IBM DB2 for Linux, UNIX, and Windows

Best Practices
Physical database design for data warehouse environments

IBM
Authors

This paper was developed by the following authors:

Maksym Petrenko
DB2® Warehouse Integration Specialist

Amyris Rada
Senior Information developer
DB2 Information Development
Information Management Software

Garrett Fitzsimons
Data Warehouse Lab Consultant
Warehousing Best Practices
Information Management Software

Enda McCallig
DB2 Data Warehouse QA Specialist
Information Management Software

Calisto Zuzarte
Senior Technical Staff Member
Information Management Software
Executive Summary

This paper provides best practice recommendations that you can apply when designing a physical data model to support the competing workloads that exist in a typical 24×7 data warehouse environment.

It also provides a sample scenario with completed logical and physical data models. You can download a script file that contains the DDL statements to create the physical database model for the sample scenario.

This paper targets experienced users who are involved in the design and development of the physical data model of a data warehouse in DB2 Database for Linux, UNIX, and Windows or IBM® InfoSphere® Warehouse Version 9.7 environments. For details about physical data warehouse design in Version 10.1 data warehouse environments, see “DB2 Version 10.1 features for data warehouse designs” on page 31.

For information about database servers in OLTP environments, see “Best practices: Physical Database Design for Online Transaction Processing (OLTP) environments” at the following URL: http://www.ibm.com/developerworks/data/bestpractices/databasedesign/.

About this paper

This paper provides guidance to experienced database administrators and solution architects on physical data warehouse design for DB2 Database for Linux, UNIX, and Windows or IBM InfoSphere Warehouse environments and how to design a data warehouse for a partitioned database environment.

“Planning for data warehouse design” on page 5 looks at the basic concepts of data warehouse design and how to approach the design process in a partitioned data warehouse environment. This chapter compares star schema and snow flake schema designs along with their advantages and disadvantages.

“Designing a physical data model” on page 11 examines the physical data model design process and how to create tables and relationships.

“Implementing a physical data model” on page 15 describes the best approach to implement a physical model that considers both query performance and ease of database maintenance. It also describes how to incorporate DB2 capabilities such as database partitioning and using row level compression included with the IBM DB2 Storage Optimization Feature.

“Designing an aggregation layer” on page 27 explains how to aggregate data and improve query performance by using DB2 database objects such as materialized query tables.

The examples illustrated throughout this paper are based on a sample data warehouse environment. For details about this sample data warehouse environment, including the physical data model, see “Data warehouse design for a sample scenario” on page 35.
Introduction to data warehouse design

A good data warehouse design is the key to maximizing and speeding the return on investment from your data warehouse implementation. A good data warehouse design leads to a data warehouse that is scalable, balanced, and flexible enough to meet existing and future needs. Following the best practice recommendations in this paper, you set your data warehouse up for long-term success through efficient query performance, easier maintenance, and robust recovery options.

Designing a data warehouse is divided into two stages: designing the logical data model and designing the physical data model.

The first stage in data warehouse design is creating the logical data model that defines various logical entities and their relationships between each entity.

The second stage in data warehouse design is creating the physical data model. A good physical data model has the following properties:

- The model helps to speed up performance of various database activities.
- The model balances data across multiple database partitions in a clustered warehouse environment.
- The model provides for fast data recovery.

The database design should take advantage of DB2 capabilities like database partitioning, table partitioning, multidimensional clustering, and materialized query tables.

The recommendations in this paper follow some of the guidelines for the IBM Smart Analytics System product to help you develop a physical data warehouse design that is scalable, balanced, and flexible enough to meet existing and future needs. The IBM Smart Analytics System product incorporates the best practices for the implementation and configuration of hardware, firmware, and software for a data warehouse database. It also incorporates guidelines in building a stable and scalable data warehouse environment.
Planning for data warehouse design

Planning a good data warehouse design requires that you meet the objectives for query performance in addition to objectives for the complete lifecycle of data as it enters and exits the data warehouse over a period of time.

Knowing how the data warehouse database is used and maintained plays a key part in many of the design decisions you must make. Before starting the data warehouse design, answer the following questions:

- **What is the expected query performance and what representative queries look like?**
 Understanding query performance is key because it affects many aspects of your data warehouse design such as database objects and their placement.

- **What is the expectation for data availability?**
 Data availability affects the scheduling of maintenance operations. The schedule determines what DB2 capabilities and partitioning table options to choose.

- **What is the schedule of maintenance operations such as backup?**
 This schedule affects your data warehouse design. The strategy for these operations also affects the data warehouse design.

- **How is the data loaded into and removed from your data warehouse?**
 Understanding how to perform these operations in your data warehouse can help you to determine whether you need a staging layer. The way that you remove or archive the data also influences your table partitioning and MDC design.

- **Does the system architecture and data warehouse design support the type of volumes expected?**
 The volume of data to be loaded affects indexing, table partitioning, and maintaining the aggregation layer.

The recommendations and samples in this paper provide answers to these questions. This information can help you in planning your data warehouse design.

Designing database models for each layer

Consider having a separate database design model for each of the following layers:

Staging layer

The staging layer is where you load, transform, and clean data before moving it to the data warehouse. Consider the following guidelines to design a physical data model for the staging layer:

- Create staging tables that hold large volumes of fact data and large dimension tables across multiple database partitions.
- Avoid using indexes on staging tables to minimize I/O operations during load. Although, if data has to be manipulated after it has been loaded, you might want to define indexes on staging tables depending on the extract, transform, and load (ETL) tools that you use.
- Place staging tables into dedicated table spaces. Omit these table spaces from maintenance operations such as backup to reduce the data volume to be processed.
• Place staging tables into a dedicated schema can also help you. A dedicated schema can also help you reduce data volume for maintenance operations.
• Avoid defining relationships with tables outside of the staging layer. Dependencies with transient data in the staging later might cause problems with restore operations in the production environment.

Data warehouse layer
The data warehouse tables are the main component of the database design. They represent the most granular level of data in the data warehouse. Applications and query workloads access these tables directly or by using views, aliases, or both. The data warehouse tables are also the source of data for the aggregation layer. The data warehouse layer is also called the system of record (SOR) layer because it is the master data holder and guarantees data consistency across the entire organization.

Data mart layer
A data mart is a subset of the data warehouse for a specific part of your organization like a department or line of business. A data mart can be tailored to provide insight into individual customers, products, or operational behavior. It can provide a real-time view of the customer experience and reporting capabilities.

You can create a data mart by manipulating and extracting data from the data warehouse layer and placing it in separate tables. Also, you can use views based on the tables in the data warehouse layer.

Aggregation layer
Aggregating or summarizing data helps to enhance query performance. Queries that reference aggregated data have fewer rows to process and perform better. These aggregated or summary tables need to be refreshed to reflect new data that is loaded into the data warehouse.

Designing physical data models
The physical data model of the data warehouse contains the design of each table and the relationships between each table. The implementation of the physical data model results in an operational database. Because of the high data volumes in a typical data warehouse, decisions that you make when developing the physical design of your data warehouse might be difficult to reverse after the database goes into production.

Plan to build prototypes of the physical data model at regular intervals during the data warehouse design process. Test these prototypes with data volumes and workloads that reflect your future production environment.

The test environment must have a database that reflects the production database. If you have a partitioned database in your production environment, create the test database with the same number of partitions or similar. Consider the scale factors of the test system compared to the production system when designing the physical model.
Figure 1 shows a sample architecture of a data warehouse with a staging area and data marts:

For details about the examples of the physical data model examples used in this paper, see “Data warehouse design for a sample scenario” on page 35.

Choosing between star schema and snowflake schema

A star schema and snowflake schema are based on dimensional modeling which is the recommended approach for data warehouse design. Use the schema design that best fits your needs for maximizing query performance.

A star schema might have more redundant data than a snowflake schema, especially for upper hierarchical level keys such as product type. A star schema might have relationships between various levels that are not exposed to the database engine by foreign keys. To choose better query execution plans, use additional information like column group statistics to provide the optimizer with knowledge of statistical correlation between column values of related level keys in dimensional hierarchies.

A snowflake schema has less data redundancy and clearer relationships between dimension levels than a star schema. However, query complexity increases as the join to the fact table has more dimension tables.

Place small dimensions such as DATE into one table and, as per the snowflake method, consider splitting large dimensions with over 1 million rows into multiple tables.
Regardless of what schema style you choose, avoid having degenerate dimensions in your schema. A degenerate dimension consists of a dimension in a single physical fact table. For example, avoid placing dimension data in fact tables.

While row compression can substantially reduce the size of a table with redundant data, very large fact tables that are compressed can still present challenges with respect to the optimal use of memory and space for query performance.

Figure 2 shows a data warehouse database model that uses both the star and snowflake schema:

A SALES fact table is surrounded by the PRODUCT, DATE, and STORE dimension tables.

The PRODUCT dimension is a snowflake dimension that has three levels and three tables because a large number of rows (row count) is expected.

The DATE dimension is a star dimension that has four levels (YEAR, QUARTER, MONTH, DAY) in a single physical table because a low row count is expected.

The STORE dimension is partly denormalized. A table contains the STORE level and a second table that contains the REGION, STAGE, and CITY levels.
Figure 3 shows the hierarchy of the dimension levels for Figure 2 on page 8:

![Dimension levels hierarchy](image)

Best practices

Use the following best practices when planning your data warehouse design:

- Build prototypes of the physical data model at regular intervals during the data warehouse design process. For more details, see “Designing physical data models” on page 6.
- If a single dimension is too large, consider a star schema design for the fact table and a snowflake design such as hierarchy of tables for dimension tables.
- Have a separate database design model for each layer. For more details, see Database design layers.
Designing a physical data model

When designing a physical data model for a data warehouse focus on the definition of each table and the relationships between the tables.

When designing tables for the physical data model, consider the following guidelines:

- Define a primary key for each dimension table to guarantee uniqueness of the most granular level key and to facilitate referential constraints where necessary.
- Avoid primary keys and unique indexes on fact tables especially when a large number of dimension keys are involved. These database objects incur in a performance cost when ingesting large volumes of data.
- Define referential constraints as informational between each pair of dimensions that are joined to help the optimizer in generating efficient access plans that improve query performance.
- Define columns with the NOT NULL clause. Identifying NULL values is a good indicator of data quality issues in the database and you should investigate before the data gets inserted into the database.
- Define foreign key columns as NOT NULL where possible.
- For DB2 Version 9.7 or earlier releases, define individual indexes on each foreign key to improve performance on star join queries.
- For DB2 Version 10.1, define composite indexes that have multiple foreign key columns to improve performance on star join queries. These indexes enable the optimizer to exploit the new zigzag join method. For more details, see “Ensuring that queries fit the required criteria for the zigzag join” at the following URL: http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.perf.doc/doc/t0058611.html.
- Define dimension level keys with the NOT NULL clause and based on a single integer column where appropriate. This way of defining level keys provides for efficient joins and groupings. For snowflake dimensions, the level key is frequently a primary key which is commonly a single integer column.
- Implement standard data types across your data warehouse design to provide the optimizer with more options when compiling a query plan. For example, joining a CHAR(10) column that contains numbers to an INTEGER column requires cast functions. This join degrades performance because the optimizer might not choose appropriate indexes or join methods. For example, in DB2 Version 9.7 or earlier releases, the optimizer cannot choose a hash join or might not exploit an appropriate index.

For more details, see “Best Practices: Query optimization in a data warehouse” at the following URL: http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/index.html.

