Open Source & ISV Ecosystem Enablement for LinuxONE and IBM z

Dale Hoffman (daleh@us.ibm.com)
Marcel Mitran (mmitran@ca.ibm.com)

November 3, 2015

Chart deck located at: Open Source Ecosystem chart deck URL
Agenda

• LinuxONE and IBM z Overview
• LinuxONE and IBM z Open Source & ISV Ecosystem & Content
• Scalable Financial Trading Analysis and Insights Demo
• Recent Performance Measurements

We are still working through this and learning along the way … and will continue to seek guidance & prioritization from our customers!
World’s leading businesses run on the mainframe

- 92 of the top 100 worldwide banks
- 23 of the top 25 US retailers
- 10 out of 10 of the world’s largest insurers
- 23 out of 25 of the world’s largest airlines

Processing the world’s transactions & data

- 30 billion business transactions processed on the mainframe per day
- 80 percent of the world’s corporate data resides or originates on mainframes
- 91 percent of surveyed CIOs said that new customer-facing applications are accessing the mainframe
- 55 percent of all enterprise applications need the mainframe to complete transactions
New marketplace dynamics will drive hyper growth opportunity for the IBM Mainframe

Traditional 1964–2014
- Batch
- General Ledger
- Transaction Systems
- Client Databases
- Accounts payable / receivable
- Inventory, CRM, ERP

Linux & Java 1999–2014
- Server Consolidation
- Oracle Consolidation
- Early Private Clouds
- Email
- Java®, Web & eCommerce

CAMSS² 2015–2020
- On/Off Premise, Hybrid Cloud
- Big Data & Analytics
- Enterprise Mobile Apps
- Security solutions

- **Open Source LinuxONE and IBM z ecosystem enablement**

1. MIPS: Millions of Instructions per Second or the metric z uses to measure client workload
2. CAMSS: Cloud, Analytics, Mobile, Social, Security
Linux on IBM z as of 2Q2015

- 15 years of Enterprise Linux® on z Systems™
- 27% of total installed capacity\(^1\) run Linux
- Linux core\(^2\) capacity increased 16% from 2Q14 to 2Q15
- 40% of customers have Linux cores
- 80% of the top 100 customers running Linux on the mainframe\(^3\)
- 67% of new accounts run Linux

1. Capacity or MIPS: Millions of Instructions per Second or the metric z uses to measure client workload
2. Linux core or IFL: Integrated Facility for Linux or the terminology used to describe a processor core. z13 has on average 7 cores/CPU chip
3. Top 100 is based on total installed MIPS
4. CAMSS: Cloud, Analytics, Mobile, Social, Security

http://www-03.ibm.com/systems/z/os/linux/success/
Introducing the IBM LinuxONE Systems

THE MOST TRUSTED, EFFICIENT AND HIGH PERFORMANCE ENTERPRISE-GRADE LINUX PLATFORM

Linux

YOUR WAY

Linux WITHOUT LIMITS

Linux WITHOUT RISK
IBM LinuxONE Announcements
A Collection Of Really Cool Stuff!

IBM LinuxONE SYSTEMS
IBM LinuxONE Emperor™
IBM LinuxONE Rockhopper™

IBM LinuxONE SOLUTIONS
Designed For The Digital Economy
Mobile Analytics Cloud DevOps

IBM LinuxONE Elastic Pricing

Wide variety of Open Source & ISV Products Enablement
Distributions Hypervisors Languages Runtimes Management Database Analytics

Open Mainframe Project
IBM LinuxONE Community Cloud
IT Analytics Source Code Contribution

Community Collaborations
Commitment To The Open Community
Time for the next OPEN BREAKTHROUGH

The best of IBM z SYSTEMS

- Dynamic Resource Allocation
- Non-disruptive Scalability
- Continuous Business Availability
- Operational Efficiency
- Trusted Security
- Data and Transaction Serving

The best of LINUX & OPEN

- Freedom & Agility
- Standards based
- Speed to Innovate
- Developer Productivity
- Community Collaboration
- Quality of SW
- Open source SW & applications
Agility = Capability + Speed

Agility is the ability to get to market quickly and effectively to solve the business problems you care about by leveraging best-of-breed capabilities across eco-system, security and management, while benefiting from industry leading scale and performance.
Agility = Capability + Speed

Agility is the ability to get to market quickly and effectively to solve the business problems you care about by leveraging best-of-breed capabilities across eco-system, security and management, while benefiting from industry leading scale and performance.
Open Source in the Enterprise

<table>
<thead>
<tr>
<th>Open Source usage by the numbers</th>
<th>64% of companies participate in Open Source projects</th>
<th>67% of companies w/ > 5k employees</th>
<th>78% of companies run on Open Source</th>
<th>66% of companies build software on Open Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>88% of companies to increase open source contributions in the next 2-3 years</td>
<td>39% Plan to start own external OSS project</td>
<td>Less than 3% don’t use OSS in any way</td>
<td>50% of companies say that more than half their engineers are working on open source projects</td>
<td>53% Expect to reduce barriers to employee participation</td>
</tr>
</tbody>
</table>
A new team in z Systems Software with the following mission:

- Create a rich open-source ecosystem to enable LinuxONE and IBM z Systems as a target platform for new application deployment.

