Tonight PBS plans to air Season 38, Episode 6 of NOVA, titled [Smartest Machine On Earth]. Here is an excerpt from the station listing:
"What's so special about human intelligence and will scientists ever build a computer that rivals the flexibility and power of a human brain? In "Artificial Intelligence," NOVA takes viewers inside an IBM lab where a crack team has been working for nearly three years to perfect a machine that can answer any question. The scientists hope their machine will be able to beat expert contestants in one of the USA's most challenging TV quiz shows -- Jeopardy, which has entertained viewers for over four decades. "Artificial Intelligence" presents the exclusive inside story of how the IBM team developed the world's smartest computer from scratch. Now they're racing to finish it for a special Jeopardy airdate in February 2011. They've built an exact replica of the studio at its research lab near New York and invited past champions to compete against the machine, a big black box code -- named Watson after IBM's founder, Thomas J. Watson. But will Watson be able to beat out its human competition?"
Craig Rhinehart offers
[10 Things You Need to Know About the Technology Behind Watson].
An artist has come up with this clever
[unofficial poster].
Dr. Jon Lenchner from IBM Research has a series of posts on
[How Watson "sees", "hears", and "speaks"] and [Selected Nuances].
Like most supercomputers, Watson runs the Linux operating system. The system runs 2,880 cores (90 IBM Power 750 servers, four sockets each, eight cores per socket) to achieve 80 [TeraFlops]. TeraFlops is the unit of measure for supercomputers, representing a trillion floating point operations. By comparison, Hans Morvec, principal research scientist at the Robotics Institute of Carnegie Mellon University (CMU) estimates that the [human brain is about 100 TeraFlops]. So, in the three seconds that Watson gets to calculate its response, it would have processed 240 trillion operations.
Several readers of my blog have asked for details on the storage aspects of Watson. Basically, it is a modified version of IBM Scale-Out NAS [SONAS] that IBM offers commercially, but running Linux on POWER instead of Linux-x86. System p expansion drawers of SAS 15K RPM 450GB drives, 12 drives each, are dual-connected to two storage nodes, for a total of 21.6TB of raw disk capacity. The storage nodes use IBM's General Parallel File System (GPFS) to provide clustered NFS access to the rest of the system. Each Power 750 has minimal internal storage mostly to hold the Linux operating system and programs.
When Watson is booted up, the 15TB of total RAM are loaded up, and thereafter the DeepQA processing is all done from memory. According to IBM Research, "The actual size of the data (analyzed and indexed text, knowledge bases, etc.) used for candidate answer generation and evidence evaluation is under 1TB." For performance reasons, various subsets of the data are replicated in RAM on different functional groups of cluster nodes. The entire system is self-contained, Watson is NOT going to the internet searching for answers.
On ZDnet, Steven J. Vaughan-Nichols welcomes our new [Linux Penguin Jeopardy overlords]. I have to say I share his enthusiasm!
technorati tags: IBM, Nova, Watson, #ibmwatson, Jeopardy, POWER7, p750, supercomputer, TeraFlops, disk, SONAS, GPFS, SAS, Craig Rhinehart, Jon Lenchner, Hans Morvec, Carnegie Mellon University, CMU
Tags: 
#ibmwatson
p750
hans+morvec
gpfs
sas
nova
teraflops
jeopardy
power7
watson
jon+lenchner
disk
cmu
supercomputer
ibm
sonas
craig+rhinehart
carnegie+mellon+universit...
|
Continuing this week's discussion on IBM announcements, today I'll cover our integrated systems.
The problem with spreading out these announcements across several days' worth of blog posts is that others beat you to the punch. Fellow blogger Richard Swain (IBM) has his post [Move that File], and TechTarget's Dave Raffo has an article titled [
"IBM SONAS gains policy-driven tiering, gateway to IBM XIV Storage System"].
By combining multiple components into a single "integrated system", IBM can offer a blended disk-and-tape storage solutions. This provides the best of both worlds, high speed access using disk, while providing lower costs and more energy efficiency with tape. According to a study by the Clipper Group, tape can be 23 times less expensive than disk over a 5 year total cost of ownership (TCO).
