Stereo Vision Using Computing Architecture Inspired by the Brain

Our Brain-Inspired Computing group at IBM Research-Almaden will be presenting at the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018) our most recent paper titled “A Low Power, High Throughput, Fully Event-Based Stereo System.” The paper describes an end-to-end stereo vision system that uses exclusively spiking neural network computation and can run […]

Continue reading

The brain’s architecture, efficiency… on a chip

2016 was a big year for brain-inspired computing. My team and I proved in our paper “Convolutional networks for fast, energy-efficient neuromorphic computing” that the value of this breakthrough is that it can perform neural network inference at unprecedented ultra-low energy consumption. Simply stated, our TrueNorth chip’s non-von Neumann architecture mimics the brain’s neural architecture […]

Continue reading

Deep learning inference possible in embedded systems thanks to TrueNorth

Scientists at IBM Research – Almaden have demonstrated that the TrueNorth brain-inspired computer chip, with its 1 million neurons and 256 million synapses, can efficiently implement inference with deep networks that approach state-of-the-art classification accuracy on several vision and speech datasets. This will open up the possibilities of embedding intelligence in the entire computing stack […]

Continue reading