IBM Cloud for VMware Solutions
Zerto Virtual Replication

Date: 31st May 2017
Version: 1.0
Table of Contents

1 Introduction .. 4
 1.1 Pre-requisites ... 4

2 System Context .. 5
 2.1 Actors ... 5
 2.2 Systems ... 5

3 Requirement Matrix .. 7

4 Key Use Cases .. 8
 4.1 Recover to Cloud – Any Storage Multi-Hypervisor .. 8
 4.2 Protect Your Cloud – Intra-Cloud DR .. 8
 4.3 Migrate to the Cloud– Migration Platform ... 9
 4.4 Offer DRaaS with SoftLayer & Zerto ... 9

5 Solution Architecture .. 10
 5.1 Architectural Overview .. 10
 5.2 Component Model .. 11
 5.2.1 Components Descriptions ... 11
 5.3 Common Services ... 16
 5.3.1 Identity and Access Services .. 16
 5.3.2 Domain Name Services .. 17
 5.3.3 NTP Services .. 18
 5.3.4 Certificate Authority Services ... 18

6 Logical Operational Model .. 19
 6.1 Logical Operational Model Structure ... 19

7 Physical Operational Model .. 21

8 Architectural Decisions .. 22

Appendix A – Software Bill of Materials ... 23
Appendix B – Management Virtual Machine Summary .. 24
Summary of Changes
This section records the history of significant changes to this document. Only the most significant changes are described here.

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2017-05-31</td>
<td>IBM Cloud</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
1 Introduction

IBM Cloud for VMware Solutions allows existing VMware virtualized datacenter clients to extend into the IBM Cloud. This permits use like capacity expansion into the cloud (and contraction when not needed), migration to the cloud, disaster recovery to the cloud, backup into the cloud and the ability to stand up a dedicated cloud environment for development, test, training or lab.

This document details the design of the operational services that would provide disaster recovery service for the cloud management platform based on Zerto Virtual Replication. The disaster recovery service needs at least one cloud region separate to the central cloud to which the cloud management platform is replicated. In the event of failure at the primary site, the cloud management platform is restarted at the cloud region.

Figure 1 VMware Cloud Foundation Overview

1.1 Pre-requisites

The design requires the following pre-requisites:

- Client is required to acquire all necessary software licenses and/or keys for all products used in this design prior to commencement of implementation
- Client is required to provide SoftLayer account
- Client is responsible for SoftLayer related charges as a result of this design’s implementation
- Client is responsible for connectivity from this design to any on premises environment or systems
- Client is responsible for connectivity into this design for access by administrators and end users
- Client is responsible to acquire and provide domain name
- Client is responsible to provide hostname prefixes for the SoftLayer bare metal devices provisioned through this design
- Client to provide connection details and necessary credentials for any systems external to this design that are to be integrated (refer to system context for options)
- Client is responsible for licensing of any software products provisioned with the design
2 System Context

When depicting the VMware SDDC on IBM Cloud design as a single object, the following are the external actors and systems that interface with the design.

![Diagram of VMware SDDC on IBM Cloud System Context](image)

2.1 Actors

The actors that interface with the design are described in the following table. There is not a direct correlation between actors and persons. An actor role may be performed by one or more persons. Alternately, one person may perform more than one actor role.

<table>
<thead>
<tr>
<th>Actor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Admin</td>
<td>The cloud admin or administrator is responsible for maintaining the cloud services.</td>
</tr>
<tr>
<td></td>
<td>This includes,</td>
</tr>
<tr>
<td></td>
<td>• Assigning virtual resources to groups</td>
</tr>
<tr>
<td></td>
<td>• Maintaining Cloud Software Platform</td>
</tr>
<tr>
<td></td>
<td>• System Administrator roles</td>
</tr>
<tr>
<td>User</td>
<td>Consumes the services that the cloud admin allows access to. This typically includes,</td>
</tr>
<tr>
<td></td>
<td>• Provisioning VMs</td>
</tr>
<tr>
<td></td>
<td>• De-provisioning VMs</td>
</tr>
<tr>
<td></td>
<td>• Start / Stop / restart VMs</td>
</tr>
</tbody>
</table>

2.2 Systems

The systems that interface with the design are described in the following table.
Table 2 VMware SDDC on IBM Cloud Interfaced Systems

