
z/VM
7.2

Group Control System

IBM

SC24-6289-01

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
541.

This edition applies to version 7, release 2 of IBM z/VM (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2023-12-04
© Copyright International Business Machines Corporation 2001, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About This Document..xiii
Intended Audience.. xiii
Syntax, Message, and Response Conventions..xiii
Where to Find More Information..xv

Links to Other Documents and Websites... xv

How to provide feedback to IBM... xvii

Summary of Changes for z/VM: Group Control System..xix
SC24-6289-01, z/VM 7.2 (December 2023).. xix
SC24-6289-01, z/VM 7.2 (September 2020)...xix
SC24-6289-00, z/VM 7.1 (September 2018)...xix

Chapter 1. Group Control System Overview.. 1
What GCS Is... 1
What Applications GCS Supports.. 2
How GCS Relates to CMS... 3
Virtual Machine Groups..4

Building the Group..4
Joining a Virtual Machine Group.. 5
Implementation of a GCS Group.. 5
GCS Recovery Machine...5
GCS Group Communication..6
Communicating Between Machines in a Group...7

Authorization..7
Controlling Access to the GCS Supervisor... 8
Controlling Access to Supervisor State..9
Controlling Access to CP Commands...9

GCS Storage... 10
Overview of GCS Storage Layout..11
Private Storage... 12
Common Storage..13

Whole Picture at a Glance..13
GCS Scenario..14

Establish the Path Between System and Console...14
GCS Task Management.. 17

Adding and Discarding Tasks... 18
Dispatching Tasks...19
GCS System Tasks.. 19
Task Dispatching and Multi-tasking Services.. 19
Coordinating Dependent Tasks.. 20
Coordinating Shared Resources...22
Terminating Tasks...22
Abend Processing...23

General I/O (GENIO) Facility... 23

 iii

GCS Real I/O...24

Chapter 2. Planning for GCS...25
Planning GCS Storage Layout.. 25
Calculating Storage Requirements..25
Preparing to Build Other Saved Segments..27

Shared Segments Recognized by GCS...28
Private Segments for Applications...28

Making VSAM Available to GCS... 28
Authorizing Access to Supervisor State.. 28
Authorizing Access to GCS...29
Authorizing Commands for Virtual Machines..29
Authorizing Machines for Real I/O...29
Using AUTOLOG Functions.. 29
Using a PROFILE GCS File..29
Preparing CP Directory Entries.. 30
Operation... 30

Initializing GCS (How to Join a Group)...30
Starting and Stopping Programs.. 31
Replying to Messages...32
Querying Information...32

Chapter 3. GCS Programming and Command Processing.......................................35
Linkage Registers...35
Establishing a Base Register... 35
Providing a Save Area.. 35

Example of Chaining Save Areas in a Nonreenterable Program... 36
Example of Chaining Save Areas in a Reenterable Program... 36

Summary of Conventions for Passing and Receiving Control...37
GCS Program Exits... 37
GCS Commands Operation.. 38

Example of an Application Program in GCS...38
Console and Command Support.. 41
OS Management Services.. 43
Native GCS Services... 47
Data Management Services... 51

Chapter 4. GCS Commands.. 57
Immediate Commands.. 58
ACCESS...59
CLEAR...61
CONFIG.. 62
DLBL... 64
ERASE...70
ESTATE/ESTATEW.. 71
ETRACE...73
EXECIO... 76

Extended Descriptions and Use Information.. 83
EXECIO Return Codes.. 90
Explanation of Message GCTEIO632E...91
EXECIO Abend Codes...92

FILEDEF..94
GDUMP... 98
GLOBAL.. 101
GROUP... 102

GROUP Panels.. 103
Function Keys... 105

iv

HX...107
ITRACE... 108
LOADCMD...112
OSRUN... 116
QUERY.. 117
QUERY ADDRESS... 119
QUERY AUTHUSER.. 120
QUERY COMMON... 121
QUERY DISK...122
QUERY DLBL...124
QUERY DUMP... 126
QUERY DUMPLOCK.. 127
QUERY DUMPVM..128
QUERY ETRACE..129
QUERY FILEDEF... 130
QUERY GCSLEVEL.. 131
QUERY GROUP...132
QUERY IPOLL... 133
QUERY ITRACE.. 134
QUERY LOADALL.. 135
QUERY LOADCMD.. 136
QUERY LOADLIB.. 137
QUERY LOCK.. 138
QUERY MODDATE.. 139
QUERY REPLY...140
QUERY REXXSTOR... 141
QUERY SEARCH... 142
QUERY SYSNAMES...143
QUERY TRACETAB... 144
QUERY TSLICE... 145
RELEASE...146
REPLY... 147
SET... 149
SET DUMP.. 150
SET DUMPLOCK... 151
SET IPOLL.. 152
SET REXXSTOR.. 153
SET SYSNAME.. 154
SET TSLICE.. 155

Chapter 5. GCS Macros.. 157
GCS Macro Level and Parameter Lists.. 157
Addressing Mode and the Macros...158
GCS Macro Formats... 158

GCS Macro Coding Conventions.. 158
Formatting Conventions.. 159
Parameter Notation Conventions..161
ABEND..162
ADSR.. 164
ATTACH.. 165
AUTHCALL..172
AUTHNAME.. 174
AUTHUSER... 179
BLDL... 181
CALL... 184
CHAP.. 187
CMDSI.. 189

 v

CONFIG.. 193
CONTENTS... 197
CVT... 200
DELETE...202
DEQ.. 204
DETACH.. 208
DEVTYPE.. 210
ECVT...212
ENQ.. 213
ESPIE..219
ESTAE... 223
EXECCOMM.. 229
FLS..231
FREEMAIN..233
GCSLEVEL.. 238
GCSSAVE.. 240
GCSSAVI...241
GCSTOKEN... 242
GENIO.. 247
GETMAIN... 257
GTRACE.. 265
IDENTIFY... 270
IHADVA.. 272
IHASDWA... 273
IUCVCOM... 275
IUCVINI..286
LINK... 293
LOAD...298
LOCKWD... 302
MACHEXIT..305
PGLOCK..310
PGULOCK... 312
POST...314
RDJFCB.. 317
RESSTOR.. 320
RETURN..322
SAVE...324
SCHEDEX..326
SDUMP... 329
SDUMPX... 333
SEGMENT... 338
SETRP...340
SPLEVEL... 343
STIMER...345
SYMREC..348
SYNCH..350
TASKEXIT... 354
TIME... 359
TTIMER.. 361
VALIDATE... 362
WAIT.. 365
WTO..368
WTOR... 370
XCTL... 373

Chapter 6. QSAM and BSAM Data Management Service Macros........................... 379
Using QSAM and BSAM..379

vi

CHECK (BSAM)...380
CLOSE (BSAM/QSAM).. 382
DCB (BSAM/QSAM)..385
DCBD (BSAM/QSAM)... 391
GET (QSAM)... 394
NOTE (BSAM)... 396
OPEN (BSAM/QSAM)... 398
POINT (BSAM)... 402
PUT (QSAM)... 404
READ (BSAM)... 406
SYNADAF (BSAM/QSAM)...409
SYNADRLS (BSAM/QSAM)... 411
WRITE (BSAM)... 413

Chapter 7. VSAM Data Management Service Macros..417
Using VSAM..417
ACB...418
BLDVRP.. 423
CHECK.. 425
CLOSE...427
DLVRP...429
ENDREQ... 430
ERASE.. 432
EXLST... 434
GENCB..437
GET...451
MODCB...453
OPEN.. 465
POINT...468
PUT...470
RPL... 472
SHOWCAT...476
SHOWCB.. 480
TESTCB...490
WRTBFR... 505

Appendix A. Tailoring and Building the GCS Nucleus...507
Changing GCS Nucleus Options.. 507

Creating a New GCS Nucleus Build List...507
Changing GCS Default Definitions... 512
Rebuilding and Saving the GCS Nucleus...513

Appendix B. Using VSAM..517
VSAM I/O Operations under GCS.. 517
Control-Block Manipulation Macros..518

VSAM Macro Addresses... 518
List Format..518
List Address Format... 518
Execute Format.. 518
Generate Format.. 518
Parameter Notation for GENCB, MODCB, SHOWCB, and TESTCB Macros.......................................519
GENCB Macro... 520
MODCB Macro.. 521
SHOWCB Macro..522
TESTCB Macro.. 522
Feedback Field Codes.. 524
When the Return Code in Register 15 is 0...524

 vii

When the Return Code in Register 15 is 8...525
When the Return Code in Register 15 is 12...528

Appendix C. Appendix for QUERY ADDRESS and QUERY MODDATE......................529

Appendix D. Data Compression Services...539
Compression and Expansion Services.. 539

Notices..541
Programming Interface Information...542
Trademarks.. 542
Terms and Conditions for Product Documentation.. 543
IBM Online Privacy Statement.. 543

Bibliography.. 545
Where to Get z/VM Information.. 545
z/VM Base Library..545
z/VM Facilities and Features... 547
Prerequisite Products.. 548

Index.. 549

viii

Figures

1. Group Control System, an Interface between Applications and the Control Program............................... 1

2. A Virtual Machine Group and Supported Applications... 2

3. Storage Management Anchor Block... 11

4. GCS Storage Layout...12

5. GCS in z/VM... 14

6. CP Intercepts Instructions from the Virtual Machine.. 15

7. Transferring Data to the Machine Running VSCS... 16

8. Path of Data Moving through the VTAM Machine... 17

9. Data Traveling from VTAM to the Virtual Console.. 17

10. Diagram of a Task's Family Tree... 18

11. Task Block Dispatch Priority... 20

12. How Tasks Can Use WAIT and POST Macros... 21

13. Ideal Locations of Common and Private Storage in Two Virtual Machine Group Members................... 25

14. Obtaining Modules Requested by a GCS Program... 45

15. Determining Which VSAM Catalog to Use ..67

16. GROUP Primary Option Menu Panel...103

17. GROUP Authorized VM User IDs Panel...103

18. Saved System Information Panel, Page 1.. 104

19. GROUP Saved System Information Panel, Page 2... 104

20. GROUP Automatic Saved Segment Links Panel...105

21. GROUP User IDs Requiring Reserved Storage for VSAM Panel...105

 ix

x

Tables

1. Examples of Syntax Diagram Conventions...xiii

2. Authorization in the GCS Environment... 8

3. Problem State Versus Supervisor State..9

4. Automatic Disk Access at IPL... 31

5. Supported Commands.. 43

6. Loading Functions... 45

7. The AUTHCALL Macro... 47

8. Opening Multiple DCBs... 52

9. Valid ANSI Control Characters for Carriage Control...87

10. Function Keys Used with the GROUP Panels... 105

11. Query commands..117

12. Set commands.. 149

13. GCS Macros (Part 1 of 2)...157

14. GCS Macros (Part 2 of 2)...157

15. Supported Device Characteristics Information..272

16. Information returned by RDJFCB for BSAM/QSAM... 318

17. Information returned by RDJFCB for VSAM... 318

18. SDUMPX LISTD parameter list format..334

19. SDUMPX SUMLSTL parameter list format.. 335

20. Exit List Format... 387

21. DCB Exit List Codes...387

22. Register content when error routine receives control... 389

 xi

xii

About This Document

This document provides information on how to plan for, set up, and operate the IBM® z/VM® Group Control
System (GCS). It also contains complete reference information for all of the GCS commands and macros.

Intended Audience
This document is intended for system programmers and administrators who need to plan for GCS and run
it on their z/VM system. This document is also for application programmers who need to write programs
to run under GCS.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xiii.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

© Copyright IBM Corp. 2001, 2023 xiii

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

xiv About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
Other documents in the z/VM library are shown in the “Bibliography” on page 545.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,

About This Document xv

and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xvi z/VM: 7.2 Group Control System

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 2001, 2023 xvii

https://www.ibm.com/docs/zvm/7.2?topic=how-send-feedback

xviii z/VM: 7.2 Group Control System

Summary of Changes for z/VM: Group Control System

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6289-01, z/VM 7.2 (December 2023)
This edition includes terminology, maintenance, and editorial changes.

SC24-6289-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6289-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 2001, 2023 xix

xx z/VM: 7.2 Group Control System

Chapter 1. Group Control System Overview

What GCS Is
The Group Control System (GCS) is:

• A component of z/VM. It consists of a named, shared segment in storage that you can IPL and run in a
virtual machine.

• A virtual machine supervisor. It bands many virtual machines together in a group and supervises their
operations. See Figure 2 on page 2.

• An interface between applications. Some of the applications are:

– Virtual Telecommunications Access Method (VTAM®®)
– Remote Spooling Communications Subsystem (RSCS)
– NetView®®

– z/VM®'s Control Program (CP), Figure 1 on page 1.

GCS provides multitasking services that allow numerous tasks to remain active in the virtual machine at
one time.

GCS Applications
(VTAM, RSCS, NetView, ...)

Control
Program

SNA
(Network)

Group Control System

Figure 1. Group Control System, an Interface between Applications and the Control Program

The specific function of GCS for z/VM is to support a native VM/SNA network — a network that functions
as part of your z/VM system without help from a second operating system. This System Network
Architecture (SNA) network relies on ACF/VTAM, VTAM SNA Console Support (VSCS), and other network
applications to manage its collection of links between terminals, controllers, and processors. In turn,

Group Control System Overview

© Copyright IBM Corp. 2001, 2023 1

ACF/VTAM, VSCS, and the others rely on GCS to provide services for them. This arrangement eliminates
your need for VM/VCNA (VTAM Communications Network Application) and a second operating system like
VS1 or VSE.

GCS runs in an XA machine and is installed with z/VM. This allows all virtual machines in a GCS group to
run in XA mode or XC mode.

• XA mode entails running with the full capabilities of the Extended System Architecture. Either 24-bit or
31-bit addressing can be used (thus allowing addresses below and above 16MB), as well as the more
efficient XA I/O using the Channel Subsystem.

• ESA/XC architecture is a virtual machine architecture in which DAT-off programs can create and access
additional address spaces called data spaces. These additional address spaces can also be shared with
programs running in other virtual machines. GCS applications must not be in Access Register (AR) mode
when using GCS supervisor services, whether using a branch or an SVC interface, or returning from
a user exit. GCS will abend any application that attempts to use GCS supervisor services while in AR
mode.

• For migration purposes GCS supports mixed mode groups which include XC and XA mode.

Figure 2. A Virtual Machine Group and Supported Applications

What Applications GCS Supports
GCS supports these applications:

VTAM (Virtual Telecommunications Access Method)
The specific version of VTAM designed for GCS is ACF/VTAM Version 3.3 (for z/VM). ACF/VTAM
controls data flow between SNA network devices and programs running in other group machines.
Part of ACF/VTAM provides a shared VTAM interface that other applications like RSCS, NCCF, and
NetView pass information through. (See Figure 2 on page 2.) RSCS uses this shared VTAM interface to
communicate with SNA devices; NCCF and NetView perform network management functions through
it. For more information, see the ACF/VTAM General Information (for VM) book.

Group Control System Overview

2 z/VM: 7.2 Group Control System

VSCS (VTAM SNA Console Support)
This is a VTAM component that lets SNA-connected terminals function as virtual machine consoles.
VSCS succeeds the earlier VM/VCNA product, and makes a guest System Control Program (SCP), like
VSE or VS1, unnecessary. For more information, see the ACF/VTAM General Information (for VM) book.

SSP (Systems Support Program)
With GCS, parts of SSP are VTAM subtasks. SSP does utility functions for the SNA network's
communication control unit. Actually, SSP aids the Network Control Program (NCP), which governs
the communication control unit. That control unit, in turn, manages network lines and routing of data.
For more information, see the ACF/VTAM Network Program Products Planning book.

AVS (APPC/VM VTAM Support)
Is a z/VM-supplied VTAM application that runs in a GCS virtual machine. It provides the functions
necessary for APPC/VM programs within a TSAF collection to communicate with APPC programs
anywhere in an SNA network. VTAM provides the LU 6.2 services necessary to communicate with
a remote LU. AVS handles the transformation between APPC/VTAM and APPC/VM. AVS can coexist
with VSCS in the same system, GCS group, and virtual machine. For more information, see z/VM:
Connectivity.

RSCS (Remote Spooling Communications Subsystem)
RSCS, designed as a GCS application, runs in a group virtual machine and relies on ACF/VTAM to help
transfer information through the SNA network. RSCS also can run in a group by itself, spooling files
and transmitting messages through non-SNA links. For more information, see the RSCS Networking
General Information book.

NetView
NetView is an enhanced network management program. It is an optional but recommended VTAM
application that helps the operation and control of a SNA network. It permits your network operator
to control any portion of the network regardless of its physical location. NetView includes the function
of the following network management products that are also supported by GCS, plus enhancements in
the areas of function, usability, installability, and operability:

• NCCF
• NPDA (Network Problem Determination Application)
• NLDM (Network Logical Data Manager).

For more information, see the ACF/VTAM Network Program Products Planning book.

How GCS Relates to CMS
GCS, like CMS, is a z/VM component. Although these two components share a few similarities, they have
very different functions. GCS supports more than 70 OS macros. Over 50 of them have CMS counterparts
(though some of the supported parameters differ), while the remaining macros are unique to GCS. CMS
supports its OS macros at the MVS/SP Release 2.2.0 level and DFP Release 2.3.0 level, while GCS
supports its OS macros at the MVS/SP Release 2.2.0 level.

Some GCS commands resemble ones that exist in CMS. These commands share the same or slightly
modified formats in both environments:

ACCESS
DLBL
ERASE
EXECIO

FILEDEF
GLOBAL
HX
OSRUN

QUERY
RELEASE
SET

The actual command formats are described later in this book.

In addition, the VSAM interface supported by GCS is the same as the one used by CMS, with VSAM disks
in VSE/VSAM format. In fact, the VSAM macros GCS uses reside in the CMS macro library named OSVSAM
MACLIB.

Group Control System Overview

Chapter 1. Group Control System Overview 3

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa6_v7r2.pdf#nameddest=hcpa6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa6_v7r2.pdf#nameddest=hcpa6_v7r2

Also, GCS has many of the same REXX capabilities as CMS. For more information on the exceptions, see
“Entering Commands to GCS” on page 42.

Beyond these similarities and differences, GCS and CMS have another relationship: GCS relies on CMS
for its interactive capabilities. For example, you have to complete the GCS build and installation process
using CMS. For more information on the explanation of the process, see z/VM: Installation Guide. Even
after you have created GCS, you still need CMS for:

• Editing, assembling, and link-editing GCS programs
• Initializing disks and creating catalogs (utility functions)
• Creating VTAM's network definition files
• Creating REXX files of file type GCS
• Building VSAM saved segments
• Examining and printing dumped storage information.

Files used by GCS cannot reside in an SFS file pool. SFS is a part of CMS. GCS does not use CMS to do its
file I/O.

Virtual Machine Groups
A virtual machine group is an extension to the current virtual machine supported by the Control Program
(CP), which allows several virtual machines to be in a common group and controlled by a common
supervisor. More than one group may be active at any given time in a single processor. A group is one or
more virtual machines that have IPLed the same GCS shared segment.

Virtual machine groups can consist of multiple user groups or single user groups. The group environment
is defined with the GRP121 screen at system installation time. Multiple user groups share common
storage space and a supervisor and can communicate with each other. Single user groups do not need
to share storage space or supervisor because there are no other machines in the group and they do not
need to have the ability to communicate with other machines in a group. Therefore, applications that do
not require group communication are able to IPL and run without the overhead of group initialization and
multiple virtual machines.

GCS governs the group's machines. It is a base that holds the group together and a supervisor that
provides many services for each member machine. The type of services available depends on the
authorization of individual group members. Unauthorized members run only in problem state and are
prevented from using certain GCS services. Authorized members can run in supervisor state and use more
GCS services.

In a single user group, the user authorization is initialized as specified in the configuration file. The user
may change the authorization by using the AUTHUSER parameter of the CONFIG command.

Figure 2 on page 2 shows the structure of a virtual machine group. The virtual machine group, with a
built-in supervisor, supports a z/VM operating environment for programs, like VTAM, that once needed
guest operating systems.

Building the Group
When you define and install GCS, you provide information that builds, or configures, your group. This
information goes into a group configuration file that resides in GCS private storage. Some of your input to
that file includes:

• A name for the supervisor (actually, your GCS system name)
• User IDs of machines authorized to run in supervisor state
• A maximum group size
• The user ID of one virtual machine, called a recovery machine, to clean up group resources when other

machines leave the group
• Names of other shared segments (like VTAM and others)

Group Control System Overview

4 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa2_v7r2.pdf#nameddest=hcpa2_v7r2

• Location of the internal trace table
• User ID that will be accessing the VSAM segment.

After you have built a configuration file and installed your GCS segment, the GCS supervisor admits
machines that IPL the shared segment, by name, into the group. On a single z/VM system you can build
multiple GCS segments and multiple virtual machine groups.

Joining a Virtual Machine Group
After you have installed GCS and defined it as a named, saved system, user IDs can IPL it and share a
group copy of the GCS shared segment if the segment was not defined as restricted. Those user IDs then
share access to GCS supervisor code and common storage.

If the segment was defined as restricted, the user needs to put a NAMESAVE control statement in the
directory to IPL it.

To join a virtual machine group, you log on and IPL the GCS shared segment.

Common storage is a read/write area with two parts:

• Common free storage contains free storage space for applications to use.
• Shared GCS code contains the group's shared copy of GCS supervisor code, along with control blocks

and data that all members of the group share.

Implementation of a GCS Group
When a GCS segment is built, CP does not check for changes in the virtual machines that access the GCS
segment. GCS has been structured to run in such an unprotected shared segment to gain the advantages
of common storage, fast communication between virtual machines and less dispatching overhead for
better system performance. Areas of these segments which need to be protected are protected by
storage keys.

A GCS shared segment is declared using the DEFSYS command with the VMGROUP parameter. CP is
notified that any virtual machine that IPLs this named segment will be running in a virtual machine group.
The common storage is described in the DEFSYS command with the SW descriptor code. This allows the
pages of this segment to be altered by any authorized program in the group.

GCS Recovery Machine
The recovery machine manages the different virtual machines and does cleanup operations for virtual
machines in the GCS group that are reset. A virtual machine is reset under any of these conditions:

• Logging off
• Issuing the IPL command
• Receiving some types of machine checks
• Issuing the following CP commands:

SYSTEM RESET
SYSTEM CLEAR
DEFINE STORAGE
SET MACHINE

Authorized applications can define machine exits which will run when a virtual machine leaves the group.
All machine exits that have been defined by using the MACHEXIT macro must reside in a shared segment
and will be executed in the recovery machine. When a virtual machine leaves the group, the recovery
machine is notified. These operations are also performed:

• Locks held by the terminating virtual machine are freed.
• All machine exits that have been defined within the group are executed.
• Cleanup is performed on the control blocks that keep track of the terminating virtual machine.

Group Control System Overview

Chapter 1. Group Control System Overview 5

This allows the GCS supervisor to clean up any resources that were held by the virtual machine. It also
provides authorized applications with a mechanism to be notified when a virtual machine leaves the
group.

The recovery machine must be the first virtual machine to be IPLed in a GCS group. The user ID for the
recovery machine is designated at build time. A GCS group may contain only the recovery machine (a
group of one). If the recovery machine itself gets reset, the machines remaining in the virtual machine
group will issue a CP SYSTEM RESET, which causes the entire group to reset.

Single User Group
When running in a single user group, the user's virtual machine is considered the recovery machine and
the dump receiving virtual machine regardless of the virtual machine ID specified by the group EXEC for
the saved system.

GCS Group Communication
One of the primary reasons for having groups of virtual machines is to gain performance
in communication. This is accomplished by GCS services such as common storage, Inter-User
Communication Vehicle (IUCV), Advanced Program to Program Communication (APPC/VM), and CP Signal
System Service.

GCS APPC/VM and CP Signal System Service
GCS supports these communications:

• Task to task within a virtual machine
• Task to task in different virtual machines within the group
• GCS virtual machine to a virtual machine outside the group

This communication is accomplished by using the GCS IUCV or APPC/VM support or GCS services which
use the CP Signal System Service. For communications between virtual machines within the group or
outside the group, applications should use the APPC/VM protocol and services. The GCS support macros
IUCVINI and IUCVCOM must be used by applications which want to communicate using GCS IUCV or
APPC/VM services. The IUCVINI macro initializes, alters, or terminates a user's GCS IUCV or APPC/VM
environment. The IUCVCOM macro must be used to establish or terminate an IUCV or APPC/VM path for
all GCS support users. This allows GCS task termination to sever any IUCV or APPC/VM paths that may
have been left by a terminating task.

An authorized application may use IUCV or APPC/VM directly by issuing the function directly to CP, rather
than going through GCS through the IUCVCOM macro, for all functions other than connect or sever. This
is accomplished by specifying PRIV=YES when initializing the GCS IUCV or APPC/VM environment with
the IUCVINI macro. All unauthorized GCS IUCV or APPC/VM users must use the IUCVCOM macro for GCS
communications.

GCS also can communicate with other members of the group by using the CP Signal Service. A virtual
machine joins a group when the GCS supervisor is IPLed. At initialization time, GCS will issue an IUCV
Declare Buffer and an IUCV CONNECT to the Signal System Service. The connection is made by specifying
*SIGNAL as the user ID and indicating that parameter list data will be used (PRMDATA=YES). Only one
connection is allowed to the Signal System Service per virtual machine.

When a source virtual machine determines that it needs to communicate with a target virtual machine in
the group, GCS places information describing the request for service into a read/write common storage
area and chains it into a queue of requests for the target virtual machine. The source virtual machine
then issues an IUCV SEND to the Signal System Service specifying a 8-byte parameter list of data and
the target virtual machine's signal id. This signal id was assigned at initialization time. When the SEND is
issued, CP generates an external interrupt to be queued for the target virtual machine. The next time the
target virtual machine is dispatched by CP, and is enabled for interrupts, it processes the request. The
request is then processed by the IUCV interrupt handler. The GCS IUCV interrupt handler identifies the
interrupt as one from the Signal System Service and sends the request to the appropriate second level

Group Control System Overview

6 z/VM: 7.2 Group Control System

interrupt handler to be processed. This method of communication allows all the virtual machines in the
group to communicate on only one IUCV path.

There are several GCS services which use the Signal System Service for communication. One is to allow
for cross-machine lock synchronization. If two virtual machines wish to access the same resource they
can obtain the common lock. This is done by using the LOCKWD service in GCS. When a requested lock is
released, LOCKWD uses the Signal System Service to notify any waiting virtual machines in the group that
the lock is now available.

GCS also uses the Signal System Service to allow for cross-machine exits. One virtual machine can
schedule an exit to run on another virtual machine. This is done by using the GCS SCHEDEX function.
SCHEDEX uses the Signal System Service to generate the external interrupt on the target virtual machine.

The Signal System Service is also used by CP to notify members of a group when one of the virtual
machines leaves that group. As part of the virtual machine reset process, CP will issue an IUCV SEND to
all of the remaining members of the group. The IUCV SEND generates a Signal-out external interrupt and
the departing virtual machines signal id. The Signal-out external interrupt is used by the virtual machine
designated as the recovery machine. The recovery machine runs machine termination exits and does any
cleanup necessary (see “GCS Recovery Machine” on page 5 for more details).

Communicating Between Machines in a Group
Machines in a group communicate with each other through:

• IUCV (Inter-User Communications Vehicle)

– IUCV handles communication between virtual machines within a single VM system or between a
virtual machine and a CP service. For more information on IUCV, see z/VM: CP Programming Services.
In addition, it handles communications between routines (task-users) within virtual machines. See
“Communicating through IUCV” on page 47 for details.

• APPC/VM (Advanced Program-to-Program Communication/VM)

– APPC/VM is a means of communication between two virtual machines. It is mappable to the SNA
LU 6.2 APPC interface and is based on z/VM IUCV functions. With the Transparent Services Access
Facility (TSAF) virtual machine component, APPC/VM provides communication services within a
single system and throughout a group of virtual machines on different systems the same way that
IUCV provides them within a system. See “Communicating through IUCV” on page 47.

• CP Signal System Service

– Each machine receives a unique signal ID when it joins a group. When one machine wants to
exchange information with a second group member, it:

- Records this information in common storage, and
- Notifies the second machine's signal ID of the information waiting in common storage.

Note: If you have many groups, and machines in one group want to communicate with machines in
another, they must use IUCV instead of the CP Signal System Service. Although the CP Signal System
Service provides unique signal IDs within a group, it reuses the same IDs across different groups.

Single User Group
GCS running in a single user group environment does not use CP signal system service support because a
single VM group does not share common storage and because no other virtual machines are in the group.
Applications that depend on sending or receiving signals from other virtual machines cannot be run in this
environment.

Authorization
GCS provides protection for both the system and its applications by authorities. There are methods for
controlling the execution of programs and the protection of data.

Group Control System Overview

Chapter 1. Group Control System Overview 7

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

In GCS, applications may be either authorized or unauthorized. An authorized application will run in
supervisor state and has the power to process authorized GCS functions. Unauthorized applications run in
problem state and cannot access these authorized functions (except when they are provided access from
an authorized application).

There are three types of authorization in GCS:

• Virtual machine

A virtual machine is authorized when its user ID is entered at build time using the GCS GROUP EXEC.
When an authorized user ID is IPLed, its applications process in supervisor state. Therefore, a program
executing in that virtual machine is authorized and may process both authorized and unauthorized
programs.

• Task

When a GCS task is authorized, the programs running under that task are executing in supervisor state.
This happens when the task is authorized using the SM=SUPV parameter on the ATTACH macro.

• Entry point.

An authorized entry point can be created using the AUTHNAME macro. This entry point must
reside in the GCS shared segment. An authorized application can make this entry point available to
unauthorized applications by using AUTHNAME. This declares the entry point (and name) to GCS so
unauthorized applications can run it by using the AUTHCALL macro, from any virtual machine in the
group. When the AUTHCALL macro is called by an unauthorized program, the authorized entry will be
given control in supervisor state (authorized). When it returns control to the unauthorized problem,
problem (unauthorized) state is restored. In this way, authorized applications can provide unauthorized
applications a controlled means of accessing authorized functions.

Validation (see “VALIDATE” on page 362) means that a check is done to confirm that a program has
access to a certain block of storage. An unauthorized program has all parameter list addresses validated
by GCS whenever a call is made for a GCS service. An authorized function will not have their parameter
lists validated. This may result in a significant performance savings but authorized programs must be
careful that they are accessing data and functions correctly. When a program in GCS is authorized, it does
not necessarily mean that it is also authorized to a GCS application. For example, in VTAM, a GCS program
is not considered authorized unless it uses the AUTHEXIT=YES parameter on the VTAM APPL statement.

GCS data is also protected with storage keys. An authorized application can obtain storage in different
storage keys. Unauthorized applications may only obtain storage in key 14. If an application tries to
access the storage in a key other than its own, it will receive an error. The organization of GCS storage is
discussed in “GCS Storage” on page 10.

There are three levels of authorization in the GCS environment. With each increasing level of
authorization, you receive a greater amount of access to the GCS system. (The first level has the least
amount of access. The third level has the most, because it requires authorization at the previous two
levels.) You authorize who gets access to each level.

Table 2. Authorization in the GCS Environment

At Level User IDs Have Access To

1 The GCS supervisor and common storage

2 Supervisor State (and privileged GCS functions)

3 Certain restricted CP commands

Controlling Access to the GCS Supervisor
The GCS supervisor is part of the GCS shared segment. Having access to the supervisor results from being
able to IPL the segment. So if you prevent certain user IDs from IPLing your GCS system, you cut off their
access to the supervisor. To do this, specify the RSTD parameter on the DEFSYS command when defining
the GCS system.

Group Control System Overview

8 z/VM: 7.2 Group Control System

To enter an IPL command and successfully access the (restricted) GCS supervisor, a user ID must be
authorized in the directory with the NAMESAVE control statement.

If universal access to the GCS supervisor is desired (not recommended) the RSTD option may be omitted
from the DEFSYS command. It will then be impossible to prevent any user from accessing the supervisor.

Controlling Access to Supervisor State
After a user ID has access to the GCS supervisor, it will operate in problem state unless you authorize it to
run in supervisor state. You provide access to supervisor state by:

• Authorizing the user ID at build time

When defining the virtual machine group (see “Changing GCS Default Definitions” on page 512) you
provide a list of user IDs that will have access to supervisor state and authorized GCS functions.
The virtual machine associated with an authorized user ID is called an authorized machine. And, any
applications that run under these authorized user IDs are considered authorized too.

• Authorizing entry points

You can select a certain entry point, a location in a shared segment, to run in supervisor state. (GCS's
AUTHNAME macro lets authorized programs identify these authorized entry points.) A problem state
program can pass control to that entry point, which will run in supervisor state. The program later will
regain control in problem state.

• The CONFIG command

You can also provide access to supervisor state dynamically by using CONFIG AUTHUSER ADD in the
recovery machine.

Table 3 on page 9 describes how problem state and supervisor state differ:

Table 3. Problem State Versus Supervisor State

Problem State Supervisor State

Both authorized and unauthorized user IDs can run
applications in this state.

Only authorized user IDs can run applications in
this state.

User IDs in this state cannot use privileged GCS
functions or macros.

User IDs in this state can use privileged GCS
functions or macros.

User IDs can use only storage having a storage
protection key of 14.

User IDs can use storage of any key.

Controlling Access to CP Commands
After IPLing GCS, many CP commands (like SPOOL, LINK, and MESSAGE) will work without disrupting or
affecting your system's ability to function. But some CP commands will harm your GCS code, and others
have limited usefulness.

For example, the CP commands BEGIN, DISPLAY, DUMP, STORE, TRACE, and VMDUMP permit you to
view or alter common storage. Only certain users who are responsible for maintaining and debugging your
system should be able to enter them.

With z/VM you can make potentially harmful CP commands unavailable to your GCS user IDs. You must
either alter the lists of commands in two existing privilege classes (A through H) or else define two new
privilege classes. Depending on how you redefine these privilege classes, you may have to change the cl
parameter specified on each GCS user ID's USER control statement in your directory.

Whether you choose to define new classes or alter existing ones, make sure you have two privilege
classes that contain:

• CP debugging commands for authorized use only

Group Control System Overview

Chapter 1. Group Control System Overview 9

This privilege class should include all current Class G commands. Assign it only to authorized user IDs
responsible for maintenance and debugging.

• General-use CP commands for unauthorized user IDs

This privilege class should include all current Class G commands, except TRACE, BEGIN, DISPLAY,
DUMP, STORE, and VMDUMP. Assign it to unauthorized user IDs that do not need debugging commands.

Note: With this class assignment, unauthorized GCS users cannot use the VMDUMP command. In case
of an error, their virtual machines need a way to dump storage. Instead of VMDUMP, they can use the
GDUMP command to dump storage and specify where it will go. See “GDUMP” on page 98.

GCS Storage
To understand the structure of GCS, it is helpful to know the organization and allocation of free storage
(see Figure 3 on page 11). GCS is unique to z/VM because it provides the ability for virtual machines to
share read/write storage between them. This is called common storage. Each virtual machine also has its
own private storage. These can then be subdivided into different storage keys which can be either fetch
protected or nonfetch protected. Fetch protection is enforced by the system architecture. The key of the
storage is dependent on the PSW key of the program requesting that storage. GCS supports storage keys
0-15. Some examples of storage allocation are:

• GCS supervisor code runs in key 0, common storage.
• Application storage is assigned key 14, private storage.

An authorized application may change the key of its PSW using the SPKA instruction, thus allowing it to
request storage in different storage keys.

Depending on the amount of storage available, GCS can allocate storage over the 16MB line. Both
common and private storage can exist below and above the 16MB line. See “GETMAIN” on page 257, for
more details.

When a request for storage comes in, GCS checks its storage chains for storage in the key of the requester.
If the request cannot be satisfied, GCS looks for a free full page (or pages) in any key, and changes the key
of that page to the key of the requester. The page of storage is then chained onto the appropriate storage
chain. This allows any page of storage in GCS to be obtained in any storage key. The page can also be
either fetch protected or nonfetch protected.

Group Control System Overview

10 z/VM: 7.2 Group Control System

Figure 3. Storage Management Anchor Block

Overview of GCS Storage Layout
As you can see in Figure 4 on page 12, GCS is divided into two pieces: private storage and common
storage.

Group Control System Overview

Chapter 1. Group Control System Overview 11

Figure 4. GCS Storage Layout

Private free storage should be contiguous to make the virtual machine more efficient. Private storage is
unique to each virtual machine that it is in, but common storage is shared by all users in the group.

Private Storage
Private storage is divided into:
GCS Private Storage

Data areas and control blocks that include system pointers, work areas, and the system configuration
module. GCS private Storage begins at page 0 of the virtual machine.

Private Free Storage
Available for GETMAINs and is where application programs are loaded.

Group Control System Overview

12 z/VM: 7.2 Group Control System

Common Storage
Common storage is divided into:

GCS Supervisor Code
Common storage that contains all executable modules required to IPL GCS.

Common Data Areas
Supervisor data that is shared between virtual machines.

Common Free Storage
Used for GETMAINs, some of this storage is taken for the trace table to be created. Common storage
is a shared read/write area of the virtual machine. The common storage is divided into low common
storage (below the 16MB line) and high common storage (above the 16MB line).

Whole Picture at a Glance
Figure 5 on page 14 shows a conceptual view of how the Group Control System can fit into your z/VM
environment. Familiar elements in the picture include:

• CP, a base for the rest of the system to build on.
• Virtual machines, running various applications.
• CMS, an interactive z/VM component that runs on CP.
• A route to the SNA network, a network that connects virtual machines with remote consoles. (This is

just one application of GCS.)

GCS, with its common and private areas, forms a base for a particular group of virtual machines. It runs
parallel to CMS as a z/VM component on CP.

Group Control System Overview

Chapter 1. Group Control System Overview 13

Figure 5. GCS in z/VM

This diagram shows only the conceptual relationships among the applications and saved segments in
storage. Actual storage layout is different for every installation. The application space might even include
two or more separate areas.

GCS Scenario
The following scenario shows how GCS helps support native SNA communications.

Log on from a SNA terminal and IPL CMS. Neither you, as a user, nor CMS needs to know that it is a SNA
terminal. CMS responds to your commands. Being an interactive system, it communicates back and forth
with you through this terminal. The information exchange seems to happen easily enough. But because
you have a SNA terminal, the path from your console to CMS is a complex one, involving GCS, ACF/VTAM,
and SNA.

Establish the Path Between System and Console
For example, CMS begins communicating with your console by issuing:

Start Subchannel (SSCH)

Or, a CMS application like XEDIT issues:

Group Control System Overview

14 z/VM: 7.2 Group Control System

Diagnose code x'58'

The instruction leaves your virtual machine, and CP intercepts it (Figure 6 on page 15).

Figure 6. CP Intercepts Instructions from the Virtual Machine

After decoding and extracting the instruction's pertinent information, CP prepares to send data out on the
network.

Group Control System Overview

Chapter 1. Group Control System Overview 15

From CP, the data passes to a virtual machine running VSCS. (In the Figure 7 on page 16 example, the
VTAM machine runs VSCS. VSCS also may run in its own virtual machine.) The transfer from CP to VSCS
takes place through a CP facility, Inter-User Communications Vehicle (IUCV).

Figure 7. Transferring Data to the Machine Running VSCS

Figure 7 on page 16 shows the VTAM virtual machine running on GCS. In a z/VM system with SNA
terminals, this machine must be running ACF/VTAM Version 3 because:

• ACF/VTAM allows a VSCS component to run in the VTAM virtual machine (as in this example).
• ACF/VTAM provides a SHARED VTAM interface that lets all other machines running in this GCS group

communicate with ACF/VTAM and the rest of the network.

Figure 8 on page 17 shows what happens after CP sends data to the VTAM machine. VSCS receives it,
processes it into a physical screen image, and issues a SEND macro. The SEND macro finally gives control
to VTAM.

Group Control System Overview

16 z/VM: 7.2 Group Control System

Figure 8. Path of Data Moving through the VTAM Machine

From VTAM, the information travels toward your terminal (Figure 9 on page 17). Output instructions are
relayed from VTAM to GCS, from GCS to CP, and from CP to the network or local control unit. The control
unit sends the data through the SNA network to your virtual console.

Figure 9. Data Traveling from VTAM to the Virtual Console

GCS Task Management
GCS provides multitasking services for multiple active tasks, as opposed to CMS which supports only one
active task at a time.

• What is a task?

Group Control System Overview

Chapter 1. Group Control System Overview 17

A task is a single piece of work to be done, usually an independent routine. A program running in a GCS
machine can spawn a series of tasks, each with a specific job to do. Together, these tasks contribute to
the program, letting it accomplish its overall assignment.

• What is Multitasking?

A program can have tasks that belong to it, and those tasks can have numerous subtasks. With GCS, a
single program can have many tasks active at one time, although the processing unit can process only
one task at a time. Multitasking is the act of managing system resources for all those tasks as they line
up to run.

This multitasking capability provides for more programming flexibility and better system performance.
GCS provides services that allow applications to control and manipulate tasks within the system. A GCS
task represents a unit of execution and has associated with it a task identification number (id) from 1
to 65535 and a task dispatching priority from 0 to 255 with 255 being the highest priority. The order of
execution of tasks is controlled by the GCS dispatcher and GCS tasking services.

Adding and Discarding Tasks
A GCS program starts with one initial task. And that initial task can add on additional subtasks using
the ATTACH macro. Those subtasks, in turn, can add more subtasks of their own. What results is a
task hierarchy like that shown in Figure 10 on page 18. All those tasks belong to one GCS application
program. They compete with each other for an opportunity to run in that application's virtual machine.

Tasks use the following two macros for adding and discarding subtasks:
ATTACH

To add on a subtask
DETACH

To get rid of a subtask.

Figure 10. Diagram of a Task's Family Tree

Group Control System Overview

18 z/VM: 7.2 Group Control System

Dispatching Tasks
To help GCS set up a task hierarchy, each task has a 2-byte task ID and a 1-byte dispatching priority
number. Tasks that want to run first identify themselves with the task ID. And then, GCS sets the order of
dispatching according to the 1-byte dispatching priority number.

Tasks themselves determine dispatching priority numbers. Parent tasks assign priority numbers to newly
created subtasks. Subtasks' priorities can be the same, higher, or lower than their parents'. To change an
existing priority assignment, tasks must call the CHAP macro. CHAP works only for a:

• Task that wants to change its own priority
• Parent task that wants to change the priority of one of its attached subtasks.

For more information, see “CHAP” on page 187.

Tasks with the largest dispatching priority numbers have the highest priority. Usually, dispatching follows
the simple rule:

• High priority before low.

But exceptions do occur:

• When tasks have equal priority, the task dispatcher will keep timing information about the running task.
If the running task exceeds the time limits the task dispatcher will switch to a ready task of equal
priority.

• When the highest priority task cannot run, GCS dispatches the next-highest, runable task.

Otherwise, when a task does get dispatched, it maintains control:

• While disabled for interrupts
• Until a higher priority task becomes ready to run
• Until it terminates
• Until it issues a WAIT.

GCS System Tasks
When a GCS segment is IPLed, it begins with two system tasks: console and commands. The function
of the console task is to control the GCS console. It has a task ID of 1 and a dispatching priority of 255
(X'FF'). When a command is entered from the GCS console, the console task processes the attention
interrupt and examines the data. If it is an immediate command (for example, HX), the command is
executed immediately. If it is not an immediate command, the console task issues a POST macro for the
commands task to process the input. The console task then issues the WAIT macro and waits for the next
console input.

The GCS commands task has a task ID of 2 and a dispatch priority of 251 (X'FB'). All nonimmediate
commands issued from the GCS console (including OSRUN) are run under the commands task. Resolution
of the command names, such as commands and EXECs, are the same as in CMS. If the command was not
found, it is passed to CP through a Diagnose X'08' for execution. If it is still not found, an error message is
returned to the console.

Task Dispatching and Multi-tasking Services
The GCS dispatcher is a priority-based dispatcher, that is, a higher priority ready task is executed before
a task with a lower priority. The higher the dispatch priority number of the task, the higher its priority.
When multiple tasks have equal dispatch priorities, they are dispatched in a round-robin format. The GCS
dispatcher also has a timing facility, not related to the GCS timer facilities, such as STIMER, that will keep
track of how long a task has been running. If a task has been running for more than 300 milliseconds
and there are other tasks ready on that priority level, a task switch will occur when the dispatcher tries to
redispatch the task. A task will not be interrupted by the dispatcher when its time is exceeded. A GCS task
can give up control in one of the following ways:

• A higher priority task becomes ready

Group Control System Overview

Chapter 1. Group Control System Overview 19

• The task issues the WAIT macro
• The task's time slice is exceeded when the dispatcher tries to redispatch the task.

If a GCS task is running disabled, it will always regain control even if a higher priority task is ready.

Each task in GCS is represented by a task block. When a dispatcher context switch occurs, the information
about the active task (registers, PSW and so forth) is stored in the task block. The task block points to
a stack of state blocks which contains information regarding the state of programs executing under that
task.

Tasks can be controlled by using GCS task-based service macros. The ATTACH macro creates a task which
can have an exit specified to be run at task termination (ETXR), have data passed to it (PARAM), and
have a dispatch priority which can be different from the parent task (DPMOD). A task may be created
as an independent application (JSTCB=YES). This type of task, and all of its subtasks, will remain active
after a command has completed. This is used by applications, such as VTAM and Remote Spooling
Communications Subsystem (RSCS) to be loaded only after into GCS. Only a task that is a direct subtask
of the commands task can be attached as an independent application. Only a program running under the
commands task may attach an independent application.

The DETACH macro cleans up tasks after they have terminated. The task id assigned by the ATTACH
macro must be used to identify the task that is being detached. The WAIT and POST macros control
task synchronization. A task that issues a WAIT, has its execution suspended until an event (signified
by a corresponding POST) is completed. This is the primary method by which tasks control the flow of
execution in GCS. Another way to control the execution of tasks is with the CHAP macro. This will change
the dispatch priority of a task thus, altering its order of execution.

Figure 11. Task Block Dispatch Priority

Program A issues an ATTACH for Task B as depicted in Figure 11 on page 20. The resulting structure is
that Task B is a subtask of Task A. When Task B is the highest priority ready task, the GCS dispatcher will
give control to Program B. The INIT program in both tasks is generated by GCS for each task. It initializes
the task and cleans it up when the task terminates.

Coordinating Dependent Tasks
Often, tasks depend on each other to get work done. For instance, one task might have to stop running
until a second task provides additional information or service. When that event occurs, and the first task
resumes, the two tasks have synchronized.

Group Control System Overview

20 z/VM: 7.2 Group Control System

Events are important reference points for coordinating or synchronizing tasks. Tasks plan their actions
around events by using Event Control Blocks (ECBs). An ECB is a word of storage that represents some
event.

The two task management macros that use ECBs are:

• WAIT - Suspends the task until some event occurs
• POST - Notifies the task that some event has completed.

For example, when a task has to wait for an ECB, it is suspended until a POST macro is issued for that
same ECB. A task can wait for a whole list of ECBs. When any one of them gets posted, the task resumes.
See Figure 12 on page 21.

Parent

Task A

begins

Task A

attaches

Task B

Task A

issues

WAIT

for ECB

Task B

begins

Task B

ends

System

issues POST

on ECB

ECB

(Represents an event)

Event: Task B completes

Task A,

notified of

event,

resumes

POST:

Tell Task A that

event occurred

WAIT:

Task A is waiting

for event

Figure 12. How Tasks Can Use WAIT and POST Macros

WAIT and POST work only among tasks in the same virtual machine. For more information on these
macros, see “WAIT” on page 365 and “POST” on page 314.

Group Control System Overview

Chapter 1. Group Control System Overview 21

Coordinating Shared Resources
Sometimes tasks have to synchronize their use of a resource. A resource is something (perhaps a facility
or service) that applications in a particular virtual machine need to use. Its assigned resource name has
significance only within that virtual machine, and then only to the applications programmed to use it.
When many tasks have to share such a resource, they coordinate their time using:

• ENQ - Enqueues a request for control of a resource
• DEQ - Releases previously requested resource.

With an ENQ request, a task provides a resource name, identifies the resource it wants to use, and
specifies whether it can share that resource. If a task cannot share the resource, it enqueues in exclusive
mode, requesting exclusive use of that resource. If it can share, it enqueues in shared mode. Sometimes
tasks have to wait so they each can take separate turns using a particular resource. In other cases, many
tasks share one resource at the same time.

If a task has enqueued a resource in exclusive mode, any other task that issues ENQ on that same
resource must wait until the first task finishes. After the first task issues DEQ, the second can take its turn.
In addition, if one or more tasks are already enqueued in shared mode, a new task cannot gain control in
exclusive mode. It will be forced to wait until the others finish with the resource in shared mode.

ENQ and DEQ apply only to tasks running in the same virtual machine. For more information on ENQ and
DEQ, see “ENQ” on page 213 and “DEQ” on page 204.

Terminating Tasks
Task termination has two facets:

1. What makes tasks terminate:

NORMALLY:

A task ends normally for one reason:

• It finishes its work and returns control to the GCS supervisor. The supervisor or an exit routine
(specified with the GCS TASKEXIT macro) cleans up any resources the task was using.

ABNORMALLY:

A task terminates abnormally (abends) because:

• It requests an abnormal termination with the GCS ABEND macro. When a task specifies abend with
the DUMP option, it receives a dump of its virtual machine.

• A parent task above it terminates. (When a parent task terminates, its immediate subtasks and all
their attached subtasks terminate too.)

• Its parent task orders it terminated with a DETACH macro.
• The virtual machine operator cancels the entire application program.
• The GCS supervisor cannot provide a requested service.

The supervisor or an exit routine (specified with the TASKEXIT or ESTAE macro) cleans up any
resources the abended task was using.

2. What happens because tasks terminate:

a. Tasks call exit routines.

Programs running in authorized machines can set up termination routines with the TASKEXIT
macro. These routines reside in shared storage so that they can serve any machine in the group.
When any task terminates, normally or abnormally, the GCS supervisor calls these exit routines.

Not all terminations are final. GCS has procedures that permit tasks to appeal abnormal
terminations. Tasks can set up exit routines that are local to their own virtual machine with the

Group Control System Overview

22 z/VM: 7.2 Group Control System

ESTAE macro. These routines will clean up resources and decide whether to uphold the abnormal
termination. ESTAE lets an exit routine, which you have written:

• Perform some predetermination processing
• Diagnose the cause of the abend
• Continue normal processing at some retry point
• Continue termination.

During the exit, an abended task can ask the GCS supervisor to let it recover control and continue
executing. GCS will call this ESTAE exit for any abend, unless certain circumstances prevail. For
more information see “ESTAE” on page 223.

b. GCS cleans up resources when tasks terminate:

• Closing any files the task opened
• Releasing any storage the task used
• Releasing any locks the task held
• Severing all IUCV paths the task established
• Canceling any timer intervals the task set
• Canceling resources the task requested through ENQ macro
• Closing General I/O devices the task opened and unlocking any locked pages of storage
• Canceling any replies from the operator that the task requested through the WTOR macro
• Subtracting the task's modules from running totals in storage (program load count and use count)
• Undefining any commands you defined with LOADCMD (only if you terminated the task with an HX

command)
• Deleting any NAME/TOKEN pairs associated with the TASK

Abend Processing
ABnormal END (ABEND) is the processing that occurs when an error, either from the system or an
application, is detected. The task which the error occurred in must be terminated and cleaned-up. ABEND
processing first checks for any critical bits being set on in GCS. This would indicate that the error occurred
during a critical system path (for example, changing storage management pointers). If this occurs, a dump
of the system is taken and the virtual machine is reset. GCS next checks to see if any Extended Specify
Task Asynchronous Exit (ESTAEs) were declared for this task. If so, each exit is run in the reverse order in
which it was declared (most recent run first). Upon return from the exit, a check is made to see if the exit
specified a retry point. If so, ABEND will return control to the specified retry routine. If no retry routine
was specified, processing is continued.

If the DUMP parameter was specified on the ABEND macro, it is taken now. If the virtual machine
receiving the dump is authorized, the entire virtual machine (including common storage) is dumped. If the
virtual machine was not authorized, only the storage pertaining to that task is dumped.

ABEND next tries to clean up all of the subtasks of the ABENDing task. Resource managers are run for
each task to release system resources such as storage, locks, and timers. Each of these subtasks is
detached by ABEND. When this is complete, the same resource managers are run for the ABENDing task.
The ABEND message is then sent to the GCS console. If the ECB parameter was specified when the
task was attached, the task that attached the abending task is posted. Finally, control is returned to the
dispatcher. The task that ATTACHed the ABENDed task must still issue the DETACH macro to get rid of the
ABENDed task.

General I/O (GENIO) Facility
GCS General I/O is a function that allows a program to drive an I/O device that is defined to a virtual
machine. GENIO then becomes an interface between the I/O system and applications. The program
may run channel programs on the device, and process I/O interrupts through a user exit routine. All

Group Control System Overview

Chapter 1. Group Control System Overview 23

device specific support, including device-level request queuing and error recovery, must be provided by
the program. When a task terminates, GENIO will clean up outstanding I/O requests, unlock pages and
close any open devices. An application can open a device and GCS will then notify the application of I/O
operations completing or asynchronous interrupts. GENIO will then schedule an asynchronous exit on the
task which issued the GENIO open. For example, the GCS console. The GCS console task, at initialization
time, issues a GENIO open for the GCS console. All I/O interrupts from the console are reflected through
an exit to the GCS console task.

GCS GENIO is unique in several significant ways. GCS provides a method of specifying I/O exits and will
control the stacking of interrupts. User defined exits are executed to notify an application when an I/O
operation is complete or an asynchronous interrupt has occurred.

GCS Real I/O
Another feature of GENIO is the ability to process real channel programs on dedicated devices. This is
done by using the STARTR (start real) function and may only be issued by authorized applications. This
support uses the CP Diagnose X'98'. The application must provide a channel program which resides in
real storage and uses real storage addresses in the Channel Control Words (CCWs). A real page address
can be obtained by using the GCS page lock (PGLOCK) and page unlock (PGULOCK) macros. The PGLOCK
macro will also use Diagnose X'98' to lock a real page of storage and return the address to the program.
To use the STARTR functions the:

• Program must be running in supervisor state.
• Program must be executing with a PSW key other than 0.
• Virtual machine must be authorized in the CP directory to use Diagnose X'98'. This is accomplished by

specifying OPTION DIAG98 on the CMS DIRECT command.

The benefit of GENIO STARTR is that an authorized application can lock pages in storage, build channel
programs and receive a performance gain by avoiding the overhead of CP doing CCW translations and
page locking for each I/O request.

Group Control System Overview

24 z/VM: 7.2 Group Control System

Chapter 2. Planning for GCS

Planning GCS Storage Layout
Besides calculating how much storage you need (see “Calculating Storage Requirements” on page 25),
you also have to decide where to locate low and high common storage in relation to low and high private
storage.

Common storage must begin at the same address for each group machine, an address determined by the
largest application storage area needed in the group. Figure 13 on page 25 shows how the end of the
larger application area in Virtual Machine No. 2 (and the private free storage that extends to a multiple of
4KB) determines where private storage ends and common storage begins.

Figure 13. Ideal Locations of Common and Private Storage in Two Virtual Machine Group Members

By locating common storage above the largest application storage area, just inside the virtual machine's
highest address (VMSIZE), you avoid fragmenting private storage.

Note: GCS common storage must be located within the VMSIZE of both the VTAM machine and the
recovery machine. That way, both machines will be the same size. And, in case of an abend during a real
I/O operation, the recovery machine (with DIAG98 in its directory entry) will be able to unlock any pages
of storage locked by VTAM.

GCS common storage may exist outside the VMSIZE of other machines in the group.

Calculating Storage Requirements
The planning process involves calculating your GCS system's storage requirements. Later, you will use
your findings to fill out the fields in the GROUP EXEC.

Here are guidelines to consider when reserving storage space for each of your GCS virtual machines:

Reserve space for private storage:

1. How much for GCS private storage?

Planning for GCS

© Copyright IBM Corp. 2001, 2023 25

Eight pages of GCS private storage should be enough to hold your group configuration file along
with certain control blocks and work areas that only the GCS supervisor has read/write access to.
These pages are 0-7 in the DEFSYS command.

Suppose you have a configuration file with five authorized user IDs and two shared segments. Such
a file, together with the supervisor's control blocks and work areas, would fit within the eight-page
(32KB) estimate.

Note: The space needed by the configuration file is your only variable here. (most configuration
files will take up less than 1KB of storage.) However, if you have an exceptionally large
configuration file, with long lists of authorized user IDs and shared segments, you may need more
than eight pages of GCS private storage.

If you need more pages, you must make sure the entry point GCTBUFND in the module GCTBUF
stays within the pages that are saved.

2. How much private storage space for applications?

Each machine will have a different-sized application space because different applications have
different requirements.

You have to reserve application private storage space in 4KB increments. However, most
application sizes may not be even multiples of 4KB. If the largest application code is not a multiple
of 4KB, you must round up to the next multiple of 4KB and use this as your private storage size.
Therefore, remaining space, between application code's end and the last 4KB boundary is extra
private free storage.

3. What size trace table do you need?

The GROUP EXEC, used at build time, places the internal trace table in private storage by default.
If you use this default, you have to decide how much history you need in your storage dumps. The
more applications you run and more activity you require of the GCS supervisor, the larger you need
to make your trace table. The default size is 16KB.

 GCS private storage 32768
 (8 pages of 4KB each) _____ bytes
 +
 Largest contiguous block of storage needed
 (determined by largest application run) _____ bytes
 +
 Amount needed to round up to 4KB _____ bytes
 +
 Size of the trace table if in common
 storage. (Default is 16KB) _____ bytes
 (The trace table can be placed in common
 storage by overriding the default in the
 GROUP EXEC.)

 Total
 (Lowest possible beginning point for
 Common storage) _____ bytes

Some considerations when planning private storage include:

• Largest contiguous block of storage needed for application code
• Total amount of storage needed
• Location of GCS
• Location of other shared segments and DCSSs
• Size of the configuration module.

Reserve space for common storage:

Planning for GCS

26 z/VM: 7.2 Group Control System

Your common storage must be large enough to hold GCS supervisor code, common free storage
space, a trace table if specified in common storage, and control blocks required for each group
member. Specifically, here is what to consider:

1. How much space does the GCS supervisor code take up?

Approximately 312KB out of low common storage and 104KB out of high common storage. This
amount should remain constant. Double check it, in your load map, after you have built your GCS
system.

2. How much common free storage do each of your GCS applications require?

To exploit the ESA environment common free storage should be both above and below the 16M
line. The minimum and default for high common is 1MB. (For the exact amounts of common free
storage needed, see each application's associated planning book.)

3. How many virtual machines will you have in your virtual machine group?

Each group member takes up one 24-byte control block in common storage. So, the more
members you have, the more blocks you will have in common storage.

4. What size trace table do you need?

The GROUP EXEC, used at build time, places the internal trace table in private storage by default.
If you plan to override this default and place the internal trace table in common storage, you have
to decide how much history you need in your storage dumps. Trace table storage will be needed for
all virtual machines in the group. The more applications you run and more activity you require of
the GCS supervisor, the larger you need to make your trace table. The default size is 16KB.

Use the following formula to calculate your common storage size:

 Common free storage
 (Total needed by all group applications) ____ bytes
 +
 Size of the supervisor 340KB
 (approximately 340KB) ____ bytes
 +
 Control blocks (VMCBs)
 (One 24-byte block for each group member) ____ bytes
 +
 Size of the trace table
 (Default is 16KB) ____ bytes
 (The trace table is placed in private
 storage by the GROUP EXEC. If you want
 the trace table in common storage, you must
 save space for it and specify that the trace
 table is to go to common storage when the
 GROUP EXEC is run.)

 Total (low common)
 ____ bytes

 High common ____ bytes

Preparing to Build Other Saved Segments
The process for setting up a shared segment for use with GCS involves making decisions like those you
make when setting up and defining other shared segments or saved systems.

CP supports both regular segments and segment spaces. A segment space is a saved segment composed
of up to 64 member saved segments referred to by a single name. A segment space occupies one or
more segments. It begins and ends on megabyte boundaries. A user with access to a segment space has
access to all its members. Loading more than one segment into a segment space, when segment size
allows, makes better use of storage space. Unused storage in regular segments or in segment spaces is
not available for other GCS use.

For more information about segments and segment spaces, see z/VM: CP Planning and Administration.

Planning for GCS

Chapter 2. Planning for GCS 27

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa5_v7r2.pdf#nameddest=hcpa5_v7r2

Definition and use of segment space is controlled by the CP DEFSEG command. For more information
about this command, see z/VM: CP Commands and Utilities Reference.

Shared Segments Recognized by GCS
For a user-defined shared segment to be usable by GCS the various entry points it contains must be
defined in a directory. This directory contains the name of each entry point in the saved segment mapped
to its address. Use the CONTENTS macro to create such a directory. See “CONTENTS” on page 197. To
build a shared segment for GCS, you must:

1. Enter a DEFSEG command for the saved segment.
2. Create a directory for the segment with the CONTENTS macro. This directory will reside in its own

module and will contain the name and entry point of every routine in the segment.
3. Load this directory module, followed by all the other modules you want into the segment, at the

desired location in storage. Use the CMS LOAD command with the ORIGIN option.
4. Set the segment's storage key using the SETKEY command.
5. Enter the CP SAVESYS command to actually save the segment you have built.

Private Segments for Applications
It is also possible to use a segment that does not contain an entry point directory created by the
CONTENTS macro.

To be used, the segment must:

• Have a starting address larger than the virtual machine size
• Be manually loaded by the application
• Not be named in the GCS configuration file
• Not overlap any segment named (or defaulted) in the GCS configuration file.

To build these shared segment, you must:

1. Enter a DEFSEG command for the saved segment.
2. Load the modules you want into the segment, at the desired location in storage. Use the CMS LOAD

command with the ORIGIN option.
3. Set the segment's storage key using the SETKEY command.
4. Enter the CP SAVESYS command to actually save the segment you have built.

Making VSAM Available to GCS
If you want your GCS applications to use VSAM data sets, you must install the VSE/VSAM product. You
add VSAM to your system configuration as another shared segment. After installation, both your CMS and
GCS applications can access VSAM data sets and can share the same CMSBAM and CMSVSAM segments.
However, GCS does not require the CMSDOS and CMSAMS segments for VSAM. For information on how to
build and install VSAM, see the VSE/VSAM Program Directory, for your release.

Authorizing Access to Supervisor State
You can control access to supervisor state by revising your list of authorized user IDs with the GROUP
EXEC. Load the GROUP EXEC, and go to the screen marked Authorized VM User IDs. Follow the directions
there for adding, changing, or deleting entries. By doing that, you can provide or deny user IDs access to
supervisor state and authorized GCS functions. After making changes with the GROUP EXEC, generate an
updated GCS nucleus.

Planning for GCS

28 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2

Authorizing Access to GCS
After you have installed your GCS segment, you can still control who has access to it. On one level, you
decide which user IDs can IPL the GCS system; to be authorized to use the system, (when the segment
in the DEFSYS command is defined with a RSTD parameter), the user must have a NAMESAVE control
statement in the directory.

Authorizing Commands for Virtual Machines
If you add or delete authorized user IDs with the GROUP EXEC, you will probably need to change
their privilege classes too. For example, to protect GCS code, you have to limit what CP commands
unauthorized user IDs have access to. On the other hand, you might want certain authorized user IDs to
have access to all available CP commands. By changing the privilege class specified on user IDs' USER
control statements in the directory, you affect which CP commands they can use.

You should redefine your system's privilege classes so that two like these are available:
1. A privilege class for authorized user IDs

This class should be for GCS user IDs that need to use the CP debugging commands BEGIN, DISPLAY,
DUMP, STORE, TRACE, and VMDUMP.

2. A privilege class for unauthorized user IDs
This class should be for GCS user IDs that do not need to use debugging commands. It should
give access to all current Class G commands except BEGIN, DISPLAY, DUMP, STORE, TRACE, and
VMDUMP.

Authorizing Machines for Real I/O
You choose whether your GCS machines will use real channel programs to drive real, attached I/O
devices. The recovery machine, for instance, should be authorized to use real I/O. To authorize a virtual
machine for real I/O, you have to change your CP directory and specify the parameter DIAG98 on the
OPTION control statement. For more information on creating directories, see z/VM: CP Planning and
Administration.

Using AUTOLOG Functions
To use the CP AUTOLOG function for GCS, you need to make a CP directory entry for each user ID you
want logged on automatically.

The directory entry for GCS should look like this:

IPL GCS PARM AUTOLOG

where

GCS

is the name given to your GCS system.

Note: PARM AUTOLOG will not work properly if you try to enter it from an IPL instruction on your console's
command line. Use PARM AUTOLOG only in directory entries.

If one user ID has this entry in its directory, a second user ID, having a privilege class of A or B, can log
on the first one automatically with the CP AUTOLOG command. For more information about AUTOLOG, see
z/VM: CP Commands and Utilities Reference.

Using a PROFILE GCS File
You can identify load libraries and initialize GCS applications automatically in the PROFILE GCS. When you
IPL your GCS system:

Planning for GCS

Chapter 2. Planning for GCS 29

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa5_v7r2.pdf#nameddest=hcpa5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa5_v7r2.pdf#nameddest=hcpa5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2

1. Saved segments (specified in your GCS configuration file) are linked to your virtual machine.
2. Disks are accessed.
3. Disks are searched for a file of name and type PROFILE GCS, and if there is one, it executes. (PROFILE

GCS must contain REXX code because the REXX/VM interpreter is the facility that processes it.)

By setting up enough PROFILEs, you can automate logging and initialization procedures for most of your
virtual machine group. Because the recovery machine must be the first to IPL GCS, you could give it a
PROFILE that would automatically log on all other group members that have IPL GCS PARM AUTOLOG
specified in their CP directory entries. Be sure to assign the recovery machine a privilege class of either A
or B so that it has authorization to issue the CP AUTOLOG command.

By defining an AUTOLOG1 user ID in your CP directory, you can have it automatically log on the recovery
machine as well. For more information, see z/VM: Running Guest Operating Systems.

If you set up a PROFILE GCS, you cannot prevent it from executing. But if you find a problem with it, you
can interrupt and stop it with the:

• HX (halt execution) command
• BREAK or PA1 key.

After that, you can go back to CMS and change your PROFILE GCS file.

Preparing CP Directory Entries
You may need to update your CP directory and prepare new entries there for user IDs that will use GCS.
To see a working sample of a directory entry for a recovery machine user ID, see your System DDR. For
more information on how to create directory entries with the Directory program, see z/VM: CP Planning
and Administration.

Operation
Operating GCS involves initializing GCS, starting and stopping programs, replying to messages, and
querying information. This section describes each activity. The commands are described elsewhere in
this book.

Initializing GCS (How to Join a Group)
Initialization is simply the act of loading (IPLing) your GCS system. It also means the same thing as joining
a virtual machine group or IPLing the GCS supervisor.

To join a group, enter:

ipl gcs

To leave a group, do one of the following:

• Log off
• IPL another system
• Enter one of these CP commands:

SYSTEM RESET
SYSTEM CLEAR
DEFINE STORAGE
SET MACHINE

You can enter the IPL command (with the name of your GCS saved system) from your virtual machine
console, or you can automate the loading of your GCS system by using the CP AUTOLOG and auto-IPL

Planning for GCS

30 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa7_v7r2.pdf#nameddest=hcpa7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa5_v7r2.pdf#nameddest=hcpa5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa5_v7r2.pdf#nameddest=hcpa5_v7r2

procedures described under “Using AUTOLOG Functions” on page 29. For example, if you named your
GCS system GCS at build time, you would enter:

ipl gcs

The system will respond with a system ID message (if you specified one with the GROUP EXEC) and a
generate message. For example:

GROUP CONTROL SYSTEM
Generated at mm/dd/yy hh:mm:ss
GCTACC423I A (0191) R/W
Ready;

For more information on how to specify a system ID in GCS, see the “Changing GCS Default Definitions”
on page 512.

When you initialize GCS, any other shared segments you identified with the GROUP EXEC become linked
to your virtual machine, and disks are accessed as shown by Table 4 on page 31.

Table 4. Automatic Disk Access at IPL

Device Type Virtual Device Address Access Mode

Primary Disk read/write 191 A

User Disk read/write 192 D

After the disks are accessed, GCS searches them for a PROFILE GCS file and, if you have one, processes
it. PROFILE GCS resembles the PROFILE EXEC in CMS and is described in “Using a PROFILE GCS File” on
page 29.

After you have IPLed GCS and have the proper disks accessed, you can enter GCS commands to
assign files and start applications. For example, these are the commands you would use to start RSCS
operations:

global loadlib rscs
filedef config disk rscs config *
loadcmd rscs dmtman

You may enter these commands from your virtual machine console or place them in a PROFILE GCS to run
automatically at IPL time.

Starting and Stopping Programs
If you want a program to run on GCS, you have two choices:

1. Write your own.

a. Write and compile it or assemble it using CMS.
b. Put the resulting text files in a load library using the CMS LKED command.
c. IPL your GCS segment.
d. Use the GLOBAL command to identify the load library where the program resides.
e. Run and debug the program using GCS commands. (If you make any corrections to the program's

source code, you have to do them using CMS and then reload the program in its load library.)
2. Identify one that already resides in a shared segment. The program should be listed in the segment's

directory—a directory created by the CONTENTS macro when the segment was built.

You can start programs in your virtual machine by entering:

1. The OSRUN command (or the name of an exec that will issue OSRUN)

Use the OSRUN command to start programs that you want to load and give control to. When you enter
OSRUN to start a program, GCS will not process any other commands (except immediate commands)

Planning for GCS

Chapter 2. Planning for GCS 31

until the program ends. The system will not accept other commands because it allows only one active
command at a time. So, OSRUN remains the active command while the program is running.

The program will stop automatically without prompting.
2. An application command (one you have defined with the LOADCMD command).

This lets you call an application that will start itself either with an OSRUN command or an ATTACH
macro with the JSTCB=YES parameter. If the application's start-up module uses the ATTACH macro
to start, your initial application command remains active, and you still can enter other application
commands.

An application started with LOADCMD stops:

• Automatically (when it finishes its work)
• When prompted (you enter the command name you defined and include the necessary stop

parameter).

If a program issued an ATTACH macro to start, it must issue the DETACH macro to stop the attached
program.

You can stop programs during their execution with the HX command. HX also clears any commands
defined with the LOADCMD command that are stacked and waiting to be processed.

Replying to Messages
When a program needs to communicate with you, it can send a message to your console and request your
reply. For this, the program uses a WTOR macro (Write To Operator with Reply). It may ask you, as a GCS
virtual machine operator, to set up certain devices, provide data, or do some other request.

To respond to messages sent by WTOR, you enter the REPLY command. Each message you respond to will
have an id number associated with it. You use this id number to route your response.

Unlike CMS, GCS lets programs continue running even when you owe them many replies. If you want to
check for messages that require replies, you can enter a QUERY REPLY command. This will display the id
numbers and text of all messages waiting for replies.

Querying Information
Sometimes you need information about the status of your virtual machine. For example, you might want
to see the search order of your accessed disks or to see if external tracing is active. You can find this
information using the QUERY command. QUERY can report on:

• Whether internal recording of user trace events is enabled (QUERY ITRACE)
• Trace events that are enabled for recording in a spool file (QUERY ETRACE)
• User IDs of virtual machines in your GCS group (QUERY GROUP)
• The common lock's status—whether the lock is held and what user ID is holding it (QUERY LOCK)
• The id number and text of all messages waiting for a reply (QUERY REPLY)
• Any file definitions in effect (QUERY FILEDEF)
• The status and search order of accessed disks (QUERY SEARCH)
• The load libraries GCS will search for load modules (QUERY LOADLIB)
• Names of attached saved systems and saved segments (QUERY SYSNAMES)
• The current DLBLs in effect (QUERY DLBL)
• Information about accessed disks (QUERY DISK)
• All the entry points that were loaded by the LOADCMD command (QUERY LOADCMD)
• All entry point names and corresponding addresses that were loaded into this virtual machine (QUERY

LOADALL)
• The status of the DUMP : ON, OFF or DEFAULT (QUERY DUMP)

Planning for GCS

32 z/VM: 7.2 Group Control System

• The status of the DUMPLOCK : ON or OFF (QUERY DUMPLOCK)
• The level of z/VM (QUERY GCSLEVEL), and service level
• The virtual machine IPOLL setting
• GCS module address
• GCS module compilation date

Planning for GCS

Chapter 2. Planning for GCS 33

Planning for GCS

34 z/VM: 7.2 Group Control System

Chapter 3. GCS Programming and Command
Processing

Linkage Registers
The general registers 0, 1, 13, 14, and 15 are also known as linkage registers. By convention, each
register has a specific purpose:

Register Conventional Purpose

0 and 1 Used to pass parameters to the supervisor or to a called program. Some system
macros expand to include instructions that load a value into one or both of these
registers. Others load the address of a parameter list into register 1. At times, the
supervisor will load a parameter value into register 1 and pass it to a program that you
have called.

13 Used to hold the address of the register save area provided by the calling program.

14 Used to hold the return address within the calling program. That is, the address of the
executable statement just after the instruction that passed control to another program.
After the calling program regains control, it is at this point that execution resumes.

15 Used to hold the entry point address of the called program. Some macros expand to
include instructions that load a parameter list address into register 15, which is then
passed to the supervisor. Programs also use register 15 to pass return codes to the
programs that called them.

Establishing a Base Register
In z/VM, addresses are resolved by adding a displacement to a base address. Therefore, you must
establish a base register using one of the registers 2 through 12 or register 15. If your program does not
use GCS macros and does not pass control to another program, then you can establish a base register
using the entry point address contained in register 15. Otherwise, because both the supervisor and your
program may use register 15 for other purposes, you must establish a base using one of the registers 2
through 12. This should be done immediately after saving the calling program's registers.

Note: Choose your base register carefully. Remember that some instructions (GCS macros included)
change the contents of some registers.

Providing a Save Area
If one of your programs passes control to another, then the former must provide a save area where the
contents of its registers are saved by the program it calls. A register save area is 18 fullwords long,
beginning on a fullword boundary. The following table describes the save area's structure and content.

Word Contents

0 Used by PL/I, if applicable. Otherwise, unused.

1 If applicable, the address of the calling program's register save area.

2 The address of the current program's next register save area.

3 The contents of register 14 (the return address within the calling program).

4 The contents of register 15 (the address of the called program).

GCS Programming and Command Processing

© Copyright IBM Corp. 2001, 2023 35

Word Contents

5 The contents of register 0.

6 The contents of register 1.

7 The contents of register 2.

8 The contents of register 3.

9 The contents of register 4.

10 The contents of register 5.

11 The contents of register 6.

12 The contents of register 7.

13 The contents of register 8.

14 The contents of register 9.

15 The contents of register 10.

16 The contents of register 11.

17 The contents of register 12.

A called program can save the registers belonging to the program that called it by issuing either the STM
(STORE MULTIPLE) assembler instruction or the SAVE macro. The

STM 14,12,12(13)

assembler instruction places the contents of all registers, except register 13, in the proper words of the
save area. The SAVE macro is described in detail in the entry titled “SAVE” on page 324.

Example of Chaining Save Areas in a Nonreenterable Program
PROGRAM1 CSECT
 STM 14,12,12(13)
 LR 12,15
 USING PROGRAM1,12
 ST 13,SAVEAREA+4
 LR 2,13
 LA 13,SAVEAREA
 ST 13,8(2)
 .
 .
 .
SAVEAREA DC 18F'0'

The program uses the STM instruction to store the contents of the registers in the save area provided by
the calling program. Then, the program establishes register 12 as its base register. The program goes on
to save the address of the calling program's save area in the second word of another save area that it
established through the DC instruction. Then, the program loads the address of the calling program's save
area into register 2. Finally, it loads the address of the new save area into register 13, then stores the
same address in the third word of the calling program's save area.

Example of Chaining Save Areas in a Reenterable Program
PROGRAM2 CSECT
 SAVE (14,12)
 LR 12,15
 USING PROGRAM2,12
 GETMAIN R,LV=72
 ST 13,4(1)
 ST 1,8(13)
 LR 13,1

GCS Programming and Command Processing

36 z/VM: 7.2 Group Control System

 .
 .
 .

This program uses the GCS SAVE macro to save the contents of its registers. (It could also have used an
STM instruction.) The program loads the entry point address into register 12, establishing it as the base
register. It then issues an unconditional GCS GETMAIN macro, requesting the supervisor to allocate 72
bytes of virtual storage for the save area from outside the program. The supervisor returns the address
of this 72-byte area in register 1. The program stores the address of the old and new save areas in the
customary locations and loads the address of the new save area into register 13.

Summary of Conventions for Passing and Receiving Control
Before it passes control (return required), a calling program should

• Place the address of its register save area in register 13.
• Place its return address in register 14.
• Place the entry point address of the program it wishes to call in register 15.
• If applicable, place the address of a parameter list in register 1.

Before it passes control (return not required), a calling program should

• Restore to registers 2 through 12 and register 14 the values that were present when it received control.
• Place the address of the save area provided by the program that called it in register 13.
• Place the entry point address of the program it wants to call in register 15.
• As applicable, place the addresses of parameter lists in registers 0 and 1.

Immediately after receiving control, a called program should

• Save the contents of registers 0 through 12 and registers 14 and 15 in the save area, whose address is
in register 13.

• Establish a base register.
• Provide a save area of its own, unless of course it plans to call no other program.

If it is a reentrant program, then it must obtain storage for its save area outside its own storage through
the GETMAIN macro. If it is a nonreentrant program, then its save area can be located with the rest of
its storage.

• Store the save area addresses in the assigned locations.

Just before returning control, a called program should

• Restore to registers 0 through 12 and register 14 the values that were present when it received control
originally.

• Place in register 13 the address of the save area belonging to the program to which it is returning
control.

• If required, place the appropriate return code in register 15. Otherwise, restore to register 15 its original
value.

• If it is a reenterable program that obtained storage for its save area through the GETMAIN macro, then it
must release that storage through the FREEMAIN macro.

GCS Program Exits
GCS provides the ability for programs to have program exits run either on another task or when an event
occurs. Asynchronous exits are programs which run on tasks, usually because of some event. These
exits are scheduled by the GCS dispatcher for execution and run the next time the task receives control,
possibly interrupting the usual execution of the task. Some functions which use the GCS exit facility are
GENIO, IUCV support, STIMER and SCHEDEX (schedule exit). For example, if Task A in virtual machine
GCSVM1 issues a SCHEDEX macro for an exit to run on Task B in virtual machine GCSVM2, GCS will

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 37

cause an interrupt on GCSVM2 and the GCS dispatcher will schedule the exit to run for Task B. This exit
will preempt the program currently running on Task B. When the exit completes, the program that was
previously running on Task B will resume where it left off. Task A regains control when the notification of
this exit is sent to GCSVM2. Task A does not wait until the exit is actually scheduled to run on Task B.

One type of asynchronous exit that works differently is an IUCV exit for an authorized path. This path is
established with the PRIV=YES parameter on the IUCVINI macro. This authorized exit is not scheduled
to run on a task. Instead, for performance reasons, this exit is given control directly by the GCS APPC/VM
interrupt handler. It runs as an extension of the interrupt handler, disabled and key of the caller.
Restrictions for this type of exit are that it cannot issue an SVC instruction, enable itself, or generate
any kind of machine interrupt. The GCS POST service is the only GCS service supported for use within this
exit. Because it is usual for this kind of routine to POST a task that the event has occurred, and use of the
POST macro would cause an SVC interrupt, a special branch entry to the GCS POST routine is provided for
use by these routines. For more information on the POST interface, see “POST” on page 314.

For asynchronous exits that are scheduled to run on a task by the GCS dispatcher, they receive control
enabled and in the same storage key as the program that established the exit. Thus an exit may be
interrupted by another exit. If a program (both application program and exit) does not want to be
interrupted by an asynchronous exit, the program must disable for interrupts. Only authorized (supervisor
state) applications can disable for interrupts. When this happens, the disabled task will be given control
by the GCS dispatcher on supervisor calls until it terminates, enables for interrupts or issues a WAIT
macro.

Another type of exit is one that is authorized and shared among many tasks or virtual machines in the
group. The TASKEXIT macro is an authorized function that identifies an exit in common storage and is
executed anytime a task terminates in that virtual machine group. The MACHEXIT macro does the same
function whenever a virtual machine leaves the group. These exits are not scheduled and dispatched but
are run immediately when the event occurs. The exits run in supervisor state and in the storage key of the
task that established them. These exits are deleted when the task that declared them terminates.

GCS Commands Operation
GCS commands may be entered from the GCS console, an exec, or from a program. As was discussed
earlier, GCS has a console and commands task to handle GCS commands. A command entered from the
console is examined to see if it is an immediate command, if so it is executed from the console task. If
not, the GCS commands task is POSTed and will process the command.

GCS, like CMS, allows the user to extend the number of commands by being able to define their own
commands. The way that GCS supports them is through the LOADCMD command. Using LOADCMD, the
user may extend the number of GCS commands with commands of their own. This is particularly useful
for applications which are established as independent applications (see “GCS Task Management” on page
17 for more details). When a program is established with LOADCMD, the specified program is loaded into
storage and the command is added to the GCS command set. LOADCMD is similar in operation to the
CMS NUCXLOAD command. The program will remain in storage until it is deleted or until the HX command
is executed. Programs that are defined using the LOADCMD are only valid for the virtual machine that
defined them. They cannot be used by other members of the group.

GCS commands may also be executed from programs. This can be done by using the CMDSI macro. The
CMDSI macro takes the information provided by the program, translates it into the same parameter list
format as the commands processing does, and executes a SVC 202 to run the command. The search order
for GCS commands is the same as it is for CMS commands. This also includes the execution of GCS execs
as part of GCS search order.

Example of an Application Program in GCS
The following is an example of an application that can be set up as a GCS user command. The intention
is to give the programmer an idea of how applications can be written in GCS. See the specific macro
descriptions in this book for the exact formats of GCS macros and for further information regarding each
of the macros used in this example.

GCS Programming and Command Processing

38 z/VM: 7.2 Group Control System

This example shows how to define a user command LISTCMD that will be used to maintain a list in GCS
storage. The LIST command options are:
INIT

Initializes the application environment.
READ

Reads data from the command into the list.
WRITE

Writes data to a file.
END

Terminates the application.

All of these options will be processed by a single module, LSTMOD. No formal programming language is
used.

 LSTMOD:
 ENTRY Entry Point for module.
 Register5 = Register1 Save parameter list pointer
 supplied in register 1.
 IF option = INIT THEN Option in parameter list=INIT?
 IDENTIFY EP=LSTREAD Identify entry points to GCS
 IDENTIFY EP=LSTWRITE
 LOAD EP=LSTDATA Load common data area (list)
 DATAPTR=Register5 Save pointer to input data
 ATTACH EP=LSTREAD, Attach read as a separate task,
 DPMOD=200, with priority = 200,
 ECB=MAINECB, POST this ecb when terminated
 JSTCB=YES independent application task.
 ATTACH EP=LSTWRITE, Attach write as a separate task,
 DPMOD=200, with priority = 200,
 ECB=MAINECB, POST this ecb when terminated
 JSTCB=YES independent application task.
 WAIT ECB=MAINECB Let LSTREAD Start.
 WAIT ECB=MAINECB LET LSTWRITE Start.
 RETURN End initialization

 IF option = READ THEN Option in parameter list=READ?
 DATAPTR=Register5 Save pointer to input data
 POST ECB=READECB Enable LSTREAD task to run.
 WAIT ECB=MAINECB Give control to LSTREAD.
 RETURN End READ.

 IF option = WRITE THEN Option in parameter list=WRITE?
 DATAPTR=Register5 Save pointer to input data
 POST ECB=WRITECB Enable LSTWRITE task to run.
 WAIT ECB=MAINECB Give control to LSTWRITE.
 RETURN End WRITE.

 IF option = END THEN Option in parameter list=END?
 POST ECB=READECB Enable LSTREAD task to run.
 WAIT ECB=MAINECB Give control to LSTREAD.
 POST ECB=WRITECB Enable LSTWRITE task to run.
 WAIT ECB=MAINECB Give control to LSTWRITE.
 DETACH EP=LSTREAD Clean-up LSTREAD task.
 DETACH EP=LSTWRITE Clean-up LSTWRITE task.
 DELETE EP=LSTDATA Release List from storage.
 RETURN End END.

 LSTREAD:
 ENTRY Entry point for LSTREAD.
 WORK = TRUE Set Boolean variable
 DO UNTIL WORK = FALSE
 IF option=INIT THEN option=initialization.
 LOAD EP=LSTDATA Get address of data area.
 LSTADDR=Register0+DATA Address of data in Register 0,
 and skip over ECBs.
 POST ECB=MAINECB Resume main task.
 WAIT ECB=READECB Wait for work.

 IF option=READ THEN option=READ
 LSTADDR->LIST = Move into the data area pointed
 DATAPTR->DATA to by LSTADDR, the data in the
 parameter list pointed to by
 DATAPTR.
 LSTADDR=LSTADDR+NEXT Increment LSTADDR pointer.
 POST ECB=MAINECB Resume main task

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 39

 WAIT ECB=READECB Wait for work

 IF option=END THEN option=END
 DELETE EP=LSTDATA Reduce use count
 WORK = FALSE Indicate task done
 END End Do Loop
 RETURN Terminate task,
 MAINECB is automatically
 POSTED by GCS.

 LSTWRITE:
 ENTRY Entry point for LSTWRITE.
 WORK = TRUE Set Boolean variable.
 DO UNTIL WORK = FALSE
 IF option=INIT THEN option=initialization.
 LOAD EP=LSTDATA Get address of data area
 POST ECB=MAINECB Resume main task.
 WAIT ECB=READECB Wait for work.

 IF option=WRITE THEN option=WRITE
 OPEN LSTDCB,OUTPUT Open output file
 WRITE LSTDATA,LSTDCB, Write data area into a file
 LSTDATA
 CLOSE LSTDCB Close the file
 POST ECB=MAINECB Resume main task
 WAIT ECB=READECB Wait for work

 IF option=END THEN option=END
 DELETE EP=LSTDATA Reduce use count
 WORK = FALSE Indicate task done
 END End Do Loop
 RETURN Terminate task,
 MAINECB is automatically
 POSTED by GCS.

 END LSTMOD End of module

The LSTMOD module has three sections:

• Main code. This code always gets control when the user command LSTCMD is entered. The code runs
under the GCS Commands Task.

• Read code. This entry is created as a separate task under the GCS Commands Task. It is established
using the ATTACH macro, with the JSTCB parameter to make it an independent application. This must
be done so the task can last more than one command in the system.

• Write code. This entry is created the same as the read code.

These tasks all share a common data area (LSTDATA). This data area is a separate member of a loadlib
and can be declared as:

 LSTDATA CSECT
 MAINECB DS F ECB used by main task
 READECB DS F ECB used by READ task
 WRITECB DS F ECB used by WRITE task
 DATAPTR DS F pointer to input data
 DATA DS CL4080
 END

This defines a 4KB data area that will be shared among the tasks. To get this application ready for GCS,
you have to create a LOADLIB using CMS. Assuming the TEXT decks have been created for LSTCMD and
LSTDATA, you can enter the following commands to create the LOADLIB.

 LKED LSTMOD (LIBE LSTLIB
 LKED LSTDATA (LIBE LSTLIB REUS

The second LKED command marks LSTDATA as reusable so it will only be loaded once into storage. Every
subsequent LOAD will return the storage address of LSTDATA.

Next, you would IPL your GCS segment. You could place the following commands in your PROFILE GCS
file to be executed at initialization time:

GCS Programming and Command Processing

40 z/VM: 7.2 Group Control System

 GLOBAL LOADLIB LSTLIB
 LOADCMD LSTCMD LSTMOD
 LSTCMD INIT

These three commands define the LOADLIB to GCS, establish LSTCMD as a user command and begin the
tasks with the LSTCMD INIT command. The LSTREAD and LSTWRITE tasks are initialized and waiting for
work. If you enter the command:

 LSTCMD READ This is a line of data for the list

The commands task gives control to the LSTMOD code, this code POSTs the LSTREAD task. The LSTREAD
task reads the data into the list. LSTREAD then POSTs the commands task and the commands task
completes.

To expand on this example, suppose that the virtual machine containing LSTMOD is an authorized virtual
machine. This means that the LSTMOD ENTRY receives control in supervisor state when it is given
control under the GCS commands task. However, this program (task) authorization is not passed along
to LSTREAD and LSTWRITE tasks that are attached as subtasks of the GCS commands task. LSTREAD
and LSTWRITE receive control in problem state because the parameter SM=SUPV was not specified
on the ATTACH macro. Therefore, LSTMOD may use GCS authorized functions (and receives no GCS
validation) although LSTREAD and LSTWRITE may not use GCS authorized functions and receive GCS
address validation when requesting GCS supervisor services.

An alternative to having the common data area (LSTDATA) as a separately compiled, linked, and loaded
module would be to INCLUDE LSTDATA in the LSTMOD load module and then to reference the ECBs with
V-type address constants. This would eliminate the need for the GCS LOAD EP=LSTDATA requests and the
DELETES. Of course, it would eliminate the capability to independently replace or update LSTDATA.

An alternative would be for LSTCMD to have its own profile EXEC. Instead of this PROFILE GCS:

 GLOBAL LOADLIB LSTLIB
 LOADCMD LSTCMD LSTMOD
 LSTCMD INIT

it could be:

 GLOBAL LOADLIB LSTLIB
 LOADCMD LSTCMD LSTMOD
 LSTPROF GCS

where LSTPROF GCS is the LSTCMD profile and would contain any initialization commands necessary such
as LSTCMD INIT.

In this example, the command processing is serialized through the GCS commands task. The GCS
commands task is put into a wait state pending completion of the execution of each subtask to complete
the command. No other nonimmediate GCS commands can be processed while the commands task
is in the wait state. Another method that could be used would be to pass the command information
to LSTREAD and LSTWRITE so that LSTMOD could return to the GCS commands task and allow other
commands to be processed. This would, of course, involve a more sophisticated way of stacking
commands to the LSTREAD and LSTWRITE functions.

Console and Command Support

Communicating through the Console
Any z/VM supported terminal can be a GCS console. GCS virtual machine operators use their consoles to
communicate with:

• The GCS supervisor (through GCS commands)
• Applications running in the machine (through application commands defined with the LOADCMD

command.)

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 41

If the GCS supervisor or GCS applications want to communicate with a GCS virtual machine operator,
they send messages to that operator's console using the WTO (Write To Operator) and WTOR (Write To
Operator with Reply) macros:
WTO

Writes a message to the console
WTOR

Writes a message and adds a reply ID so the GCS virtual machine operator can respond. Unlike CMS,
GCS lets programs keep running although you might owe them many replies.

Entering Commands to GCS
You can enter commands three ways:

• Directly from the console
• From a program, using the CMDSI macro
• From a command file (exec).

A command file contains a series of GCS commands and resides on a disk. You start it with a console
command, with GCS's CMDSI macro, or from another command file. PROFILE GCS (if you have one) is a
particular type of command file that will run automatically when you IPL your GCS system.

Besides GCS commands, a GCS command file can contain REXX statements and functions. REXX
processes these statements and, in fact, the entire GCS command file. Therefore, most REXX capabilities
you are familiar with in CMS also apply with GCS. The differences with GCS are:

• REXX programs (execs) have a file type of GCS.
• Each task has its own program stack. With GCS, the program stack's primary use is for communication

between execs. Execs belonging to the same program share data on the program stack. Execs belonging
to different programs cannot. Moreover, because GCS console management routines bypass the
program stack, you cannot stack commands there for execution.

• GCS has no external event queue (also called terminal input buffer). If you enter PULL, and a task's
program stack is empty, you receive a message at the console asking for the necessary input.

• ADDRESS GCS replaces ADDRESS CMS. (REXX's default is ADDRESS GCS.) It acts the same as
ADDRESS CMS, providing full command resolution, including execution of command files and implied
CP commands.

The ADDRESS COMMAND environment acts much as it does on CMS: it executes host commands, but
not command files or implied CP commands.

• You can cancel command files using HX. The commands TS, TE, and HI, which worked with REXX in
CMS, have no support on GCS.

• You can call REXX programs from assembler language programs with the CMDSI macro. FILEBLK, a
parameter on CMDSI, contains the address of the file block. FILEBLK is useful for executing in-storage
command files, executing command files with file types other than GCS, and establishing an initial
subcommand environment.

• Non-REXX programs can share variables with REXX programs through the EXECCOMM macro. GCS's
EXECCOMM macro has the same capabilities as CMS's EXECCOMM service.

• GCS supports external function calls if they are written in REXX. It does not support external function
libraries, like RXSYSFN, RXLOCFN, and RXUSERFN.

• GCS supports subcommand environments (ADDRESS nnnn) set up using LOADCMD. However, there is
no facility like the non-SVC fast path for issuing subcommands.

Note: Execs cannot have the same names as the GCS immediate commands ETRACE, ITRACE, HX,
QUERY, REPLY, and GDUMP. Immediate commands always execute first; therefore, an exec of the same
name would never run.

For more REXX information, see z/VM: REXX/VM Reference.

GCS Programming and Command Processing

42 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2

Processing GCS Commands
GCS processes commands much the same way as CMS does. Some commands get:

• Processed immediately

If you enter commands with the CMDSI macro or any one of these immediate commands:

 CLEAR
 ETRACE

 GDUMP
 HX

 ITRACE
 QUERY
 REPLY

they do not get stacked, and GCS processes them right away, even if you enter them while another
command is being executed.

• Stacked and wait their turn (regular procedure)

All commands you define with LOADCMD and all nonimmediate commands you enter get processed
serially (see “LOADCMD” on page 112). When the current command finishes executing, GCS processes
the next command on the stack. The first command entered is the first command executed.

Commands That GCS Supports
GCS supports commands that let you define, start, terminate, and control an application. Some
commands are unique to GCS; others are existing or modified CMS commands:

Table 5. Supported Commands

Unique GCS Commands GCS/CMS Commands

CLEAR
ETRACE
GDUMP
ITRACE
LOADCMD
REPLY

ACCESS
CONFIG
DLBL
ERASE
ESTATE
EXECIO
FILEDEF
GLOBAL
HX
OSRUN
QUERY
RELEASE
SET

In addition, you can define your own application commands with the LOADCMD command.

OS Management Services
The OS management services described in this section are GCS services that resemble (but do not
duplicate) MVS/XA functions.

Storage Management
Each GCS machine in a virtual machine group has two storage areas: private and common. Private storage
is local to an individual machine and not shared with other group members. This means that a program
running in a neighboring machine cannot use or change another's private storage area. Common storage,
however, is shared in a read/write fashion with all other machines in the group. Any program can use or
look at nonfetch-protected information in common storage. But only authorized programs can obtain or
otherwise modify storage space there.

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 43

GCS uses storage keys to prevent unauthorized storage allocation. Any program that wants to obtain
storage must have a PSW key (bits 8 through 11 in the PSW) that matches the storage key of the address
range in question. Unauthorized programs, for example, have PSW keys of 14. Therefore, they cannot
obtain GCS common storage that has a storage key of 0 (zero).

Obtaining Storage
A program or task that runs in a GCS virtual machine can obtain or release storage space as the need
arises. It does this using GCS's GETMAIN and FREEMAIN macros. With GETMAIN, the task requests a
certain-sized block of storage. GCS allocates the space and passes the block's address along to the task.
Later, when the task no longer needs that space, it issues the FREEMAIN macro and tells what block it
wants freed.

When a task requests a certain size of storage with GETMAIN, it also can request other storage
characteristics by specifying a subpool. A subpool is a number between 0 and 255. This number
characterizes storage as:

• Private or common
• Fetch-protected or nonfetch-protected
• Task-related (automatically released when the task ends) or persistent (retained after the task ends).

Assigning Storage Keys
When allocating storage, the GCS supervisor assigns the address range a storage key that matches the
requesting task's PSW key. There are 16 possible storage keys for different types of code. A storage area's
key depends on what type of code it contains:
Key

Type of Code
0

Saved segments and reentrant code (including GCS common storage and other shared code)
1-13

Authorized (privileged) applications
14

Unauthorized (nonprivileged) applications (also the starting key for authorized applications)
15

VSAM and BAM shared segments

Switching Keys
A program can obtain storage only in the key of the PSW that it is running in. Authorized and unauthorized
GCS programs both start out with the same PSW Key 14. Thus, unauthorized programs can secure only
fetch-protected storage in Key 14. Authorized programs, on the other hand, can allocate storage in any
key, including both fetch-protected and nonfetch-protected common storage.

An authorized program, running in supervisor state, can obtain storage in a new key by changing its PSW
key. This involves:

• Specifying a new PSW key with the SPKA instruction
• Allocating storage in the new key with the GETMAIN macro.

Program Management
Programs running on GCS can load and run modules of code that were assembled and link-edited under
CMS. Some of these modules reside on a disk in a load library. Others reside in saved segments that get
linked automatically when you IPL your GCS segment.

When a GCS program requests a module, the GCS supervisor first tries to find one that was previously
loaded in that program's virtual machine. If no usable copy is available, the supervisor tries to locate
the module in one of your system's saved segments. Each saved segment has a directory created with

GCS Programming and Command Processing

44 z/VM: 7.2 Group Control System

the CONTENTS macro. The GCS supervisor searches these directories when looking for a particular
module. (In either case, the supervisor will use a copy where it locates one.) Failing to find it in a saved
segment, the supervisor searches the load libraries specified by GCS's GLOBAL LOADLIB command. If the
supervisor finds the module there, it loads a copy into the program's private storage area. See Figure 14
on page 45.

Figure 14. Obtaining Modules Requested by a GCS Program

To load a module, a program can issue any of the following macros in Table 6 on page 45.

Table 6. Loading Functions

Macro Action 1 Action 2 Action on Return

LINK Finds and loads a module
(if it was not already
in storage) containing a
specified entry point.

Passes control to the
loaded module at the
specified entry point.

After the LINKed module runs, control
returns to the program that issued LINK.
And if no other program is using that
copy of the module, GCS deletes it from
storage.

LOAD Locates and loads a
module (if it was not
already in storage).

Returns the address of
an entry point, plus the
AMODE bit, associated
with the loaded module,
to the program that
issued LOAD.

LOAD returns control to the program
that issued it. The supervisor keeps
track of the module's whereabouts until
the program issues DELETE.

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 45

Table 6. Loading Functions (continued)

Macro Action 1 Action 2 Action on Return

XCTL Finds and loads a module
(if it was not already
in storage) containing a
specified entry point.

Passes control to the
loaded module at a
specified entry point.

After the XCTLed module runs, control
does not return to the program that
issued XCTL, but to the program before
that.

Macros associated with these loading functions include:
BLDL

Creates a directory entry list that contains information about modules you expect to invoke. (It
includes their names, what load libraries they reside in, their disk addresses, and other facts).

CALL
Passes control to an entry point in the same or different control section (csect).

DELETE
Releases a module from its caller's control (and removes it from storage if no other programs want to
use it).

IDENTIFY
Defines an entry point within a load module.

RETURN
Returns control to the calling program.

SAVE
Saves the contents of registers belonging to a program that is calling another program.

SYNCH
Passes control to a program, in the same or different state, at a specified entry point.

The macros are described later in this book.

Here are examples of how you might use the loading macros:

LOAD

1. Program 1 LOADs module A.
2. Program 1 gives control to module A with LINK or SYNCH.
3. Module A executes.
4. Program 1 regains control when module A finishes.
5. Program 1 DELETEs module A.

LINK and XCTL

1. Program 2 LINKs to module B.
2. Module B executes and XCTLs to module C.
3. Module C executes.
4. Program 2 regains control when module C finishes.

Timer Management
Programs or tasks that run under GCS sometimes need the services of a timer. A task, for example, may
want to set a timer for a certain interval and, when that interval is up, transfer control to an exit routine.
Another task might want to set a timer for a certain interval and then stop executing until that interval
expires.

GCS has three macros that let tasks define and manage time limits:
STIMER

Lets you set an interval by specifying:

GCS Programming and Command Processing

46 z/VM: 7.2 Group Control System

a time length
For the next 10 seconds, do this ...

a time-of-day
At 09:30, do this ...

TIME
Asks the GCS supervisor to provide the current time-of-day and date. In effect, it asks the system,
What time is it right now?

TTIMER
Cancels any remaining interval (and exit routine) that was set with the STIMER macro.

Native GCS Services
Authorization provides the basis for native GCS services. Some functions serve unauthorized programs
running in problem state machines; other functions serve only authorized programs running in supervisor
state machines.

Calling Authorized Programs
An unauthorized GCS program in problem state can transfer control to an authorized program in
supervisor state. When called, the authorized program executes, beginning at an identified entry point
in shared storage. Upon finishing, it returns control to the unauthorized program.

This transfer of control involves two macros:
AUTHNAME

The authorized program has to provide an authorized entry point, identified with the AUTHNAME
macro.

AUTHCALL
The unauthorized program calls and passes control to the authorized one by issuing the AUTHCALL
macro.

Table 7. The AUTHCALL Macro

AUTHCALL does AUTHCALL does not

Cause an authorized program to start executing
at an entry point identified with AUTHNAME. The
entry point always receives control in supervisor
state and Key 0.

Cause a task switch to occur. (The same task is still
running.)

Return control to the calling program in its original
state and key, when the authorized program
finishes.

Let an unauthorized program run its own code in
supervisor state or Key 0.

Communicating through IUCV
GCS supports communication within a virtual machine, or between any two virtual machines, at a routine-
to-routine level. Task-users (routines running within a task) communicate through IUCV with:

• Other task-users in the same machine
• Task-users in other virtual machines on the same system
• CP.

GCS also supports communication between virtual machines within a group of VM systems, or cluster.
Each of these VM systems must have the Transparent Services Access Facility (TSAF) virtual machine
component installed and running. For more information on installing TSAF, see z/VM: Installation Guide.
For more information on running TSAF, see z/VM: Connectivity. Task-users (routines running within a task)
communicate through APPC/VM with resource task-users in the:

• Same machine

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 47

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa2_v7r2.pdf#nameddest=hcpa2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa6_v7r2.pdf#nameddest=hcpa6_v7r2

• Other virtual machines in the same or different systems.

The target of an APPC/VM connection must be established as a resource. For more information, see z/VM:
CP Programming Services

Task-users rely on two macros for IUCV and APPC/VM communications:
IUCVINI

Initializes or terminates a task-user's IUCV environment
IUCVCOM

Sets up, carries out, and terminates communications between two IUCV users.

To allow IUCV and APPC/VM communication at the task-user level, GCS provides:

1. A nonprivileged IUCV interface for both authorized and unauthorized task-users. This nonprivileged
interface provides the following support:
Functions provided:

Functions not provided:
ACCEPT

DCLBFR (Declare Buffer)
CONNECT

RTRVBFR (Retrieve Buffer)
PURGE (IUCV only)

DESCRIBE (Describe)
QUERY

SETMASK (Set Mask)
QUIESCE (IUCV only)

SETCMASK (Set Control Mask)
RECEIVE

TESTCMPL (Test Completion)
REJECT (IUCV only)

TESTMSG (Test Message)
REPLY (IUCV only)
RESUME (IUCV only)
SEND
SEVER

Note: The SEND function issues all of the APPC/VM “SEND” functions:

• SENDCNF
• SENDCNFD
• SENDDATA
• SENDERR
• SENDREQ.

2. A privileged interface only for authorized task-users that specify PRIV=YES with the IUCVINI SET
function. With the privileged interface, a task-user:

• Cannot issue IUCVINI REP to change its general exit
• Cannot issue IUCVCOM REP to change a path-specific exit
• Must use the IUCVCOM functions CONNECT, ACCEPT, and SEVER to establish or terminate IUCV and

APPC/VM paths
• Can issue the following functions directly (without going through the IUCVCOM macro):

IUCV PURGE
IUCV REJECT

GCS Programming and Command Processing

48 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

IUCV QUERY
IUCV REPLY

IUCV QUIESCE
IUCV RESUME

IUCV RECEIVE
IUCV SEND

APPCVM QUERY
APPCVM RECEIVE

APPCVM SENDCNF
APPCVM SENDCNFD

APPCVM SENDDATA
APPCVM SENDERR

APPCVM SENDREQ

Performing I/O
When a GCS program needs an I/O operation performed, it uses a function called General I/O. The related
macro, GENIO, provides six different functions that an unauthorized application can use to process virtual
channel programs on any real or virtual I/O device except DASD and the virtual machine console:

• Open Device (OPEN)

This function identifies a task as owner of a particular I/O device. OPEN also requires the task to specify
an exit. Whenever the task receives an I/O interrupt from the device, this specified exit gets control.

• Close Device (CLOSE)

This function ends a task's ownership of a specified device. Once closed, the device stops passing I/O
interrupts to the specified exit.

• Modify (MODIFY)

This function requests that an active channel program be modified. An application first must modify the
virtual channel program and then issue MODIFY.

• Obtain Device Characteristics (CHAR)

This parameter returns information about an I/O device's type, class, model, and features.
• Start I/O (START)

This function starts a virtual channel program on an open device. (The device may be either virtual or
real.)

• Halt I/O (HALT)

This halts an operation on a given device, terminating any active I/O.

The GENIO macro also provides a function for authorized programs that want to process real channel
programs on real devices:

• Start real I/O (STARTR)

This starts a real channel program on an open real device. (The device must be real.)

Executing Real Channel I/O Programs
Authorized GCS programs can use real channel programs to move data between main storage and real
I/O devices (except DASDs). Real channel programs run directly on the real channel, without CP first
translating them. Before you can run real channel programs, you need an authorized user ID and a special
entry in your z/VM directory. You make this entry by specifying the DIAG98 parameter on the OPTION
directory control statement.

To process real I/O, authorized programs use GENIO's STARTR (start real) function. STARTR works much
like the ordinary START function for virtual I/O. However, with STARTR:

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 49

• CP does not translate the channel program before starting it.
• GCS issues a DIAGNOSE code X'98' instead of an SSCH instruction (or an SIOF instruction for 370

accommodation).

Securing Pages of Storage
An authorized program intending to perform real I/O using STARTR must first build a channel program in
real storage. In the process of building a real channel program, the program must lock pages of virtual
storage into real storage. Later, it needs a way to unlock those pages.

The two macros that do this are:
PGLOCK

Locks given pages of virtual storage into real storage
PGULOCK

Unlocks pages that were fixed through the PGLOCK macro.

Manipulating Locks
Locks are controls that help authorized programs share resources. They serve as warning signs that a
particular resource is in use. There are two kinds of locks:
Local

Helps synchronize the use of resources within a virtual machine
Common

Helps synchronize common storage among many virtual machines.
The GCS supervisor uses the LOCKWD macro to manipulate these locks and regulate access to local
resources or common storage. The LOCKWD macro has parameters that:

• Identify a lock as local or common
• Test the common lock (to see whether it is on or off)
• Specify whether the lock is to be acquired or released.

