if the new operator cannot allocate storage:

#include <iostream>
#include <new>
#include <cstdlib>
using namespace std;

void no_storage()
{
std::cerr << "Operator new failed: no storage is
available.\n";
std::exit(1);
}
int main(void)
{
std::set_new_handler(&no_storage);
// Rest of program ...
}

If the program fails because new cannot allocate storage, the program exits with the
message:

Operator new failed:
no storage is available.

delete expressions (C++ only)

The delete operator destroys the object created with new by deallocating the
memory associated with the object.

The delete operator has a void return type.

delete operator syntax

»—L—_|—de1ete—object_pointer »><

The operand of delete must be a pointer returned by new, and cannot be a pointer
to constant. Deleting a null pointer has no effect.

The delete[] operator frees storage allocated for array objects created with new[].
The delete operator frees storage allocated for individual objects created with new.

delete[] operator syntax

»—L—_|—de1 ete—[—]—array

v
A

Chapter 6. Expressions and Operators 189

The result of deleting an array object with delete is undefined, as is deleting an
individual object with delete[]. The array dimensions do not need to be specified
with delete[].

The result of any attempt to access a deleted object or array is undefined.

If a destructor has been defined for a class, delete invokes that destructor.
Whether a destructor exists or not, delete frees the storage pointed to by calling
the function operator delete() of the class if one exists.

The global ::operator delete() is used if:

* The class has no operator delete().

* The object is of a nonclass type.

* The object is deleted with the ::delete expression.

The global ::operator delete[] () is used if:

* The class has no operator delete[] ()

* The object is of a nonclass type

» The object is deleted with the ::delete[] expression.

The default global operator delete() only frees storage allocated by the default
global operator new(). The default global operator delete[] () only frees storage
allocated for arrays by the default global operator new[] ().

Related reference:

[“The void type” on page 59|

[“Overview of constructors and destructors” on page 407

throw expressions (C++ only)

A throw expression is used to throw exceptions to C++ exception handlers. A throw
expression is of type void.

Related reference:

[Chapter 16, “Exception handling (C++ only),” on page 485|

[“The void type” on page 59|

Operator precedence and associativity

190

Two operator characteristics determine how operands group with operators:
precedence and associativity. Precedence is the priority for grouping different types
of operators with their operands. Associativity is the left-to-right or right-to-left
order for grouping operands to operators that have the same precedence. An
operator's precedence is meaningful only if other operators with higher or lower
precedence are present. Expressions with higher-precedence operators are
evaluated first. The grouping of operands can be forced by using parentheses.

For example, in the following statements, the value of 5 is assigned to both a and b
because of the right-to-left associativity of the = operator. The value of c is
assigned to b first, and then the value of b is assigned to a.

b =9;

c =5;

a=b=c;

z/0OS V2R1.0 XL C/C++ Language Reference

Because the order of subexpression evaluation is not specified, you can explicitly
force the grouping of operands with operators by using parentheses.

In the expression

a+b=*xc/d

the * and / operations are performed before + because of precedence. b is
multiplied by c before it is divided by d because of associativity.

The following tables list the C and C++ language operators in order of precedence
and show the direction of associativity for each operator. Operators that have the
same rank have the same precedence.

Table 28. Precedence and associativity of postfix operators

Rank Right Operator function Usage
associative?

1 yes global scope it name_or_qualified name
resolution

1 C++ class or class_or_namespace :: member
namespace scope
resolution

2 member selection object . member

2 member selection pointer -> member

2 subscripting pointer [expr]

2 function call expr (expr_list)

2 value construction type (expr_list)

2 postfix increment lvalue ++

2 postfix decrement lvalue --

2 yes type typeid (type)
identification

2 yes type typeid (expr)
identification at run time

2 yes conversion static_cast < type > (‘expr)
checked at compile time

2 yes conversion dynamic_cast < type > (‘expr)
checked at run time

2 yes unchecked reinterpret_cast < type > (
conversion expr)

2 yes const const_cast < type > (expr)
conversion

Table 29. Precedence and associativity of unary operators

Rank Right Operator function Usage
associative?

3 yes size of object in bytes sizeof expr

3 yes size of type in bytes sizeof (type)

3 yes prefix increment ++ lvalue

Chapter 6.

191

Expressions and Operators

192

Table 29. Precedence and associativity of unary operators (continued)

Rank Right Operator function Usage
associative?

3 yes prefix decrement -- lvalue

3 yes bitwise negation ~ expr

3 yes not ! expr

3 yes unary minus - expr

3 yes unary plus + expr

3 yes address of & lvalue

3 yes indirection or dereference |* expr

3 yes create (allocate |D€W fype
memory)

3 yes create (allocate |NeW type (expr_list) type
and initialize memory)

3 yes create new type (expr_list) type (
(placement) expr_list)

3 yes destroy delete pointer
(deallocate memory)

3 yes destroy array delete [] pointer

3 yes type conversion (cast) (type) expr

Table 30. Precedence and associativity of binary operators

Rank Right Operator function Usage
associative?
4 member object .* ptr_to_member
selection
4 member object ->* ptr_to_member
selection
5 multiplication expr * expr
5 division expr / expr
5 modulo (remainder) expr % expr
6 binary addition expr + expr
6 binary subtraction expr - expr
7 bitwise shift left expr << expr
7 bitwise shift right expr >> expr
8 less than expr < expr
8 less than or equal to expr <= expr
8 greater than expr > expr
8 greater than or equal to expr >= expr
9 equal expr == expr
9 not equal expr = expr
10 bitwise AND expr & expr
11 bitwise exclusive OR expr ™ expr

z/0S V2R1.0 XL C/C++ Language Reference

Table 30. Precedence and associativity of binary operators (continued)

Rank Right Operator function Usage
associative?

12 bitwise inclusive OR expr | expr

13 logical AND expr && expr

14 logical inclusive OR expr | | expr

15 conditional expression expr ? expr : expr

16 yes simple assignment lvalue = expr

16 yes multiply and assign lvalue *= expr

16 yes divide and assign lvalue /= expr

16 yes modulo and assign lvalue %= expr

16 yes add and assign lvalue += expr

16 yes subtract and assign lvalue -= expr

16 yes shift left and assign lvalue <<= expr

16 yes shift right and assign lvalue >>= expr

16 yes bitwise AND and assign | lvalue &= expr

16 yes bitwise exclusive OR and | lvalue "= expr
assign

16 yes bitwise inclusive OR and | lvalue |= expr
assign

17 yes throw throw expr
expression

18 comma (sequencing) expr , expr

Examples of expressions and precedence

The parentheses in the following expressions explicitly show how the compiler

groups

total
total
total

If parentheses did not appear in these expressions, the operands and operators
would be grouped in the same manner as indicated by the parentheses. For

operands and operators.

(4 + (5 =*3));

(((8 = 5) /10) / 3);

(10 + (5/3));

example, the following expressions produce the same output.

total
total

(4+(5%3));
4+5%3;

Because the order of grouping operands with operators that are both associative

and commutative is not specified, the compiler can group the operands and
operators in the expression:

total = price + prov_tax + city_tax;

in the following ways as indicated by parentheses:

total
total
total

(price + (prov_tax + city tax));
((price + prov_tax) + city_tax);
((price + city_tax) + prov_tax);

The grouping of operands and operators does not affect the result.

Chapter 6. Expressions and Operators

193

Because intermediate values are rounded, different groupings of floating-point
operators may give different results.

In certain expressions, the grouping of operands and operators can affect the result.
For example, in the following expression, each function call might be modifying
the same global variables.

a =b() +c() +d0;

This expression can give different results depending on the order in which the
functions are called.

If the expression contains operators that are both associative and commutative and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.

a=b();

a +=c();

a +=d();

The order of evaluation for function call arguments or for the operands of binary
operators is not specified. Therefore, the following expressions are ambiguous:

z = (x * ++y) / funcl(y);
func2 (++i, x[i]);

If y has the value of 1 before the first statement, it is not known whether or not the
value of 1 or 2 is passed to funcl(). In the second statement, if i has the value of 1
before the expression is evaluated, it is not known whether x[1] or x[2] is passed
as the second argument to func2().

Reference collapsing (C++11)

194

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Before C++11, references to references are ill-formed in the C++ language. In
C++11, the rules of reference collapsing apply when you use references to
references through one of the following contexts:

e A decltype specifier

* A typedef name

* A template type parameter

You can define a variable var whose declared type TR is a reference to the type T,
where T is also a reference type. For example,

// T denotes the int& type

typedef int& T;

// TR is an lvalue reference to T

z/0OS V2R1.0 XL C/C++ Language Reference

typedef T& TR;

// The declared type of var is TR
TR var;

The actual type of var is listed in the following table for different cases, where
neither TR nor T is qualified by cv-qualifiers.