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoftLayer</td>
<td>SoftLayer provides the bare metal, physical networking and NFS storage in addition to the automation to build the design when ordered.</td>
</tr>
<tr>
<td>Client On Premises vSphere</td>
<td>The design is able to connect to an existing vSphere environment on a client premises to enable Hybrid capabilities.</td>
</tr>
<tr>
<td>Client SMTP Relay</td>
<td>The design connects its SMTP server to a client’s SMTP relay service to provide notifications on aspects such as the process orchestration.</td>
</tr>
<tr>
<td>Client Authentication</td>
<td>The design is able to connect to an existing client authentication system to establish a trust relationship which extends the client’s authentication system into the cloud for use by the cloud management platform.</td>
</tr>
<tr>
<td>Client DNS</td>
<td>The design is able to connect to a client’s domain name service (DNS) to extend the domain service into the cloud for use by the cloud management platform.</td>
</tr>
<tr>
<td>NTP Service</td>
<td>The design requires an external NTP service to provide time synchronization services for use by the cloud management platform.</td>
</tr>
<tr>
<td>Patch Repo</td>
<td>There are a number of internet based patch repositories that the cloud management platform applications need to connect to in order to maintain the security and stability of the cloud environment.</td>
</tr>
</tbody>
</table>
Requirement Matrix

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
</table>
| Service | • Support for full multi-tenancy including data isolation, SLA management, self-service portal, usage reporting and licensing
 • Service Level reporting and management (RPO, Retention, RTO), BCDR Compliance reports |
| Frequency | • Ability to recovery to any point in time in past thirty days to remove corruption and gain operational recovery
 • Data compression, Bandwidth throttling and management saves bandwidth and journal storage and improves RPO |
| Objects | • Ability to restart operations in full compliance with expectations (RTO and RPO) without the use of VMware Snapshots or additional hardware or any impact to production |
| Type | • Solution must be able to support several combinations of:
 o models (active/active or active/passive)
 o type (cold DR, Warm DR, …)
 o topology (2 sites, 3 sites, 4 sites – 1:1, many:1, many: many) |
| Security | • Data flow must be over secure networks |
| Management | • It must be possible to manage the entire DR solution from a single management GUI
 • Orchestration of failover with boot ordering and IP address change |
| Hybrid Cloud | • A common solution is required for protecting legacy data and data in the cloud |
| Scalability | • The DR infrastructure must scale automatically with the amount of data/elements to be protected up and the number of servers.
 • Consistent recovery of applications running across many Virtual machines |
| Reliability | • Automated failover, DR test and failback on application level or the whole data center |
| Storage | Efficiency | On-demand file, VM or file system restore from journal without failover
 • Optional backup in the cloud from journal without backup SW and backup window or impact to production |
| DR Drills | • Non-disruptive DR testing with no impact to replication or production |
4 Key Use Cases

4.1 Recover to Cloud – Any Storage Multi-Hypervisor

- Protect Virtualized applications into IBM cloud
- Supports vSphere, VCD or Hyper V
- Any storage, any application, any operating system
- Seconds RPO and minutes of RTO
- Corruption recovery with up to thirty days of continuous protection
- Customizable solution that scales
- Predictable performance with SoftLayer Bare Metal servers and performance storage
- Can be deployed in hours

Figure 3 Recover to Cloud – Any Storage Multi-Hypervisor

4.2 Protect Your Cloud – Intra-Cloud DR

- Protect applications that are running on SoftLayer cloud
- Supports vSphere, VCD or Hyper V
- Seconds RPO and minutes of RTO
- Corruption recovery with up to thirty days of continuous protection
- Protect across 21 data centers in four continents
- Take advantage of SoftLayer network global internet backbone
- Can be deployed in hours

Figure 4 Protect Your Cloud – Intra-Cloud DR
4.3 Migrate to the Cloud– Migration Platform

- Migrate your virtual applications to SoftLayer cloud non-disruptively
- Supports vSphere, VCD or Hyper V
- Non-disruptive testing of applications before migration
- Supports failback and cloud bursting
- Global presence 21 data centers in four continents

4.4 Offer DRaaS with SoftLayer & Zerto

- Flexible Platform to offer DRaaS using a shared infrastructure
- Self-service portal with integrated cloud management platform
- Can support customers with vSphere, VCD or Hyper V
- Solution for any storage, any application, any operating system
- Service level reporting billing support and full API
- Seconds RPO and minutes of RTO
- Global presence to support a large market
- Cost effective usage based billing
- Customer on-boarding in hours
5 Solution Architecture

5.1 Architectural Overview

The disaster recovery service adds to the data protection service by protecting the management services in the case of a complete site failure. It is an optional service to provide additional protection.