When a program or task wants to use a resource within its own virtual machine, it uses the LOCKWD
macro to acquire the local lock for that machine. That action prevents all other tasks in the virtual
machine from running until the lock is released.

When a task wants exclusive use of common storage, it can acquire the common lock for its virtual
machine. First, a task has to acquire the local lock before it tries to acquire the common lock. Next, the
program should use the LOCKWD macro to test the common lock's availability. If another virtual machine
already has acquired it, the lock will be on. Until that machine releases the lock, no other machine will
be able to acquire it. In the meantime, if a program tries to acquire the common lock when it is already
on, the GCS supervisor will suspend the requesting program until the lock gets turned off. When it is off,
LOCKWD informs the waiting machine that the common lock is available. This serializes (or synchronizes)
group use of common storage.

Validating Requests for Storage Access
An authorized program can validate another program's request for storage access. The authorized
program uses the VALIDATE macro to check input (a parameter list, for example) from the other program.
VALIDATE compares the other program's PSW key with the storage key of the storage area to be
accessed. If those two keys match, the authorized program will honor the storage access request for
both read and write access. If the keys are different and the storage is nonfetch protected, the authorized
program will allow read access only. The authorized program's key does not need to match either the
unauthorized program or storage. As an authorized program, it can switch itself to key 0 and transfer data
across the different key boundaries.

GCS Programming and Command Processing

50 z/VM: 7.2 Group Control System

Scheduling Exits in Other Tasks
An authorized program can schedule an exit for any task in any group machine. With the SCHEDEX macro,
the program can preempt a specific task and arrange for a designated exit routine to assume control.
Instead of the task getting dispatched (if it is not disabled), the exit routine gets control in supervisor state
and with a PSW key of 0.

After scheduling the exit, the authorized program continues executing. And after the exit routine finishes,
GCS lets the interrupted task continue executing.

Establishing Exits for Group Members
Authorized programs can establish exits for the entire virtual machine group. These exit routines must
reside in storage that all machines in the group can share.

• Machine exits

Authorized programs can use the MACHEXIT macro to set up exit routines that will get control when any
machine terminates or leaves the group. These routines will process in the group's recovery machine.

• Task exit routines

Authorized programs define task exit routines for programs in the same virtual machine group.
Whenever a task in one of the group's virtual machines terminates, a specified exit routine gains control.
An authorized program uses the TASKEXIT macro to identify the address where that exit routine begins.

• Exits to authorized entry points

Defining an entry point does not define an exit, in the true sense of the word. However, when an
authorized program identifies an entry point with the AUTHNAME macro (see “Calling Authorized
Programs” on page 47), it resembles the act of identifying an exit routine's address. For more
information on transferring control to authorized entry points, see “AUTHNAME” on page 174 and
“AUTHUSER” on page 179.

Data Management Services
GCS applications can process CMS files that reside on minidisks, VSAM files, and CP spool files. GCS
applications cannot process CMS files that reside in a Shared File System (SFS) file pool. With GCS's data
management services, applications can perform input, output, or update operations on a file, depending
on whether it is a CMS, VSAM, or CP spool file. Two types of data management services:

1. One type (resembling, but not duplicating, MVS/BSAM and MVS/QSAM services) that allows processing
of CMS disk files and CP spool files

2. Another type (resembling, but not duplicating, MVS/VSAM services) that allows processing of VSAM
files.

Processing CMS Minidisk Files
A GCS program processes CMS minidisk files using BSAM or QSAM macros. For GCS, these macros have
unique constraints. In particular, GCS's data management service supports only the extended file system
format.

GCS's QSAM/BSAM data management service supports the following command:
FILEDEF

Defines CMS minidisk files and CP spool files.
GCS data management supports the following set of macros, at the MVS/SP 1.3.1 level:
CHECK

Wait for and test completion of a read or write operation (BSAM).
CLOSE

Logically disconnect a file (BSAM and QSAM).

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 51

DCB
Construct a data control block (BSAM and QSAM).

DCBD
Provide symbolic reference to data control blocks (BSAM and QSAM).

GET
Obtain next logical record (QSAM).

NOTE
Determine relative position (BSAM).

OPEN
Logically connect a file (BSAM and QSAM).

POINT
Point to the relative position of a specific block (BSAM).

PUT
Write next logical record (QSAM).

READ
Read a block (BSAM).

SYNADAF
Perform SYNAD analysis function (BSAM and QSAM).

SYNADRLS
Release SYNADAF buffer and save areas (BSAM and QSAM).

WRITE
Write a block (BSAM).

Unlike CMS's data management service, it does not allow:

• Files that reside in a CMS Shared File System file pool
• OS formatted files
• File mode 4 (treated instead like file mode 1)
• Spanned records
• Console or tape I/O
• Utility functions (like formatting disks, loading files from tape, editing files, and others).

GCS's data management does follow the same rules as CMS's when two or more virtual machines want
to share the same disk. Read/write privileges go to only one virtual machine at a time, while multiple disk
and minidisk users must share in read-only mode. For more information on disk sharing, see z/VM: CMS
User's Guide.

Sometimes two or more tasks within the same machine need to share a single file. They can do this under
two conditions:

1. If they concurrently open and use multiple Data Control Blocks (DCBs) that refer to the same, shared
file.

When many DCBs refer to a single file, the type of processing (input, output, or update) decides
what programming procedures you should use. Table 8 on page 52 shows you the different types of
processing and the requirements that go along with each.

Table 8. Opening Multiple DCBs

Type of processing: Programming required:

INPUT Each task should issue READ and GET requests as if no
file sharing were taking place. GCS keeps track of the read
pointers.

OUTPUT This sort of sharing is not supported for multiple DCBs.
Unpredictable results will occur if you attempt it.

GCS Programming and Command Processing

52 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb3_v7r2.pdf#nameddest=dmsb3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb3_v7r2.pdf#nameddest=dmsb3_v7r2

Table 8. Opening Multiple DCBs (continued)

Type of processing: Programming required:

UPDATING (in BSAM) Each task should issue ENQ before the READ macro. This
helps serialize the processing of each block of records.
Macros issued to complete the update are WRITE, CHECK,
and DEQ, in that order. For more information on these
macros, see “WRITE (BSAM)” on page 413, “CHECK
(BSAM)” on page 380, and “DEQ” on page 204.

UPDATING (in QSAM) When updating a file, a task must avoid altering blocks
containing records that other tasks are updating. GCS has
no way of knowing whether different tasks are processing
discrete blocks.

Note: When you share a file with multiple DCBs, be sure you enter the FILEDEF command only once for
each ddname. If you need to enter FILEDEF for the same ddname and same file later in the program,
make sure you specify the NOCHANGE option. See “FILEDEF” on page 94.

2. If they concurrently open and use only one shared DCB.

When tasks share a single DCB, GCS permits all three types of processing (inputting, outputting, and
updating). However, tasks have to use the ENQ and DEQ macros to coordinate their activities. (See
“Coordinating Shared Resources” on page 22.) Because only one of them can have control at a time,
the tasks must issue the ENQ macro first (to take turns at getting control) and end with the DEQ macro
(to release control).

Data Compression
You can save data in a compressed format to conserve storage media and network transmission line
costs. The CSRCMPSC macro provides services that compress and expand data. These services are
available when the CVTCMPSC bit is on in the communication vector table (CVT). Data Compression
Services will use the S/390® hardware compression feature, if available. Otherwise, a software
compression program will simulate the hardware instruction. If the CVTCMPSH flag is on in the CVT,
the hardware feature will be used for the compression.

Compression takes an input string of data and, using a data area called a dictionary, produces an output
string of compression symbols. Each symbol represents a string of one of more characters from the input.

Expansion takes an input string of compression symbols and, using a dictionary, produces an output string
of the characters represented by those compression symbols. Dictionary items are mapped by various
forms of the CSRYCMPD macro.

Parameters for the CSRCMPSC macro are in an area mapped by CMPSC DSECT (CSRYCMPS macro) and
specified by the CBLOCK parameter of the CSRCMPSC macro. These parameters contain the following
information:

• The address, ALET, and length of a source area. The source area contains the data to be compressed for
a compression operation, or to be expanded for an expansion operation.

• The address, ALET, and length of a target area. After the macro runs, the target area contains the
compressed data for a compression operation, or the expanded data for an expansion operation.

• An indication of whether to perform compression or expansion.
• The address and format of a dictionary to be used to perform the compression or expansion. The

dictionary must be in the same address space as the source area.

For more information on how to use Data Compression Services with GCS, see Appendix D, “Data
Compression Services,” on page 539.

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 53

Processing CP Spool Files
BSAM and QSAM functions let GCS programs process virtual reader, printer, and punch files. Existing CP
facilities, like CP Directory, DEFINE, DETACH, SPOOL, TAG, and so on, define and manipulate the various
unit record devices.

Note: GCS programs cannot write to virtual readers, nor can they read from virtual printers and punches.

Processing VSAM Files
GCS programs use VSAM macros supported at the MVS/VSAM Release 3.8 level, the same level as CMS.
In fact, you will find them in a CMS macro library named OSVSAM MACLIB. When you request a service
with one of these macros, it gets mapped to VSE/VSAM format and executed using VSE/VSAM code.

GCS's VSAM data management service supports the following command:
DLBL

Identifies VSAM files for I/O
GCS data management supports the following macros:
ACB

Generates an access method control block at assembly time
BLDVRP

Builds a resource pool for Local Shared Resources
CHECK

Suspends processing and waits for a request to complete
CLOSE

Disconnects a program and data
DLVRP

Deletes a resource pool
ENDREQ

Terminates a request
ERASE

Deletes a record
EXLST

Generates an exit list
GENCB

Generates an access method control block, exit list, or request parameter list at execution time
GET

Retrieves a record
MODCB

Modifies an access method control block, exit list, or request parameter list dynamically
OPEN

Connects a program and data
POINT

Points VSAM to a specific record to be accessed
PUT

Stores a record
RPL

Generates a request parameter list
SHOWCAT

Retrieves information from the VSAM catalog
SHOWCB

Displays fields of a control block or list

GCS Programming and Command Processing

54 z/VM: 7.2 Group Control System

TESTCB
Tests values in a control block or list

WRTBFR
Writes buffers that contain Deferred Writes

Note:

1. The control blocks generated by the OS ACB, RPL, and EXLST macros are converted from OS format
to VSE format the first time that these control blocks are used by GCS. Because of this, the TESTCB,
SHOWCB, and MODCB macros, rather than the OS mapping macros from the OSVSAM macro library,
should get or modify data in these control blocks.

2. VSAM data management services support the CHECK macro and RPL's ASY option, but no
asynchronous activity is performed.

3. GCS does not support utility functions. You have to perform disk initialization, catalog definition, and
file definition (AMS functions) under CMS.

4. VSE/VSAM governs the sharing of VSAM data within a GCS virtual machine. The way you define a VSAM
file and the way you use it determines how VSE/VSAM handles shared data. For more information, see
the VSE/VSAM User's Guide.

5. When a task terminates, GCS attempts to close all open ACBs that the task opened.

Planning for GCS involves:

• Being familiar with the current procedures that tell how to plan for shared segments
• Knowing the requirements of all products you plan to run on GCS
• Making entries in your z/VM directory
• Reserving enough pages in storage to hold your GCS shared segment
• Defining your GCS configuration file with the GROUP EXEC.

GCS Programming and Command Processing

Chapter 3. GCS Programming and Command Processing 55

GCS Programming and Command Processing

56 z/VM: 7.2 Group Control System

Chapter 4. GCS Commands

The GCS commands are:

Command Function page

ACCESS Identifies CMS or VSAM disks that an
application uses.

“ACCESS” on page 59

CLEAR Clears the virtual console. “CLEAR” on page 61

CONFIG Lets the owner of the recovery machine
change some of the configuration
information supplied during system build.

“CONFIG” on page 62

DLBL Defines VSAM files used for program I/O. “DLBL” on page 64

ERASE Removes one or more files from a read/
write disk.

“ERASE” on page 70

ESTATE/ESTATEW Verifies the existence of a file on an
accessed disk. ESTATEW verifies the
existence of a file residing on a read/write
minidisk.

“ESTATE/ESTATEW” on page
71

ETRACE Starts or stops external trace processing. “ETRACE” on page 73

EXECIO Does I/O operations on a program stack or
a variable, file, or executes CP commands.

“EXECIO” on page 76

FILEDEF Defines CMS format files and spool files. “FILEDEF” on page 94

GDUMP Produces a copy of the contents of your
virtual machine's storage.

“GDUMP” on page 98

GLOBAL Defines the CMS load libraries you want
searched for modules.

“GLOBAL” on page 101

HX Stops execution of all programs and
commands active in a virtual machine.

“HX” on page 107

ITRACE Enables or disables recording of internal
trace events within a virtual machine or
virtual machine group.

“ITRACE” on page 108

LOADCMD Defines a program that runs as a
command.

“LOADCMD” on page 112

OSRUN Starts a GCS application program. “OSRUN” on page 116

QUERY Request information about your GCS
virtual machine.

“QUERY” on page 117

RELEASE Release a disk. “RELEASE” on page 146

REPLY Replies to a message sent to the GCS
operator.

“REPLY” on page 147

SET Replaces a saved system name entry in
the SYSNAMES table for VSAM or to set
or reset a particular function in your GCS
machine.

“SET” on page 149

© Copyright IBM Corp. 2001, 2023 57

Immediate Commands
An immediate command is one that gets executed when you enter it. It does not get stacked, nor does it
have to wait for the current command to finish. The immediate GCS commands are:

ETRACE (see page “ETRACE” on page 73)
GDUMP (see page “GDUMP” on page 98)
HX (see page “HX” on page 107)
ITRACE (see page “ITRACE” on page 108)
QUERY (see page “QUERY” on page 117)
REPLY (see page “REPLY” on page 147).

Note: If you enter several commands on the command line and separate them with # characters:

 cmd1#cmd2#immed cmd#cmd3

your system will process any immediate commands first. You would receive results from immed cmd
before the results from cmd1. If an exec or routine is named the same name as an immediate command,
the immediate command is executed. This differs from the way CMS processes commands.

58 z/VM: 7.2 Group Control System

ACCESS

Format

ACcess
0191 A

vdev mode

mode/ext
* * *

fn
* *

ft
*

fm

Purpose

Use the ACCESS command to identify the CMS or VSAM Disks that an application will use.

Applications that use files on CMS or VSAM disks must first identify those disks with the ACCESS
command. The disk you identify must be either a:

• VSAM disk. (Make sure you enter ACCESS before entering the DLBL command.)
• CMS disk formatted with a block size of 512, 1KB, 2KB, or 4KB bytes. (You cannot have an 800-byte

block size.)

Operands

vdev
Makes the disk available at the specified virtual address. Valid addresses are X'0001' through X'FFFF'
(X'0001' through X'1FFF' for 370 accommodation). The default value is 0191.

mode
Assigns a one-character file mode letter to all files on the disk being accessed. You must specify this
field if you specified the vdev parameter. The default value is A.

ext
Indicates the mode of the parent disk. Files on the disk being accessed (vdev) are logically associated
with files on the parent disk; the disk at vdev is a read-only extension. A parent disk must be accessed
in the search order before its extension gets accessed. Do not put a blank space before or after the
slash (/).

fn ft fm
Defines a subset of files residing on the disk to be accessed. These are the only files that will go into
your user file directory, and these are the only files you will be able to read. Entering an asterisk (*)
in any one of these fields indicates that you want all file names or file types or file mode numbers
(except 0) to be in your user file directory. You can specify file name, file type, and file mode fields only
for CMS-formatted disks that you have accessed as read-only extensions. For example, to specify a
file mode, use a letter and a number:

 access 333 b/a * gcs b1

Note: You should enter the RELEASE command when your application no longer needs access to the disk.

ACCESS

Chapter 4. GCS Commands 59

Messages
• GCTACC005S Virtual storage capacity exceeded RC=104
• GCTACC006E Invalid parameter 'parameter' RC=24
• GCTACC012E No options allowed RC=24
• GCTACC021E Invalid mode 'mode' RC=24
• GCTACC414E Disk vdev not properly formatted for ACCESS RC=16
• GCTACC415E Invalid device address 'vdev' RC=24
• GCTACC422E vdev already accessed as Read/Write 'mode' disk RC=36
• GCTACC423I mode (vdev) { R/O | R/W}
• GCTACC424I vdev mode released
• GCTACC425I vdev replaces mode (vdev)
• GCTACC426I vdev also = mode disk
• GCTACC427S "mode (vdev)" device error RC=100
• GCTACC428S "mode (vdev)" not attached RC=100
• GCTACC429E File not found. Disk mode (vdev) will not be accessed RC=28
• GCTACC430W OS disk - Fileid specified is ignored RC=4
• GCTROS005S Virtual storage capacity exceeded
• GCTROS423I mode (vdev) { R/O | R/W} { -OS | -DOS}
• GCTROS426I vdev also = mode { -OS | -DOS} disk

For more information on messages, see z/VM: Other Components Messages and Codes.

ACCESS

60 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

CLEAR

Format

CLEAR

Purpose

Use the CLEAR command to clear the virtual console.

Operands
CLEAR

Specifies that you want to clear the virtual console. Invariably, after the command completes control
is returned to the user. The CLEAR command is processed immediately. It does not clear any lines that
are queued and waiting to be displayed.

CLEAR

Chapter 4. GCS Commands 61

CONFIG

Format

CONFIG DUMPVM dumpuser

TRACETAB PRIVATE

COMMON

AUTHUSER DELETE

ADD

 userid

Purpose
The CONFIG command allows the owner of the recovery machine to change some of the configuration
information provided during system build.

Operands
DUMPVM dumpuser

Alters the name of the virtual machine to receive dumps to the name specified in dumpuser.
TRACETAB PRIVATE

Designates that the internal trace table is to be in private storage.
TRACETAB COMMON

Designates that the internal trace table is to be in common storage.
AUTHUSER DELETE userid

Deletes the user identified by userid from the authorized list.
AUTHUSER ADD userid

Adds the user identified by userid to the authorized list.

Usage
1. When the DUMPVM or TRACETAB options are specified, the configuration change is immediate.
2. When the AUTHUSER option is specified in a multiple user group environment, the change of the user

authorization is not effective until the user re-IPLs.
3. When the AUTHUSER option is specified in a single user group environment, the user authorization

change is immediate. Other user IDs may be specified with the AUTHUSER option, but they will have
no effect on the operation of the single user environment.

4. The DUMPVM option is not valid in a single user environment.

Messages
All CONFIG messages are issued without message numbers.

• GCTCFG009E Operand is missing or invalid
• GCTGFI244I 'userid' is now the virtual machine receiving dumps
• GCTGFI245I 'userid' can now IPL as an authorized virtual machine
• GCTGFI246I 'userid' can no longer IPL as an authorized virtual machine
• GCTGFI247I The trace table is now being maintained in 'location' storage
• GCTGFI248I No users are currently authorized

CONFIG

62 z/VM: 7.2 Group Control System

• GCTGFI249E The recovery machine 'userid' must be authorized

For more information on messages, see z/VM: Other Components Messages and Codes.

CONFIG

Chapter 4. GCS Commands 63

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

DLBL

Format

DLBL

ddname

*

CLEAR

ddname mode

DSN
1

qual

?

2

(Option

)

Option
VSAM

BUFSP  nnnnnn CAT  catdd

CHANGE

NOCHANGE MULT PERM

Notes:
1 After each group of eight or fewer characters, a period must be inserted and maximum of 44
alphanumeric characters can be used to identify the data set name.
2 The defaults you receive appear above the line in the options fragment.

Purpose

Use the DLBL command to define VSAM files used for program I/O.

Application programs usually require some setting up before you try to start and run them. The DLBL
command is one of the preliminary commands usually issued to prepare a program for execution. You
enter the DLBL command to define VSAM I/O files needed by the program. Be sure you enter the ACCESS
command for the disk containing your VSAM files before entering DLBL.

Note: For non-VSAM file definitions, use the “FILEDEF” on page 94. VSAM itself does not always require
file definition statements. For more information on file definitions, see the VSE/VSAM User's Guide.

Operands

ddname
A one- to seven-character program ddname. If you have ddnames over seven characters long, be
aware that only the first seven characters get processed. If you have two different files with the same
first seven letters and try to process them both, you will receive an error message when GCS opens
the second file.

This ddname must be the same as the ACB DDNAME parameter (or the ACB name if DDNAME is
omitted). An asterisk (*) entered, along with the CLEAR operand, indicates that all DLBL definitions,
except those that are entered with the PERM option, are to be cleared.

* (asterisk)
Indicates that you want all ddnames.

DLBL

64 z/VM: 7.2 Group Control System

CLEAR
Removes any conditions for the specified ddname. Clearing a ddname before defining it ensures that
a file definition does not exist and that any options previously defined for that ddname no longer have
any effect.

If you release a disk that has a DLBL definition in effect, you should clear that DLBL before executing a
VSAM program. If a disk has a DLBL in effect, but the disk is not accessed, GCS will issue the message:

Disk { mode/vdev/volumeid} not accessed

mode
A letter representing the file mode of a VSAM disk and, optionally, a file mode number. You must
specify a letter, and it must refer to a disk that is already accessed. The file mode number, however, is
optional. If you do not provide one, the default is 1. VSAM disks do not require this number anyway,
but GCS will accept one without error.

If a mode is specified, the associated disk must already be accessed.

DSN
Specifies that this is a VSAM file.

qual
A unique name associated with the file on the volume. It can be from one to 44 characters of
alphanumeric data. If fewer than 44 characters are used, the field is left-justified and padded with
blanks.

For VSAM, DSN must be specified when an existing (input) file is being processed. The name (qual) is
identical with the name of the file, specified in the DEFINE command and listed in the VSAM catalog.
For VSAM, the name (qual) must be coded according to the following rules:

• One to 44 alphanumeric (A-Z, 0-9, @, $, or #) characters or hyphen (-) or plus zero (+0).
• After each group of eight or fewer characters, a period (.) must be inserted.
• Embedded blanks are not allowed.
• The first character of the name (qual) and the first character following a period must be alphabetic

or national (A-Z, @, $, #).

If this operand is omitted, ddname is used.

? (question mark)
Indicates that you will enter the ddname interactively. GCS will prompt you with the message:

Enter data set name:

When prompted, you must enter the data set name in its exact form, including embedded blanks,
hyphens, or periods. If you enter it as a command at the console or from a REXX command file, you
may use its exact form. DLBL will replace any blanks between qualifiers with periods.

VSAM
Indicates that the file is a VSAM data set. If not specified, VSAM is assumed.

BUFSP nnnnnn
Specifies the number of bytes (in decimal) to be used for I/O buffers by VSAM data management
during program execution, overriding the BUFSP value in the ACB for the file. The maximum value for
nnnnnn is 999999; embedded commas are not permitted.

For more information, see the Usage Notes under the DLBL command in the z/VM: CMS Commands
and Utilities Reference.

CAT catdd
Identifies the VSAM catalog (defined by a previous DLBL command) containing the entry for this data
set. You must use the CAT option when the VSAM data set you are creating or identifying is not
cataloged in the current job catalog.

catdd is the ddname in the DLBL definition for the catalog.

DLBL

Chapter 4. GCS Commands 65

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb4_v7r2.pdf#nameddest=dmsb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb4_v7r2.pdf#nameddest=dmsb4_v7r2

To identify a VSAM master catalog and job catalog, you have to use two special ddnames:
IJSYSCT

identifies the master catalog when you begin a terminal session. You should use the PERM option
when you define it.

IJSYSUC
identifies a job catalog to be used for subsequent VSAM programs.

Note: VSAM programs search only one catalog when performing a function. If you defined an IJSYSUC
job catalog, but want VSAM to use a different catalog, you have to indicate that other catalog with
the CAT option. (See “Examples” on page 68.) Figure 15 on page 67 shows how VSAM programs
running on GCS go about selecting a VSAM catalog.

DLBL

66 z/VM: 7.2 Group Control System

Figure 15. Determining Which VSAM Catalog to Use

CHANGE
Specifies that any existing definition for this ddname is not to be canceled, but conflicting options are
to be overridden and new options merged into the existing definition. Both the ddname and the DSN
file identifier must be the same for the definitions to be merged.

DLBL

Chapter 4. GCS Commands 67

NOCHANGE
Indicates that a new definition for the specified ddname is to be created if none exists, but if a
definition already exists, it is not to be changed.

PERM
Specifies that this DLBL definition can be cleared only by an explicit CLEAR request. It cannot be
cleared when dlbl * clear is entered.

MULT
Indicates that you want to enter volume specifications that refer to an existing multivolume VSAM
data set. For more information on the requirements for VSE/VSAM, see the VSE/VSAM User's Guide.

When you specify MULT, the GCS supervisor sends a message asking you for additional disk mode
letters. You provide the mode letters using the REPLY command (“REPLY” on page 147) and these
rules apply:

• All the disks you refer to must be mounted and accessed when you enter the DLBL command.
• Do not repeat the mode letter that you entered on the command line.
• If you enter all the letters on the same line, separate them with commas. (GCS ignores any trailing

commas at the end of the line.)
• You can specify a maximum of 25 disks, using any letter except S. However, you do not need to

specify them in alphabetic order.

Examples

1. ====> dlbl

Displays all file definitions in effect for your disks. GCS responds with:

'ddname' DISK 'fn' 'ft'

If you have no DLBL definitions in effect, GCS sends the following message:

No user defined DLBL'S in effect

2. ====> dlbl infile c (mult

Identifies a file named infile on your C mode disk and, because you specified the MULT option, prompts
you to enter additional disk mode letters. You receive the following message:

nn GCTDLB312R Enter volume specifications:

where nn is a reply ID number. You enter the requested disk mode letters using the REPLY command
(“REPLY” on page 147) and this reply ID. For example, you may want to refer to disks accessed at
modes D, E, F, and G.

Enter:

reply nn D, E, F, G
reply nn

The second reply nn is a null line to terminate the command. If you do not enter this null line, you
may get an error message and have to reenter the entire sequence of commands.

3. The following sequence of DLBL commands shows how you can use catalogs.

====> dlbl ijsysct c dsn mastcat (perm

Identifies a VSAM master catalog, named MASTCAT, for the terminal session.

====> dlbl ijsysuc d dsn mycat (perm

DLBL

68 z/VM: 7.2 Group Control System

Identifies a VSAM job catalog, named MYCAT, for the terminal session.

====> dlbl intest1 e dsn test.case

Identifies a VSAM file intest1 that is cataloged in the job catalog MYCAT as test.case.

====> dlbl cat3 dsn testcat (cat ijsysct

Identifies an additional catalog testcat which has an entry in the master catalog. Because you specified
a job catalog (MYCAT) earlier, you must use the CAT option to make sure that the master catalog
IJSYSCT gets used instead.

====> dlbl infile e dsn test.input (cat cat3

Identifies an input file infile cataloged in your catalog TESTCAT, which was identified with a ddname of
CAT3 on the previous DLBL command.

Messages
• GCTDLB001E Invalid option 'option' RC=24
• GCTDLB002E Invalid parameter 'parameter' in the option 'option' field RC=24
• GCTDLB003E 'option' option specified twice RC=24
• GCTDLB004E 'option1' and 'option2' are conflicting options RC=24
• GCTDLB005S Virtual storage capacity exceeded RC=104
• GCTDLB006E Invalid parameter 'parameter' RC=24
• GCTDLB009E Operand is missing or invalid
• GCTDLB017E Disk {mode/vdev/volumeid} not accessed RC=36
• GCTDLB021E Invalid mode 'mode' RC=24
• GCTDLB302E Parameter missing after DDNAME RC=24
• GCTDLB303I No user defined DLBL's in effect
• GCTDLB305I DDNAME 'ddname' not found. CLEAR not executed
• GCTDLB310R Enter data set name:
• GCTDLB311E Invalid data set name RC=24
• GCTDLB312R Enter volume specifications:
• GCTDLB313E Invalid DDNAME 'ddname' RC=24
• GCTDLB314I Maximum number of disk entries recorded
• GCTDLB315E Catalog DDNAME 'ddname' not found
• GCTDLB316E mode disk is in CMS format; invalid for VSAM data set
• GCTDLB317E Job catalog DLBL cleared
• GCTDLB318I Master catalog DLBL cleared
• GCTDLB345I No option specified RC=24

For more information on messages, see z/VM: Other Components Messages and Codes.

DLBL

Chapter 4. GCS Commands 69

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

ERASE

Format

ERASE fn

*

ft

*

A

fm

*

Purpose
Use the ERASE command to delete one or more files from a read/write disk.

Operands
fn

is the name of the files to be erased. An asterisk (*) coded in this position indicates that all names are
to be used.

ft
is the file type of the files to be erased. An asterisk (*) coded in this position indicates that all file types
are to be used.

fm
is the file mode of the files to be erased. If this field is omitted, only the disk accessed as A is
searched. An asterisk (*) coded in this position indicates that files with the specified name and file
type are to be erased from all read/write disks.

Usage
1. If you specify an asterisk for both file name and file type, you must specify a file mode letter and

number; for example, erase * * a5
2. If you enter an asterisk for the file mode, either the file name or the file type or both must be specified.
3. GCS supports passing of a parameter list that has an address above the 16MB line.
4. Control is passed back to the caller in the amode/rmode of the caller.
5. Authorized or unauthorized calls are supported.

Messages
• GCTERS005S Virtual storage capacity exceeded RC=25
• GCTERS006E Invalid parameter 'parameter' RC=24
• GCTERS019E No read/write 'mode' disk accessed RC=36
• GCTERS021E Invalid mode 'mode' RC=24
• GCTERS053E File 'fn ft fm' not found RC=28
• GCTERS054E Incomplete fileid specified RC=24
• GCTERS062E Invalid character 'char' in fileid 'fn ft' RC=20

For more information on messages, see z/VM: Other Components Messages and Codes.

ERASE

70 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

ESTATE/ESTATEW

Format

ESTATE

ESTATEW

fn

*

ft

*

*

fm
1

Notes:
1 File mode number specified is ignored when both the file name and file type are specified; it is
used when both file name and type are specified as asterisks.

Purpose
Use the ESTATE command to verify the existence of a file on any accessed disk. Use the ESTATEW
command to verify the existence of a file on any accessed read/write disk.

Operands
fn

is the file name of the file whose existence is to be verified. If an asterisk is specified, the first file
found satisfying the rest of the file ID is used.

ft
is the file type of the file whose existence is to be verified. If an asterisk is specified, the first file found
satisfying the rest of the file ID is used.

fm
is the file mode of the file whose existence is to be verified. If an asterisk is specified, the first
file found satisfying the rest of the file ID is used. If file mode is omitted or specified as *, all your
accessed disks (A-Z) are searched.

Usage
1. If you enter the ESTATEW command specifying a file that exists on a read-only disk, you will receive an

error message indicating that the file was not found.
2. ESTATE and ESTATEW can be used to verify only on CMS formatted disk.
3. Files larger than 65533 records are supported.
4. You can start the ESTATE or ESTATEW command from the terminal, from an exec file, or as a function

from a program using CMDSI.
5. GCS supports passing of a parameter list that has an address above the 16MB line.
6. Control is passed back to the caller in the amode/rmode of the caller.
7. Authorized or unauthorized calls are supported.

Messages
• GCTSTT006E Invalid parameter 'parameter' RC=24
• GCTSTT017E Disk 'mode' not accessed RC=36
• GCTSTT021E Invalid mode 'mode' RC=24
• GCTSTT053E File 'fn ft fm' not found RC=28
• GCTSTT054E Incomplete fileid specified RC=24

ESTATE/ESTATEW

Chapter 4. GCS Commands 71

• GCTSTT062E Invalid character 'char' in fileid 'fn ft' RC=20

For more information on messages, see z/VM: Other Components Messages and Codes.

ESTATE/ESTATEW

72 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

ETRACE

Format

ETRACE END

ALL

Options OFF

1

Options

DSP

EXT

FRE

GET

GTrace

I/O

PRG

SIO

SSS

SVC

SYN

1

Notes:
1 Each option may be specified only once.

Purpose

Use the ETRACE command to enable or disable the recording of events in a spool file for a virtual machine
or virtual machine group.

GCS supports external tracing — the recording of events in a spool file. For more information on External
Tracing Facility, see the z/VM: Diagnosis Guide. You control when this external tracing is active by using
the ETRACE command.

You can enable (activate) or disable (deactivate) external tracing for a particular virtual machine or an
entire virtual machine group. You can specify a certain list of events for one virtual machine and a totally
different set of events for all other virtual machines in the group.

Before any external tracing actually takes place, though, a class C user must enter the TRSOURCE
command for the virtual machines to be traced.

Parameters
END

Disables external tracing of all events.
ALL

Enables or disables external tracing of all events.

ETRACE

Chapter 4. GCS Commands 73

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpc1_v7r2.pdf#nameddest=hcpc1_v7r2

DSP
Enables or disables external tracing of each task switch (dispatch of a different task).

EXT
Enables or disables external tracing of each external interrupt.

FRE
Enables or disables external tracing of FREEMAIN events started through SVC and Branch Entry calls.

GET
Enables or disables external tracing of GETMAIN events started through SVC and Branch Entry calls.

GTrace
Specifies that you want data, passed from the GTRACE macro, to be recorded in a spool file.

I/O
Enables or disables external tracing of each I/O interrupt.

PRG
Enables or disables external tracing of each program interrupt.

SIO
Enables or disables external tracing of each request by the supervisor for I/O. This includes execution
of the following instructions: SIO, DIAGNOSE I/O, TIO, CLRIO, HIO, HDV, SIOF, and TCH.

Note: The event is not recorded when the instruction is executed by an application program.

SSS
Enables or disables detailed external tracing of IUCV interrupts on the Signal System Service path.

SVC
Enables or disables external tracing of each SVC interrupt.

SYN
Enables external tracing of APPC/VM synchronous events.

OFF
Disables external tracing of events for the specified types.

Omitting the OFF operand enables external tracing of events for the specified type.

GRoup
Specifies that this command is to affect the virtual machine group, of which the issuer of the
command is a member. If this operand is omitted, the command is applied only to the issuer's virtual
machine.

If external tracing of certain types of events is enabled for the group, then they are automatically
enabled for any virtual machine that may join the group later.

The GROUP operand can be used only by an authorized member of a virtual machine group. That is, by
a member of the group placed on the list of authorized users in the GCS configuration file.

An unauthorized group member cannot deactivate tracing enabled by the GROUP operand. However,
an authorized virtual machine can disable external tracing for itself although ETRACE with the GROUP
operand was specified by another authorized virtual machine.

Usage
1. To enable external tracing, you must enter TRSOURCE in either BLOCK or EVENT mode and then enter

ETRACE.
2. To disable external tracing in an orderly sequence, you should enter ETRACE END and then disable

TRSOURCE, or trace records can be lost.
3. When ETRACE END is issued and EXTERNAL tracing is in BLOCK mode, the buffer is sent to CP.
4. When GCS loses control from a CP perspective (such as a system reset), the data in the buffer cannot

be sent to CP and will not appear in the external trace records.

ETRACE

74 z/VM: 7.2 Group Control System

5. When running in EVENT mode, trace records do not get lost, but the performance gain of the BLOCK
support is not realized.

Examples

etrace all
 .
 .
 .
etrace i/o prg off

Requests that all types of events for the issuer's virtual machine be recorded in a spool file. Later, a
second ETRACE command, was issued to disable external tracing of I/O and program interrupts for the
issuer's virtual machine.

etrace dsp i/o sio group

Requests that the following types of events be recorded externally for the virtual machine group: task
dispatches, I/O interrupts, and GCS supervisor I/O requests. The individual who issues this command
must be an authorized user, because the request is for the group.

etrace end

Requests that external tracing of events in a spool file for the issuer's virtual machine be disabled. This
request will not be honored for an unauthorized user if the ETRACE events were started by the GROUP
operand.

Messages
• GCTYTE001E Invalid option 'option' RC=4
• GCTYTE009E Operand missing or invalid RC=4
• GCTYTE509I ETRACE set ON for event-types
• GCTYTE510I ETRACE set ON for event-types for GROUP
• GCTYTE511I ETRACE set OFF for event-types
• GCTYTE512I ETRACE set OFF for event-types for GROUP
• GCTYTE513E ETRACE GROUP option is in effect for event-types RC=8

For more information on messages, see z/VM: Other Components Messages and Codes.

Return Codes
The meanings of return codes for these messages are:

Hex
Code

Decimal
Code

Meaning

X'00' 0 The specified ETRACE events have been successfully enabled or
disabled.

X'04' 4 An invalid operand was specified, an unauthorized user specified
the GROUP operand, the ETRACE command was issued before
TRSOURCE was enabled. Your request was ignored.

X'08' 8 An authorized virtual machine had enabled external tracing using the
GROUP operand. An unauthorized virtual machine then attempted to
disable external tracing. The request was ignored.

X'10' 16 The trace buffer was not processed.

ETRACE

Chapter 4. GCS Commands 75

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

EXECIO

Format

EXECIO
1

lines

*

DISKR

CARD

CP

DISKW

PUNCH

EMSG

PRINT

DISKR
DISKR fn ft

fm

* linenum

(
2

FINIS

Input Options

)

CARD
CARD

(
2

Input Options

)

CP
CP

(
2

Input Options CP Options

)

Notes:
1 Parsing of the EXECIO command differs from other GCS commands in that it involves handling
of strings that may contain embedded blanks, parentheses, other special characters, and words of
more that eight characters. Therefore, if you use a right parenthesis to mark the end of an EXECIO
option, it must be preceded by at least one blank character. A right parenthesis cannot be used to
mark the end of the STRING option.
2 You can enter Options in any order between the parentheses.

DISKW
DISKW fn ft fm

* linenum

recfm

lrecl

(
1

FINIS

Output Options

)

PUNCH
PUNCH

(
1

Output Options

)

EXECIO

76 z/VM: 7.2 Group Control System

EMSG
EMSG

(
1

Output Options

)

PRINT
PRINT

(
1

CC code

DATA

Output Options

)

Input Options
2

FIND / chars /

LOCATE / chars /

AVOID / chars /

LIFO

FIFO

STEM stem

VAR xxxx

ZONE 1 *

ZONE n1 n2 SKIP

MARGINS 1 *

MARGINS n1 n2

STRIP NOTYPE

CP Options

BUFFER length STRING
3

text

Notes:
1 You can enter Options in any order between the parentheses.
2 Input options control how data is passed into your exec from EXECIO.
3 If the STRING option is used, it must be the last option specified.

Output Options
1

MARGINS 1 *

MARGINS n1 n2 STRIP NOTYPE

CASE M

CASE U

STEM stem

VAR xxxx

STRING
2

text

Notes:
1 Output options control how data is passed from your exec to EXECIO.
2 If the STRING option is used, it must be the last option specified.

Purpose

Use the EXECIO command to:

• Read lines from a disk or virtual reader to the program stack or a variable.
• Write lines from the program stack or a variable to a CMS file or virtual spool device (punch or printer).
• Cause execution of CP commands and recover resulting output.

At times output data to be written may be supplied directly on the EXECIO command line.

The information immediately following is reference level information about EXECIO format and operands.
Following this reference information you can find extended descriptive and use information. If you are
not familiar with EXECIO, you should review the complete command description before attempting to
use it. Also, to get full benefit from EXECIO, you should be familiar with use of execs under REXX. (See

EXECIO

Chapter 4. GCS Commands 77

the Appendix in z/VM: REXX/VM Reference for specific GCS REXX capabilities and for general information
about REXX see z/VM: REXX/VM Reference.)

In the following descriptions, "relative line number" means the number of lines processed to satisfy an
EXECIO operation; "absolute line number" means the number of the line relative to the top of the file.

Parameters
lines

is the number of source lines processed. This can be any nonnegative integer. With the VAR option, the
number of lines must be 1. An asterisk (*) indicates that the operation is to terminate when:

• A null (0-length) line is read during an output operation
• An end-of-file condition is detected during an input operation.

Specification of *, together with the STRING option, is valid only with the CP operand. Using the *
and STRING combination with any other operand causes an error message to be issued. Also the
combination of the * and the VAR option is not allowed. If lines is specified as zero (0), no I/O
operation is performed other than FINIS, when it is specified as an option.

DISKR
reads a specified number of lines from the CMS file fn ft fm to the program stack FIFO (first-in
first-out) or to a REXX variable if the STEM or VAR options are specified.

fn
is the file name of the file.

ft
is the file type of the file.

fm
is the file mode of the file. When file mode is specified, that disk and its extensions are searched. If file
mode is optional and is not specified, or is specified as an asterisk (*), all accessed disks are searched
for the specified file. If file mode is required and an asterisk (*) is specified, the file with the specified
file name and file type on the first accessed mode (in alphabetic order) will be opened. If no file is
found that matches, EXECIO will be unsuccessful and an error message will be issued.

Because GCS checks for open files first, if you specify an asterisk for fm, you may get unexpected
results if there are open files matching the file name and file type specified.

linenum
is the absolute line number within the specified file where a DISKR or DISKW operation is to begin. if
linenum has a value of zero or is not specified, reading begins at the first line and writing begins at the
last line. For other files, reading or writing begins at the line following the one at which the previous
operation ended. Because EXEC processors manipulate execs that are currently executing, a read or
write to a currently running exec should explicitly specify the linenum operand. By not specifying this
you may cause the first line to be read or written each time. If recfm or lrecl is specified for the DISKW
operation, then a linenum value must be specified explicitly.

CARD
reads a specified number of lines from the virtual reader to the program stack (FIFO) or to REXX
variable if the STEM or VAR options are specified.

CP
causes output resulting from a CP command to be placed on the program stack (FIFO) or to REXX
variable if the STEM or VAR options are specified. To obtain the reply from a CP command, specify
the lines operand as an asterisk (*). If you want to enter a command to CP, suppressing messages
and obtaining only the return code, specify the lines operand as zero (0). You may specify which CP
command is to be issued using the:

• STRING option on the EXECIO command line

EXECIO

78 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2

• Next line from the program stack.

Remember that all characters of CP commands must be in upper case.

DISKW
writes a specified number of lines from the program stack or from REXX variable if the STEM or VAR
options are specified to a new or existing CMS file fn ft fm.

Inserting a line into a variable length CMS file can cause truncation of the portion of the file following
the inserted line. See the extended DISKW operand description.

fn
is as described under the DISKR operand.

ft
is as described under the DISKR operand.

fm
is as described under the DISKR operand.

linenum
is as described under the DISKR operand.

recfm
lrecl

define the record format and record length for any new file created by a DISKW operation. The default
value for recfm is V (variable), in which case "lrecl" has no meaning. If you specify F (fixed) for recfm,
the default lrecl value is 80. The maximum lrecl value that may be specified is 255 unless the VAR or
STEM option is used to bypass the use of the program stack, then the maximum is the limit defined by
the GCS file system which is the amount of storage available in your virtual machine below the 16MB
line. If recfm or lrecl is specified for the DISKW operation, then a linenum value must be specified
explicitly.

PUNCH
transfers a specified number of lines from the program stack or from a REXX variable if the STEM or
VAR options are specified to the virtual punch.

EMSG
causes a message to be displayed. The text of the message may be the:

• Character string specified on the STRING option
• Next available line from the program stack
• Information from a STEM or VAR variable.

Messages are edited according to the current CP EMSG setting.

PRINT
transfers a specified number of lines from the program stack or from a REXX variable if the STEM or
VAR options are specified, to the virtual printer.

CC
is used with the PRINT operand to specify carriage control for each line transferred to the virtual
printer. Using the CC operand, you can supply carriage control code explicitly, or by specifying DATA,
indicate that the carriage control character is the first byte of each line. If you omit the CC operand, a
blank code serves as the default carriage control character. If CC is the last option specified and it is
not followed by a code or DATA, then DATA is the default.

code
is the character (ANSI or machine code) that defines carriage control. A blank code (the default value)
cannot be specified on the command line.

DATA
specifies that the first byte of each line sent to the virtual printer is a carriage control character.

EXECIO

Chapter 4. GCS Commands 79

Defaults
AVOID

is like the LOCATE option, except that the search is for a line (or zone portion of that line) that does not
contain the specified characters.

BUFFER length
specifies the length, in characters (bytes), of the CP command response expected from a CP
operation. The limits of values that may be specified for length are 1 through the amount of storage
available in your virtual machine below the 16MB line. If this option is not specified, up to 8192
characters of the response are returned.

CASE
causes data read from the program stack, from a STEM, or from a variable to be:

1. Translated to uppercase if U is specified
2. Not translated (mixed) if M is specified.

M (mixed) is the default value.

FIND
writes the following, LIFO (last-in first-out) to the program stack or FIFO (first-in first-out) to a REXX
array:

1. The contents of the line that begins with the characters specified between delimiters
2. The line number of the first occurrence of that line (or zone portion of that line). For DISKR

operations, both the relative and absolute line numbers are written. Otherwise, only the relative
line number is written. FIND is case-sensitive.

If you wish to search only a portion of each line, use the ZONE option. If you wish to write only a
portion of any line matching the search argument to the program stack or a variable, you can also use
the MARGINS option.

FINIS
causes the specified file to be closed following completion of a DISKR or DISKW operation.

LIFO
FIFO

defines the order in which lines are written to the program stack. Generally, the default order is FIFO
(first-in first-out). The exceptions are operations that put line numbers on the program stack because
of a search operation (FIND, LOCATE, or AVOID). These operations default to LIFO (last-in first-out).

LOCATE
is like the FIND option explained previously, except that the object characters may occur any place
within a line (or zone portion of that line), as opposed to only at the beginning of the line, as with the
FIND option.

MARGINS
specifies that only a portion (columns n1 through n2 inclusive) of affected lines are to be processed
(from the stack or a variable). The default values are column 1 through the end of each line (*). The
limits of values that may be specified for n1 or n2 are 1 through the maximum line length allowed by
the operation being performed.

NOTYPE
suppresses the display of message GCTEIO632E at the virtual console.

SKIP
allows a read function (DISKR, CARD, CP) to occur without writing any information to the program
stack.

STEM stem
indicates that the specified stem defines variables used either to supply input data for EXECIO output-
type operations (PUNCH, PRINT, EMSG, and DISKW), or as the destination for output of EXECIO
input-type operations (CARD, DISKR, and CP).

EXECIO

80 z/VM: 7.2 Group Control System

stem is a regular REXX stem of the form xxx.. For example, if the REXX stem is xxx., then the variable
xxx.0 will represent the number of lines returned for input-type operations; xxx.1 will contain the first
line returned, xxx.2 will contain the second, and so on.

STEM can be used with the STRING option only with the CP operation. If the STEM option is used on a
print operation, then channel 9 or channel 12 indications returned from the hardware will be ignored.
The maximum length variable name with the STEM option is 240 bytes.

STRING text
supplies up to 255 characters of output data or a CP command explicitly on the EXECIO command
line. Any characters following the STRING keyword are treated as string data, not additional EXECIO
operands. Therefore, STRING, if specified, must be the final option on the command line.

STRIP
specifies that trailing blank characters are to be removed from any output lines or lines returned.

VAR xxxx
indicates that the variable xxxx is to be used to supply input data for output-type operations (PUNCH,
PRINT, EMSG, and DISKW) or that variable xxxx is the destination for output for the input-type
operations (CARD, DISKR, and CP). If VAR is specified, then the number of lines must be 1. The
maximum length variable name is 250 characters.

ZONE
restricts the portion of input lines searched by the FIND, LOCATE, or AVOID options. The search is
between columns n1 and n2 (inclusive), if specified. The default values are column 1 through the end
of the line (*). The limits of values that may be specified for n1 or n2 are 1 through the maximum line
length allowed by the operation being performed.

Messages
• GCTEIO621E Bad Plist: Device and lines arguments are required RC=24
• GCTEIO621E Bad Plist: Disk ‘argument’ argument is missing RC=24
• GCTEIO621E Bad Plist: Disk filemode required for DISKW RC=24
• GCTEIO621E Bad Plist: File format specified (‘recfm’) does not agree with existing file format (‘recfm’)

RC=24
• GCTEIO621E Bad Plist: File lrecl specified (‘lrecl’) does not agree with existing file lrecl (‘lrecl’) RC=24
• GCTEIO621E Bad Plist: Input file ‘fileid’ does not exist RC=24
• GCTEIO621E Bad Plist: Invalid character in file identifier RC=24
• GCTEIO621E Bad Plist: Invalid DEVICE argument (‘argument’) RC=24
• GCTEIO621E Bad Plist: Invalid EXEC variable name RC=24
• GCTEIO621E Bad Plist: Invalid mode ‘mode’ RC=24
• GCTEIO621E Bad Plist: Invalid positional argument (‘argument’) RC=24
• GCTEIO621E Bad Plist: Invalid record format (‘recfm’) -- Must be either F or V RC=24
• GCTEIO621E Bad Plist: Invalid record length argument (‘lrecl’) RC=24
• GCTEIO621E Bad Plist: Invalid value (‘value’) for number of lines RC=24
• GCTEIO621E Bad Plist: Invalid value (‘value’) for disk file line number RC=24
• GCTEIO621E Bad Plist: Missing DEVICE argument RC=24
• GCTEIO621E Bad Plist: Option ‘option’ can only be executed from a REXX EXEC RC=24
• GCTEIO621E Bad Plist: ‘option’ option is not valid with ‘option’ option RC=24
• GCTEIO621E Bad Plist: ‘option’ option not valid with ‘operation’ operation RC=24
• GCTEIO621E Bad Plist: STRING option with LINES=* is valid only for CP operation RC=24
• GCTEIO621E Bad Plist: Unknown option name (‘name’) RC=24
• GCTEIO621E Bad Plist: Value (‘value’) not valid for ‘option’ option RC=24

EXECIO

Chapter 4. GCS Commands 81

• GCTEIO621E Bad Plist: Value missing after (‘option’) option RC=24
• GCTEIO621E Bad Plist: VAR option with LINES > 1 is invalid
• GCTEIO622E Insufficient free storage for EXECIO RC=rc
• GCTEIO632E I/O error in EXECIO: rc=nnnn from operation operation RC=rc

(See “Explanation of Message GCTEIO632E” on page 91 for explanation of nnnn and operation.)

For more information, see:

• “Extended Descriptions and Use Information” on page 83
• “EXECIO Return Codes” on page 90
• “EXECIO Abend Codes” on page 92
• “Explanation of Message GCTEIO632E” on page 91

EXECIO

82 z/VM: 7.2 Group Control System

Extended Descriptions and Use Information
EXECIO commands are usually issued as statements from REXX EXECs. Under GCS EXECIO can be
executed from a REXX EXEC, through the CMDSI macro or by entering the command at the virtual
console.

Remember that when a GCS task completes and the READY message (Ready;) displays, GCS closes all
files used by EXECIO. Any subsequent EXECIO read operation will begin at file line one unless a "linenum"
value is specified. Any subsequent EXECIO write operation will begin at the end of the file unless a
"linenum" value is specified. Therefore, when possible, it is a good idea to specify a "linenum" value on
the EXECIO command line.

For write operations, data to be written is usually taken from the program stack. However, data to be
written may be supplied by the STRING option or by the VAR or STEM options (always the exec in question
must be a REXX exec).

If the STEM option is used for a print operation, any channel 9 or channel 12 indications returned by the
hardware will be ignored. When channel 9 or channel 12 is detected by the hardware, it will inform the
issuer by a return code. A return code of 102 indicates that channel 12 was sensed; a return code of 103
indicates that channel 9 was sensed.

If the issuer of the EXECIO print operation needs to be able to handle channel 9 or 12 indications, the
issuer should use the VAR, STRING option, or the program stack rather than STEM.

Program Stack:

The program stack is a buffer area, expanded as necessary from available free storage. Data flow into and
out of the program stack is:

1. Usually FIFO (first-in first-out) for read or write operations
2. LIFO (last-in first-out) for read options, such as FIND or LOCATE, that result in a line number being

stacked.

A successful search (LOCATE, FIND, and so forth) operation results in two lines being written (LIFO) to the
program stack:

1. The contents of the line that satisfied the search argument
2. The relative line number (number of lines read to obtain a match for the search argument), and for a

DISKR operation only, the absolute line number (position from the top of the file).

Stacked line number values may be used on subsequent EXECIO operations for lines or linenum
operands.

The QUEUED() built-in function can be used to return the number of lines in the program stack. See z/VM:
REXX/VM Reference for information on the QUEUED() built-in function.

Note: When the stack is empty, EXECIO will request input data from you by using a WTOR.

For example:

Ready;
execio 1 diskw test file a
01 Enter input for command EXECIO
reply 1 This is a line for the test file.
Ready;
Ready;

In this example because the stack was empty, EXECIO prompts for the data by issuing a WTOR. Then a
reply to the WTOR is returned to supply data for the EXECIO command. As a result, the test file contains
the input entered in response to the WTOR. See “REPLY” on page 147 for information on entering a reply
to WTOR.

Setting Variables Directly:

EXECIO

Chapter 4. GCS Commands 83

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2

The VAR and STEM options allow REXX variable(s) to be set directly, bypassing the use of the stack. Data
flow in and out of the variable(s) is:

• Always FIFO (first-in first-out) for read or write operations using STEM variables
• FIFO for read options, such as FIND or LOCATE, that result in a line number being returned.

A successful search (LOCATE, FIND, and so forth) operation results in two lines being assigned (FIFO) to
EXEC variables if the STEM option has been used:

1. The contents of the line that satisfies the search argument
2. The relative line number (number of lines read to obtain a match for the search argument), and for a

DISKR operation only, the absolute line number (position from the top of the file).

Returned line number values may be used on subsequent EXECIO operations for “lines” or “linenum”
operands.

If the STEM option was specified, then variable xxxx.0 contains the number of lines of data returned.

If the command returns a nonzero return code, the variables specified by the command will be undefined
and cannot be used.

Closing Files and Virtual Devices:

EXECIO (DISKR or DISKW) operations from within a REXX EXEC or issued by the CMDSI macro do
not close referenced files when the operation terminates unless the FINIS operand is specified on the
EXECIO command line.

There is considerable system overhead associated with the execution of FINIS. Therefore, if multiple
references are to be made to a given file, it should be closed only when necessary.

If successive EXECIO commands reference a particular internal area of a CMS file, it is probably more
efficient to let the file remain open until the last of these commands is issued. If this is done, each
operation begins at the file line following the last line processed. This eliminates much of the need for
calculating the "linenum" value.

When multiple tasks access the same file, they must be cooperating tasks. When a DETACH of a subtask is
issued, all files used by that subtask through EXECIO are closed.

EXECIO does not close virtual spool devices. Therefore, to cause any spooled EXECIO output to be
processed you must close the corresponding device. For example:

CP CLOSE PRINTER 00E

or:

CP SPOOL CLOSE 00E CLOSE

can be used to close the virtual printer after using the EXECIO PRINT function.

If an input spool file is read with the EXECIO CARD operation and the read is not completed (that is, the
virtual machine does not get a last-card indication), you must enter a CP CLOSE READER command to be
able to read that file again (or to read any other file). The file is purged unless you specify HOLD when you
close a reader file. See the CP CLOSE command in the z/VM: CP Commands and Utilities Reference.

If you have specified the PRINT operand and you try to write a line that is longer than the virtual device
(PRINTER) allows, you will get error message GCTEIO632E.

lines Operand:

For a DISKW, PUNCH, PRINT, or EMSG operation (if the STEM option had not been specified), if the
lines operand exceeds the number of lines on the program stack, a WTOR is issued to the terminal. At
that point, you must enter the balance of the lines (the number specified in the lines operand) from the
terminal. Entering a blank character (null line) does not terminate the EXECIO operation; it writes a blank
character to the output device. When the lines operand has been satisfied, the exec from which EXECIO
was issued continues to execute.

EXECIO

84 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2

If * (to end of file) is specified for lines on an output operation, and you want the operation to terminate
at any line in the program stack or a STEM array, you must make sure that line is null. Reading a null line
terminates any of the four output operations if * is specified for the lines operand.

For input operations (DISKR, CARD, and CP), the number of lines written to the program stack or the STEM
array does not necessarily equal the number specified by lines. For example, an end-of-file or a satisfied
search condition terminates a read operation, even if the specified number of lines has not been written to
the program stack or the STEM array. When a search argument (FIND, LOCATE, AVOID option) is satisfied,
and no SKIP option is specified, and the default stacking order (LIFO) is used, the line at the top (first line
out) of the stack or the STEM array contains the number of operations required to satisfy the search. The
next line contains the line that satisfied the search.

If the search argument (FIND, LOCATE, AVOID option) is not satisfied, a return code of 3 is given, even
if EOF occurs before the specified number of lines has been read. A return code of 3 is also given if * is
specified for lines on a read operation, and the search argument is not satisfied.

When a number greater than 0 is specified for lines with output operation CP, and the number of lines
written to the program stack, stem array, or variable name is not equal to the number specified by lines, a
return code of 2 is given.

When * is specified for lines on a read operation, the operation is terminated at end-of-file. A return code
of 0 is given because the * is an explicit request to read to end-of-file.

When a search argument (FIND, LOCATE, and AVOID options) is not satisfied and an end-of-file situation
occurs for the EXECIO CARD operation, the reader file is purged unless a CP SPOOL READER HOLD was
previously specified. For more information on how spool files are processed, see the CP CLOSE and CP
SPOOL commands in the z/VM: CP Commands and Utilities Reference.

DISKR Operation:

The first line read on a DISKR operation may be:

• The first line of the specified file
• Specified using the "linenum" operand
• Determined by the results of a previous operation.

The DISKR operation may be used to simply read a specified number of lines from a specified file and
write them to the program stack or a variable. For example, suppose file MYFILE DATA contains:

The number one color is red
The number two color is yellow
The number three color is green
The number four color is blue
The number five color is black

The command:

EXECIO 2 DISKR MYFILE DATA * 1

writes to the program stack (FIFO) two lines beginning with line one, like this:

|. The number one color is red |.<-next line read
|. The number two color is yellow |.
|. . |.
/ . /

However, a little more complex version of this command:

EXECIO 2 DISKR MYFILE DATA * 3 (LIFO MARGINS 5 14

would have resulted in this program stack:

|. number fou |.<-next line read
|. number thr |.
|. . |.
/ . /

EXECIO

Chapter 4. GCS Commands 85

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2

Notice in the preceding example the use of * as a file mode operand on the command lines to serve as a
place holder. The command:

EXECIO 2 DISKR MYFILE DATA * 1 (STEM X.

assigns to variables X.1 and X.2 one line each, beginning with line one, like this:

|. The number one color is red |. X.1
|. The number two color is yellow |. X.2
|. . |.
/ . /

The X.0 variable contains the number of lines (in this example, 2).

When a line satisfies the LOCATE, FIND, or AVOID option for a DISKR operation, EXECIO writes that line to
the program stack (LIFO) or a variable (FIFO) and in an additional stack line or variable, writes the relative
(number of lines read to satisfy the search) and absolute (position from the top of the file) line numbers.

CP Operand:

When a search argument is required, the CP operand uses the FIND, LOCATE, and AVOID options to
process output resulting from the associated CP command. Each line that satisfies the search criteria is
written to the program stack or a variable. When data exceeds 8192 characters, it is truncated on a line
basis and an error code is returned. If you specify the BUFFER option, data is truncated on a line basis
after the number of characters specified in length or 8192 is reached, whichever is greater. Each line
returned ends with a X'15' character. This must be allowed for when calculating the buffer size needed.
The number of read operations required to match the search argument is written to the next stack line.

If you do not supply the CP command to be issued by the STRING option, the next line in the program
stack is treated as that command. If there are no lines in the program stack, a WTOR is issued to the
terminal. The reply to the WTOR is treated as the CP command. If the reply consists of a null line, the
operation terminates. See “REPLY” on page 147 for information on entering a reply to WTOR.

The responses from the CP command are treated as input. If CP SET IMSG is set OFF, no response is
issued by some CP commands. This may result in a return code of 2, if a number other than zero (0) is
specified for lines. The return code of 2 indicates that the end of the input file was reached before the
specified number of lines could be read. This will not occur if you specify the lines operand as an asterisk
(*). For more information regarding which CP commands are affected by the setting of IMSG see the CP
SET command in the z/VM: CP Commands and Utilities Reference.

Remember that all characters of CP commands must be uppercase.

ZONE and MARGINS options do not affect the reading of the CP command; however, they do affect the
portions of the lines processed as a result of the command execution.

DISKW Operand:

The DISKW operand causes the next lines from the program stack to be written to a CMS file. The point at
which writing begins in an existing file on a DISKW operation may:

1. Follow the last file line (default "linenum" when writing to a newly opened file, for example)
2. Be specified using the "linenum" operand
3. Be determined by the results of a previous operation.

For example, suppose you want to write 10 lines from the program stack to the end of an existing file,
BUCKET STACK A, on your disk accessed as A. Your exec file statement to do this would be:

EXECIO 10 DISKW BUCKET STACK A

Now, take a slightly more complex requirement. Using stack lines down to the first null line, create a new
file, BASKET STAX A, then close the file after it is written. Also, make the file fixed length format with a
record length of 60. The EXECIO command to do this is:

EXECIO * DISKW BASKET STAX A 1 F 60 (FINIS

EXECIO

86 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2

A word of caution about using the linenum operand to insert lines in the middle of CMS variable length
files. Because of the way GCS handles these files, any variable length line inserted must be equal in length
to the line it displaces. Otherwise, all lines following the one inserted are truncated.

For example, assume the variable format file WORDS LEARNING A is:

A is for apple
C is for cake
C is for candy
D is for dog

execution of:

EXECIO 1 DISKW WORDS LEARNING A 2 (STRING B is for butterfly

produces a file that contains only:

A is for apple
B is for butterfly

Because "B is for butterfly" contains more characters than the line it writes over, "C is for cake", all lines
following it are truncated. However, slightly modifying the command to:

EXECIO 1 DISKW WORDS LEARNING A 2 (STRING B is for baby

results in:

A is for apple
B is for baby
C is for candy
D is for dog

To prevent truncation when inserting records in a variable-length file, you can use fixed-format files.

recfm lrecl operands:

The default value for recfm is V (variable), in which case "lrecl" has no meaning. If you specify F (fixed) for
recfm, the default lrecl value is 80. The maximum lrecl value that you may specify is 255 unless the VAR
or STEM option is used to bypass the use of the program stack, in which case the maximum is the limit
determined by the amount of storage available in your virtual machine below the 16MB line.

When lines are written to an existing file, the record format and record length of that file apply. Specifying
recfm or lrecl values on the EXECIO command line that conflict with those of the existing file causes an
error message to be issued.

CC Operand:

When you specify CC together with the DATA operand, be sure the first character of each line to be sent to
the virtual printer may be removed and interpreted as carriage control for that line.

You may use ANSI or machine code characters with the CC operand to specify carriage control as shown
by Table 9 on page 87. In this table the first character of the line is interpreted as a carriage control
character.

Table 9. Valid ANSI Control Characters for Carriage Control

 Character Hex
Code

 Meaning

blank 40 Space 1 line before printing

0 F0 Space 2 lines before printing

- 60 Space 3 lines before printing

+ 4E Suppress space before printing

1 F1 Skip to channel 1

EXECIO

Chapter 4. GCS Commands 87

Table 9. Valid ANSI Control Characters for Carriage Control (continued)

 Character Hex
Code

 Meaning

2 F2 Skip to channel 2

3 F3 Skip to channel 3

4 F4 Skip to channel 4

5 F5 Skip to channel 5

6 F6 Skip to channel 6

7 F7 Skip to channel 7

8 F8 Skip to channel 8

9 F9 Skip to channel 9

A C1 Skip to channel 10

B C2 Skip to channel 11

C C3 Skip to channel 12

For example, CC 0 causes space two lines before printing.

If you are using EXECIO with either the VAR, STRING option, or the program stack and the virtual FCB
defines channel 9 or channel 12, it may be necessary to reset the carriage control. When channel 9
(return code 103) or channel 12 (return code 102) is sensed, the write operation terminates after carriage
spacing, but before writing the line. If you are printing from the program stack, then the line will remain in
the stack. The carriage control character should be modified to take the appropriate action (for example,
skip to channel, or print with no space).

If your virtual printer is a device type which reflects channel code sensing back to you, the sensing of
channel code 12 or 9 results in a return code of 2 or 3 from PRINT, which EXECIO reflects as return code
102 or 103. For these type conditions, the following options are available for you to handle recovery:

• Code the application to examine the return code from EXECIO and retry the print operation if a channel
code 12 or 9 has been detected.

• Redefine the virtual printer to a device type that does not reflect channel 12 or 9 sensing.
• Redefine the FCB for the printer to eliminate the channel code 12 or 9.

EMSG Operand:

Lines to be displayed by EMSG should have the format:

xxxmmmnnns

where:
xxxmmm

is the issuing module name
nnn

is the message number
s

indicates the message type (E - error, I - informational, W - warning, and so forth)

The current settings of the CP SET EMSG command control the displayed lines. These settings, combined
with message length, can cause messages to be abbreviated or not displayed at all.

linenum Operand:

When a linenum value (default 0) is not specified on the EXECIO command line, the number of the next
file line available for reading or writing depends on results of previous operations that referenced that file.

EXECIO

88 z/VM: 7.2 Group Control System

For example, consider the two EXECIO DISKR operations just following. By looking at the first of these
commands you can see:

• Four lines are to be read from MYFILE DATA, starting at line 1
• Because FINIS is not specified on the command line, MYFILE DATA remains open after the first read

operation. Because the first command reads 4 lines, the subsequent read operation will begin at line 5.

 .
EXECIO 4 DISKR MYFILE DATA * 1
 .
 .
EXECIO 3 DISKR MYFILE DATA (FINIS
 .

Because the second EXECIO command specifies no linenum operand, reading of the specified 3 lines
begins at line 5.

Two situations that would cause the second EXECIO command to not begin execution at line 5 are:

• A program other than EXECIO accessing MYFILE DATA after the first and before the second EXECIO
command is executed.

• A GCS operation except WTOR completing so the GCS READY message (Ready;) is displayed. In that
case GCS closes associated files. Therefore, subsequent operations using these files would begin at line
1.

The FINIS operand causes MYFILE DATA to close. Therefore, any subsequent DISKR operation using a
default linenum value would begin reading at line 1.

FIND, LOCATE, AVOID options:

The delimiter pair for the specified character string need not be //. They may be any character not
included in the string. For example:

EXECIO * DISKR MYFILE DATES (LOCATE $12/25/81$

FIFO, LIFO options:

Most EXECIO operations that write to the program stack default to FIFO, first line written to the stack
will be the first read out. The exceptions (LIFO) are operations involving a search (LOCATE, FIND, and
AVOID options). These operations result in the relative line number (number of lines read to satisfy the
search) being stacked. For DISKR operations the absolute line number (position from the top of file) is
also stacked on the same line. It is necessary to have these numbers at the top of the stack so that they
are immediately accessible to a subsequent EXECIO command.

SKIP Option:

On EXECIO read operations the SKIP operand prevents input lines from being written to the program
stack or a variable. For example, you might want to put on the program stack all lines of MYFILE DATA
that follow the line containing "4120 Rock Road". First, to search through the file for the line after which
reading to the program stack is to begin, enter:

EXECIO * DISKR MYFILE DATA * 1 (LOCATE /4120 Rock Road/ SKIP

The SKIP option prevents the line being searched for, together with the line number, from being written to
the program stack. Then, to write to the program stack the next line through the end of file, issue:

EXECIO * DISKR MYFILE DATA

Remember that accessing MYFILE DATA by another program or causing a GCS READY message to be
displayed, except from WTOR, before issuing the second EXECIO command would change the point at
which the second command begins reading. When possible, you should specify the linenum operand
explicitly.

EXECIO

Chapter 4. GCS Commands 89

Another use of the SKIP option might be the execution of a CP command using the CP operand to obtain a
return code without displaying the resulting messages or writing them to the program stack or a variable.
For example:

EXECIO * CP (SKIP STRING Q userid

The user ID must be uppercase.

As an alternative, specifying 0 for the lines operand value with the CP operand also causes results not to
be displayed or written to the program stack.

STEM Option:

The STEM option lets an array of REXX variables be set directly, bypassing the stack. For example, if you
want the first 3 lines of MYFILE DATA to be assigned to REXX variables X.1, X.2, and X.3, enter:

'EXECIO 3 DISKR MYFILE DATA * 1 (STEM X.'

Variable X.1 now contains the first line of MYFILE DATA, variable X.2 contains the second line, and
variable X.3 contains the third line. Variable X.0 contains the number of lines (in this example, 3). For
REXX variables, the variable name should be enclosed in quotation marks and must be in uppercase.

For the STEM option, the maximum length variable name is 240 bytes.

VAR Option:

On EXECIO operations, the VAR option allows a REXX variable to be set directly, bypassing the use of the
stack. For example, if you want the second line of MYFILE DATA to be assigned to a variable named X,
issue:

'EXECIO 1 DISKR MYFILE DATA * 2 (VAR X'

Variable X now contains the second line of MYFILE DATA.

For REXX variables, the variable name should be enclosed in quotation marks and must be in uppercase.

For the VAR option, the maximum length variable name is 250 bytes.

EXECIO Return Codes

Return Code Meaning

0 Finished correctly

1 Truncated

2 EOF before specified number of lines were read

3 Count ran out without successful pattern match

24 Bad Parameter List (PLIST)

41 Insufficient free storage for EXECIO

nnn 100 + return code from I/O operation (if nonzero)

2008 Variable name supplied on STEM or VAR option was invalid.

x1nnn 1000 + return code from CP command (if nonzero), where x is 0, 1, 2, or 3, as previously
described

1xnnnn 100000 + return code from CP command (if nonzero), where x is 0, 1, 2, or 3, as
previously described

EXECIO

90 z/VM: 7.2 Group Control System

Explanation of Message GCTEIO632E
I/O error in EXECIO: rc=nnnn from operation operation

When the operation is:
CARD

nnnn =
2

unit check, intervention required
3

I/O error (GCTCIO will issue a message)
108

Reader not attached at 00C
112

Reader is busy
CP

nnnn =

See z/VM: CP Commands and Utilities Reference for more information on return codes.

DISKR
nnnn =
3

Permanent I/O error
8

Truncation occurred
12

End of file, or record greater than the number of records in data set
25

Insufficient free storage available for file management control areas
26

Requested item number is negative or item number plus number of items exceeds file system
capacity

DISKW
nnnn =
3

Permanent I/O error
4

Invalid mode specified or disk is not accessed
7

Attempt to skip over unwritten variable-length item
12

Attempt to write to read-only disk or disk is not accessed
13

Disk is full
15

Length of fixed length item not the same as previous item
17

Variable length item greater than 65535 bytes
22

Virtual storage capacity exceeded

EXECIO

Chapter 4. GCS Commands 91

25
Insufficient free storage available for file directory buffers

26
Requested item number is negative or item number plus number of items exceeds file system
capacity

27
Attempt to update variable length item with one of different length

EMSG
nnnn = No return code possible from EMSG routine

EXECCOMM
nnnn =
-2

Insufficient storage is available to process your request
8

Invalid variable name
FINIS

nnnn =
6

File not open (or no read or write was issued to the file), or invalid file ID (fn ft fm) specified.
PRINT

nnnn =
1

line too long
2

Channel 12 punch detected
3

Channel 9 punch detected
4

Intervention required
5

I/O operation was unsuccessful (GCTPIO issues message)
108

Printer not attached at 00E
112

Printer is busy
PUNCH

nnnn =
2

unit check, intervention required
3

I/O error (GCTCIO will issue a message)
108

Punch not attached at 00D
112

Punch is busy

EXECIO Abend Codes

EXECIO

92 z/VM: 7.2 Group Control System

ABEND Code Reason Code Meaning

FCA 0C00 You are not authorized to access the storage specified in the parameter
list.

EXECIO

Chapter 4. GCS Commands 93

FILEDEF

Format

Filedef

*

ddname

CLEAR

ddname PRinter

(Option A

OPTCD j)

PUnch

Reader

DUMMY

(Option A

)

DISK
FILE ddname A1

fn ft
A1

fm

(Option A

DISP MOD DSORG PS)

Option A

BLOCK nnnnn

BLKSIZE nnnnn

CHANGE

NOCHANGE LRECL nnnnn PERM RECFM F

FA

FB

FBA

V

VA

VB

VBA

U

UA

Purpose

Use the FILEDEF command to define CMS format files and spool files.

Application programs usually require some setting up before you can start and run them. The FILEDEF
command is one of the preliminary commands issued to prepare a program for execution. You enter it to
define CMS format files and spool files used by the program.

Operands

ddname
The name of the file, as referred to in your program. The ddname can contain one to eight
alphanumeric characters. However, the first one must be alphabetic or national.

*
If you specify an asterisk (*) instead of a ddname and follow it with the CLEAR operand, all file
definitions that you did not enter with the PERM option will be cleared.

FILEDEF

94 z/VM: 7.2 Group Control System

CLEAR
Removes any existing definition for the specified ddname that is owned by the current task. You
should clear ddnames before defining them to make sure the ddname does not already exist. Doing
that cancels any operations previously defined with the ddname.

PRinter
Represents the spooled printer, which you must have defined at virtual address 00E.

OPTCD j
When the virtual printer is a 3800, j indicates to QSAM and BSAM that the output data line's first byte
will contain a table reference character (TRC). This TRC selects a character arrangement table to use
in printing the data line. The TRC can be alone or with other ANSI control characters.

PUnch
Represents the spooled punch, which you must have defined at virtual address 00D.

Reader
Represents the spooled card reader, which you must have defined at virtual address 00C. (I/O to the
card reader must not be blocked.)

DUMMY
Indicates that no real I/O takes place for the data set.

DISK
Specifies that the virtual I/O device is a disk. fn and ft are CMS fields. If you omit DISK fn ft, the
default is FILE ddname A1.

DISP MOD
Positions the read/write pointer after the last record in a disk file. Use this option only when you are
adding records to the end of a file. That file must be on a disk accessed as read/write. The disk cannot
be an extension of another disk. If so, it would be read/only, and you could not write to it.

DSORG PS
Specifies that the data set has a physical, sequential (PS) organization.

Options

BLOCK nnnnn
BLKSIZE nnnnn

Specifies the maximum block length in bytes. For fixed length records, this is the record length. For
variable length records, this gives the maximum logical record length (up to 32756 bytes, plus 4 bytes
for a block descriptor word). For undefined length records, this value can be altered by the problem
program. It can be inserted directly into the data control block or specified in the length operand of a
READ/WRITE macro.

CHANGE
Combines definitions for an existing ddname with new ones when you enter a new FILEDEF for that
same ddname. All options from both definitions are merged. A new definition for a particular option
replaces the original definition.

The CHANGE option is not valid when the new FILEDEF is issued for a ddname that another task has
already issued a FILEDEF for, or when the associated file has already been opened.

NOCHANGE
Retains the current file definition, if one exists, for a specified ddname. With this option, the system
stops further processing (error checking, scanning, and similar functions) for new FILEDEF commands
with the same ddname.

LRECL nnnnn
Specifies the length, in bytes, of each fixed length logical record or the maximum length, in bytes, for
variable length logical records. This value should not exceed 32760 bytes for fixed length records or
32756 (including four bytes for a record descriptor word) for variable length records.

FILEDEF

Chapter 4. GCS Commands 95

PERM
Retains the current file definition until it either is explicitly cleared or is changed by a new FILEDEF
command with the CHANGE option. If you do not specify PERM, the definition is cleared when you
enter FILEDEF * CLEAR.

RECFM
Represents the record format of the file, where a can be one of these:
Type is:

The file contains:
F

Fixed length records
FA

Fixed length records with American National Standards Institute (ANSI) characters
FB

Fixed length, blocked records (not for use with READER devices)
FBA

Fixed length, blocked records with ANSI characters
V

Variable length records
VA

Variable length records with ANSI characters
VB

Variable length, blocked records (not for use with READER devices)
VBA

Variable length, blocked records with ANSI characters
U

Records of an undefined length
UA

Records of an undefined length with ANSI characters.

For more information on using this command and its operands and options, see z/VM: CMS Commands
and Utilities Reference

Messages
• GCTFLD001E Invalid option 'option' RC=24
• GCTFLD002E Invalid parameter 'parameter' in the option 'option' field RC=24
• GCTFLD003E 'option' option specified twice RC=24
• GCTFLD004E 'option1' and 'option2' are conflicting options RC=24
• GCTFLD005S Virtual storage capacity exceeded RC=104
• GCTFLD006E Invalid parameter 'parameter' RC=24
• GCTFLD011E Invalid character in fileid 'fn ft' RC=20
• GCTFLD017E Disk mode not accessed RC=36
• GCTFLD021E Invalid mode 'mode' RC=24
• GCTFLD023E No file type specified RC=24
• GCTFLD301E Invalid device 'device name' RC=24
• GCTFLD302E Parameter missing after DDNAME RC=24
• GCTFLD303I No user defined FILEDEFS in effect
• GCTFLD304I Invalid CLEAR request
• GCTFLD320E Error during FILEDEF CLEAR processing, DCBs not closed RC=40

FILEDEF

96 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb4_v7r2.pdf#nameddest=dmsb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb4_v7r2.pdf#nameddest=dmsb4_v7r2

For more information on messages, see z/VM: Other Components Messages and Codes.

FILEDEF

Chapter 4. GCS Commands 97

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

GDUMP

Format

GDUMP
0:END

hexloc1 .bytecount

 –
:

END

ALL

hexloc2

TO dump_userid

TO *

userid

DSS

FORMAT GCS

FORMAT type

Purpose

Use the GDUMP command to produce a copy of the contents of your virtual machine's storage.

Parameters

hexloc1
The hexadecimal address in virtual storage where the dump is to start. If no starting address is
specified, 0 is assumed.

.bytecount
Specifies the number of bytes to be included in the dump. No embedded blanks are allowed.

If you wanted 65597 (X'1003D') bytes of storage, dumped starting at address X'4F023', you would
use:

4F023.1003D

– (dash)
: (colon)

The dash and colon are range indicators that specify a range of storage to be dumped.

If the storage you want to dump begins at address X'4F023' and ends at X'5F05F', you could express
the range this way:

4F023-5F05F

or:

4F023:5F05F

Embedded blanks are not allowed.

END
Specifies that the dump is to end at the last address of virtual storage.

If you omit the hexloc2 and END parameters, END is assumed.

GDUMP

98 z/VM: 7.2 Group Control System

ALL
Specifies that the dump is to end at the last address of the virtual machine's address space. The dump
includes virtual machine storage plus saved segments.

hexloc2
The hexadecimal address in virtual storage where the dump is to end. This must be preceded by (and
adjoined to) a dash or colon. If you do not specify it, and either the colon or dash is used, then the last
address in virtual storage is assumed.

Note: Dumps are always generated in 4KB pages. These pages correspond to the 4KB pages into
which storage is segmented. If you request that a certain portion of storage be dumped, the entire
4KB page into which that portion falls is included in the dump. So, your request is always rounded up
and down to the nearest page boundaries.

TO dump_userid
Specifies the dump is to be sent to the user ID, which was predefined in the GROUP EXEC. Also, note
that this is the default.

TO *
Specifies that you want the dump sent to the virtual reader of the machine that is issuing this GDUMP
command.

If the issuer of an GDUMP command (with TO * specified) is not on the list of authorized user IDs
(specified with the GROUP EXEC), any fetch protected data that does not have a storage key of 14
is omitted from the dump. However, all requested nonfetch protected data and Key 14 storage is
included.

TO userid
Specifies that you want the dump sent to the virtual reader of a specific user (even if your group has a
common dump receiver).

If the user ID receiving the dump is not on the list of authorized user IDs (specified with the GROUP
EXEC), fetch protected data is omitted from the dump. However, all requested nonfetch protected
data and key 14 storage is included.

Unauthorized user IDs can request a dump containing fetch protected data and send it to an
authorized receiver. That way, the fetch protected data will be included. However, those unauthorized
user IDs are prevented from using the CP TRANSFER command to transfer the dump-containing spool
file to their own machines.

If you do not specify TO, the dump goes to the common dump receiver (if you specified one with the
GROUP EXEC). Otherwise, it goes to the virtual reader of the machine issuing the GDUMP command.

DSS
Specifies that any saved systems, or discontinuous saved segments, in your machine (the one where
you were issuing the command) be included in the dump.

FORMAT type
Describes the type of virtual machine contents you are dumping (CMS, GCS, RSCS, or another type).
This format type will later become the DVF format type of the dump.

If you omit this operand, a format type of GCS is assumed.

Usage
No dump will be produced if dumps are suppressed through the SET DUMP OFF command.

Examples

gdump 0:CB8F7 TO * DSS

Requests a dump of the issuer's virtual storage contents, from address 0 to CB8F7, and sends it to the
issuer's own virtual reader. This dump includes any discontiguous saved segments the virtual machine

GDUMP

Chapter 4. GCS Commands 99

may be using and, if the user ID is authorized, any fetch-protected data (other than key 14) that can be
found within the specified address range. The virtual machine type is GCS (the default).

gdump

Requests a dump of the issuer's virtual storage contents (excluding any discontiguous saved segments)
and sends it to the common dump receiver. If the common dump receiver is an unauthorized user ID, no
fetch-protected data other than key 14 will be included in the dump.

Messages
• GCTDUM009E Operand is missing or invalid RC=12
• GCTDUM010I Command Complete
• GCTDUM363E Dump suppressed via SET DUMP OFF command RC=32
• GCTDUM525E Userid is missing or invalid RC=20
• GCTDUM526E Userid 'user ID' not in CP directory RC=16
• GCTDUM527E Invalid range RC=24
• GCTDUM529E Partial dump taken RC=4
• GCTDUM531E Dump failed: spooling error RC=8
• GCTDUM532E Dump failed: I/O error RC=28
• GCTDUR528I Dump complete
• GCTDUR529E Partial dump taken
• GCTDUR530E Dump failed
• GCTDUR362I Dump suppressed

For more information on messages, see z/VM: Other Components Messages and Codes.

Return Codes
The meanings of return codes for these messages are:

Hex
Code

Decimal
Code

Meaning

X'00' 0 The dump finished successfully. All requested areas were recorded in
the dump.

X'04' 4 Not all the requested areas were recorded in the dump.

X'08' 8 A spooling error in CP prevents the dump from being recorded.

X'0C' 12 An operand is missing or invalid.

X'10' 16 The recipient's user ID is not in the CP directory.

X'14' 20 The TO operand was specified but the user ID was missing or invalid.

X'18' 24 An invalid address range was specified.

X'1C' 28 CP experienced an I/O error when paging in the parameter list or
dump list. No dump was recorded.

X'20' 32 Dump suppressed.

GDUMP

100 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

GLOBAL

Format

GLobal LOADLIB

 libname
1

Notes:
1 You can specify a maximum of 63 libnames.

Purpose

Use the GLOBAL command to define the CMS load libraries you want searched for modules.

Programs you run under GCS may be members of CMS load libraries. Before GCS can call a program
residing in a load library, you must identify the load library where it can be found.

Use the GLOBAL command to specify what load libraries GCS should search whenever you attempt to
start a program.

Operands

LOADLIB
An operand indicating that you are referring to CMS load libraries.

libname
The file names of the load libraries you want searched for modules. No more than 63 load libraries
may be specified in the GLOBAL command. Whenever the load libraries are searched, they are
searched in the order they are specified in this command.

If no library names are specified, the command cancels the effects of any previous GLOBAL
command.

To find out what load libraries are currently identified to be searched, type:

query loadlib

Messages
• GCTGLB005S Virtual storage capacity exceeded RC=104
• GCTGLB013E No function specified RC=24
• GCTGLB014E Invalid function 'function' RC=24
• GCTGLB024E File 'fn ft fm' not found RC=28
• GCTGLB220E Unable to open file 'filename' RC=28
• GCTGLB221S More than nnn libraries specified RC=88
• GCTGLB222E File 'fn ft fm' contains invalid record formats RC=32
• GCTGLB223S Error 'xx' reading file 'fn [ft fm]' from disk RC=100

For more information on messages, see z/VM: Other Components Messages and Codes.

GLOBAL

Chapter 4. GCS Commands 101

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

GROUP

Format

GROUP
GCS

systemname

Purpose

Use the GROUP command to set up a Group Control System (GCS) configuration file for building a GCS
nucleus. You can invoke GROUP from the CMS environment. GROUP displays a series of panels on which
you enter information about your virtual machine group.

Operands

systemname
is an optional parameter that specifies the file name that you want to assign to the configuration file.
If you enter this parameter with the GROUP command, then the Primary Option Menu panel appears
with the SYSTEM NAME field filled in. If you enter the GROUP command without this parameter, then
the field called SYSTEM NAME displays GCS on the Primary Option Menu panel. The default system
name entry is GCS.

Usage
1. You manually invoke the GROUP command to display the GCS configuration files.
2. If you do not have a full-screen display device, you cannot use the GROUP panels to build the GCS

configuration file. You must build the file manually, using the build macros.

Messages and Return Codes
GCTGRP007E

Extraneous parameter ‘parameter’ RC=24
GCTGRP018E

Disk ‘mode’ is Read/Only RC=36
GCTGRP019E

No Read/Write ‘mode’ disk accessed RC=36
GCTGRP024E

File ‘fileid’ not found RC=36
GCTGRP428S

‘mode (vdev)’ not attached RC=36

For more information on messages, see z/VM: Other Components Messages and Codes.

For more information on GROUP, see:

• “GROUP Panels” on page 103
• “Function Keys” on page 105

GROUP

102 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

GROUP Panels
The GROUP command displays six panels:

• Primary Option Menu (Figure 16 on page 103)
• Authorized VM User IDs (Figure 17 on page 103)
• Saved System Information, Page 1 (Figure 18 on page 104)
• Saved System Information, Page 2 (Figure 19 on page 104)
• Automatic Saved Segment Links (Figure 20 on page 105).
• User IDs Requiring Reserved Storage for VSAM (Figure 21 on page 105).

 GRP1 GCS GROUP - PRIMARY OPTION MENU Primary

Fill in the blanks with the required information and then press the ENTER key.

 Type/change the name of the saved system that is being defined.

 SYSTEM NAME : GCS.....

 Type one number from the list below to display/update the:

 1. Authorized VM Userids.
 2. Saved System Information.
 3. Saved Segment Links.
 4. VM Userids requiring reserved storage for VSAM.

 Type your choice here: _

 PF: 1 HELP 2 CLEAR 3 END 4 ... 5 ... 6 ...
 PF: 7 ... 8 ... 9 ... 10 ... 11 ... 12 CURSOR

====>

Figure 16. GROUP Primary Option Menu Panel

 GRP11 AUTHORIZED VM USERIDS FOR < > PAGE 1 OF 1

 To ADD, fill in the blanks with the authorized VM userids.
 To CHANGE, type a new userid over the userid to be changed.
 To DELETE, type blanks on the line.
 To SAVE, press the ENTER key or PF6.

 PF: 1 HELP 2 MORE 3 RETURN 4 ... 5 REFRESH 6 SAVE
 PF: 7 PREVIOUS 8 NEXT 9 VERIFY 10 ... 11 ... 12 CURSOR

====>

Figure 17. GROUP Authorized VM User IDs Panel

GROUP

Chapter 4. GCS Commands 103

 GRP121 SAVED SYSTEM INFORMATION FOR < > PAGE 1 OF 2
--
 To ADD, fill in the blanks with the information.
 To CHANGE, type the information over the displayed value.
 To DELETE, type blanks on the line.
 To SAVE, press the ENTER key or PF6.

 RECOVERY MACHINE USERID (required):

 USERID to RECEIVE STORAGE DUMPS.:

 GCS TRACE TABLE SIZE (minimum 4K).: ______16 K

 Common storage above 16M line (YES or NO).: YES.

 Single user environment (YES or NO). . . .: NO.

 Saved system information is continued on the next screen.

--
 PF: 1 HELP 2 CLEAR 3 RETURN 4 ... 5 REFRESH 6 SAVE
 PF: 7 ... 8 NEXT 9 VERIFY 10 ... 11 ... 12 CURSOR

====>

Figure 18. Saved System Information Panel, Page 1

Note: If you want to change the start and end addresses of common storage above the 16MB line, refer to
“Changing GCS Nucleus Options” on page 507.

 GRP122 SAVED SYSTEM INFORMATION FOR < > PAGE 2 OF 2
--

 To ADD, fill in the blanks with the information.
 To CHANGE, type the information over the displayed value.
 To DELETE, type blanks on the line.
 To SAVE, press the ENTER key or PF6.

MAXIMUM NUMBER of VIRTUAL MACHINES (required). .: ___

SYSTEM ID (maximum 130 characters): ________________________

__
NAME of the VSAM SEGMENT: CMSVSAM.
NAME of the BAM SEGMENT : CMSBAM..
GCS saved system is restricted (YES or NO) . . .: YES
TRACE TABLE in private storage (YES or NO) . . .: YES

--
 PF: 1 HELP 2 CLEAR 3 RETURN 4 ... 5 REFRESH 6 SAVE
 PF: 7 PREVIOUS 8 ... 9 ... 10 ... 11 ... 12 CURSOR

====>

Figure 19. GROUP Saved System Information Panel, Page 2

Note: If the names of the VSAM and BAM segments are CMSVSAM and CMSBAM, respectively, no changes
are required. For installation of the CMSVSAM and CMSBAM segments, refer to the VSE/VSAM for VM
Program Directory.

GROUP

104 z/VM: 7.2 Group Control System

 GRP13 AUTOMATIC SAVED SEGMENT LINKS FOR < > PAGE 1 OF 1
--

 To ADD, fill in the blanks with the saved segment names
 that will be linked automatically during
 initialization of this virtual machine group.
 To CHANGE, type a new saved segment name over the saved
 segment name to be changed.
 To DELETE, type blanks on the line.
 To SAVE, press the ENTER key or PF6.

--
 PF: 1 HELP 2 MORE 3 RETURN 4 ... 5 REFRESH 6 SAVE
 PF: 7 PREVIOUS 8 NEXT 9 VERIFY 10 VEROVER 11 ... 12 CURSOR

====>

Figure 20. GROUP Automatic Saved Segment Links Panel

 GRP14 USERIDS REQUIRING RESERVED STORAGE FOR VSAM PAGE 1 OF 1
--

 To ADD, fill in the blanks with the VM userids for VSAM.
 To CHANGE, type a new userid over the userid to be changed.
 To DELETE, type blanks on the line.
 To SAVE, press the ENTER key or PF6.

--
 PF: 1 HELP 2 MORE 3 RETURN 4 ... 5 REFRESH 6 SAVE
 PF: 7 PREVIOUS 8 NEXT 9 VERIFY 10 ... 11 ... 12 CURSOR

====>

Figure 21. GROUP User IDs Requiring Reserved Storage for VSAM Panel

Function Keys
The following table shows the function keys used with the GROUP panels.

Table 10. Function Keys Used with the GROUP Panels

KEY FUNCTION

 PF1 HELP Shows information about the panel you are looking at.

 PF2 CLEAR/
MORE

Clears the input areas where you enter information.

• On panels where multiple values are accepted, pressing PF2 gives you an additional
screen that lets you enter more values.

• Information from the previous panel does not need to be saved until you are ready to exit
that panel's function.

GROUP

Chapter 4. GCS Commands 105

Table 10. Function Keys Used with the GROUP Panels (continued)

KEY FUNCTION

 PF3 END/
RETURN

Leaves the present panel and returns you to a previous one.

• If you press PF3 on the Primary Option Menu, you return to CMS.
• If you press PF3 on any other screen, you return to the Primary Option Menu.

 PF5 REFRESH Fills in the panel's input areas with the values you last saved there.

 PF6 SAVE Saves information that you entered on the panel or panels (for the configuration file
systemname GROUP).

 PF7 PREVIOUS Returns to the previous panel, if there is one.

 PF8 NEXT Moves ahead to the next panel, if there is one.

 PF9 VERIFY This PF key validates the user IDs or the saved segments entered on the panel.

 PF10 VEROVER Checks to see if segments you have entered on the panel overlap each other.

 PF12 CURSOR Moves the cursor to the panel's command line.

 PF4 , PF11 Not Used

 ENTER
PROCESS

Saves information that you entered and processes any valid CP or CMS command typed on
the command line. A specific command you can enter is

CANCEL, entered on any panel, to return you to CMS.

GROUP

106 z/VM: 7.2 Group Control System

HX

Format

HX

Purpose

Use the HX command to halt execution of all programs and commands active in a virtual machine.

Sometimes you may want to halt the processing of a command or program after you have already issued
it. Use the HX command to halt processing of all commands and programs active in a virtual machine.
Issuing HX will also clear commands you have stacked and waiting to be processed, including any of your
own commands defined with a LOADCMD command.

Messages
• GCTABD225I Hx complete

For more information on messages, see z/VM: Other Components Messages and Codes.

HX

Chapter 4. GCS Commands 107

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

ITRACE

Format

ITrace END

ALL

SUP

GTRACE

SP

Options

OFF

GRoup

Options

GTrace

DSP

EXT

FRE

GET

I/O

PRG

SIO

SSS

SVC

SYN

1

Notes:
1 Each option may be specified only once.

Purpose

The ITRACE command is provided to enable you to perform GCS problem diagnosis.

Use the ITRACE command to enable or disable recording of internal trace events for a virtual machine or
an entire group.

GCS maintains an internal trace table that contains records of:

• Supervisor events
• GTRACE events.

GCS records all supervisor events that occur within your virtual machine. It also can record data from
programs or applications (GTRACE events) within your virtual machine. This latter information is gathered
through the GTRACE macro, and you can use it for debugging purposes.

The ITRACE command lets you control what goes in the internal trace table. Internal tracing for
supervisor events starts out active, or enabled, recording all events that occur from the time you join
the group. However, if you want GCS to begin recording GTRACE events or SP service points, you have to
enable the tracing yourself. You can enter the ITRACE command to turn off tracing of supervisor events

ITRACE

108 z/VM: 7.2 Group Control System

and later to turn it back on. You can turn GTRACE event tracing on and later turn it off. If you have an
authorized virtual machine, you can control internal tracing for the entire group.

Operands

GTrace
Indicates that you want to affect only the internal tracing of data passed through the GTRACE macro.

DSP
Indicates that you want to affect only the internal tracing of each task switch (dispatch of a different
task).

EXT
Indicates that you want to affect only the internal tracing of each external interrupt.

FRE
Indicates that you want to affect only the internal tracing of FREEMAIN events invoked through SVC
and Branch Entry calls.

GET
Indicates that you want to affect only the internal tracing of GETMAIN events invoked through SVC
and Branch Entry calls.

I/O
Indicates that you want to affect only the internal tracing of each I/O interrupt.

PRG
Indicates that you want to affect only the internal tracing of each program interrupt.

SIO
Indicates that you want to affect only the internal tracing of each request by the GCS supervisor of the
SIO instruction.

SP
Indicates that you want to affect only the internal tracing of Service Points. Service Points include
the branch entries to WAIT, POST, SCHEDEX, VALIDATE, and IUCVCOM. SP cannot be specified for
GROUP. SP trace points will not be traced during the processing of program interrupts.

SSS
Indicates that you want to affect only the internal tracing of IUCV interrupts on the Signal System
Service path.

SUP
Indicates that you want to affect only the internal tracing of GCS supervisor events. It includes DSP,
EXT, FRE, GET, I/O, PRG, SIO, SSS, and SVC events.

SVC
Indicates that you want to affect only the internal tracing of each SVC interrupt.

SYN
Indicates that you want to affect only the internal tracing of APPC/VM synchronous events.

OFF
Halts internal tracing of the events you indicated. ON is assumed, unless you specify OFF.

END
Terminates, or disables, all internal tracing. You must specify this option by itself or with the GROUP
operand. These are the only two ways you can use it.

ALL
Indicates that you want to apply this command to the internal tracing of both GTRACE and supervisor
events.

GRoup
Indicates that you want this command to apply to the entire virtual machine group rather than just to
your issuing machine. It will also apply to machines that join the group later.

ITRACE

Chapter 4. GCS Commands 109

To use this operand, you need to have an authorized user ID. Commands you enter with the GROUP
option take precedence over commands issued without. However, an authorized virtual machine can
disable tracing for itself although another authorized virtual machine started internal tracing for the
entire group.

Examples

ITRACE GTRACE

Enables tracing of GTRACE events (program or application data) in the virtual machine that issued this
command.

ITRACE GTRACE GROUP

Enables tracing of GTRACE events for the virtual machine group. The virtual machine issuing this
command must be authorized.

ITRACE GTRACE OFF GROUP

Disables tracing of GTRACE events for the virtual machine group. The virtual machine issuing this
command must be authorized.

ITRACE SUP OFF

Disables internal tracing of supervisor events for the virtual machine issuing this command.

ITRACE END

Disables internal tracing of all events for the virtual machine issuing this command. If tracing had been
enabled for the entire group, you would need an authorized virtual machine to issue this for yourself. If
the tracing was enabled just for your virtual machine, you do not have to be authorized to issue this for
yourself.

Messages
• GCTYTG001E Invalid option 'option' RC=4
• GCTYTG009E Operand missing or invalid
• GCTYTG517I ITRACE set ON for event-types
• GCTYTG518I ITRACE set ON for event-types for GROUP
• GCTYTG519I ITRACE set OFF for event-types
• GCTYTG520I ITRACE set OFF for event-types for GROUP
• GCTYTG521E ITRACE GROUP option is in effect for event-types RC=8

For more information on messages, see z/VM: Other Components Messages and Codes.

Return Codes
The meanings of return codes for these messages are:

Hex
Code

Decimal
Code

Meaning

X'00' 0 The tracing of events has been successfully enabled or disabled.

X'04' 4 An invalid operand was specified, or an unauthorized user specified
the GROUP operand. Your request was ignored.

ITRACE

110 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

Hex
Code

Decimal
Code

Meaning

X'08' 8 An authorized virtual machine had enabled tracing of user events
using the GROUP operand. An unauthorized virtual machine then
attempted to disable this tracing. The request was ignored.

ITRACE

Chapter 4. GCS Commands 111

LOADCMD

Format

LOADCmd name member

Purpose

Use the LOADCMD command to define a program module to be executed as a command.

LOADCMD is a feature that lets you define your own commands; it lets you assign a command name to a
program module. (The module for this program must reside in a CMS load library that you have defined
with a GLOBAL command.) When you enter the command name, this module gets control and executes. It
remains in storage, waiting to be run again when you enter its assigned name from either the console or
the CMDSI macro or a command file (EXEC).

For example, to run the GCS application ACF/VTAM, you first have to define the VTAM command. VTAM is
a command name that will be processed by one of ACF/VTAM's program modules. After you have defined
and issued this VTAM command name, you can enter any of the following ACF/VTAM commands:

• START
• HALT
• VARY
• MODIFY
• DISPLAY

Operands
name

The name of the command you are defining.
member

The member of a CMS load library associated with the command you have defined. This member is
the module that executes the command you have defined; it is loaded into private, free storage.

When you enter the name, GCS calls the member to run the command. Here's what your registers will
contain:

Register Contents

0 Address of an extended parameter list.

1 Address of a tokenized parameter list of consecutive doublewords. The first item in the
list is the name of your called routine or program. Other items in the list may contain
arguments you want passed to it.

3 Address of a word (UWORD) in storage that is available for the command's use.

12 Address of the entry point to your program. You can use this address as a base address
to establish immediate addressability in your program.

13 Address of a 96-byte save area for your program's use.

14 Return address of the SVC handling routines. The program returns control to this
address after it finishes executing.

LOADCMD

112 z/VM: 7.2 Group Control System

Register Contents

15 Same as Register 12, except that you should not use this one as a base register. The
SVCs use it to communicate with the program, and GCS uses it to return a completion
code. Any time that completion code is nonzero, you will see it in the ready message (if
you entered the command at the console):

Ready(nnnnn);

If the program you run does not return a completion code in Register 15, make sure
it puts a zero there before transferring control. Otherwise, your ready message may
contain meaningless data (whatever was in Register 15 at the time).

When you enter a command, a GCS scan routine sets up two distinct parameter lists:

• The first list is a tokenized parameter list. (Register 1 contains its address.) The parameters listed there
line up on consecutive doubleword boundaries. Blanks and parentheses serve as delimiters separating
each parameter. (Parentheses show up in the list, each on a doubleword boundary.)

• The second is an extended, or not tokenized, parameter list. (Register 0 contains its address.) It contains
addresses that map out the extended form of a command. This extended parameter list has the
following format:

EPLMAP DC A(CMDBEG) ADDR OF COMMAND TOKEN
 DC A(ARGBEG) ADDR OF BEGINNING OF ARGUMENTS
 DC A(ARGEND) ADDR OF END OF ARGUMENTS
 DC A(0) ADDR OF EXEC FILEBLOCK
 DC A(0) ADDR OF FUNCTION ARGUMENT LIST
 DC A(0) ADDR FOR RETURN OF FUNCTION DATA
 DS X INDICATOR (see the following note)
 DS 3X RESERVED

Note: An INDICATOR byte of X'00' is a sign that a program issued the command. X'0B' is a sign that it
was issued from the console. X'01' is a call from REXX when ADDRESS COMMAND is specified. X'05' is
used by REXX for function calls.

Here are two ways you might enter a command and two sets of accompanying tokenized and extended
parameter lists that result:

1. You enter:

 ====> loadcmd cmdname memname

The scan routine sets up the following tokenized parameter list:

FORMAT: DC CL8'LOADCMD'
 DC CL8'CMDNAME'
 DC CL8'MEMNAME'
 DC 8X'FF'

The scan routine sets up the extended parameter list with the following references:

CMDBEG DC C'loadcmd'
ARGBEG DC C'cmdname memname'
ARGEND EQU *

The first nonblank character following ‘loadcmd’ determines the start of ARGBEG.

Note: The tokenized parameter list is passed with uppercase characters. The extended parameter list
is passed with mixed case (as entered) characters.

2. You enter ‘loadcmd’ without specifying any arguments:

====> loadcmd

LOADCMD

Chapter 4. GCS Commands 113

The scan routine sets up the following tokenized parameter list:

FORMAT: DC CL8'LOADCMD'
 DC 8X'FF'

The scan routine sets up the extended parameter list with the following references:

CMDBEG DC C'loadcmd'
ARGBEG EQU *
ARGEND EQU *

With no arguments specified, ARGBEG is set equal to ARGEND.

Note: The tokenized parameter list is passed with uppercase characters. The extended parameter list
is passed with mixed case (as entered) characters.

For more information on parameter lists, see z/VM: CMS User's Guide.

Usage
If the program defined by the LOADCMD is reentrant, then it is loaded into key 0 storage. This ensures that
it is not accidentally modified or tampered with.

Examples

LOADCMD MYCMD MYMOD

Defines the command named MYCMD to GCS. The module containing the code for this command can be
found in a CMS load library under the member name of MYMOD. Then, by issuing:

MYCMD

The module named MYMOD is invoked.

Messages
• GCTLDC212E Member cannot be loaded. Command is not defined RC=xx
• GCTLDC240I No entry points were loaded by the LOADCMD command

For more information on messages, see z/VM: Other Components Messages and Codes.

Return Codes
The meanings of return codes for the GCTLDC212E message are:

Hex
Code

Decimal
Code

Meaning

X'01' 1 The command has already been defined.

X'04' 4 The module is marked not executable. The module is not loaded and
the command is not defined. The module is not suitable for use as
a command module. Consult the information provided by the linkage
editor, at the time the module was created, to determine why the
module is not executable.

X'0A' 10 The module is an overlay structure. The module is not loaded and the
command is not defined. If this module is to be used as a command
module, it must be redefined so that it does not require overlays.

LOADCMD

114 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb3_v7r2.pdf#nameddest=dmsb3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

Hex
Code

Decimal
Code

Meaning

X'0C' 12 The module is marked only loadable. The module is not loaded and
the command is not defined. This module is not suitable for use as a
command module.

X'0E' 14 The command name specified is a GCS immediate command or an
abbreviation for one.

X'18' 24 Too many operands were specified.

X'1C' 28 The specified member cannot be found.

X'20' 32 No member name was specified.

X'24' 36 A permanent I/O error was found when the system attempted to
search the CMS LOADLIB directory.

X'28' 40 Insufficient virtual storage was available to read the directory entry
for this module.

X'29' 41 Insufficient free storage was available to build the nucleus extension
control blocks representing this command.

LOADCMD

Chapter 4. GCS Commands 115

OSRUN

Format

OSRUN member

PARM=  parameters

Purpose

Use the OSRUN command to start a GCS application program.

The application program must either be a member of a CMS load library (defined with the GLOBAL
command) or reside in a saved segment. The OSRUN command maintains control until the program ends;
therefore, cannot be executed other commands while the program is running.

Operands

member
The member of the CMS load library you want to process.

PARM=parameters
The OS parameters that you want to pass to the module. If these parameters contain blanks or
special characters, they must be enclosed them in quotation marks. To include a quotation mark in
a parameter, enter two quotation marks side-by-side (''). Parameters may be no longer than 100
characters.

The parameters are passed to the module in OS format: Register 1 points to a fullword containing the
address of the character string. (The first halfword field contains the length of the character string.)

Messages
• GCTLOS220E Unable to open file 'filename'
• GCTLOS223S Error 'nn' reading file 'fn [ft fm]' from disk
• GCTLOS224E Member 'membername' not found in library
• GCTOSR006E Invalid parameter 'parameter' RC=24
• GCTOSR022E No filename specified RC=24
• GCTOSR219E Parm field contains more than 100 characters RC=24
• GCTOSR236E Ending apostrophe is missing RC=24
• GCTABD237E Command ended without detaching subtasks

For more information on messages, see z/VM: Other Components Messages and Codes.

OSRUN

116 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

QUERY

Purpose

Use the QUERY command to request information about your GCS virtual machine.

Operands
Table 11. Query commands. This table list operands that can be issued with the QUERY command and
the location of more information for each:

Command Location

ADDRESS See page “QUERY ADDRESS” on page 119

AUTHUSER See page “QUERY AUTHUSER” on page 120

COMMON See page “QUERY COMMON” on page 121

DISK See page “QUERY DISK” on page 122

DLBL See page “QUERY DLBL” on page 124

DUMP See page “QUERY DUMP” on page 126

DUMPLOCK See page “QUERY DUMPLOCK” on page 127

DUMPVM See page “QUERY DUMPVM” on page 128

ETRACE See page “QUERY ETRACE” on page 129

FILEDEF See page “QUERY FILEDEF” on page 130

GCSLEVEL See page “QUERY GCSLEVEL” on page 131

GROUP See page “QUERY GROUP” on page 132

IPOLL See page “QUERY IPOLL” on page 133

ITRACE See page “QUERY ITRACE” on page 134

LOADALL See page “QUERY LOADALL” on page 135

LOADCMD See page “QUERY LOADCMD” on page 136

LOADLIB See page “QUERY LOADLIB” on page 137

LOCK See page “QUERY LOCK” on page 138

MODDATE See page “QUERY MODDATE” on page 139

REPLY See page “QUERY REPLY” on page 140

REXXSTOR See page “QUERY REXXSTOR” on page 141

SEARCH See page “QUERY SEARCH” on page 142

SYSNAMES See page “QUERY SYSNAMES” on page 143

TRACETAB See page “QUERY TRACETAB” on page 144

TSLICE See page “QUERY TSLICE” on page 145

QUERY

Chapter 4. GCS Commands 117

Messages
All QUERY messages except GCTQRL032T are issued without message numbers.

