

IBM Demos Watson Hands-On Labs

IBM Demos Watson Hands-On Labs
https://ibm.com/demos/live/sales/watson

IBM Demos Watson Hands-On Lab
Using Watson Speech to Text with Customization and Grammars

Abhishek Shrivastava

Digital Technical Engagement - Data Science and AI

abhia@ibm.com

Bijo Thomas

Digital Technical Engagement - Data Science and AI

bijo.thomas1@ibm.com

Jason Brown

Digital Technical Engagement - Data Science and AI

jasonbro@us.ibm.com

https://ibm.com/demos/live/sales/watson

IBM Demos Watson Hands-On Labs

We Value Your Feedback

Your feedback is very important to us – we use it to continually improve the content and

experience.

Please contact Bijo Thomas or Jason Brown if you have feedback or questions.

Bijo Thomas

bijo.thomas1@ibm.com

Jason Brown

jasonbro@us.ibm.com

IBM Demos Watson Hands-On Labs

Table of Contents

1 Introduction .. 4
1.1 Key Capabilities .. 4
1.2 High Level Runtime Architecture .. 5
1.3 User Training Capabilities ... 5

1.3.1 Language Training .. 6
1.3.2 Acoustic Training ... 6
1.3.3 Grammars .. 7

2 Getting Started ... 8
2.1 Set up your IBM Cloud account .. 8
2.2 Provision Speech to Text instance ... 9
2.3 Environment Setup ... 12
2.4 Warming Up .. 15

3 Exercise A: Train a Language Model ... 17
3.1 Transcribe without a Trained Custom Language Model ... 17
3.2 Create and Train a Custom Language Model .. 18
3.3 Transcribe with Custom Language Model .. 20

4 Exercise B: Grammars ... 23
4.1 Defining Grammar... 23
4.2 Adding Grammar to Custom Language Model .. 25
4.3 Transcribe without Grammar ... 27
4.4 Transcribe with Grammar ... 28

5 Appendix I - Evaluating Accuracy .. 29

IBM Demos Watson Hands-On Labs

1 Introduction

Watson Speech to Text service is part of AI services available in IBM Cloud.

The service provides speech transcription capabilities for your applications. The service leverages

machine learning to combine knowledge of grammar, language structure, and the composition of audio

and voice signals to accurately transcribe the human voice. It continuously updates and refines its

transcription as it receives more speech.

The service can be used in applications such as voice-automated chatbots, analytic tools for customer-

service call centers, and multi-media transcription, among many others. The service is ideal for clients

who need to extract high-quality speech transcripts from call center audio. Clients in industries such as

financial services, healthcare, insurance, and telecommunication can develop cloud-native applications

for customer care, customer voice, agent assistance, and other solutions.

1.1 Key Capabilities

Watson Speech to Text provides out of the box speech to text capability in several languages using

audio in most common audio formats. Audio files are broadly classified as Broadband and Narrowband.

Audio that are sampled at 16 kHz or higher are supported using Broadband models and audio that are

sampled at 8 kHz are supported using Narrowband models. Check out our documentation to see our

latest list of supported languages and model types.

The service provides significant transcription features as well as powerful customization capabilities

that can be leveraged for various types of audio.

• Language Model Training

Improve speech recognition accuracy by providing corpora files representing your unique

business terminology, acronyms, product names, jargons, and expressions.

• Acoustic Model Training

Improve speech recognition accuracy by providing audio samples representing your unique

regional dialect(s) and domain-specific acoustical environments.

• Speech Grammar

Deepen your Language Model Training by applying rules to recognize specific phrases, words,

letters, numbers or lists.

• Speaker Diarization

Recognize who said what in a multi-participant voice exchange. Currently optimized for two-

way call center conversation but can detect up to 6 different speakers.

• Word Alternatives, Confidence and Timestamp

Response includes alternate words that are acoustically similar to the primary word detected,

confidence level of each word detected and the timestamps in the audio input at which the

words were detected.

• Check out our Documentation to see our full suite of features and functionalities.

