AI

From HPC Consortium’s success to National Strategic Computing Reserve

Founded in March 2020 just as the pandemic’s wave was starting to wash over the world, the Consortium has brought together 43 members with supercomputing resources. Private and public enterprises, academia, government and technology companies, many of whom are typically rivals. “It is simply unprecedented,” said Dario Gil, Senior Vice President and Director of IBM Research, one of the founding organizations. “The outcomes we’ve achieved, the lessons we’ve learned, and the next steps we have to pursue are all the result of the collective efforts of these Consortium’s community.” The next step? Creating the National Strategic Computing Reserve to help the world be better prepared for future global emergencies.

Continue reading

This ship has no crew and it will transform our understanding of the ocean. Here’s how

IBM is supporting marine research organization ProMare to provide the technologies for the Mayflower Autonomous Ship (MAS). Named after another famous ship from history but very much future focussed, the new Mayflower uses AI and energy from the sun to independently traverse the ocean, gathering vital data to expand our understanding of the factors influencing its health.

Continue reading

IBM’s AI goes multilingual — with single language training

At AAAI, our team presented two new multilingual research techniques that enable AI to understand different languages while only trained on one.

Continue reading

IBM researchers check AI bias with counterfactual text

Our team has developed an AI that verifies other AIs’ ‘fairness’ by generating a set of counterfactual text samples and testing machine learning systems without supervision.

Continue reading

IBM’s AI learns to navigate around a virtual home using common sense

In a recent paper introduced at the 2021 AAAI Conference on Artificial Intelligence (AAAI), we describe an AI that trades off ‘exploration’ of the world with ‘exploitation’ of its action strategy to maximize rewards. In Reinforcement Learning, an AI gets a reward – such as a bag of gold behind a locked door in a video game – every time it reaches specific desirable states. We have greatly improved this exploration vs exploitation tradeoff using additional commonsense knowledge – in the form of crowdsourced text. Our work could lead to better mapping and navigation applications, and to a new generation of interactive assistive agents able to reason like humans.

Continue reading

IBM AI helps to break down massive code to ease cloud migration

We use AI to automatically break down the overall application by representing application code as graphs. Our AI relies on Graph Representation Learning – a popular method in deep learning. Graphs are a natural representation for software and applications. We translated the application to a graph where the programs become nodes. Their relationships with other programs become edges and determine the boundary to separate the nodes of common business functionality.

Continue reading

Boosting our understanding of microbial world with software repurposing

In our latest paper published in the Microbiome Journal, we propose a way to improve the speed, sensitivity and accuracy of what’s known as microbial functional profiling – determining what microbes in a specific environment are capable of.

Continue reading

Moving beyond the self-reported scale: Objectively measuring chronic pain with AI

Together with Boston Scientific, we are presenting research that details the feasibility and progress towards our new pain measurement method at the 2021 North American Neuromodulation Society Annual Meeting.

Continue reading

How the world’s first smartwatch inspired cutting-edge AI 

Between 2000 and 2001, IBM Research made headlines when it launched an internet-enabled designer watch running Linux, an open-source operating system. Dubbed WatchPad, its aim was to demonstrate the capabilities of the then-novel OS for mobile and embedded devices.

Continue reading

Peeking into AI’s ‘black box’ brain — with physics

Our team has developed Physics-informed Neural Networks (PINN) models where physics is integrated into the neural network’s learning process – dramatically boosting the AI’s ability to produce accurate results. Described in our recent paper, PINN models are made to respect physics laws that force boundaries on the results and generate a realistic output.

Continue reading

Who. What. Why. New IBM algorithm models how the order of prior actions impacts events

To address the problem of ordinal impacts, our team at IBM T. J. Watson Research Center has developed OGEMs – or Ordinal Graphical Event Models – new dynamic, probabilistic graphical models for events. These models are part of the broader family of statistical and causal models called graphical event models (GEMs) that represent temporal relations where the dynamics are governed by a multivariate point process.

Continue reading

IBM’s Squawk Bot AI helps make sense of financial data flood

In our recent work, we detail an AI and machine learning mechanism able to assist in correlating a large body of text with numerical data series used to describe financial performance as it evolves over time. Our deep learning-based system pulls out from large amounts of textual data potentially relevant and useful textual descriptions that explain the performance of a financial metric of interest – without the need of human experts or labelled data.

Continue reading