Table 31. Reference collapsing without cv-qualifiers

T TR Type of var

A T il

A T& Agll

A T&& A

A& T Adl

A& T& A&

A& T&& A&

A& T AR

A& T& A&

A& T&& A&

Note:

1. Reference collapsing does not apply in this case, because T and TR are not both
reference types.

The general rule in this table is that when T and TR are both reference types, but
are not both rvalue reference types, var is of an lvalue reference type.

Example 1
typedef int& T;

// a has the type int&
T&& a;

In this example, T is of the int& type, and the declared type of a is T&&. After
reference collapsing, the type of a is inté&.

Example 2

template <typename T> void func(T&& a);
auto fp = func<int&&>;

In this example, the actual parameter of T is of the int&& type, and the declared
type of a is T&&. An rvalue reference to an rvalue reference is formed. After
reference collapsing, the type of a is int&a.

Example 3
auto func(int& a) -> const decltype(a)&;

In this example, dec1type(a), which is a trailing return type, refers to the
parameter a, whose type is int&. After reference collapsing, the return type of func
is int&.

You can define a variable var whose declared type TR is a reference to the type T,

where T is also a reference type. If either TR or T is qualified by cv-qualifiers, then
the actual type of var is listed in the following table for different cases.

Chapter 6. Expressions and Operators 195

Table 32. Reference collapsing with cv-qualifiers

T TR Type of var

A const T const

const A volatile T& const volatile Adl

A const T&& const A&l

A& const T Al

const A& volatile T& const A&

const A& T&& const A&

A&& const T A&8L

const A&& volatile T& const A&

const A&& T&& const A&&

Note:

1. Reference collapsing does not apply in this case, because T and TR are not both
reference types.

The general rule of this table is that when T is a reference type, the type of var
inherits only the cv-qualifiers from T.

Related reference:

[“The decltype(expression) type specifier (C++11)” on page 78|

[“typedef definitions” on page 74|

[‘Type template parameters” on page 434

196 2/0S V2R1.0 XL C/C++ Language Reference

Chapter 7. Statements

A statement, the smallest independent computational unit, specifies an action to be
performed. In most cases, statements are executed in sequence.

The following list is a summary of the statements available in C and C++:
+ [“Labeled statements”)

* |[“Expression statements” on page 19§|

[‘Block statements” on page 199

[“Selection statements” on page 200

* |“Iteration statements” on page 206|

* [“Jump statements” on page 210|

[“Null statement” on page 215|

* |“Inline assembly statements (IBM extension)” on page 215|

Related reference:

[Chapter 3, “Data objects and declarations,” on page 41|

[“Function declarations” on page 219

“try blocks” on page 485
Y pag

Labeled statements

There are three kinds of labels: identifier, case, and default.

Labeled statement syntax

»»>—identifier—:—statement ><

The label consists of the identifier and the colon (:) character.

A label name must be unique within the function in which it appears.

In C++, an identifier label can only be used as the target of a goto
statement. A goto statement can use a label before its definition. Identifier labels
have their own namespace; you do not have to worry about identifier labels
conflicting with other identifiers. However, you cannot redeclare a label within a

function.

Case and default label statements only appear in switch statements. These labels
are accessible only within the closest enclosing switch statement.

case statement syntax

»>—case—constant_expression—:—statement >«

default statement syntax

A\
A

»»—default—:—statement

© Copyright IBM Corp. 1998, 2015 197

The following are examples of labels:

comment_complete : ; /* null statement Tabel =/
test_for_null : if (NULL == pointer)

Related reference:

[“The goto statement” on page 213|

[“The switch statement” on page 202

Labels as values (IBM extension)

The address of a label defined in the current function or a containing function can
be obtained and used as a value wherever a constant of type void= is valid. The
address is the return value when the label is the operand of the unary operator &&.
The ability to use the address of label as a value is an extension to C99 and C++,
implemented to facilitate porting programs developed with GNU C.

In the following example, the computed goto statements use the values of Tabell
and Tabel2 to jump to those spots in the function.
int main()

{
void * ptrl, *ptr2;

Tabell: ...
Tabel2: ...

ptrl = &&Tabell;
ptr2 = &&label2;
if (...) |

goto *ptrl;
} else {

goto *ptr2;

Expression statements
An expression statement contains an expression. The expression can be null.

Expression statement syntax

[N

v
A

|—express ion—|

An expression statement evaluates expression, then discards the value of the
expression. An expression statement without an expression is a null statement.

See the following examples of statements:

printf("Account Number: \n"); /* call to the printf x/
marks = dollars * exch_rate; /% assignment to marks */
(difference < 0) ? ++losses : ++gain; /* conditional increment x/

Related reference:

[Chapter 6, “Expressions and operators,” on page 141

Resolution of ambiguous statements (C++ only)

The C++ syntax does not disambiguate between expression statements and
declaration statements. The ambiguity arises when an expression statement has a

198 2/0S V2R1.0 XL C/C++ Language Reference

function-style cast as its left-most subexpression. (Note that, because C does not
support function-style casts, this ambiguity does not occur in C programs.) If the
statement can be interpreted both as a declaration and as an expression, the
statement is interpreted as a declaration statement.

Note: The ambiguity is resolved only on a syntactic level. The disambiguation
does not use the meaning of the names, except to assess whether or not they are
type names.

The following expressions disambiguate into expression statements because the
ambiguous subexpression is followed by an assignment or an operator. type_spec
in the expressions can be any type specifier:

type_spec(i)++; // expression statement
type_spec(i,3)<<d; // expression statement
type_spec(i)->1=24; // expression statement

In the following examples, the ambiguity cannot be resolved syntactically, and the
statements are interpreted as declarations. type_spec is any type specifier:
type_spec(*i) (int); // declaration

type_spec(j)[5]; // declaration

type spec(m) = { 1, 2 }; // declaration

type_spec(*k) (float(3)); // declaration

The last statement above causes a compile-time error because you cannot initialize
a pointer with a float value.

Any ambiguous statement that is not resolved by the above rules is by default a
declaration statement. All of the following are declaration statements:

type_spec(a); // declaration
type_spec(*b) ()3 // declaration
type_spec(c)=23; // declaration
type_spec(d),e,f,g=0; // declaration
type_spec(h) (e,3); // declaration

Related reference:

[Chapter 3, “Data objects and declarations,” on page 41]

[Chapter 6, “Expressions and operators,” on page 141

[“Function call expressions” on page 149

Block statements

A block statement, or compound statement, lets you group any number of data
definitions, declarations, and statements into one statement. All definitions,
declarations, and statements enclosed within a single set of braces are treated as a
single statement. You can use a block wherever a single statement is allowed.

Block statement syntax

> v v v } >

|—statementJ Ftype_definition— |—statementJ

file_scope_data_declaration—
block_scope_data_declaration—

A block defines a local scope. If a data object is usable within a block and its
identifier is not redefined, all nested blocks can use that data object.

Chapter 7. Statements 199

Related reference:

[‘Command-line arguments” on page 248|

Example of blocks

The following program shows how the values of data objects change in nested
blocks:
[*%
** This example shows how data objects change in nested blocks.
*%/
#include <stdio.h>

int main(void)

{

int x = 1; /* Initialize x to 1 =/
int y = 3;
if (y >0)
{
int x = 2; /* Initialize x to 2 »*/

printf("second x = %4d\n", x);
printf("first x = %4d\n", x);

return(0);

}

The program produces the following output:

second x = 2
first x = 1

Two variables named x are defined in main. The first definition of x retains storage
while main is running. However, because the second definition of x occurs within a
nested block, printf("second x = %4d\n", x); recognizes x as the variable defined
on the previous line. Because printf("first x = %4d\n", x); is not part of the
nested block, x is recognized as the first definition of x.

Selection statements

Selection statements consist of the following types of statements:
* The if statement
¢ The switch statement

The if statement

An if statement is a selection statement that allows more than one possible flow of
control.

An if statement lets you conditionally process a statement when the
specified test expression, implicitly converted to bool, evaluates to true. If the
implicit conversion to bool fails the program is ill-formed.

In C, an if statement lets you conditionally process a statement when the
specified test expression evaluates to a nonzero value. The test expression must be
of arithmetic or pointer type.

