Accelerate with IBM Storage:

Spectrum Virtualize Encryption

Byron Grossnickle
Washington Systems Center
Spectrum Virtualize Specialist
Session objectives

- Spectrum Virtualize Encryption Overview
- USB Key Management
- SKLM Key Management
- Demo
Encryption Basics

- Encryption is the process of encoding data so that only authorized parties can read it
- Uses secret keys to encode the data according to well known algorithms
- “Data at rest” means the data is encrypted on the end device (disk drives)
 - In the Spectrum Virtualize implementation the drives themselves DO NOT do the encrypting
- Algorithm being used is AES: US government standard from 2001
 - XTS-AES 256 for data keys
 - AES 256 for master keys
- Algorithm is public, the only secrets are the keys
- Symmetric key algorithm (same key used to encrypt and decrypt data)

Importance of encryption

- Improves physical security of data
- Required by certain customers
Encryption Use Cases

- Encryption typically of interest to industries with high privacy concerns
 - Financial Services
 - Healthcare Providers
 - Federal/Defense Agencies
 - Any client concerned about possible disclosure of data

- Typical encryption use cases
 - Protection against disclosure of data when drives removed
 - Malicious removal of drives
 - Allows customers to send failed hardware back to IBM under warranty (secure erase)
 - Secure erasure of storage
 - Drives or arrays being reused for different data
 - System used in PoC, coming off lease, being sold or otherwise disposed of
 - Encryption helps protect against disclosure as a result of access to drives storing data
 - Does not address other exposure such as unauthorized access to systems
Hardware Encryption for Data at Rest

Storwize V7000 Gen2/+ versions, Storwize V5020 (internal only), Storwize V5030 (internal and external), SAN Volume Controller DH8/SV1 and FlashSystem V9000 support encrypting data on internal drives
- HDD and SDD drives in control and expansion enclosures

Encryption is performed in the control enclosure node canister SAS chip
- Applies to all existing drives: no need to buy new drives
- SAS chip complies with FIPS-140-2 standard
 - IBM uses FIPS compliant Technology
- RAID/DRAID arrays are encrypted
 - If all RAID/DRAID arrays in a pool are encrypted, by nature the pool is encrypted

Operates with all existing functions including:
- Real-time Compression
- Easy Tier

No performance impact/considerations

Note: Encryption for Distributed RAID is supported on v7.7 and above.
Software Encryption for Data at Rest

Storwize V7000 Gen2/+ versions, Storwize V5030, SAN Volume Controller DH8/SV1 and FlashSystem V9000 support encrypting data on externally virtualized storage (Mdisks).

• **Encrypt data on external storage controllers with no encryption capability**
 - Encryption performed by software in the node/canister
 - For external encryption all I/O groups must be external encryption capable
 - Uses Intel AES_NI CPU instruction set and engines
 - AES 256-XTS Encryption, which is a FIPS 140-2 compliant algorithm
 - IBM uses FIPS compliant algorithms

• **Encryption enabled at the storage pool level (per pool)**
 - A pool is therefore encrypting or not
 - All volumes created in an encrypted pool are automatically encrypted
 - MDisks now have an 'encrypted' or not attribute
 - Can mix external and internal encryption in same pool
 - If an MDisk is self-encrypting (and identified), then external encryption will **not** encrypt any data to be sent to that MDisk

Available on v7.6 and above
When is Data Encrypted/Decrypted

- Data is encrypted/decrypted when it is written to/read from external storage
 - Encryption/decryption performed in software using Intel AES-NI instructions
 - Encryption/decryption performed by SAS Controller hardware
- Data is stored encrypted in storage systems (SW) and/or drives (HW).
- Data is encrypted when transferred across SAN between IBM Spectrum Virtualize system and external storage (back end).
- Data is not encrypted when transferred on SAN interfaces in other circumstances (front end/remote system/inter node)
 - Server connections
 - Remote mirror
 - Intra-system communication for clustered systems
- If appropriate, consider alternative encryption for “on the fly” data
 - Note though that Real-time Compression may be affected if you do so.
Software Encryption for Data at Rest

- Encrypted disks and data paths
- Unencrypted disks and data paths
Encryption Key Management

- **IBM Spectrum Virtualize has built-in key management**
 - Types of keys
 - Master key (one per system/cluster)
 - Pairwize Master Key (PMK) - Generated by the system and encrypted with the master key
 - Data encryption key
 - One for encrypted pool using external encryption
 - One for each RAID/DRAID array using internal encryption
- **Master key is created when encryption enabled**
 - Stored on USB devices or on a Security Key Lifecycle Manager (SKLM) server
 - Required to use a system with encryption enabled
 - Required on boot (system power-on, system restart) or re-key process, stored in volatile memory on system
 - May be changed
- **Data encryption key is used to encrypt data and is created automatically when an encrypted pool/array is created**
 - Stored encrypted either in the SAS chip for internal encryption or in the quorum disk
 - No way to view data encryption key
 - Cannot be changed
 - Discarded when an array/pool is deleted (secure erase)
Master Key – Internal (USB) Key Management

