IA conversacional
pictograma de nube
IA conversacional

Obtenga información sobre la IA conversacional y cómo ayuda a las organizaciones a captar la atención de los clientes y brindar servicios.

Productos destacados

IBM Watson Assistant

IBM Watson Discovery


¿Qué es la IA conversacional?

Inteligencia Artificial (IA) Conversacional se refiere a tecnologías, como chatbots o agentes virtuales, con los cuales los usuarios pueden hablar. Utilizan grandes volúmenes de datos, machine learning, y procesamiento de lenguaje natural para ayudar a imitar las interacciones humanas, reconociendo las entradas de voz y texto y traduciendo sus significados en varios idiomas.


Componentes de la IA conversacional

La IA conversacional combina el procesamiento de lenguaje natural (PNL) con el  machine learning. Estos procesos de PNL  fluyen en un circuito de retroalimentación constante con procesos de machine learning  para mejorar continuamente los algoritmos de IA. La IA conversacional  tiene componentes principales que le permiten procesar, comprender y generar respuestas de forma natural.

Machine Learning  (ML) es un subcampo de la inteligencia artificial, compuesto por un conjunto de algoritmos, características y conjuntos de datos que se mejoran continuamente con la experiencia. A medida que crece la entrada, máquina de plataforma de IA  mejora en el reconocimiento de patrones y utiliza esto para hacer predicciones.

El procesamiento de lenguaje natural es el método actual para analizar el lenguaje con la ayuda de machine learning utilizado en IA conversacional. Antes del machine learning, la evolución de las metodologías de procesamiento del lenguaje pasó de la lingüística a la lingüística computacional, a el procesamiento estadístico de lenguaje natural . En el futuro, el deep learning mejorará las capacidades de procesamiento de lenguaje natural  de la IA conversacional  aún más.

PNL  consiste de cuatro pasos: generación de entrada, análisis de entrada, generación de salida y aprendizaje reforzado. Los datos no estructurados se transforman en un formato que puede ser leído por una computadora, que luego se analiza para generar una respuesta adecuada. Los algoritmos de machine learning (ML) subyacentes mejoran la calidad de la respuesta con el tiempo a medida que aprende. Estos cuatro pasos de PNL se pueden desglosar más abajo:

  • Generación de entrada:  Los usuarios brindan información a través de un sitio web o una aplicación; el formato de la entrada puede ser voz o texto.
  • Análisis de entrada: Si la entrada está basada en texto, la aplicación de la solución de IA conversacional   usará comprensión de lenguaje natural   (NLU) para descifrar el significado de la entrada y derivar su intención. Sin embargo, si la entrada está basada en voz, aprovechará una combinación de reconocimiento automático de voz (ASR) y NLU para analizar los datos.
  • Gestión del diálogo:  Durante esta etapa, Natural Language Generation (NLG), un componente de NLP, formula una respuesta
  • Aprendizaje reforzado:  Por último, los algoritmos de machine learning refinan las respuestas a lo largo del tiempo para garantizar la precisión.

Cómo crear IA conversacional

La IA conversacional comienza pensando en cómo los usuarios potenciales podrían querer interactuar con su producto y las preguntas principales que pueden tener. Luego, puede usar herramientas de IA conversacionales para ayudar a dirigirlos a la información relevante. En esta sección, analizaremos las formas de comenzar a planificar y crear una IA conversacional.


1. Encuentre la lista de preguntas frecuentes (FAQ) para sus usuarios finales
 

Las preguntas frecuentes son la base del proceso de desarrollo de la IA conversacional. Le ayudan a definir las principales necesidades y preocupaciones de sus usuarios finales, lo que, a su vez, aliviará parte del volumen de llamadas de su equipo de soporte. Si no tiene una lista de preguntas frecuentes disponible para su producto, comience con su equipo de éxito del cliente para determinar la lista adecuada de preguntas con las que su IA conversacional puede ayudarlo. 

Por ejemplo, digamos que usted es un banco. Su lista inicial de preguntas frecuentes podría ser:

  • ¿Cómo accedo a mi cuenta?
  • ¿Dónde encuentro mi número de cuenta y de ruta?
  • ¿Cuándo llegará mi tarjeta de débito?
  • ¿Cómo activo mi tarjeta de débito?
  • ¿Cómo solicito cheques?
  • ¿Cómo hablo con un banquero local?

Siempre puede agregar más preguntas a la lista con el tiempo, así que comience con un pequeño segmento de preguntas para crear un prototipo del proceso de desarrollo para una IA conversacional.


2. Utilice las preguntas frecuentes para desarrollar objetivos en su herramienta de IA conversacional
 

Sus preguntas frecuentes forman la base de los objetivos o intenciones expresados en la entrada del usuario, como el acceso a una cuenta. Una vez que describa sus objetivos, puede conectarlos a una herramienta de IA conversacional competitiva, como Watson Assistant, como intenciones.