You can optionally specify an else clause on the if statement. If the test
expression evaluates to false (or in C, a zero value) and an else clause exists, the

200 z/0S V2R1.0 XL C/C++ Language Reference

statement associated with the else clause runs. If the test expression evaluates to
true, the statement following the expression runs and the else clause is ignored.

if statement syntax

v
A

»»—if—(—expression—)—statement |_ _|
else—statement

When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

A single statement following any selection statements (if, switch) is treated as a
compound statement containing the original statement. As a result any variables
declared on that statement will be out of scope after the if statement. For example:

if (x)
int i;

is equivalent to:

if (x)
{ int i; }

Variable i is visible only within the if statement. The same rule applies to the else
part of the if statement.

Examples of if statements

The following example causes grade to receive the value A if the value of score is
greater than or equal to 90.

if (score >= 90)
grade = 'A';

The following example displays Number is positive if the value of number is
greater than or equal to 0. If the value of number is less than 0, it displays Number
is negative.
if (number >= 0)

printf("Number is positive\n");
else

printf("Number is negative\n");

The following example shows a nested if statement:

if (paygrade == 7)
if (level >= 0 && level <= 8)
salary *= 1.05;
else
salary *= 1.04;

else
salary *= 1.06;
cout << "salary is " << salary << endl;

The following example shows a nested if statement that does not have an else
clause. Because an else clause always associates with the closest if statement,
braces might be needed to force a particular else clause to associate with the
correct if statement. In this example, omitting the braces would cause the else
clause to associate with the nested if statement.

Chapter 7. Statements 201

if (kegs > 0) {
if (furlongs > kegs)
fxph = furlongs/kegs;
1

else
fxph = 0;

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. The tests are made in order of their appearance.
If one test evaluates to a nonzero value, a statement runs and the entire if
statement ends.
if (value > 0)

++increase;
else if (value == 0)

++break_even;

else
++decrease;

Related reference:

[“Boolean types” on page 55|

The switch statement

A switch statement is a selection statement that lets you transfer control to different
statements within the switch body depending on the value of the switch
expression. The switch expression must evaluate to an integral or enumeration
value. The body of the switch statement contains case clauses that consist of

* A case label

* An optional default label
* A case expression

A list of statements.

If the value of the switch expression equals the value of one of the case
expressions, the statements following that case expression are processed. If not, the
default label statements, if any, are processed.

switch statement syntax

»»>—switch—(—expression—)—switch_body >

The switch body is enclosed in braces and can contain definitions, declarations, case
clauses, and a default clause. Each case clause and default clause can contain
statements.

v v o

»»—{

type_definition——— |—case_cZauseJ
file_scope_data_declaration—
block_scope_data_declaration—

» V
|—de fault ¢ lause—| l—case_c l ause—|

202 z/0S V2R1.0 XL C/C++ Language Reference

Note: An initializer within a type_definition, file_scope_data_declaration or
block_scope_data_declaration is ignored.

A case clause contains a case label followed by any number of statements. A case
clause has the form:

Case clause syntax

Y _statement ><

»>—case_label

A case label contains the word case followed by an integral constant expression and
a colon. The value of each integral constant expression must represent a different
value; you cannot have duplicate case labels. Anywhere you can put one case
label, you can put multiple case labels. A case label has the form:

case label syntax

»—Y case—integral_constant_expression—: ><

A default clause contains a default label followed by one or more statements. You
can put a case label on either side of the default label. A switch statement can
have only one default label. A default_clause has the form:

Default clause statement

—

> default—: Y _statement <
I—case_labe l—| I—case_labe Z—|

The switch statement passes control to the statement following one of the labels or
to the statement following the switch body. The value of the expression that
precedes the switch body determines which statement receives control. This
expression is called the switch expression.

The value of the switch expression is compared with the value of the expression in
each case label. If a matching value is found, control is passed to the statement
following the case label that contains the matching value. If there is no matching
value but there is a default label in the switch body, control passes to the default
labelled statement. If no matching value is found, and there is no default label
anywhere in the switch body, no part of the switch body is processed.

When control passes to a statement in the switch body, control only leaves the
switch body when a break statement is encountered or the last statement in the
switch body is processed.

If necessary, an integral promotion is performed on the controlling expression, and
all expressions in the case statements are converted to the same type as the
controlling expression. The switch expression can also be of class type if there is a
single conversion to integral or enumeration type.

Chapter 7. Statements 203

204

Restrictions on switch statements

You can put data definitions at the beginning of the switch body, but the compiler
does not initialize auto and register variables at the beginning of a switch body.
You can have declarations in the body of the switch statement.

You cannot use a switch statement to jump over initializations.

When the scope of an identifier with a variably modified type includes a
case or default label of a switch statement, the entire switch statement is
considered to be within the scope of that identifier. That is, the declaration of the
identifier must precede the switch statement.

In C++, you cannot transfer control over a declaration containing an
explicit or implicit initializer unless the declaration is located in an inner block that
is completely bypassed by the transfer of control. All declarations within the body
of a switch statement that contain initializers must be contained in an inner block.

C++

Examples of switch statements

The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

If the switch expression evaluated to '/', the switch statement would call the
function divide. Control would then pass to the statement following the switch
body.

char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)
{
case '+':
add();
break;

case '-':
subtract();
break;

case 'x':
multiply();
break;

case '/':
divide();
break;

default:
printf("invalid key\n");
break;

}

If the switch expression matches a case expression, the statements following the
case expression are processed until a break statement is encountered or the end of
the switch body is reached. In the following example, break statements are not

z/0OS V2R1.0 XL C/C++ Language Reference

present. If the value of text[i] is equal to 'A', all three counters are incremented.

If the value of text[i] is equal to 'a', Tettera and total are increased. Only

total is increased if text[i] is not equal to 'A' or 'a’.

char text[100];
int capa, lettera, total;

/...

for (i=0; i<sizeof(text); i++) {

switch (text[i])
{

The following switch statement performs the same statements for more than one

case 'A':
capat+;
case 'a':
letterat+;
default:
total++;
1
}
case label:
CCNRAB1
[**

% This example contains a switch statement that performs
**% the same statement for more than one case label.

*%/
#include <stdio.h>
int main(void)

{

int month;

/* Read in a month value */

printf("Enter month: ");
scanf("%d", &month);

/* Tell what season it falls into */

switch (month)
{
case 12:
case 1:
case 2:
printf("month %d is
break;

case 3:

case 4:

case 5:
printf("month %d is
break;

case 6:

case 7:

case 8:
printf("month %d is
break;

case 9:
case 10:
case 11:
printf("month %d is

a

winter month\n", month);

spring month\n", month);

summer month\n", month);

fall month\n", month);

Chapter 7. Statements

205

break;

case 66:
case 99:
default:
printf("month %d is not a valid month\n", month);
}

return(0);
1

If the expression month has the value 3, control passes to the statement:

printf("month %d is a spring month\n", month);

The break statement passes control to the statement following the switch body.
Related reference:

[Case and default labels|

[“The break statement” on page 210

[‘Generalized constant expressions (C++11)" on page 149|

lteration statements

206

Iteration statements consist of the following types of statements:
* The while statement

e The do statement

¢ The for statement

Related reference:

[“Boolean types” on page 55|

The while statement

A while statement repeatedly runs the body of a loop until the controlling
expression evaluates to false (or 0 in C).

while statement syntax

»»—while—(—expression—)—statement <

The expression must be of arithmetic or pointer type.
The expression must be convertible to bool.

The expression is evaluated to determine whether or not to process the body of the
loop. If the expression evaluates to false, the body of the loop never runs. If the
expression does not evaluate to false, the loop body is processed. After the body
has run, control passes back to the expression. Further processing depends on the
value of the condition.

A break, return, or goto statement can cause a while statement to end, even when
the condition does not evaluate to false.

A throw expression also can cause a while statement to end prior to the
condition being evaluated.

z/0OS V2R1.0 XL C/C++ Language Reference

In the following example, item[index] triples and is printed out, as long as the
value of the expression ++index is less than MAX_INDEX. When ++index evaluates to
MAX_INDEX, the while statement ends.

CCNRAA7
[**

** This example illustrates the while statement.

*%/

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))
#include <stdio.h>

int main(void)

{
static int item[] = { 12, 55, 62, 85, 102 };
int index = 0;

while (index < MAX_INDEX)

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);
++index;

}

return(0);

}

The do statement

A do statement repeatedly runs a statement until the test expression evaluates to
false (or 0 in C). Because of the order of processing, the statement is run at least
once.

do statement syntax

A\
A

»»—do—statement—while—(—expression—)—;

The expression must be of arithmetic or pointer type.
The controlling expression must be convertible to type bool.

The body of the loop is run before the controlling while clause is evaluated.
Further processing of the do statement depends on the value of the while clause. If
the while clause does not evaluate to false, the statement runs again. When the
while clause evaluates to false, the statement ends.

