Well, it's Tuesday again, and that means IBM announcements! Today we had a major launch, with so many products, services and offerings
that I can't fit them all into a single post, so I will split them up into several posts to give the attention they deserve. So, in this
post, I will focus on just the networking gear.
- IBM Converged Switch B32
The "Converged" part of this switch refers to Converged Enhanced Ethernet (CEE), which is just a lossless Ethernet that meets certain standards to allow Fibre Channel over Ethernet (FCoE) that are still being discussed between Brocade and Cisco. Thankfully, IBM demanded both Brocade and Cisco stick to open agreed-upon standards, and the rest of the world gets to benefit from IBM's leadership in keeping everything as open and non-proprietary as possible.
The B32 ("B" because it was made by Brocade) starts with 24 10Gb Converged Enhanced Ethernet (CEE) ports, and then you can add eight Fibre Channel ports, for a total of 32 ports, hence the name B32. These are designed to be Top-of-Rack (TOR) switches. Basically, instead of having expensive optical cables for Ethernet and/or Fibre Channel out of each server, you have cheap twinax copper cables connecting the server's Converged Network Adapters (CNA) to this TOR switch, and then you can have the 10Gb Ethernet go to your regular Ethernet LAN, and your 8Gbps FC traffic go to your regular FC SAN. In other words, the CNA serves both the role of an Ethernet Network Interface Card (NIC) as well as a Fibre Channel Host Bus Adapter (HBA) card.
(You might see 8Gbps Fibre Channel represented as 8/4/2 or 2/4/8, this is just to remind you that these 8Gb FC ports can auto-negotiate down to 2Gbps and 4Gbps legacy hardware, but not 1Gbps. If you are still using 1Gbps FC, you need 4Gpbs SFP transceivers instead, shown often as 1/2/4 or 4/2/1.)
Here is the IBM [Press Release].
- New SSN-16 module for Cisco directors and switches
When I present SAN gear to sales reps, I often get the question, "What is the difference between a switch and a director?" My quick and simple answer is that switches have fixed ports, but directors have slots that you can slide in different blades or expansion modules. The Cisco MDS9500 series are directors with slots, the three models provide a hint to their capacity. The last two digits represent the number of total slots, but the first two slots are already taken. In other words, model 9513 has 11 slots, model 9509 has seven slots, and model 9506 has four slots. You can have a 48-port blade in a slot, so in theory, you can have a maximum of 528 ports on the biggest model 9513.
However, if you want FCIP for disaster recovery, or I/O Acceleration (IOA) for remote e-vaulting tape libraries, you need a special 18/4 blade. This has 18 FC ports, four 1GbE ports and a special service processor that speaks FCIP or IOA. If you wanted two service processors for FCIP and two for IOA, you would need four of these blades, and that takes up slots that could have been used for 48-port blades instead. The solution? The new SSN-16 has sixteen 1GbE ports and four service processors, so with one slot, you can handle the FCIP and IOA processing that you previously used four cards, giving you three slots back to use with higher port-density cards.
Even better, you can put this new SSN-16 in the Cisco 9222i. The model 9222i is a "hybrid" switch with 22 fixed ports (18 FC ports, four fixed 1GbE ports, and a service processor, so basically the fixed port version of the 18/4 blade above), but it also has one slot! That one slot can be used for the SSN-16 to give you added FCIP or IOA capability.
Here are the IBM press releases for the [2054 models], and for the
[2062 models].
- FICON package for Cisco 9513 directors
For our mainframe clients, the FICON package includes four 24-port FICON blades and 96 SFP 4Gbps transceivers to fully populate them. Here is the IBM [Press Release].