• GCTQAD365I Address of variable is address
• GCTQRD239I No entry points are currently loaded in this virtual machine
• GCTQRD240I No entry points were loaded by the LOADCMD command
• GCTQRL032T Supervisor error 5. Re-IPL sysname
• GCTQRL217E The common lock is free
• GCTQRL218I The common lock is held by userid
• GCTQRQ514I All external trace events are disabled
• GCTQRQ515I External trace is enabled for event-types
• GCTQRQ516I External trace is enabled for event-types for GROUP
• GCTQRQ522I Internal trace is enabled for event-types
• GCTQRQ523I Internal trace is enabled for event-types for GROUP
• GCTQRQ524I All internal trace events are disabled
• GCTQRR005S All internal trace events are disabled
• GCTQRR009I Operand is missing or invalid

– Name is not a GCS module or table.
– Address is not within a GCS module or table.

• GCTQRR214I No replies outstanding
• GCTQRR215I The following replies are outstanding:
• GCTQRR216I GROUPID=systemname, USERS: CURRENT=nnnnn, MAXIMUM=mmmmm
• GCTQRR244I userid is now the virtual machine receiving dumps
• GCTQRR245I userid can now IPL as an authorized virtual machine
• GCTQRR247I The trace table is now being maintained in location storage
• GCTQRR248I No users are currently authorized
• GCTQRR364I IPOLL = setting
• GCTQRR366I Address is name + X'nnnnnnnn'
• GCTQRR367I Date of name is mm/dd/yy
• GCTQRR368I Date of name is not available
• GCTQRR370I REXXSTOR = nn
• GCTQRR900I z/VM Version n Release n, Service level n
• GCTQRS015E 'parameter' is invalid for 'function' function RC=24
• GCTQRS017E Disk {mode|vdev|volumeid} not accessed
• GCTQRS019E No Read/Write mode disk accessed RC=1
• GCTQRS020E No Read/Write disk with space available accessed RC=2
• GCTQRU303I No user defined FILEDEFs in effect
• GCTQRX005S Virtual storage capacity exceeded RC=8
• GCTQRX006E Invalid parameter 'parameter' RC=24
• GCTQRX303I No user defined DLBLs in effect
• GCTQRY005S Virtual storage capacity exceeded RC=8
• GCTQRY006E Invalid parameter 'parameter' RC=24
• GCTQRY013E No function specified RC=24

For more information on messages, see z/VM: Other Components Messages and Codes.

QUERY

118 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

QUERY ADDRESS

Format

Query ADDRESS name

address

Purpose

Use the QUERY ADDRESS command to display the address of a module, table, or control block, or the
name of a GCS module, table, or control block, at a specified address. See the z/VM: Diagnosis Guide for
major control block names.

Operands

ADDRESS
specifies that you wish to know an address in GCS, or the name of a GCS module or table at a
specified address.

name
is the name of a GCS module or table. For a list of names that can be used see Appendix C.

address
is an address within the GCS supervisor or a GCS table.

Response

Address of name is address

 or

Address is name + displacement

Where:

name
is the name of a GCS module or table.

address
is the address location of the requested module or table.

displacement
is the displacement within the GCS module or table.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY ADDRESS

Chapter 4. GCS Commands 119

QUERY AUTHUSER

Format

Query AUTHUSER

Purpose

Use the QUERY AUTHUSER command to display the list of authorized users.

Operands

AUTHUSER
Displays the list of authorized users.

Response

userid can now IPL as an authorized virtual machine.

 or

No users are currently authorized.

Where:

userid
is the user ID authorized to IPL the Virtual Machine.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY AUTHUSER

120 z/VM: 7.2 Group Control System

QUERY COMMON

Format

Query COMMON

Purpose

Use the QUERY COMMON command to display the available common storage above and below the 16MB
line.

Operands

COMMON
Displays the available common storage above and below the 16MB line.

Response

sysname available common storage is nnnnn KB BELOW and nnnnn KB ABOVE the 16MB line

Where:

sysname
is the name that identifies the GCS saved system.

nnnnn
is the available storage in Kilobyte (KB) above or below the 16MB line.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY COMMON

Chapter 4. GCS Commands 121

QUERY DISK

Format

Query DISK
*

fm

R/W

MAX

Purpose

Use the QUERY DISK command to display the status of a disk.

Operands

DISK
Displays disk information.

*
Displays one line of information for each disk that is accessed. If no DISK option is specified, this is
the default.

fm
Displays information about the single disk associated with that file mode.

R/W
Displays information for each accessed disk in read/write mode.

MAX
Displays information for the R/W disk having the most available space.

Response

LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
label vdev m stat cyl type blksize files blks_used blks_left blk_total

Where:
label

The label assigned to the disk when it was formatted. If an OS or DOS disk, this is the volume label.
vdev

The virtual device number.
m

The access mode letter.
stat

Indicates whether the disk is read/only (R/O) or read/write (R/W).
cyl

The number of cylinders available on the disk. For an FB-512 device, this field contains the
abbreviation FB rather than the number of cylinders.

type
The device type of the disk.

QUERY DISK

122 z/VM: 7.2 Group Control System

blksize
The number of units that make up a block on the disk.

files
The number of files on the disk. If you have an OS or DOS disk, this field will contain either OS or DOS.

blks_used
The number of disk blocks in use.

blks_left
The number of disk blocks left. (The actual number of disk blocks remaining is lower because this
number also counts control blocks.)

blk_total
The total number of blocks.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY DISK

Chapter 4. GCS Commands 123

QUERY DLBL

Format

Query DLBL

MULT

Purpose

Use the QUERY DLBL command to display the contents of the current data set definitions.

Operands

DLBL
Querying DLBL yields information that is explained in the response section following.

MULT
Indicates that you want to enter volume specifications that refer to an existing multivolume VSAM
data set. For more information on the requirements for VSE/VSAM, see the VSE/VSAM User's Guide.

Response
DDNAME MODE TYPE CATALOG VOL BUFSPC PERM DISK DATASET.NAME
xxxxxx nn xxxx xxxxxxx xxx xxx xxxxxxx

Where:
DDNAME

The program ddname.
MODE

The disk on which the data set resides.
TYPE

The type of data set defined. This field will always be VSAM.
CATALOG

The ddname of the VSAM catalog you want searched for the specified data set.
VOL

The number of volumes (if greater than one) on which VSAM resides. This field will be blank if the
VSAM data set resides on only one volume. The actual volumes may be displayed by entering either
DLBL (MULT) or the QUERY DLBL MULT commands.

BUFSPC
The size of the VSAM buffer space, if entered at DLBL definition time.

PERM
Indicates whether the DLBL definition was made with the PERM option. This field will contain YES or
NO.

DISK
Indicates whether the data set resided on a CMS or DOS/OS disk at DLBL definition time. The values
for this field are DOS and CMS.

QUERY DLBL

124 z/VM: 7.2 Group Control System

DATASET.NAME
For a data set residing on a CMS disk, the CMS file name and file type are given; for a data set residing
on a DOS/OS disk, the data set name (maximum 44 characters) is given. This field will be blank if you
failed to enter a DOS/OS data set name at DLBL definition time.

If no DLBL definitions are active, you will get the following message:

No user defined DLBL's in effect

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY DLBL

Chapter 4. GCS Commands 125

QUERY DUMP

Format

Query DUMP

Purpose

Use the QUERY DUMP command to display the status of the dump facility.

Operands

DUMP
Describes the state of the dump facility.

Response

option

ON
A dump will always be taken.

OFF
No dumps will be taken.

DEFAULT
A dump will be taken only if there is a system error or if the DUMP option was specified on the ABEND
macro.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY DUMP

126 z/VM: 7.2 Group Control System

QUERY DUMPLOCK

Format

Query DUMPLOCK

Purpose

Use the QUERY DUMPLOCK command to display the status of the dumplock facility.

Operands

DUMPLOCK
Describes the state of the dumplock.

Response

option

ON
The common storage lock will be held while common storage is being dumped.

OFF
The common storage lock will not be held while common storage is being dumped.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY DUMPLOCK

Chapter 4. GCS Commands 127

QUERY DUMPVM

Format

Query DUMPVM

Purpose

Use the QUERY DUMPVM command to display the name of the virtual machine to receive dumps.

Operands

DUMPVM
Displays the name of the virtual machine to receive dumps.

Response

userid is now the virtual machine receiving dumps

userid
is the name of the virtual machine.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY DUMPVM

128 z/VM: 7.2 Group Control System

QUERY ETRACE

Format

Query ETRACE

Purpose

Use the QUERY ETRACE command to display the list of the events that are enabled for external tracing.

Operands

ETRACE
Displays a list of the events that are enabled for external tracing (recording in a spool file).

Response

All external trace events are disabled
External trace is enabled for event-types
External trace is enabled for event-types for GROUP

event-types
are the various events that are enabled for tracing.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY ETRACE

Chapter 4. GCS Commands 129

QUERY FILEDEF

Format

Query FILEDEF

Purpose

Use the QUERY FILEDEF command to display all file definitions in effect.

Operands

FILEDEF
Displays all file definitions in effect.

Response

ddname device fn ft

If you have no file definitions in effect, you will receive the following message:

No user defined FILEDEFS in effect

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY FILEDEF

130 z/VM: 7.2 Group Control System

QUERY GCSLEVEL

Format

Query GCSLEVEL

Purpose

Use the QUERY GCSLEVEL command to display the release and service level of the GCS component of
z/VM.

Operands

GCSLEVEL
Displays the release and service level of the GCS component of z/VM.

Response

z/VM Version n Release n.n, Service Level n

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY GCSLEVEL

Chapter 4. GCS Commands 131

QUERY GROUP

Format

Query GROUP

Purpose

Use the QUERY GROUP command to display the user IDs of the virtual machines in the GCS group.

Operands

GROUP
Displays the user IDs of the virtual machines in the GCS group of the issuer.

Response

GROUPID=groupname, USERS: CURRENT=ccccc, MAXIMUM=mmmmm
 VMUSERID(s)

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY GROUP

132 z/VM: 7.2 Group Control System

QUERY IPOLL

Format

Query IPOLL

Purpose

Use the QUERY IPOLL command to display the ipoll setting for the virtual machine.

Operands

IPOLL
Displays the status of the ipoll setting for the virtual machine.

Response

IPOLL = setting

Where:

setting = ON or OFF

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY IPOLL

Chapter 4. GCS Commands 133

QUERY ITRACE

Format

Query ITRACE

Purpose

Use the QUERY ITRACE command to display the list of the events that are enabled for internal tracing.

Operands
ITRACE

Displays a list of the events that are enabled for internal tracing.

Response

Internal trace is enabled for event-type
Internal trace is enabled for event-type for GROUP
All internal trace events are disabled

event-types
are the various events that are enabled for tracing.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY ITRACE

134 z/VM: 7.2 Group Control System

QUERY LOADALL

Format

Query LOADALL

Purpose

Use the QUERY LOADALL command to display the entry point names and addresses for the entry points
that have been loaded and currently reside in the virtual machine storage.

Operands

LOADALL
Displays the entry point names and addresses for the entry points that have been loaded and
currently reside in the virtual machine storage.

QUERY LOADALL does not display the names of modules loaded with the ADDR parameter of the
LOAD macro.

Response

ENTRY NAME ENTRY ADDRESS TYPE
 nnnnnnnn aaaaaaaa t

nnnnnnnn
Is the entry point name.

aaaaaaaa
Is the entry point address.

t
Is the entry point type.

Where:
M

The entry point is a major entry point.
A

The entry point is an alias entry point.
I

The entry point is one defined by the IDENTIFY macro.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY LOADALL

Chapter 4. GCS Commands 135

QUERY LOADCMD

Format

Query LOADCMD

Purpose

Use the QUERY LOADCMD command to locate the entry point addresses for all entry points that are
loaded by the LOADCMD command.

Operands

LOADCMD
Locates the entry point addresses for all entry points that are loaded by the LOADCMD command.

Response

ENTRY NAME COMMAND NAME ENTRY ADDRESS
 nnnnnnnn cccccccc aaaaaaaa

nnnnnnnn
Is the entry point name.

cccccccc
Is the command name.

aaaaaaaa
Is the entry point address.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY LOADCMD

136 z/VM: 7.2 Group Control System

QUERY LOADLIB

Format

Query LOADLIB

Purpose

Use the QUERY LOADLIB command to display the names of all files (of file type LOADLIB) that will be
searched for load modules.

Operands

LOADLIB
Displays the names of all files (of file type LOADLIB) that will be searched for load modules. This gives
you a list of all LOADLIBs specified on the last GLOBAL LOADLIB command, if any.

Response
Response:

LOADLIB=libname1 . . . libname8
 . . .
 . . .
 . . .

up to eight names are displayed per line, for as many lines as necessary.

If no libraries are to be searched, the response is:

LOADLIB = NONE

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY LOADLIB

Chapter 4. GCS Commands 137

QUERY LOCK

Format

Query LOCK

Purpose

Use the QUERY LOCK command to display the status of the common lock.

Operands

LOCK
Displays the status of the common lock. If the lock is held, the userID holding the lock is displayed.

Response

The common lock and the data space lock are free
The common lock is held by 'userID'

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY LOCK

138 z/VM: 7.2 Group Control System

QUERY MODDATE

Format

Query MODDATE name

LAST

Purpose

Use the QUERY MODDATE command to display the compilation date of the specified module.

Operands

MODDATE
specifies that you wish to know the compilation date of the specified module.

name
is the name of a GCS module. For a list of names that can be used see Appendix C.

LAST
specifies that you want a list of all modules compiled on the most recent compilation date.

Response

Date of name is date
Date of name is not available.

Where:

name
is the name of a GCS module specified in the command.

date
is the last compilation date of the module in mm/dd/yyyy format.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY MODDATE

Chapter 4. GCS Commands 139

QUERY REPLY

Format

Query REPLY

Purpose

Use the QUERY REPLY command to display the text and the identification number of all messages waiting
for a reply.

Operands

REPLY
Displays the text and the identification number of all messages waiting for a reply.

Response

The following replies are outstanding:
 xx yyyyyyyy
 xx yyyyyyyy

If no messages are waiting for a reply, the response is:

No replies outstanding

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY REPLY

140 z/VM: 7.2 Group Control System

QUERY REXXSTOR

Format

Query REXXSTOR

Purpose

Use the QUERY REXXSTOR command to display the REXXSTOR setting.

Operands

REXXSTOR
Displays the REXXSTOR setting.

Response

REXXSTOR = 24
REXXSTOR = 31

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY REXXSTOR

Chapter 4. GCS Commands 141

QUERY SEARCH

Format

Query SEARCH

Purpose

Use the QUERY SEARCH command to display the search order of your accessed disks.

Operands

SEARCH
Displays the search order of your accessed disks.

Response

label vdev mode R/O OS
 R/W DOS

label
The label assigned to the disk when it was formatted. If an OS or DOS disk, this is the volume label.

vdev
The virtual device number.

m
The file mode letter assigned to the disk when it was accessed.

R/O or R/W
Indicates whether the disk is read/only or read/write.

OS or DOS
Indicates an OS or DOS disk.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY SEARCH

142 z/VM: 7.2 Group Control System

QUERY SYSNAMES

Format

Query SYSNAMES

Purpose

Use the QUERY SYSNAMES command to display the names of the standard saved systems.

Operands

SYSNAMES
Displays the names of the standard saved systems.

Response

SYSNAMES: GCSVSAM GCSBAM
 ENTRIES: entry... entry...

where:
SYSNAMES

The names that identify the saved systems (discontiguous shared segments).
ENTRIES

The default system names or the system names established through the SET command.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY SYSNAMES

Chapter 4. GCS Commands 143

QUERY TRACETAB

Format

Query TRACETAB

Purpose

Use the QUERY TRACETAB command to display the location of the internal trace table.

Operands

TRACETAB
Displays the location of the internal trace table.

Response

The trace table is now being maintained in location storage.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY TRACETAB

144 z/VM: 7.2 Group Control System

QUERY TSLICE

Format

Query TSLICE

Purpose

Use the QUERY TSLICE command to obtain the dispatching time slice value.

Operands

TSLICE
Displays a positive integer that represents the number of milliseconds that a single task will be
allowed to be dispatched before the GCS dispatcher dispatches another task.

Response

 Time slice Tasks ready to run Time slice X tasks ready
 ---------------- ------------------ ------------------------
 n milliseconds n n milliseconds

Note:

1. "Time slice X tasks ready" may provide an indication of the time it could take for a task to be
redispatched, if all other ready tasks were dispatched first and each ran for the specified timeslice.

2. The number of tasks ready to run will not include the tasks that are in wait state.

Messages
For messages that apply to the QUERY command, see “QUERY” on page 117.

QUERY TSLICE

Chapter 4. GCS Commands 145

RELEASE

Format

RELease vdev

mode (DET

)

Purpose

Use the RELEASE command to release a disk.

After an application no longer needs files on a particular disk, you should enter the RELEASE command for
that disk.

Operands

vdev
The virtual device number of the disk to be released.

The valid range is from X'0001' through X'FFFF' (X'0001' through X'1FFF' for 370 accommodation).

mode
The mode letter at which the disk is currently accessed.

DET
Specifies that the disk is to be detached from your virtual machine.

When the disk is detached, you receive the message:

DASD 'vdev' DETACHED

For more information on using the RELEASE command, see the z/VM: CMS Commands and Utilities
Reference.

Messages
• GCTARE006E Invalid parameter 'parameter'
• GCTARE017E DISK {mode|vdev|volumeid} not accessed RC=36
• GCTARE021E Invalid mode 'mode'
• GCTARE415E Invalid device address 'vdev'
• GCTARE243S Parameter list delimiter missing RC=24
• GCTARE416E No device specified

For more information on messages, see z/VM: Other Components Messages and Codes.

RELEASE

146 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb4_v7r2.pdf#nameddest=dmsb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb4_v7r2.pdf#nameddest=dmsb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

REPLY

Format

Reply id

text

Purpose

Use the REPLY command to reply to messages sent to a GCS virtual machine operator.

GCS programs can use the WTOR macro to send a message to a GCS virtual machine operator's console
and request a reply. The message may request the operator to set up certain devices for the program,
provide data, or perform some other service.

The issuer of a WTOR macro expects the operator to reply. Use the REPLY command to respond to
messages received through the WTOR macro.

Operands

id
The identification number (0-99), as specified in the message requesting the response. Leading zeros
may be omitted.

text
The text of the response to the message. The maximum text length is 119 characters (responses
longer than 119 characters are truncated to 119).

Note:

1. The WTOR macro allows its issuer to specify the maximum length of the expected operator's response.
If the operator attempts to send a response that is longer than the issuer of the WTOR specified, the
response will not be transmitted, and a message is issued to that effect.

2. A list of all messages awaiting reply, along with their identification numbers, can be obtained by
issuing:

query reply

Examples

reply 16 disk is mounted at address 250

The operator informs the issuer of a WTOR, whose identification number is 16, that a disk has been
mounted at address 250.

Messages
• GCTRPY206E Reply not accepted, ID not specified
• GCTRPY207E Reply not accepted, ID number not 00 to 99 RC=8
• GCTRPY208I Reply xx not outstanding RC=4
• GCTRPY209E Reply xx not accepted, reply too long for requester RC=8
• GCTRPY210E Reply not accepted, invalid ECB address RC=10

REPLY

Chapter 4. GCS Commands 147

• GCTRPY211E Reply not accepted, invalid reply buffer address RC=10

For more information on messages, see z/VM: Other Components Messages and Codes.

Return Codes

Hex
Code

Decimal
Code

Meaning

X'00' 0 Your reply is accepted.

X'04' 4 No message requiring a reply is associated with the identification
number you specified.

X'08' 8 Your reply was not accepted. Its format was invalid.

X'0A' 10 The reply buffer address or ECB address was not accessible.

REPLY

148 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

SET

Purpose

Use the SET command to replace a saved system name entry in the SYSNAMES table for VSAM or to set or
reset a particular function in your GCS machine. Only one function may be specified per SET command.

Operands

Table 12. Set commands. This table list operands that can be issued with the SET command and the
location of more information for each:

Command Location

DUMP See “SET DUMP” on page 150.

DUMPLOCK See “SET DUMPLOCK” on page 151.

IPOLL See “SET IPOLL” on page 152.

REXXSTOR See “SET REXXSTOR” on page 153.

SYSNAME See “SET SYSNAME” on page 154.

TSLICE See “SET TSLICE” on page 155.

Usage
You can establish a default for each set command in your GROUP EXEC. For example, your GROUP EXEC
has SET DUMP ON in it and you have IPLed your machine, then you can just type SET DUMP. Otherwise, if
you did not have it in your GROUP EXEC, then this would have resulted with an error (322E).

When GCS is generated, the default names of saved systems for VSAM (CMSVSAM and CMSBAM) become
entries in your SYSNAMES table. The table entry looks like this:

SYSNAMES: GCSVSAM GCSBAM
 ENTRIES: CMSVSAM CMSBAM

GCSVSAM and GCSBAM are merely headings here. CMSVSAM and CMSBAM are the actual saved system
names. Before VSAM is initialized (by the first VSAM operation after IPL), you can change these saved
system names with the SET command. After you initialize VSAM, these saved system names cannot be
changed.

To display the saved system names currently available to your virtual machine, enter:

 query sysnames

Messages
• GCTSET006E Invalid parameter 'parameter' RC=24
• GCTSET013E No function specified RC=24
• GCTSET321E Saved system name 'name' is invalid. Only GCSVSAM or GCSBAM allowed RC=24
• GCTSET322E New system name missing after 'name' RC=24
• GCTSET323E Parameter missing after SYSNAME RC=24
• GCTSET351E System name not changed. VSAM already initialized. RC=24

For more information on messages, see z/VM: Other Components Messages and Codes.

SET

Chapter 4. GCS Commands 149

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

SET DUMP

Format

SET DUMP ON

OFF

DEFAULT

Purpose

Use the SET DUMP command to set or reset the DUMP function in your GCS machine. Only one function
may be specified per SET command. During IPL, SET DUMP is initially set to DEFAULT.

Operands

DUMP ON
Take a dump under all conditions.

DUMP OFF
No dumps are to be taken.

DUMP DEFAULT
The dump setting will be set to the default shown.

 Dump setting:

Dump will be produced by: DEFAULT ON Off

GDUMP command Yes Yes No

SDUMP macro Yes Yes No

SDUMPX macro Yes Yes No

ABEND DUMP parameter Yes Yes No

ABEND no DUMP parameter No Yes No

SYSTEM Yes Yes No

General Information about the SET Command
For usage notes and messages that apply to the SET command, see “SET” on page 149.

SET DUMP

150 z/VM: 7.2 Group Control System

SET DUMPLOCK

Format

SET DUMPLOCK OFF

ON

Purpose

Use the SET DUMPLOCK command to set or reset the DUMPLOCK function in your GCS machine. Only one
function may be specified per SET command. During IPL, SET DUMPLOCK is initially set to ON.

Operands

DUMPLOCK OFF
The common storage lock will not be held while common storage is being dumped.

DUMPLOCK ON
The common storage lock will be held while common storage is being dumped.

General Information about the SET Command
For usage notes and messages that apply to the SET command, see “SET” on page 149.

SET DUMPLOCK

Chapter 4. GCS Commands 151

SET IPOLL

Format

SET IPOLL OFF

ON

Purpose

Use the SET IPOLL command to set or reset the IPOLL function in your GCS machine. Only one function
may be specified per SET command. During IPL, IPOLL is initially set to OFF.

Operands

IPOLL OFF
Indicates that you do not want GCS to use the IUCV subfunction IPOLL to handle IUCV external
interrupts. This is the initial setting.

IPOLL ON
Indicates that you want GCS to use the IUCV subfunction IPOLL to handle IUCV external interrupts
and that the virtual machine is capable of handling buffered interrupts. GCS will poll pending replies
and messages to provide for more efficient IUCV interrupt handling.

Usage
• Buffering of interrupts may change the sequence of IUCV external interrupts presented to the virtual

machine. IUCV functions, such as PURGE and SEVER, that were issued directly to CP may have affected
interrupts which are now buffered to GCS. Applications that alter the usual external interrupt sequence
may not be able to use the IPOLL subfunction. For additional information, see z/VM: CP Programming
Services.

General Information about the SET Command
For usage notes and messages that apply to the SET command, see “SET” on page 149.

SET IPOLL

152 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

SET REXXSTOR

Format

SET REXXSTOR 24

31

Purpose

Use the SET REXXSTOR command to indicate that storage for REXX variables may be obtained above the
16 megabyte line.

Operands

REXXSTOR 24
Indicates that storage for REXX variables must be obtained below the 16 megabyte line. This is the
default.

REXXSTOR 31
Indicates that storage for REXX variables may be obtained above the 16 megabyte line. If this setting
is specified, all programs referencing REXX variables must run in AMODE 31.

Usage
• If REXXSTOR 31 is specified, all programs referencing REXX variables must run in AMODE 31.

General Information about the SET Command
For usage notes and messages that apply to the SET command, see “SET” on page 149.

SET REXXSTOR

Chapter 4. GCS Commands 153

SET SYSNAME

Format

SET SYSNAME GCSBAM

GCSVSAM

entry_name

Purpose

Use the SET SYSNAME command to replace a saved system name entry in the SYSNAMES table for VSAM.
Only one function may be specified per SET command.

Operands

SYSNAME
Specifies that a saved system name in the SYSNAMES table is to be replaced.

GCSVSAM
Indicates that the entry name you are about to supply will go under the heading GCSVSAM in your
SYSNAMES table. GCSVSAM does not automatically become the new entry name of the VSAM system.
For more information on VSAM systems, see “Changing GCS Default Definitions” on page 512.

GCSBAM
Indicates that the entry name you are about to supply will go under the heading GCSBAM in your
SYSNAMES table. (You need a BAM system to support VSAM.) GCSBAM does not automatically
become the new entry name of your BAM saved system. For more information on BAM systems,
see “Changing GCS Default Definitions” on page 512.

entry_name
The name of the alternative saved system that will replace your default VSAM or BAM system. The
VSAM and BAM systems you use for GCS can be the same as the CMSVSAM and CMSBAM systems you
use for CMS. Separate systems are not required.

Usage
The loading of the BAM and VSAM segments in a z/VM environment is supported by the GROUP exec
which allows you to specify special names for your VSAM and BAM segments other than the default
names of CMSBAM and CMSVSAM and automatically reserves storage for these segments for all USERIDS
in the GCS group that are specified when the group exec is run.

The SET SYSNAME function can be used to replace the default names of CMSBAM and CMSVSAM in the
SYSNAME table for VSAM if the following requirements are met:

1. The USERID where the SET SYSNAME is to be issued was not specified in the GROUP exec to
automatically have storage reserved for the BAM and VSAM segments specified in the GROUP exec.

2. The BAM and VSAM segments that you specify in the SET SYSNAME command must be loaded above
the virtual machine since storage will not be reserved at IPL time.

General Information about the SET Command
For usage notes and messages that apply to the SET command, see “SET” on page 149.

SET SYSNAME

154 z/VM: 7.2 Group Control System

SET TSLICE

Format

SET TSLICE number

Purpose

Use the SET TSLICE command to change the dispatching time slice.

Operands

TSLICE number
number is a positive integer from 1 to 999, that represents the number of milliseconds that a single
task will be allowed to be dispatched before the GCS dispatcher dispatches another task.

Usage
• The default dispatching time slice of 300 milliseconds should be sufficient for most GCS applications.
• The dispatching time slice should be set lower when many tasks are running concurrently. Lowering the

dispatching time slice can avoid time out problems. Use the output of the QUERY TSLICE command to
determine the current time slice and the number of tasks ready to run. QUERY TSLICE also reports an
estimated delay time, computed by multiplying the time slice times the number of tasks ready to run.
If this estimated delay time is higher than a line delay time out, decrease the time slice value until the
estimated delay time is acceptable.

• As the time slice is decreased, the overhead in the GCS dispatcher may increase. Therefore, setting the
time slice lower than necessary may cause performance degradation.

General Information about the SET Command
For usage notes and messages that apply to the SET command, see “SET” on page 149.

SET TSLICE

Chapter 4. GCS Commands 155

SET TSLICE

156 z/VM: 7.2 Group Control System

Chapter 5. GCS Macros

The GCS macros are presented in alphabetic order in this section. The data management service macros
are described in Chapter 6, “QSAM and BSAM Data Management Service Macros,” on page 379 and
Chapter 7, “VSAM Data Management Service Macros,” on page 417.

The GCS macros grouped by the functions they control are:

Table 13. GCS Macros (Part 1 of 2)

Task Management
Service

Program
Management
Service

Timer Service Console I/O Service Unauthorized GCS
Service

Authorized GCS
Service

ABEND
ATTACH
CHAP
DEQ
DETACH
ENQ
ESTAE
IHASDWA
POST
SETRP
WAIT

BLDL
CALL
DELETE
ESPIE
IDENTIFY
LINK
LOAD
RDJFCB
RETURN
SAVE
SPLEVEL
SYNCH
XCTL

STIMER
TIME
TTIMER

WTO
WTOR

AUTHCALL
CMDSI
CSRCMPSC1

EXECCOMM
GCSTOKEN
GENIO

AUTHNAME
LOCKWD
MACHEXIT
PGLOCK
PGULOCK
SCHEDEX
TASKEXIT
VALIDATE

Table 14. GCS Macros (Part 2 of 2)

Storage Management
Service

Serviceability IUCV Service Installation (Build) Data Area

FREEMAIN
GCSSAVE
GETMAIN

GTRACE
SDUMP
SDUMPX
SYMREC

IUCVCOM
IUCVINI

AUTHUSER
CONFIG
CONTENTS
RESSTOR
SEGMENT

ADSR
CSRYCMPD1

CSRYCMPS1

CVT
DEVTYPE
ECVT
FLS
GCSLEVEL
IHADVA

GCS Macro Level and Parameter Lists
Certain macros used by GCS have expanded parameter lists which are designed for use with 31-bit
addressing mode. These parameter lists are incompatible with the 370 Accommodation Facility. However
the SPLEVEL macro allows the user to select the 24-bit version or the 31-bit version of the expansion. The
macros affected are:

• ATTACH
• ESTAE
• STIMER
• WTOR.

1 Information on this macro is provided in the z/VM: CMS Macros and Functions Reference.

© Copyright IBM Corp. 2001, 2023 157

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa6_v7r2.pdf#nameddest=dmsa6_v7r2

A program using a 24-bit parameter list can run in XA mode or XC mode with addresses below the
16MB line. If a program is to function in 31-bit addressing mode, the 31-bit version of the parameter list
must be used; no modification to the program is necessary except recompilation because the default is
SPLEVEL SET=2.

Addressing Mode and the Macros
If a parameter passed by a program executing in 31-bit addressing mode must be located in 24-bit
addressable storage, the restriction is stated in the description of the macro.

Usually a program executing in 24-bit addressing mode cannot pass addresses as parameters above
16MB in virtual storage to GCS. Some exceptions to this rule exist; as for example, a program executing in
24-bit addressing mode can:

• Free storage above 16MB using the FREEMAIN macro
• Allocate storage above 16MB using the GETMAIN macro.

GCS Macro Formats
Generally, there are four possible macro formats. Each macro tells you exactly which of these formats
applies and provides more detailed information. Usually, the significance of each format is as follows:

Standard Format
Generates an in-line parameter list to the macro. It also generates nonreentrant code that executes
the function as part of the macro expansion.

List Format
Generates an in-line parameter list to the macro but generates no code that executes the function.

List Address Format
Generates no code that executes the function. However, it does generate executable code that moves
the parameter values that you specify in the instruction to a parameter list at some designated
address.

Execute Format
Generates code that executes the function. Optionally, it generates executable code that moves
parameter values into a parameter list. The execute format requires that you specify the address of a
parameter list that you previously created.

Note:

1. Not every GCS macro is available in each of these formats. However, each is available in a standard
format. Several are also available in list and execute formats. A few are available in all four formats.

2. The VSAM macros listed in this book differ somewhat. See Appendix B, “Using VSAM,” on page 517.

GCS Macro Coding Conventions
Coding conventions for GCS macros are the same as those for all assembler language macros. The macro
format descriptions show optional operands in the format:

,operand

indicating that if you are going to use this operand, it must be preceded by a comma (unless it is the first
operand coded). If a macro statement overflows to a second line, you must use a continuation character
in column 72.

Note: No blanks may appear between operands.

When a macro offers a choice of operands, one and only one of which must be specified, the operands are
stacked one per line and shown below the line of the syntax diagram.

158 z/VM: 7.2 Group Control System

Many operands can be specified with an argument in the form of either an expression or a register
containing a value. When this is the case, the macro expects a register designation to begin with a
left parenthesis. Therefore, specifying an expression that starts with a left parenthesis will produce
unpredictable results, just as specifying a register without parentheses would.

Incorrect coding of any macro may result in assembler errors and MNOTEs. MNOTES are unnumbered
responses that can result from executing system generation macros or service programs. They are
documented in logic listings only.

Where applicable, the end of a macro description contains a list of the possible error conditions that
may occur during the execution of the macro, and the associated return codes. These return codes are
always placed in register 15. The macros that produce these return codes have ERROR= operands that
allow you to specify the address of an error handling routine that can check for particular errors during
macro processing. If an error occurs during macro processing and no error address is provided, execution
continues with the next sequential instruction following the macro.

Formatting Conventions
You will notice that each macro entry is accompanied by a format box that defines the proper format of
the instruction.

As you examine these format boxes more closely, the first thing that you notice is the lack of blank
spaces in the instructions. There are only two places where a blank space can appear in a macro. These
are between the label and the instruction, and between the instruction and its first parameter. You will
probably notice that the parameters themselves are not delimited by blanks, but by commas. In these
respects, macros closely resemble assembler language instructions.

Let us show this by looking at a fictitious macro called DUCK. The DUCK macro takes three parameters: A,
B, and C. And, like most other instructions, an optional label can be applied.

Its format box looks like this:

label

DUCK A,B,C=  some_number

Therefore, you might code something like this:

QUACK DUCK A,B,C=7

You coded the mnemonic label QUACK and left one blank space (though more than one is permissible).
Then, mindful that macros cannot be abbreviated, you followed with the full name of the macro itself,
DUCK. You left another blank space, though you could have left more than one, and followed with the
parameters. Notice that only comma's delimit the parameters.

Few macros are this trivial. Many instructions have parameters that are optional. Whether you choose
them sometimes depends on your own needs, and sometimes on circumstances. Another fictitious
macro, GOOSE, has two parameters, one of which is optional.

Its format box looks like this:

label

GOOSE

A= some_number ,

B= some other number

You could code GOOSE like this:

GOOSE B=77

Note that you did not supply a comma before the B parameter, because there is no other parameter
present from which to separate it. Notice too that you did not supply a label this time.

Chapter 5. GCS Macros 159

You could also code GOOSE like this:

HONK GOOSE A=34,B=77

This time you supplied the A parameter because, for some reason, it suited your purpose.

The format boxes of some macros stack optional parameters in a list.

The fictitious HORSE macro format box looks like this:

label

HORSE A,B

,C

,D

,E

Notice that C, D, and E parameters are stacked. These stacking mean two things. First, all three of the
parameters are optional. You can ignore this list entirely, if it suits your purpose, or choose from the list.
Second, if you choose from the list, then you can choose either C, or D, or E. You cannot choose two or
three of them, but only one.

So, if you code

HORSE A,B,C,D

it is an error because you chose two optional parameters from the same stacked list, namely C and D.

HORSE A,B,C

is correct because you chose only one optional parameter. Of course,

HORSE A,B

is also correct, because you chose to omit all of the optional parameters.

Some macros force you to make a choice from among a stacked list of options.

The MOOSE macro format box looks like this:

label

MOOSE H,P,M ,X

,Y

,Z

So,

MOOSE H,P,M

is incorrect, because you did not select an option from the stacked list of options. So,

MOOSE H,P,M,X,Z

is incorrect because you selected more than one parameter from the list. So,

MOOSE H,P,M,Z

is correct because you made your choice and it was only one parameter.

The MACKEREL macro format box looks like this:

160 z/VM: 7.2 Group Control System

label

MACKEREL J,L,Q

,S=YES

,S=NO

Notice that:

• The parameters ,S=YES and ,S=NO are stacked above and below the line.

It is not that difficult to figure this out if you just remember that option above the main line means this is
the default and you do not have to choose. But if an option is on the line, like the X is in the MOOSE Macro,
then it means you must choose. The main line through simply means that you can choose the S parameter
or ignore it. So,

MACKEREL J,L,Q,S

is incorrect, because you chose the S parameter but did not choose either YES or NO. So,

MACKEREL J,L,Q

is correct, because you omitted the S parameter altogether, allowing ,S=YES to take effect by default. So,

MACKEREL J,L,Q,S=YES
MACKEREL J,L,Q,S=NO

are correct, because you specified the S parameter correctly in each.

Parameter Notation Conventions
You will notice that under each parameter description there is a statement on how that parameter can be
expressed in the macro. Several terms appear frequently in this context. They are defined as follows:
Symbol

Any symbol that is valid in the assembler language. That is, an alphabetic character followed by 0
through 7 alphanumeric characters. A symbol cannot contain any special characters or imbedded
blanks.

Register (2) through (12)
One of the general registers 2 through 12. Presumably, the register you specify contains a right-
justified value or address that pertains in some way to the parameter in question. Any high-order bits
in the register should be reset to zero. You can express the register number symbolically or through an
absolute expression. Unless otherwise specified, parentheses must surround the register expression.

RX-type address
Any address that is valid in an RX-type assembler language instruction.

Chapter 5. GCS Macros 161

ABEND

Format

label

ABEND completion_code

,DUMP

,

,STEP

,

,USER

,SYSTEM

Purpose

Use the ABEND macro to abnormally terminate the active task.

For several reasons, task running under GCS may decide that it should abnormally terminate itself.

Parameters
completion_code

Specifies the completion code that describes the condition under which the task terminated itself.

A completion code is a number from 0 to 4095.

If you specified the address of an event control block in the ATTACH macro that created the ABENDing
task, then the completion code is placed there. (If necessary, review the entry titled “ATTACH” on
page 165.) If it is a user completion code, then it is stored in bits 20-31 of the ECB completion code
field. If it is a system completion code, then it is stored in bits 8-19.

If you specify the DUMP parameter, then this completion code will also appear in the dump's control
block.

The meaning of each user completion code is defined by the application. The meaning of each system
completion code is defined by the GCS supervisor. The USER and SYSTEM parameters, as described in
the following, govern which type of completion code you receive.

You can write this parameter as any symbol, as a decimal or hexadecimal number, or as register (1)
through (12).

DUMP
GCS sends the dump to the virtual reader belonging to the member of your virtual machine group
designated to receive dumps if SET DUMP is not OFF. If this member is not authorized, then only
nonfetch-protected key 14 data will be included in the dump.

STEP
Indicates that the entire command or application, of which the task in question is a part, is to be
abnormally terminated.

USER
Indicates that the completion code specified is defined by the user or the application. Unless
otherwise stated, this is the case, by default.

SYSTEM
Indicates that the completion code specified is defined by the GCS supervisor.

ABEND

162 z/VM: 7.2 Group Control System

Usage
1. If any subtasks are defined for the task in question, then they are also terminated abnormally. This

applies to any of their descendants, as well.
2. When a task terminates, the GCS supervisor performs usual task termination activities on the former's

behalf. These activities include the release of locks, storage, and other resources associated with the
task.

However, you may have defined an exit routine for the task through the ESTAE macro. (If necessary,
review the entry titled “ESTAE” on page 223.) The exit routine may attempt to retry the failed function
or request that the supervisor continue with usual task termination.

3. It may be that no exit routine was defined for the task in question. It may also be that an exit routine
was defined for the task but the exit routine directed that termination continue anyway. In either case,
GCS checks to see if the task in question is a subtask of another task. If so, then the other task is the
immediate ancestor task of the task in question.

If the task in question has an immediate ancestor, then GCS checks to see if the ancestor task
included the ETXR parameter in the ATTACH macro it used to attach the task in question to itself. If
so, then GCS schedules the routine specified in the ETXR parameter for execution. If the ancestor task
specified the ECB parameter in the same ATTACH macro, then GCS posts the appropriate event control
block.

See “ATTACH” on page 165.
4. Some of the subtasks of the task being terminated may have ESTAE exit routines defined for

themselves. If so, none of them ever receives control.

Examples

ENDIT ABEND 899,DUMP

The active task wants to terminate itself abnormally. A user completion code of 899 describes the reason
for this. The task requests that a dump of its virtual storage be produced to aid in diagnosing the problem
(only if SET DUMP is not OFF). ENDIT is the label on this instruction.

ENDIT ABEND 899,,STEP

Note the two commas in the example above. The parameters are positional.

Return Codes and ABEND Codes
The ABEND macro does not generate return codes.

ABEND Code Meaning

20D A descendant subtask of this task issued the ABEND macro with the STEP parameter
specified. This task was abnormally terminated.

ABEND

Chapter 5. GCS Macros 163

ADSR

Format

ADSR

Purpose

Use the ADSR macro to get a symbolic name for each field in a symptom record. Each symbolic name can
be used as a displacement in an assembler language instruction to gain access to the corresponding field
in the symptom record. The SYMREC macro creates the symptom record.

Usage
1. To use the DSECT you have created to find your way around the ADSR, assign the address of the ADSR

to a base register. Then use the symbolic name of a field in the DSECT as the displacement to the
corresponding field in a symptom record.

2. For more information about the format of the symptom records, see the z/VM: CP Programming
Services.

Return Codes and ABEND Codes
The ADSR macro generates no return codes or abend codes.

ADSR

164 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

ATTACH
The ATTACH macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 170 and “Execute Format” on page 171.

label

ATTACH EP= symbol

EPLOC=  address

DE= address

1

,PARAM=( addresses)

,VL=1

,ECB= address

,ETXR=  address ,DPMOD=  number

,SZERO=YES

,SZERO=NO

,SHSPV=  number

,SHSPL=  address

,SM=PROB

,SM=SUPV

,JSTCB=NO

,JSTCB=YES

Notes:
1 The following parameters are optional and may be specified in any order.

Purpose

Use the ATTACH macro to set up a new subtask.

In order for the code representing a new subtask to be usable, a task block must be created for it by its
immediate ancestor task. Also, the subtask's code must be brought into virtual storage if it is not already
there.

The ATTACH macro should be used by a task to create a task block for one of its own new subtasks. This
will bring the subtask into virtual storage if it is not already there. The task issuing the ATTACH macro
thereby becomes the immediate ancestor of the subtask in question.

If running in XA mode on entry to the attached routine, the high order bit, bit 0, of register 14 is set to
indicate the addressing mode of the issuer of the ATTACH macro. If bit 0 is 0, the issuer is executing in
24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.

Parameters

EP
Specifies the 8-byte name of the entry point within the program that receives control when your new
subtask runs.

The entry point name can be any one of the following:

ATTACH

Chapter 5. GCS Macros 165

• The name of the entry point as previously defined through the IDENTIFY macro. See “IDENTIFY” on
page 270.

• The name of the entry point declared in a shared segment directory through the CONTENTS macro.
See “CONTENTS” on page 197.

• A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches:

1. Your private storage, because the module associated with the entry point name may already be
loaded.

2. Any shared segment directories that may have been created through the CONTENTS macro.
3. The directories of any load libraries that may have been defined for your virtual machine through

the GLOBAL LOADLIB command. See “GLOBAL” on page 101.

If the subtask code is in a load library, then the ATTACH macro will bring the subtask's code into your
private storage for you.

You must write this parameter as a symbol.

EPLOC
Specifies the address that contains the 8-byte name of the entry point of the program that receives
control when your new subtask runs.

You can write this parameter as an assembler program label or as register (2) through (12).

DE
Specifies the address of the NAME field within the directory list entry associated with the entry point.

This is the same list entry you placed in the directory using the BLDL macro. See “BLDL” on page 181.

You can write this parameter as an assembler program label or as register (2) through (12).

PARAM
Specifies one or more parameter addresses that are to be passed to your subtask program after it
receives control.

GCS builds a parameter list containing these addresses in the order which you specify them. Then, the
address of this parameter list is passed in register 1 to your subtask program.

Note that this parameter list must be surrounded by parentheses and each member of the list must be
separated from the others by a comma.

You can write these parameters as assembler program labels or as registers (2) through (12).

VL=1
Indicates that the subtask expects a variable number of parameters to be passed to it.

This parameter causes the high-order bit of the last parameter address in the list to be set to 1. This
enables the subtask to find the end of a variable-length parameter list.

You must write this parameter exactly as shown. And, you can use it only with the PARAM parameter.
To omit the VL=1 parameter is to say that the subtask expects a set number of parameters.

ECB
Specifies the event control block (ECB) associated with your new subtask.

“WAIT” on page 365 and “POST” on page 314 describe how your new subtask can be treated as an
event associated with an ECB. GCS posts the ECB with the subtask's completion code or return code
when the latter terminates.

Remember, if you specify the address of an ECB in the ATTACH macro, then you must explicitly enter
the DETACH macro when you are finished with the subtask in question. The DETACH macro releases
all the storage associated with your subtask, including its control blocks. See “DETACH” on page 208.

You can write this parameter as an assembler program label or as register (2) through (12).

ATTACH

166 z/VM: 7.2 Group Control System

ETXR
Specifies the address of the end-of-task exit routine that is to receive control when your new subtask
terminates either normally or abnormally.

It is your responsibility to provide this exit routine and to be certain that it is in virtual storage when
needed. Also, if your exit routine is to be shared by several subtasks, then it must be reentrant.

If in XA mode, the exit will be run in the AMODE of the caller.

Remember, if you specify the address of an exit routine in the ATTACH macro, then you must explicitly
enter the DETACH macro when you are finished with the subtask in question. Normally the DETACH
macro is issued somewhere in the exit routine itself.

You can write this parameter as an assembler program label or as registers (2) through (12).

DPMOD
Specifies the number that is to be added to the dispatching priority of the immediate ancestor task to
produce the dispatching priority of your new subtask.

The larger the dispatching priority number of a task, the more readily the task is executed. So, if a
positive number were assigned to the DPMOD parameter, then the sum of this number and the priority
of the ancestor task would produce a higher priority for your new subtask. Conversely, a negative
number assigned to the DPMOD parameter would result in a priority for your subtask that is lower
than its immediate ancestor.

The dispatching priority for a problem state application task must be a number from 0 to 240. Should
the sum of the DPMOD parameter and the priority of the ancestor task be less than zero, then the
dispatching priority of your subtask will be 0. If this sum is greater than 240, then the dispatching
priority of your subtask will be 240.

The dispatching priority for a supervisor state application task must be a number from 0 to 250.
Should the sum of the DPMOD parameter and the priority of the ancestor task be less than zero, then
the dispatching priority of your subtask will be 0. If this sum is greater than 250, then the dispatching
priority of your subtask will be 250.

Note: If the task issuing the ATTACH macro is running on the system task, then the dispatching
priority for its subtask will be the sum of 240 plus the value assigned to the DPMOD parameter.

SZERO
Indicates whether your new subtask is to share subpool 0 storage with its immediate ancestor task.

A subpool is a number from 0 to 255 that is assigned to a block of storage to describe its
characteristics. Subpool 0 specifies private, fetch-protected storage.

If a main task issues the GETMAIN macro for storage in subpool 0, then GCS automatically frees
the storage when the task terminates. Also, for a subtask that is attached to a main task with the
SZERO=NO parameter specified.

However, if the subtask was attached with the SZERO=YES parameter specified (or defaulted), then
GCS associates the storage with the oldest ancestor task with which this subtask is sharing the
subpool. The storage block is not automatically freed by GCS when the subtask terminates. The
storage is freed only when the oldest ancestor task terminates.

YES
Specifies that subpool 0 storage will be shared by your new subtask with its immediate ancestor
task. This is the case, by default.

NO
Specifies that subpool 0 storage will not be shared by them.

SHSPV
Specifies a storage subpool that will be shared by your new subtask with its immediate ancestor (and
with the latter's ancestor, if it shares with the task that attached it).

ATTACH

Chapter 5. GCS Macros 167

If a main task issues the GETMAIN macro for storage from subpools 1 through 127, then GCS
automatically frees the storage when the task terminates. Also, for a subtask that was attached to that
task without a subpool having been specified in the SHSPV or SHSPL parameter.

However, if the subtask was attached with a subpool specified in the SHSPV or SHSPL parameter
in the ATTACH macro, then GCS associates the storage with the oldest ancestor task with which
this subtask is sharing the subpool. Hence, the storage is not automatically freed by GCS when the
subtask terminates. The storage is freed only when the oldest ancestor task terminates.

Because subpools greater than 127 cannot be shared, you should write this parameter as a number
from 1 to 127.

SHSPL
Specifies the address of a list of subpool numbers, each of which refers to a subpool to be shared by
your new subtask with its immediate ancestor task.

The rules governing the SHSPV parameter also apply here. Besides, the first byte in the list must
contain the number of bytes remaining in the list. Each byte following must contain a subpool number
from 1 to 127.

You can write this parameter as an assembler program label or as register (2) through (12).

SM
Indicates the state which your new subtask will run. This parameter is valid only if the task issuing the
ATTACH macro is running in supervisor state. Otherwise this parameter is ignored.
PROB

Indicates that your new subtask will run in problem state. If you omit the SM parameter
altogether, then the subtask will run in problem state, by default.

SUPV
Indicates that your new subtask will run in supervisor state.

JSTCB
Indicates whether your new subtask is an independent application. Unless your program is running on
the system task, this parameter is ignored.
YES

Indicates that your subtask is an independent application.

An independent application does not go away when the command through which it was created
terminates. This means that the application must be explicitly detached through the DETACH
macro when it is no longer needed.

NO
Indicates that your subtask is not an independent application. This is the case, by default.

Usage
1. The ATTACH macro does not transfer control to your new subtask. It merely sets up a task block for

your subtask based on the information you provide in the ATTACH macro.

When the new subtask is dispatched the first time, it receives control. At this point, the programs it
contains are enabled for interrupts. Also, the subtask runs in the same key which its ancestor task ran
when the latter issued the ATTACH macro.

2. The ATTACH macro assigns a unique task identifier to each new subtask. This task ID is returned to
the task issuing the instruction in the 2 low-order bytes of register 1. Further, the 2 high-order bytes
of this register will contain the appropriate virtual machine ID.

This task ID refers to your new subtask if you decide to delete it from the system or change its
dispatching priority. See “DETACH” on page 208 and “CHAP” on page 187.

Note: Soon after the ATTACH macro completes execution, be certain to save the task id somewhere
in virtual storage. You will need this task id later as a parameter to the DETACH and CHAP macros.

3. Do not use the ATTACH macro in an ESTAE exit routine.

ATTACH

168 z/VM: 7.2 Group Control System

4. An end-of-task exit routine will always run in the same key and state as the task that issued the
ATTACH macro originally.

5. If neither the ECB nor ETXR parameter is specified, then the subtask is automatically removed from
the system when it terminates.

6. The ATTACH macro can attach a load module in either 24-bit or 31-bit addressing mode and which
is physically resident above or below the 16MB line. The AMODE and RMODE attributes (located in
the directory entry for the load module) provide this information. RMODE indicates where the module
is to be placed; AMODE indicates the addressing mode of the module. If the AMODE of the entry
module being attached is ANY, it will be attached with the same addressing mode as the caller.

7. The SPLEVEL macro need not be issued unless you want an ATTACH macro used by GCS that has
an expanded parameter list, which is designed for use in the 31-bit addressing mode. A 31-bit
parameter list is incompatible if you are running under the 370 Accommodation Facility. However the
SPLEVEL macro lets you select either the 24-bit version or the 31-bit version of the expansion.

8. When an exit routine specified in an ATTACH macro receives control, the contents of the registers are:

Register Contents

0 Unpredictable.

1 The task ID for the subtask that just terminated.

2 - 12 Unpredictable.

13 The address of an 18 word register save area provided by the GCS supervisor.

14 The return address within the GCS supervisor.

15 The address of the exit routine.

9. When the new subtask receives control, the contents of the registers are:

Register Contents

0 Unpredictable.

1 - 12 Propagated to the new subtask.

13 The address of a new user save area.

14 The return address within the ancestor task.

15 The address of the entry point.

10. If the program that receives control after the new subtask becomes active is reentrant, then it is
loaded into key 0 storage. This ensures that it is not accidentally modified or tampered with.

11. This macro supports both 24 and 31 bit address expansions of the parameter list. The macro
expansion is controlled by the internal macro SPLEVEL. The default value is 31.

Examples

ATTACH EPLOC=(4),PARAM=((5),(6),(7)),VL=1,ECB=MYECB,SHSPL=SPLIST

A task requests that a new subtask be created.

The name of the entry point for the program associated with the new subtask can be found at the address
in register 4. Registers 5, 6, and 7 contain the addresses of three parameters to be passed as a list to
the subtask's program when it receives control. Because the new subtask's program can accept a variable
number of parameters, the VL=1 parameter is specified. The event control block associated with the new
subtask can be found at the address associated with the label MYECB. A list of storage subpools that are
to be shared by the subtask with its immediate ancestor task can be found at the address associated with
the label SPLIST.

ATTACH

Chapter 5. GCS Macros 169

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function successfully completed.

X'04' 4 An ATTACH macro was issued in an ESTAE exit routine. The subtask was
not attached.

ABEND Code Meaning

22A You specified a subpool number greater than 127 in the SHSPL or SHSPV parameter.

42A The ECB parameter specified an invalid address.

704 An uncorrectable machine, system, or indeterminate error occurred while processing the
GETMAIN macro.

72A Invalid parameter list.

List Format

label

ATTACH ,SF=L
1

EP= symbol

EPLOC=  address

DE= address

,PARAM=( addresses)

,VL=1

,ECB= address

,ETXR=  address ,DPMOD=  number

,SZERO=YES

,SZERO=NO

,SHSPV=  number

,SHSPL=  address

,SM=PROB

,SM=SUPV

,JSTCB=NO

,JSTCB=YES

Notes:
1 The following parameters are optional and may be specified in any order.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

ATTACH

170 z/VM: 7.2 Group Control System

SF=L
Specifies the list format of this macro.

Execute Format

label

ATTACH ,MF=(E,  address)

,SF=(E,  address)

,MF=(E,  address),SF=(E,  address)

1

EP= symbol

EPLOC=  address

DE= address

,PARAM=( addresses)

,VL=1

,ECB= address

,ETXR=  address ,DPMOD=  number

,SZERO=YES

,SZERO=NO

,SHSPV=  number

,SHSPL=  address

,SM=PROB

,SM=SUPV

,JSTCB=NO

,JSTCB=YES

Notes:
1 The following parameters are optional and may be specified in any order.

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Problem program or control program parameters specified are provided in parameter lists expanded
in-line.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the remote parameter list to be used by the program that receives
control when the new task becomes active.

You can add or modify values in this parameter list by specifying them in this instruction.

SF=(E,address)
address specifies the address of the parameter list passed to the control program and provided by the
list form of the ATTACH macro.

address specifies the address of the parameter list to be used by the macro that you generate using
the list form of the ATTACH macro.

You can add or modify values in this parameter list by specifying them in this instruction.

ATTACH

Chapter 5. GCS Macros 171

AUTHCALL

Format

label

AUTHCALL EP= name

EPLOC=  addr ,UWORD=  addr

Purpose

Use the AUTHCALL macro to call an authorized program from an unauthorized program. An important
feature of GCS is that it permits an authorized program to be called by an unauthorized program. The
authorized program resides in a shared segment, having been linked to its virtual machine at GCS
initialization time. The unauthorized program resides in one of the virtual machines that makes up the
group.

Note: In this context, an authorized program is one running in supervisor state, an unauthorized program
is one running in problem state.

The AUTHCALL macro allows an unauthorized program to call an authorized program. However,
AUTHCALL is not an authorized GCS function.

Parameters
EP

Specifies the name by which the authorized program is known to the unauthorized program. Note that
this name is from one to eight alphanumeric characters long.

EPLOC
Specifies the address at which the name of the authorized program can be found. Again, this is the
name by which the authorized program is known to the unauthorized program.

You can write this address as an assembler program label, as register (0), or as register (2) through
(12). The name of the authorized program, as stored at this address, should be padded on the right
with blanks if the name occupies fewer than 8 bytes.

UWORD
Specifies an optional fullword address that may be passed to the authorized program when it is called
by the unauthorized program.

You can use this parameter to pass any information you wish to the authorized program.

The UWORD may be written as an assembler program label or as register (1) through (12). If you write
it as a label, then the UWORD is passed to the authorized program as the address associated with
that label. If you write it as a register, then the UWORD is passed to the authorized program as the
contents of that register. If no UWORD is specified, it is passed as the value zero.

Usage
1. It is impossible for an unauthorized program to call an authorized program through the AUTHCALL

macro unless the AUTHNAME macro is issued for that authorized program first. If necessary, review
the entry titled “AUTHNAME” on page 174.

2. Any program started through the AUTHCALL macro runs in key 0.
3. Any program started through the AUTHCALL macro will run in the AMODE specified for it in the

CONTENTS macro. See “CONTENTS” on page 197.

AUTHCALL

172 z/VM: 7.2 Group Control System

Examples

AUTHCALL EP=PATH

Calls an authorized program named PATH.

AUTHCALL EPLOC=(2),UWORD=(5)

Calls an authorized program whose name can be found at the address in register 2. Register 5 contains
information that the program expects to receive from the program that called it.

The authorized program being called receives the following information in its registers.

Register Contents

0 The user word (UWORD) specified in the associated AUTHNAME macro.

1 The user word (UWORD) specified in the AUTHCALL macro.

13 The address of the register save area.

14 The address to which control is to return after the authorized program completes
execution.

15 The address of the entry point in the program being called.

Return Codes and ABEND Codes
Except for the return code noted in the following, the authorized program will pass its return code to the
program that called it in register 15. The AUTHCALL macro generates the following return code.

If you receive a return code of -3 in register 15, do not mistake it for a return code generated by the
program that you called.

Hex
Code

Decimal
Code

Meaning

X'FFFFFFFD' -3 The system could not find the program whose address you specified.

X'30' 48 The CONTENTS entry has AMODE=CONTENTS or AMODE=CALLER,
the caller is in AMODE 24 and the exit address is above the 16MB
line.

ABEND Code Reason Code Meaning

FCB 0100 A call was made to an authorized program that is not available to the
unauthorized program.

FCB 0102 The GETMAIN macro, issued by GCS, was unable to obtain enough storage
to complete your request.

AUTHCALL

Chapter 5. GCS Macros 173

AUTHNAME
The AUTHNAME macro is available in standard, list, list address and execute formats.

Standard Format

See also “List Format” on page 176, “List Address Format” on page 177 and “Execute Format” on page
177.

label

AUTHNAME SET,EP=  address

,UWORD=  address

CLR

,NAME=

name

register

1

,ERROR=  address

Notes:
1 The following parameters are optional and may be specified in any order.

Purpose

Use the AUTHNAME macro to define or withdraw the name of an authorized program that is to be called
by an unauthorized program.

An important feature of GCS is that it permits an authorized program to be called by an unauthorized
program. The authorized program resides in a shared segment that was linked to its virtual machine at
GCS initialization time. The unauthorized application resides in one of the virtual machines that makes up
the virtual machine group.

Note: In this context, an authorized program is one running in supervisor state, an unauthorized program
is one running in problem state.

The AUTHNAME macro creates (or clears, depending on your intent) a control block that contains
information the unauthorized program needs to call the authorized program. This information includes,
among other things, the name by which the authorized program is known by the various applications
within the virtual machine group; the address of the authorized program; the key which the calling
program is running; the state of the calling program (problem or supervisor); and the address of a
user-defined fullword, which will be described later.

Parameters
SET

Indicates that a control block is to be created for the authorized program in question.

After this is done, the unauthorized program can call the authorized program.

EP
Specifies the address of the authorized program in question.

The authorized program must be resident in a shared segment. That is, it must be a program whose
entry point is defined in a shared segment directory that was created through the CONTENTS macro.
See “CONTENTS” on page 197.

AUTHNAME

174 z/VM: 7.2 Group Control System

The AMODE of the authorized program will be taken from the correspondent entry in the CONTENTS
macro. See “CONTENTS” on page 197.

This parameter is required when you use the SET option. The parameter is meaningless with the CLR
parameter.

You can write this parameter as an assembler program label or as register (2) through (12).

UWORD
A fullword of storage in the control block that you can use in any way you please.

For example, perhaps the authorized program expects the address of a parameter list or some other
value be passed to it. You can use the UWORD for that, if you wish. However, this parameter has
meaning only when used with the SET parameter.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the content at the label or the address itself is placed in the UWORD field
of the control block. If you write it as a register, then the contents of that register are placed in the
UWORD field. If you omit this parameter altogether, then it is passed as a fullword of zeros.

CLR
Indicates that the authorized program in question is no longer needed by any unauthorized program.
Therefore, the control block for the authorized program is cleared away.

NAME
Specifies the name by which the authorized program is known to the unauthorized program.

If you choose the SET parameter, then this name refers to the authorized program for which a control
block is to be created. If you choose the CLR option, then the name refers to the authorized program
that is no longer needed and whose control block is to be cleared.

Note that this name can be no more than eight characters long.

You can write this parameter as the name of the program itself, or you can write it as register (2)
through (12). If you do the latter, then the register must contain the address where the name is stored.

ERROR
Specifies the address of the routine that is to receive control if an error occurs in the AUTHNAME
macro.

You can omit this parameter if you wish, test the return code from the macro, and proceed in an
appropriate manner.

Otherwise, you can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. The authorized program is always loaded at GCS initialization time. It is possible for one virtual

machine to call this program after another machine has cleared it. This is because of the time lag
between issuing the CLR function and completing it. The authorized program should be designed with
this in mind. See “AUTHCALL” on page 172.

2. It is impossible for an unauthorized program to call an authorized program through the AUTHCALL
macro unless the AUTHNAME macro has been issued for the authorized program first. The control
block created by the AUTHNAME macro is, in effect, permission for an unauthorized program to call an
authorized program.

3. Generally, the AUTHNAME macro is issued by an authorized program (RSCS or VTAM, for example) for
unauthorized programs.

4. The authorized program called by the unauthorized program (through AUTHCALL) will have the same
PSW key as the program that issued the corresponding AUTHNAME macro.

5. The AUTHNAME macro places the control block for an authorized program in common storage. Hence,
any unauthorized application in the group can call it.

6. If the task that issued the AUTHNAME macro terminates, the AUTHNAME is no longer in effect.

AUTHNAME

Chapter 5. GCS Macros 175

Examples

AUTHNAME SET,NAME=BLUE,EP=(3)

Make an authorized program available to unauthorized programs. The authorized program will be known
to the unauthorized programs as BLUE. The address of this authorized program is in register 3.

AUTHNAME SET,NAME=RED,EP=PURPLE,ERROR=REDERR

Make an authorized program available to unauthorized programs. The authorized program will be known
to the unauthorized programs as RED. This program can be found at the address associated with the
label PURPLE. If an error occurs in the AUTHNAME macro, control will be transferred to the routine at the
address associated with the label REDERR.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Request was completed normally.

X'04' 4 A control block already exists for this authorized program.

X'08' 8 The address you specified for the EP parameter is not in a shared
segment.

X'18' 24 Parameter list is invalid.

X'2C' 44 No authorized program has the name you specified.

List Format

label

AUTHNAME ,MF=L
1

SET,

EP= address ,UWORD=  address

CLR

,NAME=  name

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Also, note that only the preceding parameters listed are valid in the
list format of this macro.

Added Parameter

AUTHNAME

176 z/VM: 7.2 Group Control System

MF=L
Specifies the list format of this macro.

List Address Format

label

AUTHNAME ,NAME=  name ,MF=(L, address

, label

)
1

SET,

EP= address ,UWORD=  address

CLR

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Address Format)
This format of the macro does not produce any executable code that calls the function. However, it does
produce executable code that moves the parameter values that you specify into a certain parameter list.
If you enter the macro using this format, then you must do so before any related invocation of the macro
using the execute format. Note that only the preceding parameters listed are valid in the list address
format of this macro.

Added Parameter (List Address Format)

MF=(L,address,label)
address specifies the address of the parameter list into which you want the parameter values you
mention placed. This address can be within your program or somewhere in free storage.

label is optional and is a user-specified label, indicating that you want to determine the length of the
parameter list. The macro expansion equates the label you specify with the length of the parameter
list.

Execute Format

label

AUTHNAME ,NAME=  name ,MF=(E,  address)
1

SET,EP=  address

,UWORD=  address

CLR

,ERROR=  address

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

AUTHNAME

Chapter 5. GCS Macros 177

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify. Note that only the preceding parameters listed are valid in the list address format of this
macro.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

AUTHNAME

178 z/VM: 7.2 Group Control System

AUTHUSER

Format

AUTHUSER START

NAME= userid

END

Purpose

Use the AUTHUSER macro to create an authorized user block for the GROUP CONFIGURATION FILE.

The GROUP CONFIGURATION FILE describes a GCS virtual machine group. This file is divided into three
data blocks:
Configuration

Defines the virtual machine group's configuration so that it conforms to the needs of your installation.
See “CONFIG” on page 193.

Segment
Identifies which saved segments will be automatically linked to each member of the group at IPL
time. See “SEGMENT” on page 338.

Authorized User
Identifies which members of the group are authorized. That is, which members are permitted to
perform authorized GCS functions. The Authorized GCS Service Macros are identified in Chapter 5,
“GCS Macros,” on page 157.

Parameters

START
Indicates that this AUTHUSER macro marks the beginning of the authorized user block.

The authorized user block must begin with an AUTHUSER macro with this parameter specified.

NAME
Specifies the user ID of the virtual machine that is to have authorized status.

END
Indicates that this AUTHUSER macro marks the end of the authorized user block.

The authorized user block must end with an AUTHUSER macro with this parameter specified.

Usage
1. Most installations will not explicitly use the AUTHUSER macro to build the GROUP CONFIGURATION

FILE. Those equipped with at least one full-screen display terminal can take advantage of GCS build
panels. These data entry panels, called by the GROUP command, eliminate the need to build the file
by explicitly coding these macros. When you call the GROUP command without a full-screen terminal,
your file will have to be built using the editor and coding the macros manually.

2. The GROUP CONFIGURATION FILE adopts the system name as its file name. This name corresponds
exactly with that specified in the SYSNAME parameter of the CONFIG macro. The file type of the
GROUP CONFIGURATION FILE is always GROUP.

AUTHUSER

Chapter 5. GCS Macros 179

3. Remember that in using the AUTHUSER macro you are creating blocks of information. Thus,
all occurrences of the AUTHUSER macro must be physically grouped together in the GROUP
CONFIGURATION FILE.

Examples

This example illustrates the authorized user block of a GROUP CONFIGURATION FILE.

.

.

.
AUTHUSER START
AUTHUSER NAME=GSC455JX
AUTHUSER NAME=NHGT78FC
AUTHUSER NAME=KJGR99BV
AUTHUSER NAME=KJGD03NJ
AUTHUSER END
.
.
.

The block begins with the AUTHUSER macro with the START parameter specified. Four user IDs are then
specified, indicating that these virtual machines are to have authorized status. The authorized block is
then concluded with an AUTHUSER macro with the END parameter specified.

Return Codes and ABEND Codes
The AUTHUSER macro generates no return codes and no ABEND codes.

AUTHUSER

180 z/VM: 7.2 Group Control System

BLDL

Format

label

BLDL 0, list_address

Purpose

Use the BLDL macro to build a directory entry list to aid in invoking one or more load library members.

Frequently the programs you write to run under GCS need to call other programs. Some of these programs
may be modules resident in load libraries stored on disks. To bring a member of a load library into virtual
storage and run it, GCS needs certain information: the module's name, the load library of which the
module is a member, the module's address on the disk, relocation information, and so forth.

Your program can issue the BLDL macro to build a directory entry list for each load library member
expected to be called. The needed information is extracted from the directory of the load library
containing the module and placed in the directory entry list.

If you do not enter the BLDL macro, then GCS will do it for you whenever you load a new module. This
is satisfactory if you plan to load, use, and delete the module only once. However, if you plan to use
the same module several times, it is more efficient for you to enter the BLDL macro once. That way, the
module can be loaded once and executed several times using the same directory entry list.

Parameters
0

The numeral zero, written exactly as shown.

It indicates that the BLDL macro is to search for the information it needs only in the directories of the
load libraries identified previously in your GLOBAL LOADLIB command.

For more information on the GLOBAL command see “GLOBAL” on page 101.

list_address
Specifies the address of the directory entry list.

The skeleton for this list (and certain basic information for it) must be provided by your program. The
discussion of the skeleton follows.

You can write this address as an RX-type address, as register (0), or as register (2) through (12).

Specify the ASIT and ranges as follows:
As mentioned before, your program must provide the storage necessary for the directory entry list. It
must also provide certain information about the list, and the names of the modules the list is to describe.
The BLDL macro then fills in the blanks with information necessary for the invocation of the modules.

The basic format of a directory entry list is:

LIST
INFORMATION

LIST
ENTRY
 #1

LIST
ENTRY
 #2

LIST
ENTRY
 #3

. . . . LIST
ENTRY
#64K-1

BLDL

Chapter 5. GCS Macros 181

List Information 1
The list information for the directory entry list is contained in the first two fields. Note that the numbers in
parentheses indicate the number of bytes in each field.

FF (2) LL (2)

These fields are described as follows:

FF
Indicates the number of separate list entries in the directory entry list. It must be a binary number
corresponding to the number of modules your list will describe.

LL
Indicates the length of each separate list entry in the directory entry list, in bytes. It must be a binary
number of at least 62 and it must be even.

List Information 2
The directory entry list contains one or more list entries, as shown previously. Each list entry corresponds
to one module from a load library that you intend to run. A single list entry is composed of the following
fields. The number of bytes are in parentheses.

NAME (8) TTR (3) K (1) Z (1) C (1) UD (at least 48)

You need only supply one field in the list entry yourself:

NAME
The name of the module (or its alias) that the particular list entry will describe.

This name must start in the first byte of this field. If the name is fewer than 8 bytes long, it must be
padded on the right with blanks.

The list information and the name of each module is all the information your program has to supply. The
remaining fields within each list entry are filled in by the BLDL macro. The significance of these fields is as
follows:

TTR
The relative position where the module may be found in the load library.

K
Identifies the load library of which the program is a member. It is a number specifying the relative
position of the load library's name in your GLOBAL LOADLIB command.

The number assigned to the first or only load library is zero.

Z
A byte of binary zeros.

C
Indicates whether the information your program put in the NAME field is the member program's name
or its alias. It also indicates the length of the user data field in halfwords.

This field is 1-byte long. If bit 0 is reset to 0, it means you are using the member program's name. If
bit 0 is set to 1, it means you are using its alias. Bits 1 and 2 are always reset to 0. Bits 3 through 7
contain the number of halfwords in the UD (user data) field.

UD
This field contains the user data found in the load library associated with the member program. The
user data information is used by the loader to relocate the module in storage.

This user data field is always at least 24 halfwords long. By increasing the number in the LL field, you
increase the size of the UD field. This allows room for more user data, if necessary.

The byte at displacement 37 (X'25') into the list entry contains three bits that contain RMODE and
AMODE information. If bit 3 is on, RMODE=ANY. If bit 6 is on, AMODE=31. If bit 7 is on, AMODE=24.

BLDL

182 z/VM: 7.2 Group Control System

Usage
1. The only load libraries that the BLDL macro will consider are those you specify in the GLOBAL LOADLIB

command.
2. The BLDL macro will allow no more than 65,535 (64K-1) separate list entries in any single directory

entry list, and no fewer than one.
3. If there is more than one list entry in the directory entry list, then it is wise to arrange them

alphanumerically according to the NAME field. However, this is not a requirement.
4. Your program is responsible for providing the storage space for the directory entry list. It must also

supply the list information and insert the name of each module in its respective list entry.
5. Many programmers find it convenient to use the BLDL macro simply to find out whether a program is

really a member of a specific load library. Check the return code and reason code generated by the
macro to find this out.

Messages
When this macro completes processing, it passes to the caller a return code in the low-order byte of
register 15. The reason code is returned to the caller in the low-order byte of register 0.

Hex
Codes

Decimal
Codes

Reason
Code

Meaning

X'00' 0 00 Function successfully completed.

X'04' 4 00 One or more modules named in the directory entry list
could not be found. The R-byte (byte 11) of its TTR field
was reset to 0.

X'08' 8 00 A permanent I/O error was found when GCS attempted to
search a load library directory.

X'08' 8 04 Insufficient virtual storage space was available for file
management.

BLDL

Chapter 5. GCS Macros 183

CALL
The CALL macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 185 and “Execute Format” on page 186.

label

CALL

entry_point_name

,( parameter_addresses)

,VL

,ID= number

Purpose

Use the CALL macro to pass control to an entry point. After the CALL is completed, control returns to the
point from which it was passed.

Parameters

entry_point_name
Specifies the name of the entry point that is to receive control.

Because the macro uses this name as a V-type address constant, the linkage editor and loader will
have resolved this name into a virtual address.

If you specify a symbol for the entry point name, then the linkage editor will include the control
section containing the entry point in question within the load module containing the CALL macro.

You can write this parameter as a symbol or as register (15).

parameter_addresses
Specifies a list of one or more parameter addresses that you want to pass to the program at the
specified entry point.

The CALL macro gathers these addresses into a parameter list in the order that you listed them in
the instruction. The parameter list contains one or more fullwords, each on a fullword boundary and
each containing the address of one parameter. The specified entry point receives the address of this
parameter list in register 1.

Note that each parameter address in the instruction must be separated by a comma, with the
complete list surrounded by parentheses.

You can write these addresses as assembler program labels or as registers (2) through (12).

VL
Indicates that the program receiving control expects a variable number of parameters to be passed
to it. To omit this parameter is to say that the program receiving control expects a set number of
parameters.

CALL

184 z/VM: 7.2 Group Control System

This parameter sets the high-order bit of the last address parameter in the list to 1, thereby indicating
the end of the list.

ID
A debugging aid for use when you enter several CALL macros.

You can assign this parameter a unique, mnemonic value that will be inserted in any dump you might
request. This lets you to associate an area within the dump with a specific CALL macro.

You can write this parameter as any number or symbol.

Usage
1. If you specify the entry point name as register 15, then the load module that contains the entry point

must be in virtual storage. Register 15 must contain the address of the entry point.
2. Use of the CALL macro implies that the issuing program ultimately expects to regain control.
3. It is the responsibility of the program issuing the CALL macro to provide storage where the values in

its registers may be saved while the other program has control. The address of this save area must
be placed in register 13. Also, the called program must save the values in these registers and, later,
restore them.

4. The supervisor is not involved in passing control to the entry point. Therefore, it is your task's
responsibility to maintain the usability of the program at that entry point. That is, if you modify the
program in any way, then you must restore it to its original condition after you have finished. Your task
must ensure that only one user has control of the program at a time.

Examples

CALL (15),(PARAM1,PARAM2),VL

The program requests that control be passed to the entry point whose address is in register 15. GCS
assumes that the entry point is in virtual storage, (the address specified at register 15). The program
being called is to receive two parameter addresses arranged in a parameter list. The addresses of these
parameters are associated with the labels PARAM1 and PARAM2. Because the VL parameter is specified,
the program being called expects a variable number of parameters be passed to it. In this case, two.

Return Codes and ABEND Codes
The CALL macro generates no return codes and no ABEND codes.

List Format

label

CALL

( parameter_addresses)

,VL

,MF=L

Purpose (List Format)
This format of the macro generates an in-line parameter list, based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Also, note that only the preceding parameters listed are valid in the
list format of this macro.

Added Parameter

CALL

Chapter 5. GCS Macros 185

MF=L
Specifies the list format of this macro.

Execute Format

label

CALL

entry_point_name

,( parameter_addresses)

,VL

,ID= number

,MF=(E,  address)

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

CALL

186 z/VM: 7.2 Group Control System

CHAP

Format

label

CHAP priority_change_value

,'S'

, task_id_address

Purpose

Use the CHAP macro to change the dispatching priority of a given task.

GCS is a multitasking system. This means that considerably more than one task can process in the same
virtual machine at the same time.

In any multitasking environment some sort of priority system must be established to govern access to
the processor by so many tasks. To that end, each task is assigned a dispatching priority number. These
numbers determine the order that many competing tasks gain access to the processor.

The dispatching priority for any problem state application task must be a number from 0 to 240. The
dispatching priority for any supervisor state application task must be a number from 0 to 250. The larger
the number, the higher the dispatching priority of the task and the more readily that task gains access to
the processor.

Use the CHAP macro to change the dispatching priority of any application task within your virtual
machine.

Parameters

priority_change_value
Specifies a number that is to be added to the current dispatching priority of the task in question. The
sum of these two numbers will be the task's new dispatching priority.

To raise the task's dispatching priority, specify a positive number in this parameter. To lower it, specify
a negative number.

Should the sum of the two numbers result in a priority less than zero, then the task's new priority will
be zero. Should the sum be greater than the highest priority allowed, then the task's new priority will
be the highest allowed.

You can write this parameter as any symbol, as a decimal digit, as register (0), or as register (2)
through (12). If you write it as a register and wish to specify a negative number, then you must store
the number in the register in two's complement form.

task_id_address
Specifies the address of a fullword that contains the task identifier of the task in question.

GCS assigned a task ID to your task when you issued the ATTACH macro for it. See “ATTACH” on
page 165. Presumably, you saved the task ID somewhere when the ATTACH macro returned it to you.
GCS assumes that the task ID is stored in the 2 low-order bytes at this address. GCS ignores the 2
high-order bytes.

If the address specified in the task ID address parameter equals zero, then GCS assumes that the
dispatching priority of the task issuing the CHAP macro is the one to be changed.

You can write this parameter as an RX-type address or as register (1) through (12).

CHAP

Chapter 5. GCS Macros 187

S
Indicates that the dispatching priority of the task issuing the CHAP macro is the one to be changed.

If you omit both the S and the TASK ID ADDRESS parameters, then GCS treats the macro as though
the S parameter were specified.

Note that this parameter must be surrounded by single quotation marks.

Usage
1. No task can change the dispatching priority of any other task unless the former issued the ATTACH

macro for the latter. Put another way, no task can change the dispatching priority of another task
unless the latter is a subtask of the former.

2. You cannot use the CHAP macro to change the priority of the system task.

Return Codes and ABEND Codes
The CHAP macro generates no return codes.

ABEND Code Meaning

12C The task ID specified was invalid because:

• It is associated with the system task, not the user task
• It does not exist
• It does not refer to one of its immediate descendant tasks
• The task specified has already terminated.

22C The address of the parameter list is invalid.

CHAP

188 z/VM: 7.2 Group Control System

CMDSI
The CMDSI macro is available in standard, list, list address and execute formats.

Standard Format

See also “List Format” on page 191, “List Address Format” on page 191 and “Execute Format” on page
192.

label

CMDSI ( register)

symbol

, length

' command_text '

, length

1

,FILEBLK=  addr ,ERROR=  addr

Notes:
1 The parameters are optional and may be specified in any order, but each may be specified only
once.

Purpose

Occasionally you will find it necessary to enter a command from a program running under GCS. Command,
in this context, means any command that:

• Ordinarily would be entered directly from the console, this includes GCS commands, CP commands, and
EXECs

• Previously defined to GCS using the LOADCMD command. See “LOADCMD” on page 112.

Parameters

register
Specify the register containing the address of the command in question. With this method you must
specify the LENGTH parameter. Also, the reference to the register must be in parentheses.

symbol
Specify the programming language symbol on the statement containing the command and its options
or parameters. Note that you must specify the LENGTH parameter if you use this method.

command_text
Specify the actual text of the command, with any necessary parameters or options. The entire
command statement must be surrounded by single quotation marks.

The LENGTH parameter need not be specified when using this method. If it is, it will be ignored.

length
Specifies the length of the command in bytes. This includes the command itself, its parameters,
options, operands, and all imbedded blanks.

It must be a number from 1 to 130.

You can write this parameter as an absolute expression or as register (2) through (12). If you write it
as a register, the register must contain the length of the command.

CMDSI

Chapter 5. GCS Macros 189

FILEBLK
Use this parameter if the:

• REXX/VM interpreter is to process a non-GCS file
• Interpreter is to process from storage
• Address environment is inconsistent with the file type of the file containing the command.

This parameter specifies the address of the file block to be passed to the REXX/VM interpreter, which
will interpret the code associated with the command.

This file block contains information necessary to start the code properly. This includes, among other
things, the file name, file type, and file mode of the file containing the code; its address (if in storage),
and its size. For more information, see z/VM: REXX/VM User's Guide or z/VM: REXX/VM Reference.

You can write this address as a programming language label or as register (2) through (12).

ERROR
Specifies the address of a routine that is to receive control if an error occurs in the CMDSI macro.

Note:

1. If you omit this parameter and an error occurs, then control returns to the macro immediately
following the CMDSI macro, just as it would were there no error.

You can write this parameter as a programming language label or as register (2) through (12).
2. The error routine does not receive control if an error occurs in the command you are trying to

execute.

Examples

DOIT CMDSI MYCMD,48,FILEBLK=(8),ERROR=(6)

Enter the command at the address associated with the label MYCMD. The command is 48 characters
long. Because the command calls an EXEC, the address of the file block can be found in register 8.
Register 6 contains the address of an error routine that gets control if an error occurs in the CMDSI
macro. Presumably, the LOADCMD command has been entered for the command. DOIT is the label on this
instruction.

INQUIRE CMDSI 'QUERY DISK',ERROR=ERR1

Enter the GCS QUERY DISK command. No length is needed because length is implicit in the single
quotation marks that surround the command. ERR1 is the label on the error routine that is to receive
control if an error occurs in the CMDSI macro. INQUIRE is the label on this instruction.

Return Codes and ABEND Codes
The only return codes generated by the CMDSI macro are defined in the following. They are passed to the
caller in register 15. Any other return code passed by the CMDSI macro is really the return code from the
command that it called.

Hex
Code

Decimal
Code

Meaning

X'FFFFFFFD' -3 The command could not be found.

X'00' 0 The command was successfully executed.

ABEND Code Reason Code Meaning

FCA 0300 The parameter list was invalid.

CMDSI

190 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb0_v7r2.pdf#nameddest=dmsb0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2

List Format

label

CMDSI MF=L symbol , length

' command_text '

, length

1

,FILEBLK=  addr

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Also, note that only the preceding parameters listed are valid in the
list format of this macro.

Added Parameter

MF=L
Specifies the list format of this macro.

List Address Format

label

CMDSI MF=(L, address

, label

)

( register)

symbol

, length

' command_text '

, length

1

,FILEBLK=  addr

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Address Format)
This format of the macro does not produce any executable code that calls the function. However, it does
produce executable code that moves the parameter values that you specify into a certain parameter list.
If you enter the macro using this format, then you must do so before any related invocation of the macro
using the execute format. Also, note that only the preceding parameters listed are valid in the list format
of this instruction.

Added Parameter (List Address Format)

CMDSI

Chapter 5. GCS Macros 191

MF=(L,address,label)
address specifies the address of the parameter list into which you want the parameter values you
mention placed. This address can be within your program or somewhere in free storage.

label is optional and is a user-specified label, indicating that you want to determine the length of the
parameter list. The macro expansion equates the label you specify with the length of the parameter
list.

Execute Format

label

CMDSI MF=(E, address) ( register)

symbol

, length

' command_text '

, length

1

,FILEBLK=  addr ,ERROR=  addr

Notes:
1 The parameters are optional and may be specified in any order, but each may be specified only
once. For any parameter not specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)
MF=(E,address)

address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this instruction.

CMDSI

192 z/VM: 7.2 Group Control System

CONFIG

Format

CONFIG SYSNAME=  name , MAXVM=  number , RECVM= userid
1

,TABSIZE=16

,TABSIZE=  number

,DUMPVM=  *

,DUMPVM=  userid

,RESTRICT=YES

,RESTRICT=NO

,SGROUP=NO

,SGROUP=YES ,SYSID='  character_string '

,HCOMMON=YES

,HCOMMON=NO

,VSAMSEG=CMSVSAM

,VSAMSEG=  name

,BAMSEG=CMSBAM

,BAMSEG=  name

,TRACPRI=YES

,TRACPRI=NO

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable is used.

Purpose

Use the CONFIG macro to define the configuration of your GCS virtual machine group.

Note: The default values listed are used when the GROUP file is assembled. They are not put in the
GROUP CONFIGURATION file by the GROUP command.

The GROUP CONFIGURATION FILE describes a GCS virtual machine group. This file is divided into four
data blocks:
Configuration

Defines the virtual machine group's configuration so that it conforms to the needs of your installation.
Segment

Identifies which saved segments will be automatically linked to each member of the group at IPL
time. Review the entry titled “SEGMENT” on page 338.

Authorized User
Identifies which members of the group are authorized. That is, which members are permitted to
perform authorized GCS functions. The Authorized GCS Service Macros are identified in Chapter 5,
“GCS Macros,” on page 157.

Reserve Storage User
Identifies which members of the group are to have storage reserved for the VSAM and BAM segments
at IPL time. Also, review the entry titled “RESSTOR” on page 320.

Parameters
SYSNAME

The name under which this system (group) will be saved.

CONFIG

Chapter 5. GCS Macros 193

Every saved system, which is what a virtual machine group is, must have a system name. The
name of a GCS virtual machine group must correspond exactly with the file name of the GROUP
CONFIGURATION FILE associated with the group. This name must correspond with the name of the
saved system as entered in the system name table.

You can write this as any string of alphanumeric characters, eight characters long or less. But, you
must be careful not to select a name that could easily be mistaken by the system for a hexadecimal
device address, such as C or 595.

MAXVM
Specifies the maximum number of virtual machines that can join the group whose configuration is
being defined.

You can write this parameter as any number from 1 to 65535.

Note: If SGROUP is specified as YES (SGROUP=YES), then MAXVM is forced to 1 (MAXVM=1).

RECVM
Identifies which virtual machine in the group will be designated as the recovery virtual machine.

It is the duty of the recovery virtual machine to perform various clean-up tasks for any virtual machine
that is reset. A virtual machine that is reset is one that has logged-off, been re-IPLed, and so forth.
Clean-up includes running any termination exit routines that the reset machine may have identified.

The recovery machine must be the first machine to join the group. Otherwise, an error will occur and
the system will be reset.

Write this parameter as the user ID of the recovery machine.

TABSIZE
Specifies the size of the GCS trace table that the virtual machine group will use.

The GCS supervisor records all supervisor events in this trace table. Users have the option to record
user virtual machine events in the same table through the ITRACE command and GTRACE macro. For
more information on the ITRACE and GTRACE, see the “ITRACE” on page 108 and “GTRACE” on page
265.

The size of the trace table is expressed in kilobytes. You can write this parameter as any number from
4 to 16384, the default is 16.

DUMPVM
Specifies the user ID of the virtual machine that is to receive all dumps requested by any member of
the group.

It is strongly recommended that the user ID specified by this parameter refer to an authorized user.
Remember that dumps often contain fetch-protected, nonkey-14 data. Only authorized users are
permitted to handle such data. Therefore, it is wise to have an authorized user designated to handle
all dumps so that all types of data can be included.

Write this parameter as the user ID of the virtual machine you wish to designate as the recipient of all
dumps.

RESTRCT
Specifies if the GCS saved system should be restricted to authorized users in the CP directory to IPL
this system.
YES

The GCS system is saved as restricted. This is the default.
NO

The GCS system is not saved as restricted.

Note: If SGROUP is specified as YES (SGROUP=YES), then RESTRCT is forced to NO
(RESTRCT=NO).

SGROUP
Specifies you are building a single user group.

CONFIG

194 z/VM: 7.2 Group Control System

NO
The GCS system is built with group communication and with shared common storage. This is the
default.

YES
The GCS system is built without group communication and without shared common storage.

Note: If YES is specified (SGROUP=YES), the MAXVM number is forced to one (MAXVM=1), and
RESTRCT is forced to NO (RESTRCT=NO).

SYSID
Specifies the text of the system identification.

The system ID is a message displayed to each user at IPL time. It can contain any information that the
administrators of your system wish. You can write this parameter as any character string of up to 130
characters long.

Note:

1. The character string must be surrounded by single quotation marks. If you omit this parameter,
then the text of the system ID will be a blank line, by default.

2. If you must include imbedded single quotation marks (') or ampersands (&) within the SYSID
character string, then make certain you include two single quotation marks or two ampersands for
every one you intend. Also, be certain that there are no more than 126 of them.

HCOMMON
Specified if high common storage is desired.
YES

The GCS system is built with free common storage defined above the 16 meg line. This is the
default. The start and end of high common can be updated on the GCS LOAD exec (GCTLOAD) if
you do not want the default values of 16 meg and 18 meg.

NO
The GCS system is built with no common storage above the 16 meg line.

VSAMSEG
The name of the VSAM segment that is to be used by the GCS group that you are building a GCS
segment. The name can be eight or fewer characters long. The default name is CMSVSAM.

BAMSEG
The name of the BAM segment that is to be used by the GCS group that you are building a GCS
segment. The name can be eight or fewer characters long. The default name is CMSBAM.

TRACPRI
Specifies if the internal trace table is to be in private or common storage.
YES

The internal trace table will be in private storage. This is the default. Tracing will be for your virtual
machine only.

NO
The internal trace table will be in common storage. Tracing will be for all virtual machines in the
group.

Usage
1. Most installations will not explicitly use the CONFIG macro to build the GROUP CONFIGURATION

FILE. Those equipped with at least one full-screen display terminal can take advantage of GCS build
panels. These data entry panels, called by the GROUP command, eliminate the need to build the file by
explicitly coding these macros. However, without a full-screen terminal, your file will have to be built
using the editor and coding the macros manually.

2. The GROUP CONFIGURATION FILE adopts the system name (virtual machine group name) as its file
name, the file type is always GROUP.

CONFIG

Chapter 5. GCS Macros 195

3. Remember that in using the CONFIG macro you are creating blocks of information. Thus,
all occurrences of the CONFIG macro must be physically grouped together in the GROUP
CONFIGURATION FILE.

Examples

CONFIG SYSNAME=MAIN,MAXVM=5,RECVM=VM1,DUMPVM=VM1,SYSID='WELCOME!'

The name of the system being described is MAIN. No more than five virtual machines can join this group.
The virtual machine, whose user ID is VM1, is designated as both the recovery machine and the handler of
all dumps. And, the word WELCOME! is displayed to each user at IPL time.

Return Codes and ABEND Codes
The CONFIG macro generates no return codes and no ABEND codes.

CONFIG

196 z/VM: 7.2 Group Control System

CONTENTS

Format

CONTENTS

START

NAME= name

,EP= entry_point

,OL=NO

,OL=YES

,AMODE=CONTENTS

,AMODE= CALLER

DEFINED

31

24

END

Purpose

Use the CONTENTS macro to define the entry points in a saved segment.

For a saved segment to be usable, the various entry points it contains must be defined in a directory. This
directory contains the name of each entry point in the saved segment mapped to its address.

Use the CONTENTS macro to create such a directory (also called a CONTENTS MODULE) for a saved
segment.

Parameters

START
Indicates that this CONTENTS macro marks the beginning of the CONTENTS MODULE. It marks the
beginning of the saved segment itself.

NAME
Specifies the name that an external program can use to pass control to the entry point.

This name is only resolved when the ATTACH, LINK, XCTL, or LOAD macro or the OSRUN command is
issued. See “ATTACH” on page 165, “LINK” on page 293, “XCTL” on page 373, “LOAD” on page 298,
or “OSRUN” on page 116.

This name can be the actual name of the entry point. Or, when the EP parameter is also specified, the
name can be an alias. An alias is simply a second name that is associated with the real name of an
entry point.

This name must be one of two things, the:

• Label on a CSECT assembler instruction
• Operand symbol in an ENTRY assembler instruction.

EP
Specifies the actual name of the entry point in the saved segment.

If you specify the real name of the entry point in the NAME parameter, then the EP parameter is
unnecessary. However, if you specify an alias for the entry point name in the NAME parameter, then
the EP parameter must be specified with the real name of the entry point.

OL
Indicates whether the code at the entry point in question is only loadable.

CONTENTS

Chapter 5. GCS Macros 197

YES
Indicates that the code is only loadable. That is, the code is not executable. An example of this
would be a data area.

Remember that the LOAD macro is the only macro that can be used on such code. Macros like
LINK, XCTL, and ATTACH do not work on code that is only loadable.

NO
Indicates that the code is not only loadable. That is, the code is executable.

If the OL parameter is omitted, then the code is considered executable, by default.

AMODE
Specifies the addressing mode.
CONTENTS

The entry point will be run in the addressing mode specified by the entry point address. Bit 0 of
the address determines the mode; if the bit is on AMODE 31 is in effect, otherwise an AMODE of
24 is used.

CALLER
The entry point will be run in the AMODE of the caller.

DEFINED
The entry point will be run in the addressing mode specified in bit 0 of the exit address passed to
the TASKEXIT, MACHEXIT, AUTHNAME, AUTHCALL, SCHEDEX, LINK, LOAD, and XCTL macros.

31
The entry point will be run in AMODE 31.

24
The entry point will be run in AMODE 24.

END
Indicates that this CONTENTS macro marks the end of the CONTENTS MODULE. What follows, then, is
the first module in the saved segment.

Usage
1. Each saved segment must begin with a CONTENTS MODULE. The first example shows the contents of

such a module.
2. When the CONTENTS macros in the module are assembled, they expand to associate each entry point

name specified with its address in the saved segment.
3. All entry point names in a particular saved segment must be unique. GCS searches multiple

CONTENTS MODULES for the first occurrence of a particular entry point name. Therefore, if more
than one saved segment (each with its own CONTENTS MODULE) is linked to your virtual machine,
then all entry point names in all the saved segments must be unique.

4. When the CONTENTS macro is issued to define an exit, the addressing mode of the exit is determined
by the AMODE parameter. (See the TASKEXIT, MACHEXIT, AUTHNAME, AUTHCALL, SCHEDEX, LINK,
LOAD, and XCTL macros.)

Examples

The following code represents a saved segment, consisting of a CONTENTS MODULE and four entry
points. These entry points are named PROGRAMA, PROGRAMB, PROGRAMC, and DATA.

 CONTENTS START
 CONTENTS NAME=PROG1,EP=PROGRAMA,AMODE=DEFINED
 CONTENTS NAME=PROG2,EP=PROGRAMA
 CONTENTS NAME=PROG3,EP=PROGRAMA
 CONTENTS NAME=PROGRAMB
 CONTENTS NAME=PROGRAMC
 CONTENTS NAME=DATA,OL=YES
 CONTENTS END
PROGRAMA CSECT
 .

CONTENTS

198 z/VM: 7.2 Group Control System

 .
 .
PROGRAMB CSECT
 .
 .
 .
PROGRAMC CSECT
 ENTRY DATA
 .
 .
 .
DATA DC
 .
 .
 .

The CONTENTS MODULE begins with the CONTENTS macro with the START parameter specified. Then,
the entry points are defined.

Of particular interest is the fact that the second through fourth CONTENTS macros have both the NAME
and EP parameters specified. PROG1, PROG2, and PROG3 are defined as aliases for PROGRAMA. If an
external program calls any of these names, then control will pass to the code at the entry point named
PROGRAMA.

The entry points PROGRAMB and PROGRAMC have no alias defined for them. So, to start either of these,
an external program would have to use either the name PROGRAMB or PROGRAMC.

The entry point DATA contains code that is ONLY LOADABLE.

The CONTENTS MODULE is concluded with a CONTENTS macro with the END parameter specified.

Return Codes and ABEND Codes
The CONTENTS macro generates no return codes and no ABEND codes.

CONTENTS

Chapter 5. GCS Macros 199

CVT

Format

CVT

Purpose

The CVT macro provides a mapping of the OS communication vector table in your virtual machine group's
common storage. Most of the vector table is used by application programs running under GCS.

When using VTAM under GCS, a communication vector table is required.

Parameters
The CVT macro accepts no parameters.

Usage
1. The simulated CVT is in common storage following the GCS supervisor code. Only certain CVT fields

are supported.
2. Within each member of your virtual machine group, the address of the CVT resides at location X'10'.
3. The following table shows the format of the CVT, as simulated by GCS.

Address Field

116 (X'74') CVTDCB -- CVTMVSE

140 (X'8C') CVTECVT -- Address of ECVT

200 (X'C8') RESERVED

204 (X'CC') CVTUSER

248 (X'F8') CVTSAF

256 (X'100') RESERVED

304 (X'130') CVTTZ

328 (X'148') RESERVED

376 (X'178') CVTFLAGS

376 (X'178') CVTFLAG1

377 (X'179') CVTFLAG2

378 (X'17A') CVTFLAG3

379 (X'17B') CVTFLAG4

504 (X'1F8') RESERVED

576 (X'240') RESERVED

624 (X'270') CVTVWAIT

628 (X'274') CVTEND

CVT

200 z/VM: 7.2 Group Control System

4. Bit 0 (CVTMVSE) of the CVTDCB field is the XA mode flag bit.
5. Bit 1 of the CVTDCB field contains 0 when under the GCS supervisor. Under CMS, it contains 1.
6. The CVTUSER field is reserved for the user.
7. The CVTTZ field contains the difference between local time and Coordinated Universal Time (UTC)

in binary units of 1.048576 seconds. It is updated by GCS at initialization, and whenever a CP SET
TIMEZONE command is issued.

When running in a single user group, only the machine specified as the recovery machine by the
GROUP EXEC can receive updates to the CVTTZ field.

8. The CVTFLAG2 field indicates whether or not Data Compression Services and the hardware instruction
(CMPSC) are supported. If Data Compression Services are supported, the CVTCMPSC bit will be on. If
the machine supports hardware compression, the CVTCMPSH bit will be on.

Return Codes and ABEND Codes
The CVT macro generates no return codes and no ABEND codes.

CVT

Chapter 5. GCS Macros 201

DELETE

Format

label

DELETE EP= symbol

EPLOC=  address

DE= address

,RELATED=  value

Purpose

Use the DELETE macro to release control of a load module.

After a task is finished with a load module, that module should be released from the task's control.
Generally this will free the storage space that the load module occupies.

In effect, the DELETE macro cancels the effect of the LOAD macro. See “LOAD” on page 298. Use the
DELETE macro to release your task's control over a load module and, if it is no longer needed, to remove it
from virtual storage.

Parameters

EP
Specifies the name of the entry point contained in the load module.

This is the module you no longer wish to control.

You can write this parameter as any valid symbol.

EPLOC
Specifies the address in your program where you have stored the name of the load module's entry
point.

This name may be up to 8 bytes long. If it is less than 8 bytes long, then it must be padded on the right
with blanks.

You can write this parameter as an RX-type address, as register (0), or as register (2) through (12).

DE
Specifies the address of the NAME FIELD within the directory list entry associated with the entry point
in question.

This is the same list entry you placed in the directory using the BLDL macro. See “BLDL” on page 181.

You can write this parameter as an RX-type address, as register (0), or as register (2) through (12).

RELATED
Specifies documentation data that you are using to relate this macro to a LOAD macro.

The value you assign to this parameter has nothing to do with the execution of the macro itself. It
merely relates one macro (DELETE) to a macro that provides an opposite, though related, service
(LOAD).

The format and contents of this parameter are at your discretion, and can be any valid coding value.

DELETE

202 z/VM: 7.2 Group Control System

Usage
1. The DELETE macro frees the storage occupied by the load module only if it resides in private storage

and if the module is no longer needed.
2. The task that issues the DELETE macro to release a given load module must be the same task that

issued the LOAD macro.
3. Modules loaded with the ADDR parameter cannot be deleted.

Examples

LOADIT LOAD EP=XYZ,RELATED=DELETEIT
 .
 .
 .
DELETETIT DELETE EP=XYZ,RELATED=LOADIT

The task relinquishes control over the load module containing the entry point XYZ. This DELETE macro is
cross-referenced with a related LOAD macro by use of the RELATED parameters in each.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function successfully completed.

X'04' 4 Either your task did not issue a corresponding LOAD macro, or the
load module has already been deleted.

ABEND Code Meaning

206 Invalid parameter list.

DELETE

Chapter 5. GCS Macros 203

DEQ
The DEQ macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 206 and “Execute Format” on page 207.

label

DEQ ( qname_address , rname_address

, rname_length

)
1

,RET=NONE

,RET=HAVE ,RELATED=  value

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the DEQ macro to release control of a serially reusable resource.

A serially reusable resource (SRR) is a data resource that some tasks may want to update and that others
may only want to examine. These SRRs should be coordinated carefully. Two programs may seek to
update the resource simultaneously, leading to incorrect results. Meanwhile, another program may be
looking at the same data, causing more confusion.

Use the ENQ macro to gain exclusive use of a serially reusable resource so it can be updated. No other
task can touch the resource until the task that has exclusive control releases it. If an SRR is not being
updated, but only looked at, several tasks can also share the resource using the ENQ macro. But they
cannot alter the contents of the resource in any way. See “ENQ” on page 213.

Use the DEQ macro to release your task's control of a serially reusable resource.

Parameters

qname_address
Specifies the address in virtual storage where the QNAME for the resource in question can be found.

The QNAME is the first of a pair of names that identifies the resource. It can be up to 8 bytes long
and can contain any valid hexadecimal characters. Your installation has defined the QNAMEs of each
serially reusable resource available to you. Each programmer is required to use the proper QNAME to
identify an SRR.

You can write this parameter as an assembler program label or as register (2) through (12).

rname_address
Specifies the address in virtual storage where the RNAME of the resource can be found.

The RNAME is the second of a pair of names that identifies the resource. Again, your installation has
defined these and they must be used consistently. The name can be qualified and must be from 1 to
255 characters long.

You can write this parameter as an assembler program label or as register (2) through (12).

DEQ

204 z/VM: 7.2 Group Control System

rname_length
Specifies the length of the RNAME, in bytes.

It must be the same value as the RNAME LENGTH specified in the ENQ macro that gave the task
control of the resource.

If you omit this parameter, then the RNAME is considered, by default, to be its assembled length. If
you wish, you can override its assembled length with another within the range 1 through 255. If you
specify 0 as the length, then the ENQ macro assumes that the first byte at the address specified for
the RNAME ADDRESS contains the RNAME's correct length.

You must specify this parameter if there is no length associated with the RNAME itself. For example,
you may specify the RNAME by using a register or by using a name appearing in an EQU assembler
instruction.

You can write this parameter as a number between 0 and 255.

RET
Indicates the condition under which your request will be honored. If you omit this parameter, then
your request will be considered unconditional.
HAVE

Indicates that the resource is to be released from your task's control only if the task has control of
it at the moment.

NONE
Indicates that the request to release the resource from your task's control is unconditional.

RELATED
Specifies documentation data that you are using to relate this macro to an ENQ macro. The value you
assign to this parameter has nothing to do with the execution of the macro itself. It merely relates one
macro (DEQ) to a macro that provides an opposite, though related, service (ENQ).

The format and contents of this parameter are at your discretion and can be any valid coding values.

Usage
1. Control of a resource is surrendered when the task with control:

• Issues the DEQ macro
• Terminates abnormally, because it did not release the SRR itself.

2. If you choose the NONE parameter and your task does not have control of the resource, your task will
terminate abnormally. It is important to find out if your task really does have control of the resource
before using the NONE parameter, or simply use the HAVE parameter.

Examples

LETGO DEQ (PATH,(8),16),RET=NONE

A task is releasing a certain resource from its control. The QNAME of the resource can be found at the
address associated with the label PATH. Its RNAME can be found at the address in register 8. Because
the RNAME was specified by a register, the RNAME LENGTH was also specified as 16. The request is
unconditional, so presumably the task tested to see if it had control of the resource before it issued the
request. LETGO is the label on this instruction.

DEQ ((3),RN),RET=HAVE

A task is releasing a certain resource from its control. The QNAME of the resource can be found at the
address in register 3. Its RNAME can be found at the address associated with the label RN. The length of
the RNAME is not specified and will, therefore, be the assembled length of RN, by default. This request
will be honored only if the resource is under the task's control at the moment.

DEQ

Chapter 5. GCS Macros 205

Return Codes and ABEND Codes
If register 15 contains the value zero, then the resource in question has been released. If register 15 does
not contain 0, then it contains the address of the input parameter list of the macro. The DEQ macro places
all nonzero return codes in byte 3 of the input parameter list.

The return codes and abend codes are described as follows, according to the condition specified in the
RET parameter.

When RET=HAVE:

Hex
Code

Decimal
Code

Meaning

X'00' 0 The resource specified has been released.

X'04' 4 Your task requested control of the resource but has not yet received
it. This return code results if a DEQ macro is issued within an exit
routine that received control because of some interrupt.

X'08' 8 Either your task never had control of the specified resource or it
already released control.

ABEND Code Meaning

130 The resource was not previously specified in an ENQ macro. Nor was the RET=HAVE
parameter specified in that instruction.

230 An invalid length was specified for the RNAME LENGTH parameter.

430 Invalid parameter list.

530 A task issued the ENQ instruction. Before the request could be honored, the same task
issued the DEQ instruction without the HAVE parameter specified.

E30 Either your task attempted to make multiple requests with one DEQ instruction, or a
parameter that is not supported by GCS was specified with the instruction.

List Format

label

DEQ ( qname_address , rname_address

, rname_length

) ,MF=L

1
,RET=NONE

,RET=HAVE ,RELATED=  value

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

DEQ

206 z/VM: 7.2 Group Control System

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

DEQ ( qname_address , rname_address

, rname_length

)

,MF=(E,  address)
1

,RET=NONE

,RET=HAVE ,RELATED=  value

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that runs the function, using a parameter list whose address you
specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

DEQ

Chapter 5. GCS Macros 207

DETACH

Format

label

DETACH task_id_address

Purpose

Use the DETACH macro to remove a subtask from your virtual storage.

When you no longer have any use for a subtask for which you issued the ATTACH macro, it should be
removed from storage.

Use the DETACH macro to remove a subtask and its task block from storage and to break the logical link
between it and its immediate ancestor task.

Parameters

task_id_address
Specifies the address of a fullword that contains the task identifier of the subtask in question.