A break, return, or goto statement can cause the processing of a do statement to
end, even when the while clause does not evaluate to false.

A throw expression also can cause a while statement to end prior to the
condition being evaluated.

The following example keeps incrementing i while i is less than 5:
#include <stdio.h>
int main(void) {

int i = 0;

do {

i+t

Chapter 7. Statements 207

208

printf("Value of i: %d\n", i);

}
while (i < 5);
return 0;

}

See the following output of the above example:

Value of i
Value of i:
Value of i:
Value of i
Value of i

Ol WN =

The for statement

A for statement provides the following benefits:
* Evaluate an expression before the first iteration of the statement (initialization)

* Specify an expression to determine whether or not the statement should be
processed (the condition)

* Evaluate an expression after each iteration of the statement (often used to
increment for each iteration)

* Repeatedly process the statement if the controlling part does not evaluate to
false (or 0 in C).

for statement syntax

»>—for—(; ;) >
|—express ion3J

|—express ionl J |—express z'onZJ

»—statement ><

expressionl is the initialization expression. It is evaluated only before the statement is
processed for the first time. You can use this expression to initialize a variable. You
can also use this expression to declare a variable, provided that the variable is not
declared as static (it must be automatic and may also be declared as register). If
you declare a variable in this expression, or anywhere else in statement, that
variable goes out of scope at the end of the for loop. If you do not want to
evaluate an expression prior to the first iteration of the statement, you can omit
this expression.

expression2 is the conditional expression. It is evaluated before each iteration of the

statement. expression2 must be of arithmetic or pointer type. ENE
expression2 must be convertible to type bool. lEEEE

If expression2 evaluates to O or falseZZEE , the
statement is not processed and control moves to the next statement following the
for statement. If expression2 does not evaluate to false, the statement is processed.
If you omit expression2, it is as if the expression had been replaced by true, and the
for statement is not terminated by failure of this condition.

expression3 is evaluated after each iteration of the statement. This expression is often
used for incrementing, decrementing, or assigning to a variable. This expression is
optional.

z/0OS V2R1.0 XL C/C++ Language Reference

A break, return, or goto statement can cause a for statement to end, even when
the second expression does not evaluate to false. If you omit expression2, you must
use a break, return, or goto statement to end the for statement.

Examples of for statements

The following for statement prints the value of count 20 times. The for statement
initially sets the value of count to 1. After each iteration of the statement, count is
incremented.

int count;
for (count = 1; count <= 20; count++)
printf("count = %d\n", count);

The following sequence of statements accomplishes the same task. Note the use of
the while statement instead of the for statement.
int count = 1;
while (count <= 20)
{
printf("count = %d\n", count);
count++;

}

The following for statement does not contain an initialization expression:
for (; index > 10; --index)

{

list[index] = varl + var2;
printf("1ist[%d] = %d\n", index,
Tist[index]);

The following for statement will continue running until scanf receives the letter e:
for (53)
{
scanf("%c", &letter);
if (letter == '"\n')
continue;
if (letter == 'e')
break;
printf("You entered the Tetter %c\n", letter);

}

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible. The first comma in the for
expression is a punctuator for a declaration. It declares and initializes two integers,
i and j. The second comma, a comma operator, allows both i and j to be
incremented at each step through the loop.
for (int i = 0,
j = 50; i< 10; ++i, j += 50)
{ cout << "i =" << i << Mand j =" <<

<< endl;

}

The following example shows a nested for statement. It prints the values of an
array having the dimensions [5][3].
for (row = 0; row < 5; row++)
for (column = 0; column < 3; column++)
printf("%d\n",
table[row] [column]);

Chapter 7. Statements 209

The outer statement is processed as long as the value of row is less than 5. Each
time the outer for statement is executed, the inner for statement sets the initial
value of column to zero and the statement of the inner for statement is executed 3
times. The inner statement is executed as long as the value of column is less than 3.

Jump statements

210

Jump statements consist of the following types of statements:
* |“The break statement”]

* [“The continue statement”]

* |“The return statement” on page 212|

* [“The goto statement” on page 213

The break statement

A break statement lets you end an iterative (do, for, or while) statement or a switch
statement and exit from it at any point other than the logical end. A break may
only appear on one of these statements.

break statement syntax

»»—hreak—; >«

In an iterative statement, the break statement ends the loop and moves control to
the next statement outside the loop. Within nested statements, the break statement
ends only the smallest enclosing do, for, switch, or while statement.

In a switch statement, the break passes control out of the switch body to the next
statement outside the switch statement.

The continue statement

A continue statement ends the current iteration of a loop. Program control is passed
from the continue statement to the end of the loop body.

A continue statement has the form:

»»—continue—;

Y
A

A continue statement can only appear within the body of an iterative statement,
such as do, for, or while.

The continue statement ends the processing of the action part of an iterative
statement and moves control to the loop continuation portion of the statement. For
example, if the iterative statement is a for statement, control moves to the third
expression in the condition part of the statement, then to the second expression
(the test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.

z/0OS V2R1.0 XL C/C++ Language Reference

Examples of continue statements

The following example shows a continue statement in a for statement. The
continue statement causes processing to skip over those elements of the array
rates that have values less than or equal to 1.

CCNRAA3
[**

**% This example shows a continue statement in a for statement.

*%/

#include <stdio.h>
#define SIZE 5

int main(void)
{
int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };

printf("Rates over 1.00\n");
for (i = 0; i < SIZE; i++)

if (rates[i] <= 1.00) /* skip rates <= 1.00 =/
continue;
printf("rate = %.2f\n", rates[i]);
}

return(0);

}

The program produces the following output:
Rates over 1.00

rate = 1.45
rate = 1.88
rate = 2.00

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop

ends. Processing continues with the third expression of the inner loop. The inner

loop ends when the '\0' escape sequence is encountered.

CCNRAA4
[**

** This program counts the characters in strings that are part
=% of an array of pointers to characters. The count excludes
**% the digits 0 through 9.

*%/

#include <stdio.h>
#define SIZE 3

int main(void)
{
static char *strings[SIZE] = { "ab", "chd", "e5" };
int i;
int Tetter_count = 0;
char *pointer;

for (i = 0; i < SIZE; i++) /* for each string */
/* for each each character */
for (pointer = strings[i]; *pointer != '\0';

++pointer)
/* if a number */
if (*pointer >= '0' && *pointer <= '9')

Chapter 7. Statements

211

212

continue;
letter_count++;

printf("letter count = %d\n", Tetter_count);

return(0);

}

The program produces the following output:
lTetter count = 5

The return statement

A return statement ends the processing of the current function and returns control
to the caller of the function.

return statement syntax

»>—return 5
Lrgl—exp ress ionﬁ
()

A value-returning function should include a return statement, containing an
expression.

v
A

If an expression is not given on a return statement in a function declared
with a non-void return type, the compiler issues a warning message.

If an expression is not given on a return statement in a function declared
with a non-void return type, the compiler issues an error message.

If the data type of the expression is different from the function return type,
conversion of the return value takes place as if the value of the expression were
assigned to an object with the same function return type.

For a function of return type void, a return statement is not strictly necessary. If
the end of such a function is reached without encountering a return statement,
control is passed to the caller as if a return statement without an expression were
encountered. In other words, an implicit return takes place upon completion of the
final statement, and control automatically returns to the calling function.

If a return statement is used, it must not contain an expression.

Examples of return statements

The following are examples of return statements:

return; /* Returns no value */
return result; /* Returns the value of result x/
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x =/

The following function searches through an array of integers to determine if a
match exists for the variable number. If a match exists, the function match returns
the value of i. If a match does not exist, the function match returns the value -1
(negative one).

z/0OS V2R1.0 XL C/C++ Language Reference

int match(int number, int array[], int n)

{
int i;
for (1 = 03 i < n; i++)
if (number == array[i])
return (i);
return(-1);

}

A function can contain multiple return statements. For example:

void copy(int *a, int *b, int c)

/* Copy array a into b, assuming both arrays are the same size x/

if (la || !b) /* if either pointer is 0, return */
return;

if (a == b) /% if both parameters refer */
return; /* to same array, return */

if (c ==0) /* nothing to copy */
return;

for (int i = 0; i < c; ++i;) /* do the copying */
b[i] = a[l];

/* implicit return =/

}

In this example, the return statement is used to cause a premature termination of
the function, similar to a break statement.

An expression appearing in a return statement is converted to the return type of
the function in which the statement appears. If no implicit conversion is possible,
the return statement is invalid.