A partir de aquí, deberá enseñarle a su IA conversacional las formas en que un usuario puede expresar o solicitar este tipo de información. Si tomamos el ejemplo de "cómo acceder a mi cuenta", podría pensar en otras frases que los usuarios podrían usar al conversar con un representante de soporte, como "cómo iniciar sesión", "cómo restablecer la contraseña", "registrarse para una cuenta ", y así sucesivamente.

Si no está seguro de otras frases que puedan usar sus clientes, es posible que deba trabajar junto a sus equipos de análisis y soporte. Si sus herramientas de análisis de chatbot se han configurado correctamente, los equipos de análisis pueden extraer datos web e investigar otras consultas a partir de los datos de búsqueda del sitio. Alternativamente, también pueden analizar datos de transcripciones de conversaciones de chat web y centros de llamadas. Si sus equipos analíticos no están configurados para este tipo de análisis, sus equipos de soporte también pueden brindar información valiosa sobre las formas comunes en que los clientes formulan sus preguntas.


3. Utilice objetivos para comprender y desarrollar sustantivos y palabras clave relevantes
 

Piense en sustantivos o entidades que se relacionan a sus intenciones. En este ejemplo, nos hemos centrado en la cuenta bancaria de un usuario. Como resultado, tiene sentido crear una entidad en relación a la información de la cuenta bancaria.

Varios valores pueden entrar en esta categoría de información, como "nombre de usuario", "contraseña", "número de cuenta", etc.

Para comprender las entidades que rodean las intenciones específicas de los usuarios, puede utilizar la misma información que se recopiló de las herramientas o los equipos de apoyo para desarrollar metas o intenciones. Estos sustantivos precederán o seguirán a la pregunta principal.


4. Junte todo esto para crear un diálogo significativo con su usuario
 

Todos estos elementos trabajan juntos para crear una conversación con su usuario final. Las intenciones permiten que una máquina descifre lo que el usuario está pidiendo y las entidades actúan como una forma de proporcionar respuestas relevantes. Por ejemplo, puede imaginar que el diálogo entre una IA conversacional y un usuario que olvidó su contraseña se desarrolla de la siguiente manera:

Juntos, los objetivos y los sustantivos (o los intentos y las entidades, como a IBM le gusta llamarlos) funcionan para construir un flujo de conversación lógico basado en las necesidades del usuario. Si está listo para comenzar a construir su propia IA conversacional, puede probar IBM's Watson Assistant Lite Version gratis. 


Casos de uso de la IA conversacional

Cuando la gente piensa en la IA conversacional , los chatbots en línea y los asistentes de voz suelen ser lo primero que viene a la mente para sus servicios de atención al cliente. y sus implementaciones omnicanal. La mayoría de las aplicaciones de IA conversacional cuentan con un análisis extenso integrado en el programa de backend , lo que ayuda a garantizar experiencias de conversación similares a las de los humanos. 

Los expertos consideran  que las aplicaciones actuales de IA conversacional cuentan con una IA débil, ya que se centran en realizar una serie de tareas muy limitada. Una IA fuerte , que sigue siendo un concepto teórico, se centra en una conciencia similar a la humana que puede solucionar varias tareas y solucionar una amplia gama de problemas.

A pesar de su enfoque limitado, la IA de conversación es una tecnología extremadamente lucrativa para las empresas, que ayuda a las empresas a ser más rentables. Si bien un chatbot de IA es la forma más popular de la IA conversacional, todavía hay muchos otros casos de uso en toda la empresa. Algunos ejemplos incluyen:

  • Atención al cliente online: Los chatbots online están reemplazando  a agentes humanos a lo largo del recorrido del cliente. Responden a las preguntas frecuentes (FAQ) de diferentes temas (como el envío) o proporcionan asesoramiento personalizado, realizan venta cruzada de productos o sugieren talles para los usuarios, cambiado la forma de interactuar con los clientes  en los sitios web y las plataformas de redes sociales . Algunos ejemplos incluyen  bots  de mensajería en sitios de  comercio electrónico  con  agentes virtuales , aplicaciones de mensajería (como  Slack  y  Facebook Messenger) y tareas generalmente realizadas por  asistentes virtuales  y  asistentes de voz.
  • Accesibilidad:  Las empresas pueden volverse más accesibles al reducir las barreras de entrada, especialmente para los usuarios que utilizan tecnologías de asistencia. Las características más utilizadas de AI conversacional para estos grupos son dictado de texto a voz  y traducción de idiomas.
  • Procesos de RRHH: Muchos procesos de recursos humanos se pueden optimizar utilizando  IA conversacional, como la capacitación de los empleados, los procesos de incorporación y la actualización de la información de los empleados.
  • Cuidado de la salud: La IA conversacional puede hacer que los servicios de atención médica sean más accesibles y asequibles para los pacientes, al tiempo que mejora la eficiencia operacional  y el proceso administrativo, como el procesamiento de reclamos, de manera más simplificada.
  • Dispositivos de Internet de las cosas (IoT):  La mayoría de los hogares ahora tienen al menos un dispositivo IoT, desde altavoces Alexa hasta relojes inteligentes y sus teléfonos celulares. Estos dispositivos utilizan reconocimiento automatizado  de voz para interactuar con los usuarios finales. Algunas aplicaciones populares incluyen Amazon Alexa, Apple Siri y Google  Home.
  • Softwares de computadora: Muchas tareas en un entorno de oficina se simplifican mediante la IA conversacional, como autocompletar búsquedas cuando se busca algo en Google  y la revisión ortográfica.

