
z/OS

C Curses
Version 2 Release 1

SA38-0690-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 183.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book xiii
Typographical conventions xiii
Other documents xiv

Where to find more information xiv

Summary of Changes xvii

Chapter 1. The Curses Library 1
Terminology 1
Naming Conventions 2
Structure of a Curses Program 3

Return Values 3

Chapter 2. Initializing Curses. 5

Chapter 3. Windows in the Curses
Environment 7
The Default Window Structure 7
The Current Window Structure 8
Subwindows 8
Pads 9

Chapter 4. Manipulating Window Data
with Curses. 11

Chapter 5. Curses Interfaces 13
addch() 13

Name 13
Synopsis 13
Description 13
Return Value 13
Errors 13
Application Usage 13
See Also 13

addchstr() 14
Name 14
Synopsis 14
Description 14
Return Value 14
Errors 14
Application Usage 14
See Also 14

addnstr() 15
Name 15
Synopsis 15
Description 15
Return Value 15
Errors 15
See Also 15

addnwstr() 16
Name 16
Synopsis 16
Description 16
Return Value 16

Errors 16
See Also 16

add_wch() 17
Name 17
Synopsis 17
Description 17
Return Value 17
Errors 17
See Also 17

add_wchnstr() 17
Name 17
Synopsis 17
Description 18
Return Value 18
Errors 18
See Also 18

attroff() 18
Name 18
Synopsis 18
Description 19
Return Value 19
Errors 19
See Also 19

attr_get() 19
Name 19
Synopsis 19
Description 20
Return Value 20
Errors 20
See Also 20

baudrate() 20
Name 20
Synopsis 20
Description 20
Return Value 21
Errors 21
See Also 21

beep() 21
Name 21
Synopsis 21
Description 21
Return Value 21
Errors 21
Application Usage 21
See Also 21

bkgd() 21
Name 21
Synopsis 21
Description 22
Return Value 22

bkgd() 22
Errors 22
Application Usage 22
See Also 22

bkgrnd() 23
Name 23

© Copyright IBM Corp. 1996, 2013 iii

Synopsis 23
Description 23
Return Value 23
Errors 23
See Also 24

border() 24
Name 24
Synopsis 24
Description 24
Return Value 24
Errors 24
Application Usage 25
See Also 25

border_set() 25
Name 25
Synopsis 25
Description 25
Return Value 26
Errors 26
See Also 26

box() 26
Name 26
Synopsis 26
Description 26
Return Value 26
Errors 26
Application Usage 26
See Also 26

box_set() 27
Name 27
Synopsis 27
Description 27
Return Value 27
Errors 27
See Also 27

can_change_color() 27
Name 27
Synopsis 27
Description 28
Return Value 29
Errors 29
Application Usage 29
See Also 29

cbreak(). 29
Name 29
Synopsis 29
Description 30
Return Value 30
Errors 30
Application Usage 30
See Also 30

chgat() 30
Name 30
Synopsis 30
Description 30
Return Value 31
Errors 31
See Also 31

clear() 31
Name 31
Synopsis 31

Description 31
Return Value 31
Errors 31
See Also 31

clearok() 32
Name 32
Synopsis 32
Description 32
Return Value 33
Errors 33
Application Usage 33
See Also 33

clrtobot() 33
Name 33
Synopsis 33
Description 33
Return Value 33
Errors 33
See Also 33

clrtoeol() 34
Name 34
Synopsis 34
Description 34
Return Value 34
Errors 34
See Also 34

color_content() 34
Name 34
Synopsis 34
Description 34

COLOR_PAIRS 34
Name 34
Synopsis 34
Description 35

COLS 35
Name 35
Synopsis 35
Description 35
See Also 35

copywin() 35
Name 35
Synopsis 35
Description 35
Return Value 35
Errors 35
See Also 35

curscr 36
Name 36
Synopsis 36
Description 36
See Also 36

curs_set() 36
Name 36
Synopsis 36
Description 36
Return Value 36
Errors 36
See Also 36

cur_term() 37
Name 37
Synopsis 37

iv z/OS V2R1.0 C Curses

Description 37
See Also 37

def_prog_mode() 37
Name 37
Synopsis 37
Description 37
Return Value 37
Errors 38
Application Usage 38
See Also 38

delay_output() 38
Name 38
Synopsis 38
Description 38
Return Value 38
Errors 38
Application Usage 38
See Also 38

delch() 38
Name 38
Synopsis 39
Description 39
Return Value 39
Errors 39
See Also 39

del_curterm() 39
Name 39
Synopsis 39
Description 39
Return Value 40
Errors 40
Application Usage 40
See Also 40

deleteln() 41
Name 41
Synopsis 41
Description 41
Return Value 41
Errors 41
See Also 41

delscreen(). 41
Name 41
Synopsis 41
Description 41
Return Value 41
Errors 41
See Also 41

delwin() 42
Name 42
Synopsis 42
Description 42
Return Value 42
Errors 42
See Also 42

derwin() 42
Name 42
Synopsis 42
Description 42
Return Value 43
Errors 43
Application Usage 43

See Also 43
doupdate() 43

Name 43
Synopsis 43
Description 43
Return Value 44
Errors 44
Application Usage 44
See Also 44

dupwin() 44
Name 44
Synopsis 44
Description 44
Return Value 44
Errors 44
See Also 44

echo() 44
Name 44
Synopsis 45
Description 45
Return Value 45
Errors 45
See Also 45

echochar() 45
Name 45
Synopsis 45
Description 45
Return Value 45
Errors 45
Application Usage 46
See Also 46

echo_wchar() 46
Name 46
Synopsis 46
Description 46
Return Value 46
Errors 46
See Also 46

endwin() 46
Name 46
Synopsis 46
Description 47
Return Value 47
Errors 47
Application Usage 47
See Also 47

erase() 47
Name 47
Synopsis 47
Description 47

erasechar(). 47
Name 47
Synopsis 47
Description 48
Return Value 48
Errors 48
Application Usage 48
See Also 48

filter() 48
Name 48
Synopsis 48

Contents v

Description 49
Return Value 49
Errors 49
See Also 49

flash() 49
Name 49
Synopsis 49
Description 49
Return Value 49
Errors 49
Application Usage 49
See Also 49

flushinp() 50
Name 50
Synopsis 50
Description 50
Return Value 50
Errors 50
See Also 50

getbegyx() 50
Name 50
Synopsis 50
Description 50
Return Value 51
Errors 51
Application Usage 51
See Also 51

getbkgd() 51
Name 51
Synopsis 51
Description 51

getbkgrnd() 51
Name 51
Synopsis 51
Description 52

getcchar() 52
Name 52
Synopsis 52
Description 52
Return Value 52
Errors 52
Application Usage 52
See Also 52

getch() 52
Name 52
Synopsis 53
Description 53
Return Value 53
Errors 53
Application Usage 53
See Also 53

getmaxyx() 54
Name 54
Synopsis 54
Description 54

getnstr() 54
Name 54
Synopsis 54
Description 54
Return Value 55
Errors 55

Application Usage 55
See Also 55

getn_wstr() 55
Name 55
Synopsis 55
Description 55
Return Value 56
Errors 56
Application Usage 56
See Also 56

getparyx() 56
Name 56
Synopsis 56
Description 56

getstr() 56
Name 56
Synopsis 57
Description 57

get_wch() 57
Name 57
Synopsis 57
Description 57
Return Value 57
Errors 58
Application Usage 58
See Also 58

getwin() 58
Name 58
Synopsis 58
Description 58
Return Value 58
Errors 58
See Also 58

get_wstr() 58
Name 58
Synopsis 59
Description 59

getyx() 59
Name 59
Synopsis 59
Description 59

halfdelay() 59
Name 59
Synopsis 59
Description 59
Return Value 59
Errors 59
Application Usage 59
See Also 59

has_colors() 60
Name 60
Synopsis 60
Description 60

has_ic() 60
Name 60
Synopsis 60
Description 60
Return Value 60
Errors 60
Application Usage 60
See Also 60

vi z/OS V2R1.0 C Curses

hline() 61
Name 61
Synopsis 61
Description 61
Return Value 61
Errors 61

hline() 61
Application Usage 61
See Also 62

hline_set() 62
Name 62
Synopsis 62
Description 62
Return Value 62
Errors 62

hline_set() 62
See Also 62

idcok() 63
Name 63
Synopsis 63
Description 63
Return Value 63
Errors 63
See Also 63

idlok() 63
Name 63
Synopsis 63
Description 63

immedok(). 63
Name 63
Synopsis 63
Description 64
Return Value 64
Errors 64
Application Usage 64
See Also 64

inch() 64
Name 64
Synopsis 64
Description 64
Return Value 64
Errors 64
Application Usage 64
See Also 65

inchnstr() 65
Name 65
Synopsis 65
Description 65
Return Value 65
Errors 65
Application Usage 65
See Also 65

init_color(). 66
Name 66
Synopsis 66
Description 66

initscr() 66
Name 66
Synopsis 66
Description 66

initscr() 67

Return Value 67
Errors 67
Application Usage 67
See Also 67

innstr() 67
Name 67
Synopsis 67
Description 67
Return Value 68
Errors 68
Application Usage 68
See Also 68

innwstr() 68
Name 68
Synopsis 68
Description 69
Return Value 69
Errors 69
Application Usage 69
See Also 69

insch() 69
Name 69
Synopsis 69
Description 70
Return Value 70
Errors 70
Application Usage 70
See Also 70

insdelln() 70
Name 70
Synopsis 70
Description 70
Return Value 71
Errors 71
See Also 71

insertln() 71
Name 71
Synopsis 71
Description 71
Return Value 71
Errors 71
See Also 71

insnstr() 71
Name 71
Synopsis 71
Description 72
Return Value 72
Errors 72
Application Usage 72
See Also 72

ins_nwstr() 72
Name 72
Synopsis 72
Description 73
Return Value 73
Errors 73
See Also 73

insstr() 73
Name 73
Synopsis 73
Description 73

Contents vii

instr() 73
Name 73
Synopsis 74
Description 74

ins_wch() 74
Name 74
Synopsis 74
Description 74
Return Value 74
Errors 74
Application Usage 74
See Also 74

ins_wstr() 74
Name 74
Synopsis 75
Description 75

intrflush() 75
Name 75
Synopsis 75
Description 75
Return Value 75
Errors 75
Application Usage 75
See Also 75

in_wch() 75
Name 75
Synopsis 75
Description 76
Return Value 76
Errors 76
See Also 76

in_wchnstr() 76
Name 76
Synopsis 76
Description 76
Return Value 77
Errors 77
Application Usage 77
See Also 77

inwstr(). 77
Name 77
Synopsis 77
Description 77

isendwin() 77
Name 77
Synopsis 77
Description 77
Return Value 77
Errors 77
See Also 78

is_linetouched() 78
Name 78
Synopsis 78
Description 78
Return Value 78
Errors 78
Application Usage 79
See Also 79

keyname() 79
Name 79
Synopsis 79

Description 79
Return Value 79
Errors 79
Application Usage 79
See Also 80

keypad() 80
Name 80
Synopsis 80
Description 80
Return Value 80
Errors 80
See Also 80

killchar() 80
Name 80
Synopsis 80
Description 81

leaveok() 81
Name 81
Synopsis 81
Description 81

LINES 81
Name 81
Synopsis 81
Description 81
See Also 81

longname() 81
Name 81
Synopsis 81
Description 81
Return Value 82
Errors 82
Application Usage 82
See Also 82

meta() 82
Name 82
Synopsis 82
Description 82
Return Value 82
Errors 82
Application Usage 82
See Also 82

move() 83
Name 83
Synopsis 83
Description 83
Return Value 83
Errors 83
See Also 83

mv 83
Name 83
Description 83
See Also 84

mvcur(). 84
Name 84
Synopsis 84
Description 85
Return Value 85
Errors 85
Application Usage 85
See Also 85

mvderwin() 85

viii z/OS V2R1.0 C Curses

Name 85
Synopsis 85
Description 85
Return Value 86
Errors 86
See Also 86

mvprintw() 86
Name 86
Synopsis 86
Description 86
Return Value 86
Errors 86
See Also 86

mvscanw(). 86
Name 86
Synopsis 86
Description 87
Return Value 87
Errors 87
See Also 87

mvwin() 87
Name 87
Synopsis 87
Description 87
Return Value 87
Errors 87
Application Usage 87
See Also 87

napms() 88
Name 88
Synopsis 88
Description 88
Return Value 88
Errors 88
Application Usage 88
See Also 88

newpad() 88
Name 88
Synopsis 88
Description 88
Return Value 89
Errors 89
Application Usage 89
See Also 89

newterm() 89
Name 89
Synopsis 89
Description 89

newwin() 90
Name 90
Synopsis 90
Description 90

nl() 90
Name 90
Synopsis 90
Description 90
Return Value 90
Errors 90
Application Usage 90
See Also 90

no 90

Name 90
Description 91

nodelay() 91
Name 91
Synopsis 91
Description 91
Return Value 91
Errors 91
See Also 91

noqiflush(). 91
Name 91
Synopsis 92
Description 92
Return Value 92
Errors 92
Application Usage 92
See Also 92

notimeout() 92
Name 92
Synopsis 92
Description 92
Return Value 93
Errors 93
See Also 93

overlay() 93
Name 93
Synopsis 93
Description 93
Return Value 93
Errors 94
See Also 94

pair_content(). 94
Name 94
Synopsis 94
Description 94

pechochar() 94
Name 94
Synopsis 94
Description 94
Return Value 94
Errors 94
Application Usage 95
See Also 95

pnoutrefresh() 95
Name 95
Synopsis 95
Description 95

printw() 95
Name 95
Synopsis 95
Description 95

putp() 95
Name 95
Synopsis 95
Description 96
Return Value 96
Errors 96
Application Usage 96
See Also 96

putwin() 96
Name 96

Contents ix

Synopsis 96
Description 97

qiflush() 97
Name 97
Synopsis 97
Description 97

raw() 97
Name 97
Synopsis 97
Description 97

redrawwin() 97
Name 97
Synopsis 97
Description 97
Return Value 98
Errors 98
Application Usage 98
See Also 98

refresh() 98
Name 98
Synopsis 98
Description 98

reset_prog_mode() 98
Name 98
Synopsis 98
Description 98

resetty() 98
Name 98
Synopsis 99
Description 99
Return Value 99
Errors 99
See Also 99

restartterm() 99
Name 99
Synopsis 99
Description 99

ripoffline() 99
Name 99
Synopsis 99
Description 99
Return Value 100
Errors 100
Application Usage. 100
See Also 100

savetty() 100
Name 100
Synopsis 100
Description 100

scanw() 100
Name 100
Synopsis 101
Description 101

scr_dump() 101
Name 101
Synopsis 101
Description 101
Return Value 101
Errors 101
Application Usage. 102
See Also 102

scrl() 102
Name 102
Synopsis 102
Description 102
Return Value 102
Errors 102
See Also 102

scrollok() 102
Name 102
Synopsis 103
Description 103

setcchar() 103
Name 103
Synopsis 103
Description 103
Return Value 103
Errors 103
See Also 103

set_curterm() 103
Name 103
Synopsis 103
Description 103

setscrreg() 104
Name 104
Synopsis 104
Description 104

set_term() 104
Name 104
Synopsis 104
Description 104
Return Value 104
Errors 104
Application Usage. 104
See Also 104

setupterm() 104
Name 104
Synopsis 105
Description 105

slk_attroff() 105
Name 105
Synopsis 105
Description 105
Return Value 106
Errors 106
Application Usage. 107
See Also 107

standend() 107
Name 107
Synopsis 107
Description 107
Return Value 107
Errors 107
See Also 107

start_color() 108
Name 108
Synopsis 108
Description 108

stdscr 108
Name 108
Synopsis 108
Description 108

x z/OS V2R1.0 C Curses

See Also 108
subpad() 108

Name 108
Synopsis 108
Description 108

subwin() 108
Name 108
Synopsis 109
Description 109

syncok() 109
Name 109
Synopsis 109
Description 109
Return Value 109
Errors 109
Application Usage. 109
See Also 109

termattrs() 110
Name 110
Synopsis 110
Description 110
Return Value 110
Errors 110
See Also 110

termname() 110
Name 110
Synopsis 110
Description 110
Return Value 110
Errors 110
See Also 111

tgetent() 111
Name 111
Synopsis 111
Description 111
Return Value 111
Errors 111
Application Usage 112
See Also 112

tigetflag() 112
Name 112
Synopsis 112
Description 112
Return Value 112
Errors 113
Application Usage 113
See Also 113

timeout() 113
Name 113
Synopsis 113
Description 113

touchline() 113
Name 113
Synopsis 113
Description 114

tparm() 114
Name 114
Synopsis 114
Description 114

tputs() 114
Name 114

Synopsis 114
Description 114

typeahead() 114
Name 114
Synopsis 114
Description 114
Return Value 115
Errors 115
See Also 115

unctrl() 115
Name 115
Synopsis 115
Description 115
Return Value 115
Errors 115
See Also 115

ungetch() 115
Name 115
Synopsis 115
Description 115
Return Value 116
Errors 116
See Also 116

untouchwin() 116
Name 116
Synopsis 116
Description 116

use_env() 116
Name 116
Synopsis 116
Description 116
Return Value 116
Errors 117
See Also 117

vidattr() 117
Name 117
Synopsis 117
Description 117
Return Value 118
Errors 118
Application Usage 118
See Also 118

vline() 118
Name 118
Synopsis 118
Description 118

vline_set() 118
Name 118
Synopsis 118
Description 118

vwprintw() 119
Name 119
Synopsis 119
Description 119
Return Value 119
Errors 119
Application Usage 119
See Also 119

vw_printw() 119
Name 119
Synopsis 119

Contents xi

Description 119
Return Value 119
Errors 120
Application Usage. 120
See Also 120

vwscanw() 120
Name 120
Synopsis 120
Description 120
Return Value 120
Errors 120
Application Usage. 120
See Also 120

vw_scanw() 120
Name 120
Synopsis 121
Description 121
Return Value 121
Errors 121
Application Usage. 121
See Also 121

w 121
Name 121
Description 121

wunctrl() 123
Name 123
Synopsis 123
Description 123
Return Value 123
Errors 123
See Also 123

Chapter 6. Headers 125
<cursesh> 125

Name 125
Synopsis 125
Description 125
See Also 139

<termh> 139
Name 139
Synopsis 139
Description 139
See Also 139

<unctrlh> 140
Name 140
Description 140
See Also 140

Chapter 7. Terminfo Source Format
(ENHANCED CURSES) 141

Source File Syntax 141
Minimum Guaranteed Limits 142
Formal Grammar 142
Defined Capabilities 144
Sample Entry 153
Types of Capabilities in the Sample Entry . . . 154

Device Capabilities 156
Basic Capabilities 156
Parameterized Strings 157
Cursor Motions. 158
Area Clears 159
Insert/Delete Line 159
Insert/Delete Character 160
Highlighting, Underlining, and Visible Bells . . 161
Keypad 163
Tabs and Initialization 164
Delays. 164
Status Lines 164
Line Graphics 165
Color Manipulation 166
Miscellaneous 168
Special Cases 169
Similar Terminals 169

Printer Capabilities 169
Rounding Values 170
Printer Resolution 170
Specifying Printer Resolution 170
Capabilities that Cause Movement 172
Alternate Character Sets 176
Dot-Matrix Graphics 177
Effect of Changing Printing Resolution 178
Print Quality 179
Printing Rate and Buffer Size 179

Selecting a Terminal 180
Application Usage. 180

Conventions for Device Aliases 180
Variations of Terminal Definitions 181

Notices 183
Policy for unsupported hardware. 184
Minimum supported hardware 185
Trademarks 185

Glossary 187

Index 189

xii z/OS V2R1.0 C Curses

About This Book

This manual describes the curses interface for application programs using the z/OS
C language. Readers are expected to be experienced C language programmers and
to be familiar with open systems standards or a UNIX operating system. This book
also assumes that readers are somewhat familiar with MVS systems and with the
information for MVS and its accompanying products. Readers also should have
read z/OS Introduction and Release Guide which describes the services and the
concepts of . This manual is organized as follows: z/OS
v Chapter 1, “The Curses Library,” on page 1 gives an overview of Curses. It

discusses the use of some of the key data types and gives general rules for
important common concepts such as characters, renditions and window
properties. It contains general rules for the common Curses operations and
operating modes. This information is implicitly referenced by the interface
definitions in Chapter 2. The chapter explains the system of naming the Curses
functions and presents a table of function families. Finally, the chapter contains
notes regarding use of macros and restrictions on block-mode terminals.

v Chapter 5, “Curses Interfaces,” on page 13 defines the Curses functional
interfaces.

v Chapter 6, “Headers,” on page 125 defines the contents of headers, which
declare constants, macros and data structures that are needed by programs using
the services provided by Chapter 7, “Terminfo Source Format (ENHANCED
CURSES),” on page 141.

v Chapter 7, “Terminfo Source Format (ENHANCED CURSES),” on page 141
discusses the terminfo database, which Curses uses to describe terminals. The
chapter specifies the source format of a terminfo entry, using a formal grammar,
an informal discussion, and an example. Boolean, numeric and string capabilities
are presented in tabular form. The remainder of the chapter discusses the use of
these capabilities by the writer of a terminfo entry to describe the characteristics
of the terminal in use.

v The glossary contains definitions of terms used in this manual.

Typographical conventions
The following typographical conventions are used throughout this document:
v Bold font is used in text for options to commands, filenames, keywords, type

names, data structures and their members.
v Italic strings are used for emphasis or to identify the first instance of a word

requiring definition. Italics in text also denote:
– Command operands, command option-arguments or variable names, for

example, substitutable argument prototypes
– Environment variables, which are also shown in capitals
– Utility names
– External variables, such as errno
– Functions; these are shown as follows: name(); names without parentheses are

C external variables, C function family names, utility names, command
operands or command option-arguments.

v Normal font is used for the names of constants and literals.
v The notation <file.h> indicates a header file.

© Copyright IBM Corp. 1996, 2013 xiii

v Names surrounded by braces, for example, {ARG_MAX}, represent symbolic
limits or configuration values which may be declared in appropriate headers by
means of the C #define construct.

v The notation [EABCD] is used to identify an error value EABCD.
v Syntax, code examples and user input in interactive examples are shown in fixed

width font. Brackets shown in this font, [], are part of the syntax and do not
indicate optional items. In syntax the | symbol is

used to separate alternatives, and ellipses (...) are
used to show that additional arguments are optional.

v Bold fixed width font is used to identify brackets that surround optional items
in syntax, [], and to identify system output in interactive examples.

v Variables within syntax statements are shown in italic fixed width font.
v Ranges of values are indicated with parentheses or brackets as follows:

– (a,b) means the range of all values from a to b, including neither a nor b
– [a,b] means the range of all values from a to b, including a and b
– [a,b) means the range of all values from a to b, including a, but not b
– (a,b] means the range of all values from a to b, including b, but not a.

Notes:

v Symbolic limits are used in this document instead of fixed values for portability.
The values of most of these constants are defined in <limits.h> or <unistd.h>.

v The values of errors are defined in <errno.h>.

Other documents
The following documents are referenced in this specification:
v ANSI standard X3.159-1989, Programming Language C.
v ISO 8859-1:1987, Information Processing - 8-bit Single-byte Coded Graphic

Character Sets - Part 1: Latin Alphabet No. 1.
v ISO/IEC 646:1991, Information Processing - ISO 7-bit Coded Character Set for

Information Interchange.
v ISO/IEC 9899:1990, Programming Languages - C (technically identical to ANSI

standard X3.159-1989).
v System V Interface Definition (Spring 1986 - Issue 2).
v System Interface Definitions (1989 - 3rd Edition).
v System V Release 2.0

– UNIX System V Release 2.0 Programmer's Reference Manual (April 1984 -
Issue 2).

– UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).
v Operating System API Reference, UNIXO SVR4.2 (1992) (ISBN: 0-13-017658-3).

Where to find more information
For an overview of the information associated with z/OS, see z/OS Information
Roadmap.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters
and documentation APARs for z/OS®, see the online document at:
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

xiv z/OS V2R1.0 C Curses

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

The z/OS Basic Skills Information Center
The z/OS Basic Skills Information Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the
following Web site, which is available to all users (no login required):
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

About This Book xv

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp

xvi z/OS V2R1.0 C Curses

Summary of Changes

Summary of Changes for
SA38-0690-00
z/OS Version 2 Release 1

This book contains information also presented in OS/390 C Curses, SC28-1907-01.

© Copyright IBM Corp. 1996, 2013 xvii

xviii z/OS V2R1.0 C Curses

Chapter 1. The Curses Library

The Curses library provides a set of functions that enable you to manipulate a
terminal's display regardless of the terminal type. Throughout this documentation,
the Curses library is referred to as curses. The basis of curses programming is the
window data structure. Using this structure, you can manipulate data on a
terminal's display. You can instruct curses to treat the entire terminal display as
one large window or you can create multiple windows on the display. The
windows can be different sizes and can overlap one another. The following figure
shows a typical curses application with a single large window and one subwindow

Each window on a terminal's display has its own window data structure. This
structure keeps state information about the window such as its size and where it is
located on the display. Curses uses the window data structure to obtain relevant
information it needs to carry out your instructions.

Terminology
When programming with curses, you should be familiar with the following terms:

Term Definition

current character
The character that the logical cursor is currently on.

current line
The line that the logical cursor is currently on.

curscr A virtual default window provided by curses. The curscr (current screen) is
an internal representation of what currently appears on the terminal's
external display. You should not modify the curscr.

TTY

Move cursor to desired item and press Enter.

List All Defined TTYs
Add a TTY
Moving a TTY to Another Port
Change / Show characteristics of a
TTY
Remove a TTY
Configure a Defined TTY
Generate Error Report
Trace a TTY

Move cursor to desired item and press Enter.

tty rs232 Asynchronous Terminal
tty rs422 Asynchronous Terminal

F1=Help
F8=Image
/=FindF1

F9

F2=Refresh
F10=Exit
N=Find Next

F3=Cancel
Enter=Do

TTY Type

© Copyright IBM Corp. 1996, 2013 1

display
A physical display connected to a workstation.

logical cursor
The cursor location within each window. The window data structure keeps
track of the location of its logical cursor.

pad A type of window that is larger than the dimensions of the terminal's
display. Unlike other windows, a pad is not associated with any particular
portion of the display.

physical cursor
The cursor that appears on a display. The workstation uses this cursor to
write to the display. There is only one physical cursor per display. To
change the position of the physical cursor, you must do a refresh.

screen The window that fills the entire display. The screen is synonymous with
the stdscr (standard screen).

stdscr A virtual default window provided by curses that represents the entire
display.

window
A pointer to a C data structure and the graphic representation of that data
structure on the display. A window can be thought of as a two-dimensional
array representing how all or part of the display looks at any point in time.
Windows range in size from the entire display to a single character.

Naming Conventions
A single curses function can have two or more versions. Curses functions with
multiple versions follow distinct naming conventions that identify the separate
versions. These conventions add a prefix to a standard curses function and identify
what arguments the function requires or what actions take place when the function
is called. The different versions of curses function names use three prefixes:

Prefix Description

w Identifies a function that requires a window argument.

p Identifies a function that requires a pad argument.

mv Identifies a function that first performs a move to the program-supplied
coordinates.

Some curses functions with multiple versions do not include one of the preceding
prefixes. These functions use the curses default window stdscr (standard screen).
The majority of functions that use the stdscr are functions created in the
/usr/include/curses.h file using #define statements. The preprocessor replaces these
statements at compilation time. As a result, these functions do not appear in the
compiled assembly code, a trace, a debugger, or the curses source code.

If a curses function has only a single version, it does not necessarily use stdscr. For
example, the printw() function prints a string to the stdscr. The wprintw() function
prints a string to a specific window by supplying the Window argument. The
mvprintw() function moves the specified coordinates to the stdscr and then
performs the same function as the printw() function. Likewise, the mvwprintw()
function moves the specified coordinates to the specified window and then
performs the same function as the wprintw() function.

2 z/OS V2R1.0 C Curses

A function with the basic name is often provided for historical compatibility and
operates only on single-byte characters. A function with the same name plus the w
infix operates on wide (multi-byte) characters. A function with the same name plus
the _w infix operates on complex characters and their renditions.

When a function with the same basic name operates on a single character, there is
sometimes a function with the same name plus the n infix that operates on
multiple characters. An n argument specifies the number of characters to process.
The respective manual page specifies the outcome if the value of n is
inappropriate.

Structure of a Curses Program
In general, a curses program has the following progression:
v Start curses.
v Check for color support (optional).
v Start color (optional).
v Create one or more windows.
v Manipulate windows.
v Destroy one or more windows window.
v Stop curses.

Your program does not have to follow this progression exactly.

Return Values
With a few exceptions, all curses functions return either the integer value ERR or
the integer value OK. Subroutines that do not follow this convention are noted
appropriately. Subroutines that return pointers always return a null pointer on an
error.

Chapter 1. The Curses Library 3

4 z/OS V2R1.0 C Curses

Chapter 2. Initializing Curses

You must include the curses.h file at the beginning of any program that calls
curses functions. To do this, use the following statement:
#include <curses.h>

Before you can call functions that manipulate windows or screens, you must call
the initscr() or newterm() function. These functions first save the terminal's
settings. These functions then call the setupterm() function to establish a curses
terminal.

Before exiting a curses program, you must call the endwin() function. The
endwin() function restores tty modes, moves the cursor to the lower left corner of
the screen, and resets the terminal into the proper nonvisual mode. You can also
temporarily suspend curses. If you need to suspend curses, use a shell escape or
system call for example. To resume after a temporary escape, you should call the
wrefresh() or doupdate() function. The isendwin() function is helpful if, for
optimization reasons, you don't want to call the wrefresh() function needlessly.
You can determine if the endwin() function was called without any subsequent
calls to the wrefresh() function by using the isendwin() function.

Most interactive, screen-oriented programs require character-at-a-time input
without echoing the result to the screen. To establish your program with
character-at-a-time input, call the cbreak() and noecho() functions after calling the
initscr function. When accepting this type of input, programs should also call the
following functions:
v nonl() function.
v intrflush() function with the Window parameter set to the stdscr and the Flag

parameter set to FALSE. The Window parameter is required but ignored You can
use stdscr as the value of the Window parameter, because stdscr is already
created for you.

v keypad() function with the Window parameter set to the stdscr and the Flag
parameter set to TRUE.

© Copyright IBM Corp. 1996, 2013 5

6 z/OS V2R1.0 C Curses

Chapter 3. Windows in the Curses Environment

A curses program manipulates windows that appear on a terminal's display. A
window is a rectangular portion of the display. A window can be as large as the
entire display or as small as a single character in length and height.

Note: Pads are the exception. A pad is a window that is not restricted by the size
of the screen. For more information, see “Pads” on page 9.

The following figure shows the different types of windows that exist in the curses
environment:

Within a curses program, windows are variables declared as type WINDOW. The
WINDOW data type is defined in the /usr/include/curses.h file as a C data
structure. You create a window by allocating a portion of a machine's memory for
a window structure. This structure describes the characteristics of the window.
When a program changes the window data internally in memory, it must use the
wrefresh() function (or equivalent function) to update the external, physical screen
to reflect the internal change in the appropriate window structure.

Curses supplies a default window when the Curses library is initialized. You can
create your own windows known as user-defined windows. Except for the amount
of memory available to a program, there is no limit to the number of windows you
can create. A curses program can manipulate the default window, user-defined
windows, or both.

The Default Window Structure
Curses provides a virtual default window called stdscr. The stdscr represents, in
memory, the entire terminal display. The stdscr window structure is created
automatically when the Curses library is initialized and it describes the display.
When the library is initialized, the length and width variables are set to the length
and width of the physical display.

In addition to the stdscr, you can define your own windows. These windows are
known as user-defined windows to distinguish them from the stdscr. Like the
stdscr, user-defined windows exist in machine memory as structures.

screen (stdscr)

subwindow
subpad

pad

© Copyright IBM Corp. 1996, 2013 7

Programs that use the stdscr first manipulate the stdscr and then call the refresh()
function to refresh the external display so that it matches the stdscr window.

The Current Window Structure
Curses also supports another virtual window called curscr (current screen). The
curscr window is an internal representation of what currently appears on the
terminal's external display.

When a program requires the external representation to match the internal
representation, it must call a function, such as the wrefresh() function, to update
the physical display (or the refresh() function if the program is working with the
stdscr). When a refresh is called on an internal window, curses copies the changed
portions of the window into the curscr and updates the physical display.

The curscr is reserved for internal use by curses. You should not manipulate the
curscr.

Subwindows
Curses also allows you to construct subwindows. Subwindows are rectangular
portions within other windows. A subwindow is also of type WINDOW. The
window that contains a subwindow is known as the subwindow's parent and the
subwindow is known as the containing window's child. The following figure
demonstrates the parent child relationship.

Changes to either the parent window or the child window within the area
overlapped by the subwindow are made to both windows. After modifying a
subwindow, you should call the touchline() or touchwin() function on the parent
window before refreshing it. The touchline() and touchwin() functions instruct
curses to discard its optimization information for the parent window and to
consider the window as having changed. A refresh called on the parent refreshes
the children as well.

A subwindow can also be a parent window. The process of layering windows
inside of windows is called nesting. The number of nested subwindows is limited
to the amount of memory available up to the value of SHRT_MAX as defined in
the /usr/include/limits.h file. Before you can delete a parent window, you must
first delete all of its children using the delwin() function. Curses returns an error if
you try to delete a window before removing all of its children.

parent (window)

child
(subwindow)

8 z/OS V2R1.0 C Curses

Pads
A pad is a type of window that is not restricted by the terminal's display size or
associated with a particular part of the display. You can use pads whenever your
program requires a large window. Because a pad is usually larger than the physical
display, only a portion of a pad is visible to the user at a given time.

Use pads when you have a large amount of related data that you want to keep all
together in one window but you do not need to display all of the data at once.

Windows within pads are known as subpads. Subpads are positioned within a pad
at coordinates relative to the parent pad. This placement differs from subwindows
which are positioned using screen coordinates.

You should use the prefresh() function to show a portion of a pad on the display.
Unlike other windows, scrolling or echoing of input does not automatically refresh
a pad. Like subwindows, when changing the image of a subpad, you must call
either the touchline() or touchwin() function on the parent pad before refreshing
the parent. You can use all the curses function with pads except for the newwin(),
subwin(), wrefresh(), and wnoutrefresh() functions. These functions are replaced
with the newpad(), subpad(), prefresh(), and pnoutrefresh() functions.

Chapter 3. Windows in the Curses Environment 9

10 z/OS V2R1.0 C Curses

Chapter 4. Manipulating Window Data with Curses

When curses is initialized, the stdscr is provided automatically. You can manipulate
the stdscr using the curses function library or you can create your own,
user-defined windows.

© Copyright IBM Corp. 1996, 2013 11

12 z/OS V2R1.0 C Curses

Chapter 5. Curses Interfaces

This chapter describes the Curses functions, macros and external variables to
support application portability at the C-language source level. The interface
definitions are collated as though any underscore characters were not present.

addch()

Name
addch, mvaddch, mvwaddch, waddch - add a single-byte character and rendition
to a window and advance the cursor

Synopsis
#include <curses.h>

int addch(const chtype ch);

int mvaddch(int y, int x, const chtype ch);

int mvwaddch(WINDOW *win, int y, int x, const chtype ch);

int waddch(WINDOW *win, const chtype ch);

Description
The addch(), mvaddch(), mvwaddch() and waddch() functions place ch into the current
or specified window at the current or specified position, and then advance the
window's cursor position. These functions perform wrapping. These functions
perform special-character processing.

Return Value
Upon successful completion, these functions return OK. Otherwise they return
ERR.

Errors
No errors are defined.

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
add_wch(), attroff(), doupdate(), <curses.h>.

