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Documentation Objectives

• Provides an overview of the processor
ǎǳōǎȅǎǘŜƳǎ ƻŦ L.aΩǎ Ȋ {ȅǎǘŜƳǎΣ ǿƛǘƘ ŦƻŎǳǎ ƻƴ ǘƘŜ 
core microarchitectures from z196 to z13

• Gives high level insights with information and potential 
methods to optimize for code performance

• Fosters a deep technical exchange with non-IBM development 
ǘŜŀƳǎ ŀǊƻǳƴŘ ǘƘŜ Ȋ {ȅǎǘŜƳǎΩ ƻǇŜƴ ǎƻǳǊŎŜ ŜŎƻǎȅǎǘŜƳ ǘƻ ŜƴŎƻǳǊŀƎŜ
performance optimization tailored towards z System processors
άǘŜƭƭ ǳǎ ǿƘŀǘ ȅƻǳ ƴŜŜŘ ǘƻ ƪƴƻǿέ

•
If needed, this document may be updated with more information in the 
future. However, it is not intended to be a comprehensive write-up and 
should not replace any formal architecture documents
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z/Architecture and Implementation

Áz/Architecture1 is a 64 bit architecture that is supported by IBM’s z Systems microprocessors
– A Complex Instruction Set Computer (CISC) architecture, including highly capable (and thus complex) instructions

– Big-Endian (BE) architecture (vs. Little-Endian) where bytes of a multi-byte data element are stored with the most 

significant byte (MSB) at the lower storage address

Áz/Architecture grows compatibly upon each generation, and includes many innovative features
– Typical load/store/register-register/register-storage instructions, including logical and arithmetic functions

– Branch instructions supporting absolute and relative offsets, and subroutine linkages

– Storage-storage instructions, e.g. “MOVE characters (MVC)” (for copying characters), including decimal arithmetic

– Hexadecimal, binary and decimal (both IEEE 754-2008 standard) floating-point operations

– Vector (SIMD) operations (from z13 on), including fixed-point, floating-point, and character string operations

– Atomic operations including COMPARE AND SWAP, LOAD AND ADD, and OR (immediate) instructions

– Hardware transactional memory, through the Transactional Execution Facility (since zEC12), including the definition 

of a constrained transaction that can be retried by the hardware

– Two-way Simultaneously Multi-Threading (SMT-2) support (since z13)

ÁHighly complex instructions are implemented through a special firmware layer – millicode2

– Millicode is a form of vertical microcode

– An instruction implemented in millicode (a millicoded instruction) is executed by the hardware similar to a built-in 

subroutine call, that transparently returns back to the program when the millicode routine ends

– A millicode instruction routine consists a subset of the existing instructions in the z/Architecture, with access to its 

own pool of internal registers in addition to program registers and specialized hardware instructions

– Some complex routines may involve operating in conjunction with a private co-processor or special hardware that is 

only accessible by millicode

– The routine is pre-optimized for each processor generation
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Highlights of the Recent Microprocessor Cores

ÁThe z10 processor3,4 started the recent ultra-high frequency pipeline design in z Systems processors

ÁZ1965,6 introduces the first generation out of order pipeline design
– Runs at 5.2 GHz on the EC class machines

– Introduces high-word architecture with operations on upper 32 bits of general purpose registers (GRs)

– Adds more nondestructive arithmetic instructions

– Adds conditional load and store instructions, for reducing potential branch wrong penalties

ÁzEC127 improves upon the first generation out of order design 
– Runs at 5.5 GHz on the EC class machines

– Introduces level 2 branch prediction structure8

– Introduces a set of split level 2 caches, providing low-latency large capacity instruction and operand data caching per 

processor core 

– Integrates tightly L2 cache lookup into L1 data cache design, further improves data L2 cache access latency

– Supports Hardware Transactional Memory9 (Execution) and Run-Time Instrumentation facilities

Áz1310 improves further on top of the zEC12 design
– Runs at a slightly lower maximum frequency of 5 GHz; with a much wider pipeline (2x) to handle more instructions 

per cycle for a net increase in overall instruction execution rate

– Integrates L2 cache lookup into L1 instruction cache design to improve instruction L2 cache access latency

– Supports simultaneous multi-threading (SMT) for 2 threads

– Introduces Single-Instruction-Multiple-Data (SIMD) instructions for vector operations11



© 2016 IBM Corporation6

Core 0

L3_0

L3_1

L2

CoPMCU

L2

Core 1

L3_0

L3_1

Core 2

L2

CoP GX

L2

Core 3

L3_0 Controller

L3_1 Controller

MC

IOs

MC

IOs

GX

IOs

GX

IOs

L3B

L3B

Core 0

L3_0

L3_1

L2

CoPMCU

L2

Core 1

L3_0

L3_1

Core 2

L2

CoP GX

L2

Core 3

L3_0 Controller

L3_1 Controller

MC

IOs

MC

IOs

GX

IOs

GX

IOs

L3B

L3B

z196
9/2010 GA

zEC12
3Q12 GA

z10
2/2008 GA

z13
1Q15 GA

Leadership Single Thread, 

Enhanced Throughput

Improved out-of-order

Transactional Memory

Dynamic Optimization

2 GB page support

Step Function in System 

Capacity

Top Tier Single Thread 

Performance, System 

Capacity

Accelerator Integration

Out of Order Execution

Water Cooling

PCIe I/O Fabric

RAIM

Enhanced Energy Management

Leadership System Capacity 

and Performance

Modularity & Scalability

Dynamic SMT2

Double instruction bandwidth

SIMD

PCIe attached accelerators

Business Analytics Optimized

Workload Consolidation 

and Integration Engine for 

CPU Intensive Workloads

Hardware Decimal FP

Infiniband

64-CP Image

Large Pages

Shared Memory

Figure 1: z Processor Historic Roadmap



© 2016 IBM Corporation7

System Cache Structure

ÁA z system consists of multiple computing nodes, connected through the global fabric interface, each system node includes 

a number of processor (CP) chips (6 in z196, 6 in zEC12 and 3 in z13)

– In z10, z196, and zEC12, the system consists of up to four nodes, with each node connected to each other node 

through the L4 caches

– In z13, the system consists of up to eight nodes, packaged as one pair of nodes per drawer 

• The nodes on each drawer are connected to each other through the L4 caches

• Each node is connected to the corresponding node on each other drawer through the L4 caches

• The three CP chips in each node are connected to each other through the shared on-chip L3 caches

ÁEach processor (CP) chip includes a number of processor cores 

– There are 4 cores in a z196 CP chip, 6 in zEC12, and 8 in z13

– Each core includes both local L1 instruction and operand data caches, and a local L2 cache

– Since zEC12 and z13, a pair of L2 caches supports instruction and operand data separately

– Each L2 cache is connected to the on-chip (shared) L3

ÁCaches are managed “inclusively” such that contents in lower level caches are contained (or tracked) in the higher level 

caches

– In z13, the L4 maintains a non-data inclusive coherency (NIC) directory to keep track of cache line states in the L3 

without having to save a copy of the actual cache line data

– Cache lines are managed in different states (simplistic view):

• “exclusive” (at most 1 core can own the line to store or update at any time);

• “shared” or "read-only" (can be read by 1 or more cores at any time); and

• “unowned” (where no core currently owns the cache line)