Mientras que la mayoría de los  chatbots  de IA y las aplicaciones actualmente tienen habilidades rudimentarias para la resolución de problemas, pueden reducir el tiempo y mejorar la eficiencia de costos en aplicaciones repetitivas de interacciones de atención al cliente , liberando recursos de personal para enfocarse en interacciones más involucradas con los clientes. En general, las aplicaciones de IA conversacional han podido replicar  experiencias de conversación bien, lo que lleva a mayores tasas de satisfacción del cliente.


Beneficios de la IA conversacional

La IA conversacional es una solución rentable para muchos procesos comerciales. Los siguientes son ejemplos de los beneficios de utilizar la IA conversacional.


Eficiencia de costos
 

Dotar de personal a un departamento de servicio al cliente puede ser bastante costoso, especialmente si busca responder preguntas fuera del horario de oficina habitual. Brindar asistencia al cliente a través de interfaces de conversación puede reducir los costos comerciales relacionados con los salarios y la capacitación, especialmente para las pequeñas o medianas empresas. Los chatbots y los asistentes virtuales pueden responder instantáneamente, brindando disponibilidad las 24 horas a los clientes potenciales.

Las conversaciones humanas también pueden resultar en respuestas inconsistentes a los clientes potenciales. Dado que la mayoría de las interacciones con el soporte son repetitivas y de búsqueda de información, las empresas pueden programar la IA conversacional para manejar varios casos de uso, lo que garantiza que sean amplios y consistentes. Esto crea continuidad dentro de la experiencia del cliente y permite que valiosos recursos humanos estén disponibles para consultas más complejas.


Aumento de las ventas y la participación del cliente.
 

Con la adopción de dispositivos móviles en la vida diaria de los consumidores, las empresas deben estar preparadas para proporcionar información en tiempo real a sus usuarios finales. Dado que se puede acceder a las herramientas de IA conversacional más fácilmente que a las fuerzas de trabajo humanas, los clientes pueden interactuar de manera más rápida y frecuente con las marcas. Este soporte inmediato permite a los clientes evitar largos tiempos de espera en el centro de llamadas, lo que genera mejoras en la experiencia general del cliente.A medida que aumenta la satisfacción del cliente, las empresas verán su impacto reflejado en una mayor lealtad del cliente y en ingresos adicionales por referencias.

Las funciones de personalización dentro de la IA conversacional también brindan a los chatbots la capacidad de brindar recomendaciones a los usuarios finales, lo que permite a las empresas realizar ventas cruzadas de productos que los clientes pueden no haber considerado inicialmente.


Escalabilidad
 

La IA conversacional también es muy escalable, ya que agregar infraestructura para respaldar la IA conversacional es más barato y más rápido que el proceso de contratación e incorporación de nuevos empleados. Esto es especialmente útil cuando los productos se expanden a nuevos mercados geográficos o durante picos inesperados de demanda a corto plazo, como durante los feriados.

Para obtener más información sobre los beneficios de la IA conversacional, vea nuestra serie de seminarios web Masterclass .


Desafíos de las tecnologías de IA conversacional

La IA conversacional  está todavía en su infancia, y la adopción empresarial generalizada comenzó en los últimos años. Al igual que con cualquier nuevo avance tecnológico, existen algunos desafíos con la transición a aplicaciones de IA conversacional. Algunos ejemplos incluyen:


Entrada de lenguaje
 

La entrada de lenguaje puede ser un problema para la  AI conversacional, ya sea que la entrada sea de texto o de voz. Los dialectos, los acentos y los ruidos de fondo pueden afectar la comprensión de la IA de la entrada en bruto. La jerga y el lenguaje no escrito también pueden generar problemas al procesar la entrada.

Sin embargo, el mayor desafío para la IA conversacional  es el factor humano en la entrada del lenguaje. Las emociones, el tono y el sarcasmo dificultan la interpretación por parte de la IA conversacional  del significado de los que usuario quiere decir y, consecuentemente, responder adecuadamente.