The two we introduced recently were the [IBM Information Archive] and the Scale-Out Network Attached Storage (SONAS). This week, IBM announced some enhancements as SONAS v1.1.1 release. SONAS is the productized version of IBM's Scale-Out File Services (SoFS), which I discussed in my posts [Area Rugs versus Wall-to-Wall Carpeting] and [More details about IBM's Clustered Scalable NAS].
- ILM and HSM data movement
-
I have covered Information Lifecycle Management several times in this post, including my posts [ILM for my iPod], [Times a Million], and [Using ILM to Save Trees], to name a few.
I've also covered Hierarchical Storage Management, such as my post [Seven Tiers of Storage at ABN Amro], and my role as lead architect for DFSMS on z/OS in general, and DFSMShsm in particular.
|
However, some explanation might be warranted in the use of these two terms in regards to SONAS. In this case, ILM refers to policy-based file placement, movement and expiration on internal disk pools. This is actually a GPFS feature that has existed for some time, and was tested to work in this new configuration. Files can be individually placed on either SAS (15K RPM) or SATA (7200 RPM) drives. Policies can be written to move them from SAS to SATA based on size, age and days non-referenced.
HSM is also a form of ILM, in that it moves data from SONAS disk to external storage pools managed by IBM Tivoli Storage Manager. A small stub is left behind in the GPFS file system indicating the file has been "migrated". Any reference to read or update this file will cause the file to be "recalled" back from TSM to SONAS for processing. The external storage pools can be disk, tape or any other media supported by TSM. Some estimate that as much as 60 to 80 percent of files on NAS have low reference and should be stored on tape instead of disk, and now SONAS with HSM makes that possible.
|
This distinction allows the ILM movement to be done internally, within GPFS, and the HSM movement to be done externally, via TSM. Both ILM and HSM movement take advantage of the GPFS high-speed policy engine, which can process 10 million files per node, run in parallel across all interface nodes. Note that TSM is not required for ILM movement. In effect, SONAS brings the policy-based management features of DFSMS for z/OS mainframe to all the rest of the operating systems that access SONAS.
- HTTP and NIS support
In addition to NFS v2, NFS v3, and CIFS, the SONAS v1.1.1 adds the HTTP protocol. Over time, IBM plans to add more protocols in subsequent releases. Let me know which protocols you are interested in, so I can pass that along to the architects designing future releases!
SONAS v1.1.1 also adds support for Network Information Service (NIS), a client/server based model for user administration. In SONAS, NIS is used for netgroup and ID mapping only. Authentication is done via Active Directory, LDAP or Samba PDC.
- Asynchronous Replication
SONAS already had synchronous replication, which was limited in distance. Now, SONAS v1.1.1 provides asynchronous replication, using rsync, at the file level. This is done over Wide Area Network (WAN) across to any other SONAS at any distance.
- Hardware enhancements
Interface modules can now be configured with either 64GB or 128GB of cache. Storage now supports both 450GB and 600GB SAS (15K RPM) and both 1TB and 2TB SATA (7200 RPM) drives. However, at this time, an entire 60-drive drawer must be either all one type of SAS or all one type of SATA. I have been pushing the architects to allow each 10-pack RAID rank to be independently selectable. For now, a storage pod can have 240 drives, 60 drives of each type of disk, to provide four different tiers of storage. You can have up to 30 storage pods per SONAS, for a total of 7200 drives.
An alternative to internal drawers of disk is a new "Gateway" iRPQ that allows the two storage nodes of a SONAS storage pod to connect via Fibre Channel to one or two XIV disk systems. You cannot mix and match, a storage pod is either all internal disk, or all external XIV. A SONAS gateway combined with external XIV is referred to as a "Smart Business Storage Cloud" (SBSC), which can be configured off premises and managed by third-party personnel so your IT staff can focus on other things.
See the Announcement Letters for the SONAS [hardware] and [software] for more details.
For those who are wondering how this positions against IBM's other NAS solution, the IBM System Storage N series, the rule of thumb is simple. If your capacity needs can be satisfied with a single N series box per location, use that. If not, consider SONAS instead. For those with non-IBM NAS filers that realize now that SONAS is a better approach, IBM offers migration services.