Related reference:
[“Function return type specifiers” on page 234|
[“Function return values” on page 235|

The goto statement

A goto statement causes your program to unconditionally transfer control to the
statement that is associated with the label specified on the goto statement.

goto statement syntax

»>—qgoto—Ilabel_identifier—; <

Because the goto statement can interfere with the normal sequence of processing, it
makes a program more difficult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the need for a goto statement.

If an active block is exited using a goto statement, any local variables are
destroyed when control is transferred from that block.

You cannot use a goto statement to jump over initializations.

Chapter 7. Statements 213

214

A goto statement is allowed to jump within the scope of a variable length
array, but not past any declarations of objects with variably modified types.

The following example shows a goto statement that is used to jump out of a
nested loop. This function could be written without using a goto statement.

CCNRAAG6
[**

**% This example shows a goto statement that is used to

**% jump out of a nested loop.
*%/

#include <stdio.h>
void display(int matrix[3][3]);

int main(void)

{
int matrix[3][3]= {1,2,3,4,5,2,8,9,10};
display(matrix);
return(0);

}
void display(int matrix[3][3])
{

int i, j;

for (i = 03 i < 3; i++)
for (j = 05 j < 3; j++)

if ((matrix[i]1[3] < 1) || (matrix[i1[j] > 6))
goto out_of_bounds;
printf("matrix[%d] [%d] = %d\n", i, j, matrix[i][i]);

return;
out_of bounds: printf("number must be 1 through 6\n");

}

Computed goto statement (IBM extension)

A computed goto is a goto statement for which the target is a label from the same
function. The address of the label is a constant of type voidx, and is obtained by
applying the unary label value operator && to the label. The target of a computed
goto is known at run time, and all computed goto statements from the same
function will have the same targets. The language feature is an extension to C99
and C++, implemented to facilitate porting programs developed with GNU C.

Computed goto statement syntax

»»—goto—*expression—; »><

The “expression is an expression of type voidx.
Related reference:
[‘Labeled statements” on page 197

z/0OS V2R1.0 XL C/C++ Language Reference

Null statement

The null statement performs no operation. It has the form:

>»>—;

A\
A

A null statement can hold the label of a labeled statement or complete the syntax
of an iterative statement.

The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is only needed to finish
the for syntax; no operations are required.

for (i = 0; i < 3; price[i++] = 0)

A null statement can be used when a label is needed before the end of a block
statement. For example:

void func(void) {
if (error_detected)
goto depart;
/* further processing */
depart: ; /* null statement required */

}

Inline assembly statements (IBM extension)

When the ASM compiler option is in effect, the compiler provides support for
embedded assembly code fragments among C and C++ source statements. This
extension allows programs to invoke IBM MVS"™ system services directly via
system-provided assembly macros.

Note: For C source files, when the METAL or GENASM option is in effect, the
compiler provides support for embedded assembly code fragments among C
source statements.

The syntax is as follows:

asm statement syntax — statement in local scope

>> asm >
E_asm—- Lvo]ati 1 eJ

asm__ —

»—(—code_format_string |_ |) A
' I—outputJ |—: l

I—lnputJ L:‘l_c—4|7|
lobbers

input:

-

— 7 constraint—(—C_expression—) |
l—modifi er

Chapter 7. Statements 215

output:

|—'modifier—constraint—(—C_expression—) I

asm statement syntax — statement in global scope

> as (—code_format_string—) >
E_asmiJ
—_asm_-

volatile
The qualifier volatile instructs the compiler to perform only minimal
optimizations on the assembly block. The compiler cannot move any
instructions across the implicit fences surrounding the assembly block.

code_format_string
The code_format_string is the source text of the asm instructions and is a
string literal similar to a printf format specifier.

output
The output consists of zero, one or more output operands, separated by
commas. Each operand consists of a constraint (C_expression) pair. The
output operand must be constrained by the = or + modifier (described
below).

input The input consists of zero, one or more input operands, separated by
commas. Each operand consists of a constraint (C_expression) pair.

clobbers

clobbers is a comma-separated list of register names enclosed in double
quotes. If an asm instruction updates registers that are not listed in the
input or output of the asm statement, the registers must be listed as
clobbered registers. The following register names are valid :

10 or RO to r15 or R15
General purpose registers

modifier
The modifier can be one of the following operators:

= Indicates that the operand is write-only for this instruction. The
previous value is discarded and replaced by output data.

+ Indicates that the operand is both read and written by the
instruction.
& Indicates that the operand may be modified before the instruction

is finished using the input operands; a register that is used as
input should not be reused here.

Note: The & modifier is ignored in z/OS VIR9.
constraint

The constraint is a string literal that describes the kind of operand that is
permitted, one character per constraint. The following constraints are
supported:

216 z/0S V2R1.0 XL C/C++ Language Reference

Use an address register (general purpose register except ro).

d Use a data register that is an arbitrary general purpose register.
This constraint is the same as the r constraint.

g Use a general register, memory, or immediate operand.

i Use an immediate integer or string literal operand.

m Use a memory operand supported by the machine.

n Use an immediate integer.

0 Use a memory operand that is offsetable.

r Use a general register.

s Use a string literal operand.

0,1,..8,9
A matching constraint. Allocate the same register in output as in
the corresponding input.

LJ K
Constant values. Fold the expression in the operand and substitute
the value into the % specifier.
* I — signed 16-bit
*] — unsigned 16-bit shifted left 16 bits
* K — unsigned 16-bit constant

XL Only valid for METAL. Use only the parameter constraints listed in

this constraint. XL is an optional prefix, followed by a colon (:), to
introduce any of the following parameter constraints:

DS Do not generate a definition for the operand defined in the
assembly statement; instead, substitute an assembly
instruction to define the operand. Optionally, to specify the
data size of the operand defined in the assembly statement,
use a colon (:) followed by a positive integer. If you do not
specify a data size, the size specified in the ASMDATASIZE
option is used.

RP The operand requires a register pair. Optionally, to specify
the constraint for the register pair, specify a :, followed by
the register_type, optionally followed by another : and an
optional register_pair_flag. The register_pair_flag can be one
of the following:

o The operand needs an odd/even register pair.
e The operand needs an even/odd register pair.
If you do not specify a register type, r (general purpose

register) is used as the default. If you do not specify a
register pair flag, e (even/odd pair) is used as the default.

NR Use the named general purpose register. Use a colon (:)
followed by the general purpose register name (see below
for acceptable register names).

Note: The XL constraints can be used for both input and output

operands, with the exception of DS, which can only be used for
output operands.

Chapter 7. Statements 217

218

C_expression

The C_expression is a C or C++ expression whose value is used as the
operand for the asm instruction. Output operands must be modifiable
Ivalues. The C_expression must be consistent with the constraint specified
on it. For example, if i is specified, the operand must be an integer
constant number.

Note: If pointer expressions are used in input or output, the assembly instructions
honor the ANSI aliasing rule (see ["Type-based aliasing” on page 102 for more
information). This means that indirect addressing using values in pointer
expression operands should be consistent with the pointer types; otherwise, you
must disable the ANSIALIAS option during compilation.

For more information about ASM and ANSIALIAS options, see ASM and
ANSIALIAS options in the z/OS XL C/C++ User’s Guide.

Restrictions on inline assembly statements

The following restrictions are on the use of inline assembly statements:

The assembler instructions must be self-contained within an asm statement. The
asm statement can only be used to generate instructions. All connections to the

rest of the program must be established through the output and input operand
list.

If an asm statement is used to define data, it cannot contain assembly
instructions for other purposes.

Only asm statements that are used to define data can exist in global scope.
The XL:* constraints are only supported for metal C programs.
Each assembly statement can define only one variable.

The symbol used in the assembly statement must be unique within the scope of
the source file and is valid according to the assembler's requirements.

Using registers that are reserved (for example, killing a register used by the
linkage) is not supported.

Referencing an external symbol directly without going through the operand list
is not supported.

Related reference:

[Variables in specified registers (IBM extension)|

z/0OS V2R1.0 XL C/C++ Language Reference

Chapter 8. Functions

In the context of programming languages, the term function means an assemblage
of statements used for computing an output value. The word is used less strictly
than in mathematics, where it means a set relating input variables uniguely to
output variables. Functions in C or C++ programs might not produce consistent
outputs for all inputs, might not produce output at all, or might have side effects.
Functions can be understood as user-defined operations, in which the parameters
of the parameter list, if any, are the operands.

Function declarations and definitions

The distinction between a function declaration and function definition is similar to
that of a data declaration and definition. The declaration establishes the names and
characteristics of a function but does not allocate storage for it, while the definition
specifies the body for a function, associates an identifier with the function, and
allocates storage for it. Thus, the identifiers declared in this example:

float square(float x);
do not allocate storage.