Scope: Open Source Foundational Technologies for LinuxONE and IBM z Systems

Stakeholders:
- z Clients
- ISVs, Biz Part. & Distros
- IBM Sponsors and Product teams
- Communities

Activities:
- Port Test Performance
- Contribute changes
- Develop Go-to-Market strategy
- Available for Client team

Foundational Technologies:
- Dev Language & Environment
- Database & Messaging
- Cloud Infrastructure
- Big Data & Analytics
Open Source & ISV Linux SW Capability

Tier 1: Foundation Packages*
- **Porting work**: for some packages, compilers, bug fixes, build script changes are required
- **“Dockerize”** all ports
- Working to get more engaged within these communities

<table>
<thead>
<tr>
<th>Languages and Dev Environment</th>
<th>Database & Messaging</th>
<th>Cloud infrastructure</th>
<th>Big Data & Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node.js</td>
<td>MySQL</td>
<td>Docker</td>
<td>Hadoop (via Veristorm, BigInsights)</td>
</tr>
<tr>
<td>Ruby</td>
<td>PostgreSQL</td>
<td>Docker Swarm/Compose</td>
<td>Drupal</td>
</tr>
<tr>
<td>Rails</td>
<td>MariaDB</td>
<td>Chef</td>
<td>ELK (Elasticsearch, Logstash, Kibana)</td>
</tr>
<tr>
<td>Python</td>
<td>MongoDB</td>
<td>Puppet</td>
<td>Apache SPARK</td>
</tr>
<tr>
<td>LLVM</td>
<td>Cassandra</td>
<td>OpenStack</td>
<td>Apache Kafka</td>
</tr>
<tr>
<td>OpenJDK, OpenJDK JIT</td>
<td>Redis</td>
<td>Cloud Foundry</td>
<td>Joomla</td>
</tr>
<tr>
<td>GCCGO, Golang compiler</td>
<td>CouchDB</td>
<td>OpenShift</td>
<td>Solr</td>
</tr>
<tr>
<td>oCaml, oCaml native compiler</td>
<td>Geode</td>
<td>Kubernetes</td>
<td>SugarCRM</td>
</tr>
<tr>
<td>Erlang, Erlang native compiler</td>
<td>RabbitMQ</td>
<td>Apache Mesos</td>
<td>Cloudera</td>
</tr>
<tr>
<td>Apache HTTP Web Server</td>
<td>CouchBase</td>
<td>Apache Flume</td>
<td>HortonWorks</td>
</tr>
<tr>
<td>PHP/Zend</td>
<td>Neo4j</td>
<td></td>
<td>Cloudera</td>
</tr>
<tr>
<td>R language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clojure</td>
<td></td>
<td></td>
<td>Apache Flume</td>
</tr>
<tr>
<td>Scala</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swift (Apple)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Various sources of input: e.g. BlueMix, Github stats, feedback from: direct client input, IBM client reps, on going research

* Content and priority are subject to change
Tier 2: Popular Tools and Applications*

- Most packages just work on LinuxONE and IBM z Systems without porting effort, especially if written in Java or supported languages, and RHEL/SLES are among supported distros.
- “Dockerize” all ports
- Working to get more engaged within these communities

<table>
<thead>
<tr>
<th>App development & DevOps</th>
<th>Configuration, monitoring management and tools</th>
<th>Web Application Development</th>
<th>eCommerce & Application server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xerces-c</td>
<td>Fluentd</td>
<td>jMeter</td>
<td>jBoss</td>
</tr>
<tr>
<td>XMLSec</td>
<td>Ansible</td>
<td>Wordpress</td>
<td></td>
</tr>
<tr>
<td>protobuf</td>
<td>SaltStack</td>
<td>Ceilometer</td>
<td></td>
</tr>
<tr>
<td>Doxygen</td>
<td>cAdvisor</td>
<td>Apache Tomcat</td>
<td>Magento</td>
</tr>
<tr>
<td>ANTLR</td>
<td>virt-install</td>
<td>HAProxy</td>
<td></td>
</tr>
<tr>
<td>Apache Maven</td>
<td>Zenoss</td>
<td>NGNIX</td>
<td></td>
</tr>
<tr>
<td>Jenkins</td>
<td>Zookeeper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apigility</td>
<td>DataDog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.Net</td>
<td>ElasticBox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node.js extended components</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Content and priority are subject to change