Both the Information Archive and the SONAS can be accessed from z/OS or Linux on System z mainframe, from "IBM i", AIX and Linux on POWER systems, all x86-based operating systems that run on System x servers, as well as any non-IBM server that has a supported NAS client.
technorati tags: , IBM, Announcements, SONAS, SoFS, Information+Archive, Richard Swain, TechTarget, ILM, HSM, storage tiers, GPFS, TSM, HTTP, NIS, TSM, NAS, iRPQ, XIV, SBSC, z/OS, Linux, AIX
Tags: 
hsm
z/os
http
information+archive
ibm
richard+swain
irpq
sofs
aix
nis
ilm
linux
sbsc
sonas
xiv
gpfs
tsm
storage+tiers
techtarget
announcements
|
Well, it's Tuesday, and you know what that means... IBM announcements!
In today's environment, clients expect more from their storage, and from their storage provider. The announcements span the gamut, from helping to use Business Analytics to analyze Big Data for trends, insights and patterns, to managing private, public and hybrid cloud environments, all with systems that are optimized for their particular workloads.
There are over a dozen different announcements, so I will split these up into separate posts. Here is part 1.
- IBM Scale Out Network Attach Storage (SONAS) R1.3
I have covered [IBM SONAS] for quite some time now. Based on IBM's General Parallel File System (GPFS), this integrated system combines servers, storage and software into a fully functional scale-out NAS solution that support NFS, CIFS, FTP/SFTP, HTTP/HTTPS, and SCP protocols. IBM continues its technical leadership in the scale-out NAS marketplace with new hardware and software features.
The hardware adds new disk options, with 900GB SAS 15K RPM drives, and 3TB NL-SAS 7200 RPM drives. These come in 4U drawers of 60 drives each, six ranks of ten drives each. So, with the high-performance SAS drives that would be about 43TB usable capacity per drawer, and with the high-capacity NL-SAS drives about 144TB usable. You can have any mix of high-performance drawers and high-capacity drawers, up to 7200 drives, for a maximum usable capacity of 17PB usable (21PB for those who prefer it raw). This makes it the largest commercial scale-out NAS in the industry. This capacity can be made into one big file system, or divided up to 256 smaller file systems.
In addition to snapshots of each file system, you can divide the file system up into smaller tree branches and snapshot these independently as well. The tree branches are called fileset containers. Furthermore, you can now make writeable clones of individual files, which provides a space-efficient way to create copies for testing, training or whatever.
Performance is improved in many areas. The interface nodes now can support a second dual-port 10GbE, and replication performance is improved by 10x.
SONAS supports access-based enumeration, which means that if there are 100 different subdirectories, but you only have authority to access five of them, then that's all you see, those five directories. You don't even know the other 95 directories exist.
I saved the coolest feature for last, it is called Active Cloud Engine™ that offers both local and global file management. Locally, Active Cloud Engine placement rules to decide what type of disk a new file should be placed on. Management rules that will move the files from one disk type to another, or even migrates the data to tape or other externally-managed storage! A high-speed scan engine can rip through 10 million files per node, to identify files that need to be moved, backed up or expired.
Globally, Active Cloud Engine makes the global namespace truly global, allowing the file system to span multiple geographic locations. Built-in intelligence moves individual files to where they are closest to the users that use them most. This includes an intelligent push-over-WAN write cache, on-demand pull-from-WAN cache for reads, and will even pre-fetch subsets of files.
No other scale-out NAS solution from any other storage vendor offers this amazing and awesome capability!
-
- IBM® Storwize® V7000
Last year, we introduced the [IBM Storwize V7000], a midrange disk system with block-level access via FCP and iSCSI protocols. The 2U-high control enclosure held two cannister nodes, a 12-drive or 24-drive bay, and a pair of power-supply/battery UPS modules. The controller could attach up to nine expansion enclosures for more capacity, as well as virtualize other storage systems. This has been one of our most successful products ever, selling over 100PB in the past 12 months to over 2,500 delighted customers.
The 12-drive enclosure now supports both 2TB and 3TB NL-SAS drives. The 24-drive enclosures support 200/300/400GB Solid-State Drives (SSD), 146 and 300GB 15K RPM drives, 300/450/600GB 10K RPM drives, and a new 1TB NL-SAS drive option. For those who want to set up "Flash-and-Stash" in a single 2U drawer, now you can combine SSD and NL-SAS in the 24-drive enclosure! This is the perfect platform for IBM's Easy Tier sub-LUN automated tiering. IBM's Easy Tier is substantially more powerful and easier to use than EMC's FAST-VP or HDS's Dynamic Tiering.