GCS assigned a task ID to your subtask when you issued the ATTACH macro for it. (If necessary,
review the entry titled “ATTACH” on page 165.) Presumably, you saved the task ID somewhere when
the ATTACH macro returned it to you. GCS assumes that the task ID is stored in the 2 low-order bytes
at this address. GCS ignores the 2 high-order bytes.

You can write this parameter as an RX-type address or as register (1) through (12).

Usage
1. The task that issues the DETACH macro for a particular subtask must be the one that issued the

ATTACH macro for it first.
2. If a DETACH macro is issued for a subtask that is in mid-execution, then the latter is terminated

abnormally. Should the subtask in question have any descendant subtasks of its own, they are also
terminated abnormally. If you specified an exit routine for the subtask through the ESTAE macro, then
the former is not executed. (If necessary, review the entry titled “ESTAE” on page 223.) Nor is the
routine specified by the ETXR parameter in the ATTACH instruction executed. However, if you specified
an event control block (ECB) in the ATTACH macro associated with the subtask, then that ECB is
posted. Finally, control is returned to the instruction immediately following the DETACH instruction.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed normally.

ABEND Code Meaning

13E This subtask was detached in mid-execution. Therefore, it has terminated abnormally.

DETACH

208 z/VM: 7.2 Group Control System

ABEND Code Meaning

23E The address of the task ID was invalid.

43E The ECB address specified in the corresponding ATTACH instruction was invalid.

705 An uncorrectable machine, system, or indeterminate error occurred when GCS issued
the FREEMAIN macro.

DETACH

Chapter 5. GCS Macros 209

DEVTYPE

Format

label

DEVTYPE dd_address , area_address
,DEVTAB

,RPS

Purpose

Use the DEVTYPE macro to request information relating to the characteristics of an I/O device, and to
cause this information to be placed into a specified area.

Parameters

dd_address
Specifies the address an 8-byte field that contains the name of the DD statement to which the device
is assigned. The name must be left justified in the 8-byte field and must be followed by blanks if the
name is fewer than eight characters.

area_address
Specifies the address of an area into which the device information is to be placed. The amount of
device information returned is dependent on the device type and the usage of the DEVTAB and RPS
parameters.

DEVTAB
This parameter is only required for direct access devices. If DEVTAB is specified, the following number
of words of information is placed in your area: For DASD, 5 words, and for non-DASD, 2 words.

If you do not code DEVTAB, 2 words of information are placed in your area.

RPS
If RPS is specified, then DEVTAB must also be specified. The RPS parameter causes an additional
word of RPS information to be included with the DEVTAB information.

Usage
To map this information from the DEVTYPE macro use the IHADVA macro. For more information on the
IHADVA macro see “IHADVA” on page 272.

Return Codes and ABEND Codes
Control is returned to your program at the next executable instruction following the DEVTYPE macro.
Register 15 contains a return code from the DEVTYPE macro. The DEVTYPE macro generates the following
return code.

Hex
Code

Decimal
Code

Meaning

X'00' 0 The information has been successfully stored.

X'04' 4 The DDNAME you specified was not found.

The following are ABEND Codes from DEVTYPE.

DEVTYPE

210 z/VM: 7.2 Group Control System

ABEND Code Reason Code Meaning

118 01 The ddname, whose address was supplied in register 1, is not a valid
address.

118 02 The output area, whose address was supplied in register 0, is not a valid
user address.

DEVTYPE

Chapter 5. GCS Macros 211

ECVT

Format

ECVT

Purpose

The ECVT macro provides a mapping of the OS extended communication vector table in your virtual
machine group's common storage.

Parameters
The ECVT macro accepts no parameters.

Usage
1. The system compression routine is found through the CVT and ECVT tables, once the CSRCMPSC

macro is invoked. It then branches to the correct service entry point to do the data compression or
expansion.

2. The following table shows the format of the ECVT, as simulated by GCS.

Address Field

0 (X'00') ECVTECVT -- Table eyecatcher 'ECVT'

4 (X'04') RESERVED

240 (X'F0') RESERVED

244 (X'F4') RESERVED

248 (X'F8') ECVTCMPS -- Address of Data Compression Services routine

252 (X'FC') RESERVED

Return Codes and ABEND Codes
The ECVT macro generates no return codes and no ABEND codes.

ECVT

212 z/VM: 7.2 Group Control System

ENQ
The ENQ macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 217 and “Execute Format” on page 217.

label

ENQ ( qname_address , rname_address

,
E

S ,

rname_length

)
1

,RET=NONE

,RET= CHNG

HAVE

TEST

USE

,RELATED=  value

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the ENQ macro to request control of a serially reusable resource.

A serially reusable resource (SRR) is a data resource, local to a virtual machine, that some tasks may
want to update and that others may want merely to examine. Use of these SRRs should be coordinated
carefully. Two programs may seek to update the resource simultaneously, leading to incorrect results.
Meanwhile, another program may be looking at the same data, causing more confusion.

Use the ENQ macro to request control of a serially reusable resource and to define the control sought by
your task.

Parameters

qname_address
Specifies the address in virtual storage where the QNAME for the resource in question can be found.

The QNAME is the first of a pair of names that identifies the resource, and must be eight characters
long. Your installation has defined the QNAMEs of each serially reusable resource available to you.
Each programmer is required to use the proper QNAME to identify an SRR.

You can write this parameter as an assembler program label or as register (2) through (12).

ENQ

Chapter 5. GCS Macros 213

rname_address
Specifies the address in virtual storage where the RNAME of the resource can be found.

The RNAME is the second of a pair of names that identifies the resource. Again, your installation has
defined these and they must be used consistently. The name can be qualified and be from 1 to 255
characters long.

You can write this parameter as an assembler program label or as register (2) through (12).

E
Indicates that you want your task to have exclusive control over the serially reusable resource. That is,
while your task has control over the resource, no other task can use it.

You must request exclusive control if your task is to modify the serially reusable resource in any way.

S
Indicates that your task can share control of the resource with other tasks that are also willing to
share.

If two or more tasks are sharing a serially reusable resource, then none is permitted to change the
contents of that resource.

rname_length
Specifies the length of the RNAME, in bytes.

If you omit this parameter, then the RNAME is considered by default to be the assembled length. If
you wish, you may override its assembled length with another within the range 1 through 255. If you
specify 0 as the length, then the ENQ macro assumes that the first byte at the address specified for
the RNAME ADDRESS contains the RNAME's correct length.

You must specify this parameter if there is no length associated with the RNAME itself. For example,
you may specify the RNAME by using a register or by using a name appearing in an EQU assembler
instruction to specify the RNAME.

You can write this parameter as a number from 0 to 255.

RET
Indicates the condition under which your request for control of the resource will be honored. If you
omit this parameter, then the request is considered unconditional.
TEST

Tests the availability of the resource specified. It does not turn control of the resource over to your
task.

CHNG
Indicates that the shared control your task now has over the resource is to change to exclusive
control.

This request will be honored if no other tasks are sharing the same resource with your task.

HAVE
Indicates that your task wants control of the resource only if it has not requested control of it
before.

NONE
Indicates that your task requests control of the resource unconditionally.

Your task will not regain control until it obtains control of the resource.

USE
Indicates that your task wants immediate control over the resource. If control of the resource is
not immediately available, then your task foregoes control and does not wait.

RELATED
Specifies documentation data that you are using to relate this macro to a DEQ macro.

The value you assign to this parameter has nothing to do with the execution of the macro itself. It
merely relates one macro (ENQ) to a macro that provides an opposite, though related, service (DEQ).

ENQ

214 z/VM: 7.2 Group Control System

The format and content of this parameter are at your discretion and may be any valid coding values.

Usage
1. Control of a resource is surrendered under when:

• A program within the task with control issues the DEQ macro. Review the entry titled “DEQ” on page
204.

• The task with control ends. The task terminates abnormally, because it did not release the resource
itself.

2. After it issues the ENQ macro, your task may be placed in the WAIT state when requesting:

• Exclusive unconditional control of a resource that is under exclusive or shared control of another
task.

• Control of a resource that is under the exclusive control of another task.
• Shared control but there is a request for exclusive control ahead of it.

3. The ENQ macro affects only the tasks within the virtual machine which issued it. Tasks in other virtual
machines are not constrained from using the serially reusable resource to which the instruction refers.
The programmers involved should take steps to assure that this does not create problems.

4. If you choose the TEST parameter, then your task is not given control of the task but merely receives
a return code. The same may be true if you choose the HAVE or USE parameter. Return codes are
defined in “Return Codes and ABEND Codes” on page 215.

Examples

GETIT ENQ (PATH,(4),E,32)

The task is requesting exclusive, unconditional control over a certain serially reusable resource. The
resource's QNAME can be found at the address associated with the assembler program label PATH. The
RNAME can be found at the address in register 4. Because a register was specified for the RNAME, the
length of the RNAME is also specified, as 32. GETIT is the label on this instruction.

ENQ ((3),RN,S),RET=USE

The task is requesting immediate, shared control of a resource. If that resource is not immediately
available, the task does not wish to wait. The QNAME can be found at the address in register 3. The
RNAME can be found at the address associated with the label RN. The length of the RNAME will be the
assembled length of RN, by default.

Return Codes and ABEND Codes
A return code is passed to your task only if you choose the TEST, USE, CHNG, or HAVE conditions for the
RET parameter.

If register 15 contains 0, then the return code for the resource in question is 0. If register 15 does not
contain 0, then it contains the address of the input parameter list of the macro. The ENQ macro places all
nonzero return codes in byte-3 of the input parameter list.

For all 08 return codes (except when RET=CHNG), you must examine the fourth bit in byte-0 of the input
parameter list. If this bit is reset to 0, then the return code means that the task has obtained exclusive
control of the resource. If this bit is set to 1, then the return code means that the task has obtained shared
control.

The return codes and abend codes are described as follows, according to the condition specified in the
RET parameter. When RET=CHNG:

ENQ

Chapter 5. GCS Macros 215

Hex
Code

Decimal
Code

Meaning

X'00' 0 The task now has exclusive control of the resource.

X'04' 4 The task cannot get exclusive control of the resource.

X'08' 8 The resource has not been queued.

X'14' 20 A previous request for control of the same resource was made by this
task. The task does not have control of the resource.

When RET=HAVE:

Hex
Code

Decimal
Code

Meaning

X'00' 0 Control of the resource has been given to the task.

X'08' 8 The task has control of this resource by virtue of a previous request.
If bit 3 of the first byte in the parameter list is set to 1, then this task
has shared control of the resource. If bit 3 is reset to 0, then this task
has exclusive control.

X'14' 20 The task has made a previous request for control of this resource.
The task is not given control of the resource.

When RET=TEST:

Hex
Code

Decimal
Code

Meaning

X'00' 0 The resource is available immediately.

X'04' 4 The resource is not available immediately.

X'08' 8 The task has control of this resource by virtue of a previous request.
If bit 3 of the first byte in the parameter list is set to 1, then this task
has shared control of the resource. If bit 3 is reset to 0, then this task
has exclusive control.

X'14' 20 The task has made a previous request for control of this resource.
The task is not given control.

When RET=USE:

Hex
Code

Decimal
Code

Meaning

X'00' 0 Control of the resource has been given to the task.

X'04' 4 The resource is not available immediately.

X'08' 8 The task has control of this resource by virtue of a previous request.
If bit 3 of the first byte in the parameter list is set to 1, then this task
has shared control of the resource. If bit 3 is reset to 0, then this task
has exclusive control.

X'14' 20 The task has made a previous request for control of this resource.
The task is not given control.

ENQ

216 z/VM: 7.2 Group Control System

ABEND Code Meaning

138 Two ENQ instructions were issued for the same resource by the same task without an
intervening DEQ instruction.

238 An invalid length was specified for the RNAME LENGTH parameter.

438 Invalid parameter list.

638 Insufficient storage was available to fulfill your request.

E38 Either your task attempted to make multiple requests with one ENQ instruction, or a
parameter that is not supported by GCS was specified in the instruction.

List Format

label

ENQ ( qname_address , rname_address

,
E

S ,

rname_length

) ,MF=L
1

,RET=NONE

,RET= CHNG

HAVE

TEST

USE

,RELATED=  value

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

ENQ

Chapter 5. GCS Macros 217

label

ENQ ( qname_address , rname_address

,
E

S ,

rname_length

) ,MF=(E,  address)
1

,RET=NONE

,RET= CHNG

HAVE

TEST

USE

,RELATED=  value

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

ENQ

218 z/VM: 7.2 Group Control System

ESPIE

Format

label

ESPIE

SET , exit_addr ,(

,

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15
1

)

,PARAM=  list_addr

RESET , token

TEST , parm_addr

Notes:
1 Each interruption type should only be specified once.

Purpose

Use the ESPIE macro to specify the address of an interruption exit routine and the program interruptions
types that are to cause the exit routine to be given control. If the program interruption type specified can
be masked, the corresponding program mask bit in the PSW is set to one. If a maskable interruption is not
specified, the corresponding bit in the PSW is set to 0.

Parameters
SET

indicates that an ESPIE environment is to be established.
exit_addr

specifies the address of the exit routine to be given control when program interruptions of the type
specified by ‘interruptions’ occur. The exit routine receives control in the same addressing mode as
the issuer of the ESPIE macro.

ESPIE

Chapter 5. GCS Macros 219

interruptions
indicates the interruption types that are being trapped. The interruption types are:
01

Operation
02

Privileged operation
03

Execute
04

Protection
05

Addressing
06

Specification
07

Data
08

Fixed-point overflow (maskable)
09

Fixed-point divide
10

Decimal overflow (maskable)
11

Decimal divide
12

Exponent overflow
13

Exponent underflow (maskable)
14

Significance (maskable)
15

Floating-point divide
PARAM=list_addr

specifies the fullword address of a parameter list that is to be passed by the caller to the exit routine.
RESET

indicates that the current ESPIE environment is to be deleted and the previously active ESPIE
environment specified by token is to be re-established.

token
specifies a fullword that contains a token representing the previously active ESPIE environment. This
is the same token that ESPIE processing returned to the caller when the ESPIE environment was
established using the SET option of the ESPIE macro.

TEST
indicates a request for information concerning the active or current ESPIE environment. EPSIE
processing returns this information to the caller in a four-word parameter list located at parm_addr.

parm_addr
specifies the address of a four-word parameter list.

The parameter list has the following form:
Word 0

Address of the user-exit routine.

ESPIE

220 z/VM: 7.2 Group Control System

Word 1
Address of the user-defined parameter list

Word 2
Mask of program interruption types

Word 3
Zero

Results
1. The program issuing the ESPIE SET macro, receives the following information in its registers.

Register Contents

01 Token representing the previously active ESPIE environment.

15 Return code 0

2. The program issuing the ESPIE RESET macro, receives the following information in its registers.

Register Contents

01 Token identifying the new ESPIE environment.

15 Return code 0

3. The program issuing the ESPIE TEST macro, receives the following information in register 15.

Return Codes Description

0 An ESPIE exit is active and the parameter list is complete.

8 An ESPIE exit is not active.

The Extended Program Interruption Element (EPIE)
The control program creates an EPIE the first time you enter an ESPIE macro during the performance of a
task or whenever you enter an ESPIE macro and no EPIE exists. The EPIE is freed when you eliminate the
ESPIE environment.

The EPIE contains the information that the ESPIE service routine passes to the ESPIE exit routine when it
receives control. When the exit routine receives control, register 1 contains the address of the EPIE. The
format of the EPIE is:

Hex Location Contents

X'00' ‘EPIE’

X'04' Address of user-supplied parameter list.

X'08' Contents of the general purpose registers at the time of the interruption. The registers
are stored in order of register 0 to register 15.

X'48' Old program status word in EC mode.

X'50' Program interruption information consisting of the 2-byte ILC followed by the 2-byte
interruption code.

X'54' Reserved

X'58' Contents of the access registers at the time of the interruption. The registers are
stored in the order of register 0 to register 15.

ESPIE

Chapter 5. GCS Macros 221

Register Contents Upon Entry to User's Exit Routine
When control is passed to your routine, the register contents are as follows:

Register Contents

0 Not significant to exit.

1 Address of EPIE.

2-12 Same as when program interruption occurred.

13 Address of save area for the main program. The exit routine cannot use this area.

14 Return address to the control program.

15 Address of the exit routine. The exit routine must be in virtual storage when it is
required, and must return control to the control program using the address in register
14. The control program restores all 16 registers from the EPIE.

Messages
The following are ABEND codes from ESPIE.

ABEND Code Reason Code Meaning

46D 04 Invalid function code

46D 08 Invalid parameter list address

46D 12 Invalid exit address

46D 20 Invalid reset token

ESPIE

222 z/VM: 7.2 Group Control System

ESTAE
The ESTAE macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 227 and “Execute Format” on page 228.

label

ESTAE exit_address
1

,CT

,OV ,PARAM=  address

,XCTL=NO

,XCTL=YES

,ASYNCH=YES

,ASYNCH=NO

,BRANCH=NO

,BRANCH= YES,SVEAREA=  addr

,KEY= SAVE

key

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the ESTAE macro to specify an exit routine for a task that will gain control if the task abends.

When a task ends abnormally, GCS usually carries out task termination activities for the task. These
activities include the release of locks, storage, and other resources associated with the task.

However, you may wish to provide your task with your own exit routine that receives control if an abend
occurs. This exit routine can be designed to find a solution to the problem, try the task again, or allow task
termination to continue. Use the ESTAE macro to specify and describe this exit routine.

exit_address
Specifies the address of the exit routine that is to gain control if your task ends abnormally.

If you specify an address of zero, then the exit routine you most recently defined through the ESTAE
macro is canceled.

You can write this parameter as an assembler program label or as register (2) through (12).

CT
Indicates that you are specifying a new exit routine for the active task.

Because you may have several exit routines, this new exit routine will supplement any that may
currently be defined for the task.

If neither the CT nor the OV parameter is specified, then CT is assumed, by default.

OV
Indicates that you wish to modify (overlay) certain parameters that you specified in your last ESTAE
instruction, yet maintain the status of the current exit routine as the current exit routine.

Specify only those parameters that you want overlaid, along with any necessary values.

ESTAE

Chapter 5. GCS Macros 223

PARAM
Specifies the address of a parameter list that is to be passed to your exit routine, should it ever gain
control.

It is your responsibility to provide this parameter list.

You can write this parameter as an assembler program label or as register (2) through (12).

XCTL
Indicates whether your exit routine will maintain its status as current exit routine if your task transfers
control to a module through the XCTL macro. See “XCTL” on page 373.
NO

Indicates that if your task transfers control to a module through the XCTL instruction, and the
module abends, then the exit routine in question will not gain control. This is the default.

YES
Indicates that if your task transfers control to a module through the XCTL instruction, and the
module abends, then the exit routine in question will gain control.

ASYNCH
Indicates whether asynchronous exits will be allowed while your exit routine is running.
YES

Indicates that you will allow asynchronous exits while your exit routine is running. This is the
default.

You must specify ASYNCH=YES if your exit routine requests supervisor services that require
such interrupts. These supervisor services include general I/O, ATTACH ETXR, IUCV, STIMER, and
SCHEDEX.

NO
Indicates that you will allow no asynchronous exits while your exit routine is running.

BRANCH
Specifies whether your task should branch directly to the ESTAE service routine.
YES

Specifies that the task should branch directly to the ESTAE service routine.
NO

Specifies that you want to use the customary SVC interface. This option is the default.
SVEAREA

Specifies the address of a 72-byte register save area that you must reserve when BRANCH=YES. You
can write this parameter as an assembler program label or as a register number.

KEY
If BRANCH=YES and your task is not running in key 0, you must supply the KEY parameter.
SAVE

Causes the system to save the current program status word (PSW) protection key in register 2. The
system then issues a set PSW key (SPKA) instruction, changing the key to zero. When the ESTAE
service routine returns control, it restores the original PSW key from register 2. You may want to
save and, later, restore the contents of register 2.

key
If you know the PSW protection key of your task, then specify it as a number from 0 to 15.

Usage
1. Your task may use the ESTAE macro many times while processing. However, only the latest exit

routine specified remains current. Any others are pushed down in a stack. If the current exit routine
is canceled, then the next one in the stack moves to the top, becoming the current exit routine.
Conversely, if you specify a new exit routine, then any others in the stack move down one position and
the new one becomes the current exit routine.

ESTAE

224 z/VM: 7.2 Group Control System

2. The current exit routine loses its status as the current exit routine under one of these conditions the:

• Module that defined it, through the ESTAE macro, ends
• Task issues the ESTAE macro, specifying zero as the EXIT ADDRESS
• Exit routine ends abnormally
• Exit routine allows termination of the task that defined it to continue
• Task attempts to transfer control using the XCTL macro when XCTL=YES is not specified.

In each case, the exit routine defined by the previous ESTAE instruction moves to the top of the stack
and assumes the role of current exit routine.

3. ESTAE instructions that cancel the current exit routine or overlay parameters must be issued by the
same program that defined the current exit routine.

4. Your exit routine can diagnose the cause of the abend, and then retry the task at some entry point. Or,
it can simply allow GCS to perform usual termination activities and shut the task down.

5. Whenever a task abends, GCS attempts to build a system diagnostic work area (SDWA), as described
in “IHASDWA” on page 273.

6. When you branch directly to the ESTAE service routine, your task must be in supervisor state and
disabled for interrupts.

7. An interrupt handler cannot use the branch interface to the ESTAE service routine.
8. Because this method of invoking the ESTAE macro avoids the supervisor call, no trace entry for the

macro is generated.
9. The CVT mapping macro must be assembled as a DSECT into your program.

10. The AMODE of the exit will always be considered the AMODE of the caller.
11. If storage was available for the SDWA, then when your exit routine receives control, the registers

contain the following:

Register Contents

0 A return code of 16(10), signifying that no I/O processing was performed.

1 Address of the SDWA.

2-12 Unpredictable.

13 Address of a register save area.

14 A return address.

15 Address of the current exit routine.

Here, the SETRP macro should be issued to notify the GCS supervisor of the action that is to be taken.
See “SETRP” on page 340.

12. If storage was not available for the SDWA, then when your exit routine receives control, the registers
contain the following:

Register Contents

0 A return code of 12(C), signifying that no SDWA was obtained.

1 The completion code passed by the ABEND macro. See “ABEND” on page 162.

2 The address of the parameter list intended for the exit routine. Or, if none was
intended, zero.

3-13 Unpredictable.

14 Address of an SVC 3 instruction.

15 Address of the current exit routine.

ESTAE

Chapter 5. GCS Macros 225

13. If no SDWA was obtained, then your exit routine must set the registers in the following manner just
before returning control to the GCS supervisor.

Register Contents

0 The address of a recovery routine, if one is to be scheduled.

15 A return code. Specifically:
0

Termination should be continued. Any previously defined exit routines will
move toward the top of the stack.

4
A recovery routine is to be scheduled. The address of this routine can be found
in register 0.

14. An exit routine always runs in the same key as the task that defined it and is enabled for the same
interrupts. The same holds true for any retry routine.

15. If storage was available for an SDWA, then when the recovery routine gains control, the registers
contain the following:

Register Contents

0 Zero, indicating that storage for the SDWA was available.

1 Address of the SDWA.

2-13 Unpredictable.

14 Address of an SVC 3 instruction.

15 Address of the recovery routine.

16. If storage was not available for an SDWA, then when the recovery routine gains control, the registers
contain the following:

Register Contents

0 12(C), indicating that storage for the SDWA was not available.

1 The value of the PARAM parameter that was specified in the ESTAE instruction
associated with the current exit routine.

2 Zero.

3-13 Unpredictable.

14 Address of an SVC 3 instruction.

15 Address of the recovery routine.

17. The SPLEVEL macro need not be issued unless you want an ESTAE macro used by GCS that has
an expanded parameter list, which is designed for use in the 31-bit addressing mode. A 31-bit
parameter list is incompatible if you are running under the 370 Accommodation Facility. However the
SPLEVEL macro lets you select either the 24-bit version or the 31-bit version

18. This macro supports both 24 and 31 bit address expansions of the parameter list. The macro
expansion is controlled by the internal macro SPLEVEL. The default value is 31.

Examples

DEFEXT ESTAE (4),CT,PARAM=PLIST3

The task defines an exit routine that will gain control in case of an abend. Register 4 contains the address
of the exit routine in question. The CT parameter indicates that this exit routine is new. The parameter list

ESTAE

226 z/VM: 7.2 Group Control System

at the address associated with the label PLIST3 will be passed to the exit routine if it ever gains control.
DEFEXT is the label on this instruction.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 The OV parameter was specified along with a valid EXIT ADDRESS.
However, either there is no current exit routine defined, or the ESTAE
macro was not issued by the same active program module that
defined the current exit routine.

X'0C' 12 An attempt was made to cancel the current exit routine. However,
either no current exit routine is defined, or the ESTAE instruction
was not issued by the same active program module that defined the
current exit routine.

X'14' 20 The ESTAE macro was unable to acquire the storage necessary for it
to process.

ABEND Code Meaning

0F8 The GCS supervisor was called in access register mode.

13C An invalid ESTAE request was made.

List Format

label

ESTAE ,MF=L exit_address
1

,CT

,OV ,PARAM=  address

,XCTL=NO

,XCTL=YES

,ASYNCH=YES

,ASYNCH=NO

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

ESTAE

Chapter 5. GCS Macros 227

Execute Format

label

ESTAE ,MF=(E,  address) exit_address
1

,CT

,OV

,PARAM=  address

,XCTL=NO

,XCTL=YES

,ASYNCH=YES

,ASYNCH=NO

,BRANCH=NO

,BRANCH= YES,SVEAREA=  addr ,KEY= SAVE

key

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that runs the function, using a parameter list whose address you
specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

ESTAE

228 z/VM: 7.2 Group Control System

EXECCOMM

Format

label

EXECCOMM REQLIST=  address

Purpose

Use the EXECCOMM macro to set up the interface that allows a program to gain access to the variables
within the EXEC that started it.

EXECs running under GCS frequently call other programs, such as commands and subcommands. Often
these programs need access to the variables within the EXEC that called them.

Parameters

REQLIST
Specifies the address of the first (or only) shared variable request block in a chain of such blocks.

A shared variable request block is a control block that defines an EXEC variable to which your program
wants access. This will describe how the variable will be used. Your program must create one shared
variable request block for each variable to which it wants access. If there is more than one request
block, they must be strung together in a chain.

Detailed information on the EXECCOMM facility and shared variable request block formatting is
provided in the z/VM: REXX/VM Reference

You can write this parameter as an RX-type address or as register (2) through (12).

Usage
1. The EXECCOMM macro stores the address of the first (or only) request block in the chain in a register.

This is then passed to the REXX/VM interpreter, which processes your request. The EXECCOMM macro
then passes a return code back to your program that describes if and how the function was completed.

2. EXEC variables may be inspected, modified, or deleted by a program that gains access to them.
3. For a program within a specific task to issue the EXECCOMM instruction, an EXEC must be active within

that task.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'FFFFFFFF' -1 No EXEC was active within the task.

X'FFFFFFFE' -2 Insufficient storage is available to process your request.

0 or any positive
number except 8

0 or any positive
number except 8

Function completed successfully.

X'00000008' 8 Invalid variable name.

EXECCOMM

Chapter 5. GCS Macros 229

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2

ABEND Code Reason Code Meaning

FCB 0D01 An invalid address exists in a shared variable request block, or the
address of the block itself is invalid.

EXECCOMM

230 z/VM: 7.2 Group Control System

FLS

Format

FLS

Purpose

Use the FLS macro to gain access to certain fields in your virtual machine’s low storage.

There are several fields within your virtual machine's low storage (page 0) to which you can gain access.

Parameters
The FLS macro accepts no parameters.

Usage
1. The FLS macro gives you access to the following fields residing in page 0 of your virtual storage:

FLSVMID
The user ID associated with your virtual machine.

FLSLVL
A fullword that contains the component level and service level of your GCS system. The GCSLEVEL
macro can be used to map this field. See “GCSLEVEL” on page 238.

FLSRLVL
Second byte of FLSLVL. It contains the component level.

FLSSLVL
Second halfword of FLSLVL. It contains the service level.

FLSIDS
A fullword that contains the signal services machine ID and the task ID of the active task.

FLSPOST
The branch entry address for the POST macro. See “POST” on page 314.

FLSDUMP
A pointer to the dump receiver. This is the virtual machine in the GCS group that is to receive all the
dumps generated in the group.

FLSFLG
A fullword that contains two flags to let applications running on GCS know if the machine is in XC
mode and if hardware compression is supported.

FLSFLGXC
This flag will be on if the machine is running in XC mode.

FLSFLGHC
This flag will be on if hardware compression is supported.

2. The following table shows the format of the FLS fields:

Address Field

512 (X'200') RESERVED

FLS

Chapter 5. GCS Macros 231

Address Field

516 (X'204') FLSVMID

524 (X'20C') FLSLVL -- FLSRLVL FLSSLVL

528 (X'210') FLSIDS

532 (X'214') RESERVED

536 (X'218') FLSPOST

540 (X'21C') RESERVED

544 (X'220') RESERVED

548 (X'224') RESERVED

552 (X'228') RESERVED

556 (X'22C') RESERVED

560 (X'230') RESERVED

564 (X'234') RESERVED

568 (X'238') RESERVED

572 (X'23C') FLSDUMP

580 (X'244') FLSFLG - - FLSFLGXC FLSFLGHC

652 (X'28C') RESERVED

664 (X'298') END

Return Codes and ABEND Codes
The FLS macro generates no return codes and no ABEND codes.

FLS

232 z/VM: 7.2 Group Control System

FREEMAIN
The FREEMAIN macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 236 and “Execute Format” on page 237.

label

FREEMAIN

RC,

RU,

LV= length ,A= address
,BRANCH=NO

,BRANCH=YES

R,

E,

EU,

LV= length ,A= address

V,

VU,

A= address

1

,SP= number

Notes:
1 The following parameters are optional and may be specified in any order.

Purpose

Use the FREEMAIN macro to free a contiguous block of storage.

The storage management function of GCS enables a task to dynamically obtain and free contiguous blocks
of storage as required.

Parameters

RC
Indicates that your register request to free the storage is conditional.

RU
Indicates that your register request to free the storage is unconditional.

BRANCH
Specifies whether your task should branch directly to the FREEMAIN service routine.
YES

Specifies that your task should branch directly to the FREEMAIN service routine.
NO

Specifies that you want to use the customary SVC interface. This option is the default.
R

Indicates that your register request to free the storage is unconditional.

FREEMAIN

Chapter 5. GCS Macros 233

E or
EU

Indicates that this is an unconditional request to free a certain element of storage.
V or
VU

Indicates that your request to free the storage is unconditional.

This storage was originally obtained by using the VC or VU parameter on the GETMAIN instruction.
Hence, it was a request for a variable amount of storage.

LV
Specifies the length, in bytes, of the storage block you want to free.

This length should be a multiple of eight. If it is not, then GCS rounds it up to the nearest multiple of
eight.

If the R parameter is specified, then LV=(0) can be coded as well. If it is, then the high-order byte of
register 0 must contain the storage block's subpool number and the 3 low-order bytes must contain
the length of the storage block.

You can write this parameter as an assembler program label or as register (2) through (12).

A
Specifies the address of a one or two-word list, starting on a fullword boundary.

If you select the E, EU, R, RC, or RU parameter, then this list need contain only one fullword. This word
must contain the address of the block of storage to be freed.

If you select the V or VU parameter, then this list must contain two fullwords. The first word must
contain the address of the block of storage you want to free. The second word must contain the length
of this block, in bytes.

The storage block must begin on a doubleword boundary. Its length must be a multiple of eight. If it is
not, then GCS rounds the length up to the nearest multiple of eight.

You can write this parameter as register (2) through (12) or as an assembler program label. If you
express it as a register, and if you select the R, RC, or RU parameter, then the register must contain
the address of the block you want to free, not the address of any fullword that contains that address.
Here, you may also use register (1) to specify the address.

SP
Specifies the subpool associated with the storage block you want to free.

A subpool is identified by a number from 0 to 255. A subpool number describes the characteristics
of the block of storage to which it is assigned. The subpool number that you specify (explicitly or by
default) must be the same as you specified in the corresponding GETMAIN macro.

For a definition of all subpool numbers, see “GETMAIN” on page 257.

If you omit this parameter, the subpool number is 0, by default. You can write it as an assembler
program label or as register (2) through (12). Or, if the R parameter is specified, then LV=(0) can be
coded as well. If it is, then the high-order byte of register 0 must contain the storage block's subpool
number and the 3 low-order bytes must contain the length of the storage block.

Usage
1. Callers in either 24-bit or 31-bit addressing mode must use only RC or RU to free storage above the

16MB line.
2. If you specify BRANCH=YES your task must be in supervisor state, key 0, and disabled for interrupts.

You can include BRANCH=YES only with the RC and RU parameters of the FREEMAIN macro.

The macro destroys the contents of register 3. You may want to save and, later, restore the contents of
register 3.

FREEMAIN

234 z/VM: 7.2 Group Control System

Before the branch, register 13 must contain the address of a 72-byte register save area. You can obtain
this save area by using the GCSSAVE macro.

The GCSSAVI macro must be used in place of the GCSSAVE macro to obtain the save area if the branch
entry to FREEMAIN is from an exit defined by GENIO with EXITBR=YES, or from an exit defined by
IUCVCOM with BRANCH=YES.

The CVT mapping macro must be assembled as a DSECT into your program.

Examples

FREEMAIN RC,LV=400,A=(2),SP=10

The task requests that 400 bytes of storage in subpool 10 be freed. Register 2 contains the address of
this storage block. This is a conditional request, a return code of 0 would result if the storage were in
fact freed. If it were not, then a return code of 4 would result and the storage in question would remain
unchanged.

GETMAIN VC LA=RANGE,A=DBLWD
.
.
.
FREEMAIN V,A=DBLWD

The task requested a variable amount of storage within a certain range. This range was specified in the
two-word list at the address associated with the label RANGE. The task provided a two-word list at the
address associated with the label DBLWD. When GCS gave the storage to the task, it stored the address of
the storage block in the first word of this list. It then stored the actual length of the storage block in the
second word. The task retained the values in this two-word list and later requested that the same storage
block be freed.

Return Codes and ABEND Codes
When this macro completes processing a conditional request, it passes to the caller a return code in
register 15. For the RC parameter only:

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 Function was not completed.

ABEND Code Meaning

0F8 The GCS supervisor was called in access register mode.

305 A FREEMAIN macro contained a subpool specification error.

605 Either a FREEMAIN macro contained an invalid address in the A parameter or an
invalid parameter list address was passed to the macro.

705 An irrecoverable machine, system, or other error occurred while processing the
FREEMAIN macro.

905 The address of the storage area specified in a FREEMAIN macro was not on a
doubleword boundary.

A05 Either the area you tried to free overlapped into an already free area, or it has been
locked through the PGLOCK macro.

FREEMAIN

Chapter 5. GCS Macros 235

ABEND Code Meaning

D05 One of several things happened:

• The FREEMAIN macro attempted to free an area of storage not allocated to your
task.

• You specified zero or a negative number in the LV parameter.
• The key is different from what it was when the storage was allocated.

E05 You specified a parameter that GCS does not support.

30A A FREEMAIN macro, with the R parameter specified, contained a subpool specification
error.

70A An irrecoverable machine, system, or another error occurred while processing the
FREEMAIN macro with the R parameter specified.

90A The address of the storage area specified in a FREEMAIN instruction, with the R
parameter specified, was not on a doubleword boundary.

A0A Either the area to be freed by a FREEMAIN instruction, with the R parameter specified,
overlapped into an already free area or was locked through the PGLOCK macro and
never unlocked.

D0A One of several things happened:

• The FREEMAIN macro, with the R parameter specified, attempted to free an area of
storage not allocated to your task.

• You specified zero or a negative number in the LV parameter.
• The key is different from what it was when the storage was allocated.

E0A A FREEMAIN instruction, with the R parameter specified, specified another parameter
that GCS does not support.

378 A FREEMAIN macro, with the RU parameter specified, contained a subpool
specification error.

778 An irrecoverable machine, system, or other error occurred while processing the
FREEMAIN macro with the RU parameter specified. It may also be that an error,
involving the release of free storage, occurred within the GCS supervisor.

978 The address of the storage area specified in a FREEMAIN macro, with the RU
parameter specified, was not on a doubleword boundary.

A78 The area to be freed by the FREEMAIN macro, with the RU parameter specified,
overlapped a free area of storage or is an area that was locked through the PGLOCK
instruction.

D78 One of several things happened:

• The FREEMAIN macro, with the RU parameter specified, attempted to free an area of
storage not allocated to your task.

• You specified zero or a negative number in the LV parameter.
• The key is different from what it was when the storage was allocated.

E78 A FREEMAIN macro, with the RU parameter specified, specified another parameter
that is not supported by GCS.

List Format

FREEMAIN

236 z/VM: 7.2 Group Control System

label

FREEMAIN ,MF=L
1

E

,LV=  length

V

,A= address

,SP= number

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Only the preceding parameters listed are valid in the list format of this
macro.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

FREEMAIN ,MF=(E,  address)
1

E

,LV=  length

V

,A= address ,SP= number

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that runs the function, using a parameter list whose address you
specify.

Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter(Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

FREEMAIN

Chapter 5. GCS Macros 237

GCSLEVEL

Format

GCSLEVEL

Purpose

Use the GCSLEVEL macro to map the component level of your GCS system from the FLSLVL field found in
your virtual machine’s low storage.

There are several fields in the low storage of your virtual machine (page 0) to which you can gain access.
One of these fields, the FLSLVL field, accommodates the component level of the GCS system you are
using. See “FLS” on page 231.

The GCSLEVEL macro generates equates for use in determining the component level of GCS.

Parameters
The GCSLEVEL macro accepts no parameters.

Usage
1. The number of bytes for each subfield are in parentheses. The format of the FLSLVL field is:

 RESERVED (1) Component Level (1) Service Level (2)

2. The equates for the current and previous GCS component levels are:

 Label Release Component of
 GCSL EQU X'01' VM/SP Release 4
 GCS5 EQU X'02' VM/SP Release 5
 GCS6 EQU X'03' VM/SP Release 6
 GCS370 EQU X'04' VM/ESA Release 1.0 - 370 Feature
 GCSESA1 EQU X'05' VM/ESA Release 1.0
 GCSESA11 EQU X'06' VM/ESA Release 1.1
 GCSESA2 EQU X'07' VM/ESA Release 2.0
 GCSESA21 EQU X'08' VM/ESA Release 2.1
 GCSESA22 EQU X'09' VM/ESA Release 2.2
 GCSV2R1 EQU X'0A' VM/ESA Version 2, Release 1.0
 GCSV2R2 EQU X'0B' VM/ESA Version 2, Release 2.0
 GCSV2R3 EQU X'0C' VM/ESA Version 2, Release 3.0
 GCSV2R4 EQU X'0D' VM/ESA Version 2, Release 4.0
 GCSV3R1 EQU X'0E' z/VM Version 3, Release 1.0
 GCSV4R1 EQU X'0F' z/VM Version 4, Release 1.0
 GCSV4R2 EQU X'10' z/VM Version 4, Release 2.0
 GCSV4R3 EQU X'11' z/VM Version 4, Release 3.0
 GCSV4R4 EQU X'12' z/VM Version 4, Release 4.0
 GCSV5R1 EQU X'13' z/VM Version 5, Release 1.0
 GCSV5R2 EQU X'14' z/VM Version 5, Release 2.0
 GCSV5R3 EQU X'15' z/VM Version 5, Release 3.0
 GCSV5R4 EQU X'16' z/VM Version 5, Release 4.0
 GCSV6R1 EQU X'17' z/VM Version 6, Release 1.0
 GCSV6R2 EQU X'18' z/VM Version 6, Release 2.0
 GCSV6R3 EQU X'19' z/VM Version 6, Release 3.0
 GCSV6R4 EQU X'1A' z/VM Version 6, Release 4.0
 GCSV7R1 EQU X'1B' z/VM Version 7, Release 1.0
 GCSV7R2 EQU X'1C' z/VM Version 7, Release 2.0

3. The SERVICE LEVEL information is a halfword, stored in binary format.

GCSLEVEL

238 z/VM: 7.2 Group Control System

Return Codes and ABEND Codes
The GCSLEVEL macro generates no return codes and no ABEND codes.

GCSLEVEL

Chapter 5. GCS Macros 239

GCSSAVE

Format

label

GCSSAVE GET

FREE

Purpose

Use the GCSSAVE macro to create a register save area when branching directly.

GCSSAVE allocates space for and returns the address of a register save area. This macro can be used
only when your task branches directly to one of the following service routines: ESTAE, FREEMAIN, GENIO,
GETMAIN, IUCVCOM, SCHEDEX, or WAIT.

Parameters

GET
Indicates that you want to allocate space for a 72-byte register save area and return its address.

FREE
Indicates that you want to release the space allocated by the GET option.

Usage
1. Use the GCSSAVE macro only when you intend to branch directly to the ESTAE, FREEMAIN, GENIO,

GETMAIN, IUCVCOM, SCHEDEX or WAIT service routine. In all other instances, create your own
register save area.

2. The caller must be disabled for interrupts, in supervisor state, and in key 0.
3. After GCSSAVE GET, you must use GCSSAVE FREE to free the allocated space.
4. Use of the GCSSAVE macro is optional; you may give the address of your own register save area to the

branch entries instead.
5. The program issuing the GCSSAVE macro, receives the following information in its registers.

Register Contents

13 The address of the register save area.

Return Codes and ABEND Codes
The GCSSAVE macro generates no return codes or abend codes.

GCSSAVE

240 z/VM: 7.2 Group Control System

GCSSAVI

Format

label

GCSSAVI GET

FREE

Purpose

Use the GCSSAVI macro to create a register save area when a branch entry to GETMAIN or FREEMAIN is
issued from an exit which was defined for GENIO with EXITBR=YES, or for IUCVCOM with BRANCH=YES.

GCSSAVI allocates space for and returns the address of a register save area.

Parameters

GET
Indicates that you want to allocate space for a 72-byte register save area and return its address.

FREE
Indicates that you want to release the space allocated by the GET option.

Usage
1. Use the GCSSAVI macro only when a branch entry to GETMAIN or FREEMAIN is issued from an exit

which was defined for GENIO with EXITBR=YES, or for IUCVCOM with BRANCH=YES.
2. The caller must be disabled for interrupts, in supervisor state, and in key 0.
3. After GCSSAVI GET, you must use GCSSAVI FREE to free the allocated space.
4. Use of the GCSSAVI macro is optional; you may give the address of your own register save area to the

branch entries instead.
5. The program issuing the GCSSAVI macro, receives the following information in its registers.

Register Contents

13 The address of the register save area.

Return Codes and ABEND Codes
The GCSSAVI macro generates no return codes or abend codes.

GCSSAVI

Chapter 5. GCS Macros 241

GCSTOKEN
The GCSTOKEN macro is available in standard, list, list address, and execute formats.

Standard Format

See also “List Format” on page 244, “List Address Format” on page 245 and “Execute Format” on page
245.

label

GCSTOKEN CREATE,NAME=  name ,TOKEN=  token

RETRIEVE,NAME=  name ,TOKEN=  token

DELETE,NAME=  name

,TOKEN=  token

,LEVEL=TASK

,LEVEL=COMMON

,LEVEL=PRIVATE

Purpose

Use the GCSTOKEN macro to allow two or more programs to share data. The programs can be running
under the same task, or different tasks, or in different virtual machines in the GCS group.

Programs often need to maintain pointers to control blocks or data. The pointers are persistent over
termination of a task in the case of private level Name/Token pairs, and over the reset of a single virtual
machine in the case of common level pairs.

Use the GCSTOKEN macro to create, retrieve, or delete, a Name/Token pair.

Parameters

CREATE
Indicates that a Name/Token pair is to be established. Both NAME and TOKEN must be specified.
If LEVEL is not specified the default is TASK. Programs running in problem state can only create a
Name/Token pair at the task level.

RETRIEVE
Indicates that a token is to be located and placed into a 16 byte buffer provided by the caller. The
search is based on the name, and level provided as input. If LEVEL is not specified the default is TASK.

DELETE
Indicates that a Name/Token pair is to be deleted from a given level. For both private and common
level Name/Token pairs, the task that deletes a pair must be running in supervisor state. In the case
of a Name/Token pair created at the common level, the task that deletes a pair must also be running
in the virtual machine where the Name/Token pair was created. If LEVEL is not specified the default is
TASK.

NAME
Is the address of a unique name. The buffer which contains the name must be 16 bytes in length.
All 16 characters in the buffer will be used as input to the requested function. For the CREATE and
DELETE functions, names cannot start with the characters "GCT", or a X"00" (null).

If the name is defined on the private level it must be unique for the virtual machine, and if defined on
the common level it must be unique to the GCS group.

GCSTOKEN

242 z/VM: 7.2 Group Control System

The NAME parameter must be specified on a CREATE, RETRIEVE, and DELETE.

You can write this parameter as an assembler program label or as register (2) through (12).

TOKEN
Is the address of a data buffer which is 16 bytes in length. For CREATE this buffer can contain any
data. It can be in any format desired by the application creating the Name/Token pair.

This field must be specified on a CREATE and will be filled in on a RETRIEVE by the system. It need not
be specified on a DELETE. If specified on a DELETE it will be ignored.

You can write this parameter as an assembler program label or as register (2) through (12).

LEVEL
Specifies the level of access you desire for the Name/Token pair.

If LEVEL is not specified the default is TASK.

If LEVEL=PRIVATE is specified the Name/Token pair is accessible to programs running on tasks in the
virtual machine where the Name/Token pair is created. The Name/Token pair can be accessed only
if the 16 byte name is known to the application. The Name/Token pair will be deleted only if it is
explicitly deleted by an authorized user or the virtual machine resets.

If LEVEL=COMMON is specified the Name/Token pair is accessible to programs running on tasks in
any virtual machine in the GCS group. The Name/Token pair can be accessed only if the 16 byte name
is known to the application. The Name/Token pair will be deleted only if it is explicitly deleted by an
authorized user in the virtual machine that created it or if the recovery machine resets. When running
in a single user group environment, common level Name/Token pairs cannot be shared because no
other machines are in the group.

If LEVEL=TASK is specified the Name/Token pair will be obtained and available on a task level and
associated with the independent task if one exists and will be automatically deleted when the task
terminates. If one does not exist it will be associated with the command's task, and deleted when the
command completes. Problem programs can only obtain task level Name/Token pairs and thus cannot
share Name/Token pairs they create with other independent tasks.

Examples

Examples of STANDARD formats of the GCSTOKEN macro

 Create a Name/Token pair at the private level.

 GCSTOKEN CREATE,NAME=TOKEN001,TOKEN=TOKEN,LEVEL=PRIVATE
 LTR R15,R15 Check the return code
 ...

 Retrieve a Token using the NAME and LEVEL.

 GCSTOKEN RETRIEVE,NAME=TOKEN001,TOKEN=BUFF01,LEVEL=PRIVATE
 LTR R15,R15 Check the return code
 ...

 Delete a Name/Token pair.

 GCSTOKEN DELETE,NAME=TOKEN001,LEVEL=PRIVATE
 LTR R15,R15 Check the return code
 ...

 Data areas:

 DS 0D
TOKEN001 DC CL16'TOKENAME-0000001'
TOKEN DC XL16'00EA24580000100000013A0400000348'
BUFF01 DS XL16

Return Codes and ABEND Codes
When this macro completes processing, it passes a return code to the caller in register 15. For return
codes 12 (x'0C') and higher, an error message will be displayed giving details of the error condition.

GCSTOKEN

Chapter 5. GCS Macros 243

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 NAME requested was not found; RETRIEVE or DELETE failed.

X'08' 8 NAME already exists; CREATE failed.

X'0C' 12 Problem state programs can only issue {CREATE | DELETE} with
LEVEL=TASK.

X'10' 16 Only the virtual machine that created a Name/Token pair can DELETE
it with LEVEL=COMMON.

X'14' 20 Names cannot begin with {'GCT' | X'00'}; {CREATE | DELETE} failed.

X'26' 38 GCSTOKEN parameter list (plist) does not start with 'GCSTOKEN'.

X'28' 40 GCSTOKEN function requested was not CREATE, RETRIEVE, or
DELETE.

X'2A' 42 GCSTOKEN LEVEL specified was not COMMON, PRIVATE, or TASK.

X'68' 104 Insufficient free storage available for GCSTOKEN CREATE function
with LEVEL={COMMON | PRIVATE | TASK}.

ABEND Code Reason Code Meaning

FCB C00 No read access to the parameter list or the address in NAME or
TOKEN.

FCB C0A No write access to the address contained in TOKEN in the parameter
list.

FCB C0B The GCSTOKEN parameter list contained an address of zero for either
the NAME or TOKEN or both.

FCB C1F Freemain of private storage failed during delete.

FCB C2F Freemain of common storage failed during delete.

FCB C3F GCS internal error.

Note: See the z/VM: System Messages and Codes section "GCS Abend Codes" for additional information.

List Format

label

GCSTOKEN

CREATE,NAME=  name ,TOKEN=  token

RETRIEVE,NAME=  name ,TOKEN=  token

DELETE,NAME=  name

,TOKEN=  token

,LEVEL=TASK

,LEVEL=COMMON

,LEVEL=PRIVATE

,MF=L

GCSTOKEN

244 z/VM: 7.2 Group Control System

• If Function is not specified then it must be specified on the Execute Format.
• If Token is not specified then it must be specified on the Execute Format.
• If Name is not specified then it must be specified on the Execute Format.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

List Address Format

label

GCSTOKEN

CREATE,NAME=  name ,TOKEN=  token

RETRIEVE,NAME=  name ,TOKEN=  token

DELETE,NAME=  name

,TOKEN=  token

,LEVEL=TASK

,LEVEL=COMMON

,LEVEL=PRIVATE

,MF=(L, address

, label

)

• If Function is not specified then it must be specified on the Execute Format.
• If Token is not specified then it must be specified on the Execute Format.
• If Name is not specified then it must be specified on the Execute Format.

Purpose (List Address Format)
This format of the macro does not produce any executable code that invokes the function. However, it
does produce executable code that moves the parameter values that you specify into a certain parameter
list. If you enter the macro using this format, then you must do so before any related invocation of the
macro using the execute format.

Added Parameter (List Address Format)

MF=(L,address,label)
address specifies the address of the parameter list into which you want the parameter values you
mention placed. This address can be within your program or somewhere in free storage.

label is optional and is a user-specified label, indicating that you want to determine the length of the
parameter list. The macro expansion equates the label you specify with the length of the parameter
list.

Execute Format

GCSTOKEN

Chapter 5. GCS Macros 245

label

GCSTOKEN

CREATE,NAME=  name ,TOKEN=  token

RETRIEVE,NAME=  name ,TOKEN=  token

DELETE,NAME=  name

,TOKEN=  token

,LEVEL=TASK

,LEVEL=COMMON

,LEVEL=PRIVATE

,MF=(E,  address)

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this format of the macro.

GCSTOKEN

246 z/VM: 7.2 Group Control System

GENIO
The GENIO macro is available in standard, list, list address and execute formats.

Standard Format

See also “List Format” on page 254, “List Address Format” on page 255 and “Execute Format” on page
256.

label

GENIO

OPEN,EXIT=  exit

,UWORD=  uword

,EXITBR=NO

,EXITBR=YES

CLOSE

CHAR,DATA=  address

MODIFY,CCW=  address

START

STARTR

,CCW=  address
,BRANCH=NO

,BRANCH=YES

,FORMAT=0

,FORMAT=1

HALT

,DEV=  dev

,ERROR=  addr

Purpose

Use the GENIO macro to use general input/output devices.

The GENIO macro allows a program to obtain, use, and release any I/O device, except for DASD devices
and the virtual machine console. It is an unauthorized GCS function, except for GENIO STARTR, which is
an authorized function.

Parameters

OPEN
Indicates that the device specified in the macro should be opened for use by your program.

In doing so, an entry is placed in the GCS general I/O table containing information about the device
and your program. Among the information included in the table entry are the device's address, its
characteristics, the address in your program to which control is given when an interrupt occurs on the
device, and the UWORD.

No other program may open a device that has been opened by another program. In opening a device,
a program obtains exclusive use of it until it closes the device.

The OPEN parameter requires that the address of an exit routine be specified for the device.

EXIT
Specifies the address of the exit routine for the specified device.

GENIO

Chapter 5. GCS Macros 247

This routine receives control under:

• I/O interrupt occurs on the device that was opened, signalling the end of an I/O operation.
• I/O operation ends because of error.
• Asynchronous interrupt occurs.

This exit routine will handling all interrupts occurring on the specified device.

The exit routine will always be run in the AMODE of the caller.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a register, then the register must contain the address of the exit routine.

UWORD
An optional fullword parameter that will be passed to the exit routine. It can contain any value you
wish.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, the address of the label is passed to the routine. If you write it as a register, the
contents of the register are passed to the routine.

EXITBR
Specifies whether the system should branch to your exit routine directly from the I/O interrupt
handler.
YES

Specifies that you want to branch to your exit routine directly from the I/O interrupt handler.
NO

Specifies that you want to schedule your exit routine in the usual fashion. This option is the
default.

CLOSE
Indicates that the program no longer needs the device specified in the instruction and relinquishes
control of it. After this, any program may obtain control over the device.

The program issuing the GENIO macro with this parameter had to have opened the device initially.
This parameter clears the entry that was placed in the GCS general I/O table when the device was
opened. Any pending I/O requests for the device are deleted from the virtual channel queue, all I/O
activity for the device is ended.

Remember that your exit routine cannot receive control resulting from an interrupt occurring on a
closed device. Also, remember that the GENIO macro, with the CLOSE parameter specified, cannot be
issued from an I/O exit routine.

CHAR
Indicates that the characteristics of the specified virtual device and its corresponding real device, if
any, should be returned to your program.

Bytes 4-11 of the VRDCBLOK returned by diagnose X'210' are placed in an 8-byte area provided by
your program. For details on how to interpret this information, see the description of diagnose X'210'
in the z/VM: CP Programming Services.

It is not necessary that the device be opened for the program to request this information. The device's
characteristics are placed in two consecutive fullwords that your program should reserve for this
purpose.

DATA
Specifies the address of the data area into which the characteristics of the device are to be placed.
Your program must reserve two consecutive fullwords for this purpose.

The first word will contain the characteristics of the virtual device. The second word will contain the
characteristics of the real device. If no real device is associated with the virtual device, then the
second word will be reset to zero.

GENIO

248 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

You may write this as an assembler program label or as register (2) through (12). If you write it as a
register, then that register must contain the address of this data area.

MODIFY
Indicates that you wish to modify a real CCW (channel control word) after the I/O operation has begun
but before it has finished.

First, modify the virtual CCW. Then, enter the GENIO macro with the MODIFY parameter to apply the
modification to the real CCW.

Remember that you are allowed to make only the following changes to any CCW:

• A TIC instruction to a NOP instruction
• A NOP instruction to a TIC instruction
• The address in a TIC instruction.

START
Indicates that a virtual channel program should be started on the specified opened device.

This program is a set of channel control words that instructs the channel which I/O operation to
perform. Only one I/O operation can be performed by a single device at one time. Another I/O
operation is not accepted by GCS until the previous I/O operation is complete. The latter ends
either when a DEVICE END interrupt occurs, or when an error condition arises. The I/O operation is
performed in the same key as the program requesting the operation.

STARTR
Indicates that a real channel program should be started on the specified opened device.

This program is a set of channel control words that instructs the channel which I/O operation to
perform. The device in question must be a real device.

The program issuing the GENIO macro with the STARTR parameter must be running in supervisor
state in a key other than key 0. And, the DIAG98 parameter must be in the OPTION control statement
in the virtual machine's directory entry. Then, the program will building the channel control program in
real storage using real addresses. To do this, the program should take advantage of the page-locking
and unlocking capabilities of the PGLOCK and PGULOCK macros. See “PGLOCK” on page 310 and
“PGULOCK” on page 312.

CCW
If you select the STARTR parameter, then CCW specifies the real address of the first channel control
word of the real channel program.

If you select the START parameter, then CCW specifies the virtual address of the first channel control
word of the virtual channel program.

If you select the MODIFY parameter, then CCW specifies the virtual address of the channel control
word that will be modified.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a register, then that register must contain the address of the first CCW.

BRANCH
Specifies whether your task should branch directly to the GENIO service routine.
YES

Specifies that your task should branch directly to the GENIO service routine.
NO

Specifies that you want to use the customary SVC interface. This option is the default.
HALT

Indicates that the active I/O operation of the specified device is to stop immediately. GCS will issue a
HDV (HALT DEVICE) instruction to effect this.

FORMAT
Specifies the format of the CCW:

GENIO

Chapter 5. GCS Macros 249

0
Indicates a format 0 CCW.

1
Indicates a format 1 CCW.

DEV
Specifies the virtual address of the I/O device that the GENIO macro is to affect.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as an assembler program label, the address of the device must be in the halfword at that
address. If you write it as a register, the address of the device must be in the low-order 2 bytes of the
register.

ERROR
Specifies the address of an error routine that is to receive control if an error in the GENIO macro
occurs.

If you omit this parameter, control will return to the instruction immediately following the GENIO
instruction, just as it would were there no error. In such a case you should analyze the return code
before proceeding further.

Usage
1. It is an error if you enter the GENIO macro with the START, STARTR, HALT, MODIFY, or CLOSE

parameter specified before the device has been opened.
2. Only an authorized supervisor state program can issue the GENIO macro with the STARTR parameter

specified. This allows an authorized program to use real channel programs to control real I/O devices
directly. The CP channel program translation, which is a necessary middle step when using a virtual
channel program, is bypassed.

An unauthorized program must use the START parameter.
3. If you specify EXITBR=YES, your interrupt handler calls your exit routine. This means that there may

not be an active task when the branch takes place. Therefore, be certain that your exit routine contains
no supervisor calls.

You can issue branch entries to GETMAIN and FREEMAIN for subpools for persistant private storage
only and you can issue a Name/Token CREATE for level=private.

Your exit routine is called in key 0, in supervisor state, and disabled for interrupts. It must remain
disabled for interrupts and must return control in supervisor state and key 0.

Your exit routine is responsible for saving and restoring registers in the save area whose address it
receives in register 13.

4. The exit routine receives control in the same state and key as the program that opened the device. If
the program is authorized, then the exit is disabled, meaning it cannot be interrupted. If the program is
unauthorized, then the exit routine is enabled. I/O requests can be issued only by an exit routine that is
disabled. I/O interrupts are handled after the exit routine ends. If in XA mode, the exit will be run in the
AMODE of the caller.

5. A distinction must be made between errors occurring in the GENIO macro and errors occurring during
the I/O operation.

If an error is found in the GENIO macro before the I/O operation has actually been started, a return
code is placed in register 15. If you specified an address through the ERROR parameter, then control
is passed, along with the return code, to the routine at that address. If you specified no error routine
address, then control is passed to the instruction immediately following the GENIO macro.

If an error results from an I/O operation that was initiated through the START or STARTR parameter,
then the exit routine specified when the device was opened receives control. All I/O error recovery is
the responsibility of the program that opened the device.

GENIO

250 z/VM: 7.2 Group Control System

6. The CLOSE parameter completely cuts the program off from the device specified and makes the device
generally available. This includes deactivating the exit routine, which cannot receive control resulting
from an interrupt from a closed device.

7. GCS does not support program controlled interrupts (PCIs). If a task receives a PCI, then the interrupt
is saved in the interrupt control block. However, it will not be passed to the task's exit until the I/O
operation is complete. And, although the byte-count in the CSW is unpredictable when a PCI interrupt
occurs, the byte-count is also passed to the task's exit.

8. If you specify BRANCH=YES, your task must be in supervisor state, key 0, and disabled for interrupts.

Input and output are performed in the key of the task that issued the GENIO OPEN instruction, not in
the key of the caller.

An interrupt handler may use the branch interface to the GENIO START and STARTR service routines.

Before you branch to the GENIO service routine, register 13 must contain the address of a 72-byte
register save area.

When you branch directly to the service routine, no trace entry for the macro is generated.
9. The GENIO macro passes the following information to the exit routine.

Register 0 The UWORD parameter, as specified when the device in question was opened.

Register 1 The address of the interrupt control block, defined below.

The Interrupt Control Block

0 (0) Flag byte
 Synchronous Interrupt = 00
 Asynchronous Interrupt = 01

X

1 (1) Reserved 3X

4 (4) Device address F

8 (8) Channel status word (CSW)
(370 accommodation)

D

10 (16) Sense bytes 8F

30 (48) Reserved 4F

40 (64) Subchannel status word (SCSW) 3F

4C (76) End

If there was a unit check and the sense data could not be obtained, then the first 2 bytes of the sense
data will contain X'107E'

Although it may be a condition code 3 (DEVICE NOT OPERATIONAL), the condition code from the I/O
operation will be in byte-0 of the interrupt control block's SCSW or CSW.

If the STARTR parameter was specified, then the CCW address in the channel status word will be a real
address.

Program controlled interrupts (PCIs) do not result in the scheduling of a user's exit routine. Rather, the
SCSW or CSW stored as the result of a PCI will be saved in the interrupt control block.

GENIO

Chapter 5. GCS Macros 251

In the case of a format 0 CCW, the second word of the CSW will be loaded with the third word of the
SCSW.

Examples

The following three GENIO macros are issued by the same program, affecting the same device.

GENIO OPEN,DEV=(2),EXIT=GOODBYE

The program requests that a certain device be opened. The address of the device can be found in register
2. When an interrupt occurs on this device, the exit routine at the address associated with the label
GOODBYE is to receive control.

GENIO START,DEV=(2),CCW=(3)

The program now asks that the device it just opened be started. Register 3 contains the address of
the first CCW in the channel control program to be processed. If the device is not busy, then the I/O
operation begins. When the operation is finished, the exit program at the address associated with the
label GOODBYE receives control.

GENIO CLOSE,DEV=DEVADDR

The program no longer needs the device, it asks that it be closed. The address of the device can be found
at the address associated with the label DEVADDR.

Return Codes and ABEND Codes
When the GENIO macro completes execution, it passes to the caller a return code in register 15.

General Return Codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'30' 48 An invalid function was requested.

X'34' 52 No device address was specified.

For the OPEN function:

Hex
Code

Decimal
Code

Meaning

X'04' 4 DASD devices cannot be opened as general I/O devices.

X'08' 8 The specified I/O device does not exist.

X'0C' 12 The specified device is already opened.

X'10' 16 You did not specify the address of an exit routine.

For the CLOSE function:

Hex
Code

Decimal
Code

Meaning

X'04' 4 The specified device is not opened.

GENIO

252 z/VM: 7.2 Group Control System

Hex
Code

Decimal
Code

Meaning

X'08' 8 The program that closes a device must be the same as the one that
opened it.

X'0C' 12 An I/O exit routine cannot issue the GENIO macro with the CLOSE
parameter specified.

For the CHAR function:

Hex
Code

Decimal
Code

Meaning

X'08' 8 The device specified does not exist.

X'0C' 12 The data area for storage of the device characteristics was not
specified.

For the MODIFY function:

Hex
Code

Decimal
Code

Meaning

X'04' 4 No I/O is active on the device.

X'08' 8 The device is not open or not operational.

X'0C' 12 The specified CCW address is not accessible to you.

X'10' 16 The specified CCW address does not fall on a doubleword boundary.

X'14' 20 No CCW could be found that corresponds with the specified address
or device.

X'18' 24 The CCW is neither a TIC nor a NOP instruction.

X'1C' 28 The new address of the modified CCW TIC instruction is not
accessible to you.

X'20' 32 The new address of the modified CCW TIC instruction does not fall on
a doubleword boundary.

X'24' 36 DEVICE END and CHANNEL END have already occurred.

X'2C' 44 The modified CCW cannot be a NOP instruction with command
chaining if it is the last CCW in a real channel control program.

X'38' 56 Since the I/O is queued, there is no reason to enter a GENIO MODIFY
instruction.

X'3C' 60 No CCW address was specified.

For the START or STARTR functions:

Hex
Code

Decimal
Code

Meaning

X'04' 4 Your virtual machine is not authorized for real I/O.

X'08' 8 The specified I/O device is not open.

GENIO

Chapter 5. GCS Macros 253

Hex
Code

Decimal
Code

Meaning

X'0C' 12 The specified I/O device is busy.

X'10' 16 Channel control word (CCW) address was not specified.

X'14' 20 You cannot perform real I/O functions while in key 0.

X'18' 24 A real I/O device is required for the STARTR function.

For the HALT function:

Hex
Code

Decimal
Code

Meaning

X'08' 8 The specified I/O device is not open.

X'0C' 12 The I/O activities of the device could not be halted.

X'10' 16 The specified device is not operational.

ABEND Code Reason Code Meaning

0F8 16 The GCS supervisor was called in access register mode.

FCA 0500 The specified parameter list is invalid.

FCA 0501 Your task is not authorized to perform real I/O functions.

List Format

label

GENIO ,MF=L
1

OPEN

,EXIT=  exit ,UWORD=  uword

,EXITBR=NO

,EXITBR=YES

CLOSE

CHAR

,DATA=  address

MODIFY

START

STARTR

,CCW=  address

HALT

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

GENIO

254 z/VM: 7.2 Group Control System

Purpose (List Format)
This format of the macro generates an in-line parameter list, based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Also, note that only the preceding parameters listed are valid in the
list format of this macro.

Added Parameter

MF=L
Specifies the list format of this macro.

List Address Format

label

GENIO ,MF=(L, address

, label

)
1

OPEN

,EXIT=  exit ,UWORD=  uword

,EXITBR=NO

,EXITBR=YES

CLOSE

CHAR

,DATA=  address

MODIFY

,CCW=  address

START

STARTR

,CCW=  address
,FORMAT=0

,FORMAT=1

HALT

,DEV=  dev

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Address Format)
This format of the macro does not produce any executable code that starts the function. However, it does
produce executable code that moves the parameter values that you specify into a certain parameter list.
If you enter the macro using this format, then you must do so before any related invocation of the macro
using the execute format.

Added Parameter (List Address Format)

MF=(L,address,label)
address specifies the address of the parameter list where you want the parameter values placed. This
address can be within your program or somewhere in free storage.

GENIO

Chapter 5. GCS Macros 255

label is optional and is a user-specified label, indicating that you want to determine the length of the
parameter list. The macro expansion equates the label you specify with the length of the parameter
list.

Execute Format

label

GENIO ,MF=(E,  address)
1

OPEN

,EXIT=  exit ,UWORD=  uword

,EXITBR=NO

,EXITBR=YES

CLOSE

CHAR

,DATA=  address

MODIFY

,CCW=  address

START

STARTR

,CCW=  address
,BRANCH=NO

,BRANCH=YES

,FORMAT=0

,FORMAT=1

HALT

,DEV=  dev

,ERROR=  addr

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that runs the function, using a parameter list whose address you
specify. Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

GENIO

256 z/VM: 7.2 Group Control System

GETMAIN
The GETMAIN macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 262 and “Execute Format” on page 263.

label

GETMAIN

RC

RU

,LV=  length
,BRANCH=NO

,BRANCH=YES

,KEY=0

,KEY=  key

,LOC=RES

,LOC= BELOW

ANY

,BNDRY=DBLWD

,BNDRY=PAGE

R,LV= length

EC

EU

,LV=  length ,A= address
,BNDRY=DBLWD

,BNDRY=PAGE

VC

VU

,LA= length_address ,A= address
,BNDRY=DBLWD

,BNDRY=PAGE

,SP=0

,SP= number

Purpose

Use the GETMAIN macro to obtain a contiguous block of virtual storage.

The storage management function of GCS enables a task to dynamically obtain and free contiguous blocks
of virtual storage as required.

The options R, VC, VU, EC, or EU can be used by callers in either 24-bit or 31-bit addressing mode. If one
of these options is specified, storage area addresses and lengths will be treated as 24-bit addresses and
values. The parameter list addresses and pointers to the length and address lists in the parameter lists (if
present) will be treated as 31-bit addresses if the caller's addressing mode is 31-bit; otherwise, they will
be treated as 24-bit addresses.

The options RU and RC can be used by callers in either 24-bit or 31-bit addressing mode. However, all
values and addresses will be treated as 31-bit values and addresses.

Parameters

RC
Indicates that your register request for storage is conditional. Your task will be able to continue, even
if the storage you ask for is not immediately available.

Express the amount of storage you need in the LV parameter. If the storage is available, then you will
receive its address in register 1. If it is not available, then you will receive a return code to that effect
in register 15.

GETMAIN

Chapter 5. GCS Macros 257

RU
Indicates that your register request for storage is unconditional. That is, your task will be unable to
continue unless the storage you ask for is available immediately.

Express the amount of storage you need in the LV parameter. If the storage is available, then you will
receive its address in register 1. If it is not available, then your task is abnormally terminated and you
will receive an ABEND code.

BRANCH
Specifies whether your task should branch directly to the GETMAIN service routine.
YES

Specifies that your task should branch directly to the GETMAIN service routine.
NO

Specifies that you want to use the customary SVC interface. This option is the default.
KEY

KEY specifies the key which the storage is to be obtained; it is a key number from 0 through 15 or a
register number (2) through (12) containing the key number in bits 24 through 27. The default is key
0.

R
Indicates that your register request for storage is unconditional.

Express the amount of storage you need in the LV parameter. If the storage is available, then you will
receive its address in register 1. If it is not available, then your task is abnormally terminated and you
will receive an ABEND code. Note that the BNDRY parameter cannot be used with the R parameter.

EC
Indicates that your request for storage is conditional.

Express the amount of storage you need in the LV parameter. If the storage is available, then you will
receive its address in the word specified by the A parameter. If it is not available, then you will receive
a return code to that effect in register 15.

EU
Indicates that your request for storage is unconditional.

Express the amount of storage you need in the LV parameter. If the storage is available, then you will
receive its address in the word specified by the A parameter. If it is not, then your task is terminated
abnormally and you will receive an ABEND code.

VC
Indicates that your request for a variable amount of storage is conditional.

Express the acceptable size range in the LA parameter.

If the storage is available, then you will receive the address of the storage block in the first word of the
area specified by the A parameter. The second word of that area will contain the length of the storage
block. If it is not available, then you will receive a return code to that effect in register 15.

VU
Indicates that your request for a variable amount of storage is unconditional.

Express the acceptable size range in the LA parameter.

If the storage is available, then you will receive its address in the first word of the area specified by
the A parameter. The second word of that area will contain the length of the storage block. If it is not
available, then your task is terminated abnormally and you receive an ABEND code.

LV
Specifies the length, in bytes, of the storage block you need.

GETMAIN

258 z/VM: 7.2 Group Control System

This number should be a multiple of eight. If it is not, then GCS rounds it up to the nearest multiple of
eight.

If the R parameter is used, then you can code LV=(0) as well. If it is, then the high-order byte of
register 0 must contain the subpool number and the 3 low-order bytes must contain the length of the
requested storage block.

You can write this parameter as an assembler program label or as register (2) through (12).

LA
Specifies the address of a two-word list that defines the acceptable size range into which the
requested variable length storage block may fall.

The first word in the list must contain the minimum acceptable length of the block. The second word
must contain its maximum acceptable length. These numbers should be multiples of eight. If they are
not, then GCS rounds them up to the nearest multiples of eight.

On a variable request GETMAIN, if GCS cannot obtain the maximum size requested, it obtains the
largest block of storage available that is greater than the minimum acceptable length.

You can write this parameter as an assembler program label or as register (2) through (12).

A
Specifies the address of a one or two word list.

If the EC, EU, VC, or VU parameter is specified, then GCS will store the address of the storage block in
the first word of this list.

If the VC or VU parameter is specified, then GCS will store the length of the variable length storage
block in the second word of this list.

You can write this parameter as an assembler program label or as register (2) through (12).

LOC
Specifies the location of the requested block of storage.

The location of virtual storage is allocated below or above the 16MB line as follows:

BELOW
Specifies that the requested virtual storage is to be allocated entirely below 16MB.

ANY
Specifies that the requested virtual storage can be located anywhere.

RES
Specifies that the location of the virtual storage requested is to be allocated based on the location
of the requester. If the requester resides below 16MB, storage is to be allocated below 16MB, if
the requester resides above 16MB, virtual storage may be located anywhere.

Note: This parameter can only be used with RC and RU. On all other forms, LOC=BELOW is used.
BNDRY

Specifies the boundary alignment of the requested storage block.

If you omit this parameter, then the block is aligned on a doubleword boundary, by default. In fact,
you must omit this parameter if you use the R parameter.

Include one of the following with the BNDRY parameter.
PAGE

Indicates that the storage block is to begin on a 4KB page boundary.
DBLWD

Indicates that the storage block is to begin on a doubleword boundary. This option is the default.

SP
Specifies the subpool associated with the requested block of storage.

A subpool is a number from 0 to 255 that is assigned to a block of storage to describe its
characteristics.

GETMAIN

Chapter 5. GCS Macros 259

You can write this parameter as an assembler program label or as register (2) through (12). If the R
parameter is used, then LV=(0) can be coded as well. If it is, then the high-order byte of register 0
must contain the subpool number and the 3 low-order bytes must contain the length of the requested
storage block.

Subpool numbers are as follows:
0

Specifies private, fetch-protected storage. If the main task issued the GETMAIN macro, then GCS
automatically frees the storage when the task ends. This is also true for a subtask that was attached
to a main task with the SZERO=NO parameter specified in an ATTACH macro. See “ATTACH” on page
165.

However, if the subtask was attached with the SZERO=YES parameter specified (or defaulted), then
GCS associates the storage with the oldest ancestor task with which this subtask is sharing the
subpool. The storage block is not automatically freed by GCS when the subtask ends. The storage is
freed only when the oldest ancestor task ends.

Any program can obtain storage from this subpool.

This option is the default.

1 - 127
Specifies private, fetch-protected storage. If the main task issued the GETMAIN macro, then GCS
automatically frees the storage when the task ends. This is also true for a subtask that was attached
to a main task without this subpool having been specified in the SHSPV or SHSPL parameter in the
ATTACH macro.

However, if the subtask was attached with this subpool specified in the SHSPV or SHSPL parameter
in the ATTACH macro, then GCS associates the storage with the oldest ancestor task with which this
subtask is sharing the subpool. The storage is not automatically freed by GCS when the subtask ends.
The storage is freed only when the oldest ancestor task ends.

Any program can obtain storage from these subpools.

229
Specifies private, fetch-protected storage. GCS will automatically free the storage when the task ends.

Only privileged programs can obtain storage from this subpool.

230
Specifies private, nonfetch-protected storage. GCS will automatically free the storage when the task
ends.

Only privileged programs can obtain storage from this subpool.

231
Specifies common, fetch-protected storage. GCS does not free the storage when the task that
acquired it ends. This storage must be explicitly freed by some privileged program.

Only privileged programs can obtain storage from this subpool.

241
Specifies common, nonfetch-protected storage. GCS does not free the storage when the task that
acquired it ends. This storage must be explicitly freed by some privileged program.

Only privileged programs can obtain storage from this subpool.

243
Specifies private, fetch-protected storage. GCS does not free the storage when the task that acquired
it ends. This storage must be explicitly freed by some privileged program.

Only privileged programs can obtain storage from this subpool.

GETMAIN

260 z/VM: 7.2 Group Control System

244
Specifies private, nonfetch-protected storage. GCS does not free the storage when the task that
acquired it ends. This storage is persistent in that it must be explicitly freed by some privileged
program.

Only privileged programs can obtain storage from this subpool.

If you specify a subpool number that is not listed above or one which you are not authorized to use,
and if your request was unconditional, then GCS will end your program abnormally. If your request were
conditional, then you will receive a return code of 4.

Subpool Private Fetch-protected Privileged Persistent

0 X X

1 - 127 X X

229 X X X

230 X X

231 X X X

241 X X

243 X X X X

244 X X X

Usage
1. GCS sets the key of the requested storage block to the PSW key of the task issuing the GETMAIN

macro.
2. You can include BRANCH=YES only with the RC and RU parameters of the GETMAIN macro.

Your task must be in supervisor state, key 0, and disabled for interrupts when you use this service.

The macro destroys the contents of register 3 when BRANCH=YES. You may want to save and, later,
restore the contents of register 3.

Before branching directly to the GETMAIN service routine, register 13 must contain the address of a
72-byte save area. You can obtain this save area by using the GCSSAVE macro.

The GCSSAVI macro must be used in place of the GCSSAVE macro to obtain the save area if the branch
entry to GETMAIN is from an exit defined by GENIO with EXITBR=YES, or from an exit defined by
IUCVCOM with BRANCH=YES.

The CVT mapping macro must be assembled as a DSECT into your program.

Examples

GETMAIN RU,LV=(5),SP=0,BNDRY=PAGE

The task requests a certain amount of storage space. This amount has previously been stored in register
5. If the task cannot get the storage, it will not continue processing, because this is an unconditional
request. Furthermore, the task requests that the subpool number 0 be assigned to the storage and that it
begin on a page boundary.

GETMAIN EC,LV=STORE,A=BLOCK

The task requests a certain amount of storage space. This amount is stored at the address associated with
the label STORE. The address of the storage space is to be stored at the address associated with the label
BLOCK.

GETMAIN

Chapter 5. GCS Macros 261

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

For CONDITIONAL requests only:

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 Function was not completed.

When BRANCH=YES, the following additional information is returned:

• Register 0 contains the number of bytes in the storage block obtained.
• Register 1 contains the address of the storage block obtained.
• Register 15 contains a return code for the conditional call.

ABEND Code Meaning

0F8 The GCS supervisor was called in access register mode.

604 Either an invalid address was specified in the A or LA parameter, or the macro itself
received an invalid parameter list address.

704 An irrecoverable machine, system, or other error occurred while processing the
GETMAIN macro.

804 Either there was insufficient virtual storage to execute the GETMAIN macro, or the LV
parameter specified zero or a negative number.

B04 A GETMAIN macro contained an error in the specification of the subpool.

70A An irrecoverable machine, system, or other error occurred while processing the
GETMAIN macro with the R parameter specified.

80A Either there was insufficient virtual storage to execute the GETMAIN macro with the R
parameter specified, or a length of zero was specified.

B0A A GETMAIN macro, with the R parameter specified, contained an error in the
specification of the subpool.

778 An irrecoverable machine, system, or other error occurred while processing the
GETMAIN macro with the RU parameter specified.

878 Either there was insufficient virtual storage to execute the GETMAIN macro with the
RU parameter specified, or the LV parameter specified a zero or a negative number.

B78 A GETMAIN macro, with the RU parameter specified, contained an error in the
specification of the subpool.

E04 A GETMAIN macro specified a parameter that GCS does not support.

List Format

GETMAIN

262 z/VM: 7.2 Group Control System

label

GETMAIN ,MF=L
1

EC

EU ,LV=  length ,A= address

VC

VU ,LA= length_address ,A= address

,BNDRY=DBLWD

,BNDRY=PAGE

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Also, note that only the preceding parameters listed are valid in the
list format of this macro.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

GETMAIN ,MF=(E,  address)
1

EC

EU ,LV=  length ,A= address

VC

,LA= length_address ,A= address ,SP= number

VU

,LA= length_address ,A= address

,A= address

,BNDRY=DBLWD

,BNDRY=PAGE

Notes:

GETMAIN

Chapter 5. GCS Macros 263

1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify. Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

GETMAIN

264 z/VM: 7.2 Group Control System

GTRACE
The GTRACE macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 266 and “Execute Format” on page 267.

label

GTRACE DATA=  address ,LNG= length ,ID= number

,FID= number

Purpose

Use the GTRACE macro to record user data in the GCS trace table.

Sometimes, you will need certain user data recorded for you in the GCS trace table. Any type of data you
wish can be recorded in the GCS trace table, for example an instruction or the result of some calculation.

Parameters

DATA
Specifies the address in your virtual storage where the data you want recorded begins.

You can write this parameter as an assembler program label or as register (2) through (12).

LNG
Specifies the number of bytes to be recorded starting at the address you specified in the DATA
parameter.

You can write this parameter as any decimal number from 1 to 8192, as a hexadecimal number from
X'00' to X'2000', or as register (2) through (12).

ID
Specifies an identifier you want associated with the recorded data, which you can use for
documentation purposes.

This identifier will be recorded along with the specified data to make it easier for you to find a trace
entry on a terminal screen or in a printed dump. Valid identifier values are as follows:

0 through 1023 FOR GENERAL USERS

1024 through 4095 FOR IBM USE ONLY

FID
Specifies the last two characters in the name of one of your formatting routines.

A formatting routine processes the externally traced data for printing. Because you define the data to
be recorded by the trace facility, it is your responsibility to provide any routine that may be required to
interpret and format it.

For more information on formatting and printing trace data, see the TRACERED utility in the z/VM: CP
Commands and Utilities Reference.

Each formatting routine must have a name that is eight characters long. The first six of these
characters must be:

CSIYTX

GTRACE

Chapter 5. GCS Macros 265

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2

The last two characters of the name can be any two-digit hexadecimal number from X'00' to X'FF'.
These last two characters must be used as follows:

X'00' The data is to be dumped in hexadecimal form (IBM USE ONLY).

X'01' through X'50' FOR GENERAL USERS

X'51' through X'FF' FOR IBM USE ONLY

Because the first six characters of the routine's name are known, you need only specify the last two
characters in the FID parameter. If you omit this parameter, GCS assumes X'00', by default.

See “Coding User Formatting Routines” on page 267 for more information about the FID parameter
and how it is used when you define your own formatting routines.

Usage
For the information given to the GTRACE macro to be recorded, you must have previously issued the
ETRACE or ITRACE commands. See “ETRACE” on page 73 and “ITRACE” on page 108.

Messages
The GTRACE macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 The GTRACE facility (monitor class 14) is not enabled.

X'08' 8 You specified an invalid value for the LNG parameter. It was less than
1 or greater than 8192.

X'0C' 12 You specified an invalid address for the DATA parameter.

X'10' 16 You specified an invalid value for the FID parameter. It was less than
0 or greater than 255.

X'14' 20 You specified an invalid value for the ID parameter. It may have been
less than 0 or greater than 4095. Or, you may have specified a value
from X'01' to X'50' for the FID parameter. This requires that the value
specified for the ID parameter be from 0 to 1023.

X'1C' 28 Invalid parameter list address.

List Format

label

GTRACE ,MF=L
1

DATA=  address ,LNG= length

,FID= number

Notes:

GTRACE

266 z/VM: 7.2 Group Control System

1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

GTRACE ,MF=(E,  address)
1

ID= number

,DATA=  address

,LNG= length ,FID= number

Notes:
1 The following parameters may be specified in any order.

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

Coding User Formatting Routines

Dump viewing facility formatting routines are invoked to format the header portion (including the GTF
header) of GTRACE entries. But another formatting routine, one supplied by the user, is called to finish the
data portion of the record. The format for the GTF header and data looks like this:

GTRACE

Chapter 5. GCS Macros 267

where:

Len
Contains the length of the entry, including the GTF header.

0000
Is a reserved field of the GTF header.

AID
Always contains X'FF', indicating that this is a data record.

FID
(Format ID) identifies the formatting module used for this record.

TOD Clock
Tells when the record was built, in time-of-day format.

EID
Contains information from the GTRACE macro's ID parameter.

Data
Contains the internal trace entry without the internal header (up to 256 bytes).

The 1-byte FID field shown in the GTF header locates the user-supplied formatting routine. The routine's
name must be CSIYTXxx, with "xx" being the same two characters that were specified in the GTRACE
macro's FID parameter. Also, the routine must have a file type of TEXT.

If the GCS program cannot find a user-supplied routine to handle data formatting, the data portions of the
records get printed unformatted, in hexadecimal. If the program does find a CSIYTXxx TEXT, it calls that
routine. At that time, the registers will contain:

R15
The CSIYTXxx routine's entry point

R14
The return address

R13
A 72-byte save area

R1
A parameter list with the following format:
Bytes

Content
0-3

The address of the trace record, a standard VS1 GTF prefix followed by the trace data

GTRACE

268 z/VM: 7.2 Group Control System

4-7
The address of an output buffer, cleared to blanks before the call. The buffer is 80 bytes if the
output is to be displayed at the terminal and 132 bytes if the output is to be printed. CSIYTXxx
puts the formatted trace entry here.

8-11
All zeros. (Not used with GCS, but put here to maintain compatibility with VS1. In VS1, this shows
the address of GTF options in effect.)

12-15
The address of the GTF Event Identifier (EID)

16-19
The address of the trace record's data portion

20-23
The address of the end of the trace record's data portion + 1

24
A flag for the following options and information:
X'40'

Format the record for display on a printer
X'80'

Format the record for display on a terminal
25

A flag byte for trace format processing:
X'01'

Do not reload the formatting module for the next entry. If this bit is off, the formatting module
will be reloaded on each trace entry.

26-30
Reserved for future use

31
A byte containing the GCS type code

32-63
32-byte work area for use by the called formatting routine

When formatting the GTRACE entries, user routine CSIYTXxx should fill the output buffer at the address
found in bytes 4 through 7 in the input parameter list (the address of this input parameter list is in register
1). Then it should return to the calling routine with one of the following return codes in register 15:
RC

Description
0

The user has printed the buffer and continues processing on the same GTRACE record.
4

The user has printed the buffer and is finished processing the GTRACE record.
8

Do not print the buffer, and the GTRACE record is done.
Other

Print the record in hexadecimal.

GTRACE

Chapter 5. GCS Macros 269

IDENTIFY

Format

label

IDENTIFY EP= symbol

EPLOC=  address

,ENTRY=  address

Purpose

Use the IDENTIFY macro to define an entry point within a load module.

At times you may find it necessary to add an entry point to a load module where none had previously
existed.

Parameters

EP
Specifies the name by which you want the entry point to be known. It is this name that you will use in
your program to refer to the entry point.

This name need not correspond to any name or symbol within the load module, though it can. It must
not, however, correspond to any name, alias, or entry point name known to the system.

This name can be up to 8 bytes long.

EPLOC
Specifies the address where you have stored the name of the entry point in your program.

This name can be up to 8 bytes long. If it is less than 8 bytes long, it must be padded on the right with
blanks.

You can write this parameter as an RX-type address, as register (0), or as register (2) through (12).

ENTRY
Specifies the address within the load module of the entry point you wish to identify.

You can write this parameter as an RX-type address or as register (1) through (12).

Usage
1. The copy of the load module containing the entry point in question must be one of the following:

• A copy of the load module for which your task previously issued a LOAD macro. See “LOAD” on page
298.

• The last load module given control through the OSRUN command, or the ATTACH, LINK, or XCTL
macro. See “ATTACH” on page 165, “LINK” on page 293, “XCTL” on page 373, or “OSRUN” on page
116.

2. The IDENTIFY macro cannot be issued by any asynchronous exit routine.
3. You cannot use the IDENTIFY macro to define an entry point that has been declared through the

CONTENTS macro. See “CONTENTS” on page 197.
4. All Program Management Macros consider the code at entry points that are defined through the

IDENTIFY macro to be reentrant. You must be certain that this code is in fact reentrant; otherwise,
unpredictable results are possible.

IDENTIFY

270 z/VM: 7.2 Group Control System

Examples

NAMEIT IDENTIFY EP=ABC3,ENTRY=(6)

Define a new entry point within a certain load module. The name of this entry point will be ABC3. The
address of the entry point within the load module can be found in register 6. NAMEIT is the label on this
instruction.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function successfully completed.

X'04' 4 The nonmain entry point name you specified is already assigned to
the address.

X'08' 8 The entry point name you specified duplicates the name of a load
module currently in virtual storage. The entry point name was not
assigned to the address you specified.

X'0C' 12 The entry point address you specified is not within an eligible load
module. The entry point name was not assigned to the address you
specified.

X'10' 16 The IDENTIFY macro was issued by an asynchronous exit routine.
The entry name was not assigned to the address you specified.

X'14' 20 An IDENTIFY macro was previously issued defining the same
nonmain entry point name but at a different address. The entry point
name specified in the present IDENTIFY macro was not assigned to
the address.specified.

X'18' 24 The parameter list was invalid. The entry point name was not
assigned to the address you specified.

X'28' 40 The address specified by the EPLOC parameter is fetch-protected
and the calling program is in a different key. Therefore, the calling
program cannot access the storage. So, the entry point name was not
assigned to the address that you specified.

IDENTIFY

Chapter 5. GCS Macros 271

IHADVA

Format

label IHADVA

Purpose

Use the IHADVA macro to map the data returned by the DEVTYPE macro.

Operands

IHADVA
Specifies that you want to map the data returned by the DEVTYPE macro.

Response
The following information is placed into your area:

Table 15. Supported Device Characteristics Information

IBM Device Device code
(Hex)

Maximum
Record (Dec)

DEVTAB (Hex) RPS (Hex)

DUMMY 00000000 00000000 N/A N/A

1403 Printer 10800808 120 N/A N/A

2540 Reader 10000801 80 N/A N/A

2540 Punch 10000802 80 N/A N/A

Not Supported 00000000 0 00000000000000000000000 00000000

For a detailed description of these fields, see the MVS/DFP System Data Administration book.

IHADVA

272 z/VM: 7.2 Group Control System

IHASDWA

Format

label

IHASDWA

DSECT,YES

DSECT,NO

Purpose

Use the IHASDWA macro to get a symbolic name for each field in the system diagnostic work area.

Often an application identifies an exit routine for each task that will receive control if the task terminates
abnormally. See “ESTAE” on page 223.

When the ABEND macro is issued for a specific task, a system diagnostic work area (SDWA) is created.
See “ABEND” on page 162.

The SDWA is an area of storage that contains important information about the task that has just
terminated abnormally. (Study the following format of the SDWA.) The exit routine uses this information to
analyze the problem.

Use the IHASDWA macro to produce a template of the system diagnostic work area that will make
programming your exit routine much easier. The IHASDWA macro assigns symbolic names to each field of
the template. Each symbolic name can be used as a displacement in an assembler language instruction in
your exit routine to gain access to the corresponding field in the SDWA.

Parameters

DSECT
Indicates that you are about to specify whether the template produced will be a DSECT (dummy
control section).
YES

Indicates that the template will be created as a DSECT. If you omit the DSECT parameter
altogether, then the template is produced as a DSECT. This is the default.

NO
Indicates that the DSECT card should not be generated and that the SDWA should be a
continuation of defined storage.

Usage
1. To use the DSECT you have created to find your way around the SDWA, simply assign the address of

the latter to a base register. Then, use the symbolic name of a field in the DSECT as the displacement
to the corresponding field in the SDWA.

2. The template is created as part of the expansion of the IHASDWA macro as follows:

IHASDWA

Chapter 5. GCS Macros 273

0 SDWAPARM ESTAE parameter list address
4 SDWACMPF Flags:
 SDWAREQ 80 ---> Dump requested
 SDWASTEP 40 ---> STEP parameter specified in ABEND instruction
5 SDWACMPC Completion code (see note)
8 SDWACTL1 BC mode PSW at entry to ABEND macro
16(10) Reserved
24(18) SDWAGRSV General registers 0-15 at entry to ABEND macro
88(58) SDWANAME Name of module that terminated abnormally
92(5C) Reserved
96(60) SDWAEPA Entry point address of module that terminated abnormally
100(64) Reserved
104(68) SDWAEC1 Extended control PSW at time of error (ABEND)
200(C8) SDWASPID Number of the subpool containing SDWA
201(C9) SDWALNTH Length of SDWA (in bytes)
204(CC) Reserved
232(E8) SDWAFLGS Flags
232(E8) Reserved
234(EA) SDWAERRC Flags:
 SDWAPERC 10 ---> Recovery routine percolated
235(EB) SDWAERRD Flags:
 SDWANRBE 40 ---> State block associated with this ESTAE exit
 at time of error
236(EC) Reserved
240(F0) SDWARTYA Address of recovery routine
244(F4) Reserved
252(FC) SDWARCDE Return code from recovery routine:
 0 ---> Continue with termination
 4 ---> Retry using recovery at address in SDWARTYA
253(FD) Reserved
368(170) SDWAXPAD Address of extention pointers SDWAPTRS
663(297) END SDWA

0 SDWAPTRS Extention pointers
4 SDWASRVP Address of extention SDWARC1

0 SDWARC1 Extention
216(D8) SDWAARER Access registers 0-15 at entry to ABEND macro

Note: The SDWACMPC field contains the completion code specified in the ABEND macro. The SETRP
macro may modify this field through its COMPCOD parameter.

3. Below the 16MB line, both BC mode and EC mode PSWs are filled in.

Return Codes and ABEND Codes
The IHASDWA macro generates no return codes and no abend codes.

IHASDWA

274 z/VM: 7.2 Group Control System

IUCVCOM
The IUCVCOM macro is available in standard, list, list address and execute formats.

Standard Format

See also “List Format” on page 283, “List Address Format” on page 283 and “Execute Format” on page
284.

label

IUCVCOM

1

QUERY

,PRMLIST=  addr

CONNECT,NAME=  addr ,PRMLIST=  addr ,

EXIT= addr ,UWORD=  addr

,BRANCH=NO

,BRANCH=YES

ACCEPT,NAME=  addr ,PRMLIST=  addr ,

EXIT= addr ,UWORD=  addr

SEVER,NAME=  addr ,PRMLIST=  addr
,CODE=ONE

,CODE=ALL

,BRANCH=NO

,BRANCH=YES

QUIESCE,

RESUME,

NAME= addr ,PRMLIST=  addr
,CODE=ONE

,CODE=ALL

SEND,

RECEIVE,

REPLY,

REJECT,

PURGE,

NAME= addr ,PRMLIST=  addr

REP,NAME=  addr ,

EXIT= addr ,UWORD=  addr

,CODE=ONE

,CODE=ALL ,PATH=  addr

,ERROR=  addr

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the IUCVCOM macro to coordinate communication among users within the IUCV and APPC/VM
environment.

The Inter-User Communications Vehicle (IUCV) is a CP facility that allows a virtual machine to send
information to or receive information from other virtual machines, a CP system service, or itself.

IUCVCOM

Chapter 5. GCS Macros 275

Advanced Program-to-Program Communication/VM (APPC/VM) is an application program interface (API)
for communicating between two virtual machines that is mappable to the SNA LU 6.2 APPC interface and
is based on IUCV functions. For more information on APPC/VM, see z/VM: CP Programming Services.

By using the GCS IUCV support, communications can take place among several users. APPC/VM,
used with the Transparent Services Access Facility (TSAF) virtual machine component, allows these
communications to span several systems.

When the word user appears, you should take it to mean any supervisor or problem program.

This treatment of the IUCVCOM macro assumes that you are already familiar with the section dealing with
IUCV in the z/VM: CP Programming Services. For more information on IUCV, see “IUCVINI” on page 286.

Parameters
QUERY

Indicates that the user wants to know the size of the external interrupt buffer, and the maximum
number of communication paths that can be established in the user's virtual machine.

GCS returns the size, in bytes, of the external interrupt buffer in register 0. It returns the maximum
number of connections possible in register 1.

You can start the QUERY function without first having entered the IUCVINI SET instruction.

CONNECT
Indicates that the user requests a communication path be established between it and the party the
user is trying to communicate with.

The user must identify the party it wishes to communicate with through the CP IUCV or APPC/VM
parameter list. The user should place the virtual machine identifier of the particular machine or CP
system service it desires in the IPVMID field of the parameter list. Then, in the first 8 bytes of the
IPUSER field, it should identify the particular user it wishes to contact in that machine.

Remember that all IUCV and APPC/VM users, including privileged ones, must use the IUCVCOM
CONNECT instruction to establish an IUCV or APPC/VM path.

ACCEPT
Indicates that the user wants to complete the communication path initiated by another party trying to
communicate with it.

Remember that all IUCV and APPC/VM users, including privileged ones, must use the IUCVCOM
ACCEPT instruction to complete an IUCV or APPC/VM path.

SEVER
Indicates that the user wishes to terminate communication over the path in question.

The user cannot request that all paths into its virtual machine be severed by setting to 1 the IPALL bit
in the CP IUCV or APPC/VM parameter list.

However, if the user enters an IUCVCOM SEVER instruction specifying the CODE=ALL parameter, then
GCS issues an IUCV SEVER instruction for each of the user's paths, (both the IUCV and the APPC/VM
paths). This happens because CP allows both types of paths to be severed regardless of its state.

If the user specifies CODE=ONE (or allows it to default), then only one specific path shall be severed.
The path must be specified in the CP IUCV or APPC/VM parameter list.

Remember that all IUCV and APPC/VM users, including privileged ones, must use the IUCVCOM
SEVER instruction to sever an IUCV or APPC/VM path.

QUIESCE
Indicates that, while the user does not want the path in question severed, it does not wish to accept
any incoming messages over it. Incoming communication over the path is temporarily suspended.

The user cannot request that all paths into its virtual machine be quiesced by setting to 1 the IPALL bit
in the CP IUCV parameter list.

IUCVCOM

276 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

However, if the user enters an IUCVCOM QUIESCE instruction, specifying the CODE=ALL parameter,
then GCS examines each of the user's paths to determine its current state. If a path is in a state which
CP permits a quiesce to take place, then the path is quiesced. Otherwise, it is not. For example, CP
does not permit a path to be quiesced if its owner has not completed a pending connection through an
IUCVCOM ACCEPT instruction.

If the user specifies CODE=ONE (or allows it to default) then only one specific path shall be quiesced.
The path must be specified in the CP IUCV parameter list.

Although incoming communication on the path in question is temporarily suspended, the user may
still use the path to communicate out.

RESUME
Indicates that the user wants a quiesced path restored to full use.

The user cannot request that all paths into its virtual machine be resumed by setting to 1 the IPALL bit
in the CP IUCV parameter list.

However, if the user enters an IUCVCOM RESUME instruction, specifying the CODE=ALL parameter,
then GCS examines each of the user's paths to determine its current state. If a path is in a state which
CP permits this function to take place, then the path is resumed; otherwise, it is not. For example, CP
does not permit a path to resume if its owner has not completed a pending connection through an
IUCVCOM ACCEPT instruction.

If the user specifies CODE=ONE (or allows it to default) then only one specific path shall be resumed.
The path must be specified in the CP IUCV parameter list.

SEND
Send the user's message to the party at the other end of the specified path.

Presumably the party at the other end of the path has consented to communicate through the
IUCVCOM ACCEPT instruction.

RECEIVE
Indicates that the user accepts the data that was passed through an IUCV or APPC/VM SEND function
or through a connection parameter list extension on an APPC/VM path.

In all likelihood, there are other paths into the virtual machine that are owned by other users.
Therefore, the RECEIVE function requires that the user identify the path through the IPPATHID field in
the CP IUCV or APPC/VM parameter list.

REPLY
Conveys the user's response to a message sent to it by another party through the SEND function.

REJECT
Indicates that the user refuses to receive a specific message that some party sent to it through the
SEND function.

The path in question must be identified in the IPPATHID field of the CP IUCV parameter list. Unless
the user identifies the specific message it rejects, then the first message found on the path is rejected.
The user can identify the message in question in the IPMSGID parameter of the CP IUCV parameter
list.

PURGE
Indicates that the user wishes to terminate or cancel a specific message that it sent to another party.
Whether the other party received the message or not, the message is canceled.

The path in question must be identified in the IPPATHID field of the CP IUCV parameter list. Unless
the user identifies the specific message it wants to purge, then the first message found on the path is
purged. The user can identify the message in question in the IPMSGID field of the CP IUCV parameter
list.

REP
Indicates that the exit routine or the UWORD for the specified path (or all the user's paths that were
set up under the current task) are to be changed.

IUCVCOM

Chapter 5. GCS Macros 277

If only one specified path's exit routine or UWORD are to be changed, then the REP function must be
requested from the same task that established the path.

If you omit the CODE parameter (or specify CODE=ONE), then you can use the PATH parameter to
identify the single path to be affected. If the user specifies CODE=ALL, then all the paths the user set
up under the current task are affected.

Remember, that the IUCVCOM REP instruction cannot be entered by a privileged user.

EXIT
Specifies the address of an exit routine that is to receive control when an IUCV external interrupt
occurs on the path in question.

If you omit this parameter from the CONNECT or ACCEPT function (or if you specify it as a register
containing zero), then the exit routine you specified in the IUCVINI SET instruction becomes the exit
routine associated with this path and the AMODE will be the AMODE of that exit routine.

When an external interrupt occurs involving an unauthorized user, the exit routine gains control in the
same state and key as the user. The exit runs enabled for all interrupts.

The exit will be run in the AMODE of the caller for the CONNECT, ACCEPT and REP parameters.

External interrupts can occur at any time after the IUCVINI or IUCVCOM macro completes execution.
Sometimes they occur even before the user's program reaches its next executable statement.
Therefore, a user must be ready to handle such interrupts whenever they occur.

When an external interrupt occurs involving an authorized user, the exit routine gains control in
supervisor state in key 0. The exit routine is disabled and because of the way that the INTERRUPT
HANDLER gives control to the EXIT, no SVC calls can be issued by the EXIT.

Upon entry to the exit routine, the registers contain the following:

Register Contents

0 The UWORD.

1 Unpredictable.

2 The address of the external interrupt buffer.

3 The address of the external interrupt buffer extension for APPC Connection Pending
or APPC Connection Complete. At other times the register content is unpredictable.

4 - 12 Unpredictable.

13 The address of a user save area when an external interrupt occurs involving an
unauthorized user, or the address of the 72-byte register save area when an
external interrupt occurs involving an authorized user.

14 The address to which control must be returned after the exit routine completes
execution.

15 The address of the exit routine.

Upon return from the exit routine, register 15 must contain a return code of either 0 (normal
completion) or 4 (error). (The latter, GCS will sever the path involved in the error.) Registers 0 through
14 must contain the same values they contained when the exit routine received control.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the address associated with that label must be the address of the exit routine.
If you write it as a register, then the register must contain the address of the exit routine.

UWORD
Specifies a fullword that will be passed to the path's exit routine in register 0 whenever it receives
control.

IUCVCOM

278 z/VM: 7.2 Group Control System

This fullword can contain anything you wish. If you omit this parameter, then the UWORD specified in
the IUCVINI SET instruction is passed.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the address corresponding to the label is passed as the UWORD. If you write it
as a register, then the contents of that register are passed as the UWORD.

PRMLIST
Specifies the address of the CP IUCV or APPC/VM parameter list associated with the function the user
wishes to perform.

Remember that every function in the IUCVCOM macro (except QUERY and REP) requires such a
parameter list. You are expected to provide one yourself. The List Format of the IUCV and APPC/VM
macro is a convenient way to create it.

When the PRMLIST parameter is specified with the QUERY function, the external interrupt buffer
extension length is returned in the parameter list.

CODE
Indicates the scope of the IUCVCOM function that the user wishes to perform.

The IUCVCOM functions SEVER, QUIESCE, RESUME, and REP require that to one specific path or
allowed to affect all the user's paths. If you omit this parameter altogether, then GCS assumes
CODE=ONE, by default.

ALL
Indicates that the function will affect all paths owned by the user.

ONE
Indicates that the function will affect only one specific path.

Note: For the SEVER function, this path is the one specified in the CP IUCV or CP APPC/VM
parameter list. For the QUIESCE and RESUME functions, this path is the one specified in the CP
IUCV parameter list. For the REP function, this path is the one specified by the PATH parameter in
the IUCVCOM macro.

NAME
Specifies the address of the name by which the user is known within the IUCV or APPC/VM
environment.

This name corresponds exactly with the name the user declared for the user in the IUCVINI SET
instruction.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then this eight-character name must be stored at the address associated with that
label. If you write it as a register, then the address of the name must be stored in the register.

PATH
Identifies the specific path that is to have its exit routine or UWORD changed through the REP
function.

The PATH parameter must never be included if CODE=ALL is specified. However, the PATH parameter
must be included for the REP function if CODE=ONE is specified or allowed to default.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the halfword at the address associated with that label must contain the path
identifier. If you write it as a register, then the register must contain the address of the halfword where
the path id is stored.

ERROR
Specifies the address of an error routine that is to gain control if an error is found in the IUCVCOM
macro.

If you omit this parameter and an error occurs, then control returns to the instruction following the
IUCVCOM instruction, just as it would were there no error.

You can write this parameter as an assembler program label or as register (2) through (12).

IUCVCOM

Chapter 5. GCS Macros 279

BRANCH
Specifies whether your task should branch directly to the IUCVCOM service routine.
YES

Specifies that your task should branch directly to the IUCVCOM service routine.
NO

Specifies that you want to use the customary SVC interface. This option is the default.

Usage
1. A CP IUCV or CP APPC/VM parameter list must be created for each IUCVCOM function that requires

the PRMLIST parameter. z/VM: CP Programming Services can provide you with more information on
this.

2. No user can enter the IUCVCOM macro before it is admitted to the IUCV or APPC/VM environment
through the IUCVINI SET instruction. The IUCVCOM QUERY function is the only exception to this.

3. To ensure that no user tries to perform an IUCV or APPC/VM function on a path that another user
established, each path is associated with the name of the user that created it. For a user to enter the
IUCVCOM macro with the CONNECT or ACCEPT parameter specified is to establish a path and, thereby,
ownership of it. For a user to attempt to process a function on a path that does not belong to it is an
error.

4. For a function to be processed, the path it is to affect must be in the proper state. The following
describes the possible path states.
CONNECT ISSUED

A user entered an IUCVCOM CONNECT instruction for a certain path. However, no CONNECT
COMPLETE interrupt has yet occurred on that path.

CONNECT PENDING
This is the next logical progression from the CONNECT ISSUED state. The CONNECT PENDING
interrupt has occurred on the path, though the path is not yet complete. The target user can enter
two types of instructions:

• IUCVCOM RECEIVE if there was a connection parameter list extension specified by the CONNECT
on a APPC/VM path. The user would remain in a CONNECT PENDING state.

• IUCVCOM ACCEPT which would complete the path and the path would become ACTIVE.

ACTIVE
This is the next logical progression from the CONNECT PENDING state. The target user has entered
the IUCVCOM ACCEPT instruction, causing a CONNECT COMPLETE interrupt on the path. The path
is now complete and communication over it is now possible.

QUIESCED
One of the users using an ACTIVE path has entered the IUCVCOM QUIESCE instruction. Therefore,
that user will not receive incoming communication over the path, though he can communicate out.
For APPC/VM, this path state is incorrect.

SEVER IN PROGRESS
One of the users using an ACTIVE or QUIESCED path has entered the IUCVCOM SEVER instruction.
No communication over the path is possible. The only logical or useful thing for the other user to do
is to enter the same instruction to sever his half of the path.

For APPC/VM, this path state will not be monitored.

INACTIVE
This state describes a null path. That is, a path that does not exist.