The function definition contains a function declaration and the body of a function.
The body is a block of statements that perform the work of the function. The
identifiers declared in this example allocate storage; they are both declarations and
definitions.

float square(float x)
{ return x*x; }

A function can be declared several times in a program, but all declarations for a
given function must be compatible; that is, the return type is the same and the
parameters have the same type. However, a function can only have one definition.
Declarations are typically placed in header files, while definitions appear in source
files.

Function declarations

A function identifier preceded by its return type and followed by its parameter list
is called a function declaration or function prototype. The prototype informs the
compiler of the format and existence of a function prior to its use. The compiler
checks for mismatches between the parameters of a function call and those in the
function declaration. The compiler also uses the declaration for argument type
checking and argument conversions.

Implicit declaration of functions is not allowed: you must explicitly
declare every function before you can call it.

If a function declaration is not visible at the point at which a call to the
function is made, the compiler assumes an implicit declaration of extern int
func(); However, for conformance to C99, you should explicitly prototype every
function before making a call to it.

The elements of a declaration for a function are as follows:

+ [“Function storage class specifiers” on page 225) which specify linkage

© Copyright IBM Corp. 1998, 2015 219

220

* [“Function return type specifiers” on page 234 which specify the data type of a
value to be returned

* [“Function specifiers” on page 227 which specify additional properties for
functions

* |“Function declarators” on page 235)which include function identifiers as well as
lists of parameters

All function declarations have the form:

Function declaration syntax

>>-

|_ _| |_ _| return_type_specifier—»
storage_class_specifier function_specifier

»—function_declarator—; »><

Note: When function_declarator incorporates a trailing return type,
return_type_specifer must be auto. For more information about trailing return type,
see [“Trailing return type (C++11)” on page 239

Function definitions

The elements of a function definition are as follows:

* |“Function storage class specifiers” on page 225)which specify linkage

* [‘Function return type specifiers” on page 234 which specify the data type of a
value to be returned

* ["Function specifiers” on page 227 |which specify additional properties for
functions

* [“Function declarators” on page 235)which include function identifiers as well as
lists of parameters

* The function body, which is a braces-enclosed series of statements representing
the actions that the function performs

. Constructor-initializers, which are used only in constructor functions
declared in classes; they are described in [‘Constructors” on page 408

* Try blocks, which are used in class functions; they are described in

Function definitions take the following form:

Function definition syntax (C only)

[N

l—s torage_class_specifier—l l—function_specifier—l

»
>

|_ _| -function_declarator—{—function body—}——————— >«
return_type _specifier

z/0OS V2R1.0 XL C/C++ Language Reference

Function definition syntax (C++ only)

return_type_specifier——»

>

l—storage_class_specifier—l l—function_specifier—l

»—function_declarator B] {—function body—}—1—><
:—constructor-initializer

try-block

(1)

= default;
(2)

delete;

Notes:
1 This syntax is valid only in the C++11 standard.

2 This syntax is valid only in the C++11 standard.

Note: When function_declarator incorporates a trailing return type,
return_type_specifer must be auto. For more information about trailing return type,
see [“Trailing return type (C++11)” on page 239

Explicitly defaulted functions

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Explicitly defaulted function declaration is a new form of function declaration that is
introduced into the C++11 standard. You can append the =default; specifier to the
end of a function declaration to declare that function as an explicitly defaulted
function. The compiler generates the default implementations for explicitly
defaulted functions, which are more efficient than manually programmed function
implementations. A function that is explicitly defaulted must be a special member
function and has no default arguments. Explicitly defaulted functions can save
your effort of defining those functions manually.

You can declare both inline and out-of-line explicitly defaulted functions. For
example:

class A{

public:
A() = default; // Inline explicitly defaulted constructor definition
A(const A&);
~A() = default; // Inline explicitly defaulted destructor definition

1
A::A(const A&) = default; // Out-of-Tine explicitly defaulted constructor definition

You can declare a function as an explicitly defaulted function only if the function is
a special member function and has no default arguments. For example:

Chapter 8. Functions 221

222

class B {
pubTic:
int func() = default; // Error, func is not a special member function.
B(int, int) = default; // Error, constructor B(int, int) is not

// a special member function.
B(int=0) = default; // Error, constructor B(int=0) has a default argument.
1

The explicitly defaulted function declarations enable more opportunities in
optimization, because the compiler might treat explicitly defaulted functions as
trivial.

Related reference:
[Deleted functions (C++11)|
[Chapter 14, “Special member functions (C++ only),” on page 407

Deleted functions

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Deleted function declaration is a new form of function declaration that is introduced
into the C++11 standard. To declare a function as a deleted function, you can
append the =delete; specifier to the end of that function declaration. The compiler
disables the usage of a deleted function.

You can declare an implicitly defined function as a deleted function if you want to
prevent its usage. For example, you can declare the implicitly defined copy
assignment operator and copy constructor of a class as deleted functions to prevent
object copy of that class.

class A{
public:
A(int x) : m(x) {}
A& operator = (const A &) = delete; // Declare the copy assignment operator
// as a deleted function.
A(const A&) = delete; // Declare the copy constructor
// as a deleted function.

private:
int m;

}s

int main(){

A al(l), a2(2), a3(3);
= a2; // Error, the usage of the copy assignment operator is disabled.
A(a2); // Error, the usage of the copy constructor is disabled.

al
a3
}
You can also prevent problematic conversions by declaring the undesirable
conversion constructors and operators as deleted functions. The following example
shows how to prevent undesirable conversions from double to a class type.
class B{

public:
B(int){}

z/0OS V2R1.0 XL C/C++ Language Reference

B(double) = delete; // Declare the conversioin constructor as a deleted function

bs

int main(){
B bl(1);
B b2(100.1); // Error, conversion from double to class B is disabled.

}

A deleted function is implicitly inline. A deleted definition of a function must be
the first declaration of the function. For example:

class C {
public:
cOs
C::C() = delete; // Error, the deleted definition of function C must be
// the first declaration of the function.
Related reference:

[Explicitly defaulted functions (C++11)|

Examples of function declarations

The following code fragments show several function declarations (or prototypes).
The first declares a function f that takes two integer arguments and has a return
type of void:

void f(int, int);

This fragment declares a pointer pl to a function that takes a pointer to a constant
character and returns an integer:

int (*pl) (const charx);

The following code fragment declares a function f1 that takes an integer argument,
and returns a pointer to a function that takes an integer argument and returns an
integer:

int (*fl1(int)) (int);

Alternatively, a typedef can be used for the complicated return type of function f1:

typedef int fl_return_type(int);
fl_return_typex fl(int);

The following declaration is of an external function f2 that takes a constant integer
as its first argument, can have a variable number and variable types of other
arguments, and returns type int.

extern int f2(const int, ...);

Function f4 takes no arguments, has return type void, and can throw
class objects of types X and Y.

class X;
class Y;

/] ...

void f4() throw(X,Y);

C++

Chapter 8. Functions 223

224

Examples of function definitions

The following example is a definition of the function sum:
int sum(int x,int y)

{

return(x + y);
1

The function sum has external linkage, returns an object that has type int, and has
two parameters of type int declared as x and y. The function body contains a
single statement that returns the sum of x and y.

The following function set_date declares a pointer to a structure of type date as a
parameter. date_ptr has the storage class specifier register.

void set date(register struct date *date ptr)
{

date_ptr->mon 12;

date_ptr->day = 25;

date_ptr->year = 87;
}

Compatible functions (C only)

For two function types to be compatible, they must meet the following
requirements:

e They must agree in the number of parameters (and use of ellipsis).

* They must have compatible return types.

* The corresponding parameters must be compatible with the type that results
from the application of the default argument promotions.

The composite type of two compatible function types is determined as follows:

* If one of the function types has a parameter type list, the composite type is a
function prototype with the same parameter type list.

* If both function types have parameter type lists, the composite type of each
parameter is determined as follows:

— The composite of parameters of different rank is the type that results from the
application of the default argument promotions.

— The composite of parameters with array or function type is the adjusted type.

— The composite of parameters with qualified type is the unqualified version of
the declared type.

For example, for the following two function declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char), double (*)[]);

The resulting composite type would be:
int f(int (*)(char *), double (*)[3]);

If the function declarator is not part of the function declaration, the parameters
may have incomplete type. The parameters may also specify variable length array
types by using the [*] notation in their sequences of declarator specifiers. The
following are examples of compatible function prototype declarators:

int myMin(int n, int m, int a[n][m]);

int myMin(int n, int m, int a[*][*]);

int myMin(int n, int m, int a[][*]);

int myMin(int n, int m, int a[][m]);

z/0OS V2R1.0 XL C/C++ Language Reference

Related reference:

[Compatible and composite types|

Multiple function declarations (C++ only)

All function declarations for a particular function must have the same number and
type of parameters, and must have the same return type.