© Copyright IBM Corp. 1996, 2013 13

addchstr()

Name
addchstr, addchnstr, mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr
waddchstr, waddchnstr - add string of single-byte characters and renditions to a
window

Synopsis
#include <curses.h>

int addchstr(const chtype *chstr);

int addchnstr(const chtype *chstr, int n);

int mvaddchstr(int y, int x, const chtype *chstr);

int mvaddchnstr(int y, int x, const chtype *chstr, int n);

int mvwaddchstr(WINDOW *win, int y, int x, const chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x, const chtype *chstr,
int n);

int waddchstr(WINDOW *win, const chtype *chstr);

int waddchnstr(WINDOW *win, const chtype *chstr, int n);

Description
These functions overlay the contents of the current or specified window, starting at
the current or specified position, with the contents of the array pointed to by chstr
until a null chtype is encountered in the array pointed to by chstr.

These functions do not change the cursor position. These functions do not perform
special-character processing. These functions do not perform wrapping.

The addchnstr(), mvaddchnstr(), mvwaddchnstr() and waddchnstr() functions copy at
most n items, but no more than will fit on the line. If n is -1 then the whole string
is copied, to the maximum number that fit on the line.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
addch(), add_wch(), add_wchstr(), <curses.h>.

Curses

14 z/OS V2R1.0 C Curses

addnstr()

Name
addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr waddnstr, waddstr
- add a string of multi-byte characters without rendition to a window and advance
cursor

Synopsis
#include <curses.h>

int addnstr(const char *str, int n);

int addstr(const char *str);

int mvaddnstr(int y, int x, const char *str, int n);

int mvaddstr(int y, int x, const char *str);

int mvwaddnstr(WINDOW *win, int y, int x, char *const str, int n);

int mvwaddstr(WINDOW *win, int y, int x, char *const str);

int waddnstr(WINDOW *win, const char *str, int n);

int waddstr(WINDOW *win, const char *str);

Description
These functions write the characters of the string str on the current or specified
window starting at the current or specified position using the background
rendition.

These functions advance the cursor position. These functions perform special
character processing. These functions perform wrapping.

The addstr(), mvaddstr(), mvwaddstr() and waddstr() functions are similar to calling
mbstowcs() on str, and then calling addwstr(), mvaddwstr(), mvwaddwstr() and
waddwstr(), respectively.

The addnstr(), mvaddnstr(), mvwaddnstr() and waddnstr() functions use at most n
bytes from str. These functions add the entire string when n is -1. These functions
are similar to calling mbstowcs() on the first n bytes of str, and then calling
addwstr(), mvaddwstr(), mvwaddwstr() and waddwstr(), respectively.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
addnwstr(), mbstowcs(), <curses.h>.

Enhanced Curses

Chapter 5. Curses Interfaces 15

addnwstr()

Name
addnwstr, addwstr, mvaddnwstr, mvaddwstr, mvwaddnwstr, mvwaddwstr,
waddnwstr, waddwstr - add a wide-character string to a window and advance the
cursor

Synopsis
#include <curses.h>

int addnwstr(const wchar_t *wstr, int n);

int addwstr(const wchar_t *wstr);

int mvaddnwstr(int y, int x, const wchar_t *wstr, int n);

int mvaddwstr(int y, int x, const wchar_t *wstr);

int mvwaddnwstr(WINDOW *win, int y, int x, const wchar_t *wstr, int n);

int mvwaddwstr(WINDOW *win, int y, int x, const wchar_t *wstr);

int waddnwstr(WINDOW *win, const wchar_t *wstr, int n);

int waddwstr(WINDOW *win, const wchar_t *wstr);

Description
These functions write the characters of the wide character string wstr on the
current or specified window at that window's current or specified cursor position.

These functions advance the cursor position. These functions perform special
character processing. These functions perform wrapping.

The effect is similar to building a cchar_t from the wchar_t and the background
rendition and calling wadd_wch(), once for each wchar_t character in the string.
The cursor movement specified by the mv functions occurs only once at the start
of the operation.

The addnwstr(), mvaddnwstr(), mvwaddnwstr() and waddnwstr() functions write
at most n wide characters. If n is -1, then the entire string will be added.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
add_wch(), <curses.h>

Enhanced Curses

16 z/OS V2R1.0 C Curses

add_wch()

Name
add_wch, mvadd_wch, mvwadd_wch, wadd_wch - add a complex character and
rendition to a window

Synopsis
#include <curses.h>

int add_wch(cchar_t *const wch);

int wadd_wch(WINDOW *win, cchar_t *const wch);

int mvadd_wch(int y, int x, cchar_t *const wch);

int mvwadd_wch(WINDOW *win, int y, int x, cchar_t *const wch);

Description
These functions add information to the current or specified window at the current
or specified position, and then advance the cursor. These functions perform
wrapping. These functions perform special-character processing.
v If wch refers to a spacing character, then any previous character at that location

is removed, a new character specified by wch is placed at that location with
rendition specified by wch; then the cursor advances to the next spacing
character on the screen.

v If wch refers to a non-spacing character, all previous characters at that location
are preserved, the non-spacing characters of wch are added to the spacing
complex character, and the rendition specified by wch is ignored.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
addch(), <curses.h>.

add_wchnstr()

Name
add_wchnstr, add_wchstr, mvadd_wchnstr, mvadd_wchstr, mvwadd_wchnstr,
mvwadd_wchstr, wadd_wchnstr, wadd_wchstr - add an array of complex
characters and renditions to a window

Synopsis
#include <curses.h>

int add_wchnstr(const cchar_t *wchstr, int n);

int add_wchstr(const cchar_t *wchstr);

Enhanced Curses

Chapter 5. Curses Interfaces 17

int wadd_wchnstr(WINDOW *win, const cchar_t *wchstr, int n);

int wadd_wchstr(WINDOW *win, const cchar_t *wchstr);

int mvadd_wchnstr(int y, int x, const cchar_t *wchstr, int n);

int mvadd_wchstr(int y, int x, const cchar_t *wchstr);

int mvwadd_wchnstr(WINDOW *win, int y, int x, const cchar_t *wchstr,
int n);

int mvwadd_wchstr(WINDOW *win, int y, int x, const cchar_t *wchstr);

Description
These functions write the array of cchar_t specified by wchstr into the current or
specified window starting at the current or specified cursor position.

These functions do not advance the cursor. The results are unspecified if wchstr
contains any special characters.

The functions end successfully on encountering a null cchar_t. The functions also
end successfully when they fill the current line. If a character cannot completely fit
at the end of the current line, those columns are filled with the background
character and rendition.

The add_wchnstr(), mvadd_wchnstr(), mvwadd_wchnstr() and wadd_wchnstr()
functions end successfully after writing n cchar_ts (or the entire array of cchar_ts,
if n is -1).

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h>.

attroff()

Name
attroff, attron, attrset, wattroff, wattron, wattrset - restricted window attribute
control functions

Synopsis
#include <curses.h>

int attroff(int attrs);

int attron(int attrs);

int attrset(int attrs);

int wattroff(WINDOW *win, int attrs);

Enhanced Curses

18 z/OS V2R1.0 C Curses

int wattron(WINDOW *win, int attrs);

int wattrset(WINDOW *win, int attrs);

Description
These functions manipulate the window attributes of the current or specified
window.

The attroff() and wattroff() functions turn off attrs in the current or specified
window without affecting any others.

The attron() and wattron() functions turn on attrs in the current or specified
window without affecting any others.

The attrset() and wattrset() functions set the background attributes of the current or
specified window to attrs.

It is unspecified whether these functions can be used to manipulate attributes other
than A_BLINK, A_BOLD, A_DIM, A_REVERSE, A_STANDOUT and
A_UNDERLINE.

Return Value
These functions always return either OK or 1.

Errors
No errors are defined.

See Also
attr_get(), standend(), <curses.h>.

attr_get()

Name
attr_get, attr_off, attr_on, attr_set, color_set, wattr_get, wattr_off, wattr_on,
wattr_set, wcolor_set -- window attribute control functions

Synopsis
#include <curses.h>

int attr_get(attr_t *atttrs, short *color_pair_number, void *opts);

int attr_off(attr_t attrs, void *opts);

int attr_on(attr_t attrs, void *opts);

int attr_set(attr_t attrs, short color_pair_number, void *opts);

int color_set(short color_pair_number, void *opts);

in wattr_get (WINDOW *win, attr_t *attrs, short *color_pair_number,
void *opts);

int wattr_off(WINDOW *win, attr_t attrs, void *opts);

int wattr_on(WINDOW *win, attr_t attrs, void *opts);

Curses

Chapter 5. Curses Interfaces 19

int wattr_set(WINDOW *win, attr_t attrs, short color_pair_number,
void *opts);

int wcolor_set(WINDOW *win, short color_pair_number, void *opts);

Description
These functions manipulate the attributes and color of the window rendition of the
current or specified window.

The attr_get() and wattr_get() functions obtain the current rendition of a window.
If attrs or color_pair_number is a null pointer, no information will be obtained on the
corresponding rendition information and this is not an error.

The attr_off() and wattr_off() functions turn off attrs in the current or specified
window without affecting any others.

The attr_on() and wattr_on() functions turn on attrs in the current or specified
window without affecting any others.

The attr_set() and wattr_set() functions set the window rendition of the current or
specified window to attrs and color_pair_number.

The color_set() and wcolor_set functions set the window color of the current or
specified window to color_pair_number.

Return Value
The attr_get() and wattr_get() functions return the current window attributes for
the current or specified window.

The other functions always return OK.

Errors
No errors are defined.

See Also
attroff(), <curses.h>.

baudrate()

Name
baudrate - get terminal baud rate

Synopsis
#include <curses.h>

int baudrate(void);

Description
The baudrate() function extracts the output speed of the terminal in bits per
second.

Enhanced Curses

20 z/OS V2R1.0 C Curses

Return Value
The baudrate() function returns the output speed of the terminal.

Errors
No errors are defined.

See Also
tcgetattr(), <curses.h>.

beep()

Name
beep - audible signal

Synopsis
#include <curses.h>

int beep(void);

Description
The beep() function alerts the user. It sounds the audible alarm on the terminal, or
if that is not possible, it flashes the screen (visible bell). If neither signal is possible,
nothing happens.

Return Value
The beep() function always returns OK.

Errors
No errors are defined.

Application Usage
Nearly all terminals have an audible alarm, but only some can flash the screen.

See Also
flash(), <curses.h>.

bkgd()

Name
bkgd, bkgdset, getbkgd, wbkgd, wbkgdset - turn off the previous background
attributes, OR the requested attributes into the window rendition, and set or get
background character and rendition using a single-byte character.

Synopsis
#include <curses.h>

int bkgd(chtype ch);

void bkgdset(chtype ch);

Curses

Chapter 5. Curses Interfaces 21

chtype getbkgd(WINDOW *win);

int wbkgd(WINDOW *win, chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

Description
The bkgdset() and wbkgdset() functions turn off the previous background
attributes, OR the requested attributes into the window rendition, and set the
background attributes of the current or specified window based on the information
in ch. If ch refers to a multi-column character, the results are undefined.

The bkgd() and wbkgd() functions turn off the previous background attributes, OR
the requested attributes into the window rendition, and set the background
property of the current or specified window and then apply this setting to every
character position in that window:
v The rendition of every character on the screen is changed to the new

background rendition.
v Wherever the former background character appears, it is changed to the new

background character.

The getbkgd() function extracts the specified window's background character and
rendition.

Return Value
Upon successful completion, bkgd() and wbkgd() return OK. Otherwise, they
return ERR.

The bkgdset() and wbkgdset() functions do not return a value.

Upon successful completion, getbkgd() returns the specified window's background
character and rendition. Otherwise, it returns (chtype) ERR.

bkgd()

Errors
No errors are defined.

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
<curses.h>.

Enhanced Curses

22 z/OS V2R1.0 C Curses

bkgrnd()

Name
bkgrnd, bkgrndset, getbkgrnd, wbkgrnd, wbkgrndset, wgetbkgrnd — turn off the
previous background attributes, OR the requested attributes into the window
rendition, and set or get background character and rendition using a complex
complex character

Synopsis
#include <curses.h>

int bkgrnd(const cchar_t *wch);

void bkgrndset(const cchar_t *wch);

int getbkgrnd(cchar_t *wch);

int wbkgrnd(WINDOW *win, const cchar_t *wch);

void wbkgrndset(WINDOW *win, const cchar_t *wch);

int wgetbkgrnd(WINDOW *win, cchar_t *wch);

Description
The bkgrndset() and wbkgrndset() functions turn off the previous background
attributes, OR the requested attributes into the window rendition, and set the
background property of the current or specified window based on the information
in wch.

The bkgrnd() and wbkgrnd() functions turn off the previous background attributes,
OR the requested attributes into the window rendition, and set the background
property of the current or specified window and then apply this setting to every
character position in that window:
v The rendition of every character on the screen is changed to the new

background rendition.
v Wherever the former background character appears, it is changed to the new

background character.

If wch refers to a non-spacing complex character for bkgrnd(), bkgrndset(),
wbkgrnd() and wbkgrndset(), then wch is added to the existing spacing complex
character that is the background character. If wch refers to a multi-column
character, the results are unspecified.

The getbkgrnd() and wgetbkgrnd() functions store, into the area pointed to by wch,
the value of the window's background character and rendition.

Return Value
The bkgrndset() and wbkgrndset() functions do not return a value.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Enhanced Curses

Chapter 5. Curses Interfaces 23

See Also
<curses.h>.

border()

Name
border, wborder - draw borders from single-byte characters and renditions

Synopsis
#include <curses.h>

int border(chtype ls, chtype rs, chtype ts, chtype bs, chtype tl,
chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs, chtype ts, chtype bs,
chtype tl, chtype tr, chtype bl, chtype br);

Description
The border() and wborder() functions draw a border around the edges of the
current or specified window. These functions do not advance the cursor position.
These functions do not perform special character processing. These functions do
not perform wrapping.

The arguments in the left-hand column of the following table contain single-byte
characters with renditions, which have the following uses in drawing the border:

Argument Name Usage Default Value

ls Starting-column side ACS_VLINE

rs Ending-column side ACS_VLINE

ts First-line side ACS_HLINE

bs Last-line side ACS_HLINE

tl Corner of the first line and the
starting column

ACS_ULCORNER

tr Corner of the first line and the
ending column

ACS_URCORNER

bl Corner of the last line and the
starting column

ACS_BLCORNER

br Corner of the last line and the
ending column

ACS_BRCORNER

If the value of any argument in the left-hand column is 0, then the default value in
the right-hand column is used. If the value of any argument in the left-hand
column is a multi-column character, the results are undefined.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Enhanced Curses

24 z/OS V2R1.0 C Curses

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
border_set(), box(), hline(), <curses.h>.

border_set()

Name
border_set, wborder_set, - draw borders from complex characters and renditions

Synopsis
#include <curses.h>

int border_set(const cchar_t *ls, const cchar_t *rs, const cchar_t *ts,
const cchar_t *bs, const cchar_t *tl, const cchar_t *tr,
const cchar_t *bl, const cchar_t *br);

int wborder_set(WINDOW *win, const cchar_t *ls, const cchar_t *rs,
const cchar_t *ts, const cchar_t *bs,
const cchar_t *tl, const cchar_t *tr,
const cchar_t *bl, const cchar_t *br);

Description
The border_set() and wborder_set() functions draw a border around the edges of
the current or specified window. These functions do not advance the cursor
position. These functions do not perform special character processing. These
functions do not perform wrapping.

The arguments in the left-hand column of the following table contain spacing
complex characters with renditions, which have the following uses in drawing the
border:

Argument Name Usage Default Value

ls Starting-column side WACS_VLINE

rs Ending-column side WACS_VLINE

ts First-line side WACS_HLINE

bs Last-line side WACS_HLINE

tl Corner of the first line and the
starting column

WACS_ULCORNER

tr Corner of the first line and the
ending column

WACS_URCORNER

bl Corner of the last line and the
starting column

WACS_BLCORNER

br Corner of the last line and the
ending column

WACS_BRCORNER

Enhanced Curses

Chapter 5. Curses Interfaces 25

If the value of any argument in the left-hand column is a null pointer, then the
default value in the right-hand column is used. If the value of any argument in the
left-hand column is a multi-column character, the results are undefined.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
box_set(), hline_set(), <curses.h>.

box()

Name
box - draw borders from single-byte characters and renditions

Synopsis
#include <curses.h>

int box(WINDOW *win, chtype verch, chtype horch);

Description
The box() function draws a border around the edges of the specified window. This
function does not advance the cursor position. This function does not perform
special character processing. This function does not perform wrapping.

The function box (win, verch, horch) has an effect equivalent to:
wborder(win, verch, verch, horch, horch, 0, 0, 0, 0);

Return Value
Upon successful completion, box() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
border(), box_set(), hline(), <curses.h>.

Enhanced Curses

26 z/OS V2R1.0 C Curses

box_set()

Name
box_set - draw borders from complex characters and renditions

Synopsis
#include <curses.h>

int box_set(WINDOW *win, const cchar_t *verch, const cchar_t *horch);

Description
The box_set() function draws a border around the edges of the specified window.
This function does not advance the cursor position. This function does not perform
special character processing. This function does not perform wrapping.

The function box_set(win, verch, horch) has an effect equivalent to:
wborder_set(win, verch, verch, horch, horch,

NULL, NULL, NULL, NULL);

Return Value
Upon successful completion, this function returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
border_set(), hline_set(), <curses.h>.

can_change_color()

Name
can_change_color, color_content, has_colors, init_color, init_pair, start_color,
pair_content — color manipulation functions

Synopsis
#include <curses.h>

bool can_change_color(void);

int color_content(short color, short *red, short *green, short *blue);

int COLOR_PAIR(int n);

bool has_colors(void);

int init_color(short color, short red, short green, short blue);

int init_pair(short pair, short f, short b);

int pair_content(short pair, short *f, short *b);

int PAIR_NUMBER(int value);

int start_color(void);

Enhanced Curses

Chapter 5. Curses Interfaces 27

extern int COLOR_PAIRS;

extern int COLORS;

Description
These functions manipulate color on terminals that support color.

Querying Capabilities
The has_colors() function indicates whether the terminal is a color terminal. The
can_change_color() function indicates whether the terminal is a color terminal on
which colors can be redefined.

Initialization
The start_color() function must be called in order to enable use of colors and
before any color manipulation function is called. The function initializes eight basic
colors (black, blue, green, cyan, red, magenta, yellow, and white) that can be
specified by the color macros (such as COLOR_BLACK) defined in <curses.h>. The
initial appearance of these eight colors is not specified.

The function also initializes two global external variables:
v COLORS defines the number of colors that the terminal supports. (See Color

Identification below.) If COLORS is 0, the terminal does not support redefinition
of colors (and can_change_color() will return FALSE).

v COLOR_PAIRS defines the maximum number of color-pairs that the terminal
supports. (See User-Defined Color Pairs below.)

The start_color() function also restores the colors on the terminal to
terminal-specific initial values. The initial background color is assumed to be black
for all terminals.

Color Identification
The init_color() function redefines color number color, on terminals that support
the redefinition of colors, to have the red, green, and blue intensity components
specified by red, green, and blue, respectively. Calling init_color() also changes all
occurrences of the specified color on the screen to the new definition.

The color_content() function identifies the intensity components of color number
color. It stores the red, green, and blue intensity components of this color in the
addresses pointed to by red, green, and blue, respectively.

For both functions, the color argument must be in the range from 0 to and
including COLORS-1. Valid intensity values range from 0 (no intensity component)
up to and including 1000 (maximum intensity in that component).

User-Defined Color Pairs
Calling init_pair() defines or redefines color-pair number pair to have foreground
color f and background color b. Calling init_pair() changes any characters that were
displayed in the color pair's old definition to the new definition and refreshes the
screen.

After defining the color pair, the macro COLOR_PAIR(n) returns the value of color
pair n. This value is the color attribute as it would be extracted from a chtype.
Conversely, the macro PAIR_NUMBER(value) returns the color pair number
associated with the color attribute value.

Enhanced Curses

28 z/OS V2R1.0 C Curses

The pair_content() function retrieves the component colors of a color-pair number
pair. It stores the foreground and background color numbers in the variables
pointed to by f and b, respectively.

With init_pair() and pair_content(), the value of pair must be in a range from 0 to
and including COLOR_PAIRS-1. (There may be an implementation-specific lower
limit on the valid value of pair, but any such limit is at least 63.) Valid values for f
and b are the range from 0 to and including COLORS-1.

Return Value
The has_colors() function returns TRUE if the terminal can manipulate colors;
otherwise, it returns FALSE.

The can_change_color() function returns TRUE if the terminal supports colors and
can change their definitions; otherwise, it returns FALSE.

Upon successful completion, the other functions return OK; otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
To use these functions, start_color() must be called, usually right after initscr().

The can_change_color() and has_colors() functions facilitate writing
terminal-independent programs. For example, a programmer can use them to
decide whether to use color or some other video attribute.

On color terminals, a typical value of COLORS is 8 and the macros such as
COLOR_BLACK return a value within the range from 0 to and including 7.
However, applications cannot rely on this to be true.

See Also
attroff(), delscreen(), <curses.h>.

cbreak()

Name
cbreak, nocbreak, noraw, raw - input mode control functions

Synopsis
#include <curses.h>

int cbreak(void);

int nocbreak(void);

int noraw(void);

int raw(void);

Enhanced Curses

Chapter 5. Curses Interfaces 29

Description
The cbreak() function sets the input mode for the current terminal to cbreak mode
and overrides a call to raw().

The nocbreak() function sets the input mode for the current terminal to Cooked
Mode without changing the state of ISIG and IXON.

The noraw() function sets the input mode for the current terminal to Cooked Mode
and sets the ISIG and IXON flags.

The raw() function sets the input mode for the current terminal to Raw Mode.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
If the application is not certain what the input mode of the process was at the time
it called initscr(), it should use these functions to specify the desired input mode.

See Also
<curses.h>.

chgat()

Name
chgat, mvchgat, mvwchgat, wchgat - change renditions of characters in a window

Synopsis
#include <curses.h>

int chgat(int n, attr_t attr, short color, const void *opts);

int mvchgat(int y, int x, int n, attr_t attr, short color,
const void *opts);

int mvwchgat(WINDOW *win, int y, int x, int n, attr_t attr,
short color, const void *opts);

int wchgat(WINDOW *win, int n, attr_t attr, short color,
const void *opts);

Description
These functions change the renditions of the next n characters in the current or
specified window (or of the remaining characters on the line, if n is -1), starting at
the current or specified cursor position. The attributes and colors are specified by
attr and color as for setcchar().

These functions do not update the cursor. These functions do not perform
wrapping.

Curses

30 z/OS V2R1.0 C Curses

A value of n that is greater than the remaining characters on a line is not an error.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
setcchar(), <curses.h>

clear()

Name
clear, erase, wclear, werase - clear a window

Synopsis
#include <curses.h>

int clear(void);

int erase(void);

int wclear(WINDOW *win);

int werase(WINDOW *win);

Description
The clear(), erase(), wclear() and werase() functions clear every position in the
current or specified window.

The clear() and wclear() functions also achieve the same effect as calling clearok(),
so that the window is cleared completely on the next call to wrefresh() for the
window and is redrawn in its entirety.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
clearok(), doupdate(), <curses.h>.

Enhanced Curses

Chapter 5. Curses Interfaces 31

clearok()

Name
clearok, idlok, leaveok, scrollok, setscrreg, wsetscrreg - terminal output control
functions

Synopsis
#include <curses.h>

int clearok(WINDOW *win, bool bf);

int idlok(WINDOW *win, bool bf);

int leaveok(WINDOW *win, bool bf);

int scrollok(WINDOW *win, bool bf);

int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

Description
These functions set options that deal with output within Curses.

The clearok() function assigns the value of bf to an internal flag in the specified
window that governs clearing of the screen during a refresh. If, during a refresh
operation on the specified window, the flag in curscr is TRUE or the flag in the
specified window is TRUE, then the implementation clears the screen, redraws it in
its entirety, and sets the flag to FALSE in curscr and in the specified window. The
initial state is unspecified.

The idlok() function specifies whether the implementation may use the hardware
insert-line, delete-line, and scroll features of terminals so equipped. If bf is TRUE,
use of these features is enabled. If bf is FALSE, use of these features is disabled and
lines are instead redrawn as required. The initial state is FALSE.

The leaveok() function controls the cursor position after a refresh operation. If bf is
TRUE, refresh operations on the specified window may leave the terminal's cursor
at an arbitrary position. If bf is FALSE, then at the end of any refresh operation, the
terminal's cursor is positioned at the cursor position contained in the specified
window. The initial state is FALSE.

The scrollok() function controls the use of scrolling. If bf is TRUE, then scrolling is
enabled for the specified window. If bf is FALSE, scrolling is disabled for the
specified window. The initial state is FALSE.

The setscrreg() and wsetscrreg() functions define a software scrolling region in the
current or specified window. The top and bot arguments are the line numbers of the
first and last line defining the scrolling region. (Line 0 is the top line of the
window.) If this option and scrollok() are enabled, an attempt to move off the last
line of the margin causes all lines in the scrolling region to scroll one line in the
direction of the first line. Only characters in the window are scrolled. If a software
scrolling region is set and scrollok() is not enabled, an attempt to move off the last
line of the margin does not reposition any lines in the scrolling region.

Curses

32 z/OS V2R1.0 C Curses

Return Value
Upon successful completion, setscrreg() and wsetscrreg() return OK. Otherwise,
they return ERR.

The other functions always return OK.

Errors
No errors are defined.

Application Usage
The only reason to enable the idlok() feature is to use scrolling to achieve the
visual effect of motion of a partial window, such as for a screen editor. In other
cases, the feature can be visually annoying.

The leaveok() option provides greater efficiency for applications that do not use the
cursor.

See Also
clear(), delscreen(), doupdate(), scrl(), <curses.h>

clrtobot()

Name
clrtobot, wclrtobot - clear from cursor to end of window

Synopsis
#include <curses.h>

int clrtobot(void);

int wclrtobot(WINDOW *win);

Description
The clrtobot() and wclrtobot() functions erase all lines following the cursor in the
current or specified window, and erase the current line from the cursor to the end
of the line, inclusive.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
doupdate(), <curses.h>.

Curses

Chapter 5. Curses Interfaces 33

clrtoeol()

Name
clrtoeol, wclrtoeol - clear from cursor to end of line

Synopsis
#include <curses.h>

int clrtoeol(void);

int wclrtoeol(WINDOW *win);

Description
The clrtoeol() and wclrtoeol() functions erase the current line from the cursor to the
end of the line, inclusive, in the current or specified window.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
doupdate(), <curses.h>.

color_content()

Name
color_content - identify red/green/blue intensity of a color

Synopsis
#include <curses.h>

int color_content(short color, short *red, short *green, short *blue);

Description
Refer to can_change_color()

COLOR_PAIRS

Name
COLOR_PAIRS, COLORS - external variables for color support

Synopsis
#include <curses.h>

extern int COLOR_PAIRS;

extern int COLORS;

Curses

34 z/OS V2R1.0 C Curses

Description
Refer to can_change_color().

COLS

Name
COLS - number of columns on terminal screen

Synopsis
#include <curses.h>

extern int COLS;

Description
The external variable COLS indicates the number of columns on the terminal
screen.

See Also
initscr(), <curses.h>.

copywin()

Name
copywin - copy a region of a window

Synopsis
#include <curses.h>

int copywin(const WINDOW *srcwin, WINDOW *dstwin, int sminrow,
int smincol, int dminrow, int dmincol, int dmaxrow,
int dmaxcol, int overlay);

Description
The copywin() function provides a finer granularity of control over the overlay()
and overwrite() functions. As in the prefresh() function, a rectangle is specified in
the destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the
upper-left-corner coordinates of the source window, (sminrow, smincol). If overlay is
TRUE, then copying is non-destructive, as in overlay(). If overlay is FALSE, then
copying is destructive, as in overwrite().

Return Value
Upon successful completion, copywin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
newpad(), overlay(), <curses.h>.

Enhanced Curses

Chapter 5. Curses Interfaces 35

curscr

Name
curscr - current window

Synopsis
#include <curses.h>

extern WINDOW *curscr;

Description
The external variable curscr points to an internal data structure. It can be specified
as an argument to certain functions, such as clearok(), where permitted in this
specification.

See Also
clearok(), <curses.h>.

curs_set()

Name
curs_set - set the cursor mode

Synopsis
#include <curses.h>

int curs_set(int visibility);

Description
The curs_set() function sets the appearance of the cursor based on the value of
visibility:

Value of visibility Appearance of Cursor

0 Invisible

1 Terminal-specific normal mode

2 Terminal-specific high visibility mode

The terminal does not necessarily support all the above values.

Return Value
If the terminal supports the cursor mode specified by visibility, then curs_set()
returns the previous cursor state. Otherwise, the function returns ERR.

Errors
No errors are defined.

See Also
<curses.h>.

Enhanced Curses

36 z/OS V2R1.0 C Curses

cur_term()

Name
cur_term - current terminal information

Synopsis
#include <term.h>

extern TERMINAL *cur_term;

Description
The external variable cur_term identifies the record in the terminfo database
associated with the terminal currently in use.

See Also
set_curterm(), tigetflag(), <term.h>.

def_prog_mode()

Name
def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode - save/restore
program or shell terminal modes

Synopsis
#include <curses.h>

int def_prog_mode(void);

int def_shell_mode(void);

int reset_prog_mode(void);

int reset_shell_mode(void);

Description
The def_prog_mode() function saves the current terminal modes as the “program”
(in Curses) state for use by reset_prog_mode().

The def_shell_mode() function saves the current terminal modes as the “shell” (not
in Curses) state for use by reset_shell_mode().

The reset_prog_mode() function restores the terminal to the “program” (in Curses)
state.

The reset_shell_mode() function restores the terminal to the “shell” (not in Curses)
state.

These functions affect the mode of the terminal associated with the current screen.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Enhanced Curses

Chapter 5. Curses Interfaces 37

Errors
No errors are defined.

Application Usage
The initscr() function achieves the effect of calling def_shell_mode() to save the
prior terminal settings so they can be restored during the call to endwin(), and of
calling def_prog_mode() to specify an initial definition of the program terminal
mode.

Applications normally do not need to refer to the shell terminal mode.
Applications may find it useful to save and restore the program terminal mode.

See Also
doupdate(), endwin(), initscr(), <curses.h>.

delay_output()

Name
delay_output - delay output

Synopsis
#include <curses.h>

int delay_output(int ms);

Description
On terminals that support pad characters, delay_output() pauses the output for at
least ms milliseconds. Otherwise, the length of the delay is unspecified.

Return Value
Upon successful completion, delay_output() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
Whether or not the terminal supports pad characters, the delay_output() function
is not a precise method of timekeeping.

See Also
napms(), <curses.h>.

delch()

Name
delch, mvdelch, mvwdelch, wdelch - delete a character from a window.

Curses

38 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int delch(void);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

int wdelch(WINDOW *win);

Description
These functions delete the character at the current or specified position in the
current or specified window. This function does not change the cursor position.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h>.

del_curterm()

Name
del_curterm, restartterm, set_curterm, setupterm - interfaces to the terminfo
database

Synopsis
#include <term.h>

int del_curterm(TERMINAL *oterm);

int restartterm(char *term, int fildes, int *errret);

TERMINAL *set_curterm(TERMINAL *nterm);

int setupterm(char *term, int fildes, int *errret);

extern TERMINAL *cur_term;

Description
These functions retrieve information from the terminfo database.

To gain access to the terminfo database, setupterm() must be called first. It is
automatically called by initscr() and newterm(). The setupterm() function initializes
the other functions to use the terminfo record for a specified terminal (which
depends on whether use_env() was called). It sets the cur_term external variable to
a TERMINAL structure that contains the record from the terminfo database for the
specified terminal.

Curses

Chapter 5. Curses Interfaces 39

The terminal type is the character string term; if term is a null pointer, the
environment variable TERM is used. If TERM is not set or if its value is an empty
string, then "unknown" is used as the terminal type. The application must set fildes
to a file descriptor, open for output, to the terminal device, before calling
setupterm(). If errret is not null, the integer it points to is set to one of the
following values to report the function outcome:

-1 The terminfo database was not found (function fails).

0 The entry for the terminal was not found in terminfo (function fails).

1 Success.

If setupterm() detects an error and errret is a null pointer, setupterm() writes a
diagnostic message and exits.

A simple call to setupterm() that uses all the defaults and sends the output to
stdout is:
setupterm((char *)0, fileno(stdout), (int *)0);

The set_curterm() function sets the variable cur_term to nterm, and makes all of the
terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm() function frees the space pointed to by oterm and makes it
available for further use. If oterm is the same as cur_term, references to any of the
terminfo boolean, numeric, and string variables thereafter may refer to invalid
memory locations until setupterm() is called again.

The restartterm() function assumes a previous call to setupterm() (perhaps from
initscr() or newterm()). It lets the application specify a different terminal type in
term and updates the information returned by baudrate() based on fildes, but does
not destroy other information created by initscr(), newterm() or setupterm().

Return Value
Upon successful completion, set_curterm() returns the previous value of cur_term.
Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
An application would call setupterm() if it required access to the terminfo database
but did not otherwise need to use Curses.

See Also
baudrate(), erasechar(), has_ic(), longname(), putc(), termattrs(), termname(), tgetent(),
tigetflag(), use_env(), <term.h>.

Enhanced Curses

40 z/OS V2R1.0 C Curses

deleteln()

Name
deleteln, wdeleteln - delete lines in a window

Synopsis
#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW *win);

Description
The deleteln() and wdeleteln() functions delete the line containing the cursor in the
current or specified window and move all lines following the current line one line
toward the cursor. The last line of the window is cleared. The cursor position does
not change.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
insdelln(), <curses.h>.

delscreen()

Name
delscreen - free storage associated with a screen

Synopsis
#include <curses.h>

void delscreen(SCREEN *sp);

Description
The delscreen() function frees storage associated with the SCREEN pointed to by
sp.

Return Value
The delscreen() function does not return a value.

Errors
No errors are defined.

See Also
endwin(), initscr(), <curses.h>.

Curses

Chapter 5. Curses Interfaces 41

delwin()

Name
delwin - delete a window

Synopsis
#include <curses.h>

int delwin(WINDOW *win);

Description
The delwin() function deletes win, freeing all memory associated with it. The
application must delete subwindows before deleting the main window.

Return Value
Upon successful completion, delwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
derwin(), dupwin(), <curses.h>.

derwin()

Name
derwin, newwin, subwin - window creation functions

Synopsis
#include <curses.h>

WINDOW *derwin(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin_x);

WINDOW *newwin(int nlines, int ncols, int begin_y, int begin_x);

WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin_x);

Description
The derwin() function is the same as subwin(), except that begin_y and begin_x are
relative to the origin of the window orig rather than absolute screen positions.

The newwin() function creates a new window with nlines lines and ncols columns,
positioned so that the origin is (begin_y, begin_x). If nlines is zero, it defaults to
LINES - begin_y; if ncols is zero, it defaults to COLS - begin_x.

The subwin() function creates a new window with nlines lines and ncols columns,
positioned so that the origin is at (begin_y, begin_x). (This position is an absolute
screen position, not a position relative to the window orig.) If any part of the new
window is outside orig, the function fails and the window is not created.

Curses

42 z/OS V2R1.0 C Curses

Return Value
Upon successful completion, these functions return a pointer to the new window.
Otherwise, they return a null pointer.

Errors
No errors are defined.

Application Usage
Before performing the first refresh of a subwindow, portable applications should
call touchwin() or touchline() on the parent window.

Each window maintains internal descriptions of the screen image and status. The
screen image is shared among all windows in the window hierarchy. Refresh
operations rely on information on what has changed within a window, which is
private to each window.

Refreshing a window, when updates were made to a different window, may fail to
perform needed updates because the windows do not share this information.

A new full-screen window is created by calling:
newwin(0, 0, 0, 0);

See Also
delwin(), is_linetouched(), doupdate(), <curses.h>.

doupdate()

Name
doupdate, refresh, wnoutrefresh, wrefresh - refresh windows and lines

Synopsis
#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW *win);

int wrefresh(WINDOW *win);

Description
The refresh() and wrefresh() functions refresh the current or specified window. The
functions position the terminal's cursor at the cursor position of the window,
except that if the leaveok() mode has been enabled, they may leave the cursor at
an arbitrary position.