A SEND function cannot be processed if the path is in the CONNECT PENDING state. In a typical
scenario, one user (the SOURCE) attempts to establish a connection with another user (the TARGET)
through the IUCVCOM CONNECT instruction. This places the source user's half of the path in the
CONNECT ISSUED state. When a CONNECT PENDING interrupt occurs on the target user's half of the
path, it is placed in the CONNECT PENDING state. The target user then enters the IUCVCOM ACCEPT
instruction, placing its half of the path in the ACTIVE state. When a CONNECT COMPLETE interrupt

IUCVCOM

280 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

occurs on the source user's half of the path, it too is placed in the ACTIVE state. Communication
between the two users is now possible.

5. If a user loads the SEVER, QUIESCE, or RESUME function with CODE=ALL specified, then all
paths associated with that user are affected. When the function ends error-free, the parameter list
associated with the function contains data related to the last path it processed. If errors occur, then
the data in the parameter list is associated with the path that was being processed when the last error
occurred.

6. As with other macros in GCS, the IUCVCOM macro passes return codes in register 15. Other diagnostic
information is available in the IPRCODE field of the appropriate CP IUCV or APPC/VM parameter list.

7. You can specify the BRANCH parameter only with the standard or the execute format of the IUCV
macro, not with list or list address formats.

8. If you specify BRANCH=YES, your task must be in supervisor state, key 0, and disabled for interrupts.

You can issue branch entries to GETMAIN and FREEMAIN for subpools for persistant private storage
only, and you can issue a Name/Token CREATE for level=private.

An interrupt handler cannot use the branch interface to the IUCVCOM service routine.

Because this method of invoking the IUCVCOM macro avoids the supervisor call, no trace entry for the
macro is generated.

The IUCVCOM macro alters the following registers:

Register Contents

1 The address of the parameter list, as generated by the list form of the IUCVCOM
macro. This occurs whether BRANCH is used.

14 The caller’s return address, if BRANCH=YES is specified.

15 The address of the IUCVCOM service routine), if BRANCH=YES is specified.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'02' 2 An APPC/VM parameter list was passed as input to IUCVCOM,
and the request function has completed immediately. The function
complete information is contained in the parameter list. The user's
path specific exit will not be driven because no interrupt is reflected
to the virtual machine by CP.

X'03' 3 An APPC/VM SENDDATA or RECEIVE function was requested, and
has completed immediately, but error information has been stored in
the IPAUDIT field of the CP APPC/VM parameter list. The user's path
specific exit will not be driven because no interrupt is reflected to the
virtual machine by CP.

X'08' 8 The user entered an IUCVCOM macro before admitting itself to the
IUCV or APPC/VM environment through the IUCVINI SET instruction.

X'0C' 12 The user does not own the path in question.

X'10' 16 Either the NAME parameter was not specified or its address is zero.

IUCVCOM

Chapter 5. GCS Macros 281

Hex
Code

Decimal
Code

Meaning

X'18' 24 Either the PRMLIST parameter was not specified or its address is
zero.

X'1C' 28 The user cannot process the SEVER, QUIESCE, or RESUME function
with the IPALL bit of the CP IUCV or APPC/VM parameter list set to 1.

X'20' 32 The path identifier was not specified in the CP IUCV or APPC/VM
parameter list.

X'28' 40 The function name the user specified was not recognizable by
GCS. Choose CONNECT, ACCEPT, SEVER, QUERY, QUIESCE, RESUME,
SEND, RECEIVE, REPLY, REJECT, PURGE, or REP.

X'2C' 44 Invalid parameter list.

X'30' 48 The state of the path is inconsistent with the function the user
requested. For example, the user may have entered an IUCVCOM
SEND, RECEIVE, REPLY, REJECT, or PURGE instruction for a path
before a CONNECTION COMPLETE interrupt occurred on it. Or, the
user may have entered an IUCVCOM QUIESCE, RESUME, SEND,
RECEIVE (where a connection parameter list extension is not
specified in the CONNECT on an APPC/VM path), REPLY, REJECT, or
PURGE instruction for a path that has been only partially completed.
That is, a path upon which a PENDING CONNECT interrupt has
occurred. In such a case, the user should enter an IUCVCOM ACCEPT
or SEVER instruction instead.

X'34' 52 Either the task that entered the IUCVCOM REP instruction is not the
same task that established the path in question, or the IUCVCOM
REP instruction was entered by a privileged user.

X'38' 56 Invalid APPC/VM parameter list. WAIT=YES can only be specified by
privileged IUCV users.

Note: Privileged users must enter the APPC/VM macro directly for
synchronous SENDs and RECEIVEs.

X'3C' 60 Invalid IUCV connect parameter list. CONTROL=YES can only be
specified by the GCS supervisor.

X'4C' 76 An APPC/VM parameter list is not allowed as input on an IUCV
SEVER, CODE=ALL.

X'CC' 204 An error occurred in obtaining storage to satisfy the IUCV request.
204 is the return code from the GETMAIN macro.

X'xxx' 1xxx An error occurred. ‘xxx’ is the value in the IPRCODE field in the
IUCV parameter list that describes the error. See the z/VM: CP
Programming Services for information about IUCV parameter lists.

Note: If a RETURN CODE of 1000 is passed this corresponds to a
CONDITION CODE of 2, which means “no message found”, had the
function been entered directly through IUCV. These functions are
PURGE, RECEIVE, REJECT, and REPLY.

ABEND Code Reason Code Meaning

0F8 16 The GCS supervisor was called in access register mode.

IUCVCOM

282 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

ABEND Code Reason Code Meaning

FCA 1101 A GETMAIN macro failed when GCS tried to obtain storage for the task
that ended abnormally.

List Format

label

IUCVCOM ,MF=L

QUERY

CONNECT

,EXIT=  label ,UWORD=  label

ACCEPT

,EXIT=  label ,UWORD=  label

SEVER

QUIESCE

RESUME

,CODE=ONE

,CODE=ALL

SEND

RECEIVE

REPLY

REJECT

PURGE

,NAME=  addr ,PRMLIST=  addr

REP

,EXIT=  label ,UWORD=  label

,CODE=ONE

,CODE=ALL ,PATH=  label ,NAME=  label

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Only the preceding parameters listed are valid in the list format of this
instruction.

Added Parameter

MF=L
Specifies the list format of this macro.

List Address Format

IUCVCOM

Chapter 5. GCS Macros 283

label

IUCVCOM ,MF=(L, address

, label

)

QUERY

CONNECT

,EXIT=  addr ,UWORD=  addr

ACCEPT

,EXIT=  addr ,UWORD=  addr

SEVER

QUIESCE

RESUME

,CODE=ONE

,CODE=ALL

SEND

RECEIVE

REPLY

REJECT

PURGE

,NAME=  addr ,PRMLIST=  addr

REP

,EXIT=  addr ,UWORD=  addr

,CODE=ONE

,CODE=ALL ,PATH=  addr ,NAME=  addr

Purpose (List Address Format)
This format of the macro does not produce any executable code that runs the function. However, it does
produce executable code that moves the parameter values that you specify into a certain parameter list.
If you enter the macro using this format, then you must do so before any related invocation of the macro
using the execute format. Only the preceding parameters listed are valid in the list address format of this
macro.

Added Parameter (List Address Format)

MF=(L,address,label)
address specifies the address of the parameter list into which you want the parameter values the user
mention placed. This address can be within your program or somewhere in free storage.

label is optional and is a user specified label, indicating that you want to determine the length of the
parameter list. The macro expansion equates the label you specify with the length of the parameter
list.

Execute Format

IUCVCOM

284 z/VM: 7.2 Group Control System

label

IUCVCOM ,MF=(E,  address)

QUERY

,ERROR=  addr

CONNECT

,EXIT=  addr ,UWORD=  addr

,BRANCH=NO

,BRANCH=YES

ACCEPT

,EXIT=  addr ,UWORD=  addr

SEVER

,CODE=ONE

,CODE=ALL

,BRANCH=NO

,BRANCH=YES

QUIESCE

RESUME

,CODE=ONE

,CODE=ALL

SEND

RECEIVE

REPLY

REJECT

PURGE

Options

REP

,EXIT=  addr ,UWORD=  addr

,CODE=ONE

,CODE=ALL ,PATH=  addr ,NAME=  addr

Options

,NAME=  addr ,PRMLIST=  addr ,ERROR=  addr

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify. Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

IUCVCOM

Chapter 5. GCS Macros 285

IUCVINI
The IUCVINI macro is available in standard, list, list address and execute formats.

Standard Format

See also “List Format” on page 290, “List Address Format” on page 291 and “Execute Format” on page
291.

label

IUCVINI

SET,NAME=  name ,EXIT=  addr
1

,UWORD=  addr

,PRIV=NO

,PRIV=YES

REP,NAME=  name
1

,EXIT=  addr ,UWORD=  addr

CLR,NAME=  name

,ERROR=  addr

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the IUCVINI macro either to admit a user to or withdraw a user from the IUCV and APPC/VM
environment.

The Inter-User Communications Vehicle (IUCV) is a CP facility that allows a virtual machine to send
information to or receive information from other virtual machines, a CP system service, or itself.

Advanced Program-to-Program Communication/VM (APPC/VM) is an application program interface (API)
for communicating between two virtual machines that is mappable to the SNA LU 6.2 APPC interface and
is based on IUCV functions. For more information on APPC/VM, see z/VM: CP Programming Services.

By using the GCS IUCV support, communications can take place among several users operating within
several tasks operating within several virtual machines. APPC/VM, used with the Transparent Services
Access Facility (TSAF) virtual machine component, allows these communications to span several systems.

When the word user appears, it should be taken to mean any supervisor or problem program.

This treatment of the IUCVINI macro assumes that you are already familiar with the section dealing with
IUCV in the z/VM: CP Programming Services. For more information on IUCV, see the “IUCVCOM” on page
275.

Parameters

SET
Indicates that you want the user admitted to the IUCV or APPC/VM environment.

IUCVINI

286 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

When you select this parameter, several things occur. First, an ID BLOCK is created for the user. This
block contains the address of the user's general EXIT routine and the address of its general UWORD.
Then, this block is associated with the NAME that identifies the IUCV user to GCS. Finally, the user
receives permission to establish ownership of the IUCV or APPC/VM paths over which it will send and
receive information.

The user must enter the IUCVINI SET instruction once before it attempts to send or receive
information through the IUCV or APPC/VM facility. If the SET function completes successfully, then
register 0 contains the number of possible IUCV or APPC/VM connections available to the user's
virtual machine.

Note that the SET function also provides the PRIV parameter. This parameter allows a task running in
supervisor state to establish and terminate a path through the IUCVCOM macro, but to communicate
on that path using IUCV or APPC/VM directly, rather than using the GCS IUCV Support. If necessary,
review the entry titled “IUCVCOM” on page 275.

REP
Indicates that you want to change the address of the user's general exit routine or its UWORD as they
are recorded in the ID BLOCK.

This option is provided to allow the user to specify a new general exit routine and UWORD, depending
on the situation at the moment. The general exit routine and UWORD specify the manner which the
user responds to PENDING CONNECT interrupts (or all interrupts if the exit routine and UWORD are
left to default on an ACCEPT or CONNECT function.) The REP function allows the user to change the
manner of that response, whenever necessary.

The IUCVINI REP instruction can be issued only by the task that issued the original IUCVINI SET
instruction. This function does not affect those paths that are already using the previous general exit
routine as the path specific exit. These paths are recorded in the PATH BLOCK. To alter these, the
IUCVCOM REP instruction must be used. Remember, though, that IUCVINI REP can never be entered
by a user who specified PRIV=YES on an IUCVINI SET instruction.

CLR
Indicates that you want the user to be removed from the IUCV or APPC/VM environment.

When you select this parameter, the ID BLOCK is released and the user's IUCV or APPC/VM paths are
severed.

NAME
Specifies the address of the symbolic name by which the user shall be known within the IUCV or
APPC/VM environment. If the user is connecting to *IDENT for resource identification, the NAME field
must be equal to the resource name that is being identified.

This name was declared when the IUCVINI SET instruction was issued for the user. From that time to
the time the IUCVINI CLR instruction is issued, this name must be consistently used to identify the
user to GCS IUCV or APPC/VM.

For APPC/VM users, this name is the transaction program name (TPN). For IUCV users, this name
corresponds to the first eight bytes of the IPUSER field in the IUCV parameter list.

The name must be eight characters long and can be any string of characters.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the name must be stored at the address associated with that label. If you write
it as a register, then the register must contain the address of the name.

EXIT
Specifies the address of the user's general IUCV or APPC/VM exit routine.

This general exit routine will receive control each time an IUCV or APPC/VM pending connect interrupt
occurs on a path associated with this name. An IUCV or APPC/VM PENDING CONNECT interrupt
occurs on a path when some other user enters a request to communicate with the user through the
CONNECT function. CP then assigns the path to the user. The general exit routine is responsible for
reacting to this request.

IUCVINI

Chapter 5. GCS Macros 287

This exit routine is also considered the routine that receives control by default when any external
interrupt occurs on a path for which the user has not established a path specific exit. This can happen
under two sets of circumstances:

1. When a PENDING CONNECT interrupt had previously occurred on a path for which the user entered
no IUCVCOM ACCEPT instruction.

2. When no exit routine was specified on the IUCVCOM CONNECT or IUCVCOM ACCEPT instruction
that established the path.

When an external interrupt occurs involving an unprivileged user, the exit routine gains control in the
same state and key as the user. Furthermore, the exit runs enabled for all interrupts if the user is
running problem state.

The exit will be run in the AMODE of the caller for the SET or REP parameters.

External interrupts can occur at any time after the IUCVINI or IUCVCOM macro completes execution.
Sometimes they occur even before the user's program reaches its next executable statement.
Therefore, a user must be ready to handle such interrupts whenever they occur.

When an external interrupt occurs, involving a privileged user, the exit routine gains control in
supervisor state, in key 0, and is disabled. The exit cannot issue any SVC calls. The only call allowed to
the GCS supervisor is the branch entry to POST.

Upon entry to the exit routine, the registers contain the following:

Register Contents

0 The UWORD.

1 Unpredictable.

2 The address of the external interrupt buffer.

3 The address of the external interrupt buffer extension for APPC Connection Pending
or APPC Connection Complete. At other times the register content is unpredictable.

4-12 Unpredictable

13 The address of a user save area when an external interrupt occurs involving an
unprivileged user, or the address of the 72-byte register save area when an external
interrupt occurs involving a privileged user.

14 The address to which control must be returned after the exit routine completes
execution.

15 The address of the exit routine.

Upon return from the exit routine, register 15 must contain a return code of either 0 (normal
completion) or 4 (error). (The latter, GCS will sever the path involved in the error.) Registers 0 through
14 must contain the same values they contained when the exit routine received control.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the exit routine must begin at the address associated with that label. If you
write it as a register, then the register must contain the address of the exit routine.

Defaults 1
UWORD

Specifies a fullword that will be passed to the general exit routine in register 0, whenever the routine
gains control. This parameter also specifies the value to be assigned to the UWORD parameter by
default if none is specified on an IUCVCOM CONNECT or ACCEPT instruction

The UWORD can contain any type of information that you wish. But, if you omit this parameter, a value
of zero is passed as the UWORD, by default.

IUCVINI

288 z/VM: 7.2 Group Control System

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the UWORD must be stored at the address associated with that label. If you
write it as a register, then the contents of the register are passed as the UWORD.

PRIV
Indicates whether the user will be privileged or nonprivileged. If you omit this parameter, then the
user is considered nonprivileged, by default. This parameter is valid only when the user issuing this
instruction is in supervisor state.
NO

Indicates that the user will be nonprivileged.

This means that the user must use the GCS Support Macros for all IUCV and APPC/VM activities.

YES
Indicates that the user will be privileged.

This means that the user has the authority to communicate over a path using IUCV or APPC/VM
directly, rather than through the IUCVCOM macro. However, the user must establish and end
the path using the IUCVCOM macro. This ensures a proper match between the GCS IUCV and
APPC/VM path table and the CP IUCV and APPC/VM path table.

Defaults 2
ERROR

Specifies the address of an error routine that is to gain control if an error is found in the IUCVINI
macro.

If you omit this parameter and an error occurs, then control passes to the instruction following the
IUCVINI macro, just as it would were there no error.

You can write this parameter as an assembler program label or as register (2) through (12). If you
write it as a label, then the error routine must begin at the address associated with that label. If you
write it as a register, then the register must contain the address of the error routine.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 This name is already being used by another IUCV or APPC/VM user.

X'08' 8 The IUCV or APPC/VM facility cannot be used unless the IUCVINI
macro, with the SET parameter specified, is issued first.

X'10' 16 Either the NAME parameter was not specified or its address was
specified as zero.

X'14' 20 Either the EXIT parameter was not specified or its address was
specified as zero.

X'28' 40 The function requested was unrecognizable by GCS. Specify SET,
REP, or CLR.

X'2C' 44 Invalid parameter list.

X'34' 52 Either the user did not enter the IUCVINI REP instruction from the
same task that it issued the IUCVINI SET instruction, or the IUCVINI
REP instruction was issued by a privileged user.

IUCVINI

Chapter 5. GCS Macros 289

Hex
Code

Decimal
Code

Meaning

X'7C' 204 An error occurred in obtaining storage to satisfy the IUCV or
APPC/VM request. The return code from the GETMAIN macro is 204.

X'xxx' 1xxx An error occurred while trying to sever all the user's communication
paths. ‘xxx’ is the value in the IPRCODE field in the SEVER parameter
list. The section of z/VM: CP Programming Services that defines the
fields in the IUCV and APPC/VM parameter lists.

ABEND Code Reason Code Meaning

FCA 1101 A GETMAIN macro failed when GCS tried to obtain storage for the task
that ended abnormally.

List Format

label

IUCVINI MF=L
1

,EXIT=  label ,UWORD=  label

,SET

,EXIT=  label ,UWORD=  label

,REP

,EXIT=  label ,UWORD=  label

,CLR

,NAME=  label

,PRIV=NO

,PRIV=YES

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Only the preceding parameters listed are valid in the list format of this
macro.

Added Parameter

MF=L
Specifies the list format of this macro.

IUCVINI

290 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

List Address Format

label

IUCVINI MF=(L, address

, label

)
1

,EXIT=  label ,UWORD=  label

,SET

,EXIT=  label ,UWORD=  label

,REP

,EXIT=  label ,UWORD=  label

,CLR

,NAME=  label

,PRIV=NO

,PRIV=YES

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Address Format)
This format of the macro does not produce any executable code that starts the function. However, it does
produce executable code that moves the parameter values that you specify into a certain parameter list.
If you enter the macro using this format, then you must do so before any related invocation of the macro
using the execute format.

Only the preceding parameters listed are valid in the list address format of this macro.

Added Parameter (List Address Format)

MF=(L,address,label)
address specifies the address of the parameter list into which you want the parameter values you
mention placed. This address can be within the user's program or somewhere in free storage.

label is optional and is a user specified label, indicating that the you want to determine the length
of the parameter list. The macro expansion equates the label you specify with the length of the
parameter list.

Execute Format

IUCVINI

Chapter 5. GCS Macros 291

label

IUCVINI MF=(E, address)
1

,EXIT=  label ,UWORD=  label

,SET

,EXIT=  label ,UWORD=  label

,REP

,EXIT=  label ,UWORD=  label

,CLR

,NAME=  label

,ERROR=  addr

,PRIV=NO

,PRIV=YES

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify.

Note that only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

IUCVINI

292 z/VM: 7.2 Group Control System

LINK
The LINK macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 296 and “Execute Format” on page 296.

label

LINK EP= symbol

EPLOC=  addr

DE= addr

1

,ID= number

,PARAM=( addresses)

,VL=1

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the LINK macro to pass control to a certain entry point in another load module with the intent that
control will eventually return to the program issuing the instruction.

GCS provides several techniques for passing control from one program to another.

Parameters
EP

Specifies the name of the entry point within the program that is to receive control.

The entry point name can be any one of the following:

• The name of the entry point as previously defined through the IDENTIFY macro. See “IDENTIFY” on
page 270.

• The name of the entry point declared in a shared segment directory through the CONTENTS macro.
See “CONTENTS” on page 197.

• A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches the following items in the
following order:

1. Your private storage, because the module associated with the entry point name may already be
loaded.

2. Any shared segment directories that may have been created through the CONTENTS macro.
3. The directories of any load libraries that may have been defined for your virtual machine through

the GLOBAL LOADLIB command. For more information on the GLOBAL command, see “GLOBAL” on
page 101.

You must write this parameter as a symbol.

EPLOC
Specifies the address containing the name of the entry point of the program that is to receive control.

LINK

Chapter 5. GCS Macros 293

The name, as stored, can be up to 8 bytes long. If it is fewer than 8 bytes long, the name must be
padded on the right with blanks.

You can write this parameter as an assembler program label or as register (2) through (12).

DE
Specifies the address of the name field within the list entry for the entry point in question.

You must previously have created this list entry for the entry point using the BLDL macro. See “BLDL”
on page 181.

You can write this parameter as an assembler program label or as register (2) through (12).

ID
Specifies a number that GCS is to put in bytes 3 and 4 of the last instruction in the LINK macro
expansion.

The last instruction in the LINK macro is a NOP instruction. GCS will place the number that you specify
in this parameter into this NOP instruction. You can then use it as a debugging tool. Choose a number
from 0 to 4095 or a symbol.

You can write this parameter as decimal digits or as an assembler program label.

PARAM
Specifies one or more parameter addresses that GCS will pass to the called program.

GCS builds a parameter list containing these addresses in the order which you specify them. Then, the
system passes the address of this parameter list to the program called in register 1. If you omit this
parameter, then register 1 remains unchanged.

You can write these parameters as assembler program labels or as registers (2) through (12).

VL=1
Indicates that the program called expects a variable number of parameters to be passed to it.

You must write this parameter exactly as shown, and you can use it only with the PARAM parameter.
To omit the VL=1 parameter is to say that the program called expects a set number of parameters.

Usage
1. If you enter the LINK macro and the load module in question is not resident in virtual storage, then

GCS will load the module for you. Then, after the module is run, GCS removes it from storage. This is
satisfactory if you intend to pass control to the module only once.

However, loading a module into virtual storage involves a good deal of overhead processing. If you
intend to pass control to the module more than once, it is far more efficient to enter the LOAD macro
yourself just one time. This avoids all the overhead processing involved in having GCS repeatedly load
the module for you.

2. The relationship between the program issuing the LINK macro and the program receiving control is the
same as that established by a BAL assembler language instruction. After the program being called has
completed execution, control is returned to the program that issued the LINK instruction.

3. The LINK macro handles the setting of the addressing mode (24-bit or 31-bit addressing) when
passing control. The called program is given control in the addressing mode indicated in its loadlib
entry or by the CONTENTS macro. On entry to the called program, the high order bit, bit 0 of register
14, is set to indicate the addressing mode of the issuer of the LINK macro. If bit 0 is 0, the issuer is
executing in 24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.
This makes it possible to return control to the issuer in the addressing mode in which it was executing.

4. It is the responsibility of the program issuing the LINK instruction to provide the program receiving
control with the address of an area where the former's registers will be saved. This address must be
placed in register 13 by the program issuing the LINK instruction.

5. It is the responsibility of the program called to place the value of the other program's registers in this
save area after it gets control. And, just before the called program returns control, the values must be

LINK

294 z/VM: 7.2 Group Control System

restored to registers 0 through 14. A return code can be placed in register 15; if not, then register 15
must be restored.

6. You can use the LINK macro to link to a serially reusable program. If the program is being used by
someone else, then you will be placed in the WAIT state until the other user is finished.

7. If the program being called is reentrant, then it is loaded into key 0 storage. This ensures that it is not
accidentally modified or tampered with.

Examples

LINK EP=PROGRAMB,PARAM=(ADDRA,ADDRB,ADDRC)

Pass control to an entry point named PROGRAMB. PROGRAMB expects exactly three parameters be
passed to it. These parameters may be found at addresses ADDRA, ADDRB, and ADDRC, respectively.

LINKIT LINK EPLOC=PROGADDR,PARAM=((2),(3)),VL=1

Pass control to an entry point whose name can be found at the address corresponding to the label
PROGADDR. This program expects a variable number of parameters be passed to it, in this case two. The
address of the first parameter can be found in register 2, and that of the second in register 3. LINKIT is the
label on this instruction.

LINK DE=BLDLNAM,ID=6

Pass control to a certain entry point. The system looks for the name of the entry point in the BLDL
list entry for that entry point. The name field of the list entry corresponds to the address of the label
BLDLNAM. As an aid to debugging, the LINK macro places the value six in bytes 3 and 4 of the final
instruction that it generates.

Input to the Program Receiving Control
Register 0 Unpredictable. May be used by the GCS supervisor.

Register 1-13 Unchanged. Register 1 will contain the address of the parameter list, if it was
specified.

Register 14 The address to which control is to return after the called program completes
execution.

Register 15 The address of the entry point in the program called.

Messages
The LINK macro generates no return codes.

ABEND Code Reason Code Meaning

106 0B An error was found when the supervisor attempted to load the requested
module into virtual storage.

106 0C Insufficient virtual storage was available to load the requested module.

206 Invalid parameter list.

406 The module is marked ONLY LOADABLE.

706 The linkage editor marked the module NOT EXECUTABLE.

806 04 Either the program could not be found or no load libraries were defined by
the GLOBAL command.

806 08 An irrecoverable I/O error occurred when the BLDL control program
attempted to search the directory.

LINK

Chapter 5. GCS Macros 295

ABEND Code Reason Code Meaning

806 10 When GCS attempted to close the load library used by the BLDL macro, it
found that the load library had never been opened.

906 The maximum use count or the maximum load count of the module has
been reached.

A06 Your task is already waiting for this serially reusable module.

List Format

label

LINK ,SF=L
1

EP= symbol

EPLOC=  addr

DE= addr

,ID= number

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list, based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Only the preceding parameters listed are valid in the list format of this
macro.

Added Parameter

SF=L
Specifies the list format of this macro.

Execute Format

label

LINK

,SF=(E,  addr)

,PARAM=( addresses)

,VL=1

,MF=(E,  address)

,SF=(E,  addr),MF=(E,  address)

1

EP= symbol

EPLOC=  addr

DE= addr

,ID= number

Notes:

LINK

296 z/VM: 7.2 Group Control System

1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify. Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

SF=(E,address)
address specifies the address of the parameter list to be used by the macro. This is the parameter list
that was generated through the list format of this macro.

You can add or modify values in this parameter list by specifying them in this macro.

MF=(E,address)
address specifies the address of the remote parameter list to be used by the called program.

You can add or modify values in this parameter list by specifying them in this macro.

LINK

Chapter 5. GCS Macros 297

LOAD

Format

label

LOAD EP= symbol

EPLOC=  address

DE= address

1

,RELATED=  value

,ADDR=  address ,ERRET=  address

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the LOAD macro to bring a load module, containing a specified entry point, into virtual storage. The
load module will be placed above or below the 16MB line depending on the RMODE of the module;
RMODE is specified in the directory entry for the module.

This makes the code at that entry point available for your use.

Parameters

EP
Specifies the name of the entry point contained in the load module to be brought into storage.

The entry point name can be any one of the following:

• The name of the entry point as previously defined through the IDENTIFY macro. See “IDENTIFY” on
page 270.

• The name of the entry point declared in a shared segment CONTENTS macro. See “CONTENTS” on
page 197.

• A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches the following items in the
following order:

1. Your private storage, because the module associated with the entry point name may already be
loaded.

2. Any shared segment directories that may have been created through the CONTENTS macro.
3. The directories of any load libraries that may have been defined for your virtual machine through

the GLOBAL LOADLIB command. For more information on the GLOBAL command, see “GLOBAL” on
page 101.

You must write this parameter as a symbol.

EPLOC
Specifies the address in your program where you have stored the name of the entry point.

LOAD

298 z/VM: 7.2 Group Control System

This name may be up to 8 bytes long. If it is fewer than 8 bytes long, it must be padded on the
right with blanks. Again, the entry point name can refer to one of the three things listed under the EP
parameter.

You can write this parameter as an RX-type address, as register (0), or as register (2) through (12).

DE
Specifies the address of the NAME field within the directory list entry associated with the entry point
in question.

Note: RMODE of the load module must agree with the address of DE. That is, if the user specifies an
address above 16MB, the load module must have an RMODE of ANY.

GCS assumes that you have created this list entry within the directory using the BLDL macro. See
“BLDL” on page 181. When using the BLDL macro for this particular purpose, specify at least 62 bytes
as the length of the list entry for your entry point.

You can write this parameter as an RX-type address, as register (0), or as register (2) through (12).

RELATED
Specifies documentation data that you are using to relate this macro to a DELETE macro.

The value you assign to this parameter has nothing to do with the execution of the macro itself.
It merely relates one macro (LOAD) to a macro that provides an opposite, though related, service
(DELETE).

The format and contents of this parameter are at your discretion and can be any valid coding value.

ADDR
Specifies the address where the module is loaded, this must also be the entry point address. You are
allowed to specify an address in private or common storage.

Only applications in supervisor state may specify an address in common storage. To prevent the
alteration of the loaded area of common storage while it is being referenced, the common lock may
obtained. Storage for the module must be previously allocated in the requester's key on a doubleword
boundary and within the virtual machine size or within common storage boundaries. If the application
is running in an authorized machine in supervisor state, the storage is not checked to see if it is in the
correct key. The key of the storage is checked for all other calls.

The DCB parameter that is used in MVS with the ADDR parameter is not used. The usual search order
for disks finds the module.

In searching for the module to be loaded, this function does not search either private or common
storage. The search for the module consists of searching the globaled loadlibs using the normal
search order of accessed disks.

Modules loaded with the ADDR parameter cannot be deleted and are not listed by QUERY LOADALL.

You can write this parameter as an RX-type address, as register (0), or as register (2) through (12).

ERRET
Specifies the address of a routine to receive control if an error in the load process causes an ABEND.

The error routine receives the ABEND code that describes the problem in register 1. In register 15, it
receives a reason code that explains why the ABEND occurred.

Note: If an invalid macro parameter is given, the error routine does not receive control.

Usage
1. If you specify the DE parameter, then GCS assumes that a list entry has been created for the entry

point in the directory entry list using the BLDL macro.
2. The LOAD macro does not pass control to the entry point in question. Rather, the address of the entry

point is returned to your program in register 0. The LOAD macro sets the high order bit of the entry
point address in register 0 to indicate the module's AMODE, which is obtained from the directory entry

LOAD

Chapter 5. GCS Macros 299

for the module. If the module's AMODE is 31-bit, it sets the indicator to 1. If the module's AMODE is
24-bit, it sets the indicator to 0. If the module's AMODE is ANY, it sets the indicator to correspond to
the caller's AMODE.

3. The entire load module containing the specified entry point is brought into virtual storage. This
happens, however, only if there is no other usable copy of the module available. It remains in your
private storage until no outstanding requests for the module remain.

4. For each LOAD macro that you enter, except if ADDR is specified, you must also enter a corresponding
DELETE macro. See “DELETE” on page 202.

5. If the program called is reentrant, then it is loaded into key 0 storage. This ensures that it is not
accidentally modified or tampered with.

Examples

LOADIT LOAD EP=XYZ,RELATED=DLEETIT
 .
 .
 .
DLEETIT DELETE EP=XYZ,RELATED=LOADIT

Bring the load module containing the entry point XYZ into virtual storage. This LOAD macro is cross-
referenced with a related DELETE macro by use of the RELATED parameters in each.

Return Codes and ABEND Codes
The program issuing the LOAD macro receives the following information in its registers.

Register Contents

0 The address of the entry point specified in the LOAD macro.

1 If the load module is in private storage, then this is the length of the load module in
doublewords. If the load module is in a shared segment, then this length is set to zero.

15 A return code of zero indicating a successful load.

The LOAD macro generates the following ABEND codes. If applicable, a reason code is returned in register
15.

ABEND codes 206, 706, and 906 are associated with a reason code of 04 only when the ERRET parameter
is specified.

ABEND Code Reason Code Meaning

106 0B An error was found when the supervisor attempted to load the
requested module.

106 0C Insufficient virtual storage was available to load the requested
module.

206 04 Invalid parameter list.

706 04 The linkage editor marked the requested load module as NOT
EXECUTABLE.

806 04 Either the program could not be found or no load libraries were
defined by the GLOBAL LOADLIB command.

806 08 An irrecoverable I/O error occurred when the BLDL control program
routine attempted to search the directory.

806 10 When GCS attempted to close the load library used by the BLDL
macro, it found that the load library had never been opened.

LOAD

300 z/VM: 7.2 Group Control System

ABEND Code Reason Code Meaning

906 04 The LOAD COUNT or USE COUNT for the load module have reached
the maximum of 32767.

LOAD

Chapter 5. GCS Macros 301

LOCKWD

Format

label

LOCKWD ACQUIRE

RELEASE

TEST

,LOCK= LOCAL

COMMON

Purpose

Use the LOCKWD macro to acquire or release a lock on common or private storage.

GCS allows several virtual machines in a virtual machine group to share common storage. This creates
competition among the machines for access to the shared storage. Multitasking within a single virtual
machine creates competition among several tasks for access to local resources. The word resources
includes the virtual machine's private storage, I/O devices, tapes, disks, and so forth.

The LOCKWD macro helps you to manage this competition. It allows a virtual machine to acquire
exclusive use of common storage while it accesses, and possibly modifies, the data therein. It allows
one of several tasks within a virtual machine to acquire exclusive use of a private resource. Once the
virtual machine or task is finished, it must then reissue the LOCKWD macro to release its lock so others
can use the resource.

The LOCKWD macro is an authorized GCS function.

Parameters

ACQUIRE
Indicates that the virtual machine or task wants to establish the lock specified in the macro.

RELEASE
Indicates that the virtual machine or task wants to give up the lock it acquired previously. That lock is
specified in the macro.

TEST
Indicates that the virtual machine or task wants to know if it holds a lock on common storage.

This option is valid only with the LOCK=COMMON parameter.

LOCK
Indicates that the description of the lock to be acquired or released follows.
LOCAL

Indicates that a task within a single virtual machine either wants to acquire or release a lock on
the machine's local resources.

COMMON
Indicates that a virtual machine within a virtual machine group wants to acquire or release a lock
on the common storage shared by the entire group.

Usage
1. Before you acquire a lock on common storage, you must first acquire a lock on your own local

resources. This ensures that your task cannot be interrupted by any other task also seeking a lock on
common storage.

2. The supervisor acquires and releases locks for the virtual machine or task.

LOCKWD

302 z/VM: 7.2 Group Control System

3. If a certain virtual machine holds a lock on common storage, then no other virtual machine in the group
may acquire that lock until it is released. A virtual machine that requests a lock on common storage
already held by another machine is placed in the WAIT state.

4. If a task within a virtual machine has obtained a lock on the machine's private storage, then that task
is disabled from interrupts. This means that no other task within the virtual machine can interrupt until
the task holding the lock releases it. In effect, no other task in the machine may run or obtain access to
private storage until this time.

5. There are two ways to release a lock:

• A virtual machine or task explicitly reissues the LOCKWD macro with the RELEASE parameter and
lock properly specified.

• A virtual machine or task that is holding a lock ends.
6. The LOCKWD macro can help manage the natural competition for storage access among virtual

machines and tasks.
7. Often an authorized program will be called to perform work for an unauthorized program. Usually the

authorized program runs in a different key from the unauthorized program. In such cases, the LOCKWD
macro is required before the authorized program issues the VALIDATE macro. See “VALIDATE” on page
362.

 NOT-PI
8. Some virtual machines and tasks run in supervisor state. Those that do are able to inspect and

modify the fullword in storage that contains the lock. Under no circumstances should this fullword be
modified! This privilege is strictly reserved to the GCS supervisor.

 NOT-PI end
9. If you have requested a lock on common storage, you must be careful to release that lock when you

are through with your task. Failure to release any lock can cause unnecessary and prolonged delays for
other virtual machines in the group that are waiting for access to common storage.

Examples

LOCKWD ACQUIRE,LOCK=COMMON

The task requests a lock on common storage. Presumably, the task has already acquired a lock on its own
local resources.

LOCKWD TEST,LOCK=COMMON

The task wants to know if it holds the lock on common storage.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

General Return Codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 The lock was successfully acquired or released.

X'04' 4 For an ACQUIRE request, this return code means that the virtual
machine or task making the request already holds the lock specified.
For a RELEASE request, the virtual machine or task making the
request does not hold the lock specified.

For the TEST function:

LOCKWD

Chapter 5. GCS Macros 303

Hex
Code

Decimal
Code

Meaning

X'00' 0 The lock is free.

X'04' 4 Your machine and task hold the lock on common storage.

X'08' 8 Another machine and task hold the lock on common storage.

ABEND Code Meaning

0600 Your task does not hold a lock on its local resources. Your task must acquire a lock on
its local resources before it tries to acquire a lock on common storage.

LOCKWD

304 z/VM: 7.2 Group Control System

MACHEXIT
The MACHEXIT macro is available in standard, list, list address and execute formats.

Standard Format

See also “List Format” on page 308, “List Address Format” on page 308 and “Execute Format” on page
309.

label

MACHEXIT ,SET,EP=  address

,UWORD=  address

,CLR

1

,NAME= name

( reg) ,ERROR=  addr

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the MACHEXIT macro to declare or cancel a machine termination exit routine for a virtual machine
group.

Often it is useful to declare a machine termination exit routine for your entire virtual machine group. This
routine will receive control when one of the virtual machines in the group is reset.

Note: A virtual machine is reset under one of the following conditions: LOGOFF, IPL, when certain
machine checks occur, and when certain authorized commands are issued, namely SYSTEM RESET,
SYSTEM CLEAR, DEFINE STORAGE, and SET MACHINE. A virtual machine is also reset when its GCS
supervisor ends abnormally or when it issues the IUCV SEVER or IUCV RETRIEVE BUFFER instruction. It
may also be forced to reset by the CP operator.

To illustrate, let us say that a virtual machine group is processing a certain file. The authorized machine
that is managing the effort needs to know if another member of the group resets so it can make certain
adjustments in the processing. A machine termination exit routine may be provided to analyze the
situation that caused a machine to reset. The exit routine may then make the necessary adjustments or it
may communicate with the managing authorized machine so that the latter can make the adjustments.

A machine termination exit routine can help your virtual machine group manage its common storage. A
machine termination exit routine can also perform CP SENDs to a machine, if it is running disconnected
and if the user performing the SENDs is defined as the secondary user of the target machine.

The AMODE of the machine exit will be taken from the correspondent entry in the CONTENTS macro. See
“CONTENTS” on page 197.

Use the MACHEXIT macro to declare or cancel a machine termination exit routine for an entire virtual
machine group.

The MACHEXIT macro is an authorized GCS function.

MACHEXIT

Chapter 5. GCS Macros 305

Parameters
SET

Indicates that you are declaring a machine termination exit routine for your virtual machine group.
CLR

Indicates that you are canceling a machine termination exit routine that was previously declared for
your virtual machine group.

Any authorized virtual machine in the group can cancel such a routine. It is not necessary that the
routine be canceled by the same machine that declared it.

EP
Specifies the address of the machine termination exit routine that you are declaring.

The routine in question must be resident in a shared segment. That is, a routine whose entry
point is defined in a shared segment directory that was created through the CONTENTS macro. See
“CONTENTS” on page 197.

You can write this parameter as an assembler program label or as register (2) through (12).

UWORD
Specifies a fullword of data that you want passed to the machine termination exit routine, if it ever
gains control.

You can use this parameter to pass any information you please.

If you write this parameter as an assembler program label, then the address associated with that
label is passed to the exit routine. If you write it as register (2) through (12), then the contents of the
register are passed to the routine.

NAME
Specifies a one to eight-character name that identifies the machine termination exit routine to the
MACHEXIT macro.

This name must not be confused with the routine's module name, program name, or entry point name.
The name referred to by this parameter is simply a character string used to identify the routine to the
MACHEXIT macro. Outside the MACHEXIT macro environment, this name is meaningless.

Not every authorized machine in the group knows the routine's address. This option provides a way for
any authorized machine to refer to the exit.

Note that the name for the routine is declared by the authorized machine that declares the exit
routine. That machine must supply both the name and the address of the routine declared, thereby
associating the name with the address.

You can write this parameter as the name itself or as register (2) through (12). If you store it as a
name less than eight characters long, and specify it using a register, then it must be padded on the
right with blanks. A name consisting of more than eight characters would be truncated. GCS does not
allow a name consisting of all blanks. If you write it as a register, then the register must contain the
address of the name.

ERROR
Specifies the address of an error routine that will receive control if an error occurs in the MACHEXIT
macro.

If you omit this parameter and an error occurs, then control will return to the instruction following the
MACHEXIT macro, just as it would were there no error.

You can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. Only an authorized virtual machine can issue the MACHEXIT macro.

MACHEXIT

306 z/VM: 7.2 Group Control System

2. A machine termination exit routine always runs in the recovery machine designated for the virtual
machine group. Moreover, it runs in the same key as the virtual machine that declared it, and it always
runs in supervisor state.

3. An authorized member of a virtual machine group can declare more than one machine termination exit
routine for the group. Each will run in the event one of the machines in the group resets. However, the
routines will not necessarily run in the order which they were declared.

4. A machine termination exit routine will be executed normally in the AMODE specified in the
correspondent CONTENTS entry. However, if the AMODE parameter in the CONTENTS macro is
DEFINED, then the address of the routine in the MACHEXIT macro will be considered a 32 bit address
with the AMODE being the first bit.

5. A machine termination exit routine is always associated with the task that declared it. When a task
terminates, any machine termination exit routine it may have declared is canceled.

6. In a typical scenario, a machine termination exit routine may be scheduled for execution when one
virtual machine resets and later be canceled by another virtual machine. However, the routine would
still run because it has already been scheduled. You should take this into account when designing your
over-all processing procedure.

7. No machine termination exit routine can receive control through the AUTHCALL macro. Such a routine
receives control only if it is properly declared through the MACHEXIT macro and if some virtual
machine within the group resets.

8. When the machine termination exit routine receives control, its registers contain the following.

Register Contents

0 Bits 0 - 15: The machine ID of the virtual machine that was reset.

Bits 16 - 31: Reserved.

1 The UWORD parameter specified in the MACHEXIT macro that declared the routine.

13 The address of a 72-byte save area.

14 The return address.

15 The address of the entry point in the exit routine.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 The specified machine termination exit routine has already been
declared.

X'08' 8 The specified machine termination exit routine is not in common
storage.

X'18' 24 Invalid parameter list.

X'2C' 44 The name of the machine termination exit routine that you want to
cancel could not be found.

X'30' 48 The CONTENTS entry has AMODE=DEFINED or AMODE=CALLER, the
caller is in AMODE 24 and the exit routine address is above the 16MB
line.

MACHEXIT

Chapter 5. GCS Macros 307

List Format

label

MACHEXIT MF=L

,SET

,EP= address ,UWORD=  address

,CLR

1

,NAME=  name

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Only the preceding parameters listed are valid in the list format of this
macro.

Added Parameter

MF=L
Specifies the list format of this macro.

List Address Format

label

MACHEXIT MF=(L, address

, label

)

,SET

,EP= addr ,UWORD

,CLR

1

,NAME= name

( reg)

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Address Format)
This format of the macro does not produce any executable code that invokes the function. However, it
does produce executable code that moves the parameter values that you specify into a certain parameter
list. If you enter the macro using this format, then you must do so before any related invocation of the
macro using the execute format. Only the preceding parameters listed are valid in the list address format
of this macro.

MACHEXIT

308 z/VM: 7.2 Group Control System

Added Parameter (List Address Format)

MF=(L,address,label)
address specifies the address of the parameter list into which you want the parameter values you
mention placed. This address can be within your program or somewhere in free storage.

label is optional and is a user-specified label, indicating that you want to determine the length of the
parameter list. The macro expansion equates the label you specify with the length of the parameter
list.

Execute Format

label

MACHEXIT MF=(E, address)

,SET

,EP= addr ,UWORD

,CLR

1

,NAME= name

( reg)

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

MACHEXIT

Chapter 5. GCS Macros 309

PGLOCK

Format

label

PGLOCK ( reg)

Purpose

Use the PGLOCK macro to lock a certain page of virtual storage into real storage.

If your program performs real I/O operations, then the pages of storage used for these operations must
be locked into real storage.

The PGLOCK macro locks a specified page of your virtual storage into real storage. This makes the page
ineligible for page-out.

The PGLOCK macro is an authorized GCS function.

Parameters

reg
Specifies the register that contains the address of the virtual page to be locked into real storage.

You can write this parameter as register (0) or as register (2) through (12).

Usage
1. The task that issues the PGLOCK macro must be running in supervisor state. Also, the DIAG98

parameter must be specified in the OPTION control statement in the virtual machine's directory entry.
2. Use of the PGLOCK macro can enhance your program's efficiency by making the CP virtual-to-real

translation step unnecessary. Also, it rids the system of the need to repeatedly lock and unlock pages
of your storage every time you perform an input or output operation.

3. The AMODE of the program issuing the PGLOCK must be the same as the AMODE of the program
issuing the PGULOCK. See “PGULOCK” on page 312.

4. In AMODE 24 special consideration needs to be given to the number of pages locked. In this mode
pages are obtained from a special area situated below the 16MB line, thus the amount available is
limited. (See Usage Notes for the Diagnose Code X'98' in z/VM: CP Programming Services.)

5. The PGLOCK macro returns the real address of the locked page in register 1.
6. If the address you specify for the page is not on a page boundary, then the page that contains that

address will be locked into real storage.
7. There are two ways for a page locked by the PGLOCK macro to be unlocked:

• The task that issued the PGLOCK macro ends
• A task explicitly issues the PGULOCK macro, correctly specifying the virtual address of the page to be

unlocked.
8. A supervisor state program often must build a channel control program in real storage. When it does,

it should use the PGLOCK macro to lock into real storage the page in where it is building the channel
control program. See “GENIO” on page 247.

9. If you engage in real input/output activities, you must observe certain restrictions.

PGLOCK

310 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2

First, the storage size declared for your virtual machine must be large enough to accept the page you
wish to lock.

Second, the storage size declared for your virtual machine group's recovery machine must be at least
as large as that declared for your machine. This is to allow for the possibility that the recovery machine
may be called upon to process exit routines you specified through the GENIO macro. See “GENIO” on
page 247.

Return Codes and ABEND Codes
The PGLOCK macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 Reserved.

X'08' 8 The virtual address of the page in question is invalid.

X'0C' 12 GCS is unable to lock the specified page. No real page frames are
available.

X'10' 16 The specified page is already locked.

X'14' 20 The virtual machine issuing this macro is not authorized to perform
any real I/O operations.

PGLOCK

Chapter 5. GCS Macros 311

PGULOCK

Format

label

PGULOCK ( reg)

Purpose

Use the PGULOCK macro to unlock a certain page of virtual storage that was locked in real storage.

If you need to lock a certain page of virtual storage into real storage, you should take care to release it
when it is no longer needed. Otherwise you tie up an important resource.

The PGULOCK macro unlocks a certain page of virtual storage that was previously locked in real storage
using the PGLOCK macro. Unlocking such a page makes it eligible for page-out once again.

The AMODE of the program issuing the PGULOCK macro needs to be the same as the AMODE of the
program where the corresponding PGLOCK was issued.

The PGULOCK macro is an authorized GCS function.

Parameters

reg
Specifies the register that contains the address of the virtual page to be unlocked from real storage.

You can write this parameter as register (1) through (12).

Usage
1. The task that issues the PGULOCK macro must be running in supervisor state. Also, the DIAG98

parameter must be in the OPTION control statement in the virtual machine's directory entry.
2. If a PGULOCK macro is not issued for a page that is locked, then the page is automatically unlocked

when the task that locked it ends.
3. A locked page does not necessarily have to be unlocked by the same task that locked it.

Return Codes and ABEND Codes
The PGULOCK macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 Reserved.

X'08' 8 The virtual address of the page in question is invalid.

X'0C' 12 The specified page is not locked.

PGULOCK

312 z/VM: 7.2 Group Control System

Hex
Code

Decimal
Code

Meaning

X'10' 16 The virtual machine issuing this macro is not authorized to perform
any real I/O operations.

PGULOCK

Chapter 5. GCS Macros 313

POST

Format

label

POST ecb_address

,0

, completion_code ,RELATED=  value

Purpose

Use the POST macro to signal a task that the event it is waiting for has taken place.

A task that has issued the WAIT macro cannot continue until a certain event has taken place. See “WAIT”
on page 365. It is the responsibility of the program effecting this event to inform the waiting task that the
event has occurred.

Each such event is associated with an event control block (ECB). This ECB defines the event that is to
occur and indicates to the waiting task whether it has occurred.

Use the POST macro to inform a task that the event it is waiting for has taken place.

Parameters

ecb_address
Specifies the address of the event control block associated with the event that has occurred.

You can write this parameter as an RX-type address or as register (1) through (12).

completion_code
Specifies the code describing the manner which the event in question took place.

These codes have significance only to the programmers at your installation (and to the programs
they write). Each installation must define the meaning of some or all of these completion codes and
document them.

A completion code may be any number from 0 to 2³⁰-1. If you omit this parameter, a completion code
of 0 is assumed, by default. The completion code may be specified as a constant or as register (0)
through (15).

RELATED
Specifies documentation data that you are using to relate this macro to a WAIT macro. The value you
assign to this parameter has nothing to do with the execution of the macro itself. It merely relates one
macro (POST) to another instruction that provides an opposite, though related, service (WAIT).

The format and content of this parameter are at your discretion, and can be any valid coding values.

Usage
1. The task issuing the WAIT macro and the task issuing the POST instruction provide storage for each

event control block. Each ECB is a fullword on a fullword boundary.
2. Bit 0 of the ECB is called the WAIT bit. If this bit is set to 1, then it means that some task is waiting for

the event associated with that ECB to occur.
3. Bit 1 of the ECB is called the POST bit. The POST macro sets the POST bit of the appropriate ECB to 1

and then resets the WAIT bit to 0. These actions signal the waiting task that the event in question has
taken place.

POST

314 z/VM: 7.2 Group Control System

4. The remaining 30 bits of the ECB hold the completion code, after the ECB is posted.
5. Tasks are not always placed in the WAIT state after having issued the WAIT macro. Because the task is

immediately satisfied, there is no reason for it to go into the WAIT state.
6. It is possible for a program to perform a branch entry into the POST macro code.

Those programmers who find it necessary to perform such a branch entry must be disabled for
interrupts and be running in supervisor state and in key 0. They must do the following before taking
this branch:

a. Provide a save area in virtual storage that is 224 bytes long. In the first word of this save area
you must store the number 152. In the third word of this save area you must store the sum of the
address of the save area plus 72.

b. You must be certain that the registers contain the following information:

Register Contents

0 The COMPLETION CODE in the low-order 30 bits.

1 The address of the ECB in question.

13 The address of the 224-byte save area.

14 The return address within your program.

15 The address of the entry point in the POST macro to which you are branching.

c. Because the point to which you will branch will be in low storage, use the FLS macro to generate the
FLS DSECT. See “FLS” on page 231. Include the

USING FLS,0

instruction in your program, and branch to the address stored at the address associated with the
label FLSPOST.

7. Be certain that none of your tasks change any of the bits in an ECB for which a WAIT instruction has
been issued. Only after the POST bit has been set to 1 and its contents analyzed is it safe to alter an
ECB.

Examples

DONE POST (3),657

A certain event has taken place. The ECB associated with this event can be found at the address in
register 3. The POST bit at this address is to be set to 1, and the WAIT bit reset to 0. A completion code of
657 is also placed in the ECB. DONE is the label on this instruction.

POST (8)

This means the same as in the last example, with two exceptions. The address of the ECB is in register 8,
and the completion code is 0, by default.

Return Codes and ABEND Codes
Note that these return codes are possible only when a branch entry to the POST macro is involved.

Hex
Code

Decimal
Code

Meaning

X'04' 4 The address of an ECB was invalid.

X'08' 8 The state block that is waiting for the ECB to be posted is not in the
virtual machine's task block/state block structure.

POST

Chapter 5. GCS Macros 315

Note that these ABEND codes are possible only during a usual SVC call from the POST macro.

ABEND Code Meaning

0F8 The GCS supervisor was called in access register mode.

102 The ECB in question is not addressable by the program issuing the POST macro.

202 The state block associated with the ECB to be posted is not in the task block/state
block structure of the task waiting for the event.

POST

316 z/VM: 7.2 Group Control System

RDJFCB

Format

label

RDJFCB (

,

 dcb_address ,
INPUT

(INPUT)

OUTPUT

(OUTPUT)

UPDAT

(UPDAT)

)

Purpose

The RDJFCB macro causes information about a file defined by the FILEDEF command to be moved into
the user's area as identified through the EXLST parameter of the DCB macro for each data control block
specified.

Parameters

dcb_address
is the address of the data control block associated with the file for which the JFCB is to be read. The
parameters INPUT, OUTPUT, and UPDAT do not affect RDJFCB processing.

INPUT
Indicates that your file is to be treated as an input file. Unless otherwise specified, this parameter
applies by default.

OUTPUT
Indicates that your file is to be treated as an output file.

UPDAT
Indicates that you intend to update an already existing file.

Usage
1. An exit list address must be provided in each DCB specified by an RDJFCB macro.
2. Each exit list must contain an active entry that specifies the virtual storage address of the area into

which the returned information is to be placed.
3. The exit list entry of 4 bytes must contain a X'07' in byte 0 indicating the 3 byte address, which follows

is the address of the user buffer where the information will be returned.
4. The low-order 3 bytes contains the address of a 176 byte area to receive the returned information.
5. The area must be located within the user's storage, and must be located below the 16 MB line.
6. The virtual storage area into which the returned information is read must be at least 176 bytes long.
7. Each exit list entry must be 4 bytes long.
8. The system recognizes only the first occurrence of an X'07' exit list entry code.
9. The end of the exit list is indicated by setting the high order bit in the entry code to 1.

RDJFCB

Chapter 5. GCS Macros 317

Return Codes and ABEND Codes
Register 15 contains a return code from the RDJFCB macro, which is always 0.

Several conditions will cause the RDJFCB function to terminate abnormally with a X'240' ABEND. The
reason codes and their meanings are as follows:

Hex
Code

Decimal
Code

Meaning

X'04' 4 Parameter list or DCB address is invalid.

X'08' 8 No EXLST address was found in the DCB.

X'0C' 12 No address exit was specified in the DCB exit list.

X'10' 16 The return information buffer is not within the user's storage.

Only fields provided by the RDJFCB function are programming interfaces.

• Some or all of the following fields may be filled in depending on characteristics of the data set at the
time the RDJFCB is issued.

Table 16. Information returned by RDJFCB for BSAM/QSAM

Dec (Hex) Description Length

0 (0) Data set name, left justified, padded with blanks.

File name 8 bytes
File type 8 bytes
File mode 2 bytes

44X

87 (57) Indicator byte

X'C0' - Data set does not exist
X'80' - DISP MOD specified on FILEDEF
X'40' - Data set exists

1X

99 (63) Data organization byte

X'00' - Not a VSAM data set.

1X

104 (68) Logical record length 2X

Table 17. Information returned by RDJFCB for VSAM

Dec (Hex) Description Length

87 (57) Indicator byte

X'C0' - Always set to new for VSAM.

1X

RDJFCB

318 z/VM: 7.2 Group Control System

Table 17. Information returned by RDJFCB for VSAM (continued)

Dec (Hex) Description Length

99 (63) Data organization byte.

X'08' - Indicates VSAM data set.

1X

• Usage Note: A DCB must always be used with RDJFCB. If the DDNAME in the DCB is a VSAM data set
and a DLBL has been issued, then the information returned will be as described under VSAM.

RDJFCB

Chapter 5. GCS Macros 319

RESSTOR

Format

RESSTOR START

NAME= userid

END

Purpose

Use the RESSTOR macro to generate a list of the virtual machines in the GCS group that are to have
storage reserved at IPL time for both the BAM and VSAM segments specified on the CONFIG macro.

Parameters

START
Indicates that this RESSTOR macro marks the beginning of the VSAM user block.

The RESSTOR user block must begin with a RESSTOR macro with this parameter specified.

NAME
Specifies the user ID of the virtual machine that is to have storage reserved for the VSAM and BAM
segments at IPL time.

END
Indicates that this RESSTOR instruction marks the end of the RESSTOR user block.

The RESSTOR user block must end with a RESSTOR macro with this parameter specified.

Usage
1. Most installations will not explicitly use the RESSTOR macro to build the GROUP CONFIGURATION

FILE. Those equipped with at least one full-screen display terminal can take advantage of GCS build
panels. These data entry panels, called by the GROUP command, eliminate the need to build the file
by explicitly coding these macros. When you start the GROUP command without a full-screen terminal,
your file will have to be built using the editor and coding the macros manually.

2. The GROUP CONFIGURATION FILE adopts the system name as its file name. This name corresponds
exactly with that specified in the SYSNAME parameter of the CONFIG instruction. The file type of the
GROUP CONFIGURATION FILE is always GROUP.

3. Remember that in using the RESSTOR macros you are creating blocks of information. Thus,
all occurrences of the RESSTOR instruction must be physically grouped together in the GROUP
CONFIGURATION FILE.

Examples

This example illustrates the storage reserved user block of a GROUP CONFIGURATION FILE.

.

.

.
RESSTOR START
RESSTOR NAME=USERID1
RESSTOR NAME=USERID2
RESSTOR NAME=USERID3
RESSTOR NAME=USERID4
RESSTOR END

RESSTOR

320 z/VM: 7.2 Group Control System

.

.

.

The block begins with the RESSTOR instruction with the START parameter specified. Four user IDs are
then specified, indicating that these virtual machines are to have storage automatically reserved for the
VSAM and BAM segments when they IPL. The storage reserved block is then concluded with an RESSTOR
instruction with the END parameter specified.

Return Codes and ABEND Codes
The RESSTOR macro generates no return codes and no ABEND codes.

RESSTOR

Chapter 5. GCS Macros 321

RETURN

Format

label

RETURN
1

( reg1
, reg2

) ,T

,RC= number

( reg)

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the RETURN macro to return control from one program to the program that called it.

The RETURN macro can also restore the contents of certain registers belonging to the program to which
control is returning. It can also supply the program with a return code and flag the save area where the
values of its registers were saved.

Parameters

(reg1)
(reg1,reg2)

Specifies the single register, (reg1), or the range of registers, (reg1,reg2), whose values are to be
restored from the save area.

The RETURN macro uses the same conventions for restoring registers that the SAVE macro uses. They
are restored in the following general order: 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

To specify a range of registers to be restored, substitute the first register in the range for the reg1
parameter. Then, substitute the last register in the range for the reg2 parameter. Obviously, a subset
of the preceding general order is permissible, but remember the general order when specifying a
range of registers.

Never specify register 13 as a register whose value is to be restored.

If you omit this parameter, no registers are restored.

T
Indicates that you want the save area, from which the register values are restored, to be flagged.

The flag indicates that the program issuing the RETURN instruction (which save the values) has
returned control to the program that called it.

The flag itself is a byte of all ones placed in the high-order byte of word 4 in the save area.

RC
Specifies the return code to be passed to the program to which control is being returned.

The value of this return code has meaning only to the applications involved.

RETURN

322 z/VM: 7.2 Group Control System

You can write this parameter as decimal digits, as an EQU symbol, or as register (15). If you write it
as one or more digits or as a symbol, then the return code is right-justified in register 15 just before
control is returned. If you write it as register (15), then the macro assumes that the program returning
control has placed the return code in register 15. Register 15 will be left alone during the restoration
of the other registers.

If you omit this parameter, the contents of register 15 will be determined by the reg1 or reg1,reg2
parameter.

Usage
If registers are to be restored or if the save area is to be flagged, then register 13 must contain the
address of the save area.

Examples

GOBACK RETURN (14,7),T,RC=40

The program requests that control be returned to the program that called it. Registers 14, 15, and
registers 0 through 7 are to be restored. A flag byte is to be placed in the save area, and a return code of
40 is to be placed in register 15. Note that the return code replaces the value that was just restored to
register 15. GOBACK is the label on this instruction.

Return Codes and ABEND Codes
The RETURN macro generates no return codes and no ABEND codes.

RETURN

Chapter 5. GCS Macros 323

SAVE

Format

label

SAVE

( reg1
, reg2

) ,T , id_name

, *

Purpose

Use the SAVE macro in a called program to save the values of certain registers belonging to the program
that called it.

By convention, it is the responsibility of any program called by another to save the values in the registers
when it receives control. It is the responsibility of the calling program to provide storage where the values
in its registers can be saved. The calling program must also place the address of this save area in register
13 before it calls the other program.

Note that the SAVE macro uses the standard conventions for saving registers. That is, they are saved in
an area composed of 18 contiguous fullwords, starting at the fourth fullword. And, they are saved in the
following general order: 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Register 13 is never saved.

Parameters

(reg1)
(reg1,reg2)

Specifies the single register (reg1) or range of registers (reg1,reg2) whose values are stored in the
save area.

To specify a range of registers, consider the general order which registers are saved. Substitute the
first register number in the range for the reg1 parameter. And, substitute the last register in the range
for the reg2 parameter. Obviously, a subset of this order is permissible but remember the general
order when specifying a range of registers.

Never specify register 13 as a register whose value is to be saved.

You must write the register or range of registers as decimal digits.

T
Indicates that regardless of what other registers are saved or not saved, registers 14 and 15 are
saved.

Use this parameter if you want to save the values in registers 14 and 15 and those in another subset
of registers, of which 14 and 15 are not a part of. The other subset can be specified by the (reg1) or
(reg1,reg2) parameter, while registers 14 and 15 are specified by the T parameter.

The T parameter can also be specified alone, indicating that only registers 14 and 15 are to be saved.

id_name
Specifies an identifier or label that is to be associated with the SAVE macro.

You can use this identifier as a debugging aid when you enter several SAVE macros. You can assign
this parameter a unique, mnemonic value that will be inserted in any dump you might request. This
lets you associate a section within the dump with a specific SAVE macro, and thereby with a specific
save area.

SAVE

324 z/VM: 7.2 Group Control System

A byte containing the length of the ID NAME appears in the dump 4 bytes after the address in register
15. The ID NAME itself begins 5 bytes after this address.

*
If you write the ID NAME parameter as an asterisk (*), then the label on the SAVE instruction itself
will be assigned to it. If you omit this parameter entirely, then the label on the appropriate CSECT
instruction will be assigned to the ID NAME parameter. If no label appears on the CSECT instruction,
then this parameter is ignored.

Usage
The SAVE macro must be the first instruction at the entry point of any called program. This is because
register 15 must contain the address of the macro, which it might not if the SAVE instruction was
issued later.

Examples

SAVE (14,12),,*

The program requests that the values in registers 14, 15, and registers 0 through 12 be saved. Because
an asterisk is specified and no label appears on this instruction, the label on the appropriate CSECT
instruction is assigned to the ID NAME parameter.

SAVE (5,7),T

The program requests that the values in registers 5, 6, and 7 be saved. Because registers 14 and 15 are
not within this range and because the program wants them saved, the T parameter is also specified.

Return Codes and ABEND Codes
The SAVE macro generates no return codes and no ABEND codes.

SAVE

Chapter 5. GCS Macros 325

SCHEDEX

Format

label

SCHEDEX ID= id ,EXIT=  exit
1

,UWORD=  addr

,BRANCH=NO

,BRANCH=YES

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the SCHEDEX macro to schedule an exit to a specific task.

One feature of GCS is that it permits virtual machines to work together in virtual machine groups. A virtual
machine group consists of several virtual machines sharing common storage and, usually, a common
purpose. Within each virtual machine more than one task can be running simultaneously.

For a variety of reasons, one task may decide that it needs another task to perform work for it. The
SCHEDEX macro will schedule an exit to that task. This means that the next time the second task is
dispatched the exit receives control so it can perform the needed work.

The SCHEDEX macro is an authorized GCS function.

Parameters

ID
Specifies the identifier of the virtual machine that contains the task requesting the exit, and the
identifier of the task to which an exit is to be scheduled.

This is a fullword parameter containing the virtual machine identification in the high-order halfword
and the task identification in the low-order halfword.

If the task ID is zero, then the task identification will be the SYSTEM TASK, by default.

You can write this parameter as an assembler program label, as register (0), or as register (2) through
(12). If you write it as a label, then the machine and task identifiers must be at the address associated
with that label. If you write it as a register, then the machine and task identifiers must be in that
register. In either case, GCS expects that they be in the proper format.

EXIT
Specifies the address of the exit routine to be scheduled.

This routine must be in a shared segment that was linked to the virtual machine at GCS initialization
time. After the task is dispatched, it receives control.

You can write this address as an assembler program label, as register (2) through (12), or as register
(15).

UWORD
Specifies an optional fullword parameter that can be passed to the exit routine in question.

SCHEDEX

326 z/VM: 7.2 Group Control System

You can use this parameter to pass any information you wish.

You can write this parameter as an assembler program label or as register (1) through (12). If you
write it as an assembler program label, then the address of the label is passed to the exit routine. If
you write it as a register number, then the contents of that register will be passed to the exit routine. If
this parameter is not specified, then it is passed with a value of zero.

BRANCH
Specifies whether your task should branch directly to the SCHEDEX service routine.
YES

Specifies that your task should branch directly to the SCHEDEX service routine.
NO

Specifies that you want to use the customary SVC interface. This option is the default.

Usage
1. It is important to realize that the SCHEDEX macro does not turn control over to any task. It merely

schedules an exit to the appropriate task, which receives control only when it has been dispatched.
2. The SCHEDEX macro is not limited to one virtual machine. Note that the purpose of the ID parameter

is not only to identify the task in question but also the virtual machine which it resides. For example,
TASK X, residing in VIRTUAL MACHINE A, can schedule an exit to TASK Y, which resides in VIRTUAL
MACHINE B.

3. The task issuing the SCHEDEX macro resumes usual execution when it receives the return code
from the macro. It does not wait for the scheduled exit routine to run but proceeds to its own next
executable statement.

4. Any exit routine scheduled through the SCHEDEX macro runs in key 0.
5. A zero return code from the SCHEDEX macro does not necessarily mean that the exit has been

scheduled. The request has been sent to CP. If the virtual machine where the exit resides is part of the
group, then the exit will be scheduled.

6. If you specify BRANCH=YES, your task must be in supervisor state, key 0, and disabled for interrupts.

An interrupt handler cannot use the branch interface to the SCHEDEX service routine.

Register 2 contains the address of the exit routine entry point. When BRANCH=YES, the macro
destroys the previous contents of register 2. You may want to save and, later, restore the contents
of register 2.

Before the branch, register 13 must contain the address of a 72-byte register save area.

Register 15 contains the address of the SCHEDEX entry point.

Because branching directly to the SCHEDEX service routine avoids the supervisor call, no trace entry
for the macro is generated.

7. The AMODE of the exit will be taken from the correspondent entry of the CONTENTS macro. See
“CONTENTS” on page 197.

Examples

 SCHEDEX ID=IDENT,EXIT=(3)
 .
 .
 .
IDENT DC H'2'
 DC H'4'

Schedule an exit on the virtual machine, whose machine ID is 2, and on a task therein, whose task ID is 4.
The address of the routine to receive control is in register 3.

The program to which an exit is scheduled receives the following information in its registers.

SCHEDEX

Chapter 5. GCS Macros 327

Register Contents

1 The user word (UWORD) specified in the SCHEDEX macro.

13 The address of the register save area.

14 The address to which control is to return after the exit program completes execution.

15 The address of the entry point in the exit program.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Your request has been sent to CP.

X'04' 4 The virtual machine identifier that you specified was invalid.

X'08' 8 The address of the exit routine you specified is not in a shared
segment.

X'0C' 12 The task identifier is invalid. This return code is significant only if the
exit is scheduled to run on your virtual machine.

X'30' 48 The CONTENTS entry has AMODE=DEFINED or AMODE=CALLER, the
caller is in AMODE 24 and the exit routine address is above the 16MB
line.

ABEND Code Reason Code Meaning

0F8 16 The GCS supervisor was called in access register mode.

FCB 0A01 Insufficient storage was available to satisfy a GETMAIN instruction that
the system issued.

SCHEDEX

328 z/VM: 7.2 Group Control System

SDUMP
The SDUMP macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 331 and “Execute Format” on page 331.

label

SDUMP

HDR=' dump_descriptor '

HDRAD= dump_descriptor_address

,STORAGE=( start , end)

,LIST=  list_address

Purpose

Use the SDUMP macro to request a recording of the contents of your virtual machine’s storage. A dump
is a recording of the contents of a virtual machine's storage at a given moment. Use the SDUMP macro to
produce a dump of part or all of your virtual machine's storage.

Parameters

HDR
Specifies a string of characters that you can use to describe the dump. The dump description will be
displayed by the DVF DUMPSCAN 'DUMPID' subcommand.

This character string is placed in the dump to help you to identify it quickly. This string can contain up
to 100 characters and must be surrounded by single quotation marks.

HDRAD
Specifies the address of a string of characters you stored previously that describe the dump. The
dump description will be displayed by the DVF DUMPSCAN 'DUMPID' subcommand.

This character string is placed in the dump to help you to identify it quickly. This string can contain up
to 100 characters. The first byte at this address must contain the hexadecimal length of the character
string and no single quotation marks are required.

You can write this parameter as an assembler program label or as register (2) through (12).

STORAGE
Specifies the range of virtual storage addresses to be recorded in the dump.

Note: From the format illustration each pair of addresses must be separated by a comma and
enclosed in parentheses. You can specify more than one range of addresses if you wish. Just be
certain that each starting address is less than its corresponding ending address.

LIST
Specifies the address of a list that contains one or more pairs of addresses. Each pair of addresses in
the list specifies a range of virtual storage addresses to be included in the dump.

This list can contain up to 2049 different pairs of addresses, which can overlap each other. If they do,
then CP will resolve two or more overlapping pairs into one pair.

SDUMP

Chapter 5. GCS Macros 329

The high-order bit of the fullword containing the last ending address in the list must be set to 1 to
indicate the end of the list. All other high-order bits in the list must be reset to 0.

You can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. If both the STORAGE and LIST parameters are omitted from the SDUMP macro, then GCS assumes

that all virtual storage in the machine is recorded in the dump. This includes any discontiguous saved
segments the virtual machine may be using.

2. It is important to understand the rules governing who receives the spool file containing the dump and
what that file contains.

For security reasons, not every user is authorized to receive dumps containing fetch-protected data.
Those who are authorized are listed among the authorized users at GCS build time. If a common dump
receiver was specified at GCS build time, then that individual receives the dump. Otherwise the issuer
of the SDUMP macro receives the dump.

Bear in mind that if the person receiving the dump is not authorized to handle fetch-protected data,
that data will be omitted from the dump. However, all requested non-fetch-protected data and private
key 14 storage will be included in the dump.

3. No dump will be produced if dumps are suppressed through the SET DUMP OFF command.

Examples

DUMPALL SDUMP HDR='ALL MY STORAGE'

A dump of the entire virtual machine's storage is requested. The character string ALL MY STORAGE is
placed in the dump for ready identification. The dump is sent to the member of the virtual machine group
authorized to receive it. If no one is so authorized, then the dump is sent to the issuer of the macro.
Fetch-protected data will be included in the dump only if the recipient is authorized to handle such data.
DUMPALL is the label on this instruction.

DUMPALL SDUMP HDR='THREE STORAGE AREAS',STORAGE=(A,B,C,D,E,F)

A dump of certain portions of virtual storage is requested. Each pair of labels identifies the start and end
addresses for each storage area to be dumped. This example shows 3 storage areas being requested, but
you can request from 1 to 2049 different pair of addresses.

SDUMP HDRAD=(5),LIST=RANGES

Another dump of certain portions of virtual storage is requested. The address of a string of characters
describing the dump can be found at the address in register 5. The first byte of register 5 must contain
the length of the character string, in hexadecimal. This character string is to be placed in the dump for
ready identification. A list containing at least one pair of addresses can be found at the address associated
with the label RANGES. Each pair of addresses in the list specifies a range of virtual storage addresses to
be included in the dump. Presumably the high-order bit of the last ending address has been set to 1 to
indicate the end of the list.

Return Codes and ABEND Codes
When this macro completes processing, it passes a return code to the caller in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 All requested areas have been included in the dump.

X'04' 4 Only a portion of the requested areas was included in the dump.

SDUMP

330 z/VM: 7.2 Group Control System

Hex
Code

Decimal
Code

Meaning

X'08' 8 A range beyond the last byte of virtual storage was requested, or SET
DUMP OFF has been issued. (GCS was unable to produce a dump).

ABEND Code Reason Code Meaning

233 8 Invalid parameter list address.

List Format

label

SDUMP MF=L
1

,HDR=' char_string '

,HDRAD=  char_string_address

,STORAGE=( start , end)

,LIST=  list_address

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

SDUMP MF=(E, address)
1

,HDR=' char_string '

,HDRAD=  char_string_address

,STORAGE=( start , end)

,LIST=  list_address

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

SDUMP

Chapter 5. GCS Macros 331

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

SDUMP

332 z/VM: 7.2 Group Control System

SDUMPX
The SDUMPX macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 331 and “Execute Format” on page 331.

label

SDUMPX

HDR=' dump_descriptor '

HDRAD= dump_descriptor_address

,STORAGE=( start , end)

,LIST=  list_address

,LISTD=  list_address

,SUMLSTL=  list_address

Purpose

Use the SDUMPX macro when you are running in an XC virtual machine and want to dump part or all of a
data space that you are accessing. A dump is a recording of the contents of a virtual machine's storage at
a given moment.

Parameters

HDR
Specifies a string of characters that can be used to describe the dump. The dump description will be
displayed by the DVF DUMPSCAN "DUMPID" subcommand when either the STORAGE, LIST, or LISTD,
operand of SDUMPX is used to produce the dump.

This character string is placed in the dump to help you to identify it quickly. This string can contain up
to 100 characters and must be surrounded by single quotation marks.

HDRAD
Specifies the address of a string of characters you stored previously that describe the dump. The
dump description will be displayed by the DVF DUMPSCAN "DUMPID" subcommand when either the
STORAGE, LIST, or LISTD, operand of SDUMPX is used to produce the dump.

This character string is placed in the dump to help you to identify it quickly. This string can contain up
to 100 characters. The first byte at this address must contain the hexadecimal length of the character
string and no single quotation marks are required.

You can write this parameter as an assembler program label or as register (2) through (12).

STORAGE
Specifies the range of virtual storage addresses to be recorded in the dump.

Note: From the format illustration each pair of addresses must be separated by a comma and
enclosed in parentheses. You can specify more than one range of addresses. Just be certain that
each starting address is less than its corresponding ending address.

SDUMPX

Chapter 5. GCS Macros 333

LIST
Specifies the address of a list that contains one or more pairs of addresses. Each pair of addresses in
the list specifies a range of virtual storage addresses to be included in the dump.

This list can contain up to 2049 different pairs of addresses, which can overlap each other. If they do,
then CP will resolve two or more overlapping pairs into one pair.

The high-order bit of the fullword containing the last ending address in the list must be set to 1 to
indicate the end of the list. All other high-order bits in the list must be reset to 0.

You can write this parameter as an assembler program label or as register (2) through (12).

LISTD
Specifies the address of a list of address ranges, qualified by an ASIT of 8 bytes that reference the
data space you want to dump. The ASIT uniquely identifies the data space within the scope of the VM
system. The ASIT is similar to the STOKEN of MVS/ESA™.

Specify the ASIT and ranges as follows:
The following is the format of the input list

Table 18. SDUMPX LISTD parameter list format

4 byte fields

Length of parameter list

First ASIT (8 bytes)

Number of ranges to be dumped for this ASIT

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

Last ASIT (8 bytes)

Number of ranges to be dumped for this ASIT

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

The first fullword of the list contains the number of bytes (including the first word) in the list. ASIT refers
to any address/data space. SDUMPX does not dump data space storage that has not been referenced.

SUMLSTL
Specifies the address of a list of address ranges, qualified by an ALET of 4 bytes. The ALET is obtained
by use of the ALSERV macro which is used to add a data space to a list of data spaces that can be
accessed by a given virtual machine. The ALET that is returned from that request can be used to
establish addressability to the data space.

The LISTD and SUMLSTL parameters are RX-type addresses or registers (2) - (12).

Specify the ALET and ranges as follows:
The following is the format of the input list

SDUMPX

334 z/VM: 7.2 Group Control System

Table 19. SDUMPX SUMLSTL parameter list format.

4 byte fields

Length of list

First ALET (4 bytes)

Number of ranges (n) to be dumped for this ALET

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

Last ALET (4 bytes)

Number of ranges (n) to be dumped for this ALET

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

Usage
1. A dump of all storage is received if no operands are used with the SDUMPX macro.
2. SDUMPX cannot be used from Access Register (AR) mode.
3. It is important to understand the rules governing who receives the spool file containing the dump and

what that file contains.

For security reasons, not every user is authorized to receive dumps containing fetch-protected data.
Those who are authorized are listed among the authorized users at GCS build time. If a common dump
receiver was specified at GCS build time, then that individual receives the dump. Otherwise the issuer
of the SDUMPX macro receives the dump.

Bear in mind that if the person receiving the dump is not authorized to handle fetch-protected data,
that data will be omitted from the dump. However, all requested non-fetch-protected data and key 14
storage, will be included in the dump.

4. No dump will be produced if dumps are suppressed through the SET DUMP OFF command.

Messages
When this macro completes processing, it passes a return code to the caller in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 All requested areas have been included in the dump.

X'04' 4 Only a portion of the requested areas was included in the dump.

X'08' 8 A range beyond the last byte of virtual storage was requested, a data
space was not properly addressed, the SDUMPX macro was issued
from a non-XC virtual machine, or SET DUMP OFF has been issued.
(GCS was unable to produce a dump).

SDUMPX

Chapter 5. GCS Macros 335

ABEND Code Reason Code Meaning

233 4 Invalid parameter list structure.

233 8 Invalid parameter list address.

List Format

label

SDUMPX MF=L

,HDR=' dump_descriptor '

,HDRAD=  dump_descriptor_address

1

,STORAGE=( start , end)

,LIST=  list_address

,LISTD=  list_address

,SUMLSTL=  list_address

Notes:
1 If the STORAGE, LIST, LISTD, or SUMLSTL, parameter is not specified, then it must be specified on
the Execute format.

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

SDUMPX MF=(E, address)

,HDR=' dump_descriptor '

,HDRAD=  dump_descriptor_address

,STORAGE=( start , end)

,LIST=  list_address

,LISTD=  list_address

,SUMLSTL=  list_address

SDUMPX

336 z/VM: 7.2 Group Control System

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

SDUMPX

Chapter 5. GCS Macros 337

SEGMENT

Format

SEGMENT START

NAME= segment_name

END

Purpose

Use the SEGMENT macro to define which saved segments will be linked to each member of a virtual
machine group.

The GROUP CONFIGURATION FILE describes a GCS virtual machine group. This file is divided into data
blocks:
Configuration

Defines the virtual machine group's configuration so that it conforms to the needs of your installation.
See “CONFIG” on page 193.

Segment
Identifies which saved segments will be automatically linked to each member of the group at IPL
time.

Authorized User
Identifies which members of the group are authorized. That is, which members are permitted to
perform authorized GCS functions. The Authorized GCS Service Macros are identified in Chapter 5,
“GCS Macros,” on page 157.

Use the SEGMENT macro to create a segment block for the GROUP CONFIGURATION FILE.

Parameters

START
Indicates that this SEGMENT macro marks the beginning of the segment block.

The segment block must begin with a SEGMENT macro with this parameter.

NAME
Specifies the name of a saved segment that is to be linked automatically to each member of the virtual
machine group at IPL time.

END
Indicates that this SEGMENT macro marks the end of the segment block.

The segment block must end with a SEGMENT macro with this parameter.

Usage
1. Most installations will not explicitly use the SEGMENT macro to build the GROUP CONFIGURATION

FILE. Those equipped with at least one full-screen display terminal can take advantage of GCS build
panels. These data entry panels, started by the GROUP command, eliminate the need to explicitly code
these macros. However, without a full-screen terminal, your file will have to be built using the editor
and coding the macros manually.

2. The GROUP CONFIGURATION FILE adopts the system name (virtual machine group name) as its file
name. Its file type is always GROUP.

SEGMENT

338 z/VM: 7.2 Group Control System

3. By using the SEGMENT macro, you are creating blocks of information. Thus, all occurrences of the
SEGMENT macro must be physically grouped together in the GROUP CONFIGURATION FILE.

Examples

This example illustrates the segment block portion of a GROUP CONFIGURATION FILE.

.

.

.
SEGMENT START
SEGMENT NAME=SS5
SEGMENT NAME=SS8
SEGMENT NAME=SS11
SEGMENT NAME=SS17
SEGMENT END
.
.
.

The block begins with the SEGMENT macro with the START parameter. The names of four saved
segments, which are to be linked automatically to every virtual machine group member, are then
specified. The segment block then concludes with a SEGMENT macro with the END parameter.

Return Codes and ABEND Codes
The SEGMENT macro generates no return codes and no ABEND codes.

SEGMENT

Chapter 5. GCS Macros 339

SETRP

Format

label

SETRP
1

WKAREA=(1)

WKAREA=( reg) ,REGS=( reg1
, reg2

)

,COMPCOD= number

( number

,
USER

SYSTEM

)

,DUMP=IGNORE

,DUMP= YES

NO

,REASON=  code

,RC=0

,RC=4,RETADDR=  address

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the SETRP macro to set certain parameters in the system diagnostic work area.

Often an application identifies an exit routine for each task that will receive control if the task ends
abnormally. See “ESTAE” on page 223.

When the ABEND macro is issued for a specific task, a system diagnostic work area (SDWA) is created.
See “ABEND” on page 162.

The SDWA is an area of storage that contains important information about the task that has just ended
abnormally. The exit routine uses this information to analyze the problem. To appreciate the SETRP
macro fully, you should also have a sound understanding of the IHASDWA macro. Review the entry titled
“IHASDWA” on page 273.

Use the SETRP macro in an exit routine that you defined through the ESTAE macro. The SETRP macro will
set (or reset) certain parameters in the SDWA. Prominent among these is the RC parameter. This will let
GCS know whether your recovery routine should get control and try to revive your task.

Parameters

SETRP

340 z/VM: 7.2 Group Control System

WKAREA
Specifies the address of the system diagnostic work area that will be passed to your recovery routine.

If you omit this parameter, then the address of the SDWA must be in register 1. Otherwise, you can
write this parameter as register (1) through (12).

REGS
Specifies the single register (reg1) or range of registers (reg1,reg2) belonging to the failed task, whose
values are to be restored from the save area pointed to by register 13.

To specify a range of registers, consider the order in which registers are saved: 14, 15, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12. Substitute the first register number in the range for the reg1 parameter. And,
substitute the last register in the range for the reg2 parameter. A subset of this order is permissible.

Never specify register 13 as a register whose value is to be restored.

If you specify this parameter, then, when it is finished, your exit routine will branch to the address
in register 14, which you designated through the ESTAE macro. This will return control to the GCS
supervisor. If you omit this parameter, then no such branch will be taken, making it your responsibility
to code the return from your exit routine.

You can write the register or range of registers as decimal digits.

COMPCOD
Specifies the completion code that will overlay the current completion code in the SDWA.

This completion code must be a number from 0 to 4095. The meaning of each completion code is
governed by your application.

You can write this parameter as a symbol, as decimal digits, or as register (2) through (12).

USER
Indicates that the completion code specified is defined by the user or the application. Unless
otherwise stated, this is the case, by default.

SYSTEM
Indicates that the completion code specified is defined by the GCS supervisor.

DUMP
Indicates whether you want a dump produced containing the contents of the virtual machine which
the ABENDed task was running.

GCS will send the dump to the virtual reader belonging to the member of your virtual machine group
designated to receive dumps. If this member is not authorized, then only nonfetch-protected and key
14 data will be included in the dump.

IGNORE
Indicates that you do not want this SETRP macro to change any dump specification made by a
previous SETRP or ABEND macro. That is, whatever any previous SETRP or ABEND macro said
about producing or not producing a dump will remain in force.

This is the case, by default.

YES
Indicates that a dump of the virtual machine which the ABENDed task was running will be
produced.

NO
Indicates that no such dump will be produced.

Both the YES and NO parameters override any dump specification made by a previous SETRP or
ABEND macro.

REASON
Specifies the code associated with the invocation of the ABEND exit. The code can be any 4-byte
number specified in decimal (31-bit) or hexadecimal (32-bit).

SETRP

Chapter 5. GCS Macros 341

RC
Specifies the return code that the exit routine you specified through the ESTAE macro will pass to your
recovery routine. This return code describes what your recovery routine should do.
0

Indicates that GCS should continue to terminate the ABENDed task. This is the case, by default.
4

Indicates that GCS should give control to your retry routine, which will attempt to process the
ABENDed task again.

RETADDR
Specifies the address in the ABENDed task that will receive control when the attempt to retry it is
made.

This parameter is valid only if RC=4 is also specified.

You can write this parameter as an RX-type address or as register (2) through (12).

Examples

RETRY SETRP WKAREA=(3),REGS=(14,12),COMPCOD=635,RC=4,RETADDR=(12)

The task requests that certain fields in the SDWA be set and that the failed routine be tried again. The
address of the SDWA is in register 3. Registers 14, 15, and 0 through 12, belonging to the failed routine,
are to be restored. A user completion code of 635 is to overlay the completion code field in the SDWA.
The RC=4 parameter indicates that the failed routine, at the address in register 12, should be tried again.
RETRY is the label on this macro.

Return Codes and ABEND Codes
The SETRP macro generates no return codes and no abend codes.

SETRP

342 z/VM: 7.2 Group Control System

SPLEVEL

Format

label

SPLEVEL SET
=2

=1

TEST

Purpose

Use the SPLEVEL macro to set or test the macro level.

Some macros in the GCS macro library have expansions which will not function in programs running under
the 370 Accommodation Facility because of incompatible parameter lists. SPLEVEL makes it possible to
generate compatible macro parameter lists for these programs.

The macros interrogate a global symbol (set by SPLEVEL) during assembly to determine the type of
expansion to generate. For more information on macros see “GCS Macro Level and Parameter Lists”
on page 157 and for information about global set symbols, see Assembler H Version 2 Application
Programming: Language Reference .

Parameters

SET
Specifies the value of the global set symbol which will be used to determine the format of the macro's
parameter list expansion.

=1
Macro expansion results in 24 bit addresses below the 16MB line.

=2
Macro expansion results in 31 bit addresses for use both above and below the 16MB line.

SET
When SET is specified without a value, it default value is assumed of 2.

TEST
Specifies that SPLEVEL should determine the macro level that is in effect. The results of the test
request are returned in the global set symbol &SYSSPLV, which is defined by GBLC &SYSSPLV.

If SPLEVEL SET has not been previously issued during the assembly, the installation default value is
inserted into the global set symbol. If SPLEVEL SET has been previously issued, the previous value as
specified by n or the default value is already in the global set symbol.

Usage
The default value obtained when a SET value is not specified is 2. The default value can be changed to 1
for a particular installation.

Examples

SPLEVEL SET=1

Set the global set symbol to indicate GCS SP compatible macro expansion should occur.

SPLEVEL

Chapter 5. GCS Macros 343

SPLEVEL SET

Set the global set symbol to the default.

 GBLC &SYSSPLV
SPTEST CSECT
 ...
 SPLEVEL TEST
 DC C'&SYSSPLV'

Test to determine the macro level in effect and place the results in &SYSSPLV. Set the global set symbol if
no previous SPLEVEL has been issued.

Return Codes and ABEND Codes
The SPLEVEL macro generates no return codes and no ABEND codes.

SPLEVEL

344 z/VM: 7.2 Group Control System

STIMER

Format

label

STIMER REAL

, exit_routine_address

WAIT

,BINTVL=  address

,DINTVL=  address

,TOD=  address

Purpose

Use the STIMER macro to set a timer to a given time period. When time is up, your task will be notified.

At times, a task reaches a point where it needs to have something done for it. The task allocates a certain
time period during which it waits for some event to occur. When told that time is up, the task resumes
execution.

At other times, a task may be able to continue with other work while waiting for some event to take place.
Having allocated a certain time period for this event, the task needs to be told when time is up.

To keep track of these time periods, a task sets a timer, specifying the amount of time it will allow for a
certain event to take place.

Parameters

REAL
Indicates that the task will continue with other work while waiting for the specified time to elapse.

exit_routine_address
Specifies the address of an exit routine that will get control at the end of the interval.

This exit routine must be resident in virtual storage and can be specified only with the REAL
parameter.

The exit will always be in the AMODE of the caller.

You can write this as an RX-type address, as register (0), or as register (2) through (12).

WAIT
Indicates that the task is to be placed in the WAIT state during the specified time period. At the end of
the time period, the task will resume execution.

BINTVL
Specifies the address containing the duration of time allocated for the event.

You must store the amount of time as an unsigned 32 bit binary number in a fullword on a fullword
boundary. The low-order bit is equivalent to 0.01 seconds.

You can write this parameter as an RX-type address or as register (1) through (12).

For example, to define a BINTVL you would code:

 DS 0F Fullword Boundary
BINTIME DC B'00000000000000000000001111111111'

STIMER

Chapter 5. GCS Macros 345

DINTVL
Specifies the address containing the duration of time allocated for the event.

You must store the amount of time as EBCDIC characters in the range 0-9 on a doubleword boundary
in the following format:

 HHMMSS00

HH stands for the number of hours.
MM for the number of minutes.
SS for the number of seconds.

The maximum amount of time you can specify is 24 hours.

You can write this parameter as an RX-type address or as register (1) through (12).

For example, to define a DINTVL you would code:

 DS 0D Doubleword Boundary
DECTIME DC CL8'00000500' Wait 5 Seconds

TOD
Specifies the address containing the time of day that marks the end of the time period.

You must store this time of day as EBCDIC characters in the range 0-9 on a doubleword boundary in
following format:

 HHMMSS

HH stands for the number of hours.
MM for the number of minutes.
SS for the number of seconds.

The maximum amount of time you can specify is 24 hours.

For example, to define a TOD (Time-of-day) time value you would code:

 DS 0D Doubleword Boundary
TODTIME DC CL6'084805' Wait until 08:48:05 AM

Usage
1. It is the responsibility of the task issuing the STIMER macro to provide storage. The task must see to it

that the appropriate time value is stored there before issuing the STIMER macro.
2. If you choose the REAL parameter and you do not specify the address of an exit routine, your task will

never know the time has expired. In such a case, the supervisor does not notify your task that time is
up.

3. The exit routine is responsible for saving and restoring your task's registers. It also executes in the
same state and key as did your task when the latter issued the STIMER macro. After your exit routine
completes execution, it returns control to the supervisor.

Input to the exit routine is:

Register Contents

0 - 12 Unpredictable.

13 The address of a supervisor-provided save area.

14 The address to which control will transfer after the exit routine completes
processing.

15 The address of the exit routine.

STIMER

346 z/VM: 7.2 Group Control System

4. No task can have more than one timer set at the same time. If you enter an STIMER macro before the
time period associated with a previous STIMER macro expires, then the second STIMER macro cancels
and replaces the first.

5. All time is measured continuously in real time.
6. The SPLEVEL macro need not be issued unless you want a STIMER macro used by GCS that has an

expanded parameter list, which is designed for use in the 31-bit addressing mode. A 31-bit parameter
list is incompatible if you are running under the 370 Accommodation Facility. However the SPLEVEL
macro lets you select either the 24-bit version or the 31-bit version

7. This macro supports both 24 and 31-bit address expansions of the parameter list. The macro
expansion is controlled by the internal macro SPLEVEL. The default value is 31.

Examples

CLOCKIT STIMER REAL,(6),TOD=(7)

The task wishes to set a timer. Because the REAL parameter is specified, the task will continue with other
work while it is waiting. The specific time of day marking the end of the time period is stored at the
address in register 7. When time is up, the exit routine, whose address is in register 6, receives control.
CLOCKIT is the label on this instruction.

STIMER WAIT,DINTVL=(5)

The task wishes to set a timer. Because the WAIT parameter is specified, the task will be placed in the
WAIT state until time is up. The amount of time, stored as characters, can be found at the address in
register 5.

Return Codes and ABEND Codes
The STIMER macro generates no return codes.

ABEND Code Meaning

12F Your task is in problem state and the parameter list for the macro is not in the same
key as the task. You may also have incorrectly specified the DINTVL or TOD parameter.
These must be in unpacked decimal format.

E2F A parameter unsupported by GCS was specified. Unsupported parameters include
TASK, GMT, TUINTVL, and MICVL.

STIMER

Chapter 5. GCS Macros 347

SYMREC
The SYMREC macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 348 and “Execute Format” on page 348.

label

SYMREC SR= addr

Purpose

The SYMREC macro updates the symptom record with environment information. This macro is provided
for users and is not used by GCS. The symptom record is a data area in the user's application that has
been mapped in the ADSR macro and that is referenced by the SYMREC macro. The data in the symptom
record is a description of a programming error and a description of the environment which the error
occurred.

Parameters

SR=addr
Specifies the address of the symptom record. The SR keyword is required. addr may be an A-type
address or registers (2) through (12).

List Format

label

SYMREC SR= addr ,MF=L

Purpose (List Format)
This format of the macro generates an in-line parameter list. It generates no executable code.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

SYMREC SR= addr ,MF=(E,  address)

SYMREC

348 z/VM: 7.2 Group Control System

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
Specifies the execute format of the SYMREC macro.

Return Codes and ABEND Codes (Execute Format)
The following return codes and reason codes are generated by the SYMREC macro processing routine. The
return code is returned in register 15. The reason code is returned in register 0.

Return
Code

Reason
Code

Meaning

12 108 The length of the ADSR section 2 is not long enough.

12 128 Portions of the symptom record were not in the key of a
nonauthorized caller or a negative length was found in ADSR section
2.

12 134 The input symptom record address was not in the key of a
nonauthorized caller.

If none of the above errors occurred, the reason code and return code from the CP DIAGNOSE X'94' are
placed in registers 15 and 0 respectively.

SYMREC

Chapter 5. GCS Macros 349

SYNCH
The SYNCH macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 352 and “Execute Format” on page 353.

label

SYNCH entry_point
1

,RESTORE=NO

,RESTORE=YES

,AMODE=CALLER

,AMODE= 24

31

DEFINE

,STATE=PROB

,STATE=SUPV

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the SYNCH macro to schedule a synchronous exit from one program to another, possibly with a
change in state.

The SYNCH macro schedules a synchronous exit from one program to another. If desired, the SYNCH
macro allows a supervisor state program to call another program and choose the state which the latter
will operate. The SYNCH macro lets you control the restoration of registers belonging to the calling
program.

On entry to the processing program, the high order bit, bit 0, of register 14 is set to indicate the
addressing mode of the issuer of the SYNCH macro. If bit 0 is 0, the issuer is executing in 24-bit
addressing mode. If bit 0 is 1, the issuer is executing in 31-bit addressing mode.

Parameters

entry_point
Specifies the address of the entry point that is to receive control.

The program must be resident in virtual storage.

You can write this parameter as an RX-type address or as a register. If you write it as a register, you
can choose only from among registers (2) through (12) and register (15).

RESTORE
Indicates whether you want registers 2 through 13 restored when control is returned to the program
that issued the SYNCH macro. If you do not specify this parameter, then, by default, no restoration
takes place.
YES

Indicates that you do want this restoration to take place.

SYNCH

350 z/VM: 7.2 Group Control System

NO
Indicates that you do not want this restoration to take place.

AMODE
Specifies the addressing mode which the requested program is to receive control.
24

The requested program will receive control in 24-bit addressing mode.
31

The requested program will receive control in 31-bit addressing mode.
DEFINED

The requested program will receive control in the addressing mode indicated by the high order bit
of the specified entry point address. If the bit is off, the requested program will receive control
in 24-bit addressing mode. If the bit is set, the requested program will receive control in 31-bit
addressing mode.

Note: The user must provide the entry point using a register and not an RX-type address.

CALLER
The requested program will receive control in the addressing mode of the caller.

STATE
Indicates the state which the program being called will function. If you do not specify this parameter,
then the program being called functions in problem state, by default.
SUPV

Indicates that the program being called in will function the supervisor state.
PROB

Indicates that the program being called in will function the problem state.

Usage
1. The SYNCH macro makes no validity checks the entry point address. Regardless of what is at that

address, control is transferred to it.
2. It is not necessary for the program that issues the SYNCH macro to be in supervisor state. Nor must

a program called by a supervisor state program necessarily function in that state. The rule is if the
program issuing the SYNCH instruction is a:

• Problem state program, then the called program will also function in that state.
• Supervisor state program, then there is a choice. Use the STATE parameter to specify which state the

called program is to function.
3. It is important to remember that any program called through the SYNCH macro will always run in

the same key as the program that called it. This usually is not a problem. However, a supervisor
state program may call another program and specify that the latter should run in problem state. The
supervisor state program should change its own key to the problem state program before it issues the
SYNCH macro.

4. It is risky to use the SYNCH macro to transfer control to a program that is not reentrant. While this
practice is not prohibited, the results are unpredictable.

Examples

SYNCH (2),RESTORE=NO,STATE=SUPV

Schedule an exit to the entry point whose address is in register 2. The program called will function in
supervisor state if the program issuing the SYNCH macro is also in supervisor state. When control is
returned to the program that issued the SYNCH macro, no registers will be restored.

SYNCHIT SYNCH ENCRYPT,RESTORE=YES,STATE=PROB

SYNCH

Chapter 5. GCS Macros 351

Schedule an exit to an address named ENCRYPT. ENCRYPT is to function in problem state. SYNCHIT is the
label on this instruction. When control is returned, registers 2 through 13, belonging to the program that
issued the SYNCH instruction, will be restored.

The exit program receives the following information in its registers.

Register Contents

0-13 Unchanged.

14 The address to which control is to return after the exit program completes execution.

15 The address of the entry point in the exit program being called.

SYNCH (8),RESTORE=YES,AMODE=24

Take a synchronous exit to the program located at the address in register 8 and restore registers 2-13
when control returns. Indicate that this program is to process in 24-bit addressing mode.

SYNCH (8),RESTORE=YES,AMODE=DEFINED

Take a synchronous exit to the program located at the address given in register 8 and restore registers
2-13 when control returns. Indicate that this program is to receive control in the addressing mode defined
by the high-order bit of its entry point address (in register 8).

SYNCH (8),RESTORE=YES,AMODE=CALLER

Take a synchronous exit to the program located at the address given in register 8 and restore registers
2-13 when control returns. Indicate that this program is to receive control in the addressing mode of the
caller.

Return Codes and ABEND Codes
The SYNCH macro generates no return codes.

ABEND Code Reason Code Meaning

106 0C Insufficient virtual storage was available to load the requested module.

206 Either an invalid parameter list was produced or an I/O error occurred
while processing.

List Format

label

SYNCH MF=L
1

,RESTORE=NO

,RESTORE=YES

,STATE=PROB

,STATE=SUPV

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Format)
This format of the macro generates an in-line parameter list, based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Only the preceding parameters listed are valid in the list format of this
macro.

SYNCH

352 z/VM: 7.2 Group Control System

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

SYNCH entry_point ,MF=(E,  address)
1

,RESTORE=NO

,RESTORE=YES

,STATE=PROB

,STATE=SUPV

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

SYNCH

Chapter 5. GCS Macros 353

TASKEXIT
The TASKEXIT macro is available in standard, list, list address and execute formats.

Standard Format

See also “List Format” on page 356, “List Address Format” on page 357 and “Execute Format” on page
357.

label

TASKEXIT SET,EP=  addr

,UWORD=  addr

CLR

,NAME= name

( reg) ,ERROR=  addr

Purpose

Use the TASKEXIT macro to declare a task termination exit routine for an entire virtual machine group.

A task termination exit routine, declared for an entire virtual machine group, gains control whenever a
task running within the group terminates—either normally or abnormally.

There are several good reasons for declaring such an exit routine for a virtual machine group. For
example, several subsystem applications may be running in various virtual machines within the group.
Having a task termination exit routine declared might help the subsystem clean up after itself, monitor the
various applications, and react to their progress.

The TASKEXIT macro is an authorized GCS function.

Parameters

SET
Indicates that you are declaring a task termination exit routine for your entire virtual machine group.

CLR
Indicates that the task termination exit routine you specify is to be canceled.

EP
Specifies the address of the task termination exit routine in question.

This exit routine must reside in a shared segment. That is, a routine whose entry point is defined in a
shared segment directory that was created through the CONTENTS macro. See “CONTENTS” on page
197.

You can write this parameter as an assembler program label or as register (2) through (12).

UWORD
Specifies a fullword of data you want passed to the task termination exit routine if it ever gains
control.

You can use this parameter to pass any information you please.

If you write this parameter as an assembler program label, then the address associated with that
label is passed to the exit routine. If you write it as register (2) through (12), then the contents of the
register are passed to the routine.

TASKEXIT

354 z/VM: 7.2 Group Control System

NAME
Specifies a name used in any TASKEXIT macro to refer to a certain task termination exit routine.

Do not confuse this name with the name of any entry point within the exit routine or with the name
of the routine itself. This name is merely an identifier used by the TASKEXIT macro to distinguish one
task termination exit routine from another. The name is meaningless outside the TASKEXIT macro
environment.

This name can contain up to eight characters.

There are two ways of coding this name in the TASKEXIT macro:

• Write the actual name itself.
• Write a register number from (2) through (12). The register you specify must contain the address

where the name can be found. If the name is less than eight characters long, then it must be padded
on the right with blanks.

ERROR
Specifies the address of an error routine that is to receive control if an error is found in the TASKEXIT
macro.

If you omit this parameter and an error occurs, then control will return to the instruction following the
TASKEXIT macro, just as it would were there no error.

Usage
1. Only an authorized user can enter the TASKEXIT macro.
2. The exit routine that you define through the TASKEXIT macro must reside in a shared segment.
3. Remember that the identifier you specify in the NAME parameter is strictly for your benefit and

the TASKEXIT macro. To specify the SET and NAME parameters together states the name that is
associated with the exit routine in question.

4. The AMODE, which the exit will be run, is the AMODE from the correspondent entry in the CONTENTS
macro. However if the AMODE parameter in the CONTENTS entry is DEFINED, then the address of the
routine in the TASKEXIT macro will be considered a 32 bit address with the AMODE being the first bit.
See “CONTENTS” on page 197.

5. You can declare more than one task termination exit routine for your virtual machine group. However,
because the TASKEXIT macro can declare only one exit routine at a time, you will have to enter it
more than once. Each exit routine that you declare will run when a task in your virtual machine group
terminates. However, the order which they will run is unpredictable.

6. GCS associates the PSW key and the enable flags of the task that issues the TASKEXIT macro with
those of the task termination exit routine.

7. A task termination exit routine always runs in supervisor state. Moreover, it is eligible for the same
types of interrupts as the task that declared it.

8. Remember that besides the task termination exit routine declared for the entire group, an individual
task may have its own exit routines declared. For example, you may have defined an exit routine
through the ESTAE macro that will run if the task ends abnormally.

Should this be the case, and the task ends, GCS sees to it that the task's exit routines are run first.
Afterward the task termination exit routine is executed.

9. When the task that declared the task termination exit routine terminates, then the latter executes one
last time. After that, it disappears.

10. When the task termination exit routine gains control, its registers contain the following:

Register Contents

0 The high-order 2 bytes contain the virtual machine ID in which the terminated task
was running. The low-order bytes contain the task ID.

1 The UWORD.

TASKEXIT

Chapter 5. GCS Macros 355

Register Contents

13 Address of the register save area.

14 Return address within the GCS supervisor.

15 The address of the task termination exit routine.

Examples

DCLTE TASKEXIT SET,EP=(4),NAME=TE6,ERROR=(7)

An authorized member of a virtual machine group wants to define a task termination exit routine for its
entire group. The entry point of this routine is at the address in register 4. Because this routine is being
newly defined, the authorized member declares the name TE6 for the routine. The address of the error
routine is in register 7. DCLTE is the label on this instruction.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'04' 4 This task termination exit routine has already been declared for this
virtual machine group.

X'08' 8 The address you specified for the task termination exit routine is not
in a shared segment.

X'18' 24 Invalid parameter list.

X'2C' 44 You specified the CLR parameter with the name of a task termination
exit routine. However, no such name could be found for a task
termination exit routine.

X'30' 48 The CONTENTS entry has AMODE=DEFINED or AMODE=CALLER, the
caller is in AMODE 24 and the exit address is above the 16MB line.

List Format

label

TASKEXIT ,MF=L SET,EP=  addr

,UWORD=  addr

CLR

1

,NAME= name

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

TASKEXIT

356 z/VM: 7.2 Group Control System

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation. Only the preceding parameters listed are valid in the list format of this
macro.

Added Parameter

MF=L
Specifies the list format of this macro.

List Address Format

label

TASKEXIT ,MF=(L, address
,

label

)

SET,EP=  addr

,UWORD=  addr

CLR

1

,NAME= name

( reg)

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (List Address Format)
This format of the macro does not produce any executable code that starts the function. However, it does
produce executable code that moves the parameter values that you specify into a certain parameter list.
If you enter the macro using this format, then you must do so before any related invocation of the macro
using the execute format. Only the preceding parameters listed are valid in the list address format of this
macro.

Added Parameter (List Address Format)

MF=(L,address,label)
address specifies the address of the parameter list into which you want the parameter values you
mention placed. This address can be within your program or somewhere in free storage.

label is optional and is a user-specified label, indicating that you want to determine the length of the
parameter list. The macro expansion equates the label you specify with the length of the parameter
list.

Execute Format

TASKEXIT

Chapter 5. GCS Macros 357

label

TASKEXIT ,MF=(E,  address) SET,EP=  addr

,UWORD=  addr

CLR

1

,NAME= name

( reg)

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify. Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

TASKEXIT

358 z/VM: 7.2 Group Control System

TIME

Format

label

TIME
DEC

BIN

Purpose

Use the TIME macro to ask the supervisor to send today's date and the correct time of day to your
program.

Parameters

DEC
Indicates that the time of day is to be returned to your program in unsigned packed decimal format. It
is stored in the following format:

 HHMMSS00

HH stands for the number of hours.
MM for the number of minutes.
SS00 for the number of seconds with 00 representing tenth and hundredths of a second.

The tenths and hundredths of seconds are always returned as 00.

Today's date is also returned to your program in packed decimal form.

If you omit all parameters from the TIME macro, then DEC is assumed, by default.

BIN
Indicates that the time of day is to be returned to your program as an unsigned 32-bit binary number.
The low-order bit is equivalent to 0.01 seconds. The tenths and hundredths of seconds are always
returned as 00.

Today's date, however, will be returned to your program in packed decimal form.

Usage
1. The time of day is returned to your program in register 0.
2. Today's date is returned to your program in register 1.
3. The date is stored in the following format:

 0CYYDDDF

0 is a half-byte of zeros. C is a century indicator, where a value of 0 (zero) indicates the 1900's, and a
value of 1 indicates the 2000's. YY are the last two digits of the year. DDD is the Julian day of the year.
F is a 4 bit sign character that helps you unpack and print the date, if you request it.