These return and parameter types are part of the function type, although the
default arguments and exception specifications are not.

If a previous declaration of an object or function is visible in an enclosing scope,

the identifier has the same linkage as the first declaration. However, a variable or
function that has no linkage and later declared with a linkage specifier will have

the linkage you have specified.

For the purposes of argument matching, ellipsis and linkage keywords are
considered a part of the function type. They must be used consistently in all
declarations of a function. If the only difference between the parameter types in
two declarations is in the use of typedef names or unspecified argument array
bounds, the declarations are the same. A const or volatile type qualifier is also
part of the function type, but can only be part of a declaration or definition of a
nonstatic member function.

If two function declarations match in both return type and parameter lists, then the
second declaration is treated as redeclaration of the first. The following example
declares the same function:

int foo(const string &bar);
int foo(const string &);

Declaring two functions differing only in return type is not valid function
overloading, and is flagged as a compile-time error. For example:

void f();
int f(); // error, two definitions differ only in
// return type
int g()
{
return f();

Related reference:

[‘Overloading functions” on page 327

Function storage class specifiers

For a function, the storage class specifier determines the linkage of the function. By
default, function definitions have external linkage, and can be called by functions

defined in other files. An exception is inline functions, which are treated
by default as having internal linkage; see [“Linkage of inline functions” on page 229
for more information. K

A storage class specifier may be used in both function declarations and definitions.
The only storage class options for functions are:

* static
e extern

Chapter 8. Functions 225

The static storage class specifier

A function declared with the static storage class specifier has internal linkage,
which means that it may be called only within the translation unit in which it is
defined.

The static storage class specifier can be used in a function declaration only if it is
at file scope. You cannot declare functions within a block as static.

This use of static is deprecated in C++. Instead, place the function in
the unnamed namespace.

Related reference:

[“Internal linkage” on page 7|

[Chapter 9, “Namespaces (C++ only),” on page 317

The extern storage class specifier

A function that is declared with the extern storage class specifier has external
linkage, which means that it can be called from other translation units. The
keyword extern is optional; if you do not specify a storage class specifier, the
function is assumed to have external linkage.

An extern declaration cannot appear in class scope. You can use the
extern keyword with arguments that specify the type of linkage.

extern function storage class specifier syntax

»»—extern—"—Ilinkage_specification—" ><

where linkage_specification can be any of the following:
* builtin

- C

o C++

+ COBOL

* FORTRAN

 OS

* OS_DOWNSTACK
* OS_NOSTACK

¢ OS_UPSTACK

* PLI

For an explanation of these options, see the descriptions in [#pragma linkage (C|
fonly)” on page 566

The following fragments illustrate the use of extern "C" :
extern "C" int cf(); //declare function cf to have C linkage

extern "C" int (c_fp)(); //declare a pointer to a function,
// called c_fp, which has C Tinkage

extern "C" {

typedef void(xcfp T)(); //create a type pointer to function with C
// linkage

226 z/0S V2R1.0 XL C/C++ Language Reference

void cfn(); //create a function with C linkage
void (xcfp)(); //create a pointer to a function, with C
// linkage
1

Linkage compatibility affects all C library functions that accept a user function
pointer as a parameter, such as gsort. Use the extern "C" linkage specification to
ensure that the declared linkages are the same. The following example fragment
uses extern "C" with gsort.

#include <stdlib.h>

// function to compare table elements
extern "C" int TableCmp(const void *, const void *); // C linkage
extern void * GenTable(); // C++ linkage

int main() {
void *table;

table = GenTable(); // generate table
gsort(table, 100, 15, TableCmp); // sort table, using TableCmp
// and C library routine gsort();
}

While the C++ language supports overloading, other languages do not. The
implications of this are:

* You can overload a function as long as it has C++ (default) linkage. Therefore,
z/0S XL C++ allows the following series of statements:

int func(int); // function with C++ Tinkage
int func(char); // overloaded function with C++ Tinkage

By contrast, you cannot overload a function that has non-C++ linkage:

extern "FORTRAN"{int func(int);}
extern "FORTRAN"{int func(int,int);} // not allowed
//compiler will issue an error message

* Only one non-C++-linkage function can have the same name as overloaded
functions. For example:
int func(char);

int func(int);
extern "FORTRAN"{int func(int,int);}

However, the non-C++-linkage function cannot have the same parameters as any
of the C++ functions with the same name:

int func(char); // first function with C++ linkage

int func(int, int); // second function with C++ linkage

extern "FORTRAN"{int func(int,int);} // not allowed since the parameter
// list is the same as the one for
// the second function with C++ linkage
// compiler will issue an error message

C++

Related reference:

[“External linkage” on page §

[“Class scope (C++ only)” on page 4|

[Chapter 9, “Namespaces (C++ only),” on page 317

Function specifiers

The available function specifiers for function definitions are:

Chapter 8. Functions 227

228

. constexpr, which can be used to declare constexpr functions and

constexpr constructors, and is described in [“The constexpr specifier (C++11)” on|
Ciii

. which instructs the compiler to expand a function definition at the point
of a function call.

. which sets linkage conventions for C++ function calls to C
functions.

. which makes function definitions available to other modules.

C++

. explicit, which can only be used for member functions of classes, and
is described in [“Explicit conversion constructors” on page 425 [N

. _Noreturn, which indicates that a function does not return to its caller.
Cl1

. virtual, which can only be used for member functions of classes, and
is described in [“Virtual functions” on page 399.|NEEE

The inline function specifier

An inline function is one for which the compiler copies the code from the function
definition directly into the code of the calling function rather than creating a
separate set of instructions in memory. Instead of transferring control to and from
the function code segment, a modified copy of the function body may be
substituted directly for the function call. In this way, the performance overhead of
a function call is avoided. Using the inline specifier is only a suggestion to the
compiler that an inline expansion can be performed; the compiler is free to ignore
the suggestion.

Any function, with the exception of main, can be declared or defined as
inline with the inline function specifier. Static local variables are not allowed to be
defined within the body of an inline function. NN

C++ functions implemented inside of a class declaration are
automatically defined inline. Regular C++ functions and member functions
declared outside of a class declaration, with the exception of main, can be declared
or defined as inline with the inline function specifier. Static locals and string
literals defined within the body of an inline function are treated as the same object
across translation units; see [“Linkage of inline functions” on page 229|for details.

C++

The following code fragment shows an inline function definition:
inline int add(int i, int j) { return i + j; }

The use of the inline specifier does not change the meaning of the function.
However, the inline expansion of a function may not preserve the order of
evaluation of the actual arguments.

The most efficient way to code an inline function is to place the inline function
definition in a header file, and then include the header in any file containing a call
to the function which you would like to inline.

Note: To enable the inline function specifier in C, you must compile
with €99 or the LANGLVL(STDC99) or LANGLVL(EXTC99) options.

z/0OS V2R1.0 XL C/C++ Language Reference

Linkage of inline functions

In C, inline functions are treated by default as having static linkage; that is, they
are only visible within a single translation unit. Therefore, in the following
example, even though function foo is defined in exactly the same way, foo in file
a.c and foo in file b.c are treated as separate functions: two function bodies are
generated, and assigned two different addresses in memory:

/] a.c
#include <stdio.h>

inTine int foo(){
return 3;

}

void g() {
printf("foo called from g: return value = %d, address = %p\n", foo(), &foo);

}

// b.c
#include <stdio.h>

inTine int foo(){
return 3;

}
void g();

int main() {
printf("foo called from main: return value = %d, address = %p\n", foo(), &foo);

g()s

The output from the compiled program is:

foo called from main: return value = 3, address = 0x10000580
foo called from g: return value = 3, address = 0x10000500

Since inline functions are treated as having internal linkage, an inline function
definition can co-exist with a regular, external definition of a function with the
same name in another translation unit. However, when you call the function from
the file containing the inline definition, the compiler may choose either the inline
version defined in the same file or the external version defined in another file for
the call; your program should not rely on the inline version being called. In the
following example, the call to foo from function g could return either 6 or 3:

/] a.c

#include <stdio.h>

inline int foo(){
return 6;

1

void g() {

printf("foo called from g: return value = %d\n", foo());

}

// b.c

Chapter 8. Functions 229

230

#include <stdio.h>

int foo(){
return 3;

}
void g();

int main() {
printf("foo called from main: return value = %d\n", foo());
9();

1

Similarly, if you define a function as extern inline, or redeclare an inline
function as extern, the function simply becomes a regular, external function and is
not inlined.