– When a cache line is shared, and a processor wants to store (update) one of the elements, a cache coherency delay 

is required to invalidate all existing read-only lines so this processor can be the exclusive owner

– Similarly, an exclusive line will need to be invalidated before another processor can read or write to it 
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Near-Core Cache Operations

ÁThe L1 and L2 (private) caches are store-through, i.e., each storage update is forwarded immediately to the shared L3 

cache once the instruction performing the update has been processed
– For reference, L3 and L4 (shared) caches are store-in, i.e., storage updates are kept in the cache until the cache entry is 

replaced by a new cache line or being evicted to move to another L3 or L4 cache

ÁThe cache line size (for all caches) being managed across the cache subsystem is currently 256 bytes  
– Although the line size has been stable across recent machines, it should not be relied upon

– However, it is unlikely that the cache line size will grow beyond 256 bytes

– EXTRACT CPU ATTRIBUTE instruction should be used to obtain information about the cache subsystem, e.g. cache sizes and 

cache line sizes for each cache level

ÁThe z/Architecture and the processor design supports self-modifying code
– However, this can be a costly event due to movement of cache lines between the instruction and data caches (L1 and L2)

– Due to out of order and deep pipelining; self-modifying code becomes even more expensive to use and is not advised

– Even if there is no intention to update the program code, false sharing of program code and writeable operand data in the same

cache line will suffer similar penalties

ÁThe L1 implements a “store-allocate” design where it has to obtain the exclusive ownership before it can store into a cache 

line
– The storing instruction will stall in the pipeline until the correct cache state is obtained

– It is important to not share writeable data elements in the same cache line for independent multiprocessor operations

ÁThe associativity of a cache (shown in next page) reflects how many available compartments a particular cache line can 

be stored in
– For a 8-way associative cache, a cache line (based on its line address) can be saved in one of 8 slots
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Figure 2: Cache Hierarchy and sizes (zEC12 and z13)
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High Level understanding of the microprocessor core

ÁThe z microprocessor cores can be simplified into a number of functional units (which are further 

described in some published papers):

– Branch prediction unit
• 2 level structure of branch histories; advanced design predicts both targets and directions  

– Instruction caching and fetching unit
• Based on branch prediction information, delivers instructions in a seamless fashion

– Instruction decoding and issuing unit
• Decodes instructions in groups; issues micro-operations out-of-order to the execution units

– Fixed-Point Execution unit
• Executes most of the fixed-point operations, and (in z13) fixed-point divides

– Vector & Floating-Point Unit
• Handles floating-point arithmetic operations, complicated fixed-point operations, and (in z13) vector operations

– Load/Store (or Data-caching) unit
• Accesses operand data for both fetch (load) or store (update) operations

– Co-processor unit
• Supports data compression, cryptographic functions, UTF translations (since zEC12); operates through 

millicode routine

– Second Level Translation and Cache unit
• Maintains the private second level translation-lookaside-buffer (TLB2) and cache (L2)

ÁWe will give a high level overview of the microprocessor design features

– For more details, please refer to articles listed in the reference section near the end
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Branch Prediction Unit

ÁBranch prediction is an important feature in any modern microprocessor design

ÁBranch prediction in z processors is performed 'asynchronously' to instruction processing
– The branch prediction logic can find/locate/predict future occurrences of branch-type instructions (including calls and 

returns) and their corresponding directions (taken or not taken) and targets (where to go next) on its own without 

requiring / waiting for the downstream pipeline to actually decode / detect a branch instruction

– The branch prediction logic tries its best in predicting the program path much further into program code than where 

the instruction fetching unit is currently delivering instructions at (and should be way ahead of where the execution 

engines are executing)

ÁThe branch prediction logic adapts many advanced algorithms / structures in maintaining and predicting 

branching behaviors in program code, as seen in Figure 3, including
– First level branch target buffer (BTB1) and branch (direction) history table (BHT1)

– Second level target and history buffers (BTB2 and BHT2) (introduced since zEC12) with a pre-buffer (BTBP) used as 

a transient buffer to filter out unnecessary histories

• Note: BHT2 is only used in zEC12

– Accelerators for improving prediction throughput (ACC) by “predicting the prediction” (since zEC12) so it can make a 

prediction every cycle (for a limited subset of branches)

– Pattern based direction and target predictors (PHT and CTB) to predict based on “how the program gets here” branch 

history (that represents the program flow), e.g. for predicting an ending of a branch on count loop, or a subroutine 

return that has multiple callers

ÁThe branch prediction logic communicates its prediction results to the instruction fetching logic through 

an overflow queue (BPOQ); such that it can always search ahead of where instructions are being fetched
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Figure 3: Branch Prediction Structure
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Table 1: Branch Prediction Resources
Label Structure Name Description z196 zEC12 Z13

Rows x Sets (where applicable)

BTBP Branch Target Pre-buffer 0.5th level branch instruction address and 

target predictor

look-up in parallel to BTB1, upon usage, 

transfer to BTB1

NA 128 x 6 128 x 6

BTB1 L1 Branch Target Buffer 1st level branch instruction address and 

target predictor

2048 x 4 1024 x 4 1024 x 6

BHT1 L1 Branch History Table 1st level direction predictor (2-bit) : weakly, 

strongly taken, or not-taken

2048 x 4 1024 x 4 1024 x 6

BTB2 L2 Branch Target Buffer 2nd level branch instruction address and 

target history buffer

NA 4096 x 6 16384 x 6

BHT2 L2 Branch History Buffer 2nd level direction 1-bit predictor for 

branches not predicted ahead of time

32 K 32 K NA

ACC Column Predictor (z13) / 

Fast Re-indexing Table 

(zEC12)

Accelerate BTB1 throughput in finding the 

“next” branch

NA 64 1024

SBHT/

PHT

Speculative BHT & PHT Speculative direction prediction with 

transient updates at (out-of-order) 

resolution time prior to actual completion

3 + 2 3 + 2 8 + 8

PHT Pattern History Table Pattern based tagged direction prediction 4096 4096 1024 x 6

CTB Changing Target Buffer Pattern based target prediction predicts 

branches with multiple targets, typically 

subroutine returns and branch tables

2048 2048 2048

SMRU Super MRU table (z13) Protect certain branches from normal LRU 

out to make the BTBP more effective

NA NA 128
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Instruction Delivery

ÁSince z/Architecture instructions are of variable lengths of 2, 4 and 6 bytes, an instruction can start at any 

halfword (integral 2-byte) granularity

ÁInstruction fetching fetches “chunks” of storage aligned data from the instruction cache, starting at a 

disruption point; e.g. after a taken branch (including subroutine calls and returns), or a pipeline flush
– Up to 2 16-byte chunks for z196 and zEC12; Up to 4 8-byte chunks for z13

ÁThese “chunks” of data are then written into an instruction buffer (as a “clump”), where instructions are 

extracted (or parsed) into individual z-instructions in program order

ÁThe instruction decode logic then figures out high level characteristics of the instructions, and which/how 

the execution engines will handle them
– Is it a storage access? A fixed-point instruction? Which execution units will be involved?