- **Master key is persistently stored on USB devices**
 - At least 3 devices required when encryption enabled
 - They are also stored in volatile memory in a Key Manager on every node
- **Stored as a simple file**
 - May be copied or backed up as necessary
- **Should be stored securely**
 - Enables access to encrypted data
- **Master key is required on boot for a system with encryption enabled**
 - System will not access data without contact to master key – handled by the key manager
 - Protect the USB devices holding the master key and consider secure backup copies
- **When a node/controller restarts, software obtains master key**
 - From other node in control enclosure if operational
 - From other nodes in a clustered system
 - From a USB device plugged into the canister
Treatment of USB Devices Holding Master Key

- **USB devices may be permanently plugged into node canisters**
 - Ensures master key will be available in event of a system restart
 - Eliminates any delay
 - Enables access to data if malicious individual removes entire system

- **USB devices may be stored securely apart from system running Spectrum Virtualize**
 - At least one will be required in event of system restart (but not for a node restart)
 - May cause delay in access to data
 - Eliminates risk of access to data if system removed

- USB devices not plugged into node canisters and any backup copies of master key file should be stored securely

- Only IBM USB devices supported for encryption key use so order them in eConfig
 - Others may work, but could be “hit and miss”
Security Key Lifecycle Manager Support (SKLM)

- Spectrum Virtualize now supports SKLM for managing the master encryption key on the system.
- USB key is no longer a requirement but is still an option.
- Why is SKLM support important?
 - Some customers have “no flash drive” policy
 - Allows changing of the master key without physical access to equipment
 - Allows for a central point of key management for the entire organization and across all platforms (server, tape, storage, etc.)

Available on v7.8
IBM's centralized key management solution for all encryption solutions

SKLM
- Manage Encryption Keys
- Align with PCI & NIST Guidance
- Manage IBM and non-IBM products via KMIP
- Automatic Key Rotation
- Transparent Encryption and Key Management

Storage Devices
- Tape: IBM LTO TSxxx, TS77xx Virtualization Engine, Quantum, Spectra Logic
- IBM Disk: DSxxx family, DS5xxx family, XIV Spectrum Virtualize
- Cloud Storage, Elastic Storage, Big Data Warehouse (Spectrum family, Netezza)
- Network Storage (NetApp)
- Servers (Lenovo System x)
- Flash Storage

Non-Storage
- Sensus Smart Meters

Broadening Footprint
Security Key Lifecycle Manager

SKLM is independently-certified as KMIP-compliant

IBM is only one of three companies that have passed the rigid SNIA-SSIF Conformance Test:
- IBM
- HP
- CryptSoft

http://www.snia.org/forums/ssif/kmip
What It Requires

- Each node/controller needs the ability to talk with the key management server(s) through the service IP address
- Key server software requirements
 - SKLM 2.6.0.0 or higher
 - KMIP Protocol
 - Key Management Interoperability Protocol (KMIP) is a standardized protocol for key servers
 - May support more key managers in the future – have the IBM account team use SCORE to request
- Up to 1 master and 3 clones
 (1 Master, no clones at GA, ability will be added soon)

NOTES:
USB or Key Server (Not Both)
- Intention is to support both simultaneously
 - Gives a conversion mechanism
 - No easy way to convert at GA
Software Encryption

Performance Overview

• Will not double encrypt – use external / hardware encryption on
 • Virtualized FlashSystems
 • SAS hardware encryption on internal storage (drives) on V7k Gen2/+, DH8/SV1, V5020/V5030 and V9000
 • External MDisk manually defined as encrypted
• Industry Standard XTS-AES256 with AES_NI CPU instruction set
• Software Performance impact 10 – 20% off top end worst case on systems under maximum load

• For externally virtualized mdisk encryption is performed in software by the CPU so this can limit total IOPS and/or MBps of the system but expected to have minimal impact to latency
Software Encryption

Performance measured

SVC DH8 over FlashSystem (SW encryption), 1 I/O group, 8Gb FC, cache miss

<table>
<thead>
<tr>
<th></th>
<th>Encrypted</th>
<th>Unencrypted</th>
<th>% Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k random read (IOPs)</td>
<td>520k</td>
<td>600k</td>
<td>86%</td>
</tr>
<tr>
<td>4k random write (IOPs)</td>
<td>168k</td>
<td>185k</td>
<td>90%</td>
</tr>
<tr>
<td>256k random read (MB/s)</td>
<td>10700</td>
<td>13000</td>
<td>82%</td>
</tr>
<tr>
<td>256k random write (MB/s)</td>
<td>2900</td>
<td>3100</td>
<td>93%</td>
</tr>
</tbody>
</table>