- Cisco Nexus 5000 series for IBM System Storage
The Cisco Nexus 5000 series is Cisco's entry into the Converged Enhanced Ethernet world, although Cisco sometimes refers to this as Data Center Ethernet (DCE), IBM will continue to use CEE when referring to either Brocade and Cisco gear. These are also Top-of-Rack aggregators that support CNA connections over cheaper twinax copper wires. Model 5010 has 10 ports that can be configured for either 1GbE or 10Gb CEE, 10 ports that are 10Gb CEE, and a slot for an expansion module. The Model 5020 has basically twice as much of everything, including two slots instead of one. Since 10Gb Ethernet does not auto-negotiate down to 1GbE, half the ports can be configured to run 1GbE instead. Frankly, that can be seen as wasting your precious Nexus ports with 1GbE connections, so you might find a 1GbE-to-10GbE aggregator that combines a dozen or more 1GbE to a few 10GbE links instead.
Today's announcement is that in addition to 10GbE and 4Gbps FC expansion modules, there is now an expansion module that supports 8Gbps Fibre Channel. Here is the IBM [Press Release].
Whether you choose Brocade or Cisco, nearly all of IBM System Storage disk and tape products can work today with Converged Enhanced Ethernet environments, either directly using iSCSI, NFS or CIFS, or using the FCoE methodology.
As you can see, it took me a whole post just to cover just our networking gear announcements, and I haven't even covered our disk, tape and cloud storage offerings. I'll get to these in later posts.
technorati tags: IBM, B32, CEE, FCoE, Brocade, Cisco, iSCSI, NFS, CIFS, TOR, CNA, LAN, Fibre Channel, SAN, Ethernet, SFP, transceivers, DCE
Tags: 
tor
brocade
cifs
transceivers
b32
fibre+channel
cisco
dce
sfp
fcoe
iscsi
lan
ethernet
cee
cna
san
ibm
nfs
|
Mastering the art of stretching out a week-long event into two weeks' worth of blog posts, I continue my
coverage of the [Data Center 2010 conference], Tuesday afternoon I attended several sessions that focused on technologies for Cloud Computing.
(Note: It appears I need to repeat this. The analyst company that runs this event has kindly asked me not to mention their name on this blog, display any of their logos, mention the names of any of their employees, include photos of any of their analysts, include slides from their presentations, or quote verbatim any of their speech at this conference. This is all done to protect and respect their intellectual property that their members pay for. The pie charts included on this series of posts were rendered by Google Charting tool.)
- Converging Storage and Network Fabrics
The analysts presented a set of alternative approaches to consolidating your SAN and LAN fabrics. Here were the choices discussed:
- Fibre Channel over Ethernet (FCoE) - This requires 10GbE with Data Center Bridging (DCB) standards, what IBM refers to as Converged Enhanced Ethernet (CEE). Converged Network Adapters (CNAs) support FC, iSCSI, NFS and CIFS protocols on a single wire.
- Internet SCSI (iSCSI) - This works on any flavor of Ethernet, is fully routable, and was developed in the 1990s by IBM and Cisco. Most 1GbE and all 10GbE Network Interface Cards (NIC) support TCP Offload Engine (TOE) and "boot from SAN" capability. Native suppot for iSCSI is widely available in most hypervisors and operating systems, including VMware and Windows. DCB Ethernet is not required for iSCSI, but can be helpful. Many customers keep their iSCSI traffic in a separate network (often referred to as an IP SAN) from the rest of their traditional LAN traffic.
- Network Attached Storage (NAS) - NFS and CIFS have been around for a long time and work with any flavor of Ethernet. Like iSCSI, DCB is not required but can be helpful. NAS went from being for files only, to be used for email and database, and now is viewed as the easiest deployment for VMware. Vmotion is able to move VM guests from one host to another within the same LAN subnet.
- Infiniband or PCI extenders - this approach allows many servers to share fewer number of NICs and HBAs. While Infiniband was limited in distance for its copper cables, recent advances now allow fiber optic cables for 150 meter distances.