The wnoutrefresh() function determines which parts of the terminal may need
updating. The doupdate() function sends to the terminal the commands to perform
any required changes.

Curses

Chapter 5. Curses Interfaces 43

Return Value
Upon successful completion, these functions return OK. Otherwise they return
ERR.

Errors
No errors are defined.

Application Usage
Refreshing an entire window is typically more efficient than refreshing several
subwindows separately. An efficient sequence is to call wnoutrefresh() on each
subwindow that has changed, followed by a call to doupdate(), which updates the
terminal.

The refresh() or wrefresh() function (or wnoutrefresh() followed by doupdate())
must be called to send output to the terminal, as other Curses functions merely
manipulate data structures.

See Also
clearok(), redrawwin(), <curses.h>.

dupwin()

Name
dupwin - duplicate a window

Synopsis
#include <curses.h>

WINDOW *dupwin(WINDOW *win);

Description
The dupwin() function creates a duplicate of the window win.

Return Value
Upon successful completion, dupwin() returns a pointer to the new window.
Otherwise, it returns a null pointer.

Errors
No errors are defined.

See Also
derwin(), doupdate(), <curses.h>.

echo()

Name
echo, noecho -- enable/disable terminal echo

Curses

44 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int echo(void);

int noecho(void);

Description
The echo() function enables Echo mode for the current screen. The noecho()
function disables Echo mode for the current screen. Initially, curses software Echo
mode for the current screen is enabled and hardware echo mode of the tty driver
is disabled. echo() and noecho() control software echo only. Hardware echo must
remain disabled for the duration of the application, else the behavior is undefined.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
getch(), <curses.h>.

echochar()

Name
echochar, wechochar - echo single-byte character and rendition to a window and
refresh

Synopsis
#include <curses.h>

int echochar(const chtype ch);

int wechochar(WINDOW *win, const chtype ch);

Description
The echochar() function is equivalent to a call to addch() followed by a call to
refresh().

The wechochar() function is equivalent to a call to waddch() followed by a call to
wrefresh().

Return Value
Upon successful completion, these functions return OK. Otherwise they return
ERR.

Errors
No errors are defined.

Curses

Chapter 5. Curses Interfaces 45

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
addch(), doupdate(), echo_wchar(), <curses.h>.

echo_wchar()

Name
echo_wchar, wecho_wchar - write a complex character and immediately refresh the
window

Synopsis
#include <curses.h>

int echo_wchar(const cchar_t *wch);

int wecho_wchar(WINDOW *win, const cchar_t *wch);

Description
The echo_wchar() function is equivalent to calling add_wch() and then calling
refresh().

The wecho_wchar() function is equivalent to calling wadd_wch() and then calling
wrefresh().

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
addch(), add_wch(), doupdate(), <curses.h>.

endwin()

Name
endwin - suspend Curses session

Synopsis
#include <curses.h>

int endwin(void);

Enhanced Curses

46 z/OS V2R1.0 C Curses

Description
The endwin() function restores the terminal after Curses activity by at least
restoring the saved shell terminal mode, flushing any output to the terminal and
moving the cursor to the first column of the last line of the screen. Refreshing a
window resumes program mode. The application must call endwin() for each
terminal being used before exiting. If newterm() is called more than once for the
same terminal, the first screen created must be the last one for which endwin() is
called.

Return Value
Upon successful completion, endwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The endwin() function does not free storage associated with a screen, so delscreen()
should be called after endwin() if a particular screen is no longer needed.

To leave Curses mode temporarily, portable applications should call endwin().
Subsequently, to return to Curses mode, they should call doupdate(), refresh() or
wrefresh().

See Also
delscreen(), doupdate(), initscr(), isendwin(), <curses.h>.

erase()

Name
erase, werase - clear a window

Synopsis
#include <curses.h>

int erase(void);

int werase(WINDOW *win);

Description
Refer to clear().

erasechar()

Name
erasechar, erasewchar, killchar, killwchar - terminal environment query functions

Synopsis
#include <curses.h>

char erasechar(void);

Curses

Chapter 5. Curses Interfaces 47

int erasewchar(wchar_t *ch);

char killchar(void);

int killwchar(wchar_t *ch);

Description
The erasechar() function returns the current erase character. The erasewchar()
function stores the current erase character in the object pointed to by ch. If no erase
character has been defined, the function will fail and the object pointed to by ch
will not be changed.

The killchar() function returns the current line kill character. The killwchar()
function stores the current line kill character in the object pointed to by ch. If no
line kill character has been defined, the function will fail and the object pointed to
by ch will not be changed.

Return Value
The erasechar() function returns the erase character and killchar() returns the line
kill character. The return value is unspecified when these characters are multi-byte
characters.

Upon successful completion, erasewchar() and killwchar() return OK. Otherwise,
they return ERR.

Errors
No errors are defined.

Application Usage
The erasechar() and killchar() functions are only guaranteed to operate reliably on
character sets in which each character fits into a single byte, whose attributes can
be expressed using only constants with the A_ prefix. Moreover, they do not
reliably indicate cases in which when the erase or line kill character, respectively,
has not been defined. The erasewchar() and killwchar() functions overcome these
limitations.

See Also
clearok(), delscreen(), tcgetattr(), <curses.h>.

filter()

Name
filter - disable use of certain terminal capabilities

Synopsis
#include <curses.h>

void filter(void);

Curses

48 z/OS V2R1.0 C Curses

Description
The filter() function changes the algorithm for initializing terminal capabilities that
assume that the terminal has more than one line. A subsequent call to initscr() or
newterm() performs the following additional actions:
v Disable use of clear, cud, cud1, cup, cuu1 and vpa
v Set the value of the home string to the value of the cr string
v Set lines equal to 1.

Any call to filter() must precede the call to initscr() or newterm().

Return Value
The filter() function does not return a value.

Errors
No errors are defined.

See Also
initscr(), <curses.h>.

flash()

Name
flash - flash the screen

Synopsis
#include <curses.h>

int flash(void);

Description
The flash() function alerts the user. It flashes the screen, or if that is not possible, it
sounds the audible alarm on the terminal. If neither signal is possible, nothing
happens.

Return Value
The flash() function always returns OK.

Errors
No errors are defined.

Application Usage
Nearly all terminals have an audible alarm, but only some can flash the screen.

See Also
beep(), <curses.h>

Enhanced Curses

Chapter 5. Curses Interfaces 49

flushinp()

Name
flushinp - discard input

Synopsis
#include <curses.h>

int flushinp(void);

Description
The flushinp() function discards (flushes) any characters in the input buffer
associated with the current screen.

Return Value
The flushinp() function always returns OK.

Errors
No errors are defined.

See Also
<curses.h>.

getbegyx()

Name
getbegyx, getmaxyx, getparyx, getyx - get cursor and window coordinates

Synopsis
#include <curses.h>

void getbegyx(WINDOW *win, int y, int x);

void getmaxyx(WINDOW *win, int y, int x);

void getparyx(WINDOW *win, int y, int x);

void getyx(WINDOW *win, int y, int x);

Description
The getyx() macro stores the cursor position of the specified window in y and x.

The getparyx() macro, if the specified window is a subwindow, stores in y and x
the coordinates of the window's origin relative to its parent window. Otherwise, -1
is stored in y and x.

The getbegyx() macro stores the absolute screen coordinates of the specified
window's origin in y and x.

The getmaxyx() macro stores the number of rows of the specified window in y and
stores the window's number of columns in x.

Curses

50 z/OS V2R1.0 C Curses

Return Value
No return values are defined.

Errors
No errors are defined.

Application Usage
These interfaces are macros and ‘&’ cannot be used before the y and x arguments.
Traditional implementations have often defined the following macros:
void getbegx(WINDOW *win, int x);
void getbegy(WINDOW *win, int y);
void getmaxx(WINDOW *win, int x);
void getmaxy(WINDOW *win, int y);
void getparx(WINDOW *win, int x);
void getpary(WINDOW *win, int y);

Although getbegyx(), getmaxyx() and getparyx() provide the required functionality,
this does not preclude applications from defining these macros for their own use.
For example, to implement void getbegx(WINDOW *win, int x); the macro would
be

#define getbegx(_win,_x); /
{ /

int _y; /
/

getbegyx(_win,_y,_x);
}

See Also
<curses.h>

getbkgd()

Name
getbkgd - get background character and rendition using a single-byte character

Synopsis
#include <curses.h>

chtype getbkgd(WINDOW *win);

Description
Refer to bkgd().

getbkgrnd()

Name
getbkgrnd - get background character and rendition

Synopsis
#include <curses.h>

int getbkgrnd(cchar_t *ch);

Curses

Chapter 5. Curses Interfaces 51

Description
Refer to bkgrnd().

getcchar()

Name
getcchar - get a wide character string and rendition from a cchar_t

Synopsis
#include <curses.h>

int getcchar(const cchar_t *wcval, wchar_t *wch, attr_t *attrs,
short *color_pair, void *opts);

Description
When wch is not a null pointer, the getcchar() function extracts information from a
cchar_t defined by wcval, stores the character attributes in the object pointed to by
attrs, stores the color pair in the object pointed to by color_pair, and stores the wide
character string referenced by wcval into the array pointed to by wch.

When wch is a null pointer, getcchar() obtains the number of wide characters in the
object pointed to by wcval and does not change the objects pointed to by attrs or
color_pair.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
When wch is a null pointer, getcchar() returns the number of wide characters
referenced by wcval, including the null terminator.

When wch is not a null pointer, getcchar() returns OK upon successful completion,
and ERR otherwise.

Errors
No errors are defined.

Application Usage
The wcval argument may be a value generated by a call to setcchar() or by a
function that has a cchar_t output argument. If wcval is constructed by any other
means, the effect is unspecified.

See Also
attroff(), can_change_color(), setcchar(), <curses.h>.

getch()

Name
getch, wgetch, mvgetch, mvwgetch - get a single-byte character from the terminal

Enhanced Curses

52 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int getch(void);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

int wgetch(WINDOW *win);

Description
These functions read a single-byte character from the terminal associated with the
current or specified window. The results are unspecified if the input is not a
single-byte character. If keypad() is enabled, these functions respond to the
pressing of a function key by returning the corresponding KEY_ value defined in
<curses.h>.

If echoing is enabled, then the character is echoed as though it were provided as
an input argument to addch(), except for the following characters:

<backspace>,
<left-arrow> and
the current erase
character:

The input is interpreted and then the character at the resulting cursor
position is deleted as though delch() were called, except that if the
cursor was originally in the first column of the line, then the user is
alerted as though beep() were called.

Function keys The user is alerted as though beep() were called. Information concerning
the function keys is not returned to the caller.

If the current or specified window is not a pad, and it has been moved or modified
since the last refresh operation, then it will be refreshed before another character is
read.

Return Value
Upon successful completion, getch(), mvgetch, mvwgetch() and wgetch() return
the single-byte character, KEY_ value, or ERR. When in the nodelay mode and no
data is available, ERR is returned.

Errors
No errors are defined.

Application Usage
Applications should not define the escape key by itself as a single-character
function.

When using these functions, nocbreak mode (nocbreak()) and echo mode (echo())
should not be used at the same time. Depending on the state of the terminal when
each character is typed, the program may produce undesirable results.

See Also
cbreak(), doupdate(), insch(), <curses.h>.

Curses

Chapter 5. Curses Interfaces 53

getmaxyx()

Name
getmaxyx - get size of a window

Synopsis
#include <curses.h>

void getmaxyx(WINDOW *win, int y, int x);

Description
Refer to getbegyx().

getnstr()

Name
getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetstr, wgetnstr - get
a multi-byte character string from the terminal

Synopsis
#include <curses.h>

int getnstr(char *str, int n);

int getstr(char *str);

int mvgetnstr(int y, int x, char *str, int n);

int mvgetstr(int y, int x, char *str);

int mvwgetnstr(WINDOW *win, int y, int x, char *str, int n);

int mvwgetstr(WINDOW *win, int y, int x, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

int wgetstr(WINDOW *win, char *str);

Description
The effect of getstr() is as though a series of calls to getch() were made, until a
newline or carriage return is received. The resulting value is placed in the area
pointed to by str. The string is then terminated with a null byte. The getnstr(),
mvgetnstr(), mvwgetnstr() and wgetnstr() functions read at most n bytes, thus
preventing a possible overflow of the input buffer. The user's erase and kill
characters are interpreted, as well as any special keys (such as function keys, home
key, clear key, and so on).

The mvgetstr() function is identical to getstr() except that it is as though it is a call
to move() and then a series of calls to getch(). The mvwgetstr() function is identical
to getstr() except it is as though a call to wmove() is made and then a series of
calls to wgetch(). The mvgetnstr() function is identical to getnstr() except that it is
as though it is a call to move() and then a series of calls to getch(). The
mvwgetnstr() function is identical to getnstr() except it is as though a call to
wmove() is made and then a series of calls to wgetch().

Enhanced Curses

54 z/OS V2R1.0 C Curses

The getnstr(), wgetnstr(), mvgetnstr() and mvwgetnstr() functions will only return
the entire multi-byte sequence associated with a character. If the array is large
enough to contain at least one character, the functions fill the array with complete
characters. If the array is not large enough to contain any complete characters, the
function fails.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
Reading a line that overflows the array pointed to by str with getstr(), mvgetstr(),
mvwgetstr() or wgetstr() causes undefined results. The use of getnstr(),
mvgetnstr(), mvwgetnstr() or wgetnstr(), respectively, is recommended.

See Also
beep(), getch(), <curses.h>.

getn_wstr()

Name
getn_wstr, get_wstr, mvgetn_wstr, mvget_wstr, mvwgetn_wstr, mvwget_wstr,
wgetn_wstr, wget_wstr - get an array of wide characters and function key codes
from a terminal

Synopsis
#include <curses.h>

int getn_wstr(wint_t *wstr, int n);

int get_wstr(wint_t *wstr);

int mvgetn_wstr(int y, int x, wint_t *wstr, int n);

int mvget_wstr(int y, int x, wint_t *wstr);

int mvwgetn_wstr(WINDOW *win, int y, int x, wint_t *wstr, int n);

int mvwget_wstr(WINDOW *win, int y, int x, wint_t *wstr);

int wgetn_wstr(WINDOW *win, wint_t *wstr, int n);

int wget_wstr(WINDOW *win, wint_t *wstr);

Description
The effect of get_wstr() is as though a series of calls to get_wch() were made, until
a newline character, end-of-line character, or end-of-file character is processed. An
end-of-file character is represented by WEOF, as defined in <wchar.h>. A newline
or end-of-line is represented as its wchar_t value. In all instances, the end of the
string is terminated by a null wchar_t. The resulting values are placed in the area
pointed to by wstr.

Curses

Chapter 5. Curses Interfaces 55

The user's erase and kill characters are interpreted and affect the sequence of
characters returned.

The effect of wget_wstr() is as though a series of calls to wget_wch() were made.

The effect of mvget_wstr() is as though a call to move() and then a series of calls to
get_wch() were made. The effect of mvwget_wstr() is as though a call to wmove()
and then a series of calls to wget_wch() were made. The effect of mvget_nwstr() is
as though a call to move() and then a series of calls to get_wch() were made. The
effect of mvwget_nwstr() is as though a call to wmove() and then a series of calls
to wget_wch() were made.

The getn_wstr(), mvgetn_wstr(), mvwgetn_wstr() and wgetn_wstr() functions read
at most n characters, letting the application prevent overflow of the input buffer.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
Reading a line that overflows the array pointed to by wstr with get_wstr(),
mvget_wstr(), mvwget_wstr() or wget_wstr() causes undefined results. The use of
getn_wstr(), mvgetn_wstr(), mvwgetn_wstr() or wgetn_wstr(), respectively, is
recommended.

These functions cannot return KEY_ values as there is no way to distinguish a
KEY_ value from a valid wchar_t value.

See Also
get_wch(), getstr(), <curses.h>, <wchar.h>.

getparyx()

Name
getparyx - get subwindow origin coordinates

Synopsis
#include <curses.h>

void getparyx(WINDOW *win, int y, int x);

Description
Refer to getbegyx().

getstr()

Name
getstr - get a multi-byte character string from the terminal

Enhanced Curses

56 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int getstr(char *str);

Description
Refer to getnstr().

get_wch()

Name
get_wch, mvget_wch, mvwget_wch, wget_wch - get a wide character from a
terminal

Synopsis
#include <curses.h>

int get_wch(wint_t *ch);

int mvget_wch(int y, int x, wint_t *ch);

int mvwget_wch(WINDOW *win, int y, int x, wint_t *ch);

int wget_wch(WINDOW *win, wint_t *ch);

Description
These functions read a character from the terminal associated with the current or
specified window. If keypad() is enabled, these functions respond to the pressing
of a function key by setting the object pointed to by ch to the corresponding KEY_
value defined in <curses.h> and returning KEY_CODE_YES.

Processing of terminal input is subject to the general rules.

If echoing is enabled, then the character is echoed as though it were provided as
an input argument to add_wch(), except for the following characters:

<backspace>,
<left-arrow> and
the current erase
character:

The input is interpreted and then the character at the resulting cursor
position is deleted as though delch() were called, except that if the
cursor was originally in the first column of the line, then the user is
alerted as though beep() were called.

Function keys The user is alerted as though beep() were called. Information concerning
the function keys is not returned to the caller.

If the current or specified window is not a pad, and it has been moved or modified
since the last refresh operation, then it will be refreshed before another character is
read.

Return Value
When these functions successfully report the pressing of a function key, they return
KEY_CODE_YES. When they successfully report a wide character, they return OK.
Otherwise, they return ERR.

Curses

Chapter 5. Curses Interfaces 57

Errors
No errors are defined.

Application Usage
Applications should not define the escape key by itself as a single-character
function.

When using these functions, nocbreak mode and echo mode should not be used at
the same time. Depending on the state of the terminal when each character is
typed, the application may produce undesirable results.

See Also
beep(), cbreak(), ins_wch(), keypad(), move(), <curses.h>, <wchar.h>.

getwin()

Name
getwin, putwin - dump window to, and reload window from, a file

Synopsis
#include <curses.h>

WINDOW *getwin(FILE *filep);

int putwin(WINDOW *win, FILE *filep);

Description
The getwin() function reads window-related data stored in the file by putwin().
The function then creates and initializes a new window using that data.

The putwin() function writes all data associated with win into the stdio stream to
which filep points, using an unspecified format. This information can be retrieved
later using getwin().

Return Value
Upon successful completion, getwin() returns a pointer to the window it created.
Otherwise, it returns a null pointer.

Upon successful completion, putwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
scr_dump(), <curses.h>.

get_wstr()

Name
get_wstr - get an array of wide characters and function key codes from a terminal

Enhanced Curses

58 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int get_wstr(wint_t *wstr);

Description
Refer to getn_wstr().

getyx()

Name
getyx - get cursor coordinates

Synopsis
#include <curses.h>

void getyx(WINDOW *win, int y, int x);

Description
Refer to getbegyx().

halfdelay()

Name
halfdelay - control input character delay mode

Synopsis
#include <curses.h>

int halfdelay(int tenths);

Description
The halfdelay() function sets the input mode for the current window to Half-Delay
Mode and specifies tenths of seconds as the half-delay interval. The tenths
argument must be in a range from 1 up to and including 255.

Return Value
Upon successful completion, halfdelay() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The application can call nocbreak() to leave Half-Delay mode.

See Also
cbreak(), <curses.h>.

Enhanced Curses

Chapter 5. Curses Interfaces 59

has_colors()

Name
has_colors - indicate whether terminal supports colors

Synopsis
#include <curses.h>

bool has_colors(void);

Description
Refer to can_change_color().

has_ic()

Name
has_ic, has_il - query functions for terminal insert and delete capability

Synopsis
#include <curses.h>

bool has_ic(void);

bool has_il(void);

Description
The has_ic() function indicates whether the terminal has insert- and
delete-character capabilities.

The has_il() function indicates whether the terminal has insert- and delete-line
capabilities, or can simulate them using scrolling regions.

Return Value
The has_ic() function returns TRUE if the terminal has insert- and delete-character
capabilities. Otherwise, it returns FALSE.

The has_il() function returns TRUE if the terminal has insert- and delete-line
capabilities. Otherwise, it returns FALSE.

Errors
No errors are defined.

Application Usage
The has_il() function may be used to determine if it would be appropriate to turn
on physical scrolling using scrollok().

See Also
<curses.h>.

Enhanced Curses

60 z/OS V2R1.0 C Curses

hline()

Name
hline, mvhline, mvvline, mvwhline, mvwvline, vline, whline, wvline - draw lines
from single-byte characters and renditions

Synopsis
#include <curses.h>

int hline(chtype ch, int n);

int mvhline(int y, int x, chtype ch, int n);

int mvvline(int y, int x, chtype ch, int n);

int mvwhline(WINDOW *win, int y, int x, chtype ch, int n);

int mvwvline(WINDOW *win, int y, int x, chtype ch, int n);

int vline(chtype ch, int n);

int whline(WINDOW *win, chtype ch, int n);

int wvline(WINDOW *win, chtype ch, int n);

Description
These functions draw a line in the current or specified window starting at the
current or specified position, using ch. The line is at most n positions long, or as
many as fit into the window.

These functions do not advance the cursor position. These functions do not
perform special character processing. These functions do not perform wrapping.

The hline(), mvhline(), mvwhline() and whline() functions draw a line proceeding
toward the last column of the same line.

The vline(), mvvline(), mvwvline() and wvline() functions draw a line proceeding
toward the last line of the window.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

hline()

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

Enhanced Curses

Chapter 5. Curses Interfaces 61

See Also
border(), box(), hline_set(), <curses.h>.

hline_set()

Name
hline_set, mvhline_set, mvvline_set, mvwhline_set, mvwvline_set, vline_set,
whline_set, wvline_set - draw lines from complex characters and renditions

Synopsis
#include <curses.h>

int hline_set(const cchar_t *wch, int n);

int mvhline_set(int y, int x, const cchar_t *wch, int n);

int mvvline_set(int y, int x, const cchar_t *wch, int n);

int mvwhline_set(WINDOW *win, int y, int x, const cchar_t *wch, int n);

int mvwvline_set(WINDOW *win, int y, int x, const cchar_t *wch, int n);

int vline_set(const cchar_t *wch, int n);

int whline_set(WINDOW *win, const cchar_t *wch, int n);

int wvline_set(WINDOW *win, cchar_t *const wch, int n);

Description
These functions draw a line in the current or specified window starting at the
current or specified position, using ch. The line is at most n positions long, or as
many as fit into the window.

These functions do not advance the cursor position. These functions do not
perform special character processing. These functions do not perform wrapping.

The hline_set(), mvhline_set(), mvwhline_set() and whline_set() functions draw a
line proceeding toward the last column of the same line.

The vline_set(), mvvline_set(), mvwvline_set() and wvline_set() functions draw a
line proceeding toward the last line of the window.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

hline_set()

See Also
border_set(), <curses.h>.

Enhanced Curses

62 z/OS V2R1.0 C Curses

idcok()

Name
idcok - enable or disable use of hardware insert- and delete-character features

Synopsis
#include <curses.h>

void idcok(WINDOW *win, bool bf);

Description
The idcok() function specifies whether the implementation may use hardware
insert- and delete-character features in win if the terminal is so equipped. If bf is
TRUE, use of these features in win is enabled. If bf is FALSE, use of these features
in win is disabled. The initial state is TRUE.

Return Value
The idcok() function does not return a value.

Errors
No errors are defined.

See Also
clearok(), doupdate(), <curses.h>.

idlok()

Name
idlok - enable or disable use of terminal insert- and delete-line features

Synopsis
#include <curses.h>

int idlok(WINDOW *win, bool bf);

Description
Refer to clearok().

immedok()

Name
immedok - enable or disable immediate terminal refresh

Synopsis
#include <curses.h>

void immedok(WINDOW *win, bool bf);

Enhanced Curses

Chapter 5. Curses Interfaces 63

Description
The immedok() function specifies whether the screen is refreshed whenever the
window pointed to by win is changed. If bf is TRUE, the window is implicitly
refreshed on each such change. If bf is FALSE, the window is not implicitly
refreshed. The initial state is FALSE.

Return Value
The immedok() function does not return a value.

Errors
No errors are defined.

Application Usage
The immedok() function is useful for windows that are used as terminal emulators.

See Also
clearok(), doupdate(), <curses.h>.

inch()

Name
inch, mvinch, mvwinch, winch - input a single-byte character and rendition from a
window

Synopsis
#include <curses.h>

chtype inch(void);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

chtype winch(WINDOW *win);

Description
These functions return the character and rendition, of type chtype, at the current or
specified position in the current or specified window.

Return Value
Upon successful completion, the functions return the specified character and
rendition. Otherwise, they return (chtype)ERR.

Errors
No errors are defined.

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

Enhanced Curses

64 z/OS V2R1.0 C Curses

See Also
<curses.h>.

inchnstr()

Name
inchnstr, inchstr, mvinchnstr, mvinchstr, mvwinchnstr, mvwinchstr, winchnstr,
winchstr - input an array of single-byte characters and renditions from a window

Synopsis
#include <curses.h>

int inchnstr(chtype *chstr, int n);

int inchstr(chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int winchstr(WINDOW *win, chtype *chstr);

Description
These functions place characters and renditions from the current or specified
window into the array pointed to by chstr, starting at the current or specified
position and ending at the end of the line.

The inchnstr(), mvinchnstr(), mvwinchnstr() and winchnstr() functions store at
most n elements from the current or specified window into the array pointed to by
chstr.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
Reading a line that overflows the array pointed to by chstr with inchstr(),
mvinchstr(), mvwinchstr() or winchstr() causes undefined results. The use of
inchnstr(), mvinchnstr(), mvwinchnstr() or winchnstr(), respectively, is
recommended.

See Also
inch(), <curses.h>.

Curses

Chapter 5. Curses Interfaces 65

init_color()

Name
init_color, init_pair - redefine specified color or color pair

Synopsis
#include <curses.h>

int init_color(short color, short red, short green, short blue);

int init_pair(short pair, short f, short b);

Description
Refer to can_change_color().

initscr()

Name
initscr, newterm - screen initialization functions

Synopsis
#include <curses.h>

WINDOW *initscr(void);

SCREEN *newterm(char *type, FILE *outfile, FILE *infile);

Description
The initscr() function determines the terminal type and initializes all
implementation data structures. The TERM environment variable specifies the
terminal type. The initscr() function also causes the first refresh operation to clear
the screen. If errors occur, initscr() writes an appropriate error message to standard
error and exits. The only functions that can be called before initscr() or newterm()
are filter(), ripoffline(), slk_init(), use_env() and the functions whose prototypes are
defined in <term.h>. Portable applications must not call initscr() twice.

The newterm() function can be called as many times as desired to attach a terminal
device. The type argument points to a string specifying the terminal type, except
that if type is a null pointer, the TERM environment variable is used. The outfile
and infile arguments are file pointers for output to the terminal and input from the
terminal, respectively. It is unspecified whether Curses modifies the buffering
mode of these file pointers. The newterm() function should be called once for each
terminal.

The initscr() function is equivalent to:
newterm(getenv("TERM"), stdout, stdin);
return stdscr;

If the current disposition for the signals SIGINT, SIGQUIT or SIGTSTP is SIGDFL,
then initscr() may also install a handler for the signal, which may remain in effect
for the life of the process or until the process changes the disposition of the signal.

The initscr() and newterm() functions initialize the cur_term external variable.

Enhanced Curses

66 z/OS V2R1.0 C Curses

initscr()

Return Value
Upon successful completion, initscr() returns a pointer to stdscr. Otherwise, it does
not return.

Upon successful completion, newterm() returns a pointer to the specified terminal.
Otherwise, it returns a null pointer.

Errors
No errors are defined.

Application Usage
A program that outputs to more than one terminal should use newterm() for each
terminal instead of initscr(). A program that needs an indication of error
conditions, so it can continue to run in a line-oriented mode if the terminal cannot
support a screen-oriented program, would also use this function.

Applications should perform any required handling of the SIGINT, SIGQUIT or
SIGTSTP signals before calling initscr().

See Also
delscreen(), doupdate(), del_curterm(), filter(), slk_attroff(), use_env(), <curses.h>.

innstr()

Name
innstr, instr, mvinnstr, mvinstr, mvwinnstr, mvwinstr, winnstr, winstr - input a
multi-byte character string from a window

Synopsis
#include <curses.h>

int innstr(char *str, int n);

int instr(char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int winnstr(WINDOW *win, char *str, int n);

int winstr(WINDOW *win, char *str);

Description
These functions place a string of characters from the current or specified window
into the array pointed to by str, starting at the current or specified position and
ending at the end of the line.

Curses

Chapter 5. Curses Interfaces 67

The innstr(), mvinnstr(), mvwinnstr() and winnstr() functions store at most n bytes
in the string pointed to by str.

The innstr(), mvinnstr(), mvwinnstr() and winnstr() functions will only store the
entire multi-byte sequence associated with a character. If the array is large enough
to contain at least one character the array is filled with complete characters. If the
array is not large enough to contain any complete characters, the function fails.

Return Value
Upon successful completion, instr(), mvinstr(), mvwinstr() and winstr() return OK.

Upon successful completion, innstr(), mvinnstr(), mvwinnstr() and winnstr() return
the number of characters actually read into the string. Otherwise, all these
functions return ERR.

Errors
No errors are defined.

Application Usage
Since multi-byte characters may be processed, there might not be a one-to-one
correspondence between the number of column positions on the screen and the
number of bytes returned.

These functions do not return rendition information.

Reading a line that overflows the array pointed to by str with instr(), mvinstr(),
mvwinstr() or winstr() causes undefined results. The use of innstr(), mvinnstr(),
mvwinnstr() or winnstr(), respectively, is recommended.

See Also
<curses.h>.

innwstr()

Name
innwstr, inwstr, mvinnwstr, mvinwstr, mvwinnwstr, mvwinwstr, winnwstr,
winwstr - input a string of wide characters from a window

Synopsis
#include <curses.h>

int innwstr(wchar_t *wstr, int n);

int inwstr(wchar_t *wstr);

int mvinnwstr(int y, int x, wchar_t *wstr, int n);

int mvinwstr(int y, int x, wchar_t *wstr);

int mvwinnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

int mvwinwstr(WINDOW *win, int y, int x, wchar_t *wstr);

Enhanced Curses

68 z/OS V2R1.0 C Curses

int winnwstr(WINDOW *win, wchar_t *wstr, int n);

int winwstr(WINDOW *win, wchar_t *wstr);

Description
These functions place a string of wchar_t characters from the current or specified
window into the array pointed to by wstr starting at the current or specified cursor
position and ending at the end of the line.

These functions will only store the entire wide character sequence associated with
a spacing complex character. If the array is large enough to contain at least one
complete spacing complex character, the array is filled with complete characters. If
the array is not large enough to contain any complete characters this is an error.

The innwstr(), mvinnwstr(), mvwinnwstr() and winnwstr() functions store at most
n characters in the array pointed to by wstr.

Return Value
Upon successful completion, inwstr(), mvinwstr(), mvwinwstr() and winwstr()
return OK.

Upon successful completion, innwstr(), mvinnwstr(), mvwinnwstr() and winnwstr()
return the number of characters actually read into the string. Otherwise, all these
functions return ERR.

Errors
No errors are defined.

Application Usage
Reading a line that overflows the array pointed to by wstr with inwstr(),
mvinwstr(), mvwinwstr() or winwstr() causes undefined results. The use of
innwstr(), mvinnwstr(), mvwinnwstr() or winnwstr(), respectively, is recommended.

These functions do not return rendition information.

See Also
<curses.h>.

insch()

Name
insch, mvinsch, mvwinsch, winsch - insert a single-byte character and rendition
into a window

Synopsis
#include <curses.h>

int insch(chtype ch);

int mvinsch(int y, int x, chtype ch);

Enhanced Curses

Chapter 5. Curses Interfaces 69

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

int winsch(WINDOW *win, chtype ch);

Description
These functions insert the character and rendition from ch into the current or
specified window at the current or specified position.

These functions do not perform wrapping. These functions do not advance the
cursor position. These functions perform special-character processing, with the
exception that if a newline is inserted into the last line of a window and scrolling
is not enabled, the behavior is unspecified.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

See Also
ins_wch() <curses.h>.

insdelln()

Name
insdelln, winsdelln - delete or insert lines into a window

Synopsis
#include <curses.h>

int insdelln(int n);

int winsdelln(WINDOW *win, int n);

Description
The insdelln() and winsdelln() functions perform the following actions:
v If n is positive, these functions insert n lines into the current or specified

window before the current line. The n last lines are no longer displayed.
v If n is negative, these functions delete n lines from the current or specified

window starting with the current line, and move the remaining lines toward the
cursor. The last n lines are cleared.

The current cursor position remains the same.

Curses

70 z/OS V2R1.0 C Curses

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
deleteln(), insertln(), <curses.h>.

insertln()

Name
insertln, winsertln - insert lines into a window

Synopsis
#include <curses.h>

int insertln(void);

int winsertln(WINDOW *win);

Description
The insertln() and winsertln() functions insert a blank line before the current line in
the current or specified window. The bottom line is no longer displayed. The
cursor position does not change.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
insdelln(), <curses.h>.

insnstr()

Name
insnstr, insstr, mvinsnstr, mvinsstr, mvwinsnstr, mvwinsstr, winsnstr, winsstr -
insert a multi-byte character string into a window

Synopsis
#include <curses.h>

int insnstr(const char *str, int n);

int insstr(const char *str);

int mvinsnstr(int y, int x, const char *str, int n);

Enhanced Curses

Chapter 5. Curses Interfaces 71

int mvinsstr(int y, int x, const char *str);

int mvwinsnstr(WINDOW *win, int y, int x, const char *str, int n);

int mvwinsstr(WINDOW *win, int y, int x, const char *str);

int winsnstr(WINDOW *win, const char *str, int n);

int winsstr(WINDOW *win, const char *str);

Description
These functions insert a character string (as many characters as will fit on the line)
before the current or specified position in the current or specified window.

These functions do not advance the cursor position. These functions perform
special-character processing. The innstr() and innwstr() functions perform
wrapping. The instr() and () inswstr functions do not perform wrapping.

The insnstr(), mvinsnstr(), mvwinsnstr() and winsnstr() functions insert at most n
bytes. If n is less than 1, the entire string is inserted.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
Since the string may contain multi-byte characters, there might not be a one-to-one
correspondence between the number of column positions occupied by the
characters and the number of bytes in the string.

See Also
<curses.h>

ins_nwstr()

Name
ins_nwstr, ins_wstr, mvins_nwstr, mvins_wstr, mvwins_nwstr, mvwins_wstr,
wins_nwstr, wins_wstr - insert a wide-character string into a window

Synopsis
#include <curses.h>

int ins_nwstr(const wchar_t *wstr, int n);

int ins_wstr(const wchar_t *wstr);

int mvins_nwstr(int y, int x, const wchar_t *wstr, int n);

int mvins_wstr(int y, int x, const wchar_t *wstr);

int mvwins_nwstr(WINDOW *win, int y, int x, const wchar_t *wstr, int n);

Enhanced Curses

72 z/OS V2R1.0 C Curses

int mvwins_wstr(WINDOW *win, int y, int x, const wchar_t *wstr);

int wins_nwstr(WINDOW *win, const wchar_t *wstr, int n);

int wins_wstr(WINDOW *win, const wchar_t *wstr);

Description
These functions insert a wchar_t character string (as many wchar_t characters as
will fit on the line) in the current or specified window immediately before the
current or specified position.

Any non-spacing characters in the string are associated with the first spacing
character in the string that precedes the non-spacing characters. If the first
character in the string is a non-spacing character, these functions will fail.

These functions do not perform wrapping. These functions do not advance the
cursor position. These functions perform special-character processing.