This lab explores the customization capabilities and grammar support in Watson Speech to Text

service.

https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models#modelsList
https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models#modelsList
https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-about

IBM Demos Watson Hands-On Labs

1.2 High Level Runtime Architecture

Speech to Text deployments can have varied architecture. The following diagram illustrates an example in

which audio input from user is transcribed using Speech to Text service. The audio can be from various

channels such as mobile devices, internet browser, live microphone, stored audio files etc. The application

logic layer can be used invoke the speech to text service and process the transcription response.

This lab uses a much simplified architecture, which can be outlined as the following diagram.

Speech to Text is powered by several machine learning models that are provided out of the box and are

customizable. The models are provided for several natural languages.

1.3 User Training Capabilities

The IBM Speech to Text service offers a model training interface that you can use to augment and customize

its speech recognition capabilities. You can train the service to improve the accuracy of speech recognition

requests by customizing a base model for your domain and audio. Customization is available for all

supported languages at various levels.

IBM Demos Watson Hands-On Labs

The model training interface supports both the creation and training of custom language models and custom

acoustic models. The interfaces for both types of custom models are similar and straightforward to use.

Using either type of custom model with a recognition request is also straightforward, where you simply

specify the customization ID of the model(s) that you created in your recognition request.

Speech recognition works the same with or without a custom model. When you use a custom model for

speech recognition, you can use all of the input and output parameters that are normally available with a

recognition request.

1.3.1 Language Training

The service was developed with a broad, general audience in mind. The service's base vocabulary contains

many words that are used in everyday conversation. Its models provide sufficiently accurate recognition for

many applications. But they can lack knowledge of specific terms that are associated with particular

domains.

The language model customization interface can improve the accuracy of speech recognition for domains

such as medicine, law, information technology, and others. By using language model customization, you can

expand and tailor the vocabulary of a base model to include domain-specific terminology.

You can create a custom language model and add corpora and words specific to your domain. Once you train

the custom language model on your enhanced vocabulary, you can use it for customized speech recognition.

The service can typically train any custom model in a matter of minutes. The level of effort that it takes to

create a model depends on the data that you have available for the model and how well it’s organized before

training. This lab will take you through the steps for creating a custom language model.

Check out our documentation to read more about Language Model Customization.

1.3.2 Acoustic Training

Similarly, the service was developed with base acoustic models that work well for various audio

characteristics. But in cases like the following, adapting a base model to suit your audio can improve speech

recognition:

• Your acoustic channel environment is unique. For example, the environment is noisy, microphone

quality or positioning are suboptimal, or the audio suffers from far-field effects.

• Your speakers' speech patterns are atypical. For example, a speaker talks unusually fast or the audio

includes very casual conversation.

• Your speakers' accents are pronounced. For example, the audio includes speakers who are talking in

a non-native or second language.

The acoustic model customization interface can adapt a base model to your environment and speakers. You

create a custom acoustic model and add audio data (audio resources) that closely match the acoustic

signature of the audio that you want to transcribe. Once you train the custom acoustic model with your audio

resources, you can use it for customized speech recognition.

https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-customization#customLanguage-intro

IBM Demos Watson Hands-On Labs

The length of time that it takes the service to train the custom model depends on how much audio data the

model contains. The level of effort that it takes to create a model depends on the audio data that you have

available for the model. It also depends on whether you use transcriptions of the audio.

Check out our documentation to read more about Acoustic Model Customization.

1.3.3 Grammars

Custom language models allow you to expand the service's base vocabulary. Grammars enable you to

restrict the words that the service can recognize from that vocabulary. When you use a grammar with a

custom language model for speech recognition, the service can recognize only words, phrases, and strings

that are recognized by the grammar. Because the grammar defines a limited search space for valid matches,

the service can deliver results faster and more accurately.

You add a grammar to a custom language model and train the model just as you do for a corpus. Unlike a

corpus, however, you must explicitly specify that a grammar is to be used with a custom model during

speech recognition. This lab will take you through the steps for creating a grammar along with your custom

language model.

Check out our documentation to read more about Grammar support in IBM Speech to Text service.

https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-customization#customAcoustic-intro
https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-customization#grammars-intro

IBM Demos Watson Hands-On Labs

2 Getting Started

This lab is based on Watson Speech to Text service available in IBM public cloud. You need a Plus plan

instance of Speech to Text to perform customizations. To create a Plus plan instance, you will need either a

Pay-As-You-Go or Subscription account with IBM Cloud. Next section provides detailed instruction to create

IBM Cloud account and Speech to Text instance.

