

PLANNING THE DEVELOPMENT OF A
Z/OS MOBILE APPLICATION TO ACCESS

AUTHORIZED SERVICES

BOB ABRAMS, KIN NG, GISELA CHENG, VAUGHN PAGE, VICTOR ALONZO,
EDRIAN IRIZARRY, LUISA MARTINEZ, SUSAN DEMKOWICZ, MICHAEL SNIHUR

IBM CORPORATION

Poughkeepsie, NY 12601

APRIL 28, 2016

Special Notices

Please Note: Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may vary

significantly. Some measurements may have been made on development-level systems and

there is no guarantee that these measurements will be the same on generally available systems.

Furthermore, some measurements may have been estimated through extrapolation. Actual

results may vary.

Trademarks
IBM, IBM logo, LinuxONE Emperor, LinuxONE Rockhopper, and z Systems are trademarks or registered trademarks of
the International Business Machines Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or

both.

IBM Mobile First is a trademark or registered trademark of the IBM Company. All statements regarding IBM’s future

direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This document is current as of the initial date of publication and may be changed by IBM at any time. Not all offerings are

available in every country in which IBM operates. It is the user’s responsibility to evaluate and verify the operation of any

other products or programs with IBM products and programs.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS OR

IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM products are warranted according

to the terms and conditions of the agreements under which they are provided.

The following terms are trademarks of the International Business Machines Corporation in the
United States, other countries, or both, and referenced in this paper:
IBM®
RACF®
WebSphere®
z/Architecture™
IBM MobileFirst™
z/OS®

A current list of IBM trademarks is available on the web at IBM copyright and trademark
information - United States (www.ibm.com/legal/us/en/copytrade.shtml).

http://www.ibm.com/legal/us/en/copytrade.shtml

Abstract:

Many installations today are looking to accelerate their business processes to allow immediate

access to important applications, and are looking to mobile applications as a key to getting

there. Mobile access improves the time it takes an information system professional (system

administrator or system programmer) to obtain important information and make key decisions to

maintain system availability. This white paper is intended to educate z/OS® mainframe

professionals on building an infrastructure that provides IS personnel mobile access to z/OS

system services required to do their jobs. Doing so allows installations to expose their custom

services and participate in the API economy to increase the value of their System z platform

assets. In particular, this whitepaper describes the design of a mobile application to invoke z/OS

Runtime Diagnostics.

z/OS Mobile Application 1

Introduction

There are a wealth of articles on the internet about the importance of commercial mobile

applications with various opinions on the need to:

 Boost brand awareness and visibility

 Engage customers

 Provide customer service and support

 Promote your company’s services

 Provide informative tips

But what about mobile applications for your own business employees? For example,

applications to

 Improve employee processes within your business

 make your system staff more efficient, allowing them to access legacy z/OS applications

no matter where the users are (office, meeting, hallway, coffee shop)

 Improve human reaction time to business and system problems

 Ensure that your mainframe systems continue to attain the highest level of availability

possible

Have you considered defining a mobile application that allows properly-authenticated and

authorized system staff to access information in and about your mainframe environment? The

mainframe “continues to support modern-day tech like mobile, cloud and still-emerging

technologies like the Internet of Things.”1 You can build mobile applications that invoke back-

end operating system functions and get a quick response back to the mobile device. It’s the cool

way to support millennial employees in doing their work!

A high percentage of system programmers carry mobile devices with them. It’s a well-known

fact that system programmers are on the premises 8 hours a day, but are on call 24 hours a

day. We saw benefit in providing a simple mobile interface to invoke z/OS Runtime

Diagnostics. z/OS Runtime Diagnostics is a z/OS function that can be invoked with an operator

command when the system is experiencing degradation, or to check for potential problems. It

examines the system as an experienced system operator would when a problem is occurring.

Doing so saves significant time required to evaluate the system, determine what the next set of

actions may be, and to identify who to assign the problem to. A mobile application to invoke

this system diagnostic function can be used by the system programmer on call to check on

system health while at the movies with the kids. Or the system programmer may simply need to

respond about a potential system problem when not near a laptop.

1 “Mainframes are Still at the Heart of the Modern Tech World”, by Harvey Tessler. Enterprise

Tech Journal, October/November 2015

z/OS Mobile Application 2

Today you invoke Runtime Diagnostics using a z/OS operator command, MODIFY

HZR,ANALYZE and it responds with a multiple-line message response, telling you about

system problem symptoms that are indicators of a problem (if any), and what the next

investigation step is. See Figure 1 for an example of the diagnostic output response. Wouldn’t it

be great to invoke this function from a mobile device?