Last week, at Oracle OpenWorld, there were various vendors hawking their DRAM/SSD-only disk systems, including my friends at Texas Memory Systems, Pure Storage, and Violin Memory Systems. When people came to the IBM booth to ask what IBM offers, I explained that both the IBM DS8000 and the Storwize V7000 can be outfitted in this manner. With the Storwize V7000, you can buy as much or little SSD as you like. You do not have to buy these drives in groups of 8 or 16 at a time.
The Storwize V7000 is the sister product of the IBM SAN Volume Controller, so you can replicate between one and the other. I see two use cases for this. First, you might have a SVC at a primary location, and decide to replicate just the subset of mission-critical production data to a remote location, and use the Storwize V7000 as the target device. Secondly, you could have three remote or branch offices (ROBO) that replicate to a centralized data center SAN Volume Controller.
Lastly, like the SVC, the Storwize V7000 now supports clustering so that you can now combine multiple control enclosures together to make a single system.
-
- IBM® Storwize® V7000 Unified
Do you remember how IBM combined the best of SAN Volume Controller, XIV and DS8000 RAID into the Storwize V7000? Well, IBM did it again, combining the best of the Storwize V7000 with the common NAS software base developed for SONAS into the new "Storwize V7000 Unified".
You can upgrade your block-only Storwize V7000 into a file-and-block "Storwize V7000 Unified" storage system. This is a 6U-high system, consisting of a pair of 2U-high file modules connected to a standard 2U-high control enclosure. Like the block-only version, the control enclosure can attach up to nine expansion enclosures, as well as all the same support to virtualize external disk systems. The file modules combine the management node, interface node and storage node functionality that SONAS R1.3 offers.
What exactly does that mean for you? In addition to FCP and iSCSI for block-level LUNs, you can carve out file systems that support NFS, CIFS, FTP/SFTP, HTTP/HTTPS, and SCP protocols. All the same support as SONAS for anti-virus checking, access-based enumeration, integrated TSM backup and HSM functionality to migrate data to tape, NDMP backup support for other backup software, and Active Cloud Engine's local file management are all included!
-
- IBM SAN Volume Controller V6.3
The SAN Volume Controller [SVC] increases its stretched cluster to distances up to 300km. This is 3x further than EMC's VPLEX offering. This allows identical copies of data to be kept identical in both locations, and allows for Live Partition Mobility or VMware vMotion to move workloads seamlessly from one data center to another. Combining two data centers with an SVC stretch cluster is often referred to as "Data Center Federation".
The SVC also introduces a low-bandwidth option for Global Mirror. We actually borrowed this concept from our XIV disk system. Normally, SVC's Global Mirror will consume all the bandwidth it can to keep the destination copy of the data within a few seconds of currency behind the source copy. But do you always need to be that current? Can you afford the bandwidth requirements needed to keep up with that? If you answered "No!" to either of these, then the low-bandwidth option is you. Basically, a FlashCopy is done on the source copy, this copy is then sent over to the destination, and a FlashCopy is made of that. The process is then repeated on a scheduled basis, like every four hours. This greatly reduces the amount of bandwidth required, and for many workloads, having currency in hours, rather than seconds, is good enough.
-
-
I am very excited about all these announcements! It is a good time to be working for IBM, and look forward to sharing these exciting enhancements with clients at the Tucson EBC.
technorati tags: IBM, SONAS, GPFS, SAS, NL-SAS, Active Cloud Engine, Global+Namespace, Storwize+V7000, V7000U, V7000 Unified, block-only, block-and-file, SVC, SSD, Easy Tier, Flash-and-Stash, Texas Memory Systems, Pure Storage, Violin Memory
Tags: 
violin+memory
flash-and-stash
sonas
storwize+v7000
gpfs
v7000+unified
active+cloud+engine
sas
ssd
block-and-file
nl-sas
block-only
easy+tier
svc
global+namespace
texas+memory+systems
v7000u
ibm
pure+storage
|
This week I am in Moscow, Russia for today's "Edge Comes to You" event. Although we had over 20 countries represented at the Edge2012 conference in Orlando, Florida earlier this month, IBM realizes that not everyone can travel to the United States. So, IBM has created the "Edge Comes to You" events where a condensed subset of the agenda is presented. Over the next four months, these events are planned in about two dozen other countries.