– Is it a branch-type instruction? If yes, did the branch prediction logic predict that?  If not, notifies the branch prediction 

logic (to restart its search) and then proceeds based on predefined static prediction rules (e.g. branch on conditions 

are default to be not taken, while branch on count are defaulted to be taken)

– Is it going to be millicoded and if true, did the branch prediction logic predict that?  If not, resets the front-end to start 

at the corresponding millicode routine entry instruction

– For a complex instruction, does it needs to be “cracked” or “expanded” into simpler internal instructions, called micro-

operations (μop’s)?  For example, a LOAD MULTIPLE instruction will be expanded into multiple “load” μops that fetch 

from storage and write individual general purpose registers (GRs)

ÁInstructions (and μop’s) are then bundled to form an instruction group (for pipeline management 

efficiency), and dispatched (written) into the instruction issue queue
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ÁThere are multiple reasons for instruction cracking or expansion

ÁAlways (due to inherent multiple operations needed), e.g., 
– BRANCH ON COUNT (BCTR) ------------ > add register with immediate value of - 1

– | | ------ >  scratch condition code

– | |

– | ----- > branch evaluation <- --------------- |  

ÁLength based (multiple operations based on length), e.g., 
– 8 byte MOVE characters (MVC)  ------------------ >  load into scratch register

– | ------------ >  store from scratch register 

– 16 byte LOAD MULTIPLE (LM) ---------- >  load into register 1

– | ------ >  load into register 2(displacement adjusted at dispatch)

– | ------ >  load into register 3(displacement adjusted at dispatch)

– | ------ >  load into register 4(displacement adjusted at dispatch)

ÁAlthough the processor pipeline may be “RISC-like”; typical register-storage instructions, e.g. “ADD” in 

example below, are handled efficiently in the design with a feature called “dual issue”, and should be 

used whenever appropriate

– ADD:  Register1 <= Register1 + memory((Base register) + (Index register) + Displacement) 

– Register - storage ADD (A) --------------- > load from storage into target register

– |                   .. Some cache access cycles later

– | ----------- > add R1 with target register

– The instruction is not considered as cracked because it is tracked as 1 instruction by using 1 issue queue entry (and 

1 global completion table entry)

Instruction Cracking or Expansion
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Instruction Grouping

ÁAs instructions (and μop’s) are grouped, they are subject to various grouping rules, which prevent certain 

instructions from being grouped with others

ÁIn z196 and zEC12, one group of up to 3 instructions can be grouped at a time, while z13 allows two 

groups of up to 3 instructions at a time

ÁOnce instructions are dispatched (or written) into the issue queue as a group, they are tracked in the 

global completion table (GCT) until every instruction in the group has finished processing; then the group 

is completed and retired

ÁSome basic rules of grouping
– Simple instructions, including most “register-register” and “register-storage” type instructions, can be grouped together

– Branch instructions, if second in the group, or if predicted taken, cannot be grouped with instructions after

• Best group size if taken branches are the third in a group

– μops expanded from the same instruction will usually be grouped together

• But not with other instructions (or μops) in z196, zEC12

• If expanded into only 2 μops, can be grouped with one other simple instruction after (in z13)

– Storage-storage instructions are usually grouped alone; except for the μop’s that they may be expanded into

– Other instructions that are alone in a group:  

• Register-pair writers, e.g. DIVIDE (D, DR, DL, DLR), MULTIPLY (M, MR)

• Non-branch Condition code readers, e.g. ADD LOGICAL WITH CARRY (ALC*), SUBTRACT LOGICAL WITH BORROW 

(SLB*)

• Explicit floating-point control register readers or writers

• Instructions with multiple storage operands

• EXECUTE or EXECUTE RELATIVE instruction or its target

– In z13, max group size will be 2 if any μop has more than 3 register sources (including Access Register usage in AR mode)
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Instruction Dispatching

ÁAs instructions are dispatched, the source and target architected registers are renamed into a virtual pool 

of physical registers and are tracked accordingly
– The amount of rename tracking resources (how many inflight mappings can be tracked) and physical registers 

available are key factors of the effectiveness of an out-of-order design

– In z196 and zEC12, the mapping tracker (the mapper) consists of 1 bucket of 48 mappings

• GRs: 1 mapping per each 32-bit register write, 1 mapping for each full 64-bit register write

• FPRs: 1 mapping per each 32-bit register write, 1 mapping for each full 64-bit register write

• ARs: 1 mapping per each 32-bit write

– In z13, the mapping tracker consists of 2 buckets of 64 mappings each = 128 total mappings

• GRs: 1 mapping per each 32-bit register write, the GR #’s LSB decides which bucket to use; a 64-bit register 

write will require 2 mappings, one from each bucket

• FPRs: 1 mapping per each write, the FPR #’s 2nd LSB decides which bucket to use

• ARs: 1 mapping per each write, the AR #’s LSB decides which bucket to use

– In z13, multiple writes to the same register in the same group does not require separate trackers

ÁInstructions in a group are dispatched into one of the two issue queues (side 0 and side 1).  
– The total size of issue queue directly relates to the overall out-of-order window and thus affects performance

– In z196 and EC12, only one instruction group can be written into one of the two queue sides at any cycle; in an 

alternating fashion

– In z13, two groups can be written at any cycle with one group into each side; with the older group on side 0

ÁThe issue queue includes a dedicated “virtual branch queue” since zEC12, 1 per side, that handles 

relative branch instructions whose targets are within 64 Kilobytes away
– These branches will alternate to the different sides of the virtual branch queue independently of the other instructions 

in the group
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Instruction Issue and Execution

ÁOnce instructions are dispatched into the issue queues, the issue queues will issue the oldest (and 

ready) instruction for each issue port to the corresponding execution engine

ÁEach issue queue side is connected to a number of specific processing engines, using z13 as an 

example as shown in Fig. 4,
– There are 5 issue ports (per side; 10 total per core); each to a different engine, including

• A relative branch unit (RBU) handles relative branches

• A GR writing fixed-point unit (FXUa) handles most of the fixed-point arithmetic and logical operations; it also 

includes a multiply engine and a divide engine (both being non-blocking)

• A non-GR writing fixed-point unit (FXUb) handles other fixed-point operations that does not write any GR results

• A load/store unit (LSU) port, with accesses to the data-cache, handles memory accesses

• A vector & floating-point unit (VFU), handles complicated operations

– Inside each of the VFU, there are multiple engines that execute different functions in parallel to each other (for up to 

50 outstanding instructions):

• BFU that handles both hexadecimal and binary (IEEE standard) floating-point arithmetic operations, and vector 

floating-point operations

• DFU that handles decimal (IEEE standard) floating-point arithmetic operations

• SIMD that further composes of multiple subunits: PM engine that performs vector permute functions; XS engine 

that performs fixed-point arithmetic and logical functions; XM engine that performs several multiply functions and 

ST engine that performs string-related functions

• DFX that handles decimal (BCD) fixed-point arithmetic operations

• FPD that handles divide and square root operations for both binary and hexadecimal floating-point arithmetic

– Typical pipeline delays through each of the execution engines are shown in Fig. 5

ÁDifferences vs. zEC12 and z196 are shown as colored boxes in Fig. 4
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Figure 4: The z13 high-level instruction & execution flow
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Figure 5: z13 Execution Engine Pipelines
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Table 2: Out of order resources
Z196 zEC12 z13

GR 80 (16 permanently 

reserved for 

millicode)

80 (up to 16 

reserved for 

millicode) + 

16 immediate 

value entries

120 (up to 16 reserved 

for each thread while 

in millicode) + 

8 immediate value 

entries

FPR /

VR(z13)

48 FPRs 64 FPRs 127 FPRs / VRs (up to 

8 reserved for each 

thread while in 

millicode)