Since this requires more than one site, it is only applicable where a central cloud and at least one cloud region has been included.

Zerto Virtual Replication is used to provide this service, together with keeping the same IP addressing of the cloud management services at both sites.

Figure 7 Zerto Virtual Replication Architecture

Note: Each central cloud or cloud region in this design is equivalent to the site construct in Zerto Virtual Manager.

Since the central cloud contains the portal and manages the services in all the regions, the following applications are in scope of disaster recovery protection:

- vRealize Automation

The services that support the services at each site do not require disaster recovery protection. This includes:

- Cloud Builder, Cloud Driver and SDDC Manager.
- vSphere, NSX and vCenter services which manage the services at the local site only.
- Authentication, DNS and NTP which is distributed to the cloud regions already.
- vRealize Log Insight and Software Orchestration which is replicated to all cloud regions
5.2 Component Model

5.2.1 Components Descriptions

Zerto Virtual Replication is installed in a site with virtual machines to be protected as well as in the site where these virtual machines will be recovered. The installation includes:

- A Zerto Virtual Manager (ZVM), a Windows service and manages the replication at the site level, and the ability to install Virtual Replication Appliances (VRAs), virtual machines installed on each ESX/ESXi host to move the data to be replicated from the protected to recovery site.
- A Virtual Backup Appliance (VBA), a Windows service that manages offsite backups within Zerto Virtual Replication on each site. The VBA service runs on the same machine as the Zerto Virtual Manager service.

Zerto Virtual Replication can be installed at multiple sites and each site can be paired to any other site. All sites can be managed from a centralized user interface, the Zerto Cloud Manager (ZCM), a Windows service, or each site can be managed separately via a Zerto user interface, accessed from a browser or from within the vSphere Web Client or Client console. Zerto Virtual Replication is installed on both the protected and recovery sites. Zerto Virtual Replication also supports both the protected and recovery sites being managed by a single vCenter Server, for small branch offices. For example, from one datacenter to another datacenter, both managed by the same vCenter Server.

Figure 8 Zerto Virtual Replication Component Model
5.2.1.1 Networking Design for Disaster Recovery

Moving a service physically from one region to another represents a networking challenge, especially if applications have hard-coded IP addresses. Network address space and IP address assignment considerations require that either the same IP address or a different IP address at the recovery region is used. In many situations, new IP addresses are assigned, because VLANs do not stretch between regions.
While protecting the management applications, it is possible to simplify the problem of IP address assignment. This design leverages a load balancer to separate a public network segment and a private network segment. The private network can remain unchanged and only the external load balancer interface has to be reassigned.

On the public network segment, the management application is accessible via one or more virtual IP (VIP) addresses.

On the isolated private network segment, the application’s virtual machines are isolated.

After a failover, the recovered application is available under a different IPv4 address (VIP). The use of the new IP address requires changes to the DNS records. DNS records are either changed manually or by using a script in the Zerto Virtual Manager recovery plan.

Figure 10 Logical Network Design for Recover to Cloud & Migration Platform

Figure 11 Logical Network Design for Intra Cloud DR
The IPv4 subnets are routed within the vSphere management network of each region. Nodes on these network segments are reachable from within the SDDC. IPv4 subnets, such as the subnet for the vRealize Automation primary components, overlap across a region. Make sure that only the active IPv4 subnet is propagated in the region and beyond. The public facing Ext-Mgmt network of both regions (grey networks) are reachable by users and provide connection to external resources, such as Active Directory or DNS.

Load balancing functionality is provided by NSX Edge services gateways. In each region, the same configuration for the management applications and their Zerto Virtual Manager shadow will be used. Active Directory and DNS services must be running in both the protected and recovery regions.

5.2.1.1.2 Zerto Replication

The Zerto Virtual Replication Appliances (VRA) copies I/O as it is created before it leaves the hypervisor. This continuous block-level replication delivers RPOs of seconds, minimizing data loss in the event of an outage.

Writes are captured by the Zerto Virtual Replication software in the hypervisor level, before they are written to the physical disk at the protected site. These writes are sent to the recovery site asynchronously, thus avoiding long distance replication latency for the production applications.