Defining and choosing level keys

A level key is one column or a combination of columns in a table that uniquely identifies a hierarchy level within a dimension table. An example of a hierarchy of levels is DAY, WEEK, MONTH, YEAR in a date dimension. Another example is a column for the STORE dimension table that holds data for a retail store. A more complex example of level keys is the combination of the CITY, STATE, and COUNTRY columns in the same STORE table.
Level keys are used extensively in a data warehouse to join dimension tables to fact tables and to support aggregated tables and OLAP applications. The performance of data warehouse queries can be optimized by having a good level key design.

A level key can be of one of the following types:

- A natural key identifies the record within the data source from which it originates. For example, if the CITY_NAME column has unique values in the dimension table, you can use it as a natural key to indicate the level in the CITY dimension.

- A surrogate key serves an identification purpose and helps reduce the size of a lower dimension table or a fact table. In most cases, a surrogate key is a single integer column. You can also use the BIGINT or DECIMAL data types for larger surrogate keys. For example, STORE_ID is a generated unique integer value that identifies a store. Using an integer instead of a large character string to represents a store name or a combination of columns like STORE_NAME, CITY_NAME, and STORE_ID occupies less storage space in the fact table.

Using surrogate keys for all dimension level columns helps in the following areas:

- Increased performance through reduced I/O.
- Reduced storage requirement for foreign keys in large fact tables.
- Support slowly changing dimensions (SCD). For example, the CITY_NAME can change but the CITY_ID remains.

When dimensions are denormalized there is a tendency to not use surrogate keys. This example shows the statement to create the STORE dimension table without surrogate keys on some levels:

```sql
CREATE TABLE STORE_DIMENSION (  
    STORE_ID INTEGER NOT NULL,  
    STORE_NAME VARCHAR(30),  
    CITY_NAME VARCHAR(30),  
    STATE_NAME VARCHAR(30),  
    COUNTRY_NAME VARCHAR(30));
```

The STORE dimension is functionally correct because level keys can be defined to uniquely identify each level. For example, to uniquely identify the CITY level, define a key as [COUNTRY_NAME, STATE_NAME, CITY_NAME]. Unfortunately, a key that is a combination of three character columns does not perform as well as a single integer column in a table join or GROUP BY clause.

Consider the approach of explicitly defining a single integer key for each level. For queries that use a GROUP BY CITY_ID, STATE_ID, COUNTRY_ID clause instead of a GROUP BY CITY_NAME, STATE_NAME, COUNTRY_NAME clause, this approach works well. The following example shows the statement to create the STORE dimension table that uses this approach:
Collect “column group statistics” with the `RUNSTATS` command in order to capture the statistical correlation between the surrogate key columns in addition to the correlation between the CITY_NAME, STATE_NAME and COUNTRY_NAME columns.

Guidelines for the date dimension

If a DATE column is used as a range partition column, the recommendation to use an INTEGER column as surrogate keys does not apply. Instead of an INTEGER column, use the DATE data type as the primary key on the date dimension table and as corresponding foreign key in the fact table.

Having a DATE column as the primary key for the date dimension does not consume additional space because the DATE data type length is the same as the INTEGER data types (4 bytes).

Using a DATE data type as a primary key enables your range partitioning strategy for the fact table to be based on this primary key. You can roll in or rollout data based on known date ranges rather than generated surrogate key values.

In addition, you can directly apply date predicates that limit the range of date values considered for a query to a fact table. Also, you can transfer these date predicates from the dimension table to the fact table by using a join predicate. This use of date predicates facilitates good range partition elimination for dates not relevant to the query. If you need only the date range predicate for a query, you might even be able to eliminate the use of a join with the DATE dimension table.

The importance of referential integrity

Referential integrity (RI) constraints are defined primarily to guarantee the integrity of data relationships between the tables. However, the optimizer also uses information about constraints to process queries more efficiently. Keep RI constraints in mind as an important factor when designing your physical data model.

The following options are available when defining RI constraints:

Enforced referential integrity constraints

The integrity of the relationship specified is enforced by the database manager when rows are inserted, updated, or deleted. There is a performance effect on insert, update, delete, and load operations when the database manager must enforce RI constraints.

Informational constraints

Informational constraints are constraint rules that the DB2 optimizer can use but that are not enforced by the database manager. Informational
constraints permit queries to benefit from improved performance without incurring on the overhead of referential constraints during data maintenance. However, if you define these constraints, you must enforce RI during the ETL process by populating data in the correct sequences.

Best practices

Use the following best practices when designing a physical data model:

- Define indexes on foreign keys to improve performance on start join queries. For Version 9.7, define an individual index on each foreign key. For Version 10.1, define composite indexes on multiple foreign key columns.
- Ensure that columns involved in a relationship between tables are of the same data type.
- Define columns for level keys with the NOT NULL clause to help the optimizer choose more efficient access plans. Better access plans lead to improved performance. For more information, see “Defining and choosing level keys” on page 11.
- Define date columns in dimension and fact tables that use the DATE data type to enable partition elimination and simplify your range partitioning strategy. For more information, see “Guidelines for the date dimension” on page 13.
- Use informational constraints. Ensure the integrity of the data by using the source application or by performing an ETL process. For more information, see “The importance of referential integrity” on page 13.
Implementing a physical data model

Implementing a physical data model transforms the physical data model into a physical database by generating the SQL data definition language (DDL) script to create all the objects in the database.

After you implement a physical data model in a production environment and populate it with data, the ability to change the implementation is limited because of the data volumes in a data warehouse production environment.

The main goal of physical data warehouse design is good query performance. This goal is achieved by facilitating collocated queries and evenly distributing data across all the database partitions.

A collocated query has all the data required to complete the query on the same database partition. An even distribution of data has the same number of rows for a partitioned table on each database partition. Improving one these aspects can come at the expense of the other aspect. You must strive for a balance between collocated queries and even data distribution.

Consider the following areas of physical data warehouse design:
- Database partition groups
- Table spaces
- Tables
- Indexes
- Range partition tables
- MDC tables
- Materialized query tables (aggregated or replicated)

The importance of database partition groups

Each table resides in a table space and each table space belongs to a database partition group. Each database partition group consists of one or more database partitions to which table spaces are assigned. When a table is created and assigned to a table space it is also assigned to the database partition group in which the table space exists.

Collocated queries can only occur within the same database partition group because the partition map is created and maintained at database partition group level. Even if the partitions covered by two database partition groups are the same, the database partitions have different partition maps associated with them. For this reason, different partition groups are not considered for join collocation.

Implement a physical design model that follows the IBM Smart Analytics Systems best practices for data warehouse design. The IBM Smart Analytics Systems implementation has multiple database partition groups. Two of these database partition groups are called SDPG and PDPG. SDPG is created on the catalog partition for tables in one database partition. PDPG is created across each database partition and contains tables that are divided across all database partitions.
The following figure illustrates the database partition groups called SDPG and PDPG:

![Database Partition Groups](image)

Figure 4. Partition groups in the IBM Smart Analytics System

Consider the following guidelines when designing database partition groups:

- Use schemas as a way of logically managing data. Avoid creating multiple database partition groups for the same purpose.
- Group tables at the database partition group level to design a partitioned database that is more flexible in terms of future growth and expansion. Redistribution takes place at the database partition group level. To expand a partitioned database to accommodate additional servers and storage, you must redistribute the partitioned data across each new database partition.

Table space design effect on query performance

A table space physically groups one or more database objects for the purposes of common configuration and application of maintenance operations.

Discrete maintenance operations can help increase data availability and reduce resource usage by isolating these operations to related table spaces only. The following situations illustrate some of the benefits of discrete maintenance operations:

- You can use table space backups to restore hot tables and make them available to applications before the rest of the tables are available.
- You can find more opportunities to perform backups or reorganizations at a table space level because the required maintenance window is smaller.
Good table space design has a significant effect in reducing processor, I/O, network, and memory resources required for query performance and maintenance operations.

Consider creating separate table spaces for the following database objects:
- Staging tables
- Indexes
- Materialized query tables (MQTs)
- Table data
- Data partitions in ranged partitioned tables

Creating too many table spaces in a database partition can have a negative effect on performance because a significant amount of system data is generated, especially in the case of range partitioned tables. Try to keep the maximum number of individual table partitions in hundreds, not in thousands.

When creating table spaces, use the following guidelines:
- Specify a descriptive name for your table spaces.
- Include the database partition group name in the table space name.
- Enable the autoresize capability for table spaces that can grow in size. If a table space is nearly full, this capability automatically increases the size by the predefined amount or percentage that you specified.
- Explicitly specify a partition group to avoid having table spaces created in the default partition group.

Choosing buffer pool and table space page size

An important consideration in designing tables spaces and buffer pools is the page size. DB2 databases support page sizes of 4 KB, 8 KB, 16 KB, and 32 KB for table spaces and buffer pools.

In a data warehouse environment, large number of rows are fetched, particularly from the fact table, in order to answer queries. To optimize fetching of large number of rows, the IBM Smart Analytics System product uses 16 KB as the default page size. If you are using row compression, a large page size works better with large table spaces because they use large record identifiers (RIDs) and you can store more rows per page.

Using a large page size table space for the large tables must be weighted with other recommendations. For example, creating large tables as MDC tables is a best practice. However, a large page size can result in some wasted space. MDC tables that have dimensions on columns with a large number of distinct values or with skewed data that result in partially filled pages.

Another consideration is whether it makes sense to use table spaces with different page sizes to optimize access to individual tables. Each table space is associated with a buffer pool of the same page size. However, buffer pools can be associated with multiple table spaces. For optimum use of the total memory available to DB2 databases and use of memory across different table spaces, use one or at most two different buffer pools. Associating a buffer pool to multiple table spaces allows queries that access different table spaces at different times to share memory resources.
Reducing the number of different table space page sizes across the database helps you consolidate the associated buffer pools. Use one or, at most, two different page sizes for all table spaces. For example, create all table spaces with a 16 KB page size, a 32 KB page size, or both page sizes for databases that need one large table space and another smaller table space. Use only one buffer pool for all the table spaces of the same page size.

Table design for partitioned databases

Understanding the volumes of data intended for a table and how the table is joined with other tables in queries is important for a good table design in partitioned databases.

Because of the volumes of data involved in database partitioned tables, particularly fact tables, a significant outage is required to correct any data skew or collocation issues in post production. Outages require a considerable amount of organization.

The columns used in the table partitioning key determine how data is distributed across the database partitions to which the table belongs. Choose the partitioning key from those columns in the table that have the highest cardinality and low data skew to achieve even distribution of data.

You can check the distribution of records in a partitioned table by issuing the following query:

```sql
SELECT DBPARTITIONNUM(DATE_ID) AS "PARTITION NUMBER",
    COUNT(*)*10 AS "TOTAL # RECORDS"
FROM BI_SCHEMA.TB_SALES_FACT TABLESAMPLE SYSTEM (10)
GROUP BY DBPARTITIONNUM(DATE_ID)
ORDER BY DBPARTITIONNUM(DATE_ID);
```

The use of the sampling clause improves the performance of the query by using just a sample of data in the table. Use this clause only when you are familiar with the table data. The following text shows an example of the result set returned by the query:

<table>
<thead>
<tr>
<th>PARTITION NUMBER</th>
<th>TOTAL # RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,313,750</td>
</tr>
<tr>
<td>2</td>
<td>10,126,900</td>
</tr>
<tr>
<td>3</td>
<td>9,984,910</td>
</tr>
<tr>
<td>4</td>
<td>10,215,840</td>
</tr>
</tbody>
</table>

For details about how to use routines to estimate data skews for existing and new partitioning key, see “Choosing partitioning keys in DB2 Database Partitioning Feature environments” at the following URL: http://www.ibm.com/developerworks/data/library/techarticle/dm-1005partitioningkeys/.