Validating packages per customer request
Tier 2: Popular Tools and Applications* that have been verified by Sine Nomine Associates

<table>
<thead>
<tr>
<th>App development & DevOps</th>
<th>System productivity tools</th>
<th>System configuration tools</th>
<th>System libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>pigz</td>
<td>Bacula</td>
<td>phpMyAdmin</td>
<td>db4</td>
</tr>
<tr>
<td>autosh</td>
<td>ipsec-tools</td>
<td>webmin</td>
<td>freetds</td>
</tr>
<tr>
<td>eXplorer-mod</td>
<td>netcat</td>
<td>dhcp_probe</td>
<td>libbibverbs</td>
</tr>
<tr>
<td>mono</td>
<td>openVPN</td>
<td>lighttpd</td>
<td>libapreq2</td>
</tr>
<tr>
<td>php-mcrypt</td>
<td>ossec-hids</td>
<td>mod-rpaf</td>
<td>libmcrypt</td>
</tr>
<tr>
<td>GeoIP</td>
<td>h3270</td>
<td>thttpd</td>
<td>libnet</td>
</tr>
<tr>
<td>php-pear-DB</td>
<td>s3270</td>
<td>scsi-target-utils</td>
<td>libsodium</td>
</tr>
<tr>
<td>php-php-gettext</td>
<td></td>
<td>HAO</td>
<td>openpgm</td>
</tr>
<tr>
<td>mock</td>
<td></td>
<td>heartbeat</td>
<td>pkcs11-helper</td>
</tr>
<tr>
<td>Perl Tools(e.g. perl-libapreq2, perl-Net-Ping...)</td>
<td></td>
<td></td>
<td>zeromq</td>
</tr>
</tbody>
</table>

* Content and priority are subject to change
LinuxONE and IBM z
Open Source & ISV Ecosystem Community

• One stop shop to find out what is available

• Information on all open-source software
 – Recipes for building the software on LinuxONE and IBM z
 – Pointers to binaries if available
 – Other related news and information

• Build recipes and how-tos on GitHub
 – https://github.com/linux-on-ibm-z/docs/wiki/

• Open to every one interested in LinuxONE and IBM z
 – Users can post questions/comments
 – Provide feedback to the Open Source & ISV Ecosystem team

• We look forward to hearing from you!
Support for the LinuxONE Open Source & ISV Ecosystem

1. IBM via the Ecosystem enablement team & LTC (Linux Technology Center)

2. Select ISV relationships

3. Third Party Enterprise Support

4. Open Source Products embedded in the distros
2ndQuadrant is excited by combining the world’s most advanced open source database, PostgreSQL, with the world’s most efficient, trusted and secure server, the IBM z13. The results of up to 2x throughput performance far exceed our goal, and we are pleased to partner with IBM for supporting IBM's customers.

-- Simon Riggs, CTO & Founder, PostgreSQL Development at 2ndQuadrant

Chef, the leader in automation for DevOps, today announced it is collaborating with IBM to deliver integration between the Chef 12 Client & Chef 12 Server and IBM’s enterprise Linux mainframe offering, Linux on z Systems. “We’re experiencing rapid and accelerating adoption of Chef within the enterprise, making integration with IBM z Systems an important feature for our platform ...

-- Matt Ray, Director of Partner Integration, Chef.

“We are committed to make MongoDB available on all major platforms and are excited to add support for IBM z Systems’ Enterprise Grade Linux and LinuxOne Platform. This announcement is a leap forward for customers who want to deploy modern, mission-critical applications built with MongoDB and take advantage of the performance, scalability and security of IBM’s mainframe hardware products.”

--- Eliot Horowitz CTO & Founder, MongoDB

Docker is very pleased to be working with IBM to enable the Docker container capability for LinuxONE and IBM z Systems.

-- Ben Golub, CEO of Docker

IBM’s z Systems mainframes power some of the most mission critical services available. ... Having Puppet run on IBM z Systems not only helps realize these benefits in a mainframe environment, but speaks to the ubiquitous and flexible nature of open source Puppet.