The ins_nwstr(), mvins_nwstr(), mvwins_nwstr() and wins_nwstr() functions insert
at most n wchar_t characters. If n is less than 1, then the entire string is inserted.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h>.

insstr()

Name
insstr - insert a multi-byte character string into the current window

Synopsis
#include <curses.h>

int insstr(const char *str);

Description
Refer to insnstr().

instr()

Name
instr - input a multi-byte character string from the current window

Enhanced Curses

Chapter 5. Curses Interfaces 73

Synopsis
#include <curses.h>

int instr(char *str);

Description
Refer to innstr().

ins_wch()

Name
ins_wch, mvins_wch, mvwins_wch, wins_wch - insert a complex character and
rendition into a window

Synopsis
#include <curses.h>

int ins_wch(const cchar_t *wch);

int wins_wch(WINDOW *win, const cchar_t *wch);

int mvins_wch(int y, int x, const cchar_t *wch);

int mvwins_wch(WINDOW *win, int y, int x, const cchar_t *wch);

Description
These functions insert the complex character wch with its rendition in the current
or specified window at the current or specified cursor position.

These functions do not perform wrapping. These functions do not advance the
cursor position. These functions perform special-character processing.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
For non-spacing characters, add_wch() can be used to add the non-spacing
characters to a spacing complex character already in the window.

See Also
add_wch(), <curses.h>.

ins_wstr()

Name
ins_wstr - insert a wide-character string into the current window

Enhanced Curses

74 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int ins_wstr(const wchar_t *wstr);

Description
Refer to ins_nwstr().

intrflush()

Name
intrflush - enable or disable flush on interrupt

Synopsis
#include <curses.h>

int intrflush(WINDOW *win, bool bf);

Description
The intrflush() function specifies whether pressing an interrupt key (interrupt,
suspend or quit) will flush the input buffer associated with the current screen. If bf
is a boolean that specifies whether pressing an interrupt key (interrupt, suspend or
quit) will flush the output buffer associated with the current screen. The default for
the option is inherited from the display driver settings. The win argument is
ignored.

Return Value
Upon successful completion, intrflush() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The same effect is achieved outside Curses using the NOFLSH local mode flag
specified in the XBD specification (General Terminal Interface).

See Also
<curses.h>.

in_wch()

Name
in_wch, mvin_wch, mvwin_wch, win_wch - input a complex character and
rendition from a window

Synopsis
#include <curses.h>

int in_wch(cchar_t *wcval);

Enhanced Curses

Chapter 5. Curses Interfaces 75

int mvin_wch(int y, int x, cchar_t *wcval);

int mvwin_wch(WINDOW *win, int y, int x, cchar_t *wcval);

int win_wch(WINDOW *win, cchar_t *wcval);

Description
These functions extract the complex character and rendition from the current or
specified position in the current or specified window into the object pointed to by
wcval.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h>.

in_wchnstr()

Name
in_wchnstr, in_wchstr, mvin_wchnstr, mvin_wchstr, mvwin_wchnstr,
mvwin_wchstr, win_wchnstr, win_wchstr - input an array of complex characters
and renditions from a window

Synopsis
#include <curses.h>

int in_wchnstr(cchar_t *wchstr, int n);

int in_wchstr(cchar_t *wchstr);

int mvin_wchnstr(int y, int x, cchar_t *wchstr, int n);

int mvin_wchstr(int y, int x, cchar_t *wchstr);

int mvwin_wchnstr(WINDOW *win, int y, int x, cchar_t *wchstr, int n);

int mvwin_wchstr(WINDOW *win, int y, int x, cchar_t *wchstr);

int win_wchnstr(WINDOW *win, cchar_t *wchstr, int n);

int win_wchstr(WINDOW *win, cchar_t *wchstr);

Description
These functions extract characters from the current or specified window, starting at
the current or specified position and ending at the end of the line, and place them
in the array pointed to by wchstr.

The in_wchnstr(), mvin_wchnstr(), mvwin_wchnstr() and win_wchnstr() fill the
array with at most n cchar_t elements.

Enhanced Curses

76 z/OS V2R1.0 C Curses

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
Reading a line that overflows the array pointed to by wchstr with in_wchstr(),
mvin_wchstr(), mvwin_wchstr() or win_wchstr() causes undefined results. The use
of in_wchnstr(), mvin_wchnstr(), mvwin_wchnstr() or win_wchnstr(), respectively,
is recommended.

See Also
in_wch(), <curses.h>.

inwstr()

Name
inwstr - input a string of wide characters from the current window

Synopsis
#include <curses.h>

int inwstr(wchar_t *wstr);

Description
Refer to innwstr().

isendwin()

Name
isendwin - determine whether a screen has been refreshed

Synopsis
#include <curses.h>

bool isendwin(void);

Description
The isendwin() function indicates whether the screen has been refreshed since the
last call to endwin().

Return Value
The isendwin() function returns TRUE if endwin() has been called without any
subsequent refresh. Otherwise, it returns FALSE.

Errors
No errors are defined.

Enhanced Curses

Chapter 5. Curses Interfaces 77

See Also
endwin(), <curses.h>.

is_linetouched()

Name
is_linetouched, is_wintouched, touchline, touchwin, untouchwin, wtouchln -
window refresh control functions

Synopsis
#include <curses.h>

bool is_linetouched(WINDOW *win, int line);

bool is_wintouched(WINDOW *win);

int touchline(WINDOW *win, int start, int count);

int touchwin(WINDOW *win);

int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win, int y, int n, int changed);

Description
The touchwin() function touches the specified window (that is, marks it as having
changed more recently than the last refresh operation). The touchline() function
only touches count lines, beginning with line start.

The untouchwin() function marks all lines in the window as unchanged since the
last refresh operation.

Calling wtouchln(), if changed is 1, touches n lines in the specified window,
starting at line y. If changed is 0, wtouchln() marks such lines as unchanged since
the last refresh operation.

The is_wintouched() function determines whether the specified window is touched.
The is_linetouched() function determines whether line line of the specified window
is touched.

Return Value
The is_linetouched() and is_wintouched() functions return TRUE if any of the
specified lines, or the specified window, respectively, has been touched since the
last refresh operation. Otherwise, they return FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR. Exceptions to this are noted in the preceding function descriptions.

Errors
No errors are defined.

Enhanced Curses

78 z/OS V2R1.0 C Curses

Application Usage
Calling touchwin() or touchline() is sometimes necessary when using overlapping
windows, since a change to one window affects the other window, but the records
of which lines have been changed in the other window do not reflect the change.

See Also
doupdate(), <curses.h>.

keyname()

Name
keyname, key_name - get name of key

Synopsis
#include <curses.h>

char *keyname(int c);

char *key_name(wchar_t c);

Description
The keyname() and key_name() functions generate a character string whose value
describes the key c. The c argument of keyname() can be an 8-bit character or a key
code. The c argument of key_name() must be a wide character.

The string has a format according to the first applicable row in the following table:

Input
Format of Returned
String

Visible character The same character

Control character ^X

Meta-character (keyname() only) M-X

Key value defined in <curses.h> (keyname() only) KEY_name

None of the above UNKNOWN KEY

The meta-character notation shown above is used only if meta-characters are
enabled.

Return Value
Upon successful completion, keyname() returns a pointer to a string as described
above. Otherwise, it returns a null pointer.

Errors
No errors are defined.

Application Usage
The return value of keyname() and key_name() may point to a static area which is
overwritten by a subsequent call to either of these functions.

Curses

Chapter 5. Curses Interfaces 79

Applications normally process meta-characters without storing them into a
window. If an application stores meta-characters in a window and tries to retrieve
them as wide characters, keyname() cannot detect meta-characters, since wide
characters do not support meta-characters.

See Also
meta(), <curses.h>.

keypad()

Name
keypad - enable/disable abbreviation of function keys

Synopsis
#include <curses.h>

int keypad(WINDOW *win, bool bf);

Description
The keypad() function controls keypad translation. If bf is TRUE, keypad
translation is turned on. If bf is FALSE, keypad translation is turned off. The initial
state is FALSE.

This function affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes
when a function key is pressed, then after keypad translation is first enabled, the
implementation transmits this command to the terminal before an affected input
function tries to read any characters from that terminal.

Return Value
Upon successful completion, keypad() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
<curses.h>.

killchar()

Name
killchar, killwchar - terminal environment query functions

Synopsis
#include <curses.h>

char killchar(void);

int killwchar(wchar_t *ch);

Enhanced Curses

80 z/OS V2R1.0 C Curses

Description
Refer to erasechar().

leaveok()

Name
leaveok - control cursor position resulting from refresh operations

Synopsis
#include <curses.h>

int leaveok(WINDOW *win, bool bf);

Description
Refer to clearok().

LINES

Name
LINES - number of lines on terminal screen

Synopsis
#include <curses.h>

extern int LINES;

Description
The external variable LINES indicates the number of lines on the terminal screen.

See Also
initscr(), <curses.h>.

longname()

Name
longname - get verbose description of current terminal

Synopsis
#include <curses.h>

char *longname(void);

Description
The longname() function generates a verbose description of the current terminal.
The maximum length of a verbose description is 128 bytes. It is defined only after
the call to initscr() or newterm().

Curses

Chapter 5. Curses Interfaces 81

Return Value
Upon successful completion, longname() returns a pointer to the description
specified above. Otherwise, it returns a null pointer on error.

Errors
No errors are defined.

Application Usage
The return value of longname() may point to a static area which is overwritten by
a subsequent call to newterm().

See Also
initscr(), <curses.h>.

meta()

Name
meta - enable/disable meta-keys

Synopsis
#include <curses.h>

int meta(WINDOW *win, bool bf);

Description
Initially, whether the terminal returns 7 or 8 significant bits on input depends on
the control mode of the display driver (see the XBD specification, General Terminal
Interface). To force 8 bits to be returned, invoke meta(win, TRUE). To force 7 bits to
be returned, invoke meta(win, FALSE). The win argument is always ignored. If the
terminfo capabilities smm (meta_on) and rmm (meta_off) are defined for the
terminal, smm is sent to the terminal when meta(win, TRUE) is called and rmm is
sent when meta(win, FALSE) is called.

Return Value
Upon successful completion, meta() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The same effect is achieved outside Curses using the CS7 or CS8 control mode flag
specified in the XBD specification (General Terminal Interface).

The meta() function was designed for use with terminals with 7-bit character sets
and a “meta” key that could be used to set the eighth bit.

See Also
getch(), <curses.h>.

Curses

82 z/OS V2R1.0 C Curses

move()

Name
move, wmove - window cursor location functions

Synopsis
#include <curses.h>

int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

Description
The move() and wmove() functions move the cursor associated with the current or
specified window to (y, x) relative to the window's origin. This function does not
move the terminal's cursor until the next refresh operation.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
doupdate(), <curses.h>.

mv

Name
mv - pointer page for functions with mv prefix

Description
Most cases in which a Curses function has the mv prefix 1 indicate that the
function takes y and x arguments and moves the cursor to that address as though
move() were first called. (The corresponding functions without the mv prefix
operate at the cursor position.)

The mv prefix is combined with a w prefix to produce Curses functions beginning
with mvw.

The mv and mvw functions are discussed together with the corresponding
functions that do not have these prefixes. They are found on the following entries:

Function Refer to
mvaddch() mvwaddch() addch()

1. The mvcur(), mvderwin() and mvwin() functions are exceptions to this rule, in that mv is not a prefix with the usual meaning
and there are no corresponding functions without the mv prefix. These functions have entries under their own names.

In the mvprintw() and mvscanw() functions, mv is a prefix with the usual meaning, but the functions have entries under their
own names because the mv function is the first function in the family of functions in alphabetical order.

Curses

Chapter 5. Curses Interfaces 83

Function Refer to
mvaddchnstr() mvwaddchnstr() addchstr()
mvaddchstr() mvwaddchstr() addchstr()
mvaddnstr() mvwaddnstr() addnstr()
mvaddstr() mvwaddstr() addnstr()
mvaddnwstr() mvwaddnwstr() addnwstr()
mvaddwstr() mvwaddwstr() addnwstr()
mvadd_wch() mvwadd_wch() add_wch()
mvadd_wchnstr() mvwadd_wchnstr() add_wchnstr()
mvadd_wchstr() mvwadd_wchstr() add_wchnstr()
mvchgat() mvwchgat() chgat()
mvdelch() mvwdelch() delch()
mvgetch() mvwgetch() getch()
mvgetnstr() mvwgetnstr() getnstr()
mvgetstr() mvwgetstr() getnstr()
mvgetn_wstr() mvwgetn_wstr() getn_wstr()
mvget_wch() mvwget_wch() get_wch()
mvget_wstr() mvwget_wstr() getn_wstr()
mvhline() mvwhline() hline()
mvhline_set() mvwhline_set() hline_set()
mvinch() mvwinch() inch()
mvinchnstr() mvwinchnstr() inchnstr()
mvinchstr() mvwinchstr() inchnstr()
mvinnstr() mvwinnstr() innstr()
mvinnwstr() mvwinnwstr() innwstr()
mvinsch() mvwinsch() insch()
mvinsnstr() mvwinsnstr() insnstr()
mvinsstr() mvwinsstr() insnstr()
mvinstr() mvwinstr() innstr()
mvins_nwstr() mvwins_nwstr() ins_nwstr()
mvins_wch() mvwins_wch() ins_wch()
mvins_wstr() mvwins_wstr() ins_nwstr()
mvinwstr() mvwinwstr() innwstr()
mvin_wch() mvwin_wch() in_wch()
mvin_wchnstr() mvwin_wchnstr() in_wchnstr()
mvin_wchstr() mvwin_wchstr() in_wchnstr()
mvprintw() mvwprintw() amvprintw()
mvscanw() mvwscanw() mvscanw()
mvvline() mvwvline() hline()
mvvline_set() mvwvline_set() hline_set()

See Also
w.

mvcur()

Name
mvcur - output cursor movement commands to the terminal

Synopsis
#include <curses.h>

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

Curses

84 z/OS V2R1.0 C Curses

Description
The mvcur() function outputs one or more commands to the terminal that move
the terminal's cursor to (newrow, newcol), an absolute position on the terminal
screen. The (oldrow, oldcol) arguments specify the former cursor position. Specifying
the former position is necessary on terminals that do not provide coordinate-based
movement commands. On terminals that provide these commands, Curses may
select a more efficient way to move the cursor based on the former position. If
(newrow, newcol) is not a valid address for the terminal in use, mvcur() fails. If
(oldrow, oldcol) is the same as (newrow, newcol), then mvcur() succeeds without
taking any action. If mvcur() outputs a cursor movement command, it updates its
information concerning the location of the cursor on the terminal.

Return Value
Upon successful completion, mvcur() returns OK.

Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
After use of mvcur(), the model Curses maintains of the state of the terminal might
not match the actual state of the terminal. The application should touch and
refresh the window before resuming conventional use of Curses.

See Also
doupdate(), is_linetouched(), <curses.h>.

mvderwin()

Name
mvderwin - define window coordinate transformation

Synopsis
#include <curses.h>

int mvderwin(WINDOW *win, int par_y, int par_x);

Description
The mvderwin() function specifies a mapping of characters. The function identifies
a mapped area of the parent of the specified window, whose size is the same as
the size of the specified window and whose origin is at (par_y, par_x) of the parent
window.
v During any refresh of the specified window, the characters displayed in that

window's display area of the terminal are taken from the mapped area.
v Any references to characters in the specified window obtain or modify

characters in the mapped area.

That is, mvderwin() defines a coordinate transformation from each position in the
mapped area to a corresponding position (same y, x offset from the origin) in the
specified window.

Enhanced Curses

Chapter 5. Curses Interfaces 85

Return Value
Upon successful completion, mvderwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
derwin(), doupdate(), dupwin(), <curses.h>.

mvprintw()

Name
mvprintw, mvwprintw, printw, wprintw - print formatted output in window

Synopsis
#include <curses.h>

int mvprintw(int y, int x, char *fmt, ...);

int mvwprintw(WINDOW *win, int y, int x, char *fmt, ...);

int printw(char *fmt, ...);

int wprintw(WINDOW *win, char *fmt, ...);

Description
The mvprintw(), mvwprintw(), printw() and wprintw() functions are analogous to
printf(). The effect of these functions is as though sprintf() were used to format the
string, and then waddstr() were used to add that multi-byte string to the current or
specified window at the current or specified cursor position.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
addnstr(), fprintf(), <curses.h>

mvscanw()

Name
mvscanw, mvwscanw, scanw, wscanw - convert formatted input from a window

Synopsis
#include <curses.h>

int mvscanw(int y, int x, char *fmt, ...);

Enhanced Curses

86 z/OS V2R1.0 C Curses

int mvwscanw(WINDOW *win, int y, int x, char *fmt, ...);

int scanw(char *fmt, ...);

int wscanw(WINDOW *win, char *fmt, ...);

Description
These functions are similar to scanf(). Their effect is as though mvwgetstr() were
called to get a multi-byte character string from the current or specified window at
the current or specified cursor position, and then sscanf() were used to interpret
and convert that string.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
getnstr(), printw(), fscanf(), wcstombs(), <curses.h>.

mvwin()

Name
mvwin - move window

Synopsis
#include <curses.h>

int mvwin(WINDOW *win, int y, int x);

Description
The mvwin() function moves the specified window so that its origin is at position
(y, x). If the move would cause any portion of the window to extend past any edge
of the screen, the function fails and the window is not moved.

Return Value
Upon successful completion, mvwin() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The application should not move subwindows by calling mvwin().

See Also
derwin(), doupdate(), is_linetouched(), <curses.h>.

Curses

Chapter 5. Curses Interfaces 87

napms()

Name
napms - suspend the calling process

Synopsis
#include <curses.h>

int napms(int ms);

Description
The napms() function takes at least ms milliseconds to return.

Return Value
The napms() function returns OK.

Errors
No errors are defined.

Application Usage
A more reliable method of achieving a timed delay is the usleep() function.

See Also
delay_output(), usleep() <curses.h>.

newpad()

Name
newpad, pnoutrefresh, prefresh, subpad - pad management functions

Synopsis
#include <curses.h>

WINDOW *newpad(int nlines, int ncols);

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

WINDOW *subpad(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin_x);

Description
The newpad() function creates a specialized WINDOW data structure representing
a pad with nlines lines and ncols columns. A pad is like a window, except that it is
not necessarily associated with a viewable part of the screen. Automatic refreshes
of pads do not occur.

The subpad() function creates a subwindow within a pad with nlines lines and
ncols columns. Unlike subwin(), which uses screen coordinates, the window is at

Enhanced Curses

88 z/OS V2R1.0 C Curses

position (begin_y, begin_x) on the pad. The window is made in the middle of the
window orig, so that changes made to one window affect both windows.

The prefresh() and pnoutrefresh() functions are analogous to wrefresh() and
wnoutrefresh() except that they relate to pads instead of windows. The additional
arguments indicate what part of the pad and screen are involved. The pminrow and
pmincol arguments specify the origin of the rectangle to be displayed in the pad.
The sminrow, smincol, smaxrow and smaxcol arguments specify the edges of the
rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates, since
the rectangles must be the same size. Both rectangles must be entirely contained
within their respective structures. Negative values of pminrow, pmincol, sminrow or
smincol are treated as if they were zero.

Return Value
Upon successful completion, the newpad() and subpad() functions return a pointer
to the pad data structure. Otherwise, they return a null pointer.

Upon successful completion, pnoutrefresh() and prefresh() return OK. Otherwise,
they return ERR.

Errors
No errors are defined.

Application Usage
To refresh a pad, call prefresh() or pnoutrefresh(), not wrefresh(). When porting
code to use pads from WINDOWS, remember that these functions require
additional arguments to specify the part of the pad to be displayed and the
location on the screen to be used for the display.

Although a subwindow and its parent pad may share memory representing
characters in the pad, they need not share status information about what has
changed in the pad. Therefore, after modifying a subwindow within a pad, it may
be necessary to call touchwin() or touchline() on the pad before calling prefresh().

See Also
derwin(), doupdate(), is_linetouched(), <curses.h>.

newterm()

Name
newterm - screen initialization function

Synopsis
#include <curses.h>

SCREEN *newterm(char *type, FILE *outfile, FILE *infile);

Description
Refer to initscr().

Curses

Chapter 5. Curses Interfaces 89

newwin()

Name
newwin - create a new window

Synopsis
#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin_y, int begin_x);

Description
Refer to derwin().

nl()

Name
nl, nonl - enable/disable newline translation

Synopsis
#include <curses.h>

int nl(void);

int nonl(void);

Description
The nl() function enables a mode in which carriage return is translated to newline
on input. The nonl() function disables the above translation. Initially, the above
translation is enabled.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
The default translation adapts the terminal to environments in which newline is
the line termination character. However, by disabling the translation with nonl(),
the application can sense the pressing of the carriage return key.

See Also
<curses.h>.

no

Name
no - pointer page for functions with no prefix

Curses

90 z/OS V2R1.0 C Curses

Description
The no prefix indicates that a Curses function disables a mode. (The corresponding
functions without the no prefix enable the same mode.)

The no functions are discussed together with the corresponding functions that do
not have these prefixes. 2 They are found on the following entries:

Function Refer to
nocbreak() cbreak()
noecho() echo()
nonl() nl()
noraw() cbreak()

nodelay()

Name
nodelay - enable or disable block during read

Synopsis
#include <curses.h>

int nodelay(WINDOW *win, bool bf);

Description
The nodelay() function specifies whether Delay Mode or No Delay Mode is in
effect for the screen associated with the specified window. If bf is TRUE, this screen
is set to No Delay Mode. If bf is FALSE, this screen is set to Delay Mode. The
initial state is FALSE.

Return Value
Upon successful completion, nodelay() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
getch(), halfdelay(), <curses.h>.

noqiflush()

Name
noqiflush, qiflush - enable/disable queue flushing

2. The nodelay() function has an entry under its own name because there is no corresponding delay() function.

The noqiflush() and notimeout() functions have an entry under their own names because they precede the corresponding function
without the no prefix in alphabetical order.

Curses

Chapter 5. Curses Interfaces 91

Synopsis
#include <curses.h>

void noqiflush(void);

void qiflush(void);

Description
The qiflush() function causes all output in the display driver queue to be flushed
whenever an interrupt key (interrupt, suspend, or quit) is pressed. The noqiflush()
causes no such flushing to occur. The default for the option is inherited from the
display driver settings.

Return Value
These functions do not return a value.

Errors
No errors are defined.

Application Usage
Calling qiflush() provides faster response to interrupts, but causes Curses to have
the wrong idea of what is on the screen. The same effect is achieved outside
Curses using the NOFLSH local mode flag specified in the XBD specification
(General Terminal Interface).

See Also
intrflush(), <curses.h>.

notimeout()

Name
notimeout, timeout, wtimeout - control blocking on input

Synopsis
#include <curses.h>

int notimeout(WINDOW *win, bool bf);

void timeout(int delay);

void wtimeout(WINDOW *win, int delay);

Description
The notimeout() function specifies whether Timeout Mode or No Timeout Mode is
in effect for the screen associated with the specified window. If bf is TRUE, this
screen is set to No Timeout Mode. If bf is FALSE, this screen is set to Timeout
Mode. The initial state is FALSE.

The timeout() and wtimeout() functions set blocking or non-blocking read for the
current or specified window based on the value of delay:

delay < 0 One or more blocking reads (indefinite waits for input) are used.

Enhanced Curses

92 z/OS V2R1.0 C Curses

delay = 0 One or more non-blocking reads are used. Any Curses input function will
fail if every character of the requested string is not immediately available.

delay > 0 Any Curses input function blocks for delay milliseconds and fails if there
is still no input.

Return Value
Upon successful completion, the notimeout() function returns OK. Otherwise, it
returns ERR.

The timeout() and wtimeout() functions do not return a value.

Errors
No errors are defined.

See Also
getch(), halfdelay(), nodelay(), <curses.h>.

overlay()

Name
overlay, overwrite - copy overlapped windows

Synopsis
#include <curses.h>

int overlay(const WINDOW *srcwin, WINDOW *dstwin);

int overwrite(const WINDOW *srcwin, WINDOW *dstwin);

Description
The overlay() and overwrite() functions overlay srcwin on top of dstwin. The scrwin
and dstwin arguments need not be the same size; only text where the two windows
overlap is copied.

The overwrite() function copies characters as though a sequence of win_wch() and
wadd_wch() were performed with the destination window's attributes and
background attributes cleared.

The overlay() function does the same thing, except that, whenever a character to be
copied is the background character of the source window, overlay() does not copy
the character but merely moves the destination cursor the width of the source
background character.

If any portion of the overlaying window border is not the first column of a
multi-column character then all the column positions will be replaced with the
background character and rendition before the overlay is done. If the default
background character is a multi-column character when this occurs, then these
functions fail.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Enhanced Curses

Chapter 5. Curses Interfaces 93

Errors
No errors are defined.

See Also
copywin(), <curses.h>.

pair_content()

Name
pair_content, PAIR_NUMBER - get information on a color pair

Synopsis
#include <curses.h>

int pair_content(short pair, short *f, short *b);

int PAIR_NUMBER(int value);

Description
Refer to can_change_color().

pechochar()

Name
pechochar, pecho_wchar - write a character and rendition and immediately refresh
the pad

Synopsis
#include <curses.h>

int pechochar(WINDOW *win, chtype ch);

int pecho_wchar(WINDOW *pad, const cchar_t *wch);

Description
The pechochar() and pecho_wchar() functions output one character to a pad and
immediately refresh the pad. They are equivalent to a call to waddch() or
wadd_wch(), respectively, followed by a call to prefresh(). The last location of the
pad on the screen is reused for the arguments to prefresh().

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Curses

94 z/OS V2R1.0 C Curses

Application Usage
The pechochar() function is only guaranteed to operate reliably on character sets in
which each character fits into a single byte, whose attributes can be expressed
using only constants with the A_ prefix.

See Also
echochar(), echo_char(), newpad(), <curses.h>.

pnoutrefresh()

Name
pnoutrefresh, prefresh - refresh pads

Synopsis
#include <curses.h>

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

Description
Refer to newpad().

printw()

Name
printw - print formatted output in the current window

Synopsis
#include <curses.h>

int printw(char *fmt, ...);

Description
Refer to mvprintw().

putp()

Name
putp, tputs - output commands to the terminal

Synopsis
#include <term.h>

int putp(const char *str);

int tputs(const char *str, int affcnt, int (*putfunc)(int));

Enhanced Curses

Chapter 5. Curses Interfaces 95

Description
These functions output commands contained in the terminfo database to the
terminal.

The putp() function is equivalent to tputs(str, 1, putchar). The output of putp()
always goes to stdout, not to the fildes specified in setupterm().

The tputs() function outputs str to the terminal. The str argument must be a
terminfo string variable or the return value from tgetstr(), tgoto(), tigetstr() or
tparm(). The affcnt argument is the number of lines affected, or 1 if not applicable.
If the terminfo database indicates that the terminal in use requires padding after
any command in the generated string, tputs() inserts pad characters into the string
that is sent to the terminal, at positions indicated by the terminfo database. The
tputs() function outputs each character of the generated string by calling the
user-supplied function putfunc (see below).

The user-supplied function putfunc (specified as an argument to tputs()) is either
putchar() or some other function with the same prototype. The tputs() function
ignores the return value of putfunc.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
After use of any of these functions, the model Curses maintains of the state of the
terminal might not match the actual state of the terminal. The application should
touch and refresh the window before resuming conventional use of Curses.

Use of these functions requires that the application contain so much information
about a particular class of terminal that it defeats the purpose of using Curses.

On some terminals, a command to change rendition conceptually occupies space in
the screen buffer (with or without width). Thus, a command to set the terminal to
a new rendition would change the rendition of some characters already displayed.

See Also
doupdate(), is_linetouched(), putchar(), tgetent(), tigetflag(), <term.h>.

putwin()

Name
putwin - dump window to a file

Synopsis
#include <curses.h>

int putwin(WINDOW *win, FILE *filep);

Enhanced Curses

96 z/OS V2R1.0 C Curses

Description
Refer to getwin().

qiflush()

Name
qiflush - enable queue flushing

Synopsis
#include <curses.h>

void qiflush(void);

Description
Refer to noqiflush().

raw()

Name
raw - set Raw Mode

Synopsis
#include <curses.h>

int raw(void);

Description
Refer to cbreak().

redrawwin()

Name
redrawwin, wredrawln - line update status functions

Synopsis
#include <curses.h>

int redrawwin(WINDOW *win);

int wredrawln(WINDOW *win, int beg_line, int num_lines);

Description
The redrawwin() and wredrawln() functions inform the implementation that some
or all of the information physically displayed for the specified window may have
been corrupted. The redrawwin() function marks the entire window; wredrawln()
marks only num_lines lines starting at line number beg_line. The functions prevent
the next refresh operation on that window from performing any optimization
based on assumptions about what is physically displayed there.

Enhanced Curses

Chapter 5. Curses Interfaces 97

Return Value
Upon successful completion, these functions return OK. Otherwise they return
ERR.

Errors
No errors are defined.

Application Usage
The redrawwin() and wredrawln() functions could be used in a text editor to
implement a command that redraws some or all of the screen.

See Also
clearok(), doupdate(), <curses.h>.

refresh()

Name
refresh - refresh current window

Synopsis
#include <curses.h>

int refresh(void);

Description
Refer to doupdate().

reset_prog_mode()

Name
reset_prog_mode, reset_shell_mode - restore program or shell terminal modes

Synopsis
#include <curses.h>

int reset_prog_mode(void);

int reset_shell_mode(void);

Description
Refer to def_prog_mode().

resetty()

Name
resetty, savetty - save/restore terminal mode

Enhanced Curses

98 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int resetty(void);

int savetty(void);

Description
The resetty() function restores the program mode as of the most recent call to
savetty().

The savetty() function saves the state that would be put in place by a call to
reset_prog_mode().

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
def_prog_mode(), <curses.h>.

restartterm()

Name
restartterm - change terminal type

Synopsis
#include <term.h>

int restartterm(char *term, int fildes, int *errret);

Description
Refer to del_curterm().

ripoffline()

Name
ripoffline - reserve a line for a dedicated purpose

Synopsis
#include <curses.h>

int ripoffline(int line, int (*init)(WINDOW *win, int columns));

Description
The ripoffline() function reserves a screen line for use by the application.

Curses

Chapter 5. Curses Interfaces 99

Any call to ripoffline() must precede the call to initscr() or newterm(). If line is
positive, one line is removed from the beginning of stdscr; if line is negative, one
line is removed from the end. Removal occurs during the subsequent call to
initscr() or newterm(). When the subsequent call is made, the function pointed to
by init is called with two arguments: a WINDOW pointer to the one-line window
that has been allocated and an integer with the number of columns in the window.
The initialization function cannot use the LINES and COLS external variables and
cannot call wrefresh() or doupdate(), but may call wnoutrefresh().

Up to five lines can be ripped off. Calls to ripoffline() above this limit have no
effect but report success.

Return Value
The ripoffline() function returns OK.

Errors
No errors are defined.

Application Usage
Calling slk_init() reduces the size of the screen by one line if initscr() eventually
uses a line from stdscr to emulate the soft labels. If slk_init() rips off a line, it
thereby reduces by one the number of lines an application can reserve by
subsequent calls to ripoffline(). Thus, portable applications that use soft label
functions should not call ripoffline() more than four times.

When initscr() or newterm() calls the initialization function pointed to by init, the
implementation may pass NULL for the WINDOW pointer argument win. This
indicates inability to allocate a one-line window for the line that the call to
ripoffline() ripped off. Portable applications should verify that win is not NULL
before performing any operation on the window it represents.

See Also
doupdate(), initscr(), slk_attroff(), <curses.h>.

savetty()

Name
savetty - save terminal mode

Synopsis
#include <curses.h>

int savetty(void);

Description
Refer to resetty().

scanw()

Name
scanw - convert formatted input from the current window

Enhanced Curses

100 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int scanw(char *fmt, ...);

Description
Refer to mvscanw().

scr_dump()

Name
scr_dump, scr_init, scr_restore, scr_set - screen file input/output functions

Synopsis
#include <curses.h>

int scr_dump(const char *filename);

int scr_init(const char *filename);

int scr_restore(const char *filename);

int scr_set(const char *filename);

Description
The scr_dump() function writes the current contents of the virtual screen to the file
named by filename in an unspecified format.

The scr_restore() function sets the virtual screen to the contents of the file named
by filename, which must have been written using scr_dump(). The next refresh
operation restores the screen to the way it looked in the dump file.

The scr_init() function reads the contents of the file named by filename and uses
them to initialize the Curses data structures to what the terminal currently has on
its screen. The next refresh operation bases any updates on this information, unless
either of the following conditions is true:
v The terminal has been written to since the virtual screen was dumped to filename

v The terminfo capabilities rmcup and nrrmc are defined for the current terminal.

The scr_set() function is a combination of scr_restore() and scr_init(). It tells the
program that the information in the file named by filename is what is currently on
the screen, and also what the program wants on the screen. This can be thought of
as a screen inheritance function.

Return Value
On successful completion, these functions return OK. Otherwise, they return ERR.

Errors
No errors are defined.

Curses

Chapter 5. Curses Interfaces 101

Application Usage
The scr_init() function is called after initscr() or a system() call to share the screen
with another process that has done a scr_dump() after its endwin() call.

To read a window from a file, call getwin(); to write a window to a file, call
putwin().

See Also
delscreen(), doupdate(), endwin(), getwin(), open(), read(), write(), <curses.h>

scrl()

Name
scrl, scroll, wscrl - scroll a Curses window

Synopsis
#include <curses.h>

int scrl(int n);

int scroll(WINDOW *win);

int wscrl(WINDOW *win, int n);

Description
The scroll() function scrolls win one line in the direction of the first line.

The scrl() and wscrl() functions scroll the current or specified window. If n is
positive, the window scrolls n lines toward the first line. Otherwise, the window
scrolls -n lines toward the last line.

These functions do not change the cursor position. If scrolling is disabled for the
current or specified window, these functions have no effect.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
<curses.h>.

scrollok()

Name
scrollok - enable or disable scrolling on a window

Enhanced Curses

102 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

int scrollok(WINDOW *win, bool bf);

Description
Refer to clearok().

setcchar()

Name
setcchar - set cchar_t from a wide character string and rendition

Synopsis
#include <curses.h>

int setcchar(cchar_t *wcval, const wchar_t *wch, const attr_t attrs,
short color_pair, const void *opts);

Description
The setcchar() function initializes the object pointed to by wcval according to the
character attributes in attrs, the color pair in color_pair and the wide character
string pointed to by wch.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
Upon successful completion, setcchar() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
attroff(), can_change_color(), getcchar(), <curses.h>.

set_curterm()

Name
set_curterm - set current terminal

Synopsis
#include <term.h>

TERMINAL *set_curterm(TERMINAL *nterm);

Description
Refer to del_curterm().

Curses

Chapter 5. Curses Interfaces 103

setscrreg()

Name
setscrreg, wsetscrreg - define software scrolling region

Synopsis
#include <curses.h>

int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

Description
Refer to clearok().

set_term()

Name
set_term - switch between screens

Synopsis
#include <curses.h>

SCREEN *set_term(SCREEN *new);

Description
The set_term() function switches between different screens. The new argument
specifies the new current screen.

Return Value
Upon successful completion, set_term() returns a pointer to the previous screen.
Otherwise, it returns a null pointer.

Errors
No errors are defined.

Application Usage
This is the only function that manipulates SCREEN pointers; all other functions
affect only the current screen.

See Also
initscr(), <curses.h>.

setupterm()

Name
setupterm - access the terminfo database

Curses

104 z/OS V2R1.0 C Curses

Synopsis
#include <term.h>

int setupterm(char *term, int fildes, int *errret);

Description
Refer to del_curterm().

slk_attroff()

Name
slk_attroff, slk_attr_off, slk_attron, slk_attr_on, slk_attrset, slk_attr_set, slk_clear,
slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set,
slk_touch, slk_wset - soft label functions

Synopsis
#include <curses.h>

int slk_attroff(const chtype attrs);

int slk_attr_off(const attr_t attrs, void *opts);

int slk_attron(const chtype attrs);

int slk_attr_on(const attr_t attrs, void *opts);

int slk_attrset(const chtype attrs);

int slk_attr_set(const attr_t attrs, short color_pair_number, void
*opts);

int slk_clear(void);

in slk_color(short color_pair_number);

int slk_init(int fmt);

char *slk_label(int labnum);

int slk_noutrefresh(void);

int slk_refresh(void);

int slk_restore(void);

int slk_set(int labnum, const char *label, int justify);

int slk_touch(void);

int slk_wset(int labnum, const wchar_t *label, int justify);

Description
The Curses interface manipulates the set of soft function-key labels that exist on
many terminals. For those terminals that do not have soft labels, Curses takes over
the bottom line of stdscr, reducing the size of stdscr and the value of the LINES
external variable. There can be up to eight labels of up to eight display columns
each.