+ a zero value entry

AR

(access 

register)

56 (16 permanently 

reserved for 

millicode)

56 (16 permanently 

reserved for 

millicode)

96 (up to 8 reserved 

for each thread while 

in millicode)

Issue 

Queue

20 x 2 sides 20 x 2 sides +

12 x 2 sides of 

Branch Queue 

30 x 2 sides + 

14 x 2 sides of Branch 

queue 

Global 

Completion 

Table

24 x 3 

instructions 

(complete up to 3 

instructions/cycle)

30 x 3 

instructions 

(complete up to 3 

instructions/cycle)

24 x 2 x 3  

instructions 

(complete up to 6 

instructions / cycle)

Unified 

Mapping 

Trackers

48 48 64 + 64
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The load/store unit

ÁThe load/store unit (LSU) handles the operand data accesses with its L1 data-cache and the tightly 

coupled L2 data-cache

ÁThe L1 data cache is 2-ported and each port can support an access of data elements of up to 8-byte a 

cycle
– There is no performance penalty on alignment except for when the element crosses a cache line

– Vector elements of more than 8 bytes are accessed in two successive cycles

ÁBesides prefetching of cache misses by the natural behavior of the out-of-order pipeline
– LSU supports software prefetching through PREFETCH DATA type instructions

– LSU also includes a stride-prefetching engine that prefetches +1, +2 stride

• If a consistent stride is detected between cache miss address patterns at the same instruction address across 

loop iterations

ÁTo minimize pipeline bubbles typically caused by “store-load” dependencies through storage, LSU 

provides a sophisticated bypass network allowing pending storage updates that are not yet available in 

the L1 cache be bypassed into dependent fetches as if the data was in L1 (subject to certain limitations). 

But in general,
– Data should be bypass-able by bytes from different storing instructions to a fetch return

– Data should be bypass-able if the store data is ready a small number of cycles before the fetch request

– Multiple mechanisms are used to predict dependencies (based on prior pipeline processing history) among fetch and 

store instructions, and will then stall fetch instructions just enough to enable “perfectly” timed bypasses

– If a store operation is performed after its dependent load (due to out-of-order operations), a flush will occur

– If a store operation is performed before its dependent load, and data is not bypass-able (due to timing or hardware 

limitations), the load will be rejected and retried
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On-chip Core Co-Processor

ÁOn chip core co-processors (COPs) are available to enable hardware acceleration of data compression, 

cryptography, and (on zEC12 and after) Unicode conversions
– Each COP is private to each core in zEC12 and z13, but was shared by two cores in z10 and z196

ÁThe co-processor handles instruction COMPRESSION CALL (CMPSC) that compresses data and 

cryptographic functions (under the CPACF facility, next page) that supports latest NIST standards
– In addition, Unicode UTF8<>UTF16 conversions are supported in zEC12; and then in z13, all Unicode conversions 

(UTF 8<>16<>32) are supported

ÁCo-processors are driven through commands of millicode (as it emulates the corresponding complex z 

instruction)
– Millicode interprets the instruction, tests storage areas and sets up the co-processor

– Millicode fetches the source operand

– Millicode writes source operands into the co-processor to be processed

– Millicode sets up result storage areas

– Coprocessor works on the instruction with the provided source data and generates output data

• In the case of CMPSC, the coprocessor will also fetch dictionary tables accordingly

– Millicode writes into the result storage areas

– Millicode analyzes status information from the co-processor and repeats work if needed

– Millicode ends when the instruction (or a unit-of-operation) is completed

Á In SMT mode (z13), the co-processor will only handle operations one thread at a time and the other 

thread will wait until the current thread finishes at its appropriate unit-of-operation or completes the whole 

instruction
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CPACF - CP Assist for Cryptographic Functions

• Also known as the Message-Security Assist (MSA) 

instructions 

• Assist functions run synchronously as part of the program 

on the processor

• Provides a set of symmetric cryptographic and hash 

functions for:

– Data privacy and confidentiality

– Data integrity

– Random Number generation

– Message Authentication

• Enhances the encryption/decryption performance of 

clear-key operations for

– SSL/TLS transactions

– Virtual Private Network (VPN)-encrypted data 

transfers

– Data storing applications

DES, T-DES

AES128

AES192

AES256

SHA-1

SHA-256

SHA-384

SHA-512

PRNG 

DRNG

Y 

Y

Y 

Y 

Y 

Y 

Y 

Y 

Y

Y 

Y 

Y 

Y 

Y 

N/A 

N/A 

N/A

N/A 

N/A

N/A

Supported

Algorithms

Clear 

Key

Protected

Key
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Instructions of Interest

ÁWe will discuss some of the instructions in z/Architecture and their handling that might be of general 

interest:

– Simple instructions, including descriptions of some interesting ones

– Special Storage-to-Storage instructions

– MOVE LONG instructions

– High Word instructions

– Conditional instructions

– EXECUTE instructions

– BRANCH PREDICTION PRELOAD instructions

– DATA PREFETCH instructions

– NEXT INSTRUCTION ACCESS INTENT instruction

– Atomic and locking instructions

ÁAnd a few architecture features:

– Hardware Transactional Execution

– Vector (SIMD) instructions

ÁAnd some storage usage model highlights
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Simple Instructions

• Simple instructions
– Fixed-point results are bypassed into the next dependent fixed-point instruction if the instructions are in the same 

side of the issue queue; otherwise, there will be at least a one-cycle delay

– An instruction dependent on a storage operand will need to wait for 4 cycles if the operand is in the L1 data cache

– An operand written by a store instruction to a storage address followed by a load instruction of the same address will 

require at least 2 to 4 cycles to be bypassed as cache data

– Floating-point instructions are generally pipelined; but can be of different latencies.  The design forwards dependent 

data as soon as it is available

– Non-floating point vector (SIMD) instructions (in z13) have shorter latencies than floating point ones

• SIMD results are also bypassed when available

• Non-destructive instructions
– Many instructions of z/Architecture specify just two operands, with one operand doubling as a source and a target

• These Instructions are shorter (in length) and occupy less space in storage

• If both operands are still required after executing an operation, the operand that will be overwritten must first be 

copied to another register before these instructions

– Many non-destructive instructions were introduced since z196, such that the register copy operations can be avoided

• Load and Store Reversed instructions
– To facilitate conversion between big-endian (BE) and little-endian (LE) formats, a few instructions are provided to 

reverse the byte ordering of a data element to/from memory

– Both load and store operations are supported

– 2, 4, 8 byte operands are supported

– MOVE INVERSE (MVCIN) is also available for more than 8 bytes storage to storage data swap

• It is implemented in millicode doing a byte-by-byte copy
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Special Storage-to-Storage Instructions

• z/Architecture includes a set of storage-storage instructions in which the data size is specified in the 

instruction as the length field
– Mostly defined to be of left-to-right and byte-at-a-time operations

– Special hardware are being used to speed up certain common cases

• MOVE characters (MVC)
– If <=16 bytes, it is cracked into separate load and store μops

– If > 16 bytes, it is handled by a hardware sequencing logic inside the LSU

– If the destination address is 1 byte higher than the source address (and they overlap), it is special cased into 

hardware as a 1-byte storage padding function (with faster handling)

– If the destination address is 8 byte higher than the source address (and they overlap), it is special cased into 

hardware as a 8-byte storage padding function (with faster handling)