-- Nigel Kersten, CIO of Puppet Labs

"As the ONE default database platform for leading Linux distributors, ..., MariaDB is excited to support IBM LinuxONE,” stated Patrik Sallner, CEO of MariaDB. “With Linux on IBM z growing at twice the rate of the Linux market overall, there is clear customer demand for open source solutions on IBM’s highly scalable and secure platform. These qualities align perfectly with MariaDB’s true open source model, which leverages Community innovations ..., for on-premise, hybrid and cloud applications.”

--Patrik Sallner, CEO, MariaDB Corporation

“It’s exciting to see the investment IBM is making into our open source technologies — Elasticsearch, Logstash and Kibana — with Linux on z Systems. This further expands the reach of our technologies in enterprises with mission critical deployments on mainframe systems.”

-- Shay Banon, CTO & co-founder of Elastic
IBM LinuxONE
Community Cloud

GOAL: Give developers, ISVs and students remote access to LinuxONE & IBM z

ISVs
- Available for ISV through PartnerWorld
- Hosted by IBM in Dallas, Boeblingen and Beijing
- Port, test, benchmark key applications
- **Available Now**

Clients
- Remote access environment free of charge for limited time
- Client Sandbox for Proof of Concept work to verify and test new apps and try new technologies
- **Available Now**

Students & Developers
- Free access to Developers Students, and Entrepreneurs
- Hosted by Partnership Universities: Syracuse, Marist and others
- Get a LinuxONE virtual machine in minutes
- **Available November 2015**
An Industry Use Case Observation

SINGLE VIEW aka 360 Degrees VIEW USE CASE

Application

Data processing

(central) data

Ingest ETL

Aggregation

vs

Federation
An Industry Use Case Observation

SINGLE VIEW aka 360 Degrees VIEW USE CASE

Scalable Financial Trading Analysis & Insights Demo

Stock trading platform leveraging SOI across SOE & SOR to provide an enhanced and optimized single view experience for the user

• Why did the stock value drop last Wednesday at 11:00am? Diagnostic
• Is there good/bad news on company X right now? Sentiment
• Company X on social media? Sentiment
• What are people in city Y / Z km around me investing in? Geospatial
• What will the stock price be in an hour based on historic trend? Predictive

• Auto-recommendation based on the above Prescriptive
• Is investing in company X a good idea based on: Sentiment analysis;
 Geospatial analytics, Predictive analytics; All of the above

SOI (systems of insights, SOE (systems of engagement), SOR (Systems of record)

IMPLEMENTATION

• Implemented via sharding across many server farms
• What about an approach that integrates everything into ONE server and leverages vertical scaling with better
 • Co location data-analytics-insights
 • Extreme virtualization
 • Security
 • Network latency
 • Availability & disaster recovery
 • Apps that don’t need to worry about clustering, ...

Aggregation
“Scalable Financial Trading Analysis & Insights” Live demo

https://www.youtube.com/watch?v=VWBNolwGEjo
LinuxCon Demo Architecture

- Nginx Load Balancer
- Systems of Engagement
- Spark + Node.js
 - Analytics (Spark as a Service)
- Apache Curator
 - Service discovery and registration
- MongoDB
 - NoSQL
- MariaDB
 - SQL
- PostgreSQL
 - SQL
- Apache Kafka
 - Message Queue (Ingestion)
- IBM
- Chef
 - System Orchestration
- IBM Services
- IBM Solutions for IoT
- IBM Watson
- IBM SmartCloud
- IBM Security
- IBM Easy Answers
- IBM Sales Acceleration Factory
- IBM Global Services

https://www.youtube.com/watch?v=VWBNolwGEjo
Agility is the ability to get to market quickly and effectively to solve the business problems you care about by leveraging best-of-breed capabilities across eco-system, security and management, while benefiting from industry leading scale and performance.
Open Technology SQL Data serving performance

MariaDB 10.1.5

1.8x to 2.1x throughput improvement on Sysbench Benchmark

PostgreSQL 9.4

1.6x to 2.2x throughput improvement on pgBench Benchmark
NoSQL Data serving performance: MongoDB

Throughput

- 1.9x to 2.1x throughput improvement on YCSB Benchmark

Database Restore (MiB/Second)

- Up to 7.5x reduction in elapsed-time to compress database: MongoDB, containing large documents

Extreme Scale Up

- Consolidate multiple MongoDB servers in one instance
 - Largest single node of MongoDB with a footprint of +2TB, processing +4B documents with sustained throughput and response time (<5ms).
 - Avoid the overhead, cost and complexity of distributing DB across many servers

LinuxOne system using Node.js and MongoDB can handle over 30Billion web events/day (AcmeAir)!