If you have existing IBM Cloud account with necessary account type or Speech to Text instance in Plus plan,

you can use that. In that case, the steps irrelevant to you from following sections about creating IBM Cloud

account and Speech to Text instance can be skipped.

You can read more about IBM Cloud account types and Plus plan from following pages

https://cloud.ibm.com/docs/account?topic=account-accounts#accounts

https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-faq-pricing

2.1 Set up your IBM Cloud account

Go to https://cloud.ibm.com and click “Create an Account”

Enter your email address, verify it, and provide your information.

IBM Demos Watson Hands-On Labs

Once you have verified your email address and filled in the required fields, the “Create account” button will

become active and you can click it. Within few minutes, you will receive an email that your account has been

created.

Open the “Welcome to IBM Cloud” email and click “Log in”

When you login to IBM Cloud for the first time, you will be prompted to review IBM’s privacy policy. Proceed

if you agree.

2.2 Provision Speech to Text instance
Once logged in to IBM Cloud, your landing page should look like below

IBM Demos Watson Hands-On Labs

If you don’t already have a Plus plan Speech to Text instance, search for “speech to text” in the top search

bar and click “Speech to Text” from the Catalog Results.

Speech to Text can be created with Lite, Plus and Premium plans. Features addressed in this lab are

available in Plus or higher plan. Choose a region closer to you, review the costs associated with the plan you

select and click Create.

IBM Demos Watson Hands-On Labs

Note the API key and URL from the following start page of the service instance

IBM Demos Watson Hands-On Labs

This API key and URL can be used with the curl commands to do your own customization.

1. API key – Access key to use the API

2. URL – Service location

2.3 Environment Setup

Designate a directory in your desktop to keep the lab materials such as audio files, data files and scripts. For

example, C:\Lab, if you use Windows or ~/Lab, if you use Mac. Create the directory, if you do not have it

already. This lab guide refers to this directory as work directory.

IBM Demos Watson Hands-On Labs

All terminal commands and scripts listed in this lab are defined to be executed from the work directory. If

you execute from a different directory, you will need to make necessary changes to the commands.

Windows:

Mac:

Since API Key and URL are part of almost all commands you use this lab, for convenience, we store them as

environment variables and the commands refer to them as variables. If you open a new terminal window,

you will need to set them again in the new window.

Windows:

C:\Lab> set APIKEY=[Your API Key with Double Quotes]

C:\Lab> set URL=[Your Service URL without Double Quotes]

Mac:

~/Lab$ export APIKEY=[Your API Key with Double Quotes]

~/Lab$ export URL=[Your Service URL without Double Quotes]

For example, if your API Key is b1DzrXLeZWnuRdylhacJTA4e-_Y4Vk_2bZoO5TEDErt1 and URL is

https://api.us-south.speech-to-text.watson.cloud.ibm.com/instances/cb07aa2a-e12e-4ae3-a8e1-

6c2b31ef385e, the commands will be

Windows:

C:\Lab> set APIKEY="b1DzrXLeZWnuRdylhacJTA4e-_Y4Vk_2bZoO5TEDErt1"

C:\Lab> set URL=https://api.us-south.speech-to-

text.watson.cloud.ibm.com/instances/cb07aa2a-e12e-4ae3-a8e1-6c2b31ef385e

Mac:

IBM Demos Watson Hands-On Labs

~/Lab$ export APIKEY="b1DzrXLeZWnuRdylhacJTA4e-_Y4Vk_2bZoO5TEDErt1"

~/Lab$ export URL=https://api.us-south.speech-to-

text.watson.cloud.ibm.com/instances/cb07aa2a-e12e-4ae3-a8e1-6c2b31ef385e

Most commands use curl to execute. So, let's make sure you have curl in your desktop. Run following

command in your terminal

Windows:

C:\Lab> curl

Mac:

~/Lab$ curl

If you see the same response as in the above screenshot, you have curl installed and proceed.

In case if you don't have curl in your desktop, download curl binary for your operating system from

following URL, install or extract it as the case may be.

https://curl.haxx.se/download.html

If not already, all curl to your execution path so that it's available in your terminal.

Once the path is set, try curl command in terminal again to verify you get a response similar to what

you see in above screenshot.

