AI

Why hardware matters in the cognitive enterprise

Share this post:

From time to time, we invite industry thought leaders to share their opinions and insights on current technology trends to the IBM Systems IT Infrastructure blog. The opinions in these blogs are their own, and do not necessarily reflect the views of IBM.

The hallmark of the cognitive enterprise will be optimized technology stacks that meet the demands of AI workloads – and that must start with hardware.

As the industrial age gives way to the digital era, automation and various forms of artificial intelligence (AI) are driving a fundamental shift in how enterprises engage with customers, deliver services and optimize business functions.

Leading organizations are using AI to enable rapid decision making, capture and codify value-driving organizational expertise, and to deliver actionable insights at the point of engagement. The application of these technologies demands that organizations reshape both their organizational models and their technology stack to transform themselves into what we call a Cognitive Enterprise.

While most enterprises are at some stage of their technology transformation, many of them are taking too narrow a view and looking only at the software layer as they do so. This limited focus may prove to be a mistake, as the demands of the cognitive enterprise require a reimagining of the stack from hardware on up.

Why software is not enough

The industry is in the throes of a movement toward ‘software-defined’ architectures. The rationale is compelling: abstract the software that provides logic, orchestration, and management from the physical infrastructure and you get vastly improved efficiency and agility.

As a result, this software-defined approach was one of the chief enablers as cloud companies deployed what we now call web-scale architectures.

Understandably, enterprise organizations have been frantically trying to replicate these approaches as they strive to transform themselves. There are, therefore, now viewing infrastructure as a pure commodity and focusing all of their efforts on software optimization.

Because of their compute-intensive nature, however, AI workloads require an optimized stack that extends beyond the software layer and which optimizes both the underlying hardware as well as the integration among software components.

Web-scale companies have already realized this dependence on optimized hardware and have therefore been developing proprietary, purpose-built, and fully integrated architectures from the hardware layer on up to power their demanding AI workloads.

Enterprise organizations are likewise finding that their AI workloads are driving exponential growth in both data and compute demand and they will, therefore, need to follow suit.

The AI-optimized stack

As organizations begin to develop their AI-optimized stack, they quickly realize that commodity hardware is insufficient for the optimization they seek. Such optimization must start at the processor level with a laser-focus on removing bottlenecks, increasing core performance, expanding memory bandwidth and enabling compute acceleration.

But creating an AI-optimized stack is about more than just having optimized hardware. They must also tune their entire software stack to meet the particular needs of AI workloads.

This software optimization must occur at two levels. First, the software must be optimized to work with the specialized hardware to fully take advantage of these purpose-built hardware innovations. Second, the software must be configured to work together as efficiently as possible in the context of workload demands.

The Intellyx take

As enterprise leaders transform their organizations into cognitive enterprises, they will need to differentiate workloads based on both business value and the demands they place on the technology stack.

The most critical to their transformative efforts will be these intensive AI workloads, which will leave them seeking the most effective ways to rapidly build and deploy stacks optimized to power them.

IBM has developed fully integrated and vertically-oriented solutions to help enterprise organizations more rapidly deploy these AI-optimized architectures and realize value more quickly. Its approach includes purpose-built hardware solutions based on its new POWER9 chip, along with a full complement of open source packages IBM has optimized for its hardware and to meet the demands of AI (what it calls its PowerAI offering).

Whether or not organizations use these sorts of pre-built solutions, their objective must be to focus on optimizing the stack for the particular demands of AI workloads and then ensure that they can rapidly deploy these architectures to meet dynamically changing business demands. The ability to do so will be one of the hallmarks of the cognitive enterprise.

Copyright © Intellyx LLC. IBM is an Intellyx client. Intellyx retains full editorial control over the content of this paper.

Principal Analyst with Intellyx

More AI stories

Top IBM Power Systems myths: Linux on x/86 is different from Linux on Power

There are many misconceptions about IBM Power Systems in the marketplace today, and this blog series is all about dispelling some of the top myths. In the last post, I put aside the myth that IBM Power Systems has no cloud strategy. In this post, we’ll look at a myth that has been propagated by […]

Continue reading

Are you making the best of your Spark environment?

All companies are in the data business now. By empowering your organization to make data-driven decisions at a high speed, with optimal resource utilization, IT will soon become the data hero that helps shape the future of the business. Organizations from varied spheres are thus enthusiastic about 21st-century data science. “Big data” solutions have been […]

Continue reading

Quick-start AI – your rapid path to business results

Executives who are leaders in applying IT infrastructure are emphatic. Business technology is key to their strategic vision, where the economics support a compelling business case. These trailblazers are already investing with bold expectations of gaining agility, driving innovation and capturing new revenue growth, process efficiencies, or improved customer experiences. The next wave of business […]

Continue reading