Interactive poll of the audience offered some insight on plans to switch from FC/FICON to Ethernet-based storage:
Interactive poll of the audience offered some insight on what portion storage is FCP/FICON attached:
Interactive poll of the audience offered some insight on what portion storage is Ethernet-attached:
Interactive poll of the audience offered some insight on what portion of servers are already using some Ethernet-attached storage:
Each vendor has its own style. HP provides homogeneous solutions, having acquired 3COM and broken off relations with Cisco. Cisco offers tight alliances over closed proprietary solutions, publicly partnering with both EMC and NetApp for storage. IBM offers loose alliances, with IBM-branded solutions from Brocade and BNT, as well as reselling arrangements with Cisco and Juniper. Oracle has focused on Infiniband instead for its appliances.
The analysts predict that IBM will be the first to deliver 40 GbE, from their BNT acquisition. They predict by 2014 that Ethernet approaches (NAS, iSCSI, FCoE) will be the core technology for all but the largest SANs, and that iSCSI and NAS will be more widespread than FCoE. As for cabling, the analysts recommend copper within the rack, but fiber optic between racks. Consider SAN management software, such as IBM Tivoli Storage Productivity Center.
The analysts felt that the biggest inhibitor to merging SAN and LANs will be organizational issues. SAN administrators consider LAN administrators like "Cowboys" undisciplined and unwilling to focus on 24x7 operational availability, redundancy or business continuity. LAN administrators consider SAN administrators as "Luddites" afraid or unwilling to accept FCoE, iSCSI or NAS approaches.
- Driving Innovation through Innovation
Mr. Shannon Poulin from Intel presented their advancements in Cloud Computing. Let's start with some facts and predictions:
Today:
- About 25 percent of the
[world's population] is connected to the Internet
- There are over 2.5 billion photos on Facebook, which runs on 30,000 servers
- 30 billion videos viewed every month
- Nearly all Internet-connected devices are either computers or phones
|
By 2015:
- An additional billion people on the Internet
- Cars, televisions, and households will also be connected to the Internet
- The world will need 8x more network bandwidth, 12x more storage, and 20x more compute power
|
To avoid confusion between on-premise and off-premise deployments, Intel defines "private cloud" as "single tenant" and "public cloud" as "multi-tenant". Clouds should be
automated, efficient, simple, secure, and interoperable enough to allow federation of resources across providers. He also felt that Clouds should be "client-aware" so that it know what devices it is talking to, and optimizes the results accordingly. For example, if watching video on a small 320x240 smartphone screen, it makes no sense for the Cloud server to push out 1080p. All devices are going through a connected/disconnected dichotomy. They can do some things while disconnected, but other things only while connected to the Internet or Cloud provider.
An internal Intel task force investigated what it would take to beat MIPS and IBM POWER processors and found that their own Intel chips lacked key functionality. Intel plans to address some of their shortcomings with a new chip called "Sandbridge" sometime next year. They also plan a series of specialized chips that support graphics processing (GPU), network processing (NPU) and so on. He also mentioned Intel released "Tukwilla" earlier this year, the latest version of Itanium chip. HP is the last major company to still use Itanium for their servers.
Shannon wrapped up the talk with a discussion of two Cloud Computing initiatives. The first is [Intel® Cloud Builders], a cross-industry effort to build Cloud infrastructures based on the Intel Xeon chipset. The second is the [Open Data Center Alliance], comprised of leading global IT managers who are working together to define and promote data center requirements for the cloud and beyond.
- Fabric-Based Infrastructure
The analysts feel that we need to switch from thinking about "boxes" (servers, storage, networks) to "resources". To this end, they envision a future datacenter where resources are connected to an any-to-any fabric that connects compute, memory, storage, and networking resources as commodities. They feel the current trend towards integrated system stacks is just a marketing ploy by vendors to fatten their wallets. (Ouch!)
A new concept to "disaggregate" caught my attention. When you make cookies, you disaggregate a cup of sugar from the sugar bag, a teaspoon of baking soda from the box, and so on. When you carve a LUN from a disk array, you are disaggregating the storage resources you need for a project. The analysts feel we should be able to do this with servers and network resources as well, so that when you want to deploy a new workload you just disaggregate the bits and pieces in the amounts you actually plan to use and combine them accordingly. IBM calls these combinations "ensembles" of Cloud computing.