In addition to even distribution of data, query performance is further improved by collocated queries that are supported by table design. If the query join is not collocated, the database manager must broadcast the records from one database partition to another over the network, which results in suboptimal performance. Collocation of data is often achieved at the expense of uneven or skewed
distribution of data across database partitions. Your table design must achieve the right balance between these competing requirements.

When designing a partitioned table, consider the following guidelines:

• Use partitioning keys that include only one column because fewer columns lead to a faster hashing function for assigning records to individual database partitions.

• Achieve even data distribution. The data skew between database partitions should be less than 10%. Having one partition smaller-than-the-average by 10% is better than one partition larger-than-the-average by 10% to avoid having one database partition slower than the others. A slower partition results in slower overall query performance.

• Explicitly define partitioning keys. If a partitioning key is not specified, the database manager chooses the first column that is not a LOB or long field. This selection might not report optimal results.

When investigating collocation of data for queries consider the following guidelines:

• Collocation can occur only when the joined tables are defined in the same database partition group.

• The data type of the distribution key for each of the joined tables should be the same.

• For each column in the distribution key of the joined tables, an equijoin predicate is typically used in the query WHERE clause.

• The primary key and any unique index of the table must be a superset of the associated distribution key. That is, all columns that are part of the distribution key must be present in the primary key or unique index definition. The order of the columns does not matter.

The general recommendation for data warehouses is to partition the largest commonly joined dimension on its level key and partition the fact table on the corresponding foreign key. For most fact tables, this approach satisfies the requirement that the distribution key column has a very high cardinality, which helps ensure even distribution of data; the joins between a fact table and the largest commonly used dimension minimize data movement between database partitions.

For more information about how to address even distribution of data with the collocation of tables and improved performance of existing queries through collocated table joins, see “Best Practices: Query optimization in a data warehouse” at http://www.ibm.com/developerworks/data/bestpractices/smarataalytics/queryoptimization/index.html.

Partitioning dimension tables

After you decide to partition the fact table along with the largest commonly joined dimension table, you might need to move data for other dimension tables to collocate the data.

Most dimension tables in data warehouse environments are small and therefore do not benefit from being distributed across database partitions. Use the following recommendations when designing database partitioned tables:
• Partition the largest commonly joined dimension table on its level key collocated with the fact table because this table has the large number of unique values, which is good for avoiding data skew in the fact table.

• Place smaller dimensions into a table space that belongs a single database partition group.

• Replicate smaller dimension tables that belong to a single database partition group across all database partitions.

• Replicate only a subset of columns for larger dimension tables to avoid unnecessary storage usage when replicating data.

If a dimension table is not the largest in the schema, but still has a large number of rows (for example, over 10 million), you can replicate only a subset of the columns in the table. For more information about using replicated MQTs, see “Replicated MQTs” on page 28.

Range partitioned tables for data availability and performance

Table partitioning, also known as range partitioning, is a method that you can use to segment table data into separate data partitions. You can also assign data partitions to separate table spaces. Use range partitioning for any of the following reasons:

• Partitioning data into ranges to allow the optimizer to eliminate data partitions that are not needed to satisfy a query. This partition elimination helps to reduce I/O operations.

• Assign each data partition to an individual table space so that you can perform table space backups for a more strategic backup and data recovery design.

• Roll in data partitions by using the ALTER TABLE statement with the ATTACH parameter.

• Roll out data partitions by using the ALTER TABLE statement with the DETACH parameter.

• Minimize lock escalation because lock escalation in ranged partitioned tables happens at the partition level.

• Facilitate a multi-temperature data solution by moving data partitions from one temperature of storage tier to another as data ages.

For a data warehouse that contains 10 years of data and the roll-in/roll-out granularity is 1 month, creating 120 partitions is an ideal way of managing the data lifecycle. If the roll-in/roll-out granularity is by day, partitioning by day requires over 3600 partitions, which can cause performance and maintenance issues. An excessive number of data partitions increases the number of system catalog entries and can complicate the process of collecting statistics. Having too many range partitions can make individual range partitions too small for multidimensional clustering.

When using calendar month ranges in range partitioning, take advantage of the EXCLUSIVE parameter of the CREATE TABLE statement to simplify a lookup for month end date. The following example shows the use of the EXCLUSIVE parameter:

```
PARTITION PART_2011_DEC STARTING ('2011-12-01') ENDING('2012-01-01')
EXCLUSIVE IN TBSP_2010_4Q;
```
Indexes on range partitioned tables

Indexes on range partitioned tables can be either global or local. Starting with DB2 Version 9.7 Fix Pack 1 software, indexes are created as local indexes by default unless they are explicitly created as global indexes or as unique indexes that do not include the range partitioning key.

A global index orders data across all data partitions in the table. A partitioned or local index orders data for the data partition to which it relates. A query might need to initiate a sort operation to merge data from multiple database partitions. If data is retrieved from only one partition or the partitioned indexes are accessed in order, including the range partitioning key as the leading column, a sort operation is not required.

Use global indexes for any of the following reasons:
- To enforce uniqueness on a column or set of columns that does not include the range partitioning key.
- To order the data across all partitions. You can also take advantage of global indexes to avoid a sort operation for an ORDER BY or a GROUP BY order requirement on the (leading) columns.

Use local indexes for any of the following reasons:
- Take advantage of the ability to precreate local indexes on data partitions before they are attached to the range partitioned table. Precreating local indexes minimizes any interruption when you use the ATTACH PARTITION or DETACH PARTITION parameter.
- Reduce I/O during ETL workloads as local indexes are typically more compact.

If the inner join of a nested loop join or the range predicate in a query require probing multiple database partitions, multiple local indexes might be probed instead of a single global index. Incorporate these scenarios into your test cases.

Candidates for multidimensional clustering

Multidimensional clustering (MDC) tables can help improve the performance of many queries, reduce locking, and simplify table maintenance operations. In particular, MDC tables reduce the need to do a REORG to maintain data clustering.

Data in an MDC table is ordered and stored in a different way than regular tables. A table is defined as an MDC table through the CREATE TABLE statement. You must decide whether to create a regular or an MDC table during physical data warehouse design because you cannot change an MDC table definition after you create the table. Create MDC tables in a test environment before implementing them in a production environment.

An MDC table physically groups data pages based on the values for one or more specified dimension columns. Effective use of MDC can significantly improve query performance because queries access only those pages that have records with the correct dimension values.
The database manager creates a cell to reference each unique combination of values in dimension columns. An inefficient design causes an excessive number of cells to be created, which in turn increases the space used and negatively affects query performance. Follow these guidelines to choose dimension columns:

- Choose columns that are frequently used in queries as filtering predicates. These columns are usually dimensional keys.
- Create MDC tables on the columns that have low cardinality in order to have enough data to fill out entire cell.
- Create MDC tables that have an average of five cells per unique combination of values in the clustering keys. The more dimensions you can include in the clustering key, the higher is the benefit of using MDC tables.
- Use generated columns to reduce the number of distinct values for MDC dimensions in tables that do not have column candidates with suitable low cardinality.

For example, the BI_SCHEMA.SALES fact table in the sample scenario has three dimensions called STORE_ID, PRODUCT_ID, and DATE_ID that are candidates for dimension columns. To choose the dimension columns for this table, follow these steps:

1. Ensure that the BI_SCHEMA.SALES table statistics are current. Issue the following SQL statement to update the statistics:

   ```sql
   RUNSTATS ON TABLE BI_SCHEMA.TB_SALES_FACT FOR SAMPLED DETAILED INDEXES ALL;
   ```

2. Determine whether the STORE_ID and DATE_ID columns are suitable as dimension columns. Use the following query to calculate the potential density of the cells columns based on an average unique cell count per unique value combination greater than 5:

   ```sql
   SELECT CASE
            WHEN (NPAGES/EXTENTSIZE) /
                 (SELECT COUNT(1) AS NUM_DISTINCT_VALUES
                     FROM (SELECT 1 FROM BI_SCHEMA.TB_SALES_FACT GROUP BY STORE_ID, DATE_ID)
                     > 5
              THEN
                'THESE COLUMNS ARE GOOD CANDIDATES FOR DIMENSION COLUMNS'
            ELSE
                'TRY OTHER COLUMNS FOR MDC' END
   FROM SYSCAT.TABLES A, SYSCAT.TABLESPACES B
   WHERE TABNAME='TB_SALES_FACT' AND TABSCHEMA='BI_SCHEMA'
   AND A.TBSPACEID=B.TBSPACEID;
   ```

 If the BI_SCHEMA.SALES table is in a partitioned database environment, use the following query:

   ```sql
   SELECT CASE
            WHEN (NPAGES/EXTENTSIZE) /
                 (SELECT COUNT(1) AS NUM_DISTINCT_VALUES
                     FROM (SELECT 1 FROM BI_SCHEMA.TB_SALES_FACT
                           GROUP BY DBPARTITIONNUM(STORE_ID), STORE_ID, DATE_ID)
                     > 5
              THEN
                'THESE COLUMNS ARE GOOD CANDIDATES FOR DIMENSION COLUMNS'
            ELSE
                'TRY OTHER COLUMNS FOR MDC' END
   FROM SYSCAT.TABLES A, SYSCAT.TABLESPACES B
   WHERE TABNAME='TB_SALES_FACT' AND TABSCHEMA='BI_SCHEMA'
   AND A.TBSPACEID=B.TBSPACEID;
   ```
The BI_SCHEMA.SALES table is range partitioned on the DATE_ID column. The range partitions for 2012 include a month of dates. For queries that have predicates by date, a date column helps to reduce the row access rows to 1 day out of 30 days in the month.

3. Create the BI_SCHEMA.SALES as an MDC table organized by the STORE_ID and DATE_ID columns in a test environment. Load the table with a representative set of data.

4. Verify that the chosen dimension columns are optimal. Issue the following SQL statements to verify whether the total number of free pages (FPAGES) is close to the number of pages that contain data (NPAGES):

```
RUNSTATS ON TABLE BI_SCHEMA.TB_SALES_FACT;

SELECT CASE
    WHEN FPAGES/NPAGES > 2
    THEN 'THE MDC TABLE HAS MANY EMPTY PAGES'
    ELSE 'THE MDC TABLE HAS GOOD DIMENSION COLUMNS' END
FROM SYSCAT.TABLES A
WHERE TABNAME='TB_SALES_FACT' AND TABSCHEMA='BI_SCHEMA';
```

If the number of free pages is double the number of data pages or more, then the dimension columns that you chose are not optimal. Continue repeating previous steps to test additional columns as dimension columns.

If you cannot find suitable candidates, use generated columns as dimension columns to reduce the cardinality of existing columns. Using generated columns works well for equality predicates. For example, if you have a column called PRODUCT_ID with the following characteristics:

- The values for PRODUCT_ID ranges from 1 to 100,000.
- The number of distinct values for PRODUCT_ID is higher than 10,000.
- PRODUCT_ID is frequently used in predicates like PRODUCT_ID = <constant_value>.