All audio, data and scripts used in this lab can be downloaded as a zip file from following link.

IBM Demos Watson Hands-On Labs

https://www.ibm.com/demos/live/content/watson/stt/lab/lab-materials.zip

Download and extract the content to your work directory

2.4 Warming Up

To request speech recognition with the IBM Speech to Text service, you need to provide only the audio that

is to be transcribed. The service offers the same basic transcription capabilities with each of its interfaces:

the WebSocket interface, the synchronous HTTP interface, and the asynchronous HTTP interface.

In this lab, we use synchronous HTTP interface using curl.

The following sections show basic transcription requests, with no optional input or output parameters.

You have an audio file audio-file.flac in your work directory. Let's transcribe that audio using your Speech to

Text service instance. You can play and hear the audio locally in your desktop first if you would like to.

Issue the following command to call the service's /v1/recognize method for basic transcription with no

parameters. It uses the Content-Type header to indicate the type of the audio, audio/flac and uses the

default language model, en-US_BroadbandModel, for transcription

Windows:

C:\Lab> warmup.bat

Mac:

~/Lab$./warmup.sh

If the script fails, please check

1. If you have the environment variables APIKEY and URL defined as described in previous section.

2. If the warmup script has sufficient execute permissions in your operating system.

If insufficient execute permission is the cause of failure, please remember to add execute

permission to every script file you have in your work directory to avoid further problems in upcoming

lab sections.

Open the output file warmup.json in a text editor. The transcription result look like the following

Transcript text can be seen against the name "transcript". You can also see "confidence" value of this

transcription.

IBM Demos Watson Hands-On Labs

For a full list of parameters and additional details you can get with the transcription, such as speaker labels,

word alternatives etc., see the API specification at

https://cloud.ibm.com/apidocs/speech-to-text#recognize-audio

IBM Demos Watson Hands-On Labs

3 Exercise A: Train a Language Model

This exercise will show you how audio files containing domain terminology can be transcribed with higher

accuracy with use of a custom language model.

To better appreciate this section of the lab, you may want to play the audio files in respective sections and

listen to it.

3.1 Transcribe without a Trained Custom Language Model

First, let's try to transcribe an audio file automotive.flac from your work directory without using a trained

custom language model. If you listen to the audio, you will notice the speakers mentioning certain domain

terms such as Nzeckster, key escutcheon, Nzeckster Countlone etc.

Issue the following command to call the service's /v1/recognize method for basic transcription with no

parameters. It uses the Content-Type header to indicate the type of the audio, audio/flac and uses the

default language model, en-US_BroadbandModel, for transcription

Windows:

C:\Lab> transcribe-automotive-flac.bat

Mac:

~/Lab$./transcribe-automotive-flac.sh

Open the output file automotive-flac.json in a text editor. The transcription result look like the following

IBM Demos Watson Hands-On Labs

As you can see in the transcript, some of these domain terms Nzeckster, key escutcheon, Nzeckster

Countlone etc. did not get transcribed correctly.

Now, let's try the same audio in a different audio format. You have the file automotive.wav in your work

directory, which is the same conversation in a different audio format.

You can issue the following command to call the same API method with the audio file automotive.wav. The

Content-Type header now indicates the type of the audio as audio/wav.

Windows:

C:\Lab> transcribe-automotive-wav.bat

Mac:

~/Lab$./transcribe-automotive-wav.sh

Output in automotive-wav.json will be similar to the previous output seen in automotive-flac.json.

3.2 Create and Train a Custom Language Model

Custom Language Model uses corpus as one of the ways you can customize a model. Language model corpus

is a text file containing common utterances in your domain that you expect your users would say, the audio

for which is intended to be transcribed with your Speech to Text instance. You can extrapolate the

utterances with common variations. You can also repeat the utterances to improve the accuracy.

An example language model will look like this.

calling Nzeckster Motor Company

calling Nzeckster Motor Company

is key escutcheon covered by warranty

do you cover key escutcheon in manufacturer warranty

is crankshaft position sensor covered in warranty

does my warranty cover crankshaft position sensor

I use a Nzeckster Countlone turbo sports model

mine is a Nzeckster Countlone

it's a Nzeckster Countlone

For this lab, the corpus is provided to you in the automotive-lm.txt file that you have available in your work

directory. Following steps describes how to create and train a custom language model using this corpus.