Also, because these writes are captured and sent to the recovery site, it is only the delta changes and not the whole file or disk that is sent to the recovery site, reducing the amount of network traffic, which reduces WAN requirements and significantly improves the ability to meet both RPO and RTO targets.

5.2.1.1.3 Virtual Protection Groups

Virtual machines are protected in virtual protection groups (VPG). A VPG is a group of virtual machines that you group together for recovery purposes.
Once a virtual machine is protected, all changes made on the machine are replicated in the remote site. The replicated virtual machines in the remote site can be recovered to any point in time defined for the VPG or if a period further in the past is required, an offsite backup can be restored.

When a VPG is created, a replica of each virtual machine disk in the VPG is created under a VRA on the recovery site. These replica virtual disks must be populated with the data in the protected virtual machines, which is done by synchronizing the protected virtual machines with the recovery site replicas. This synchronization between the protected site and remote site takes time, depending on the size of the virtual machines and the network capacity between sites.

After the initial synchronization completes, only the writes to disk from the virtual machines in the protected site are sent to the remote site. These writes are stored by the VRA in the remote site in journals for a specified period, after which they are promoted to the replica virtual disks managed by the VRA.

5.2.1.1 Messages and Commands for Zerto Virtual Manager

Zerto also provides a set of RESTful APIs and PowerShell cmdlets to enable incorporating some of the disaster recovery functionality within scripts or programs.

Before and after executing a failover, move, or test failover, you can run executable scripts, such as Windows .bat files or PowerShell scripts. A pre-recovery script is always run at the beginning of the recovery operation. A post-recovery script is run after all the virtual machines are powered on at the recovery site.

The scripts must be saved to the machine where the remote Zerto Virtual Manager (ZVM) is installed.

Both pre-recovery and post-recovery scripts are run by the ZVM service on the ZVM machine. The account running the ZVM service is the account that will run the scripts when they are executed.

5.2.1.1.2 Recovery Flow for Zerto Virtual Manager

Zerto Virtual Replication enables protecting virtual machines, for both disaster recovery or for extended, longer term recovery from an offsite backup, by protecting the relevant virtual machines in virtual protection groups. A virtual protection group (VPG) is a group comprised of virtual machines that are grouped together for recovery purposes.

Disaster recovery using Zerto Virtual Replication enables recovering from a disaster to any point between the moment just before the disaster and a specified amount of time in the past up to 30 days. The recovery is done in real time at the recovery site with a minimal RTO.

A recovery operation is one of the following:

- A failover.
- A planned move of the protected virtual machines from the protected site to the recovery site.
- A clone of the protected virtual machine to the recovery site.

Virtual machines are protected in VPGs. Once a VPG is created, Zerto Virtual Replication creates a copy under the management of a Virtual Replication Appliance, VRA, on the recovery site, of the protected virtual machine files, such as the configuration and data files. A VRA is installed on every host where the machines are to be recovered.

When a recovery operation is performed, the VRA creates the virtual machines defined in the VPG and attaches the virtual disks to these machines. It then promotes the data from the journal to the virtual machine disks.

After initializing the VPG, all writes to the protected virtual machines are sent by the VRA on the relevant host for each virtual machine on the protected site to the VRA on the recovery site specified as the recovery host for the virtual machine. The information is saved in the journal for
the virtual machine with a timestamp, ensuring write-fidelity. Every few seconds the Zerto Virtual Manager causes a checkpoint to be written to every journal on the recovery site for every virtual machine in the VPG, ensuring crash-consistency.

The data remains in the journal until the time specified for the journal when it is moved to the relevant mirror disks, also managed by the VRA for the virtual machine. In this way, you can recover the virtual machines using the mirror disks and then promoting the data from the journal to include the final few hours of data for each virtual machine.

5.2.1.1.3 Recovery Plan Test Network

When a recovery plan is created, the test network options must be defined at VPG level. Selecting an existing port group provides a granular configuration to meet the client’s testing requirements. For virtual machines across ESXi hosts to communicate, distributed switches with uplinks to the production network are used and a port group is created on the switch that is tagged with a non-routable VLAN. In this way, the network is isolated and cannot communicate with other production networks.

Because the isolated application networks are fronted by a load balancer, the recovery plan test network is equal to the recovery plan production network and provides realistic verification of a recovered management application.