https://www.mongodb.com/mongodb-scale

- **Cluster Scale.** Distributing the database across 100+ nodes, often in multiple data centers – *LinuxONE single system scale up-vertical scaling*
- **Performance Scale.** Sustaining 100,000+ database read and writes / second while maintaining strict latency SLAs – *LinuxONE up to 470,000 database read and writes / second*
- **Data Scale.** Storing 1 billion+ documents in the database – *LinuxONE storing 4 billion+ documents in single instance*
• High Performance JavaScript for LinuxONE and IBM z
 – Up to 2.1x more RESTful web interactions with AcmeAir in node.js with Apache JMeter benchmark setup
Spark

- Up to **1.5x** faster insights for real-time analytics using Spark’s core primitives
- Up to **1.5x** more data processed for model building leading to real-time insights with higher accuracy within a given batch window

- Co-locate Spark with non IBM Database on LinuxONE outperforms running Spark off-platform up to **3x** for aggregation analytical query
 - e.g. Operational Analytics for a Brokerage running reports on top of OLTP Trading data

Composite Mean Across 8 'Spark' Core Benchmarks
HW Compression

- Up to **7.5x** reduction in elapsed-time to compress database: MongoDB, containing large documents

- Up to **4.9x** better throughput archiving Spark RDD on z13 with zEDC vs. software gzip compression

- Up to **4x** reduction in elapsed time to compress Docker containers on z13 with zEDC vs. SW gzip
Just Awesome Results!
Scalability, Performance, Security, Availability

MongoDB, MariaDB, Postgres up to 2x faster

Docker Containers 1.5x

Node.js up to 2x faster

Compression Spark RDD 4.9x faster

Docker Persistence 4x faster

Spark Analytics up to 3x faster

“**Single** MongoDB node on LinuxOne scales up to **2TBs** with sustained throughput and response time <5ms, while supporting **4Billion+ documents, 460,000 reads/writes/second**, with no Sharding required!”

“LinuxOne using Node.js and **multiple** MongoDB instances handles over **30Billion web events/day**!”
Questions?

Dale Hoffman (daleh@us.ibm.com)
Marcel Mitran (mmitran@ca.ibm.com)

Thank you!
Backup
Acknowledgements

• None of this work would be possible without the outstanding contributions from our Linux on System z Open Source Ecosystem Leadership Team, our Linux on System z Performance teams, Research, various technical contributors, the CPO, and those who ensured we would have the test HW available

• Demo Core team: Mohammad Abdirashid, Elton Desouza, Donna Dillenberger, Dale Hoffman, Marcel Mitran, Eberhard Pasch, Otto Wohlmuth, Ivan Dovgan

• Performance Leadership Team: Tarun Chopra, Raj Krishnamurthy, Qi Liang, Moriyoshi Ohara, Hartmut Penner, Stefan Wirag

• Ecosystem Leadership Team: Bryan Chan, Cindy Lee, Enyu Wang, Cheryl Fraser

• Technical Contributors: David Petersen, Brian Cooper, Gong Su

• CPO: Avijit Chatterjee, David Rhoderick

• Demo test: Tom Rozmus, Joe Stein
Where to get Open Source Packages

<table>
<thead>
<tr>
<th>Assets</th>
<th>Where to get it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansible</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Ansible</td>
</tr>
<tr>
<td>AntLR</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-AntLR</td>
</tr>
<tr>
<td>Apache Cassandra</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Cassandra</td>
</tr>
<tr>
<td>Apache Geode</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Apache-Geode-1.0.0</td>
</tr>
<tr>
<td>Apache HTTP</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Apache-HTTP-server</td>
</tr>
<tr>
<td>Apache Maven</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Maven</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Apache-Spark-1.5-on-SLES-12</td>
</tr>
<tr>
<td>Apache Solr</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Apache-Solr</td>
</tr>
<tr>
<td>Ceilometer client</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Python-Ceilometer-client</td>
</tr>
</tbody>
</table>
| Chef client & server | https://github.com/linux-on-ibm-z/docs/wiki/Building-Chef-client-12.1.2
 | https://github.com/linux-on-ibm-z/docs/wiki/Building-Chef-server-12.0.4 |
| CouchDB | https://github.com/linux-on-ibm-z/docs/wiki/Building-CouchDB |
Where to get Open Source Packages