– If other kinds of address overlaps, it will be forced into millicode to be handled a byte at a time

• COMPARE LOGICAL characters (CLC)
– If <=8 bytes, it is cracked into separate load and compare μops

– If > 8 bytes, it is handled by the hardware sequencing logic inside the LSU

• EXCLUSIVE OR characters (XC)
– If <= 8 bytes, it is cracked into separate load and “or-and-store” μops

– If base register values and displacement values are equal, i.e. an exact overlap on addresses, it is special cased into 

hardware as a storage clearing function (with faster handling)

– If >8 bytes and no overlap on addresses, it is handled by a hardware sequencing logic inside the LSU

– If other kinds of address overlaps, it will be forced into millicode to be handled a byte at a time

– AND characters (NC) and OR characters (OC) instructions are implemented similarly, without the special clearing 

function
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MOVE LONG Instructions

• MOVE LONG instructions (MVCL*)
– MOVE LONG instructions can copy a large amount of data from one storage location to another

– A special function can also be used to pad storage

– It is implemented in millicode

• A special engine is built per CP chip for aligned copying or padding functions at a page granularity

– The page aligned copying or padding will be done near memory, instead of through caches, if
• Not executed inside a transaction

• Padding character specified is neither X’B1’ nor X’B8’

• A preceding NIAI instruction does not indicate (the storage data will be used subsequently) otherwise

• The operands must not have an access exception

• Length >= 4K byte

• For moves:  source and destination addresses are both 4K byte aligned

• For padding: destination address is 4K byte aligned

– Otherwise, the move process will operate through the caches (L1, L2…)

– Note that the evaluation is revised every unit-of-op
– For padding, even if starting address is not aligned, millicode will pad (in cache) to 4K boundary, then use near-

memory pad engine for the next aligned 4K; until the remaining length is less than 4K then padding will be done 

in cache again

• Near-Memory engine usage is best when the amount of data involved is large; and the target memory is 

not to be immediately consumed in subsequent processes
– Since the special engine is shared within a CP chip, contention among processors is possible and is handled 

transparently by the millicode routine
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High Word Instructions

• Provided since z196

• High words of GRs are made independently accessible from the low words of GRs

• Software can use up to 32 word GRs, (previous) 16 double-word GRs, or combination of word and 

double-word GRs

• For dependencies (i.e. address-generation interlocks), the high-words are treated separately from the 

low-words

• Intended to provide register-constraint relief for compilers

• Various types of operations are supported

– Add, subtract, compare, rotate, load, store, branch-on-count

0

1

15

+
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Conditional Instructions

• In many applications (for instance, sorting algorithms), conditional-

branch outcomes are highly data dependent and thus 

unpredictable
– A mispredicted branch can result in a pipeline flush, and may incur many 

cycles of branch correction penalty

• A limited set of load/store instructions are provided (since z196) 

where the execution is predicated on the condition code
– Highly unpredictable branches can be replaced with conditional 

instructions

• In the example, the old code shows a COMPARE register 

instruction (CR) followed by a BRANCH ON CONDITION 

instruction (BRNE for BC), and a LOAD instruction (L) that may or 

may not be executed depending on the outcome of the branch

• The new code sequence replaces the branch and load instructions 

with a LOAD ON CONDITION (LOC) instruction
– It is cracked into a load from storage, and a conditional select μop

– The conditional select μop uses the condition code to select between 

the original register value and the new value from storage

– This sequence now avoids potential branch wrong flushes

NOTE: Access exception may be reported whether the storage content is 

effectively accessed or not

Old Code

CR   R1,R3

BRNE skip

L  R4,(addressX)

skip   AR   R4,R3

..

New Code

CR R1,R3

LOC R4, ( addressX ) , b'0111'

AR R4,R3

..

*Pseudo - code for illustration only
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EXECUTE Instructions

• “Execute” instruction is commonly used* for storage related 

instruction (e.g. MVC, CLC mentioned before) where the length 

field (specifying the number of bytes) can be substituted by the 

content of a general purpose register (GR) without actually 

modifying the instruction in memory (and without explicit branch to 

or from the ‘target’ instruction

• “Execute” is handled by the processor like a branch
– The processor will jump to the target of the execute instruction as a 

branch target, and fetch it

– Decode and execute the target instruction; (modify as needed)

– Then immediately return back to the subsequent instruction after the 

execute (except when the target is a taken branch itself)

– This “implied” branch handling is supported by the branch prediction 

logic to reduce the overall processing delay

• Certain pipeline delay is required between the reading of the GR 

and the “modification” of the target instruction
– The delay is reduced in z13 for a selected group of instructions: MVC, 

CLC, and TRANSLATE AND TEST (TRT)

• The alternative of using a branch table is generally not preferred 

due to its potential inaccuracy (i.e. when the length is mostly 

random during run-time)

Example where MVCôs length is 

dependent on compare of R1 and 

R3:

LHI  R4, x'1'

LHI  R5, x'2'

CR   R1,R3

LOCR R4,R5 ,b'1000'

EX   R4,move

..

move    MVC  0( length ,R13),0(R14)

*Pseudo - code for illustration 

only

*other tricky EXECUTE usages not discussed here;

e.g. in modifying register ranges, lengths of operand 1/2,

branch masks
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BRANCH PREDICTION PRELOAD Instructions

• BRANCH PREDICTION PRELOAD (BPP) and BRANCH PREDICTION RELATIVE PRELOAD (BPRP) instructions 

introduced with zEC12 specify the location of a future to be taken branch and the target address of that branch

• By providing such directives to the hardware’s branch prediction logic, the limitation of the hardware branch table’s 

capacity may be overcome 
– The processor may now predict the presence of branches without having seen them before, or if their history was displaced

– The directives are not intended for overriding or modifying an existing hardware history entry's target address to a different value  

• As described earlier, the branch prediction logic should always search ahead 'asynchronously' of where in the program the 

instructions are currently being decoded and executed
– Just like requesting a stop on a bus, the request needs to be activated BEFORE the bus passes the desired stop; the preload 

instruction needs to be executed before the prediction logic may search pass the branch address to be effective

– The preload instructions are thus best used when the program’s run-time behavior involves a lot of somewhat cold modules; 

such that (taken) branches are likely not being predicted and the instructions are likely not in the cache; such that the preload 

instructions can have good chance of being executed AHEAD of the search logic

– The actual usage is therefore most effective when in conjunction with profile-directed feedback (PDF), or in a JIT environment 

where the run-time characteristic can be extracted and analyzed

• The more (taken) branches in-between, and the further away in sequential memory address, the more likely a preload will 

succeed
– At a minimum, the target branch should be more than 1 (taken) branches and 256 sequential bytes away

• The relative form of preload instruction, BPRP, should be used if possible as it activates earlier in the pipeline; providing a 

better chance of being effective

• The preload mechanism may also perform an instruction cache touch (and thus a potential prefetch) on the branch target
– Do not use for purely instruction prefetches, as that will pollute the branch prediction history structure
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PREFETCH DATA Instructions

• Started with z10, PREFETCH DATA (PFD) and PREFETCH DATA RELATIVE LONG (PFDRL) instructions were 

introduced to enable program code a way to manipulate the local data cache

• The provided prefetch function allows code to acquire a cache line in a correct cache state (for read or for write) ahead of 

the actual load/store instructions that will access the data
– Note: prefetching a cache line that is contested among multiple processors is usually a bad idea