Related reference:

[“The static storage class specifier” on page 226|

[‘The extern storage class specifier” on page 226}

The _Noreturn function specifier

The _Noreturn function specifier declares a function that does not return to its
caller. When you declare a function with the specifier, the compiler can better
optimize your code without regard to what happens if it returns. Any function,
with the exception of main, can be declared or defined with the _Noreturn function
specifier.

When Noreturn is enabled, the _ IBMC_NORETURN macro is defined as 1.

Include the standard header file stdnoreturn.h in your program when using the
_Noreturn function specifier.

The following code fragment shows a function definition with the _Noreturn
specifier:
_Noreturn void f (void) {

abort();
1

Notes:

. The Noreturn keyword is recognized under compilation with the
[-qlanglvl=extc89} |-qlanglvl=extc99} |- qlanglvl=extended| or |-qlanglvl=extclx|
compiler option.

. The Noreturn keyword is recognized under compilation with the
ﬁqlanglv]:extendedl [-qlanglvl=extended0x or [-qlanglvl=clxnoreturn| compiler
option.

* You can also define your own functions that never return by using the
_Noreturn function specifier. However, any functions that are declared with
_Noreturn must call one of the following functions. Otherwise, the functions will
return the control to their respective caller.

— abort
- exit

z/0OS V2R1.0 XL C/C++ Language Reference

- _Exit
Tongjmp

quick exit
thrd _exit

The __cdecl function specifier (C++ only)

You can use the _ cdec] keyword to set linkage conventions for function calls in
C++ applications. The __cdecl keyword instructs the compiler to read and write a
parameter list by using C linkage conventions.

To set the __cdec] calling convention for a function, place the linkage keyword
immediately before the function name or at the beginning of the declarator. For
example:

void _ cdecl f();
char (__cdecl *fp) (void);

z/0OS XL C++ allows the __cdecl keyword on member functions and nonmember
functions. These functions can be static or nonstatic. It also allows the keyword on
pointer-to-member function types and the typedef specifier.

Note: The compiler accepts both _cdecl and __cdecl (both single and double
underscore).

Following is an example:

// C++ nonmember functions
void _ cdecl f1();
static void _ cdecl f2();

// pointer to member function type
char (__cdecl *A::mfp) (void);

// typedef
typedef void (* _cdecl void_fcn) (int);
// C++ member functions
class A {
public:
void _ cdecl func();
static void __cdecl funcl();

}

// Template member functions
template <class T> X {
public:
void _ cdecl func();
static void _ cdecl funcl();

}

// Template functions
template <class T> T _ cdecl foo(T i) {return i+l;}
template <class T> T static _cdecl foo2(T i) {return i+l;}

The _ cdecl linkage keyword only affects parameter passing; it does not prevent
function name mangling. Therefore, you can still overload functions with
non-default linkage. Note that you only acquire linkage by explicitly using the
__cdecl keyword. It overrides the linkage that it inherits from an extern "linkage"
specification.

Following is an example:

Chapter 8. Functions 231

232

void _ cdecl foo(int); // C Tinkage with name mangled
void _ cdecl foo(char) // overload foo() with char is OK

void foo(int(*)());
// overload on Tinkage of function
void foo(int (__cdecl *)());
//pointer parameter is 0K
extern "C++" {
void _ cdecl foo(int);
// foo() has C linkage with name mangled
1

extern "C" {

void _ cdecl foo(int);

// foo() has C linkage with name mangled
}

If the function is redeclared, the linkage keyword must appear in the first
declaration; otherwise an error message is issued. Following are two examples:

int c_cf();

int __cdecl c_cf();

// Error 1251. The previous declaration did not have a linkage

specification

int __cdecl c_cf();

int c_cf()s

// 0K, the linkage is inherited from the first declaration

Example of __cdecl use

The following example illustrates how you can use __cdec] to pass in a C
parameter list from C++ code to a C function:

e */
/* C++ source file */
S */
//

// C++ Application: passing a C++ function pointer to a C function

/1

#include <stdio.h>

// C++ function declared with C calling convention
void _ cdecl callexx() {
printf(" I am a C++ function\n");

}

// declare a function pointer with _ cdecl Tinkage
void (__cdecl *pl)();

// declare an extern C function,
// accepting a__cdecl function pointer
extern "C" {
void CALLC(void (__cdecl *pp)());
}

// assign the function pointer to a _ cdecl function
int main() {
pl = callcxx;

// call the C function with the __cdecl function pointer
CALLC(pl);

1
e */
/* C source file */
J e m e e e ecmeee e */

z/0OS V2R1.0 XL C/C++ Language Reference

/* */
/* C Routine: receiving a function pointer with C Tinkage */
/* */
#include <stdio.h>
extern void CALLC(void (*pp)()){

printf(" I am a C function\n");

(*pp) ()3 // call the function passed in

Related reference:

[‘Language linkage (C++ only)” on page 9|

The _Export function specifier (C++ only)

Use the _Export keyword with a function name to declare that it is to be exported
(made available to other modules). You must define the function in the same
translation unit in which you use the _Export keyword. For example:

int _Export anthony(float);

The above statement exports the function anthony, if you define the function
within the translation unit.

The _Export keyword must immediately precede the function name. If the _Export
keyword is repeated in a declaration, z/OS XL C++ issues a warning when you
specify the INFO(GEN) option.

If you apply the _Export keyword to a class, the z/OS XL C++ compiler
automatically exports all members of the class, whether static, public, private, or
protected. However, if you want it to apply to individual class members, then you
must apply it to each member that can be referenced. The following class
definitions demonstrate this.

class A {
public:
int i1i() {
printf("Hi from A::iii()\n");
aaa();
printf("Call to A::ccc() returned %c\n", ccc());
return 88;

}
static void _Export sss();
protected:
void _Export aaa();
private:
char _Export ccc();
}s

class _Export B {

public:
int i1i() {
printf("Hi from B::iii()\n");
aaa();
printf("Call to B::ccc() returned %c\n", ccc());
return 99;

1
static void sss();
protected:
void _Export aaa();
private:
char _Export ccc();
1

In the example below, both X::Print() and X::GetNext () will be exported.

Chapter 8. Functions 233

class _Export X {
public:

void static Print();
int GetNext();

s

void X:: static Print() {

1
int X::GetNext() {
}

The above examples demonstrate that you can either export specific members of a
class or the entire class itself. Note that the _Export keyword can be applied to
class tags in nested class declarations.

Related reference:

[“External linkage” on page §|

[“#pragma export” on page 553

Function return type specifiers

The result of a function is called its return value and the data type of the return
value is called the return type.

Every function declaration and definition must specify a return type,
whether or not it actually returns a value.

If a function declaration does not specify a return type, the compiler
assumes an implicit return type of int. However, for conformance to C99, you
should specify a return type for every function declaration and definition, whether
or not the function returns int.

A function may be defined to return any type of value, except an array type or a
function type; these exclusions must be handled by returning a pointer to the array
or function. When a function does not return a value, void is the type specifier in
the function declaration and definition.

A function cannot be declared as returning a data object having a volatile or
const type, but it can return a pointer to a volatile or const object.

A function can have a return type that is a user-defined type. For example:

enum count {one, two, three};
enum count counter();

The user-defined type may also be defined within the function
declaration. The user-defined type may not be defined within
the function declaration.

enum count{one, two, three} counter(); // legal in C
enum count{one, two, three} counter(); // error in C++

References can also be used as return types for functions. The reference
returns the Ivalue of the object to which it refers.

Related reference:

234 z/0S V2R1.0 XL C/C++ Language Reference

[“Type specifiers” on page 54|

Function return values

If a function is defined as having a return type of void, it should not
return a value. In C++, a function which is defined as having a
return type of void, or is a constructor or destructor, must not return a value.

C++

If a function is defined as having a return type other than void, it should
return a value. Under compilation for strict C99 conformance, a function defined
with a return type must include an expression containing the value to be returned.

A function defined with a return type must include an expression
containing the value to be returned.

When a function returns a value, the value is returned via a return statement to
the caller of the function, after being implicitly converted to the return type of the
function in which it is defined. The following code fragment shows a function
definition including the return statement:

int add(int i, int j)

{

return i + j; // return statement

}

The function add() can be called as shown in the following code fragment:
int a = 10,

b = 20;
int answer = add(a, b); // answer is 30

In this example, the return statement initializes a variable of the returned type. The
variable answer is initialized with the int value 30. The type of the returned
expression is checked against the returned type. All standard and user-defined
conversions are