You can use a generated column on PRODUCT_ID divided by 1000 as a dimension column so that values range from 1 to 100. For a predicate like PRODUCT_ID = <constant_value>, access is limited to a cell that contains only 1/1000 of the table data.

Including row compression in data warehouse designs

Row compression can help you increase the performance of all database operations by reducing I/O and storage requirements for the database and maintenance operations. These requirements can become additional goals that align with your data warehouse design goals.

When designing a data warehouse, you must decide whether to compress a table or an index when they are created. In a data warehouse environment, use row compression on tables or index compression when your data servers are not CPU bound.

Row compression can significantly improve I/O performance through a better buffer pool hit ratio as more compressed data can be accommodated in the buffer pool.

Row compression does use additional CPU resources, so use row compression only in data servers that are not CPU bound. Because most operations in a data warehouse read large volumes of data, row compression is typically a good choice.
to balance I/O and CPU usage. If you perform many update, insert, or delete operations on a compressed table, use the PCTFREE 10 clause in the table definition to avoid overflowing records and consequent reorganizations.

To show the current and estimated compression ratios for tables and indexes:

- For DB2 Version 9.7 or earlier releases, use the ADMIN_GET_TAB_COMPRESS_INFO_V97 and ADMIN_GET_INDEX_COMPRESS_INFO administrative functions to show the current and estimated compression ratios for tables and indexes. The following example shows the SELECT statement that you can use to estimate row compression for all tables in the BI_SCHEMA schema:

  ```sql
  SELECT * FROM TABLE(SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97('BI_SCHEMA','','ESTIMATE'));
  ```

- For DB2 Version 10.1 and later releases, use the ADMIN_GET_TAB_COMPRESS_INFO and ADMIN_GET_INDEX_COMPRESS_INFO administrative functions. The following example shows the compression estimates for a particular table 'TB_SALES_FACT':

  ```sql
  SELECT * FROM TABLE(SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO('BI_SCHEMA','TB_SALES_FACT'));
  ```

If the workload is CPU bound, selective vertical compression or selective horizontal compression helps you to get storage savings at the cost of some complexity.

Selective vertical compression

If 5% of the columns in a table are accessed 90% of time, you can compress the fact table but keep an uncompressed MQT divided across all database partitions that has these frequently-accessed columns. Maintaining redundant data requires both administration and ETL overhead.

If relatively few columns are queried 90% of the time, a compressed table along with a composite uncompressed index on these columns is easier to administer.

Selective horizontal compression

If the 90% of the data accessed is the most recent data, consider creating range partitioned tables with compressed historical data and uncompressed recent data.
Best practices

Use the following best practices when implementing a physical data model:

- Define only one partition group that spans across all data partitions as collocated queries can only occur within the same database partition. For more details, see “The importance of database partition groups” on page 15.

- Use a large page size table space for the large tables to improve performance of queries that return a large number of rows. The IBM Smart Analytics Systems have 16 KB as the default page size for buffer pools and table spaces. Use this page size as the starting point for your data warehouse design. For more details, see “Choosing buffer pool and table space page size” on page 17.

- Hash partition the largest commonly joined dimension on its level key and partition the fact table on the corresponding foreign key. All other dimension tables can be placed in a single database partition group and replicated across database partitions. For more details, see “Table design for partitioned databases” on page 18.

- Replicate all or a subset of columns in a dimension table that is placed in a single database partition group to improve query performance. For more details, see “Partitioning dimension tables” on page 19.

- Avoid creating a large number of table partitions or pre-creating too many empty data partitions in a range partitioned table. Implement partition creation and allocation as part of the ETL job. For more details, see “Range partitioned tables for data availability and performance” on page 20.

- Use local indexes to speed up roll-in and roll-out of data. Corresponding indexes can be created on the partition to be attached. Also, using only local indexes reduces index maintenance when attaching or detaching partitions. For more details, see “Indexes on range partitioned tables” on page 21.

- Use multidimensional clustering for fact tables. For more details, see “Candidates for multidimensional clustering” on page 21.

- Use administrative functions to help you estimate compression ratios on your tables and indexes. For more details, see “Including row compression in data warehouse designs” on page 23.

- Ensure that the CPU usage is 70% or less of before enabling compression. If reducing storage is critical even in a CPU-bound environment, compress data that is infrequently used. For example, compress historical fact tables.

For more details about best practices for row compression, see “DB2 best practices: Storage optimization with deep compression” at the following URL:
Designing an aggregation layer

Aggregating or summarizing data helps enhance query performance. Use DB2 database objects that help you aggregate data such as materialized query tables (MQTs), views, or view MQTs.

MQTs, also known as summary tables, precompute the results of an expensive or frequently used query or set of queries. The result set is stored in a dedicated table which can be used later to answer that frequently used query or similar queries. The source tables that are referenced when populating or refreshing data in an MQT are called base tables.

Using materialized query tables

Using MQTs to aggregate data at different levels, you can support applications that analyze data without having to design multiple base tables or compromise the atomic granularity of data.

Suboptimal performance of analytical queries is often the trigger point to use MQTs, especially in service level agreement (SLA) driven environments. Typically, you can define MQTs after you populate the fact tables and develop a set of important analytical queries.

MQTs can greatly improve query performance at the cost of extra storage and additional maintenance. The optimizer automatically reroutes your queries to the MQTs.

You can redesign MQTs over time as queries and the analysis of data evolves. From a design perspective, understand how MQTs are created, populated, and maintained to be able to choose the right type of MQT. You can create MQTs that use any of the following modes:

Refresh deferred

Use this mode in a data warehouse environment to control when the data is refreshed. This mode propagates changes made to the base tables to the MQT manually when you issue the REFRESH TABLE statement. You can control the selection of the MQT based on age of data by setting the `dft_refresh_age` database configuration parameter or the CURRENT REFRESH AGE special register. If the REFRESH AGE time limit is exceeded, the optimizer does not reroute your dynamic queries to MQTs.

Refresh deferred with staging table

Use this mode when you have multiple ingest streams to update the base tables. Using this mode can help avoid locking the base tables in this situation. This mode automatically propagates changes made to the base table to a staging table specified when you created the MQT. To refresh the MQT that uses the staging table, issue the REFRESH TABLE statement.

Refresh immediate

Use this mode in data warehouse environments where smaller volumes of data are involved. This mode automatically propagates the changes made to the base table to the MQT. The MQT remains current at all times. The INSERT, UPDATE, and DELETE operations on the base table carry with the overhead of MQT maintenance.
The following guidelines can help you improve the performance and increase usability of MQTs:

- Give a descriptive name to your MQT that includes the names of the base table and aggregation levels. Such naming convention helps in analysis of access plans and verification that the optimizer reroutes your queries to the right MQT for certain queries. An example for an MQT name that aggregates sales data by store, date, and product line is MQT_SALES_STORE_DATE_PRODUCT.

- If you are planning to use REFRESH IMMEDIATE or REFRESH DEFERRED with MQT staging tables, create only one MQT per base table. If you have more than one MQT for a base table, the performance of update operations in the base table can decrease dramatically.

- If the base table has compression enabled, enable compression on the MQT as well. A compressed MQT becomes more competitive for query reroute by the DB2 optimizer.

- Improve the performance of the MQT refresh by creating an index on the base table that includes the columns specified in the GROUP BY clause of the MQT definition.

- For database partitioned base tables, improve the performance of the MQT refresh by creating MQTs in the same database partition group as the base tables. If possible, hash partition the MQT by using the same partitioning keys as the base fact table.

- For range partitioned base tables, improve the performance of the MQT refresh by creating MQTs as range partitioned tables on the same ranges as the base tables. Also, creating range partitioned MQTs makes MQTs more attractive candidates to the optimizer. If a table partitioning key column is also one of the dimensions to aggregate data in the MQT, you should not create a range partitioned MQT. For example, if you have a fact table range partitioned by MONTH and the MQT has GROUP BY MONTH, the range partitioned MQT table has only one row per month.

- Provide flexibility in a recovery scenario by creating MQTs in separate table spaces. It can be easier to re-create and refresh MQTs rather than restore them.

- Create an MQT on a view for queries that use that view even if the view contains constructs like outer joins or complex queries that are unsupported with regular MQT matching. For more details, see “Using views and view MQTs to define data marts” on page 29.

Replicated MQTs

Using replicated MQTs is a great technique to improve the performance of complex queries by copying the contents of a small dimension table to each database partition of a database partition group. For joins between a large database partitioned table and a small dimension table, the query execution is faster because the data for the dimension table is replicated to each database partition and data transfer from other database partitions is not required.

Dimension tables typically have a few update operations. Therefore, specifying the REFRESH IMMEDIATE option to create replicated MQTs for small dimension tables makes the MQT maintenance free.

If your environment has many data partitions and the number of the replicated MQTs is significant, consider replicating only the subset of the columns that are referenced in your queries.
Because replicated MQTs are stand-alone objects, you must manually create indexes similar to the indexes on the base tables. You should define unique indexes on the base tables as regular indexes on the replicated MQTs.

Using layered MQT refresh to improve maintenance

Using a layered MQT refresh approach to build MQTs takes advantage of existing MQTs. This approach is very useful for cubing applications where it is quite common to have aggregation on various dimension levels to support drill-downs and roll-ups, dozens of MQTs on various hierarchy levels, and a limited window to refresh MQTs.

The following steps shows an example on how to use a layered MQT refresh approach:

1. Create MQT1 defined on DATE_ID, STORE_ID, and PRODUCT_ID.
2. Create MQT2 defined on YEAR_ID, STORE_ID, PRODUCT_ID
3. Refresh MQT1.
4. Populate MQT2 by using the LOAD FROM CURSOR command on the base fact table. The optimizer reroutes the command to MQT1. The cursor is based on the MQT2 definition.
5. Set integrity for MQT2 using the UNCHECKED clause.

This method to populate MQT2 is faster because it only aggregates data in MQT1 by YEAR_ID and does not access the base fact table at all.

However, the database manager does not know about the similarities between different MQTs. Therefore, the sequence to issue the MQTs refresh is quite important. Create the indexes and collect statistics after MQTs are refreshed. For more information, see “Materialized query tables” on page 41.

Using views and view MQTs to define data marts

Views are a convenient way of hiding some details of the physical data model. They can express a business view of the world and enforce security rules within an organization. A view might encapsulate expressions that use the underlying object names and computations that the business user or the business application metadata model understands.

You can use views to define individual data marts based on the specific requirements of individual lines of business that are different from the enterprise warehouse.

The advantages of views are:

- They do not require additional space.
- Their maintenance requirements are minimal.
- They simplify application development by hiding the complexity of the physical data model.

Data marts can be represented by using views over the base tables when the views are relatively simple. Carefully consider whether a view can represent a fact table. If a “fact view” gets too complex and includes operations such as UNION, LEFT OUTER JOIN, or GROUP BY queries that join the fact view with other dimension
table, views might have poor query performance when joined to other complex views. This performance issue might become apparent only when the number of queries and the database grow.

Starting with DB2 V9.7 or later versions, consider using view MQTs. You can create MQTs by simply selecting from a view. If you have a fact view for your data mart and you create a view MQT on that fact view, queries that access the fact view can be rerouted to the view MQT which looks as a simple fact table in the internally rewritten query.

Best practices

Use the following best practices when designing an aggregation layer:

- Use MQTs to increase the performance of expensive or frequently used queries that aggregate data. For more information, see “Using materialized query tables” on page 27.

- Use replicated MQTs to improve the performance of queries that use joins between a large database partitioned table and a small dimension table and reduce the intra-partition network traffic. For more information, see “Replicated MQTs” on page 28.