Storwize V7000 Gen2 over 50% FlashSystem (SW encryption) / 50% SSD RAID5 (HW encryption), 1 I/O group, 8Gb FC, cache miss

<table>
<thead>
<tr>
<th></th>
<th>Encrypted</th>
<th>Unencrypted</th>
<th>% Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k random read (IOPs)</td>
<td>270k</td>
<td>316k</td>
<td>85%</td>
</tr>
<tr>
<td>4k random write (IOPs)</td>
<td>74k</td>
<td>83k</td>
<td>89%</td>
</tr>
<tr>
<td>256k random read (MB/s)</td>
<td>7200</td>
<td>9200</td>
<td>78%</td>
</tr>
<tr>
<td>256k random write (MB/s)</td>
<td>2600</td>
<td>3100</td>
<td>83%</td>
</tr>
</tbody>
</table>
Resources Designated for External Encryption

Encryption runs inside the normal IO process - there's no CPU's dedicated for encryption.

DH8/SV1/V9000
- 8 CPU cores on first CPU

V7000 Gen2
- No compression enabled – 8 of 8 cores
- Compression enabled – 4 of 8 cores

V7000 Gen2+
- No compression enabled – 10 of 10 cores
- Compression enabled – 6 of 10 cores

V5030
- No compression enabled – 6 of 6 cores
- Compression enabled – 4 of 6 cores
Encryption Recommendations

- If you can encrypt on the back end storage with no performance penalty or encrypt with data in place, take that option.
 - For example, an XIV can encrypt it's data without the need to move it
 - The DS8K, XIV and V7K Internal encryption can be done with no performance penalty

- If you need more granular key management or single methodology use external encryption
 - i.e. key per child pool
 - Single methodology for entire environment (i.e. encryption is done the same way for everything)

- Be careful when mixing types of encryption in the same pool, as different forms of encryption may have different security characteristics.

- Do not mix encrypted and unencrypted arrays in pools – It will result in an unencrypted pool
Implementing Encryption

Encryption method for existing systems
- Create new encrypted pool
 - Move volumes from existing pool to new pool

No “convert in place” function to encrypt existing pools
May require additional capacity
Mixed Encryption in a Pool

Data in this example is encrypted with 3 different keys

- **MDisk is created as an internal encrypted RAID array.**
 - SAS Chip Encrypts on Storwize or DH8/SV1 SAS card (HW).

- **MDisk is external and declared self-encrypting.**
 - Back end storage array encrypts. Security characteristics could be different.

- **MDisk is external and not self-encrypting**
 - Software encryption is used to encrypt with the pool key (SW).
Activating encryption

- Can be performed in one of two ways, either automatically or manually.
- Both methods can be started during the initial system setup or while the system is running.

When you purchase a license you should receive a function authorization document with an authorization code printed on it. This code is enough to carry on with the automatic activation process. If the automatic activation process fails or if you prefer using the manual activation process, use this page to retrieve your license keys:

Ensure that the following information is available:
- Machine type (MT)
- Serial number (S/N)
- Machine signature
- Authorization code
Activating encryption

Start activation process during initial system setup
Activating encryption

Start activation process during initial system setup
Activating encryption on an Existing System

Navigate to Settings → System → Licensed Functions and click on Encryption Licenses.
Enable Encryption From Here

- Encryption State: Enabled
- Encryption Keys: Accessible
- Key Servers: Not Configured
- USB Flash Drives Detected: Configured
Enabling encryption (USB and Key Manager)
Using encryption
Accelerate with IBM Storage Webinars

The Free IBM Storage Technical Webinar Series Continues in 2017...

Washington Systems Center – Storage experts cover a variety of technical topics.

Audience: Clients who have or are considering acquiring IBM Storage solutions. Business Partners and IBMers are also welcome.

How to sign up? Information, schedules, and replays:

To automatically receive announcements of upcoming Accelerate with IBM Storage webinars, Clients, Business Partners and IBMers are welcome to send an email request to accelerate-join@hursley.ibm.com.

2017 Webinars:

- Jan 19 - Spectrum Virtualize Updates
- Feb 2 - DS8000 Configuration and Monitoring using the GUI
- Mar 9 - Elastic Storage Servers (ESS) and Spectrum Scale Software Solution
- Mar 16 - TS7700 Management Classes and Copy Policies - What You Need to Know
- Apr 27 - How to Develop a Workload Baseline to Evaluate Flash Storage
- May 17 - DS8880 Storage Options for IBM i
- June 21 – TS7700 BVIR What You Need to Know
- June 22 – FlashSystem A9000 Update
- June 29 – DS8880 Thin Provisioning
- July 20 – Spectrum Virtualize Encryption
- July 24 - Accelerate with Storage Advanced uses of IBM Storage for storage immutability, building air gapped storage and recovery from RansomWare attacks

Speakers:

Register Here: https://ibm2.webex.com/ibm2/onstage/g.php?MTID=e5bba23ae811af13dedd262defa7303fd