5.2.1.1.4 Sizing

For each region, 1 Zerto Virtual Manager and one Zerto Virtual Replication appliance per each ESXi host are deployed. The ZVM application is installed on a Windows 2012R2 virtual machine and utilizes the built in SQL based DB. The Zerto Virtual Replication application is deployed as a virtual appliance.

5.3 Common Services

Common services provide the services used by other services in the cloud management platform. This includes identity and access services, domain name services, NTP services, SMTP services and Certificate Authority Services.

5.3.1 Identity and Access Services

In this design, Microsoft Active Directory (AD) is employed. One MS Windows Active Directory VM will be deployed as part of the VCF automated bring up process. VCF ESXi hosts, vCenter – SSO domain and NSX will be configured to utilize MS AD authentication.
5.3.1.1 MS AD

A single Microsoft Active Directory (AD) VM is deployed within the VCF instance. MS AD serves to authenticate users to the management of the VCF instance only and is not meant to house end users of the workloads deployed within VCF. The forest root of the MS AD will equal the DNS domain name specified by the customer. This domain name is specified only for the first VCF instance if multiple instances are linked. In the case of linked instances of VCF, each VCF instance will contain an AD server that in the forest root replica ring. DNS zone files will also be replicated.

5.3.1.2 vSphere SSO domain

The vSphere Single Sign On (SSO) domain is used as the initial authentication mechanism for a single or multiple VCF instances which are linked. It also serves to connect a VCF instance or instances to Microsoft Active Directory. With regards to VCF, the following SSO configuration is employed:

- The customer inputs the SSO domain name to be used, but the recommendation should be to utilize the default SSO domain name of “vsphere.local” The SSO domain cannot equal the DNS / AD domain name specified.
- For instances of VCF that will be tied to an existing instance, the SSO domain of the first VCF instance will automatically be used.
- The SSO site name will equal the VCF instance name.

5.3.2 Domain Name Services

Domain Names Services (DNS) within this design are for the cloud management and infrastructure components only.

VCF utilizes VMware Cloud Foundation automation. Cloud Foundation utilizes its own DNS server, which resides within the SDDCmgr VM component. SDDCmgr managed VCF components (vCenter, PSC, NSX, ESXi hosts) are configured to point to the SDDCmgr VM IP address as their default DNS by design. Because the SDDCmgr generates and maintains host names for the things it manages, it is not recommended to tamper with its DNS zone file directly for adding and removing hosts.

The end user will be allowed add host names (“A” records) and IP addresses into the SDDCmgr VM dns server zone via the IBM Cloud for VMware solutions portal.

This design integrates DNS services on the deployed MS AD VMs with the SDDCmgr VM in the following configuration:

- The domain structure is specified by the customer. The domain name can be any number of levels (up to the maximum that all VCF components will handle), with the lowest level being the subdomain that the SDDCmgr is authoritative for.
 - The DNS domain name entered will be used as the VCF deployed AD root forest domain name. (if the DNS domain name = cloud.ibm.com then AD domain forest root = cloud.ibm.com) Note that this DNS domain and AD domain is the same across all federated instances of VCF
 - The VCF instance name entered as the VCF instance subdomain. (if the VCF instance name = SJC03 then the subdomain that the sddcmgr will own and deploy the cluster into = SJC03.cloud.ibm.com) This domain name must be unique across all linked VCF instances.
- The SDDCmgr DNS configuration is altered to point to the deployed MS AD servers are forwarders for all zones other then the zone it is responsible for.
- The MS AD DNS servers are configured to be authoritative for the DNS domain space above the SDDCmgr / VCF instance subdomain.
- The MS AD DNS servers are configured to point to the SDDCmgr IP address for the subdomain delegation of the zone the SDDCmgr is authoritative for.
• ANY Secondary cloud regions that are to be integrated to the first or target deployed cloud region must utilize the same DNS name structure above the SDDCmgr subdomain.

5.3.3 NTP Services

This design’s NTP servers are a substratum of the IBM Cloud infrastructure NTP server deployed on the MS Active Directory virtual machines. All VCF deployed components will be configured to utilize these NTP servers. Having all components within the design utilizing the same NTP servers is critical for certificates and MS AD authentication to function correctly.

