Insurance companies are heavily impacted by technology transformation

Share this post:

Improve pricing and underwriting

When the pricing of an insurer is not in alignment with market conditions or individual behaviors, regardless whether the price is too high or too low, the result tends to be the same – lost revenue and narrowing margins.

Traditionally pricing is based on a cost plus method and methods lack the ability to easily incorporate non-technical pricing factors. Especially in these challenging times, where economic decline will lead to increased competition, pricing is key. Leaders in pricing innovation invest in data infrastructure to better harness data. Sophisticated insurance carriers evaluate more than 30 new external data sources and then select two to four sources each year to embed in their pricing and rating models. Innovative pricing engines can generate quotes that regularly beat the market while still maintaining profitability and avoiding adverse selection. And every quote generates an additional data point, irrespective of a customer’s final purchasing decision.

With regards to underwriting, existing risk pools are shifting, and new ones are emerging. Risks are becoming more volatile, e.g. due to climate change and world-wide events such as COVID-19. Addressing these impacts requires the availability of contextual risk data and an ability to sense and react quickly. The availability of a scalable knowledge platform is a key component to achieve that. Applying artificial intelligence is starting to become more common in insurers but doing this at scale is still challenging.

How it looks in real life? A leading Swiss national insurance company recognized that risk assessment becomes more difficult as companies expand activities in non- traditional areas. At the same time, underwriters spent a significant amount of time responding to various low-value-added questions. Furthermore, accessing information stored in different systems while efficiently serving customers proved challenging.

IBM worked with this client to introduce Watson Underwriting Advisor, which helps underwriters shift their time focus from providing low-value support to more high-value guidance. With machine learning, clustering of a company’s activities against a large set of different risk coverages and with deeper insights from unstructured data, more efficient and consistent decisions on new opportunities will be taken, which contribute to long-term profitability growth.

Looking for sustainably lower your combined ratio through implementing smarter pricing and cognitive underwriting  go to this webpage and improve your pricing and underwriting.

More Insurance stories

Dankzij API’s is compliance snel en eenvoudig een feit

  Geschreven door IBM op basis van een interview met Georges Berscheid   Finologee stelt Europese banken en verzekeraars in staat om snel te voldoen aan huidige en toekomstige wet- en regelgeving. Software en API’s vormen daarbij een uitbreiding van de legacy backend-systemen bij de klant. Medeoprichter Georges Berscheid is als CTO verantwoordelijk voor IT, […]

Continue reading

Het digitale geheugen van de overheid

  Aperitief Pensant De Rijksoverheid heeft haar informatiehuishouding niet goed op orde. Zo concludeerde de parlementaire ondervragingscommissie na de toeslagenaffaire in de kinderopvang. Hoe heeft het zover kunnen komen? Ging de digitalisering te snel? Had de politiek er simpelweg geen aandacht voor? Of bestaat de juiste technologie nog niet om zo veel data te verwerken? […]

Continue reading

Het collectieve digitale geheugen van de overheid

  “De informatiehuishouding van de overheid goed geregeld”   “Data en informatie zijn onmisbare grondstoffen voor het maken van goed beleid en het beantwoorden van maatschappelijke vragen. Daarvoor is het nodig dat data- en informatieprocessen goed zijn ingericht en aan wettelijke richtlijnen voldoen”. Aldus SG Marjan Hammersma van het ministerie van OC&W in het voorwoord […]

Continue reading