Enhanced Curses

Chapter 5. Curses Interfaces 105

To use soft labels, slk_init() must be called before initscr(), newterm() or ripoffline()
is called. If initscr() eventually uses a line from stdscr to emulate the soft labels,
then fmt determines how the labels are arranged on the screen. Setting fmt to 0
indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4 arrangement. Other
values for fmt are unspecified.

The slk_init() function has the effect of calling ripoffline() to reserve one screen line
to accommodate the requested format.

The slk_set() and slk_wset() functions specify the text of soft label number labnum,
within the range from 1 to and including 8. The label argument is the string to be
put on the label. With slk_set(), and slk_wset(), the width of the label is limited to
eight column positions. A null string or a null pointer specifies a blank label. The
justify argument can have the following values to indicate how to justify label
within the space reserved for it:

0 Align the start of label with the start of the space

1 Center label within the space

2 Align the end of label with the end of the space

The slk_refresh() and slk_noutrefresh() functions correspond to the wrefresh() and
wnoutrefresh() functions.

The slk_label() function obtains soft label number labnum.

The slk_clear() function immediately clears the soft labels from the screen.

The slk_restore() function immediately restores the soft labels to the screen after a
call to slk_clear().

The slk_touch() function forces all the soft labels to be output the next time
slk_noutrefresh() or slk_refresh() is called.

The slk_attron(), slk_attrset() and slk_attroff() functions correspond to attron(),
attrset(), and attroff(). They have an effect only if soft labels are simulated on the
bottom line of the screen.

The slk_attr_off(), slk_attr_on() and slk_attr_set(), and slk_color() functions
correspond to slk_attroff(), slk_attron(), slk_attrset() and color_set() and thus
support the attribute constants with WA_ prefix and color.

The opts argument is reserved for defintion in a future edition of this document.
Currently, the application must provide a null pointer as opts.

Return Value
Upon successful completion, slk_label() returns the requested label with leading
and trailing blanks stripped. Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Enhanced Curses

106 z/OS V2R1.0 C Curses

Application Usage
When using multi-byte character sets, applications should check the width of the
string by calling mbstowcs() and then wcswidth() before calling slk_set(). When
using wide characters, applications should check the width of the string by calling
wcswidth() before calling slk_set().

Since the number of columns that a wide character string will occupy is
codeset-specific, call wcwidth() and wcswidth() to check the number of column
positions in the string before calling slk_wset().

Most applications would use slk_noutrefresh() because a wrefresh() is likely to
follow soon.

See Also
attr_get(), attroff(), delscreen(), mbstowcs(), ripoffline(), wcswidth(), <curses.h>.

standend()

Name
standend, standout, wstandend, wstandout - set and clear window attributes

Synopsis
#include <curses.h>

int standend(void);

int standout(void);

int wstandend(WINDOW *win);

int wstandout(WINDOW *win);

Description
The standend() and wstandend() functions turn off all attributes of the current or
specified window.

The standout() and wstandout() functions turn on the standout attribute of the
current or specified window.

Return Value
These functions always return 1.

Errors
No errors are defined.

See Also
attroff(), attr_get(), <curses.h>.

Enhanced Curses

Chapter 5. Curses Interfaces 107

start_color()

Name
start_color - initialize use of colors on terminal

Synopsis
#include <curses.h>

int start_color(void);

Description
Refer to can_change_color().

stdscr

Name
stdscr - default window

Synopsis
#include <curses.h>

extern WINDOW *stdscr;

Description
The external variable stdscr specifies the default window used by functions that do
not specify a window using an argument of type WINDOW *. Other windows may
be created using newwin().

See Also
derwin(), <curses.h>.

subpad()

Name
subpad - create a subwindow in a pad

Synopsis
#include <curses.h>

WINDOW *subpad(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin_x);

Description
Refer to newpad().

subwin()

Name
subwin - create a subwindow

Enhanced Curses

108 z/OS V2R1.0 C Curses

Synopsis
#include <curses.h>

WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y,
int begin_x);

Description
Refer to derwin().

syncok()

Name
syncok, wcursyncup, wsyncdown, wsyncup - synchronise a window with its
parents or children

Synopsis
#include <curses.h>

int syncok(WINDOW *win, bool bf);

void wcursyncup(WINDOW *win);

void wsyncdown(WINDOW *win);

void wsyncup(WINDOW *win);

Description
The syncok() function determines whether all ancestors of the specified window
are implicitly touched whenever there is a change in the window. If bf is TRUE,
such implicit touching occurs. If bf is FALSE, such implicit touching does not occur.
The initial state is FALSE.

The wcursyncup() function updates the current cursor position of the ancestors of
win to reflect the current cursor position of win.

The wsyncdown() function touches win if any ancestor window has been touched.

The wsyncup() function unconditionally touches all ancestors of win.

Return Value
Upon successful completion, syncok() returns OK. Otherwise, it returns ERR.

The other functions do not return a value.

Errors
No errors are defined.

Application Usage
Applications seldom call wsyncdown() because it is called by all refresh operations.

See Also
doupdate(), is_linetouched(), <curses.h>.

Curses

Chapter 5. Curses Interfaces 109

termattrs()

Name
termattrs - get supported terminal video attributes

Synopsis
#include <curses.h>

chtype termattrs(void);

attr_t term_attr(void);

Description
The termattrs() function extracts the video attributes of the current terminal which
is supported by the chtype data type.

The term_attrs() function extracts information for the video attributes of the current
terminal which is supported for a cchar_t.

Return Value
The termattrs() function returns a logical OR of A_values of all video attributes
supported by the terminal. The term_attrs() function returns a logical OR of WA_
values of all video attributes supported by the terminal.

Errors
No errors are defined.

See Also
attroff(), attr_get(), <curses.h>.

termname()

Name
termname - get terminal name

Synopsis
#include <curses.h>

char *termname(void);

Description
The termname() function obtains the terminal name as recorded by setupterm().

Return Value
The termname() function returns a pointer to the terminal name.

Errors
No errors are defined.

Enhanced Curses

110 z/OS V2R1.0 C Curses

See Also
del_curterm(), getenv() initscr(), <curses.h>.

tgetent()

Name
tgetent, tgetflag, tgetnum, tgetstr, tgoto - termcap database emulation (TO BE
WITHDRAWN)

Synopsis
#include <term.h>

int tgetent(char *bp, const char *name);

int tgetflag(char id[2]);

int tgetnum(char id[2]);

char *tgetstr(char id[2], char **area);

char *tgoto(char *cap, int col, int row);

Description
The tgetent() function looks up the termcap entry for name. The emulation ignores
the buffer pointer bp.

The tgetflag() function gets the boolean entry for id.

The tgetnum() function gets the numeric entry for id.

The tgetstr() function gets the string entry for id. If area is not a null pointer and
does not point to a null pointer, tgetstr() copies the string entry into the buffer
pointed to by *area and advances the variable pointed to by area to the first byte
after the copy of the string entry.

The tgoto() function instantiates the parameters col and row into capability cap and
returns a pointer to the resulting string.

All of the information available in the terminfo database need not be available
through these functions.

Return Value
Upon successful completion, functions that return an integer return OK. Otherwise,
they return ERR.

Functions that return pointers return a null pointer on error.

Errors
No errors are defined.

Enhanced Curses

Chapter 5. Curses Interfaces 111

Application Usage
These functions are included as a conversion aid for programs that use the termcap
library. Their arguments are the same and the functions are emulated using the
terminfo database.

These functions are only guaranteed to operate reliably on character sets in which
each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix.

Any terminal capabilities from the terminfo database that cannot be retrieved using
these interfaces can be retrieved using the interfaces described on the tigetflag()
page.

Portable applications must use tputs() to output the strings returned by tgetstr()
and tgoto().

See Also
putc(), setupterm(), tigetflg(), <term.h>.

tigetflag()

Name
tigetflag, tigetnum, tigetstr, tparm - retrieve capabilities from the terminfo database

Synopsis
#include <term.h>

int tigetflag(char *capname);

int tigetnum(char *capname);

char *tigetstr(char *capname);

char *tparm(char *cap, long p1, long p2, long p3, long p4,
long p5, long p6, long p7, long p8, long p9);

Description
The tigetflag(), tigetnum(), and tigetstr() functions obtain boolean, numeric and
string capabilities, respectively, from the selected record of the terminfo database.
For each capability, the value to use as capname appears in the Capname column.

The tparm() function takes as cap a string capability. If cap is parameterized,
tparm() resolves the parameterization. If the parameterized string refers to
parameters %p1 through %p9, then tparm() substitutes the values of p1 through p9,
respectively.

Return Value
Upon successful completion, tigetflg(), tigetnum() and tigetstr() return the specified
capability. The tigetflag() function returns -1 if capname is not a boolean capability.
The tigetnum() function returns -2 if capname is not a numeric capability. The
tigetstr() function returns (char *)-1 if capname is not a string capability.

Upon successful completion, tparm() returns str with parameterization resolved.
Otherwise, it returns a null pointer.

Enhanced Curses

112 z/OS V2R1.0 C Curses

Errors
No errors are defined.

Application Usage
For parameterized string capabilities, the application should pass the return value
from tigetstr() to tparm(), as described above.

Applications intending to send terminal capabilities directly to the terminal (which
should only be done using tputs() or putp()) instead of using Curses, normally
should obey the following rules:
v Call reset_shell_mode() to restore the display modes before exiting.
v If using cursor addressing, output enter_ca_mode upon startup and output

exit_ca_mode before exiting.
v If using shell escapes, output exit_ca_mode and call reset_shell_mode() before

calling the shell; call reset_prog_mode() and output enter_ca_mode after
returning from the shell.

All parameterized terminal capabilities defined in this document can be passed to
tparm(). Some implementations create their own capabilities, create capabilities for
non-terminal devices, and redefine the capabilities in this document. These
practices are non-conforming because it may be that tparm() cannot parse these
user-defined strings.

See Also
def_prog_mode(), tgetent(), putp(), <term.h>.

timeout()

Name
timeout - control blocking on input

Synopsis
#include <curses.h>

void timeout(int delay);

Description
Refer to notimeout().

touchline()

Name
touchline, touchwin - window refresh control functions

Synopsis
#include <curses.h>

int touchline(WINDOW *win, int start, int count);

int touchwin(WINDOW *win);

Enhanced Curses

Chapter 5. Curses Interfaces 113

Description
Refer to is_linetouched().

tparm()

Name
tparm - retrieve capabilities from the terminfo database

Synopsis
#include <term.h>

char *tparm(char *cap, long p1, long p2, long p3, long p4,
long p5, long p6, long p7, long p8, long p9);

Description
Refer to tigetflag().

tputs()

Name
tputs - output commands to the terminal

Synopsis
#include <curses.h>

int tputs(const char *str, int affcnt, int (*putfunc)(int));

Description
Refer to putp().

typeahead()

Name
typeahead - control checking for typeahead

Synopsis
#include <curses.h>

int typeahead(int fildes);

Description
The typeahead() function controls the detection of typeahead during a refresh,
based on the value of fildes:
v If fildes is a valid file descriptor, typeahead is enabled during refresh; Curses

periodically checks fildes for input and aborts the refresh if any character is
available. (This is the initial setting, and the typeahead file descriptor
corresponds to the input file associated with the screen created by initscr() or
newterm().) The value of fildes need not be the file descriptor on which the
refresh is occurring.

v If fildes is -1, Curses does not check for typeahead during refresh.

Curses

114 z/OS V2R1.0 C Curses

Return Value
Upon successful completion, typeahead() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

See Also
doupdate(), getch(), initscr(), <curses.h>.

unctrl()

Name
unctrl - generate printable representation of a character

Synopsis
#include <unctrl.h>

char *unctrl(chtype c);

Description
The unctrl() function generates a character string that is a printable representation
of c. If c is a control character, it is converted to the ^X notation. If c contains
rendition information, the effect is undefined.

Return Value
Upon successful completion, unctrl() returns the generated string. Otherwise, it
returns a null pointer.

Errors
No errors are defined.

See Also
keyname(), wunctrl(), <unctrl.h>.

ungetch()

Name
ungetch, unget_wch - push a character onto the input queue

Synopsis
#include <curses.h>

int ungetch(int ch);

int unget_wch(const wchar_t wch);

Description
The ungetch() function pushes the single-byte character ch onto the head of the
input queue.

Curses

Chapter 5. Curses Interfaces 115

The unget_wch() function pushes the wide character wch onto the head of the
input queue.

One character of push-back is guaranteed. If these functions are called too many
times without an intervening call to getch() or get_wch(), the operation may fail.

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

See Also
getch(), get_wch(), <curses.h>.

untouchwin()

Name
untouchwin - window refresh control function

Synopsis
#include <curses.h>

int untouchwin(WINDOW *win);

Description
Refer to is_linetouched().

use_env()

Name
use_env - specify source of screen size information

Synopsis
#include <curses.h>

void use_env(bool boolval);

Description
The use_env() function specifies the technique by which the implementation
determines the size of the screen. If boolval is FALSE, the implementation uses the
values of lines and columns specified in the terminfo database. If boolval is TRUE,
the implementation uses the LINES and COLUMNS environment variables. The
initial value is TRUE.

Any call to use_env() must precede calls to initscr(), newterm() or setupterm().

Return Value
The function does not return a value.

Enhanced Curses

116 z/OS V2R1.0 C Curses

Errors
No errors are defined.

See Also
del_curterm(), initscr(), <curses.h>.

vidattr()

Name
vidattr, vid_attr, vidputs, vid_puts - output attributes to the terminal

Synopsis
#include <curses.h>

int vidattr(chtype attr);

int vid_attr(attr_t attr, short color_pair_number, void *opt);

int vidputs(chtype attr,, int (*putfunc)(int));

int vid_puts(attr_t attr, short_pair_number, void *opt, int_t
(*putfunc)(init_t));

Description
These functions output commands to the terminal that change the terminal's
attributes.

If the terminfo database indicates that the terminal in use can display characters in
the rendition specified by attr, then vidattr() outputs one or more commands to
request that the terminal display subsequent characters in that rendition. The
function outputs by calling putchar(). The vidattr() function neither relies on nor
updates the model that Curses maintains of the prior rendition mode.

The vidputs() function computes the same terminal output string that vidattr()
does, based on attr, but vidputs() outputs by calling the user-supplied function
putfunc. The vid_attr() and vid_puts() functions correspond to vidattr() and
vidputs() respectively, but take a set of arguments, one of type attr_t for the
attributes, short for the color_pair_number and a void* and thus support the attribute
constants with the WA_ prefix.

The opts argument is reserved for definition in a future edition of this document.
Currently, the application must provide a null pointer as opts.

The user-supplied function putfunc (specified as an argument to vidputs()) is either
putchar() or some other function with the same prototype. The vidputs() function
ignores the return value of putfunc.

The vid_attr() and vid_puts() functions correspond to vidattr() and vidputs(),
respectively, but take an argument of type attr_t and thus support the attribute
constants with the WA_ prefix.

The user-supplied function putwfunc (specified as an argument to vid_puts()) is
either putwchar() or some other function with the same prototype. The vid_puts()
function ignores the return value of putwfunc.

Enhanced Curses

Chapter 5. Curses Interfaces 117

Return Value
Upon successful completion, these functions return OK. Otherwise, they return
ERR.

Errors
No errors are defined.

Application Usage
After use of any of these functions, the model Curses maintains of the state of the
terminal might not match the actual state of the terminal. The application should
touch and refresh the window before resuming conventional use of Curses.

Use of these functions requires that the application contain so much information
about a particular class of terminal that it defeats the purpose of using Curses.

On some terminals, a command to change rendition conceptually occupies space in
the screen buffer (with or without width). Thus, a command to set the terminal to
a new rendition would change the rendition of some characters already displayed.

See Also
doupdate(), is_linetouched(), putchar()), putwchar(), tigetflag(), <curses.h>.

vline()

Name
vline - draw vertical line

Synopsis
#include <curses.h>

int vline(chtype ch, int n);

Description
Refer to hline().

vline_set()

Name
vline_set - draw vertical line from complex character and rendition

Synopsis
#include <curses.h>

int vline_set(const cchar_t *ch, int n);

Description
Refer to hline_set().

Enhanced Curses

118 z/OS V2R1.0 C Curses

vwprintw()

Name
vwprintw - print formatted output in window

Synopsis
#include <varargs.h>
#include <curses.h>

int vwprintw(WINDOW *, char *, va_list varglist);

Description
The vwprintw() function achieves the same effect as wprintw() using a variable
argument list. The third argument is a va_list, as defined in <varargs.h>.

Return Value
Upon successful completion, vwprintw() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The vwprintw() function is deprecated because it relies on deprecated functions in
the XSH specification. The vw_printw() function is preferred. The use of the
vwprintw() and the vw_printw() functions in the same file will not work, due to
the requirments to include varargs.h and stdarg.h which both contain definitions
of va_list.

See Also
mvprintw(), fprintf(), vw_printw(), <curses.h>, <varargs.h>.

vw_printw()

Name
vw_printw - print formatted output in window

Synopsis
#include <stdarg.h>
#include <curses.h>

int vw_printw(WINDOW *, char *, va_list varglist);

Description
The vw_printw() function achieves the same effect as wprintw() using a variable
argument list. The third argument is a va_list, as defined in <stdarg.h>.

Return Value
Upon successful completion, vw_printw() returns OK. Otherwise, it returns ERR.

Enhanced Curses

Chapter 5. Curses Interfaces 119

Errors
No errors are defined.

Application Usage
The vw_printw() function is preferred over vwprintw(). The use of the vwprintw()
and the vw_printw() functions in the same file will not work, due to the
requirement to include varargs.h and stdarg.h which both contain definitions of
va_list.

See Also
mvprintw(), fprintf(), <curses.h>, <stdarg.h>.

vwscanw()

Name
vwscanw - convert formatted input from a window

Synopsis
#include <varargs.h>
#include <curses.h>

int vwscanw(WINDOW *, char *, va_list varglist);

Description
The vwscanw() function achieves the same effect as wscanw() using a variable
argument list. The third argument is a va_list, as defined in <varargs.h>.

Return Value
Upon successful completion, vwscanw() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The vwscanw() function is deprecated because it relies on deprecated functions in
the XSH specification. The vw_scanw() function is preferred. The use of the
vwscanw() and the vw_scanw() functions in the same file will not work, due to the
requirement to include varargs.h and stdarg.h which both contain definitions of
va_list.

See Also
fscanf(), mvscanw(), vw_scanw(), <curses.h>, varargs.h>.

vw_scanw()

Name
vw_scanw - convert formatted input from a window

Enhanced Curses

120 z/OS V2R1.0 C Curses

Synopsis
#include <stdarg.h>
#include <curses.h>

int vw_scanw(WINDOW *, char *, va_list varglist);

Description
The vw_scanw() function achieves the same effect as wscanw() using a variable
argument list. The third argument is a va_list, as defined in <stdarg.h>.

Return Value
Upon successful completion, vw_scanw() returns OK. Otherwise, it returns ERR.

Errors
No errors are defined.

Application Usage
The vw_scanw() function is preferred over vwscanw(). The use of the vwscanw()
and the vw_scanw() functions in the same file will not work, due to the
requirement to include varargs.h and stdarg.h which both contain definitions of
va_list.

See Also
fscanf(), mvscanw(), <curses.h>, <stdarg.h>.

w

Name
w - pointer page for functions with w prefix

Description
Most uses of the w prefix indicate that a Curses function takes a win argument
that specifies the affected window. 3 (The corresponding functions without the w
prefix operate on the current window.)

The w functions are discussed together with the corresponding functions without
the w prefix. They are found on the following entries:

Function Refer to
* There is no corresponding function without the w prefix.
waddch() addch()
waddchnstr() addchstr()
waddchstr() addchstr()
waddnstr() addnstr()
waddstr() addnstr()
waddnwstr() addnwstr()
waddwstr() addnwstr()
wadd_wch() add_wch()
wadd_wchnstr() add_wchnstr()

3. The wunctrl() function is an exception to this rule and has an entry under its own name.

Enhanced Curses

Chapter 5. Curses Interfaces 121

Function Refer to
wadd_wchstr() add_wchnstr()
wattroff() attroff()
wattron() attroff()
wattrset() attroff()
wattr_get() attr_get()
wattr_off() attr_get()
wattr_on() attr_get()
wattr_set() attr_get()
wbkgd() bkgd()
wbkgdset() bkgd()
wbkgrnd() bkgrnd()
wbkgrndset() bkgrnd()
wborder() border()
wborder_set() border_set()
wchgat() chgat()
wclear() clear()
wclrtobot() clrtobot()
wclrtoeol() clrtoeol()
wcursyncup() * syncok()
wdelch() delch()
wdeleteln() deleteln()
wechochar() echochar()
wecho_wchar() echo_wchar()
werase() clear()
wgetbkgrnd() bkgrnd()
wgetch() getch()
wgetnstr() getnstr()
wgetn_wstr() getn_wstr()
wgetstr() getnstr()
wget_wch() get_wch()
wget_wstr() getn_wstr()
whline() hline()
whline_set() hline_set()
winch() inch()
winchnstr() inchnstr()
winchstr() inchnstr()
winnstr() innstr()
winnwstr() innwstr()
winsch() insch()
winsdelln() insdelln()
winsertln() insertln()
winsnstr() insnstr()
winsstr() insnstr()
winstr() innstr()
wins_nwstr() ins_nwstr()
wins_wch() ins_wch()
wins_wstr() ins_nwstr()
winwstr() innwstr()
win_wch() in_wch()
win_wchnstr() in_wchnstr()
win_wchstr() in_wchnstr()
wmove() move()
wnoutrefresh() doupdate()
wprintw() mvprintw()

Curses

122 z/OS V2R1.0 C Curses

Function Refer to
wredrawln() redrawln()
wrefresh() doupdate()
wscanw() mvscanw()
wscrl() scrl()
wsetscrreg() clearok()
wstandend() standend()
wstandout() standend()
wsyncdown() * syncok()
wsyncup() * syncok()
wtimeout() notimeout()
wtouchln() * is_linetouch()
wvline() hline()
wvline_set() hline_set()

wunctrl()

Name
wunctrl - generate printable representation of a wide character

Synopsis
#include <curses.h>

wchar_t *wunctrl(cchar_t *wc);

Description
The wunctrl() function generates a wide character string that is a printable
representation of the wide character wc.

This function also performs the following processing on the input argument:
v Control characters are converted to the ^X notation.
v Any rendition information is removed.

Return Value
Upon successful completion, wunctrl() returns the generated string. Otherwise, it
returns a null pointer.

Errors
No errors are defined.

See Also
keyname(), unctrl(), <curses.h>.

Curses

Chapter 5. Curses Interfaces 123

Enhanced Curses

124 z/OS V2R1.0 C Curses

Chapter 6. Headers

This chapter describes the contents of headers used by the Curses functions,
macros and external variables.

Headers contain the definition of symbolic constants, common structures,
preprocessor macros and defined types. Each function in Chapter 6, “Headers”
specifies the headers that an application must include in order to use that function.
In most cases only one header is required. These headers are present on an
application development system; they do not have to be present on the target
execution system.

<cursesh>

Name
curses.h - definitions for screen handling and optimization functions

Synopsis
#include <curses.h>

Description
Objects

The <curses.h> header provides a declaration for COLOR_PAIRS, COLORS, COLS,
curscr, LINES and stdscr.

Constants

The following constants are defined:

EOF Function return value for end-of-file

ERR Function return value for failure

FALSE
Boolean false value

OK Function return value for success

TRUE Boolean true value

WEOF Wide-character function return value for end-of-file, as defined in
<wchar.h>.

The following constant is defined if the implementation supports the indicated
revision of the X/Open Curses specification.
_XOPEN_CURSES X/Open Curses, Issue 4 Verson 2, May 1996, C610 <ISBN>

(i.e. this document).

Data Types

The following data types are defined through typedef:

attr_t An OR-ed set of attributes

© Copyright IBM Corp. 1996, 2013 125

bool Boolean data type

chtype
A character, attributes and a color-pair

SCREEN
An opaque terminal representation

wchar_t
As described in <stddef.h>

wint_t As described in <wchar.h>

cchar_t
References a string of wide characters

WINDOW
An opaque window representation

The inclusion of <curses.h> may make visible all symbols from the headers
<stdio.h>, <term.h>, <termios.h> and <wchar.h>.

Attribute Bits

The following symbolic constants are used to manipulate objects of type attr_t:

WA_ ALTCHARSET
Alternate character set

WA_ BLINK
Blinking

WA_ BOLD
Extra bright or bold

WA_ DIM
Half bright

WA_ HORIZONTAL
Horizontal highlight

WA_ INVIS
Invisible

WA_ LEFT
Left highlight

WA_ LOW
Low highlight

WA_ PROTECT
Protected

WA_ REVERSE
Reverse video

WA_ RIGHT
Right highlight

WA_ STANDOUT
Best highlighting mode of the terminal

WA_ TOP
Top highlight

CURSES

126 z/OS V2R1.0 C Curses

WA_ UNDERLINE
Underlining

WA_ VERTICAL
Vertical highlight

These attribute flags shall be distinct.

The following symbolic constants are used to manipulate attribute bits in objects of
type chtype:

A_ALTCHARSET
Alternate character set

A_BLINK
Blinking

A_BOLD Extra bright or bold

A_DIM Half bright

A_INVIS
Invisible

A_PROTECT
Protected

A_REVERSE
Reverse video

A_STANDOUT
Best highlighting mode of the terminal

A_UNDERLINE
Underlining

These attribute flags need not be distinct except when _XOPEN_CURSES is
defined and the application sets _XOPEN_SOURCE_EXTENDED to 1.

The following symbolic constants can be used as bit-masks to extract the
components of a chtype:

A_ATTRIBUTES
Bit-mask to extract attributes

A_CHARTEXT
Bit-mask to extract a character

A_COLOR
Bit-mask to extract color-pair information

The following symbolic constants can be used as bit-masks to extract the
components of a chtype:

A_ATTRIBUTES
Bit-mask to extract attributes

A_CHARTEXT
Bit-mask to extract a character

A_COLOR
Bit-mask to extract color-pair information

Line-Drawing Constants

CURSES

Chapter 6. Headers 127

The <curses.h> header defines the symbolic constants shown in the leftmost two
columns of the following table for use in drawing lines. The symbolic constants
that begin with ACS_ are char constants. The symbolic constants that begin with
WACS_ are cchar_t constants for use with the wide-character interfaces that take a
pointer to a cchar_t.

In the POSIX locale, the characters shown in the POSIX Locale Default column are
used when the terminal database does not specify a value using the acsc capability.

char Constant char_t Constant
POSIX Locale
Default Glyph Description

ACS_ULCORNER WACS_ULCORNER + upper left-hand corner
ACS_LLCORNER WACS_LLCORNER + lower left-hand corner
ACS_URCORNER WACS_URCORNER + upper right-hand corner
ACS_LRCORNER WACS_LRCORNER + lower right-hand corner
ACS_RTEE WACS_RTEE + right tee (-|)
ACS_LTEE WACS_LTEE + left tee (|-)
ACS_BTEE WACS_BTEE + bottom tee (|)
ACS_TTEE WACS_TTEE + top tee (|)
ACS_HLINE WACS_HLINE - horizontal line
ACS_VLINE WACS_VLINE | vertical line
ACS_PLUS WACS_PLUS+ plus
ACS_S1 WACS_S1 - scan line 1
ACS_S9 WACS_S9 _ scan line 9
ACS_DIAMOND WACS_DIAMOND + diamond
ACS_CKBOARD WACS_CKBOARD : checker board (stipple)
ACS_DEGREE WACS_DEGREE ' degree symbol
ACS_PLMINUS WACS_PLMINUS # plus/minus
ACS_BULLET WACS_BULLET o bullet
ACS_LARROW WACS_LARROW < arrow pointing left
ACS_RARROW WACS_RARROW > arrow pointing right
ACS_DARROW WACS_DARROW v arrow pointing down
ACS_UARROW WACS_UARROW ^ arrow pointing up
ACS_BOARD WACS_BOARD # board of squares
ACS_LANTERN WACS_LANTERN # lantern symbol
ACS_BLOCK WACS_BLOCK # solid square block

Color-Related Macros

The following color-related macros are defined:

COLOR_BLACK

COLOR_BLUE

COLOR_GREEN

COLOR_CYAN

COLOR_RED

COLOR_MAGENTA

COLOR_YELLOW

COLOR_WHITE

Coordinate-Related Macros

CURSES

128 z/OS V2R1.0 C Curses

The following coordinate-related macros are defined:
void getbegyx(WINDOW *win, int y, int x);
void getmaxyx(WINDOW *win, int y, int x);
void getparyx(WINDOW *win, int y, int x);
void getyx(WINDOW *win, int y, int x);

Key Codes

The following symbolic constants representing function key values are defined:

Key Code
Description

KEY_CODE_YES
Used to indicate that a wchar_t variable contains a key code

KEY_BREAK
Break key

KEY_DOWN
Down arrow key

KEY_UP Up arrow key

KEY_LEFT
Left arrow key

KEY_RIGHT
Right arrow key

KEY_HOME
Home key

KEY_BACKSPACE
Backspace

KEY_F0 Function keys; space for 64 keys is reserved

KEY_F(n)
For 0_<n_<63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC
Exit insert char mode

KEY_CLEAR
Clear screen

KEY_EOS
Clear to end of screen

KEY_EOL
Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)

KEY_NPAGE
Next page

CURSES

Chapter 6. Headers 129

KEY_PPAGE
Previous page

KEY_STAB
Set tab

KEY_CTAB
Clear tab

KEY_CATAB
Clear all tabs

KEY_ENTER
Enter or send

KEY_SRESET
Soft (partial) reset

KEY_RESET
Reset or hard reset

KEY_PRINT
Print or copy

KEY_LL Home down or bottom

KEY_A1 Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

The virtual keypad is a 3-by-3 keypad arranged as follows:

A1 UP A3

LEFT B2 RIGHT

C1 DOWN C3

Each legend, such as A1, corresponds to a symbolic constant for a key code from
the preceding table, such as KEY_A1.

The following symbolic constants representing function key values are also
defined:

Key Code
Description

KEY_BTAB
Back tab key

KEY_BEG
Beginning key

KEY_CANCEL
Cancel key

KEY_CLOSE
Close key

CURSES

130 z/OS V2R1.0 C Curses

KEY_COMMAND
Cmd (command) key

KEY_COPY
Copy key

KEY_CREATE
Create key

KEY_END
End key

KEY_EXIT
Exit key

KEY_FIND
Find key

KEY_HELP
Help key

KEY_MARK
Mark key

KEY_MESSAGE
Message key

KEY_MOVE
Move key

KEY_NEXT
Next object key

KEY_OPEN
Open key

KEY_OPTIONS
Options key

KEY_PREVIOUS
Previous object key

KEY_REDO
Redo key

KEY_REFERENCE
Reference key

KEY_REFRESH
Refresh key

KEY_REPLACE
Replace key

KEY_RESTART
Restart key

KEY_RESUME
Resume key

KEY_SAVE
Save key

KEY_SBEG
Shifted beginning key

CURSES

Chapter 6. Headers 131

KEY_SCANCEL
Shifted cancel key

KEY_SCOMMAND
Shifted command key

KEY_SCOPY
Shifted copy key

KEY_SCREATE
Shifted create key

KEY_SDC
Shifted delete char key

KEY_SDL
Shifted delete line key

KEY_SELECT
Select key

KEY_SEND
Shifted end key

KEY_SEOL
Shifted clear line key

KEY_SEXIT
Shifted exit key

KEY_SFIND
Shifted find key

KEY_SHELP
Shifted help key

KEY_SHOME
Shifted home key

KEY_SIC
Shifted input key

KEY_SLEFT
Shifted left arrow key

KEY_SMESSAGE
Shifted message key

KEY_SMOVE
Shifted move key

KEY_SNEXT
Shifted next key

KEY_SOPTIONS
Shifted options key

KEY_SPREVIOUS
Shifted prev key

KEY_SPRINT
Shifted print key

KEY_SREDO
Shifted redo key

CURSES

132 z/OS V2R1.0 C Curses

KEY_SREPLACE
Shifted replace key

KEY_SRIGHT
Shifted right arrow

KEY_SRSUME
Shifted resume key

KEY_SSAVE
Shifted save key

KEY_SSUSPEND
Shifted suspend key

KEY_SUNDO
Shifted undo key

KEY_SUSPEND
Suspend key

KEY_UNDO
Undo key

Function Prototypes

The following are declared as functions, and may also be defined as macros:
int addch(const chtype);
int addchstr(const chtype *, init);
int addchnstr(chtype *const chstr, int n);
int addchstr(const chtype *);
int addnstr(const char *, init);
int addnwstr(const wchar_t *, int);
int addstr(const char *);
int add_wch(const cchar_t *);
int add_wchnstr(const cchar_t *, int);
int add_wchstr(const cchar_t *);
int addwstr(const wchar_t *);
int attroff(int);
int attron(int);
int attrset(int);
int attr_get(attr_t *, short *, void*);
int attr_off(attr_t void *);
int attr_on(attr_t, void *);
int attr_set(attr_t, short, void *);
int baudrate(void);
int beep(void);
int bkgd(chtype);
void bkgdset(chtype);
ind bkgrnd(const cchar_t *);
void bkgrndset(const cchar_t *);
int border(chtype, chtype, chtype, chtype, chtype,

chtype, chtype, chtype);
int border_set(const cchar_t *, const cchar_t *,

const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *);

int box(WINDOW *, chtype, chtype);
int box_set(WINDOW *, const cchar_t *, const cchar_t *);
bool can_change_color(void);
int cbreak(void);
int chgat(int, attr_t, short, const void *);
int clearok(WINDOW *, bool);
int clear(void);
int clrtobot(WINDOW *win, bool bf);
int clrtoeol(void);

CURSES

Chapter 6. Headers 133

int color_content(short, short *, short *, short *);
int COLOR_PAIR(int);
int Color_set(short,void *);
int copywin(const WINDOW *, WINDOW *, int, int, int,

int, int, int, int);
int curs_set(int);
int def_prog_mode(void);
int def_shell_mode(void);
int delay_output(int);
int delch(void);
int deleteln(void);
void delscreen(SCREEN *);
int delwin(WINDOW *);
WINDOW *derwin(WINDOW *, int, int, int, int);
int doupdate(void);
WINDOW *dupwin(WINDOW *);
int echo(void);
int echochar(const chtype);
int echo_wchar(const cchar_t *);
int endwin(void);
char erasechar(void);
int erase(void);
int erasewchar(wchar_t *);
void filter(void);
int flash(void);
int flushinp(void);
chtype getbkgd(WINDOW *);
int getbkgrnd(cchar_t *);
int getcchar(const cchar_t *, wchar_t *, attr_t *,

short *, void *);
int getch(void);
int getnstr(char *, int);
int getn_wstr(wint_t *, int);
int getstr(char *);
int get_wch(wint_t *);
WINDOW *getwin(FILE *);
int get_wstr(wint_t *);
int halfdelay(int);
bool has_colors(void);
bool has_ic(void);
bool has_il(void);
int hline(chtype, int);
int hline_set(const cchar_t *, int);
void idcok(WINDOW *, bool);
int idlok(WINDOW *win, bool bf);
void immedok(WINDOW *, bool);
chtype inch(void);
int inchnstr(chtype *, int);
int inchstr(chtype *);
WINDOW *initscr(void);
int init_color(short, short, short, short);
int init_pair(short, short, short);
int innstr(char *, int);
int innwstr(wchar_t *, int);
int insch(chtype);
int insdelln(int;
int insertln(void);
int insnstr(cons char *, int);
int insstr(char *const str);
int ins_nwstr(const wchar_t *, int);
int insstr(const char *);
int instr(char *);
int ins_wch(const cchar_t *);
int ins_wchstr(const cchar_t *);
int intrflush(WINDOW *, bool);
int in_wch(cchar_t *);
int in_wchnstr(cchar_t *, int);

