
 IBM Z Common Data Provider

 &

 IBM Z Operations Analytics

 Best Practices

Version: September 06, 2019

IBM Z Common Data Provider

Test Environment Information:
There are several parameters that may be tuned for ZCDP by the user on the host system. This
will break down the parameters by the individual procedures, and suggest values that, in our
test environment, have shown the best CPU performance. The values presented below are for
a scenario of 1 LPAR streaming data to 1 subscriber. More information regarding scaling with
multiple instances of ZCDP and multiple subscribers are under investigation and will be
available at a later date.

Test Environment Details:
Z14 model M02 running z/OS v2.3 with a single 3906.7 processor active and 16G Storage

Adjustable Parameters in the SDE:
• IBM_SDE_INTERVAL

o Default: 1 MINUTES
o Recommended: 1 MINUTES or 30 SECONDS

§ 1 MINUTES parameter has usually shown the best CPU performance.
There are cases with very high throughput, however, when this would
result in buffering too much data at once. If you find that you are filling
the buffer in this interval, a SDE interval of 30 SECONDS can alleviate this
issue without majorly impacting CPU use.

§ NOTE: If your SDE collection starts as a system-defined SMF interval is
waiting, it is possible that you will not see data for those SMF types until
the next system interval is reached. Check your SMFPRMxx members for
more information on your system SMF interval – as some records aren’t
produced off-schedule or by individual event.

• IBM_RESOURCE
o Recommended: INMEM

§ Streaming ZCDP using an in-memory resource has some performance
improvements over traditional Logstream. If your implementation of
ZCDP uses Logstream and you have the ability to use the in-memory
resource, it is suggested to do so. For users implementing the MANx
datasets via user exits, continue to define IBM_RESOURCE = ‘EXIT’.

• ZIIPOFFLOAD
o Default: NO

§ The zIIP offloading function is disabled by default. If you want to offload a
significant portion of the SDE workload, you can change
ZIIPOFFLOAD=YES to activate the zIIP offloading function.

§ If ZIIPOFFLOAD is not included in PARM of the EXEC statement, you can
add it in the PARM parameter as in the following sample:
//HBOSMFCL EXEC PGM=HBOPDE,REGION=0M,TIME=1440,
// PARM='SHOWINPUT=NO,ZIIPOFFLOAD=YES'

§ By activating the zIIP offloading function, a significant portion of general
CPU workload can be offloaded to zIIP, thereby reducing the general CPU
utilization.

Adjustable Parameters in the Data Streamer:
• JCL changes:

o Default/Recommended: trace =n
§ Turning trace on is, as in most cases, not recommended unless needed

for diagnosis by IBM support. Turning on trace can heavily impact CPU
use.

• Changes in the startup.sh script:
o Heap size

§ Default: -Xms4g -Xmx4g
• In most cases, a heap size of 4G should be sufficient for ZCDP. If

you are running out of memory, you may be able to resolve the
issue by increasing the heap size. In cases such as this, it is good
to profile your heap use with java monitoring tools such as
VisualVM. If you find that you are never coming close to filling
your heap, it is also possible to reduce the heap size to free up
storage. In any case, the Xms and Xmx should be set to the same
size. Having a Xms that is smaller than the Xmx negatively
impacts performance, as the JVM then has to calculate and adjust
the heap continuously.

WLM Recommendations:
Considering the nature of the active address spaces for ZCDP, any of the three main process
addresses going down would cause the entire process to fail. Because of this, our
recommendation would be to set the SDE, Log Forwarder, and Data Streamer as high-priority.
Since they are started tasks, either SYSSTC or other high-priority classes are appropriate. The
non-z/OSMF configuration address spaces are only used when necessary to make configuration
changes and are low-priority. More specific information can be found below.