• These “prefetch” instructions not only allow operand data prefetching, they also provide a way to release a local cache 

line’s ownership (or also known as untouch)
– The untouch function is to allow software code to proactively release (or invalidate) its ownership (from the processor that it is 

running on) of a specified cache line

– The intention is that, when another processor accesses this same cache line some time later, the shared cache (e.g. the L3) will 

not need to spend time in removing the line from this processor before granting ownership to this other processor

• These directives should be used carefully, and some experimentation may be required to yield desired performance effect

– Prefetch function can be redundant with given hardware capabilities
• The out-of-order pipeline incurs “baseline” prefetching

• The stride-prefetch engine also prefetches cache lines based on fetching patterns and miss history

• The L4 cache does limited prefetch functions from memory based on certain miss criteria

• Prefetch can hurt if the cache line is contested with other processors

– Demote function can be tricky to use
• If it is a highly contested cache line, demote operation might hurt (by adding more related operations to the system)

• If the cache line is cold, it might not matter

• In general, the demote function (code 6) is preferred to the untouch function (code 7) since it usually incurs less overhead

• NOTE: EXTRACT CPU ATTRIBUTE (ECAG) instruction should be used, instead of hardcoding any cache-related 

attributes, to minimize the chance of observing adverse effects on different hardware models
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NEXT INSTRUCTION ACCESS INTENT (NIAI) Instruction

• A NIAI instruction was introduced in zEC12 for program code to provide some hints to the cache system in understanding 

of the intention of the next immediate instruction’s operand accesses and then adjusting its related handling

• The cache subsystem provides heuristic to maintain cache ownership among multiple processors

– Upon a cache miss from a processor core for a “fetch” instruction, the cache subsystem may return an exclusive 

state if the cache line was previously updated by another processor

– This design anticipates that “this processor” will likely follow suit of the other processor, and store to the cache line 

after this fetch miss, saving coherency delays (of otherwise changing from a shared state to an exclusive state)

– In the case where the heuristic is not working perfectly, e.g. when there are multiple “readers” on a cache line, the 

NIAI instruction (code 1) can be used by a “writer” process to indicate subsequent store intention upon an initial fetch

• The NIAI instruction can also be used to indicate “truly read-only” usage of a cache line.

– Given the “reader and writer” processes described above, a NIAI (code 2) can be used to specify the read-only 

intention of the consumer (or reader) process’s accesses to a cache line; thus preventing the line from potentially 

migrated to the reading processor as exclusive (write) ownership

– The hint can now help reduce the coherency penalty on the next round when the producer process is writing into the 

cache line again

• Cache lines are usually managed from most recently used (MRU) to least recently used (LRU) in the cache, so lines that 

have not been used recently are first evicted when new cache lines are installed

– This scheme generally works well, but is suboptimal in cases where the process is operating on streaming data; 

where data is only accessed once and then becomes uninteresting

– In these streaming cases, it is desirable to label such data as LRU so that it’s not retained at the expense of other 

data that will be used again

– The NIAI instruction (code 3) can be used to indicate streaming data accesses such that the local cache will keep 

those data in compartments that will be evicted sooner



© 2016 IBM Corporation35

Atomic and Locking Instructions

• z/Architecture provides a set of instructions that can be used for atomic operations
– e.g. TEST AND SET (TS), COMPARE AND SWAP (CS) that check a value in storage and then conditionally updates 

the storage value; such that the fetch and the store are observed to be atomic

• A set of instructions is added since z196 to provide more functionality
– Load and “arithmetic” instructions for unconditional updates of storage values 

• (Old) storage location value loaded into GR

• Arithmetic or logical operation (add, and, xor, or) result overwrites value at storage location

• Best for unconditionally updating global information, like a counter or a flag

– Interlocked storage updates with an immediate operand are also supported

• Supported operations include add, and, xor and or

– LOAD PAIR DISJOINT (LPD, LPDG)

• Load from two different storage locations into GR N, N+1

• Condition code indicates whether the fetches were atomic

• Hint: for software locks, if the lock is likely concurrently used by multiple processors (i.e. often contested), 

the following sequence is recommended
– It is more desirable to test the lock value before using atomic instruction (e.g. CS) to set the lock

LHI  R2, 1         ; value to set lock

LOOP    LT   R1, lock      ; load from memory and test value; always test first

JNZ  LOOP          ; repeat if non - zero

CS   R1, R2, lock  ; set lock if lock was empty

JNE  LOOP ; retry if lock became set

*Pseudo - code for illustration only
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Hardware Transactional Memory

ÁBeginning in zEC12, z/Architecture supports hardware transactional (memory) execution through the 

Transaction execution facility
– A group of instructions can be observed to be performed with atomicity, or not done at all (aborted)

– Non-transactional stores are allowed within a transaction

– A form of constrained transaction (transaction with restrictions) is also supported that the hardware will automatically 

retry the transaction if it aborts/fails; until the transaction is successful

– Optional detail debug data can be provided

ÁTransaction usage is not advisable if the contention of used storage is already high
– Likely end up wasting CPU cycles if the transaction keeps aborting due to real-time cross-CPUs memory access 

contentions

– Aborts are expensive (>200 cycles); and worse if abort debug information is requested

ÁHint: compute complex results outside of a transaction, then use transaction with only a small number of 

instructions to check data, and then store the results away

ÁAccess (fetch) footprint* is limited by L2 associativity and size
– Around 1 Mbyte in zEC12, and 2 Mbyte in z13

ÁUpdate (store) footprint* is limited by L2 associativity and size of an internal store transaction buffer
– That can contain up to 64 blocks of 128-byte (storage aligned) data changed within a transaction

– The L1 data cache is updated upon store instruction processing within a transaction, but L2 is deferred until 

transaction completes

ÁNote: Access footprint may be counted for fetches done through mispredicted branches; footprint limitations are shared by 

the 2 threads when SMT2 is enabled (in z13) such that effective footprint may be smaller than when one thread is running
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Single-Instruction-Multiple-Data (SIMD)

ÁSIMD, sometimes also referred to as vector, instructions are introduced in z13

ÁTo support these instructions, new vector registers are architected
– 32 x 128 bit architected registers are defined per thread
– FPRs overlay VRs as follows:

• FPRs 0-15 == Bits 0:63 of SIMD registers 0-15
• Update to FPR <x> alters entire SIMD register <x>

ÁEach SIMD instruction provides fixed-sized vectors ranging one to sixteen elements
– Some instructions only operate on a subset of elements

ÁThe use of vector compares and vector select operations can help avoid unpredictable branch penalties 
similar to the simple conditional instructions described earlier

+ + + ++ + + + + + + ++ + + +
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Table 3: Types of SIMD instructions

Integer

16 x 8b, 8 x 16b, 4 x 32b, 2 x 64b, 1 x 128b

Á8b to 128b add, subtract

Á128b add/subtract with carry

Á8b to 64b minimum, maximum, average, 

absolute, compare

Á8b to 16b multiply, multiply/add          

4 - 32 x 32 multiply/adds

ÁLogical operations, shifts

ÁCarryless multiply (8b to 64b), Checksum (32b)

ÁMemory accesses efficient with 8B alignment; 

minor penalties for byte alignment

ÁGather / Scatter by Step; Permute; Replicate

ÁPack/Unpack

String 

ÁFind 8b, 16b, 32b,  equal or not 

equal with zero character end

ÁRange compare

ÁFind any equal

ÁIsolate String

ÁLoad to block boundary -

load/store with length (to avoid 

access exceptions)