When you create a custom language model, you need to provide a name for your new model and also need to

provide the name of the base language model your custom model is based on. You can also provide an

optional description.

For a full list of supported language models, visit

https://cloud.ibm.com/docs/services/speech-to-text?topic=speech-to-text-models#modelsList

In this lab, we are creating a custom model against US English Broadband base model.

Issue the following command to call the service's /v1/customizations method to create a new custom

language model in your Speech to Text instance.

IBM Demos Watson Hands-On Labs

Windows:

C:\Lab> create-automotive-lm.bat

Mac:

~/Lab$./create-automotive-lm.sh

The service creates a new language customization id and it would be stored in the file automotive-

customization-id.json in your work directory.

View the content of automotive-customization-id.json by opening it in a text editor, which looks similar to

below

{"customization_id": "00f1b7134-23d1-4ad2-8b0d-a1218ad69abe"}

You will use the value against name "customization_id" in following commands. So please note that down.

For convenience, you can set that an environment variable as below. Following sections in this lab uses this

environment variable in commands. If you open a new terminal window, you will need to set them again in

the new window.

Windows:

C:\Lab> set AUTO_LM=[Your Customization Id without Double Quotes]

Mac:

~/Lab$ export AUTO_LM=[Your Customization Id without Double Quotes]

Now you can add corpus to your custom language model you just created

Issue the following command to call the service's

/v1/customizations/{customization_id}/corpora/{corpus_name} method to add the corpus to the new

custom language model.

Windows:

C:\Lab> add-autocorpus.bat

Mac:

~/Lab$./add-autocorpus.sh

Once added, you can check the status of the corpus by issuing following command

Windows:

C:\Lab> check-autocorpus.bat

Mac:

~/Lab$./check-autocorpus.sh

The output will look similar to below

{

 "out_of_vocabulary_words": 2,

 "total_words": 53,

 "name": "autocorpus",

 "status": "being_processed"

}

IBM Demos Watson Hands-On Labs

Initial status will be being_processed. Reissue the command to see updated status. Wait until the status

changes to analyzed.

Now you are ready to train your custom language model.

Issue the following command to call the service's /v1/customizations/{customization_id}/train method to

initiate training of the new custom language model.

Windows:

C:\Lab> train-automotive-lm.bat

Mac:

~/Lab$./train-automotive-lm.sh

Once the training is initiated, you can check the status of the custom model by issuing following command.

Windows:

C:\Lab> check-automotive-lm.bat

Mac:

~/Lab$./check-automotive-lm.sh

The output will look similar to below

{

 "owner": "1a864ef2-711d-4a0a-19e2-31bf4b9bdef0",

 "base_model_name": "en-US_BroadbandModel",

 "customization_id": "00f1b7134-23d1-4ad2-8b0d-a1218ad69abe",

 "dialect": "en-US",

 "versions": ["en-US_BroadbandModel.v2020-01-16"],

 "created": "2020-05-04T02:26:29.495Z",

 "name": "autolm",

 "description": "Automotive Model",

 "progress": 0,

 "language": "en-US",

 "updated": "2020-05-05T17:01:20.214Z",

 "status": "training"

}

Initial status will be training. Reissue the command to see updated status. Wait until the status changes to

available.

Now you are ready to use your custom language model.

3.3 Transcribe with Custom Language Model

Let's try to transcribe the same automotive.flac from your work directory using custom language model you

just created and see if there is better detection of the domain terms.

Issue the following command to call the service's /v1/recognize. The customization id being passed with

parameter language_customization_id. It uses the Content-Type header to indicate the type of the audio,

audio/flac and uses the default language model, en-US_BroadbandModel, for transcription

IBM Demos Watson Hands-On Labs

Windows:

C:\Lab> transcribe-automotive-flac-customized.bat

Mac:

~/Lab$./transcribe-automotive-flac-customized.sh

Open the output file automotive-flac-customized.json in a text editor. The transcription result look like the

following

As you can see, the domain terms such as Nzeckster, key escutcheon or Nzeckster Countlone are now

transcribed with improved accuracy.