Default Started Task Name Description
Group 1: Collector Tasks
This group of tasks needs high-priority since they collect data. SYSSTC is suitable for this group.
HBOSMF ZCDP: System Data Engine
GLAPROC z/OS Log Forwarder
Group 2: Data Streaming Tasks
This group of tasks needs high-priority since they are started tasks that format and send data to
subscribers. SYSSTC or other high-priority classes are suitable for this group.
HBODSPRO ZCDP: Data Streamer
Group 3: Configuration Tasks
This group of tasks can be low-priority since they are only started as needed and run for a short time.
HBOCFGA Configuration Tool Angel Server
HBOCFGT Configuration Tool Server

Subscribers:
Currently, sending data to Logstash and Splunk subscribers is supported, as well
as generic HTTP subscribers. Here are a few guidelines for each:

Logstash Server (General)

• Always set the JVM heap minimum (Xms) and maximum (Xmx) to the same
value. Generally, starting with a value of 4GB is sufficient, and profiling the
JVM heap utilization can help lower the value if this exceeds your needs.

• If events are backing up, slowly scale up the number of pipeline workers to
make more CPU threads available

o Pipeline batch size can also be increased for more efficient and
faster processing but increases memory overhead. If your heap is
well tuned, consider increasing the heap size before modifying this
setting.

• Disable swapping to improve garbage collection times and increase node
stability

o This can be done temporarily with sudo swapoff -a or permanently
by editing the /etc/fstab file and commenting out all lines that
contain the word “swap”

• The file descriptor limit (ulimit -n) should be set to 65536 or higher.
• The user thread limit (ulimit -u) should be set to at least 4096

IOA-LA - Logstash

• IOA-LA has been tested to ingest up to 2TB/day

Elastic - Logstash

• We have seen ingestion rates of up to 480GB/day with one Elasticsearch
node and one Logstash instance. If additional ingestion volume is needed,
Elasticsearch should be scaled horizontally to include more nodes.

Subscribers (continued):

Splunk – Data Receiver

• Splunk indexers on reference hardware can generally ingest up to
300GB/day. Further data volumes require multiple indexers and search
heads. See Splunk’s recommendations on scaling and capacity planning
for more information.

o You should plan your ZCDP configuration to send to multiple Data
Receivers, each on their own Splunk indexer if you will exceed
300GB/day.

• System CPU utilization while ingesting 500GB/day through a Data
Receiver has shown between 4%-8% on Splunk reference hardware. Due
to Splunk’s behavior and CPU utilization for ingestion and searches,
individual Data Receivers on a Splunk indexer should not negatively
impact Splunk performance.

Splunk – HTTP Event Collector (HEC)

• Splunk HEC ingestion is subject to the same throughput limits as
described above for Splunk Data Receiver ingestion. This is extremely
important to consider when sizing your workload for ingestion, as Key-
value formatting increases output record size more than CSV formatting
does. Thus, for equivalent workloads, you will not be able to stream as
many Key-value records as you can CSV records in a day.

• The magnitude of Key-value inflation depends on the record type, as
different types have different numbers of data entries to be paired with
keys. Lab testing has shown several record types inflating anywhere from
2-8 times in Key-value format compared to CSV format.

• When configuring the subscriber in your policy, always select the default
option of 12 threads unless instructed otherwise by support.

o You should only need to change this when your workload is large
enough to form a bottleneck in the Data Streamer’s sender queue.
If this happens, the growing bottleneck will eventually cause your
Data Streamer’s heap to exceed capacity. (For that reason,
increasing your heap size will not be a viable solution in this case,
as doing so will merely prolong the heap’s inevitable saturation.)

o Our testing has shown very minimal CPU impact of thread
allocation alone. Thus, we strongly advise against deliberately
decreasing your thread count to achieve performance

improvement, as this will risk a Data Streamer bottleneck for
sufficiently large workload volumes.

• Compared to Splunk Data Receiver ingestion, Splunk HEC ingestion yields
level CPU utilization for the SDE and LogForwarder but higher CPU
utilization for the Data Streamer. This is explained by the processing
overhead associated with the Data Streamer formatting Key-value data,
in addition to the resulting inflation of that data to be streamed.

