The Agile Scaling Model (ASM) is a contextual framework for effective adoption and tailoring of agile practices to meet the unique challenges faced by a system delivery team of any size. The ASM distinguishes between three scaling
categories: - Core agile development. Core agile methods, such as Scrum and Agile Modeling, are self governing, have a value-driven system development lifecycle (SDLC), and address a portion of the development lifecycle. These methods, and their practices, such as daily stand up meetings and requirements envisioning, are optimized for small, co-located teams developing fairly straightforward systems.
- Disciplined agile delivery. Disciplined agile delivery processes, which include Dynamic System Development Method (DSDM) and Open Unified Process (OpenUP), go further by covering the full software development lifecycle from project inception to transitioning the system into your production environment (or into the marketplace as the case may be). Disciplined agile delivery processes are self organizing within an appropriate governance framework and take both a risk and value driven approach to the lifecycle. Like the core agile development category, this category is also focused on small, co-located teams delivering fairly straightforward systems. To address the full delivery lifecycle you need to combine practices from several core methods, or adopt a method which has already done so.
- Agility at Scale. This category focuses on disciplined agile delivery where one or more scaling factors are applicable. The eight scaling factors are team size, geographical distribution, regulatory compliance, organizational complexity, technical complexity, organizational distribution, domain complexity, and enterprise discipline. All of these scaling factors are ranges, and not all of them will likely be applicable to any given project, so you need to be flexible when scaling agile approaches to meet the needs of your unique situation. To address these scaling factors you will need to tailor your disciplined agile delivery practices and in some situations adopt a handful of new practices to address the additional risks that you face at scale.
The first step in scaling agile approaches is to move from partial methods to a full-fledged, disciplined agile delivery process. Mainstream agile development processes and practices, of which there are many, have certainly garnered a lot of attention in recent years. They’ve motivated the IT community to pause and consider new ways of working, and many organizations have adopted and been successful with them. However, these mainstream strategies (such as Extreme Programming (XP) or Scrum, which the ASM refers to as core agile development strategies) are never sufficient on their own; as a result organizations must combine and tailor them to address the full delivery life cycle. When doing so the smarter organizations also bring a bit more discipline to the table, even more so than what is required by core agile processes themselves, to address governance and risk.
The second step to scaling agile is to recognize your degree of complexity. A lot of the mainstream agile advice is oriented towards small, co-located teams developing relatively straightforward systems. But once your team grows, or becomes distributed, or you find yourself working on a system that isn’t so straightforward, you find that the mainstream agile advice doesn’t work quite so well – at least not without sometimes significant modification. Each of the scaling factors introduces their own risks, and when addressed effectively can actually reduce project risk, and for your project team to succeed you will want to identify the scaling factors applicable to the situation that you face and act accordingly. Unfortunately, this is a lot easier said (OK, in this case blogged about) than done.
IBM Rational advocates disciplined agile delivery as the minimum that your organization should consider if it wants to succeed with agile techniques. You may not be there yet, still in the learning stages. But our experience is that you will quickly discover how one or more of the scaling factors is applicable, and as a result need to change the way you work.
Further reading:
|
When you’re inside, safe in the warmth of your home watching snow fall on your driveway outside, all snowflakes look the same. But, when you look at a snowflake up close, particularly when you do so under a microscope, you quickly discover that all snowflakes are in fact unique.
It’s the same with IT projects. When you look at them from afar, particularly
from a very high level, they all look the same.
However, when you look at them up close, you quickly discover that they too
are unique. The agile scaling factors, which are really just general scaling factors applicable to all types of IT
project regardless of paradigm, help to make this very clear. For example, when it comes to team size some teams
are small, less than ten people perhaps, some are medium sized, and some are very
large (with hundreds of people). When it
comes to distribution some teams are co-located in the same room, some teams
have team members in different cubicles in the same building, some have people
working in different buildings, and some even have people working in different
countries. Many agile teams work in
regulatory environments, in fact the July 2009 DDJ State of the IT Union survey reports that one third of agile teams must
comply to industry regulations, although clearly many agile teams do not have
this as a concern. That’s only three
scaling factors. The point is that a
small, co-located team working in a non-regulatory environment will work much
differently than a fifty-person team working in three different locations,
which in turn works differently than a two hundred person team in the same
building working in a regulatory situation.
Different teams, facing different scaling issues will work in different
ways – unique snowflakes from a process point of view.
|
At IBM Rational we define disciplined agile delivery as: Disciplined agile delivery is an evolutionary (iterative and incremental) approach which regularly produces high quality solutions in a cost effective and timely manner via a risk and value driven life cycle. It is performed in a highly collaborative, disciplined, and self-organizing manner within an appropriate governance framework, with active stakeholder participation to ensure that the team understands and addresses the changing needs of its stakeholders to maximize business value provided. Disciplined agile delivery teams provide repeatable results by adopting just the right amount of ceremony for the situation which they face. Let’s explore the key points in this definition: - Full delivery life cycle. Disciplined agile delivery processes have life cycles which are serial in the large and iterative in the small. Minimally they have a release rhythm which recognizes the need for start up/inception activities, construction activities, and deployment/transition activities. Better yet, they include explicit phases as well. It is very important to note that these are not the traditional waterfall phases – requirements, analysis, design, and so on – but instead different “seasons” of a project. The point is that we need to look beyond agile software development and consider the full complexities of solution delivery. Adopting a full delivery life cycle, not just a construction life cycle, is arguably the “zeroth” agile scaling factor.
- Evolutionary. Agile strategies are both iterative and incremental in nature. Iterative means that you are working in a non-serial manner, on any given day you may do some requirements analysis, some testing, some programming, some design, some more testing, and so on. Incremental means that you add new functionality and working code to the most recent build, until such time as the stakeholder determines there is enough value to release the product.