4. The accuracy of the time and date depends on the accuracy of the corresponding data entered by your
system operator. Your system's response time is also a factor.

TIME

Chapter 5. GCS Macros 359

Return Codes and ABEND Codes
The TIME macro generates no return codes.

ABEND Code Meaning

E0B A parameter not supported by GCS was specified. Unsupported parameters include
TU, MIC, STCK, and ZONE=GMT.

TIME

360 z/VM: 7.2 Group Control System

TTIMER

Format

label

TTIMER CANCEL

Purpose

Use the TTIMER macro to cancel a timer that you set through a STIMER macro. See “STIMER” on page
345.

Parameters

CANCEL
Indicates that you wish to cancel the effect of the last STIMER macro. That is, the timer stops keeping
track of elapsed time. Also, the specified branch to an exit routine, if any, is canceled.

This is the only parameter on the TTIMER macro and is required.

Usage
The TTIMER macro has no effect if the STIMER macro you are trying to cancel included the WAIT
parameter.

Return Codes and ABEND Codes
The TTIMER macro generates no return codes.

ABEND Code Meaning

E2E Either the CANCEL parameter was not specified or a parameter not supported by GCS
was specified. Unsupported parameters include TU and MIC.

TTIMER

Chapter 5. GCS Macros 361

VALIDATE

Format

label

VALIDATE ADDR=  addr
1

,KEY=  key

,LENGTH=  1

,LENGTH=  length

Notes:
1 The following parameters are optional and may be specified in any order. For any parameter not
specified, the default value, if applicable, is used.

Purpose

Use the VALIDATE macro to compare keys, confirm that a virtual machine, program, and so forth, has
access to a particular area of storage.

Virtual machines, tasks, and programs constantly request access to areas of storage. This does not
necessarily mean that they are entitled to have each request granted. Each 4KB block of storage has a
key associated with it. This key governs access to the storage block and protects the data there against
unauthorized use.

There are two kinds of access available: fetch and store. If, for example, a program has fetch access,
it means that it can only obtain data from the block. Fetch access prevents the program from actually
changing any of the data in the block. Store access, on the other hand, allows a program to both obtain
data from the storage block and alter the data therein. Also there are programs that are denied either type
of access.

The VALIDATE macro confirms or denies that a program has access to a certain block of storage. If access
is allowed, it indicates whether the program can have fetch-type access or store-type access.

The VALIDATE macro is an authorized GCS instruction.

Parameters

ADDR
Specifies the starting address of the area of storage to which the program wants access.

You can write this parameter as an assembler program label or as register (1) through (12). If you
write it as a label, then the address of the label must be the starting address of the storage area in
question. If you write it as a register, then the register must contain this starting address.

KEY
Specifies the key that will be compared with the key of the storage area in question.

You can write this parameter as an assembler program label, as register (0), or as register (2) through
(12). If you write it as a label, then the key must be contained in the 4 high-order bits of the byte at
the address associated with that label. If you write it as a register, then the key must be in bits 24
through 27 of that register. If you do not specify a key, then VALIDATE will use the key of the task that
issued the instruction.

LENGTH
The length of the storage area in question, in bytes.

If you omit this parameter, then the length is 1, by default.

VALIDATE

362 z/VM: 7.2 Group Control System

You can write this parameter as an absolute expression, as register (2) through (12), or as register
(15). If you write the length as an absolute expression, then it must be a positive integer between 1
and 2²⁴-1. If you write it as a register, then the register must contain a positive fullword integer within
the same range.

Usage
1. The VALIDATE macro does not obtain access for any program. It only tells whether a program is

entitled to access a certain area of storage and, if so, in what way it can access the storage.
2. The supervisor determines whether the area of storage in question is addressable. If it is, then the key

specified in the VALIDATE macro is compared with the key of the area of storage in question. If they
do not match, the supervisor checks to see if the area of storage is fetch protected. The appropriate
return code is then passed to the issuer of the macro.

3. If the key of the storage area matches the key specified in the VALIDATE macro, or if the program is
running in key 0, then store access to the area is possible.

4. If the keys do not match, the program is running in a key other than 0, and the storage area is without
fetch protection, then fetch access to the area is possible.

5. If the keys do not match, the program is running in a key other than 0, and the storage area has fetch
protection, then no access to the area is possible.

6. Authorized programs often are asked to perform work for unauthorized programs. Before an
authorized program accesses an area of storage for an unauthorized program, it should confirm that
the latter is sufficiently authorized to have its work affect that storage. This is one of the major
applications of the VALIDATE macro. In addition, system routines frequently use the VALIDATE macro
to accomplish much the same thing.

7. Before an authorized program issues the VALIDATE macro, it should place a lock on the storage in
question through the LOCKWD macro. This is required to prevent the key of the storage from changing.
See “LOCKWD” on page 302.

Examples

 VALIDATE ADDR=ADDRESS,KEY=KEY1
 .
 .
 .
ADDRESS DS F'5672'
KEY1 DS X'EO'

Confirm that the address is accessible by a program running in key 14.

VALIDATE ADDR=(6),KEY=(7),LENGTH=(3)

Confirm that the program running in the key stored in register 7 has access to the storage area beginning
at the address in register 6. The length of the storage area in question is in register 3.

Return Codes and ABEND Codes
The VALIDATE macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 The key of the storage area matches the key specified in the macro
or, if none was specified, the key of the program that issued the
macro.

VALIDATE

Chapter 5. GCS Macros 363

Hex
Code

Decimal
Code

Meaning

X'04' 4 The keys do not match but the storage area has no fetch protection.
Therefore, fetch access is possible.

X'08' 8 The keys do not match and the storage area has fetch protection.
Therefore, no type of access is possible.

X'0C' 12 The storage area in question is not addressable.

X'10' 16 The specified length of the storage area is less than 0 or greater than
2²⁴-1 bytes for 370 accommodation.

VALIDATE

364 z/VM: 7.2 Group Control System

WAIT

Format

label

WAIT

1,

0,

ECB= address

ECBLIST=  address ,RELATED=  value

Purpose

Use the WAIT macro to wait for an event to take place before continuing processing.

Each such event is associated with an event control block (ECB). This ECB defines the event that is
to occur and indicates to your task whether it has occurred. For example, your task may be unable to
continue until it receives input from a certain file.

Use the WAIT macro to cause your task to wait for a certain event to take place before your task resumes
processing.

Parameters

1, 0,
These are number of events that must take place before your task can resume.

You are limited to specifying either zero events or one event, written as the numerals 0 or 1.

If you omit this parameter, one event is assumed, by default. If you write 0, then the macro is treated
as a NOP (NO OPERATION) assembler instruction.

ECB
Specifies the address of a single ECB associated with the event for which your task must wait.

You can write this parameter as an RX-type address or as register (1) through (12).

ECBLIST
Specifies the address of an area in your virtual storage that contains a string of addresses. Each
address in the string points to one ECB, and there may be one or more addresses in this string.

This list of ECB addresses signifies a list of events. If one of these events occurs, then your waiting
task will be able to continue. This string must begin on a fullword boundary, as must each address in
the string. The high-order bit of the last address in the list must be set to 1, indicating the end of the
list.

You can write the address of this string as an RX-type address or as register (1) through (12).

RELATED
Specifies documentation data that you are using to relate this macro to a POST macro.

The value you assign to this parameter has nothing to do with the execution of the macro itself.
It merely relates one macro (WAIT) to a macro that provides an opposite, though related, service
(POST).

The format and contents of this parameter are at your discretion and can be any valid coding values.

WAIT

Chapter 5. GCS Macros 365

Usage
1. The task issuing the WAIT macro provides storage for each event control block. Each ECB is a

fullword on a fullword boundary.

Bit 0 of the ECB is called the WAIT bit. If this bit is set to 1, then it means that some task is waiting for
the event associated with that ECB to occur.

Bit 1 of the ECB is called the POST bit. If this bit is set to 1, then it means the event associated with
the ECB has occurred. See “POST” on page 314.

2. If the program issuing the related POST macro has chosen to pass it, then the remaining 30 bits
of the ECB will contain a completion code. This code will describe the manner that the event your
program has waited for took place.

This completion code only has meaning to the applications involved.
3. You know that the event in question has occurred when your task regains control.
4. The occurrence of any one of the events associated with the ECBs in the list will allow your task to

continue.
5. Tasks are not always placed in the WAIT state after having issued the WAIT macro. The task is

immediately satisfied.
6. Reset to zero each bit of the ECBs in question before you enter the WAIT macro. After your program

regains control, reset these bits after the ECB is analyzed. If you do not, and the event occurs again,
your program will not know it.

7. No task should change any of the bits in any ECB for which a WAIT macro has been issued. Only after
the POST bit has been set to 1 and its contents analyzed is it safe to alter an ECB.

8. If you choose to branch directly to the WAIT service routine, then your registers must contain the
following:

Register Contents

0 The number of events (zero or one) that must occur before your task resumes.

1 The address of the event control block (ECB). If this is the address of a list of ECBs,
then the list address must be in twos complement form, and the high-order bit of
the last address in the list must be 1.

13 The address of a register save area.

14 The caller's return address.

15 The address of the entry point of the WAIT macro is obtained from the CVT
(CVTVWAIT).

9. Your task must be in supervisor state, key 0, and disabled for interrupts.
10. An interrupt handler cannot use the branch interface to the WAIT service routine.
11. Because branching directly to the service routine avoids the supervisor call, no trace entry for the

function is generated.

Examples

HOLDIT WAIT 1,ECB=(2)

The task will wait for one event to occur. That event is associated with an ECB whose address is in register
2. The task will regain control when the POST bit is set to 1. HOLDIT is the label on this macro.

WAIT ECBLIST=(4)

The task will wait for one of several events to occur. The ECBs associated with each of these events can
be found in a list whose starting address is in register 4.

WAIT

366 z/VM: 7.2 Group Control System

Return Codes and ABEND Codes
When WAIT completes processing, it passes to the caller a ABEND code in register 15 on an SVC call.

ABEND Code Meaning

0F8 The GCS supervisor was called in access register.

101 The problem program specified several events other than 0 or 1.

201 The macro expansion contained an invalid ECB address or the end of the ECBLIST
could not be found.

301 The ECB's WAIT bit is already set to 1.

When WAIT completes processing, it passes to the caller a return code in register 15 on a branch entry.

Hex
Code

Decimal
Code

Meaning

X'00' 0 The function completed successfully.

X'02' 2 The number of events was not zero or one.

X'04' 4 The ECB address was 0.

X'08' 8 The ECB wait flag was already on.

WAIT

Chapter 5. GCS Macros 367

WTO
The WTO macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 368 and “Execute Format” on page 369.

label

WTO

,
1

1
' message'

Notes:
1 The message parameters can be repeated up to 10 times.

Purpose

Use the WTO macro to send a message to the virtual machine console, requiring no reply.

Occasionally you will find it necessary to have a program running under GCS send a message to the virtual
machine console. Use the WTO macro for this purpose. Use of this macro implies that you do not require a
response to your message.

Parameters

'message'
Specifies the text of the message to be sent to the virtual machine console.

Though they will not appear at the console, you must enclose the message in single quotation marks.
Each message is displayed on a separate line and may be up to 124 characters long. If you send a
message that is longer than that, it will be truncated before it is sent. You can include in your message
any character that is permitted in a C-type (character) DC assembler instruction. Also, you can have up
to 10 messages on a single invocation.

Usage
1. GCS supports multiple console message handling.
2. GCS performs no translation on your message at all. It is transmitted exactly as coded.

Return Codes and ABEND Codes
The WTO macro generates no return codes.

ABEND Code Meaning

D23 Either an invalid parameter list exists or insufficient space is available for processing.

List Format

WTO

368 z/VM: 7.2 Group Control System

label

WTO MF=L,

,
1

1
' message'

Notes:
1 The message parameters can be repeated up to 10 times.

Purpose (List Format)
This format of the macro generates an in-line parameter list, based on the parameter values that you
specify. However, this format generates no executable code.

If a label is specified, it can be used to reference the start of the in-line parameter list.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

WTO MF=(E, address)

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify. Only the preceding parameters listed are valid in the execute format of this instruction.

Added Parameter (Execute Format)

MF=(E,address)
address specifies the address of the parameter list to be used by the macro.

WTO

Chapter 5. GCS Macros 369

WTOR
The WTOR macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 371 and “Execute Format” on page 371.

label

WTOR ' message', reply_address , reply_length , ecb

Purpose

Use the WTOR macro to send a message to the virtual machine console, requiring a reply.

Occasionally you will find it necessary to have a program running under GCS send a message to the virtual
machine console. Moreover, your program may require a reply to its message.

Use the WTOR macro to send a message to the virtual machine console, to which you expect a reply.

The WTOR macro is available in standard, list, and execute formats.

Parameters

'message'
Specifies the text of the message to be sent to the virtual machine console.

Though they will not appear at the console, you must enclose the message in single quotation marks.
The message may be up to 121 characters long. If you send a message that is longer than that, it will
be truncated before it is sent. Because the message is assembled as a variable-length record, it is not
necessary to pad it with blanks. You can include in your message any character that is permitted in a
C-type (character) DC assembler instruction.

reply_address
Specifies the address in virtual storage into which you want the reply placed.

The reply will be left-aligned at this address.

You can write this parameter as an assembler program label or as register (2) through (12).

reply_length
Specifies the maximum length of the reply that your program will accept.

This refers to the size of the reply area, the address of which you specified in the REPLY ADDRESS
parameter.

This length must be from 1 to 119 bytes.

You can write this parameter as a symbol, as decimal digits, or as register (2) through (12).

ecb
Specifies the address of your event control block.

GCS uses this area of storage to indicate whether the reply to your message has been received. Event
control blocks are discussed in detail under “WAIT” on page 365 and “POST” on page 314.

You can write this parameter as an assembler program label or as register (2) through (12).

WTOR

370 z/VM: 7.2 Group Control System

Usage
1. The WTOR macro assigns a reply identification number to the message it is transmitting for you. The

operator will use this identification number when responding to your message.
2. GCS does not support multiple line messages or multiple console message handling.
3. GCS performs no translation on your message at all. It is transmitted exactly as coded.
4. The SPLEVEL macro need not be issued unless you want a WTOR macro used by GCS that has an

expanded parameter list, which is designed for use in the 31-bit addressing mode. A 31-bit parameter
list is incompatible if you are running under the 370 Accommodation Facility. However the SPLEVEL
macro lets you select either the 24-bit version or the 31-bit version

5. This macro supports both 24 and 31 bit address expansions of the parameter list. The macro
expansion is controlled by the internal macro SPLEVEL. The default value is 31.

Return Codes and ABEND Codes
The WTOR macro generates no return codes.

ABEND Code Meaning

D23 Either an invalid parameter list exists or insufficient space is available for processing.

E23 The address of the event control block or the address of the reply area was invalid.

List Format

label

WTOR ' message',MF=L

,

reply_address ,

reply_length ,

ecb

Purpose (List Format)
This format of the macro generates an in-line parameter list, based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

If a label is specified, it can be used to reference the start of the in-line parameter list.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

WTOR

Chapter 5. GCS Macros 371

label

WTOR ,MF=(E,  address)

,

reply_address ,

reply_length ,

ecb

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list you specify.
Only the preceding parameters listed are valid in the execute format of this instruction. The comma before
the first operand is required to indicate the absence of the message operand which is not allowed in the
execute format.

Added Parameter (Execute Format)

MF=(E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

WTOR

372 z/VM: 7.2 Group Control System

XCTL
The XCTL macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 375 and “Execute Format” on page 376.

label

XCTL
,

( reg1
, reg2

),

EP= symbol

EPLOC=  addr

DE= addr

Purpose

Use the XCTL macro to pass control to a program, expecting never to regain it.

GCS provides several techniques for passing control from one program to another. Typically, when one
program passes control to another, it expects to eventually regain it. The XCTL macro lets you pass control
from one program to another. If running in XA mode, XCTL handles the setting of the addressing mode
when passing control to the new entry point. When the new entry point receives control, the high-order
bit, bit 0, of register 14 is set to indicate the addressing mode of the issuer of the XCTL macro. If the bit is
off, the issuer was executing in 24-bit addressing mode. If the bit is on, the issuer was executing in 31-bit
addressing mode.

Parameters

(reg1),
(reg1,reg2)

Specifies the register, or range of registers, that was saved by the issuer of the XCTL macro and that
is to be restored and passed to the program called. The saving of these registers, then, becomes the
responsibility of the program called by the XCTL macro.

You can write these as registers 2 through 12 or as assembler program labels. If you omit the reg2
parameter, then the only register restored is the one represented by the reg1 parameter. It is possible,
however, to restore a subrange of registers within the range 2 through 12. The low register in the
range must be reg1 and reg2 must be the high register in the range. If you omit these parameters
entirely, no registers are restored.

Supply a set of parentheses around this parameter. And, if you specify a pair of register numbers,
separate them with a comma.

EP
Specifies the name of the entry point that receives control.

The entry point name can be:

• The name of the entry point as previously defined through the IDENTIFY macro. See “IDENTIFY” on
page 270.

• The name of the entry point declared in a shared segment directory through the CONTENTS macro.
See “CONTENTS” on page 197.

• A member name (or alias) in the directory of a load library.

XCTL

Chapter 5. GCS Macros 373

When looking for the entry point name that you specify, GCS searches the following items in the
following order:

1. Your private storage, because the module associated with the entry point name may already be
loaded.

2. Any shared segment directories that may have been created through the CONTENTS macro.
3. The directories of any load libraries that may have been defined for your virtual machine through

the GLOBAL LOADLIB command. For more information on the GLOBAL command, see “GLOBAL” on
page 101.

You must write this parameter as an assembler program label.

EPLOC
The address containing the name of the entry point of the program that is to receive control.

The name, as stored, can be up to 8 bytes long. If less than 8 bytes long, then the name must be
padded on the right with blanks.

You can write this parameter as an assembler program label or as register (2) through (12).

DE
Specifies the address of the name field within the directory list entry for the entry point. You must
have previously created this list entry for the entry point using the BLDL macro. See “BLDL” on page
181.

You can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. If you enter the XCTL macro and the load module in question is not resident in virtual storage, then

GCS will load the module for you. Then, after the module is run, GCS removes it from storage. This is
satisfactory if you intend to pass control to the module only once.

However, loading a module into virtual storage involves a good deal of overhead processing. If you
intend to pass control to the module more than once, it is far more efficient to start the LOAD macro
once yourself. This avoids all the overhead processing involved in having GCS repeatedly load the
module for you. See “LOAD” on page 298.

2. It is the responsibility of the program issuing the XCTL macro to restore registers 2 through 14 to what
they were when it first received control. Registers 13 and 14 must be restored before the XCTL macro
is issued. Registers 2 through 12 (or a subset thereof) can be restored at the same time or through the
(reg1,reg2) parameter.

The program issuing the XCTL macro can omit the (reg1) or (reg1,reg2) parameters. If it does, then
the XCTL macro will restore no registers. It then becomes the responsibility of the program issuing the
XCTL macro to restore registers 2 through 14 by itself.

3. It is the responsibility of the program receiving control through the XCTL macro to save the registers
that the program that called it was saving.

4. The program called, using the standard format of the XCTL macro, may expect certain parameters
passed to it. Because this program is using the standard format of the macro, it must see to it that
register 1 contains the address of the parameter list, if one is expected.

5. You can use the XCTL macro to pass control to a serially reusable program. If the program is under the
control of another user, then you will be placed in the WAIT state until the other user is finished.

6. If the program called is reentrant, then it is loaded into key 0 storage. This ensures that it is not
accidentally modified or tampered with.

7. When control is passed to the program called, the registers contain the following information.

Register Contents

0-13 Unchanged. Register 1 contains the address of the parameter list, if it was specified.

XCTL

374 z/VM: 7.2 Group Control System

Register Contents

14 The address to which control is to return after the called program completes
execution.

15 The address of the entry point in the program called.

Examples

XCTL (2,12),EP=PROGRAMC

The XCTL macro will first restore registers 2 through 12, which the program issuing it was saving. GCS
assumes that this program restored registers 13 and 14 on its own. Then, control will pass to a program
named PROGRAMC.

TRANSCTL XCTL (4),EPLOC=(6)

Pass control to an entry point whose name can be found at the address in register 6. The XCTL macro
need only restore register 4. GCS assumes that the program issuing the XCTL macro restored registers 2,
3, and 5 through 14. TRANSCTL is the label on this macro.

XCTL DE=BLDLNAM

Pass control to a certain entry point. The system looks for the name of this entry point in the list entry
created for that entry point. The name field of the list entry corresponds with the address of the label
BLDLNAM. GCS assumes that the registers were all restored by the program issuing the XCTL macro.

Return Codes and ABEND Codes
The XCTL macro generates no return codes.

ABEND Code Reason Code Meaning

106 0B An error was found when the supervisor attempted to load the requested
module into virtual storage.

106 0C Insufficient virtual storage was available to load the requested module.

206 Invalid parameter list.

406 The module is marked ONLY LOADABLE.

706 The linkage editor marked the requested load module as NOT
EXECUTABLE.

806 04 Either the program could not be found or no load libraries were defined by
the GLOBAL LOADLIB command.

806 08 An irrecoverable I/O error occurred when the BLDL control program
attempted to search the directory.

806 10 When GCS attempted to close the load library used by the BLDL macro, it
found that the load library had never been opened.

906 The LOAD COUNT or the USE COUNT for the load module have reached
the maximum of 32767.

A06 Your task is already waiting for this serially reusable module.

List Format

XCTL

Chapter 5. GCS Macros 375

label

XCTL
,

( reg1
, reg2

),

EP= symbol

EPLOC=  addr

DE= addr

SF=L

Purpose (List Format)
This format of the macro generates an in-line parameter list, based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

SF=L
Specifies the list format of this macro.

Execute Format

label

XCTL
,

( reg1
, reg2

),

EP= symbol

EPLOC=  addr

DE= addr

,SF=(E,  addr)

,PARAM=( addr)

,VL=  1

,MF=(E,  address)

,SF=(E,  addr),MF=(E,  address)

Purpose (Execute Format)
This format of the macro generates code that executes the function, using a parameter list whose address
you specify. Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

SF=(E,address)
ADDRESS specifies the address of the parameter list to be used by the macro. This is the parameter
list that was generated through the list format of this macro.

You can add or modify values in this parameter list by specifying them in this macro.

MF=(E,address)
ADDRESS specifies the address of the remote parameter list to be used by the called program.

PARAM
Specifies one or more parameter addresses to be passed to the program being called. XCTL builds a
parameter list containing these addresses in the order which you specify them. Then, the address of
this parameter list is passed in register 1 to the program called.

XCTL

376 z/VM: 7.2 Group Control System

You can write these parameters as assembler program labels or as registers (2) through (12).

VL=1
Indicates that the program called expects a variable number of parameters to be passed to it.

You must write this parameter exactly as shown and you can use it only with the PARAM parameter. To
omit the VL=1 parameter is to say that the program called expects a set number of parameters.

XCTL

Chapter 5. GCS Macros 377

XCTL

378 z/VM: 7.2 Group Control System

Chapter 6. QSAM and BSAM Data Management
Service Macros

The QSAM and BSAM data management service macros are presented in alphabetic order in the section.
The GCS macros are described in Chapter 5, “GCS Macros,” on page 157. The VSAM data management
service macros are described in Chapter 7, “VSAM Data Management Service Macros,” on page 417.

Any user applications using branch entries into QSAM and BSAM data management service macros must
be in AMODE 24.

The QSAM and BSAM data management service macros are:

CHECK (BSAM)
CLOSE (BSAM/QSAM)
DCB (BSAM/QSAM)
DCBD (BSAM/QSAM)
GET (QSAM)
NOTE (BSAM)
OPEN (BSAM/QSAM)
POINT (BSAM)
PUT (QSAM)
READ (BSAM)
SYNADAF(BSAM/QSAM)
SYNADRLS (BSAM/QSAM)
WRITE (BSAM).

Using QSAM and BSAM
Because QSAM and BSAM data management service is provided only below the 16MB line, all addresses
provided through QSAM and BSAM data management service macros must adhere to all:

1. Branch entries to QSAM and BSAM support must be in 24-bit address mode (AMODE 24)
2. Calls are accepted in only the 24-bit address mode (AMODE 24)
3. Addresses are accepted in only the 24-bit address mode (AMODE 24)
4. Addresses must point to storage below the 16MB line
5. User exits must reside in virtual storage below the 16MB line.
6. Calls to any of these services cannot be made in AR mode.

© Copyright IBM Corp. 2001, 2023 379

CHECK (BSAM)

Format

label

CHECK decb_address

Purpose

Use the CHECK macro to test the completion of a READ or WRITE operation.

Whenever you enter a READ or WRITE macro, your task needs some way to confirm that the I/O operation
completed successfully.

Use the CHECK macro immediately after each READ and WRITE macro to determine if and how the I/O
operation was completed.

Parameters

decb_address
Specifies the address of the data event control block (DECB) associated with the READ or WRITE
macro you just issued.

The data event control block is created as part of the expansion of the READ or WRITE macro. It
describes the input or output event that you have asked to take place. This control block is discussed
in detail in the entries titled “READ (BSAM)” on page 406 and “WRITE (BSAM)” on page 413.

You can write this parameter as an RX-type address or as register (1) through (12).

Usage
1. The CHECK macro tests for errors in the last READ or WRITE operation involving the specified DECB.

If you enter a READ macro and the END-OF-FILE condition has been raised, then the CHECK macro
gives control to your end-of-file exit routine. This is the routine whose address you specified through
the EODAD parameter of the DCB macro. (If necessary, review the entry “DCB (BSAM/QSAM)” on page
385.)

If you did not specify an end-of-file exit routine or an error occurred after you issued a WRITE
macro, then GCS will give control to the error analysis routine that you specified through the SYNAD
parameter in the DCB macro. If you failed to specify an error analysis routine, then your task will
terminate abnormally.

2. For each READ or WRITE macro you enter you must also enter a CHECK macro. You must enter
the CHECK macro immediately after the READ or WRITE macro with which it is associated. So, the
sequence

READ...READ...WRITE...WRITE...CHECK...CHECK...CHECK...CHECK

is incorrect. But, the sequence

READ...CHECK...READ...CHECK...WRITE...CHECK...WRITE...CHECK

is correct.
3. GCS does not support the MVS parameter DSORG on this macro. If you include it, then an error will

occur.

CHECK (BSAM)

380 z/VM: 7.2 Group Control System

Return Codes and ABEND Codes

ABEND Code Meaning

001 The data control block (DCB) of the file in question identified no SYNAD routine. Your
task was terminated abnormally.

00A An invalid address appeared in the CHECK macro, the data event control block (DECB),
or the data control block (DCB).

CHECK (BSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 381

CLOSE (BSAM/QSAM)
The CLOSE macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 383 and “Execute Format” on page 383.

label

CLOSE (

,,

 dcb_address)

Purpose

Use the CLOSE macro to close a file that your task had previously opened. After a task has finished with a
particular file, the file must be closed.

Parameters

dcb_address
Specifies the address of the data control block associated with your file. For example, it is the address
of the label on the DCB macro associated with your file. See “DCB (BSAM/QSAM)” on page 385.

More than one file can be closed by a single CLOSE macro. A double-comma is required to delimit
each DCB address.

You can write this parameter as an RX-type address or as register (2) through (12).

Usage
1. First, the CLOSE macro restores the data control block associated with your file to its original

condition. That is, the original information you specified for the file in the DCB macro is restored.

The file is then logically disconnected from the main processor.

Finally, the I/O buffer that GCS set up for the file, when its DCB was opened, is released.
2. Only the task that opened the file can close it.

Often a file is being used by more than one task. If it is a BSAM file, then you must enter a CHECK
macro for each data event control block (DECB) associated with the file before you close it. A DECB
is associated with each of the file's I/O events. There may be several DECBs associated with output
activity from several tasks. Therefore, you must make certain that all the tasks have completed their
output to the file before you close it. The CHECK macro confirms whether there are any outstanding
output events pending for the file in question, as from a WRITE macro. See “CHECK (BSAM)” on page
380 and “WRITE (BSAM)” on page 413.

3. If you have access method control blocks (ACBs) that you wish to close, and DCBs, then you can
specify a combination of both in the same CLOSE macro. GCS is able to distinguish the address of one
from the address of the other, if you separate each with a double-comma.

4. The disk directory is not updated until the last file opened with the OPEN dcb address (OUTPUT)
macro on the disk has been closed.

CLOSE (BSAM/QSAM)

382 z/VM: 7.2 Group Control System

Return Codes and ABEND Codes
The CLOSE macro generates no return codes.

ABEND Code Meaning

014 An error occurred during the execution of the CLOSE macro. You will receive a message
explaining this further.

List Format

label

CLOSE

(

,,

 dcb_address)

,MF=L

Purpose (List Format)
This format of the macro generates a data management parameter list based on the parameter values
that you specify. However, this format generates no executable code. Remember that you cannot specify
any of the parameters using register notation.

The parameter list consists of a one-word entry for each DCB in the parameter list. The high-order byte is
reserved while the 3 low-order bytes contain the address of a DCB. The end of the list is marked by setting
the high-order bit of the last entry to 1.

The length of the list generated by the list format of this macro must be equal to the maximum
length required by an execute format macro that refers to the same list. A maximum length list can
be constructed in one of two ways.

1. Enter the macro using the list format with the maximum number of parameters required by the
execute format of the macro that refers to the same list.

2. Use an appropriate number of commas in the list format of the macro to obtain a list of the required
size. For example,

CLOSE (,,,,,,,,,),MF=L

would create a list of five fullwords.

GCS assumes that any entries at the end of the list that are not referred to by the macro in the execute
format were filled in by a previous macro.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

CLOSE

(

,,

 dcb_address)

,MF=(E,  address)

CLOSE (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 383

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify.

Added Parameter (Execute Format)

MF=(E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this macro.

CLOSE (BSAM/QSAM)

384 z/VM: 7.2 Group Control System

DCB (BSAM/QSAM)

Format

label

DCB

BLKSIZE=  absolute_expression ,DDNAME=  label

,DSORG=PS

,EODAD=  address ,EXLST=  address

,LRECL=  nnnnn

,MACRF= R

W

RP

WP

GM

GL

PM

PL

(
1

R

P

,W

P)

(
1

G M

L

,P M

L)

,RECFM= VB

VBA

FB

FBA

F

V

FA

VA

U

UA

,OPTCD=J ,SYNAD=  address

Notes:
1 If you specify the open parentheses, then you must use the closing parentheses.

Purpose

Use the DCB macro to create a Data Control Block for one of your files.

DCB (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 385

For a program to process a file through BSAM or QSAM, a data control block (DCB) must be created for it.
A DCB contains information that defines the characteristics of the data in the file and describes the I/O
device requirements for handling the data.

Usually the DCB macro is issued sometime after the FILEDEF command is issued. The FILEDEF command
provides similar information about your file. Together, the FILEDEF command and the DCB macro provide
all the information necessary to the data control block. It is possible for the DCB macro to provide all
data for the data control block without the help of the FILEDEF command. For more information on the
FILEDEF command see “FILEDEF” on page 94.

Parameters
It is required that the DSORG and MACRF parameters be specified in the DCB macro. The other
parameters may be supplied through the:

• DCB macro
• FILEDEF command
• Physical characteristics of the file
• Direct insertion of a parameter's value or attribute into the data control block by your program. This is

not too difficult, if you take advantage of the DCBD macro. See “DCBD (BSAM/QSAM)” on page 391.

However, you must be careful to insert the value in the DCB in a timely fashion. For example, it would
be useless to insert the value of the DDNAME or the EXLST after issuing the OPEN macro, because that
macro needs those values to process correctly.

BLKSIZE
Specifies the maximum block length for the file, in bytes. For fixed-length, unblocked records, this
parameter specifies the maximum individual record length.

If your file contains variable-length records, then the value specified by this parameter must include
4 extra bytes to accommodate the block descriptor word (BDW). In such a case, you can write this
parameter as any number from 8 to 32756, plus 4 bytes for the BDW. (The OPEN macro simulation
routine will not accept a BLKSIZE of less than eight.)

If your file contains undefined-length records, then the field in the DCB associated with this parameter
(the DCBBLKSI field) can be filled in with the exact value after it is known by your program.
Alternatively, it can be specified in the LENGTH parameter of a READ or WRITE instruction. See “READ
(BSAM)” on page 406 and “WRITE (BSAM)” on page 413.

DDNAME
Specifies the name by which the file in question is known within your program. This parameter
corresponds exactly with the DDNAME parameter in the FILEDEF command.

You can write this parameter as any label of from one to eight alphanumeric characters. The first
character must be alphabetic or national.

DSORG=PS
Indicates that your file consists of physical sequential records.

Because GCS supports only physical sequential file processing, this parameter is required.

EODAD
Specifies the address of a routine that is to receive control when the end of an input file is reached.

It is your responsibility to provide this routine. Obviously you are only required to do so when the
file, whose DCB you are creating, is an input file. You define whether it is an I/O file in the MACRF
parameter as described in the following.

When GCS receives a request for input (for example, through a READ macro) and the next CHECK
macro indicates that the end of the file has been reached, then this EODAD routine automatically
receives control.

If this parameter is omitted and the END-OF-FILE condition is raised in an input file, then control is
given to the routine whose address you specify in the SYNAD parameter, as described in the following.

DCB (BSAM/QSAM)

386 z/VM: 7.2 Group Control System

If you omit both the EODAD and the SYNAD parameters, and the END-OF-FILE condition occurs, then
your task terminates abnormally.

You can write this parameter as an RX-type address or as register (2) through (12).

EXLST
Specifies the address of your program's exit list.

This list contains the address(es) of one or more routines that you want executed during each OPEN
macro that you request. See “OPEN (BSAM/QSAM)” on page 398.

If you specify this parameter, then it is the responsibility of your task to provide and maintain this exit
list. Your task must provide the routines to which it refers. The list must begin on a fullword boundary,
with each entry therein including a fullword. The basic format of the exit list is:

Table 20. Exit List Format

1 Byte 3 Bytes

Code Routine 1's address

Code Routine 2's address

.

Code Routine n's address

The code in the first byte of each word indicates the disposition of the exit routine, whose address
appears in the last 3 bytes. Note that these are the only codes that have meaning to GCS. Any others
are ignored.

Table 21. DCB Exit List Codes

Code Meaning

X'00' INACTIVE routine that is not to be processed.

X'05' ACTIVE routine that is to be processed.

X'80' The last routine in the list. It is considered INACTIVE and is not processed.

X'85' The last routine in the list. It is considered ACTIVE and is processed.

Just before the completion of each OPEN macro that you request, the exit list table is searched, and
each active routine is processed.

You can write this parameter as an RX-type address or as register (2) through (12).

LRECL
Fixed-length record files, this parameter specifies the length, in bytes, of each record. You can write
this as a number from 1 to 32760.

Variable-length record files, this parameter specifies the maximum length of any record in the file. You
can write this as a number from 1 to 32752, plus 4 bytes for the record descriptor word (RDW).

It may happen that you omit this parameter in both the FILEDEF command and the DCB macro. If so,
and if the file already exists, then the current LRECL value is obtained from the actual length of the
file's records. However, if your file is newly created, then its logical record length must be supplied in
one of the ways listed earlier. Otherwise it is considered an error.

MACRF
Specifies the type of macros that you will use to process the file in question. In effect, you use this
parameter to define whether you will treat it as an input file or an output file. Also, you are stating
what mode of data transmission you will use in moving data in to or out of the file.
R

(BSAM) Specifies that the READ macro will be used. See “READ (BSAM)” on page 406.

DCB (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 387

W
(BSAM) Specifies that the WRITE macro will be used. See “WRITE (BSAM)” on page 413.

RP
(BSAM) Specifies that the READ and POINT macros will be used. See “POINT (BSAM)” on page
402.

Specifying the RP parameter gives you the added capability of using the NOTE macro. See “NOTE
(BSAM)” on page 396.

WP
(BSAM) Specifies that the WRITE and POINT macros will be used.

The WP parameter gives you the added capability of using the NOTE macro.

GM
(QSAM) Specifies that the GET macro in MOVE mode will be used. MOVE mode is defined in “GET
(QSAM)” on page 394.

GL
(QSAM) Specifies that the GET macro in LOCATE mode will be used. LOCATE mode is defined in
“GET (QSAM)” on page 394.

PM
(QSAM) Specifies that the PUT macro in MOVE mode will be used. MOVE mode is defined in “PUT
(QSAM)” on page 404.

PL
(QSAM) Specifies that the PUT macro in LOCATE mode will be used. LOCATE mode is defined in
“PUT (QSAM)” on page 404.

RECFM
Specifies the record format of your file.

For an existing file, the currently assigned record format is used unless another is specified. For a new
file whose DCB you are creating, the record format is undefined, by default, unless one is specified.

Select from among the following record formats.

VB
Indicates that the records in your file are variable long, according to the LRECL parameter. It also
indicates that these records are to be blocked according to the BLKSIZE parameter specified here
or in the FILEDEF command.

VBA
Indicates the same as the VB parameter but also indicates that your file contains ANSI control
characters.

FB
Indicates that each record in your file is of a fixed length, according to the LRECL parameter.
Likewise, these records are to be blocked, according to the BLKSIZE parameter as specified here
or in the FILEDEF command.

FBA
Indicates the same as the FB parameter but also indicates that your file contains ANSI control
characters.

F
Indicates that each record in your file is of a fixed length, according to the LRECL parameter.

V
Indicates that the records in your file are variable long, according to the LRECL parameter.

FA
Indicates that your file is composed of fixed-length records that contain ANSI control characters.

VA
Indicates that your file is composed of variable-length records that contain ANSI control
characters.

DCB (BSAM/QSAM)

388 z/VM: 7.2 Group Control System

U
Indicates that the record format of your file is undefined. If the RECFM parameter is omitted, then
the record format of the file is undefined, by default.

UA
Indicates that the record format of your file is undefined. It also indicates that your file contains
ANSI control characters.

OPTCD=J
Indicates that the first byte in the output data stream will be a 3800 table reference character.

Such a character selects a particular character arrangement table for the printing of the output
data stream on a 3800 printing subsystem. You can use this character with ANSI control
characters, if you wish.

SYNAD
Specifies the address of your error routine that is to receive control when an irrecoverable I/O
error occurs.

Under BSAM, this SYNAD routine receives control when the CHECK macro is issued. Under QSAM,
it receives control automatically during the processing of the GET or PUT macro.

If you provide no error routine and an irrecoverable I/O error occurs, then your task terminates
abnormally.

If you provide an error routine and an error occurs, then GCS automatically saves your program's
registers and turns control over to your error routine. You must design your error routine in such
a way that it does not use the register save area pointed to by register 13. This save area is for
your program's registers. If your error routine needs a register save area, it must construct and
maintain one of its own.

Your error routine can issue the RETURN macro, using the address in register 14, to return control
to GCS. If control returns to GCS, then GCS returns control to the problem program, which can
then proceed as though no error occurred. See “RETURN” on page 322.

You can write the SYNAD parameter as an RX-type address or as register (2) through (12).
Remember, your program can change the address in this parameter anytime.

Table 22 on page 389 shows the contents of the registers when your error routine receives control.

Table 22. Register content when error routine receives control.

Register Bits Meaning

0 0-7 Reserved.

0 8-31 For BSAM, the address of the event control block. For QSAM, these bits
are all reset to 0.

1 0 The bit is set to 1 if the error was caused by an input operation.

1 1 The bit is set to 1 if the error was caused by an output operation.

1 2-7 Reserved.

1 8-31 The address of the data control block for the file in question.

2-13 0-31 The contents of the registers that existed before the macro was issued.

14 0-7 Reserved.

14 8-31 The address in the GCS supervisor to which control will return after
your error routine completes processing.

15 0-7 Reserved.

15 8-31 The address of your error routine.

DCB (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 389

Usage
1. The data control block for a BSAM or QSAM file is created during the assembly of the problem

program. The data supplied by the FILEDEF command and the DCB macro are brought together at
execution time to form one complete data control block. The physical characteristics on an existing
disk file may also supply certain information. Among them, they can supply all necessary data for the
DCB.

The FILEDEF command and the DCB macro may supply the value or attribute for the same parameter.
If the value or attribute expressed by the FILEDEF command differs from that expressed by the DCB
macro, then the latter will supersede the former.

2. Any READ or WRITE macro issued by your program must be tested for completion by the CHECK
macro. See “CHECK (BSAM)” on page 380.

3. If you provide a list of exit routine addresses through the EXLST parameter, remember that your
program can dynamically alter the disposition of each exit routine. Merely change the code in the first
byte of the fullword containing the routine's address to indicate the desired disposition. Select from
among the codes listed in Table 21 on page 387.

4. Each of your exit routines must save the contents of register 14. The values in registers 2 through 13
are saved by the GCS supervisor.

5. Your SYNAD routine can end by:

• Passing control to another routine in your program. For example, it could pass control to a program
that closes the file being processed.

• Returning control to GCS, which in turn would return control to your original program. Control would
return to the instruction immediately following the one that caused the error.

If you choose the latter course, you must follow these conventions for saving and restoring registers:

a. When it receives control from GCS, your SYNAD routine must not use the register save area pointed
to by register 13. If necessary, use the SYNADAF macro to obtain the address of a register save area
and message buffer that your SYNAD routine can use.

However, your SYNAD routine must release both this register save area and the message buffer,
through the SYNADRLS instruction, when they are no longer needed. See “SYNADRLS (BSAM/
QSAM)” on page 411 and “SYNADAF (BSAM/QSAM)” on page 409.

b. Your SYNAD routine must preserve the contents of registers 13 and 14 as passed to it by GCS.
Depending on your own requirements, it may also need to save the contents of registers 2 through
12. When control ultimately returns to your original program, registers 2 through 12 will contain
the same values they contained when your SYNAD routine returned control to GCS. GCS does not
restore your program's registers.

6. Note that GCS does not support the MVS parameter LRECL=X on this macro. If you include it, then an
error will occur.

7. When a DCB is used for output, it specifies a record format indicating variable length records. It is the
your responsibility to supply the record length in the Record Descriptor Word (RDW). If this is not done,
the results are unpredictable.

Return Codes and ABEND Codes
The DCB macro generates no return codes and no ABEND codes.

DCB (BSAM/QSAM)

390 z/VM: 7.2 Group Control System

DCBD (BSAM/QSAM)

Format

label

DCBD

DSORG=

(

,
1

BS

PS

QS

)

Notes:
1 You cannot repeat a value. Also, if you specify the open parentheses, then you must use the
closing parentheses. Furthermore, if you specify more than one value, then you must use the
parentheses.

Purpose

Use the DCBD macro to get the symbolic name for each field in a Data Control Block.

For a file to be of any use to you, a data control block (DCB) must be created for it. A DCB contains
information that defines the characteristics of the data in the file and describes the I/O device
requirements for handling the data.

As was explained in the entry titled “DCB (BSAM/QSAM)” on page 385, there are three ways of assigning a
value to a field in a data control block through the:

• DCB macro
• FILEDEF command
• Direct insertion of a parameter's value or attribute into the data control block by your program.

The DCBD macro helps you with the third of these alternatives by producing a road map of the data
control block that your program can follow while inserting certain values therein.

The DCBD macro creates a dummy control section (DSECT) modelled after a real data control block. Each
field in this DSECT is assigned a symbolic name. Each symbolic name can be used as a displacement in an
assembler language instruction to gain access to the corresponding field in the real data control block.

Parameters

DSORG
Specifies the type of real data control block for which you want a DSECT created.

Data control blocks for BSAM files (BS parameter described in the following) and QSAM files (QS
parameter described in the following) are constructed somewhat differently, though they do have
fields in common. Also the PS parameter, described in the following, embraces the characteristics of
both.

If you omit the DSORG parameter, then the DSECT will contain what is called a foundation block. A
foundation block contains fields that are common to all three types of data control blocks but only
those that are common.

You can specify one, two, or all three of the following parameters:

DCBD (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 391

BS
Indicates that the data control block for which you want a DSECT created is associated with a
basic sequential access file.

PS
Indicates that the data control block for which you want a DSECT created is associated with a
physical sequential access file.

QS
Indicates that the data control block for which you want a DSECT created is associated with a
queued sequential access file.

Usage
1. To use the DSECT to find your way around the data control block, simply assign the address of the DCB

to a base register. Then, use the symbolic name of a field in the DSECT as the displacement to the
corresponding field in the data control block.

2. You can use the same DSECT to insert data into more than one data control block. Just assign another
DCB address your base register.

3. You are the one inserting data to the data control block, you must be certain that the data is inserted in
a timely fashion. For example, it would be useless to insert the value of the DDNAME or the EXLST after
issuing the OPEN macro, because that macro needs those values to run properly.

4. The following fields are generated by the DCBD macro:

17(11) DCBDEVT Device type.

26(1A) DCBDSORG Data set organization being used.
 X'40' PS -Physical sequential.

33(21) DCBEODAD End-of-data address.

36(24) DCBRECFM Record format.
 X'80' F - Fixed record length.
 X'40' V - Variable record length.
 X'C0' U - Undefined record length.
 X'10' B - Blocked records.
 X'04' A - ASA control characters.
 X'02' M - Machine control characters.

37(25) DCBEXLST Exit list.

40(28) DCBDDNAM Name of the data definition statement that
 defines the data set associated with the DCB.

42(2A) DCBMACRF Copy of the DCBMACR field used during and
 after OPEN.

50(32) DCBMACR Macro instruction reference before OPEN.
 Byte 1 BSAM - Input
 X'20' R - READ
 X'04' P - POINT
51(33) Byte 2 BSAM - Output
 X'20' W - WRITE
 X'04' P - POINT
50(32) Byte 1 QSAM - Input
 X'20' G - GET
 X'10' M - Move mode.
 X'08' L - Locate mode.
51(33) Byte 2 QSAM - Output
 X'20' P - PUT
 X'10' M - Move mode.
 X'08' L - Locate mode.

52(34) DCBOPTCD Option codes.
 X'01' J - Indicates that the first byte in the output
 data stream will be a 3800 table reference
 character.

57(39) DCBSYNAD Address of user's synchronous error routine.

62(3E) DCBBLKSI Maximum block size.

DCBD (BSAM/QSAM)

392 z/VM: 7.2 Group Control System

82(52) DCBLRECL Logical record length.

92(5C) DCBEOB Address of end of block module.

Return Codes and ABEND Codes
The DCBD macro generates no return codes and no ABEND codes.

DCBD (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 393

GET (QSAM)

Format

label

GET dcb_address

, area_address

Purpose

Use the GET macro to obtain the next logical record of a QSAM file for your program to process.

For a record in a QSAM data file to be processed, it must be transferred from its auxiliary storage device to
main storage.

Parameters

dcb_address
Specifies the address of the data control block (DCB) associated with the QSAM file your program is
processing.

A DCB contains information that defines the characteristics of the data stored in a file and describes
the I/O device requirements for handling the data. You are responsible for having created a DCB for
the file in question through the DCB macro. See “DCB (BSAM/QSAM)” on page 385.

You can write this parameter as an RX-type address or as register (1) through (12).

area_address
Specifies the address of a work area into which GCS will place the next logical record.

This parameter is valid only if you are using the GET macro in MOVE mode. Moreover, it is your
responsibility to provide storage for this work area in your program.

If you omit this parameter while operating in MOVE mode, then GCS assumes the address of the work
area is in register 0. Otherwise you can write this parameter as an RX-type address, as register (0), or
as register (2) through (12).

Usage
1. The GET macro operates in one of two modes, namely MOVE and LOCATE. You declare which mode

is to be used in obtaining records from a file when you create its data control block through the DCB
macro.
MOVE MODE

GCS moves the next logical record of the file directly into the work area specified by the AREA
ADDRESS parameter. The system assumes that you have provided a work area large enough to
accept the largest record that may emerge from the file. If your file consists of variable-length
records, then the work area must be large enough to accept the largest record plus its record
descriptor word.

When the record has been successfully obtained, GCS returns the address of the work area in
register 1.

LOCATE MODE
GCS moves the next logical record of the file to an input buffer. The system then places the length
of the record in the DCBLRECL field of the file's data control block. It then returns the address of
the input buffer in register 1.

GET (QSAM)

394 z/VM: 7.2 Group Control System

You may process the record in the input buffer or move it to a work area.
2. GCS assumes that the file being processed has been properly opened through the OPEN macro. See

“OPEN (BSAM/QSAM)” on page 398.

Return Codes and ABEND Codes
The GET macro generates no return codes.

ABEND Code Meaning

005 Either an invalid address appears in the GET macro, or a required address parameter is
missing.

GET (QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 395

NOTE (BSAM)

Format

label

NOTE dcb_address

Purpose

Use the NOTE macro to obtain the relative position of the last block read or written in a BSAM file.

For many reasons, you may want to know the relative position of the last block you read from or wrote in
a BSAM file. You may want to save the location of one or more of these blocks so that you can return to
them at some later time.

The relative position of the block does not refer to its address on the disk or other such device. Rather, it
refers to the block's position relative to the beginning of the file of which it is a part.

Parameters

dcb_address
Specifies the address of the data control block (DCB) associated with the BSAM file you are
processing.

A DCB contains information that defines the characteristics of the data stored in a file and describes
the I/O device requirements for handling its data. You are responsible for having created a DCB for the
file in question through the DCB macro. See “DCB (BSAM/QSAM)” on page 385.

You can write this parameter as an RX-type address or as register (1) through (12).

Usage
1. Before you enter the NOTE macro, you must confirm that the last I/O operation was completed

successfully. Use the CHECK macro to accomplish this. See “CHECK (BSAM)” on page 380.
2. The NOTE macro returns the record ID (or relative position) of the last block read or written in register

1. This is the position of the record within the file relative to the beginning of the file, not to the
beginning of the auxiliary storage device. The macro stores the record ID in the following format:

NNNz

NNN represents the 3-byte file system record number, and z, a byte of zeros. You must retain this value
in a register or in virtual storage for future reference.

3. You can use the NOTE and POINT macros on any BSAM file. See “POINT (BSAM)” on page 402.
However, you must inform GCS before you do through the MACRF parameter in the DCB macro.

4. GCS handles blocks as a group of records in a variable blocked file. Therefore the NOTE macro, for a
variable blocked file, is passing back the file system record number of the last record read of the block.
For fixed block files the NOTE macro is passing back the file system record of the first record read of
the block.

Return Codes and ABEND Codes

NOTE (BSAM)

396 z/VM: 7.2 Group Control System

ABEND Code Meaning

00A Either you specified an invalid address in the NOTE macro, or an invalid address exists
in the data control block associated with your file.

NOTE (BSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 397

OPEN (BSAM/QSAM)
The OPEN macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 399 and “Execute Format” on page 400.

label

OPEN (

,

 dcb_address ,
INPUT

(INPUT)

OUTPUT

(OUTPUT)

UPDAT

(UPDAT)

)

Purpose

Use the OPEN macro to open a file and prepare it for processing.

Before a program can use a file, they must be logically connected to each other. That is, GCS must be told
where the file is and what its characteristics are. Usually this process is called opening the file.

Parameters

dcb_address
Specifies the address of the data control block associated with the file you want to open. For example,
it is the address of the label on the DCB macro associated with your file. See “DCB (BSAM/QSAM)” on
page 385.

You can write this parameter as an RX-type address or as register (2) through (12).

INPUT
Indicates that your file is to be treated as an input file. Unless otherwise specified, this parameter
applies by default.

OUTPUT
Indicates that your file is to be treated as an output file.

You must specify this parameter if you are creating a new file.

UPDAT
Indicates that you intend to update an already existing file.

Usage
1. Use of the OPEN macro to open a file assumes that the DCB macro has also been issued for that file.
2. The OPEN macro prepares your file for processing, then logically connects it to your program.

First, the information you supplied using the DCB macro and the FILEDEF command are merged into
one data control block. For more information on the FILEDEF command, see “FILEDEF” on page 94.

OPEN (BSAM/QSAM)

398 z/VM: 7.2 Group Control System

Where an existing file is concerned, if any information necessary to the data control block is not
provided by either of these sources, then it is taken from the attributes of the file itself.

Later, the exit routines specified in the DCB macro are executed and the processing method of your file
(INPUT, OUTPUT, or UPDAT) is designated. After a few other details are taken care of, your file is ready
for processing.

3. More than one file may be opened by a single OPEN macro. Just be certain that a comma delimits each
entry in the list and that the entire list is surrounded by parentheses.

4. When choosing from among the INPUT, OUTPUT, and UPDAT parameters, be mindful of what was
specified by the DCB macro in the MACRF parameter. In this respect, the OPEN and DCB macros must
be compatible.

For example, if input macros were specified by the MACRF parameter, then the INPUT parameter must
be applied to the corresponding OPEN macro.

5. Only the task that opened a file can close it.
6. To try to open a file that is already opened, with the same DCB, amounts to issuing a NOP (NO

OPERATION) instruction.
7. It is an error to open a file specifying a DCB address that is not really the address of a data control

block. The results of such an error are unpredictable.
8. If you have access method control blocks (ACBs) that you wish to open, and DCBs, then you can

specify a combination of both in the same OPEN macro. GCS is able to distinguish the address of one
from the address of the other, if you separate each with a comma.

Return Codes and ABEND Codes
The OPEN macro generates no return codes.

ABEND Code Meaning

013 An error occurred during the execution of the OPEN macro. You will receive a message
explaining this further.

List Format

label

OPEN

(

,

dcb_address

,
INPUT

(INPUT)

OUTPUT

(OUTPUT)

UPDAT

(UPDAT)

)

,MF=L

Purpose (List Format)
This format of the macro generates an in-line parameter list based on the parameter values that you
specify. However, this format generates no executable code. Remember that you cannot specify any of the

OPEN (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 399

parameters using register notation. Also, note that only the preceding parameters listed are valid in the
list format of this macro.

The parameter list consists of a one-word entry for each DCB in the parameter list. The high-order byte is
reserved while the 3 low-order bytes contain the address of a DCB. The end of the list is marked by setting
the high-order bit of the last entry to 1.

The length of the list generated by the list format of this macro must be equal to the maximum
length required by an execute format macro that refers to the same list. A maximum length list can
be constructed in one of two ways.

1. Enter the macro using the list format, with the maximum number of parameters required by the
execute format of the macro that refers to the same list.

2. Use an appropriate number of commas in the list format of the macro to obtain a list of the required
size. For example,

OPEN (,,,,,,,,,),MF=L

would create a list of five fullwords.

GCS assumes that any entries at the end of the list that are not referred to by the macro in the execute
format were filled in by a previous instruction.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

OPEN

(

,

dcb_address

,
INPUT

(INPUT)

OUTPUT

(OUTPUT)

UPDAT

(UPDAT)

)

,MF=(E,

(1)

address

)

Purpose (Execute Format)
This format of the macro generates code that executes the function using a parameter list whose address
you specify. Only the preceding parameters listed are valid in the execute format of this macro.

Added Parameter (Execute Format)

MF=(E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

OPEN (BSAM/QSAM)

400 z/VM: 7.2 Group Control System

You can add or modify values in this parameter list by specifying them in this macro.

OPEN (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 401

POINT (BSAM)

Format

label

POINT dcb_address , block_address

Purpose

Use the POINT macro to return to a specified block within a file.

As described in “NOTE (BSAM)” on page 396, the NOTE macro will give you the relative position of the last
block read from or written in a file. You save one or more such locations with the intention of returning to
them at some later time.

Use the POINT macro to return to one of the locations in a BSAM file that you saved through the NOTE
macro. If you then enter a READ or WRITE macro, it is the block to which you have returned that will be
read or written. See “READ (BSAM)” on page 406 and “WRITE (BSAM)” on page 413.

Parameters

dcb_address
Specifies the address of the data control block (DCB) associated with the BSAM file you are
processing.

A DCB contains information that defines the characteristics of the data stored in a file and describes
the I/O device requirements for handling its data. You are responsible for having created a DCB for the
file in question through the DCB macro. See “DCB (BSAM/QSAM)” on page 385.

You can write this parameter as an RX-type address or as register (1) through (12).

block_address
Specifies the address containing the record ID (or relative position) of the block that is to be
processed next.

The record ID must be stored in a fullword on a fullword boundary.

You can write this parameter as an RX-type address, as register (0), or as register (2) through (12).

Usage
1. Before you enter the POINT macro, you must confirm that the last I/O operation was completed

successfully. Use the CHECK macro to accomplish this. See “CHECK (BSAM)” on page 380.
2. The POINT macro processes no file blocks. It merely positions a pointer to the block that is to be

processed next.
3. The NOTE macro returns the record ID (or relative position) of the last block read or written in register

1. This is the position of the record within the file relative to the beginning of the file, not to the
beginning of the auxiliary storage device. The macro stores the record ID in the following format:

NNNz

NNN represents the 3 byte file system record number, and z, a byte of zeros. Presumably you retained
this value in a register or in virtual storage.

4. Usually, the low-order byte of the record ID is reset to 0. This indicates that the block to be affected by
the next I/O instruction is the one to which the record ID points. If you set the low-order byte of the

POINT (BSAM)

402 z/VM: 7.2 Group Control System

record ID to 1, then you indicate that the block following the block to which the record ID points is to
be processed.

5. If you are processing an output BSAM file, then you should enter one last WRITE macro before you
close the file. This ensures that any altered block is written in the file.

Return Codes and ABEND Codes

ABEND Code Meaning

00A You specified an invalid address in the POINT macro.

POINT (BSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 403

PUT (QSAM)

Format

label

PUT dcb_address

, area_address

Purpose

Use the PUT macro to write the next logical record in a QSAM file.

Parameters
dcb_address

Specifies the address of the data control block (DCB) associated with the QSAM file your program is
processing.

A DCB contains information that defines the characteristics of the data stored in a file and describes
the I/O device requirements for handling its data. You are responsible for having created a DCB for the
file in question through the DCB macro. See “DCB (BSAM/QSAM)” on page 385.

You can write this parameter as an RX-type address or as register (1) through (12).

area_address
Specifies the address of a work area from which GCS will obtain the next logical record it will write in
the file.

This parameter is valid only if you are using the PUT macro in MOVE mode. It is your responsibility to
provide storage for this work area in your program.

If you omit this parameter while operating in MOVE mode, then GCS assumes the address of the work
area is in register 0. Otherwise you can write this parameter as an RX-type address, as register (0), or
as register (2) through (12).

Usage
1. The PUT macro operates in one of two modes, namely MOVE and LOCATE. You declare which mode is

to be used in writing records in a file when you create its data control block through the DCB macro.
MOVE MODE

GCS moves the next logical record to be written in the file from the work area specified by the
AREA ADDRESS parameter to an output buffer. From there, the system moves the record to the
auxiliary storage device containing the QSAM file in question. It then returns the address of the
output buffer in register 1.

LOCATE MODE
The moment you enter the PUT macro, while operating in LOCATE mode, GCS writes in the QSAM
file the last record you built in the output buffer. It then returns the address of the next available
output buffer to you in register 1. It is at this address where your program builds the next record
to be written in the file. The system does not write this record in the file until you enter the PUT
instruction again.

2. GCS assumes that the file being processed has been properly opened through the OPEN macro. See
“OPEN (BSAM/QSAM)” on page 398.

PUT (QSAM)

404 z/VM: 7.2 Group Control System

Return Codes and ABEND Codes
The PUT macro generates no return codes.

ABEND Code Meaning

005 Either an invalid address appears in the PUT instruction, or a required address
parameter is missing.

PUT (QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 405

READ (BSAM)
The READ macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 407 and “Execute Format” on page 408.

label

READ decb_name ,SF,  dcb_address , area_address

, length

,'S'

Purpose

Use the READ macro to retrieve a block of data from a BSAM disk or reader file and place it into a
specified area of your virtual storage.

When obtaining input from a file, your application is responsible for blocking and unblocking the data.

Parameters

decb_name
Specifies the label that you want applied to the data event control block.

A data event control block (DECB) is created within the expansion of the READ macro. It contains
information that describes the input event you want to effect. The DECB will be defined in detail later.
As the DECB expands within the macro, requires a label which you must supply. You will use this label
to access the DECB itself.

You must write this parameter as an assembler program label.

SF
Indicates that a usual, sequential, and forward retrieval access method will be used in obtaining the
block from your file.

This is the only method of extracting data from a BSAM file that GCS supports, the SF parameter is
required and must be written exactly as shown.

dcb_address
Specifies the address of the data control block (DCB) associated with the BSAM file you are
processing.

A DCB contains information that defines the characteristics of the data stored in a file and describes
the I/O device requirements for handling its data. You are responsible for having created a DCB for the
file in question through the DCB macro. See “DCB (BSAM/QSAM)” on page 385.

You can write this parameter as an RX-type address or as register (1) through (12).

area_address
Specifies the address in your virtual storage where you want the input block placed.

It is your program's responsibility to provide and manage this area of storage.

You can write this parameter as an assembler program label or as register (2) through (12).

length
Specifies the number of bytes you want extracted from your file.

READ (BSAM)

406 z/VM: 7.2 Group Control System

GCS begins extracting the data starting with the next available record, as indicated by the data control
block (DCB) associated with your file. This data will be placed in virtual storage starting at the address
specified by the AREA ADDRESS parameter.

You can write this parameter as any number from 1 to 32760.

'S'
Indicates that the number of bytes to be extracted from your file will be the number found in the
DCBLRECL field of the file's DCB.

This is the same number you specified previously for the LRECL parameter in the FILEDEF command
or the DCB macro. See “FILEDEF” on page 94, and “DCB (BSAM/QSAM)” on page 385.

Usage
1. Control may return to your program before the READ macro completes processing. Therefore, you

must enter the CHECK macro after each READ instruction to be certain that the latter executed
properly. By using the CHECK macro you confirm whether the input from your file has succeeded,
failed, or is incomplete. See “CHECK (BSAM)” on page 380.

2. If you specified the UPDAT parameter in the OPEN instruction that opened your file, then both the
READ and WRITE macros must use the same DECB name. See “OPEN (BSAM/QSAM)” on page 398 and
“WRITE (BSAM)” on page 413.

3. The data event control block is created as part of the READ macro expansion. It defines the input event
using the following format.

0 (0) ECB

4 (4) Type of I/O request, thus:
 0000 1000 ---> READ

6 (6) Length of the block being extracted

8 (8) Address of the data control block (DCB)

12 (C) Address in your virtual storage where the block is to be placed

16 (10) Zeros

The address of the logical input block is placed in the DECB at 12 (C). It is through this address that
you manage the data in the block.

Return Codes and ABEND Codes
The READ macro generates no return codes.

ABEND Code Meaning

001 An I/O error occurred but no SYNAD routine address was found in the file's DCB.

005 Either you specified an invalid address, or an address was missing.

010 You specified a parameter not supported by GCS.

List Format

READ (BSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 407

label

READ decb_name ,SF

, dcb_address , area_address

, length

,'S'

,MF=L

Purpose (List Format)
This format of the macro generates an in-line DECB based on the parameter values that you specify.
However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

READ decb_name ,SF

, dcb_address , area_address

, length

,'S'

,MF=E

Purpose (Execute Format)
This format of the macro generates code that executes the function. The access method uses the DECB
whose name you specify as the parameter address.

Added Parameter (Execute Format)

MF=E
Specifies the execute format of this macro.

READ (BSAM)

408 z/VM: 7.2 Group Control System

SYNADAF (BSAM/QSAM)

Format

label

SYNADAF ACSMETH= BSAM

QSAM ,PARM1=( reg1)

,PARM2=( reg2)

Purpose

Use the SYNADAF macro to obtain a message and an error code that explain an I/O error.

During input or output, errors sometimes occur. When they do, one of two things happens:

• Your task ends abnormally
• Your SYNAD routine receives control, if you have provided one.

A SYNAD routine is a program that you provide to analyze the cause of any permanent I/O error your task
meets. When you define the data control block (DCB) associated with a file, you can also identify a SYNAD
routine for that file. See “DCB (BSAM/QSAM)” on page 385.

You can write your SYNAD routine to determine the cause and type of the error by examining the:

• Contents of the registers at the moment of error
• Data event control block (DECB) associated with the I/O event that caused the error (this applies only to

BSAM files)
• Exceptional condition code
• Standard status and sense indicators.

Often it is simpler to enter the SYNADAF macro, which will return a message and error code to you
describing the I/O error.

Parameters

ACSMETH
Specifies the access method you are using on the file in question. Specify either BSAM or QSAM.

PARM1
Specifies the number of the register containing the information that was in register 1 when your
SYNAD routine received control.

When the error occurred, GCS gained control. After it attempted to recover from the error, it passed
control to your SYNAD routine. In so doing, GCS passed the following information to your routine in
register 1.

• Status bits
• Flag bits
• The address of the data control block (DCB) associated with the file being processed when the error

occurred.

If you moved this data to another register, then write the number of that register, surrounding it with
parentheses. If you omit this parameter, then GCS assumes that you left this data in register 1.

SYNADAF (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 409

PARM2
Specifies the number of the register containing the information that was in register 0 when your
SYNAD routine received control.

When GCS passed control to your SYNAD routine, it also passed certain status and control information
in register 0.

If you moved the data to another register, then write the register number, surrounding it with
parentheses. If you omit this parameter, then GCS assumes that you left this data in register 0.

Usage
1. The SYNADAF macro returns the address of a buffer to you in register 1. This buffer contains a

120-byte message, describing the result of its error analysis. The format of this message is:

Bytes Contents

0-43 BLANK. You can add your own comments to the message in this field, if you wish.

44-83 GCTSER306S INPUT ERROR nnn ON ddname OR GCTSER307S OUTPUT ERROR nnn
ON ddname

nnn specifies an I/O error code. For more information on the explanation of
messages GCT306S or GCT307S, see z/VM: Other Components Messages and Codes.

ddname specifies the name of the file in question.

84-119 BLANK.

2. The message describing the SYNADAF macro's error analysis is a variable-length record containing
EBCDIC data. If you wish, you can have this message printed.

Return Codes and ABEND Codes
The SYNADAF macro generates no return codes.

ABEND Code Meaning

144 The high-order byte of register 15 should have contained X'02' or X'03' on entry to the
SYNADAF SVC routine. It did not.

244 The caller provided an invalid save area address in register 13.

344 Either the DCB address or the DCB DEB address was invalid.

444 The DECB address was invalid.

SYNADAF (BSAM/QSAM)

410 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2

SYNADRLS (BSAM/QSAM)

Format

label

SYNADRLS

Purpose

Use the SYNADRLS macro to release the message buffer and save areas created by the SYNADAF macro.

When you enter the SYNADAF macro from your SYNAD routine, a message buffer, parameter save area,
and register save area are created. See “SYNADAF (BSAM/QSAM)” on page 409.

These storage areas must be released after they are no longer needed. The values contained in the
registers before you issued the SYNADAF macro must be restored. Use the SYNADRLS macro to effect
this.

Parameters
The SYNADRLS macro accepts no parameters.

Usage
• Before you enter the SYNADRLS macro, be certain that register 13 contains the address of the register

save area provided by the SYNADAF macro. This save area contains the values of the registers that were
present before you issued the SYNADAF macro.

The SYNADRLS macro restores these registers and releases the message buffer, parameter save area,
and register save area.

The SYNADRLS macro then loads register 13 with the address of another save area. This area contains
the values of the supervisor's registers that were present when it passed control to your SYNAD routine.
The third word of this save area is reset to zero, because the next area in the chain was just released.

Everything is then restored to its condition before you enter the SYNADAF macro.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in the low-order byte of
register 0.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

X'08' 8 Function completed unsuccessfully, and nothing has changed. Either
register 13 does not point to the save area provided by the SYNADAF
macro, or this save area is improperly chained to the save area
containing the supervisor's registers.

SYNADRLS (BSAM/QSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 411

ABEND Code Meaning

944 Either the address of SYNADAF's save area or the pointer to the caller's save area is
invalid.

SYNADRLS (BSAM/QSAM)

412 z/VM: 7.2 Group Control System

WRITE (BSAM)
The WRITE macro is available in standard, list and execute formats.

Standard Format

See also “List Format” on page 414 and “Execute Format” on page 415.

label

WRITE decb_name ,SF,  dcb_address , area_address

, length

,'S'

Purpose

Use the WRITE macro to add or replace a block of data in a disk file, or to add a block to a punch or printer
file.

When using BSAM to place output in a file, your application is responsible for blocking and unblocking the
data.

Parameters

decb_name
Specifies the label that you want applied to the data event control block.

A data event control block (DECB) is created within the expansion of the WRITE macro. It contains
information that describes the output event you want to effect. The DECB will be defined in detail
later. As the DECB expands within the macro, it requires a label which you must supply.

You must write this parameter as an assembler program label.

SF
Indicates that a usual, sequential, forward retrieval access method will be used in placing the block in
your BSAM file.

This is the only method of placing data in a BSAM file that GCS supports, the SF parameter is required
and must be written exactly as shown.

dcb_address
Specifies the address of the data control block (DCB) associated with the file you are processing.

A DCB contains information that defines the characteristics of the data stored in a file and describes
the I/O device requirements for handling its data. You are responsible for having created a DCB for the
file in question through the DCB macro. See “DCB (BSAM/QSAM)” on page 385.

You can write this parameter as an RX-type address or as register (1) through (12).

area_address
Specifies the address in your virtual storage that contains the output block you want placed in your
file.

It is your program's responsibility to provide and manage this area of storage.

You can write this parameter as an assembler program label or as register (2) through (12).

length
Specifies the number of bytes that you want placed in your file.

WRITE (BSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 413

GCS will begin the block at the next available record in your file, as indicated by the file's data control
block (DCB). The data placed there will be taken from the area specified by the AREA ADDRESS
parameter.

You can write this parameter as any number from 1 to 32760.

'S'
Indicates that the number of bytes to be placed in your file will be the number found in the DCBBLKSI
field of the file's DCB.

Usage
1. Control may return to your program before the WRITE macro completes execution. Therefore, it

is required that you enter the CHECK macro after each WRITE macro to be certain that the latter
executed properly. By using the CHECK macro you confirm whether the output to your file has failed or
is incomplete. See “CHECK (BSAM)” on page 380.

2. If you specified the UPDAT parameter in the OPEN macro when you opened your file, then both the
READ and WRITE macros must use the same DECB name. See “OPEN (BSAM/QSAM)” on page 398 and
“READ (BSAM)” on page 406.

3. If RECFM=FB (fixed block) it is the user's responsibility to ensure that the blocksize (DCBBLKSI) field
in the DCB is correct before the write is issued. If the write will be for a short block, see the DCBD
macro (see “DCBD (BSAM/QSAM)” on page 391) for how to map the DCB to update the DCBBLKSI field
with the correct value.

4. The data event control block (DECB) is created as part of the WRITE macro expansion. It defines the
output event using the following format.

Code Meaning

0 (0) ECB

4 (4) Type of I/O request, thus:
 0000 0010 ---> WRITE

6 (6) Length of the block being written

8 (8) Address of the data control block (DCB)

12 (C) Address in your virtual storage where the block can be found

16 (10) Zeros

Return Codes and ABEND Codes
The WRITE macro generates no return codes.

ABEND Code Meaning

005 Either you specified an invalid address or an address was missing.

List Format

WRITE (BSAM)

414 z/VM: 7.2 Group Control System

label

WRITE decb_name ,SF

, dcb_address , area_address

, length

,'S'

,MF=L

Purpose (List Format)
This format of the macro generates an in-line DECB, based on the parameter values that you specify.
However, this format generates no executable code. Remember that you cannot specify any of the
parameters using register notation.

Added Parameter

MF=L
Specifies the list format of this macro.

Execute Format

label

WRITE decb_name ,SF

, dcb_address , area_address

, length

,'S'

,MF=E

Purpose (Execute Format)
This format of the macro generates code that executes the function. The access method uses the DECB
whose name you specify.

Added Parameter (Execute Format)

MF=E
Specifies the execute format of this macro.

WRITE (BSAM)

Chapter 6. QSAM and BSAM Data Management Service Macros 415

WRITE (BSAM)

416 z/VM: 7.2 Group Control System

Chapter 7. VSAM Data Management Service Macros

The VSAM data management service macros are presented in alphabetic order in the section. Additional
information about VSAM is in Appendix B, “Using VSAM,” on page 517. The GCS macros are described
in Chapter 5, “GCS Macros,” on page 157. The QSAM and BSAM data management service macros are
described in Chapter 6, “QSAM and BSAM Data Management Service Macros,” on page 379.

Any user applications using branch entries into VSAM data management service macros must be in
AMODE 24.

The VSAM data management service macros are:

ACB
BLDVRP
CHECK
CLOSE
DLVRP
ENDREQ
ERASE
EXLST
GENCB
GET
MODCB
OPEN
POINT
PUT
RPL
SHOWCAT
SHOWCB
TESTCB
WRTBFR.

Using VSAM
Because VSAM data management service is provided only below the 16MB line, all addresses provided
through VSAM data management service macros must adhere to all:

• Branch entries to VSAM support must be in 24-bit address mode (AMODE 24)
• Calls are accepted in only the 24-bit address mode (AMODE 24)
• Addresses are accepted in only the 24-bit address mode (AMODE 24)
• Addresses must point to storage below the 16MB line
• User exits must reside in virtual storage below the 16MB line.
• Calls to any of these services cannot be made in AR mode.
• Using VSAM compression services, VSAM will compress and expand a KSDS, ESDS, or VRDS VSAM

dataset to conserve DASD resources.

© Copyright IBM Corp. 2001, 2023 417

ACB

Format

label

ACB

MACRF= (Options) ,BUFND=  number

,BUFNI=  number ,BUFSP=  number ,DDNAME=  ddname

,EXLST=  address ,MAREA=  address

,MLEN=0

,MLEN=  number

,PASSWD=  address

,STRNO=1

,STRNO=  number

Options

Group A

,NDF

1
,DFR

Group B Group C

,NRM

,AIX

,NRS

,RST
2

,NSR

3
,LSR

,NUB

,UBF

Group A
,KEY

,ADR ,CNV

Group B
,SEQ

,DIR ,SKP

Group C
,IN

,OUT

Notes:
1 DFR is mutually exclusive with NSR MACRF options.
2 RST is mutually exclusive with IN MACRF options.
3 LSR is mutually exclusive with UBF or RST MACRF options.

Purpose

Use the ACB macro to create an ACB and define certain characteristics of your file.

An access method control block (ACB) defines certain characteristics of a file that you intend to process
through VSE/VSAM. When the file is opened, other characteristics of the file that you defined through
the DLBL command are merged with the ACB to complete the picture. For more information on the DLBL
command, see “DLBL” on page 64.

ACB

418 z/VM: 7.2 Group Control System

This discussion of the ACB macro deals only with those matters that involve GCS.

Parameters

MACRF
Indicates how you intend to access the file.

You must specify all of the types of processing you intend to perform on the file, whether you intend
to perform them concurrently or alternately. The parameters you choose must be valid for the file in
question. For example, if you specify keyed access for an entry-sequenced file, then you cannot open
that file, much less process it.

Check the preceding format box. The processing options are arranged in groups, each with a value
that will be assumed by default should you forget to specify from that group. Because they are not
positional parameters, they can be specified in any order.

KEY
Indicates access to a key-sequenced or relative record file.

Keys will be relative record numbers used as search arguments, and sequential access will be by
key or relative record number.

ADR
Indicates addressed access to a key-sequenced or entry-sequenced file.

RBAs will be used as search arguments, and sequential access is by entry sequence.

CNV
Indicates access will be to the entire contents of a control interval rather than to an individual
record.

NDF
Indicates that any WRITE macro will not be deferred for a direct PUT macro.

DFR
Specifies that physically writing the I/O buffers is deferred when possible.

SEQ
Indicates sequential access to a key-sequenced, entry-sequenced, or relative record file.

DIR
Indicates direct access to a key-sequenced, entry-sequenced, or relative record file.

SKP
Indicates skip-sequential access to a key-sequenced or relative record file.

This is valid only with keyed access in a forward direction.

IN
Indicates retrieval of records from key-sequenced, entry-sequenced, or relative record files.

This is not a valid form of processing for an empty file.

OUT
Indicates several things:

• Storage of new records in a key-sequenced, entry-sequenced, or relative record file. This is not
allowed with addressed access to a key-sequenced file.

• Update of new records in a key-sequenced, entry-sequenced, or relative record file.
• Deletion of records from a key-sequenced or relative record file.
• Retrieval of records as described under the IN parameter. To select the OUT parameter is to

select the IN parameter, by implication.

NRM
Indicates that the file to be processed is the one specified by the DDNAME parameter.

ACB

Chapter 7. VSAM Data Management Service Macros 419

AIX*
Indicates that the object to be processed is the alternate index of the path specified by the
DDNAME parameter, rather than the base cluster through the alternate index.

NRS
Indicates that the file is not reusable.

RST
Indicates that the file is reusable.

Note that the OPEN macro resets the file's catalog information to its original status. That is, it
resets it to the status it had before the file was open the first time. See “OPEN” on page 465. Also,
the high-used RBA is reset to zero.

The file must have been defined with the REUSE attribute for RST to be effective. Although the file
is not erased, you can handle it as though it were a new file, and use it as a work file. When the
OPEN macro carries out the reset operation, this parameter is equal to the OUT option. DISP=NEW
specified on the DLBL command is equal to selecting this parameter and will override the NRS
parameter.

NSR
Indicates that the resources are not shared.

LSR
Specifies that the resources are shared. This also indicates a VSAM resource pool will be provided
opening this ACB.

NUB
Indicates that VSAM will manage the I/O buffers.

UBF
Indicates that the application will manage the I/O buffers.

The work area specified by the RPL or GENCB macros will be, in effect, the I/O buffer. The
contents of a control interval is transmitted directly between the work area and DASD. This
parameter is valid only when the MACRF=CNV and OPTCD=MVE parameters are specified in the
RPL macro. See “RPL” on page 472 and “GENCB” on page 437.

BUFND
Specifies the number of I/O buffers used in transmitting data between virtual and auxiliary storage.

The size of a buffer corresponds to the size of a control interval in the data component. The minimum
number you can specify is 1 plus the number specified by the STRNO parameter. If you omit the
STRNO parameter, then the value of the BUFND parameter must be at least 2 because the default for
the former is 1.

The default for the BUFND parameter is the minimum number required to process your file.

BUFNI
Specifies the number of I/O buffers to be used for transmitting the contents of index entries between
virtual and auxiliary storage during keyed access.

The size of this buffer corresponds to the size of a control interval in the index. The minimum number
you can specify is 1 plus the number specified by the STRNO parameter. If you omit the STRNO
parameter, then the value of BUFNI parameter must be at least 2 because the default for the former is
1.

The default for the BUFNI parameter is the minimum number required to process your file.

BUFSP
Specifies the maximum number of bytes of virtual storage to be used for the data and index I/O
buffers.

This parameter must be at least as large as the buffer size recorded in the catalog entry for your file.
If the number you specify for this parameter is too small, then VSAM overrides it and uses the buffer
size recorded in the catalog. VSAM, however, does not inform you of this.

ACB

420 z/VM: 7.2 Group Control System

If you omit this parameter, then the size of this buffer will be the largest of the following, by default:

• The buffer size specified in the catalog.

This buffer size was specified through the BUFFERSPACE parameter in the Access Method Services
DEFINE command. If this parameter was omitted when your file was defined, then a default value
was assigned to it. This default value, the minimum amount of buffer space allowed by VSAM, is
enough to hold two data control intervals and one index control interval.

• The buffer size determined from the BUFND and BUFNI parameters.

You can also specify buffer space through the BUFSP parameter on the DLBL command that identifies
your file. This value overrides the BUFSP parameter in the ACB macro. It overrides the BUFFERSPACE
parameter in the DEFINE command if the latter is smaller.

If the values you specify for the BUFND, BUFNI, and BUFSP parameters are inconsistent, then VSAM
increases the number of buffers to conform with the size of the buffer area. If the value in the BUFSP
parameter is greater than the minimum buffer size required to process your file and greater than the
values specified in the BUFND and BUFNI parameters, then the extra space is allocated between the
data and index buffers if the MACRF parameter specifies:

• Direct processing, then the values in the BUFND and BUFNI parameters take effect. Any left-over
space is used for index buffers.

• Sequential processing, then the values in the BUFND and BUFNI parameters take effect. Space for
one additional index buffer is allocated. Any left-over space is used for data buffers. If any left-over
space remains that is insufficient to hold another data buffer, then it is used for another index buffer.

If the value in the BUFSP parameter is greater than the minimum required to process your file,
but less than those of the BUFND and BUFNI parameters, then enough buffer space will be made
available to conform to the latter parameters.

If you provide your own pool of I/O buffers for control interval processing, then the BUFSP, BUFND,
and BUFNI parameters have no effect. In such a case, the AREA and AREALEN parameters of the RPL
macro determine the size of the user buffer area. See “RPL” on page 472.

DDNAME
Specifies the name of the file you wish to process.

This name corresponds to that specified in the DDNAME parameter of the DLBL command associated
with the file. If you omit this parameter, then you can supply it through the MODCB macro. See
“MODCB” on page 453.

This name must be from one to seven characters long.

EXLST
Specifies the address of a list of exit routine addresses.

This is the same list that you created through the EXLST or GENCB macro. See “EXLST” on page 434
or “GENCB” on page 437.

If you used the EXLST macro to create this list, then you can write this parameter as the label on that
instruction. If you used the GENCB macro, then you can write this parameter as the address that the
GENCB macro returned to you in register 1 or as the label associated with an area into which you have
placed this address.

If you omit this parameter, then GCS assumes that you have supplied no exit routines.

MAREA
Specifies the address of an area into which GCS will place any console messages generated during
processing of your file.

This area can be used by you or your exit routines to analyze any errors or problems that may arise.

MLEN
Specifies the length, in bytes, of the area whose address is given by the MAREA parameter.

The value of this parameter is zero, by default. Its maximum value is 32K.

ACB

Chapter 7. VSAM Data Management Service Macros 421

PASSWD
Specifies the address of a field that contains the highest level password required for the types of
access indicated by the MACRF parameter.

The first byte of the field contains the binary length of the password. Eight bytes is the maximum
length. If this byte is zero, it means that you are providing no password.

If your file is password protected and you provide none, then VSAM will ask you to provide the
password when it opens the file.

STRNO
Specifies the number of requests you will make that will require concurrent file positioning.

A request is defined by a given request parameter list or a chain thereof. If records are written in an
empty file, then the value of this parameter is ignored and replaced by the value 1.

If you omit this parameter, then its value is 1, by default.

Usage
1. The ACB macro creates an access control block at assembly time. Contrast this with the GENCB macro

which generates an ACB at execution time. See “GENCB” on page 437.
2. See Appendix B, “Using VSAM,” on page 517.
3. LSR cannot be used with a SHAREOPTION(4) file and cannot be used to initially load an empty file.
4. Appropriate macro MNOTES notify the application programmer of syntax errors in coding the ACB

macro.

Return Codes and ABEND Codes
The ACB macro generates no return codes and no ABEND codes.

ACB

422 z/VM: 7.2 Group Control System

BLDVRP

Format

label

BLDVRP BUFFERS=(

,
1

1
 size( number)) ,STRNO=  number

,KEYLEN=255

,KEYLEN=  length ,TYPE=LSR

Notes:
1 The maximum number of entry pairs is 50.

Purpose

Use the BLDVRP macro to build a resource pool before you open any file that uses Local Shared
Resources (LSR).

After a resource pool exists for a virtual machine, every OPEN of an ACB that indicates use of LSR will
result in use of the resource pool to provide I/O buffers, I/O control blocks, and channel programs as
required.

To specify the BUFFERS, KEYLEN, and STRNO operands of the BLDVRP macro, you must have knowledge
of the size of the control intervals, data records, and key fields in the components that will use the
resource pool. You must also know the way the components are processed. The SHOWCAT macro can be
used to get that information before the file is opened.

Note:

1. The SHOWCB macro lets you collect statistics about the usage of buffer pools. This information can
be used in following runs of your program to optimize the characteristics of the resource pool to the
program requirements.

2. VM/VSAM will support only one resource pool within a virtual machine.

Parameters

BUFFERS=
Specifies the size and the number of buffers for each buffer pool in the resource pool. The number
of buffer pools in the resource pool is implied by the number of size(number) pairs you specify. You
should usually set the buffer sizes equal to the control interval sizes of the file objects you want to
process.

Note: If you do not specify the exact buffer size required by a component of the file, VSAM will use
buffers from the buffer pool with the next larger buffer size.

size
Specifies the number of bytes in the buffer (512, 1024, 2048, 4096, 8192, 12288, 16384, 20480,
24576, 28672, or 32768).

Note: The macro interface does not support use of the K notation in specifying buffer size.

BLDVRP

Chapter 7. VSAM Data Management Service Macros 423

number
Specifies the number of buffers of a given size which must be at least three.

STRNO
Specifies the maximum number of requests that may be issued concurrently for all of the files that are
to share the resource pool. The number must be at least one and no more than 255.

Note: To make sure you are using the resource pool effectively you can enter SHOWCB
ACB=addr,FIELDS=(STRMAX) in your application program. Depending on the result, you may want
to redefine STRNO=number the next time you build your resource pool.

KEYLEN
Specifies the maximum key length (relative record number) of the files that are to share the resource
pool. The default is 255.

The key length of a relative record file is four. If the buffer pool contains buffers for entry-sequenced
files only, specify KEYLEN=0. To find out the key length of a file, enter the SHOWCAT macro for that
file.

TYPE=LSR
Specifies the resource pool is used for Local Shared Resources.

Usage

1. When using this macro you must make sure that register 13 contains the address of a 72-byte save
area. If you enter the macro from within one of your exit routines (LERAD or SYNAD) you must provide
a second 72-byte save area because the original one is still in use by the external VSAM routine.

2. When VSAM returns to the application after a BLDVRP request, register 15 contains one of the
following completion codes:

Completion Code Meaning

0 VSAM completed the request successfully.

4 A resource pool already exists for this virtual machine.

8 An error was detected while VSAM routines were being loaded.

16 • An unsupported parameter was specified on macro.
• Either the FIX keyword or TYPE=GSR was specified on the macro call.

20 STRNO was specified as less than one or greater than 255.

24 Size or number specified with BUFFERS is invalid.

BLDVRP

424 z/VM: 7.2 Group Control System

CHECK

Format

label

CHECK RPL= address

Purpose

Use the CHECK macro to place your task in the WAIT state while it waits for a certain VSAM request to
take place.

Parameters

RPL
Specifies the address of the request parameter list (RPL) associated with the VSAM request in
question.

This is the same request parameter list that you created through the RPL macro. See “RPL” on page
472.

You can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. VSAM requests are associated with these macros:

• ENDREQ
• ERASE
• GET
• POINT
• PUT.

If you specified asynchronous processing (OPTCD=ASY) in the RPL macro, enter the CHECK macro
after each of these instructions.

2. The request parameter list associated with your VSAM request can specify the ASY option.
This indicates that you want your request processed asynchronously. Remember, though, that
asynchronous processing is merely simulated by GCS. Disk I/O in GCS is always synchronous.

3. See Appendix B, “Using VSAM,” on page 517.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15. If the return
code is 0, 8, or 12, then the macro also returns a feedback code in the FDBK field of the RPL associated
with the request. This field can be checked through the SHOWCB or TESTCB macros. See “SHOWCB” on
page 480 or “TESTCB” on page 490.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Function completed successfully.

CHECK

Chapter 7. VSAM Data Management Service Macros 425

Hex
Code

Decimal
Code

Meaning

X'04' 4 Your request was not accepted. The RPL in question is active for
another request.

X'08' 8 A logical error occurred.

X'0C' 12 A physical error occurred.

ABEND Code Meaning

035 An error occurred in the macro associated with the request. The message preceding
the ABEND code explains the problem further.

03B An invalid address was detected in a VSAM control block or a VSAM parameter list.
This means that your program tried to use an address to which it has no access.

CHECK

426 z/VM: 7.2 Group Control System

CLOSE

Format

label

CLOSE (

,,

 acb_address)

,TYPE=T

Purpose

Use the CLOSE macro to close a VSAM file that your program has finished with. When a file is no longer
needed by your program, the file must be closed. Closing a file involves recording pending updates in the
file, logically disconnecting it from the program that was processing it, freeing storage that is no longer
needed, updating the catalog with any changes in the attributes of the file, and restoring control blocks
to their condition before the file was opened. This discussion of the CLOSE macro deals only with those
matters that involve GCS.

Parameters

acb_address
Specifies the address of the access method control block (ACB) associated with the file you wish to
close.

You can specify the address of more than one, and thereby close more than one file. If you do specify
more than one ACB address, be certain to separate each by a comma.

You can write this parameter as an assembler program label or as register (2) through (12). If you
specify the address using a register, then be certain that each register in the list is surrounded by a
pair of parentheses. And, always be certain that the list itself is surrounded by a pair of parentheses.

TYPE=T
Indicates that you want all closing operations performed on the file in question, except that you do not
want your program logically disconnected from the file.

Usage
1. The CLOSE macro completes any outstanding operations on a file. For example, the CLOSE macro may

cause VSAM to write any index or data buffers that have been updated but not yet recorded in the file.
2. The CLOSE macro updates the catalog with any changes made to the attributes of the file, including

pointers that mark the end of the file and statistics on its processing. (This does not apply to catalogs
that reside on READ ONLY disks.) It restores all pertinent control blocks to their condition before the
file was opened. It then completes any outstanding I/O operations that the file may have pending.

The CLOSE macro restores the ACB to the status it had before the file was opened and frees the
storage that the OPEN macro used to construct VSAM control blocks. If you load records into a file and
retrieve records all in the same run, then you must enter a CLOSE macro between these two activities.

3. If an abnormal termination occurs, then GCS will attempt to close the ACB. If GCS is unable to do
so, then you should use the Access Method Services VERIFY command to correct the file's catalog
information.

4. Under no circumstances will GCS attempt to close ACBs during normal task termination. This is the
program's responsibility.

CLOSE

Chapter 7. VSAM Data Management Service Macros 427

5. The parameters in the CLOSE macro are positional. Therefore, write them in the order indicated in the
preceding syntax box and provide a comma for any that you omit.

6. See Appendix B, “Using VSAM,” on page 517.
7. If you have data control blocks (DCBs) that you wish to close, and ACBs, you can specify a combination

of both in the same CLOSE macro. GCS is able to distinguish the address of one from the address of the
other, if you separate each with a comma. This macro and the one described in “CLOSE (BSAM/QSAM)”
on page 382 are similar. However, note that neither of these macros, as presented herein, pertains to
VTAM.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15.

Hex
Code

Decimal
Code

Meaning

X'00' 0 All files were successfully closed.

X'04' 4 At least one file was not closed successfully.

X'08' 8 Either one or more CLOSE routines could not be loaded because
insufficient virtual storage was available, or the modules could not be
found. Processing cannot continue.

If register 15 contains the return code 4, then you can use the SHOWCB macro to display the ERROR
field of each access method control block. See “SHOWCB” on page 480. The following table describes the
possible values this field can contain.

Error Code Meaning

0 No error occurred.

4 The file associated with this ACB is already closed.

136 Insufficient virtual storage was available to execute the CLOSE macro.

144 An irrecoverable I/O error occurred while VSAM was reading or writing a catalog
record.

148 An unidentified error occurred while VSAM was searching the catalog.

184 An irrecoverable I/O error occurred while VSAM was completing outstanding I/O
requests.

246 Compression Management Services error during CLOSE.

247 Compression Control error during CLOSE.

ABEND Code Meaning

035 An error occurred in the CLOSE macro. The message preceding the ABEND describes
this further.

03B An invalid address was detected in a VSAM control block or a VSAM parameter list.
This means that your program tried to use an address to which it has no access.

CLOSE

428 z/VM: 7.2 Group Control System

DLVRP

Format

label

DVLRP

TYPE=LSR

Purpose

Use the DLVRP macro to delete the resource pool after all the files using the resource pool have been
closed.

Parameters

TYPE=LSR
Specifies the resource pool is used for Local Shared Resources.

Usage
When using this macro you must make sure that register 13 contains the address of a 72-byte save
area. If you enter the macro from within one of your exit routines (LERAD or SYNAD) you must provide
a second 72-byte save area because the original one is still in use by the external VSAM routine.

Completion Codes
When VSAM returns to the application after a DLVRP request, register 15 contains one of the following
completion codes:

Completion Code Meaning

0 VSAM completed the request successfully.

4 There is not a resource pool to delete.

8 An error was detected while VSAM routines were being loaded.

12 There is at least one open data set using the resource pool.

16 A TYPE other than LSR was specified.

DLVRP

Chapter 7. VSAM Data Management Service Macros 429

ENDREQ

Format

label

ENDREQ RPL= address

Purpose

Use the ENDREQ macro to cancel a certain VSAM request.

A VSAM request is associated with one of the following macros: CHECK, ENDREQ, ERASE, GET, POINT,
and PUT. See “CHECK” on page 425, “ERASE” on page 432, “GET” on page 451, “POINT” on page 468, or
“PUT” on page 470). You may wish to cancel one such request that you previously made.

This discussion of the ENDREQ macro deals only with those matters that involve GCS.

Parameters

RPL
Specifies the address of the request parameter list (RPL) associated with the VSAM request you wish
to cancel.

This is the same request parameter list that you defined through the RPL macro. See “RPL” on page
472.

You can write this parameter as an assembler program label or as register (2) through (12).

Usage

1. The ENDREQ macro causes VSAM to end a request — VSAM will forget its position for the specified RPL
and will release its associated buffers to another RPL. Therefore, before you enter the ENDREQ macro
specifying an RPL for which the ENDREQ macro was previously executed, you must reposition VSAM.

2. Each time you enter the ENDREQ macro, you must provide the system with a 72-byte save area. Be
certain that before you enter the instruction you place the address of this save area in register 13.

3. You are limited to as many concurrent active requests as you have specified in the STRNO parameter
of the ACB macro. See “ACB” on page 418. If you want to initiate more requests, then you must start
the ENDREQ macro first.

4. If an I/O operation is in progress when you enter the ENDREQ macro, it will complete. This includes
operations that are necessary to maintain the integrity of the file.

5. If your request involves a chain of RPLs, then all records specified in the request may not be
processed. For example, two RPLs are chained in a PUT request to add two new records to a file.
Then, an ENDREQ macro is issued after VSAM started the I/O operation to add the first new record.
That operation will be completed. If the operation causes a control-interval split, subsequent I/O
operations occurs to complete the split and update the index. However, VSAM will then return control
to the processing program without adding the second new record.

6. The ENDREQ macro causes VSAM to cancel the position in the file established for that request. It also
invalidates data and index buffers to force refreshing of all requests subsequent to the end request.

7. See Appendix B, “Using VSAM,” on page 517.

ENDREQ

430 z/VM: 7.2 Group Control System

Completion Codes, Return Codes, and ABEND Codes
When this macro completes processing, it passes to the caller a completion code in register 15. If register
15 contains 8 or 12, then the specific error is indicated in the FDBK field of the appropriate RPL. This field
can be displayed through the SHOWCB or TESTCB macros. See “SHOWCB” on page 480 or “TESTCB” on
page 490.

Completion Code Meaning

0 Function completed successfully.

4 The ENDREQ macro could not terminate the request. The specified RPL was active
for another request.

8 A logical error occurred.

12 A physical error occurred.

ABEND Code Meaning

035 An error occurred in the ENDREQ macro. The message preceding the ABEND explains
this further.

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means your program tried to use an address to which it has no access.

ENDREQ

Chapter 7. VSAM Data Management Service Macros 431

ERASE

Format

label

ERASE RPL= address

Purpose

Use the ERASE macro to delete a record from a VSAM file.

This record must be one that you have retrieved through the GET macro with the OPTCD=UPD parameter
specified. You can delete records in a key-sequenced file by keyed or addressed access. However, you
cannot delete records in an entry sequenced file. You can delete records in a relative-record file by keyed
access, but you cannot delete control intervals. See “GET” on page 451.

This discussion of the ERASE macro deals only with those matters that involve GCS.

Parameters

RPL
Specifies the address of the request parameter list (RPL) associated with your ERASE request.

This is the same request parameter list that you defined through the RPL macro. (If necessary, review
the entry titled “RPL” on page 472.)

You can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. Each time you enter the ERASE macro, you must provide the system with a 72-byte save area. Be

certain that before you enter the macro you place the address of this save area in register 13.
2. See Appendix B, “Using VSAM,” on page 517.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15. If register 15
contains 8 or 12, then the specific error is indicated in the FDBK field of the appropriate RPL. This field
can be displayed through the SHOWCB or TESTCB macros. See “SHOWCB” on page 480 or “TESTCB” on
page 490.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Your request was accepted.

X'04' 4 Your request was not accepted because the RPL you specified in the
ERASE macro is already active for another request.

X'08' 8 A logical error occurred.

X'0C' 12 A physical error occurred.

ERASE

432 z/VM: 7.2 Group Control System

ABEND Code Meaning

035 An error occurred in the ERASE macro.

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means your program tried to use an address to which it has no access.

ERASE

Chapter 7. VSAM Data Management Service Macros 433

EXLST

Format

label

EXLST

EODAD=( address
,A

,N ,L

)

,JRNAD=( address
,A

,N ,L

)

,LERAD=( address
,A

,N ,L

)

,SYNAD=( address
,A

,N ,L

)

Purpose

Use the EXLST macro to create a list of the addresses of your exit routines.

During VSAM processing, unusual conditions sometimes occur. If you wish, you can supply one or more
exit routines to handle such conditions. You can then associate them with one or more access method
control blocks (ACBs) that define the characteristics of the VSAM files you plan to process.

This discussion of the EXLST macro deals only with those matters that involve GCS.

Parameters

EODAD
Indicates that you are providing an exit routine to handle the END-OF-FILE condition during
sequential or skip-sequential access.

JRNAD
Indicates that you are providing an exit routine to handle journaling.

LERAD
Indicates that you are providing an exit routine that will analyze logical errors.

SYNAD
Indicates that you are providing an exit routine that will analyze physical errors.

address
Specifies the address of the exit routine in question.

You can write this parameter as an assembler program label or as register (2) through (12).

EXLST

434 z/VM: 7.2 Group Control System

A
Indicates that the exit routine in question will be active.

This is the case by default.

N
Indicates that the exit routine in question will not be active.

Even if the condition to which this exit routine applies arises, it will not receive control.

L
Indicates that the address given in the ADDRESS parameter is an 8-byte field that contains the name
of the exit routine in question. It is to be loaded into virtual storage by GCS.

If you omit this parameter, then GCS assumes that the address you specify is the routine's entry point
in virtual storage.

Usage
1. You can create a list of exit routine addresses, but for them to be useful you must specify the address

of this list in the EXLST parameter of the ACB or MODCB macro. See “ACB” on page 418 or “MODCB”
on page 453.

The address of this list is the same as the address of the EXLST macro in your program, see the label
on this macro when you create or modify the access method control block (ACB).

2. When VSAM enters one of your exit routines, the registers contain information that may be helpful in
analyzing the situation.

3. The EXLST macro generates an exit list at assembly time. Contrast this with the GENCB macro, which
generates an exit list at execution time. See “GENCB” on page 437.

4. You can define no more than 128 exits per GCS virtual machine.
5. See Appendix B, “Using VSAM,” on page 517.

When VSAM enters an EODAD routine, the registers contain the following:

Register Contents

0 Unpredictable.

1 The address of the request parameter list that defines the request that occasioned
VSAM's reaching the end of the file. The register must contain this address if you return
to VSAM.

2 - 13 The same values as when the macro was issued. Register 13, by convention, contains
the address of your program's 72-byte save area. This save area cannot be used as a
save area by the EODAD routine if it returns control to VSAM.

14 The return address within VSAM.

15 The entry address to the EODAD routine.

When VSAM enters a JRNAD routine, the registers contain the following:

Register Contents

0 Unpredictable.

1 The address of a parameter list. For more information on the format of the list, see
VSE/VSAM Commands and Macros.

2 - 13 Unpredictable.

14 The return address within VSAM.

15 The entry address in the JRNAD routine.

EXLST

Chapter 7. VSAM Data Management Service Macros 435

When VSAM enters a LERAD routine, the registers contain the following:

Register Contents

0 Unpredictable.

1 The address of the request parameter list that contains the feedback field that the
routine should examine. The register must contain this address if you return to VSAM.

2 - 13 The same values as when the macro was issued. Register 13, by convention, contains
the address of your program's 72-byte save area. This save area cannot be used as a
save area by the LERAD routine if it returns control to VSAM.

14 The return address within VSAM.

15 The entry address to the LERAD routine. This register does not contain the logical-error
indicator.

When VSAM enters a SYNAD routine, the registers contain the following:

Register Contents

0 Unpredictable.

1 The address of the request parameter list that contains the feedback return code and
the address of the message area, if any, that the routine should examine. If you issued
a request instruction, then the request macro points to the RPL. If you issued a CLOSE
macro, then the RPL was built by VSAM so it could close the file. Register 1 must
contain one of these addresses if you return to VSAM.

2 - 13 The same values as when the macro was issued. Register 13, by convention, contains
the address of your program's 72-byte save area. This save area cannot be used as a
save area by the LERAD routine if it returns control to VSAM.

14 The return address within VSAM.

15 The entry address to the LERAD routine. This register does not contain the physical-
error indicator.

Return Codes and ABEND Codes
The EXLST macro generates no return codes and no ABEND codes.

EXLST

436 z/VM: 7.2 Group Control System

GENCB
The GENCB macro is available in Access Control Block (ACB), Exit List (EXLST) and Request Parameter List
(RPL) formats.

Access Control Block Format

See also “Exit List Format” on page 442 and “Request Parameter List Format” on page 445.

label

GENCB

AM=VSAM,

BLK=ACB,

MACRF=(Options)

,BUFND=  number ,BUFNI=  number ,BUFSP=  number

,DDNAME=  ddname ,EXLST=  address ,MAREA=  address

,MLEN=  number ,PASSWD=  address ,STRNO=  number

,COPIES=  number ,LENGTH=  number ,WAREA=  address

Options

Group A

,NDF

1
,DFR

Group B Group C

,NRM

,AIX

,NRS

,RST
2

,NSR

3
,LSR

,NUB

,UBF

Group A
,KEY

,ADR ,CNV

Group B
,SEQ

,DIR ,SKP

Group C
,IN

,OUT

Notes:

GENCB

Chapter 7. VSAM Data Management Service Macros 437

1 DFR is mutually exclusive with NSR MACRF options.
2 RST is mutually exclusive with IN MACRF options.
3 LSR is mutually exclusive with UBF or RST MACRF options.

Purpose (ACB)

An access method control block (ACB) defines certain characteristics of a file that you intend to process
through VSE/VSAM. When the file is opened, other characteristics of the file, which you defined through
the DLBL command, are merged with the ACB. For more information on the DLBL command, see “DLBL”
on page 64.

This discussion of the GENCB macro deals only with those matters that involve GCS.

Parameters (ACB)

AM=VSAM
Indicates that you are using VSAM to process the file associated with the ACB.

BLK=ACB
Indicates that you wish to generate an access method control block.

This parameter is required to distinguish this macro from the other two GENCB macros. See “Exit List
Format” on page 442 and “Request Parameter List Format” on page 445.

MACRF
Indicates how you intend to process the file.

You must specify all of the types of processing you intend to perform on the file, whether you intend
to perform them concurrently or sequentially. The parameters you choose must be valid for the file in
question. For example, if you specify keyed access for an entry-sequenced file, then you cannot open
that file, or process it.

Check the preceding format box. The processing options are arranged in groups, each with a default
value. They are not positional parameters — they can be specified in any order.

KEY
Indicates access to a key-sequenced or relative record file.

Keys will be relative record numbers used as search arguments, and sequential access will be by
key or relative record number.

ADR
Indicates addressed access to a key-sequenced or entry-sequenced file.

RBAs are used as search arguments, and sequential access is by entry sequence.

CNV
Indicates access is to the entire contents of a control interval, rather than to an individual record.

NDF
Indicates that any WRITE macro is deferred for a direct PUT macro.

DFR
Specifies that physically writing the I/O buffers is deferred when possible.

SEQ
Indicates sequential access to a key-sequenced, entry-sequenced, or relative record file.

DIR
Indicates direct access to a key-sequenced, entry-sequenced, or relative record file.

SKP
Indicates skip-sequential access to a key-sequenced or relative record file.

GENCB

438 z/VM: 7.2 Group Control System

This is valid only with keyed access in a forward direction.

IN
Indicates retrieval of records from key-sequenced, entry-sequenced, or relative record files.

This is not a valid form of processing for an empty file.

OUT
Indicates three things:

• Storage of new records in a key-sequenced, entry-sequenced, or relative record file. This is not
allowed with addressed access to a key-sequenced file.

• Update of new records in a key-sequenced, entry-sequenced, or relative record file.
• Deletion of records from a key-sequenced or relative record file.

NRM
Indicates that the file to be processed is the one specified by the DDNAME parameter.

AIX
Indicates that the object to be processed is the alternate index of the path specified by the
DDNAME parameter, rather than the base cluster through the alternate index.

NRS
Indicates that the file is not reusable.

RST
Indicates that the file is reusable.

The OPEN macro resets the file's catalog information to its original status. It resets it to the status
it had before the file was open the first time. See “OPEN” on page 465. Also, the high-used RBA is
reset to zero.

The file must have been defined with the REUSE attribute for RST to be effective. Although the file
is not erased, you can handle it as though it were a new file, and use it as a work file. When the
OPEN macro does the reset operation, this parameter is equivalent to the OUT option. DISP=NEW
specified on the DLBL command is equivalent to selecting this parameter and will override the
NRS parameter.

NSR
Indicates that the resources are not shared.

LSR
Specifies that the resources are shared. This also indicates a VSAM resource pool will be provided
when opening this ACB.

NUB
Indicates that VSAM will manage the I/O buffers.

UBF
Indicates that the application will manage the I/O buffers.

The work area specified by the RPL or GENCB macros will be, in effect, the I/O buffer. The
contents of a control interval are transmitted directly between the work area and DASD. This
parameter is valid only when the MACRF=CNV and OPTCD=MVE parameters are specified in the
RPL macro. See “RPL” on page 472 and “Request Parameter List Format” on page 445.

BUFND
Specifies the number of I/O buffers to be used for transmitting data between virtual and auxiliary
storage.

The size of a buffer corresponds to the size of a control interval in the data component. The minimum
number you can specify is 1 plus the number specified by the STRNO parameter. If you omit the
STRNO parameter, then the value of the BUFND parameter must be at least 2 because the default for
the former is 1.

The default for the BUFND parameter is the minimum number required to process your file.

GENCB

Chapter 7. VSAM Data Management Service Macros 439

BUFNI
Specifies the number of I/O buffers to be used for transmitting the contents of index entries between
virtual and auxiliary storage during keyed access.