CURSES

134 z/OS V2R1.0 C Curses

int in_wchstr(cchar_t *);
int inwstr(wchar_t *);
bool isendwin(void);
bool is_linetouched(WINDOW *, int);
bool is_wintouched(WINDOW *);
char *keyname(int);
char *key_name(wchar_t);
int keypad(WINDOW *, bool);
char killchar(void);
int killwchar(wchar_t *);
int leaveok(WINDOW *, bool);
char *longname(void);
int meta(WINDOW *, bool);
int move(int, int);
int mvaddch(int, int, const chtype);
int mvaddchnstr(int, int, const chtype *, int);
int mvaddchstr(int, int, const chtype *);
int mvaddnstr(int, int, const char *, int);
int mvaddnwstr(int, int, const wchar_t *, int);
int mvaddstr(int, int, const char *);
int mvadd_wch(int, int, const cchar_t *);
int mvadd_wchnstr(int, int, const cchar_t *, int);
int mvadd_wchstr(int, int, const cchar_t *);
int mvaddwstr(int, int, const wchar_t *);
int mvchgat(int, int, int, attr_t, short, const void *);
int mvcur(int, int, int, int);
int mvdelch(int, int);
int mvderwin(WINDOW *, int, int);
int mvgetch(int, int);
int mvgetnstr(int, int, char *, int);
int mvgetn_wstr(int, int, wint_t *, int);
int mvgetstr(int, int, char *);
int mvget_wch(int, int, wint_t *);
int mvget_wstr(int, int, wint_t *);
int mvhline(int, int, chtype, int);
int mvhline_set(int, int, const cchar_t *, int);
chtype mvinch(int, int);
int mvinchnstr(int, int, chtype *, int);
int mvinchstr(int, int, chtype *);
int mvinnstr(int, int, char *, int);
int mvinnwstr(int, int, wchar_t *, int);
int mvinsch(int, int, chtype);
int mvinsnstr(int, int, const char *, int);
in mvins_nwstr(int, int, const wchar_t *, int);
int mvinsstr(int, int, const char *);
int mvinstr(int, int, char *);
int mvins_wch(int, int, const cchar_t *);
int mvins_watr(int, int, const wchar_t *);
in mvin_wch(int, int, cchar_t *);
int mvin_wchnstr(int, int, cchar_t *,);
int mvin_wchstr(int, int, cchar_t *);
int mvinwstr(int, int, wchar_t *);
int mvprintw(int, int, char *, ...);
int mvscanw(int, int, char *, ...);
int mvvline(int, int, chtype, int);
int mvvline_set(int, int, const cchar_t *, int);
int mvwaddch(WINDOW *, int, int, const chtype);
int mvwaddchnstr(WINDOW *, int, int, const chtype *, init);
int mvwaddchstr(WINDOW *, int, int, const chtype *);
int mvwaddnstr(WINDOW *, int, int, const char *, int);
int mvwaddnwstr(WINDOW *, int, int, const wchar_t *, int);
int mvwaddstr(WINDOW *, int, int, const char *);
int mvwadd_wch(WINDOW *, int, int, const cchar_t *);
int mvwadd_wchnstr(WINDOW *, int, int, const cchar_t *, int);
int mvwadd_wchnstr(WINDOW *, int, int, const cchar_t *);
int mvwaddwstr(WINDOW *, int, int, const wchar_t *);
int mvwchgat(WINDOW *, int, int, int, attr_t,

CURSES

Chapter 6. Headers 135

short, const void *);
int mvwdelch(WINDOW *, int, int);
int mvwgetch(WINDOW *, int, int);
int mvwgetnstr(WINDOW *, int, int, char *, int);
int mvwgetn_wstr(WINDOW *, int, int, wint_t *, int);
int mvwgetstr(WINDOW *, int, int, char *);
int mvwget_wch(WINDOW *, int, int, wint_t *);
int mvwget_wstr(WINDOW *, int, int, wint_t *);
int mvwhline(WINDOW *, int, int, chtype, int);
int mvwhline_set(WINDOW *, int, int, const cchar_t *, int);
int mvwin(WINDOW *, int, int);
chtype mvwinch(WINDOW *, int, int);
int mvwinchnstr(WINDOW *, int, int, chtype *, int);
int mvwinchstr(WINDOW *, int, int, chtype *);
int mvwinnstr(WINDOW *, int, int, char *, int);
int mvwinnwstr(WINDOW *, int, int, wchar_t *, int);
int mvwinsch(WINDOW *, int, int, chtype);
int mvwinsnstr(WINDOW *, int, int, const char *, int);
int mvwins_nwstr(WINDOW *, int, int, const wchar_t *, int);
int mvwinsstr(WINDOW *, int, int, const char *);
int mvwinstr(WINDOW *, int, int, char *);
int mvwins_wch(WINDOW *, int, int, const cchar_t *);
int mvwins_wstr(WINDOW *, int, int, const wchar_t *);
int mvwin_wch(WINDOW *, int, int, cchar_t *);
int mvwin_wchnstr(WINDOW *, int, int, cchar_t *, int);
int mvwin_wchstr(WINDOW *, int, int, cchar_t *);
int mvwinwstr(WINDOW *, int, int, wchar_t *);
int mvwprintw(WINDOW *, int, int, char *, ...);
int mvwscanw(WINDOW *, int, int, char *, ...);
int mvwvline(WINDOW *, int, int, chtype, int);
int mvwvline_set(WINDOW *, int, int, const cchar_t *, int);
int napms(int);
WINDOW *newpad(int, int);
SCREEN *newterm(char *, FILE *, FILE *);
WINDOW *newwin(int, int, int, int);
int nl(void);
int nocbreak(void);
int nodelay(WINDOW *, bool);
int noecho(void);
int nonl(void);
void noqiflush(void);
int noraw(void);
int notimeout(WINDOW *, bool);
int overlay(const WINDOW *, WINDOW *);
int overwrite(const WINDOW *, WINDOW *);
int pair_content(short, short *, short *);
int PAIR_NUMBER(int);
int pechochar(WINDOW *, chtype);
int pecho_wchar(WINDOW *, const cchar_t *);
int pnoutrefresh(WINDOW *, int, int, int, int, int, int);
int prefresh(WINDOW *, int, int, int, int, int, int);
int printw(char *, ...);
int putp(const char *);
int putwin(WINDOW *, FILE *);
void qiflush(void);
int raw(void);
int redrawwin(WINDOW *);
int refresh(void);
int resetty(void);
int reset_prog_mode(void);
int reset_shell_mode(void);
int resetty(void);
int ripoffline(int, int (*)(WINDOW *, int));
int savetty(void);
int scanw(char *, ...);
int scr_dump(const char *);
int scr_init(const char *);

CURSES

136 z/OS V2R1.0 C Curses

int scrl(int);
int scroll(WINDOW *);
int scrollok(WINDOW *, bool);
int scr_restore(const char *);
int scr_set(const char *);
int setcchar(cchar_t const wchar_t *, const attr_t,

short, const void *);
int setscrreg(int, int);
SCREEN *set_term(SCREEN *);
int setupterm(char *, int, int *);
int slk_attr_off(const attr_t void *);
int slk_attroff(const chtype);
int slk_attr_on(const attr_t void *);
int slk_attron(const chtype);
int slk_attr_set(const attr_t, short, void *);
int slk_attrset(const chtype);
int slk_clear(void);
int slk_color(short);
int slk_init(int);
char *slk_label(int);
int slk_noutrefresh(void);
int slk_refresh(void);
int slk_restore(void);
int slk_set(int, const char *, int);
int slk_touch(void);
int slk_wset(int, const wchar_t *, int);
int standend(void);
int standout(void);
int start_color(void);
WINDOW *subpad(WINDOW *, int, int, int, int);
WINDOW *subwin(WINDOW *, int, int, int, int);
int syncok(WINDOW *, bool);
chtype termattrs(void);
attr_t term_attrs(void);
char *termname(void);
int tigetflag(char *);
int tigetnum(char *);
char *tigetstr(char *);
void timeout(int);
int touchline(WINDOW *, int, int);
int touchwin(WINDOW *);
char *tparm(char *, long, long, long, long, long, long,

long, long, long);
int typeahead(int);
int ungetch(int);
int unget_wch(const wchar_t);
int untouchwin(WINDOW *);
void use_env(bool);
int vid_attr(attr_t short, void *);
int vidattr(chtype);
int vid_puts(attr_t attr, short, void *, int (*)(int);
int vidputs(chtype, int (*)(int));
int vline(chtype, int);
int vline_set(const cchar_t *, int);
int vwprintw(WINDOW *, char *, va_list *);
int vw_printw(WINDOW *, char *, va_list *);
int vwscanw(WINDOW *, char *, va_list *);
int vw_scanw(WINDOW *, char *, va_list *);
int waddch(WINDOW *, const chtype);
int waddchnstr(WINDOW *, const chtype *, int);
int waddchstr(WINDOW *, const chtype *);
int waddnstr(WINDOW *, const char *, int);
int waddnwstr(WINDOW *, const wchar_t *, int);
int waddstr(WINDOW *, const char *);
int wadd_wch(WINDOW *, const cchar_t *);
int wadd_wchnstr(WINDOW *, const cchar_t *, int);
int wadd_wchstr(WINDOW *, const cchar_t *);

CURSES

Chapter 6. Headers 137

int waddwstr(WINDOW *, const wchar_t *);
int wattroff(WINDOW *, int);
int wattron(WINDOW *, int);
int wattrset(WINDOW *, int);
int wattr_get(WINDOW *, attr_t *, short *, void *);
int wattr_off(WINDOW *, attr_t void);
int wattr_on(WINDOW *, attr_t void);
int wattr_set(WINDOW *, attr_t, short, void *);
int wbkgd(WINDOW *, chtype);
void wbkgdset(WINDOW *, chtype);
int wbkgrnd(WINDOW *, const cchar_t *);
void wbkgrndset(WINDOW *, const cchar_t *);
int wborder(WINDOW *, chtype, chtype, chtype, chtype,

chtype, chtype, chtype, chtype);
int wborder_set(WINDOW *, const cchar_t *, const cchar_t *,

const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *);

int wchgat(WINDOW *, int, attr_t, short, const void *);
int wclear(WINDOW *);
int wclrtobot(WINDOW *);
int wclrtoeol(WINDOW *);
void wcursyncup(WINDOW *);
int wcolor_set(WINDOW *, short, void *);
int wdelch(WINDOW *);
int wdeleteln(WINDOW *);
int wechochar(WINDOW *, const chtype);
int wecho_wchar(WINDOW *, const cchar_t *);
int werase(WINDOW *);
int wgetbkgrnd(WINDOW *, cchar_t *);
int wgetch(WINDOW *);
int wgetnstr(WINDOW *, char *, int);
int wgetn_wstr(WINDOW *, wint_t *, int);
int wgetstr(WINDOW *, char *);
int wget_wch(WINDOW *, wint_t *);
int wget_wstr(WINDOW *, wint_t *);
int whline(WINDOW *, chtype, int);
int whline_set(WINDOW *, const cchar_t *, int);
chtype winch(WINDOW *);
int winchnstr(WINDOW *, chtype *, int ;
int winchstr(WINDOW *, chtype *);
int winnstr(WINDOW *, char *, int);
int winnwstr(WINDOW *, wchar_t *, int);
int winsch(WINDOW *, chtype);
int winsdelln(WINDOW *, int);
int winsertln(WINDOW *);
int winsnstr(WINDOW *, const char *, int);
int wins_nwstr(WINDOW *, const wchar_t *, int);
int winsstr(WINDOW *, const char *);
int winstr(WINDOW *, char *);
int wins_wch(WINDOW *, const cchar_t *);
int wins_wstr(WINDOW *, const wchar_t *);
int win_wch(WINDOW *, cchar_t *);
int win_wchnstr(WINDOW *, cchar_t *, int);
int win_wchstr(WINDOW *, cchar_t *);
int winwstr(WINDOW *, wchar_t *);
int wmove(WINDOW *, int, int);
int wnoutrefresh(WINDOW *);
int wprintw(WINDOW *, char *, ...);
int wredrawln(WINDOW *, int, int);
int wrefresh(WINDOW *);
int wscanw(WINDOW *, char *, ...);
int wscrl(WINDOW *, int);
int wsetscrreg(WINDOW *, int, int);
int wstandend(WINDOW *);
int wstandout(WINDOW *);
void wsyncup(WINDOW *);

CURSES

138 z/OS V2R1.0 C Curses

void wsyncdown(WINDOW *);
void wtimeout(WINDOW *, int);
int wtouchln(WINDOW *, int, int, int);
wchar_t *wunctrl(cchar_t *);
int wvline(WINDOW *, chtype, int);
int wvline_set(WINDOW *, const cchar_t *, int);

See Also
<stdio.h>, <term.h>, <termios.h>, <unctrl.h>, <wchar.h>.

<termh>

Name
term.h - terminal capabilities

Synopsis
#include <term.h>

Description
The following data type is defined through typedef:

TERMINAL
An opaque representation of the capabilities for a single terminal from the
terminfo database.

The <term.h> header provides a declaration for the following object: cur_term. It
represents the current terminal record from the terminfo database that the
application has selected by calling set_curterm().

The <term.h> header contains the variable names listed in the Variable column.

The following are declared as functions, and may also be defined as macros:
int del_curterm(TERMINAL *);
int putp(const char *);
int restartterm(char *, int, int *);
TERMINAL *set_curterm(TERMINAL *);
int setupterm(char *, int, int *);
int tgetent(char *, const char);
int tgetflag(char *);
int tgetnum(char *);
char *tgetstr(char *, char **);
char *tgoto(char *, int, int);
int tigetflag(char *);
int tigetnum(char *);
char *tigetstr(char *);
char *tparm(char *, long, long, long, long, long,

long, long, long, long);
int tputs(const char *, int, int (*)(int));

See Also
printf(), putp(), tigetflag(), tgetent(), <curses.h>.

CURSES

Chapter 6. Headers 139

<unctrlh>

Name
unctrl.h - definitions for unctrl()

Description
The <unctrl.h> header defines the chtype type as defined in <curses.h>.

The following is declared as a function, and may also be defined as a macro:
char *unctrl(chtype);

See Also
unctrl(), <curses.h>.

CURSES

140 z/OS V2R1.0 C Curses

Chapter 7. Terminfo Source Format (ENHANCED CURSES)

The terminfo database contains a description of the capabilities of a variety of
devices, such as terminals and printers. Devices are described by specifying a set
of capabilities, by quantifying certain aspects of the device, and by specifying
character sequences that effect particular results.

This chapter specifies the format of terminfo source files.

X/Open-compliant implementations provide a facility that accepts source files in
the format specified in this chapter as a means of entering information into the
terminfo database. The facility for installing this information into the database is
implementation-specific. A valid terminfo entry describing a given model of
terminal can be added to terminfo on any X/Open-compliant implementation to
permit use of the same terminal model.

The terminfo database is often used by screen-oriented applications such as vi and
Curses programs, as well as by some utilities such as ls and more. This usage
allows them to work with a variety of devices without changes to the programs.

Source File Syntax
Source files can use the ISO 8859-1 codeset. The behavior when the source file is in
another codeset is unspecified. Traditional practice has been to translate
information from other codesets into the source file syntax.

terminfo source files consist of one or more device descriptions. Each description
defines a mnemonic name for the terminal model. Each description consists of a
header (beginning in column 1) and one or more lines that list the features for that
particular device. Every line in a terminfo source file must end in a comma. Every
line in a terminfo source file except the header must be indented with one or more
white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped by
using a backslash. The following example shows the format of a terminfo source
file:

alias1 | alias2 | ... | aliasn | longname,
<white space> am, lines #24,
<white space> home=\Eeh,

The first line, commonly referred to as the header line, must begin in column one
and must contain at least two aliases separated by vertical bars. The last field in
the header line must be the long name of the device and it may contain any string.

Alias names must be unique in the terminfo database and they must conform to
file naming conventions established by implementation-specific terminfo
compilation utilities. Implementations will recognize alias names consisting only of
characters from the portable filename character set except that implementations
need not accept a first character of minus(-). For example, a typical restriction is

© Copyright IBM Corp. 1996, 2013 141

that they cannot contain white space or slashes. There may be further constraints
imposed on source file values by the implementation-specific terminfo compilation
utilities.

Each capability in terminfo is of one of the following types:
v Boolean capabilities show that a device has or does not have a particular feature.
v Numeric capabilities quantify particular features of a device.
v String capabilities provide sequences that can be used to perform particular

operations on devices.

Capability names adhere to an informal length limit of five characters. Whenever
possible, capability names are chosen to be the same as or similar to those
specified by the ANSI X3.64-1979 standard. Semantics are also intended to match
those of the ANSI standard.

All string capabilities may have padding specified, with the exception of those
used for input. Input capabilities, listed under the Strings section in the following
tables, have names beginning with key_. These capabilities are defined in
<term.h>.

Minimum Guaranteed Limits
All X/Open-compliant implementations support at least the following limits for
the terminfo source file:

Source File Characteristic Minimum Guaranteed Value

Length of a line 1023 bytes

Length of a terminal alias 14 bytes

Length of a terminal model name 128 bytes

Width of a single field 128 bytes

Length of a string value 1000 bytes

Length of a string representing a numeric
value

99 digits

Magnitude of a numeric value 0 up to and including 32767

An implementation may support higher limits than those specified above.

Formal Grammar
The grammar and lexical conventions in this section together describe the syntax
for terminfo terminal descriptions within a terminfo source file. A terminal
description that satisfies the requirements of this section will be accepted by all
implementations.

descriptions : START_OF_HEADER_LINE4 rest_of_header_line feature_lines
| descriptions START_OF_HEADER_LINE rest_of_header_line
| feature_lines
;

rest_of_header_line : PIPE LONGNAME COMMA NEWLINE
| aliases PIPE LONGNAME COMMA NEWLINE
;

Source File Syntax

142 z/OS V2R1.0 C Curses

feature_lines : start_feature_line rest_of_feature_line
| feature_lines start_feature_line rest_of_feature_line
;

start_feature_line : START_FEATURE_LINE_BOOLEAN5

| START_FEATURE_LINE_NUMERIC6

| START_FEATURE_LINE_STRING7

;

rest_of_feature_line : features COMMA NEWLINE
| COMMA NEWLINE
;

features : COMMA feature
| features COMMA feature
;

aliases : PIPE ALIAS
| aliases PIPE ALIAS
;

feature : BOOLEAN
| NUMERIC
| STRING
;

The lexical conventions for terminfo descriptions are as follows:
1. White space consists of the ‘ ’ and <tab> character.
2. An ALIAS may contain any graph 8 characters other than ‘,’,‘/’ and ‘|’.
3. A LONGNAME may contain any print 9 characters other than ‘,’ and ‘|’.
4. A BOOLEAN feature may contain any print characters other than ‘,’, ‘=’, and

‘#’.
5. A NUMERIC feature consists of:

a. A name which may contain any print character other than ‘,’, ‘=’, and ‘#’.
b. The ‘#’ character.
c. A positive integer which conforms to the C language convention for

integer constants.
6. A STRING feature consists of:

a. A name which may contain any print character other than ‘,’, ‘=’, and ‘#’.
b. The ‘=’ character.
c. A string which may contain any print characters other than ‘,’.

7. White space immediately following a ‘,’ is ignored.
8. Comments consist of <bol>, optional whitespace, a required ‘#’, and a

terminating <eol>.
9. A header line must begin in column one.

4. An ALIAS that begins in column one. This is handled by the lexical analyzer.

5. A BOOLEAN feature that begins after column one but is the first feature on the feature line. This is handled by the lexical
analyzer.

6. A NUMERIC feature that begins after column one but is the first feature on the feature line. This is handled by the lexical
analyzer.

7. A STRING feature that begins after column one but is the first feature on the feature line. This is handled by the lexical analyzer.

8. Graph characters are those characters for which isgraph() returns non-zero.

9. Print characters are those characters for which isprint() returns non-zero.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 143

10. A feature line must not begin in column one.
11. Blank lines are ignored.

Defined Capabilities
X/Open defines the capabilities listed in the following table. All
X/Open-compliant implementations must accept each of these capabilities in an
entry in a terminfo source file. Implementations use this information to determine
how properly to operate the current terminal. In addition, implementations return
any of the current terminal's capabilities when the application calls the query
functions listed in tgetent().

The table of capabilities has the following columns:

Variable
Names for use by the Curses functions that operate on the terminfo
database. These names are reserved and the application must not define
them.

Capname
The short name for a capability specified in the terminfo source file. It is
used for updating the source file and by the tput command.

Termcap
Codes provided for compatibility with older applications. These codes are
TO BE WITHDRAWN. Because of this, not all Capnames have Termcap
codes.

Booleans

Variable Capname Termcap Description
auto_left_margin bw bw cub1 wraps from column 0 to last

column
auto_right_margin am am Terminal has automatic margins
back_color_erase bce ut Screen erased with background

color
can_change ccc cc Terminal can re-define existing

color
ceol_standout_glitch xhp xs Standout not erased by

overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for

hpa/mhpa caps
cpi_changes_res cpix YF Changing character pitch changes

resolution
cr_cancels_micro_mode crxm YB Using cr turns off micro mode
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char

(t1061)
eat_newline_glitch xenl xn Newline ignored after 80 columns

(Concept)
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g., dialup,

switch)
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key km km Has a meta key (shift, sets parity

bit)
has_print_wheel daisy YC Printer needs operator to change

character set
has_status_line hs hs Has extra "status line"

Source File Syntax

144 z/OS V2R1.0 C Curses

Variable Capname Termcap Description
hue_lightness_saturation hls hl Terminal uses only HLS color

notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch changes

resolution
memory_above da da Display may be retained above the

screen
memory_below db db Display may be retained below the

screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won't work, xon/xoff

required
no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)
no_pad_char npc NP Pad character doesn't exist
non_dest_scroll_region ndscr ND Scrolling region is nondestructive
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
over_strike os os Terminal overstrikes on hard-copy

terminal
prtr_silent mc5i 5i Printer won't echo on screen
row_addr_glitch xvpa YD Only positive motion for

vpa/mvpa caps
semi_auto_right_margin sam YE Printing in last column causes cr
status_line_esc_ok eslok es Escape can be used on the status

line
tilde_glitch hz hz Hazeltine; can't print tilde (˜)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff

handshaking

Numbers

Variable Capname Termcap Description
bit_image_entwining bitwin Yo Number of passes for each bit-map

row
bit_image_type bitype Yp Type of bit image device
buffer_capacity bufsz Ya Number of bytes buffered before

printing
buttons btns BT Number of buttons on the mouse
columns cols co Number of columns in a line
dot_horz_spacing spinh Yc Spacing of dots horizontally in dots

per inch
dot_vert_spacing spinv Yb Spacing of pins vertically in pins per

inch
init_tabs it it Tabs initially every # spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label
lines lines li Number of lines on a screen or a

page
lines_of_memory lm lm Lines of memory if > lines; 0 means

varies
max_attributes ma ma Maximum combined video attributes

terminal can display
magic_cookie_glitch xmc sg Number of blank characters left by

smso or rmso

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 145

Variable Capname Termcap Description
max_colors colors Co Maximum number of colors on the

screen
max_micro_address maddr Yd Maximum value in micro_..._address
max_micro_jump mjump Ye Maximum value in parm_..._micro
max_pairs pairs pa Maximum number of color-pairs on

the screen
maximum_windows wnum MW Maximum number of definable

windows
micro_col_size mcs Yf Character step size when in micro

mode
micro_line_size mls Yg Line step size when in micro mode
no_color_video ncv NC Video attributes that can't be used

with colors
num_labels nlab Nl Number of labels on screen (start at

1)
number_of_pins npins Yh Number of pins in print-head
output_res_char orc Yi Horizontal resolution in units per

character
output_res_line orl Yj Vertical resolution in units per line
output_res_horz_inch orhi Yk Horizontal resolution in units per

inch
output_res_vert_inch orvi Yl Vertical resolution in units per inch
padding_baud_rate pb pb Lowest baud rate where padding

needed
print_rate cps Ym Print rate in characters per second
virtual_terminal vt vt Virtual terminal number
wide_char_size widcs Yn Character step size when in

double-wide mode
width_status_line wsl ws Number of columns in status line

Strings

Variable Capname Termcap Description
acs_chars acsc ac Graphic charset pairs aAbBcC
alt_scancode_esc scesa S8 Alternate escape for scancode

emulation (default is for VT100)
back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
bit_image_carriage_return bicr Yv Move to beginning of same row
bit_image_newline binel Zz Move to next row of the bit image
bit_image_repeat birep Xy Repeat bit-image cell #1 #2 times
carriage_return cr cr Carriage return
change_char_pitch cpi ZA Change number of characters per

inch
change_line_pitch lpi ZB Change number of lines per inch
change_res_horz chr ZC Change horizontal resolution
change_res_vert cvr ZD Change vertical resolution
change_scroll_region csr cs Change to lines #1 through #2

(VT100)
char_padding rmp rP Like ip but when in replace mode
char_set_names csnm Zy Returns a list of character set

names
clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear all margins (top, bottom, and

sides)
clear_screen clear cl Clear screen and home cursor

Source File Syntax

146 z/OS V2R1.0 C Curses

Variable Capname Termcap Description
clr_bol el1 cb Clear to beginning of line,

inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display
code_set_init csin ci Init sequence for multiple codesets
color_names colornm Yw Give name for color #1
column_address hpa ch Set horizontal position to absolute

#1
command_character cmdch CC Terminal settable cmd character in

prototype
create_window cwin CW Define win #1 to go from #2,#3 to

#4,#5
cursor_address cup cm Move to row #1 col #2
cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 le Move left one space.
cursor_mem_address mrcup CM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal (undo

vs/vi)
cursor_right cuf1 nd Non-destructive space (cursor or

carriage right)
cursor_to_ll ll ll Last line, first column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
define_bit_image_region defbi Yx Define rectangular bit-image

region
define_char defc ZE Define a character in a character

set
delete_character dch1 dc Delete character
delete_line dl1 dl Delete line
device_type devt dv Indicate language/codeset support
dial_phone dial DI Dial phone number #1
dis_status_line dsl ds Disable status line
display_clock dclk DK Display time-of-day clock
display_pc_char dispc S1 Display PC character
down_half_line hd hd Half-line down (forward 1/2

linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region
enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use

cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print
enter_horizontal_hl_mode ehhlm Turn on horizontal highlight mode
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_left_hl_mode elhlm Turn on left highlight mode
enter_leftward_mode slm ZI Enable leftward carriage motion

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 147

Variable Capname Termcap Description
enter_low_hl_mode elohlm Turn on low highlight mode
enter_micro_mode smicm ZJ Enable micro motion capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_right_hl_mode erhlm Turn on right highlight mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode (characters

invisible)
enter_shadow_mode sshm ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode
enter_subscript_mode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm ZO Enable superscript printing
enter_top_hl_mode ethlm Turn on top highlight mode
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion
enter_vertical_hl_mode evhlm Turn on vertical highlight mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode sgr0 me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use

cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal) carriage

motion
exit_micro_mode rmicm ZT Disable micro motion capabilities
exit_pc_charset_mode rmpch S3 Disable PC character display mode
exit_scancode_mode rmsc S5 Disable PC scancode mode
exit_shadow_mode rshm ZU Disable shadow printing
exit_standout_mode rmso se End standout mode
exit_subscript_mode rsubm ZV Disable subscript printing
exit_superscript_mode rsupm ZW Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward_mode rum ZX Enable downward (normal)

carriage motion
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
fixed_pause pause PA Pause for 2-3 seconds
flash_hook hook fh Flash the switch hook
flash_screen flash vb Visible bell (may move cursor)
form_feed ff ff Hardcopy terminal page eject
from_status_line fsl fs Return from status line
get_mouse getm Gm Curses should get button events
goto_window wingo WG Go to window #1
hangup hup HU Hang-up phone
init_1string is1 i1 Terminal or printer initialization

string
init_2string is2 is Terminal or printer initialization

string

Source File Syntax

148 z/OS V2R1.0 C Curses

Variable Capname Termcap Description
init_3string is3 i3 Terminal or printer initialization

string
init_file if if Name of initialization file
init_prog iprog iP Path name of program for

initialization
initialize_color initc IC Set color #1 to RGB #2, #3, #4
initialize_pair initp Ip Set color-pair #1 to fg #2, bg #3
insert_character ich1 ic Insert character
insert_line il1 al Add new blank line
insert_padding ip ip Insert pad after character inserted
Note: The “key_” strings are sent by specific keys. The “key_” descriptions include the
macro, defined in <curses.h>, for the code returned by getch() when the key is pressed (see
getch()).
key_a1 ka1 K1 upper left of keypad
key_a3 ka3 K3 upper right of keypad
key_b2 kb2 K2 center of keypad
key_backspace kbs kb sent by backspace key
key_beg kbeg @1 sent by beg(inning) key
key_btab kcbt kB sent by back-tab key
key_c1 kc1 K4 lower left of keypad
key_c3 kc3 K5 lower right of keypad
key_cancel kcan @2 sent by cancel key
key_catab ktbc ka sent by clear-all-tabs key
key_clear kclr kC sent by clear-screen or erase key
key_close kclo @3 sent by close key
key_command kcmd @4 sent by cmd (command) key
key_copy kcpy @5 sent by copy key
key_create kcrt @6 sent by create key
key_ctab kctab kt sent by clear-tab key
key_dc kdch1 kD sent by delete-character key
key_dl kdl1 kL sent by delete-line key
key_down kcud1 kd sent by terminal down-arrow key
key_eic krmir kM sent by rmir or smir in insert

mode
key_end kend @7 sent by end key
key_enter kent @8 sent by enter/send key
key_eol kel kE sent by clear-to-end-of-line key
key_eos ked kS sent by clear-to-end-of-screen key
key_exit kext @9 sent by exit key
key_f0 kf0 k0 sent by function key f0
key_f1 kf1 k1 sent by function key f1
...

... ..
...

key_f62 kf62 Fq sent by function key f62
key_f63 kf63 Fr sent by function key f63
key_find kfnd @0 sent by find key
key_help khlp %1 sent by help key
key_home khome kh sent by home key
key_ic kich1 kI sent by ins-char/enter ins-mode

key
key_il kil1 kA sent by insert-line key
key_left kcub1 kl sent by terminal left-arrow key
key_ll kll kH sent by home-down key
key_mark kmrk %2 sent by mark key
key_message kmsg %3 sent by message key

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 149

Variable Capname Termcap Description
key_mouse kmous Km 0631, Mouse event has occurred
key_move kmov %4 sent by move key
key_next knxt %5 sent by next-object key
key_npage knp kN sent by next-page key
key_open kopn %6 sent by open key
key_options kopt %7 sent by options key
key_ppage kpp kP sent by previous-page key
key_previous kprv %8 sent by previous-object key
key_print kprt %9 sent by print or copy key
key_redo krdo %0 sent by redo key
key_reference kref &1 sent by ref(erence) key
key_refresh krfr &2 sent by refresh key
key_replace krpl &3 sent by replace key
key_restart krst &4 sent by restart key
key_resume kres &5 sent by resume key
key_right kcuf1 kr sent by terminal right-arrow key
key_save ksav &6 sent by save key
key_sbeg kBEG &9 sent by shifted beginning key
key_scancel kCAN &0 sent by shifted cancel key
key_scommand kCMD *1 sent by shifted command key
key_scopy kCPY *2 sent by shifted copy key
key_screate kCRT *3 sent by shifted create key
key_sdc kDC *4 sent by shifted delete-char key
key_sdl kDL *5 sent by shifted delete-line key
key_select kslt *6 sent by select key
key_send kEND *7 sent by shifted end key
key_seol kEOL *8 sent by shifted clear-line key
key_sexit kEXT *9 sent by shifted exit key
key_sf kind kF sent by scroll-forward/down key
key_sfind kFND *0 sent by shifted find key
key_shelp kHLP #1 sent by shifted help key
key_shome kHOM #2 sent by shifted home key
key_sic kIC #3 sent by shifted input key
key_sleft kLFT #4 sent by shifted left-arrow key
key_smessage kMSG %a sent by shifted message key
key_smove kMOV %b sent by shifted move key
key_snext kNXT %c sent by shifted next key
key_soptions kOPT %d sent by shifted options key
key_sprevious kPRV %e sent by shifted prev key
key_sprint kPRT %f sent by shifted print key
key_sr kri kR sent by scroll-backward/up key
key_sredo kRDO %g sent by shifted redo key
key_sreplace kRPL %h sent by shifted replace key
key_sright kRIT %i sent by shifted right-arrow key
key_srsume kRES %j sent by shifted resume key
key_ssave kSAV !1 sent by shifted save key
key_ssuspend kSPD !2 sent by shifted suspend key
key_stab khts kT sent by set-tab key
key_sundo kUND !3 sent by shifted undo key
key_suspend kspd &7 sent by suspend key
key_undo kund &8 sent by undo key
key_up kcuu1 ku sent by terminal up-arrow key
keypad_local rmkx ke Out of “keypad-transmit” mode

Source File Syntax

150 z/OS V2R1.0 C Curses

Variable Capname Termcap Description
keypad_xmit smkx ks Put terminal in “keypad-transmit”

mode
lab_f0 lf0 l0 Labels on function key f0 if not f0
lab_f1 lf1 l1 Labels on function key f1 if not f1
lab_f2 lf2 l2 Labels on function key f2 if not f2
lab_f3 lf3 l3 Labels on function key f3 if not f3
lab_f4 lf4 l4 Labels on function key f4 if not f4
lab_f5 lf5 l5 Labels on function key f5 if not f5
lab_f6 lf6 l6 Labels on function key f6 if not f6
lab_f7 lf7 l7 Labels on function key f7 if not f7
lab_f8 lf8 l8 Labels on function key f8 if not f8
lab_f9 lf9 l9 Labels on function key f9 if not f9
lab_f10 lf10 la Labels on function key f10 if not

f10
label_format fln Lf Label format
label_off rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
meta_off rmm mo Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
micro_column_address mhpa ZY Like column_address for micro

adjustment
micro_down mcud1 ZZ Like cursor_down for micro

adjustment
micro_left mcub1 Za Like cursor_left for micro

adjustment
micro_right mcuf1 Zb Like cursor_right for micro

adjustment
micro_row_address mvpa Zc Like row_address for micro

adjustment
micro_up mcuu1 Zd Like cursor_up for micro

adjustment
mouse_info minfo Mi Mouse status information
newline nel nw Newline (behaves like cr followed

by lf)
order_of_pins porder Ze Matches software bits to

print-head pins
orig_colors oc oc Set all color(-pair)s to the original

ones
orig_pair op op Set default color-pair to the

original one
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars
parm_delete_line dl DL Delete #1 lines
parm_down_cursor cud DO Move down #1 lines.
parm_down_micro mcud Zf Like parm_down_cursor for micro

adjust.
parm_ich ich IC Insert #1 blank chars
parm_index indn SF Scroll forward #1 lines.
parm_insert_line il AL Add #1 new blank lines
parm_left_cursor cub LE Move cursor left #1 spaces
parm_left_micro mcub Zg Like parm_left_cursor for micro

adjust.
parm_right_cursor cuf RI Move right #1 spaces.
parm_right_micro mcuf Zh Like parm_right_cursor for micro

adjust.
parm_rindex rin SR Scroll backward #1 lines.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 151

Variable Capname Termcap Description
parm_up_cursor cuu UP Move cursor up #1 lines.
parm_up_micro mcuu Zi Like parm_up_cursor for micro

adjust.
pc_term_options pctrm S6 PC terminal options
pkey_key pfkey pk Prog funct key #1 to type string #2
pkey_local pfloc pl Prog funct key #1 to execute string

#2
pkey_plab pfxl xl Prog key #1 to xmit string #2 and

show string #3
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pln pn Prog label #1 to show string #2
print_screen mc0 ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
pulse pulse PU Select pulse dialing
quick_dial qdial QD Dial phone number #1, without

progress detection
remove_clock rmclk RC Remove time-of-day clock
repeat_char rep rp Repeat char #1 #2 times
req_for_input rfi RF Send next input char (for ptys)
req_mouse_pos reqmp RQ Request mouse position report
reset_1string rs1 r1 Reset terminal completely to sane

modes
reset_2string rs2 r2 Reset terminal completely to sane

modes
reset_3string rs3 r3 Reset terminal completely to sane

modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Set vertical position to absolute #1
save_cursor sc sc Save cursor position
scancode_escape scesc S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
set0_des_seq s0ds s0 Shift into codeset 0 (EUC set 0,

ASCII)
set1_des_seq s1ds s1 Shift into codeset 1
set2_des_seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3
set_a_attributes sgr1 Define second set of video

attributes #1-#6
set_a_background setab AB Set background color to #1 using

ANSI escape
set_a_foreground setaf AF Set foreground color to #1 using

ANSI escape
set_attributes sgr sa Define first set of video attributes

#1-#9
set_background setb Sb Set background color to #1
set_bottom_margin smgb Zk Set bottom margin at current line
set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 or #2

lines from bottom
set_clock sclk SC Set clock to hours (#1), minutes

(#2), seconds (#3)
set_color_band setcolor Yz Change to ribbon color #1

Source File Syntax

152 z/OS V2R1.0 C Curses

Variable Capname Termcap Description
set_color_pair scp sp Set current color pair to #1
set_foreground setf Sf Set foreground color to #1
set_left_margin smgl ML Set left margin at current column
set_left_margin_parm smglp Zm Set left (right) margin at column #1

(#2)
set_lr_margin smglr ML Sets both left and right margins
set_page_length slines YZ Set page length to #1 lines
set_pglen_inch slength YI Set page length to #1 hundredth of

an inch
set_right_margin smgr MR Set right margin at current column
set_right_margin_parm smgrp Zn Set right margin at column #1
set_tab hts st Set a tab in all rows, current

column
set_tb_margin smgtb MT Sets both top and bottom margins
set_top_margin smgt Zo Set top margin at current line
set_top_margin_parm smgtp Zp Set top (bottom) margin at line #1

(#2)
set_window wind wi Current window is lines #1-#2 cols

#3-#4
start_bit_image sbim Zq Start printing bit image graphics
start_char_set_def scsd Zr Start definition of a character set
stop_bit_image rbim Zs End printing bit image graphics
stop_char_set_def rcsd Zt End definition of a character set
subscript_characters subcs Zu List of “subscript-able” characters
superscript_characters supcs Zv List of “superscript-able”

characters
tab ht ta Tab to next 8-space hardware tab

stop
these_cause_cr docr Zw Printing any of these chars causes

cr
to_status_line tsl ts Go to status line, col #1
tone tone TO Select touch tone dialing
user0 u0 u0 User string 0
user1 u1 u1 User string 1
user2 u2 u2 User string 2
user3 u3 u3 User string 3
user4 u4 u4 User string 4
user5 u5 u5 User string 5
user6 u6 u6 User string 6
user7 u7 u7 User string 7
user8 u8 u8 User string 8
user9 u9 u9 User string 9
underline_char uc uc Underscore one char and move

past it
up_half_line hu hu Half-line up (reverse 1/2 linefeed)
wait_tone wait WA Wait for dial tone
xoff_character xoffc XF X-off character
xon_character xonc XN X-on character
zero_motion zerom Zx No motion for the subsequent

character

Sample Entry
The following entry describes the AT&T; 610 terminal.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 153

610|610bct|ATT610|att610|AT&T610;80column;98key; keyboard,
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80,
acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}˜˜,
bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[25l, clear=\E[H\E[J, cnorm=\E[25h\E[12l,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[5h$<200>\E[5l, fsl=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[3;4;5;13;15l\E[13;20l\E[7h\E[12h\E(B\E)0,
is2=\E[0m^O, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=^H, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kfP=\EOc, kfP0=\ENp,
kfP1=\ENq, kfP2=\ENr, kfP3=\ENs, kfP4=\ENt, kfI=\EOd,
kfB=\EOe, kf4=\EOf, kf(CW=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[4i, mc5=\E[5i, nel=\EE,
pfxl=\E[%p1%d;%p2%l%02dq%%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=^O, rmir=\E[4l, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[3l, sc=\E7,
sgr=\E[0%%p6%t;1%;%%p5%t;2%;%%p2%t;4%;%%p4%t;5%;

%%p3%p1% | %t;7%;%%p7%t;8%;m%%p9%t^N%e^O%;,
sgr0=\E[m^O, smacs=^N, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of terminfo capabilities:
Boolean, numeric, and string. All capabilities specified in the terminfo source file
must be followed by commas, including the last capability in the source file. In
terminfo source files, capabilities are referenced by their capability names (as
shown in the Capname column of the previous tables).