This is my first time in Russia, and the weather was very nice. With over 11 million people, Moscow is the 6th largest city in the world, and boasts having the largest community of billionaires. With this trip, I have now been to all five of the so-called BRICK countries (Brazil, Russia, India, China and Korea) in the past five years!
The venue was the [Info Space Transtvo Conference Center] not far from the Kremlin. While Barack Obama was making friends with Vladimir Putin this week at the G2012 Summit in Mexico, I was making friends with the lovely ladies at the check-in counter.
If it looks like some of the letters are backwards, that is not an illusion. The Russian language uses the [Cyrillic alphabet]. The backwards N ("И"), backwards R ("Я"), the number 3 ("З), and what looks like the big blue staple logo from Netapp ("П"), are actually all characters in this alphabet.
Having spent eight years in a fraternity during college, I found these not much different from the Greek alphabet. Once you learn how to pronounce each of the 33 characters, you can get by quite nicely in Moscow. I successfully navigated my way through Moscow's famous subway system, and ordered food on restaurant menus.
The conference coordinators were Tatiana Eltekova (left) and Natalia Grebenshchikova (right). Business is booming in Russia, and IBM just opened ten new branch offices throughout the country this month. So these two ladies in the marketing department have been quite busy lately.
I especially liked all the attention to detail. For example, the signage was crisp and clean, and the graphics all matched the Powerpoint charts of each presentation.
Moscow is close to the North pole, similar in latitude as Juneau, Alaska; Edinburgh, Scottland; Copenhagen, Denmark; and Stockholm, Sweden.
As a result, it is daylight for nearly 18 hours a day. The first part of the day, from 8:00am to 4:30pm, was "Technical Edge", a condensed version of the 4.5 day event in Orlando, Florida. I gave three of the five keynote presentations:
- Game Change on a Smarter Planet: A New Era in IT, discussing Smarter Computing and Expert-Integrated systems, based on what Rod Adkins presented in Orlando.
- A New Approach to Storage, explaining IBM Smarter Storage for Smarter Computing, IBM's new approach to the way storage is designed and deployed for our clients
- IBM Watson: How it Works and What it Means for Society Beyond Winning Jeopardy! explaining how IBM Watson technologies are being used in Healthcare and Financial Services, based on what I presented in Orlando.
(Note: I do not speak Russian fluently enough to give a technical presentation, so I did then entire presentation in English, and had real-time translators convert to Russian for me. The audience wore headphones. However, I was able to sprinkly a few Russian phrases, such as "доброе утро", "Я не понимаю по-русский" and "спасибо".)
After the keynote sessions, I was interviewed by a journalist for [Storage News] magazine. The questions covered a variety of topics, from the implications of [Big Data analytics] to the future of storage devices that employ [Phase Change Memory]. I look forward to reading the article when it gets published!
The afternoon had break-out sessions in three separate rooms. Each room hosted seven topics, giving the attendees plenty to choose from for each time slot. I presented one of these break-out sessions, Big Data Cloud Storage Technology Comparison. The title was already printed in all the agendas, so we went with it, but I would have rather called it "Big Data Storage Options". In this session, I explained Hadoop, InfoSphere BigInsights, internal and external storage options.
I spent some time comparing Hadoop File System (HDFS) with IBM's own General Parallel File System (GPFS) which now offers Hadoop interfaces in a Shared-Nothing Cluster (SNC) configuration. IBM GPFS is about twice as fast as HDFS for typical workloads.
At the end of the Technical Edge event, there was a prize draw. Business cards were drawn at random, and three lucky attendees won a complete four-volume set of my book series "Inside System Storage"! Sadly, these got held up in customs, so we provided a "certificate" to redeem them for the books when they arrive to the IBM office.
The second part of the day, from 5:00pm to 8pm, was "Executive Edge", a condensed version of the 2 day event in Orlando, designed for CIOs and IT leaders. Having this event in the evening allowed busy executives to come over after they spend the day in the office. I presented IBM Storage Strategy in the Smarter Computing Era, similar to my presentation in Orlando.