We accepted the challenge to create a mobile application to invoke z/OS Runtime Diagnostics

for use by a z/OS System Programmer or operations staff. Goals of the application include to

ensure the identity of the user through use of RACF® or the security product of choice, invoke

the Runtime Diagnostics function (requiring an authorized interface to call the operating system

function), obtain the result and prepare a more modern response with all of the relevant

information in the mobile response. Part of our goal was to deliver the diagnostic information in

a more visually appealing, usable fashion rather than as a block of text, such as the example

command response shown in Figure 1. The goal is for the user to recognize potential system

problems at an instant and then act upon them immediately.

Figure 1: Example of the multiple-line output from z/OS Runtime Diagnostics

The remainder of this white paper describes the overall architecture of the mobile application and

more specifics about the various components. Topics include:

 Our choice of the mobile application integrated development environment (IDE)

 Our choice of “middleware” to receive the web request and drive its execution

 The ‘back end programming” to invoke a native z/OS interface on behalf of the mobile

application

 The transformation of the response from binary & EBCDIC to JSON

 Processing and display of the response by the mobile application

z/OS Mobile Application 3

Overall architecture

For a modern mobile application to interact with back end services, the mechanism of choice is

through a RESTful API.

A RESTful API is an application program interface (API) that uses HTTP requests to GET, PUT,

POST and DELETE data. Representational state transfer (REST), which is used by browsers, is

a programming style for a client/server interface, similar to an HTTP request, with JSON output.

In order to support invocation of Runtime Diagnostics from a mobile device, we needed to define

a RESTful API to invoke the internal z/OS Runtime Diagnostic function, raising several

requirements that needed to be satisfied:

 A target server is required to host the RESTful API function

 Ability to securely invoke an internal z/OS authorized function

 Ability to transform the output of an internal z/OS authorized function to a form that can

be consumed by the RESTful API

 Security for the RESTful API that is seamlessly integrate into the z/OS security model

After carefully considering the project requirements and comparing them to existing technology,

we chose the following elements to provide an end-to-end solution, as shown in Figure 2.

Figure 2: High level architecture of the mobile solution

Each of the following considerations are discussed in greater detail later in this paper.

z/OS Mobile Application 4

 IBM MobileFirstTM

We developed a mobile user interface application to invoke the z/OS function thru a new

RESTful API. We required the mobile application and user interface to be supported on

Android and iOS devices. This necessitated that we develop a hybrid-type mobile

application, one with a common programming model that can be deployed on either

platform. We selected the IBM MobileFirst product to develop the mobile application

with a goal of deploying the application on Android and iOS devices.

 z/OS Connect, packaged with WebSphere® Liberty Profile (WLP)

To host the RESTful API, we chose the z/OS Connect feature of WLP. z/OS Connect

simplifies the requirements needed to host a RESTful API on z/OS, as well as drive the

“back end” functionality. It also allows the hosted RESTful APIs to be secured by a

z/OS security product.

 Websphere Optimized Local Adapters (WOLA)

zOS Connect coordinates processing in the z/OS WebSphere environment, driving a

servlet that processes the RESTful APIs coming in, invokes the security environment,

and coordinates the invocation of the back end processing. The interface that provides

this transition from Java to a z/OS started task (for back end processing) is WOLA.

WOLA APIs are invoked by the back end program (MVS started task) to register itself as

a receiver of the RESTful API, and indicate that it is ready to receive and process

requests. Our back-end is a “batch WOLA client”, which is a started task written in z/OS

assembler language. The started task invokes a z/OS internal program to invoke Runtime

Diagnostics and coordinates its processing with zOS Connect through the WOLA APIs.

WOLA APIs are also used to indirectly invoke services needed to transform z/OS

internal authorized service output into a form that can be consumed by a RESTful API.

 JSON

JSON (Object JavaScript Notation) is the preferred format for data exchange through

RESTful APIs. We selected the Jackson JSON packages to develop the code that is

needed to transform z/OS system service output buffers into JSON format.

JSON is a text-based, human-readable data interchange format used for representing

simple data structures and objects in Web browser-based code. JSON is used as an

alternative to XML since JSON documents are relatively lightweight and can be

processed more efficiently than XML documents.