<table>
<thead>
<tr>
<th>Assets</th>
<th>Where to get it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docker Compose</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Docker-Compose</td>
</tr>
<tr>
<td>Docker Private Registry</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Docker-Distribution</td>
</tr>
<tr>
<td>Docker Swarm</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Docker-Swarm</td>
</tr>
<tr>
<td>Doxygen</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Doxygen</td>
</tr>
<tr>
<td>Drupal</td>
<td>https://github.com/drupal/drupal/blob/7.x/INSTALL.txt</td>
</tr>
<tr>
<td>Elasticsearch</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Elasticsearch</td>
</tr>
<tr>
<td>Erlang</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Erlang</td>
</tr>
<tr>
<td>Fluentd</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Fluentd</td>
</tr>
<tr>
<td>Go (GCCGO)</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-gccgo</td>
</tr>
<tr>
<td>HAProxy</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-HAProxy</td>
</tr>
<tr>
<td>Joomla</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Joomla</td>
</tr>
</tbody>
</table>
Where to get Open Source Packages

<table>
<thead>
<tr>
<th>Assets</th>
<th>Where to get it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kibana</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Kibana</td>
</tr>
<tr>
<td>Logstash</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Logstash</td>
</tr>
<tr>
<td>MariaDB</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-MariaDB-10.0</td>
</tr>
<tr>
<td>MongoDB</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-MongoDB</td>
</tr>
<tr>
<td>MySQL</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-MySQL</td>
</tr>
<tr>
<td>oCaml Interpreter</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-oCaml-interpreter</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-PostgreSQL-9.4-on-SLES12</td>
</tr>
<tr>
<td></td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-PostgreSQL-9.4-on-RHEL7</td>
</tr>
<tr>
<td></td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-PostgreSQL-9.4-on-SLES11</td>
</tr>
<tr>
<td></td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-PostgreSQL-9.4-on-RHEL6</td>
</tr>
</tbody>
</table>
Where to get Open Source Packages

<table>
<thead>
<tr>
<th>Assets</th>
<th>Where to get it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protobuf</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-ProtoBuf</td>
</tr>
<tr>
<td>Puppet</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Puppet</td>
</tr>
<tr>
<td>Python</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Python-2.7.9</td>
</tr>
<tr>
<td>Python</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Python-3.4.3</td>
</tr>
<tr>
<td>R</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-R</td>
</tr>
<tr>
<td>RabbitMQ</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-RabbitMQ-on-SLES</td>
</tr>
<tr>
<td></td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-RabbitMQ-on-RHEL</td>
</tr>
<tr>
<td>Ruby-on-Rails</td>
<td>http://guides.rubyonrails.org/getting_started.html</td>
</tr>
<tr>
<td>Redis</td>
<td>https://github.com/antirez/redis/blob/unstable/README.md</td>
</tr>
<tr>
<td>Ruby</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Ruby</td>
</tr>
<tr>
<td>Snappy-Java</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Snappy-Java</td>
</tr>
<tr>
<td>V8</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-V8-libraries</td>
</tr>
<tr>
<td>Xerces-C</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-Xerces</td>
</tr>
<tr>
<td>XMLSec</td>
<td>https://github.com/linux-on-ibm-z/docs/wiki/Building-XMLSec</td>
</tr>
</tbody>
</table>
Enabling Open Source Docker for z Customers

<table>
<thead>
<tr>
<th>Item</th>
<th>Content</th>
</tr>
</thead>
</table>
| **Docker binaries** | • Open Source Docker for RHEL 7 and SLES 12
• GOLANG version to be released YE 15
• “HowTo” Document for first steps: http://containerz.blogspot.com/
• Docker is Docker is Docker … on Linux on Z too! |
| **DockerCompose** | https://github.com/linux-on-ibm-z/docs/wiki/Building-Docker-Compose |
| **Docker Swarm** | https://github.com/linux-on-ibm-z/docs/wiki/Building-Docker-Swarm |
| **Docker Files** | https://www.ibm.com/developerworks/community/forums/html/topic?id=1b477437-0f63-496c-8e3b-e18e06353d43 |
| **Private Registry Creation** | Instructions on setting up and building base images:
http://containerz.blogspot.ca/2015/03/first-steps-with-docker.html
http://containerz.blogspot.ca/2015/03/creating-base-images.html
• Create a Docker image that runs a private repository on Linux on:
https://github.com/linux-on-ibm-z/docs/wiki/Building-Docker-Distribution |
| **Contacts** | Dale Hoffman (daleh@us.ibm.com) for Docker use cases and customer input
Utz Bacher (Utz.Bacher@de.ibm.com) for binary & “HowTo” critique
Cindy Lee (cinderel@ca.ibm.com) for Docker files, class, PoC |
Why LinuxONE?