Both events were well-attended. Despite fighting jet lag across 11 time zones, I managed to hang in there for the entire day. I got great feedback and comments from the attendees. I look forward to hearing how the other "Edge Comes to You" events fare in the other countries. I would like to thank Tatiana and Natalia for their excellent work organizing and running this event!
technorati tags: IBM, Moscow, Russia, Edge, ECTY, Cyrillic, Tatiana Eltekova, Natalia Grebenshchikova, Smarter Storage, Smarter Computing, Smarter Planet, Big Data, Cloud, IBM Watson, Jeopardy, Hadoop, HDFS, InfoSphere, BigInsights, GPFS, GPFS-SNC
Tags: 
hdfs
edge
smarter+computing
gpfs-snc
cloud
infosphere
russia
biginsights
gpfs
jeopardy
moscow
ecty
smarter+planet
ibm
hadoop
big+data
cyrillic
tatiana+eltekova
smarter+storage
natalia+grebenshchikova
ibm+watson
|

Continuing my coverage of the 30th annual [Data Center Conference]. here is a recap of Wednesday breakout sessions.
- Aging Data: The Challenges of Long-Term Data Retention
-
The analyst defined "aging data" to be any data that is older than 90 days. A quick poll of the audience showed the what type of data was the biggest challenge:
In addition to aging data, the analyst used the term "vintage" to refer to aging data that you might actually need in the future, and "digital waste" being data you have no use for. She also defined "orphaned" data as data that has been archived but not actively owned or managed by anyone.
You need policies for retention, deletion, legal hold, and access. Most people forget to include access policies. How are people dealing with data and retention policies? Here were the poll results:
The analyst predicts that half of all applications running today will be retired by 2020. Tools like "IBM InfoSphere Optim" can help with application retirement by preserving both the data and metadata needed to make sense of the information after the application is no longer available. App retirement has a strong ROI.
Another problem is that there is data growth in unstructured data, but nobody is given the responsibility of "archivist" for this data, so it goes un-managed and becomes a "dumping ground". Long-term retention involves hardware, software and process working together. The reason that purpose-built archive hardware (such as IBM's Information Archive or EMC's Centera) was that companies failed to get the appropriate software and process to complete the solution.
Cloud computing will help. The analyst estimates that 40 percent of new email deployments will be done in the cloud, such as IBM LotusLive, Google Apps, and Microsoft Online365. This offloads the archive requirement to the public cloud provider.
A case study is University of Minnesota Supercomputing Institute that has three tiers for their storage: 136TB of fast storage for scratch space, 600TB of slower disk for project space, and 640 TB of tape for long-term retention.
What are people using today to hold their long-term retention data? Here were the poll results:
Bottom line is that retention of aging data is a business problem, techology problem, economic problem and 100-year problem.
- A Case Study for Deploying a Unified 10G Ethernet Network
-
Brian Johnson from Intel presented the latest developments on 10Gb Ethernet. Case studies from Yahoo and NASA, both members of the [Open Data Center Alliance] found that upgrading from 1Gb to 10Gb Ethernet was more than just an improvement in speed. Other benefits include:
- 45 percent reduction in energy costs for Ethernet switching gear
- 80 percent fewer cables
- 15 percent lower costs
- doubled bandwidth per server
Ruiping Sun, from Yahoo, found that 10Gb FCoE achieved 920 MB/sec, which was 15 percent faster than the 8Gb FCP they were using before.
IBM, Dell and other Intel-based servers support Single Root I/O Virtualization, or SR-IOV for short. NASA found that cloud-based HPC is feasible with SR-IOV. Using IBM General Parallel File System (GPFS) and 10Gb Ethernet were able to replace a previous environment based on 20 Gbps DDR Infiniband.
While some companies are still arguing over whether to implement a private cloud, an archive retention policy, or 10Gb Ethernet, other companies have shown great success moving forward!
technorati tags: IBM, AaaS, Linux, Open Source, OMDB, CMDB, Aging data, Archive, Retention, , InfoSphere, Optim, LotusLive, University Minnesota, , 10GbE, SR-IOV, GPFS, private cloud
Tags: 
open+source
omdb
gpfs
ibm
infosphere
retention
optim
sr-iov
university+minnesota
cmdb
10gbe
aging+data
linux
lotuslive
private+cloud
aaas
prentice+dees
archive
|