Содержание


Гипервизоры, виртуализация и облако

Анализ гипервизора KVM

Comments

Серия контента:

Этот контент является частью # из серии # статей: Гипервизоры, виртуализация и облако

Следите за выходом новых статей этой серии.

Этот контент является частью серии:Гипервизоры, виртуализация и облако

Следите за выходом новых статей этой серии.

Что нужно знать для начала

Kernel-based Virtual Machine (KVM) – это полное решение платформенно-зависимой виртуализации для Linux на процессорах x86 с расширениями виртуализации (Intel VT или AMD-V). Для гостевых систем доступна также ограниченная поддержка паравиртуализации для Linux и Windows в форме паравиртуального сетевого драйвера.

В настоящее время KVM взаимодействует с ядром через загружаемый модуль ядра. Поддерживаются разнообразные гостевые операционные системы, такие как Linux, BSD, Solaris, Windows, Haiku, ReactOS и AROS Research Operating System. Модифицированная версия KVM (qemu) может работать на Mac OS X.

Примечание: KVM не выполняет никакой самоэмуляции; вместо этого, программа, работающая в пользовательском пространстве, применяет интерфейс /dev/kvm для настройки адресного пространства гостевого виртуального сервера, берет его смоделированные ресурсы ввода/вывода и отображает его образ на образ хоста.

Архитектура KVM показана на рисунке 1.

Рисунок 1. Архитектура KVM
Архитектура KVM

В архитектуре KVM, виртуальная машина выполняется как обычный Linux-процесс, запланированный стандартным планировщиком Linux. На самом деле каждый виртуальный процессор представляется как обычный Linux-процесс. Это позволяет KVM пользоваться всеми возможностями ядра Linux.

Эмуляцией устройств управляет модифицированная версия qemu, которая обеспечивает эмуляцию BIOS, шины PCI, шины USB, а также стандартный набор устройств, таких как дисковые контроллеры IDE и SCSI, сетевые карты и т.д.

Функциональные возможности

Ниже перечислены основные функции KVM.

Безопасность

Поскольку виртуальная машина реализована как Linux-процесс, она использует стандартную модель безопасности Linux для изоляции и управления ресурсами. С помощью SELinux (Security-Enhanced Linux) ядро Linux добавляет обязательные средства контроля доступа, многоуровневые и разнообразные средства защиты, а также управляет политикой безопасности. SELinux обеспечивает строгую изоляцию ресурсов и ограничивает подвижность процессов, запущенных в ядре Linux.

Проект SVirt – попытка усилиями сообщества интегрировать функции безопасности Mandatory Access Control (MAC) и виртуализацию на базе Linux (KVM) - основывается на SELinux, чтобы обеспечить инфраструктуру, которая позволит администратору определять политику изоляции виртуальных машин. SVirt призван гарантировать, что ресурсы виртуальных машин не будут доступны ни для каких других процессов (или виртуальных машин); администратор может дополнить эту политику, определив детальные разрешения; например, чтобы группа виртуальных машин совместно использовала одни и те же ресурсы.

Управление памятью

KVM наследует мощные функции управления памятью от Linux. Память виртуальной машины хранится так же, как память любого другого Linux-процесса, и может заменяться, копироваться большими страницами для повышения производительности, обобщаться или сохраняться в файле на диске. Поддержка технологии NUMA (Non-Uniform Memory Access, архитектура памяти для многопроцессорных систем) позволяет виртуальным машинам эффективно обращаться к памяти большого объема.

KVM поддерживает новейшие функции виртуализации памяти от производителей процессоров, в частности, Intel Extended Page Table (EPT) и AMD Rapid Virtualization Indexing (RVI), для минимизации загрузки процессора и достижения высокой пропускной способности.

Обобщение страниц памяти поддерживается с помощью функции ядра Kernel Same-page Merging (KSM). KSM сканирует память каждой виртуальной машины, и если какие-то страницы памяти виртуальных машин идентичны, объединяет их в одну страницу, которая становится общей для этих виртуальных машин и хранится в единственной копии. Если гостевая система пытается изменить эту общую страницу, ей предоставляется собственная копия.

Хранение данных

KVM может использовать любой носитель, поддерживаемый Linux, для хранения образов виртуальных машин, в том числе локальные диски с интерфейсами IDE, SCSI и SATA, Network Attached Storage (NAS), включая NFS и SAMBA/CIFS, или SAN с поддержкой iSCSI и Fibre Channel. Для улучшения пропускной способности системы хранения данных и резервирования может использоваться многопоточный ввод/вывод.

Опять же, поскольку KVM входит в состав ядра Linux, может использоваться проверенная и надежная инфраструктура хранения данных с поддержкой всех ведущих производителей; его набор функций хранения проверен на многих производственных установках.