JSON notation is used to represent the Runtime Diagnostics output, originally returned

by the assembler program, to the mobile user interface “business logic”. That “business

logic” processes the JSON response and directs the graphical representation of the user

response.

z/OS Mobile Application 5

Mobile User Interface

Since z/OS Runtime Diagnostics does not have a graphical user interface, our goal was to

develop one that will support popular mobile platforms. While providing the user interface, we

also portrayed the returned diagnostic report content in a way that a system programmer with

little z/OS expertise would understand. Figure 3 shows the sign-in screen created for this

application.

Next we needed to develop an application for the popular mobile

platforms, including Android and iOS. Rather than develop

software for each platform, the obvious choice is to use a

development environment that supports both platforms and

develop a single hybrid application. We developed the

application, along with the response processing, using IBM’s

MobileFirst product so that the resulting application can be

deployed on both mobile operating systems mentioned above. As

an additional challenge, we experimented with ways to represent

the system diagnostic relationships graphically, minimizing z/OS-

specific terminology, such that a user with few years on the

platform could identify the problem types. For example,

contention represents a serialized relationship between two or

more jobs, which could be represented graphically. Providing all

of the detail lines returned by Runtime Diagnostics can easily lead

to information overload. To simplify the interface and allow the

information to fit on a small screen without endless scrolling, we

reorganized how the diagnostic information is shown.

Of the 16 problem types supported by Runtime Diagnostics, we

focused on a subset for this proof of concept - enqueue

contention, loops, hangs and latch contention. In the most basic form of enqueue, a job using a

particular resource is preventing (blocking) other jobs requiring that resource from completing

their execution. The mobile user interface identifies this relationship with all pertinent data

without propagating 6-8 lines of textual data. Figure 6 (later in this document) shows an

example of the graphical display.

Figure 4 illustrates the required mobile interface sequence. The application needs to identify one

or more instances of the various problem types. Subsequently, each problem type is displayed

along with related information returned by the diagnostic function about each problem symptom.

Figure 3: Runtime Diagnostics

mobile sign-in screen

z/OS Mobile Application 6

Figure 4: UI flow for three proposed screens

Communicating with the “back end”

Since this is a mobile app using IBM MobileFirst, we used an adapter to make requests to the

backend. It is best to think of them as a dedicated chunk of code that handles sending and

receiving the RESTful requests. To simplify the mobile application's processing of the response,

the JSON stream is cleaned of "noise" and organized for easier handling. Figure 5 shows the

sequence of steps taken by the mobile application to receive and process the request.

z/OS Middleware segment

The z/OS Connect feature of WLP was selected to host our RESTful API. Our selection was

based on the following factors:

 z/OS Connect greatly simplifies the amount of work needed to host a RESTful API. There is

no need to write a custom servlet. Defining a new RESTful API can be done by updating

WLP configuration files. Writing a custom servlet would introduce complexities such as

needing to invoke z/OS authorized services that do not have any Java interfaces.

 z/OS Connect's security mechanism ties into the z/OS security framework. Authorization to

use the hosted RESTful APIs can be secured through the System Authorization Facility

(SAF) using RACF or other security product used by the installation.

z/OS Mobile Application 7

 z/OS Connect supports WOLA, which can be used to support a back end batch client that can

be used to invoke z/OS internal authorized system services. WOLA supports low-latency

memory-to-memory exchanges between Java applications and other functions in z/OS

address spaces

 z/OS Connect supports the use of custom data transformers that can be used to transform

output from z/OS services to the data formats needed by more modern programming models.

With z/OS Connect, a new RESTful API is defined by updating WLP's server.xml configuration

file. As part of defining the new RESTful API, the server.xml can also be updated to:

 Specify the security model to use to check for user authentication and authorization to use the

RESTful API. The RESTful API can be configured to use SAF or use a userid/password pair

specified directly in the server.xml. SAF should always be used in a production

environment.

 As part of defining the RESTful API in server.xml, there is also configuration work to

provide a name for the service so that back end clients can register to service the RESTful

API request. We will refer to these back end clients as WOLA batch clients since these are

started tasks running a program that uses WOLA APIs to interact with z/OS Connect to

process a RESTful API request.

 As part of defining the RESTful API in server.xml, there is also configuration work to

associate a data transformer with the RESTful API. This data transformer is needed to

Figure 5: High level diagram of how the mobile application receives the JSON

response.

z/OS Mobile Application 8

transform z/OS format output (EBCDIC and hexadecimal data) into a form (ASCII, JSON)

that can be returned to the RESTful API caller.

