Top 6 technical advantages of Hyperledger Fabric for blockchain networks

What's unique about the Hyperledger Fabric, why it matters to business networks, and how to start using it

Sharon Weed Cocco
Gari Singh

August 21, 2017
(First published March 20, 2017)

With its potential to radically transform industry operating models, blockchain is one of the most exciting new technologies on the planet. When selecting a blockchain platform for your industry solutions, what are the most important attributes to consider? This top-6 list counts them down.

Hyperledger Fabric™ is one of the Hyperledger® projects hosted by The Linux Foundation®. It's intended as a foundation for developing blockchain applications with a modular architecture, so that components, such as consensus and membership services, can be plug-and-play. It uses container technology to host smart contracts (also called chaincode) that make up the application logic of the system. In short, Hyperledger Fabric the leading open-source, general-purpose blockchain fabric built for enterprises. And it's the backdrop for the 6 essential attributes of enterprise-ready blockchain networks that we detail here.

1. Permissioned membership

Hyperledger Fabric is distinguished as a platform for permissioned networks, where all participants have known identities. When considering a permissioned network, you should think about whether your blockchain use case needs to comply with data protection regulations. Many use cases — in
the financial sector and healthcare industry, in particular — are subject to data protection laws that require knowing who the members of the network are and who is accessing specific data.

For example, consider a private equity company. By definition, a private equity is not publicly traded on the stock exchange, and its investors are typically venture capital firms, private equity firms, or angel investors. The participants in this network need to be known and have credibility in capital to invest to be able to participate in the blockchain.

2. Performance, scalability, and levels of trust

Hyperledger Fabric is built on a modular architecture that separates transaction processing into three phases: distributed logic processing and agreement ("chaincode"), transaction ordering, and transaction validation and commitment. This separation confers several advantages: Fewer levels of trust and verification are required across node types, and network scalability and performance are optimized.

To illustrate, let's look at the transaction flow in v1.0 of Hyperledger Fabric, shown in Figure 1. (Terms the figure are defined in the Hyperledger Fabric glossary.)

Starting at the left of the figure: 1) The transaction proposal is submitted by an application to an endorsing peer. 2) The Endorsement policies outline how many and/or what combination of endorsers are required to sign a proposal. The endorser executes the chaincode to simulate the proposal in the network peer, creating a read/write set. 3) Then the endorsing peers send back the signed proposal responses (endorsements) to the application. 4) The application submits the transactions and signatures to the ordering service, which 5) creates a batch, or block, of transactions and delivers them to committing peers. 6) When a committing peer receives a batch of transactions, for each transaction it 7) validates that the endorsement policy was met and checks in the read/write sets to detect conflicting transactions. If both checks pass, the block is committed to the ledger, and the state updates for each transaction are reflected in the state database.
Because only the signatures and read/write set are being sent around the network with the new v1.0 architecture, the scalability and performance are optimized. In addition, because only the endorsers and the committers truly see the transaction, fewer levels of trust are required in different parts of the Blockchain system, offering more security.

For example, in the capital market, with equity-backed securities or debt being bought and sold, transaction volume has increased, due to a growing number of participants. Increased transactions require improved scalability and performance, which v1.0 of Hyperledger Fabric provides, due in part to splitting out the chaincode execution.

Splitting out the chaincode execution also enables dynamic growth in the network. In v1.0 of Hyperledger Fabric, peers can be added dynamically and programmatically, rather than statically as in v0.6. For example, suppose a company that manages foreign exchange rates has a new bank to add to the network. With Hyperledger Fabric v1.0, they can do this programatically.

### 3. Data on a need-to-know basis

Businesses, due to competitiveness, protection laws, and regulation on confidentiality of personal data dictate the need for privacy of certain data elements, which can be achieved through data partitioning on the blockchain. Channels, supported in Hyperledger Fabric, allow for data to go to only the parties that need to know.

For example, many financial entities express concern over competitors seeing even the number of transactions being processed. Some financial institutions do not consider cryptography "enough" to protect their data. Given that some financial instruments can take 10 years or more to come to value, the risk of cryptography breaks over time could allow private information to become public. Channels help provide a data-partitioning capability where only those that need to know the data will see the number of transactions and the data itself.
4. Rich queries over an immutable distributed ledger

The ledger is the sequenced record of state transitions for the blockchain application. Each transaction results in a set of asset key-value pairs that are committed to the ledger as creates, updates, or deletes. The immutable source of truth for v1.0 is appended into the file system of the peer, which also has LevelDB embedded.

LevelDB has, by default, a key value database and supports keyed queries, composite key queries, and key range queries. If you also need complex, rich queries, CouchDB supports the basic capabilities of LevelDB, and adds the full data-rich queries. With optional support of a document database such as CouchDB, the content is JSON and fully queryable, where the data model is compatible with existing key/value programming model. As a result, the application changes are not required when modeling chaincode data as JSON when utilizing CouchDB.

This JSON format helps minimize the work required to produce simple reports and perform audit functions. For example, in supply-chain scenarios, you can use JSON document style to help outline specific data for goods and transportation entities. You can easily produce a report on an asset for the different locations and transportation entities that were used in delivery to the asset's final destination.

5. Modular architecture supporting plug-in components

The modularity of Hyperledger Fabric architecture enables network designers to plug in their preferred implementations for components, which is an advantage. One of the most requested areas for modularity is "bring your own identity." Some multi-company networks already have identity management and want to reuse instead of rebuild. Other components of the architecture that can be easily plugged in include consensus or encryption, where some countries have their own encryption standards.

6. Protection of digital keys and sensitive data

HSM (Hardware Security Module) support is vital for safeguarding and managing digital keys for strong authentication. Hyperledger Fabric provides modified and unmodified PKCS11 for key generation, which supports cases like identity management that need more protection. For scenarios dealing with identity management, HSM increases the protection of keys and sensitive data.

Next steps

- Learn about the IBM Blockchain Platform for developing, governing, and operating business networks based on Hyperledger Fabric.
- Start building blockchain applications right away: online, on your laptop, or on the cloud.
- Activate your enterprise-grade blockchain network on Hyperledger Fabric. Take the first step by signing up for the IBM Blockchain Platform, Enterprise Plan.
- Join the Hyperledger community and work with IBM and many other developers, from startups to enterprises, on contributing to Hyperledger Fabric.
To learn more about the origins of the open source Hyperledger Fabric, its architecture, and how to contribute to the project, watch this video:

To view this video, **Building a blockchain for business with the Hyperledger Project**, please access the online version of the article. If this article is in the developerWorks archives, the video is no longer accessible.
Related topics

- IBM Blockchain Platform
- IBM Blockchain Platform: Developers
- Blockchain Developer Center
- Hyperledger Fabric documentation
- Hyperledger community
- Hyperledger discussion channels

© Copyright IBM Corporation 2017
Trademark
(www.ibm.com/developerworks/ibm/trademarks/)