IBM Demos Watson Hands-On Labs

Check out an interactive demo of Speech to Text customization, with side by side comparison of base model

transcription and custom model transcription

This concludes the language model customization exercise. Now let’s move on to the next section for the

grammars exercise.

https://www.ibm.com/demos/live/speech-to-text/self-service?story=Automotive%20Customer%20Care

IBM Demos Watson Hands-On Labs

4 Exercise B: Grammars

This exercise will show you how audio files containing specific formatted data can be transcribed with higher

accuracy with use of grammar definition.

For example, when you need to recognize specific words or phrases, such as yes or no, individual

letters or numbers, or a list of names, using grammars can be more effective than examining alternative

words and transcripts. Moreover, by limiting the search space for valid strings, the service can deliver

results faster and more accurately.

Grammar support is provided in Speech to Text service based on Speech Recognition Grammar

Specification: https://www.w3.org/TR/speech-grammar/

The service currently does not support all features of the specification. To know more about what's not

supported, see below page

https://cloud.ibm.com/docs/services/speech-to-text?topic=speech-to-text-

grammars#grammarSpecification

Grammar is supported in both Augmented Backus-Naur Form (ABNF) and XML Form.

For example, a yes or no grammar will look like below in ABNF

ABNF 1.0 ISO-8859-1;

language en-US;

mode voice;

root $yesno;

$yesno = yes | no ;

In XML Form, it will look like below

<grammar version="1.0" xml:lang="en-US" root="yesno"

 xmlns="http://www.w3.org/2001/06/grammar">

 <rule id="yesno">

 <one-of>

 <item>yes</item>

 <item>no</item>

 </one-of>

 </rule>

</grammar>

In this lab, we use XML Form.

4.1 Defining Grammar

IBM Demos Watson Hands-On Labs

Let's imagine a situation when a user reads out loud a claim number into a voice-activated application. The

claim number contains letters and numbers. Many of the letters or numbers can easily sound like common

words to a speech transcription engine, as the examples below suggest:

T - tea

B - bee, be

C - see, sea

2 - to, too

K - okay

S - yes

Many of these alphanumerics can be challenging to transcribe correctly if one only used the out-of-the-box

base language models.

However, for situations like this, we can use a grammar to limit the search space for the transcription engine.

If the search is limited to just letters and numbers instead of all dictionary words, the transcription engine

will know exactly how to transcribe the identified alphanumerics which will help to improve overall

transcription accuracy.

In this lab, let's imagine a claim number which follows the pattern below:

Two letters followed by six numbers. First letter should be either K, Q or T.

An XML grammar definition of this pattern can look similar to following. Note that the section below has

trimmed the list of letters and numbers for display purposes. To see the full definition, see the claim-

number-grammar.xml which you have in your work directory.

IBM Demos Watson Hands-On Labs

<grammar version="1.0" xml:lang="en-US" root="patterns"

 xmlns="http://www.w3.org/2001/06/grammar">

 <rule id="patterns">

 <one-of>

 <!-- pattern: 8 positions [KQT][A-Z][0-9]{6} -->

 <item>

 <ruleref uri="#firstletters" />

 <ruleref uri="#letters" />

 <ruleref uri="#numbers" />

 <ruleref uri="#numbers" />

 <ruleref uri="#numbers" />

 <ruleref uri="#numbers" />

 <ruleref uri="#numbers" />

 <ruleref uri="#numbers" />

 </item>

 </one-of>

 </rule>

 <rule id="firstletters">

 <one-of>

 <item>K.</item>

 <item>Q.</item>

 <item>T.</item>

 </one-of>

 </rule>

 <rule id="letters">

 <one-of>

 <item>A.</item>

 <item>B.</item>

 ...

 ...

 <item>Y.</item>

 <item>Z.</item>

 </one-of>

 </rule>

 <rule id="numbers">

 <one-of>

 <item>zero</item>

 <item>one</item>

 ...

 ...

 <item>eight</item>

 <item>nine</item>

 </one-of>

 </rule>

</grammar>

4.2 Adding Grammar to Custom Language Model

A Grammar cannot be used by itself. Rather, it must be added to a Custom Language Model, even if that

Custom Language Model only contains the Grammar. In this exercise, let's add this grammar definition to

the automotive custom language model we created in Exercise A.

Issue the following command to call the service's

/v1/customizations/{customization_id}/grammars/{grammar_name} method to add the grammar file to

custom model.