Privacidad y seguridad
 

Ya que la IA conversacional  depende de la recopilación de datos para responder a las preguntas de los usuarios, también es vulnerable a las brechas de la privacidad y la seguridad. Desarrollar aplicaciones de IA conversacional con altos estándares de privacidad y seguridad  y sistemas de monitoreo ayudará a generar confianza entre los usuarios finales, lo que en última instancia aumentará el uso del chatbot con el tiempo.


La aprehensión del usuario
 

Los usuarios pueden sentir aprensión por compartir información personal o confidencial, especialmente cuando se dan cuenta de que están conversando con una máquina en lugar de con un humano. Dado que no todos sus clientes estarán en el grupo de los primeros en adoptar esta tecnología, será importante educar y socializar a su público objetivo sobre los beneficios y la seguridad de estas tecnologías para crear mejores experiencias para los clientes. Esto puede llevar a malas experiencias de usuario  y un rendimiento reducido de la IA, además de una negación de los efectos positivos.

Además, a veces los chatbots no están programados para responder a la amplia gama de consultas de los usuarios. Cuando eso suceda, será importante proporcionar un canal de comunicación alternativo para abordar estas consultas más complejas, ya que será frustrante para el usuario final si se proporciona una respuesta incorrecta o incompleta. En estos casos, los clientes deben tener la oportunidad de conectarse con un representante humano de la empresa.

Finalmente, la IA conversacional también puede optimizar el flujo de trabajo en una empresa, lo que lleva a una reducción de los empleados para una función laboral específica. Esto puede desencadenar un activismo socioeconómico, que puede resultar en una reacción negativa para una empresa.


IBM y la IA conversacional

IBM Watson® Assistant es un chatbot de IA basado en nube   que soluciona los problemas de los clientes en la primera tentativa. Proporciona a los clientes respuestas rápidas, consistentes y precisas entre aplicaciones, dispositivos y canales. Al aplicar la IA, Watson Assistant aprende de las conversaciones de los clientes, mejora su capacidad para solucionar problemas en la primera tentativa, además de eliminar la frustración que generan los largos tiempos de espera, las tediosas búsquedas y los chatbots poco útiles. Junto con IBM Watson Discovery, puede mejorar la interacción del usuario con información de documentos y sitios web utilizando búsquedas impulsadas por IA.

Watson Assistant optimiza las interacciones preguntando a los clientes el contexto en torno a sus comentarios. Esto elimina la frustración de tener que reformular continuamente las preguntas, lo que brinda una experiencia positiva al cliente. Además, Watson Assistant proporciona a los clientes una serie de opciones en respuesta a sus preguntas. Si no es capaz de solucionar un problema particularmente complejo de un cliente, puede transferirlo fácilmente a un agente humano, en el mismo canal.

Watson Assistant está diseñado para conectarse a su ecosistema de servicio al cliente, integrándose con sus plataformas y herramientas, lo que hace que toda la experiencia del cliente sea más inteligente y sencilla, desde el principio hasta el final. Con ello, las interacciones de sus clientes con su negocio se sienten más como una relación relevante con alguien que realmente se preocupa, y no tanto como una serie de conversaciones aleatorias y fragmentadas con extraños.

IBM también comprende que una experiencia del cliente no se trata sólo de la conversación; se trata también de proteger los datos confidenciales. Es por eso que traemos una experiencia de seguridad, confiabilidad y conformidad de clase mundial al diseño de todos los productos de Watson. Además, IBM le ayuda a proteger su inversión al brindarle la flexibilidad de implementar Watson Assistant a nivel local, en la IBM Cloud® o en otro proveedor de nube de su elección, mediante IBM Cloud Pak® for Data.

Realice esta  evaluación  de 5 minutos para averiguar dónde puede optimizar sus interacciones de servicio al cliente con IA para aumentar la satisfacción del cliente, reducir los costos e impulsar los ingresos.

O haga clic aquí para explorar Watson Assistant  y comience a desarrollar hoy mismo. 

Para obtener más información sobre la  IA conversacional, regístrese en IBMid y  cree su cuenta de IBM Cloud.

IA para el servicio al cliente Los usuarios de IBM Watson lograron un ROI del 337% en tres años. Mejore la experiencia del cliente a través de la IA conversacional.

Conozca más


Soluciones relacionadas

Agente virtual inteligente

Watson Assistant proporciona a los clientes respuestas rápidas, consistentes y precisas en cualquier aplicación, dispositivo o canal.


Chatbot con IA

Solucione los problemas de soporte al cliente en la primera tentativa con IA


IBM Watson Discovery

Encuentre respuestas y conocimientos fundamentales a partir de los datos de su empresa mediante la tecnología de búsqueda empresarial impulsada por IA.