- Use views to define individual data marts when the view definition remains simple. For more information, see “Using views and view MQTs to define data marts” on page 29.
DB2 Version 10.1 features for data warehouse designs

Use new features in DB2 Version 10.1 in your data warehouse to make your data lifecycle management easier, optimize storage utilization, and store and retrieve time-based data.

DB2 Version 10.1 introduces the following new features:
- “Storage optimizations”
- “Multi-temperature data storage”
- “Adaptive compression” on page 32
- “Time travel query by using temporal tables” on page 32

Storage optimizations

In DB2 Version 10.1, automatic storage table spaces have become the standard for DB2 storage because they provide the advantage of both ease of management and improved performance. For user-defined permanent table spaces, the SMS (system managed space) type is deprecated since Version 10.1. For more details about how to re-create SMS table spaces to automatic storage, see “SMS permanent table spaces have been deprecated” at the following URL: http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0058748.html.

Starting with Version 10.1 Fix Pack 1, the DMS (database managed space) type is deprecated. For more details about how to convert DMS table spaces to automatic storage, see “DMS permanent table spaces are deprecated” at the following URL: http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0060577.html.

You can now create and manage storage groups, which are groups of storage paths. A storage group contains storage paths with similar characteristics. Automatic storage table spaces inherit media attribute values, device read rate, and data tag attributes from the storage group that the table spaces are using by default. Using storage groups has the following advantages:
- You can physically partition table spaces managed by automatic storage. You can dynamically reassign a table space to a different storage group by using the ALTER TABLESPACE statement with the USING STOGROUP option.
- You can create different classes of storage (multi-temperature storage classes) where frequently accessed (hot) data is stored in storage paths that reside on fast storage while infrequently accessed (cold) data is stored in storage paths that reside on slower or less expensive storage.
- You can specify tags for storage groups to assign tags to the data. Then, define rules in DB2 Work Load Manager (WLM) about how activities are treated based on these tags.

For more details, see “Storage management has been improved” in the DB2 V10.1 Information Center at the following URL: http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/c0058962.html.

Multi-temperature data storage

In a data warehouse environment, aligning active (hot) data with faster storage and inactive (cold) data with slower storage makes data lifecycle management easier, optimizes storage utilization, and allows efficient retrieval of time-based data.
easier. Also, you can apply different maintenance operations to table spaces with
different temperature. You can define as many temperatures of data as your
environment requires depending on the different storage characteristics and the
type of workload.

Another application in data warehouse environments is to use multi-temperature
storage classes with range partitioned tables. After assigning table spaces to
different storage groups to define multiple temperatures, assign each data partition
to a table space with the appropriate temperature to prioritize the data access.

You can create storage groups by using the CREATE STOGROUP statement to
indicate the corresponding storage paths and device characteristics as shown in the
following example:

```
CREATE STOGROUP hot-sto-group-name ON hot-sto-path-1, ...hot-sto-path-N
  DEVICE READ RATE hot-read-rate OVERHEAD hot-device-overhead
CREATE STOGROUP cold-sto-group-name ON cold-sto-path-1, ...cold-sto-path-N
  DEVICE READ RATE cold-read-rate OVERHEAD cold-device-overhead
```

After creating the storage groups, use the ALTER TABLESPACE statement to move
automatic storage tables spaces from one storage group to another. Assign tables
spaces that contain hot data to the hot storage groups and the table spaces that
contain cold data to the cold storage group. Having the data accessed by most
queries in the hot table spaces improves query performance substantially. For more
details, see “DB2 V10.1 Multi-temperature data management recommendations” at
the following URL: http://www.ibm.com/developerworks/data/library/long/dm-
1205multitemp/index.html.

Adaptive compression

In DB2 Version 10.1, adaptive compression uses page-level compression
dictionaries in addition to the table-level compression dictionary to compress
tables. Adaptive compression adapts to changing data characteristics and provides
significantly better compression ratios in many cases because the page-level
compression dictionary takes into account all of the data that exists within the
page. In data warehouse environments, better compression rates translates into
substantial storage reductions.

Page-level compression dictionaries are automatically maintained. Therefore, you
do not need to perform a table reorganization to compress data on that page. In
addition to improved compression rates, this approach to compression can improve
the availability of your data and the performance of maintenance operations that
involve large volumes of data. For more details, see “DB2 best practices: Storage
optimization with deep compression” at the following URL: http://www.ibm.com/
developerworks/data/bestpractices/deepcompression/.

Time travel query by using temporal tables

Use temporal tables to associate time-based state information with your data. Data
in tables that do not use temporal support apply to the present, while data in
temporal tables can be valid for a period defined by the database system, user
applications, or both.

With temporal tables, a warehouse database can store and retrieve time-based data
without additional application logic. For example, a database can store the history
of a table so you can query deleted rows or the original values of updated rows.
For more details, see “DB2 best practices: Temporal data management with DB2”
Best practices

Use the following best practices to take advantage of new DB2 Version 10.1 features:

- Use automatic storage table spaces. If possible, convert existing SMS or DMS table spaces to automatic storage.
- Use storage groups to physically partition automatic storage table spaces in conjunction with table partitioning in your physical warehouse design.
- Use storage groups to create multi-temperature storage classes so that frequently accessed data is stored on fast storage while infrequently accessed data is stored on slower or less expensive storage.
- Use adaptive compression to achieve better compression ratios.
- Use temporal tables and time travel query to store and retrieve time-based data.
Data warehouse design for a sample scenario

This section describes the physical data model designed for a sample scenario of a data warehouse for a fictitious company that sells a large number of products. The company data warehouse stores daily sales data for all these products. The examples in this paper are based on this sample scenario.

Physical data model design

The physical data model illustrated in the following diagram shows the tables and relationships that are used in the sample data warehouse.

![Figure 5. Physical data model for the sample data warehouse](image-url)

© Copyright IBM Corp. 2012
Dimension tables

The physical data model for the sample scenario consists of the following dimension tables to accommodate the date, product, and store data:

- TB_DATE_DIM
- TB_PRODUCT_DIM
- TB_PRODUCT_LINE_DIM
- TB_PRODUCT_FAMILY_DIM
- TB_STORE_DIM
- TB_STORE_LOCATION_DIM

Fact tables

The physical data model for the sample scenario consists of the following fact table that contains the sales transaction data:

- TB_SALES_FACT

Table constraints

To establish relationships between the dimension and fact tables, the physical data model for the sample scenario consists of the following table constraints:

- TB_PRODUCT_FACT_FK
- TB_PRODUCT_LINE_FK
- TB_PRODUCT_FAMILY_FK
- TB_CITY_FK
- TB_STORE_FACT_FK
- TB_DATE_FACT_FK

Implementation of the physical data model

This section describes the DDL statements that were used to implement the physical data model in an IBM InfoSphere Warehouse Version 9.7 environment. This physical data model includes database partition groups, table spaces, tables, indexes, constraints, and MQTs.

Database partition groups

The physical data model for the sample scenario consists of two database partition groups. The following DDL statements show how to create these database partition groups:

<table>
<thead>
<tr>
<th>Database partition group name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDGP</td>
<td>-- CREATE DATABASE PARTITION GROUP SDPG ON</td>
</tr>
<tr>
<td></td>
<td>-- CATALOG PARTITION FOR NON-PARTITIONED TABLES,</td>
</tr>
<tr>
<td></td>
<td>CREATE DATABASE PARTITION GROUP SDPG ON DBPARTITIONNUM(0);</td>
</tr>
<tr>
<td>PDPG</td>
<td>-- CREATE DATABASE PARTITION GROUP PDPG ON</td>
</tr>
<tr>
<td></td>
<td>-- ALL DATABASE PARTITIONS FOR PARTITIONED TABLES</td>
</tr>
<tr>
<td></td>
<td>CREATE DATABASE PARTITION GROUP PDPG ON DBPARTITIONNUMS(1 TO 8);</td>
</tr>
</tbody>
</table>

The PDPG database partition group was created on the database partitions 1 - 8.
Table spaces

The physical data model for the sample scenario has separate table spaces for dimension tables, fact tables, indexes, and MQTs. All table spaces have the AUTORESIZE attribute set to YES and the INCREASESIZE attribute set to 10 percent. The following DDL statements listed in this table show how to create these table spaces and assign them to the correct database partition group:

<table>
<thead>
<tr>
<th>Table space name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS_SD_DIMENSIONS</td>
<td>-- CREATE TABLE SPACE FOR DIMENSION TABLES IN (CATALOG PARTITION ONLY) CREATE TABLESPACE TS_SD_DIMENSIONS IN DATABASE PARTITION GROUP SDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_LARGE_DIMS</td>
<td>-- CREATE TABLE SPACE FOR LARGE DIMENSION TABLES IN (PARTITIONS 1-8) CREATE TABLESPACE TS_PD_LARGE_DIMS IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_FACT_PAST</td>
<td>-- CREATE TABLE SPACES FOR THE FACT TABLES IN CREATE TABLESPACE TS_PD_FACT_PAST IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_FACT_201112</td>
<td>CREATE TABLESPACE TS_PD_FACT_201112 IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_FACT_201201</td>
<td>CREATE TABLESPACE TS_PD_FACT_201201 IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_FACT_201202</td>
<td>CREATE TABLESPACE TS_PD_FACT_201202 IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_FACT_201203</td>
<td>CREATE TABLESPACE TS_PD_FACT_201203 IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_REPL_DIMS</td>
<td>-- CREATE TABLE SPACE FOR REPLICA DIMENSION TABLES CREATE TABLESPACE TS_PD_REPL_DIMS IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
<tr>
<td>TS_PD_MQT_SALES</td>
<td>-- CREATE TABLE SPACE FOR THE FACT TABLES MQTs CREATE TABLESPACE TS_PD_MQT_SALES IN DATABASE PARTITION GROUP PDPG AUTORESIZE YES INCREASESIZE 10 PERCENT;</td>
</tr>
</tbody>
</table>

Schema

The physical data model for the sample scenario uses the following schemas to group objects by type in the sample scenario:
- BI_STAGE (stage tables)
- BI_SCHEMA (dimension tables, fact tables, indexes)
- BI_MQT (MQTs, indexes)

Use these schemas when creating database objects for the sample scenario.
Dimension tables

The physical data model implements the dimension tables defined for the sample scenario. The following DDL statements listed in this table show how to create these dimension tables:

<table>
<thead>
<tr>
<th>Dimension table</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product dimension</td>
<td>(TB_PRODUCT_DIM)</td>
</tr>
<tr>
<td></td>
<td>-- CREATE PRODUCT DIMENSION TABLE</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_SCHEMA.TB_PRODUCT_DIM</td>
</tr>
<tr>
<td></td>
<td>(PRODUCT_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_NAME VARCHAR(50) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_DESCRIPTION VARCHAR(1000) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_PRICE DECIMAL(20,2) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_LINE_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_LAST_UPDATE TIMESTAMP NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CONSTRAINT TB_PRODUCT_DIM_PK</td>
</tr>
<tr>
<td></td>
<td>PRIMARY KEY (PRODUCT_ID))</td>
</tr>
<tr>
<td></td>
<td>IN TS_PD_LARGE_DIMS</td>
</tr>
<tr>
<td></td>
<td>COMPRESS YES</td>
</tr>
<tr>
<td></td>
<td>DISTRIBUTE BY HASH (PRODUCT_ID);</td>
</tr>
<tr>
<td>Date Dimension</td>
<td>(TB_DATE_DIM)</td>
</tr>
<tr>
<td></td>
<td>-- CREATE DATE DIMENSION TABLE</td>
</tr>
<tr>
<td></td>
<td>-- The DATE_ID column is defined as a DATE data type</td>
</tr>
<tr>
<td></td>
<td>-- to improve performance of queries with joins</td>
</tr>
<tr>
<td></td>
<td>-- between this table and the fact table.</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_SCHEMA.TB_DATE_DIM</td>
</tr>
<tr>
<td></td>
<td>(DATE_ID DATE NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>WEEK_ID SMALLINT NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>MONTH_ID SMALLINT NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>MONTH_NAME VARCHAR(10) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PERIOD_ID SMALLINT NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>YEAR SMALLINT NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CONSTRAINT TB_DATE_DIM_PK</td>
</tr>
<tr>
<td></td>
<td>PRIMARY KEY (DATE_ID))</td>
</tr>
<tr>
<td></td>
<td>IN TS_SD_DIMENSIONS;</td>
</tr>
<tr>
<td>Product Family</td>
<td>(TB_PRODUCT_FAMILY_DIM)</td>
</tr>
<tr>
<td></td>
<td>-- CREATE PRODUCT FAMILY DIMENSION TABLE</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_SCHEMA.TB_PRODUCT_FAMILY_DIM</td>
</tr>
<tr>
<td></td>
<td>(PRODUCT_FAMILY_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_FAMILY_NAME VARCHAR(50) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_FAMILY_DESCRIPTION VARCHAR(1000) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_FAMILY_LAST_UPDATE TIMESTAMP NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_LINE_OF_BUSINESS_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_LINE_OF_BUSINESS_NAME VARCHAR(50) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CONSTRAINT TB_PRODUCT_FAMILY_DIM_PK</td>
</tr>
<tr>
<td></td>
<td>PRIMARY KEY (PRODUCT_FAMILY_ID))</td>
</tr>
<tr>
<td></td>
<td>IN TS_SD_DIMENSIONS;</td>
</tr>
<tr>
<td>Product Line</td>
<td>(TB_PRODUCT_LINE_DIM)</td>
</tr>
<tr>
<td></td>
<td>-- CREATE PRODUCT LINE DIMENSION TABLE</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_SCHEMA.TB_PRODUCT_LINE_DIM</td>
</tr>
<tr>
<td></td>
<td>(PRODUCT_LINE_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_FAMILY_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_LINE_NAME VARCHAR(50) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_LINE_DESCRIPTION VARCHAR(1000) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_LINE_LAST_UPDATE TIMESTAMP NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CONSTRAINT TB_PRODUCT_LINE_DIM_PK</td>
</tr>
<tr>
<td></td>
<td>PRIMARY KEY (PRODUCT_LINE_ID))</td>
</tr>
<tr>
<td></td>
<td>IN TS_SD_DIMENSIONS;</td>
</tr>
</tbody>
</table>
Dimension table

<table>
<thead>
<tr>
<th>Store location dimension</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TB_STORE_LOCATION_DIM)</td>
<td>CREATE STORE LOCATION DIMENSION TABLE</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_SCHEMA.TB_STORE_LOCATION_DIM</td>
</tr>
<tr>
<td></td>
<td>(CITY_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CITY_NAME VARCHAR(30) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>STATE_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>STATE_NAME VARCHAR(30) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>COUNTRY_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>COUNTRY_NAME VARCHAR(30) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CONSTRAINT TB_STORE_LOCATION_DIM_PK</td>
</tr>
<tr>
<td></td>
<td>PRIMARY KEY (CITY_ID)</td>
</tr>
<tr>
<td></td>
<td>IN TS_SD_DIMENSIONS;</td>
</tr>
</tbody>
</table>

Store dimension

<table>
<thead>
<tr>
<th>Store dimension</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TB_STORE_DIM)</td>
<td>CREATE STORE DIMENSION TABLE</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_SCHEMA.TB_STORE_DIM</td>
</tr>
<tr>
<td></td>
<td>(STORE_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>STORE_NAME VARCHAR(30) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CITY_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>CONSTRAINT TB_STORE_DIM_PK</td>
</tr>
<tr>
<td></td>
<td>PRIMARY KEY (STORE_ID)</td>
</tr>
<tr>
<td></td>
<td>IN TS_SD_DIMENSIONS;</td>
</tr>
</tbody>
</table>

Fact table

The physical data model implements the fact table defined for the sample scenario. The following DDL statement listed in this table shows how to create this fact table:

<table>
<thead>
<tr>
<th>Fact table</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB_SALES_FACT</td>
<td>CREATE SALES FACT TABLE AS RANGE PARTITION BY MONTH</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_SCHEMA.TB_SALES_FACT</td>
</tr>
<tr>
<td></td>
<td>(DATE_ID DATE NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>PRODUCT_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>STORE_ID INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>QUANTITY INTEGER NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>COST_VALUE DECIMAL(10,2) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>TAX_VALUE DECIMAL(10,2) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>NET_VALUE DECIMAL(10,2) NOT NULL,</td>
</tr>
<tr>
<td></td>
<td>GROSS_VALUE DECIMAL(10,2) NOT NULL)</td>
</tr>
<tr>
<td></td>
<td>PARTITION BY RANGE (DATE_ID)</td>
</tr>
<tr>
<td></td>
<td>(PARTITION PART_PAST STARTING (MINVALUE)</td>
</tr>
<tr>
<td></td>
<td>ENDING ('2011-12-01') EXCLUSIVE IN TS_PD_FACT_PAST,</td>
</tr>
<tr>
<td></td>
<td>PARTITION PART_2011_DEC STARTING ('2011-12-01')</td>
</tr>
<tr>
<td></td>
<td>ENDING ('2012-01-01') EXCLUSIVE IN TS_PD_FACT_201112,</td>
</tr>
<tr>
<td></td>
<td>PARTITION PART_2012_JAN STARTING ('2012-01-01')</td>
</tr>
<tr>
<td></td>
<td>ENDING ('2012-02-01') EXCLUSIVE IN TS_PD_FACT_201201,</td>
</tr>
<tr>
<td></td>
<td>PARTITION PART_2012_FEB STARTING ('2012-02-01')</td>
</tr>
<tr>
<td></td>
<td>ENDING ('2012-03-01') EXCLUSIVE IN TS_PD_FACT_201202)</td>
</tr>
<tr>
<td></td>
<td>COMPRESS YES</td>
</tr>
<tr>
<td></td>
<td>DISTRIBUTE BY HASH(PRODUCT_ID)</td>
</tr>
<tr>
<td></td>
<td>ORGANIZE BY (STORE_ID, DATE_ID);</td>
</tr>
</tbody>
</table>
Table constraints

The physical data model implements the table constraints defined for the sample scenario. Use the DDL statements shown in this table to create these constraints:

<table>
<thead>
<tr>
<th>Constraint name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB_PRODUCT_FACT_FK</td>
<td>-- DEFINE RELATIONSHIP BETWEEN TB_SALES_FACT AND TB_PRODUCT_DIM</td>
</tr>
<tr>
<td></td>
<td>ALTER TABLE BI_SCHEMA.TB_SALES_FACT</td>
</tr>
<tr>
<td></td>
<td>ADD CONSTRAINT TB_PRODUCT_FACT_FK</td>
</tr>
<tr>
<td></td>
<td>FOREIGN KEY(PRODUCT_ID) REFERENCES BI_SCHEMA.TB_PRODUCT_DIM (PRODUCT_ID)</td>
</tr>
<tr>
<td></td>
<td>NOT ENFORCED;</td>
</tr>
<tr>
<td>TB_PRODUCT_LINE_FK</td>
<td>-- DEFINE RELATIONSHIP BETWEEN TB_PRODUCT_DIM AND TB_PRODUCT_LINE_DIM</td>
</tr>
<tr>
<td></td>
<td>ALTER TABLE BI_SCHEMA.TB_PRODUCT_DIM</td>
</tr>
<tr>
<td></td>
<td>ADD CONSTRAINT TB_PRODUCT_LINE_FK</td>
</tr>
<tr>
<td></td>
<td>FOREIGN KEY(PRODUCT_LINE_ID) REFERENCES BI_SCHEMA.TB_PRODUCT_LINE_DIM (PRODUCT_LINE_ID)</td>
</tr>
<tr>
<td></td>
<td>NOT ENFORCED;</td>
</tr>
<tr>
<td>TB_PRODUCT_FAMILY_FK</td>
<td>-- DEFINE RELATIONSHIP BETWEEN TB_PRODUCT_LINE_DIM AND TB_PRODUCT_FAMILY_DIM</td>
</tr>
<tr>
<td></td>
<td>ALTER TABLE BI_SCHEMA.TB_PRODUCT_LINE_DIM</td>
</tr>
<tr>
<td></td>
<td>ADD CONSTRAINT TB_PRODUCT_FAMILY_FK</td>
</tr>
<tr>
<td></td>
<td>FOREIGN KEY(PRODUCT_FAMILY_ID) REFERENCES BI_SCHEMA.TB_PRODUCT_FAMILY_DIM (PRODUCT_FAMILY_ID)</td>
</tr>
<tr>
<td></td>
<td>NOT ENFORCED;</td>
</tr>
<tr>
<td>TB_CITY_FK</td>
<td>-- DEFINE RELATIONSHIP BETWEEN TB_STORE_DIM AND TB_STORE_LOCATION_DIM</td>
</tr>
<tr>
<td></td>
<td>ALTER TABLE BI_SCHEMA.TB_STORE_DIM</td>
</tr>
<tr>
<td></td>
<td>ADD CONSTRAINT TB_CITY_FK</td>
</tr>
<tr>
<td></td>
<td>FOREIGN KEY(CITY_ID) REFERENCES BI_SCHEMA.TB_STORE_LOCATION_DIM (CITY_ID)</td>
</tr>
<tr>
<td></td>
<td>NOT ENFORCED;</td>
</tr>
<tr>
<td>TB_STORE_FACT_FK</td>
<td>-- DEFINE RELATIONSHIP BETWEEN TB_SALES_FACT AND TB_STORE_DIM</td>
</tr>
<tr>
<td></td>
<td>ALTER TABLE BI_SCHEMA.TB_SALES_FACT</td>
</tr>
<tr>
<td></td>
<td>ADD CONSTRAINT TB_STORE_FACT_FK</td>
</tr>
<tr>
<td></td>
<td>FOREIGN KEY(STORE_ID) REFERENCES BI_SCHEMA.TB_STORE_DIM (STORE_ID)</td>
</tr>
<tr>
<td></td>
<td>NOT ENFORCED;</td>
</tr>
<tr>
<td>TB_DATE_FACT_FK</td>
<td>-- DEFINE RELATIONSHIP BETWEEN TB_SALES_FACT AND TB_DATE_DIM</td>
</tr>
<tr>
<td></td>
<td>ALTER TABLE BI_SCHEMA.TB_SALES_FACT</td>
</tr>
<tr>
<td></td>
<td>ADD CONSTRAINT TB_DATE_FACT_FK</td>
</tr>
<tr>
<td></td>
<td>FOREIGN KEY(DATE_ID) REFERENCES BI_SCHEMA.TB_DATE_DIM (DATE_ID)</td>
</tr>
<tr>
<td></td>
<td>NOT ENFORCED;</td>
</tr>
</tbody>
</table>
Indexes