• **Speed & Agility => More function and capability with less**
 – LinuxONE provides 1.5x better Java performance (fastest threads and largest caches in the industry)
 – Databases run 2x better on LinuxONE (lots of dedicated I/O co-processors)
 – Collocating database and app-server (typical on LinuxONE, atypical on alternate platforms) with performance up-to 3x better
 – Hybris cloud uses in-memory caching which depends inherently on large and fast memory
 • Scaling of Mongodb to 2TB maintained <5ms response-times reading from the DB on LinuxONE
 • Nearest equivalent on alternate platforms shows 60ms latency performing the same operation

• **Vertical Scale => Simpler, more resilient, more secure**
 – Database component of the solution scales vertically, and fits in a single box, instead of having to be spread across many smaller boxes
 • One box instead of many means reduced operational complexity, improved resilience, simpler security
 – Designed for consolidation: 100s of distributed servers -> 1 LinuxONE
 – Runs more instances of Hybris cloud in a single footprint
 • Significantly reduces S/W licensing cost for products like OracleDB
 • Reduces operational cost as managing a single box means less to manage
 • Simplifies operation environment and improves resilience (less moving parts, less likely to break)

• **Security and high-availability**
 – Industry leading security
 – GDPS capability means datacenter doesn't miss a beat moving workload to a back-up system
Introducing IBM LinuxONE™

IBM LinuxONE™: Linux Without Limits

IBM LinuxONE™ and Open Source Demo

Introducing IBM LinuxONE: Announcement webinar

Just Launched!
And the family of IBM LinuxONE SOLUTIONS

Build the premier **mobile** solution for your business to deliver the best possible experience for your clients, employees, and partners.

Create an agile and trusted **cloud** infrastructure to meet new business demands with greater efficiency and lower costs for IT service delivery.

Extract insights from your data faster and scale effortlessly to meet big data and **analytics** demands.

Realize quicker time to value, and higher customer satisfaction, through iterative **development** and continuous improvement.
Solutions:
Designed for the Digital Economy

<table>
<thead>
<tr>
<th>Solution</th>
<th>Use Cases</th>
<th>LinuxONE Value</th>
<th>Enabling Technologies & Services</th>
</tr>
</thead>
</table>
| **Mobile** | - Agile Development and Delivery of Mobile Apps
- Integration with Core Systems of Record
- Secure End-to-End Mobile Transaction
- Personalized Mobile Experience Through Analytics | - Secure mobile devices, data and enterprise transactions without sacrificing response time
- Deliver mobile services on an open and highly responsive infrastructure that meets the peaks in mobile workloads | - IBM MobileFirst Platform Foundation, MobileFirst Platform Custom Pattern for Linux, MobileFirst Protect, API Management, IBM Integration Bus, Urban Code Deploy, IBM Rational Collaboration Lifecycle Management, IBM Rational Developer for the Enterprise, DataPower, WebSphere Application Server
- LinuxONE Mobile Services |
| **Analytics** | - High Performance Business Intelligence and Reporting
- Big Data Insights and Next Generation Database
- IT Operational Analytics for Continuous Business Availability | - Maintain a high-performing business analytics and data warehousing solution without added complexity or cost
- Scale up to more users and out to more data while containing costs and reducing complexity
- Cost effectively meet the availability expectations of business
- Reduce data center complexity and cost with more efficient administration and facilities management | - Cognos, Cognos Custom Pattern for Linux, DB2, DB2 Custom Pattern for Linux, DB2 BLU, BigInsights, IT Operational Analytics, IBM zAware, Spark
- LinuxONE Analytics Services |
| **Cloud** | - Cloud Platform for Enterprise Systems of Record
- Cloud Platform for Any Database Workload
- Cross Platform Hybrid Cloud Solution | - Provide agility and time to value with unparalleled qualities of service for business-critical applications
- Enable cloud solutions with uncompromised system uptime, airtight data security, and powerful vertical scalability
- Deliver high performance and optimize for efficiency | - z/VM and KVM, Wave, Infrastructure Suite for z/VM and Linux, UrbanCode Deploy with Patterns, Custom Patterns for Linux, IBM Cloud Manager with OpenStack, VMware vRealize Automation *(requires ICM for z/VM)*, VMSecure, zVPS
- LinuxONE Cloud Services |
| **DevOps** | - Develop, test, deploy and operate enterprise-level applications
- Accelerate software delivery by enabling collaborative development and automation across organizational silos.
- Enable developer productivity starting from scratch, open source, or Bluemix, across platform, and languages. | - Complete management and automation of the software development cycle.
- Freedom to choose the right development tools for the job and unify development across platforms
- Quick feedback and low cost of entry to nimbly incorporate improvements into future iterations | - Rational Collaborative Lifecycle Management (CLM), Urban Code Deploy, IBM Application Performance Manager (APM)
- WAS Liberty, Bluemix
- LinuxONE DevOps Services |
Bring together under a formal structure, an open source, technical community with a mutual interest in advancing the surrounding ecosystem and adoption of Linux on the mainframe as an enterprise-grade platform.