Very few workloads require "best-of-breed" technologies. Rather, this new fabric-based infrastructure recognizes the reality that most workloads do not. One thing that IT Data Center operations can learn from Cloud Service Providers is their focus on "good enough" deployment.
This means however that IT professionals will need new skill sets. IT administrators will need to learn a bit of application development, systems integration, and runbook automation. Network adminis need to enter into 12-step programs to stop using Command Line Interfaces (CLI). Server admins need to put down their screwdrivers and focus instead on policy templates.
Whether you deploy private, public or hybrid cloud computing, the benefits are real and worth the changes needed in skill sets and organizational structure.
technorati tags: IBM, FCoE, iSCSI, NAS, NFS, CIFS, DCB, CEE, CNA, TOE, SAN, LAN, Convergence, FICON, Ethernet, BNT, Cisco, HP, 3COM, Intel, ODCA, CLI
Tags: 
cli
fcoe
nfs
intel
dcb
ethernet
odca
nas
lan
hp
ibm
bnt
convergence
3com
cee
san
ficon
cna
iscsi
cifs
toe
cisco
|
First day of the [IBM System Storage Technical University 2011] continued with more keynote sessions.
- Jim Rymarczyk
Jim is an IBM Fellow for IBM Systems and Technology Group. There are only 73 IBM Fellows currently working for IBM, and this is the highest honor IBM can bestow on an employee. He has been working with IBM since 1968.
He is tasked with predicting the future of IT, and help drive strategic direction for IBM. Cost pressures, requirements for growth, accelerating innovation and changing business needs help influence this direction.
IBM's approach is to integrate four different "IT building blocks":
- Scale-up Systems, like the IBM System Storage DS8000 and TS3500 Tape Library
- Resource Pools, such as IBM Storage Pools formed from managed disks by IBM SAN Volume Controller (SVC)
- Integrated stacks and appliances, integrated software and hardware stacks, from Storwize V7000 to full rack systems like IBM Smart Analytics Server or CloudBurst.
- Clouds, such as IBM's [Smart Cloud Enterprise]
Mobility of workloads and resources requires unified end-to-end service management. Fortunately, IBM is the #1 leader in IT Service Management solutions.
Jim addressed three myths:
- Myth 1: IT Infrastructures will be homogenous.
Jim feels that innovations are happening too rapidly for this to ever happen, and is not a desirable end-goal. Instead, a focus to find the right balance of the IT building blocks might be a better approach.
- Myth 2: All of your problems can be solved by replacing everything with product X.
Jim feels that the days of "rip-and-replace" are fading away. As IBM Executive Steve Mills said, "It isn't about the next new thing, but how well new things integrate with established applications and processes."
- Myth 3: All IT will move to the Cloud model.
Jim feels a substantial portion of IT will move to the Cloud, but not all of it. There will always be exceptions where the old traditional ways of doing things might be appropriate. Clouds are just one of the many building blocks to choose from.
Jim's focus lately has been finding new ways to take advantage of virtualization concepts. Server, storage and network virtualization are helping address these challenges through four key methods:
- Sharing - virtualization that allows a single resource to be used by multiple users. For example, hypervisors allow several guest VM operating systems share common hardware on a single physical server.
- Aggregation - virtualization that allows multiple resources to be managed as a single pool. For example, SAN Volume Controller can virtualize the storage of multiple disk arrays and create a single storage pool.
- Emulation - virtualization that allows one set of resources to look and feel like a different set of resources. Some hypervisors can emulate different kinds of CPU processors, for example.
- Insulation - virtualization that hides the complexity from the end-user application or other higher levels of infrastructure, making it easier to make changes of the underlying managed resources. For example, both SONAS and SAN Volume Controller allow disk capacity to be removed and replaced without disruption to the application.