- Regularly produces high quality solutions. Agilists are said to be quality focused. They prefer to test often and early, and the more disciplined ones even take a test-first approach where they will write a single test and the just enough production code to fulfill that test (then they iterate). Many agile developers have adopted the practice of refactoring, which is a technique where you make simple changes to your code or schema which improves its quality without changing its semantics. Adoption of these sorts of quality techniques seems to work – it appears that agile teams are more likely to deliver high quality systems than traditional teams (according to the DDJ 2008 Project Success survey). Within IBM we take it one step further and focus on consumability, which encompasses quality and other features such as ease of deployment and system performance. Furthermore, although some agile methods promote the concept of producing “potentially shippable software” on a regular basis, disciplined agile delivery teams produce solutions: a portion of which may be software, a portion of which may be hardware, and a portion of which will be the manner in which the system is used.
- Cost effective and timely manner. Agile teams prefer to implement functionality in priority order [http://www.agilemodeling.com/essays/prioritizedRequirements.htm], with the priority being defined by their stakeholders (or a representative thereof). Working in priority order enables agile teams to maximize the return on investment (ROI) because they are working on the high-value functionality as defined by their stakeholders, thereby increasing cost effectiveness. Agile teams also prefer to produce potentially shippable solutions each iteration (an iteration is a time-box, typically 2-4 weeks in length), enabling their stakeholders to determine when they wish to have a release delivered to them and thereby improving timeliness. Short iterations reduce the feedback cycle, improving the chance that agile teams will discover problems early (they “fail fast”) and thereby enable them to address the problems when they’re still reasonably inexpensive to do so. The DDJ 2008 Project Success survey found that agile teams are in fact more likely to deliver good ROI than traditional teams and more likely to deliver in a timely manner.
- Value driven life cycle. One result of building a potentially shippable solution every iteration is that agile teams produce concrete value in a consistent and visible manner throughout the life cycle.
- Risk and value driven life cycle. Core agile processes are very clear about the need to produce visible value in the form of working software on a regular basis throughout the life cycle. Disciplined agile delivery processes take it one step further and actively mitigate risk early in the life cycle – during project start up you should come to stakeholder concurrence regarding the project’s scope, thereby reducing significant business risk, and prove the architecture by building a working skeleton of your system, thereby significantly reducing technical risk. They also help with transition to agile, allowing traditional funding models to use these milestones before moving to the finer grained iteration based funding that agile allows.
- Highly collaborative. People build systems, and the primary determinant of success on a development project is the individuals and the way that they work together. Agile teams strive to work closely together and effectively as possible. This is a characteristic that applies to both engineers on the team, as well as their leadership.
- Disciplined. Agile software development requires greater discipline on the part of practitioners that what is typically required by traditional approaches.
- Self organizing. This means that the people who do the work also plan and estimate the work.
- Self-organization within an appropriate governance framework. Self-organization leads to more realistic plans and estimates which are more acceptable to the people implementing them. At the same time these self-organizing teams must work within an appropriate governance framework which reflects the needs of their overall organizational environment. An “appropriate governance framework” explicitly enables disciplined agile delivery teams to effectively leverage a common infrastructure, to follow organizational conventions, and to work towards organizational goals. The point is that project teams, regardless of the delivery paradigm they are following, need to work within the governance framework of their organization. More importantly, effective governance programs should make it desirable to do so. Our experience is that traditional, command-and-control approaches to governance where senior management explicitly tells teams what to do and how to do it don’t work very well with agile delivery teams. We’ve also found that lean development governance, an approach which is based on collaboration and enablement, is far more effective in practice. Good governance increases the chance that agile delivery teams will build systems which fit into your overall organizational environment, instead of yet another stand-alone system which increases your overall maintenance burden and data quality problems.
- Active stakeholder participation. Agile teams work closely with their stakeholders, who include end users, managers of end users, the people paying for the project, enterprise architects, support staff, operations stuff, and many more. Within IBM we distinguish between four categories of stakeholder: principles/sponsors, partners (business partners and others), end users, and insiders These stakeholders, or their representatives (product owners in Scrum, or on-site customers in Extreme Programming, or a resident stakeholder in scaling situations), are expected to provide information and make decisions in a timely manner.
- Changing needs of stakeholders. As a project progresses your stakeholders will gain a better understanding of what they want, particularly if you’re showing them working software on a regular basis, and will change their “requirements” as a result. Changes in the business environment, or changes in organization priority, will also motivate changes to the requirements. There is a clear need for agile requirements change management [http://www.agilemodeling.com/essays/changeManagement.htm] on modern IT projects.
- Repeatable results. Stakeholders are rarely interested in how you delivered a solution but instead in what you delivered. In particular, they are often interested in having a solution which meets their actual needs, in spending their money wisely, in a high-quality solution, and in something which is delivered in a timely manner. In other words, they’re interested in repeatable results, not repeatable processes.
- Right amount of ceremony for the situation. Agile approaches minimize ceremony in favor of delivering concrete value in the form of working software, but that doesn’t mean they do away with ceremony completely. Agile teams will still hold reviews, when it makes sense to do so. DDJ’s 2008 Modeling and Documentation Survey found that agile teams will still produce deliverable documentation, such as operations manuals and user manuals, and furthermore are just as likely to do so as traditional teams. The DDJ September 2009 State of the IT Union survey found that the quality of the documentation delivered by agile teams was just as good as that delivered by traditional teams, although iterative teams (e.g. RUP teams) did better than both agile and traditional.
Suggested reading:
|