5.3.4 Certificate Authority Services

By default, VMware vSphere 6.0 uses TLS or SSL certificates that are signed by VMware Certificate Authority (VMCA) residing on the VMware Platform Services Controller appliance. These certificates are not trusted by end-user devices or browsers. It is a security best practice to replace user-facing certificates with certificates that are signed by a third-party or enterprise CA. Certificates for machine-to-machine communication can remain as VMCA-signed certificates, however it is highly recommended that customers follow best practices for their organization, which typically involve using an identified enterprise certificate authority (CA).

The Windows AD servers within this design can be used to create local instance signed certificates. At this time it is up to the customer to configure Certificate Authority services if needed.
6 Logical Operational Model

The logical operational model provides guidance as to the design elements required to meet the functional requirements.

6.1 Logical Operational Model Structure

The design consists of two distinct elements. A central cloud, through which the user and service provider manage the entire cloud, and optionally, one or more associated cloud regions. Only the central cloud contains the self-service portal. Additional regions (cloud regions) are added to provide remote sites, or additional capacity beyond that of a single central cloud within the same site. Each cloud region is configured into the central cloud for management. On premises vSphere environments are connected to SoftLayer via either a VPN connection over the internet or dedicated links to form additional cloud regions. The design of on premises vSphere environments is outside the scope of this document.

![Figure 13 Logical Structure View](image-url)
Within a central cloud, the components interact with each other as follows:

![Component Interaction Diagram]

Figure 14 Component Interaction Diagram

Both the central cloud and any additional cloud regions are built on SoftLayer.
7 Physical Operational Model

The physical operational model elaborates by applying the non-functional requirements to the logical operational model.

Figure 15 Physical Operational Model - Intra Cloud DR

Figure 16 Physical Operational Model – DRaaS, Recover to Cloud & Migration Platform
8 Architectural Decisions

<table>
<thead>
<tr>
<th>#</th>
<th>AD</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site Failure</td>
<td>One of the sites have to survive to the emergency condition and take-over the failing site workload. The sites must be geographic distant and not subject to the same risk conditions, which might cause the concurrent unavailability of sites.</td>
</tr>
<tr>
<td>3</td>
<td>Cloud Components scaling</td>
<td>Cloud components in the surviving site require to be scaled-out to start new compute instances where the failing site workload can be took-over.</td>
</tr>
<tr>
<td>4</td>
<td>Cloud Components re-provisioning</td>
<td>Cloud components not available in the surviving site require to be re-provisioned and configured so that they can took-over extra workload in emergency.</td>
</tr>
<tr>
<td>5</td>
<td>WAN circuits scaling</td>
<td>Network bandwidth in the surviving site should be able to scale-up to accommodate the additional network traffic that would be routed in emergency.</td>
</tr>
<tr>
<td>6</td>
<td>Zerto call home</td>
<td>Zerto Virtual Replication requires the ability to connect to zerto.com for usage reporting and to enable product support and updates. An NSX Edge Services Gateway S-NAT rule should be configured for the ZVM virtual machine to connect to zerto.com</td>
</tr>
<tr>
<td>7</td>
<td>VRA addressing</td>
<td>Zerto’s VRAs do not support multi-homing or NAT traversal. Zerto VRAs may be deployed using SoftLayer private IP addresses or using customer-provided IP addresses. Using SoftLayer addressing simplifies the cloud to cloud replication case, but the on premise to cloud replication case becomes possible only if the SoftLayer private addresses are tunneled to the on premise deployment. If this tunneling is not feasible then it is necessary to re-deploy the VRAs in SoftLayer using VXLAN and customer provided IP addresses.</td>
</tr>
</tbody>
</table>
Appendix A – Software Bill of Materials
The following software products and versions are used in this design.

Table 3 Software Bill of Materials

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product Name</th>
<th>Product Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zerto</td>
<td>Virtual Replication</td>
<td>5.0U1</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Windows Server Standard</td>
<td>2012R2</td>
</tr>
</tbody>
</table>
Appendix B – Management Virtual Machine Summary

The following virtual machines are configured in the management cluster for the cloud management platform by default, as well on the DR site(s).

Table 4 List of Virtual Machines and Sizes per site

<table>
<thead>
<tr>
<th>Function</th>
<th>vCPU</th>
<th>vRAM (GB)</th>
<th>vDisk (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zerto Virtual Manager (ZVM)</td>
<td>2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Virtual Replication Appliances (VRAs)</td>
<td>1</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>(One per each ESXi host)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>