WOLA Batch Client

To provide the functionality of the RESTful API, a WOLA batch client is used. A WOLA batch

client is simply a z/OS assembler program that uses WOLA APIs to interact with z/OS Connect.

For our implementation, we ran the WOLA batch client as a started task.

The responsibilities of the WOLA batch client are the following:

 Use a WOLA API to register as a client to service the RESTful API requests

 Use a WOLA API to wait for a RESTful API request to be received. z/OS Connect will

wake the WOLA batch client when a RESTful API request is received.

 Invoke the needed z/OS authorized system service

 Use a WOLA API to return the output of the z/OS authorized system service to z/OS

Connect. z/OS Connect invokes the data transformer associated with the RESTful API

and pass it a Java byte array that contains the output from the z/OS authorized system

service. The data transformer transforms the information contained in the Java byte array

to JSON. zOS Connect then returns the response back to the invoker of the RESTful

API.

 WOLA batch client again uses the WOLA API to wait for another RESTful API request

to be received

In our case, we needed to invoke a system service that requires supervisor state callers. Since the

WOLA APIs only support key 8 (problem program state) programs, our batch client runs in key

8 and switches to supervisor state to invoke the authorized z/OS service and then switches back

to problem program state. This also had implications on the ESTAE recovery environment

established by the WOLA client to handle recovery for unexpected ABENDs.

For the prototype, we manually start the WOLA batch client after WLP has started. However, in

a production environment, your system automation can start the WOLA batch clients

automatically. You can also write your WOLA batch client to tolerate the scenario where WLP

is not yet active, dormant until WLP initializes and recognizes the client. In addition, more than

one instance of the WOLA batch client can be started. Incoming RESTful API requests will

always be routed to the last WOLA batch client that is started. If a WOLA batch client

terminates, incoming RESTful API requests will be routed to the active WOLA batch client that

was started last. Finally, recovery should always be provided to ensure that the WOLA batch

client is always available for subsequent requests.

z/OS Mobile Application 9

Data Transformation

z/OS system services normally returns data in an output buffer that is mapped by an assembler

mapping macro. The usual structure consists of a header section and then potentially multiple

sub-sections for specific detailed data, depending on the diagnostic findings. The output buffer

contains a combination of EBCDIC encoded characters and hexadecimal data.

In order for the data being returned from the z/OS system service to be consumed through

RESTful APIs, the data needs to be transformed via a data transformer. In addition, a set of Java

classes were required to represent the data being returned.

The responsibility of this data transformer is to perform the following:

 Traverse the output buffer that is returned by the z/OS system service

o Convert EBCDIC encoded data into ASCII UTF equivalents

o Convert hexadecimal data into representation that can be used by Java

o Convert z/OS specific STCK time to Java time representation. The IBM JZOS

Batch Toolkit has a utility method (getEpochMilliSeconds) for converting STCK

time into a format that is supported by Java.

 Create Java objects based on the data that is contained in the output buffer

 Transform the Java objects that were created into JSON format

In our case, the z/OS internal service returns an output buffer that contains data that has the

following structure:

 A header section, with subsections for

o summary event records

o system event records (the number of records can vary)

o failure event records (the number of records can vary)

o bypass event records (the number of records can vary)

The sub-sections can be located via offsets stored in the header-subsection and traversing the

subsections can be accomplished by using length fields contained within the sub-sections.

Based on the structure of our z/OS system service, we created the following Java classes:

 represent a summary event record

 represent a system event record

 represent a failure event record

 represent a bypass event record

 A main Java class was used to represent the entire output buffer of the z/OS system

service. This class is mainly used as a container object for all the event record types

(summary, system, failure, bypass) found in the output buffer. This is the Java object that

was converted to JSON format after the data transformer has completed processing the

output buffer.

z/OS Mobile Application 10

Our use of the z/OS Connect feature of WLP to host our RESTful API provides the capability to

use a custom data transformer for each of the RESTful API that it is hosting. In order for our

data transformer to be invoked by z/OS Connect when needed, the following requirements

needed to be satisfied:

 The server.xml configuration file of WLP was configured to associate our data

transformer with the RESTful API

 The data transformer was written in Java and implement a SPI interface provided by z/OS

Connect

 The data transformer and any dependent jars was packaged as OSGI bundles

The data transformer and dependent jar OSGI bundles needed to be packaged as a WLP feature

so that it can be installed into WLP and be invoked as needed. When the back end batch client

receives a request to process, it invokes the z/OS system service. When the z/OS system service

returns with the output buffer, the back end batch client uses a WOLA API to respond back to

the RESTful API caller. A parameter on the WOLA API to respond back to the caller points to

the output buffer returned by the z/OS system service. When the WOLA API returned control to

z/OS Connect, z/OS Connect had access to that output buffer. z/OS Connect then called the data

transformer that is configured for that RESTful API and passed the output buffer as a Java byte

array. It is then up to the data transformer code to take the byte array data and transform it to the

JSON representation that the RESTful API caller expects.