Boolean Capabilities

A boolean capability is true if its Capname is present in the entry, and false if its
Capname is not present in the entry.

The ‘@’ character following a Capname is used to explicitly declare that a boolean
capability is false.

Numeric Capabilities

Numeric capabilities are followed by the character ‘#’ and then a positive integer
value. The example assigns the value 80 to the cols numeric capability by coding:
cols#80

Values for numeric capabilities may be specified in decimal, octal or hexadecimal,
using normal C-language conventions.

String Capabilities

String-valued capabilities such as el (clear to end of line sequence) are listed by the
Capname, an ‘=’, and a string ended by the next occurrence of a comma.

Source File Syntax

154 z/OS V2R1.0 C Curses

A delay in milliseconds may appear anywhere in such a capability, preceded by $
and enclosed in angle brackets, as in el=\EK$<3>. The Curses implementation
achieves delays by outputting to the terminal an appropriate number of
system-defined padding characters. The tputs() function provides delays when used
to send such a capability to the terminal.

The delay can be any of the following: a number, a number followed by an
asterisk, such as 5*, a number followed by a slash, such as 5/, or a number
followed by both, such as 5*/.
v A ‘*’ shows that the required delay is proportional to the number of lines

affected by the operation, and the amount given is the delay required per
affected unit. (In the case of insert characters, the factor is still the number of
lines affected. This is always 1 unless the device has in and the software uses it.)
When a ‘*’ is specified, it is sometimes useful to give a delay of the form 3.5 to
specify a delay per unit to tenths of milliseconds. (Only one decimal place is
allowed.)

v A ‘/’ indicates that the delay is mandatory and padding characters are
transmitted regardless of the setting of xon. If ‘/’ is not specified or if a device
has xon defined, the delay information is advisory and is only used for cost
estimates or when the device is in raw mode. However, any delay specified for
bel or flash is treated as mandatory.

The following notation is valid in terminfo source files for specifying special
characters:

Notation Represents Character
^x Control-x (for any appropriate x)
\a Alert
\b Backspace

\E or \e An ESCAPE character
\f Form feed
\l Linefeed
\n Newline
\r Carriage return
\s Space
\t Tab
\^ Caret (^)
\\ Backslash (\)
\, Comma (,)
\: Colon (:)
\0 Null

\nnn Any character, specified as three octal digits

(See the XBD specification, General Terminal Interface.)

Commented-out Capabilities

Sometimes individual capabilities must be commented out. To do this, put a period
before the capability name. For example, see the second ind Note that capabilities
are defined in a left-to-right order and, therefore, a prior definition will override a
later definition.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 155

Device Capabilities

Basic Capabilities
The number of columns on each line for the device is given by the cols numeric
capability. If the device has a screen, then the number of lines on the screen is
given by the lines capability. If the device wraps around to the beginning of the
next line when it reaches the right margin, then it should have the am capability. If
the terminal can clear its screen, leaving the cursor in the home position, then this
is given by the clear string capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then it should have the os
capability. If the device is a printing terminal, with no soft copy unit, specify both
hc and os. If there is a way to move the cursor to the left edge of the current row,
specify this as cr. (Normally this will be carriage return, control-M.) If there is a
way to produce an audible signal (such as a bell or a beep), specify it as bel. If,
like most devices, the device uses the xon-xoff flow-control protocol, specify xon.

If there is a way to move the cursor one position to the left (such as backspace),
that capability should be given as cub1. Similarly, sequences to move to the right,
up, and down should be given as cuf1, cuu1, and cud1, respectively. These local
cursor motions must not alter the text they pass over; for example, you would not
normally use “cuf1=\s” because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo
are undefined at the left and top edges of a screen terminal. Programs should
never attempt to backspace around the left edge, unless bw is specified, and
should never attempt to go up locally off the top. To scroll text up, a program goes
to the bottom left corner of the screen and sends the ind (index) string. To scroll
text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The strings ind and ri are undefined when not on their
respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These versions
have the same semantics as ind and ri, except that they take one argument an
scroll the number of lines specified by that argument.

They are also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cuf1 from the last
column. Backward motion from the left edge of the screen is possible only when
bw is specified. In this case, cub1 will move to the right edge of the previous row.
If bw is not given, the effect is undefined. This is useful for drawing a box around
the edge of the screen, for example. If the device has switch-selectable automatic
margins, am should be specified in the terminfo source file. In this case,
initialization strings should turn on this option, if possible. If the device has a
command that moves to the first column of the next line, that command can be
given as nel (newline). It does not matter if the command clears the remainder of
the current line, so if the device has no cr and lf it may still be possible to craft a
working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T; 5320 hardcopy terminal is described as follows:

Source File Syntax

156 z/OS V2R1.0 C Curses

5320|att5320|AT&T; 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=^G, cr=\r, cub1=\b, cnd1=\n,
dch1=\E[P, dl1=\E[M,
ind=\n,

while the Lear Siegler ADM-3 is described as
adm3|lsi adm3,

am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H,
cud1=^J, ind=^J, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring arguments are described by a
argumentized string capability with escapes in a form (%x) comparable to printf().
For example, to address the cursor, the cup capability is given, using two
arguments: the row and column to address to. (Rows and columns are numbered
from zero and refer to the physical screen visible to the user, not to any unseen
memory.) If the terminal has memory relative cursor addressing, that can be
indicated by mrcup.

The argument mechanism uses a stack and special % codes to manipulate the stack
in the manner of Reverse Polish Notation (postfix). Typically a sequence pushes
one of the arguments onto the stack and then prints it in some format. Often more
complex operations are necessary. Operations are in postfix form with the operands
in the usual order. That is, to subtract 5 from the first argument, one would use
%p1%{5}%-.

The % encodings have the following meanings:

%% Outputs ‘%’.

%[[:]flags][width[.precision]][doxXs]
As in printf(); flags are [-+#] and space.

%c Print pop() gives %c.

%p[1-9]
Push the ith argument.

%P[a-z]
Set dynamic variable [a-z] to pop().

%g[a-z]
Get dynamic variable [a-z] and push it.

%P[A-Z]
Set static variable [a-z] to pop().

%g[A-Z]
Get static variable [a-z] and push it.

%'c' Push char constant c.

%{nn} Push decimal constant nn.

%l Push strlen(pop()).

%+ %- %* %/ %m
Arithmetic (%m is mod): push(pop integer2 op pop integer1) where
integer1 represents the top of the stack

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 157

%&; %| %^
Bit operations: push(pop integer2 op pop integer1)

%= %> %<
Logical operations: push(pop integer2 op pop integer1)

%A %O
Logical operations: and, or

%! %˜
Unary operations: push(op pop())

%i (For ANSI terminals) add 1 to the first argument (if one argument present),
or first two arguments (if more than one argument present).

% expr %t thenpart %e elsepart %;
If-then-else, %e elsepart is optional; else-if's are possible ala Algol 68: % c1
%t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e b5%; ci are conditions, bi
are bodies.

If the “-” flag is used with “%[doxXs]”, then a colon must be placed between the
“%” and the “-” to differentiate the flag from the binary “%-” operator. For
example: “%:-16.16s”.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs
to be sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the rows
and columns is inverted here, and that the row and column are zero-padded as
two digits. Thus its cup capability is:
cup=\E&a%p2%2;2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a ^T,
with the row and column simply encoded in binary:
cup=^T%p1%c%p2%c

Devices that use “%c” need to be able to backspace the cursor (cub1), and to move
the cursor up one line on the screen (cuu1). This is necessary because it is not
always safe to transmit \n, ^D, and \r, as the system may change or discard them.
(The library functions dealing with terminfo set tty modes so that tabs are never
expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus:
cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c

After sending “\E=”, this pushes the first argument, pushes the ASCII value for a
space (32), adds them (pushing the sum on the stack in place of the two previous
values), and outputs that value as a character. Then the same is done for the
second argument. More complex arithmetic is possible using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the lower
left-hand corner can be given as ll; this may involve going up with cuu1 from the
home position, but a program should never do this itself (unless ll does) because it
can make no assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the top left

Source File Syntax

158 z/OS V2R1.0 C Curses

corner of the screen, not of memory. (Thus, the EH sequence on Hewlett-Packard
terminals cannot be used for home without losing some of the other features on
the terminal.)

If the device has row or column absolute-cursor addressing, these can be given as
single argument capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes these are shorter than the more general
two-argument sequence (as with the Hewlett-Packard 2645) and can be used in
preference to cup. If there are argumentized local motions (such as “move n spaces
to the right”), these can be given as cud, cub, cuf, and cuu with a single argument
indicating how many spaces to move. These are primarily useful if the device does
not have cup, such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smcup and
rmcup. This arises, for example, from terminals, such as the Concept, with more
than one page of memory. If the device has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized window
must be fixed into the device for cursor addressing to work properly. This is also
used for the Tektronix 4025, where smcup sets the command character to be the
one used by terminfo. If the rmcup sequence will not restore the screen after an
smcup sequence is output (to the state prior to outputting smcup), specify nrrmc.

Area Clears
If the terminal can clear from the current position to the end of the line, leaving
the cursor where it is, this should be given as el. If the terminal can clear from the
beginning of the line to the current position inclusive, leaving the cursor where it
is, this should be given as el1. If the terminal can clear from the current position to
the end of the display, then this should be given as ed. ed is only defined from the
first column of a line. (Thus, it can be simulated by a request to delete a large
number of lines, if a true ed is not available.)

Insert/Delete Line
If the terminal can open a new blank line before the line where the cursor is, this
should be given as il1; this is done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal can delete the line which
the cursor is on, then this should be given as dl1; this is done only from the first
position on the line to be deleted. Versions of il1 and dl1 which take a single
argument and insert or delete that many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the
command to set this can be described with the csr capability, which takes two
arguments: the top and bottom lines of the scrolling region. The cursor position is,
alas, undefined after using this command. It is possible to get the effect of insert or
delete line using this command - the sc and rc (save and restore cursor) commands
are also useful. Inserting lines at the top or bottom of the screen can also be done
using ri or ind on many terminals without a true insert/delete line, and is often
faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or
non-destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cursor to the
top line of the scrolling region, and do a reverse index (ri) followed by a delete
line (dl1) or index (ind). If the data that was originally on the bottom line of the
scrolling region was restored into the scrolling region by the dl1 or ind, then the

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 159

terminal has non-destructive scrolling regions. Otherwise, it has destructive
scrolling regions. Do not specify csr if the terminal has non-destructive scrolling
regions, unless ind, ri, indn, rin, dl, and dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the argumentized string wind. The four
arguments are the starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete
character operations which can be described using terminfo. The most common
insert/delete character operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin-Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can
determine the kind of terminal you have by clearing the screen and then typing
text separated by cursor motions. Type “abc def” using local cursor motions
(not spaces) between the abc and the def. Then position the cursor before the abc
and put the terminal in insert mode. If typing characters causes the rest of the line
to shift rigidly and characters to fall off the end, then your terminal does not
distinguish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the capability in,
which stands for “insert null.” While these are two logically separate attributes
(one line versus multiline insert mode, and special treatment of untyped spaces)
we have seen no terminals whose insert mode cannot be described with the single
attribute.

terminfo can describe both terminals that have an insert mode and terminals
which send a simple sequence to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as rmir the sequence to leave
insert mode. Now give as ich1 any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode will not give
ich1; terminals that send a sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually preferable to ich1. Do not give
both unless the terminal requires both to be used in combination.) If post-insert
padding is needed, give this as a number of milliseconds padding in ip (a string
option). Any other sequence which may need to be sent after an insert of a single
character may also be given in ip. If your terminal needs both to be placed into an
“insert mode” and a special code to precede each inserted character, then both
smir/rmir and ich1 can be given, and both will be used. The ich capability, with
one argument, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give
this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (for example, if there is a tab after the insertion

Source File Syntax

160 z/OS V2R1.0 C Curses

position). If your terminal allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir will affect only
speed. Some terminals (notably Datamedia) must not have mir because of the way
their insert mode works.

Finally, you can specify dch1 to delete a single character, dch with one argument,
n, to delete n characters, and delete mode by giving smdc and rmdc to enter and
exit delete mode (any mode the terminal needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as ech with one argument.

Highlighting, Underlining, and Visible Bells
Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be available:
v A blinking screen (blink)
v Bold or extra-bright characters (bold)
v Dim or half-bright characters (dim)
v Blanking or invisible text (invis)
v Protected text (prot)
v A reverse-video screen (rev)
v An alternate character set (smacs to enter this mode and rmacs to exit it) (If a

command is necessary before you can enter alternate character set mode, give
the sequence in enacs or “enable alternate-character-set” mode.) Turning on any
of these modes singly may turn off other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some
capabilities, such as dim or blink.

Choose one display method as standout mode and use it to highlight error messages
and other text to which you want to draw attention. Choose a form of display that
provides strong contrast but that is easy on the eyes. (We recommend
reverse-video plus half-bright or reverse-video alone.) The sequences to enter and
exit standout mode are given as smso and rmso, respectively. If the code to change
into or out of standout mode leaves one or even two blank spaces on the screen, as
the TVI 912 and Teleray 1061 do, then xmc should be given to tell how many
spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and
rmul, respectively. If the device has a sequence to underline the current character
and to move the cursor one space to the right (such as the Micro-Term MIME), this
sequence can be specified as uc.

Terminals with the “magic cookie” glitch (xmc) deposit special “cookies” when
they receive mode-setting sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a new line or the
cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline, unless the msgr capability,
asserting that it is safe to move in standout mode, is present.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 161

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as flash; it must not move the cursor. A good
flash can be done by changing the screen into reverse video, pad for 200 ms, then
return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to find
block or blinking underline) give this sequence as cvvis. The boolean chts should
also be given. If there is a way to make the cursor completely invisible, give that as
civis. The capability cnorm should be given, which undoes the effects of either of
these modes.

If your terminal generates underlined characters by using the underline character
(with no special sequences needed) even though it does not otherwise overstrike
characters, then specify the capability ul. For devices on which a character
overstriking another leaves both characters on the screen, specify the capability os.
If overstrikes are erasable with a blank, then this should be indicated by specifying
eo.

If there is a sequence to set arbitrary combinations of modes, this should be given
as sgr (set attributes), taking nine arguments. Each argument is either 0 or
non-zero, as the corresponding attribute is on or off. The nine arguments are, in
order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate
character set. Not all modes need to be supported by sgr; only those for which
corresponding separate attribute commands exist should be supported. For
example, let's assume that the terminal in question needs the following escape
sequences to turn on various modes.

tparm Argument Attribute Escape Sequence
none \E[0m

p1 standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
p8 protect not available
p9 altcharset ^O (off) ^N (on)

Note that each escape sequence requires a 0 to turn off other modes before turning
on its own mode. Also note that, as suggested above, standout is set up to be the
combination of reverse and dim. Also, because this terminal has no bold mode, bold
is set up as the combination of reverse and underline. In addition, to allow
combinations, such as underline+blink, the sequence to use would be \E[0;3;5m. The
terminal doesn't have protect mode, either, but that cannot be simulated in any
way, so p8 is ignored. The altcharset mode is different in that it is either ^O or ^N,
depending on whether it is off or on. If all modes were to be turned on, the
sequence would be:
\E[0;3;4;5;7;8m^N

Now look at when different sequences are output. For example, ;3 is output when
either p2 or p6 is true, that is, if either underline or bold modes are turned on.
Writing out the above sequences, along with their dependencies, gives the
following:

Source File Syntax

162 z/OS V2R1.0 C Curses

Sequence When to Output terminfo Translation
\E[0 always \E[0
;3 if p2 or p6 %%p2%p6%|%t;3%;
;4 if p1 or p3 or p6 %%p1%p3%|%p6%|%t;4%;
;5 if p4 %%p4%t;5%;
;7 if p1 or p5 %%p1%p5%|%t;7%;
;8 if p7 %%p7%t;8%;
m always m
caret.N or ^O if p9 ^N, else ^O %%p9%t^N%e^O%;

Putting this all together into the sgr sequence gives:
sgr=\E[0%%p2%p6%|%t;3%;%%p1%p3%|%p6%

|%t;4%;%%p5%t;5%;%%p1%p5%
|%t;7%;%%p7%t;8%;m%%p9%t^N%e^O%;,

Remember that sgr and sgr0 must always be specified.

Keypad
If the device has a keypad that transmits sequences when the keys are pressed, this
information can also be specified. Note that it is not possible to handle devices
where the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit,
specify these sequences as smkx and rmkx. Otherwise the keypad is assumed to
always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcub1, kcuf1, kcuu1, kcud1 and khome, respectively. If
there are function keys such as f0, f1, ..., f63, the sequences they send can be
specified as kf0, kf1, ..., kf63. If the first 11 keys have labels other than the default
f0 through f10, the labels can be given as lf0, lf1, ..., lf10.

The codes transmitted by certain other special keys can be given: kll (home down),
kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr
(clear screen or erase key), kdch1 (delete character), kdl1 (delete line), krmir (exit
insert mode), kel (clear to end of line), ked (clear to end of screen), kich1 (insert
character or enter insert mode), kil1 (insert line), knp (next page), kpp (previous
page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop
in this column). In addition, if the keypad has a 3 by 3 array of keys including the
four arrow keys, the other five keys can be given as ka1, ka3, kb2, kc1, and kc3.
These keys are useful when the effects of a 3 by 3 directional pad are needed.
Further keys are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A
string to program screen labels should be specified as pln. Each of these strings
takes two arguments: a function key identifier and a string to program it with.
pfkey causes pressing the given key to be the same as the user typing the given
string; pfloc causes the string to be executed by the terminal in local mode; and
pfx causes the string to be transmitted to the computer. The capabilities nlab, lw
and lh define the number of programmable screen labels and their width and
height.

If there are commands to turn the labels on and off, give them in smln and rmln.
smln is normally output after one or more pln sequences to make sure that the
change becomes visible.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 163

Tabs and Initialization
If the device has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control-I). A “backtab” command that moves leftward to
the next tab stop can be given as cbt. By convention, if tty modes show that tabs
are being expanded by the computer rather than being sent to the device,
programs should not use ht or cbt (even if they are present) because the user
might not have the tab stops properly set. If the device has hardware tabs that are
initially set every n spaces when the device is powered up, the numeric argument
it is given, showing the number of spaces the tabs are set to. This is normally used
by tput init to determine whether to set the mode for hardware tab expansion and
whether to set the tab stops. If the device has tab stops that can be saved in
nonvolatile memory, the terminfo description can assume that they are properly
set. If there are commands to set and clear tab stops, they can be given as tbc
(clear all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: is1, is2, and is3, initialization strings for the device;
iprog, the path name of a program to be run to initialize the device; and if, the
name of a file containing long initialization strings. These strings are expected to
set the device into modes consistent with the rest of the terminfo description. They
must be sent to the device each time the user logs in and be output in the
following order: run the program iprog; output is1; output is2; set the margins
using mgc, smgl and smgr; set the tabs using tbc and hts; print the file if; and
finally output is3. This is usually done using the init option of tput.

Most initialization is done with is2. Special device modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in
is1 and is3. Sequences that do a reset from a totally unknown state can be given as
rs1, rs2, rf, and rs3, analogous to is1, is2, is3, and if. (The method using files, if
and rf, is used for a few terminals however, the recommended method is to use
the initialization and reset strings.) These strings are output by tput reset, which is
used when the terminal gets into a wedged state. Commands are normally placed
in rs1, rs2, rs3, and rf only if they produce annoying effects on the screen and are
not necessary when logging in. For example, the command to set a terminal into
80-column mode would normally be part of is2, but on some terminals it causes an
annoying glitch on the screen and is not normally needed because the terminal is
usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by
using tbc and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify
commands to set and clear margins.

Delays
Certain capabilities control padding in the tty driver. These are primarily needed
by hard-copy terminals, and are used by tput init to set tty modes appropriately.
Delays embedded in the capabilities cr, ind, cub1, ff, and tab can be used to set
the appropriate delay bits to be set in the tty driver. If pb (padding baud rate) is
given, these values can be ignored at baud rates below the value of pb.

Status Lines
If the terminal has an extra “status line” that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom
line, into which one can cursor address normally (such as the Heathkit H19's 25th

Source File Syntax

164 z/OS V2R1.0 C Curses

line, or the 24th line of a VT100 which is set to a 23-line scrolling region), the
capability hs should be given. Special strings that go to a given column of the
status line and return from the status line can be given as tsl and fsl. (fsl must
leave the cursor position in the same place it was before tsl. If necessary, the sc
and rc strings can be included in tsl and fsl to get this effect.) The capability tsl
takes one argument, which is the column number of the status line the cursor is to
be moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl. If the terminal has commands
to save and restore the position of the cursor, give them as sc and rc. The status
line is normally assumed to be the same width as the rest of the screen (that is,
cols). If the status line is a different width (possibly because the terminal does not
allow an entire line to be loaded) the width, in columns, can be indicated with the
numeric argument wsl.

Line Graphics
If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc. The definition of this string is based on the
alternate character set used in the Digital VT100 terminal, extended slightly with
some characters from the AT&T; 4410v1 terminal.

Glyph Name
VT100+

Character
arrow pointing right +
arrow pointing left ,
arrow pointing down .
solid square block 0
lantern symbol I
arrow pointing up -
diamond `
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner l
lower left corner m
plus n
scan line 1 o
horizontal line q
scan line 9 s
left tee (|-) t
right tee (-|) u
bottom tee (|) v
top tee (|) w
vertical line x
bullet ˜

The best way to describe a new device's line graphics set is to add a third column
to the above table with the characters for the new device that produce the
appropriate glyph when the device is in alternate-character-set mode. For example:

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 165

Glyph Name VT100+ Character
Character Used on New

Device
upper left corner l R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q ,
vertical line x .

Now write down the characters left to right; for example:
acsc=lRmFkTjGq\,x.

In addition, terminfo lets you define multiple character sets.

Color Manipulation
Most color terminals belong to one of two classes of terminal:

Tektronix-style

The Tektronix method uses a set of N predefined colors (usually 8) from which an
application can select "current" foreground and background colors. Thus a terminal
can support up to N colors mixed into N*N color-pairs to be displayed on the
screen at the same time.

Hewlett-Packard-style

In the HP method, the application cannot define the foreground independently of
the background, or vice-versa. Instead, the application must define an entire
color-pair at once. Up to M color-pairs, made from 2*M different colors, can be
defined this way.

The numeric variables colors and pairs define the number of colors and color-pairs
that can be displayed on the screen at the same time. If a terminal can change the
definition of a color (for example, the Tektronix 4100 and 4200 series terminals),
this should be specified with ccc (can change color). To change the definition of a
color (Tektronix 4200 method), use initc (initialize color). It requires four
arguments: color number (ranging from 0 to colors-1) and three RGB (red, green,
and blue) values or three HLS colors (Hue, Lightness, Saturation). Ranges of RGB
and HLS values are terminal-dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean
variable hls; that would instruct the init_color() functions to convert its RGB
arguments to HLS before sending them to the terminal. The last three arguments to
the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different
from RGB and HLS, a mapping to either RGB or HLS must be developed.

If the terminal supports ANSI escape sequences to set background and foreground,
they should be coded as setab and setaf, respectively. If the terminal supports other
escape sequences to set background and foreground, they should be coded as setb
and setf, respectively. The vidputs() function and the refresh functions use setab
and setaf if they are defined. Each of these capabilities requires one argument: the

Source File Syntax

166 z/OS V2R1.0 C Curses

number of the color. By convention, the first eight colors (0-7) map to, in order:
black, red, green, yellow, blue, magenta, cyan, white. However, color re-mapping
may occur or the underlying hardware may not support these colors. Mappings for
any additional colors supported by the device (that is, to numbers greater than 7)
are at the discretion of the terminfo entry writer.

To initialize a color-pair (HP method), use initp (initialize pair). It requires seven
arguments: the number of a color-pair (range=0 to pairs-1), and six RGB values:
three for the foreground followed by three for the background. (Each of these
groups of three should be in the order RGB.) When initc or initp are used, RGB or
HLS arguments should be in the order "red, green, blue" or "hue, lightness,
saturation"), respectively. To make a color-pair current, use scp (set color-pair). It
takes one argument, the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas of
the screen with current background color. In such cases, bce (background color
erase) should be defined. The variable op (original pair) contains a sequence for
setting the foreground and the background colors to what they were at the
terminal start-up time. Similarly, oc (original colors) contains a control sequence for
setting all colors (for the Tektronix method) or color-pairs (for the HP method) to
the values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-to-one
correspondence between the nine least significant bits of that variable and the
video attributes. The following table depicts this correspondence.

Attribute Bit Position
Decimal

Value Characteristic That Sets
WA_ STANDOUT 0 1 sgr, parameter 1
WA_ UNDERLINE 1 2 sgr, parameter 2
WA_ REVERSE 2 4 sgr, parameter 3
WA_ BLINK 3 8 sgr, parameter 4
WA_ DIM 4 16 sgr, parameter 5
WA_ BOLD 5 32 sgr, parameter 6
WA_ INVIS 6 64 sgr, parameter 7
WA_ PROTECT 7 128 sgr, parameter 8
WA_ ALTCHARSET 8 256 sgr, parameter 9
WA_ HORIZONTAL 9 512 sgr1, parameter 1
WA_ LEFT 10 1024 sgr1, parameter 2
WA_ LOW 11 2048 sgr1, parameter 3
WA_ RIGHT 12 4096 sgr1, parameter 4
WA_ TOP 13 8192 sgr1, parameter 5
WA_ VERTICAL 14 16384 sgr1, parameter 6

When a particular video attribute should not be used with colors, set the
corresponding ncv bit to 1; otherwise set it to 0. To determine the information to
pack into the ncv variable, add the decimal values corresponding to those
attributes that cannot coexist with colors. For example, if the terminal uses colors
to simulate reverse video (bit number 2 and decimal value 4) and bold (bit number
5 and decimal value 32), the resulting value for ncv will be 36 (4 + 32).

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 167

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal does
not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control-L).

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters) this can be indicated with
the argumentized string rep. The first argument is the character to be repeated and
the second is the number of times to repeat it. Thus, tparm(repeat_char, ‘x’, 10) is
the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025, this
can be indicated with cmdch. A prototype command character is chosen which is
used in all capabilities. This character is given in the cmdch capability to identify
it. The following convention is supported on some systems: If the environment
variable CC exists, all occurrences of the prototype character are replaced with the
character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such
as switch, dialup, patch, and network, should include the gn (generic) capability so
that programs can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for which the
escape sequences are known.) If the terminal is one of those supported by the
virtual terminal protocol, the terminal number can be given as vt. A
line-turn-around sequence to be transmitted before doing reads should be specified
in rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding
information should still be included so that functions can make better decisions
about costs, but actual pad characters will not be transmitted. Sequences to turn on
and off xon/xoff handshaking may be given in smxon and rmxon. If the characters
used for handshaking are not ^S and ^Q, they may be specified with xonc and
xoffc.

If the terminal has a “meta key” which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings exist to
turn this “meta mode” on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with lm. A value of lm#0 indicates
that the number of lines is not fixed, but that there is still more memory than fits
on the screen.

Media copy strings which control an auxiliary printer connected to the terminal
can be given as:

mc0 Print the contents of the screen

mc4 Turn off the printer

mc5 Turn on the printer

Source File Syntax

168 z/OS V2R1.0 C Curses

When the printer is on, all text sent to the terminal will be sent to the printer. A
variation, mc5p, takes one argument, and leaves the printer on for as many
characters as the value of the argument, then turns the printer off. The argument
should not exceed 255. If the text is not displayed on the terminal screen when the
printer is on, specify mc5i (silent printer). All text, including mc4, is transparently
passed to the printer while an mc5p is in effect.

Special Cases
The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring special
support by terminfo. These are not meant to be construed as deficiencies in the
terminals; they are just differences between the working model and the actual
hardware. They may be unusual devices or, for some reason, do not have all the
features of the terminfo model implemented.

Terminals that cannot display tilde (˜) characters, such as certain Hazeltine
terminals, should indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the
Concept 100, should indicate xenl. Those terminals whose cursor remains on the
right-most column until another character has been received, rather than wrapping
immediately upon receiving the right-most character, such as the VT100, should
also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it),
xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that it is
not possible to position the cursor on top of a “magic cookie.” Therefore, to erase
standout mode, it is necessary, instead, to use delete and insert line.

For Beehive Superbee terminals that do not transmit the escape or control-C
characters, specify xsb, indicating that the f1 key is to be used for escape and the
f2 key for control-C.

Similar Terminals
If there are two similar terminals, one can be defined as being just like the other
with certain exceptions. The string capability use can be given with the name of
the similar terminal. The capabilities given before use override those in the
terminal type invoked by use. A capability can be canceled by placing
capability-name@ prior to the appearance of the string capability use. For example,
the entry:
att4424-2|Teletype 4424 in display function group ii,

rev@, sgr@, smul@, use=att4424,

defines an AT&T; 04424 terminal that does not have the rev, sgr, and smul
capabilities, and hence cannot do highlighting. This is useful for different modes
for a terminal, or for different user preferences. More than one use capability may
be given.

Printer Capabilities
The terminfo database lets you define capabilities of printers as well as terminals.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 169

Rounding Values
Because argumentized string capabilities work only with integer values, terminfo
designers should create strings that expect numeric values that have been rounded.
Application designers should note this and should always round values to the
nearest integer before using them with a argumentized string capability.

Printer Resolution
A printer's resolution is defined to be the smallest spacing of characters it can
achieve. In general, the horizontal and vertical resolutions are independent. Thus
the vertical resolution of a printer can be determined by measuring the smallest
achievable distance between consecutive printing baselines, while the horizontal
resolution can be determined by measuring the smallest achievable distance
between the leftmost edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and
vertical resolution. The view of printing that terminfo currently presents is one of
printing inside a uniform matrix: All characters are printed at fixed positions
relative to each “cell” in the matrix; furthermore, each cell has the same size given
by the smallest horizontal and vertical step sizes dictated by the resolution. (The
cell size can be changed as will be seen later.)

Many printers are capable of “proportional printing,” where the horizontal spacing
depends on the size of the character last printed. terminfo does not make use of
this capability, although it does provide enough capability definitions to allow an
application to simulate proportional printing.

A printer must not only be able to print characters as close together as the
horizontal and vertical resolutions suggest, but also of “moving” to a position an
integral multiple of the smallest distance away from a previous position. Thus
printed characters can be spaced apart a distance that is an integral multiple of the
smallest distance, up to the length or width of a single page.

Some printers can have different resolutions depending on different “modes.” In
“normal mode,” the existing terminfo capabilities are assumed to work on
columns and lines, just like a video terminal. Thus the old lines capability would
give the length of a page in lines, and the cols capability would give the width of
a page in columns. In “micro mode,” many terminfo capabilities work on
increments of lines and columns. With some printers the micro mode may be
concomitant with normal mode, so that all the capabilities work at the same time.

Specifying Printer Resolution
The printing resolution of a printer is given in several ways. Each specifies the
resolution as the number of smallest steps per distance:

Characteristic Number of Smallest Steps
orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement to the
next column, except in special cases described later; the distance moved is the
same as the per-column resolution. Some printers cause an automatic movement to
the next line when a character is printed in the rightmost position; the distance

Source File Syntax

170 z/OS V2R1.0 C Curses

moved vertically is the same as the per-line resolution. When printing in micro
mode, these distances can be different, and may be zero for some printers.