For Version 9.7 and earlier releases, the physical data model includes individual indexes on each of the foreign key columns to promote the use of star joins. Use the following DDL statement to create indexes on the BI_SCHEMA.TB_SALES_FACT table:

<table>
<thead>
<tr>
<th>Index name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDX_SALES_FACT_ON_DATE</td>
<td>CREATE INDEX BI_SCHEMA.IDX_SALES_FACT_ON_DATE ON BI_SCHEMA.TB_SALES_FACT (DATE_ID);</td>
</tr>
<tr>
<td>IDX_SALES_FACT_ON_PRODUCT</td>
<td>CREATE INDEX BI_SCHEMA.IDX_SALES_FACT_ON_PRODUCT ON BI_SCHEMA.TB_SALES_FACT (PRODUCT_ID);</td>
</tr>
<tr>
<td>IDX_SALES_FACT_ON_STORE</td>
<td>CREATE INDEX BI_SCHEMA.IDX_SALES_FACT_ON_STORE ON BI_SCHEMA.TB_SALES_FACT (STORE_ID);</td>
</tr>
</tbody>
</table>

For Version 10.1 and later releases, the physical data model includes composite indexes that have multiple foreign key columns to promote the use of zigzag join. Use the following DDL statement to create an index on the BI_SCHEMA.TB_SALES_FACT table:

<table>
<thead>
<tr>
<th>Index name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDX_SALES_FACT_ON_FKS</td>
<td>CREATE INDEX BI_SCHEMA.IDX_SALES_FACT_ON_FKS ON BI_SCHEMA.TB_SALES_FACT (DATE_ID,PRODUCT_ID,STORE_ID);</td>
</tr>
</tbody>
</table>

Materialized query tables

To satisfy queries on the sample scenario that aggregate sales data the physical data model implements several MQTs for sales of products and product lines. The following DDL statement shows how to create these MQTs:

<table>
<thead>
<tr>
<th>MQT name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQT_SALES_STORE_DATE_PRODUCT</td>
<td>-- CREATE MQT TO AGGREGATE PRODUCT SALES DATA</td>
</tr>
<tr>
<td></td>
<td>-- BY STORE, DATE, AND PRODUCT</td>
</tr>
<tr>
<td></td>
<td>CREATE TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT AS</td>
</tr>
<tr>
<td></td>
<td>(SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT_ID,</td>
</tr>
<tr>
<td></td>
<td>SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY</td>
</tr>
<tr>
<td></td>
<td>FROM BI_SCHEMA.TB_SALES_FACT F</td>
</tr>
<tr>
<td></td>
<td>GROUP BY F.STORE_ID, F.DATE_ID, F.PRODUCT_ID)</td>
</tr>
<tr>
<td></td>
<td>DATA INITIALLY DEFERRED REFRESH DEFERRED</td>
</tr>
<tr>
<td></td>
<td>ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM</td>
</tr>
<tr>
<td></td>
<td>COMPRESS YES</td>
</tr>
<tr>
<td></td>
<td>DISTRIBUTE BY HASH(PRODUCT_ID)</td>
</tr>
<tr>
<td></td>
<td>PARTITION BY RANGE(DATE_ID)</td>
</tr>
<tr>
<td></td>
<td>(PART PART_PAST STARTING(MINVALUE)</td>
</tr>
<tr>
<td></td>
<td>ENDING('2011-12-01') EXCLUSIVE IN TS_PD_MQT_SALES,</td>
</tr>
<tr>
<td></td>
<td>PART PART_2011_DEC STARTING ('2011-12-01')</td>
</tr>
<tr>
<td></td>
<td>ENDING('2012-01-01') EXCLUSIVE IN TS_PD_MQT_SALES,</td>
</tr>
<tr>
<td></td>
<td>PART PART_2012_JAN STARTING ('2012-01-01')</td>
</tr>
<tr>
<td></td>
<td>ENDING('2012-02-01') EXCLUSIVE IN TS_PD_MQT_SALES,</td>
</tr>
<tr>
<td></td>
<td>PART PART_2012_FEB STARTING ('2012-02-01')</td>
</tr>
<tr>
<td></td>
<td>ENDING('2012-03-01') EXCLUSIVE IN TS_PD_MQT_SALES)</td>
</tr>
<tr>
<td></td>
<td>ORGANIZE BY (STORE_ID, DATE_ID);</td>
</tr>
</tbody>
</table>
MQT name | Details
| MQT_SALES_STORE_DATE_PRODUCT_LINE | -- CREATE MQT TO AGGREGATE PRODUCT LINE SALES DATA -- BY STORE, DATE, AND PRODUCT LINE |
| | CREATE TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT_LINE AS |
| | (SELECT F.STORE_ID, F.DATE_ID, PD.PRODUCT_LINE_ID, |
| | SUM(F.GROSS_VALUE) AS SUM_GROSS_VALUE |
| | FROM BI_SCHEMA.TB_SALES_FACT F, |
| | BI_SCHEMA.TB_PRODUCT_DIM PD |
| | WHERE F.PRODUCT_ID=PD.PRODUCT_ID |
| | GROUP BY F.STORE_ID, F.DATE_ID, PD.PRODUCT_LINE_ID) |
| | DATA INITIALLY DEFERRED REFRESH DEFERRED |
| | ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM |
| | COMPRESS YES |
| | DISTRIBUTE BY HASH(STORE_ID, PRODUCT_LINE_ID) |
| | IN TS_PD_MQT_SALES; |

MQT_SALES_STORE_MONTH_PRODUCT_LINE | -- CREATE MQT TO AGGREGATE PRODUCT LINE SALES DATA -- BY STORE, MONTH, AND PRODUCT LINE |
| CREATE TABLE BI_MQT.MQT_SALES_STORE_MONTH_PRODUCT_LINE AS |
| (SELECT F.STORE_ID, DD.MONTH_ID, DD.YEAR, |
| PD.PRODUCT_LINE_ID, |
| SUM(F.GROSS_VALUE) AS SUM_GROSS_VALUE |
| FROM BI_SCHEMA.TB_SALES_FACT F, |
| BI_SCHEMA.TB_PRODUCT_DIM PD, |
| BI_SCHEMA.TB_DATE_DIM DD |
| WHERE F.PRODUCT_ID = PD.PRODUCT_ID |
| AND F.DATE_ID = DD.DATE_ID |
| AND F.DATE_ID = DD.DATE_ID |
| GROUP BY F.STORE_ID, DD.MONTH_ID, DD.YEAR, |
| PD.PRODUCT_LINE_ID) |
| DATA INITIALLY DEFERRED REFRESH DEFERRED |
| ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM |
| COMPRESS YES |
| DISTRIBUTE BY HASH(STORE_ID, PRODUCT_LINE_ID) |
| IN TS_PD_MQT_SALES; |

Examples for incremental updates and full refresh of MQTs

For incremental updates of the MQT, you can use the REFRESH TABLE statement. However, you can use alternative methods to perform an incremental update such as using the LOAD APPEND command to add new data to the MQT. The following examples show some of the methods to perform incremental updates and full refresh of MQTs.

Using the REFRESH TABLE statement to perform a full refresh

The following steps illustrate one of the methods to perform a full refresh on an MQT:

1. Populate the MQT_SALES_STORE_DATE_PRODUCT MQT by issuing the following SQL statement:

   ```sql
   REFRESH TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT;
   ```

 This operation is logged in the database transaction logs.

2. After populating the MQT, create an index on the STORE_ID and DATE_ID columns to improve the performance of operations on the MQT by issuing the following DDL statement:

   ```sql
   CREATE INDEX BI_MQT.IDX_MQT_SALES_STORE_DATE_PRODUCT_ID ON BI_MQT.MQT_SALES_STORE_DATE_PRODUCT (STORE_ID, DATE_ID);
   ```
3. Collect statistics on the MQT by issuing the following SQL statement:

```
RUNSTATS ON TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL;
```

Re-creating an MQT to perform a full refresh

For a full refresh of an MQT, re-creating the MQT and loading the data from a cursor followed by integrity processing can have better performance than using the REFRESH TABLE statement. The following example shows how to declare a cursor, use load to populate the MQT, and then perform integrity processing:

```
DECLARE C_CUR CURSOR FOR
  (SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT_ID,
   SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY
  FROM BI_SCHEMA.TB_SALES_FACT F
  GROUP BY F.STORE_ID, F.DATE_ID, F.PRODUCT_ID);

LOAD FROM C_CUR OF CURSOR REPLACE
  INTO BI_MQT.MQT_SALES_STORE_DATE_PRODUCT NONRECOVERABLE;

SET INTEGRITY FOR BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
  ALL IMMEDIATE UNCHECKED;
```

Performing incremental updates on partitioned MQTs

For incremental updates on partitioned MQTs, use staging tables to attach or detach partitions to the MQT after attaching or detaching partitions to the fact table during the ETL process. The following steps illustrate the use of staging tables:

1. Create the staging tables for the MQT and the TB_SALES_FACT table by issuing the following SQL statements:

   ```
   -- STAGING TABLE TO BE ATTACHED AS NEW PARTITION
   -- TO THE MQT_SALES_STORE_DATE_PRODUCT MQT
   DROP TABLE BI_STAGE.MQT_SALES_STORE_DATE_PRODUCT_PARTITION;
   CREATE TABLE BI_STAGE.MQT_SALES_STORE_DATE_PRODUCT_PARTITION
    LIKE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
    COMPRESS YES
    DISTRIBUTE BY HASH(PRODUCT_ID)
    ORGANIZE BY (STORE_ID, DATE_ID)
    IN TS_PD_MQT_SALES;
   
   -- STAGING TABLE TO BE ATTACHED AS NEW PARTITION
   -- TO THE TB_SALES_FACT TABLE
   DROP TABLE BI_STAGE.TB_SALES_FACT_NEW_PARTITION;
   CREATE TABLE BI_STAGE.TB_SALES_FACT_NEW_PARTITION
    LIKE BI_SCHEMA.TB_SALES_FACT
    COMPRESS YES
    DISTRIBUTE BY HASH(PRODUCT_ID)
    ORGANIZE BY (STORE_ID, DATE_ID)
    IN TS_PD_FACT_201203;
   
   The DROP statement ensures that new empty tables are used for each incremental update.
   
   2. Populate summarized data into the MQT staging table from the staging table for the TB_SALES_FACT table by issuing the following SQL statement:
   ```
INSERT INTO BI_STAGE.MQT_SALES_STORE_DATE_PRODUCT_PARTITION
(SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT_ID,
 SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY
FROM BI_STAGE.TB_SALES_FACT_NEW_PARTITION F
GROUP BY F.STORE_ID, F.DATE_ID, F.PRODUCT_ID);

3. Attach the BI_STAGE.TB_SALES_FACT_NEW_PARTITION staging table to the TB_SALES_FACT table by issuing the following statements:

ALTER TABLE BI_SCHEMA.TB_SALES_FACT
ATTACH PARTITION PART_2012_MAR
STARTING ('2012-03-01') ENDING('2012-04-01') EXCLUSIVE
FROM BI_STAGE.TB_SALES_FACT_NEW_PARTITION;

SET INTEGRITY FOR BI_SCHEMA.TB_SALES_FACT
ALLOW WRITE ACCESS IMMEDIATE CHECKED INCREMENTAL;

4. Attach the MQT_SALES_STORE_DATE_PRODUCT_PARTITION staging table with the corresponding summarized data to the MQT_SALES_STORE_DATE_PRODUCT MQT by issuing the following statements:

ALTER TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT DROP MATERIALIZED QUERY;

ALTER TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT ATTACH PARTITION
STARTING ('2012-03-01')
ENDING('2012-04-01') EXCLUSIVE
FROM BI_STAGE.MQT_SALES_STORE_DATE_PRODUCT_PARTITION;

SET INTEGRITY FOR BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
ALLOW WRITE ACCESS IMMEDIATE CHECKED INCREMENTAL;

5. Re-materialized the MQT_SALES_STORE_DATE_PRODUCT MQT by issuing the following SQL statements:

ALTER TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT ADD MATERIALIZED QUERY
(SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT_ID,
 SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY
FROM BI_SCHEMA.TB_SALES_FACT F
GROUP BY F.STORE_ID, F.DATE_ID, F.PRODUCT_ID)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

SET INTEGRITY FOR BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
ALL IMMEDIATE UNCHECKED;

Replicated dimension tables

The physical data model replicates the dimension tables across all database partitions and places them in a separate table space. Use the following DDL statements to create the MQTs that replicate the dimension tables:

<table>
<thead>
<tr>
<th>MQT name</th>
<th>Details</th>
</tr>
</thead>
</table>
| REPL_DATE_DIM| CREATE TABLE BI_MQT.REPL_DATE_DIM
 AS (SELECT * FROM BI_SCHEMA.TB_DATE_DIM)
 DATA INITIALLY DEFERRED REFRESH IMMEDIATE
 ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
 DISTRIBUTE BY REPLICATION
 IN TS_PD_REPL_DIMS; |
Prepare the replicated table for use by performing the following steps:

1. Populate the replicated table by issuing the following SQL statement:

 REFRESH TABLE BI_MQT.REPL_DATE_DIM;

2. Create an index on the DATE_ID column to improve the operations for replication by issuing the following SQL statement:

 CREATE INDEX BI_MQT.IDX_REPL_DATE_DIM_ON_DATE_ID
 ON BI_MQT.REPL_DATE_DIM (DATE_ID);

3. Update the statistics for the replicated MQT by issuing the following SQL statement:

 RUNSTATS ON TABLE BI_MQT.REPL_DATE_DIM
 WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL;

A script that contains all the DDL statements to create all database objects is available for download at the following URL: http://www.ibm.com/developerworks/data/bestpractices/warehousedatabasedesign/.
Best practices summary

The following list summarizes the most relevant best practices for physical database design in data warehouse environments.

Planning data warehouse design

- Build prototypes of the physical data model at regular intervals during the data warehouse design process. For more details, see “Designing physical data models” on page 6.
- If a single dimension is too large, consider a star schema design for the fact table and a snowflake design such as hierarchy of tables for dimension tables.
- Have a separate database design model for each layer. For more details, see Database design layers.

For more details, see “Planning for data warehouse design” on page 5.

Designing a logical data model

- Define indexes on foreign keys to improve performance on start join queries. For Version 9.7, define an individual index on each foreign key. For Version 10.1, define composite indexes on multiple foreign key columns.
- Ensure that columns involved in a relationship between tables are of the same data type.
- Define columns for level keys with the NOT NULL clause to help the optimizer choose more efficient access plans. Better access plans lead to improved performance. For more information, see “Defining and choosing level keys” on page 11.
- Define date columns in dimension and fact tables that use the DATE data type to enable partition elimination and simplify your range partitioning strategy. For more information, see “Guidelines for the date dimension” on page 13.
- Use informational constraints. Ensure the integrity of the data by using the source application or by performing an ETL process. For more information, see “The importance of referential integrity” on page 13.

For more details, see “Designing a physical data model” on page 11.
Implementing a physical data model

- Define only one partition group that spans across all data partitions as collocated queries can only occur within the same database partition. For more details, see “The importance of database partition groups” on page 15.

- Use a large page size table space for the large tables to improve performance of queries that return a large number of rows. The IBM Smart Analytics Systems have 16 KB as the default page size for buffer pools and table spaces. Use this page size as the starting point for your data warehouse design. For more details, see “Choosing buffer pool and table space page size” on page 17.

- Hash partition the largest commonly joined dimension on its level key and partition the fact table on the corresponding foreign key. All other dimension tables can be placed in a single database partition group and replicated across database partitions. For more details, see “Table design for partitioned databases” on page 18.

- Replicate all or a subset of columns in a dimension table that is placed in a single database partition group to improve query performance. For more details, see “Partitioning dimension tables” on page 19.

- Avoid creating a large number of table partitions or pre-creating too many empty data partitions in a range partitioned table. Implement partition creation and allocation as part of the ETL job. For more details, see “Range partitioned tables for data availability and performance” on page 20.

- Use local indexes to speed up roll-in and roll-out of data. Corresponding indexes can be created on the partition to be attached. Also, using only local indexes reduces index maintenance when attaching or detaching partitions. For more details, see “Indexes on range partitioned tables” on page 21.

- Use multidimensional clustering for fact tables. For more details, see “Candidates for multidimensional clustering” on page 21.

- Use administrative functions to help you estimate compression ratios on your tables and indexes. For more details, see “Including row compression in data warehouse designs” on page 23.

- Ensure that the CPU usage is 70% or less before enabling compression. If reducing storage is critical even in a CPU-bound environment, compress data that is infrequently used. For example, compress historical fact tables.

For more details, see “Implementing a physical data model” on page 15.

Designing an aggregation layer

- Use MQTs to increase the performance of expensive or frequently used queries that aggregate data. For more information, see “Using materialized query tables” on page 27.

- Use replicated MQTs to improve the performance of queries that use joins between a large database partitioned table and a small dimension table and reduce the intra-partition network traffic. For more information, see “Replicated MQTs” on page 28.

- Use views to define individual data marts when the view definition remains simple. For more information, see “Using views and view MQTs to define data marts” on page 29.

For more details, see “Designing an aggregation layer” on page 27.
Designing with new DB2 Version 10.1 features

- Use automatic storage table spaces. If possible, convert existing SMS or DMS table spaces to automatic storage.
- Use storage groups to physically partition automatic storage table spaces in conjunction with table partitioning in your physical warehouse design.
- Use storage groups to create multi-temperature storage classes so that frequently accessed data is stored on fast storage while infrequently accessed data is stored on slower or less expensive storage.
- Use adaptive compression to achieve better compression ratios.
- Use temporal tables and time travel query to store and retrieve time-based data.

For more details, see “DB2 Version 10.1 features for data warehouse designs” on page 31.
Conclusion

Understanding the importance of having the right data warehouse foundation and a good data warehouse design are key to long-term success through good query performance, easier maintainability, and robust recovery options.

Use the recommendations in this paper to help you implement a data warehouse design that is scalable, balanced, and flexible enough to meet existing and future needs in DB2 Database for Linux, UNIX, and Windows or IBM InfoSphere Warehouse environments.
Important references

These important references provide further reading about physical data warehouse design and related aspects.

- Sample scenario script at the following URL: http://www.ibm.com/developerworks/data/bestpractices/warehousedatabasedesign/
- “Choosing partitioning keys in DB2 Database Partitioning Feature environments” at the following URL: http://www.ibm.com/developerworks/data/library/techarticle/dm-1005partitioningkeys/
- “Table partitioning” at the following URL: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021558.html
- “Dimensional schemas” at the following URL: http://publib.boulder.ibm.com/infocenter/rdahelp/v7r5/topic/com.ibm.datatools-dimensional.ui.doc/topics/c_dm_dimschemas.html
- “Storage management has been improved” at the following URL: http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/c0058962.html
- “Best Practices: Database storage” at the following URL: http://www.ibm.com/developerworks/db2/bestpractices/databasestorage/
- “DB2 best practices: Storage optimization with deep compression” at the following URL: http://www.ibm.com/developerworks/db2/bestpractices/deepcompression/
- “DB2 V10.1 Multi-temperature data management recommendations” at the following URL: http://www.ibm.com/developerworks/db2/library/long/dm-1205multitemp/index.html
- “Best practices: Physical Database Design for Online Transaction Processing (OLTP) environments” at the following URL: http://www.ibm.com/developerworks/db2/bestpractices/databasedesign/
- DB2 Best Practices at the following URL: http://www.ibm.com/developerworks/db2/bestpractices/
- “Getting started with IBM InfoSphere Data Architect” at the following URL: http://public.dhe.ibm.com/software/dw/db2/cxpress-c/wiki/Getting_STARTED_with_IDA.pdf
- Upgrading to DB2 Version 10.1 roadmap at the following URL: http://www-01.ibm.com/support/docview.wss?uid=sru21573228
- DB2 database product documentation at the following URL: https://www-304.ibm.com/support/docview.wss?rs=71&uid=swg27009474
Contributors

John W. Bell
IBM Distinguished Engineer
IBM Data Warehouse Solutions

Paul Bird
Senior Technical Staff Member
IBM InfoSphere Optim™ and DB2 for Linux, UNIX, and Windows Development

Serge Boivin
Senior Writer
DB2 Information Development
Information Management Software

Jaime Botella Ordinas
Accelerated Value Leader
IBM Software Group

Prashant Juttukonda
Senior Technical Manager
IBM Data Warehouse Solutions

Wenbin Ma
DB2 Development - Query Compiler
Information Management Software

Reuven (Ruby) Stepansky
Senior DB2 Specialist
NA Lab Services
IBM Software Group

Nattavut Sutyanyong
DB2 Development - Query Compiler
Information Management Software
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties regarding the accuracy, reliability or serviceability of any information or recommendations provided in this publication, or with respect to any results that may be obtained by the use of the information or observance of any recommendations provided herein. The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The use of this information or the implementation of any recommendations or techniques herein is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Anyone attempting to adapt these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with the IBM products discussed in this document.
This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2011. All Rights Reserved.

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.
Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Contacting IBM

To provide feedback about this paper, write to db2docs@ca.ibm.com.

To contact IBM in your country or region, check the IBM Directory of Worldwide Contacts at http://www.ibm.com/planetwide.

To learn more about DB2 products, visit http://www.ibm.com/software/data/db2/.
Index

A
aggregation 27

B
best practices
aggregation 27
data marts 27
data warehousing
Version 10.1 features 31
physical data model design 11
physical data model
implementation 15
planning 5
row compression 23
buffer pools 15

D
data marts 27
data warehouse
data warehouse design 31
parts 5
physical data model
buffer pools 15
database partition groups 15
date dimensions 11
design 11
implementation 15
indexes 15
level keys 11
multidimensional clustering 15
page size 15
partitioned databases 15
range partitioned tables 15
referential integrity
database partition groups 15
date dimensions 11
design 11
implementation
examples 35
overview 15
indexes 15
properties of good model 3
sample scenario 35
prototyping 5

I
indexes 15

L
level keys 11

M
materialized query tables
see MQTs 27
MQTs
examples 35
materialized 27
replicated 27
views on 27
multidimensional clustering 15

P
page size 15
partitioned databases 15
physical data model
buffer pools 15
database partition groups 15
date dimensions 11
design 11
implementation
examples 35
overview 15
indexes 15
properties of good model 3
sample scenario 35
prototyping 5

R
range partitioned tables 15
referential integrity
enforced constraints 11
informational constraints 11
row compression 15

S
snowflake schema 5
star schema 5

V
Version 10.1 features
adaptive compression 31
Multi-temperature data storage 31
storage optimizations 31
temporal tables 31
time travel query 31

© Copyright IBM Corp. 2012