The size of this buffer corresponds to the size of a control interval in the index. The minimum number
you can specify is 1 plus the number specified by the STRNO parameter. If you omit the STRNO
parameter, then the value of BUFNI parameter must be at least 2 because the default for the former is
1.

The default for the BUFNI parameter is the minimum number required to process your file.

BUFSP
Specifies the maximum number of bytes of virtual storage to be used for the data and index I/O
buffers.

This parameter must be at least as large as the buffer size recorded in the catalog entry for your file.
If the number you specify for this parameter is too small, then VSAM overrides it and uses the buffer
size recorded in the catalog. VSAM, however, does not inform you of this.

If you omit this parameter, then the size of this buffer will be the larger of the following, by default:

• The buffer size specified in the catalog. This buffer size was specified through the BUFFERSPACE
parameter in the Access Method Services DEFINE command. If this parameter was omitted when
your file was defined, then a default value was assigned to it. This default value, the minimum
amount of buffer space allowed by VSAM, is enough to hold two data control intervals and one index
control interval.

• The buffer size determined from the BUFND and BUFNI parameters.

You can also specify buffer space through the BUFSP parameter on the DLBL command that identifies
your file. This value overrides the BUFSP parameter in the ACB macro. It overrides the BUFFERSPACE
parameter in the DEFINE command if the latter is smaller.

If the values you specify for the BUFND, BUFNI, and BUFSP parameters are inconsistent, then VSAM
increases the number of buffers to conform with the size of the buffer area. If the value in the BUFSP
parameter is greater than the minimum buffer size required to process your file and greater than the
values specified in the BUFND and BUFNI parameters, then the extra space is allocated between the
data and index buffers as follows:

• If the MACRF parameter specifies direct processing, then the values in the BUFND and BUFNI
parameters take effect. Any left-over space is used for index buffers.

• If the MACRF parameter specifies sequential processing, then the values in the BUFND and BUFNI
parameters take effect. Space for one additional index buffer is allocated. Any left-over space is
used for data buffers. If any left-over space remains that is insufficient to accept another data
buffer, then it is used for another index buffer.

If the value in the BUFSP parameter is greater than the minimum required to process your file,
but less than those of the BUFND and BUFNI parameters, then enough buffer space will be made
available to conform to the latter parameters.

If you provide your own pool of I/O buffers for control interval processing, then the BUFSP, BUFND,
and BUFNI parameters have no effect. In such a case, the AREA and AREALEN parameters of the RPL
macro determine the size of the user buffer area. See “RPL” on page 472.

DDNAME
Specifies the name of the file you wish to process.

This name corresponds to that specified in the DDNAME parameter of the DLBL command associated
with the file. If you omit this parameter, then you can supply it through the MODCB macro. See
“MODCB” on page 453.

This name must be from one to seven characters long.

EXLST
Specifies the address of a list of exit routine addresses.

GENCB

440 z/VM: 7.2 Group Control System

This is the same list that you created through the EXLST or GENCB macro. See “EXLST” on page 434
or “Purpose (EXLST)” on page 443.

If you used the EXLST macro to create this list, then you can write this parameter as the label on
that macro. If you used the GENCB macro, then you can write this parameter as the address that the
GENCB macro returned to you in register 1 or as the label associated with an area where you have
placed this address.

If you omit this parameter, then GCS assumes that you have supplied no exit routines.

MAREA
Specifies the address of an area where GCS will place any console messages generated during
processing of your file.

This area can be used by you or your exit routines to analyze any errors or problems that may arise.

MLEN
Specifies the length, in bytes, of the area whose address is given by the MAREA parameter.

The value of this parameter is zero, by default. Its maximum value is 32K.

PASSWD
Specifies the address of a field that contains the highest level password required for the types of
access indicated by the MACRF parameter.

The first byte of the field contains the binary length of the password. Eight bytes is the maximum
length. If this byte is 0, it means that you are providing no password.

STRNO
Specifies the number of requests you will make that will require concurrent file positioning.

A request is defined by a given request parameter list or a chain thereof. If records are written in an
empty file, then the value of this parameter is ignored and replaced by the value 1.

If you omit this parameter, then its value is 1, by default.

COPIES
Specifies the number of copies of the access method control block you want generated.

GCS will generate as many ACBs as you wish. Each will be identical. You can use the MODCB macro
to tailor each ACB to the specific file and type of processing you wish. See “MODCB” on page 453.
However, unless you specify otherwise, GCS will generate just one copy.

LENGTH
Specifies the length of the area you are supplying in virtual storage to hold the ACBs you want to
generate. Express this figure in bytes.

WAREA
Specifies the address of the area you are supplying in virtual storage to accept the ACBs you want to
generate.

This area must begin on a fullword boundary.

If you omit this parameter, then the address of an ACB area set up by GCS is returned to you in
register 1. GCS returns the length of the area in register 0. To find the length of each ACB, just divide
the length of the area supplied by the number of ACBs you specified in the COPIES parameter. Then,
to access each ACB in the area, use this quotient as an offset from the address in register 1.

Usage (ACB)
1. The GENCB macro generates an ACB at execution time. Contrast this with the ACB macro, which

generates an ACB at assembly time. See “ACB” on page 418.
2. Each time you enter the GENCB macro, you must provide the system with a 72-byte save area. Before

you enter the macro, place the address of this save area in register 13.
3. See Appendix B, “Using VSAM,” on page 517.

GENCB

Chapter 7. VSAM Data Management Service Macros 441

4. Appropriate macro MNOTES notify the application programmer of syntax errors in coding the ACB
macro.

Completion Codes, Return Codes, and ABEND Codes (ACB)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of the macro to modify a keyword that is
not in the parameter list.

12 The GENCB macro was not executed because an error occurred while a VSAM
module was being loaded.

If register 15 contains 0 and if the WAREA parameter was not specified, then register 0 contains the
length of the area which GCS builds the ACBs. Register 1 contains the address of this area.

If register 15 contains 4, then register 0 contains a return code, further describing the condition.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of your request is invalid.

X'02' 2 The block type is invalid.

X'03' 3 One of the keyword codes in the parameter list is invalid.

X'08' 8 There is not enough virtual storage to generate the ACB.

X'09' 9 The area you specified in the WAREA parameter is not large enough
to hold the ACB.

X'0E' 14 You have specified an invalid combination of options in the MACRF
parameter.

X'0F' 15 The storage you specified in the WAREA parameter does not fall on a
fullword boundary.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means your program tried to use an address to which it has no access.

Exit List Format

GENCB

442 z/VM: 7.2 Group Control System

label

GENCB

AM=VSAM,

BLK=EXLST,

EODAD=( address
,A

,N ,L

)

,JRNAD=( address
,A

,N ,L

)

,LERAD=( address
,A

,N ,L

)

,SYNAD=( address
,A

,N ,L

)

,COPIES=  number

,LENGTH=  number ,WAREA=  address

Purpose (EXLST)

During VSAM processing, unusual conditions sometimes occur. You can supply one or more exit routines
to handle such conditions. You can then associate them with one or more access method control blocks
(ACBs) that define the characteristics of the VSAM files you plan to process. See “ACB” on page 418.

This discussion of the GENCB macro deals only with those matters that involve GCS.

Use the GENCB macro to create a list of the addresses of your exit routines.

Parameters (EXLST)

AM=VSAM
Indicates that you are using VSAM to process your files.

BLK=EXLST
Indicates that you wish to generate an exit list.

This parameter is required to distinguish this macro from the other two GENCB macros. See “Access
Control Block Format” on page 437 and “Request Parameter List Format” on page 445.

EODAD
Indicates that you are providing an exit routine to handle the END-OF-FILE condition during
sequential or skip sequential access.

JRNAD
Indicates that you are providing an exit routine to handle journaling.

LERAD
Indicates that you are providing an exit routine that will analyze logical errors.

GENCB

Chapter 7. VSAM Data Management Service Macros 443

SYNAD
Indicates that you are providing an exit routine that will analyze physical errors.

address
Specifies the address of the exit routine in question.

You can write this parameter as an assembler program label or as register (2) through (12).

A
Indicates that the exit routine in question will be active.

This is the case by default.

N
Indicates that the exit routine in question will not be active.

Even if the condition which this exit routine applies arises, it will not receive control.

L
Indicates that the address given in the ADDRESS parameter is the address of an 8-byte field that
contains the name of the exit routine in question. It is to be loaded into virtual storage by GCS.

If you omit this parameter, then GCS assumes that the address you specify is the routine's entry point
in virtual storage.

COPIES
Specifies the number of copies of the exit list you want generated.

GCS will generate as many exit lists as you wish. Each will be identical. You can use the MODCB macro
to modify the addresses in any of the exit lists. See “MODCB” on page 453. However, unless you
specify otherwise, GCS will generate only one copy.

LENGTH
Specifies the length of the area you are supplying in virtual storage to hold the exit lists you want to
generate. Express this figure in bytes.

WAREA
Specifies the address of the area you are supplying in virtual storage to accept the exit lists you want
to generate.

This area must begin on a fullword boundary.

If you omit this parameter, then the address of an exit list area set up by GCS is returned to you in
register 1. GCS returns the length of the area in register 0. To find the length of each exit list, just
divide the length of the area supplied by the number of lists you specified in the COPIES parameter.
Then, to access each list in the area, use this quotient as an offset from the address in register 1.

Usage (EXLST)
1. Note that the GENCB macro generates an exit list at execution time. Contrast this with the EXLST

macro which generates an exit list at assembly time. See “EXLST” on page 434.
2. Each time you enter the GENCB macro, you must provide the system with a 72-byte save area. Before

you enter the instruction, place the address of this save area in register 13.
3. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (EXLST)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

GENCB

444 z/VM: 7.2 Group Control System

Completion Code Meaning

8 You attempted to use the execute form of the macro to modify a keyword that is
not in the parameter list.

12 The GENCB macro was not executed because an error occurred while the module
was being loaded.

If register 15 contains 0 and if the WAREA parameter was not specified, then register 0 contains the
length of the area in which GCS builds the ACBs. Furthermore, register 1 contains the address of this area.

If register 15 contains 4, then register 0 contains a return code, further describing the condition.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of your request is invalid.

X'02' 2 You selected an access method control block. This is invalid.

X'03' 3 One of the keyword codes in the parameter list is invalid.

X'08' 8 There is not enough virtual storage to generate the exit list.

X'09' 9 The area you specified in the WAREA parameter is not large enough
to generate the exit list.

X'0A' 10 You specified an exit without giving an address.

X'0F' 15 The storage you specified in the WAREA parameter does not fall on a
fullword boundary, as it must.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means your program tried to use an address to which it has no access.

Request Parameter List Format

label

GENCB

AM=VSAM,

BLK=RPL,

,ACB= address

,AREA=  address ,AREALEN=  number ,ARG= address

,ECB= address ,KEYLEN=  number ,NXTRPL=  address

OPTCD=(
KEY

ADR

CNV

,SEQ

,DIR

,SKP

,ARD

,LRD

,FWD

,BWD

,SYN

,ASY

,NUP

,NSP

,UPD

,KEQ

,KGE

,FKS

,GEN

,MVE

,LOC

)

,RECLEN=  number ,COPIES=  number ,LENGTH=  number

,WAREA=  address

,TRANSID=0

,TRANSID=  number

Purpose (RPL)

GENCB

Chapter 7. VSAM Data Management Service Macros 445

All VSAM functions require that you set up a request parameter list (RPL) that describes the
characteristics of your request. These VSAM functions are associated with the following macros: CHECK,
ENDREQ, ERASE, GET, POINT, and PUT. See “CHECK” on page 425, “ENDREQ” on page 430, “ERASE” on
page 432, “GET” on page 451, “POINT” on page 468, or “PUT” on page 470.

This discussion of the GENCB macro deals only with those matters that involve GCS.

Parameters (RPL)

AM=VSAM
Indicates that you are using VSAM to process the file associated with the ACB.

BLK=RPL
Indicates that you wish to generate a request parameter list.

This parameter is required to distinguish it from the other two GENCB macros. See “Access Control
Block Format” on page 437 and “Exit List Format” on page 442.

ACB
Specifies the address of the access method control block (ACB) associated with the file you are
processing.

If you created the access method control block through the ACB macro, you can write this parameter
as the assembler program label on that macro. If no ACB associated with your file exists, then
you must create one through another GENCB macro before issuing this GENCB macro. See “Access
Control Block Format” on page 437.

AREA
Specifies one of two things:

• If you select the OPTCD=MVE parameter, then the AREA parameter specifies the address of a work
area to which a data record is moved to be processed and from which it is moved after processing.

• If you select the OPTCD=LOC parameter, then the AREA parameter will specify the address of a
work area. The address of the I/O buffer in which you process your file will be placed in this work
area (GET only).

AREALEN
Specifies the length, in bytes, of the work area whose address you specified in the AREA parameter.

If you selected the OPTCD=MVE parameter, then this length must be no less than the size of a data
record. For variable-length records, you must allow for the largest record in the file.

If you selected the OPTCD=LOC parameter, then you must specify a length of 4 bytes to accept the
address of the I/O buffer where you will process each record.

ARG
Specifies the address of a field that contains the search argument for one of the following:

• Direct or skip sequential retrieval (GET).
• Sequential positioning (POINT).
• Direct or skip sequential storage (PUT) for a relative record file.

For keyed access (OPTCD=KEY), the search argument may be a

• Full key (OPTCD=FKS).
• Generic key (OPTCD=GEN). Here, you must also specify its size through the KEYLEN parameter.
• Relative record number (which is treated as a key).

For addressed access (OPTCD=ADR), the search argument is always an RBA. To determine the RBA
of a record where you have gained access sequentially or directly by key, you can enter the SHOWCB
macro. See “SHOWCB” on page 480.

For control interval access with user buffering and a user supplied RBA, the record is written only to
this RBA if positioning is not established by a previous request.

GENCB

446 z/VM: 7.2 Group Control System

When records are inserted into a key sequenced file, either sequentially or directly, VSAM obtains the
key from the record itself. When the records are inserted sequentially into a relative record file, VSAM
returns the assigned relative record number in the ARG field.

ECB
Specifies the address of the event control block associated with the VSAM request you will make.

KEYLEN
Specifies the length, in bytes, of the generic key that you are using as a search argument.

You specify the search argument in the ARG parameter. However, you must specify its length when it
is a generic key.

You can write this parameter as any number from 1 to 255.

NXTRPL
Specifies the address of the next request parameter list in the chain.

Omit this parameter from the RPL macro that generates the last RPL in the chain. When you enter
a request that is defined by a chain of RPLs, specify the address of the first RPL in the chain in the
instruction associated with the request.

OPTCD
Indicates the options that will govern the request defined by the request parameter list you are
creating.

Carefully check the preceding format box. Note that the parameters are arranged in groups, each with
a value that will be assumed by default should you forget to specify from that group. Because they are
not positional parameters, they can be specified in any order.

KEY
Indicates access to a key-sequenced or relative record file.

ADR
Indicates addressed access to a key-sequenced or entry-sequenced file.

CNV
Indicates access will be to the entire contents of a control interval, rather than to an individual
record.

DIR
Indicates direct processing.

SEQ
Indicates sequential processing.

SKP
Indicates skip-sequential processing.

This is valid only with keyed access.

ARD
Indicates that the user's argument determines the record to be located, retrieved, or stored.

LRD
Indicates that the last record in the file will be located or retrieved.

If you choose this parameter, then you must also choose the BWD parameter.

FWD
Indicates that processing is to go through the file in a forward direction.

BWD
Indicates that processing is to go through the file in a backward direction for keyed or addressed
access, and for sequential or direct processing.

SYN
Specifies that you want your file processed synchronously.

GENCB

Chapter 7. VSAM Data Management Service Macros 447

This means that control will return to your program only after the request associated with the RPL
you are creating has been carried out.

ASY
Specifies that you want your file processed asynchronously.

This means that when the request associated with the RPL you are creating is scheduled, control
will return to your program so it can continue processing. Meanwhile, your request is being carried
out.

Remember that asynchronous processing is merely simulated by GCS. Disk I/O in GCS is always
synchronous. Even so, you must enter the CHECK macro to obtain the results of the operation. See
“CHECK” on page 425.

NUP
Indicates that any record retrieved will not be updated or deleted. Moreover, any record that is
stored is a new record.

On direct access requests, GCS does not remember the record's position.

NSP
Indicates that, for direct processing only, your request is not for update. VSAM will be positioned
at the next record for subsequent sequential processing.

UPD
Indicates that any record retrieved can be updated or deleted.

KEQ
Indicates that the key you provide as a search argument must equal the key of the record.

KGE
Indicates that if the key you specify as a search argument does not equal a certain record, then
the request will affect the record with the next highest key.

FKS
Indicates that you are providing a full key as a search argument.

GEN
Indicates that you are providing a generic key as a search argument.

If you select this parameter, then you must also specify the length of the generic key in the
KEYLEN parameter.

MVE
Indicates that, during retrieval, the record will be moved to a work area for processing. For
storage, it will be moved from the work area to VSAM's I/O buffer.

LOC
Indicates that, during retrieval, the record will be put in VSAM's I/O buffer to be processed.

RECLEN
Specifies the length, in bytes, of a record that is to be stored.

If you intend to enter the PUT macro, then this parameter is required. If you enter a GET macro, then
the length of the record involved is placed in the RPL field associated with this parameter. This is for
the benefit of any subsequent update or store requests.

COPIES
Specifies the number of copies of the request parameter list you want to generate.

GCS will generate as many RPLs as you wish. Each will be identical. You can use the MODCB macro to
tailor each RPL to the specific file and type of processing you wish. See “MODCB” on page 453.

Unless you specify otherwise, GCS will generate only one copy.

LENGTH
Specifies the length of the area you are supplying in virtual storage to hold the RPLs you want to
generate. Express this figure in bytes.

GENCB

448 z/VM: 7.2 Group Control System

WAREA
Specifies the address of the area you are supplying in virtual storage to accept the RPLs you want to
generate.

This area must begin on a fullword boundary.

If you omit this parameter, then the address of an RPL area set up by GCS is returned to you in register
1. GCS returns the length of the area in register 0. To find the length of each RPL, just divide the length
of the area supplied by the number of RPLs you specified in the COPIES parameter. Then, to access
each RPL in the area, use this quotient as an offset from the address in register 1.

TRANSID
Specifies a number from 0 to 31 when BLK=RPL.

Number
Description

0
Default value. Indicates that the request defined by this RPL is not associated with other requests.

1-31
Relates the requests defined by this RPL to the requests defined by other RPLs with the same
TRANSID value.

Usage
1. The GENCB macro generates an RPL at execution time. Contrast this with the RPL macro, which

generates an RPL at assembly time. See “RPL” on page 472.
2. Each time you enter the GENCB macro, you must provide the system with a 72-byte save area. Before

you enter the instruction, place the address of this save area in register 13.
3. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (RPL)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of the macro to modify a keyword that is
not in the parameter list.

12 The GENCB macro was not executed because an error occurred while a VSAM
module was being loaded.

If register 15 contains 0 and if the WAREA parameter were not specified, then register 0 contains the
length of the area which GCS builds the RPLs. Furthermore, register 1 contains the address of this area.

If register 15 contains 4, then register 0 contains a return code, further describing the condition.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of your request is invalid.

X'02' 2 You selected a request parameter list. This is invalid.

X'03' 3 One of the keyword codes in the parameter list is invalid.

X'08' 8 There is not enough virtual storage to generate the RPL.

GENCB

Chapter 7. VSAM Data Management Service Macros 449

Hex
Code

Decimal
Code

Meaning

X'09' 9 The area you specified in the WAREA parameter is not large enough
to generate the RPL.

X'0F' 15 The storage you specified in the WAREA parameter does not fall on a
fullword boundary, as it should.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

GENCB

450 z/VM: 7.2 Group Control System

GET

Format

label

GET RPL= address

Purpose

Use the GET macro to retrieve a record from a VSAM file and place it in either an I/O buffer or a work area.

This discussion of the GET macro deals only with those matters that involve GCS.

Parameters

RPL
Specifies the address of the request parameter list (RPL) associated with your GET request. This is the
same request parameter list that you defined through the RPL macro. See “RPL” on page 472.

You can write this parameter as an assembler program label or as register (1) through (12).

Usage
1. Each time you enter the GET macro, you must provide the system with a 72-byte save area. Before you

enter the macro, place the address of this save area in register 13.
2. See Appendix B, “Using VSAM,” on page 517.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15. If register 15
contains 8 or 12, then the specific error is indicated in the FDBK field of the appropriate RPL. This field
can be displayed through the SHOWCB or TESTCB macros. See “SHOWCB” on page 480 or “TESTCB” on
page 490.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Your request was accepted.

X'04' 4 Your request was not accepted because the RPL you specified in the
GET macro is already active for another request.

X'08' 8 A logical error occurred.

X'0C' 12 A physical error occurred.

ABEND Code Meaning

035 An error occurred in the GET macro. The message preceding the ABEND describes this
further.

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

GET

Chapter 7. VSAM Data Management Service Macros 451

ABEND Code Meaning

03B You specified a TYPE parameter of CHK or DRBA, and those parameters are not
supported.

GET

452 z/VM: 7.2 Group Control System

MODCB
The MODCB macro is available in Access Control Block (ACB), Exit List (EXLST) and Request Parameter
List (RPL) formats.

Access Control Block Format
See also “Exit List Format” on page 458 and “Request Parameter List Format” on page 460.

label

MODCB ACB=  address

,MACRF=(Options)

,BUFND=  number ,BUFNI=  number ,BUFSP=  number

,DDNAME=  ddname ,EXLST=  address ,MAREA=  address

,MLEN=  number ,PASSWD=  address ,STRNO=  number

Options
Group A

,NDF

,DFR
1

Group B Group C

,NRM

,AIX

,NRS

,RST
2

,NSR

,LSR
3

,NUB

,UBF

Group A

,KEY ,ADR ,CNV

Group B

,SEQ ,DIR ,SKP

Group C

,IN ,OUT

Notes:
1 DFR is mutually exclusive with NSR MACRF options.
2 RST is mutually exclusive with IN MACRF options.
3 LSR is mutually exclusive with UBF or RST MACRF options.

Purpose (ACB)
An access method control block (ACB) defines certain characteristics of a file that you intend to process
through VSAM. When the file is opened, other characteristics of the file that you defined through the DLBL

MODCB

Chapter 7. VSAM Data Management Service Macros 453

command are merged with the ACB to complete the picture. For more information, see “ACB” on page
418 and “DLBL” on page 64.

This discussion of the MODCB macro deals only with those matters that involve GCS.

Parameters (ACB)

ACB
Specifies the address of the access method control block whose contents you want to modify.

MACRF
Indicates how you intend to process the file.

You must specify all of the types of processing you intend to perform on the file, whether you intend to
perform them concurrently or alternately. Moreover, the parameters you choose must be valid for the
file in question. For example, if you specify keyed access for an entry-sequenced file, then you cannot
open that file.

Check the preceding format box. The processing options are arranged in groups. They are not
positional parameters, they can be specified in any order.

ADR
Indicates addressed access to a key-sequenced or entry-sequenced file.

RBAs will be used as search arguments, and sequential access is by entry sequence.

CNV
Indicates access will be to the entire contents of a control interval, rather than to an individual
record.

KEY
Indicates access to a key-sequenced or relative record file.

Keys will be relative record numbers used as search arguments, and sequential access will be by
key or relative record number.

NDF
Indicates that any WRITE macro will not be deferred for a direct PUT macro.

DFR
Specifies that physically writing the I/O buffers is deferred when possible.

DIR
Indicates direct access to a key-sequenced, entry-sequenced, or relative record file.

SEQ
Indicates sequential access to a key-sequenced, entry-sequenced, or relative record file.

SKP
Indicates skip-sequential access to a key-sequenced or relative record file.

This is valid only with keyed access in a forward direction.

IN
Indicates retrieval of records from key-sequenced, entry-sequenced, or relative record files.

This is not a valid form of processing for an empty file.

OUT
Indicates three things:

• Storage of new records in a key-sequenced, entry-sequenced, or relative record file. This is not
allowed with addressed access to a key-sequenced file.

• Update of new records in a key-sequenced, entry-sequenced, or relative record file.
• Deletion of records from a key-sequenced or relative record file.

MODCB

454 z/VM: 7.2 Group Control System

NRM
Indicates that the file to be processed is the one specified by the DDNAME parameter.

AIX
Indicates that the object to be processed is the alternate index of the path specified by the
DDNAME parameter, rather than the base cluster through the alternate index.

NRS
Indicates that the file is not reusable.

RST
Indicates that the file is reusable.

The OPEN macro resets the file's catalog information to its original status – it resets it to the
status it had before the file was open the first time. See “OPEN” on page 465. Also, the high-used
RBA is reset to zero.

The file must have been defined with the REUSE attribute for RST to be effective. Although the
file is not erased, you can handle it as though it were a new file, and use it as a work file. When
the OPEN macro carries out the reset operation, this parameter is equivalent to the OUT option.
DISP=NEW specified on the DLBL command is equivalent to selecting this parameter, and will
override the NRS parameter.

NSR
Indicates that the resources are not shared.

LSR
Specifies that the resources are shared. This also indicates a VSAM resource pool will be provided
opening this ACB.

NUB
Indicates that VSAM will manage the I/O buffers.

UBF
Indicates that the application will manage the I/O buffers.

The work area specified by the RPL or GENCB macros will be, in effect, the I/O buffer. The
contents of a control interval is transmitted directly between the work area and DASD. This
parameter is valid only when the MACRF=CNV and OPTCD=MVE parameters are specified in the
RPL macro. See “RPL” on page 472 and “GENCB” on page 437.

BUFND
Specifies the number of I/O buffers to be used for transmitting data between virtual and auxiliary
storage.

The size of a buffer corresponds to the size of a control interval in the data component. The minimum
number you can specify is 1 plus the number specified by the STRNO parameter.

BUFNI
Specifies the number of I/O buffers to be used for transmitting the contents of index entries between
virtual and auxiliary storage during keyed access.

The size of this buffer corresponds to the size of a control interval in the index. The minimum number
you can specify is 1 plus the number specified by the STRNO parameter.

The default for the BUFNI parameter is the minimum number required to process your file.

BUFSP
Specifies the maximum number of bytes of virtual storage to be used for the data and index I/O
buffers.

This parameter must be at least as large as the buffer size recorded in the catalog entry for your file.
If the number you specify for this parameter is too small, then VSAM overrides it and uses the buffer
size recorded in the catalog. VSAM, however, does not inform you of this.

If you omit this parameter, then the size of this buffer will be the largest of the following, by default:

• The buffer size specified in the catalog.

MODCB

Chapter 7. VSAM Data Management Service Macros 455

This buffer size was specified through the BUFFERSPACE parameter in the Access Method Services
DEFINE command. If this parameter were omitted when your file was defined, then a default value
was assigned to it. This default value, the minimum amount of buffer space allowed by VSAM, is
enough to hold two data control intervals and one index control interval.

• Or, the buffer size determined from the BUFND and BUFNI parameters.

You can also specify buffer space through the BUFSP parameter on the DLBL command that identifies
your file. This value overrides the BUFSP parameter in the ACB macro. It overrides the BUFFERSPACE
parameter in the DEFINE command if the latter is smaller.

If the values you specify for the BUFND, BUFNI, and BUFSP parameters are inconsistent, then VSAM
increases the number of buffers to conform with the size of the buffer area. If the value in the BUFSP
parameter is greater than the minimum buffer size required to process your file and greater than the
values specified in the BUFND and BUFNI parameters, then the extra space is allocated between the
data and index buffers as follows:

• If the MACRF parameter specifies direct processing, then the values in the BUFND and BUFNI
parameters take effect. Any left-over space is used for index buffers.

• If the MACRF parameter specifies sequential processing, then the values in the BUFND and BUFNI
parameters take effect. Space for one additional index buffer is allocated. Any left-over space is
used for data buffers. If any left-over space remains that is insufficient to accept another data
buffer, then it is used for another index buffer.

If the value in the BUFSP parameter is greater than the minimum required to process your file,
but less than those of the BUFND and BUFNI parameters, then enough buffer space will be made
available to conform to the latter parameters.

If you provide your own pool of I/O buffers for control interval processing, then the BUFSP, BUFND,
and BUFNI parameters have no effect. In such a case, the AREA and AREALEN parameters of the RPL
macro determine the size of the user buffer area. See “RPL” on page 472.

DDNAME
Specifies the name of the file you wish to process.

This name corresponds to that specified in the DDNAME parameter of the DLBL command associated
with the file. If you omit this parameter, then you can supply it through the MODCB macro.

This name must be from one to seven characters long.

EXLST
Specifies the address of a list of exit routine addresses.

This is the same list that you created through the EXLST or GENCB macro. See “EXLST” on page 434
or “GENCB” on page 437.

If you used the EXLST macro to create this list, then you can write this parameter as the label on that
instruction. If you used the GENCB macro, then you can write this parameter as the address that the
GENCB macro returned to you in register 1 or as the label associated with an area into which you have
placed this address.

If you omit this parameter, then GCS assumes that you have supplied no exit routines.

MAREA
Specifies the address of an area where GCS will place any console messages generated during
processing of your file.

This area can be used by you or your exit routines to analyze any errors or problems that may arise.

MLEN
Specifies the length, in bytes, of the area whose address is given by the MAREA parameter.

The minimum value of this parameter is 0 and the maximum value is 32K.

MODCB

456 z/VM: 7.2 Group Control System

PASSWD
Specifies the address of a field that contains the highest level password required for the type(s) of
access indicated by the MACRF parameter.

The first byte of the field contains the binary length of the password. Eight bytes is the maximum
length. If this byte is 0, it means that you are providing no password.

If the file is password protected, and you provide none, then VSAM will prompt you for the password
when it opens the file.

STRNO
Specifies the number of requests you will make that will require concurrent file positioning.

A request is defined by a given request parameter list or a chain thereof. If records are written in an
empty file, then the value of this parameter is ignored and replaced by the value 1.

Usage (ACB)
1. You can add or modify any preceding parameter listed. However, be certain that the additions or

modifications you make are consistent and non-conflicting. If you assign a value to a parameter and
that new value conflicts or is inconsistent with another value, then the new value replaces the old.
For example, if the ACB now specifies the MACRF=UBF parameter, and you specify the MACRF=NUB
parameter in the MODCB macro, then NUB replaces UBF.

2. You must never try to modify the ACB of a file that is already open. If you do, it is an error. If you must
modify an ACB for a file that is already open, then close the file first.

3. Each time you enter the MODCB macro, you must provide the system with a 72-byte save area. Before
you enter the instruction place the address of this save area in register 13.

4. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (ACB)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The MODCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

X'0C' 12 The file associated with the ACB in question is open. It cannot be
modified.

MODCB

Chapter 7. VSAM Data Management Service Macros 457

Hex
Code

Decimal
Code

Meaning

X'0E' 14 You specified an incompatible set of parameters for MACRF.

X'10' 16 You specified an invalid control block address in the ACB parameter.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

Exit List Format

label

MODCB EXLST= address

,EODAD=( address
,A

,N

,L

)

,JRNAD=( address
,A

,N

,L

)

,LERAD=( address
,A

,N

,L

)

,SYNAD=( address
,A

,N

,L

)

Purpose (EXLST)

During VSAM processing, unusual conditions sometimes occur. You can supply one or more exit routines
to handle such conditions. You can then associate them with one or more access method control blocks
(ACBs) that define the characteristics of the VSAM files you plan to process. See “Access Control Block
Format” on page 453.

This discussion of the MODCB macro deals only with those matters that involve GCS.

Use the MODCB macro at execution time to modify a previously created list that contains the addresses of
your exit routines.

Parameters (EXLST)

MODCB

458 z/VM: 7.2 Group Control System

EXLST
Specifies the address of the list of exit routine addresses that you wish to modify.

EODAD
Indicates that you are modifying the address of the exit routine that will handle the END-OF-FILE
condition during sequential access.

JRNAD
Indicates that you are modifying the address of the exit routine that will handle journaling.

LERAD
Indicates that you are modifying the address of the exit routine that will analyze logical errors.

SYNAD
Indicates that you are modifying the address of the exit routine that will analyze physical errors.

address
Specifies the new address of the exit routine in question.

You can write this parameter as an assembler program label or as register (2) through (12).

A
Indicates that the exit routine in question will be active.

N
Indicates that the exit routine in question will not be active.

Even if the condition which this exit routine applies arises, it will not receive control.

L
Indicates that the address given in the ADDRESS parameter is the address of an 8-byte field that
contains the name of the exit routine in question. It is to be loaded into virtual storage by GCS.

If you omit this parameter, then GCS assumes that the address you specify in the ADDRESS parameter
is the routine's entry point in virtual storage.

Usage (EXLST)
1. It does not matter whether the file whose exit list you are trying to modify is opened or closed. You can

enter the MODCB macro in either case.
2. The exit list you want to modify is a certain length. You cannot make any modification to the list that

would change its length. For example, if there are already three addresses in the list, you cannot add a
fourth. You can, however, modify one of the existing three addresses.

Remember also, that exit list addresses are stored in the exit list control block in the following order:
EODAD, SYNAD, LERAD, JRNAD. Given this and the fact that you cannot lengthen an existing exit
address list, you must be very careful how you modify it. For example, if your original exit list contained
only an address for the LERAD parameter, then you could add addresses for the EODAD and SYNAD
parameters. But, to add one for the JRNAD parameter would increase the length of the list and is an
error.

3. Each time you enter the MODCB macro, you must provide the system with a 72-byte save area. Before
you enter the instruction, place the address of this save area in register 13.

4. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (EXLST)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

MODCB

Chapter 7. VSAM Data Management Service Macros 459

Completion Code Meaning

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The MODCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not the type you
indicated.

X'07' 7 Either the exit list is not large enough to accept your modification or
the exit entry you tried to modify was not in the list at all.

X'0A' 10 You failed to specify an address for one of your exit routines. Also,
you must specify either the A or N parameter.

X'0D' 13 You attempted to activate an exit, but did not provide an address for
it.

X'10' 16 You specified an invalid control block address in the EXLST
parameter.

ABEND Code Meaning

03A The number of exits defined in the system has reached the maximum of 128.

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

Request Parameter List Format

label

MODCB ,RPL= address

,ACB= address ,AREA=  address

,AREALEN=  number ,ARG= address ,ECB= address

,KEYLEN=  number ,NXTRPL=  address

,OPTCD=(

ADR

CNV

KEY

,DIR

,SEQ

,SKP

,ARD

,LRD

,BWD

,FWD

,ASY

,SYN

,NSP

,NUP

,UPD

,KEQ

,KGE

,FKS

,GEN

,LOC

,MVE

)

,RECLEN=  number ,TRANSID=  number

Purpose (RPL)

MODCB

460 z/VM: 7.2 Group Control System

All VSAM functions require that you set up a request parameter list (RPL) that describes the
characteristics of your request. These VSAM functions are associated with the following macros: CHECK,
ENDREQ, ERASE, GET, POINT, and PUT. See “CHECK” on page 425, “ENDREQ” on page 430, “ERASE” on
page 432, “GET” on page 451, “POINT” on page 468, or “PUT” on page 470.

This discussion of the MODCB macro deals only with those matters that involve GCS.

Parameters (RPL)

RPL
Specifies the address of the request parameter list whose fields you want to modify.

You cannot modify the fields of any RPL that is active — an RPL that defines a request that has
been issued, but is not yet completed. To confirm whether an active request is complete, enter the
CHECK macro. To cancel an active request, enter the ENDREQ macro. See “CHECK” on page 425 and
“ENDREQ” on page 430.

ACB
Specifies the address of the access method control block (ACB) associated with the file you are
processing.

If you created the access method control block through the ACB macro, you can write this parameter
as the assembler program label on that instruction. If no ACB associated with your file exists, then you
must create one through the ACB or GENCB macro before issuing the RPL macro. If necessary, review
the entry titled “ACB” on page 418 or “GENCB” on page 437.

AREA
Specifies one of two things:

• If you select the OPTCD=MVE parameter, then the AREA parameter specifies the address of a work
area to which a data record is moved to be processed and from which it is moved after processing.

• If you select the OPTCD=LOC parameter, then the AREA parameter will specify the address of a
work area. The address of the I/O buffer in which you process your file will be placed in this work
area (GET only).

AREALEN
Specifies the length, in bytes, of the work area whose address you specified in the AREA parameter.

If you selected the OPTCD=MVE parameter, then this length must be no less than the size of a data
record. For variable-length records, you must allow for the largest record in the file.

If you selected the OPTCD=LOC parameter, then you must specify a length of 4 bytes to accept the
address of the I/O buffer where you will process each record.

ARG
Specifies the address of a field that contains the search argument for one of the following:

• Direct or skip sequential retrieval (GET).
• Sequential positioning (POINT).
• Direct or skip sequential storage (PUT) for a relative record file.

For keyed access (OPTCD=KEY), the search argument may be a

• Full key (OPTCD=FKS).
• Generic key (OPTCD=GEN). Here, you must also specify its size through the KEYLEN parameter.
• Relative record number (which is treated as a key).

For addressed access (OPTCD=ADR), the search argument is always an RBA. To determine the RBA
of a record where you have gained access sequentially or directly by key, you can enter the SHOWCB
macro. See “SHOWCB” on page 480.

For control interval access with user buffering and a user supplied RBA, the record is written only to
this RBA if positioning is not established by a previous request.

MODCB

Chapter 7. VSAM Data Management Service Macros 461

When records are inserted into a key sequenced file, either sequentially or directly, VSAM obtains the
key from the record itself. When the records are inserted sequentially into a relative record file, VSAM
returns the assigned relative record number in the ARG field.

ECB
Specifies the address of the event control block associated with the VSAM request you will make.

KEYLEN
Specifies the length, in bytes, of the generic key that you are using as a search argument
(OPTCD=GEN).

You specify the search argument in the ARG parameter. You must specify its length when it is a
generic key.

You can write this parameter as any number from 1 to 255.

NXTRPL
Specifies the address of the next request parameter list in the chain.

Omit this parameter from the RPL macro that generates the last RPL in the chain. When you enter
a request that is defined by a chain of RPLs, specify the address of the first RPL in the chain in the
instruction associated with the request.

OPTCD
Indicates the options that will govern the request defined by the request parameter list you are
creating.
ADR

Indicates addressed access to a key-sequenced or entry-sequenced file.
CNV

Indicates access will be to the entire contents of a control interval, rather than to an individual
record.

KEY
Indicates access to a key-sequenced or relative record file.

DIR
Indicates direct processing.

SEQ
Indicates sequential processing.

SKP
Indicates skip-sequential processing.

This is valid only with keyed access.

ARD
Indicates that the user's argument determines the record to be located, retrieved, or stored.

LRD
Indicates that the last record in the file will be located or retrieved.

If you choose this parameter, then you must also choose the BWD parameter.

BWD
Indicates that processing is to go through the file in a backward direction for keyed or addressed
access and for sequential or direct processing.

FWD
Indicates that processing is to go through the file in a forward direction.

ASY
Specifies that you want your file processed asynchronously.

This means that when the request associated with the RPL you are creating is scheduled, control
will return to your program so it can continue processing. Meanwhile, your request is being carried
out.

MODCB

462 z/VM: 7.2 Group Control System

Remember that asynchronous processing is merely simulated by GCS. Disk I/O in GCS is always
synchronous. Even so, you must enter the CHECK macro to obtain the results of the operation. See
“CHECK” on page 425.

SYN
Specifies that you want your file processed synchronously.

This means that control will return to your program only after the request associated with the RPL
you are creating has been carried out.

NSP
Indicates that, for direct processing only, the request is not for update. VSAM will be positioned at
the next record for subsequent sequential processing.

NUP
Indicates that any record retrieved will not be updated or deleted. Moreover, any record that is
stored is a new record.

On direct access requests, GCS does not remember the record's position.

UPD
Indicates that any record retrieved can be updated or deleted.

KEQ
Indicates that the key you provide as a search argument must equal the key of the record.

KGE
Indicates that if the key you specify as a search argument does not equal a certain record, then
the request will affect the record with the next highest key.

FKS
Indicates that you are providing a full key as a search argument.

GEN
Indicates that you are providing a generic key as a search argument.

If you select this parameter, then you must also specify the length of the generic key in the
KEYLEN parameter.

LOC
Indicates that during retrieval, the record will be put in VSAM's I/O buffer to be processed.

This parameter is not valid if you intend to call the PUT or ERASE macros, though it is valid with
the GET macro. However, to update the record, you must build a new version of it in a work area
and modify the RPL from LOCATE MODE to MOVE MODE before you enter any PUT macro. For
keyed-sequential retrieval, modifying key fields in the I/O buffer may cause erroneous results for
subsequent GET requests until the record is reread.

MVE
Indicates that, during retrieval, the record will be moved to a work area for processing. For
storage, it will be moved from the work area to the I/O buffer.

RECLEN
Specifies the length, in bytes, of a record that is to be stored.

If you intend to enter the PUT macro, then this parameter is required. If you enter a GET macro, then
the length of the record involved is placed in the RPL field associated with this parameter. This is for
the benefit of any subsequent update or store requests.

TRANSID
Specifies a number from 0 to 31 when RPL= is specified.
Number

Description
0

Indicates that the request defined by this RPL is not associated with other requests.

MODCB

Chapter 7. VSAM Data Management Service Macros 463

1-31
Relates the requests defined by this RPL to the requests defined by other RPLs with the same
TRANSID value.

Usage (RPL)
1. Whatever value you assign to a parameter in this instruction is the value that will replace the one

currently associated with the parameter in the RPL.
2. Notice that the options under the OPTCD parameter are divided into groups. Only one option per group

can be in effect at one time. If you specify one option from a group in the MODCB macro, then that
option overrides any other option from that group that might be specified in the RPL.

3. Each time you enter the MODCB macro, you must provide the system with a 72-byte save area. Before
you enter the instruction, place the address of this save area in register 13.

4. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (RPL)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The MODCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

X'0B' 11 The MODCB macro is already active on the specified control block.

X'0E' 14 You specified an incompatible set of parameters.

X'10' 16 You specified an invalid control block address in the RPL parameter.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

MODCB

464 z/VM: 7.2 Group Control System

OPEN

Format

label

OPEN (

,

 acb_address)

Purpose

Use the OPEN macro to prepare a VSAM file for processing.

Before your program can access a file, the file must be opened for processing. The process of preparing a
file includes:

• Logically connecting your program to the file.
• Building various control blocks needed by VSAM to process the file.
• Verifying that the file matches the one you described through the ACB or GENCB macros.
• Verifying any necessary passwords to the file. See “ACB” on page 418 or “GENCB” on page 437.

This discussion of the OPEN macro deals only with those matters that involve GCS.

Parameters

acb_address
Specifies the address of the access method control block (ACB) associated with the file you wish to
open.

You can specify the address of more than one, and open more than one file. If you do specify more
than one ACB address, be certain to separate each by a comma.

You can write this parameter as an assembler program label or as register (2) through (12). If you
specify the address using a register, each register in the list is surrounded by a pair of parentheses,
and the list itself is surrounded by a set of parentheses.

Usage

1. See Appendix B, “Using VSAM,” on page 517.
2. If you have data control blocks (DCBs) that you wish to open, and ACBs, you can specify a combination

of both in the same OPEN macro. GCS is able to distinguish the address of one from the address of the
other, if you separate each with a comma. This macro and the one described in “OPEN (BSAM/QSAM)”
on page 398 are similar.

Completion Codes, Return Codes, and ABEND Codes
When this macro completes processing, it passes to the caller a completion code in register 15. If register
15 contains 4 or 8, then the specific error is indicated in the ERROR field of the appropriate ACB. This field
can be displayed through the SHOWCB macro. See “SHOWCB” on page 480.

Completion Code Meaning

0 All the files specified are now opened.

OPEN

Chapter 7. VSAM Data Management Service Macros 465

Completion Code Meaning

4 All the files specified are now opened. However, one or more warning messages
have been issued.

8 At least one of the files specified was not opened. The ACB associated with the
file(s) not opened have been restored to their original condition. If any of these files
were already opened, then their ACBs remain open, usable, and unchanged.

Hex
Code

Decimal
Code

Meaning

X'04' 4 The file indicated by the access method control block is already
open.

X'5C' 92 MACRF=LSR is specified but the OPEN/CLOSE/TCLOSE message
area was not specified; therefore, it is impossible to capture error
messages produced during implied buffer write.

X'60' 96 Catalog recovery for this file failed. Therefore, the file is not usable.

X'64' 100 The OPEN macro found an empty alternate index that is part of an
upgrade set.

X'68' 104 The time stamp of the volume on which a file is stored does not
match the system time stamp in the file's catalog record. This
indicates that extent information in the catalog may not agree with
the extents indicated in the volume's VTOC.

X'6C' 108 The time stamps of a data and index component do not match. This
indicates that the data and the index were not updated at the same
time.

X'74' 116 The file was not properly closed.

X'80' 128 Either the DLBL command for the file or for the catalog is missing, or
the file specified in that statement does not match the name of the
ACB.

X'84' 132 A permanent I/O error occurred while VSAM was reading label
information.

X'88' 136 Insufficient virtual storage is available for work areas, control blocks,
or buffers.

X'90' 144 An I/O error, which cannot be corrected, occurred while VSAM was
reading or writing a catalog record.

X'94' 148 Either no record for the file to be opened was found in the
available catalog(s), or an unidentified error occurred while VSAM
was searching the catalog.

X'98' 152 Security verification failed. The password specified in the access
method control block for a specified level of access does not match
the password in the catalog for that level of access.

OPEN

466 z/VM: 7.2 Group Control System

Hex
Code

Decimal
Code

Meaning

X'A0' 160 The parameters specified in the ACB or GENCB macro are either
inconsistent with each other, or inconsistent with the information in
the catalog record.

This means:

• MACRF options are inconsistent.
• MACRF DFR is specified for a data set that was defined with

SHAREOPTION (4).
• Attempt to open a compressed cluster in control interval mode.

X'A8' 168 Either the file is not available for the type of processing you specified,
or an attempt was made to open a reusable file with the RESET
option while another user had the file open.

X'B4' 180 An error occurred in opening a catalog.

X'BC' 188 The file specified by the access method control block is not one that
can be specified by an ACB.

X'C0' 192 An unusable file was opened for output.

X'C2' 194 Attempt to open data component of a compressed cluster.

X'C4' 196 Access to data was requested through an empty alternate index.

X'D4' 212 MACRF=LSR is specified, but the data set opened is empty.

X'D8' 216 MACRF=LSR is specified, but the key length of the data set opened is
greater than the maximum key length specified in the BLDVRP for the
resource pool.

X'DC' 220 MACRF=LSR is specified, but the control interval size of the data set
opened is greater than the largest buffer size specified in BLDVRP for
the resource pool.

X'E4' 228 MACRF=LSR is specified, but the VSAM Shared Resources Table does
not exist.

X'E8' 232 RESET was specified for a non-reusable file, but the file is not empty.

X'F6' 246 Compression Management Services error during OPEN.

X'F7' 247 Compression Control error during OPEN.

ABEND Code Meaning

013 An error occurred during the execution of the OPEN macro. You will receive a message
explaining this further.

035 An error occurred in the OPEN macro.

03A The number of exits defined in the system has reached the maximum of 128.

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

OPEN

Chapter 7. VSAM Data Management Service Macros 467

POINT

Format

label

POINT RPL= address

Purpose

Use the POINT macro to position yourself forward or backward within the VSAM file to a specific record.

To access a certain record within a VSAM file, you must position yourself within that file and point to the
record in question.

This discussion of the POINT macro deals only with those matters that involve GCS.

Parameters

RPL
Specifies the address of the request parameter list (RPL) associated with your POINT request.

This is the same request parameter list that you defined through the RPL macro. See “RPL” on page
472. You specify the record to which you want to point in the ARG parameter of that instruction.

You can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. If you specify the OPTCD=KEY parameter in the appropriate RPL instruction, then the POINT macro

establishes a pointer indicating the record whose key or relative-record number you specified in the
search argument field. You can use the POINT macro to position either forward or backward within the
file.

2. If you specify the OPTCD=ADR or OPTCD=CNV parameter in the appropriate RPL instruction, then the
POINT macro establishes a pointer indicating the record or control interval whose RBA you specified in
the search argument field. You can use the POINT macro to position either forward or backward within
the file.

3. VSAM can also be positioned for sequential processing by either a direct GET or PUT macro.
4. Each time you enter the POINT macro, you must provide the system with a 72-byte save area. Before

you enter the instruction place the address of this save area in register 13.
5. See Appendix B, “Using VSAM,” on page 517.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15. If register 15
contains 8 or 12, then the specific error is indicated in the FDBK field of the appropriate RPL. This field
can be displayed through the SHOWCB or TESTCB macros. See “SHOWCB” on page 480 or “TESTCB” on
page 490.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Your request was accepted.

POINT

468 z/VM: 7.2 Group Control System

Hex
Code

Decimal
Code

Meaning

X'04' 4 Your request was not accepted because the RPL you specified in the
POINT macro is already active for another request.

X'08' 8 A logical error occurred.

X'0C' 12 A physical error occurred.

ABEND Code Meaning

035 An error occurred in the POINT macro. The message preceding the ABEND describes
this further.

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

POINT

Chapter 7. VSAM Data Management Service Macros 469

PUT

Format

label

PUT RPL= address

Purpose

Use the PUT macro to store a record from an I/O buffer or work area into a VSAM file.

This discussion of the PUT macro deals only with those matters that involve GCS.

Parameters

RPL
Specifies the address of the request parameter list (RPL) associated with your PUT request.

This is the same request parameter list that you defined through the RPL macro. See “RPL” on page
472.

You can write this parameter as an assembler program label or as register (2) through (12).

Usage
1. Each time you enter the PUT macro, you must provide the system with a 72-byte save area. Before you

enter the instruction, place the address of this save area in register 13.
2. See Appendix B, “Using VSAM,” on page 517.

Return Codes and ABEND Codes
When this macro completes processing, it passes to the caller a return code in register 15. If register 15
contains 8 or 12, then the specific error is indicated in the FDBK field of the appropriate RPL. This field
can be displayed through the SHOWCB or TESTCB macros. See “SHOWCB” on page 480 or “TESTCB” on
page 490.

Hex
Code

Decimal
Code

Meaning

X'00' 0 Your request was accepted.

X'04' 4 Your request was not accepted because the RPL you specified in the
PUT macro is already active for another request.

X'08' 8 A logical error occurred.

X'0C' 12 A physical error occurred.

ABEND Code Meaning

035 An error occurred in the PUT macro.

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

PUT

470 z/VM: 7.2 Group Control System

ABEND Code Meaning

03B You specified a TYPE parameter of CHK or DRBA and those parameters are not
supported.

PUT

Chapter 7. VSAM Data Management Service Macros 471

RPL

Format

label

RPL

,ACB= address ,AREA=  address

,AREALEN=  number ,ARG= address ,ECB= address

,KEYLEN=  number ,NXTRPL=  address

,OPTCD=(
KEY

ADR

CNV

,SEQ

,DIR

,SKP

,ARD

,LRD

,FWD

,BWD

,SYN

,ASY

,NUP

,NSP

,UPD

,KEQ

,KGE

,FKS

,GEN

,MVE

,LOC

)

,RECLEN=  number

,TRANSID=  0

,TRANSID=  number

Purpose

Use the RPL macro to create a Request Parameter List (RPL) at assembly time describing the
characteristics of your VSAM request.

Certain VSAM functions require that you set up a request parameter list (RPL). These VSAM functions
are associated with the following macros: CHECK, ENDREQ, ERASE, GET, POINT, PUT, and WRTBFR. See
“CHECK” on page 425, “ENDREQ” on page 430, “ERASE” on page 432, “GET” on page 451, “POINT” on
page 468, “PUT” on page 470, or “WRTBFR” on page 505.

This discussion of the RPL macro deals only with those matters that involve GCS.

Parameters

ACB
Specifies the address of the access method control block (ACB) associated with the file you are
processing.

If you created the access method control block through the ACB macro, you can write this parameter
as the assembler program label on that instruction. If no ACB associated with your file exists, then
you must create one through the GENCB macro. If necessary, review the entry titled “GENCB” on page
437.

AREA
Specifies one of two things:

• If you select the OPTCD=MVE parameter, then the AREA parameter specifies the address of a work
area where data records are moved for processing and moved from after processing.

• If you select the OPTCD=LOC parameter, then the AREA parameter will specify the address of a
work area. The address of the I/O buffer which you process your file will be placed in this work area.

AREALEN
Specifies the length, in bytes, of the work area whose address you specified in the AREA parameter.

If you selected the OPTCD=MVE parameter, then this length must be no less than the size of a data
record. For variable-length records, you must allow for the largest record in the file.

RPL

472 z/VM: 7.2 Group Control System

If you selected the OPTCD=LOC parameter, then you must specify a length of 4 bytes to hold the
address of the I/O buffer which you will process each record.

ARG
Specifies the address of a field that contains the search argument for one of the following:

• Direct or skip sequential retrieval (GET).
• Sequential positioning (POINT).
• Direct or skip sequential storage (PUT) for a relative record file.

For keyed access (OPTCD=KEY), the search argument may be a

• Full key (OPTCD=FKS).
• Generic key (OPTCD=GEN). You must also specify its size through the KEYLEN parameter.
• Relative record number (which is treated as a key).

For addressed access (OPTCD=ADR), the search argument is always an RBA. To determine the RBA of
a record to which you have gained access sequentially or directly by key, you can enter the SHOWCB
macro. See “SHOWCB” on page 480.

For control interval access with user buffering and a user-supplied RBA, the record is written only to
this RBA if positioning is not established by a previous request.

When records are inserted into a key sequenced file, either sequentially or directly, VSAM obtains the
key from the record itself. When the records are inserted sequentially into a relative record file, VSAM
returns the assigned relative record number in the ARG field.

ECB
Specifies the address of the event control block associated with the VSAM request you will make.

KEYLEN
Specifies the length, in bytes, of the generic key that you are using as a search argument.

You specify the search argument in the ARG parameter. However, you must specify its length when it
is a generic key.

You can write this parameter as any number from 1 to 255.

NXTRPL
Specifies the address of the next request parameter list in the chain.

Omit this parameter from the RPL instruction that generates the last RPL in the chain. When you enter
a request that is defined by a chain of RPLs, specify the address of the first RPL in the chain in the
instruction associated with the request.

OPTCD
Indicates the options that will govern the request defined by the request parameter list you are
creating.

Carefully check the preceding format box. Note that the parameters are arranged in groups, each with
a value that will be assumed by default should you forget to specify from that group. Because they are
not positional parameters, they can be specified in any order.

KEY
Indicates access to a key-sequenced or relative record file.

ADR
Indicates addressed access to a key-sequenced or entry-sequenced file.

CNV
Indicates access will be to the entire contents of a control interval, rather than to an individual
record.

SEQ
Indicates sequential processing.

RPL

Chapter 7. VSAM Data Management Service Macros 473

DIR
Indicates direct processing.

SKP
Indicates skip-sequential processing

This is valid only with keyed access.

ARD
Indicates that the user's argument determines the record to be located, retrieved, or stored.

LRD
Indicates that the last record in the file will be located or retrieved.

If you choose this parameter, then you must also choose the BWD parameter.

FWD
Indicates that processing is to go through the file in a forward direction.

BWD
Indicates that processing is to go through the file in a backward direction for keyed or addressed
access, and for sequential or direct processing.

SYN
Specifies that you want your file processed synchronously.

This means that control will return to your program only after the request associated with the RPL
you are creating has been carried out.

ASY
Specifies that you want your file processed asynchronously.

This means that when the request associated with the RPL you are creating is scheduled, control
will return to your program so it can continue processing. Meanwhile, your request is carried out.

Remember that asynchronous processing is merely simulated by GCS. Disk I/O in GCS is always
synchronous. Even so, you must enter the CHECK macro to obtain the results of the operation.

NUP
Indicates that any record retrieved will not be updated or deleted. Any record that is stored is a
new record.

On direct access requests, GCS does not remember the record's position.

NSP
Indicates that, for direct processing only, your request is not for update. VSAM will be positioned
at the next record for further sequential processing.

UPD
Indicates that any record retrieved can be updated or deleted.

KEQ
Indicates that the key you provide as a search argument must equal the key of the record.

KGE
Indicates that if the key you specify as a search argument does not equal a certain record, then
the request will affect the record with the next highest key.

FKS
Indicates that you are providing a full key as a search argument.

GEN
Indicates that you are providing a generic key as a search argument.

If you select this parameter, then you must also specify the length of the generic key in the
KEYLEN parameter.

MVE
Indicates that, during retrieval, the record will be moved to a work area for processing. For
storage, it will be moved from the work area to VSAM's I/O buffer.

RPL

474 z/VM: 7.2 Group Control System

LOC
Indicates that, during retrieval, the record will be put in VSAM's I/O buffer to be processed.

RECLEN
Specifies the length, in bytes, of a record that is to be stored.

If you intend to enter the PUT macro, then this parameter is required. If you enter a GET instruction,
then the length of the record involved is placed in the RPL field associated with this parameter. This is
for the benefit of any subsequent update or store requests.

TRANSID
Provides a means of associating buffers that contain deferred write buffer updates that represent
parts of the same transaction. By using TRANSID with WRTBFR you may synchronize update
commitment by transaction. TRANSID also specifies a number from 0 to 31.
Number

Description
0

Default value. Indicates that the request defined by this RPL is not associated with other requests.
1-31

Relates the requests defined by this RPL to the requests defined by other RPLs with the same
TRANSID value.

Usage

1. SHOWCB or TESTCB can tell you what TRANSID an RPL has.
2. MODCB can change the TRANSID of an RPL.

RPL

Chapter 7. VSAM Data Management Service Macros 475

SHOWCAT

Format

label

SHOWCAT
1

NAME= address

CI= address

,ACB= address

,AREA=  address

Notes:
1 When issuing SHOWCAT for the first time, use the NAME and AREA parameters to receive the CI
addresses for associated objects and the catalog ACB address which are in the return area. From
then on use the CI address, ACB address, and the AREA address to retrieve more information about
the associated objects.

Purpose

Use the SHOWCAT macro to allow an application to retrieve information from the VSAM catalog. The
information retrieved can be used to calculate parameters for building the resource pool for Local Shared
Resources.

To use the SHOWCAT macro you must enter SHOWCAT on:

1. The name of the object.

The information returned to you includes the control interval numbers of catalog records in entries that
describe associated objects.

2. A control interval number to retrieve information from one of these other entries.

Parameters

NAME
Specifies the address of a 44-byte area containing the data set name of the VSAM object for which you
are retrieving information. The name is left justified, padded with blanks on the right, and must be an
object other than upgrade set (Y).

CI
Specifies the address of a 3-byte area that contains the control interval number of the catalog entry
for the object you want displayed. All object entries are valid. The area you specify with this parameter
must be distinct from the area you specify with the AREA parameter.

Note: When you enter the first SHOWCAT for an object using the NAME parameter, you receive the CI
numbers for associated objects and the catalog ACB address in the return area. You then use these
pointers to retrieve more information about the associated objects.

ACB
Specifies the address of the ACB that defines the catalog containing the entry you want displayed.

Note:

1. The first time you enter SHOWCAT, do not specify an ACB. VSAM indicates the address of the
ACB in the return area. Use this address and the entry CI numbers to retrieve information for the
associated objects.

2. You must specify the ACB address in register notation.

SHOWCAT

476 z/VM: 7.2 Group Control System

AREA
Specifies the address of a work area where the catalog information is to be displayed.

Note:

1. The first 2 bytes of this area must contain the length of the work area, which includes the 2-byte
length indicator.

2. The minimum size of the area is 64 bytes.

Usage
When using this macro you must make sure that register 13 contains the address of a 72-byte save
area.
If you enter the macro from within one of your exit routines (LERAD or SYNAD) you must provide a
second 72-byte save area because the original one is still in use by the external VSAM routine.

Completion Codes
When VSAM returns to the application after a SHOWCAT request, register 15 contains one of the following
completion codes:

Completion Code Meaning

0 VSAM completed the request successfully.

4 The area specified in the AREA parameter is less than the minimum required (64
bytes) or the area is too small to display all associated objects.

8 An error was detected while VSAM routines were being loaded.

12 Either the ACB address is invalid or the VSAM master catalog does not exist or
cannot be opened.

20 The named object or control interval does not exist.

24 There was an I/O error in accessing the catalog.

28 The CI number specified is invalid.

32 The catalog record does not describe an acceptable type of object (C, D, G, I, R, or
Y).

36 The information in the catalog is at a different level than that in the catalog
recovery area.

40 There was an unexpected error code returned from catalog management to the
SHOWCAT processor.

Information and Format in the Catalog Display

If the completion code returned was zero, the requested catalog information is returned in the work area
that you specified with the AREA operand. The format of the returned information is as follows:

Offset Length
(bytes)

Meaning

0(0) 2 Length of the work area, including the length of this length field (provided
by requester).

2(2) 2 Length of the work area actually used by VSAM, including the length of
this field and the preceding field.

4(4) 4 The address of the ACB that defines the catalog that contains the entry
which will be displayed.

SHOWCAT

Chapter 7. VSAM Data Management Service Macros 477

Offset Length
(bytes)

Meaning

8(8) 1 Type of object about which information is returned:

• Cluster (C)
• Data Component (D)
• Index Component (I)
• Alternate Index (G)
• Path (R)
• Upgrade Set (Y).

For C, G, R, and Y types:

Offset Length
(bytes)

Meaning

9(9) 1 For C and Y types: Reserved. For G type:
x...

The alternate index can be (1) or cannot be (0) a member of an
upgrade set. The way to find out for sure is to display information
for the upgrade set of the base cluster and check whether it contains
control interval numbers of entries that describe the components of
an alternate index.

.xxx xxxx
Reserved.

For R type:
x...

The path is (1) or is not (0) defined with the UPDATE attribute (for
upgrading alternate indexes).

.xxx xxxx
Reserved.

10(A) 2 The number of pairs of fields that follow. Each pair of fields identifies
another catalog entry that describes an object associated with this C, G, R,
or Y object. The possible types of associated objects are:

With C: D, G, I, R
With G: C, D, I, R
With R: C, D, G, I
With Y: D, I.

12(C) 1 Type of associated object the entry describes.

13(D) 3 The control interval number of its first record.

16(10) Next pair of fields, and so on.

Note:

1. VSAM displays as many pairs as possible and returns a code of 4 in
register 15 if the area is too small.

2. Each pair of fields occupies 4 bytes, except Y-type (8 bytes).

For D and I types:

SHOWCAT

478 z/VM: 7.2 Group Control System

Offset Length
(bytes)

Meaning

9(9) 1 Reserved.

10(A) 2 Relative position of the prime key in records in the data component. For
the data component of an entry-sequenced or a relative record file there
is no prime key and this field is 0.

12(C) 2 Length of the prime key.

14(E) 4 Control interval size of the data or index component.

18(12) 4 Maximum record size of the data or index component.

22(16) 2 The number of pairs of fields that follow. Each pair of fields identifies
another catalog entry that describes an object associated with this D or I
object. The possible types of associated objects are:

With D: C, G, Y
With I: C, G.

24(18) 1 Type of associated object the entry describes.

25(19) 1 The control interval number of its first record.

28(1C) Next pair of fields, and so on. If the minimum AREA size is specified, fields
for all associated objects can always be displayed.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list.
This means that your program tried to use an address to which it has no access.

SHOWCAT

Chapter 7. VSAM Data Management Service Macros 479

SHOWCB
The SHOWCB macro is available in Access Control Block (ACB), Exit List (EXLST) and Request Parameter
List (RPL) formats.

Access Control Block Format

See also “Exit List Format” on page 484 and “Request Parameter List Format” on page 486.

label

SHOWCB ACB=  address ,AREA=  address ,LENGTH=  number

,OBJECT=DATA

,OBJECT=INDEX

,FIELDS=(Option A)

Option A

1
ACBLEN

,BUFND ,BUFNI ,BUFSP ,DDNAME

,ERROR ,EXLST ,MAREA ,MLEN ,PASSWD

,STRNO ,AVSPAC ,BUFNO ,CINV ,FS

,KEYLEN ,LRECL ,NCIS ,NDELR ,NEXCP

,NEXT ,NINSR ,NIXL ,NLOGR ,NRETR

,NSSS ,NUPDR ,RKP ,STMST ,STRMAX

Notes:
1 The first option does not require a comma before it, but every option thereafter must have a
comma preceding it.

Purpose (ACB)

An access method control block (ACB) defines certain characteristics of a file that you intend to process
through VSE/VSAM. When the file is opened, other characteristics of the file that you defined through the
DLBL command are merged with the ACB to complete the picture.

The contents of each field (except the ACBLEN field) is determined by the corresponding parameter in
the ACB macro, the GENCB macro, or the DLBL command. See “ACB” on page 418 and “GENCB” on page
437. For more information on the DLBL command, see “DLBL” on page 64. Also, see Appendix B, “Using
VSAM,” on page 517.

This discussion of the SHOWCB macro deals only with those matters that involve GCS.

SHOWCB

480 z/VM: 7.2 Group Control System

Parameters (ACB)

ACB
Specifies the address of the ACB containing the fields you want displayed.

All ACBs are the same length. So, if you only want the ACBLEN field displayed, you need give no ACB
address.

If you entered the ACB macro with a label attached to it, then you can write this parameter as that
label.

AREA
Specifies the address of a work area that you have provided in virtual storage to accept the ACB fields
to be displayed.

The contents of the fields are displayed in this area in the order which you list them in the SHOWCB
macro.

This work area must begin on a fullword boundary.

LENGTH
Specifies the length, in bytes, of the work area that you have provided in virtual storage to hold the
ACB fields to be displayed.

Check the following field parameters listed to determine the necessary length for this work area. If the
area is not large enough to accept all the fields you specify, then you will receive an error code.

OBJECT
Indicates the scope of your request.
DATA

Indicates that the fields you specify pertain to the data contained in the file. This is the case by
default.

INDEX
Indicates that the fields you specify pertain to the index.

FIELDS
Indicates which fields in the ACB you want displayed.

Some of the ACB fields can be displayed at any time. Others can be displayed only after the file in
question has been opened. As with a key-sequenced file opened for keyed access, the fields can
pertain to either the data or the index.

The number following each field name specifies the number of fullwords needed in the work area to
accept the field.

The following fields can be displayed at any time:

ACBLEN (1)

The length of the access method control block in question.
BUFND (1)

The number of I/O buffers used for data.
BUFNI (1)

The number of I/O buffers used for the index.
BUFSP (1)

The amount of space allocated for I/O buffers.
DDNAME (2)

The logical name of the file associated with the ACB in question.
ERROR (1)

The code returned after opening or closing the file associated with the ACB in question.

SHOWCB

Chapter 7. VSAM Data Management Service Macros 481

EXLST (1)
The address of the list of exit routine addresses. If none was specified, then this field contains 0.

MAREA (1)
The address of the message area. If none was specified, then this field contains 0.

MLEN (1)
The length of the message area. If none was specified, then this field contains 0.

PASSWD (1)
The address of the field containing the password to the file associated with the ACB in question.
The first byte of the field contains the binary length of the password.

STRNO (1)
The number of requests for which the position in the file is to be remembered.

The following fields can be displayed only after the file is open:

AVSPAC (1)

The amount of available space, in bytes, in the data component or index component.
BUFNO (1)

The number of I/O buffers actually in use by the data component or index component.
CINV (1)

The control interval size for the data component or index component.
FS (1)

The number of free control intervals per control area in the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

KEYLEN (1)
Either the full length of the prime key field or the alternate key field in each logical record. Which it
is depends on whether you access the base cluster through a path.

LRECL (1)
The length of the records in the data component or the index component. For the former, with
variable-length records, this is the maximum length of any record. For the latter, this is the control
interval length minus seven.

NCIS (1)
The number of control intervals that have been split in the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

NDELR (1)
The number of records that have been deleted from the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

NEXCP (1)
The number of EXCP macros that have been issued to obtain access to the data component or
index component.

NEXT (1)
The number of extents currently allocated to the data component or the index component.

NINSR (1)
The number of records that have been inserted into the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

NIXL (1)
The number of levels in the index component. If you specified the OBJECT=DATA parameter, then
this field contains 0.

NLOGR (1)
The number of records in the data component. If you specified the OBJECT=INDEX parameter,
then this field contains 0.

SHOWCB

482 z/VM: 7.2 Group Control System

NRETR (1)
The number of records that have ever been retrieved from the data component. If you specified
the OBJECT=INDEX parameter, then this field contains 0.

NSSS (1)
The number of control areas that have been split in the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

NUPDR (1)
The number of records in the data component that have ever been updated. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

RKP (1)
The displacement of either the prime key field or alternate key field from the beginning of a data
record. Which it is depends on whether you access the base cluster through a path. The same
value is displayed whether the object is index or data.

STMST (2)
The system time stamp, which specifies the time and date on which the data component or
index component was closed. Bit 51 is equivalent to one microsecond and bits 52 through 63 are
unused.

STRMAX (1)
Specifies the maximum number of request which were concurrently active because the resource
pool was built. The ACB specified must be associated with a resource pool, that is the parameter
MACRF=(LSR) must have been specified for the ACB.

Usage (ACB)
1. Each time you enter the SHOWCB macro, you must provide the system with a 72-byte save area.

Before you enter the instruction, place the address of this save area in register 13.

Completion Codes, Return Codes, and ABEND Codes (ACB)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The SHOWCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

X'05' 5 Either the file associated with the ACB in question is not open or is
not a VSAM file.

SHOWCB

Chapter 7. VSAM Data Management Service Macros 483

Hex
Code

Decimal
Code

Meaning

X'06' 6 Index information was requested, but no index was opened for the
file in question.

X'09' 9 The work area you provided to hold the fields to be displayed is too
small.

X'0F' 15 The work area you provided to hold the fields to be displayed is not
on a fullword boundary.

X'10' 16 You specified an invalid control block address in the ACB parameter.

X'14' 20 You specified certain parameters that can apply only if MACRF=LSR
or MACRF=GSR. MACRF=GSR is not supported by GCS. TRANSID was
specified, but LSR was not specified in the ACB.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

Exit List Format

label

SHOWCB EXLST= address ,AREA=  address ,LENGTH=  number ,

FIELDS=(

EODAD ,EXLLEN ,JRNAD ,LERAD ,SYNAD

)

Purpose (EXLST)

During VSAM processing, unusual conditions sometimes occur. If you wish, you can supply one or more
exit routines to handle such conditions. See “EXLST” on page 434 or “GENCB” on page 437. You can then
associate them with one or more access method control blocks (ACBs) that define the characteristics of
the VSAM files you plan to process. See “ACB” on page 418 or “MODCB” on page 453.

This discussion of the SHOWCB macro deals only with those matters that involve GCS.

Use the SHOWCB macro to display certain fields of an exit list. This display appears in a virtual storage
work area that you set aside for this purpose.

Parameters (EXLST)
EXLST

Specifies the address of the exit list whose fields you want to display.

If you omit this parameter and specify the EXLLEN parameter, then the EXLLEN field will display the
maximum allowable length of any exit list.

If you used the EXLST macro to generate the exit list, and you applied a label to that instruction, then
you can write this parameter as that label.

AREA
Specifies the address of a work area in virtual storage you have set aside for the display of the exit list
fields.

SHOWCB

484 z/VM: 7.2 Group Control System

This area must begin on a fullword boundary. The fields are displayed in the order which you specify
them in the SHOWCB macro.

LENGTH
Specifies the length, in bytes, of a work area in virtual storage you have set aside for the display of the
exit list fields.

Each exit list field requires one fullword. Therefore, allow 4 bytes for each field you specify in the
FIELD parameter. If the work area is not large enough to accept all the fields you specify, then you will
receive an error code.

FIELDS
Indicates the scope of your request.
EODAD

Indicates that the address of the END-OF-FILE routine will be displayed.
EXLLEN

Specifies one of two things:

• If the EXLST parameter is specified, then the length of the exit list will be displayed.
• If the EXLST parameter is not specified, then the maximum allowable length of any exit list will

be displayed.

JRNAD
Specifies that the address of the journaling routine will be displayed.

LERAD
Specifies that the address of the logical error analysis routine will be displayed.

SYNAD
Specifies that the address of the physical error analysis routine will be displayed.

Usage (EXLST)
1. Use the SHOWCB macro to display a certain field in an exit list only if that field exists.

GCS will display the fields in the order which you request them.
2. Each time you enter the SHOWCB macro, you must provide the system with a 72-byte save area.

Before you enter the macro, place the address of this save area in register 13.
3. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (EXLST)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The SHOWCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

SHOWCB

Chapter 7. VSAM Data Management Service Macros 485

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

X'07' 7 The type of exit you specified is not in the exit list.

X'09' 9 The work area you provided to accommodate the fields to be
displayed is too small. No fields were displayed.

X'0F' 15 The work area you provided to accommodate the fields to be
displayed is not on a fullword boundary. No fields were displayed.

X'10' 16 You specified an invalid control block address in the EXLST
parameter.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

Request Parameter List Format

label

SHOWCB RPL= address ,AREA=  address ,LENGTH=  number , FIELDS=(Option A)

Option A

ACB ,AIXPC ,AREA ,AREALEN ,ARG

,ECB ,FDBK ,FTNCD ,KEYLEN ,NXTRPL

,RBA ,RECLEN ,RPLLEN ,TRANSID

Purpose (RPL)

All VSAM functions require that you set up a request parameter list (RPL) that describes the
characteristics of your request. These VSAM functions are associated with the following macros: CHECK,
ENDREQ, ERASE, GET, POINT, and PUT. See “CHECK” on page 425, “ENDREQ” on page 430, “ERASE” on
page 432, “GET” on page 451, “POINT” on page 468, or “PUT” on page 470. Also, see Appendix B, “Using
VSAM,” on page 517.

You create a request parameter list through the RPL or GENCB macros. See “RPL” on page 472 or
“GENCB” on page 437.

This discussion of the SHOWCB macro deals only with those matters that involve GCS.

SHOWCB

486 z/VM: 7.2 Group Control System

Use the SHOWCB macro to display certain fields of a request parameter list. This display appears in a
work area that you have set aside for this purpose.

Parameters (RPL)

RPL
Specifies the address of the request parameter list whose fields you want to display.

Because all RPLs are the same length, you can omit this parameter if the only field you are interested
in displaying is the RPLLEN field.

If you used the RPL macro to create this request parameter list, and you applied a label to that
instruction, then you can write this parameter as that label.

AREA
Specifies the address of a work area in virtual storage you have set aside to accommodate the RPL
fields you want to display.

This work area must begin on a fullword boundary. The fields are displayed in this work area in the
order which you list them in the SHOWCB macro.

LENGTH
Specifies the length, in bytes, of the work area in virtual storage you have set aside to accept the RPL
fields you want to display.

Each RPL field requires one fullword. Therefore, allow 4 bytes for each field you specify in the FIELDS
parameter.

FIELDS
Indicates which fields you want to display.
ACB

The address of the access method control block that relates the RPL to the file you are processing.
AIXPC

The number of alternate index pointers.
AREA

The address of the work area that your program uses to process the file records. Access to this file
is defined by the RPL.

AREALEN
The length of the work area whose address is specified in the AREA field.

ARG
If you are using search arguments to process your file, the address of the field containing that
search argument.

ECB
The address of the event control block associated with the RPL in question. It is in this ECB that
the completion of the request associated with the RPL is posted.

FDBK
The address of the feedback field that will contain the return code from the request associated
with this RPL.

For asynchronous requests, you must enter the CHECK macro to place the return code in this
field. See “CHECK” on page 425. The significance of this return code depends on the contents
of register 15, which indicates whether the request was successful or unsuccessful because of
logical or physical error.

FTNCD
The code that describes the function which a logical or physical error occurred.

KEYLEN
If you are using a generic key as a search argument, the length of that argument.

SHOWCB

Chapter 7. VSAM Data Management Service Macros 487

NXTRPL
The address of the next request parameter list in the chain, if one exists.

RBA
The relative byte address of the most recently processed record in the file.

RECLEN
The length of the file record, access to which is defined by the request parameter list.

RPLLEN
The length, in bytes, of any request parameter list.

TRANSID
Specifies that you want to have the TRANSID displayed in your work area when RPL= is specified.

Usage (RPL)
1. Each time you enter the SHOWCB macro, you must provide the system with a 72-byte save area.

Before you enter the instruction, place the address of this save area in register 13.
2. Display of TRANSID requires one fullword in your work area.

Completion Codes, Return Codes, and ABEND Codes (RPL)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The SHOWCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

X'09' 9 The work area you provided to hold the fields to be displayed is too
small. No fields were displayed.

X'0F' 15 The work area you provided to hold the fields to be displayed is not
on a fullword boundary. No fields were displayed.

X'10' 16 You specified an invalid control block address in the RPL parameter.

X'14' 20 TRANSID was specified, but LSR was not specified in the ACB.

SHOWCB

488 z/VM: 7.2 Group Control System

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

SHOWCB

Chapter 7. VSAM Data Management Service Macros 489

TESTCB
The TESTCB macro is available in Access Control Block (ACB), Exit List (EXLST) and Request Parameter
List (RPL) formats.

Access Control Block Format

See also “Exit List Format” on page 496 and “Request Parameter List Format” on page 499.

label

TESTCB ACB=  address ,

ERET= address

,OBJECT=DATA

,OBJECT=INDEX

,ATRB=(ATRB Options)

,MACRF=(MACRF Options)

Option A

OFLAGS=OPEN

OPENOBJ= PATH

BASE

AIX

ATRB Options

ESDS

,KSDS

,REPL

,RRDS

,SPAN ,SSWD ,UNQ ,WCK

MARCF Options

ADR ,AIX ,CNV ,DIR ,IN ,KEY

,NDF

,DFR ,NRM

,NRS

,RST

,NSR

,LSR ,NUB

,OUT ,SEQ ,SKP ,UBF

Option A

TESTCB

490 z/VM: 7.2 Group Control System

ABCLEN

AVSPAC

BUFND

BUFNI

BUFNO

BUFSP

CINV

DDNAME

ERROR

EXLST

FS

KEYLEN

LRECL

MAREA

MLEN

NCIS

NDELR

NEXCP

NEXT

NINSR

NIXL

NLOGR

NRETR

NSSS

NUPDR

PASSWD

RKP

STMST

STRNO

= value

Purpose (ACB)

An access method control block (ACB) defines certain characteristics of a file that you intend to process
through VSAM. When the file is opened, other characteristics of the file that you defined through the DLBL
command are merged with the ACB to complete the picture.

The contents of each field (except the ACBLEN field) is determined by the corresponding parameter in the
ACB macro, the GENCB macro, or the DLBL command. See “ACB” on page 418 and “GENCB” on page 437.
For more information on the DLBL command, see “DLBL” on page 64.

This discussion of the TESTCB macro deals only with those matters that involve GCS.

Parameters (ACB)

ACB
Specifies the address of the ACB that contains the information you want to test.

TESTCB

Chapter 7. VSAM Data Management Service Macros 491

Because all ACBs have the same length, you can omit this parameter if the field you want to test is the
ACBLEN field.

ERET
Specifies the address of a routine that will receive control if the condition you want to test for cannot
be tested.

This routine receives control if the TESTCB macro places a return code of 4 in register 15. Upon entry
to this routine, register 0 contains additional information describing the error.

The ERET routine probably should issue an ABEND macro, because a failure to carry out a test is
probably the result of a program logic error. If the ERET routine allows the program to continue, then it
must transfer control to the continuation point, though it must not return to VSAM.

OBJECT
Indicates the scope of the test.
DATA

Indicates that the test will affect the data component. This is the case by default.
INDEX

Indicates that the test will affect the index component.
ATRB

Indicates the attribute that will be tested on the open file. Select from among the following attributes
for which you can test.
ATRB Options:

ESDS

Whether an entry-sequenced file.
KSDS

Whether a key-sequenced file.
REPL

Whether some portion of the index is replicated.
RRDS

Whether a relative record file.
SPAN

Whether the file contains spanned records.
SSWD

Whether a sequence set is adjacent to the data.
UNQ

Whether the alternate index requires unique keys.
WCK

Whether write operations for the file are being verified.
MACRF

Indicates that a test be made to determine whether certain processing options are being used. The
following describes the various processing options available for which you can test.

MARCF Options:

ADR

Indicates addressed access to a key-sequenced or entry-sequenced file.

RBAs will be used as search arguments, and sequential access is by entry sequence.

AIX
Indicates that the object to be processed is the alternate index of the path specified by the
DDNAME parameter, rather than the base cluster through the alternate index.

TESTCB

492 z/VM: 7.2 Group Control System

CNV
Indicates access will be to the entire contents of a control interval, rather than to an individual
record.

DIR
Indicates direct access to a key-sequenced, entry-sequenced, or relative record file.

IN
Indicates retrieval of records from key-sequenced, entry-sequenced, or relative record files.

This is not a valid form of processing for an empty file.

KEY
Indicates access to a key-sequenced or relative record file.

Keys will be relative record numbers used as search arguments, and sequential access will be by
key or relative record number.

NDF
Indicates that any WRITE macro will not be deferred for a direct PUT macro.

DFR
Specifies that physically writing the I/O buffers is deferred when possible.

NRM
Indicates that the file to be processed is the one specified by the DDNAME parameter.

NRS
Indicates that the file is not reusable.

RST
Indicates that the file is reusable.

The OPEN macro resets the file's catalog information to its original status — it resets it to the
status it had before the file was first opened. See “OPEN” on page 465. Also, the high-used RBA is
reset to zero.

The file must have been defined with the REUSE attribute for RST to be effective. Although the
file is not erased, you can handle it as though it were a new file, and use it as a work file. When
the OPEN macro carries out the reset operation, this parameter is equivalent to the OUT option.
DISP=NEW specified on the DLBL command is equivalent to selecting this parameter, and will
override the NRS parameter.

NSR
Indicates that the resources are not shared.

LSR
Specifies that the resources are shared. This also indicates a VSAM resource pool will be provided
when opening this ACB.

NUB
Indicates that VSAM will manage the I/O buffers.

OUT
Indicates three things:

• Storage of new records in a key-sequenced, entry-sequenced, or relative record file. This is not
allowed with addressed access to a key-sequenced file.

• Update of new records in a key-sequenced, entry-sequenced, or relative record file.
• Deletion of records from a key-sequenced or relative record file.

SEQ
Indicates sequential access to a key-sequenced, entry-sequenced, or relative record file.

SKP
Indicates skip-sequential access to a key-sequenced or relative record file.

This is valid only with keyed access in a forward direction.

TESTCB

Chapter 7. VSAM Data Management Service Macros 493

UBF
Indicates that the application will manage the I/O buffers.

The work area specified by the RPL or GENCB macros will be, in effect, the I/O buffer. The
contents of a control interval is transmitted directly between the work area and DASD. This
parameter is valid only when the MACRF=CNV and OPTCD=MVE parameters are specified in the
RPL macro. See “RPL” on page 472 and “GENCB” on page 437.

Option A:

ACBLEN

The length of the access method control block in question.
AVSPAC

The amount of available space, in bytes, in the data component or index component.
BUFND

The number of I/O buffers used for data.
BUFNI

The number of I/O buffers used for the index.
BUFNO

The number of I/O buffers actually in use by the data component or index component.
BUFSP

The amount of space allocated for I/O buffers.
CINV

The control interval size for the data component or index component.
DDNAME

The logical name of the file associated with the ACB in question.
ERROR

The code returned after opening or closing the file associated with the ACB in question.
EXLST

The address of the list of exit routine addresses. If none was specified, then this field contains 0.
FS

The percentage of free control intervals per control area in the data component. If you specified
the OBJECT=INDEX parameter, then this field contains 0.

KEYLEN
The full length of the prime key field or alternate key field in each logical record. Which it is
depends on whether you access the base cluster through a path.

LRECL
The length of the records in the data component or the index component. For the former, with
variable-length records, this is the maximum length of any record. For the latter, this is the control
interval length minus seven.

MAREA
The address of the message area. If none was specified, then this field contains 0.

MLEN
The length of the message area. If none was specified, then this field contains 0.

NCIS
The number of control intervals that have been split in the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

NDELR
The number of records that have been deleted from the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

TESTCB

494 z/VM: 7.2 Group Control System

NEXCP
The number of EXCP macros that have been issued to obtain access to the data component or
index component.

NEXT
The number of extents currently allocated to the data component or the index component.

NINSR
The number of records that have been inserted into the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

NIXL
The number of levels in the index component. If you specified the OBJECT=DATA parameter, then
this field contains 0.

NLOGR
The number of records in the data component. If you specified the OBJECT=INDEX parameter,
then this field contains 0.

NRETR
The number of records that have ever been retrieved from the data component. If you specified
the OBJECT=INDEX parameter, then this field contains 0.

NSSS
The number of control areas that have been split in the data component. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

NUPDR
The number of records in the data component that have ever been updated. If you specified the
OBJECT=INDEX parameter, then this field contains 0.

PASSWD
The address of the field containing the password to the file associated with the ACB in question.
The first byte of the field contains the binary length of the password.

RKP
Depending on whether you access the base cluster through a path, the displacement of the prime
key field or alternate key field from the beginning of a data record. The same value is displayed
whether the object is index or data.

STMST
The system time stamp, which specifies the time and date on which the data component or index
component was closed. Bit 51 is equal to one microsecond and bits 52 through 63 are unused.

STRNO
The number of requests for which the position in the file is to be remembered.

value
Is the expression you can use depending on the keyword you specify. For complete description of
these expressions, see “Parameter Notation for GENCB, MODCB, SHOWCB, and TESTCB Macros”
on page 519.

OFLAGS
Indicates that a test will be made to determine whether a file for which the OPEN macro has been
issued is in fact open.

OPENOBJ=PATH
OPENOBJ=BASE
OPENOBJ=AIX

Indicates that a test will be made to determine whether the open object is a path, base cluster, or an
alternative index. Select one.

Usage (ACB)
1. You can use the TESTCB macro to test only one field at a time. After the test, analyze the CONDITION

CODE field of the PSW. It will indicate one of the following conditions:

TESTCB

Chapter 7. VSAM Data Management Service Macros 495

• EQUAL TO
• GREATER THAN
• LESS THAN.

You can then proceed, based upon this condition code.
2. Each time you enter the TESTCB macro, you must provide the system with a 72-byte save area. Before

you enter the macro, place the address of this save area in register 13.
3. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (ACB)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The TESTCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

X'05' 5 Either the file associated with the ACB in question is not open or is
not a VSAM file.

X'06' 6 Index information was requested, but no index was opened for the
file in question.

X'0E' 14 The MACRF or ATRB parameters contain incompatible options.

X'10' 16 You specified an invalid control block address in the ACB parameter.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

Exit List Format

TESTCB

496 z/VM: 7.2 Group Control System

label

TESTCB EXLST= address

,ERET=  address

,EODAD=

,JRNAD=

,LERAD=

,SYNAD=

0

( address
,A

,N

,L

)

,EXLLEN=  number

Purpose (EXLST)

During VSAM processing, unusual conditions sometimes occur. You can supply one or more exit routines
to handle such conditions. You can then associate them with one or more access method control blocks
(ACBs) that define the characteristics of the VSAM files you plan to process. See “MODCB” on page 453.

This discussion of the TESTCB macro deals only with those matters that involve GCS.

Parameters (EXLST)

EXLST
Specifies the address of the exit list whose information you want to test.

ERET
Specifies the address of a routine that will receive control if the condition you want to test for cannot
be tested.

This routine will receive control if the TESTCB macro places a return code of 4 in register 15. Upon
entry to this routine, register 0 contains further information describing the error.

The ERET routine probably should issue an ABEND macro, because a failure to carry out a test is
probably the result of a program logic error. If the ERET routine allows the program to continue, then it
must transfer control to the continuation point, though it must not return to VSAM.

EODAD
JRNAD
LERAD
SYNAD

Specifies the exit routine about which you are asking a YES/NO question.

If you specify more than one operand following one of these parameters, each must equal the
corresponding value in the exit list for you to receive an EQUAL CONDITION.

Because the same maximum length applies to every exit identifier, you can omit this parameter if you
want to test the EXLLEN field.

The tests you can make are as follows:

0
Test whether an entry is provided for the specified type of exit routine.

address
Specifies a certain address in virtual storage.

If this parameter is specified by itself, it means test to see if this address is the address of the
specified exit routine. Otherwise, it specifies the object address of the following test descriptions:

TESTCB

Chapter 7. VSAM Data Management Service Macros 497

A
Test to see if the exit routine at the address specified is active.

N
Test to see if the exit routine at the address specified is inactive.

L
Test to see if the address specified is the address of an 8-byte field containing the name of the
module containing the exit routine, rather than the entry point of the exit routine.

EXLLEN
Specifies one of two things:

• If you do not also specify the EXIT routine, then this parameter specifies the maximum length of an
exit list.

• If you do specify the EXLST parameter, then this parameter specifies the actual length of the exit
list.

Usage (EXLST)
1. You can use the TESTCB macro to test for only one attribute at a time. After the test, analyze the

CONDITION CODE field of the PSW. It will indicate one of the following conditions:

• EQUAL TO
• GREATER THAN
• LESS THAN.

You can then proceed, based upon the condition.
2. Each time you enter the TESTCB macro, you must provide the system with a 72-byte save area. Before

you enter the macro, place the address of this save area in register 13.
3. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (EXLST)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The TESTCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

TESTCB

498 z/VM: 7.2 Group Control System

Hex
Code

Decimal
Code

Meaning

X'10' 16 You specified an invalid control block address in the EXLST
parameter.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

Request Parameter List Format

TESTCB

Chapter 7. VSAM Data Management Service Macros 499

label

TESTCB RPL= address

,ERET=  address

,ACB= address

,AIXFLAG=AIXPKP

,AIXPC=  number

,AREA=  address

,AREALEN=  number

,ARG= address

,ECB= address

,FDBK=  number

,FTNCD=  number

,IO=COMPLETE

,KEYLEN=  number

,NXTRPL=  address

,OPTCD=(,ADR

,ARD

,ASY

,BWD

,CNV

,DIR

,FKS

,FWD

,GEN

,KEQ

,KEY

,KGE

,LOC

,LRD

,MVE

,NSP

,NUP

,SEQ

,SKP

,SYN

,UPD

)

,RBA= number

,RECLEN=  number

,RPLLEN=  number

,TRANSID=  number

Purpose (RPL)

TESTCB

500 z/VM: 7.2 Group Control System

All VSAM functions require that you set up a request parameter list (RPL) that describes the
characteristics of your request. These VSAM functions are associated with the following macros: CHECK,
ENDREQ, ERASE, GET, POINT, and PUT. See “CHECK” on page 425, “ENDREQ” on page 430, “ERASE” on
page 432, “GET” on page 451, “POINT” on page 468, or “PUT” on page 470.

This discussion of the TESTCB macro deals only with those matters that involve GCS.

Use the TESTCB macro to test a certain field in a request parameter list.

Parameters (RPL)

RPL
Specifies the address of the RPL whose field you want to test.

Because all RPLs are the same length, you can omit this parameter if you are testing the RPLLEN field.
Select from among the following parameters for other conditions to test:

ACB
The address of the access method control block that relates the RPL to the file you are processing.

AIXFLAG=AIXPKP
Indicates whether the alternate index just processed contains prime key pointers.

AIXPC
The number of alternate index pointers.

AREA
The address of the work area that your program uses to process the file records. Access to this file is
defined by the RPL.

AREALEN
The length of the work area whose address is specified in the AREA field.

ARG
If you are using search arguments to process your file, the address of the field containing that search
argument.

ECB
The address of the event control block associated with the RPL in question. It is in this ECB that the
completion of the request associated with the RPL is posted.

ERET
Specifies the address of a routine that will receive control if the condition you want to test for cannot
be tested.

This routine will receive control if the TESTCB macro places a return code of 4 in register 15. On entry
to this routine, register 0 contains more information describing the error.

The ERET routine probably should issue an ABEND macro, because a failure to carry out a test
probably is the result of a program logic error. If the ERET routine allows the program to continue,
then it must transfer control to the continuation point, though it must not return to VSAM.

FDBK
Specifies the return code from the request associated with this RPL.

For asynchronous requests, you must enter the CHECK macro to place the return code in this field.
See “CHECK” on page 425. The significance of this return code depends upon the contents of register
15, which indicates whether the request was successful or unsuccessful because of logical or physical
error.

FTNCD
The code that describes the function which a logical or physical error occurred. It indicates whether
the upgrade set may have been modified incorrectly by the request.

IO=COMPLETE
Specifies that a test will be made to determine whether an asynchronous request is complete.

TESTCB

Chapter 7. VSAM Data Management Service Macros 501

Under GCS this test will always show that the request is not complete.

KEYLEN
If you are using a generic key as a search argument, the length of that argument.

NXTRPL
The address of the next request parameter list in the chain, if one exists.

OPTCD
Indicates what option or combination of options will be tested for. Select from among the following:
ADR

Indicates addressed access to a key-sequenced or entry-sequenced file.

RBAs will be used as search arguments, and sequential access is by entry sequence.

ARD
Indicates that the user's argument determines the record to be located, retrieved, or stored.

ASY
Specifies that you want your file processed asynchronously.

This means that when the request associated with the RPL you are creating is scheduled, control
will return to your program so it can continue processing. Meanwhile, your request is being carried
out.

Remember that asynchronous processing is merely simulated by GCS. Disk I/O in GCS is always
synchronous.

BWD
Indicates that processing is to proceed through the file in a backward direction for keyed,
addressed, sequential, or direct access.

This parameter is valid for POINT, GET, PUT, and ERASE operations. When you specify it, the KGE
and GEN parameters are ignored, while the KEQ and FKS parameters are assumed, by default.

CNV
Indicates access will be to the entire contents of a control interval, rather than to an individual
record.

DIR
Indicates direct access to a key-sequenced, entry-sequenced, or relative record file.

FKS
Indicates that you are providing a full key as a search argument.

FWD
Indicates that processing is to proceed through the file in a forward direction.

GEN
Indicates that you are providing a generic key as a search argument.

If you select this parameter, then you must also specify the length of the generic key in the
KEYLEN parameter.

KEQ
Indicates that the key you provide as a search argument must equal the key or relative record
number of the record.

You can use this parameter only if you also select the OPTCD=(KEY,DIR) or OPTCD=(KEY,SKP)
parameter. This parameter is assumed by default for an RRDS, except when you enter the POINT
macro.

KEY
Indicates access to a key-sequenced or relative record file.

Keys will be relative record numbers used as search arguments, and sequential access will be by
key or relative record number.

TESTCB

502 z/VM: 7.2 Group Control System

KGE
Indicates that if the key you specify as a search argument does not equal a certain record, then
the request will affect the record with the next highest key.

This parameter has the same restrictions and requirements as the KEQ parameter. For relative
record processing, this parameter positions to the specified relative record, whether that slot is
empty or not. If the relative record number is greater than the highest existing record, then the
system returns the EOD. A following PUT macro will insert the record at this position.

LOC
Indicates that during retrieval, the record will be put in the I/O buffer to be processed.

This parameter is not valid if you intend to start the PUT or ERASE macros, though it is valid with
the GET macro. However, to update the record, you must build a new version of it in a work area.
Then, modify the RPL from LOCATE MODE to MOVE MODE before you enter any PUT macro. For
keyed-sequential retrieval, modifying key fields in the I/O buffer may cause erroneous results in
further GET requests until the record is reread.

LRD
Indicates that the last record in the file will be located or retrieved.

If you choose this parameter, then you must also choose the BWD parameter.

MVE
Indicates that, during retrieval, the record will be moved to a work area for processing. For
storage, it will be moved from the work area to the I/O buffer.

NSP
Indicates that GCS is to remember the current position within the file for subsequent, sequential
access.

Only the ENDREQ macro will cause the position to be forgotten.

NUP
Indicates that any record retrieved will not be updated or deleted. Moreover, any record that is
stored is a new record.

On direct access requests, GCS does not remember the record's position.

SEQ
Indicates sequential access to a key-sequenced, entry-sequenced, or relative record file.

SKP
Indicates skip-sequential access to a key-sequenced or relative record file.

This is valid only with keyed access in a forward direction.

SYN
Specifies that you want your file processed synchronously.

This means that control will return to your program only after the request associated with the RPL
you are creating has been carried out.

UPD
Indicates that any record retrieved can be updated or deleted.

On direct and sequential requests, GCS will remember the record's position.

RBA
The relative byte address of the most recently processed record in the file.

RECLEN
The length of the file record, access to which is defined by the request parameter list.

RPLLEN
The length, in bytes, of any request parameter list.

TRANSID
Specifies a number from 0 to 31 when RPL= is specified.

TESTCB

Chapter 7. VSAM Data Management Service Macros 503

Number
Description

0
Default value. Indicates that the request defined by this RPL is not associated with other requests.

1-31
Relates the requests defined by this RPL to the requests defined by other RPLs with the same
TRANSID value.

Usage
1. You can use the TESTCB macro to test for only one attribute at a time. After the test, analyze the

CONDITION CODE field of the PSW. It will indicate one of the following conditions:

• EQUAL TO
• GREATER THAN
• LESS THAN.

You can then proceed, based upon the condition.
2. Each time you enter the TESTCB macro, you must provide the system with a 72-byte save area. Before

you enter the macro, place the address of this save area in register 13.
3. See Appendix B, “Using VSAM,” on page 517.

Completion Codes, Return Codes, and ABEND Codes (RPL)
When this macro completes execution, it passes to the caller a completion code in register 15.

Completion Code Meaning

0 Function completed successfully.

4 Function completed unsuccessfully.

8 You attempted to use the execute form of this macro to modify a keyword that is
not in the parameter list.

12 The TESTCB macro was not executed because an error occurred while a VSAM
module was being loaded.

When register 15 contains 4, then register 0 contains one of the following return codes.

Hex
Code

Decimal
Code

Meaning

X'01' 1 The type of request was invalid.

X'02' 2 The block type was invalid.

X'03' 3 One of the keywords in the parameter list is invalid.

X'04' 4 The block at the address you specified was not of the type you
indicated.

X'0E' 14 The MACRF or ATRB parameters contain incompatible options.

X'10' 16 You specified an invalid control block address in the RPL parameter.

ABEND Code Meaning

03B An invalid address was found in a VSAM control block or a VSAM parameter list. This
means that your program tried to use an address to which it has no access.

TESTCB

504 z/VM: 7.2 Group Control System

WRTBFR

Format

label

WRTBFR RPL= address ,TYPE= ALL

DS

LRU( percent)

TRN

Purpose

Use the WRTBFR macro to manage I/O buffers in the following cases:

• Deferring writes for direct PUT requests, to reduce the number of I/O operations.
• Writing buffers that have been modified by related requests.
• Writing out buffers whose writing has been deferred.

Parameters

RPL
Specifies the address of the request parameter list which defines the WRTBFR request. It may be built
for requests other than WRTBFR.

Note:

1. Only the ACB and the TRANSID operands of the RPL are significant for WRTBFR; all other RPL
operands are ignored.

2. WRTBFR assumes that RPLs are not chained, unlike the other action macros (GET, PUT, and so
forth).

TYPE
Specifies what buffers are written.
ALL

Specifies that all modified buffers in each buffer pool in the resource pool are written.
DS

Specifies that all modified buffers are written for the file defined by the ACB to which RPL,
associated with WRTBFR, is related.

LRU(percent)
Specifies the percentage of the total number of buffers in each buffer pool in the resource pool
that are examined for possible writing. The least recently used buffers are examined.

Note: To ensure that buffers are always available for GET or PUT requests, you can periodically
force out the least recently used part of each buffer pool through the LRU option.

TRN
Specifies that all buffers that were modified by requests with the same TRANSID are written.
The TRANSID for the buffer must be the same as the one specified in the RPL associated with
WRTBFR. TRANSIDs are then disassociated with these buffers.

WRTBFR

Chapter 7. VSAM Data Management Service Macros 505

Usage
When using this macro you must make sure that register 13 contains the address of a 72-byte save
area. If you enter the macro from within one of your exit routines (LERAD or SYNAD) you must provide
a second 72-byte save area because the original one is still in use by the external VSAM routine.

Return Codes and ABEND Codes
The feedback error codes result from GET or PUT when operating in the LSR/DFR environment. To find the
specific error code, you can use the SHOWCB macro to obtain the FDBK field in the RPL.

When the return code in register 15 is 0:

Feedback Error
Code

 Meaning

12(C) The last request macro detected the condition that there are no more unmodified
buffers to read the contents of a control interval into. You must either use the
WRTBFR macro thereby freeing up some buffers, or accept the delay required by
VSAM to do an implicit buffer write before servicing your next request.

When the return code in register 15 is 8:

Feedback Error
Code

 Meaning

64(40) Your request could not be started because there are already as many requests
active as the number specified in the STRNO operand for the ACB or BLDVRP
macro.

104(68) For LSR,

• The ACB address is not the same as for a previous request that used the same
RPL.

• When WRTBFR was issued the:

– TRANSID was greater than 31, or
– Shared resource option (LSR) was not specified, or
– LRU percentage was not between 0 and 100.

ABEND Code Meaning

03B You specified a TYPE parameter of CHK or DRBA and those parameters are not
supported.

WRTBFR

506 z/VM: 7.2 Group Control System

Appendix A. Tailoring and Building the GCS Nucleus

This appendix describes how to change GCS nucleus options, change default definitions, and rebuild and
save the GCS nucleus.

Changing GCS Nucleus Options
If you want to modify your GCS nucleus options, such as relocating your GCS named saved system,
changing its size, changing its name, or adding multiple GCS systems, you would alter your GCS nucleus
build list.

IBM supplies a single GCS nucleus build list with a name of GCTLOAD EXEC. An IBM-shipped service file
for GCTLOAD would have a file type EXCnnnnn, where nnnnn is the five digit PTF number used by service.

The default name for the configuration file is GCS ASSEMBLE. The name of the configuration file must be
the same as the name of the saved system.

The following are possible reasons for making modifications to GCTLOAD:

• Change the name of your GCS system. The IBM-supplied GCS nucleus build list, GCTLOAD, has the file
name of the configuration file coded as GCS. To use another file name, you must change the file name in
the GCS nucleus build list to match the file name of the configuration file you wish to use.

• Add multiple GCS systems. For each additional GCS system, you must:

1. Refer to “Creating a New GCS Nucleus Build List” on page 507 to create a new build list, update
the build list with the new GCS system name, and create a PPF override to make any new build lists
known to VMSES/E.

2. Refer to “Rebuilding and Saving the GCS Nucleus” on page 513 to create a unique configuration file
with the GROUP exec and to rebuild the GCS nucleus with the new PPF you created. Remember the
file name of the configuration file must match the new GCS system name specified in the new build
list created.

• Change the size or location of your GCS system. You can accomplish this by changing the Set Location
Counter (SLC) values in the GCS nucleus build list and creating SLC Lnnnnnn files for these new values.

IBM recommends that you do not make modifications directly to GCTLOAD because IBM may provide
service for it. Instead, you can create a new build list(s) by copying the latest IBM-supplied version of
GCTLOAD. Choose any file name for your new build list or lists. In addition, create a PPF override to make
any new build list(s) known to VMSES/E.

Creating a New GCS Nucleus Build List
The following is an example of how to create a new GCS nucleus build list:

1. Log on to the MAINTvrm user ID. The default password for MAINTvrm is MAINTvrm.

logon maintvrm

2. Establish the correct minidisk access order. Use the GCS operand if you loaded GCS to minidisks, the
GCSSFS operand if you moved it to SFS directories. Make a note of the file mode assigned to the
6C4 and 51D minidisks.

Attention: If you loaded GCS to minidisks, you must also build and save GCS on minidisks. You
must continue to access and service GCS on minidisks. If you moved GCS to Shared File System
directories, you must continue to access and service GCS on the Shared File System directories.

vmfsetup servp2p {gcs|gcssfs}

Changing GCS Nucleus Options

© Copyright IBM Corp. 2001, 2023 507

3. Determine the latest IBM®-supplied service level for GCTLOAD. Use that level to make local
modifications.

vmfsim getlvl servp2p {gcs|gcssfs} tdata :part gctload exc
GCTLOAD EXC00000 BASE-FILETYPE or GCTLOAD EXCnnnnn.

If BASE-FILETYPE is returned in the system response, then it has not been serviced and the file
type will be EXEC.

4. Identify the file mode (fm) of the disk containing the latest IBM-supplied service level of GCTLOAD.
Copy that version of GCTLOAD to the GCS LOCALMOD disk (6C4) in preparation for modification.

listfile gctload {exec|excnnnnn.} * (date
copyfile gctload {exec|excnnnnn.} fm bln excl0001 fm-6c4

fm is the file mode returned from the previous LISTFILE command. bln is the build list name of
your choice. GCTLOAD is the default. fm-6C4 is the file mode of the GCS LOCALMOD disk.

5. Update the local Version Vector Table enabling VMSES/E to identify the local modification file.

vmfsim logmod 7vmgcs20 vvtlgct fm-6c4 tdata :part bln exc :mod lcl0001

7vmgcs20 vvtlgct is the file name and type of the GCS local Version Vector Table. fm-6c4 is the
file mode of the GCS LOCALMOD disk (6C4). lcl0001 is the local modification ID.

6. If you wish to change the name of your GCS saved system, you must change the file name of the
configuration file in the new GCS nucleus build list so the two names match.

xedit bln excl0001 fm-6c4

bln is the name you chose for the new GCS nucleus build list.

====> locate /&3 GCS/
====> change /GCS/systemname/

systemname is the file name of the saved system and the configuration file. If you plan to use the
GROUP EXEC to create the configuration file, use the same system name with which you invoke
the GROUP EXEC.

====> file

Note: Now you are ready to substitute your GCS system name whenever you see systemname in the
following procedures. You must also substitute the name of your new build list whenever you see
loadlistname or bln.

7. If you wish to change the location where the low common storage portion of GCS is loaded into virtual
storage change the SLC values in the new build list.

Note: SLC values must be on megabyte boundaries. Valid SLC values for low common storage are
1MB to 16MB (address location X'100000' to X'1000000').

a. The following sample procedure shows how to increase the size of a GCS named saved system
from 2M to 3M and how to move the named saved system from X'400000' to X'800000'.

xedit bln excl0001 fm-6c4

GCTLOAD EXEC is the name of the GCS build list. fm-6c4 is the file mode of the LOCALMOD disk
(6C4).

====> set case upper
====> top
====> locate /** GCTALP/
====> up 1
====> change /SLC L400000/SLC L800000/1 1

Changing GCS Nucleus Options

508 z/VM: 7.2 Group Control System

• SLC L400000 is the CMS file containing the IBM default starting address of GCS low common
storage. Note that the file type contains the address.

SLC L800000 is a CMS file containing the new starting address of low common storage. You will
create this file in substep “7.b” on page 509.

====> top
====> locate /GCTZET/
====> up 1
====> change /SLC L600000/SLC LB00000/1 1

• SLC L600000 is the CMS file containing the IBM default ending address of GCS low common
storage. Note that the file type contains the address.