KVM поддерживает образы виртуальных машин в распределенных файловых системах, таких как Global File System (GFS2), так что они могут разделяться несколькими хостами или обобщаться с использованием логических томов. Поддержка тонкой настройки (thin provisioning) образов дисков позволяет оптимизировать использование ресурсов хранения данных, выделяя их не сразу все наперед, а только тогда, когда этого требует виртуальная машина. Собственный формат дисков для KVM ― QCOW2 ― обеспечивает поддержку снимков текущего состояния и обеспечивает несколько уровней таких снимков, а также сжатие и шифрование.

Динамическая миграция

KVM поддерживает динамическую миграцию, обеспечивая возможность перемещения работающих виртуальных машин между физическими узлами без прерывания обслуживания. Динамическая миграция прозрачна для пользователей: виртуальная машина остается включенной, сетевые соединения ― активными, и пользовательские приложения продолжают работать, в то время как виртуальная машина перемещается на новый физический сервер.

Кроме динамической миграции, KVM поддерживает сохранение копии текущего состояния виртуальной машины на диск, позволяя хранить ее и восстанавливать позднее.

Драйверы устройств

KVM поддерживает гибридную виртуализацию, когда паравиртуализированные драйверы установлены в гостевой операционной системе, что позволяет виртуальным машинам использовать оптимизированный интерфейс ввода/вывода, а не эмулируемые устройства, обеспечивая высокую производительность ввода/вывода для сетевых и блочных устройств.

Гипервизор KVM использует стандарт VirtIO, разработанный IBM и Red Hat совместно с Linux-сообществом для паравиртуализированных драйверов; это независимый от гипервизора интерфейс для создания драйверов устройств, позволяющий нескольким гипервизорам использовать один и тот же набор драйверов устройств, что улучшает взаимодействие между гостевыми системами.

Драйверы VirtIO входят в современные версии Linux-ядра (наиболее поздняя ― 2.6.25), включены в Red Hat Enterprise Linux 4.8+ и 5.3+, а также доступны для Red Hat Enterprise Linux 3. Red Hat разработала драйверы VirtIO для гостевых ОС Microsoft Windows, оптимизирующие сетевые и дисковые операции ввода/вывода; эти драйверы сертифицированы по программе сертификации Microsoft Windows Hardware Quality Labs (WHQL).

Производительность и масштабируемость

KVM унаследовал производительность и масштабируемость Linux, поддерживая виртуальные машины с 16 виртуальными процессорами и 256 ГБ оперативной памяти, а также хост-системы с 256 ядрами и более 1 ТБ ОЗУ. Он может обеспечить:

  • производительность в 95-135% по сравнению с "голым железом" в реальных корпоративных приложениях, таких как SAP, Oracle, LAMP и Microsoft Exchange;
  • свыше миллиона сообщений в секунду и менее чем 200-мкс задержку в виртуальных машинах, работающих на стандартном сервере;
  • максимальные уровни консолидации более чем с 600 виртуальными машинами, выполняющими корпоративные приложения, на одном сервере.

Это означает, что KVM допускает виртуализацию самых требовательных рабочих нагрузок.

Развертывание виртуализации

Развертывание KVM ― довольно сложный процесс, полный особых требований к конфигурации, так что за дополнительной информации обращайтесь к разделу Ресурсы.

Управление виртуальными машинами

Существует несколько менеджеров виртуальных машин. Среди них:

  • Univention Virtual Manager;
  • qemu/KVM: запускается прямо из командной строки в машине KVM;
  • Virsh: минимальная оболочка для управления виртуальными машинами;
  • Virtual Machine Manager: иначе - virt-manager, пользовательский интерфейс для управления виртуальными машинами.

Выбор KVM

Доводы "за":

  • несмотря на то что KVM - относительно молодой гипервизор, это компактный модуль, который в сочетании с ядром Linux обеспечивает простоту реализации, сохраняя поддержку Linux-тяжеловесов;
  • KVM гибок; так как гостевые операционные системы взаимодействуют с гипервизором, интегрированным в ядро Linux, они могут во всех случаях обращаться непосредственно к оборудованию без необходимости изменения виртуализированной операционной системы. Это делает KVM более быстрым решением для виртуальных машин;
  • исправления для KVM совместимы с ядром Linux. KVM реализован в самом ядре Linux, что облегчает управление процессами виртуализации.

Доводы "против":

  • мощных инструментов для управления сервером и виртуальными машинами KVM не существует;
  • KVM нуждается в совершенствовании поддержки виртуальных сетей и виртуальных систем хранения данных, усилении защиты, в улучшении надежности и отказоустойчивости, управления питанием, поддержки HPC/систем реального времени, масштабируемости виртуальных процессоров, совместимости между поставщиками, портативности ВМ, а также в создании экосистемы облачных сервисов.

Ресурсы для скачивания


Похожие темы


Комментарии

Войдите или зарегистрируйтесь для того чтобы оставлять комментарии или подписаться на них.

static.content.url=http://www.ibm.com/developerworks/js/artrating/
SITE_ID=40
Zone=Облачные вычисления, Open source
ArticleID=827441
ArticleTitle=Гипервизоры, виртуализация и облако: Анализ гипервизора KVM
publish-date=07252012