Automatic Motion after Printing
Normal Mode:
orc Steps moved horizontally
orl Steps moved vertically
Micro Mode:
mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a
wide character is printed in normal mode may be different from when a regular
width character is printed. The distance moved when a wide character is printed
in micro mode may also be different from when a regular character is printed in
micro mode, but the differences are assumed to be related: If the distance moved
for a regular character is the same whether in normal mode or micro mode
(mcs=orc), then the distance moved for a wide character is also the same whether
in normal mode or micro mode. This doesn't mean the normal character distance is
necessarily the same as the wide character distance, just that the distances don't
change with a change in normal to micro mode. However, if the distance moved
for a regular character is different in micro mode from the distance moved in
normal mode (mcs<orc), the micro mode distance is assumed to be the same for a
wide character printed in micro mode, as the table below shows.

Automatic Motion after Printing Wide Character
Normal Mode or Micro Mode (mcs = orc):
widcs Steps moved horizontally
Micro Mode (mcs < orc):
mcs Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If these
are used, the resolution of the printer changes, but the type of change depends on
the printer:

Changing the
Character/Line
Pitches

cpi
cpix

Change character pitch
If set, cpi changes orhi, otherwise changes orc

lpi
lpix

Change line pitch
If set, lpi changes orvi, otherwise changes orl

chr
cvr

Change steps per column
Change steps per line

The cpi and lpi string capabilities are each used with a single argument, the pitch
in columns (or characters) and lines per inch, respectively. The chr and cvr string
capabilities are each used with a single argument, the number of steps per column
and line, respectively.

Using any of the control sequences in these strings will imply a change in some of
the values of orc, orhi, orl, and orvi. Also, the distance moved when a wide

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 171

character is printed, widcs, changes in relation to orc. The distance moved when a
character is printed in micro mode, mcs, changes similarly, with one exception: if
the distance is 0 or 1, then no change is assumed.

Programs that use cpi, lpi, chr, or cvr should recalculate the printer resolution (and
should recalculate other values).

Capabilities that Cause Movement
In the following descriptions, “movement” refers to the motion of the “current
position.” With video terminals this would be the cursor; with some printers, this
is the carriage position. Other printers have different equivalents. In general, the
current position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for control
sequences that cause movement a number of smallest steps.

String
Capabilities for
Motion

mcub1
mcuf1
mcuu1
mcud1

Move 1 step left
Move 1 step right
Move 1 step up
Move 1 step down

mcub
mcuf
mcuu
mcud

Move N steps left
Move N steps right
Move N steps up
Move N steps down

mhpa
mvpa

Move N steps from the left
Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also,
some printers don't accept absolute motion to the left of the current position.
terminfo has capabilities for specifying these limits.

Limits to Motion

mjump
maddr

Limit on use of mcub1, mcuf1, mcuu1, mcud1
Limit on use of mhpa, mvpa

xhpa
xvpa

If set, hpa and mhpa can't move left
If set, vpa and mvpa can't move up

If a printer needs to be in a “micro mode” for the motion capabilities described
above to work, there are string capabilities defined to contain the control sequence
to enter and exit this mode. A boolean is available for those printers where using a
carriage return causes an automatic return to normal mode.

Entering/Exiting
Micro Mode

smicm
rmicm

Enter micro mode
Exit micro mode

crxm Using cr exits micro mode

Source File Syntax

172 z/OS V2R1.0 C Curses

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the
next line, others move to the beginning of the same line. terminfo has boolean
capabilities for describing all three cases.

What Happens
After Character
Printed in
Rightmost
Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for
leftward or upward motion, because those capabilities can be built from the motion
reversal capability and the rightward or downward motion capabilities. It is best to
leave it up to an application to build the leftward or upward capabilities, though,
and not enter them in the terminfo database. This allows several reverse motions
to be strung together without intervening wasted steps that leave and reenter
reverse mode.

Entering/Exiting
Reverse Modes

slm
rlm
sum
rum

Reverse sense of horizontal motions
Restore sense of horizontal motions
Reverse sense of vertical motions
Restore sense of vertical motions

While sense of horizontal motions reversed:

mcub1
mcuf1
mcub
mcuf
cub1
cuf1
cub
cuf

Move 1 step right
Move 1 step left
Move N steps right
Move N steps left
Move 1 column right
Move 1 column left
Move N columns right
Move N columns left

While sense of vertical motions reversed:

mcuu1
mcud1
mcuu
mcud
cuu1
cud1
cuu
cud

Move 1 step down
Move 1 step up
Move N steps down
Move N steps up
Move 1 line down
Move 1 line up
Move N lines down
Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse the
action of the line “wrapping” that occurs when a character is printed in the
right-most position. Thus printers that have the standard terminfo capability am
defined should experience motion to the beginning of the previous line when a
character is printed in the rightmost position in reverse vertical motion mode.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 173

The action when any other motion capabilities are used in reverse motion modes is
not defined; thus, programs must exit reverse motion modes before using other
motion capabilities.

Two miscellaneous capabilities complete the list of motion capabilities. One of
these is needed for printers that move the current position to the beginning of a
line when certain control characters, such as line-feed or form-feed, are used. The
other is used for the capability of suspending the motion that normally occurs after
printing a character.

Miscellaneous
Motion Strings

docr
zerom

List of control characters causing cr
Prevent auto motion after printing next single character

Margins

terminfo provides two strings for setting margins on terminals: one for the left and
one for the right margin. Printers, however, have two additional margins, for the
top and bottom margins of each page. Furthermore, some printers require not
using motion strings to move the current position to a margin and then fixing the
margin there, but require the specification of where a margin should be regardless
of the current position. Therefore terminfo offers six additional strings for defining
margins with printers.

Setting Margins

smgl
smgr
smgb
smgt

Set left margin at current column
Set right margin at current column
Set bottom margin at current line
Set top margin at current line

smgbp
smglp
smgrp
smgtp

Set bottom margin at line N
Set left margin at column N
Set right margin at column N
Set top margin at line N

The last four strings are used with one or more arguments that give the position of
the margin or margins to set. If both of smglp and smgrp are set, each is used
with a single argument, N, that gives the column number of the left and right
margin, respectively. If both of smgtp and smgbp are set, each is used to set the
top and bottom margin, respectively: smgtp is used with a single argument, N, the
line number of the top margin; however, smgbp is used with two arguments, N
and M, that give the line number of the bottom margin, the first counting from the
top of the page and the second counting from the bottom. This accommodates the
two styles of specifying the bottom margin in different manufacturers' printers.
When coding a terminfo entry for a printer that has a settable bottom margin, only
the first or second argument should be used, depending on the printer. When
writing an application that uses smgbp to set the bottom margin, both arguments
must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only one of
smgtp and smgbp is set, then it is used with two arguments that give the top and
bottom margins, in that order, counting from the top of the page. Thus when
coding a terminfo entry for a printer that requires setting both left and right or top

Source File Syntax

174 z/OS V2R1.0 C Curses

and bottom margins simultaneously, only one of smglp and smgrp or smgtp and
smgbp should be defined; the other should be left blank. When writing an
application that uses these string capabilities, the pairs should be first checked to
see if each in the pair is set or only one is set, and should then be used
accordingly.

In counting lines or columns, line zero is the top line and column zero is the
left-most column. A zero value for the second argument with smgbp means the
bottom line of the page.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts

Five sets of strings describe the capabilities printers have of enhancing printed text.

Enhanced
Printing

sshm
rshm

Enter shadow-printing mode
Exit shadow-printing mode

sitm
ritm

Enter italicizing mode
Exit italicizing mode

swidm
rwidm

Enter wide character mode
Exit wide character mode

ssupm
rsupm
supcs

Enter superscript mode
Exit superscript mode
List of characters available as superscripts

ssubm
rsubm
subcs

Enter subscript mode
Exit subscript mode
List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a control
sequence in sshm but none in rshm should use the sshm control sequence before
every character to be shadow-printed; otherwise, the sshm control sequence should
be used once before the set of characters to be shadow-printed, followed by rshm.
The same is also true of each of the sitm/ritm, swidm/rwidm, ssupm/rsupm, and
ssubm/rsubm pairs.

terminfo also has a capability for printing emboldened text (bold). While shadow
printing and emboldened printing are similar in that they “darken” the text, many
printers produce these two types of print in slightly different ways. Generally,
emboldened printing is done by overstriking the same character one or more times.
Shadow printing likewise usually involves overstriking, but with a slight
movement up and/or to the side so that the character is “fatter.”

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a
wide character should be given in widcs.

If only a subset of the printable ASCII characters can be printed as superscripts or
subscripts, they should be listed in supcs or subcs strings, respectively. If the

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 175

ssupm or ssubm strings contain control sequences, but the corresponding supcs or
subcs strings are empty, it is assumed that all printable ASCII characters are
available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be
the same as for regular characters. Note that the existing msgr boolean capability
describes whether motion control sequences can be used while in “standout
mode.” This capability is extended to cover the enhanced printing modes added
here. msgr should be set for those printers that accept any motion control
sequences without affecting shadow, italicized, widened, superscript, or subscript
printing. Conversely, if msgr is not set, a program should end these modes before
attempting any motion.

Alternate Character Sets
In addition to allowing you to define line graphics, terminfo lets you define
alternate character sets. The following capabilities cover printers and terminals
with multiple selectable or definable character sets:

Alternate
Character Sets

scs
scsd
defc
rcsd
csnm
daisy

Select character set N
Start definition of character set N, M characters
Define character A, B dots wide, descender D
End definition of character set N
List of character set names
Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a number
from 0 to 63 that identifies the character set. The scsd string is also used with the
argument N and another, M, that gives the number of characters in the set. The
defc string is used with three arguments: A gives the ASCII code representation for
the character, B gives the width of the character in dots, andD is zero or one
depending on whether the character is a “descender” or not. The defc string is also
followed by a string of “image-data” bytes that describe how the character looks
(see below).

Character set 0 is the default character set present after the printer has been
initialized. Not every printer has 64 character sets, of course; using scs with an
argument that doesn't select an available character set should cause a null pointer
to be returned by tparm.

If a character set has to be defined before it can be used, the scsd control sequence
is to be used before defining the character set, and the rcsd is to be used after.
They should also cause a NULL pointer to be returned by tparm when used with
an argument N that doesn't apply. If a character set still has to be selected after
being defined, the scs control sequence should follow the rcsd control sequence. By
examining the results of using each of the scs, scsd, and rcsd strings with a
character set number in a call to tparm, a program can determine which of the
three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define
each character. To print any character on printers covered by terminfo, the ASCII
code is sent to the printer. This is true for characters in an alternate set as well as
“normal” characters. Thus the definition of a character includes the ASCII code
that represents it. In addition, the width of the character in dots is given, along

Source File Syntax

176 z/OS V2R1.0 C Curses

with an indication of whether the character should descend below the print line
(such as the lower case letter “g” in most character sets). The width of the
character in dots also indicates the number of image-data bytes that will follow the
defc string. These image-data bytes indicate where in a dot-matrix pattern ink
should be applied to “draw” the character.

It's easiest for the creator of terminfo entries to refer to each character set by
number; however, these numbers will be meaningless to the application developer.
The csnm string alleviates this problem by providing names for each number.

When used with a character set number in a call to tparm, the csnm string will
produce the equivalent name. These names should be used as a reference only. No
naming convention is implied, although anyone who creates a terminfo entry for a
printer should use names consistent with the names found in user documents for
the printer. Application developers should allow a user to specify a character set
by number (leaving it up to the user to examine the csnm string to determine the
correct number), or by name, where the application examines the csnm string to
determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are
not available, the strings should not be defined. For printers that have manually
changed print-wheels or font cartridges, the boolean daisy is set.

Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing raster graphics
images. Three numeric capabilities and three string capabilities help a program
draw raster-graphics images independent of the type of dot-matrix printer or the
number of pins or dots the printer can handle at one time.

Dot-Matrix
Graphics

npins
spinv
spinh
porder
sbim
rbim

Number of pins, N, in print-head
Spacing of pins vertically in pins per inch
Spacing of dots horizontally in dots per inch
Matches software bits to print-head pins
Start printing bit image graphics, B bits wide
End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the
technique used for most dot-matrix printers: each pass of the printer's print-head is
assumed to produce a dot-matrix that is N dots high and B dots wide. This is
typically a wide, squat, rectangle of dots. The height of this rectangle in dots will
vary from one printer to the next; this is given in the npins numeric capability. The
size of the rectangle in fractions of an inch will also vary; it can be deduced from
the spinv and spinh numeric capabilities. With these three values an application
can divide a complete raster-graphics image into several horizontal strips, perhaps
interpolating to account for different dot spacing vertically and horizontally.

The sbim and rbim strings start and end a dot-matrix image, respectively. The
sbim string is used with a single argument that gives the width of the dot-matrix
in dots. A sequence of “image-data bytes” are sent to the printer after the sbim

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 177

string and before the rbim string. The number of bytes is a integral multiple of the
width of the dot-matrix; the multiple and the form of each byte is determined by
the porder string as described below.

The porder string is a comma separated list of pin numbers optionally followed by
an numerical offset. The offset, if given, is separated from the list with a semicolon.
The position of each pin number in the list corresponds to a bit in an 8-bit data
byte. The pins are numbered consecutively from 1 to npins, with 1 being the top
pin. Note that the term “pin” is used loosely here; “ink-jet” dot-matrix printers
don't have pins, but can be considered to have an equivalent method of applying a
single dot of ink to paper. The bit positions in porder are in groups of 8, with the
first position in each group the most significant bit and the last position the least
significant bit. An application produces 8-bit bytes in the order of the groups in
porder.

An application computes the “image-data bytes” from the internal image, mapping
vertical dot positions in each print-head pass into 8-bit bytes, using a 1 bit where
ink should be applied and 0 where no ink should be applied. This can be reversed
(0 bit for ink, 1 bit for no ink) by giving a negative pin number. If a position is
skipped in porder, a 0 bit is used. If a position has a lower case ‘x’ instead of a pin
number, a 1 bit is used in the skipped position. For consistency, a lower case ‘o’
can be used to represent a 0 filled, skipped bit. There must be a multiple of 8 bit
positions used or skipped in porder; if not, low-order bits of the last byte are set to
0. The offset, if given, is added to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T; 470,
AT&T; 475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are
identified top to bottom by the 8 bits in a byte, from least significant to most. The
porder strings for these printers would be 8,7,6,5,4,3,2,1. The AT&T; 478 and AT&T;
479 printers also provide eight pins for graphics. However, the pins are identified
in the reverse order. The porder strings for these printers would be 1,2,3,4,5,6,7,8.
The AT&T; 5310, AT&T; 5320, Digital LA100, and Digital LN03 printers provide six
pins for graphics. The pins are identified top to bottom by the decimal values 1, 2,
4, 8, 16 and 32. These correspond to the low six bits in an 8-bit byte, although the
decimal values are further offset by the value 63. The porder string for these
printers would be ,,6,5,4,3,2,1;63, or alternately o,o,6,5,4,3,2,1;63.

Effect of Changing Printing Resolution
If the control sequences to change the character pitch or the line pitch are used, the
pin or dot spacing may change:

Changing the
Character/Line
Pitches

cpi
cpix

Change character pitch
If set, cpi changes spinh

lpi
lpix

Change line pitch
If set, lpi changes spinv

orhi' and orhi are the values of the horizontal resolution in steps per inch, before
using cpi and after using cpi, respectively. Likewise, orvi' and orvi are the values
of the vertical resolution in steps per inch, before using lpi and after using lpi,
respectively. Thus, the changes in the dots per inch for dot-matrix graphics follow
the changes in steps per inch for printer resolution.

Source File Syntax

178 z/OS V2R1.0 C Curses

Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce
near-letter-quality printing or draft-quality printing. It is important to be able to
choose one or the other because the rate of printing generally decreases as the
quality improves. Three strings describe these capabilities:

Print Quality

snlq
snrmq
sdrfq

Set near-letter quality print
Set normal quality print
Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn't have
all three levels, the respective strings should be left blank.

Printing Rate and Buffer Size
Because there is no standard protocol that can be used to keep a program
synchronized with a printer, and because modern printers can buffer data before
printing it, a program generally cannot determine at any time what has been
printed. Two numeric capabilities can help a program estimate what has been
printed.

Print Rate/Buffer
Size

cps
bufsz

Nominal print rate in characters per second
Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this
value is not given, the rate should be estimated at one-tenth the prevailing baud
rate. bufsz is the maximum number of subsequent characters buffered before the
guaranteed printing of an earlier character, assuming proper flow control has been
used. If this value is not given it is assumed that the printer does not buffer
characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter “a”
followed by 1000 additional characters is guaranteed to cause the letter “a” to
print. If the same printer prints at the rate of 100 characters per second, then it
should take 10 seconds to print all the characters in the buffer, less if the buffer is
not full. By keeping track of the characters sent to a printer, and knowing the print
rate and buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate a few
pages of text, count the number of printable characters, and then see how long it
takes to print the text.

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably
print at close to the advertised print rate and probably faster than the rate in cps.
Graphics data with a lot of control sequences, or very long lines of text, will print
at well below the advertised rate and below the rate in cps. If the application is
using cps to decide how long it should take a printer to print a block of text, the
application should pad the estimate. If the application is using cps to decide how

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 179

much text has already been printed, it should shrink the estimate. The application
will thus err in favor of the user, who wants, above all, to see all the output in its
correct place.

Selecting a Terminal
If the environment variable TERMINFO is defined, any program using Curses
checks for a local terminal definition before checking in the standard place. For
example, if TERM is set to att4424, then the compiled terminal definition is found
in by default the path

a/att4424

within an implementation-specific directory.

(The a is copied from the first letter of att4424 to avoid creation of huge
directories.) However, if TERMINFO is set to $HOME/myterms, Curses first checks

$HOME/myterms/a/att4424

If that fails, it then checks the default pathname.

This is useful for developing experimental definitions or when write permission in
the implementation-defined default database is not available.

If the LINES and COLUMNS environment variables are set, or if the program is
executing in a window environment, line and column information in the
environment will override information read by terminfo.

Application Usage
The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with a screen-oriented editor, to check that
they are correct. To easily test a new terminal description the environment variable
TERMINFO can be set to the pathname of a directory containing the compiled
description, and programs will look there rather than in the terminfo database.

Conventions for Device Aliases
Every device must be assigned a name, such as vt100. Device names (except the
long name) should be chosen using the following conventions. The name should
not contain hyphens because hyphens are reserved for use when adding suffixes
that indicate special modes.

These special modes may be modes that the hardware can be in, or user
preferences. To assign a special mode to a particular device, append a suffix
consisting of a hyphen and an indicator of the mode to the device name. For
example, the -w suffix means wide mode; when specified, it allows for a width of
132 columns instead of the standard 80 columns. Therefore, if you want to use a
vt100 device set to wide mode, name the device vt100-w. Use the following
suffixes where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) 5410-w
-am With automatic margins (usually default) vt100-am

Source File Syntax

180 z/OS V2R1.0 C Curses

Suffix Meaning Example
-nam Without automatic margins vt100-nam
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video 4415-rv

Variations of Terminal Definitions
It is implementation-defined how the entries in terminfo may be created.

There is more than one way to write a terminfo entry. A minimal entry may
permit applications to use Curses to operate the terminal. If the entry is enhanced
to describe more of the terminal's capabilities, applications can use Curses to
invoke those features, and can take advantages of optimizations within Curses and
thus operate more efficiently. For most terminals, an optimal terminfo entry has
already been written.

Source File Syntax

Chapter 7. Terminfo Source Format (ENHANCED CURSES) 181

Source File Syntax

182 z/OS V2R1.0 C Curses

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2013 183

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

184 z/OS V2R1.0 C Curses

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at www.ibm.com/legal/copytrade.shtml (http://www.ibm.com/legal/
copytrade.shtml).

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle, its affiliates, or both.

Notices 185

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

186 z/OS V2R1.0 C Curses

Glossary

background
A property of a window that specifies a
character (the background character) and
a rendition to be used in a variety of
situations.

Curses window
Data structures, which can be thought of
as two-dimensional arrays of characters
that represent screen displays. These data
structures are manipulated with Curses
functions.

cursor position
The line and column position on the
screen denoted by the terminal's cursor.

empty wide-character string
A wide-character string whose first
element is a null wide-character code.

erase character
A special input character that deletes the
last character in the current line, if there
is one.

kill character
A special input character that deletes all
data in the current line, if there are any.

null chtype
A chtype with all bits set to zero.

null wide-character code
A wide-character code with all bits set to
zero.

pad A window that is not necessarily
associated with a viewable part of a
screen.

parent window
A window that has subwindows or
derived windows associated with it.

rendition
The rendition of a character displayed on
the screen is its attributes !and a color
pair.

SCREEN
An opaque Curses data type that is
associated with the display screen.

subwindow
A window, created within another
window, but positioned relative to that

other window. Changes made to a
subwindow do not affect its parent
window. A derived window differs from a
subwindow only in that it is positioned
relative to the origin of its parent window.
Changes to a parent window will affect
both subwindows and derived windows.

touch To set a flag in a window that indicates
that the information in the window could
differ from the that displayed on the
terminal device.

wide-character code (C language)
An integer value corresponding to a
single graphic symbol or control code.

wide-character string
A contiguous sequence of wide-character
codes terminated by and including the
first null wide-character code.

window
A two-dimensional array of characters
representing all or part of the terminal
screen. The term window in this document
means one of the data structures
maintained by the Curses
implementation, unless specified
otherwise. (This document does not
define the interaction between the Curses
implementation and other windowing
system paradigms.)

window hierarchy
The aggregate of a parent window and all
of its subwindows and derived windows.

© Copyright IBM Corp. 1996, 2013 187

188 z/OS V2R1.0 C Curses

Index

A
add_wch interface for enhanced

curses 17
add_wchnstr interface for enhanced

curses 17
addch interface for curses 13
addchstr interface for curses 14
addnstr interface for enhanced curses 15
addnwstr interface for enhanced

curses 16
alternate character sets 176
application usage 180
area clears 159
attr_get interface for enhanced curses 19
attroff interface for curses 18

B
basic capabilities 156
baudrate interface for curses 20
beep interface for curses 21
bkgd interface for enhanced curses 21,

22
bkgrnd interface for enhanced curses 23
border interface for enhanced curses 24
border_set curses for enhanced

curses 25
box interface for curses 26
box_set interface for enhanced curses 27
buffer size 179

C
can_change_color interface for enhanced

curses 27
capabilities that cause movement 172
cbreak interface for curses 29
chgat interface for enhanced curses 30
clear interface for curses 31
clearok interface for curses 32
clrtobot interface for curses 33
clrtoeol interface for curses 34
color manipulation 166
color_content interface for enhanced

curses 34
color_pairs interface for enhanced

curses 34
cols interface for enhanced curses 35
conventions for device aliases 180
copywin interface for curses 35
cur_term interface for enhanced

curses 37
current window structure 8
curs_set interface for enhanced

curses 36
curscr interface for curses 36
curses environment, windows 7
curses interfaces 13
curses library 1
curses.h header 125

cursor motions 158

D
def_prog_mode interface for curses 37
default window structure 7
defined capabilities 144
del_curterm interface for enhanced

curses 39
delay_output interface for curses 38
delays 164
delch interface for curses 38
deleteln interface for curses 41
delscreen interface for curses 41
delwin interface for curses 42
derwin interface for curses 42
device capabilities 156
dot-matrix graphics 177
doupdate interface for curses 43
dupwin interface for enhanced curses 44

E
echo interface for curses 44
echo_wchar interface for enhanced

curses 46
echochar interface for enhanced

curses 45
effect of changing printing

resolution 178
endwin interface for curses 46
erase interface for curses 47
erasechar interface for curses 47

F
filter interface for enhanced curses 48
flash interface for curses 49
flushinp interface for curses 50
formal grammar 142

G
get_wch interface for enhanced

curses 57
get_wstr interface for enhanced

curses 58
getbegyx interface for curses 50
getbkgd interface for enhanced

curses 51
getbkgrnd interface for enhanced

curses 51
getcchar interface for enhanced

curses 52
getch interface for curses 52
getmaxys interface for enhanced

curses 54
getn_wstr interface for enhanced

curses 55

getnstr interface for curses 54
getparyx interface for enhanced

curses 56
getstr interface for curses 56
getwin interface for enhanced curses 58
getyx interface for curses 59

H
halfdelay interface for enhanced

curses 59
has_colors interface for enhanced

curses 60
has_ic interface for curses 60
headers 125
highlighting 161
hline interface for enhanced curses 61
hline_set interface for enhanced

curses 62

I
idcok interface for enhanced curses 63
idlok interface for curses 63
immedok interface for enhanced

curses 63
in_wch interface for enhanced curses 75
in_wchnstr interface for enhanced

curses 76
inch interface for curses 64
inchnstr interface for enhanced

curses 65
init_color interface for enhanced

curses 66
initializing curses 5
initscr interface for curses 66, 67
innstr interface for enhanced curses 67
innwstr interface for enhanced curses 68
ins_nwstr interface for enhanced

curses 72
ins_wch interface for enhanced

curses 74
ins_wstr interface for enhanced

curses 74
insch interface for curses 69
insdelln interface for enhanced

curses 70
insert/delete character 160
insert/delete line 159
insertln interface for curses 71
insnstr interface for enhanced curses 71
insstr interface for enhanced curses 73
instr interface for enhanced curses 73
intrflush-interface for curses 75
inwstr interface for enhanced curses 77
is_linetouched interface for curses 78
isendwin interface for enhanced

curses 77

© Copyright IBM Corp. 1996, 2013 189

K
keyname interface for curses 79
keypad 163
keypad interface for curses 80
killchar interface for curses 80

L
leaveok interface for curses 81
line graphics 165
lines interface for enhanced curses 81
longname interface for curses 81

M
mainframe

education xv
manipulating window data 11
meta interface for enhanced curses 82
minimum guaranteed limits 142
miscellaneous 168
move interface for curses 83
mv interface for curses 83
mvcur interface for enhanced curses 84
mvderwin interface for enhanced

curses 85
mvprintw interface for curses 86
mvscanw interface for curses 86
mvwin interface for curses 87

N
naming conventions 2
napms interface for curses 88
newpad interface for curses 88
newterm interface for curses 89
newwin interface for curses 90
nl interface for curses 90
no interface for curses 90
nodelay interface for curses 91
noqiflush interface for enhanced

curses 91
Notices 183
notimeout interface for enhanced

curses 92

O
overlay interface for curses 93

P
pads 9
pair_content interface for enhanced

curses 94
parameterized strings 157
pechochar interface for enhanced

curses 94
pnoutrefresh interface for curses 95
print quality 179
printer capabilities 169
printer resolution 170
printing rate 179
printwr interface for curses 95

putp interface for enhanced curses 95
putwin interface for enhanced curses 96

Q
qiflush interface for enhanced curses 97

R
raw interface for curses 97
redrawwin interface for enhanced

curses 97
refresh interface for curses 98
reset_prog_mode interface for curses 98
resetty interface for curses 98
restartterm interface for enhanced

curses 99
ripoffline interface for enhanced

curses 99
rounding values 170

S
sample entry 153
savetty interface for curses 100
scanw interface for curses 100
scr_dump interface for enhanced

curses 101
scrl interface for curses 102
scrollok interface for curses 102
selecting a terminal 180
set_curterm interface for enhanced

curses 103
set_term interface for curses 104
setccar interface for enhanced curses 103
setscrreg interface for curses 104
setupterm interface for enhanced

curses 104
similar terminals 169
slk_attroff interface for enhanced

curses 105
source file syntax 141
special cases 169
specifying printer resolution 170
standend interface for curses 107
start_color interface for enhanced

curses 108
status lines 164
stdscr interface for enhanced cursor 108
structure of a curses program 3
subpad interface for enhanced

curses 108
subwin interface for curses 108
subwindows 8
syncok interface for enhanced

curses 109

T
tabs and initialization 164
term.h header for enhanced curses 139
termattrs interface for enhanced

curses 110
terminfo source format 141
terminology 1

termname interface for enhanced
curses 110

tgetent interface for enhanced curses 111
tigetflag interface for enhanced

curses 112
timeout interface for enhanced

curses 113
touchline interface for curses 113
tparm interface for enhanced curses 114
tputs interface for enhanced curses 114
trademarks 185
typeahead interface for enhanced

curses 114
types of capabilities in the sample

entry 154

U
unctrl header 140
unctrl interface for curses 115
underlining 161
ungetch interface for enhanced

curses 115
untouchwin interface for enhanced

curses 116
use_env interface for enhanced

curses 116

V
variations of terminal definitions 181
vidattr interface for enhanced curses 117
visible bells 161
vline interface for enhanced curses 118
vline_set interface for enhanced

curses 118
vw_printw interface for enhanced

curses 119
vw_scanw interface for enhanced

curses 120
vwprintw interface for enhanced

curses 119
vwscanw interface for enhanced

curses 120

W
w interface for curses 121
wunctrl interface for enhanced

curses 123

Z
z/OS Basic Skills information center xv

190 z/OS V2R1.0 C Curses

����

Product Number: 5650-ZOS

Printed in USA

SA38-0690-00

	Contents
	About This Book
	Typographical conventions
	Other documents
	Where to find more information
	Information updates on the web
	The z/OS Basic Skills Information Center

	Summary of Changes
	Chapter 1. The Curses Library
	Terminology
	Naming Conventions
	Structure of a Curses Program
	Return Values

	Chapter 2. Initializing Curses
	Chapter 3. Windows in the Curses Environment
	The Default Window Structure
	The Current Window Structure
	Subwindows
	Pads

	Chapter 4. Manipulating Window Data with Curses
	Chapter 5. Curses Interfaces
	addch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	addchstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	addnstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	addnwstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	add_wch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	add_wchnstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	attroff()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	attr_get()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	baudrate()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	beep()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	bkgd()
	Name
	Synopsis
	Description
	Return Value

	bkgd()
	Errors
	Application Usage
	See Also

	bkgrnd()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	border()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	border_set()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	box()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	box_set()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	can_change_color()
	Name
	Synopsis
	Description
	Querying Capabilities
	Initialization
	Color Identification
	User-Defined Color Pairs

	Return Value
	Errors
	Application Usage
	See Also

	cbreak()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	chgat()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	clear()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	clearok()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	clrtobot()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	clrtoeol()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	color_content()
	Name
	Synopsis
	Description

	COLOR_PAIRS
	Name
	Synopsis
	Description

	COLS
	Name
	Synopsis
	Description
	See Also

	copywin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	curscr
	Name
	Synopsis
	Description
	See Also

	curs_set()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	cur_term()
	Name
	Synopsis
	Description
	See Also

	def_prog_mode()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	delay_output()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	delch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	del_curterm()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	deleteln()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	delscreen()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	delwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	derwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	doupdate()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	dupwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	echo()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	echochar()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	echo_wchar()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	endwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	erase()
	Name
	Synopsis
	Description

	erasechar()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	filter()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	flash()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	flushinp()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	getbegyx()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	getbkgd()
	Name
	Synopsis
	Description

	getbkgrnd()
	Name
	Synopsis
	Description

	getcchar()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	getch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	getmaxyx()
	Name
	Synopsis
	Description

	getnstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	getn_wstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	getparyx()
	Name
	Synopsis
	Description

	getstr()
	Name
	Synopsis
	Description

	get_wch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	getwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	get_wstr()
	Name
	Synopsis
	Description

	getyx()
	Name
	Synopsis
	Description

	halfdelay()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	has_colors()
	Name
	Synopsis
	Description

	has_ic()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	hline()
	Name
	Synopsis
	Description
	Return Value
	Errors

	hline()
	Application Usage
	See Also

	hline_set()
	Name
	Synopsis
	Description
	Return Value
	Errors

	hline_set()
	See Also

	idcok()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	idlok()
	Name
	Synopsis
	Description

	immedok()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	inch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	inchnstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	init_color()
	Name
	Synopsis
	Description

	initscr()
	Name
	Synopsis
	Description

	initscr()
	Return Value
	Errors
	Application Usage
	See Also

	innstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	innwstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	insch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	insdelln()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	insertln()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	insnstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	ins_nwstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	insstr()
	Name
	Synopsis
	Description

	instr()
	Name
	Synopsis
	Description

	ins_wch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	ins_wstr()
	Name
	Synopsis
	Description

	intrflush()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	in_wch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	in_wchnstr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	inwstr()
	Name
	Synopsis
	Description

	isendwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	is_linetouched()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	keyname()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	keypad()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	killchar()
	Name
	Synopsis
	Description

	leaveok()
	Name
	Synopsis
	Description

	LINES
	Name
	Synopsis
	Description
	See Also

	longname()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	meta()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	move()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	mv
	Name
	Description
	See Also

	mvcur()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	mvderwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	mvprintw()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	mvscanw()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	mvwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	napms()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	newpad()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	newterm()
	Name
	Synopsis
	Description

	newwin()
	Name
	Synopsis
	Description

	nl()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	no
	Name
	Description

	nodelay()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	noqiflush()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	notimeout()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	overlay()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	pair_content()
	Name
	Synopsis
	Description

	pechochar()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	pnoutrefresh()
	Name
	Synopsis
	Description

	printw()
	Name
	Synopsis
	Description

	putp()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	putwin()
	Name
	Synopsis
	Description

	qiflush()
	Name
	Synopsis
	Description

	raw()
	Name
	Synopsis
	Description

	redrawwin()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	refresh()
	Name
	Synopsis
	Description

	reset_prog_mode()
	Name
	Synopsis
	Description

	resetty()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	restartterm()
	Name
	Synopsis
	Description

	ripoffline()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	savetty()
	Name
	Synopsis
	Description

	scanw()
	Name
	Synopsis
	Description

	scr_dump()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	scrl()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	scrollok()
	Name
	Synopsis
	Description

	setcchar()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	set_curterm()
	Name
	Synopsis
	Description

	setscrreg()
	Name
	Synopsis
	Description

	set_term()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	setupterm()
	Name
	Synopsis
	Description

	slk_attroff()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	standend()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	start_color()
	Name
	Synopsis
	Description

	stdscr
	Name
	Synopsis
	Description
	See Also

	subpad()
	Name
	Synopsis
	Description

	subwin()
	Name
	Synopsis
	Description

	syncok()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	termattrs()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	termname()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	tgetent()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	tigetflag()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	timeout()
	Name
	Synopsis
	Description

	touchline()
	Name
	Synopsis
	Description

	tparm()
	Name
	Synopsis
	Description

	tputs()
	Name
	Synopsis
	Description

	typeahead()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	unctrl()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	ungetch()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	untouchwin()
	Name
	Synopsis
	Description

	use_env()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	vidattr()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	vline()
	Name
	Synopsis
	Description

	vline_set()
	Name
	Synopsis
	Description

	vwprintw()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	vw_printw()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	vwscanw()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	vw_scanw()
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage
	See Also

	w
	Name
	Description

	wunctrl()
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	Chapter 6. Headers
	<cursesh>
	Name
	Synopsis
	Description
	See Also

	<termh>
	Name
	Synopsis
	Description
	See Also

	<unctrlh>
	Name
	Description
	See Also

	Chapter 7. Terminfo Source Format (ENHANCED CURSES)
	Source File Syntax
	Minimum Guaranteed Limits
	Formal Grammar
	Defined Capabilities
	Sample Entry
	Types of Capabilities in the Sample Entry

	Device Capabilities
	Basic Capabilities
	Parameterized Strings
	Cursor Motions
	Area Clears
	Insert/Delete Line
	Insert/Delete Character
	Highlighting, Underlining, and Visible Bells
	Keypad
	Tabs and Initialization
	Delays
	Status Lines
	Line Graphics
	Color Manipulation
	Miscellaneous
	Special Cases
	Similar Terminals

	Printer Capabilities
	Rounding Values
	Printer Resolution
	Specifying Printer Resolution
	Capabilities that Cause Movement
	Alternate Character Sets
	Dot-Matrix Graphics
	Effect of Changing Printing Resolution
	Print Quality
	Printing Rate and Buffer Size

	Selecting a Terminal
	Application Usage
	Conventions for Device Aliases
	Variations of Terminal Definitions

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