Processing the JSON response – Data Reduction and Coordination

The data returned from the RESTful service is in JSON format. This makes it immediately

consumable by the mobile application. It is possible to manipulate the data in a variety of ways.

We chose to convert the wordiness of the Runtime Diagnostics output into a pictorial rendering

that represents the diagnostic findings. For example, we adjusted the presentation of the

locking/ENQ data to represent waiter and blocker relationships. When JSON data is returned,

representing the entire diagnostic response, each lock instance is represented by a complex JSON

object. The objects that share the same lock are treated as individual events by Runtime

Diagnostics. In cases where a single ENQ has multiple waiters, it becomes a chore for the user

of the textual command output to visually interpret the relationships being reported, resorting to

scanning for and remembering the names of the ENQs and creating a mental picture of what was

happening. We accepted the challenge to create a graphical display for the identified problem

symptoms. Figure 6 shows an example of the graphical output, where the ENQ issue is first

indicated by an accordion entry. When clicked to show the details, a graphical representation is

shown of the blocking job and multiple associated waiting jobs. Furthermore, the display shows

the recommended next action to diagnose the impact of the illustrated contention.

z/OS Mobile Application 11

Figure 6: ENQ event list and symptom display

The code to perform this action was fairly simple. All of the diagnostic data is returned in JSON

form, so it became a fairly straightforward task of looping through all of the events returned

looking for duplicate ENQ names. New simpler JSON objects were then created. These objects

would feature the ENQ and have a list of one or more waiters. The analysis of the data

immediately at the receipt of the data from the API was performed separately from the

presentation portion of the mobile application. This formed a logical structure for the mobile

application.

This data reduction analysis was done in one coherent step. The isolation of function, data

reduction from presentation, allowed the application to be developed independently by a group

of developers. The only coordination that had to be done before the final pieces were merged

was on the names of the JSON objects. This task, accomplished early on, allowed development

to proceed smoothly and the final merging of the data and the presentation was also

accomplished rapidly.

Resulting Mobile application

The resulting panel displays of the mobile application represent the first few screens that show

the occurrence and types of problem symptoms in an accordion list style. See Figure 7 for an

example of the list. Selecting an entry (row) in an accordion structure results in that that row

expanding to include additional data. The accordion list allows the mobile application to display

all the necessary information without having endless scrolling. For the final panel, we represent

the information about the problem using directed graphs. Directed graphs allows the user to

z/OS Mobile Application 12

easily identify the source of the problem and gather all the important details needed without

having to parse through a long list of text.

Figure 7: Mobile Application Dashboard

Conclusions

Our project demonstrated that existing z/OS assets can be exposed as a software service, without

compromising security and without the need to create Java interfaces for those services. This

capability can allow your enterprise to participate in the "API Economy" and let you become a

"revenue generator" rather than a "cost center"2.

The ability to expose your services in an easy-to-consume format can launch many new potential

applications and provide opportunities to get more insight through advanced analytics. For

example, our mobile application can be enhanced to support analytics (such as with Watson

APIs) that may provide additional insight that may not be readily obvious.

2 “The Power of the API Economy: Stimulate Innovation, Increase Productivity, Develop New Channels, and Reach

New Markets”, an IBM Redguide, http://www.redbooks.ibm.com/abstracts/redp5096.html

z/OS Mobile Application 13

Using the concepts described in this paper, you too can create a web application for your

business! Start small, build the architecture, and then expand the resulting application with more

features to make your staff more efficient!

Our use case was z/OS Runtime Diagnostics since it’s a well-defined function with potential

value to z/OS system programmers. What use cases exist in your company?

 What are common z/OS inquiries your system programmers use all the time?

 What functions can you simplify for your newer (early tenure), less experienced folks?

 What do they wish they had access to?

So, instead of asking why you need a mobile application hosted on z/OS, perhaps the question is,

why not?