Open collaboration across academic, government and corporate partners to advance z Systems as an enterprise-grade platform for Linux.

Design and develop shared technology elements.

Provide development and test resources through a collaboration hub that lowers barriers to joint development activities.

Provide access to free education and information.

Improve the experience of users of the mainframe platform when running Linux.
VMware vRealize Automation (vRA) can provision & orchestrate virtualized IBM Power & z Systems workloads

- **Client Value** – Now clients have an Open interface to provision z System and Power System workloads using VMware cloud management tool while supporting a single tool and pane of glass interface!

- **Infrastructure as a Service (IaaS)** - Utilize vRA as the cloud management software to pass workload management requests via OpenStack API’s (Juno) to IBM’s PowerVM, PowerKVM, z/VM and KVM on z

- **Platform as a Service (PaaS)** – Install scripted applications and workflows via IBM CloudBuilder
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

<table>
<thead>
<tr>
<th>Chip hopper</th>
<th>developerWorks*</th>
<th>FlashSystem</th>
<th>HyperSwap*</th>
<th>IMS</th>
<th>PR/SM</th>
<th>z/Architecture*</th>
<th>z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS*</td>
<td>DS8000*</td>
<td>GDS*</td>
<td>IBM*</td>
<td>LinuxONE</td>
<td>Storwize*</td>
<td>zEnterprise*</td>
<td>z/OS*</td>
</tr>
<tr>
<td>DB2*</td>
<td>ECKD</td>
<td>GPFS</td>
<td>Ibm.com</td>
<td>LinuxONE Emperor</td>
<td>XIV*</td>
<td>z/OS*</td>
<td>z/VSE*</td>
</tr>
<tr>
<td>DB2 Connect</td>
<td>FICON*</td>
<td>HiperSockets</td>
<td>IBM (logo)*</td>
<td>LinuxONE Rockhopper</td>
<td>z13</td>
<td></td>
<td>z/VM*</td>
</tr>
</tbody>
</table>

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

OpenStack is a trademark of OpenStack LLC. The OpenStack trademark policy is available on the OpenStack website.

TEALeAF is a registered trademark of Teleaf, an IBM Company.

Windows Server and the Windows logo are trademarks of the Microsoft group of companies.

Worklight is a trademark or registered trademark of Worklight, an IBM Company.

UNIX is a registered trademark of The Open Group in the United States and other countries.

* Other product and service names might be trademarks of IBM or other companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

This information provides only general descriptions of the types and portions of workloads that are eligible for execution on Specialty Engines (e.g. zIIPs, zAAPs, and IFLs) ("SEs"). IBM authorizes customers to use IBM SE only to execute the processing of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the “Authorized Use Table for IBM Machines” provided at www.ibm.com/systems/support/machine_warranties/machine_code/aut.html ("AUT"). No other workload processing is authorized for execution on an SE. IBM offers SE at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts of workloads as specified by IBM in the AUT.
Copyright © 2015 by International Business Machines Corporation (IBM). No part of this document may be reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has been reviewed for accuracy as of the date of initial publication and could include unintentional technical or typographical errors. IBM shall have no responsibility to update this information. THIS DOCUMENT IS DISTRIBUTED “AS IS” WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF THIS INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY. IBM products and services are warranted according to the terms and conditions of the agreements under which they are provided.

Any statements regarding IBM’s future direction, intent or product plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily reflect the views of IBM. All materials and discussions are provided for informational purposes only, and are neither intended to, nor shall constitute legal or other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal counsel as to the identification and interpretation of any relevant laws and regulatory requirements that may affect the customer’s business and any actions the customer may need to take to comply with such laws. IBM does not provide legal advice or represent or warrant that its services or products will ensure that the customer is in compliance with any law.
Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. IBM does not warrant the quality of any third-party products, or the ability of any such third-party products to interoperate with IBM's products. IBM EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents, copyrights, trademarks or other intellectual property right.

•IBM, the IBM logo, ibm.com, Bluemix, Blueworks Live, CICS, Clearcase, DOORS®, Enterprise Document Management System™, Global Business Services ®, Global Technology Services ®, Information on Demand, ILOG, Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON, OpenPower, PureAnalytics™, PureApplication®, pureCluster™, PureCoverage®, PureData®, PureExperience®, PureFlex®, pureQuery®, pureScale®, PureSystems®, QRadar®, Rational®, Rhapsody®, SoDA, SPSS, StoredIQ, Tivoli®, Trusteer®, urban{code}®, Watson, WebSphere®, Worklight®, X-Force® and System z® Z/OS, are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.