In today's economy, IT transformation costs must be low enough to yield near-term benefits. The long-term benefits are real, but near-term benefits are needed for projects to get started.
What set's IBM ahead of the pack? Here was Jim's list:
- 100 Years of Innovation, including being the U.S. Patent leader for the last 18 years in a row
- IBM's huge investment in IBM Research, with labs all over the globe
- Leadership products in a broad portfolio
- Workload-optimized designs with integration from middleware all the way down to underlying hardware
- Comprehensive management software for IBM and non-IBM equipment
- Clod Barrera
Clod is an IBM Distinguished Engineer and Chief Technical Strategist for IBM System Storage. His presentation focused on trends and directions in the IT storage industry. Clod started with five workload categories:
- Transaction/Database
- Data Analytics
- Business Logic/Apps
- Web/Collaboration
- Archive/Retention
To address these unique workload categories, IBM will offer workload-optimized systems. The four drivers on the design for these are performance, efficiency, scalability, and integration. For example, to address performance, companies can adopt Solid-State Drives (SSD). Unfortunately, these are 20 times more expensive dollar-per-GB than spinning disk, and the complexity involved in deciding what data to place on SSD was daunting. IBM solved this with an elegant solution called IBM System Storage Easy Tier, which provides automated data tiering for IBM DS8000, SAN Volume Controller (SVC) and Storwize V7000.
For scalability, IBM has adopted Scale-Out architectures, as seen in the XIV, SVC, and SONAS. SONAS is based on the highly scalable IBM General Parallel File System (GPFS). File systems are like wine, they get better with age. GPFS was introduced 15 years ago, and is more mature than many of the other "scalable file systems" from our competition.
Areal Density advancements on Hard Disk Drives (HDD) are slowing down. During the 1990s, the IT industry enjoyed 60 to 100 percent annual improvement in areal density (bits per square inch). In the 2000s, this dropped to 25 to 40 percent, as engineers are starting to hit various physical limitations.
Storage Efficiency features like compression have been around for a while, but are being deployed in new ways. For example, IBM invented WAN compression needed for Mainframe HASP. WAN compression became industry standard. Then IBM introduced compression on tape, and now compression on tape is an industry standard. ProtecTIER and Information Archive are able to combine compression with data deduplication to store backups and archive copies. Lastly, IBM now offers compression on primary data, through the IBM Real-Time Compression appliance.
For the rest of this decade, IBM predicts that tape will continue to enjoy (at least) 10 times lower dollar-per-GB than the least expensive spinning disk. Disk and Tape share common technologies, so all of the R&D investment for these products apply to both types of storage media.
For integration, IBM is leading the effort to help companies converge their SAN and LAN networks. By 2015, Clod predicts that there will be more FCoE purchased than FCP. IBM is also driving integration between hypervisors and storage virtualization. For example, IBM already supports VMware API for Array Integration (VAAI) in various storage products, including XIV, SVC and Storwize V7000.
Lastly, Clod could not finish a presentation without mentioning Cloud Computing. Cloud storage is expected to grow 32 percent CAGR from year 2010 to 2015. Roughly 10 percent of all servers and storage will be in some type of cloud by 2015.
As is often the case, I am torn between getting short posts out in a timely manner versus spending some more time to improve the length and quality of information, but posted much later. I will spread out the blog posts in consumable amounts throughout the next week or two, to achieve this balance.
technorati tags: IBM, Jim Rymarczyk, Clod Barrera, Storage University, Scale-Up, DS8000, TS3500, Cloud, Middleware, Scale-Out, XIV, SVC, SONAS, GPFS, HDD, SSD, VAAI, VMware, SAN, LAN, convergence, FCoE
Tags: 
vaai
sonas
ts3500
middleware
scale-up
convergence
lan
storage+university
gpfs
xiv
svc
cloud
san
ssd
clod+barrera
jim+rymarczyk
ds8000
fcoe
hdd
scale-out
vmware
ibm
|