Floating-point 
32 x 2 x 64b

ÁBinary Floating-Point operations 

w/ double precision only

Á2 BFUs with an effective increase 

in architected registers

ÁAll IEEE trapping exceptions 

reported through VXC; and will 

not trigger interrupts
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Uniprocessor Storage Consistency

ÁUniprocessor view of storage consistency

– General rules (important for full software compatibility):

• Program must behave as if executed serially

• Each instruction can use all results of previous instructions

– Operand accesses must be observed to be done in program order

• Store / fetch conflicts recognized by real* address

• Most operands processed left to right

• Fixed-point decimal operands processed right to left

• Storage-storage (SS) instructions are observed to operate in a byte-by-byte fashion

– Instruction pre-fetches may be observed

• Must still detect store updates / instruction fetch conflicts; where detection is on logical* address 

only

• Instructions executed must reflect prior stores

• Serialization can add further restrictions (next page)

*Logical address

– What program specifies

– May be virtual or real, depending on program status word (PSW) 

• unless explicitly overridden by the instruction itself (see detail instruction definitions)

*Real address

– Result of dynamic address translation (DAT) or the logical address when DAT is off

– Subject to prefixing
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Multiprocessor Storage Consistency 

ÁMust be able to define consistent ordering of accesses
– “as seen by this and other processors"

– Some instruction operations are allowed to have ambiguous results (See the section “Storage-Operand Consistency” 

in the z/Architecture Principles of Operation for details)

ÁOperand fetches and stores must appear to occur in proper order

ÁAll processors must obey uniprocessor rules
– Although the processor is designed to do things out-of-order, the observed results must be consistent

– The processor has states and checking in place, such that when the out-of-order accesses might be observed to be 

inconsistent, the pipeline will flush and retry the operations; possibly in a “safer” (slower) mode

ÁOperand accesses must be DW-consistent
– No "score-boarding" should be observed

– e.g. DW consistency is maintained for LOAD MULTIPLE (LM) when the loads are expanded into individual GR writing 

operations

ÁInstruction fetches are generally allowed in any sequence

CPU1                CPU2

Store  R1,AA Store   R1,BB

Load   R2,AA Load    R2,BB

Load   R3,BB Load    R3,AA

As an example, if both final Load instructions get ñoldò (pre- store) values : Violation!
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Serialization

Áz/Architecture defines a set of situations in which additional restrictions are placed on the storage access 

sequence

ÁDefined as “A serialization operation consists in completing all conceptually previous storage accesses 

and related reference-bit and change-bit settings by the CPU, as observed by other CPUs and by the 

channel subsystem, before the conceptually subsequent storage accesses and related reference-bit and 

change-bit settings occur”

ÁDefined for specific points in instruction stream

– Usually "before and after" specific opcodes

– Includes Instruction fetches as well as operand accesses

– Exception: Instruction fetch for the serializing instruction itself

CPU 1                    CPU 2

MVI   A,Xô00ô            G   CLI   A,Xô00ô

BCR   14, 0 BNE G

The BCR 14,0 instruction executed by CPU 1 is a serializing instruction that ensures 

that the store by CPU 1 at location A is completed. However, CPU 2 may loop 

indefinitely, or until the next interruption on CPU 2, because CPU 2 may already have 

fetched from location A for every execution of the CLI instruction. A serializing 

instruction must be in the CPU - 2 loop to ensure that CPU 2 will again fetch from 

location A.
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General Guidelines

ÁBesides the references mentioned at the end, you might find these other existing documents or presentations useful

– John R. Ehrman's book on Assembler Language Programming for IBM z System Servers

– Dan Greiner has regular presentations of z/Architecture features with SHARE

– Silvia Mueller has a presentation on SIMD usage that is available on z13

ÁSome general recommendations will be provided next, including some that have been mentioned in previous pages

– All descriptions provided are of general guidance only

– It will not be practical to describe all intricate design details within the systems in this document

– There may be counter-examples (usually rare occurrences) that will observe hardware behavior differently than 

described; or not adhere to optimization recommendations provided

– Detail instruction by instruction classifications and timings will not be provided in this document

ÁZ processors are designed for processing both cache-intensive and CPU-centric workloads, and are optimized to handle 

code that was hand-written from many years ago or was generated from the latest compilers, running in applications, 

middleware or operating systems

– General rules that help produce good performance code for modern processor microarchitectures usually apply to z 

processors too

– Microprocessor pipeline, branch prediction algorithm, cache subsystem structure and their characteristics will likely 

change from generation to generation to obtain better general performance improvements and bigger system 

capacity

– Code sequence can be tuned to get more performance by optimizing to a new processor pipeline, or using new 

instructions or new architectures

– Performance variations should be expected on highly optimized code that is tuned to a specific processor generation 

vs. another generation

http://idcp.marist.edu/enterprisesystemseducation/Assembler Language Programming for IBM z System Servers.pdf
http://www.share.org/p/se/in/q=greiner&comp=7&topics=62,206,207,208,63,49,209,64,65,210,211,66,50,212,213,51,52
http://www-03.ibm.com/systems/dk/resources/T1_D1_S4_z13_SIMD_LSU_2015.pdf
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Branch Related Guidelines

ÁAlign frequently called functions to start at storage boundaries for efficient instruction fetching
– at least at QuadWord (16-byte) boundary, but potentially even better if at OctWord (32-byte) or cache line boundaries

ÁRearrange code path around conditional branches such that the not-taken path (i.e. fall-through path) is the most frequent 

execution path

ÁAlthough the branch predictor attempts to predict every cycle, keeping loops to be at least 12 instructions will allow branch 

prediction to catch up
– if more instructions can be used, branch prediction will be able to stay ahead of instruction fetching

ÁAlthough z processors do not include a call-return predictor, pairing up calls and returns may facilitate the current design to 

work more effectively

ÁConsider inlining subroutines if they are small and used often

ÁUnroll loops to parallelize dependency chains to take maximize the advantage of parallel and out-of-order processing

ÁUse relative branches instead of non-relative (indirect branches) when possible

ÁThere is usually advantage of using a branch-on-count or a branch-on-index type instruction versus doing the operations 

as individual instructions; due to
– Smaller instruction footprint and less hardware overhead

– Branch-on-count and branch-on-index-low-or-equal type instructions are predicted taken whenever the branch prediction logic is 

not able to predict its direction ahead of time

ÁSimilarly, load-and-test or compare-and-branch type instructions will be better than a pair of individual instructions

ÁAvoid hard-to-predict branches by using conditional instructions
– Conditional instruction is usually slower than a correctly predicted branch + load/store instructions; thus "hard-to-predict" is an 

important criteria
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Instruction Selection Guidelines (1)

ÁRegister-storage format instruction is often more efficient than a 2-instruction sequence of “load” + “register-register” 

operations

ÁUse instruction variants that do not set condition code if available (and when the resulting condition code is not required)

ÁUse instructions of shorter instruction lengths if possible

ÁBase + Index + Displacement form (3-way) address generation used to access storage within an instruction incurs no 

additional penalty vs. a 2-way form or a register-based form
– Similarly, Base + Index + Displacement form branch target calculation incurs no additional delays vs. a register form; e.g. BC vs. 