IBM Demos Watson Hands-On Labs

Windows:

C:\Lab> add-grammar.bat

Mac:

~/Lab$./add-grammar.sh

Once added, you can check the status of the grammar by issuing following command.

Windows:

C:\Lab> check-grammar.bat

Mac:

~/Lab$./check-grammar.sh

The output will look similar to below.

{

 "out_of_vocabulary_words": 0,

 "name": "claimnumber,

 "status": "being_processed"

}

Initial status will be being_processed. Reissue the command to see updated status. Wait until the status

changes to analyzed.

Now you are ready to train your custom language model.

Issue the following command to call the service's /v1/customizations/{customization_id}/train method to

initiate training of the new custom language model.

Windows:

C:\Lab> train-automotive-lm.bat

Mac:

~/Lab$./train-automotive-lm.sh

Once the training is initiated, you can check the status of the custom model by issuing following command.

Windows:

C:\Lab> check-automotive-lm.bat

Mac:

~/Lab$./check-automotive-lm.sh

The output will look similar to below

{

 "owner": "1a864ef2-711d-4a0a-19e2-31bf4b9bdef0",

 "base_model_name": "en-US_BroadbandModel",

 "customization_id": "00f1b7134-23d1-4ad2-8b0d-a1218ad69abe",

 "dialect": "en-US",

IBM Demos Watson Hands-On Labs

 "versions": ["en-US_BroadbandModel.v2020-01-16"],

 "created": "2020-05-04T02:26:29.495Z",

 "name": "autolm",

 "description": "Automotive Model",

 "progress": 0,

 "language": "en-US",

 "updated": "2020-05-05T17:01:20.214Z",

 "status": "training"

}

Initial status will be training. Reissue the command to see updated status. Wait until the status changes to

available.

Now you are ready to use new grammar.

4.3 Transcribe without Grammar

Let's try to transcribe the audio file claim-number.flac from your work directory without using grammar.

Subsequently, we will transcribe using grammar to see the difference.

This file contains audio clip of a spoken claim number. To better appreciate this section of the lab, you may

want to play the audio file claim-number.flac and listen to it.

Issue the following command to call the service's /v1/recognize without any parameters. It uses the

Content-Type header to indicate the type of the audio, audio/flac and uses the default language model, en-

US_BroadbandModel, for transcription.

Windows:

C:\Lab> transcribe-claim-number-flac.bat

Mac:

~/Lab$./transcribe-claim-number-flac.sh

Service response in claim-number.json looks like below

IBM Demos Watson Hands-On Labs

If you had listened to the audio, you would have noticed that the first letter spoken, actually T, sounds very

similar to D and gets transcribed incorrectly as D.

Now let's see if grammar makes a difference.

4.4 Transcribe with Grammar

We will use the same audio file claim-number.flac, which is already in your work directory.

Issue the following command to call the service's /v1/recognize. The customization id being passed with

parameter language_customization_id and grammar name passed with parameter grammar_name. The

command uses the Content-Type header to indicate the type of the audio, audio/flac and uses the default

language model, en-US_BroadbandModel, for transcription.

Windows:

C:\Lab> transcribe-claim-number-flac-grammar.bat

Mac:

~/Lab$./transcribe-claim-number-flac-grammar.sh

Service response in claim-number-grammar.json looks like below

You can see the first letter T in the audio is now correctly transcribed.

This concludes the Speech Grammar exercise.

IBM Demos Watson Hands-On Labs

5 Appendix I - Evaluating Accuracy

When you train custom models, Word Error Rate (WER) is a common measure of accuracy to determine if

your custom model has improved. It’s calculated using below formula.

where

S is the number of substitutions,

D is the number of deletions,

I is the number of insertions,

C is the number of correct words,

N is the number of words in the reference (N=S+D+C)

However, relying solely on WER could be counterproductive at times. For example, if you are trying to

identify ID numbers, incorrect detection of a single character would make the whole ID incorrect, or if you

are using the transcription with downstream services such as Watson Assistant, error in one word may not

make any difference.

You can read more about it here

https://medium.com/ibm-watson/why-the-overall-voicebot-solution-and-user-experience-are-more-

important-than-speech-accuracy-d229bf54aede

