Bagging and boosting are two main types of ensemble learning methods. As highlighted in this study, the main difference between these learning methods is the way in which they are trained. In bagging, weak learners are trained in parallel, but in boosting, they learn sequentially. This means that a series of models are constructed and with each new model iteration, the weights of the misclassified data in the previous model are increased. This redistribution of weights helps the algorithm identify the parameters that it needs to focus on to improve its performance. AdaBoost, which stands for “adaptative boosting algorithm,” is one of the most popular boosting algorithms as it was one of the first of its kind. Other types of boosting algorithms include XGBoost, GradientBoost, and BrownBoost.
Another difference between bagging and boosting is in how they are used. For example, bagging methods are typically used on weak learners that exhibit high variance and low bias, whereas boosting methods are leveraged when low variance and high bias is observed. While bagging can be used to avoid overfitting, boosting methods can be more prone to this although it really depends on the dataset. However, parameter tuning can help avoid the issue.
As a result, bagging and boosting have different real-world applications as well. Bagging has been leveraged for loan approval processes and statistical genomics while boosting has been used more within image recognition apps and search engines.