SLC LB00000 is a CMS file containing the new ending address. You will create this file in the
following substep.

====> file

b. Create two new SLC files to match the new loadlist:

xedit SLC L800000 fm-6c4

fm-6c4 is the GCS local modification minidisk.

====> input $SLC 800000
====> set hex on
====> change /$/X'02'/
====> file

There must be two blanks between SLC and the address. X'02' is an unprintable loader control
character.

xedit SLC LB00000 fm-6c4

fm-6c4 is the GCS local modification minidisk.

====> input $SLC B00000
====> set hex on
====> change /$/X'02'/
====> file

There must be two blanks between SLC and the address. X'02' is an unprintable loader control
character.

8. If you wish to change the location where the high common storage portion of GCS is loaded into
virtual storage change the SLC values in the new build list.

Note: SLC values must be on megabyte boundaries. The default SLC values for high common storage
are 16MB to 18MB (address location X'1000000' to X'1200000').

a. The following sample procedure shows how to move the named saved system from X'1000000' to
X'1300000'.

xedit bln excl0001 fm-6c4

GCTLOAD EXEC is the name of the GCS build list. fm-6c4 is the file mode of the LOCALMOD disk
(6C4).

====> set case upper
====> top
====> locate /GCTBHC/
====> up 1
====> change /SLC L1000000/SLC L1300000/1 1

• SLC L1000000 is the CMS file containing the IBM default starting address of GCS high common
storage. Note that the file type contains the address.

Changing GCS Nucleus Options

Appendix A. Tailoring and Building the GCS Nucleus 509

SLC L1300000 is a CMS file containing the new starting address of high common storage. You
will create this file in substep “8.b” on page 510.

====> top
====> locate /*** GCTEHC/
====> up 1
====> change /SLC L1200000/SLC L1500000/1 1
====> file

• SLC L1200000 is the CMS file containing the IBM default ending address of GCS high common
storage. Note that the file type contains the address.

SLC L1500000 is a CMS file containing the new ending address. You will create this file in the
following substep.

b. Create two new SLC files to match the new loadlist:

xedit SLC L1300000 fm-6c4

fm-6c4 is the GCS local modification minidisk.

====> input $SLC 1300000
====> set hex on
====> change /$/X'02'/
====> file

There must be two blanks between SLC and the address. X'02' is an unprintable loader control
character.

xedit SLC L1500000 fm-6c4

fm-6c4 is the GCS local modification minidisk.

====> input $SLC 1500000
====> set hex on
====> change /$/X'02'/
====> file

There must be two blanks between SLC and the address. X'02' is an unprintable loader control
character.

9. If you changed the build list name or added a new build list, create a PPF override file to add your
build list name to the PPF build section (:BLD.). The GCSPPF SAMPLE file is shipped on the 6B2
minidisk or VMPSFS:MAINTvrm.GCS.OBJECT. Copy GCSPPF SAMPLE from the 6B2 minidisk to the
51D minidisk, then make the appropriate changes.

a. The following is the contents of GCSPPF SAMPLE:

*
* Override $PPF to use modified GCS nucleus build lists.
*

*==
* Start of Product Header
*==
:OVERLST. GCS GCSSFS
*==
* End of Product Header
*==
:GCS. GCS 7VMGCS20
:BLD. UPDATE
./INSERT GCTLOAD AFTER
bln VMFBDNUC BUILD7 TXT TXS * Build modified GCS nucleus
./END
:END.
:GCSSFS. GCSSFS 7VMGCS20
:BLD. UPDATE
./INSERT GCTLOAD AFTER
bln VMFBDNUC BUILD7 TXT TXS * Build modified GCS nucleus

Changing GCS Nucleus Options

510 z/VM: 7.2 Group Control System

./END
:END.

bln is the changed name of the build list or the name of the new build list.
b. Copy the sample file over to the 51D disk using the new file name you selected for your PPF

override file and the file type of $PPF. You can then add or replace the build list name.

copyfile gcsppf sample fm-6b2 ppfovername $ppf fm-51d

ppfovername is the name you chose for your PPF override file. fm-51d is the minidisk (51D)
where PPF files reside.

c. Edit the PPF override file you just created.

xedit ppfovername $ppf fm-51d

ppfovername is the name you chose for your PPF override file. fm-51D is the minidisk (51D)
where PPF files reside.

d. Change the two occurrences of bln shown in GCSPPF SAMPLE to the name of your new build list.
e. If you do not want to use the GCTLOAD build list, add the following statement before both ./
INSERT GCTLOAD AFTER statements shown in GCSPPF SAMPLE:

GCTLOAD -VMFBDNUC BUILD7 TXT TXS * Build GCS nucleus

f. To add another build list, then for each new build list, add the following three lines after the
two ./END statements shown in GCSPPF SAMPLE, and change the two occurrences of bln to the
name of your new build list.

./INSERT GCTLOAD AFTER
bln VMFBDNUC BUILD7 TXT TXS * Build modified GCS nucleus
./END

g. Save the information you just made on your A-disk.

====> file

10. Finish creating the PPF override file.

vmfppf ppfovername {gcs|gcssfs}

Use gcs as the component name if you loaded GCS to minidisks and gcssfs if you moved GCS to
SFS directories.

copyfile ppfovername ppf a = = d2 (olddate
erase ppfovername ppf a

Note: You will use this PPF override file when you rebuild the GCS nucleus.
11. If you are building this system as a restricted system, you need to update the directory file in this

substep. A single user environment is never restricted. (If you want to look at the GROUP EXEC panel
default values, refer back to the panels shown at substep “2” on page 512.)

To IPL your GCS system, you need to add an entry to the user directory for each authorized
user. When a system is restricted, only those users whose directory entries contain a NAMESAVE
statement specifying the GCS system name are allowed to IPL the named saved system. The IBM
supplied directory contains an NAMESAVE GCS entry for the user IDs AVSVM, GCS, and MAINTvrm.

a. Establish the required minidisk order.

vmfsetup servp2p cp

b. Edit the USER DIRECT file.

xedit user direct fm-2c2

Changing GCS Nucleus Options

Appendix A. Tailoring and Building the GCS Nucleus 511

c. Locate each user ID, userid, you want to authorize and add the NAMESAVE statement, NAMESAVE
systemname.

====> locate /USER userid/
====> file

d. Bring the new directory online, and reestablish the correct minidisk order.

directxa user direct

If you wish to change the GCS default definitions, continue to “Changing GCS Default Definitions” on
page 512. Otherwise, go to “Rebuilding and Saving the GCS Nucleus” on page 513 to rebuild the GCS
nucleus.

Changing GCS Default Definitions
This section describes how to change the GCS default definitions supplied by IBM. It involves running the
GROUP command to redefine your GCS System through the configuration file, and then reassembling the
GCS configuration file.

1. Establish the correct minidisk order. Use the GCS operand if you left GCS on minidisks, or the
GCSSFS operand if you moved GCS to SFS directories. Make a note of the file mode assigned to
the LOCALMOD disk (6C4).

Attention: If you left GCS on minidisks, you must also build and save GCS on minidisks. You must
continue to access and service GCS on minidisks. If you moved GCS to Shared File System directories,
you must continue to access and service GCS on the Shared File System.

vmfsetup servp2p {gcs|gcssfs}

• The following console is for VMFSETUP SERVP2P GCS only. If you install on Shared File System
directories, the minidisk names below will be substituted with directory addresses.

VMFSET2760I VMFSETUP processing started
VMFUTL2205I Minidisk|Directory Assignments:
 String Mode Stat Vdev Label/Directory
VMFUTL2205I LOCALMOD E R/W 6C4 MNT6C4
VMFUTL2205I LOCALMD2 F R/W 3C4 MNT3C4
VMFUTL2205I LOCALSAM G R/W 6C2 MNT6C2
VMFUTL2205I APPLY H R/W 6A6 MNT6A6
VMFUTL2205I I R/W 6A4 MNT6A4
VMFUTL2205I J R/W 6A2 MNT6A2
VMFUTL2205I APPLY2 K R/W 3A6 MNT3A6
VMFUTL2205I L R/W 3A4 MNT3A4
VMFUTL2205I M R/W 3A2 MNT3A2
VMFUTL2205I DELTA N R/W 6D2 MNT6D2
VMFUTL2205I DELTA2 O R/W 3D2 MNT3D2
VMFUTL2205I BUILD7 P R/W 493 MNT493
VMFUTL2205I BUILD5 Q R/W 19D MNT19D
VMFUTL2205I BUILD2 R R/W 193 MNT193
VMFUTL2205I BASE2 T R/W 6B2 MNT6B2
VMFUTL2205I BASE4 U R/W 3B2 MNT3B2
VMFUTL2205I -------- A R/W 191 MNT191
VMFUTL2205I -------- B R/W 5E5 MNT5E5
VMFUTL2205I -------- D R/W 51D MNT51D
VMFUTL2205I -------- S R/O 190 MNT190
VMFUTL2205I -------- Y/S R/O 19E MNT19E
VMFSET2760I VMFSETUP processing completed successfully

2. Enter the GROUP command to display the configuration panels.

group systemname

• This command assigns systemname as the file name of the GCS configuration file that you are
creating and invokes the Primary Option Menu. systemname is either the IBM-supplied system name
(GCS) or the changed name you specified.

Changing GCS Default Definitions

512 z/VM: 7.2 Group Control System

Note:

a. If you are using a printer-keyboard ("line-mode") terminal instead of a full-screen display device,
you cannot use the GROUP command, because you cannot display the panels. You must build the
configuration file manually using the build macros.

b. GROUP uses a GCS message repository that is available only in American mixed case English
(AMENG) and uppercase English (UCENG). If your system default national language is other than
AMENG, GROUP uses the UCENG message repository.

c. The IBM default name for the GCS configuration file is GCS, and the file type is ASSEMBLE.
Therefore systemname is GCS, and the defaults listed at the beginning of this step display on the
GROUP panels (unless the GCS GROUP file is erased).

d. If you are changing the systemname, you should have already completed “Changing GCS Nucleus
Options” on page 507.

Refer to “Function Keys” on page 105 for guidance on PF key functions as you move through the
panels.

If you specify a system name here, the Primary Option Menu appears with the system name filled in. If
you do not specify a system name here, then the Primary Option Menu panel appears with the SYSTEM
NAME field filled in with the IBM-supplied default name of GCS.

Refer to “GROUP Panels” on page 103 for a description of the GROUP panels.
3. Prepare the file for assembly and copy the file to the GCS LOCALMOD minidisk (6C4).

copyfile systemname group a = assemble fm-6c4 (replace olddate
copyfile systemname group a = = fm-6c4 (replace olddate
erase systemname group a

systemname is either the IBM-supplied system name (GCS) or the changed name you specified.
4. Assemble the GCS configuration file.

vmfasm systemname servp2p {gcs|gcssfs} (outmode localmod

• systemname is either the IBM-supplied system name (GCS), or the changed name you specified.

Use the gcs operand if you loaded GCS to minidisks, the gcssfs operand if you moved GCS to SFS
directories.

The outmode localmod options place the updated text file on the GCS LOCALMOD minidisk (6C4).

Note: If you recreate the configuration file, you must enter the GROUP command with the same system
name, and change the information brought up on those panels to the correct values. Then perform
steps “3” on page 513 and “4” on page 513 to prepare the file for assembly and to reassemble the
configuration file.

Continue to “Rebuilding and Saving the GCS Nucleus” on page 513.

Rebuilding and Saving the GCS Nucleus
This section describes how to rebuild and sae the GCS nucleus.

1. Spool the output of your virtual punch and printer to your own virtual reader.

spool punch *
spool print *

2. Ensure that your virtual storage is defined at least 1MB larger than the value you defined for HIGH
COMMON END in the procedure defined in “Changing GCS Nucleus Options” on page 507, substep
“7” on page 508. If you did not change the default, high common end storage is 18MB.

query virtual storage

Rebuilding and Saving the GCS Nucleus

Appendix A. Tailoring and Building the GCS Nucleus 513

If you have less than 20MB of storage, issue the following DEFINE comand:

define storage 20m

ipl 190 clear

3. Build and save the GCS nucleus.

Attention: If you left GCS on minidisks, you must also build and save GCS on minidisks. You
must continue to access and service GCS on minidisks. If you moved GCS to Shared File System
directories, you must continue to access and service GCS on a Shared File System.

vmfbld ppf ppfname compname bln (all setup

• ppfname is set to one of the following:
servp2p

To build GCS in mixed-case English (AMENG)
uceng

To build GCS in uppercase English (UCENG)
ppfovername

The PPF name created in “Changing GCS Nucleus Options” on page 507.
• compname is set to one of the following:

gcs
GCS is loaded on minidisks

gcssfs
GCS was moved to SFS directories.

• buillistname is set to one of the following:
gctload

If you did not change your system name
name

If you did change your system name, the name of the new build list you created in “Changing
GCS Nucleus Options” on page 507.

VMFBLD2185R The following source product parameter files have been
 serviced:
VMFBLD2185R 7VMGCS20 $PPF
VMFBLD2185R When source product parameter files are serviced,
 all product parameter files built from them must be
 recompiled using VMFPPF before VMFBLD can be run
VMFBLD2185R Enter zero (0) to have the serviced source product
 parameter files built to your A-disk and exit VMFBLD
 so you can recompile your product parameter files
 with VMFPPF
VMFBLD2185R Enter one (1) to continue only if you have already
 recompiled your product parameter files with VMFPPF

0
vmfppf ppfname compname
copyfile 7vmgcs20 $ppf a = = fm-51d (olddate replace
erase 7vmgcs20 $ppf a
vmfsetup ppfname compname

Reissue the VMFBLD command to build the GCS nucleus.

vmfbld ppf ppfname compname bln (all setup
⋮
VMFBLD2185R Enter zero (0) to have the serviced soure product
 parameter files built to your A-disk and exit VMFBLD
 so you can recompile your product parameter files
 with VMFPPF
VMFBLS2185R Enter one (1) to continue only if you have already
 recompiled your product parameter files with VMFPPF
Enter :pk.1:epk. to continue

Rebuilding and Saving the GCS Nucleus

514 z/VM: 7.2 Group Control System

4. Verify that the GCS nucleus is in MAINTvrm's virtual reader. Make a note of the file number (fileno) of
the GCS nucleus file ($$$TLL$$ IPL) that you will IPL in substep “7” on page 515.

query rdr * all

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
⋮
MAINTvrm fileno A PUN nnnnnnnn 001 USER mm/dd hh:mm:ss $$$TLL$$ IPL SYSPROG

5. If the GCS nucleus is not the first file in your reader, order your reader so that the GCS nucleus will be
processed first.

order rdr fileno

fileno is the file number of the GCS nucleus.
6. Change the nucleus reader file status to ensure it remains in the reader after you IPL.

change rdr fileno keep

7. IPL MAINTvrm's virtual reader to save the GCS new nucleus.

ipl 00c clear
⋮
RDR FILE mfileno SENT FROM MAINTvrm PRT WAS mfileno
 RECS nnnn. CPY 001 A NOHOLD NOKEEP
Storage cleared - system reset.

mfileno is the spool file number of the GCS load map.
8. IPL your System disk (190).

ipl 190 clear

Purge the GCS nucleus from your reader to save spool space.

purge rdr fileno

fileno is the file number of the GCS nucleus identified in substep “4” on page 515.
9. Receive the GCS load map file from the virtual reader to the alternate TOOLS disk (493).

access 493 e
receive mfileno fn ft e (replace
DMSRDC738I Record length is nnn bytes
fn ft E1 created
File fn ft E1 received from MAINTvrm at * sent as (none) (none) A1

• mfileno is the file identifier of the GCS load map you noted in substep “7” on page 515. You may
give the GCS load map any file name and file type you like. The GCS load map on the System DDR is
GCSNUC MAP. You may want to erase the old version to save space.

The GCS load map is loaded onto the alternate SYSTEM TOOLS disk (493).
10. If you wish, you can now print a copy of the GCS load map.
11. Examine the load map for unresolved symbols. Unresolved symbols may indicate an error. Make sure

that you understand the reason for any unresolved symbols you find before going on.

xedit fn ft e
====> locate /UNRESOLVED/
====> qquit

12. If you wish, you can now pack the GCS load map to save minidisk space.

copyfile fn ft e (olddate pack

13. Copy the GCS load map to the production tools disk (193).

Rebuilding and Saving the GCS Nucleus

Appendix A. Tailoring and Building the GCS Nucleus 515

access 193 f
copyfile fn ft e = = f (olddate replace

14. Release the TOOLS minidisks (493 and 193).

release e
release f

Rebuilding and Saving the GCS Nucleus

516 z/VM: 7.2 Group Control System

Appendix B. Using VSAM

VSAM I/O Operations under GCS
GCS applications can access VSAM disks using the VSAM interface. This interface contains the macros
described in Chapter 7, “VSAM Data Management Service Macros,” on page 417.

This VSAM interface, as supported by GCS, is very like that supported by CMS. Of particular significance
is that VSAM disks are in VSE/VSAM format. MVS/VSAM requests are mapped to VSE/VSAM requests and
executed through VSE/VSAM code.

VSAM DASD space can be saved by using the Data Compression feature of VSE/VSAM. You can compress
or expand data automatically when you DEFINE a VSAM cluster as compressed. The COMPRESS and
NOCOMPRESS modifiers will let VSAM know whether data is to be automatically converted by VSAM when
a VSAM I/O request is processed. All existing applications can remain unchanged. For more information
on VSAM Data Compression, see VSE/VSAM Version 6 Release 1 Commands and VSE/VSAM Version 6
Release 1 User's Guide and Application Programming.

The macros described in Chapter 7, “VSAM Data Management Service Macros,” on page 417 are up to the
MVS Release 3.8 level and are contained in a CMS macro library named OSVSAM MACLIB. In addition,
GCS includes MVS Release 3.8 levels of the OS OPEN, CLOSE, GET, and PUT macros to support access
method control blocks (ACBs).

GCS must map macro requests to VSE/VSAM before invoking the VSE/VSAM code, OS mapping macros
affecting access method control blocks, exit lists, and request parameter lists (RPLs) are not supported.
After the first macro call, these data structures are converted from the OS format to the VSE/VSAM
format. Hence, GCS provides the TESTCB and SHOWCB macros to test and examine the contents of these
data structures.

Using the RPL macro, you can specify that you want your file processed asynchronously. This means
that when the request associated with the RPL you are creating is scheduled, control will return to your
program so it can continue processing. Meanwhile, your request is being carried out. Remember, though,
that asynchronous processing is merely simulated by GCS. Disk I/O in GCS is always synchronous.

GCS does not support utility functions, such as disk initialization, catalog definition, and file definition.
These AMS functions must be performed under CMS.

GCS supports an OS/MVS macro interface, VSAM operations are performed by the VSE/VSAM licensed
product. And, although you can use the macros discussed in this section only for VSAM, many of them are
also used for VTAM, QSAM, and BSAM—but, in other environments.

GCS supports Local Shared Resources (LSR) and Deferred Write (DFR) to enhance synchronous VM/VSAM
processing. LSR allows the sharing of buffers, I/O control blocks, and channel programs among several
VSAM files within a virtual machine. It also allows deferred writing. Sharing resources among files
optimizes their use and reduces the working set for the virtual machine. DFR allows an application to
have more control over physical writing of buffers. Macro interfaces for LSR/DFR include BLDVRP, DLVRP,
SHOWCAT, and WRTBFR.

Several storage management subpools are used during the execution of a VSAM request. (See the
GETMAIN macro for a description of various subpool numbers.) The storage may be obtained and
released during the execution of a single module or a single task; or it may be held from the time the
master catalog is opened, because the first data set being opened, until the time the master catalog
is closed, because the last data set being closed. So, you are not responsible for releasing any storage
obtained through a VSE/VSAM function. For example, storage is obtained from subpool 230 during the
execution of a GENCB and an attempt to release the storage by a program in the wrong key may result in
an abend.

Using VSAM

© Copyright IBM Corp. 2001, 2023 517

Control-Block Manipulation Macros
The GENCB, MODCB, SHOWCB, and TESTCB macros are control-block manipulation instructions. The list,
list address, and execute formats of these macro instructions allow you to save virtual storage by using
one parameter list for two or more macro invocations. You can also make your program reenterable, that
is, executable by more than one task at a time. However, while the generate format of these macros
enables you to make programs reenterable, it does not allow shared parameter lists.

VSAM Macro Addresses
VSAM Data Management Services under GCS is provided only below the 16MB line. All addresses
(parameter list or pointers) in all VSAM macros have to be below the line in order to work.

List Format
The list format of the GENCB, MODCB, SHOWCB, and TESTCB macros has the same parameters as the
standard form, except that you add the

MF= L

parameter. The parameter list of the macro is created in-line when you code MF=L. Therefore, your
program is not reentrant if the parameter list is modified at execution time. And, because the expansion
of the list format of a macro does not include executable code, you cannot use register notation or
expressions that generate S-type constants.

List Address Format
When you add the

MF=(L,address,label)

parameter, you create the parameter list in the area specified by ADDRESS. This version is reenterable,
and you must supply the area through the GETMAIN macro when your program is executed. See
“GETMAIN” on page 257. You can determine the size of the parameter list by coding the third parameter
LABEL. VSAM equates this parameter with the length of the parameter list.

Execute Format
The execute format produces code that executes the function. The execute format is identical with the
standard format, except that you add the

MF=(E,address)

parameter. ADDRESS points to the parameter list created by the list format of the instruction. All other
parameters of the instructions are optional. Code them only if you wish to change entries in the parameter
list before it is used. However, you cannot use the execute format to add or delete entries from the
parameter list or to change the type of list.

Generate Format
The generate format of these macros builds the parameter list in a remote area, the address of which you
specify, and passes it to VSAM for execution. It lets you make your program reenterable, but it does not
create shared parameter lists. The generate format is the same as the standard format, except that you
add the

MF=(G,address,label)

parameter. The parameter list is created in an area pointed to by ADDRESS. To make it possible for the
parameter list to be reenterable, you should code ADDRESS using register notation. You must obtain
this area through the GETMAIN macro when the program is executed. You can determine the size of

Using VSAM

518 z/VM: 7.2 Group Control System

the parameter list by coding the third parameter LABEL. VSAM equates LABEL with the length of the
parameter list.

Parameter Notation for GENCB, MODCB, SHOWCB, and TESTCB Macros
The addresses, names, numbers, and options required with parameters in the GENCB, MODCB, SHOWCB,
and TESTCB macros can be expressed in a variety of ways:

• As an absolute numeric expression:

COPIES=10

• As a character string:

DDNAME=DATASET

• As a code or a list of codes separated by commas and enclosed in parentheses:

OPTCD=(KEY,DIR,IN)

• An expression valid for a relocatable A-type address constant:

AREA=MYAREA+4

• As a register from 2 through 12 that contains an address or numeric value:

SYNAD=(3)

Equated labels can be used to designate a register:

ERR EQU 3
 .
 .
 .
....SYNAD=(ERR)

• As an expression of the format:

(S,SCON)

SCON is an expression valid for an S-type address constant, including the base-displacement form. The
contents of the base register will be added to the displacement to obtain the value of the keyword. For
example, if the value of the keyword being represented is a numeric value (that is, COPIES, LENGTH,
RECLEN), then the contents of the base register will be added to the displacement to determine the
numeric value. If the value of the keyword being represented is an address constant (that is, WAREA,
EXLST, EODAD, ACB), then the contents of the base register will be added to the displacement to
determine the value of the address constant.

• As an expression of the format

(*,scon)

SCON is an expression valid for an S-type address constant, including the base-displacement form. The
address specified by SCON is indirect, that is, it is the address of an area that contains the value of the
keyword. The contents of the base register will be added to the displacement to determine the address
of the fullword of storage that contains the value of the keyword.

If you use an indirect S-type address constant, then the value it points to must meet the following criteria:

• If it is a numeric quantity or an address, then it must occupy a fullword of storage.
• If it is an alphanumeric character string, then it must occupy two words of storage, be left justified, and

be padded on the right with blanks.

The expressions that you can use depend on the keyword you specify. Register and S-type address
constants cannot be used when you code MF=L.

Using VSAM

Appendix B. Using VSAM 519

The tables that follow summarize the manner in which the keyword parameters of VSAM control block
manipulation macros can be expressed.

GENCB Macro
 Keyword Absolute

Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

AM x

BLK x

COPIES x x x x

LENGTH x x x x

WAREA x x x x

BLK=ACB:

BUFND x x x x

BUFNI x x x x

BUFSP x x x x

DDNAME x x

EXLST x x x x

MACRF x

MAREA x x x x

MLEN x x x x

PASSWD x x x x

STRNO x x x x

BLK=EXLST:

EODAD x x x x

JRNAD x x x x

LERAD x x x x

SYNAD x x x x

A x

N x

L x

BLK=RPL:

ACB x x x x

AREA x x x x

AREALEN x x x x

ARG x x x x

ECB x x x x

KEYLEN x x x x

Using VSAM

520 z/VM: 7.2 Group Control System

 Keyword Absolute
Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

NXTRPL x x x x

OPTCD x

RECLEN x x x x

TRANSID x x x x

MODCB Macro

 Keyword Absolute
Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

ACB, EXLST, or RPL x x x x

ACB:

BUFND x x x x

BUFNI x x x x

BUFSP x x x x

DDNAME x x

EXLST x x x x

MACRF x

MAREA x x x x

MLEN x x x x

PASSWD x x x x

STRNO x x x x

EXLST:

EODAD x x x x

JRNAD x x x x

LERAD x x x x

SYNAD x x x x

A x

N x

L x

RPL:

ACB x x x x

AREA x x x x

AREALEN x x x x

ARG x x x x

Using VSAM

Appendix B. Using VSAM 521

 Keyword Absolute
Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

ECB x x x x

KEYLEN x x x x

NXTRPL x x x x

OPTCD x

RECLEN x x x x

TRANSID x x x x

SHOWCB Macro

 Keyword Absolute
Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

ACB, EXLST, or RPL x x x x

ACB:

AREA x x x x

FIELDS x

LENGTH x x x x

OBJECT x

EXLST:

AREA x x x x

FIELDS x

LENGTH x x x x

RPL:

AREA x x x x

FIELDS x

LENGTH x x x x

TRANSID x x x x

TESTCB Macro

 Keyword Absolute
Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

ACB, EXLST, or RPL x x x x

ERET x x x x

ACB:

ACBLEN x x x x

Using VSAM

522 z/VM: 7.2 Group Control System

 Keyword Absolute
Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

ATRB x

AVSPAC x x x x

BUFND x x x x

BUFNI x x x x

BUFNO x x x x

BUFSP x x x x

CINV x x x x

DDNAME x

ERROR x x x x

EXLST x x x x

FS x x x x

KEYLEN x x x x

LRECL x x x x

MACRF x

MAREA x x x x

MLEN x x x x

NCIS x x x x

NDELR x x x x

NEXCP x x x x

NEXT x x x x

NINSR x x x x

NIXL x x x x

NLOGR x x x x

NRETR x x x x

NSSS x x x x

NUPDR x x x x

OBJECT x

OFLAGS x

OPENOBJ x

PASSWD x x x x

RKP x x x x

STMST x

STRNO x x x x

EXLST:

Using VSAM

Appendix B. Using VSAM 523

 Keyword Absolute
Numeric

Code

 Character
String

 Register S-Type
Address

Indirect S-
Type
Address

 A-Type
Address

EODAD x x x x

EXLLEN x x x x

JRNAD x x x x

LERAD x x x x

SYNAD x x x x

A x

N x

L x

RPL:

ACB x x x x

AIXFLAG x

AIXPC x x x x

AREA x x x x

AREALEN x x x x

ARG x x x x

ECB x x x x

FDBK x x x x

FTNCD x x x x

IO x

KEYLEN x x x x

NXTRPL x x x x

OPTCD x

RBA x x x x

RECLEN x x x x

RPLLEN x x x x

TRANSID x x x x

Feedback Field Codes
VSAM request macros include ENDREQ, ERASE, GET, POINT, and PUT. After you enter one of these
macros, or the CHECK macro, register 15 contains a return code that shows the manner which your
request was completed. This is described even further by the error code placed in the FDBK field of the
request parameter list (RPL) associated with your request. These error codes are as follows.

When the Return Code in Register 15 is 0

Using VSAM

524 z/VM: 7.2 Group Control System

Error Code Meaning

0 Request completed successfully.

4 VSAM detected an END-OF-VOLUME condition.

8 VSAM detected a non-unique key in the alternate index.

16 A control area split occurred because there was not enough space to make an
index entry in a sequence set record. Some data intervals could not be used in
the control area that was split.

28 The record retrieved by a GET macro, without UPDATE, may be a duplicate of a
record in another control interval. Eliminate duplicate records by processing the
data using keyed access with UPDATE. For sequential processing, this error code
is set only for the first record in the control interval.

When the Return Code in Register 15 is 8

Error Code Meaning

4 Either VSAM met an END-OF-FILE condition during sequential retrieval, or the
search argument is greater than the highest existing key (or relative record
number) in the file.

8 One of three things happened:

• An attempt was made to store a record with a duplicate key.
• A duplicate record was found for an alternate index with the UNIQUEKEY

option.
• A record already exists at the accessed record location.

12 VSAM detected a record out of sequence in a key-sequenced or relative-record
file. There may be a duplicate key or record number.

16 No record was found. If a relative-record file was being accessed, VSAM may
have detected a deleted or invalid empty slot at the accessed record location.

This code can be issued for a file being accessed through a path if the pointer
to the record is missing from the alternate index. Although the record is in the
base cluster, VSAM could not find it because the pointer to it was missing. This
situation should only result from a system failure during UPGRADE processing.

20 The requested record is contained in a control interval that is already held in
exclusive control by another request.

24 The requested record is on a volume or extent that cannot be accessed because
no extent blocks are available.

28 All extents of the file are full. VSAM cannot suballocate any additional extents to
the file for one of the following reasons:

• No secondary allocation was specified. Furthermore, no space of the required
class was available for primary space suballocation on an additional volume (if
one was specified).

• The maximum number of extensions for the file has been exceeded.
• No space of the required class is available for additional secondary allocations.

32 An invalid RBA was specified.

Using VSAM

Appendix B. Using VSAM 525

Error Code Meaning

36 The key of the record to be inserted does not fall into an existing key range in the
file.

40 VSAM could not obtain a sufficiently large contiguous area of virtual storage.

44 The work area you have supplied through the RPL macro's AREA parameter is not
large enough for the requested record.

48 Update of ESDS record is not permitted.

64 As many requests are active as the number specified in the STRNO parameter in
the ACB macro. Therefore, another request cannot be started.

68 The type of accessing for the request does not match the type of accessing in the
access method control block. For example,

• ADR or CNV was specified, but keyed access is requested.
• INPUT was specified, explicitly or by default, but an UPDATE request was

made.
• GET UPD ADR was requested. However, ADR was not specified on the ACB

macro when the SHAREOPTIONS(4) KSDS was opened.

72 You requested keyed access for an entry-sequenced file.

76 You requested addressed or control interval insertion for a key-sequenced or
relative record file.

80 You issued an ERASE macro either for an entry-sequenced file (directly or
through a path), or for a file for which control-interval processing has been
specified.

84 You specified LOCATE mode for either a PUT request or for processing in a user
buffer.

88 A positioning error occurred. The problem program did one of the following
things:

• Issued a sequential GET macro without having VSAM positioned first.
• Changed from addressed to keyed access without having VSAM positioned for

keyed-sequential retrieval.
• Issued a sequential PUT macro for a relative-record file without having VSAM

positioned first.
• Attempted to improperly switch between forward and backward processing.

92 You issued a PUT for UPDATE or an ERASE macro without a preceding GET for
UPDATE macro.

96 An attempt was made to either change the prime key of a record that is being
updated, or to change an alternate key that has the UNIQUEKEY attribute.

This produced a sequence error during sequential updating. For example, during
REPRO REPLACE, two separate updates to the same record were attempted.

100 An attempt was made to either change record length during update with
addressed access, or to change record length for a relative-record file.

Using VSAM

526 z/VM: 7.2 Group Control System

Error Code Meaning

104 You specified invalid or conflicting RPL options or parameters, as follows:

• SKP together with BWD
• LRD without BWD
• CNV together with BWD
• ARG parameter was not specified when required.

108 The RECLEN value specified for the RPL was one of the following:

• Larger than the allowed maximum
• Equal to zero
• Smaller than key length plus relative key position
• Not equal to record (slot) size specified for a relative-record file.

For alternate index upgrade processing, the alternate index contains too many
duplicate keys. Increase the maximum record length to accommodate more
keys.

112 The length of the generic key specified for the RPL is too large or is equal to zero.

116 Either a request to insert records was issued during initial loading of the file,
or a request other than PUT insert was issued during initial loading of a relative-
record file. Possibly an attempt was made to read an empty file.

132 An attempt was made to retrieve a spanned record in LOCATE mode.

136 An attempt was made to retrieve a spanned record of a keyed-sequenced file
with addressed access.

140 VSAM met an inconsistent spanned record, that is, one or more segments were
incompletely updated or destroyed.

If the request was GET, then the record (or as much of it as possible) was moved
to the user's work area. The record may contain segments at different update
levels. The RECLEN field of the RPL shows the length actually moved to the work
area.

If the request was sequential or skip-sequential (but not direct), then the file
remains positioned for update or subsequent sequential retrieval. An update of
the record will update the status of all segments to a consistent level.

If the error was in the AIX during path access (RPL FTNCD=X'02'), then the
base cluster is not accessed and no record is moved to the work area. During
sequential or skip-sequential access, a subsequent request will access records
with a higher alternate key than the one in error.

144 VSAM met a pointer in an alternate index without an associated base record.

148 The maximum number of pointers in the alternate index has been exceeded.

156 One or more records in this control interval may contain duplicate data after an
addressed GET UPDATE. Any duplicates can be eliminated by processing the file
using keyed access.

192 VSAM met an invalid relative-record number.

196 An addressed request was issued for a relative-record file.

200 An addressed or control-interval access was attempted through a path.

204 The program issued a PUT to insert a record while in backward mode.

Using VSAM

Appendix B. Using VSAM 527

Error Code Meaning

229 Record length change detected on expansion.

245 Compression Management Services error on compression.

246 Compression Management Services error on expansion.

When the Return Code in Register 15 is 12

Error Code Meaning

4 A READ error occurred for a file.

8 A READ error occurred for an index set.

12 A READ error occurred for a sequence set.

16 A WRITE error occurred for a file.

20 A WRITE error occurred for an index set.

24 A WRITE error occurred for a sequence set.

Using VSAM

528 z/VM: 7.2 Group Control System

Appendix C. Appendix for QUERY ADDRESS and
QUERY MODDATE

The following names may be specified on the QUERY ADDRESS command. Those indicated with an
asterisk (*) may be specified on the QUERY MODDATE command.

ABBREV
ADTSECT
AFTSTART
ALPHATB
CONAUTHU
CONBAM
CONBAMN
CONBAM2
CONDMPU
CONMAXU
CONRECU
CONSEGS
CONFIG
CONSYS
CONSYSID
CONTABSZ
CONTRPRI
CONUSED
CONUSRS
CONVSAM
CONVSAMN
CVT
DEVADSK
DEVCONS
DEVTAB
DIOSECT
ECVT
EXCPW
EXTWA
FVS
FVSLADSV
GCSUSRAB
GCTABD *
GCTABDAB
GCTABDAT
GCTABDHX
GCTABNW1
GCTABNW2
GCTACC *
GCTACF *
GCTACM *
GCTAES *
GCTAESAP

QUERY ADDRESS/QUERY MODDATE

© Copyright IBM Corp. 2001, 2023 529

GCTAESAS
GCTALP
GCTALU *
GCTALUSO
GCTANM *
GCTANT *
GCTANTM
GCTANTT
GCTARE *
GCTATT *
GCTATTDE
GCTATTET
GCTATTFT
GCTATT44
GCTATT62
GCTATU *
GCTATUIT
GCTAUD *
GCTAUDUP
GCTBEO *
GCTBHC
GCTBMR *
GCTBMRAR
GCTBMRFL
GCTBMRIN
GCTBOP *
GCTBUF
GCTBUFND
GCTCAT *
GCTCATDK
GCTCATMK
GCTCATNB
GCTCATR
GCTCFG *
GCTCIO *
GCTCIOEX
GCTCIOPU
GCTCIORD
GCTCLS *
GCTCMD *
GCTCMH *
GCTCMHE
GCTCMSSH
GCTCMSSS
GCTCOI *
GCTCOM
GCTCON *
GCTCPF *
GCTCTB
GCTCTS
GCTCUP *

QUERY ADDRESS/QUERY MODDATE

530 z/VM: 7.2 Group Control System

GCTCUPWA
GCTCWR *
GCTDAS *
GCTDIE *
GCTDIO *
GCTDIOLR
GCTDIOLW
GCTDIORD
GCTDIOWR
GCTDIP *
GCTDIPBI
GCTDIPDI
GCTDIPOS
GCTDIPTI
GCTDLB *
GCTDLBCN
GCTDMP *
GCTDOS *
GCTDSI *
GCTDSP *
GCTDUM *
GCTDUMSD
GCTDUMSI
GCTDUMTD
GCTDUQ *
GCTDUQBU
GCTDUQDG
GCTDUQFM
GCTDUQGM
GCTDUR *
GCTDURMT
GCTDURSR
GCTDUX *
GCTEHC
GCTENQ *
GCTENQDB
GCTENQDS
GCTEIO *
GCTEIOAB
GCTERS *
GCTERSTR
GCTERSX
GCTERW *
GCTERWRD
GCTERWWR
GCTEST *
GCTESTBR
GCTESTXC
GCTESTET
GCTESTEX
GCTETR *

QUERY ADDRESS/QUERY MODDATE

Appendix C. Appendix for QUERY ADDRESS and QUERY MODDATE 531

GCTFLD *
GCTFLDCN
GCTFLE *
GCTFNC *
GCTFNS *
GCTFNSDI
GCTFNST
GCTFSV *
GCTFSVBA
GCTFSVBR
GCTFSVXC
GCTFSV0A
GCTFSV05
GCTFSV78
GCTGFC *
GCTGFCFF
GCTGFCFM
GCTGFD *
GCTGFDCP
GCTGFDGM
GCTGFDRM
GCTGFE *
GCTGFEPS
GCTGFERC
GCTGFEUA
GCTGFF *
GCTGFFAG
GCTGFFLG
GCTGFFRG
GCTGFI *
GCTGFIBD
GCTGFIPL
GCTGFJ *
GCTGFJCS
GCTGFT *
GCTGFTIN
GCTGFTND
GCTGIA *
GCTGII *
GCTGIM *
GCTGIMSB
GCTGIMXC
GCTGIMT
GCTGIN *
GCTGINSX
GCTGIP *
GCTGIPT
GCTGIPU
GCTGIT *
GCTGIU *
GCTGIUXA

QUERY ADDRESS/QUERY MODDATE

532 z/VM: 7.2 Group Control System

GCTGIX *
GCTGLB *
GCTGMF *
GCTGSU *
GCTGSV *
GCTGSVBA
GCTGSVBX
GCTGSVBR
GCTGSVXC
GCTGSV0A
GCTGSV04
GCTGSV78
GCTGSW *
GCTGSX *
GCTGVE *
GCTGXI *
GCTGXN *
GCTHTB *
GCTIIS *
GCTINA *
GCTINALT
GCTINA1S
GCTINL *
GCTIOSAV
GCTITE *
GCTITEWA
GCTITM *
GCTITP *
GCTITPWA
GCTITS *
GCTIUE *
GCTIUEFL
GCTIUI *
GCTIUIFI
GCTIUISS
GCTIUM *
GCTIUS *
GCTIUSBR
GCTIUSXC
GCTIUSSV
GCTIUSTR
GCTIUX *
GCTIXT *
GCTLAB *
GCTLAC *
GCTLAD *
GCTLADAD
GCTLADN
GCTLADNW
GCTLADW
GCTLAF *

QUERY ADDRESS/QUERY MODDATE

Appendix C. Appendix for QUERY ADDRESS and QUERY MODDATE 533

GCTLAFFE
GCTLAFFT
GCTLAFNX
GCTLCK *
GCTLDC *
GCTLDF *
GCTLFS *
GCTLFSHM
GCTLFSTY
GCTLFSW
GCTLLK *
GCTLLKM
GCTLLKT
GCTLLKWA
GCTLLK2
GCTLOS *
GCTLPAB
GCTMCKSA
GCTMES
GCTMOD *
GCTMSG *
GCTMSGWA
GCTMTA *
GCTMTB *
GCTMTBEX
GCTNUC *
GCTNUCIN
GCTNUCIU
GCTNUCL1
GCTNUCL2
GCTNUCL3
GCTNUCMS
GCTNUCOS
GCTNUCPA
GCTNUCPD
GCTNUCPL
GCTNUCQB
GCTNUCSN
GCTNUCSR
GCTNUCTI
GCTNUCT1
GCTNUCT2
GCTNUCT3
GCTNXT *
GCTNXTAB
GCTOME
GCTOMX
GCTOSR *
GCTPGF *
GCTPGFWA
GCTPIO *

QUERY ADDRESS/QUERY MODDATE

534 z/VM: 7.2 Group Control System

GCTPIOB
GCTPIOEX
GCTPIOPR
GCTPMA *
GCTPMB *
GCTPMC *
GCTPMC12
GCTPMC6
GCTPMC7
GCTPMD *
GCTPMDB
GCTPMDHX
GCTPMD9
GCTPMI *
GCTPML *
GCTPMLAD
GCTPMM *
GCTPMN *
GCTPMR *
GCTPMS *
GCTPOS *
GCTPOSBE
GCTPOSBR
GCTPOSXC
GCTPOST
GCTQRD *
GCTQRL *
GCTQRQ *
GCTQRR *
GCTQRS *
GCTQRT *
GCTQRU *
GCTQRW *
GCTQRX *
GCTQRY *
GCTQRZ
GCTRET *
GCTRETBR
GCTRET76
GCTREX *
GCTREXAB
GCTREXBR
GCTREXGC
GCTREXIT
GCTREXMS
GCTREXSC
GCTREXVE
GCTREXV2
GCTRFF *
GCTRFFCP
GCTRFFFM

QUERY ADDRESS/QUERY MODDATE

Appendix C. Appendix for QUERY ADDRESS and QUERY MODDATE 535

GCTRFFFS
GCTRFFGM
GCTROS *
GCTRPY *
GCTRSS *
GCTRSSSU
GCTRWB *
GCTRWBRD
GCTRWBWR
GCTRXL *
GCTSAI
GCTSAP
GCTSAR
GCTSBS *
GCTSCL *
GCTSCL20
GCTSCL23
GCTSCN *
GCTSCNN
GCTSCNO
GCTSCNT
GCTSCNUP
GCTSCON
GCTSCT *
GCTSCTCE
GCTSCTCK
GCTSCTNP
GCTSDT *
GCTSDTA
GCTSDTM
GCTSDTWA
GCTSDT2
GCTSDX *
GCTSDXBR
GCTSDXXC
GCTSDXWA
GCTSEB *
GCTSER *
GCTSERAB
GCTSERSY
GCTSET *
GCTSETWA
GCTSGIOP
GCTSIDW1
GCTSIG
GCTSMAB
GCTSOP *
GCTSOP19
GCTSPI *
GCTSPIEP
GCTSPIIR

QUERY ADDRESS/QUERY MODDATE

536 z/VM: 7.2 Group Control System

GCTSQS *
GCTSQSGT
GCTSQSPT
GCTSTT *
GCTSTTCL
GCTSTTNW
GCTSTTR
GCTSTTWX
GCTSTTX
GCTSUB *
GCTSUP *
GCTSVL *
GCTSVQ *
GCTSVQFM
GCTSVQGM
GCTSVQNT
GCTSVQXT
GCTSVT *
GCTSVT17
GCTSVT24
GCTSVT40
GCTSVT64
GCTSVT96
GCTSYM *
GCTTAB
GCTTCBCM
GCTTIH *
GCTTIM *
GCTTIMFA
GCTTIMST
GCTTIMTE
GCTTIMTI
GCTTIMTT
GCTTKN *
GCTTKS *
GCTTRK *
GCTTRKDE
GCTTRKMA
GCTTSABD
GCTTZI *
GCTVAL *
GCTVALB
GCTVALL
GCTVALWA
GCTVIB *
GCTVIP *
GCTVIP2
GCTVIR *
GCTVIS *
GCTVSI *
GCTVSR *

QUERY ADDRESS/QUERY MODDATE

Appendix C. Appendix for QUERY ADDRESS and QUERY MODDATE 537

GCTVSS *
GCTVST *
GCTVSTBG
GCTVSTSY
GCTVSTVA
GCTVTI *
GCTWAI *
GCTWAIBR
GCTWAIXC
GCTWAIT
GCTWTE *
GCTWTR *
GCTXCP *
GCTYTE *
GCTYTG *
GCTYTI *
GCTYTI01
GCTYTI02
GCTYTK *
GCTYTO *
GCTYTW *
GCTZET
GCTZIT
GCTZITEP
GCTZNR
GIMSB
GST
INSWA
INVTBL
IUCBK
IUSBR
LOWERADD
MTWA
NUCABW
NUCON
OSSVCTAB
PGMWA
POSBR
REXXCODE
SCANADD
SCVT
SDXBR
SIE
SVCWA
SV202TAB
SV203TAB
SYID
TABEND
UPPERADD

QUERY ADDRESS/QUERY MODDATE

538 z/VM: 7.2 Group Control System

Appendix D. Data Compression Services

This appendix discusses how to use Data Compression Services with GCS as follows:

• Compression Processing
• Expansion Processing
• Using Compression and Expansion Dictionaries
• Compressing and Expanding GCS Data.

Compression and Expansion Services
You can save data in a compressed format to conserve storage media and network transmission line
costs. The CSRCMPSC macro provides a pair of services that compress and expand data. These services
are available when the CVTCMPSC bit is on in the communication vector table (CVT).

Compression takes an input string of data and, using a data area called a dictionary, produces an output
string of compression symbols. Each symbol represents a string of one or more characters from the input.

Expansion takes an input string of compression symbols and, using a dictionary, produces an output string
of the characters represented by those compression symbols.

The CSRCMPSC is a general user interface to system Data Compression Services. When using the
CSRCMPSC macro on GCS the user must supply a save area that is 144 bytes in length. In this respect, the
GCS API differs from the API on MVS.

The CSRCMPSC macro has two defined functions:

• Compressing data
• Expanding previously compressed data

This interface uses the S/390 hardware compression instruction CMPSC. If your hardware does not
support the CMPSC compression instruction, the system software simulation of the instruction will be
used to perform the service. For more information on the CSRCMPSC macro, see z/VM: CMS Macros and
Functions Reference.

Using the Data Compression Services on GCS and CMS are similar. Except, GCS does not provide CSL
or REXX support. For additional information on how to use Data Compression Services, see z/VM: CMS
Application Development Guide.

Data Compression Services

© Copyright IBM Corp. 2001, 2023 539

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa6_v7r2.pdf#nameddest=dmsa6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa6_v7r2.pdf#nameddest=dmsa6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa3_v7r2.pdf#nameddest=dmsa3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa3_v7r2.pdf#nameddest=dmsa3_v7r2

Data Compression Services

540 z/VM: 7.2 Group Control System

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2001, 2023 541

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book primarily documents intended Programming Interfaces that allow the customer to write
programs to obtain services of z/VM.

This book also documents information that is NOT intended to be used as Programming Interfaces of
z/VM. This information is identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

 NOT-PI

<...NOT Programming Interface information...>

 NOT-PI end

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM trademarks is available on the
web at IBM copyright and trademark information - United States (https://www.ibm.com/legal/us/en/
copytrade.shtml).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

542 z/VM: 7.2 Group Control System

https://www.ibm.com/legal/us/en/copytrade.shtml

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at https://www.ibm.com/privacy
• https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

Notices 543

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

544 z/VM: 7.2 Group Control System

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf), SC34-2670

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260

© Copyright IBM Corp. 2001, 2023 545

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa0_v7r2.pdf#nameddest=hcpa0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa0_v7r2.pdf#nameddest=hcpa0_v7r2
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa0_v7r2.pdf#nameddest=hcpa0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa2_v7r2.pdf#nameddest=hcpa2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpf2_v7r2.pdf#nameddest=hcpf2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa4_v7r2.pdf#nameddest=hcpa4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa3_v7r2.pdf#nameddest=hcpa3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsc6_v7r2.pdf#nameddest=dmsc6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsd1_v7r2.pdf#nameddest=dmsd1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa6_v7r2.pdf#nameddest=hcpa6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa5_v7r2.pdf#nameddest=hcpa5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpl0_v7r2.pdf#nameddest=hcpl0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/gcta0_v7r2.pdf#nameddest=gcta0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpe2_v7r2.pdf#nameddest=hcpe2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpa7_v7r2.pdf#nameddest=hcpa7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpg4_v7r2.pdf#nameddest=hcpg4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcps0_v7r2.pdf#nameddest=hcps0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/kldl0_v7r2.pdf#nameddest=kldl0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/kill0_v7r2.pdf#nameddest=kill0_v7r2
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpe9_v7r2.pdf#nameddest=hcpe9_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb8_v7r2.pdf#nameddest=hcpb8_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb4_v7r2.pdf#nameddest=dmsb4_v7r2

• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268
• z/VM: System Operation, SC24-6326
• z/VM: TCP/IP User's Guide, SC24-6333
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940
• CPI Communications Reference, SC26-4399
• Common Programming Interface Resource Recovery Reference, SC31-6821
• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sa760169/$file/glpa300_v2r4.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf), SA38-0683

546 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb2_v7r2.pdf#nameddest=dmsb2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb3_v7r2.pdf#nameddest=dmsb3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb7_v7r2.pdf#nameddest=hcpb7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb1_v7r2.pdf#nameddest=hcpb1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/kijl0_v7r2.pdf#nameddest=kijl0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb2_v7r2.pdf#nameddest=hcpb2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb6_v7r2.pdf#nameddest=dmsb6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb5_v7r2.pdf#nameddest=dmsb5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa3_v7r2.pdf#nameddest=dmsa3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa5_v7r2.pdf#nameddest=dmsa5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsd0_v7r2.pdf#nameddest=dmsd0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa4_v7r2.pdf#nameddest=dmsa4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsa6_v7r2.pdf#nameddest=dmsa6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb4_v7r2.pdf#nameddest=hcpb4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb5_v7r2.pdf#nameddest=hcpb5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb6_v7r2.pdf#nameddest=hcpb6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/ceeb7_v7r2.pdf#nameddest=ceeb7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsp4_v7r2.pdf#nameddest=dmsp4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsp1_v7r2.pdf#nameddest=dmsp1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsp3_v7r2.pdf#nameddest=dmsp3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsp0_v7r2.pdf#nameddest=dmsp0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsp2_v7r2.pdf#nameddest=dmsp2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsl0_v7r2.pdf#nameddest=dmsl0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsk7_v7r2.pdf#nameddest=dmsk7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb1_v7r2.pdf#nameddest=dmsb1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsb0_v7r2.pdf#nameddest=dmsb0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmse6_v7r2.pdf#nameddest=dmse6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/kiml0_v7r2.pdf#nameddest=kiml0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpb9_v7r2.pdf#nameddest=hcpb9_v7r2
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf), SA23-1393

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: VM Dump Tool, GC24-6335
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf), SC34-2668

z/VM Facilities and Features

Data Facility Storage Management Subsystem for VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277
• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Bibliography 547

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmsw0_v7r2.pdf#nameddest=dmsw0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw0_v7r2.pdf#nameddest=hcpw0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpc1_v7r2.pdf#nameddest=hcpc1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpc3_v7r2.pdf#nameddest=hcpc3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpw1_v7r2.pdf#nameddest=hcpw1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/kdpl0_v7r2.pdf#nameddest=kdpl0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/kinl0_v7r2.pdf#nameddest=kinl0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpe5_v7r2.pdf#nameddest=hcpe5_v7r2
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpt1_v7r2.pdf#nameddest=hcpt1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpt5_v7r2.pdf#nameddest=hcpt5_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpt2_v7r2.pdf#nameddest=hcpt2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpt0_v7r2.pdf#nameddest=hcpt0_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpt3_v7r2.pdf#nameddest=hcpt3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpt4_v7r2.pdf#nameddest=hcpt4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpk4_v7r2.pdf#nameddest=hcpk4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpk2_v7r2.pdf#nameddest=hcpk2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpk3_v7r2.pdf#nameddest=hcpk3_v7r2
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320
• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf), SA32-0988

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350152/$file/ifc2000_v2r4.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf), GC35-0151

548 z/VM: 7.2 Group Control System

https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpl8_v7r2.pdf#nameddest=hcpl8_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/hcpl7_v7r2.pdf#nameddest=hcpl7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/icha8_v7r2.pdf#nameddest=icha8_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/icha4_v7r2.pdf#nameddest=icha4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/ichb2_v7r2.pdf#nameddest=ichb2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/icha1_v7r2.pdf#nameddest=icha1_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/icha3_v7r2.pdf#nameddest=icha3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/icha6_v7r2.pdf#nameddest=icha6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/icha7_v7r2.pdf#nameddest=icha7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/icha2_v7r2.pdf#nameddest=icha2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/ichc6_v7r2.pdf#nameddest=ichc6_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmta7_v7r2.pdf#nameddest=dmta7_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmta4_v7r2.pdf#nameddest=dmta4_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmta3_v7r2.pdf#nameddest=dmta3_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmta2_v7r2.pdf#nameddest=dmta2_v7r2
https://www.ibm.com/docs/en/SSB27U_7.2.0/pdf/dmta1_v7r2.pdf#nameddest=dmta1_v7r2
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf

Index

Special Characters
? operand

DLBL command 64
* operand

DLBL command 64
QUERY DISK command 122

Numerics
0 parameter

BLDL macro 181
24-bit address

mode 351
setting 343

31-bit address
mode 351
setting 343

A
A parameter

EXLST macro 435
FREEMAIN macro 234
GENCB macro 444
GETMAIN macro 259
MODCB macro 459

ABEND macro
description 162
format 162

abnormal end (abend) 22
ACB macro

description 418
format 418

ACB parameter
GENCB macro 446
MODCB macro 454, 461
RPL macro 472
SHOWCAT macro 476
SHOWCB macro 481, 487
TESTCB macro 491, 501

ACBLEN parameter
SHOWCB macro 481
TESTCB macro 494

ACCEPT parameter
IUCVCOM macro 275

ACCESS command
description 59
format 59

Access Control Block (ACB)
definition 55

ACQUIRE parameter
LOCKWD macro 302

ACSMETH parameter
SYNADAF (BSAM/QSAM) macro
409

add

add (continued)
tasks

using ATTACH macro 18
ADDR parameter

LOAD macro 299
VALIDATE macro 362

ADDRESS GCS 42
ADDRESS operand

QUERY command 119
ADSR macro

description 164
format 164

Advanced Program-to-Program Communications/VM
(APPC/VM)

definition 7
AIXFLAG parameter

TESTCB macro 501
AIXPC parameter

SHOWCB macro 487
TESTCB macro 501

ALL operand
ETRACE command 73
GDUMP command 99
ITRACE command 109

AMODE instruction
determining 182

AMODE parameter
CONTENTS macro 198
SYNCH macro 351

APPC/VM VTAM Support (AVS)
definition 3

application
supported in GCS 2
unauthorized in GCS 44

applications
interfacing with Control Program 1

AREA parameter
GENCB macro 446
MODCB macro 461
RPL macro 472
SHOWCAT macro 477
SHOWCB macro 481, 484, 487
TESTCB macro 501

AREALEN parameter
GENCB macro 446
MODCB macro 461
RPL macro 472
SHOWCB macro 487
TESTCB macro 501

ARG parameter
GENCB macro 446
MODCB macro 461
RPL macro 473
SHOWCB macro 487
TESTCB macro 501

ASYNCH parameter
ESTAE macro 224

Index 549

ATRB parameter
TESTCB macro 492

attach
tasks 18

ATTACH macro
description 165
execute format 171
list format 170
standard format 165

AUTHCALL macro
description 172
format 172

AUTHNAME macro
authorizing entry points 9
description 174
execute format 177
list address format 177
list format 176
standard format 174

authorize
accessing GCS 29
commands 9, 29
CP command use 9
entry point 9
provided by GCS 7
real I/O 29, 49
storage

accessing 50
key switching 44
protection 44

supervisor state 9
user IDs 9, 28

AUTHUSER ADD operand
CONFIG command 62

AUTHUSER DELETE operand
CONFIG command 62

AUTHUSER macro
description 179
format 179

AUTHUSER operand
QUERY command 120

AUTOLOG 29
automatic

IPL 30
AVOID operand

EXECIO command 80
AVSPAC parameter

SHOWCB macro 482
TESTCB macro 494

B
BAMSEG parameter

CONFIG macro 195
base register 35
BIN parameter

TIME macro 359
BINTVL parameter

STIMER macro 345
BLDL macro

description 181
format 181

BLDVRP macro
description 423

BLDVRP macro (continued)
format 423

BLK parameter
GENCB macro 438, 446

BLKSIZE operand
FILEDEF command 95

BLKSIZE parameter
DCB (BSAM/QSAM) macro
386

BLOCK operand
FILEDEF command 95

BNDRY parameter
GETMAIN macro 259

BRANCH parameter
ESTAE macro 224
FREEMAIN macro 233
GENIO macro 249
GETMAIN macro 258
IUCVCOM macro 275
SCHEDEX macro 327

BSAM
data management rules 379

BUFFER operand
EXECIO command 80

BUFFERS parameter
BLDVRP macro 423

BUFND parameter
ACB macro 420
GENCB macro 439, 440
MODCB macro 455
SHOWCB macro 481
TESTCB macro 494

BUFNI parameter
MODCB macro 455
SHOWCB macro 481
TESTCB macro 494

BUFNO parameter
SHOWCB macro 482
TESTCB macro 494

BUFSP operand
DLBL command 64

BUFSP parameter
ACB macro 420
GENCB macro 440
MODCB macro 455
SHOWCB macro 481
TESTCB macro 494

build
shared segments 27
virtual machine groups 4

BYTECOUNT operand
GDUMP command 98

C
CALL macro

description 184
execute format 186
list format 185
standard format 184

cancel
programs 32
timer 47, 361

CANCEL parameter

550 z/VM: 7.2 Group Control System

CANCEL parameter (continued)
TTIME macro 361

CARD operand
EXECIO command 78

CASE operand
EXECIO command 80

CAT operand
DLBL command 64

CC operand
EXECIO command 79

CCW parameter
GENIO macro 249

chain save area 36
CHANGE operand

DLBL command 64
FILEDEF command 95

change storage key 44
changing GCS nucleus options 507
channel control program

building 50
CHAP macro

assigning task priority 19
description 187
format 187

CHAR parameter
GENIO macro 248

CHECK (BSAM) macro
description 380
format 380

CHECK macro
description 425
format 425

CI parameter
SHOWCAT macro 476

CINV parameter
SHOWCB macro 482
TESTCB macro 494

CLEAR command
description 61
format 61

CLEAR operand
DLBL command 64
FILEDEF command 95

CLOSE (BSAM/QSAM)
macro

description 382
execute format 383
list format 383
standard format 382

CLOSE macro
description 427
format 427

CLOSE parameter
GENIO macro 248

CLR parameter
AUTHNAME macro 175
IUCVINI macro 287
MACHEXIT macro 306
TASKEXIT macro 354

CMDSI macro
description 189
execute format 192
list address format 191
list format 191

CMDSI macro (continued)
standard format 189

CODE parameter
IUCVCOM macro 275

coding conventions, macro 158
command

class assignments 9
common with CMS 3
entering 42
file 42
halting 107
processing 43
stopping 107
supported in GCS 43

commands
GROUP 102

common lock 50
COMMON operand

QUERY command 121
common storage 26, 43
communication support

between execs 42
EXECCOMM macro 42
through IUCV 47
through the console 41

compare
storage keys 50

COMPCOD parameter
SETRP macro 341

CONFIG command
description 62
format 62

CONFIG macro
description 193
format 193

configuration file 4
CONNECT parameter

IUCVCOM macro 275
console

CMDSI macro 42
issuing commands from 42
support 41
writing messages to and from 42

CONTENTS macro
description 197

control
conventions for

passing 37
receiving 37

GCS
access to GCS supervisor 8
CP commands 9
supervisor state 9

Control Program (CP)
AUTOLOG 30
command restrictions 9
intercepting instructions, diagram of 15
interfacing with licensed applications 1
SAVESYS command 28
signal system service 7

convention for
formatting macros 159
passing control 37
receiving control 37

Index 551

conventions, macro coding 158
Conversational Monitor System (CMS)

defining 94
files GCS processes 51
LOAD command 28
load libraries, defining 101
relating to GCS 3, 42
with SNA 14

coordinate
resources 22
tasks 20

COPIES parameter
GENCB macro 441, 444, 448

CP operand
EXECIO command 78

CREATE parameter
GCSTOKEN macro 242

CT parameter
ESTAE macro 223

CVT macro
description 200
format 200

D
data compression

benefits of 53, 539
definition of 53, 539
with GCS 539

Data Control Block (DCB)
multiple openings 52

data management 51
DATA operand

EXECIO command 79
DATA parameter

GENIO macro 248
GTRACE macro 265
SHOWCB macro 481

data path
through VTAM machine 17

DCB (BSAM/QSAM) macro
description 385
format 385

DCBD (BSAM/QSAM)
macro

description 391
format 391

ddname operand
FILEDEF command 94

DDNAME operand
DLBL command 64

DDNAME parameter
ACB macro 421
DCB (BSAM/QSAM) macro
386
GENCB macro 440
MODCB macro 456
SHOWCB macro 481
TESTCB macro 494

DE parameter
ATTACH macro 166
DELETE macro 202
LINK macro 294
LOAD macro 299

DE parameter (continued)
XCTL macro 374

debug
commands 9, 29

DEC parameter
TIME macro 359

define
CMS files 94
CMS load libraries 101
commands 112
spool files 94
VSAM files 64

DELETE macro
description 202
format 202

DELETE parameter
GCSTOKEN macro 242

DEQ macro
description 204
execute format 207
list format 206
standard format 204
synchronizing tasks 22

DET operand
RELEASE command 146

DETACH macro
description 208
format 208

DEV parameter
GENIO macro 250

DEVTAB parameter
DEVTYPE macro 210

DEVTYPE macro
description 210
format 210

DIAG98 25
DINTVL parameter

STIMER macro 346
directory user control statement

entries
DIRECTORY 49
OPTION 49

disable
external tracing 73
tracing of GTRACE events 108

discard
tasks 18

disk
accessing

automatically at IPL 31
releasing 146

DISK operand
FILEDEF command 95
QUERY command 122

DISKR operand
EXECIO command 78

DISKW operand
EXECIO command 79

DISP MOD operand
FILEDEF command 95

dispatch
tasks 19

display field
ACB 480

552 z/VM: 7.2 Group Control System

display field (continued)
exit list 484
RPL 486

DLBL command
description 64
format 64

DLBL operand
QUERY command 124

DLVRP macro
description 429
format 429

DPMOD parameter
ATTACH macro 167

DSECT parameter
IHASDWA macro 273

DSN operand
DLBL command 64

DSORG parameter
DCB (BSAM/QSAM) macro 386
DCBD (BSAM/QSAM) macro
391

DSORG PS operand
FILEDEF command 95

DSP operand
ETRACE command 74
ITRACE command 109

DSS operand
GDUMP command 99

DUMMY operand
FILEDEF command 95

dump
virtual machine storage 98

DUMP operand
QUERY command 126
SET command 150

DUMP parameter
ABEND macro 162
SETRP macro 341

DUMPLOCK operand
QUERY command 127
SET command 151

DUMPVM operand
CONFIG command 62
QUERY command 128

DUMPVM parameter
CONFIG macro 194

E
E parameter

ENQ macro 214
FREEMAIN macro 234

EC parameter
GETMAIN macro 258

ECB parameter
ATTACH macro 166
GENCB macro 447
MODCB macro 462
RPL macro 473
SHOWCB macro 487
TESTCB macro 501
WAIT macro 365
WTOR macro 370

ECBLIST parameter

ECBLIST parameter (continued)
WAIT macro 365

ECVT macro
description 212
format 212

EMSG operand
EXECIO command 79, 88

end
tasks 22

END operand
ETRACE command 73
GDUMP command 98
ITRACE command 109

END parameter
AUTHUSER macro 179
CONTENTS macro 198
RESSTOR macro 320
SEGMENT macro 338

ENDREQ macro
description 430
format 430

ENQ macro
description 213
execute format 217
list format 217
standard format 213
synchronizing tasks 22

ENTRY parameter
IDENTIFY macro 270

entry point
authorizing with AUTHNAME 9
shared storage 47

EODAD parameter
DCB (BSAM/QSAM) macro
386
EXLST macro 434
GENCB macro 443
MODCB macro 459
SHOWCB macro 485
TESTCB macro 497

EP parameter
ATTACH macro 165
AUTHCALL macro 172
AUTHNAME macro 174
CONTENTS macro 197
DELETE macro 202
IDENTIFY macro 270
LINK macro 293
LOAD macro 298
MACHEXIT macro 306
TASKEXIT macro 354
XCTL macro 373

EPLOC parameter
ATTACH macro 166
AUTHCALL macro 172
DELETE macro 202
IDENTIFY macro 270
LINK macro 293
LOAD macro 298
XCTL macro 374

ERASE command
description 70
format 70

ERASE macro

Index 553

ERASE macro (continued)
description 432
format 432

ERET parameter
TESTCB macro 492, 497, 501

ERRET parameter
LOAD macro 299

ERROR parameter
AUTHNAME macro 175
CMDSI macro 190
GENIO macro 250
IUCVCOM macro 275
IUCVINI macro 289
MACHEXIT macro 306
SHOWCB macro 481
TASKEXIT macro 355
TESTCB macro 494

ESPIE macro
description 219
format 219

establish
base register 35

ESTAE macro
abnormal termination 23
description 223
execute format 228
list format 227
standard format 223

ESTATE/ESTATEW command
description 71
format 71

ETRACE command
description 73
format 73

ETRACE operand
QUERY command 129

ETXR parameter
ATTACH macro 167

EU parameter
FREEMAIN macro 234
GETMAIN macro 258

Event Control Block (ECB)
definition 21

exec
using 42

EXECCOMM macro
description 229
format 229

EXECIO command
description 77
format 76

execute
channel programs 49
format

GCS macro description 158
VSAM macro description 518

real channel I/O 49
exit

GCS
establishing 51
machine 51
resource cleanup 23
scheduling 51
task 22

EXIT parameter
GENIO macro 247
IUCVCOM macro 275
IUCVINI macro 287
SCHEDEX macro 326

EXITBR parameter
GENIO macro 248

EXLLEN parameter
SHOWCB macro 485
TESTCB macro 498

EXLST macro
description 434
format 434

EXLST parameter
ACB macro 421
DCB (BSAM/QSAM) macro
387
GENCB macro 440, 443
MODCB macro 456, 459
SHOWCB macro 482, 484
TESTCB macro 494, 497

EXT operand
ACCESS command 59
ETRACE command 74
ITRACE command 109

extended file system 51
external tracing 73

F
FDBK parameter

SHOWCB macro 487
TESTCB macro 501

FID parameter
GTRACE macro 265

FIELDS parameter
SHOWCB macro 481, 485, 487

FIFO operand
EXECIO command 80

file
defining

CMS 94
VSAM 64

sharing 52
FILEBLK parameter

CMDSI macro 190
FILEDEF command

description 94
format 94

FILEDEF operand
QUERY command 130

FIND operand
EXECIO command 80

FINIS operand
EXECIO command 80

FLS macro
description 231
format 231

FM operand
ACCESS command 59
ERASE command 70
ESTATE/ESTATEW command 71

FN operand
ACCESS command 59

554 z/VM: 7.2 Group Control System

FN operand (continued)
ERASE command 70
ESTATE/ESTATEW command 71

format
conventions

macros 159
FORMAT parameter

GENIO macro 249
FORMAT TYPE operand

GDUMP command 99
formatting routines, coding 267
FRE operand

ETRACE command 74
ITRACE command 109

FREE parameter
GCSSAVE macro 240
GCSSAVI macro 241

FREEMAIN macro
description 233
execute format 237
list format 236
standard format 233

FS parameter
SHOWCB macro 482
TESTCB macro 494

FT operand
ACCESS command 59
ERASE command 70
ESTATE/ESTATEW command 71

FTNCD parameter
SHOWCB macro 487
TESTCB macro 501

G
GCSBAM operand

SET SYSNAME command 154
GCSLEVEL macro

description 238
format 238

GCSLEVEL operand
QUERY command 131

GCSSAVE macro
description 240
format 240

GCSSAVI macro
description 241
format 241

GCSTOKEN macro
description 242
execute format 245
GCSTOKEN parameter 243
list address format 245
list format 244
standard format 242

GCSVSAM operand
SET SYSNAME command 154

GDUMP command
description 98
format 98

GENCB macro
access control block format 437
description 438
exit list format 442

GENCB macro (continued)
request parameter list format 445

GENCB parameter notation 519
General I/O 49
generate

ACB 438
exit list 443
macro format for VSAM 518
RPL 445

GENIO macro
description 247
execute format 256
list address format 255
list format 254
performing I/O 49
standard format 247

GET (QSAM) macro
description 394
format 394

GET macro
description 451
format 451

GET operand
ETRACE command 74
ITRACE command 109

GET parameter
GCSSAVE macro 240
GCSSAVI macro 241

GETMAIN macro
description 257
execute format 263
list format 262
standard format 257

GLOBAL command
description 101
format 101

GROUP command 102
Group Control System (GCS)

accessing authority 8
administration

authorizing access to GCS 29
authorizing commands 29
authorizing for real I/O 29
setting up a PROFILE GCS 29
using AUTOLOG functions 29

applications 2
basic function 1
channel control program 29
commands

ACCESS 59
CLEAR 61
CONFIG 62
DLBL 64
ERASE 70
ESTATE/ESTATEW 71
ETRACE 73
EXECIO 77
FILEDEF 94
GDUMP 98
GLOBAL 101
HX 107
ITRACE 108
LOADCMD 112
OSRUN 116

Index 555

Group Control System (GCS) (continued)
commands (continued)

QUERY 117
QUERY ADDRESS 119
QUERY AUTHUSER 120
QUERY COMMON 121
QUERY DISK 122
QUERY DLBL 124
QUERY DUMP 126
QUERY DUMPLOCK 127
QUERY DUMPVM 128
QUERY ETRACE 129
QUERY FILEDEF 130
QUERY GCSLEVEL 131
QUERY GROUP 132
QUERY IPOLL 133
QUERY ITRACE 134
QUERY LOADALL 135
QUERY LOADCMD 136
QUERY LOADLIB 137
QUERY LOCK 138
QUERY MODDATE 139
QUERY REPLY 140
QUERY REXXSTOR 141
QUERY SEARCH 142
QUERY SYSNAMES 143
QUERY TRACETAB 144
QUERY TSLICE 145
RELEASE 146
REPLY 147
SET 149
SET DUMP 150
SET DUMPLOCK 151
SET IPOLL 152
SET REXXSTOR 153
SET SYSNAME 154

configuration
using the GROUP command 512

configuration file 102
console and command support 41
data management services 51
dumps

abend with DUMP option 22
immediate commands 58
macros

ABEND 162
ADSR 164
ATTACH 165
AUTHCALL 172
AUTHNAME 174
AUTHUSER 179
BLDL 181
CALL 184
CHAP 187
checking storage key 50
CMDSI 189
CONFIG 193
CONTENTS 197
controlling locks 50
CVT 200
DELETE 202
DEQ 204
DETACH 208
DEVTYPE 210

Group Control System (GCS) (continued)
macros (continued)

ECVT 212
ENQ 213
ESPIE 219
ESTAE 223
EXECCOMM 229
FLS 231
FREEMAIN 233
GCS supported macro overview 3
GCSLEVEL 238
GCSSAVE 240
GCSSAVI 241
GCSTOKEN 242
GENIO 247
GETMAIN 257
GTRACE 265
IDENTIFY 270
IHADVA 272
IHASDWA 273
IUCV communication 47
IUCVCOM 275
LINK 293
LOAD 298
loading modules 45
LOCKWD 302
MACHEXIT 305
managing data 51
managing timers 46
performing I/O 49
PGLOCK 310
PGULOCK 312
POST 314
processing VSAM files 54
RDJFCB 317
resource sharing 22
RESSTOR 320
RETURN 322
SAVE 324
SCHEDEX 326
SDUMP 329
SDUMPX 333
securing storage 50
SEGMENT 338
SETRP 340
SPLEVEL 343
STIMER 345
SYMREC 348
SYNCH 350
TASKEXIT 354
TIME 359
TTIME 361
VALIDATE 362
WAIT 365
WTO 368
WTOR 370
XCTL 373

multitasking services 17
native services 47
nucleus buildlist 507
nucleus options, changing 507
OS services 43
overview 13
program management 44

556 z/VM: 7.2 Group Control System

Group Control System (GCS) (continued)
rebuilding 513
relating to CMS 3, 28
storage

common storage 43
dump 4, 10
fetch-protected 44
key 44
layout in a group 25
managing 43
obtaining 44
private storage 43
protecting 44
requirements 25
securing pages of 50
using FREEMAIN macro 44
using GETMAIN macro 44

supervisor 4
tailoring 507
timer management 46
user ID directory entries 30
virtual storage layout 25

group exec 28
GROUP operand

ETRACE command 74
ITRACE command 109
QUERY command 132

GTRACE macro
description 265
execute format 267
list format 266
standard format 265

GTRACE operand
ITRACE command 109

H
HALT parameter

GENIO macro 249
halting commands and programs 107
HDR parameter

SDUMP macro 329
SDUMPX macro 333

HDRAD parameter
SDUMP macro 329
SDUMPX macro 333

HEXLOC operand
GDUMP command 98

HX (Halt Execution) immediate command 32
HX command

description 107
format 107

I
I/O operand

ETRACE command 74
ITRACE command 109

ID operand
REPLY command 147

ID parameter
CALL macro 185
GTRACE macro 265

ID parameter (continued)
LINK macro 294
SCHEDEX macro 326

IDENTIFY macro
description 270
format 270

IHADVA macro
description 272
format 272

IHASDWA macro
description 273
format 273

immediate
commands 58

INDEX parameter
SHOWCB macro 481

initialize
CMS

from a SNA terminal 14
GCS 30

INPUT parameter
OPEN (QSAM/BSAM) macro 398
RDJFCB macro 317

install
considerations

defining authorized user IDs 9
Inter-User Communications Vehicle (IUCV)

defined 16
functions provided with GCS 47, 48
use in group communications 7

interface with
GCS (Group Control System) 1
licensed Applications and Control Program 1
shared VTAM 16

internal trace table 26, 27
IO parameter

TESTCB macro 501
IPL command 5, 30
IPOLL operand

QUERY command 133
SET command 152

ITRACE command
description 108
format 108

ITRACE operand
QUERY command 134

IUCVCOM macro
description 275
execute format 284
list address format 283
list format 283
standard format 275

IUCVINI macro
description 286
execute format 291
list address format 291
list format 290
standard format 286

J
join

groups 5, 30
JRNAD parameter

Index 557

JRNAD parameter (continued)
EXLST macro 434
GENCB macro 443
MODCB macro 459
SHOWCB macro 485
TESTCB macro 497

JSTCB parameter
ATTACH macro 168

K
key

changing 44
protection 44

KEY parameter
ESTAE macro 224
GETMAIN macro 258
VALIDATE macro 362

KEYLEN parameter
BLDVRP macro 424
GENCB macro 447
MODCB macro 462
RPL macro 473
SHOWCB macro 482, 487
TESTCB macro 494, 502

L
L parameter

EXLST macro 435
GENCB macro 444
MODCB macro 459

LA parameter
GETMAIN macro 259

last operand
QUERY MODDATE 139

layout virtual storage 25
LENGTH parameter

GENCB macro 441, 444, 448
SHOWCB macro 481, 485, 487
VALIDATE macro 362

LERAD parameter
EXLST macro 434
GENCB macro 443
MODCB macro 459
SHOWCB macro 485
TESTCB macro 497

LIBNAME operand
GLOBAL command 101

LIFO operand
EXECIO command 80

LINK macro
description 293
execute format 296
list format 296
standard format 293

linkage register 35
list address format 158, 518
list format 158, 518
LIST parameter

SDUMP macro 329
SDUMPX macro 334

LNG parameter

LNG parameter (continued)
GTRACE macro 265

load
GCS modules 44, 112
GCS supervisor, the 30
library 31, 44

LOAD macro
description 298
format 298

LOADALL operand
QUERY command 135

LOADCMD command
description 112
format 112

LOADCMD operand
QUERY command 136

loading functions 45, 46
LOADLIB operand

GLOBAL command 101
LOADLIB parameter

QUERY command 137
LOC parameter

GETMAIN macro 259
LOCATE operand

EXECIO command 80
lock

functions 50
local 50

LOCK operand
QUERY command 138

LOCK parameter
LOCKWD macro 302

LOCKWD macro
description 302
format 302

LRECL operand
FILEDEF command 95

LRECL parameter
DCB (BSAM/QSAM) macro
387
SHOWCB macro 482
TESTCB macro 494

LV parameter
FREEMAIN macro 234
GETMAIN macro 258

M
MACHEXIT macro

description 305
execute format 309
list address format 308
list format 308
standard format 305

machine exits 51
MACRF parameter

ACB macro 419
DCB (BSAM/QSAM) macro
387
GENCB macro 438
MODCB macro 454
TESTCB macro 492

macro
formats

558 z/VM: 7.2 Group Control System

macro (continued)
formats (continued)

execute format 158
in GCS 158
list address format 158
list format 158
standard format 158

macro coding conventions 158
macro return code placement 159
manage timer service 46
MAREA parameter

ACB macro 421
GENCB macro 441
MODCB macro 456
SHOWCB macro 482
TESTCB macro 494

MARGINS operand
EXECIO command 80

MAX operand
QUERY DISK command 122

MAXVM parameter
CONFIG macro 194

MEMBER operand
LOADCMD command 112
OSRUN command 116

message
replying to 32, 147
sending to 42
WTO macro 42
WTOR macro 42

message examples, notation used in xv
MESSAGE parameter

WTOR macro 370
MF parameter

ATTACH macro 171
AUTHNAME macro 177, 178
CALL macro 186
CLOSE (BSAM/BSAM) macro 383, 384
CMDSI macro 191, 192
DEQ macro 207
ENQ macro 217, 218
ESTAE macro 227, 228
FREEMAIN macro 237
GENIO macro 255, 256
GETMAIN macro 263, 264
GTRACE macro 267
IUCVCOM macro 283–285
IUCVINI macro 290–292
LINK macro 297
MACHEXIT macro 308, 309
OPEN (QSAM/BSAM) macro 400
READ (BSAM) macro 408
SDUMP macro 331, 332
SDUMPX macro 336, 337
SYMREC macro 348, 349
SYNCH macro 353
TASKEXIT macro 357, 358
WRITE (BSAM) macro 415
WTO macro 369
WTOR macro 371, 372
XCTL macro 376

MLEN parameter
ACB macro 421
GENCB macro 441

MLEN parameter (continued)
MODCB macro 456
SHOWCB macro 482
TESTCB macro 494

MNOTE 159
MODCB macro

access control block format 453
description 453
exit list format 458
request parameter list format 460

MODCB parameter notation 519
MODDATE operand

QUERY MODDATE 139
MODE operand

ACCESS command 59
DLBL command 64
QUERY DISK command 122
RELEASE command 146

modify
ACB 453
exit list 458
RPL 460

MODIFY parameter
GENIO macro 249

MULT operand
DLBL command 64

multiple
DCBs 52
virtual machine groups 5

multitask
assigning priority 19
coordinating tasks 20
defining 17
exit routines, defining 22
task family tree diagram 18
terminating tasks 22

MVS™ functions simulated 43

N
N parameter

EXLST macro 435
GENCB macro 444
MODCB macro 459

NAME operand
LOADCMD command 112

NAME parameter
AUTHNAME macro 175
AUTHUSER macro 179
CONTENTS macro 197
GCSTOKEN macro 242
IUCVCOM macro 275
IUCVINI macro 287
MACHEXIT macro 306
QUERY command 119
QUERY MODDATE 139
RESSTOR macro 320
SEGMENT macro 338
SHOWCAT macro 476
TASKEXIT macro 355

native
GCS services 47

NCIS parameter
SHOWCB macro 482

Index 559

NCIS parameter (continued)
TESTCB macro 494

NDELR parameter
SHOWCB macro 482
TESTCB macro 494

NetView 3
NEXCP parameter

TESTCB macro 495
NEXT parameter

SHOWCB macro 482
TESTCB macro 495

NINSR parameter
SHOWCB macro 482
TESTCB macro 495

NIXL parameter
SHOWCB macro 482
TESTCB macro 495

NLOGR parameter
SHOWCB macro 482
TESTCB macro 495

NOCHANGE operand
DLBL command 64
FILEDEF command 95

nonreenterable program save area 36
notation used in message and response examples xv
NOTE (BSAM) macro

description 396
format 396

NOTYPE operand
EXECIO command 80

NRETR parameter
SHOWCB macro 483
TESTCB macro 495

NSSS parameter
SHOWCB macro 483
TESTCB macro 495

NUPDR parameter
SHOWCB macro 483
TESTCB macro 495

NXTRPL parameter
GENCB macro 447
MODCB macro 462
RPL macro 473
SHOWCB macro 488
TESTCB macro 502

O
OBJECT parameter

SHOWCB macro 481
TESTCB macro 492

obtain
storage 44

OFF operand
ETRACE command 74
ITRACE command 109

OFLAGS parameter
TESTCB macro 495

OL parameter
CONTENTS macro 197

OPEN (BSAM/QSAM)
macro

description 398
execute format 400

OPEN (BSAM/QSAM) macro (continued)
list format 399
standard format 398

OPEN macro
description 465
format 465

OPEN parameter
GENIO macro 247

OPENOBJ parameter
TESTCB macro 495

operation
initializing GCS 30

OPTCD operand
FILEDEF command 95

OPTCD parameter
DCB (BSAM/QSAM) macro
389
GENCB macro 447
MODCB macro 462
RPL macro 473
TESTCB macro 502

OPTION
directory control statement 29, 49

OS services 43
OSRUN command

description 116
format 116

OUTPUT parameter
OPEN (QSAM/BSAM) macro 398
RDJFCB macro 317

OV parameter
ESTAE macro 223

P
PARAM parameter

ATTACH macro 166
ESTAE macro 224
LINK macro 294
XCTL macro 376

parameter
list

examples of 113
notation

GENCB 519
MODCB 519
SHOWCB 519
TESTCB 519

PARM operand
OSRUN command 116

PARM parameter
ESPIE macro 220

PARM1 parameter
SYNADAF (BSAM/QSAM) macro
409

PARM2 parameter
SYNADAF (BSAM/QSAM) macro
410

pass control 37
PASSWD parameter

ACB macro 422
GENCB macro 441
MODCB macro 457
SHOWCB macro 482

560 z/VM: 7.2 Group Control System

PASSWD parameter (continued)
TESTCB macro 495

path between SNA console and virtual machine 14
PATH parameter

IUCVCOM macro 275
perform GCS

real I/O 29, 49
virtual I/O 49

PERM operand
DLBL command 64
FILEDEF command 96

PGLOCK macro
description 310
format 310

PGULOCK macro
description 312
format 312

POINT (BSAM) macro
description 402
format 402

POINT macro
description 468
format 468

POST macro
coordinating dependant tasks 21
description 314
format 314

PRG operand
ETRACE command 74
ITRACE command 109

PRINT operand
EXECIO command 79

PRINTER operand
FILEDEF command 95

priority
assigning with CHAP macro 19
ID number 19

PRIV parameter
IUCVINI macro 289

private storage 25, 43
privilege classes

changing 29
redefining 9, 29

PRMLIST parameter
IUCVCOM macro 275

problem state 9, 47
process

GCS commands 43
spool files 54

PROFILE GCS 29, 31, 42
program

loading functions
BLDL macro 46
CALL macro 46
DELETE macro 46
IDENTIFY macro 46
LINK macro 45
LOAD macro 45
RETURN macro 46
SAVE macro 46
SYNCH macro 46
XCTL macro 46

managing 44
stacking 42

program (continued)
starting 31, 116
stopping 32, 107

protect
storage 44

PSW Key 14 44
PUNCH operand

EXECIO command 79
FILEDEF command 95

PURGE parameter
IUCVCOM macro 275

purpose of
GCS in z/VM 1

PUT (QSAM) macro
description 404
format 404

PUT macro
description 470
format 470

Q
QSAM

data management rules 379
QSAM and BSAM

macro
CHECK (BSAM) 380
CLOSE (BSAM/BSAM) 382
DCB (BSAM/QSAM) 385
DCBD (BSAM/QSAM) 391
GET (QSAM) 394
NOTE (BSAM) 396
OPEN (BSAM/QSAM) 398
POINT (BSAM) 402
PUT (QSAM) 404
READ (BSAM) 406
SYNADAF (BSAM/QSAM) 409
SYNADRLS (BSAM/QSAM)
411
WRITE (BSAM) 413

QUAL operand
DLBL command 64

query
virtual machine 32

QUERY ADDRESS command
description 119
format 119

QUERY AUTHUSER command
description 120
format 120

QUERY command
description 117

QUERY COMMON command
description 121
format 121

QUERY DISK command
description 122
format 122

QUERY DLBL command
description 124
format 124

QUERY DUMP command
description 126
format 126

Index 561

QUERY DUMPLOCK command
description 127
format 127

QUERY DUMPVM command
description 128
format 128

QUERY ETRACE command
description 129
format 129

QUERY FILEDEF command
description 130
format 130

QUERY GCSLEVEL command
description 131
format 131

QUERY GROUP command
description 132
format 132

QUERY IPOLL command
description 133
format 133

QUERY ITRACE command
description 134
format 134

QUERY LOADALL command
description 135
format 135

QUERY LOADCMD command
description 136
format 136

QUERY LOADLIB command
description 137
format 137

QUERY LOCK command
description 138
format 138

QUERY MODDATE command
description 139
format 139

QUERY parameter
IUCVCOM macro 275

QUERY REPLY command
description 140
format 140

QUERY REXXSTOR command
description 141
format 141

QUERY SEARCH command
description 142
format 142

QUERY SYSNAMES command
description 143
format 143

QUERY TRACETAB command
description 144
format 144

QUERY TSLICE command
description 145
format 145

QUIESCE parameter
IUCVCOM macro 275
RESUME parameter

IUCVCOM macro 275

R
R parameter

GETMAIN macro 258
R/W operand

QUERY DISK command 122
RBA parameter

SHOWCB macro 488
TESTCB macro 503

RC parameter
FREEMAIN macro 233
GETMAIN macro 257
RETURN macro 322
SETRP macro 342

RDJFCB macro
description 317
format 317

READ (BSAM) macro
description 406
execute format 408
list format 407
standard format 406

READER operand
FILEDEF command 95

real I/O
functions 49

REAL parameter
STIMER macro 345

REASON parameter
SETRP macro 341

rebuilding
GCS nucleus 513

receive
control 37

RECEIVE parameter
IUCVCOM macro 275

RECFM operand
FILEDEF command 96

RECFM parameter
DCB (BSAM/QSAM) macro
388

RECLEN parameter
GENCB macro 448
MODCB macro 463
RPL macro 475
SHOWCB macro 488
TESTCB macro 503

recovery machine 4, 25, 30, 51
RECVM parameter

CONFIG macro 194
reenterable program save area 36
register

(15)
return code 0 524
return code 12 528
return code 8 525

base 35
linkage 35

regular
segments 27

REJECT parameter
IUCVCOM macro 275

RELATED parameter
DELETE macro 202

562 z/VM: 7.2 Group Control System

RELATED parameter (continued)
DEQ macro 205
ENQ macro 214
LOAD macro 299
POST macro 314
WAIT macro 365

release
disks 146

RELEASE command
description 146
format 146

RELEASE parameter
LOCKWD macro 302

Remote Spooling Communications Subsystem (RSCS)
operating environment 4

REP parameter
IUCVCOM macro 275
IUCVINI macro 287

REPLY command
description 147
format 147

REPLY operand
QUERY command 140

REPLY parameter
IUCVCOM macro 275

reply to
messages 32

replying to messages 147
REQLIST parameter

EXECCOMM macro 229
request

information 117
requirement

calculating storage 25
resource coordination 22
response examples, notation used in xv
RESSTOR macro

description 320
format 320

RESTORE parameter
SYNCH macro 350

RESTRCT parameter
CONFIG macro 194

restrict
access to

GCS supervisor 8
real I/O 49
storage 44
supervisor state 9

REstructured eXtended eXecutor/Virtual Machine
(REXX/VM)

creating GCS files 4
using 42

RET parameter
DEQ macro 205
ENQ macro 214

retrieve
information from the VSAM catalog 476

RETRIEVE parameter
GCSTOKEN macro 242

return code placement 159
RETURN macro

description 322
format 322

REXX/VM interpreter 30
REXXSTOR operand

QUERY command 141
SET command 153

RKP parameter
SHOWCB macro 483
TESTCB macro 495

RMODE
determining 182

RPL macro
description 472
format 472

RPL parameter
CHECK macro 425
ENDREQ macro 430
ERASE macro 432
GET macro 451
MODCB macro 461
POINT macro 468
PUT macro 470
SHOWCB macro 487
TESTCB macro 501
WRTBFR macro 505

RPLLEN parameter
SHOWCB macro 488
TESTCB macro 503

RPS parameter
DEVTYPE macro 210

RU parameter
FREEMAIN macro 233
GETMAIN macro 258

rules of
task dispatching 19

S
S parameter

CHAP macro 188
ENQ macro 214
READ (BSAM) macro 407
WRITE (BSAM) macro 414

save area
content of 35
nonreenterable program 36
providing 35
reenterable program 36

SAVE macro
description 324
format 324

saving
GCS nucleus 515

scenario
of GCS in z/VM 14, 17

SCHEDEX macro
description 326
format 326

schedule exits 51
SDUMP macro

description 329
execute format 331
list format 331
standard format 329

SDUMPX macro
description 333

Index 563

SDUMPX macro (continued)
execute format 336
list format 336
standard format 333

SEARCH operand
QUERY command 142

security of storage
LOCKWD macro 50
PGLOCK macro 50
PGULOCK macro 50
VALIDATE macro 50

SEGMENT macro
description 338
format 338

segment space
VSAM support 27

SEND parameter
IUCVCOM macro 275

set
timers 46

SET command
description 149

SET DUMP command
description 150
format 150

SET DUMPLOCK command
description 151
format 151

SET IPOLL command
description 152
format 152

SET parameter
AUTHNAME macro 174
ESPIE macro 219
IUCVINI macro 286
MACHEXIT macro 306
SPLEVEL macro 343
TASKEXIT macro 354

SET REXXSTOR command
description 153
format 153

SET SYSNAME command
description 154
format 154

SET TSLICE command
description 155
format 155

SETRP macro
description 340
format 340

SEVER parameter
IUCVCOM macro 275

SF parameter
ATTACH macro 171
LINK macro 296, 297
READ (BSAM) macro 406
WRITE (BSAM) macro 413
XCTL macro 376

SGROUP parameter
CONFIG macro 194

SHAPV parameter
ATTACH macro 167

share in GCS
disks and files 52

Shared File System (SFS)
data management services 51
file pool 4

shared segment
build 27

shared VTAM 16
SHOWCAT macro

description 476
format 476

SHOWCB macro
access control block format 480
description 480
exit list format 484
request parameter list format 486

SHOWCB parameter notation 519
SHSPL parameter

ATTACH macro 168
Signal System Service (SSS)

signal ID 7
single user group

communicating between machines 7
defining 4
dump receiving machine 6
environment 7
recovery machine 6

SIO operand
ETRACE command 74
ITRACE command 109

SKIP operand
EXECIO command 80

SM parameter
ATTACH macro 168

SP operand
ITRACE command 109

SP parameter
FREEMAIN macro 234
GETMAIN macro 259

SPLEVEL macro
description 343
format 343

spool files
defining 94
processing 54

SR parameter
SYMREC macro 348

SSS operand
ETRACE command 74
ITRACE command 109

standard format 158
start

programs 31, 116
START parameter

AUTHUSER macro 179
CONTENTS macro 197
GENIO macro 249
RESSTOR macro 320
SEGMENT macro 338

STARTR (start real) 49
STARTR parameter

GENIO macro 249
STATE parameter

SYNCH macro 351
STEM operand

EXECIO command 80

564 z/VM: 7.2 Group Control System

STEP parameter
ABEND macro 162

STIMER macro
description 345
format 345

STMST parameter
SHOWCB macro 483
TESTCB macro 495

stop
commands 107
programs 31, 32, 107

storage
anchor block 10
calculating requirements 25
common 5
layout 11

STORAGE parameter
SDUMP macro 329

STRING operand
EXECIO command 81

STRIP operand
EXECIO command 81

STRMAX parameter
SHOWCB macro 483

STRNO parameter
ACB macro 422
BLDVRP macro 424
GENCB macro 441
MODCB macro 457
SHOWCB macro 482
TESTCB macro 495

structure
save area 35

subpool
defining 44

subtask
adding 18
discarding 18

SUP operand
ITRACE command 109

supervisor state 9, 47
SVC operand

ETRACE command 74
ITRACE command 109

SVEAREA parameter
ESTAE macro 224

SYMREC macro
description 348
execute format 348
list format 348
standard format 348

SYN operand
ETRACE command 74
ITRACE command 109

SYNAD parameter
DCB (BSAM/QSAM) macro
389
EXLST macro 434
GENCB macro 444
MODCB macro 459
SHOWCB macro 485
TESTCB macro 497

SYNADAF (BSAM/QSAM)
macro

SYNADAF (BSAM/QSAM) macro (continued)
description 409
format 409

SYNADRLS (BSAM/QSAM)
macro

description 411
format 411

SYNCH macro
description 350
execute format 353
list format 352
standard format 350

synchronize
machines 50
tasks 20

syntax diagrams, how to read xiii
SYSID parameter

CONFIG macro 195
SYSNAME operand

SET SYSNAME command 154
SYSNAME parameter

CONFIG macro 193
SYSNAMES operand

QUERY command 143
SYSTEM parameter

ABEND macro 162
SETRP macro 341

Systems Network Architecture (SNA)
logging on at a SNA terminal 14
network control unit 17
path between terminal and virtual machine 14
with GCS 1

Systems Support Program (SSS) 3
SZERO parameter

ATTACH macro 167

T
T parameter

RETURN macro 322
SAVE macro 324

TABSIZE parameter
CONFIG macro 194

tailoring
GCS nucleus 507

task
accessing authority 8
ends

abnormally 22
normally 22

GCS
adding and discarding subtasks 18
coordinating 20
defining 17
dispatching 19
exit routines 22
priority 19
program stack for each 42
sharing resource 22
terminating 22, 51

TASKEXIT macro
description 354
execute format 357
list address format 357

Index 565

TASKEXIT macro (continued)
list format 356
standard format 354
termination routines 22

terminal macro
appealing abends 22

test field
ACB 491
exit list 497
RPL 500

TEST parameter
LOCKWD macro 302
SPLEVEL macro 343

TESTCB macro
description 491
format 490, 496, 499

TESTCB parameter notation 519
TEXT operand

REPLY command 147
TIME macro

description 359
format 359

time zone support 201
time-of-day (TOD) clock

description 47
timer management

STIMER macro 46
TIME macro 47
TTIMER macro 47

TO * operand
GDUMP command 99

TO USERID operand
GDUMP command 99

TOD parameter
STIMER macro 346

TOKEN parameter
TOKEN parameter 243

trace
external tracing 73
GTRACE events 108

trace table size 26, 27
TRACETAB COMMON operand

CONFIG command 62
TRACETAB operand

QUERY command 144
TRACETAB PRIVATE operand

CONFIG command 62
TRACPRI parameter

CONFIG macro 195
transfer

authorized program control
AUTHCALL macro 47
AUTHNAME macro 47

data to VSCS 16
TRANSID parameter

GENCB macro 449
MODCB macro 463
RPL macro 475
SHOWCB macro 488
TESTCB macro 503

TSLICE operand
QUERY command 145

TTIME macro
description 361

TTIME macro (continued)
format 361

TYPE parameter
BLDVRP macro 424
CLOSE macro 427
DLVRP macro 429
WRTBFR macro 505

U
unauthorize

applications 44
UPDAT parameter

OPEN (QSAM/BSAM) macro 398
RDJFCB macro 317

USER parameter
SETRP macro 341

user-supplied routines 265, 267
UWORD parameter

AUTHCALL macro 172
AUTHNAME macro 175
GENIO macro 248
IUCVCOM macro 275
IUCVINI macro 288
MACHEXIT macro 306
SCHEDEX macro 326
TASKEXIT macro 354

V
V parameter

FREEMAIN macro 234
VALIDATE macro

description 362
format 362

validate requests for storage access 50
VAR operand

EXECIO command 81
VC parameter

GETMAIN macro 258
VDEV operand

ACCESS command 59
RELEASE command 146

virtual I/O
perform 49

virtual machine
groups

building 4
communication within 7
configuration file 4
defining 4
joining 5, 30
single user group 4
storage layout 25

storage
dumping 98

VMSIZE 25
Virtual Storage Access Method (VSAM)

catalog
diagram of 64
retrieving information 476

data management services 51
data sets 28

566 z/VM: 7.2 Group Control System

Virtual Storage Access Method (VSAM) (continued)
generating macro format 518
GROUP user IDs requiring storage for VSAM 103
macro

ACB 418
BLDVRP 423
CHECK 425
CLOSE 427
DLVRP 429
ENDREQ 430
ERASE 432
EXLST 434
GENCB 438
GET 451
MODCB 453
OPEN 465
POINT 468
PUT 470
RPL 472
SHOWCAT 476
SHOWCB 480
TESTCB 491
WRTBFR 505

macro addresses 518
macro library 54
operating under GCS 517
processing 54
supporting

saving segments 27
Virtual Telecommunications Access Method (VTAM)

description 2
operating environment 4
running in a group machine 16
running on GCS 16
shared VTAM 16

VL parameter
ATTACH macro 166
CALL macro 184
LINK macro 294
XCTL macro 377

VSAM operand
DLBL command 64

VSAM parameter
GENCB macro 438, 443, 446

VSAMSEG parameter
CONFIG macro 195

VTAM SNA Console Support (VSCS)
running

VTAM 16
sending information to VTAM 16

VU parameter
FREEMAIN macro 234
GETMAIN macro 258

W
WAIT macro

coordinating dependant tasks 21
description 365
format 365

WAIT parameter
STIMER macro 345

WAREA parameter
GENCB macro 441, 444, 449

WKAREA parameter
SETRP macro 341

WRITE (BSAM) macro
description 413
execute format 415
list format 414
standard format 413

WRTBFR macro
description 505
format 505

WTO macro
description 368
execute format 369
list format 368
standard format 368

WTOR macro
description 370
execute format 371
list format 371
standard format 370

X
XA mode

running 2
XCTL macro

description 373
execute format 376
list format 375
standard format 373

XCTL parameter
ESTAE macro 224

Z
ZONE operand

EXECIO command 81

Index 567

568 z/VM: 7.2 Group Control System

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6289-01

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to provide feedback to IBM
	Summary of Changes for z/VM: Group Control System
	SC24-6289-01, z/VM 7.2 (December 2023)
	SC24-6289-01, z/VM 7.2 (September 2020)
	SC24-6289-00, z/VM 7.1 (September 2018)

	Chapter 1. Group Control System Overview
	What GCS Is
	What Applications GCS Supports
	How GCS Relates to CMS
	Virtual Machine Groups
	Building the Group
	Joining a Virtual Machine Group
	Implementation of a GCS Group
	GCS Recovery Machine
	Single User Group

	GCS Group Communication
	GCS APPC/VM and CP Signal System Service

	Communicating Between Machines in a Group
	Single User Group

	Authorization
	Controlling Access to the GCS Supervisor
	Controlling Access to Supervisor State
	Controlling Access to CP Commands

	GCS Storage
	Overview of GCS Storage Layout
	Private Storage
	Common Storage

	Whole Picture at a Glance
	GCS Scenario
	Establish the Path Between System and Console

	GCS Task Management
	Adding and Discarding Tasks
	Dispatching Tasks
	GCS System Tasks
	Task Dispatching and Multi-tasking Services
	Coordinating Dependent Tasks
	Coordinating Shared Resources
	Terminating Tasks
	Abend Processing

	General I/O (GENIO) Facility
	GCS Real I/O

	Chapter 2. Planning for GCS
	Planning GCS Storage Layout
	Calculating Storage Requirements
	Preparing to Build Other Saved Segments
	Shared Segments Recognized by GCS
	Private Segments for Applications

	Making VSAM Available to GCS
	Authorizing Access to Supervisor State
	Authorizing Access to GCS
	Authorizing Commands for Virtual Machines
	Authorizing Machines for Real I/O
	Using AUTOLOG Functions
	Using a PROFILE GCS File
	Preparing CP Directory Entries
	Operation
	Initializing GCS (How to Join a Group)
	Starting and Stopping Programs
	Replying to Messages
	Querying Information

	Chapter 3. GCS Programming and Command Processing
	Linkage Registers
	Establishing a Base Register
	Providing a Save Area
	Example of Chaining Save Areas in a Nonreenterable Program
	Example of Chaining Save Areas in a Reenterable Program

	Summary of Conventions for Passing and Receiving Control
	GCS Program Exits
	GCS Commands Operation
	Example of an Application Program in GCS
	Console and Command Support
	Communicating through the Console
	Entering Commands to GCS
	Processing GCS Commands
	Commands That GCS Supports

	OS Management Services
	Storage Management
	Obtaining Storage
	Assigning Storage Keys
	Switching Keys

	Program Management
	Timer Management

	Native GCS Services
	Calling Authorized Programs
	Communicating through IUCV
	Performing I/O
	Executing Real Channel I/O Programs

	Securing Pages of Storage
	Manipulating Locks
	Validating Requests for Storage Access
	Scheduling Exits in Other Tasks
	Establishing Exits for Group Members

	Data Management Services
	Processing CMS Minidisk Files
	Data Compression
	Processing CP Spool Files
	Processing VSAM Files

	Chapter 4. GCS Commands
	Immediate Commands
	ACCESS
	CLEAR
	CONFIG
	DLBL
	ERASE
	ESTATE/ESTATEW
	ETRACE
	EXECIO
	Extended Descriptions and Use Information
	EXECIO Return Codes
	Explanation of Message GCTEIO632E
	EXECIO Abend Codes

	FILEDEF
	GDUMP
	GLOBAL
	GROUP
	GROUP Panels
	Function Keys

	HX
	ITRACE
	LOADCMD
	OSRUN
	QUERY
	QUERY ADDRESS
	QUERY AUTHUSER
	QUERY COMMON
	QUERY DISK
	QUERY DLBL
	QUERY DUMP
	QUERY DUMPLOCK
	QUERY DUMPVM
	QUERY ETRACE
	QUERY FILEDEF
	QUERY GCSLEVEL
	QUERY GROUP
	QUERY IPOLL
	QUERY ITRACE
	QUERY LOADALL
	QUERY LOADCMD
	QUERY LOADLIB
	QUERY LOCK
	QUERY MODDATE
	QUERY REPLY
	QUERY REXXSTOR
	QUERY SEARCH
	QUERY SYSNAMES
	QUERY TRACETAB
	QUERY TSLICE
	RELEASE
	REPLY
	SET
	SET DUMP
	SET DUMPLOCK
	SET IPOLL
	SET REXXSTOR
	SET SYSNAME
	SET TSLICE

	Chapter 5. GCS Macros
	GCS Macro Level and Parameter Lists
	Addressing Mode and the Macros
	GCS Macro Formats
	GCS Macro Coding Conventions

	Formatting Conventions
	Parameter Notation Conventions
	ABEND
	ADSR
	ATTACH
	AUTHCALL
	AUTHNAME
	AUTHUSER
	BLDL
	CALL
	CHAP
	CMDSI
	CONFIG
	CONTENTS
	CVT
	DELETE
	DEQ
	DETACH
	DEVTYPE
	ECVT
	ENQ
	ESPIE
	ESTAE
	EXECCOMM
	FLS
	FREEMAIN
	GCSLEVEL
	GCSSAVE
	GCSSAVI
	GCSTOKEN
	GENIO
	GETMAIN
	GTRACE
	IDENTIFY
	IHADVA
	IHASDWA
	IUCVCOM
	IUCVINI
	LINK
	LOAD
	LOCKWD
	MACHEXIT
	PGLOCK
	PGULOCK
	POST
	RDJFCB
	RESSTOR
	RETURN
	SAVE
	SCHEDEX
	SDUMP
	SDUMPX
	SEGMENT
	SETRP
	SPLEVEL
	STIMER
	SYMREC
	SYNCH
	TASKEXIT
	TIME
	TTIMER
	VALIDATE
	WAIT
	WTO
	WTOR
	XCTL

	Chapter 6. QSAM and BSAM Data Management Service Macros
	Using QSAM and BSAM
	CHECK (BSAM)
	CLOSE (BSAM/QSAM)
	DCB (BSAM/QSAM)
	DCBD (BSAM/QSAM)
	GET (QSAM)
	NOTE (BSAM)
	OPEN (BSAM/QSAM)
	POINT (BSAM)
	PUT (QSAM)
	READ (BSAM)
	SYNADAF (BSAM/QSAM)
	SYNADRLS (BSAM/QSAM)
	WRITE (BSAM)

	Chapter 7. VSAM Data Management Service Macros
	Using VSAM
	ACB
	BLDVRP
	CHECK
	CLOSE
	DLVRP
	ENDREQ
	ERASE
	EXLST
	GENCB
	GET
	MODCB
	OPEN
	POINT
	PUT
	RPL
	SHOWCAT
	SHOWCB
	TESTCB
	WRTBFR

	Appendix A. Tailoring and Building the GCS Nucleus
	Changing GCS Nucleus Options
	Creating a New GCS Nucleus Build List

	Changing GCS Default Definitions
	Rebuilding and Saving the GCS Nucleus

	Appendix B. Using VSAM
	VSAM I/O Operations under GCS
	Control-Block Manipulation Macros
	VSAM Macro Addresses
	List Format
	List Address Format
	Execute Format
	Generate Format
	Parameter Notation for GENCB, MODCB, SHOWCB, and TESTCB Macros
	GENCB Macro
	MODCB Macro
	SHOWCB Macro
	TESTCB Macro
	Feedback Field Codes
	When the Return Code in Register 15 is 0
	When the Return Code in Register 15 is 8
	When the Return Code in Register 15 is 12

	Appendix C. Appendix for QUERY ADDRESS and QUERY MODDATE
	Appendix D. Data Compression Services
	Compression and Expansion Services

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