• Using the Data Receiver is our recommended best practice for Splunk
ingestion. However, you may consider using HEC if:

o You are not using IZOA.
o You deem acceptable the anticipated CPU increase and data

inflation in choosing HEC over Data Receiver ingestion.
o There are limitations on your ability to install or update the Splunk

buffered ingestion app.

Measuring ZCDP CPU Utilization:
 CPU performance is critical for our products, so knowing how to accurately measure this

important. Here are some considerations for measuring the CPU utilization of ZCDP in
your environment:

• Streaming
• ZCDP has a startup overhead that is negligible in a long running process, but

noticeable if measuring for only a short amount of time
• If measuring the Data Streamer or Log Forwarder, wait for Java optimization to

take place
o In our testing, this usually stabilized after approximately 30-45 minutes

of processing workloads

• Standard test process:
1. Start monitor
2. Start ZCDP addresses
3. Start workload(s)
4. Wait approximately 90 minutes
5. Review results

§ Only use the last 30 minutes of the test for CPU utilization
§ The first hour can be used to understand the JIT optimization,

changes over time, and identify other issues
§ If 90 minutes is too long of a test, you can start workloads for

approximately 5 minutes, turn them off for another 5 minutes,
and restart the workloads. Repeat this process as necessary over
a prolonged period of time without restarting any ZCDP address
spaces. Java optimization will still occur in this scenario.

• zIIP Measurement
• You can measure the zIIP time of ZCDP from RMF Monitor III.
• For convenience, you also can check the zIIP time from Display Active Users

panel (DA) for Data Streamer, and from Enclaves panel (ENC) for System Data
Engine.

• Batch Loading
• Use Record Format VB, Logical Record Length 32756

o Sample: PATHDISP=(KEEP),RECFM=VB,LRECL=32756,FILEDATA=RECORD
o This has shown over 70% reduction in CPU time over RECFM=V
o Batch load sample JCL can be found below

Sample JCL:

Creating a Summary Activity Report:

This JCL can be used to create a Summary Activity Report. To help with sizing
your environment, IBM will ask you to provide the output of the Summary
Activity Report during peak traffic. The job output from this procedure will give
details to how many SMF records of each type have been created since the
current SMFPRMxx member was activated, as well as the average length for each
record type.

For MANx datasets

Edit Line 3 with your MANx dataset location, and line 5 with available volume to
dump the SMF data to. *NOTE – this will not clear your MANx dataset.*

//SMFDUMP1 EXEC PGM=IFASMFDP
//DUMPIN DD DSN=SYS1.MAN1,DISP=SHR
//DUMPOUT DD DSN=HLQ.MLQ.MAN1.DUMP(+1),
// DISP=(,CATLG,DELETE),
// UNIT=3390,VOL=SER=(VOLID1,VOLID2),
// SPACE=(CYL,(300,150),RLSE),
// DCB=(RECFM=VBS,LRECL=80,BLKSIZE=6160)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

For Logstream

 Edit lines 2 and 4 with the instructions from above.

//SMFDMPLS EXEC PGM=IFASMFDL,REGION=0M
//DUMPOUT DD DSN=HLQ.MLQ.DUMP(+1),
// DISP=(,CATLG,DELETE),
// UNIT=3390,VOL=SER=(VOLID1,VOLID2),
// SPACE=(CYL,(1,1),RLSE),
// DCB=(RECFM=VBS,LRECL=32760,BLKSIZE=0)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LSNAME(IFASMF.SYSNAME.LSNAME,OPTIONS(DUMP))
 OUTDD(DUMPOUT,TYPE(0:255),START(0000),END(2400))
 DATE(YYYYDDD,YYYYDDD)
 SID(SYS)
/*

Sample JCL Continued:

Batch Loading SMF Datasets:

If you need to batch load SMF datasets through ZCDP, use the sample provided
below. To run, simply have the Data Streamer running and submit the procedure
defined by the following JCL:

//BATCHCDP JOB 'ACCOUNTING INFORMATION','GET SMF DS',
// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//*
//* POINT TO ZCDP LEVEL IN LINE 8
//* POINT TO SDE CONFIG IN LINE 12
//*
//HBOSMFCL EXEC PGM=HBOPDE,REGION=0M,PARM=('SHOWINPUT=NO')
//STEPLIB DD DISP=SHR,DSN=HLQ.MLQ.SHBOLOAD
//HBOIN DD *,DLM='/+'
SET IBM_UPDATE_TARGET = 'PORT 51401';
SET IBM_FILE_FORMAT = 'CSV';
// DD PATH='/u/CDP/config.sde',
// PATHDISP=(KEEP),RECFM=VB,LRECL=32756,FILEDATA=RECORD
// DD *,DLM='/+'
COLLECT SMF
/+
//*
//* DEFINE SMF DATASET IN LINE 22
//*
//HBOLOG DD DISP=SHR,DSN=HLQ.MLQ.SMFDSN
//HBOOUT DD SYSOUT=*
//HBODUMP DD SYSOUT=*

IBM Support Must-Gather Documentation:
When reaching out to IBM Support or Performance for questions or issues with
ZCDP, the following information should be provided to insure quick response
times, and less requests for information.

• Jobs for started procs:
o Data Streamer, SDE and/or Log Forwarder

• Job output:
o Data Streamer, SDE and/or Log Forwarder

• Configuration Files:
o Screenshot of z/OSMF configuration
o policy file (Data Streamer)
o config.properties file (Log Forwarder)
o SDE file (SDE)

• Log outputs/dumps
• SMF Summary Activity Report (see above sample)
• CPC SI output (Command: D M=CPU)
• Environment Details for capacity planning inquiries

o LPARs
§ SMF Summary Activity Report for each
§ Data intended for collection (specific SMF types, record types, SYSLOG,

etc)

Performance Assistance Documentation
 If seeking help for performance issues, additional documentation may be required to
help in diagnosing issues. RMF CPU, Transaction, and Memory reports targeting ZCDP address
spaces help us pinpoint problems and hasten investigation. Please provide RMF reports when
available for performance inquiries. When running RMF, make sure oyu also run RMF Monitor
II at an interval of 5 minutes (or less), with both ARD and ASD reports enabled.

IBM Z Operations Analytics

Guidelines:

• IBM Z Operations Analytics dashboards are designed to return information from
Summary SMF data. Due to search return scaling with endpoints such as Splunk
and Kibana, trying to retrieve multiple days’ worth of data or more could result in
long load times for dashboards. The load time scales linearly with the amount of
matching events in an index within the given search timeframe.

o Splunk example:
§ Dashboard load time, returning 200,000 matches – 3.5 seconds
§ Dashboard load time, returning 2,000,000 matches – 35 seconds

o Narrowing your search timeframe can greatly improve dashboard load
times. It is best to search around a smaller timeframe with a known
problem than to search multiple days’ data.

• It is recommended to only search one day’s worth of ingested data in any
dashboard. For a customer ingesting roughly 150,000 summary records per day,
searching across this for one LPAR’s data should take approximately 2 seconds.
Searching the data from all LPARs in our reference environment with
approximately 550,000 summary records ingested in one day would take around
10 seconds.

• To determine how many records you are generating daily, you can use the SMF
Summary Activity Report. Details on how to generate this report are given above
under ‘Creating a Summary Activity Report’

o You can also use a Summary Activity Report to determine volume of data
in bytes for a given period of time

§ Divide the total range of time you want to calculate for in seconds
by the total seconds for the Summary Activity Report period of time
to get periods/range of time.

§ Multiply the number of written records of a particular SMF type by
the above number of periods (round down to the nearest integer as
necessary).

§ Multiply the total records by the average record length. This results
in total bytes/time range.