BCR

– Precompute storage address only if you can use it for branch prediction preloading or operand data prefetching

– However, “Load Address” type instructions will take an extra cycle through the FXU when both base and index registers are not 

using GR#0

ÁUnderstand rotate-then-*-selected-bits instructions, and see if they can be used
– The second-operand register is rotated left by a specified amount; then one of four operations (and, xor, or, insert) is performed 

using selected bits of the rotated value and the first-operand register

ÁUse compare-and-trap instructions where practical; they are best for null-pointer checking

ÁTake advantage of the additional high-word GRs instead of performing register spill-and-fill through storage
– In z13, VRs might also be used

ÁRegular register clearing instructions are fast-pathed in the pipeline; and their results do not use any physical registers 

(since zEC12)
– EXCLUSIVE OR register (XR, XGR of same register); which sets CC=0

– LOAD HALFWORD IMMEDIATE (LHI, LGHI of immediate value 0), which leaves CC unchanged

– LOAD ADDRESS (LA) where Base, Index, and Displacements are all zero’s

– And, since z13, LOAD ZERO {long}, {extended} (LZDR, LZER)
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Instruction Selection Guidelines (2)

ÁUse the long-displacement variants, with a 20-bit signed displacement field, that provide a positive or negative 

displacement of up to 512K bytes if necessary

ÁA set of instructions (ends with RELATIVE LONG) are provided to operate on data elements where the address of the 

memory operand is based on an offset of the program counter rather than an explicitly defined address location. The offset 

is defined by an immediate field of the instruction which is sign extended and is aligned as a halfword address when added 

to the value of the program counter
– Load, store and various kinds of compares are provided

– Such accesses are treated as data accesses (except for EXECUTE RELATIVE LONG), these data elements should not be 

placed in the same cache lines as the program instructions to avoid potential cache conflicts

ÁFor operations on large amount of memory, e.g., copying or padding storage, consider using instructions that can handle 

long operand lengths, e.g., MOVE characters (MVC), instead of doing individual loads or stores

ÁComplex instructions, e.g. COMPRESSION CALL (CMPSC), convert-UTF-UTF instructions, and cryptographic 

instructions are usually faster than software routines with the help of the per-core co-processor, especially for large 

datasets

ÁFor serialization, a BCR 14,0 (supported since z196) is better than BCR 15,0 (which also requires checkpoint 

synchronization needed for software checkpoints that might incur additional delays)

ÁFor storing clock value, use STOCK CLOCK EXTENDED (STCKE); if uniqueness is not required, use STORE CLOCK 

FAST (STCKF) 

ÁUse simple “interlocked-access” instructions, e.g. LOAD AND ADD (LAA), OR/AND/XOR immediate (OI, NI, XI), instead of 

conditional loops using compare-and-swap type instructions, for any unconditional atomic updates
– OI, NI, XI (and their long displacement analogues, OIY, NIY, XIY) were used in examples that did not interlock in earlier 

architecture; these instructions are now interlocking since z196
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Instruction Scheduling Guidelines

ÁOptimizing instruction grouping efficiency might yield better performance 
– Arrange code such that 3 instructions that can be grouped together to optimize dispatch bandwidth

– Instruction clump formation (instruction storage alignment) affects how instructions are fetched from the instruction cache, and 

may affect grouping effectiveness

– Branch instruction ends a group in z196; but after zEC12, it ends only if it is predicted taken or if second in the group

ÁExecution results can be bypassed without any additional latency to a dependent instructions if the sourcing and receiving 

instructions are on the FXUs (FXUa, but not FXUb in z13) of the same side of the issue queue
– This can be arranged by having the instructions placed consecutively, and thus usually in the same group (and the same side)

ÁFloating-point (FP) operations
– Mixed mode FP (e.g. short->long, long->short, hex->bin, bin->hex) operations should be avoided; results are typically not 

bypassed, and could cost pipeline rejects or flushes

– In z13, the simpler mapper tracker design used for VRs (and FPRs) can lead to false dependencies in single precision FP 

operations; where possible, double precision FP operations should be used

– In z13, execution functions are evenly distributed (symmetric) among the 2 sides of the issue queue, scheduling that enable 

parallel processing among the 2 different sides can potentially achieve better performance

• For reference, in z196 and zEC12, floating-point unit and fixed-point multiply engine are only provided on one side of the 

issue queue

• For z13, FP results bypassing capability are symmetric among FP operations from the two issue queue sides

ÁSoftware directives like branch prediction preload and prefetch data instructions should be placed as far back from actual 

usage as possible to be effective
– As usage of these instructions might have adverse effects of increasing overall code size, they are best used by applying 

insights based on run-time profiles such that “blind” insertions can be avoided
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Cache Related Guidelines (1)

ÁAvoid instructions (executable code) and operand data (working storage or stack storage) in the same cache lines; which 

can be costly due to moving cache lines between the separated (split) local caches (instruction/data L1/L2)
– Since both instruction and operand accesses can be predictive in nature; if they can be located further apart, the possibility of 

leading to unintended cache transfer delays can be reduced

– The target operand of an EXECUTE-type instruction is treated as an instruction fetch (not data operand); and should be located 

as part of the instruction cache lines

– Self-modifying code (or store-into-instruction-stream) is supported in hardware functionally, but in general, the sequence can 

become costly due to out-of-order pipelining and movement of cache lines

– Pay attention to local (static) save areas and macro expansions with in-line storage parameters, especially in older Assembler 

code, to avoid unintended sharing

ÁInstruction Cache optimization
– Minimize the number of cache lines needed through the most frequent execution path

• Separate out frequently and infrequently used code to different storage areas can improve both cache and translation-

lookaside-buffer (TLB) efficiency

– Software hints, e.g. prefetch data and branch prediction preload instructions, should not be added blindly

• Unnecessary hints may increase instruction cache footprint and instruction processing delay

• Branch prediction preload instruction also does instruction cache touch (as a way of prefetching)

– Unrolling and inlining should be done to improve potential processing parallelism, but should be targeted with a reasonable 

resulting loop size; i.e. aim for maximum processing with minimal loop size
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Cache Related Guidelines (2)

ÁData Cache optimization
– Don’t mix multiple distinct shared writeable data in the same cache line; to avoid potential tug-of-war among multiple processors

• Avoid putting multiple shard (and contested) locks in the same cache line

– Avoid using any storage element as a running variable that will get fetched and updated many times in close proximity

• Consider using a general register instead

• Similarly, avoid spill and fill through storage within a short number of instructions

– NIAI may be used to provide hints to the hardware about intentions of storage accesses to avoid delays from potential cache 

state changes

– Data Prefetch instructions with both prefetch and untouch functions are provided

• For cache lines that are contested among many processors, it might not be desirable to prefetch the cache line ahead of 

time; which will add unnecessarily data movement in the system causing extra delays

– L1 access pipeline (from issue of data fetch to issue of dependent instruction) is currently at 4 cycles, scheduling non-

dependent operations in-between to allow maximum parallel processing

– Although the designs have ways to detect store-to-load dependencies and provide as much bypass capability as possible, the 

mechanism are improving every generation but is not perfect, minimizing storage access dependencies will usually yield better

performance

• In general, simple store and load instructions are handled well while more complicated instructions or address overlaps 

may observe more pipeline rejects
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Suggestions, questions, comments:

cshum@us.ibm.com
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